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1Institute of Psychology, University of Würzburg, Würzburg, Germany
2Institute of Computer Science, University of Würzburg, Würzburg, Germany

E-mail: sebastian.halder@uni-wuerzburg.de

ABSTRACT: We used a brain-computer interface (BCI)
system controlled with event-related potentials (ERPs)
evoked by tactile stimulation to control a mobile plat-
form.
Eight tactile stimulators were attached in four pairs to
the arms, legs and back of the participants (N=12). The
electroencephalogram (EEG) was recorded via a modi-
fied Emotiv headset. All participants were trained in the
laboratory, then four participants controlled the mobile
platform in an outdoor environment.
Inside the laboratory the participants achieved average
accuracies of 72%. Outside four participants achieved
average accuracies of 61% (range 52-88%).
Technical problems with the responses of the mobile plat-
form and high outside temperatures prevented higher lev-
els of control with the mobile platform. A mobile plat-
form better suited for the discrete control implemented
with the BCI or a different control scheme will be needed
for future experiments. Nevertheless, subjects were able
to control the mobile platform with tactile ERPs using
low-cost EEG equipment in a real world environment.

INTRODUCTION

Since the first demonstration of Farwell and Donchin that
the visual P300 event-related potential (ERP) component
of the electroencephalogram (EEG) can be used to con-
trol a brain-computer interface (BCI) the usefulness of
this method for communication has been shown in nu-
merous studies, also with persons with severe motor im-
pairments [1, 2]. Another application in which assistive
technologies, such as BCIs, have the potential to improve
the quality of life of persons with disabilities is personal
mobility. Control of mobile platforms with BCIs has been
shown mostly using motor imagery (see e.g. [3]). The
disadvantage of this approach is that control over more
than two classes is difficult to obtain without a long train-
ing period. A potential alternative are P300 BCIs that
do not rely on visual stimulation and thus leave the vi-
sual channel unoccupied to observe the environment [4].
In studies using a simulated wheelchair tactile evoked
ERPs were shown to be a viable control method with four
classes [5]. In the current study we used a modified Emo-

tive headset (see [6]) to control a physical mobile plat-
form [7, 8, 9] in an outdoor environment using the same
setup as in [5].

MATERIALS AND METHODS

We recruited twelve healthy participants (six female, av-
erage age 23.4 SD 3.4, range 20-32) without a history
of neurological or psychological disorders. Participants
signed informed consent and were compensated with e 8
per hour. None of the participants had experience with
tactile P300 BCIs, six of the participants had experience
with visual P300 BCIs.

Figure 1: Setup used to control the mobile platform.
The control PC received the EEG data from the modified
Emotiv headset, classified the data and sent commands to
the microcontrollers that controlled the mobile platform.
Eight tactile stimulators were attached two to the left arm,
two to the right arm, two to the left leg and right leg and
two to the back.

Eight tactile stimulators (C2 Tactors, Engineering Acous-
tics Inc., Casselberry, USA) were attached in pairs, as
suggested in [5], to the arms, legs and back of the partic-
ipants (see Figure 1). To steer to the left the participants
attended to the stimulators on the left arm, to steer to
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the right the participants had to attend to the stimulators
on the right arm, to move forward to the stimulators on
the legs and to move backwards to the stimulators on the
back. The stimulators were placed at least 10 cm apart.
The stimulus duration was set to 250 ms with a frequency
of 250 Hz and an inter-stimulus interval of 375 ms. For
one selection each pair of stimulators was activated ten
times. Between selections there was a pause of five sec-
onds to give the participants enough time to choose the
next command to attend to. Participants were seated in
a comfortable chair in a quiet room and received verbal
feedback on the selected direction.
For calibration each of the four directions had to be
chosen twice (eight selections) in one run. A total of
three runs were performed for calibration (24 selections).
Based on this calibration data a classifier was trained us-
ing stepwise linear discriminant analysis (SWLDA; for-
ward p < 0.1, backward p > 0.15, 60 features). The data
was segmented into 800 ms epochs and subsampled to 16
samples.
After calibration the participants were asked to perform
another two runs with a total of twelve selections (the
participants were asked to “copy” a specific sequence of
twelve commands) and a third run in which they had to
plan a route and choose the appropriate commands them-
selves (the participants were asked to “drive” the mobile
platform from a starting to an an end point shown to them
on a piece of paper).
Four participants with over 90% accuracy in the previ-
ously described tasks participated in a second experiment
in which the physical mobile platform was controlled.
The calibration for this task was performed in a large hall
in which also other activities were taking place. Thus the
environment was noisy. The driving task was performed
outside. Outside it was quiet except during the experi-
ment of participant six (construction noise). The partici-
pants performed the same calibration task as in the previ-
ous experiment while seated in a chair and selected five
commands to confirm that the calibration was successful.
Participant three was chronologically the first participant
to perform the driving task (participant twelve the sec-
ond, participant two the third and participant six the last).
Due to a higher amount of noise when operating the BCI
in the hall where the calibration was performed a 9 Hz
low-pass filter was activated for all participants after par-
ticipant three. Then the participants were asked to move
outside to the start position of the route that was to be
navigated with the mobile platform. While the mobile
platform was controlled with the BCI one of the experi-
ment supervisors held an emergency stop button. The last
two participants first controlled the mobile platform with
a keyboard to gain familiarity with the behaviour of the
mobile platform and the route. From the starting position
the participants drove around a patch of grass and back to
the starting position. If this was not accomplished with
60 commands the experiment was aborted. The optimal
path needed 36 correct selections. The mobile platform
was configured to change the angle of the steering wheels

if the left or right command was chosen. Choosing for-
ward or backward would move the mobile platform in the
corresponding direction for approximately one meter.
Leave one-run-out cross validation accuracy was calcu-
lated for the four participants that performed both ses-
sions (training and driving ) also using SWLDA. ERP
analysis was also performed on the calibration data be-
cause this is the only data with target markers in the sec-
ond session (the driving task was performed without pre-
defined selections).
The EEG was recorded using 14 passive Ag-AgCl elec-
trodes placed in plastic holders in an elastic EEG cap
(Easycap GmbH, Herrsching, Germany). The electrodes
were positioned at Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3,
Pz, P4, PO7, Oz and PO8 with the ground at AFz and
the reference on the right mastoid. The amplifier was a
modified version of an Emotiv EPOC headset (EMOTIV
Inc, San Francisco, California, USA), for a description
see [6]. The amplifier was connected via bluetooth to
BCI2000 [10]. The output of the classifier was sent to the
mobile platform via a python script. The EEG was sam-
pled with 128 Hz, notch filtered at 50 Hz and additionally
bandpassfiltered from 0.1-30 Hz (for the driving experi-
ment of participants two, six and twelve this was set to
0.1-9 Hz).

RESULTS

While performing the training in the laboratory the av-
eraged accuracy of the twelve participants during the se-
lection task with predefined commands was 72.2%. Two
participants reached 100% and eight participants accu-
racies over 70%. The accuracy decreased to an aver-
age of 55% during the task in which the participants had
to plan the route themselves. Five participants achieved
accuracies of 70%. Participants two (average accuracy
both tasks 80%), three (86.7%), six (75.2%) and twelve
(100%) took part in the second session to control the mo-
bile platform in an outdoor environment. For a summary
of the accuracy of all participants see Figure 2. The de-
pendency of the accuracy on the number of stimulus repe-
titions for the four participants that performed both train-
ing and driving is shown in Figure 3. Only participant
twelve would have been able to control the mobile plat-
form with a lower number of stimulus repetitions.
The participants needed between 36 and 57 minutes to
make 60 selections (the maximum until the experiment
was aborted) on the outside course. None of the partic-
ipants reached the end point of the course. During the
experiment conducted with participants two, three and
six the outside temperatures were around 30 degrees Cel-
sius and the sun was shining. The first participant of the
outside driving task (participant three) expressed that the
sun did not bother her, nonetheless the subsequent partic-
ipants were shielded with an umbrella. During the exper-
iment with participant twelve the sun was behind clouds.
Participant two performed 65% of the selections as in-
tended. The experiment was interrupted once to correct
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the angle of the steering wheel.

Participant three performed 65% of the selections as in-
tended and the emergency button had to be pressed twice
to prevent collisions with the sidewalk. Twice the mobile
platform did not move backwards even though the correct
command was selected.

Participant six performed 52% of the selections as in-
tended. A possible negative influence may have been
construction noise 100 m away from where the experi-
ment was conducted.

Participant twelve performed 88% of the commands as
intended. The mobile platform had to be reset during the
task due to the battery indicator erroneously showing a
charge state of 0%. Twice the emergency button had to
be used to prevent collisions. Five selections of the com-
mand move to right direction were not executed by the
mobile platform. After a second reset the problem was
resolved.

ERP data of the target responses in the calibration data of
the four participants that performed the outdoor driving
task is shown in Figure 5.

All participants said they found the control of the mobile
platform to be intuitive and felt to be in control during
the experiment. The particularly enjoyed the realistic set-
ting. All participants expressed their frustration about the
mobile platform not always executing the selected com-
mand.

Figure 2: Online accuracies of the participants during the
training task (left group of bars) and during the driving
task (right group of bars). Participants selected for the
driving task are shown in dark gray. Accuracy is the av-
erage of all tasks excluding calibration.

Figure 3: Offline accuracies of the participants that per-
formed training (dashed line; session one) and driving
(continuous line; session two) tasks. The accuracies were
calculated using the calibration data. Accuracy is shown
per sequence (i.e. the number of stimulus repetitions;
higher number of repetitions increase the signal to noise
ratio of the ERP compared to the background EEG but
also increase selection times). Participant two in blue,
participant three in red, participant six in yellow and par-
ticipant twelve in purple.

Figure 4: The area where the outdoor experiment was
conducted. Participants started at the location indicated
by the red circle. The paths shown are an exemplary path
using the steering wheel of the mobile platform (red) and
a path using keyboard control to give discrete commands
analogous to the BCI experiment (blue). Trajectory data
during the BCI experiment is not avaliable. The satellite
image was obtained from Google Maps.
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Figure 5: Exemplary event-related potentials based on

the calibration data from session one of the four partic-
ipants that performed the outdoor experiment in session
two. The blue line shows the the target response, the red
line the non-target response. Note that amplitude scales
and channel location differ between participants.

DISCUSSION

With 72% the average accuracies across all twelve partic-
ipants would have been sufficient to control the BCI. Task
difficulty appears to have had an effect on performance
in our sample as the accuracy decreased to 55% when
the participants had to plan the path themselves. Con-
sidering the EEG hardware that was used the 62% aver-
age accuracy the four participants that performed the out-
door driving task achieved are comparable to the 69% in
a binary choice task also using the modified Emotiv and
conducted outdoors that was reported in [6]. The stim-
ulation unit that was used in the current study was also
used for control of a virtual wheelchair inside the labora-
tory and the accuracies were higher with on average 85%
[5]. In the current study, the EEG recordings showed a
lot of noise in the environment of the hall where the cal-
ibration for the driving task was conducted in the second
session and the low-pass filter was reduced to 9 Hz for
three of the four participants in this session. It is uncertain
whether such problems may have been avoided with an-
other amplifier as other studies using a similar paradigm
were conducted in a lab environment [5].
Distractions in the form of additional tasks or the envi-
ronment as well as fatigue have a detrimental effect on
BCI performance [11]. High temperatures may have had
a detrimental effect on the outdoor performance of par-
ticipants two, three and six. Nonetheless, an ideal BCI
should function under any condition and BCIs should be
evaluated under different environmental conditions out-
side of the laboratory. To deal with changes in the en-
vironment, adaptations to the signal processing used in
the BCI may be necessary [12]. Additionally, the signal
processing methods used in the current publication may
benefit from being updated to the approaches outlines in
e.g. in [13].
In its current form the mobile platform we used for the
experiments is not well suited for BCI control. Some-
times commands were not executed, in particular if there
was a slight slope, which had a frustrating effect on the
participants. There may have also been an effect of fric-
tion as sometimes the steering angle could not be set. It
has to be considered that driving short distances of about
one meter with low speeds is not optimal for the motor of
the mobile platform.

CONCLUSION

We were able to show that low-cost EEG hardware can
be used to control a mobile platform using tactile ERPs
an a real world driving task. The mobile platform must
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be adapted to react precisely to the discrete commands is-
sued with a ERP BCI. Environmental influences are a key
component for this type of experiment. Even if they have
a negative impact on the performance of the BCI should
only be protected against to the extent as not to cause any
discomfort for the user. To summarize, we were able to
show that BCI control of the mobile platform with tac-
tile stimulation is possible and important steps for future
research were determined.
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