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ABSTRACT: Introducing BCI technology in supporting 

motor imagery (MI) training has revealed the 

rehabilitative potential of MI, contributing to 

significantly better motor functional outcomes in stroke 

patients. To provide the most accurate and personalized 

feedback during the treatment, several stages of the 

electroencephalographic signal processing have to be 

optimized, including spatial filtering. 

This study focuses on data-independent approaches to 

optimize spatial filtering step. 

Specific aims were: i) assessment of spatial filters' 

performance in relation to the hand and foot scalp areas; 

ii) evaluation of simultaneous use of multiple spatial 

filters; iii) minimization of the number of electrodes 

needed for training. 

Our findings indicate that different spatial filters showed 

different performance related to the scalp areas 

considered. The simultaneous use of EEG signals 

conditioned with different spatial filters could either 

improve classification performance or, at same level of 

performance could lead to a reduction of the number of 

electrodes needed for successive training, thus improving 

usability of BCIs in clinical rehabilitation context. 

 

INTRODUCTION 

 

Brain-computer interface (BCI) technology allows 

people with severe motor disabilities to use their brain 

activity (e.g. the electroencephalographic, EEG, signals) 

to control external devices, thereby bypassing their 

impaired neuromuscular system, or receive a feedback 

related with their cognitive processes [1]. One of the 

most recent and promising BCI applications regards post-

stroke functional motor rehabilitation [2]. For instance, 

the introduction of BCI technology in assisting the motor 

imagery (MI) practice has been demonstrated to uncover 

the rehabilitative potential of MI, contributing to 

significantly better hand motor functional outcomes [3]. 

In order to facilitate the practice of voluntary covert and 

/or overt access to the affected hand, patients received a 

discrete feedback that should be the faithful 

representation of the brain activity (congruent with the 

affected hand).  

To bridge the gap between research-oriented 

methodology in BCI design and the usability of a system 

in the clinical realm requires efforts towards BCI signal 

processing procedures (feature extraction and 

translation) that would optimize the balance between 

system accuracy and usability. This study focuses on the 

process of feature extraction and more specifically on its 

spatial filtering step.  

Spatial filters are generally designed to enhance 

sensitivity to particular brain sources, improve source 

localization and/or suppress artifacts. Most commonly, 

spatial filters are a linear combination (i.e. weighted 

sums) of channels. There are several approaches for 

determining the set of spatial filter weights. These 

approaches fall into two major classes: data-independent 

and data-dependent spatial filters [4]. According to the 

review [5] of signal processing methods used in BCI 

studies, the surface Laplacian, the common spatial 

pattern, the common average reference and the 

independent component analysis are the most employed 

filters. For sensorimotor rhythms-based BCIs, the 

common average reference and Laplacian methods are 

superior to the ear reference method because they 

enhance the focal activity from the local sources and 

reduce the widely distributed activity [6]. Furthermore, 

concerning the two variations of the Laplacian filter, i.e. 

the large and the small Laplacian, it appears that they are 

the best filters in prediction and source identification, 

respectively [7].  

This study approached the spatial filtering step by 

hypothesizing that filtering the EEG data with a different 

data-independent spatial filters would return a better 

rendering of the scalp areas of interest to allow for a more 

suitable physiologically informed feature extraction. As 

such, this procedure would best lead to a reinforcement 

of individual correct EEG patterns during BCI training 

[3] and, thus, maximize target prediction in the 

rehabilitation training.  

In this view the specific study aims were: (a) to compare 

performances of different spatial filters as a function of 

the scalp areas relevant for hand or foot  executed motor 

tasks (i.e. areas of interest), (b) to compare performances 

of gold standard filters, e.g. Laplacian filters, versus 

those obtained by pooling information (EEG features) 

coming from different spatial filters, (e.g. two kinds of 

bipolar filters), (c) to evaluate the impact of  number of 

electrodes needed in those spatial filters which showed 

similar classification performance. 

Confirming the main hypothesis, we might suggest that 

the a priori (defined one time, before starting the 

analysis) choice of just one spatial filter at the start of the 
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BCI signal processing is not optimal.  

Common average reference (CAR), surface Laplacian 

(LAP) and bipolar filters, the latter commonly used in the 

EEG clinical field but not in sensorimotor rhythms-based 

BCI, were explored in this preliminary study on an EEG 

data set, acquired at IRCCS Fondazione Santa Lucia, that 

does not include stroke patients.  

 

METHODS 

 

     Subjects: Forty subjects (seven of them with severe 

motor disabilities due to traumatic spinal cord lesion or 

progressive neurodegenerative disorders) participated in 

the study. Each subject gave written informed consent 

prior to inclusion. The study was approved by the 

Fondazione Santa Lucia (Rome) ethics committee.  

     Experimental protocol: The protocol consisted of two 

main parts: the screening session and some training 

(weekly) sessions. During the initial screening session, 

subjects were comfortably seated on a reclining chair (or, 

when necessary, on a wheelchair) in a dimly lit room. The 

session was divided in 12 runs (30 trials each one). Each 

trial began with a target appearing on a side of the screen 

(up/down, i.e., vertical, or left/right, i.e., horizontal). The 

trial lasted 5.8 seconds, with the inter trial interval of 1.8 

seconds. Subjects were instructed to execute (first run) 

and imagine (second run) movements of their hands 

(opening and closing) or feet (flexion) upon the 

appearance on the screen of top or bottom target, 

respectively. When the targets appeared on the left or 

right side of the screen subjects were invited to move 

(third run) or to imagine (forth run) their left or right hand 

(opening and closing) upon the appearance of the target 

in the correspondent side. This sequence was repeated 

three times for a total of 12 runs. Subjects were instructed 

to minimize muscular, electrooculographic and blink 

activity. In the screening session, subjects were not 

provided with any feedback (any representation of their 

brain activity).  

     Experimental setup: Scalp EEG potentials were 

collected from 58, 59 or 61 positions assembled on an 

electrode cap (according to an extension of the 10-20 

International System) and amplified by a commercial 

EEG system (BrainAmp, Brain Products GmbH, 

Germany) which sampled signals at 200 samples/s (per 

channels). Electrical reference has been provided by both 

ear lobes. The BCI system was realized using the 

BCI2000 [8] software system.   

     Signal processing and feature extraction: Using 

Matlab, EEG signals were band-pass filtered (0.1-70 Hz) 

with a forth order Butterworth filter and notch filtered at 

50 Hz. The conventional ear reference, the common 

average reference (CAR), two different Laplacian 

derivations (small and large) [6] and two simple bipolar 

methods were considered in the study. In the bipolar 

methods (applied via software) each voltage difference 

was computed between two channels, longitudinally 

subtracting e.g. FCz from Fz and transversely subtracting 

e.g. Cz from C1.  

EEG data recorded and filtered with each spatial filter 

considered were divided into epochs 1 second long. The 

spectral analysis was performed on EEG data epochs 

corresponding to task employing the Maximum Entropy 

method (16th order model) with a resolution of 2 Hz and 

considering no overlapped epochs. All possible features 

in a reasonable range (i.e., 0-36 Hz in 2 Hz bins) were 

extracted and analysed. A feature vector (spectral 

amplitude at each bin for each channel) was extracted 

from each epoch.  

     Data analysis: Consistently with the aims of the study 

two analysis were planned.  

For the aim (a) just vertical runs, corresponding to the 

movement execution of hands or feet, were analysed. 

Hands opening/closing and feet flexion engage separate 

areas of the sensorimotor strip, different about 

anatomical and functional point of view.  

Basing on the sensorimotor rhythms, the analysis was 

constrained to features belonging to the sensorimotor 

strip (FC, C and CP channels) in the range from 7 Hz to 

31 Hz. The hands area was defined as the area containing 

derivations coming from FC, C and CP electrodes in all 

their even and odd positions (bilateral area); the feet area 

was defined as the area containing derivations coming 

from electrodes placed on the mid-line, e.g. FCz, 

according to the 10-20 International System.  

Features belonging to those areas, first separately 

considered, i.e., hands area, feet area, and then in the 

combined manner, hands and feet areas, were the input 

for the stepwise regression which identifies the optimal 

subset of predictor variables (i.e. the features in this case) 

and assigns weights to them in order to build an effective 

regression model to evaluate the relationship between the 

predictors and the dependent variable (here equivalent to 

subject’s movement intention). The maximum number of 

features to be selected by the stepwise regression 

algorithm was set, for all feature domain, to 8 because of 

results obtained in a preliminary study. The latter aimed 

to compute the optimal number of features from which 

the mean (among tasks and subjects) classification 

performance does not grow in a significant way. We 

concluded that increasing the number of features, from 

eight to largest values, does not significantly increase the 

performance values.  

In order to compare performances of the six spatial filters 

considered, after the features translation step in which a 

linear classifier is used to predict if the epoch examined 

belonged to hands movement trials or feet movement 

trials, the Area Under Curve (AUC) of Receiver 

Operating Characteristic (ROC) curve was assessed 

using a 15-fold cross-validation design.  

For the aim (b) both vertical and horizontal runs were 

analysed, allowing selection algorithm (stepwise) to 

choose features from both areas, hands and feet areas in 

combined manner for vertical runs and left and right hand 

areas in combined manner for horizontal runs. This 

analysis included six feature domains each one extracted 

from EEG signals pre-processed with one of six filters 

earlier defined and a new feature domain containing all 

(in sensorimotor strip and frequencies) features 

computed from EEG signals pre-processed by 
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longitudinal and transversal bipolar filters. The feature 

dimensionality reduction (stepwise regression), the 

classification (linear classifier) and the computation of 

performance index (AUC of ROC curve) followed the 

stages as proposed for (a).  

For the aim (c) three representative subjects for which 

different spatial filters showed (for each subject) in (b) 

the same classification performances were identified. 

The number of electrodes needed to realize the hardware 

montage containing the eight (as earlier defined) optimal 

features was computed for each spatial filters.  

  Statistical analysis: To investigate the performances of 

different spatial filters in relation to the scalp areas, AUC 

values (in movement execution runs) were analysed by 

repeated measures two factors analysis of variance 

(ANOVA). The filter factor had six levels (the six filters 

earlier listed), the area factor had three levels (hands area, 

feet area, hand &feet area).  

To the aim (b), for each task (vertical and horizontal task) 

AUC values were analysed by repeated measures two 

factors ANOVA in which filter factor had seven levels (6 

filters listed earlier and the new filter obtained combining 

longitudinal and transversal bipolar filters) and modality 

factor two levels, the movement execution and 

imagination. Horizontal and vertical runs were studied 

separately.  

The Tukey HSF post hoc analysis was conducted to 

assess pairwise differences. If not indicated otherwise, all 

results are presented as mean ± SE (standard error). For 

all statistical analysis, threshold for statistical 

significance was set to p < 0.05.    

 

RESULTS 

 

     Spatial filters and scalp areas relation: The repeated 

measures two factors ANOVA of the AUC values 

revealed a significant effect of both filter (F=28.72, p < 

0.01) and area (F=52.43, p < 0.01) factors and a 

significant area –filter interaction (F=9.59, p < 0.01). 

Figure 1 shows statistical analysis output and post-hoc 

tests result. The results are consistent with the findings in 

[6]: common average reference and large Laplacian 

methods are significantly superior to the ear-reference 

method.

 

 
Fig. 1. Classification performance (AUC values of ROC curve) presented as mean ± SE (standard error) evaluated in movement execution vertical 
runs (hands opening/closing and feet flexion tasks) using features selected (by stepwise regression algorithm) from hands area (in blue), feet area 

(in red), both areas (in green) on EEG data no filtered (RAW), filtered with common average reference (CAR), longitudinal bipolar (loBIP) and 

transversal bipolar (trBIP) filters, surface Laplacian in its derivation small (sLAP) and large (lLAP). The symbol * shows the significant 
differences (p<0.05) pointed out by the Tukey HSF post hoc test. The colour of the symbol expresses the area in which this difference is 

significant. Although figure does not report the comparison between RAW and others filters, post-hoc tests confirm findings in McFarland et al.,  

1997. 
 

 

RAW CAR loBIP trBIP sLAP lLAP

Spatial filters

0,65

0,70

0,75

0,80

0,85

0,90

0,95

A
U

C

* 

* 
* 

* 

* * * 

* * 

* * * 
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Table 1: List of the eight features selected (by stepwise algorithm) in the features domains obtained from EEG data filtered with small surface 

Laplacian (sLAP) and using both longitudinal and transversal bipolar filter feature domains (long + trans BIP, simultaneous use of multiple spatial 

filters). No statistical differences for this pair of filters from the previous analysis. Three representative subjects (S01, S02, S03) were considered 

for the comparison (results in table from movement execution of vertical runs, hand opening/closing and feet flexion). The AUC values, for each 
subject, are the same for both filters (sLAP and long+trans BIP). Channels positions are conformed with 10-20 International System. Each channel 

indicated in sLAP is the central electrode of the difference (e.g., C3 is the central electrode: the surface Laplacian involved its neighbours C1, C5, 

FC3, CP3).  
 

 S01 S02 S03 

 sLAP 

chan – freq (Hz) 

long + trans BIP 

chan – freq (Hz) 

sLAP 

chan – freq (Hz) 

long + trans BIP 

chan – freq (Hz) 

sLAP 

chan – freq (Hz) 

long + trans BIP 

chan – freq (Hz) 

1 C3 11 FC3-C3 11 CP4 11 FC4-C4 11 C4 13 FC3-C3 13 

2 Cz 27 Cz-C2 13 CPz 25 CP4-P4 25 CP3 13 C2-C4 13 

3 C4 13 Cz-CPz 29 C4 25 CPz-Cz 25 Cz 25 F5-FC5 17 

4 C4 21 CPz-Pz 21 C3 13 C1-Cz 11 C6 11 TP7-CP5 27 

5 Cz 21 FC3-C3 17 C2 29 CP3-P3 27 FC5 29 FC6-C6 13 

6 FC3 31 FC1-C1 11 FC3 15 CP1-CPz 25 C3 13 C1-Cz 25 

7 FC2 25 FC4-C4 21 CP4 25 FC4-C4 25 CP3 15 FC4-FC6 31 

8 CP6 13 C1-Cz 11 Cz 27 F5-FC5 19 C6 27 CPz-CP2 29 

Number of 

electrodes  

need to realize this 

hardware montage 

21 10 22 12 22 15 

 

 

 

     Simultaneous use of multiple spatial filters: The 

repeated measures two factors ANOVA of the AUC 

values revealed a significant effect of both filter 

(F=22.13, p < 0.01) and modality (F=46.72, p < 0.01) 

factors and a significant modality –filter interaction 

(F=2.79, p < 0.05). The post-hoc Tukey HSF test 

confirms findings in [6] about differences existing 

between apply and not apply spatial filters on EEG data.  

The tests disclose pairwise differences (p < 0.01) 

between the common average reference (mean=0.83) and 

the large surface Laplacian (mean=0.87), the longitudinal 

bipolar filter (mean=0.83) and the large surface 

Laplacian (mean=0.87), the transversal bipolar filter 

(mean=0.81) and the small surface Laplacian 

(mean=0.85), the transversal bipolar filter (mean=0.81) 

and the large surface Laplacian (mean=0.87) and, above 

all, between the transversal bipolar filter (mean=0.81) 

and the simultaneous use of longitudinal and transversal 

bipolar filters (mean=0.87). No significant differences 

were seen between performances obtained using features 

extracted from the new domain and those from the two 

variations (small and large) of the surface Laplacian 

filter.  

     Minimization of number of electrodes: Table 1 shows 

the comparison between the features selected from the 

new domain (longitudinal and transversal bipolar filters) 

and the small surface Laplacian domain for three subjects 

for which classification performance is the same for both 

domains. 

 

DISCUSSION 

 

Feature extraction and feature selection are crucial steps 

to ensure an optimal BCI system performance. When 

applying BCI to support clinical rehabilitation it is 

mandatory to comply with quality of EEG patterns 

reinforced via BCI training to promote post-stroke (good) 

plasticity leading to a better motor outcome. Yet, 

deployment of BCI systems with high level of usability 

enables the actual transfer of this technology in routine 

clinical usage. 

In this study the spatial filters commonly used in BCI 

control were compared with filters commonly used in 

EEG clinical application (e.g., bipolar filters) in order to 

allow for a handy feature selection but still taking into 

account the physiological requirements specific for this 

BCI application. 

Here, the relation between performances shown by 

several (BCI and clinical gold standard) spatial filters and 

sensorimotor strip areas, engaged in different tasks, was 

investigated. Considering scalp areas separately (i.e., 

hands area and feet area) highlights interesting 

differences (e.g., from longitudinal and transversal 

bipolar in the feet area) that do not emerge considering 

features in the sensorimotor strip altogether.  

Our findings indicate that the comparison between the 

transversal bipolar and the small surface Laplacian filters 

showed different performances in the three scalp areas of 

interest analyzed. In particular, we found better 

performance for transversal bipolar filter in the foot area 

and for small surface Laplacian in the hand area. The 

identification of a best spatial filter is, therefore, related 

to the scalp area (its anatomical and functional 

properties) of interest and thus, improving performance 

can be pursued using specific filters for specific areas.  

Further analysis will be oriented to investigate the reason 

why transversal bipolar filter shows better performance 

in the feet area. 

In addition, these findings require a consolidation by 

exploring their use with other motor tasks (different from 

hand opening/closing and feet flexion, analyzed in this 

preliminary study) and/or imagined movements.  

Furthermore, the integration of features information as in 

this case from longitudinal and transversal bipolar filters, 

led to an improvement of performance with respect to 
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considering each domain individually.  Specifically, no 

differences were found between the performance 

obtained with the integration approach and those 

obtained with the surface Laplacian filters (i.e., the gold 

standard when scalp areas were considered all together). 

Moreover, comparing the number of electrodes needed to 

realize the hardware montage containing just the 

appropriate features for the rehabilitation (both in case of 

features selected from integrated approach and surface 

Laplacian filter), We suggest that the use of a new 

integrated approach for feature extraction and selection 

might enhance the usability of the BCI technology in the 

field of rehabilitation. 

The next step to ultimately promote this approach to 

rehabilitation applications would be to analyze BCI data 

collected from stroke patients.  

 

CONCLUSION 

 

Different spatial filters show different performance in 

relation to the scalp areas of interest, suggesting that 

potentially useful information for optimal feature 

extraction in BCI contexts can be obtained taking into 

account neurophysiological aspects. This could be 

particularly relevant in the context of rehabilitation 

applications. Furthermore, to consider features from 

more than one feature domain improves classification 

performance and, comparing filters at same performance 

level, allows to reduce the number of electrodes, 

improving the usability of BCI technology. For these 

reasons, we suggest that the a priori choice of one spatial 

filter might not be optimal for BCI rehabilitation 

applications. 
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