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ABSTRACT: Although extensively studied for decades, 

attention system remains an interesting challenge in 

neuroscience field. The Attention Network Task (ANT) 

has been developed to provide a measure of the 

efficiency for the three attention components identified 

in the Posner’s theoretical model: alerting, orienting and 

executive control. Here we propose a study on 15 healthy 

subjects who performed the ANT. We combined 

advanced methods for connectivity estimation on 

electroencephalographic (EEG) signals and graph theory 

with the aim to identify neuro-physiological indices 

describing the most important features of the three 

networks correlated with behavioral performances. Our 

results provided a set of band-specific connectivity 

indices able to follow the behavioral task performances 

among subjects for each attention component as defined 

in the ANT paradigm. Extracted EEG-based indices 

could be employed in future clinical applications to 

support the behavioral assessment or to evaluate the 

influence of specific attention deficits on Brain Computer 

Interface (BCI) performance and/or the effects of BCI 

training in cognitive rehabilitation applications.  

 

INTRODUCTION 

Attention is fundamental for human cognitive 

processing. As such, it includes a wide class of processes 

related with the ability of a subject to interact with the 

external environment. According to Posner’s theoretical 

model [1], this is possible through a sustained state of 

alertness (alerting), the selection of the important 

information in a noisy context (orienting) and the ability 

to control a situation and solve conflicts (executive 

control). When the complex mechanism at the basis of 

attention is altered, e.g. following a stroke event, 

consequences may affect a wide range of behavioural and 

social aspects. Several neuroimaging and 

neurophysiological studies have employed the so-called 

Attention Network Task (ANT), a behavioural task 

which allows to disentangle the three components 

(alerting, orienting and executive control) as described 

by Fan et al. in [2]. The available evidences indicate that 

the three attention components are independent [3], 

involve different anatomical areas (functional magnetic 

resonance imaging, fMRI, studies) [4] and each of them 

has a distinct oscillatory activity and time course (EEG 

study) [5].  

   

In this study, we applied modern methodologies for 

effective connectivity estimation and graph theory 

approaches with the aim to define stable and reliable 

descriptors of the dynamic brain circuits underpinning 

the attentional components in terms of directed 

relationships between the brain areas and their frequency 

content. Currently available brain connectivity studies on 

attention are based on structural networks (anatomical 

connectivity) [6] or functional networks extracted from 

fMRI data [7]. We were interested in extracting markers 

of the brain circuits elicited by the ANT performed by 

healthy volunteers while recording high density EEG 

(hdEEG) and thus, exploiting its high temporal 

resolution, low invasiveness and cost-effective. To this 

purpose we explore whether connectivity-based indices 

would correlate with behavioural data in order to 

strengthen their relevance as measure of attention 

processing for future applications. [8], [9]. 

 

MATERIALS AND METHODS 

Experimental Design: Data (60  EEG channels + 4 EOG 

channels, reference at linked mastoids and ground at Fpz, 

Brain Products) were recorded from 15 healthy 

volunteers (10 female, age 27.2 ± 2.5) during the 

execution of the ANT [5] (Fig.1). They had no history of 

neurological or psychiatric disorders. The experimental 

protocol was approved by the local Ethical Committee. 

Participants were seated in front of a computer screen; a 

row of 5 black arrows pointing left or right was presented 

in the middle part of the screen. Subjects were asked to 

indicate the direction of the central arrow (target 

stimulus) as quickly and accurately as possible with the 

left arrow keyboard or the right arrow keyboard button 

according to the direction of the target, using their right 

hand. Trials were defined as Congruent if the 4 lateral 

flankers and the central arrow had the same direction, 

Incongruent if the flankers pointed at the opposite 

direction. In addition there were three cue (an asterisk 

sign) conditions: No cue, Center cue (in the center of the 

screen for alerting), and Spatial cue (at the target 

location, above or below a fixation cross, for alerting plus 

orienting) [3]. The timeline of the paradigm is showed in 

Fig.1. The contrast between the different experimental 

conditions (72 trials each condition) allowed to extract 

the three attention components: i) Center cue and No cue 

conditions define the alerting, ii) Spatial cue and Center 
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cue the orienting, iii) Incongruent and Congruent the 

executive control.  

 

Figure 1: Timeline of the ANT paradigm. In each trial, a 

cue (asterisk) may appear for 200 ms in the center of the 

screen (center cue condition) or in the semi-space in which 

the target will appear (spatial cue). After a variable 

duration (300–1450ms), the target and the flankers 

(congruent or incongruent) are presented. The participant 

indicate the direction of the central arrow  within a time 

window of 2000 ms. The target and flankers disappear 

after the response is made. 

 

Behavioral Data: As behavioral index for each attention 

component we used the efficiency measure introduced in 

[2]. Alerting efficiency (EffAl), orienting efficiency 

(EffOr) and executive control efficiency (EffEC) are 

defined as the difference between the mean reaction 

times (RT) in specific experimental conditions:  

 

CenterNoAl RTRTEff   (1) 

SpatialCenterOr RTRTEff   (2) 

CongIncongEC RTRTEff   (3) 

 

EEG Data Analysis and Connectivity Estimation: EEG 

scalp data were band-pass filtered in the range [1-45] Hz 

and ocular artifacts were removed through Independent 

Component Analysis (fast-ICA algorithm). EOG 

channels were also included in the ICA decomposition. 

Signals were segmented in different time windows 

defined as [0 - 500] ms according to the cue onset and [0-

400] ms according to the target onset. Residual artifacts 

were removed by means of a semi-automatic procedure 

based on a threshold criterion (±80 µV). Connectivity 

patterns were estimated through Partial Directed 

Coherence (PDC) [10] and averaged in four frequency 

bands (Theta, Alpha, Beta and Gamma) defined 

according to the Individual Alpha Frequency (IAF) [11]. 

We obtained a network for each frequency band, each 

experimental condition and each subject. A statistical 

comparison (unpaired t-test, p<0.05, False Discovery 

Rate, FDR, correction) was performed between 

appropriate conditions (according to ANT theory) in 

order to isolate the networks associated with each of the 

three attention components. In particular, we compared: 

i) center cue vs no cue for alerting, ii) spatial cue vs 

center cue for orienting and iii) congruent vs incongruent 

for executive control. Graph theory indices were 

extracted from the networks underlying the three 

attention components with the aim to synthetize their 

main global and local properties. In this study, we 

adopted the following indices: 

Global Indices to describe the general properties of the 

entire network [12]: 

• Clustering: to measure the tendency of the network 

to segregate the information in subnetworks; 

• Path Length: to measure efficiency of the 

communication between the nodes on the basis of 

the shortest paths between them. 

Local Indices: to quantify the involvement of a specific 

sub-network and/or investigating the relation between 

different sub-networks. In particular as sub-networks we 

considered left (Fp1, AF7, AF3, F7, F5, F3, F1, FT7, 

FC5, FC3, FC1, T7, C5, C3, C1, TP7, CP5, CP3, CP1, 

P7, P5, P3, P1, PO7, PO3, O1) and right (Fp2, AF4, AF8, 

F2, F4, F6, F8, FC2, FC4, FC6, FT8, C2, C4, C6, T8, 

CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, O2) 

hemispheres, anterior (Fp1, Fp2, AF7, AF3, AFz, AF4, 

AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, 

FC1, FCz, FC2, FC4, FC6, FT8) and posterior (TP7, 

CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, 

P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, 

Oz, O2) areas [13]. We computed the following indices: 

• Density: to quantify the percentage of existing 

connections with respect to the totality of possible 

links. It has been adapted as in the following 

formula to quantify the percentage of connections 

relative to a specific area: 

𝑠𝑢𝑏 − 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑛𝑠𝑢𝑏𝑛𝑒𝑡

𝑛𝑇𝑂𝑇

  

Where 𝑛𝑠𝑢𝑏𝑛𝑒𝑡 is the number of existing links 

connecting only the nodes (electrodes) belonging to 

the considered subnetwork and 𝑛𝑇𝑂𝑇 is the number 

of all the existing connection of the entire circuit. 

• Divisibility - Modularity: to measure the level of 

interaction between subnetworks in terms of inter 
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(divisibility) and intra (modularity) connections: 

strict interconnection or isolation [14].  

• Influence: to measure a prevalence in the direction 

of inter-connections linking two spatial regions 

[13].  

Connectivity indices extracted for each attention 

component were then correlated with the relative 

behavioral parameters (EffAl, EffOr, EffEC) by means of 

Pearson’s correlation (p<0.05). FDR correction was 

applied to take into account errors due to multiple 

correlations. 

 

RESULTS 

Results are reported separately for each component of the 

ANT paradigm.  

 

Alerting: as shown in Figure 2, we found significant 

negative correlations between the efficiency EffAl and i) 

the path length index in beta band (Fig. 2, panel a) and ii) 

the left/right influence index in theta band (Fig. 2, panel 

b). Such correlations pointed out a relation between the 

behavioral performances and the speed in the exchange 

of information between network nodes in the alerting 

phase (low path length) in beta band. Moreover, an 

efficient alerting is associated to a communication 

between the two hemispheres in theta band with a 

prevalence of the information flows directed from right 

to left (negative values for left/right influence). 

 
Figure 2. Alerting: statistical correlations between the 

efficiency EffAl (y-axis) and the connectivity indices (x-

axis): path length in beta band (panel a) and left/right 

influence in theta band (panel b). As in all figures, dots 

correspond to the values obtained for each of the 15 

subjects involved in the study. The green line represents the 

linear fitting computed on the data. The associated values 

of correlation (R) and significance (p) are reported on the 

top of the figure.  
 

Orienting: as shown in Figure 3, a positive correlation 

was found between the efficiency EffOr and i) the right 

density (Fig. 3, panel a) and ii) the left/right divisibility 

(Fig.3, panel b) in the theta band.  

 

 

Figure 3. Orienting: statistical correlations between the 

efficiency EffOr (y-axis) and the connectivity indices (x-axis) 

right density (panel a) and Left/Right Divisibility (panel b) in 

theta band, posterior density (panel c) and Anterior/Posterior 

Influence (panel d) in gamma band.  

 

 

In particular, such results pointed out how an efficient 

orienting process is associated to a strong segregation of 

the information flows within the right hemispheres (high 

right density) and a low integration of the two 

hemispheres (high left/right divisibility) in theta band.  

Furthermore, we found that the parameter EffOr 

negatively correlated with the posterior density index 

(Fig.3, panel c) and the anterior/posterior influence index 

(Fig.3, panel d) in the gamma band.  

This indicates that an efficient orienting process is 

associated to a low involvement of the posterior scalp 

regions (low posterior density) and to the establishment 

of a communication between anterior and posterior 

regions with a prevalent direction from posterior to 

anterior.  

 

Executive Control: Figure 4 shows a significant positive 

correlation between executive control efficiency EffEC 

and both the Path Length (Fig.4, panel a) and the 

Clustering indices (Fig.4, panel b) in the gamma band. 

Significant correlations were also found between 

efficiency EffEC and left/right divisibility (Fig.4, panel c), 

left/right modularity (data not shown; R=0.53, p=0.05) 

and left/right influence indices (Fig.4, panel d) in the 

alpha band. In particular such results indicated how a 

reduction in the time required for solving the conflict 

(low EffEC) is associated to a high communication speed 

between the electrodes (low path length) and to a less 

tendency of the network to create clusters (low 

clustering). Moreover, an efficient (i.e. correlated with 

high behavioural performance) executive control is 

explained by a high integration of the two hemispheres 

(low left/right divisibility) with information flows 

directed from right to left (negative values of left/right 

influence). 
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Figure 4. Executive control: statistical correlations 

between the efficiency EffEC (y-axis) and the connectivity 

indices (x-axis) -Path Length (panel a) and Clustering 

(panel b) in gamma band -Left/Right Divisibility (panel c) 

and Left/Right Influence (panel d) in alpha band. 

 

DISCUSSION 

In the present study, we used advanced techniques for 

EEG signals processing to extract the cortical 

connectivity patterns (causal relationship between scalp 

areas) associated with the 3 attention components as 

elicited by the ANT paradigm (i.e. alerting, orienting and 

executive control) performed by healthy subjects. Some 

indices, derived from the graph theory, allowed the 

quantitative description of the relevant local and global 

properties of the 3 different causal connectivity  networks 

in specific EEG frequency bands as they correlated with 

the behavioural performance (i.e. correlated with EffAl, 

EffOr, EffEC). According to our findings, the estimated 

alerting network was described mainly by a negative 

relationship between the behavioral efficiency (EffAl) and 

Path Length index in the beta band, (ie, the higher 

efficiency the shorter Path Length) and the left/right 

Influence index in the theta band (ie, the higher efficiency 

the higher interhemispheric connection from right-to-

left; negative values for left-right influence index). 

The phasic alerting improves the speed of target response 

by changing the internal state of preparation for 

perceiving a (visual) stimulus [5]. Our results indicate 

that an efficient alerting function (higher speed to target 

response) is associated with a global network 

organization characterized by a shorter average Path 

Length which corresponds to a high efficiency 

information transfer [15]. As yet, the entire network 

appears to be characterized by a prevalent exchange of 

information directed from right to left hemisphere. Such 

prevalence might reflect the role of the right hemisphere 

to sustain alertness that was already stressed in previous 

studies in which  lesions of the right frontal and parietal 

areas were associated to reduced ability in maintaining 

the alert state [16]. The above discussed index 

modulation occurred in beta and theta band, respectively. 

This finding is in line with previous EEG evidence of a 

relationship between these frequency oscillations and the 

alerting function [5].  

The efficiency of the orienting function was in our study, 

described by a set of network indices which correlated 

with behavioral performance (EffOr). First, we found that 

the higher performance efficiency the higher right 

Density and left-right Divisibility in the theta band. In 

addition, higher orienting efficiency also correlated to 

both lower posterior Density and anterior/posterior 

Influence (prevalence for post-to-ant) in the gamma 

oscillations. Together, these results indicate a prevalent 

role of the right hemisphere versus the left (higher 

connectivity density) and poor communication between 

hemispheres (higher divisibility). About the frontal and 

parietal areas, results indicate a prevalence of 

connections from posterior to anterior areas (higher 

anterior/posterior influence and lower posterior density). 

This is in line with previous evidence of the (right) 

parietal and frontal areas involved in orienting function 

which enables for the selection of specific information 

from a number of sensory inputs [3],[16][4]. The above 

discussed index modulation occurred in the theta and 

gamma frequency oscillations that may be in line with 

the evidence in favour of the contribution of the theta 

oscillation to long-range communications for cognitive 

processing by phase-locking to high gamma power 

(Fries, 2015).   

Finally, an efficient conflict resolution (ie, executive 

control) was described mainly by a positive relationship 

between the behavioral efficiency (EffEC) and both the 

Clustering and Path Length indices in the gamma band, 

(ie, the lower time to solve the conflict (low EffEC) the 

lower tendency to clustering and shorter Path Length) 

and both the left/right Divisibility and Influence indices 

in the alpha band (i.e., the higher efficiency the higher 

interhemispheric connection with a prevalent right-to-left 

direction flow; negative values for left-right influence 

index). Altogether these results reflect the highly 

integrative nature of the conflict processing which 

requires more integration than segregation of information 

flow which are originated from several partially 

overlapping networks [18]. 

Future studies conducted at cortical and subcortical level 

(i.e. using source localization techniques like sLoreta 

[19]) should clarify the effective brain networks 

properties and their relationship with the currently 

available knowledge on anatomical and functional 

connectivity of attention networks. Such further step 

mightvalidate the proposed indices as neuro-

physiological correlates of attention components for 

future applications.  

 

CONCLUSION 

 

Advanced EEG signals elaboration based on time-

varying connectivity estimation and graph theory were 

applied to extract direct and weighted connectivity 

patterns elicited by the ANT paradigm at scalp level.  

Correlation results pointed out a set of EEG-based 

indices able to synthetically describe each of the three 
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attention components in the different frequency bands 

and to follow the variations in the corresponding 

behavioural measures. Such preliminary results could be 

used in the near future to: i) support the 

neuropsychological assessment in healthy subject and 

people with attention impairments; ii) clarify the role of 

specific attention components in BCI contexts (P300- 

and SMR-based BCI) and eventually improve the design 

of BCIs targeting attention rehabilitation; iii) increase the 

knowledge on attention brain networks elicited by the 

ANT paradigm. Altogether, our findings at the scalp 

level might have a strong impact on several clinical/non 

clinical applications related to the BCI field. 
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