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ABSTRACT: There are very few studies that try to solve 

the motion reconstruction problem, and those few studies 

focused on rehabilitation of amputee patients. In this 

paper, we will discuss the major problems in the field and 

propose possible solutions for them using a rehabilitation 

perspective considering long-term, real-world 

applications. In addition, we performed a preliminary 

study with five subjects using electroencephalography 

and electromyography, a virtual avatar to obtain the 

position of the hand, and a set of motions containing a 

wide range of motions. Among the participants, we 

obtained a mean correlation value between the real and 

reconstructed motion that was equal to 0.834. This result 

exceeds the average in the field, suggesting that our 

solutions are appropriate to solve the current problems. 

 

INTRODUCTION 

 
Brain Computer Interfaces (BCI) have been used for 

amputee rehabilitation for many years. It has been 

especially useful for motion reconstruction problems. 

Motion reconstruction is the problem of reconstructing or 

predicting the dynamics of an extremity using bio-

signals. Motion reconstruction is important for motion 

analysis and motor function assessment. In the case of 

amputees, motion reconstruction can be used to build a 

prosthetic device that substitutes the original limb using 

intuitive motions. The motion reconstruction problem 

can be classified by the extremity reconstructed by the 

system. In general, the distal part of the extremity (hand 

or foot) is comparatively easier to reconstruct than the 

proximally amputated part (arm or leg), because most of 

the motion related muscles are still present in the distal 

amputation. This makes it possible to use 

electromyography (EMG) signals for the reconstruction. 

There is also a large difference between reconstructing 

upper limb or lower limb movements. In the case of the 

leg, the dynamics are well known, and the prostheses are 

simpler since they reconstruct fewer degrees of freedom. 

For these reasons, motion reconstruction of the 

proximally amputated upper limb is the most complex 

reconstruction. There are two different types of upper 

limb proximal amputations: trans-humeral and shoulder 

disarticulation. We focused our study on trans-humeral 

amputations that, by definition, demonstrate 

conservation of the deltoidus muscle. A full prosthesis is 

needed to reconstruct every degree of freedom in the arm, 

including the elbow, wrist, and fingers. Since the 

shoulder has a few motion-related muscles that help 

control the hand, it is not possible to reconstruct the 

hand’s position using only EMG. Thus, BCI is also 

needed. Concerning the aforementioned limitations, we 

need to add the limitations that are produced from using 

the system for rehabilitation. For instance, the system 

must be able to work in real time, including 

preprocessing of bio-signals. Also, the accuracy required 

to build a prosthetic device that is needed for daily life is 

higher than the accuracy required for normal 

applications. 

Due to the complexity of the task, a simplification is used 

most of the time. Most commonly, only the position of 

the hand is reconstructed [1], [2]. We used this 

simplification as well in this study. Most of the studies 

that try to solve this problem use a neuroscientific 

approach, i.e., the main purpose is to determine the 

brain’s function during motion execution using 

electroencephalography (EEG). For this reason, we 

considered it necessary to create a roadmap regarding the 

problems and the challenges that we must confront to 

solve it, always keeping in mind the rehabilitation 

perspective. 

In this paper, we present the major problems that the 

motion reconstruction field faces when applied to 

rehabilitation, providing possible solutions that can be 

applied to real-world environments. We divided the 

system into six parts that are necessary to implement a 

rehabilitation system. These parts are very similar to 

those that compose any BCI system. For each part, we 

provide our analysis of how important the changes are to 

make the technology available under real-world 

conditions for trans-humeral amputees. 

1. Acquisition system: which signals are used as input 

for the predictor. The changes needed are not 

important. 

2. Training signal: which signal is used as output for 

the predictor. The changes needed are critical. 

3. Evaluation: the fitness value used for evaluating the 

system. The changes needed are of high importance. 

4. Task: which motion is performed during the training 

session. The changes needed are of medium 

importance. 

5. Preprocessing: the filters and transformations 

applied to the signals and the features extracted from 

them. There are no changes needed. 

6. Predictor: the architecture used for reconstructing 

the signal. There are no changes needed. 
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We excluded from our analysis the preprocessing and the 

predictor parts for two reasons. First, both parts are too 

complex to analyse in just one paper, even individually. 

The second and more important reason, is that they do 

not present problems as important as the other parts. 

Furthermore, these two parts have been revised the most 

in the literature. 

 

In addition, we performed an experiment implementing 

the proposed solutions for the acquisition system, the 

training system, and the task. The preliminary results are 

presented and discussed to analyse each one of the parts. 

 

MATERALS AND METHODS 

In each subsection, we present one of the mentioned parts 

along with our proposed solution and their 

implementation. 

 

   Subjects 

Five healthy right-handed subjects (3 males, 2 females, 

mean age 28, range 22-40) participated in the 

experiment. Permission from the Ethics Committee of 

the Graduate School of Engineering, Chiba University 

was obtained. All subjects participated voluntarily and 

gave informed consent without receiving any incentives. 

Participants were informed that they could stop the 

experiment at any time. 

 

     Acquisition Systems 

The first decision we made was which system we used 

for acquiring the data. When applied to prosthetics, there 

are two main constraints: the system must be non-

invasive and it must be portable. The most common 

solution, taking into consideration the constraints, is to 

use EEG. The use of EEG itself does not present a 

problem. In the BCI community, it is considered one of 

the best non-invasive methods to read brain signals. 

Additionally, near-infrared spectroscopy is becoming 

more common in BCI studies due to its higher spatial 

resolution and robustness against artefacts [3]. The major 

drawback of this technology is the lower resolution time 

compared to that of EEG. Both technologies can be used 

together to complement each other [4]. Nevertheless, 

EEG has rarely been combined with other technologies 

in motion reconstruction studies. Usually, EMG is not 

used for motion reconstruction. In the cases that used 

EMG [5], the goal was to control wearable systems and 

the electrodes were positioned all along the arm to get 

better results. In the case of trans-humeral amputees, this 

would be impossible. Nonetheless, EMG provides a 

signal highly correlated with motion, is more localised 

than EEG, and is also less noisy. We also recognise that 

both systems complement each other. 

In our experiment, we used an EEG cap (BioSemi 

ActiveTwo) with 16 active electrodes at 2048 Hz. We 

decided to place the electrodes in an asymmetric setup to 

better cover the contralateral motor area. The locations 

for the electrodes were Fz, F2, F4, FC2, FC4, FC6, Cz, 

C2, C4, C6, CPz, CP6, Pz, and P2. We covered a wide 

area since there is no consensus regarding which areas 

(other than the motor area) contribute to reconstruction 

of motion [1], [6]–[9]. 

In addition, we included four surface EMG electrodes 

(Delsys Trigno Wireless EMG) with a sample rate of 

2000 Hz. We placed two on the trapezius, one on the 

deltoidus, and one on the pectoralis major. The locations 

were identical to our previous study [9]. We placed the 

electrodes in the shoulder area to consider the 

rehabilitation goals. 

 

    Training Signal 

To train the systems, we paired the acquired bio-signals 

with the desired position of the hand. Most studies use a 

motion tracking system. Motion tracking systems use 

cameras to detect the position of the hand by using, for 

example, reflective devices. This kind of system tracks 

the position of the subject’s hand precisely in a 3D space. 

However, this approach cannot be used with amputee 

patients since there is no hand to track. 

There are two possible solutions: either use a virtual 

avatar, i.e. the subject looks at a virtual avatar moving the 

arm while he/she repeats the motion; or use a surrogate 

system in which the motion tracking device is placed in 

the trainer’s hand and the subject repeats the motion of 

the trainer. 

We decided to use the first approach, since this method 

confirms that the motion is always the same, since the 

position data comes from a virtual avatar that has a 

predefined motion compared to a human that may 

slightly vary the position for each iteration. In addition, 

implementing a system such as this would be easier, since 

there is no need for a specialized trainer and it can be used 

whenever the subject wants. The drawback of this 

approach is that it adds inherent error, because the 

position of the avatar and the real position cannot be the 

same. Thus, the subject’s motion cannot achieve a perfect 

correlation with the avatar’s motion. 

 

    Task 

Regarding which motion the subject should perform to 

train the system, there was little discussion as it is not 

considered an important part of the experimental design. 

The most common task used is the centre-out motion, 

which consists of moving the hand between a centre 

position to a set of surrounding positions, because it is 

easy to perform for the subject and has been used in 

neuroscience experiments for many years. We 

considered that these motions were not the best for a 

rehabilitation approach, so we decided to create a new set 

of motions. We thought that the motions should cover 

two aspects: wide variation of motions and useful 

motions that are required for daily life. 

Considering this, we included six motions in our training 

set. The first three were generic motions that covered 

motions in both shoulder and elbow joints. They included 

shoulder flexion-extension, shoulder abduction-

adduction and elbow flexion-extension. The other three 

motions included reaching motions at three different 

positions: right middle height, centre upper height, and 

left lower height. In our experiment, the motion was 
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performed with the left arm. 

For each motion, there were two phases: training and 

execution. During the training phase, the subjects could 

watch an animation as many times as they wanted. They 

could change the perspective freely to obtain a clear view 

of the motion. Also, they were asked to practice the 

motion and not only to watch the motion. The execution 

phase started when the subjects indicated that they were 

ready. During this phase, they had to perform the trained 

motion 10 times. They could also start each of the 10 

repetitions by pressing a button on a handheld controller. 

 

    Preprocessing 

During EEG recordings, movement of muscles can 

generate noise in the electrodes [10]. If the preprocessing 

is not performed correctly, this can result in poor results. 

Here, we have decided not to discuss this issue.  

In this experiment, the EEG signal was divided into 

windows of 1 s with 93.75% overlap. This resulted in 16 

different windows per second. Then we downsampled 

the signal to 10 Hz, using each of the points as a feature. 

This is similar to a process proposed by Bradberry et al. 

[1] and followed by Ofner et al. [2]. There is, however, 

discrepancy in the field about the validity of this method. 

The main argument against it is that the arm motion 

creates artefacts in the low frequency band, and the 

system uses those artefacts for reconstruction and not  

EEG data [10]. Still, there is an important argument 

against this statement. In every study that has analysed 

the relevance of each electrode for reconstruction, those 

located in the contralateral area have shown (especially 

in the motor area) better results. If the artefacts from the 

arm movements were so strong (or important for the 

reconstruction), a larger effect would be shown on the 

lateral area (since it is closer to the source of the artefact) 

or a uniform distribution over the scalp would be 

observed (compared to a more focused distribution on the 

motor cortex area). Nevertheless, these concerns are 

important and should be addressed in depth. 

For EMG, we also divided the signal in 1 s windows with 

93.75% overlap. Then, we calculated seven features from 

the time domain. The seven features were integrated 

EMG, modified mean absolute value 2, mean absolute 

value slope, simple square integral, zero crossing, slope 

sign change, and Wilson amplitude. For more 

information regarding the features, please refer to 

Phinyomark et al. [11] Please also see Fernandez-Vargas 

et al., [9] in which we provide an analysis on why these 

features were selected with additional information about 

them. Finally, for calculating the output for each window, 

we took the mean for each of the three position 

coordinates (x, y, and z) used a sliding window of 0.0625 

s (1/16 s) without overlapping. This position 

corresponded to the avatar’s hand and was acquired at a 

variable rate of ~60 Hz. 

 

    Predictor 

Excluding the preprocessing, the predictor is probably 

the component with the highest variability across studies. 

The most common predictor is the linear regression [1], 

[2], [12], [13]. This predictor creates a linear regression 

model using features of EEG as input and the position of 

the hand as output. One of the advantages of this method 

is that it is easy to interpret the results. Other options 

include the particle filter model [12], the kernel ridge 

regression method [13], or artificial neural networks [9]. 

For this study, we decided to use the linear regression 

approach for the EEG data because of its wide use, 

simplicity, and overall accuracy. For the EMG data, an 

artificial neural network was selected as previously 

published [9]. Then, the result of both predictors was 

used as input for a second linear regression. Additionally, 

to this second linear regression we used the previous two 

reconstructed points as input, and we refer to these two 

points in this report as temporal data. 

With this configuration, we divided the predictor into 

four different components: EEG, EMG, second layer, 

and temporal. EEG and EMG components correspond to 

the predictors that used only the EEG and EMG data, 

respectively. The second layer is the predictor that used 

the output of both previous components as input. Finally, 

the temporal component uses the previously 

reconstructed points. The actual predictor, represented in 

Figure 1, uses as input for the second layer the output of 

the EEG component, the EMG component, and the 

temporal data at the same time. Nonetheless, the second 

layer term refers to the result obtained when using only 

the data from the EEG and EMG components, whereas 

the “temporal” term refers to the result when the temporal 

data was added.  

 

    Evaluation 

In each study, the correlation value (CV) between the real 

position and the reconstructed position was used as the 

fitness value. In general, this approach is well accepted, 

despite its possible problems. 

The main problem is that the CV is calculated only with 

data obtained during the training session. Even if the task 

contains a wide range of motions, those motions will be 

repeated several times. Thus, the training, test, and 

validation sets will be similar, which could result in a 

lack of generalisation of the system. This is usually 

intended since, in general, we want to train the system 

with data that is similar to the data that we are going to 

use in the future. However, in this specific case, the 

problem is that the set of motions that the arm can 

perform is too large to train them all. If we were to use 

those systems in a real environment, the result would be 

 
Figure 1 Schematic representation of the predictor. Each 

component is marked with a rectangular shape to indicate 

the data that belong to that component.  
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worse than what we would expect by only considering 

the CV. In brief, any system excels at reconstructing 

motions similar to those that were used for training it. 

However, we cannot know how the system behaves with 

radically different movements. Since we cannot train the 

system with all possible arm motions, we need to 

calculate the quality of the system when presented with 

unexpected motions. 

As a solution, we propose to use a time related feature, 

which can be calculated after training the system. For 

example, the subject uses the trained system to move a 

virtual avatar or prosthetic device to perform a set of 

motions different from those included in the training task. 

The time to complete those motions would be used as the 

fitness value. Unfortunately, we were not able to 

implement this approach in our study; consequently, we 

used the CV as the fitness value. 

For training the system, we used a 10-fold leave-one-out 

cross validation procedure, and 9 out of the 10 repetitions 

of each motion then used the remaining motion as 

validation. This process was repeated 10 times, rotating 

which repetition was left for validation. The final CV was 

calculated as the mean of the obtained CV for each 

repetition. 

 

RESULTS 

Table 1 shows the results obtained during the experiment 

for every component of the system. In addition, we 

performed a permutation test to calculate the chance 

level, i.e., we calculated the obtained CV for the EEG 

component using random EEG data from the motion task. 

As a result, we obtained a CV <0.001.  

In three cases, the EMG component obtained better 

results than the EEG component. Nonetheless, in every 

case, the second layer was better than any of the other 

two components. In addition, the temporal component 

was also always better than the second layer. 

The correlations between the second layer and each 

component were EMG-second layer 0.905, p-value 

0.035; EEG-second layer -0.75, p-value 0.145; temporal-

second layer 0.687, p-value 0.2. 

Finally, Figure 2 presents the reconstruction of the 

system for subject #3. Note that the CV for this 

reconstruction was 0.789, which was below the mean CV 

for subject #3. As was explained before, the mean CV for 

every subject was obtained through a 10-fold validation 

process. This means that there were 10 different 

reconstructions with slightly different CVs among them. 

 

Table 1 Component CV and the mean CV of all 

subjects. 

# EMG EEG 2nd Layer Temporal 

1 0.672 0.584 0.747 0.870 

2 0.125 0.676 0.679 0.810 

3 0.350 0.693 0.716 0.794 

4 0.784 0.576 0.811 0.856 

5 0.621 0.586 0.732 0.838 

Mean 0.510 0.623 0.737 0.834 

DISCUSSION 

 
    Acquisition System 

The results obtained in this study show that the combined 

use of EEG and EMG provides an improved result in 

terms of CV compared to using only one of the systems. 

This also indicates that EEG and EMG contain different 

information regarding the position of the hand.  Notably, 

the variation of the CV of the EMG component is much 

larger than the CV of the EEG component. This suggests 

that the EEG component is more robust than the EMG 

component. This result is counterintuitive, since EEGs 

signal are noisier than EMG signals. In addition to the 

fact that the overall CV appears to correlate with EMG 

accuracy, it would be very important to study the reason 

for this. Also, results obtained in this study using only the 

EEG component are above average in the field, even 

using only 16 electrodes compared to the common 32-64 

used in most studies. 

 
Figure 2 Motion reconstructed from subject #3. Each line 

corresponds to one dimension. The position has no real-

world dimensions since it corresponds to the position of 

the avatar’s hand in the virtual world. The vertical thick 

lines divide each one of the six reconstructed motions that 

correspond to the motion described in the subsection 

“Task”. 
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Table 2 Problems and solutions summary 
Section Commo

n 

Approac

h 

Disadvantages Importanc

e 

Proposed 

Solution 

Expected Impact Implement

ed 

Acquisiti

on 

System 

Only 
EEG 

Noisy signal, difficult to 
analyse 

Low Adding EMG 
and temporal 

data 

Great accuracy 
improvement 

Yes 

Training 

Signal 

Motion 

Tracking  

Cannot be used by 

amputees 

Critical Using virtual 

avatar 

Accuracy 

decrease 

Yes 

Evaluatio

n 

CV May not represent the 
system’s real accuracy 

High Post-training 
measurement 

Better system 
evaluation 

No 

Task Centre 

out 

moveme
nt 

Is not a daily life 

movement 

Medium Using general 

and reaching 

movements 

More general 

predictor 

Yes 

This means that placing the electrodes on the 

contralateral motor area provides results that are 

similar to using more electrodes over the whole 

scalp. This result suggests that it possible to 

create cheaper systems for real-world 

applications. An additional advantage of using 

fewer numbers of electrodes is that the 

preparation time is shorter. 

 

    Training signal 

The most important solution that we 

implemented is the use of the virtual avatar for 

recording the training signal.  

The results obtained from the EEG component in 

this study are similar to those obtained in [1], [2], 

[6], [12], [13]. In addition, compared with our 

previously published results [9], the temporal 

component had a better result. Nonetheless, with 

these preliminary results, we do not have enough 

evidence to properly compare with other studies. 

We will perform more experiments to make a 

proper comparison in the future. 

 

    Task 

We consider that the reaching motions are the 

most important motions that the system should be 

able to reconstruct, because those motions are the 

most useful for amputee patients. Figure 2 shows 

that the reconstructions for reaching motions are 

more accurate than the reconstructions for the 

generic motions. Thus, if we only consider the 

accuracy of the reaching motions, the selected 

task is appropriate for the problem. Nonetheless, 

we should investigate what effect the different 

training sets have on the overall and specific 

accuracies.  

 

   Predictor 

Table 1 shows that adding more layers to the 

predictor and temporal data increases the 

accuracy in every case. In short, more complex 

predictors increase the CV. In our opinion, the 

predictor should be even more complex, with 

different parts predicting specific movement 

components. As an example, Figure 2 shows that 

the motion for the shoulder abduction-adduction 

has the biggest error, especially in the “x” 

dimension. To improve the accuracy of the 

system, we could add an additional layer that 

classifies the motion into subgroups. Then, once 

we know the subtype of motion, we could use the 

EEG and EMG data as input for different specific 

predictors. This could also be useful if we want 

to reconstruct wrist motions without moving 

other parts of the arm. 

 

CONCLUSION 

 

We identified four problems that the motion 

reconstruction field faces from the rehabilitation 

perspective (Table 2). Out of the four problems, 

we implemented a solution for three of them and 

obtained preliminary results that suggest that 

these are valid solutions, especially for the 

training signal and the acquisition system. 

However, there are still many problems to solve. 

We consider the problem of the evaluation 

method to be one of the most important problems 

that the field is currently facing.  
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