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ABSTRACT:

As the SSVEP paradigm (based on steady state vi-
sual evoked potentials) requires EEG-measurement,
high number of EEG electrodes might be impractical
in daily life scenarios because of the time consuming
electrode montage. Reducing the number of signal
electrodes can shorten preparation time but might
compromise signal quality.

This paper explores the number of signal electrodes
required to achieve sufficient control over multi-
target SSVEP-based BCI systems.

In this respect, two of the most commonly used
multi-channel classification methods, the minimum
energy combination method (MEC) and the canoni-
cal correlation analysis (CCA), are investigated.

Data from six healthy subjects recorded during a
copy spelling experiment using eight signal electrodes
were analyzed off-line. A spelling interface with 30
flickering targets was used. Results for all possible
channel combinations were evaluated, revealing that
already three electrode channels are sufficient for re-
liable BCI control.

INTRODUCTION

Brain-computer interface (BCI) describes a field of
technologies providing hope for the severely impaired
as brain activity patterns are translated into out-
put commands, allowing control of external devices
without using any muscle activity [1]. Among other
brain signals that can be utilized for spelling devices
are so called Steady-State Visual Evoked Potentials
(SSVEPs), which are evoked in the visual and pari-
etal cortexes when gazing at a flickering visual stim-
ulus [2]. Typically, SSVEPs are recorded noninva-
sively by electroencephalography (EEG). The graph-
ical user interface (GUI) usually presents a set of
stimuli flickering with distinct frequencies. If the
user focuses on a particular stimulus, the correspond-
ing frequency can be found in the recorded EEG.

Two established SSVEP signal detection meth-
ods are the minimum energy combination (MEC)
method, an approach based on principal component

analysis [3], and the canonical correlation analy-
sis (CCA), a method of extracting similarities be-
tween two data sets [4]. One of the major chal-
lenges of EEG-based BCIs is posed by the consider-
able preparation time that is necessary to get ready
for the EEG signal acquisition: Usually various sig-
nal electrodes are placed at the occipital areas, at the
back of the head, which are usually covered with hair.
For each of these electrodes electrolytic gel needs to
be applied to assure low impedances; usually thresh-
olds below 10 kΩ are required, depending on the type
of electrodes used. A proper preparation can only be
done by experienced personal. After use of the BCI-
system the hair of the BCI users needs to be washed.

Several studies aiming to circumvent parts of the is-
sues accompanying the EEG preparation procedure
have been conducted. Some articles focus on the
avoidance of electrolytic electrode gel. Water-based
electrodes, for instance, could simplify daily setup
and cleanup [5]. Dry-contact electrodes do not re-
quire any skin preparation or usage of gel at all [7].
However, the signal-to-noise ratio (SNR) might be
considerably lower with these electrodes. Mihajlović
et al. compared SSVEP-based BCI performance us-
ing dry, water and gel electrode setup[6]. By com-
paring the raw signal obtained within different EEG
channels they found that the severity of noise contri-
bution was higher for dry setup than for water-based
setup, and for the water-based than the gel setup.
Average classification accuracies across six partici-
pants were 63% for dry, 88% for water-based and
96% for gel electrodes.

Other research groups focus on a more practical elec-
trode placement. E.g. Hsu et al. compared the
amplitude-frequency characteristics of occipital and
frontal SSVEPs; although the latter could be an
alternative choice in design of SSVEP-based BCIs,
the amplitudes and SNRs of occipital SSVEPs were
significantly larger [8]. Similarly, Wang et al. em-
ployed EEG signals collected from non-hair-bearing
areas such as the neck and ears for their SSVEP-BCI
system [9]. While results from their high-density
EEG recording (256 electrodes) demonstrated that
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SSVEPs are detectable with behind-the-ear electrode
montage, SSVEPs acquired from occipital area were
the strongest.

Another approach is to reduce the number of used
electrodes in order to shorten the preparation time.
Several articles investigated the impact of the num-
ber and location of electrode channels. Müller-Putz
et al. investigated how the classification accuracy
of a 4-class BCI can be improved by localizing in-
dividual EEG recording positions [10]. In a study
with ten subjects, Friman et al. systematically ex-
cluded electrodes from offline analysis and stated
that the MEC benefits from more electrodes because
of the additional information gained about the nui-
sance signal [3]. Lin et al. also observed that using
more channels for the CCA approach might improve
recognition accuracy [4].

The presented paper further investigates the min-
imum number of signal electrodes for multi-target
SSVEP-based BCI applications. In this respect, a
spelling performance with a 30-target spelling appli-
cation was evaluated. All possible channel combi-
nations were evaluated off-line and ranked according
to detection accuracy. In addition, the SSVEP re-
sponse detection obtained with the MEC were com-
pared with results obtained later off-line using CCA.

The paper is organized as follows: the second sec-
tion describes the experimental setup, and intro-
duces the tested spelling application and used clas-
sification methods. The results are presented in the
third section, followed by discussion and conclusion.

MATERIALS AND METHODS

Participants: BCI performance of six healthy vol-
unteer subjects (two female, mean age 23.8 years) is
evaluated in this paper. All participants were re-
cruited from the Rhine-Waal University campus in
Kleve. This research was approved by the ethical
commitee of the medical faculty of the University
Duisburg-Essen; the experiment was conducted in
accordance with the Declaration of Helsinki. Before
participation, subjects gave written informed con-
sent. Participant information was not directly linked
to experiment data, but stored pseudonymously. The
EEG recording was conducted in a typical labora-
tory room with good light conditions and little back-
ground noise. Participation was not linked with a
financial reward.

Hardware: Participants were seated on a com-
fortable chair in front of a computer monitor (BenQ
XL2420T, resolution: 1920×1080 pixels, vertical re-
fresh rate: 120 Hz) at a distance of about 60 cm.
The used computer system operated on Microsoft
Windows 7 Enterprise running on an Intel proces-
sor (Intel Core i7, 3.40 GHz).

Ag/AgCl electrodes were used to acquire the signals
from the surface of the scalp for the EEG recording.
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Figure 1: Signal electrodes used in the on-line ex-
periment. Eight signal electrodes were placed at
PZ , PO3, PO4, O1, O2, OZ , O9 and O10. Ground was
placed over AFZ , the reference electrode over CZ .

Electrode placement in accordance with the interna-
tional 10-20 system was applied. The ground elec-
trode was placed over AFZ , the reference electrode
over CZ , and the eight signal electrodes were placed
at PZ , PO3, PO4, O1, O2, OZ , O9 and O10 (see also
Fig. 1). In order to assure high signal quality, stan-
dard abrasive electrode gel was applied between the
electrodes and the scalp to bring impedances below
5 kΩ. A g.USBamp (Guger Technologies, Graz, Aus-
tria) EEG amplifier was utilized with a sampling fre-
quency of 128 Hz. An analogue band pass filter (be-
tween 2 and 30 Hz) and a notch filter (around 50 Hz)
were applied.

Signal Acquisition: The MEC [2, 3] was used for
on-line SSVEP signal classification. This method
creates a set of channels (a weighted combination
of the electrode signals) that minimize the nuisance
signals. For EEG detection, we consider Nt samples
of EEG data. The sampled EEG signal data from
Ny electrodes can be written as Nt ×Ny matrix

Y = XfA+B. (1)

The Nt × 2Nh model matrix Xf associated with the
Nh harmonics of a stimulus frequency f is defined
by

Xf (t, 2k − 1) = sin(2πkft) (2)

Xf (t, 2k) = cos(2πkft) (3)

for k = 1, . . . , Nh. The matrix A contains the ampli-
tudes for the expected sinusoids and B contains the
information that cannot be attributed to the SSVEP
response. The noise and nuisance signal can be es-
timated by removing the SSVEP components from
the signal. In this respect, the signal Y is projected
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on the orthogonal complement of the SSVEP model
matrix,

Ỹ = Y −Xf (XT
f Xf )(−1)XT

f Y. (4)

As B ≈ Ỹ , an optimal weight combination for the
electrode signals can then be found by calculating
the eigenvectors of Ỹ T Ỹ (please refer to [2] for more
details). The calculated SSVEP power estimations
P̂f of the frequency f in the spatially filtered signals
were then normalized into probabilities,

pf =
P̂f∑Nf

j=1 P̂j

. (5)

For the implemented application, power estimations
for Nf = 30 frequencies, considering Nh = 2 har-
monics, were evaluated.

The CCA approach, on the other hand, works on
two variable sets (see e. g [4]). Here, one set was
chosen to be the electrode signals Y , and the other
was the SSVEP model matrix Xf associated with the
Nh = 2 harmonics of a specific stimulation frequency
f . CCA was applied for each of the 30 stimulation
frequencies; weighted vectors a and b such that the
linear combinations xf = XT

f a and y = Y T b are
maximally correlated were found by solving

max
a,b

ρf =
E[xTf y]√

E[xTf xf ]E[yT y]
. (6)

The maximum canonical correlation ρf was calcu-
lated for each frequency f ; the frequency associated
with the highest correlation value determined the
output command.

The on-line experiment was conducted using the
MEC. The classification was performed on the basis
of the hardware synchronization of the EEG ampli-
fier (g.USBamp). EEG data were transferred block-
wise to the computer. Each block consisted of 13
samples (101.5625 ms with the sampling rate of 128
Hz). Block-wise increasing classification time win-
dow were used (refer to [2] for more details). If
a particular stimulation frequency had the highest
probability, exceeded a certain predefined thresh-
old and the classification time window exceeded 20
blocks (approximately 2 seconds), the correspond-
ing command was classified. After each classifica-
tion the flickering stopped for approximately 914 ms
(9 blocks).

Figure 2: Graphical user interface used in the on-line
experiment. The spelling task was to write “RHINE
WAAL UNIVERSITY” (name of our University). In
total, 30 frequencies between 6.1 Hz and 11.7 Hz
flickered simultaneously.

During this gaze shifting period, the targets did not
flicker and the user changed his or her focus to an-
other target unhindered (please also refer to [2] for
more details).

Software: The spelling interface displayed 30 se-
lectable buttons representing the alphabet plus addi-
tional characters (see Fig. 2). Each button flickered
with a specific frequency. The button sizes varied
between 130×90 and 170×120 pixels in relation to
the SSVEP amplitude during the experiment as de-
scribed in [2]. Each button was outlined by a frame
which determined the maximum size a box could
reach. Additionally, to increase user friendliness,
command classifications were followed by an audio
feedback.

To implement the 30 stimulation frequencies a frame-
based stimulus approximation was used (see e. g [12,
11]). Frequencies between 6.1 and 11.7 Hz (loga-
rithmic distributed resolution, as suggested in [13])
were implemented. This range was used in previous
studies as well, as it avoids overlapping in the 2-nd
harmonics frequencies while still allowing a sufficient
difference between frequencies [14].

Experimental Setup: After signing the consent
form, each participant was prepared for the EEG
recording. Then participants went through a short
familiarization run, spelling short words such as
“KLEVE”, “BCI” or “BRAIN”. Thereafter, partic-
ipants were instructed to write the phrase “RHINE
WAAL UNIVERSITY”. Spelling errors were cor-
rected via the “delete” button. The entire session
took on average roughly 30 minutes.

RESULTS

For the evaluation of the BCI performance we consid-
ered the command accuracy P (the number of correct
command classifications divided by the total number
of classified commands Cn) as well as the commonly
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Table 1: Results from the analysis of the copy spelling task with different numbers of channels. Average accu-
racies [%] and ITRs [bpm] over all participants for the best channel configurations are provided for CCA and
MEC. Additionally, the amount of combinations surpassing accuracy thresholds of 90% and 70% are listed. The
last column displays the mean accuracy over all combinations with the given number of electrodes.

Electrodes
Acc. (ITR)
of the best
combination

Combinations
acc. >90%

Combinations
acc. >70%

Mean acc. (ITR)
over all

combinations

No.
Best

combination
CCA MEC CCA MEC CCA MEC CCA MEC

1 OZ 48 (15) 48 (15) 0/8 0/8 0/8 0/8 38 (10) 38 (10)
2 OZ ,O10 67 (25) 66 (24) 0/28 0/28 0/28 0/28 54 (17) 49 (15)
3 PZ ,OZ ,O10 84 (34) 87 (37) 0/56 0/56 20/56 12/56 67 (24) 63 (22)
4 PZ ,PO4,OZ ,O9 93 (41) 93 (41) 4/70 5/70 55/70 55/70 77 (30) 76 (29)
5 PZ ,PO4,OZ ,O2,O9 96 (42) 97 (43) 18/56 22/56 55/56 55/56 85 (35) 85 (35)
6 PZ ,PO4,O1,OZ ,O2,O9 98 (45) 99 (45) 19/28 19/28 28/28 28/28 91 (39) 92 (40)
7 PZ ,PO3,O1,OZ ,O2,O9,O10 99 (45) 100 (46) 7/8 7/8 8/8 8/8 96 (42) 97 (43)
8 PZ ,PO3,PO4,O1,OZ ,O2,O9,O10 98 (45) 100 (46) 1/1 1/1 1/1 1/1 99 (45) 100 (46)

used information transfer rate (ITR) in bits/min (see
e. g [1]). The number of bits per trial B is given by

B = log2N + P log2 P + (1 − P ) log2

[
1 − P

N − 1

]
,

where N represents the overall number of possible
outputs (N = 30, given by the number of targets).
To obtain ITR in bits per minute, B is multiplied by
the number of command classifications per minute.
In the on-line experiment the MEC with eight signal
electrodes was utilized. All participants completed
the copy spelling task without any errors achieving
a mean ITR of 45.9 bpm.
For the off-line analysis the recorded electrode signals
were re-evaluated and channel combinations were
ranked according to detection accuracy using the
MEC as well as the CCA. The time windows for the
off-line classifications were determined by the on-line
performance.
In order to investigate to what extend classification
accuracy drops with fewer electrodes, channels were
excluded systematically. E. g, to examine detection
accuracy using only five channels, the off-line anal-
yses was carried out with all

(
8
5

)
= 56 options to

choose five out of eight recorded signals. All possible
combinations composed of the eight recorded signals
were evaluated using the numerical computing en-
vironment MATLAB. Electrode combinations were
ranked according to the accuracies achieved in the
simulated experiment. Results based on the off-line
analysis are provided in Table 1, Fig. 3 and Fig. 4.

DISCUSSION

In the following we want to summarize and discuss
the most relevant results from the off-line analysis.
As also observed by Müller-Putz et al., optimal
recording channels differ between subjects, but some
electrodes tended to be important in a larger num-
ber of subjects [10]. All participants, achieved peak

performance with all eight channels. As expected,
the accuracy generally increases if a higher number
of channels is used. But some of the combinations
using less than four electrodes worked surprisingly
well. With the channel combination PZ ,OZ ,O10 av-
erage accuracies above 85% were achieved.

The results obtained with single electrodes show that
for most participants the OZ electrode yielded high-
est accuracies, followed by O1 and O2 (see Fig. 3).
The relevance of the PZ electrode for multiple chan-
nel combinations can also be seen in Tab 1. The
best electrode combinations using three electrodes
or more all included PZ . Further, the analysis of
combinations using seven electrodes (all but one of
the electrode signals) showed that the combination
excluding PZ was by far the weakest. While the av-
erage of all combinations using seven electrodes was
above 95%, the combination excluding PZ yielded
less than 85% accuracy. Interestingly, one partici-
pant, subject 2, reached 100% accuracy with channel
PZ alone.

Though electrodes O9 and O10 yielded lowest ac-
curacies of all single electrodes, all of the highest
ranked combinations (with more than one electrode)
included either O9 or O10 (see Tab. 1).

This findings might be interesting for the design of,
optically more pleasing and more practical EEG-
caps. For example, signal electrodes could be imple-
mented in the side and back straps of typical head
mounted displays (HMDs) used for virtual reality
(VR) simulations in respect to the aforementioned
locations; some articles already tested the SSVEP
method successfully in a VR HMD (see e. g [15]).

In general, results achieved with CCA and MEC are
relatively equivalent. There seems to be no difference
between the methods for different time windows (see
Fig. 4). This is consistent with previous findings by
Cecotti et al. [16]. The optimal electrode combi-
nations between the methods differed only slightly.
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It is worth noting that the mean accuracy over all
combinations with less than three electrodes was
slightly higher with the CCA. For combinations with
four electrodes or more the mean for the MEC was
slightly better (see Tab. 1).
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Figure 3: MEC detection accuracies for individual
channels. The entire experiment was re-evaluated
off-line for each single electrode.

The increased channel number could be more rele-
vant for the MEC, as it might lead to a more precise
estimation of the noise and nuisance signals due to
the additional information gained.
Fig. 4 also addresses the importance of classifica-
tion time window length. A dynamic time window
with minimal length of roughly 2 seconds was used,
a rather typical value throughout BCI literature (see
also [16]). It should be noted though, that some stud-
ies reported good results with smaller time windows
as well [2, 11].
Note that we tested these two methods in a rather
standard form and they usually could be improved
in several ways. Training sessions to choose elec-
trode scalp path as suggested by Lin et al. could im-
prove the CCA. Instead of sinusoidal reference sig-
nals, EEG training data could be incorporated in
the CCA templates, reflecting natural SSVEP fea-
tures (see e. g [17]). While the MEC does not re-
quire additional training, a user specific calibration
could enhance accuracies as well [18, 19]. Longer test
sessions with a broader population including partic-
ipants of the target group (severly disapled people)
are required to further investigate results under con-
ditions that are as realistic as possible.

CONCLUSION

The effect of channel selection of two multi chan-
nel SSVEP detection methods (MEC and CCA) was
investigated. Though both methods benefit from a
larger number of electrodes, presumably because of

the additional information gained about the nuisance
signal, some electrode configurations using a lower
amount of channels yielded good results.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

0

5

10

15

20

25

30

35

40

45

50

A
c
c
. 

[%
]

Figure 4: Comparison of MEC and CCA. The grand
average accuracy achieved using all eight recorded
signals is displayed as a function of the classification
blocks for both MEC and CCA. Dynamic classifi-
cation windows with a minimum length of roughly 2
seconds were used in the on-line experiment. Chance
level in target identification was 3.33%.

For both methods the minimum number of channels
required to achieve classification accuracies above
70% was three. Especially the channel combination
PZ ,OZ ,O10 yielded good results for both methods
which might be relevant for the design of practical
EEG-caps. Optimal channel sets all included the PZ

electrode.
The comparison of mean classification accuracies
show no significant difference between the CCA and
MEC. Further improvement of the detection could
allow a greater reduction of electrode channels and
simplify the setup.
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