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Welcome Note

From Vision to Reality

We have chosen our this year’s conference title to summarize the current situation of BCI research
in a very brief statement. On the one hand, we see that some of our ideas are still visions, far from
any applications. Basic research is the state of those visions and we still need to lay the foundation
to transform those visions into working systems. On the other hand, we see that first BCI systems
come to patients in clinics and that they are used on regular basis. However, it is important to
discuss the needs in the BCI field to bring more of our ideas, our visions into reality. Is it research
funding? Do we have too few people in the field? Is it too interdisciplinary? Do we need big industry
partners? All these questions are vivid and need to be addressed to achieve progress in the field of
BCI  research.  This  7th  Graz  Brain-Computer  Interface  Conference  (GBCIC2017)  offers  the
opportunity for extensive discussions and exchange of ideas among BCI experts from more than
30 countries. We received more than 100 scientific contributions from roughly 300 authors. The
scientific contributions have been peer-reviewed by at least two reviewers and collected in this
present open access ebook.

For the Conference itself, we have been able to setup a colorful and multifaceted program. We are
very happy that the GBCIC2017 has been officially endorsed by the BCI Society and that we will
have  an  official  Meeting  of  the  BCI  Society  at  the  Conference.  Further,  we  are  lucky  that
outstanding experts in the field, Dr. A Bolu Ajiboye (Case Western Reserve University, & Louis
Stokes Cleveland VA Medical Center, Cleveland, OH, USA), Prof. Benjamin Blankertz (Technische
Universität Berlin, Germany), Dr. Fabien Lotte (Inria Bordeaux Sud-Ouest, France), and Dr. Natalie
Mrachacz-Kersting  (Aalborg  University,  Denmark),  accepted  our  invitation  to  present  keynote
addresses at the Conference. As a special keynote, we present Prof. Fred D. Davis (Texas Tech
University,  Rawls  College  of  Business,  USA).  He  is  a  senior  researcher  in  the  field  of  user
acceptance of information technology, technology supported decision making, skill acquisition, and
NeuroIS. With his talk he will  make a link between the BCI field and his research disciplines.
Additionally, we have several Satellite Events prior and after the Conference. New in the program:
the BCI Science Slam, an event where researchers can present their work in an entertaining way.
Finally, we end the GBCIC2017 with a tour to the South Styrian Vineyards, like we did in the past
years.

We hope that this conference contributes towards a strong scientific cooperation among our field,  
and we wish all participants an exciting, stimulating and productive Graz BCI Conference 2017!

Gernot R. Müller-Putz
Conference Chair
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Rehabilitation and Research at the rehabilitation center Judendorf-Strassengel, Austria. In 2008 he
received his PhD in computer science from Graz University of Technology, where, beginning in
2001, he worked on non-invasive electroencephalogram-based (EEG) brain-computer interfacing
(BCI). He spend the years from 2008 to 2010 as postdoctoral researcher at the Department for
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ABSTRACT: Voluntary control of brain activity using 
working memory can be used to control a BCI. Here we 
present data on an ALS patient with a fully implanted 
BCI with ECoG electrodes placed over left dorsolateral 
prefrontal cortex. This area is a versatile brain region 
involved in cognition. During several runs of a task 
where sustained activity in the high frequency band 
(HFB) is required to control a cursor in the direction of a 
target, the subject initially reached above chance 
performance, but in later runs reached performance up to 
96%. The subject also performed a task in which a short 
rise in HFB (click) had to be generated to select an icon 
in a matrix. The subject was able to generate clicks, 
although with many false positives. We conclude that 
both sustained and short activity can be generated with a 
working memory strategy. The improvement on the 
cursor control task suggests that the task became more 
automated.  

 
INTRODUCTION 
 
It has long been established that one can control a Brain-
Computer Interface (BCI) with activity from the motor 
cortex, both with EEG and ECoG signals. The latter 
signal has a more precise localization and higher 
amplitude. A demonstration of BCI control with activity 
from the motor cortex, using ECoG signal, was presented 
recently by our group: an ALS patient was implanted 
with a fully implantable BCI with ECoG electrodes on 
the motor cortex [1]. A rise in high frequency band 
(HFB) activity during a short attempted movement was 
used to generate a click. This click was translated to a 
selection in a spelling program to enable spelling for the 
patient.  
The motor cortex, however, is not the only cortical area 
which can be controlled voluntarily. We have shown 
previously that sustained ECoG activity from the 
dorsolateral prefrontal cortex (dlPFC), an area active 
during working memory tasks, such as mental 
calculation, can be used for BCI control [2]. Also, clicks 
generated from dlPFC were demonstrated in an ECoG 
study [3]. 
In addition to the electrodes placed over motor cortex, 
also electrodes over dlPFC were placed. Two reasons 

motivated placing electrodes over dlPFC: Primary, it was 
not known whether the signal over motor cortex would 
deteriorate as a result of the disease and secondary, the 
dlPFC is a higher order cortex where training may cause 
a quicker automatization of BCI control. We here present 
results on using sustained and short signal changes in 
dlPFC for BCI control.  
 
MATERALS AND METHODS 
 
     BCI implant: The subject is a 60-year-old woman with 
late stage ALS in a locked-in state. She was implanted in 
October 2015 with four subdural electrode strips (two on 
the left motor cortex, two on the left dlPFC; Medtronic 
LLC, Minneapolis, MN) on the basis of prelocalisation 
with fMRI. Extension cables were tunneled through the 
neck and externalized through the abdominal skin. After 
an electrode selection procedure, during a second surgery 
three days later, the strips with highest correlation with a 
screening task (both attempted movement and mental 
calculation) were connected to an ActivaÒ PC+S 
amplifier/transmitter device (Medtronic), which was 
placed infraclavicularly in the thorax. See for more detail 
on the procedures [1]. The bandpass filtered signal (HFB, 
center frequency 65 Hz) is received by a unit and send to 
a computer running custom software, based on the 
BCI2000 software package, which is capable of 
presenting real-time visual feedback of the brain signal 
to the subject. 
 

Tasks: Data was gathered during research sessions 
twice a week at the home of the subject. Multiple runs of 
a working memory task were performed during a session, 
not all sessions contained working memory runs.  
Two working memory tasks are presented to the subject: 
First, a Cursor Control Task for sustained activity which 
provides feedback on the HFB (Fig. 1). The HFB is 
translated to velocity in y-direction, in x-direction 
velocity is a fixed number. Trials lasts 2-6s. The 
instruction was to move the cursor up by counting 
backwards in steps of e.g. 7 from a random starting 
number, in order to reach the upper target at the right and 
move the cursor down with rest to reach the lower target. 
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Initially, both the random starting number and random 
step size were displayed at the beginning of each trial. 
Accuracy is calculated by the number of targets hit 
divided by the total number of targets, chance level is 
50%. Second, a Click Task is presented, where a mole is 
presented at a random location in a matrix with icons 
(Fig. 2). First, the rows were highlighted in a stepwise 
manner and the instruction is to make a click to select the 
row where the mole icon is. Subsequently, the icons in 
that row are highlighted and the subject is instructed to 
select the icon with the mole. Feedback to the user is 
given with a color change of the highlight with a correct 
selection and removal of the mole. The next trial starts 
with the mole in a new random position. The clicks are 
generated when the power in the HFB exceeds an 
empirical threshold for 1.2 s. 
 
 

 
 
Figure 1. The Cursor Control Task provides feedback to 
the subject on the dlPFC activity. Note that a random 
number is given as a starting point for counting 
backwards. 
 

 
 
Figure 2. Rows of icons were highlighted sequentially at 
a fixed pace (red box) during which it could be selected 
by a click. Individual icons of the selected row were 
subsequently highlighted and could be selected with a 
second click. Goal was to select only the mole. 
 
 
RESULTS 
 
The subject was able to perform the Cursor Control Task 
with a working memory strategy.  
Initially, accuracy was low (60%), but after a few 
sessions of training an accuracy of 90% was reached (Fig. 
3). The subject reported in later sessions that display of a 
starting number was not needed anymore, thinking of a 
number already resulted in a higher dlPFC activity. She 
experimented with this in the sessions 31-40, with lower 
performance as a result. After returning to the previous 
strategy, accuracy increased to a maximum of 96%. After 
session 84 the display of the starting number was not 
needed anymore. Average accuracy after session 84 was 
80.6%.  
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Figure 3. The performance of all runs of the Cursor Control Task with this subject. The lower performance in sessions 
31-40 (grey background) can be attributed to a change in mental strategy: no starting numbers for counting backward. 
After session 84 this strategy without starting numbers (grey background) was used again, but now with high 
performance. 
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The subject performed 13 runs of the Click Task during 
3 sessions. The subject was able to generate a click with 
a working memory strategy. Accuracy was 63%, with 
chance level of 50%. The low accuracy can be attributed 
to the high number of false positives. However, she was 
able to generate a short rise in HFB (Fig. 4). 
 

 
 
Figure 4. The mean HFB (±SD) activity over runs (after 
normalization) relative to the time the activity was 
translated into a true positive click. Samples of HFB are 
recorded every 200ms. Note a clear rise in HFB 1200ms 
before the click and 4s fall after the click.  
 
DISCUSSION 
 
The data demonstrate that the subject was able to use a 
working memory strategy for BCI control. Continuous 
control in a Cursor Control task was shown before [2]. In 
this study the subject had the opportunity to perform 
many more runs than reported before. According to the 
subject some automatization takes place over time, which 
correlates to the higher scores, even without a starting 
number, in later sessions. This is in line with the flexible 
nature of the dlPFC. In addition, the subject reports that 
her strategy for generating clicks shifted from actual 
counting backward to thinking of a number. This may 
also cause the irregular timing of the working memory 
clicks and false positives during highlight of the icon just 
before the mole. Irregular timing in working memory 
BCI control was found also in a previous study [3]. The 
number of false positives diminished in one run by a 
more active rest strategy. With more training we expect 
improvement, especially on the timing. 
Working memory controlled BCI might be more valuable 
as an addition to motor control, than as a replacement. 
However, using working memory clicks for spelling 
might be feasible at a slower speed than motor clicks. 
 
 
 
 
 
 
 

CONCLUSION 
 
A subject with an implanted BCI was able to use a 
working memory strategy for BCI control, both in a task 
with sustained activity and in a task with short clicks. 
Feedback of the subject that she could perform the task 
without starting numbers suggests that the task becomes 
more automated. 
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ABSTRACT: In previous studies we have introduced a 

brain-computer interface (BCI) system based on 

movement related cortical potentials (MRCP). The 

performance of this system was shown to be 

significantly affected by the users’ attention state. In the 

current study, we analyzed MRCP features (low 

frequencies) and features extracted at higher frequencies 

to determine the effect of variations in user’s attention 

on EEG. Attention was modulated by a combination of 

auditory and visual stimuli that served as external 

distractors from the main task, which was a simple 

dorsiflexion. Time and frequency analysis was 

performed on EEG signals recorded from twenty-eight 

channels. The amplitude of the peak negativity and the 

slope of the negative deflection of the MRCP decreased 

and pre-movement variability increased with the 

distractors. Moreover, spectral analysis revealed an 

increment of theta power and alpha power due to 

attentional shifts. These results have implications for the 

design of real-life BCI systems, potentially allowing an 

increased robustness and adaptability with users’ 

conditions.  

 

INTRODUCTION 

 
BCI systems provide a bi-direction interface with the 

human brain and can be used to modulate neural activity 

for rehabilitation (1, 2). For this purpose, the user’s 

attention has an impact on the system performance.  The 

effect of attention levels by the user was previously 

investigated for synchronous BCIs, where a cue was 

used as a source of information for the task execution 

(3, 4). However, the performance of asynchronous (self-

paced) BCI in relation to attention variations remains 

unclear.  

External stimuli can play the role of attention distractors 

and therefore drift the attention away from the target 

task (5, 6). Different types of attention activate various 

locations of the brain. While visual attention influences 

the parietal and occipital areas (7), auditory stimuli are 

directed to temporal and frontal locations (8).  

Attention level modulates electroencephalography 

(EEG) signals. Event-related cortical potentials, steady–

state evoked potentials and event-related 

(de)synchronization have been the most common types 

of signal modalities for the investigation of attention in 

BCI (9-11). In our previous work, we used features of 

the MRCP for detection of attention variations. We 

showed that temporal features of the MRCP are 

influenced by attention distractors (3).   

In this study, temporal and spectral features of EEG 

signals were used for detection of attention variations. 

The main aim of this analysis is to make BCIs more 

robust for attention detection. Additionally, we aimed to 

identify which brain locations were more influenced by 

using each group of features.     

 
MATERALS AND METHODS 

 
Experimental set up 

Nine healthy participants (4 females, 5 males) without 

hearing or visual impairments took part in the 

experiments. The experimental procedures were 

approved by the local ethical committee for the region 

of Northern Jutland (N-2016006).  

EEG signals were recorded from twenty-eight channels 

by using an active EEG electrode system 

(g.GAMMAcap
2
, Austria) and two synchronized 

g.USBamp amplifier (gTec, GmbH, Austria). EEG 

channels corresponded to AF3, AFz, Af4, F3, F1, Fz, 

F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, 

CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2 and P4 of the 

international 10-20 system. Two electromyography 

(EMG) electrodes were placed on the tibialis anterior 

(TA) muscle of the dominant foot to get information 

about movement execution.   

 

Paradigm and task  
Participants were asked to sit on a comfortable chair 

placed approximately one meter away from a computer 

screen, which showed the visual oddball task. An 

auditory oddball was played from a conventional 

headphone. 

The experiment consisted of two phases.  
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Control Level (CL): Participants were asked to perform 

60 repetitions of self-paced ankle dorsiflexion divided 

into two blocks, each with 30 repetitions. They were 

instructed to perform the movement rapidly and 

forcefully and to hold the position for approximately 2 s 

after which they were asked to rest for 5-10 s. 

Diverted Attention Level (DAL): participants had to 

focus on the oddball stimuli and count the number of 

target sequences while performing the same movements 

as in the first phase (dual-tasking).  

The oddball used in this experiment was a combination 

of visual and auditory oddballs. For the visual oddball, 

two Gabor masks with an orientation of 60º and 30º, 

each with a probability of 25%, were used. For the 

auditory oddball, two auditory tones with frequencies of 

1200 and 1900 Hz (middle and high pitch), each with a 

probability of 25%, were applied. All stimuli were 

randomized with an inter-stimulus interval of 1-2 s. 

Participants were asked to count the number of Gabor 

30º followed by the middle pitch sound or the number 

of high pitch sounds following the Gabor 60º mask.  

 

Signal analysis    

The correlation of EMG envelopes in each block was 

computed to quantify the consistency of movement 

execution. EMG signals were rectified and low-pass 

filtered (10 Hz) to extract the envelopes. The correlation 

between averaged envelopes was calculated among 

trials of each block. In addition, the movement onsets 

were computed in each block with using a threshold for 

EMG signals to provide information about the timing of 

movement execution. 

EEG signals were filtered in the bandwidth [0.05 10] Hz 

using a 2
nd

 order Butterworth filter. MRCPs were 

extracted in the time interval [-3 3] s with reference to 

the movement onset, as estimated from the EMG 

signals.  

Ten temporal features were extracted from the MRCPs: 

amplitude and timing of the peak negativity (APN and 

TPN), first derivatives (slopes) for the time intervals [-2 

0] s, [-2 -1] s, [-1 0] s, and [0 1]s, and the standard 

deviations of the signal amplitude in the same time 

intervals. Figure 1 illustrated these features on a 

representative case. 

Sixteen spectral features were extracted from the 

spectrogram of EEG signals in the delta [0 3] Hz, theta 

[4 8] Hz, alpha [8 13] Hz and beta [15 31] Hz bands, 

and at the four time intervals T1= [-1 -.6] s, T2= [-.8 -

.4], T3= [-.6 -.2] s, and T4= [-.4 0] s.  

 

Statistics 

Three-way ANOVA was applied to compare the 

temporal or spectral features among the two attention 

levels (CL and DAL) and channel placement. The fixed 

factors were ‘attention level’ with two states (CL and 

DAL), ‘channel lobe’ with six levels (Anterio-frontal, 

Frontal, Centro-frontal, Central, Centro-parietal and 

parietal lobes), and ‘channel hemisphere’ with three 

levels (Right, midline and left). Wilcoxon matched-pair 

sign rank test was used to analyze the differences in 

EMG envelopes between two attention levels. 

Significant was set to p<0.05.  

 

 
 

Figure 1: Schematic of temporal features extracted from 

single-trial MRCPs. ‘D’ indicates the range of time 

domains for slope and variability extraction. D21 shows 

[-2 -1] s, D10 represents [-1 0] s, D20 means [-2 0] s 

and D01 is for [0 1] s. 

 

RESULTS 

 

EMG Analysis 

The EMG envelope and the time interval between 

movements were not significantly different between CL 

and DAL (p>0.05). The duration between movements 

was also greater in the diverted attention level (CL: 

9.9s, DAL: 11.5s) but not significantly different. 

 

Temporal Features 

APN, slope and variability in the range of [1 0] s (S10 

and Var10) were significantly different between CL and 

DAL. Table 1 shows the values for these variables and 

the associated significance levels based on the three 

independent factors. 

APN and S10 were significantly reduced from CL to 

DAL (APN: F(1,412)= 6.4, p=0.01; S10: F(1,412)= 37.3, 

p<0.001). Figure 2 illustrates the average MRCP signals 

across all subjects and each channel for both conditions. 

Both the MRCP amplitude and slopes were reduced 

from CL to DAL for most channels. 

APN was significantly different between the three 

channel hemispheres (F(2,412)= 7.9, p<0.001). The 

Bonferroni post-hoc test revealed that the midline 

locations were significantly different compared to the 

right (p= 0.03) and left channel placements (p=0.001). 

Var10 was increased significantly from CL to DAL 

(F(1,412)= 125.2, p<0.001) although it did not show 

statistical differences with regards to the channel lobe or 

channel hemisphere. 
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Table 1: Three temporal features of MRCPs as a function of the three independent factors, with corresponding p values.  

 Attention Level Hemisphere placement Lobe Placement 

CL DAL P Left Midline Right P AF F FC C CP P P 

APN -20.1 

µV 

-17.2 

µV 

0.01 -17.8 

µV 

-21 

µV 

-19 

µV 

<.001 -19.6 

µV 

-19.9 

µV 

-18.4 

µV 

-19.8 

µV 

-18.8 

µV 

-19.2 

µV 

0.9 

S10 -10.5 

µV/s 

-4.1 

µV/s 

<.001 -9.6 

µV/s 

-9.2 

µV/s 

-7.5 

µV/s 

0.2 -9.9 

µV/s 

-9.1 

µV/s 

-9.8 

µV/s 

-9.4 

µV/s 

-9.9 

µV/s 

-9.5 

µV/s 

0.7 

Var10 0.013 0.016 <.001 .014 .014 .015 0.4 .015 .014 .015 .014 .014 .014 0.2 

 

 

 
Figure 2: Grand average of the MRCP signals in 

different channel locations based on the two attention 

levels. CL is shown as a solid black line and DAL as the 

dotted black line. Data are the average across all 

subjects (n=9). 

 

Spectral Features 

The alpha and theta range had more variations in 

specific time windows. Alpha power was increased 

statistically in T1 ([-1 -.6]) s between the CL and DAL 

condition (F(1,412)= 4.7, p= 0.03). In addition, channel 

lobe had a significant effect on alpha power distribution 

in four time intervals (T1[-1 -.6]: F(5,412)= 4.6, p<0.001; 

T2[-8 -.4]: F(5,412)= 3.6, p= 0.03; T3[-.6 -.2]: F(5,412)= 2.8, 

p= 0.02; T4[-.4 0]: F(5,412)= 3.1, p= 0.009). The Post-hoc 

test revealed that the Parietal and Anterio-Frontal lobe 

channels led to significantly different features compared 

to the other lobes. 

Theta power was also increased in the time interval [-1 -

.6] for CL versus DAL condition (F(1,412)= 32.3, p< 

0.001). Similar to the alpha power, the factor ‘lobe’ had 

a significant effect on theta power distribution (T1[-1 -

.6]: F(5,412)= 16.8, p<0.001; T2[-.8 -.4]: F(5,412)= 15.8, p= 

0.03; T3[-6 -.2]: F(5,412)= 12.4, p= 0.02; T4[-.4 0]: 

F(5,412)= 9.8, p= 0.009). The factor ‘channel hemisphere’ 

revealed a significant effect in T1[-1 -.6] (F(2,412)= 6.8, 

p= 0.001) and T2[-.8 -.4] (F(2,412)= 8.3, p< 0.001). The 

post-hoc test indicated that channels located on the 

midline led to different features compared to those 

located in the other two hemispheres. Figure 3 shows 

the topographic plots of the power distribution in T1 [-1 

-.6] for one representative subject. Regarding to all 

subjects, the signal power increased in the theta and 

alpha range, particularly in the channels placed on left 

hemisphere, with attention diversion.           

 

 
 

Figure 3: Power distribution in four frequency ranges 

for T1 [-1 -.6] with respect to the dorsiflexion onset. 

Data are for n=1. 

 

DISCUSSION 

 

We studied time and frequency features of EEG signals 

with attention variations. The results suggest that among 

ten temporal features, the amplitude of peak negativity 

and pre-movement slope in the late negativity phase 

before movement onset decrease in DAL by comparison 

with CL. Our previous studies support that by dividing 

the attention (dual-tasking), the EEG signal associated 

to movement preparation is reduced in amplitude and 

thus detection of movement intention delayed (3). One 

of the possible reasons for this effect is a reduction of 

attention to the main task in dual-task conditions in 

comparison with the single task. Therefore, the majority 

of attention is diverted to the secondary task and causes 

a reduced motor cortex excitability for the main 
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movement preparation and execution (12). Nonetheless, 

the movement execution was not significantly 

influenced, as quantified by EMG activity.  

Moreover, we observed significant increases in theta 

and alpha power with reduced attention. Although theta 

power enhancement particularly in the frontal lobe 

suggests an increment in the working memory or 

focused attention to the target task, in this study it is 

presumably due to an increased task demand in the 

dual-task conditions (13-15). This supports previous 

studies which revealed an inverse relation between 

attention demand in multi-tasking and alpha power (16) 

and the same relation between task demand and alpha 

power in the frontal, central and parietal lobes (17, 18). 

 

CONCLUSION 

 

For designing robust and reliable BCI systems, it is 

important to adapt the system to the users’ attention 

variations. Here we demonstrate that attention 

influences the temporal and spectral features of EEG 

signals. These results may have potential application in 

the design of systems for detecting the attention level 

from EEG features. 
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ABSTRACT: Rapid serial visual presentation (RSVP) 

can prove useful as a reading technique when text is 

presented on small screens. Optimal text presentation 

speed for text reading depends on the reader himself, 

context and features of the text. Readability is a measure 

which estimates the ease with which a reader can 

understand a written meaningful text.  

The presented study investigated whether a passive 

Brain-Computer Interface (pBCI) can be used to 

distinguish between texts of distinct levels of readability 

presented at different presentation speeds. A predictive 

model was trained on EEG data derived from a cognitive 

load paradigm. The model was then applied to data 

collected while participants read easy and difficult texts 

at a self-adjusted speed and at an increased speed level.  

Results suggest that predictions made by the predictive 

model could be used as an estimate for categorization and 

adaptation of longer text passages, though its robustness 

and potential for the use in neuroadaptive reading 

applications should be further investigated. 

 

INTRODUCTION 

 
Reading is the written form of a language and serves 

communication and information sharing in societies. 

Textual information nowadays is distributed as digital 

media presentations on electronic displays (e.g., 

monitors, mobile phones, eReaders, etc.) and is 

accessible in a broad and fast way through advanced 

communication technology. With decrease in size of 

mobile devices, smaller screen sizes are a consequence 

and constitute challenges for the way text material can be 

presented. Scrolling and paging in text presentation can 

be bothersome and inconvenient for the reader [1]. Hence 

new forms of text presentation for mobile devices 

recently have emerged and are developed.  

Rapid serial visual presentation (RSVP) is a popular 

approach to build a text presentation method appropriate 

for reading on (very) small displays. In this presentation 

form, words of a text are presented sequentially one word 

at a time at a fixed screen location [2]. It was claimed that 

in contrast to traditional left to right text body reading, 

texts can be read faster at constant comprehension levels 

[3]. It is suggested that a reduction of saccades, small and 

rapid eye movements to fixate the next word, due to a 

constant fixation point while reading, leads to an increase 

of overall reading speed in RSVP reading methods [4].  

Over the past years claims like these have been subjected 

to several studies examining RSVP reading effects on 

text comprehension and reading speed [5, 6]. It emerged 

that reading comprehension and efficiency depend on 

nuanced features of the textual information to be read, 

such as text difficulty, length, and reading speed. 

Readability is a measure of the ease with which the 

meaning of a text can be comprehended. Readability 

ratings traditionally are obtained using readability 

formulas such as Flesch-Kincaid Grade Level [7] or the 

Flesch Reading Ease [8]. Most readability formulas are 

based on a combination of easily countable features such 

as word length and sentence length. 

Recently commercial speed reading applications were 

made available for RSVP reading on electronic devices. 

Reading speed in these applications is regulated 

manually and stays static if the user does not alter it 

throughout the reading process. Here a less intrusive 

form of presentation speed regulation would prove 

useful, especially if features of the read text material, e.g., 

text readability, differ over time. Then the cognitive load 

of the reader might change according to different levels 

of text difficulty.  

Passive Brain-Computer Interfaces [pBCIs, 9] are a 

technology which uses neurophysiological signals to 

distinguish between different cognitive states [10]. Data 

recorded by Electroencephalography (EEG) while 

different cognitive states are evoked in a person, can be 

used to train a BCI to distinguish between these different 
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states and evaluate new data when it is recorded. This 

evaluation of a BCI then can be used to generate a signal 

to change the state of a system. In the process the user 

does not need to actively generate a signal towards the 

machine, but her cognitive state is monitored and 

interpreted continuously. A reader would not be required 

to pay attention and conscious effort to generate a signal 

to change e.g. the reading speed appropriate to her 

current state. Such an automatic adaptation to a user’s 

current cognitive state through the application of a pBCI 

would be a realization of neuroadaptive technology [11]. 

This technology enhances the interaction between user 

and machine as it provides knowledge about the 

situational user state to the machine. A neuroadaptive 

reading application could make the reading process more 

pleasant and efficient. Additionally, the generated 

information about the user state could be used to generate 

an assessment of the user’s individual text difficulty 

levels and readability skills. Such a measure detecting the 

relation between the user’s current level of cognitive load 

and a text of a given level of difficulty could be useful in 

learning contexts to generate personalized learning 

content. Here, the pBCI could be utilized to find 

appropriate learning material which can be optimized to 

fit the learner’s current needs and abilities.   

The aim of the presented work was to examine whether a 

pBCI can be trained to distinguish between different 

levels of text difficulty while reading with a speed 

reading application. Moreover, the effects of reading 

speed on this measure were investigated. As connections 

to other words become more complex with the position 

of a word within a sentence, it was also investigated 

whether this relationship is reflected in the output from 

the pBCI. Moreover, long sentences should be more 

difficult to understand than short ones as they are more 

complex in structure and relations between words. 

Therefore, is was also investigated whether the average 

output of the pBCI shows a difference between short and 

long sentences. The outcomes were interpreted according 

to their applicability in neuroadaptive technologies. 

 
MATERALS AND METHODS 

  

     Participants: Eight participants, five female, took part 

in the experiment. The mean age was 29 years (SD = 3.2 

years). All participants had normal or corrected-to-

normal vision and their native language was German. 

Prior to the experiment participants gave their written 

informed consent to participate in the study and were 

paid thirty euros as expense allowance. 

    Speed Reading Application: The speed reading 

application applied in this study was Spritz. The Spritz 

Application programming interface (API) was provided 

by Spritz™ (spritzinc.com/) for the use in this study. 

Together with Psychophysics Toolbox extensions [12] 

the experimental paradigm was computed in MATLAB.  

     Stimuli: Texts used in the investigation were extracted 

from the GEO/GEOlino Corpus [13]. The corpus is a 

collection of 1066 German texts taken from the German 

magazine GEO, which covers topics related to nature, 

culture and science, and the magazine GEOlino, which 

deals with similar topics, but is targeted at children aged 

between 8 and 14 years. The texts from GEO therefore 

are generally more complex than those from the GEOlino 

magazine. Six texts were chosen from each magazine, all 

covering similar topics about animals and their habits. 

Overall the average number of words per text was 493 

(SD = 34.6 words). GEO texts had an average word count 

of 472 words (SD = 23.1 words) and GEOlino texts of 

514 words (SD = 31.7 words). GEO texts had an average 

Flesch reading ease index of 45.1 (SD = 2.4), which is 

equivalent to difficult texts on college level. The Flesch-

Kincaid grade level of GEO texts was 10.9 (SD = .29). 

For GEOlino texts, the average Flesch reading ease index 

was 62 (SD = 1.38) which corresponds to a readability 

suitable for 13 to 15 years old students. These texts had 

an average Flesch-Kincaid grade level of 7.9 (SD = .24). 

     EEG system and software: During the experiment 

brain activity was recorded from 64 active Ag/AgCl 

electrodes (ActiCap, Brain Products, Munich, Germany) 

applied to an elastic cap according to the extended 

international 10/20 positioning system. The ground 

electrode was placed at position AFz and the reference at 

FCz. All electrodes were connected to a BrainAmp 

amplifier (Brain Products GmbH, Munich, Germany), 

which was connected to a laptop through a universal 

serial bus (USB) 2.0. Electrode impedances were kept 

below 5 kΩ. Data was recorded using the BrainVision 

Recorder, BrainVision RDA (Brain Products GmbH, 

Munich, Germany) and LabRecorder [14]. The sampling 

rate was set to 500 Hz. The experimental paradigms were 

run in SNAP [15] and in MATLAB, using the 

Psychophysics Toolbox extensions. Data was analyzed 

with the MATLAB embedded EEGLAB toolbox [16]. 

For classification and BCI model application the open 

source toolbox BCILAB [17] was used.  

     Pre-test: Six participants took part in a pre-test to 

examine whether an increase of 40 percent in text 

presentation speed would lead to an increase of perceived 

workload. The participants’ mean age was 27.2 years (SD 

= 3.8 years), five were male, all had normal or corrected-

to-normal vision and their native language was German. 

Participants read the twelve texts in blocks of three at a 

self-adjusted reading speed with the speed reading 

application. Half of the texts from each difficulty class 

(easy vs. difficult) were presented at a self-adjusted speed 

plus 40 percent. After each block, participants filled out 

a Raw-Task Load Index (RTLX) [18], a modified version 

of NASA-TLX [19], a standardized questionnaire 

assessing perceived workload on a Likert scale along six 

dimensions. A two-way repeated measures ANOVA 

revealed a significant main effect of presentation speed, 

F (1,5) = 6.758, p = .048. Workload of texts presented in 

normal speed was rated lower (M = 45.7, SD = 16.9) than 

for texts represented with 40 percent increase in speed (M 

= 53.58,  SD = 17.1). There was no significant main effect 

of text difficulty, F (1,5) = 1.371, p = .294. The 

interaction of the factors was also not significant, F (1,5) 

= 0.255, p = 0.635. From these results, it was concluded 

that an increase of individual reading speed by 40 percent 
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was sufficient to increase the subjective workload for 

participants while reading the texts later used in the main 

study. 

     Experimental procedure: In the main experiment, 

participants first completed an experimental paradigm, 

which was applied to induce two different levels of 

cognitive load [20]. This so-called ‘sparkles’ paradigm 

was developed by Team PhyPA (TU Berlin) [21]. In 

several experiments the classifier trained on the data 

obtained from this paradigm was tested while 

participants completed not only arithmetic assignments, 

as during data collection, but tasks from other task 

domains. It was used, e.g., while the participant verbally 

described a complex context or solved anagrams, where 

the classifier could reliably distinguish between phases 

of high and low workload. Due to its applicability to 

multiple domains the classifier can be seen as a form of 

task-independent classifier for cognitive load. 

During half of the paradigm the participant saw colorful 

spots moving around slowly on an otherwise black 

screen. In this phase, the participant was supposed to 

relax and simply focus on watching the spots flying 

around with eyes open. This part of the paradigm was 

supposed to induce low workload. To induce higher 

workload, from time to time an arithmetic subtraction 

assignment appeared at the center of the screen. At its 

appearance the participant was supposed to silently 

subtract the number standing on the right side (range 

between 6 and 20) iteratively from the number on the left 

(range between 200 and 1200). After some time, the 

arithmetic assignment disappeared again, whereat the 

participant stopped subtracting and turned towards 

watching the spots again. Overall 40 trials of low or high 

induced workload were performed with a length of 10 

seconds per trial.  

 

 

Figure 1: Screenshot of the workload (‘sparkles’) 

paradigm. The arithmetic assignment is presented in the 

center of the screen. Colorful dots are moving around 

the black background at a slow pace. 

                                                                                   

After completion of the workload paradigm participants 

familiarized with the speed-reading application. They 

read passages of a German novel and incrementally 

adjusted the presentation speed to a level they felt 

comfortable reading with.  

Then participants read all twelve texts in blocks of three. 

All texts of a block were either easy or difficult texts and 

presented in the self-adjusted reading speed or with an 

increase of 40 percent (as determined in the pre-study). 

After each text, participants answered three questions 

regarding literal text comprehension. Under each 

question four possible answers were displayed, of which 

one was the right choice. If, e.g., the text had read ‘The 

warm sun hatches the eggs in the sand’, the question 

could have been: ‘Who hatches the eggs of the turtle?’, 

then of the possible answers a) the father, b) a cormorant 

c) the sun and d) the mother, c) would have been the right 

choice. Participants selected their answer by key press. 

Each participant answered 3x12 literal comprehension 

questions, a total of 36 questions.  

After each of the four text blocks participants were 

handed a RTLX questionnaire to assess subjective ratings 

of perceived workload. Overall each participant 

completed the RTLX four times. 

     Analyses: Individually adjusted presentation rates 

were averaged over participants from the pre- and main 

study. Ratings collected in the RTLX questionnaire were 

converted to workload scores according to NASA-TLX 

procedures. The workload scores of all eight participants 

were subjected to a two-way repeated measures ANOVA 

with the within-subject factors presentation speed 

(normal vs. plus 40 percent) and text difficulty (easy vs. 

difficult).  The numbers of correct answers to literal text 

comprehension questions of each participant within each 

of the four text blocks were added. These scores per 

block then were subjected to a two-way repeated 

measures ANOVA with within-subject factors 

presentation speed (normal vs. plus 40 percent) and text 

difficulty (easy vs. normal).  

Due to a recording software problem, only data from 

seven of the eight participants was used for classification. 

For feature extraction, a filter bank common spatial 

patterns (fbCSPs) approach [22] was used. Two 

frequency band (4-7, expected increase with increasing 

workload and 7-13, expected decrease with increasing 

workload) Hz was selected and epochs of 5 seconds 

length starting at stimulus were extracted. Linear 

discriminant analysis (LDA) regularized by shrinkage 

[23] was used as a classifier and a (5x5)-fold cross-

validation was employed. 

For each participant, the individual predictive model 

trained on data from the workload paradigm was applied 

to text reading data. The BCILAB built-in function onl-

simulate was used to apply the predictive model to the 

raw data from all twelve texts, resulting in a predictive 

value between 0 and 1 for each word of a text. An output 

with a value of 0 would indicate low load and a value of 

1 high load.  

Predicted values from each predictive model were 

subjected to permutation tests with 50000 permutations 

per test. All predictions from one group of texts 

according to text difficulty (easy vs. difficult) and 

presentation speed (normal vs. fast) were tested within 

and between the two factors. Tests were one-tailed as the 

assumptions were that easy texts should result in lower 

predictive values than difficult texts. Also within one text 

difficulty category, predictions of texts presented at 

normal speed were expected be lower than predictions of 

texts presented at an increased speed. Easy texts 
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presented at normal speed were assumed to have lower 

predictive values than difficult text which were presented 

fast. Finally, for predictions in easy texts which were 

presented fast against predictions from difficult texts 

presented at normal speed, no assumption regarding 

difficulty was made.  

It was further assumed that longer sentences would have 

an overall higher difficulty as word relations within a 

longer sentence regularly become more complex in 

structure than in short sentences. To test if this 

assumption was manifested in the predictions made by 

the applied predictive models, predictions within each 

sentence were averaged. The averaged predictive values 

alongside with the word count of the respective sentences 

were subjected to linear regression analysis. Regression 

analysis was performed once for all sentences of easy 

texts presented in normal speed and again for sentences 

from difficult texts presented at normal speed. Moreover, 

it was performed for all participants together and again 

for each individual participant. 

Another assumption was that predictive values could 

reflect an increase of complexity of relations towards a 

word caused by an increase of the word’s position within 

a sentence. To test this assumption words and their 

predicted values were sorted by their position within 

sentences. All predictive values for the occurred sentence 

positions were subjected to a linear regression analysis. 

Again, the analysis was only performed for easy and 

difficult texts presented at normal presentation speed, for 

each participant and also for data from all subjects 

together. 

 

RESULTS 

 

Individually adjusted presentation rates from the overall 

13 participants of the pre-test and the main experiment 

ranged between 175 and 600 words per minute (wpm). 

The average adjusted reading speed was 308 wpm (SD = 

130 wpm). 

The two-way repeated measures ANOVA performed on 

ratings from the RTLX questionnaire from the eight 

participants revealed significance for the main factor text 

difficulty, F (1,7) = 8.75, p = .021. Difficult texts (M = 

68.4, SD = 26.2) received higher ratings than easy texts 

(M = 59.1, SD = 18.4). Results for the main factor 

presentation speed were significant as well, F (1,7) = 

11.10, p = .012. Texts presented at the normal (M = 56.4, 

SD = 17.3) self-adjusted reading speed received lower 

RTLX ratings than texts presented with a speed increase 

of 40 percent (M = 71.1, SD = 25.7). The interaction 

effect was not significant, F (1,7) = 1.22, p = .306. 

The ANOVA performed on correct answers given to 

literal text comprehension questions revealed neither 

significant main effects, nor an interaction effect of 

significance, all ps > .258. On average participants 

answered 6.2 (SD = .48) questions out of nine per text 

block correctly. An average of 6.9 (SD = 1.96) correct 

answers was given for easy texts and 6.0 (SD = 1.31) for 

difficult texts presented at normal speed. For texts blocks 

with an increased presentation speed, questions on easy 

texts were answered 5.8 (SD = 1.28) times correctly and 

difficult texts 6.25 (SD = 1.67) times. 

The average cross validation error rate was 23.7 percent 

(SD = 6.7 percent). See Table 1 for individual 

classification errors. 

 

Table 1: Classification results of the workload paradigm. 

Obtained error rates (ER) in percent and standard 

deviations (SD) are reported. 

participant ER (SD) 

1 14.1 (3.2) 

2 28.5 (14.7) 

3 14.8 (4.9) 

4 14.5 (2.5) 

5 44.3 (7.8) 

6 18.9 (4.1) 

8  8.3 (1.5) 

average 20.5 (5.5) 

 

Almost all performed permutation tests were highly 

significant (all ps < .0001). Only for the test of 

predictions in easy texts which were presented fast 

against predictions from difficult texts presented at 

normal speed, results were not significant (p = .961). It 

must be noted though that absolute values of observed 

differences between classes (M = -.077, SD = .032) were 

smaller in all tests than variances within classes (M = 

.086, SD = .008). Effect sizes therefore were small to 

medium (M = .266, SD = .116). 

For linear regressions, no significant equations were 

found for average word predictions in sentences with 

different length. Analysis results were neither significant 

for data from all participants taken together (all ps > .632) 

nor on subject level (all ps > .072). 

No significant regression equation was found when data 

of all seven participants was collapsed for analysis 

performed on predictions for word positions within a 

sentence, all ps > .053. On single subject level, four 

regression analyses were significant. Half of the slopes 

for significant equations were negative while the other 

was positive, ranging between -.003 and .006.  

 

DISCUSSION 

 

Individually adjusted text presentation rates showed a 

strong variation and an average of 308 wpm. The strong 

individual variation in adjusted speeds might be caused 

by differences in preference for the RSVP reading 

method, as some participants may have felt unconfident 

with the new reading technique, while others felt more 

comfortable using it. Such strong variations in preference 

with speed reading applications were shown before [24]. 

The average adjusted speed of 308 wpm lies above the 

average speed for traditional reading, which lies between 

250 and 300 wpm [25]. This effect of faster reading with 

speed reading applications is found in most literature on 

speed reading applications. Results from the RTLX 

revealed that perceived load was higher for difficult texts 

than for easy texts. Cognitive load was also higher for 
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texts presented with an increased reading speed than 

when presented at an individually adjusted speed. Since 

no differences in literal comprehension emerged between 

different text difficulties and presentation speeds, it can 

be concluded that an increased presentation speed did not 

lead to less comprehension. On average two thirds of 

questions within one text block were answered correctly. 

It could have been possible that too high reading speeds 

would lead to an overextension of participants who 

become less attentive to understanding the text as a 

consequence. However, this was not the case and results 

from literal comprehension questions indicate that 

participants read all variations of texts attentively at 

similar levels of literal comprehension. 

pBCI classification for cross validation on data from the 

workload paradigm was on average around 20% and 

hence acceptable. Permutation tests performed on 

predictions made by the predictive model showed that 

difficult texts had significantly higher predictive values 

than easy texts. Moreover, predictions for texts presented 

with an increase of 40 percent in reading speed had 

significantly higher values than texts shown at the 

individually adjusted speed. However, effect sizes for all 

tests were very small, as prediction variances within text 

and speed groups were higher than the observed 

differences between groups in the permutation tests. The 

results obtained from permutation tests of predictive 

suggest that that the cognitive load classifier could be 

used to distinguish overall difficulty differences between 

longer passages of texts. This applies for difficulty 

changes induced by presentation speed and text 

readability level. 

It was assumed that averaged prediction values of words 

within a sentence would increase with a rise of sentence 

length due to rising structural complexity of word 

relations. In regression analysis, no significant equations 

were found. The results suggest that classifiers trained on 

the cognitive load paradigm are not suitable to reflect 

possible effects of higher structural complexity in longer 

sentences. Predictions from the predictive models 

therefore cannot be used as an estimate of single sentence 

difficulty. 

Regarding the position of a word within a sentence it was 

assumed that words appearing later in a sentence would 

receive higher predictive values. Regression analysis of 

predictions was only significant on single subject level. 

Several significant equations were found, but half of the 

slopes were positive while the others were negative. 

These ambiguous results indicate that predictions derived 

from the predictive models trained in this study are not 

suitable as predictors for single word difficulty based on 

the complexity of relations the word stands in. 

Altogether results showed that the trained BCI models 

were not applicable for measuring single word or 

sentence difficulty within texts. Only when all 

predictions for whole texts are regarded together, the 

predicted values can be used to distinguish between 

levels of readability and reading speed. RTLX had shown 

that perceived workload was higher for difficult texts as 

well as for reading at increased presentation rates. 

Results suggest that predictions made for broader text 

passages contain and reflect this information. For much 

shorter passages, like single sentences or even single 

words, immediate changes seem to be absent or are not 

detectable by the model employed in this study. 

 

CONCLUSION 

 

Broader changes of activity in frequency bands employed 

in the workload classifier were found to correspond to 

differences in text readability and presentation speed. 

Such changes are detectable when single word 

predictions made for larger text passages are examined 

together. These results add text readability and 

presentation speed in RSVP reading to the domains 

where the task-independent workload classifier can 

distinguish between levels of cognitive load. 

Complex texts also contain many easy words which may 

prevent classification on sentence or word level, as long 

as linguistic information about word difficulty is not 

accessible for integration to the classifier. The results 

suggest though that the effects on cognitive load are 

highly responsive and that the employed predictive 

model is sensitive enough to detect these changes. 

For future research the robustness and potential for 

application of the classifier to full texts should be 

examined further. The predictive model should be 

applied to a larger variety of text material of different 

readability level and text length. The predictive model 

trained in this study could already be used as an estimate 

for user modelling in educational practice, e.g., in online 

tutoring systems, to choose appropriate texts as learning 

material matching the learner’s individual readability 

level. In speed reading it could also be used to modify the 

presentation speed after a sufficient amount of text has 

been read. The presentation speed could then be de- or 

increased according to classifier output. 

To obtain more fine-tuned information about difficulty 

levels of single sentences or texts, other measures than 

investigated in this study need to be found. A 

neuroadaptive system capable of detecting levels of text 

readability in real time on a word by word basis could 

perform text simplification [26]. It would be able to 

individually adapt to its user to improve reading 

comprehension, which could be well applied in future 

learning scenarios. Speed reading applications are seen 

as especially suitable for reading short texts on mobile 

devices with small screens [27]. Oblinger and Oblinger 

[28] describe the so-called net generation, who grew up 

using mobile devices, are used to instant information 

access and not reading large amounts of text. Moreover, 

mobile computer-supported collaborative learning is 

regarded as a promising approach to support and 

facilitate learning interactions between students [29]. 

Neuroadaptive features on the side of technology and 

devices would be a further enrichment to such 

approaches to future learning. 
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ABSTRACT: Although extensively studied for decades, 

attention system remains an interesting challenge in 

neuroscience field. The Attention Network Task (ANT) 

has been developed to provide a measure of the 

efficiency for the three attention components identified 

in the Posner’s theoretical model: alerting, orienting and 

executive control. Here we propose a study on 15 healthy 

subjects who performed the ANT. We combined 

advanced methods for connectivity estimation on 

electroencephalographic (EEG) signals and graph theory 

with the aim to identify neuro-physiological indices 

describing the most important features of the three 

networks correlated with behavioral performances. Our 

results provided a set of band-specific connectivity 

indices able to follow the behavioral task performances 

among subjects for each attention component as defined 

in the ANT paradigm. Extracted EEG-based indices 

could be employed in future clinical applications to 

support the behavioral assessment or to evaluate the 

influence of specific attention deficits on Brain Computer 

Interface (BCI) performance and/or the effects of BCI 

training in cognitive rehabilitation applications.  

 

INTRODUCTION 

Attention is fundamental for human cognitive 

processing. As such, it includes a wide class of processes 

related with the ability of a subject to interact with the 

external environment. According to Posner’s theoretical 

model [1], this is possible through a sustained state of 

alertness (alerting), the selection of the important 

information in a noisy context (orienting) and the ability 

to control a situation and solve conflicts (executive 

control). When the complex mechanism at the basis of 

attention is altered, e.g. following a stroke event, 

consequences may affect a wide range of behavioural and 

social aspects. Several neuroimaging and 

neurophysiological studies have employed the so-called 

Attention Network Task (ANT), a behavioural task 

which allows to disentangle the three components 

(alerting, orienting and executive control) as described 

by Fan et al. in [2]. The available evidences indicate that 

the three attention components are independent [3], 

involve different anatomical areas (functional magnetic 

resonance imaging, fMRI, studies) [4] and each of them 

has a distinct oscillatory activity and time course (EEG 

study) [5].  

   

In this study, we applied modern methodologies for 

effective connectivity estimation and graph theory 

approaches with the aim to define stable and reliable 

descriptors of the dynamic brain circuits underpinning 

the attentional components in terms of directed 

relationships between the brain areas and their frequency 

content. Currently available brain connectivity studies on 

attention are based on structural networks (anatomical 

connectivity) [6] or functional networks extracted from 

fMRI data [7]. We were interested in extracting markers 

of the brain circuits elicited by the ANT performed by 

healthy volunteers while recording high density EEG 

(hdEEG) and thus, exploiting its high temporal 

resolution, low invasiveness and cost-effective. To this 

purpose we explore whether connectivity-based indices 

would correlate with behavioural data in order to 

strengthen their relevance as measure of attention 

processing for future applications. [8], [9]. 

 

MATERIALS AND METHODS 

Experimental Design: Data (60  EEG channels + 4 EOG 

channels, reference at linked mastoids and ground at Fpz, 

Brain Products) were recorded from 15 healthy 

volunteers (10 female, age 27.2 ± 2.5) during the 

execution of the ANT [5] (Fig.1). They had no history of 

neurological or psychiatric disorders. The experimental 

protocol was approved by the local Ethical Committee. 

Participants were seated in front of a computer screen; a 

row of 5 black arrows pointing left or right was presented 

in the middle part of the screen. Subjects were asked to 

indicate the direction of the central arrow (target 

stimulus) as quickly and accurately as possible with the 

left arrow keyboard or the right arrow keyboard button 

according to the direction of the target, using their right 

hand. Trials were defined as Congruent if the 4 lateral 

flankers and the central arrow had the same direction, 

Incongruent if the flankers pointed at the opposite 

direction. In addition there were three cue (an asterisk 

sign) conditions: No cue, Center cue (in the center of the 

screen for alerting), and Spatial cue (at the target 

location, above or below a fixation cross, for alerting plus 

orienting) [3]. The timeline of the paradigm is showed in 

Fig.1. The contrast between the different experimental 

conditions (72 trials each condition) allowed to extract 

the three attention components: i) Center cue and No cue 

conditions define the alerting, ii) Spatial cue and Center 
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cue the orienting, iii) Incongruent and Congruent the 

executive control.  

 

Figure 1: Timeline of the ANT paradigm. In each trial, a 

cue (asterisk) may appear for 200 ms in the center of the 

screen (center cue condition) or in the semi-space in which 

the target will appear (spatial cue). After a variable 

duration (300–1450ms), the target and the flankers 

(congruent or incongruent) are presented. The participant 

indicate the direction of the central arrow  within a time 

window of 2000 ms. The target and flankers disappear 

after the response is made. 

 

Behavioral Data: As behavioral index for each attention 

component we used the efficiency measure introduced in 

[2]. Alerting efficiency (EffAl), orienting efficiency 

(EffOr) and executive control efficiency (EffEC) are 

defined as the difference between the mean reaction 

times (RT) in specific experimental conditions:  

 

CenterNoAl RTRTEff   (1) 

SpatialCenterOr RTRTEff   (2) 

CongIncongEC RTRTEff   (3) 

 

EEG Data Analysis and Connectivity Estimation: EEG 

scalp data were band-pass filtered in the range [1-45] Hz 

and ocular artifacts were removed through Independent 

Component Analysis (fast-ICA algorithm). EOG 

channels were also included in the ICA decomposition. 

Signals were segmented in different time windows 

defined as [0 - 500] ms according to the cue onset and [0-

400] ms according to the target onset. Residual artifacts 

were removed by means of a semi-automatic procedure 

based on a threshold criterion (±80 µV). Connectivity 

patterns were estimated through Partial Directed 

Coherence (PDC) [10] and averaged in four frequency 

bands (Theta, Alpha, Beta and Gamma) defined 

according to the Individual Alpha Frequency (IAF) [11]. 

We obtained a network for each frequency band, each 

experimental condition and each subject. A statistical 

comparison (unpaired t-test, p<0.05, False Discovery 

Rate, FDR, correction) was performed between 

appropriate conditions (according to ANT theory) in 

order to isolate the networks associated with each of the 

three attention components. In particular, we compared: 

i) center cue vs no cue for alerting, ii) spatial cue vs 

center cue for orienting and iii) congruent vs incongruent 

for executive control. Graph theory indices were 

extracted from the networks underlying the three 

attention components with the aim to synthetize their 

main global and local properties. In this study, we 

adopted the following indices: 

Global Indices to describe the general properties of the 

entire network [12]: 

• Clustering: to measure the tendency of the network 

to segregate the information in subnetworks; 

• Path Length: to measure efficiency of the 

communication between the nodes on the basis of 

the shortest paths between them. 

Local Indices: to quantify the involvement of a specific 

sub-network and/or investigating the relation between 

different sub-networks. In particular as sub-networks we 

considered left (Fp1, AF7, AF3, F7, F5, F3, F1, FT7, 

FC5, FC3, FC1, T7, C5, C3, C1, TP7, CP5, CP3, CP1, 

P7, P5, P3, P1, PO7, PO3, O1) and right (Fp2, AF4, AF8, 

F2, F4, F6, F8, FC2, FC4, FC6, FT8, C2, C4, C6, T8, 

CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, O2) 

hemispheres, anterior (Fp1, Fp2, AF7, AF3, AFz, AF4, 

AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, 

FC1, FCz, FC2, FC4, FC6, FT8) and posterior (TP7, 

CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, 

P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, 

Oz, O2) areas [13]. We computed the following indices: 

• Density: to quantify the percentage of existing 

connections with respect to the totality of possible 

links. It has been adapted as in the following 

formula to quantify the percentage of connections 

relative to a specific area: 

𝑠𝑢𝑏 − 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑛𝑠𝑢𝑏𝑛𝑒𝑡

𝑛𝑇𝑂𝑇

  

Where 𝑛𝑠𝑢𝑏𝑛𝑒𝑡 is the number of existing links 

connecting only the nodes (electrodes) belonging to 

the considered subnetwork and 𝑛𝑇𝑂𝑇 is the number 

of all the existing connection of the entire circuit. 

• Divisibility - Modularity: to measure the level of 

interaction between subnetworks in terms of inter 
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(divisibility) and intra (modularity) connections: 

strict interconnection or isolation [14].  

• Influence: to measure a prevalence in the direction 

of inter-connections linking two spatial regions 

[13].  

Connectivity indices extracted for each attention 

component were then correlated with the relative 

behavioral parameters (EffAl, EffOr, EffEC) by means of 

Pearson’s correlation (p<0.05). FDR correction was 

applied to take into account errors due to multiple 

correlations. 

 

RESULTS 

Results are reported separately for each component of the 

ANT paradigm.  

 

Alerting: as shown in Figure 2, we found significant 

negative correlations between the efficiency EffAl and i) 

the path length index in beta band (Fig. 2, panel a) and ii) 

the left/right influence index in theta band (Fig. 2, panel 

b). Such correlations pointed out a relation between the 

behavioral performances and the speed in the exchange 

of information between network nodes in the alerting 

phase (low path length) in beta band. Moreover, an 

efficient alerting is associated to a communication 

between the two hemispheres in theta band with a 

prevalence of the information flows directed from right 

to left (negative values for left/right influence). 

 
Figure 2. Alerting: statistical correlations between the 

efficiency EffAl (y-axis) and the connectivity indices (x-

axis): path length in beta band (panel a) and left/right 

influence in theta band (panel b). As in all figures, dots 

correspond to the values obtained for each of the 15 

subjects involved in the study. The green line represents the 

linear fitting computed on the data. The associated values 

of correlation (R) and significance (p) are reported on the 

top of the figure.  
 

Orienting: as shown in Figure 3, a positive correlation 

was found between the efficiency EffOr and i) the right 

density (Fig. 3, panel a) and ii) the left/right divisibility 

(Fig.3, panel b) in the theta band.  

 

 

Figure 3. Orienting: statistical correlations between the 

efficiency EffOr (y-axis) and the connectivity indices (x-axis) 

right density (panel a) and Left/Right Divisibility (panel b) in 

theta band, posterior density (panel c) and Anterior/Posterior 

Influence (panel d) in gamma band.  

 

 

In particular, such results pointed out how an efficient 

orienting process is associated to a strong segregation of 

the information flows within the right hemispheres (high 

right density) and a low integration of the two 

hemispheres (high left/right divisibility) in theta band.  

Furthermore, we found that the parameter EffOr 

negatively correlated with the posterior density index 

(Fig.3, panel c) and the anterior/posterior influence index 

(Fig.3, panel d) in the gamma band.  

This indicates that an efficient orienting process is 

associated to a low involvement of the posterior scalp 

regions (low posterior density) and to the establishment 

of a communication between anterior and posterior 

regions with a prevalent direction from posterior to 

anterior.  

 

Executive Control: Figure 4 shows a significant positive 

correlation between executive control efficiency EffEC 

and both the Path Length (Fig.4, panel a) and the 

Clustering indices (Fig.4, panel b) in the gamma band. 

Significant correlations were also found between 

efficiency EffEC and left/right divisibility (Fig.4, panel c), 

left/right modularity (data not shown; R=0.53, p=0.05) 

and left/right influence indices (Fig.4, panel d) in the 

alpha band. In particular such results indicated how a 

reduction in the time required for solving the conflict 

(low EffEC) is associated to a high communication speed 

between the electrodes (low path length) and to a less 

tendency of the network to create clusters (low 

clustering). Moreover, an efficient (i.e. correlated with 

high behavioural performance) executive control is 

explained by a high integration of the two hemispheres 

(low left/right divisibility) with information flows 

directed from right to left (negative values of left/right 

influence). 
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Figure 4. Executive control: statistical correlations 

between the efficiency EffEC (y-axis) and the connectivity 

indices (x-axis) -Path Length (panel a) and Clustering 

(panel b) in gamma band -Left/Right Divisibility (panel c) 

and Left/Right Influence (panel d) in alpha band. 

 

DISCUSSION 

In the present study, we used advanced techniques for 

EEG signals processing to extract the cortical 

connectivity patterns (causal relationship between scalp 

areas) associated with the 3 attention components as 

elicited by the ANT paradigm (i.e. alerting, orienting and 

executive control) performed by healthy subjects. Some 

indices, derived from the graph theory, allowed the 

quantitative description of the relevant local and global 

properties of the 3 different causal connectivity  networks 

in specific EEG frequency bands as they correlated with 

the behavioural performance (i.e. correlated with EffAl, 

EffOr, EffEC). According to our findings, the estimated 

alerting network was described mainly by a negative 

relationship between the behavioral efficiency (EffAl) and 

Path Length index in the beta band, (ie, the higher 

efficiency the shorter Path Length) and the left/right 

Influence index in the theta band (ie, the higher efficiency 

the higher interhemispheric connection from right-to-

left; negative values for left-right influence index). 

The phasic alerting improves the speed of target response 

by changing the internal state of preparation for 

perceiving a (visual) stimulus [5]. Our results indicate 

that an efficient alerting function (higher speed to target 

response) is associated with a global network 

organization characterized by a shorter average Path 

Length which corresponds to a high efficiency 

information transfer [15]. As yet, the entire network 

appears to be characterized by a prevalent exchange of 

information directed from right to left hemisphere. Such 

prevalence might reflect the role of the right hemisphere 

to sustain alertness that was already stressed in previous 

studies in which  lesions of the right frontal and parietal 

areas were associated to reduced ability in maintaining 

the alert state [16]. The above discussed index 

modulation occurred in beta and theta band, respectively. 

This finding is in line with previous EEG evidence of a 

relationship between these frequency oscillations and the 

alerting function [5].  

The efficiency of the orienting function was in our study, 

described by a set of network indices which correlated 

with behavioral performance (EffOr). First, we found that 

the higher performance efficiency the higher right 

Density and left-right Divisibility in the theta band. In 

addition, higher orienting efficiency also correlated to 

both lower posterior Density and anterior/posterior 

Influence (prevalence for post-to-ant) in the gamma 

oscillations. Together, these results indicate a prevalent 

role of the right hemisphere versus the left (higher 

connectivity density) and poor communication between 

hemispheres (higher divisibility). About the frontal and 

parietal areas, results indicate a prevalence of 

connections from posterior to anterior areas (higher 

anterior/posterior influence and lower posterior density). 

This is in line with previous evidence of the (right) 

parietal and frontal areas involved in orienting function 

which enables for the selection of specific information 

from a number of sensory inputs [3],[16][4]. The above 

discussed index modulation occurred in the theta and 

gamma frequency oscillations that may be in line with 

the evidence in favour of the contribution of the theta 

oscillation to long-range communications for cognitive 

processing by phase-locking to high gamma power 

(Fries, 2015).   

Finally, an efficient conflict resolution (ie, executive 

control) was described mainly by a positive relationship 

between the behavioral efficiency (EffEC) and both the 

Clustering and Path Length indices in the gamma band, 

(ie, the lower time to solve the conflict (low EffEC) the 

lower tendency to clustering and shorter Path Length) 

and both the left/right Divisibility and Influence indices 

in the alpha band (i.e., the higher efficiency the higher 

interhemispheric connection with a prevalent right-to-left 

direction flow; negative values for left-right influence 

index). Altogether these results reflect the highly 

integrative nature of the conflict processing which 

requires more integration than segregation of information 

flow which are originated from several partially 

overlapping networks [18]. 

Future studies conducted at cortical and subcortical level 

(i.e. using source localization techniques like sLoreta 

[19]) should clarify the effective brain networks 

properties and their relationship with the currently 

available knowledge on anatomical and functional 

connectivity of attention networks. Such further step 

mightvalidate the proposed indices as neuro-

physiological correlates of attention components for 

future applications.  

 

CONCLUSION 

 

Advanced EEG signals elaboration based on time-

varying connectivity estimation and graph theory were 

applied to extract direct and weighted connectivity 

patterns elicited by the ANT paradigm at scalp level.  

Correlation results pointed out a set of EEG-based 

indices able to synthetically describe each of the three 
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attention components in the different frequency bands 

and to follow the variations in the corresponding 

behavioural measures. Such preliminary results could be 

used in the near future to: i) support the 

neuropsychological assessment in healthy subject and 

people with attention impairments; ii) clarify the role of 

specific attention components in BCI contexts (P300- 

and SMR-based BCI) and eventually improve the design 

of BCIs targeting attention rehabilitation; iii) increase the 

knowledge on attention brain networks elicited by the 

ANT paradigm. Altogether, our findings at the scalp 

level might have a strong impact on several clinical/non 

clinical applications related to the BCI field. 
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ABSTRACT: Steady-state visual evoked potentials
(SSVEP) are electrical brain responses that oscillate at
the same frequency, or harmonics, of rapid repetitive vi-
sual stimulation (RVS). SSVEP are widely used in prac-
tice, however, the exposure to RVS is associated with dis-
comfort and safety risks. Those negative effects can be
overcome by understanding how properties of the stim-
ulation, such as frequency and modulation depth (MD)
affect the SSVEP.
In order to explore whether SSVEP can be elicited by
barely perceptible RVS and potentially safer stimulation,
we used MDs around the visual perception thresholds
(VPT), the lowest threshold at which people perceive
RVS. SSVEP were detected only for frequencies higher
than 19 Hz with MDs close to the VPT. In addition, an
increase in MD was associated with an increase in the
amplitude of SSVEP. These findings can help designing
a quasi-imperceptible stimulation able to elicit SSVEP,
reducing the discomfort associated to with the RVS.

INTRODUCTION

Steady-state visual evoked potentials (SSVEP) are elec-
trical brain responses associated with the stimulation of
the retina by rapid repetitive visual stimulation (RVS),
also known as flicker [1]. SSVEP are oscillatory re-
sponses at the same frequency, or harmonics, as that of
the driving stimulation [2]. SSVEP have a very stable
amplitude and phase over time and are most prominent
over parieto-occipital cortical areas [3]. SSVEP have a
high signal to noise ratio [4] and are not very susceptible
to artifacts and noise contamination [5, 6].
SSVEP are largely used in research and practical applica-
tions. In cognitive neuroscience, they are used to estimate
the propagation of brain activity during a cognitive task
[7]. In clinical settings, SSVEP are used as a diagnostic
tool to study pathological brain dynamics [8]. However,
the main application of SSVEP is in brain-computer in-
terfaces (BCI). SSVEP are used to establish a direct com-
munication between a brain and a computer without the
need of muscular intervention [9] by identifying the fre-
quency of the RVS [10] in the EEG recorded from a par-
ticipant scalp.
One of the main disadvantages of SSVEP is the discom-

fort and safety issues associated with the prolonged expo-
sure to RVS. Epileptic seizures [11] and migraines [12]
are examples of side effects associated to continuous ex-
posure to flickering light. Among various characteristics
of the RVS, people are very sensitive to its frequency and
modulation depth (MD). MD is a measure of light con-
trast that quantifies the relation between the spread and
sum of two luminances during periodic oscillations [13].
For a time-varying luminance, MD is an indication of the
ratio between the average light level and the amount of
change in the light. The equation to calculate MD can be
found below:

MD =
Lmax − Lmin

Lmax + Lmin
∗ 100 (1)

where:

MD = modulation depth

Lmax = maximum luminance

Lmin = minimum luminance

The relationship between MD, frequency and visual per-
ception of RVS has been described by the contrast sensi-
tivity curve (CSC) [14]. The curve defines the visual per-
ception thresholds (VPT): the lowest MD for a particular
frequency at which people perceive RVS as discontinu-
ous for at least 50% of the attempts. In recent years an
updated version of the CSC, using the entire visual field
and controlling for adaptation was created [13] (Fig. 1).

Contrary to the vast volume of research on visual per-
ception there is little known about the effect of the fre-
quency and MD of the stimulation on SSVEP. There is
not a CSC describing the lowest MD necessary to elicit
SSVEP at different frequencies. If there is a relationship
between frequency, MD and SSVEP strength as in visual
perception research, the MD of the RVS can be adjusted
at different frequencies to reduce discomfort.
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Figure 1: Contrast sensitivity curve (CSC) [13], and the
experimental conditions in the current study.

To our knowledge, there are only two studies that have
investigated the effect of frequency and MD on SSVEP
[15, 16]. One study used RVS with frequencies from 8
to 48 Hz at MDs relative to the VPT described by the
first version of the CSC [14]. They found SSVEP for
frequencies higher than 24 Hz and MDs below the VPT
[15]. In another study, five frequencies from 6 to 60 Hz at
five absolute MDs from 0.002 to 0.026 were used. They
found SSVEP only for the frequencies 24 and 32 Hz at
MD starting at 0.008 and for 40 Hz at MD starting at
0.002 [16].
In this study, we aim to investigate the effect of frequency
and MD on the SSVEP response and to find the lowest
MDs necessary to elicit SSVEP for frequencies in the
range of the CSC (1 to 70 Hz). For this purpose we em-
ployed the full field CSC described in [13] (see also Fig.
1). Furthermore, to get a better resolution, we expanded
the sampling area around the VPT, compared to the previ-
ous two studies, and included conditions (i.e. frequency-
MD pairs) that were not tested earlier.

MATERIALS AND METHODS

Participants: Twenty-four healthy volunteers with
normal or corrected to normal vision were included in
the study: 17 males and 7 females (mean age = 26.4; SD
= 6.0). Participants were recruited among the Philips em-
ployee population at High Tech Campus, Eindhoven. Be-
fore the study, participants signed a written consent let-
ter. The research protocol was approved by the Philips
Research Ethics committee board.

Experimental task: The flicker perception task con-
sisted of 300 trials. A trial started with 3 seconds of
continuous light, followed by a beep, and 3 seconds of
RVS, followed by 2 beeps, and another period of contin-
uous light that continued until the participant provided a
response (Fig. 2). Participants were instructed to look
with their eyes open at a fixation cross in the middle of a
white wall in front of them, where the light was projected
(Fig. 3). They were asked to indicate whether or not they
perceive flicker by pressing a “yes” and “no” button on a
number pad.
The trials were presented randomly in three blocks of
100 trials. Each block lasted approximately 14 minutes

and was followed by a break of a variable duration (3-10
minutes). A full session had a duration of approximately
one hour and fifteen minutes. The EEG was continuously
recorded while the participants performed the task.

Figure 2: Structure of a trial in the flicker perception task.
Note. RVS = Repetitive visual stimulation.

Stimuli: The RVS consisted of 30 distinct square
waveforms (6 frequency x 5 MDs) that were repeated 10
times each. These conditions were created from the com-
bination of 6 frequencies - 7, 13, 19, 37, 48 and 60 Hz -
and 5 MDs selected as a proportion of the corresponding
VPT of each frequency - 0.6x, 0.8x, 1.0x, 1.2x, and 1.4x.
The experimental conditions are visualized in Figure 1.
The light stimulation was delivered via two LEDs panels
with a size of 57.5 cm x 57.5 cm suspended at a height
of 2.5 m. The light stimulation was reflected on a white
wall covering and area of approximately 210 cm x 360
cm (vertically x horizontally). Participants were seated at
a distance of 70 cm with a visual angle of 137◦. The av-
erage light luminance level was 1000 Lux and the color
temperature was 4000 K.

Data acquisition: EEG data was recorded from 32
scalp sites using an elastic cap and a BioSemiTM Ac-
tiveTwo signal acquisition system. Common Mode Sense
Active and Driven Right Leg passive electrodes were
used as ground and reference electrodes respectively.
Offset values were maintained below 20 kΩ, and the
sampling rate was at 2048 Hz. The onset of RVS was
recorded using a photodiode placed at a distance of ap-
proximately 70 cm to the wall. The photodiode recorded
the variations of the light reflected on the wall, and those
variations were used to identify the start and the end of
the trials in the EEG.

Data pre-processing: EEG signals were notch filtered
at power-line frequency (50Hz) and then re-sampled at
256 Hz. Then, the signals were high-pass filtered at 2
Hz and blinks were removed by Independent Component
Analysis [17]. After that, signals were re-referenced to a

Figure 3: The experimental setup. The picture depicts a
participant wearing and EEG cap and the LED panels.
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common average reference excluding T7 and T8 chan-
nels. Finally, the data was separated into non-overlapping
epochs of 3 seconds, starting at stimulus onset (during
stimulation epochs) and 3 seconds before stimulus on-
set (before stimulation epochs, baseline). The procedures
were conducted using EEGLAB [18] and custom-made
MATLAB scripts.

RESULTS

Behavioral responses: We calculated the rates at
which people perceive RVS as discontinuous by averag-
ing across all participants the number of “yes” responses
per condition. We sought the lowest MDs at which partic-
ipants perceive RVS as discontinuous in at least 50 per-
cent of the conditions. The perception rate of 0.5 was
reached in for frequencies 7 Hz and 60 Hz at MD 0.8x
VPT and for frequencies 37 Hz and 48 Hz at MD 0.6x
VPT. The 0.5 perception rate was not reached for fre-
quencies 13 and 19 Hz. All the conditions had an increase
in perception rates with an increase of MD.

SSVEP analysis: Power spectral density (PSD) of the
EEG signal was estimated to measure the strength of the
SSVEP. PSD is a measure of the power of a signal in
the frequency domain and it was obtained by the use of
fast Fourier transform (FFT). The FFT was applied on
segments of the length of 256 samples (1 second) and
an overlap of 128 samples (0.5 seconds) separately for
epochs before and during stimulation (see Fig. 4). Char-
acteristic peaks during stimulation at the frequency of
stimulation were observed at 37, 48 and 60 Hz starting
from MD 0.6x VPT, and were higher for higher MDs.
Furthermore, during stimulation there was a decrease in
power around the alpha frequency band (8-12 Hz) com-
pared with the baseline.

Figure 4: Power spectrum density for a condition (60 Hz
and MD 1.4x VPT) at channel Pz.

To get a more objective estimation of the power change
due to the RVS, PSD during stimulation was compared
with PSD in the absence of flicker, before stimulus on-
set. To do so for each stimulation epoch we calculated
a Zscore by subtracting the log PSD mean over all base-
line epochs and dividing by the baseline log PSD standard
deviation as shown in Equation 2. Positive Zscores are an
indication of higher power during stimulation, and they
were observed for frequencies 37, 48 and 60 Hz for MDs

even below 1.0x VPT (Fig. 5). Overall, Zscores were
larger for higher frequencies and for higher MDs.

Zscore =
x− µ
σ

(2)

where:

x = log PSD during a stimulation epoch

µ = log PSD mean baseline

σ = log PSD standard deviation baseline

Figure 5: Zscores for a condition (37 Hz and MD 1.2x
VPT) at channel Pz.

Figure 6: Spatial distribution of Zscores for all the con-
ditions. The color bar located at the left represents the
Zscores.

The spatial representation of the Zscores can be observed
in the topographic maps of the scalp in Fig. 6. The higher
scores were observed in parietal (Pz) and occipital (O1,
Oz, and O2) channels. The scores were higher for the
higher frequencies and MDs. Frontal and temporal sites
did not show significant changes associated with an in-
crease of frequency or MD. Channel Pz displayed very
consistent results across the different conditions and anal-
yses, and we selected it for results visualization.
To better estimate the thresholds at which we can distin-
guish an SSVEP response from the absence of such with
sufficient confidence, we selected the Zscores defined by
an equal probability of type I and type II errors (equal
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error rate, EER). The EER finds the point at which the
probability of both types error is equal. The lower the
EER the higher the accuracy of the measurement. The
three lower frequencies 7, 13 and 19 Hz have EERs at
chance level. An increase in MD was not associated with
either an increase or decrease in the EER values for all
the frequencies (Fig. 7).

Figure 7: EER distribution at channel Pz. The box edges
are the 25th and 75th percentiles. Outliers are plotted by
small blue circles. Modulation depths are relative to the
VPT (e.g. 0.6x VPT).

Zscores and EER values were combined into a new metric
ZEER: Zscores at the EER. ZEER measure the strength
of SSVEP, a weak SSVEP response reflected on a low
Zscores can be boosted by the EER in case the distribu-
tion of the samples before and during stimulation has a
small overlap. On the contrary, a strong SSVEP response
based on a high Zscore can be reduced if there is a big
overlap in the distributions before and during stimulation.
The ZEER were computed according to the Eq. 3.

if EER ≥ 0.5 or Z ≤ 0

then ZEER = 0
(3)

if EER ≤ 0.5 or Z ≥ 0

then ZEER = Z ∗ (1–EER)

where:

EER = Equal Error Rate

Z = Zscore

ZEER = Zscore at the EER

Sensitivity curves estimation for SSVEP: We used two
methods to create estimations of CSC for SSVEP, a curve
containing the lowest MDs necessary to elicit SSVEP.
The absolute modulation depth method (AMD) finds the
lowest MD for which the ZEER is greater than zero in at
least 50% of the trials . ZEER values greater than zero in
at least 50 percent of the trials for a condition are an in-
dication that SSVEP responses were elicited for that con-
dition (see Table 1). These thresholds were found for fre-
quencies 37, 48 and 60 Hz for MDs starting at 0.6x the

VPT, and for frequency 13 Hz for MD starting at 1.0x
VPT.

Table 1: Percentage (%) of ZEER scores with values
greater than 0 at Pz channel.

Frequency
MD 7 13 19 37 48 60
0.6 37 35 36 42 48 50
0.8 33 33 38 57 52 54
1.0 45 41 37 48 51 54
1.2 37 32 31 56 55 56
1.4 36 40 37 53 53 58

Note. Gray cells indicate the lowest MD at which ZEER scores
were greater than 0 in at least 50 percent of the trials.

The psychometric method (PM) makes use of a psycho-
metric function. This method models the observed data,
ZEER values, with a non-linear square regression model
to estimate the coefficients of the nonlinear regression
function and with that estimate the exact MD at which
the SSVEP could be elicited in at least 50% of the condi-
tions.

L(x;α, β) =
1

1 + e
α−x
β

(4)

where:

definition range: x ∈ (−∞,+∞)

parameter set: θ = (α, β)

with:

α ∈ (−∞,+∞): position parameter

β > 0 : spread parameter

AMD and PM curves together with the CSC from litera-
ture [13] can be observed in Fig. 8. Both SSVEP sen-
sitivity curves had a similar shape and MD thresholds
lower than the CSC. The MD thresholds estimated by the
Psychometric method were lower than the AMD method.
Furthermore, contrary to the AMD method, PM allows
us to estimate the MD thresholds even for lower frequen-
cies, e.g. 7 and 13 Hz. Those values appeared way above
the MDs around the CSC. Based on our data, we could
not estimate a threshold for frequency 19 Hz.

DISCUSSION

SSVEP were elicited for the highest frequencies (37, 48,
and 60 Hz) for MDs below the VPT, e.g. 0.8x VPT. Con-
sistent with visual perception research, we found out that
the relationship between frequency and MD involves an
increase in MD with an increase in frequency: higher
MDs are required for SSVEP detection at higher frequen-
cies. For instance, the lowest MD that elicited SSVEP at
60 Hz is more than double the lowest MD that elicited
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SSVEP at 48 Hz. In addition, the estimated contrast sen-
sitivity curve for SSVEP has a similar shape to the CSC.
Both curves show an increase of MD with an increase in
frequency and this increase is particularly large for fre-
quencies greater than 40 Hz.
SSVEP were not found for the three lowest frequencies
at any MD. According to the PM, the MD thresholds for
low frequencies lie much higher than the CSC. For in-
stance, the estimated MD threshold at 7 Hz is around ten
times higher than the VPT. This might be because at these
frequencies the MDs covered by our choice of conditions
were in general very low. This range also falls very close
to the alpha band, which is known to desynchronize dur-
ing visual processing [19].
The behavioral responses in our study were aligned with
with existing research. The MD at which participants
were able to perceive the flicker were around the CSC
[13], and an increase in MD was associated with a higher
perception rate. This suggests that our task was appropri-
ate to evaluate perception of RVS.

Figure 8: Contrast sensitivity curve (CSC)[13] and the
SSVEP-AMD and SSVEP-PM sensitivity curves. Black
dots indicate the MD at which SSVEP reaches 50% de-
tection rate.

CONCLUSION

In this paper we studied the effect of stimulation prop-
erties, such as frequency and MD, around human visual
perception thresholds on the SSVEP response. We were
able to elicit SSVEP around the VPT but only for high
frequencies. SSVEP were detected close or below to the
behavioral CSC found in the literature, i.e by a quasi-
imperceptible RVS. We estimated a contrast sensitivity
curve based on SSVEP using two different methods. The
shape of the estimated SSVEP contrast sensitivity curves
is very similar to the behavioral CSC. Such sensitivity
curve will help the development of a more diverse variety
of stimuli, using more frequencies and MDs. This would
increase the conditions that could be used to elicit dis-
tinct SSVEP and decrease the discomfort and the risk of
photo-induced epilepsy caused by the RVS.
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ABSTRACT: Using neural correlates of intentionally 

induced human emotions may offer alternative imagery 

strategies to control brain-computer interface (BCI) 

applications. In this paper, self-induced emotions, i.e., 

emotions induced by participants performing sad or 

happy related emotional imagery, are compared to motor 

imagery (MI) in a two-class electroencephalogram 

(EEG)-based BCI. The BCI setup includes a multistage 

signal-processing framework allowing online continuous 

feedback presentation in a game involving one-

dimensional control of game character. From seven 

participants, the highest online classification accuracies 

are 90% for emotion-inducing imagery (EII) and 80% for 

MI. Offline and online results analysis showed no 

significant differences in MI and EII performance. The 

results suggest that EII may be suitable for intentional 

control in BCI paradigms and offer a viable alternative 

for some BCI users. 

 

INTRODUCTION 

 

Brain-computer interfaces (BCIs) offer means to 

communicate and control computer-based applications 

without movement, including entertainment [1], [2] (e.g. 

BCI games), rehabilitation [3] and assistive technologies. 

BCIs are built around decoding the person’s intent by 

direct measurement of brain activity [4], usually 

measured through electroencephalography (EEG). One 

of the challenges in BCI is that there are limited options 

for control strategies available to the users: some 

strategies, e.g., motor imagery, are challenging for some 

users and require training [5], [6], and other strategies 

(evoked potentials) often require gaze control and are 

dependent on external stimuli. As a non-negligible 

portion of subjects have been shown to be unable to learn 

how to control a motor imagery (MI) BCI [5], within a 

limited duration of training there is a need for 

investigation of alternative imagery strategies for such 

users.  

Emotion is being investigated as a potential BCI control 

strategy. The differences observed in brain responses to 

different emotional stimuli or recall of emotional events 

may enable a multi-class BCI [7]. Positive emotions 

(e.g., happy, joy) are associated with less relative alpha 

power in left frontal cortical regions than the right, 

whereas for negative emotions (e.g., sad, disgust) less 

relative alpha power is observed in the right frontal 

cortical area [8], [9], and similar hemispheric asymmetry 

activation was reported in functional imaging [10]. 

Besides the differences in brain activity associated with 

different emotions, for emotion to be useful in active 

independent BCIs, where the user issues a command as 

opposed to waiting on a stimulus to evoke a brain 

response, the BCI user is required to imagine or recall 

emotional situations. Chanel et al. [11] reported an 

accuracy of 71.3% in two-class classification of self-

induced emotion, in their study, the participants were 

self-paced in the task of self-inducing emotion. In similar 

study, Chanel et al [12] achieved an accuracy of 63% in 

a three-class (negative emotion, positive emotion, and 

neutral) and 80% for two-class classification. In their 

study, the participants were asked to recall emotional 

events in an 8 s trial. Furthermore, Iacoviello et al. [13] 

achieved a classification accuracy of 90.2% for imagery 

induced by remembering unpleasing odor versus relaxed 

state. Sitaram et al. [14], in fMRI-based study, presented 

performance feedback to participants who were recalling 

sad, happy, and disgust emotions, and achieved an 

accuracy of 60% in a three-class classification with 

feedback presentation. Only a few of previous work have 

applied emotion-inducing imagery with real or pseudo-

real time feedback presentation. In a typical BCI system, 

the user should be provided with interaction feedback.  

In the preliminary study on EII [15], participants 

controlled a video game character using sad and happy 

imageries, and their performance suggested that the use 

of emotion-inducing imageries in BCI should be 

investigated. Here, imageries of self-induced emotional 

states are investigated as an alternative to MI, using a 

standard MI BCI paradigm and setup with healthy human 

participants. Performance results of imageries induced by 

sad versus happy events compared to results of left versus 

right hand movement imageries during the one-

dimensional control of a video game character are 

reported. 

 

MATERIALS AND METHODS 

 

     Participants: Seven healthy volunteering participants 

(1 female and 6 men, mean age 29, SD = 6) were 

recruited at Ulster University. Each participant, 

individually participated in one EEG recording session, 
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and after the session the participant was asked, in an 

informal interview, what he/she thought about his/her 

performance in task execution during the session. Six of 

the participants had previously participated in at least one 

motor imagery BCI study, and one of these six 

participants was known to have a good performance in 

MI. The remaining participant was participating in active 

BCI paradigm for the first time. All the seven participants 

had not previously participated in EII BCI training prior 

to the study. 

     Experimental Setup: Each EEG recording session 

included four runs: two EII runs and two motor imagery 

runs. Each type of imagery consisted of one training run 

and one online feedback run as shown in Fig. 1. The order 

of runs was randomized between participants i.e., either 

EII or MI was performed in the first two runs. The 

recording session utilized a computer game paradigm 

called NeuroSensi, in which a light, representing a 

neuronal spike, traversed the left or right graphical axon 

(see Fig. 2) on the computer screen, cued the participant 

to perform one of two imageries i.e., left versus right 

hand movement, or sad versus happy emotion-inducing 

imagery. In feedback runs, the game objective was to 

collect the spike by moving the game character (a 

graphical representation of neuron’s cell body and 

dendrites as shown in Fig. 2). Points are awarded for 

moving the game character in the right direction and 

positioning the character as close as possible to the axon 

when the spike reached the end of the axon. Additional 

points are awarded for collecting more than three spikes 

consecutively without failure. These bonus points are 

accompanied with background neurons firing and 

propagating several spikes for about 1 s (after task 

execution). The continuous feedback, i.e., movement of 

the game character, was controlled by the BCI. Each run 

included 60 trials randomly ordered for two class tasks, 

30 trials for each class. Before starting EII runs, the 

participant was instructed to identify two mnemonic or 

fictitious emotional events: one event he/she thought 

would make him/her happy and another events that 

would make him/her sad. To avoid possible emotional 

stress into the participants, they were instructed to refrain 

from using extremely sad events. During EII training 

runs, participants were asked to imagine or recall the sad 

event when the spike was cued on the left axon, and to 

imagine or recall the happy event when the cue appeared 

on the right hand side axon. In the case of motor imagery 

tasks, the participant was asked to imagine right hand 

movement when the cue was on right, and left hand 

movement when the cue appeared on the left side. 

 

Figure 1. The structure of recording session. Each 

recording session had 4 runs of imagery tasks, each run 

with 60 trials (see details in text). 

EEG data were sampled at 125 Hz from 16 channels 

(Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, P3, Pz, P4, 

PO7, PO8, and Oz) setup in 10-20 system. EEG data 

were visually inspected for strong artefacts (e.g., eye-

blinks) and then processed through a multistage signal 

processing framework which includes neural-time-

series-prediction-preprocessing (NTSPP), spectral 

filtering (SF) in subject specific frequency bands and 

common spatial patterns (CSP) as previously used in [1], 

[16]. This signal processing framework is illustrated in 

Fig. 3.

 

Figure 2. The screenshots of the BCI game used in cueing and feedback presentation. The neuron character is fixed in the 

middle of the two axons during no-feedback run (screenshot on the left), and it moves horizontally to collect the spike 

during the feedback run (screenshot on the right).
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Figure 3. BCI setup used to preprocess EEG, extract and classify EEG features correlating to imageries; in the feedback 

session, the classifier’s output is de-biased to adapt the feedback.

     Time-Series-Prediction: In the NTSPP framework 

different prediction networks are trained to specialize in 

predicting future samples of different EEG signals. Due 

to network specialization, features extracted from the 

predicted signals are more separable and thus easier to 

classify. The number of time-series available and the 

number of classes governs the number of specialized 

predictor networks and the resultant number of predicted 

time-series from which to extract features 

  P M C   (1) 

where P is the number of networks (which is equal to 

number of predicted time-series), M is the number of 

EEG channels and C is the number of classes. For 

prediction,  

     ˆ ( ) ( ),..., ( ( 1)ci ci i ix t f x t x t   (2) 

where t is the current time instant,  Δ is the embedding 

dimension and τ is the time delay, π is the prediction 

horizon, cif  is the prediction model trained on the ith 

EEG channel, xi, i=1,..,M, for class c, c =1,..C, and ˆ
cix  is 

the predicted time series produced for channel i by the 

predictor for class c. NTSPP adapts to each subject 

autonomously using self-organizing fuzzy neural 

networks (SOFNN) [17]. 

     Spectral Filtering: Prior to the calculation of the 

spatial filters, X can be preprocessed with NTSPP and/or 

spectrally filtered in specific frequency bands. The bands 

are selected autonomously in the offline data processing 

stage using a heuristic search and are subsequently used 

to band pass filter the data before CSP is applied. The 

search space is every possible band size in the 8 - 28Hz 

range. The high frequencies are not considered since they 

are likely to be contaminated with scalp electromyogram 

(EMG) [18], especially in the case of frowning associated 

with emotion-inducing tasks. These bands encompass the 

alpha, beta bands which are altered during sensorimotor 

processing [17], [19], [20] and for emotional state 

detection these bands or sub-bands within these bands are 

often used  [21], [22]. 

     Common Spatial Patterns (CSP): CSP is used to 

maximize the ratio of class-conditional variances of EEG 

sources. CSP is applied by pooled estimates of the 

covariance matrices, Σ1 and Σ2, for two classes, as 

follows: 

 


  1 1
( {1,2})c

c

I t

c i iI i
X X c   (3) 

where Ic is the number of trials for class c and Xi is the 

M×N matrices containing the ith windowed segment of 

trial i;  N is the window length and M is the number of 

EEG channels – when CSP is used in conjunction with 

NTSPP, M=P as per (1). The two covariance matrices, Σ1 

and Σ2, are simultaneously diagonalized such that the 

Eigenvalues sum to 1. This is achieved by calculating the 

generalized eigenvectors W:  

    1 1 2( )W WD   (4) 

where the diagonal matrix D contains the Eigenvalue of 

Σ1 and the column vectors of W are the filters for the CSP 

projections. With this projection matrix the 

decomposition mapping of the windowed trials X is given 

as 

 E WX   (5) 

     Features Extraction and Classification: Features, , 

are derived from the log-variance of 

preprocessed/surrogate signals within a 2 second sliding 

window:  

   log(var( ))E   (6) 

The dimensionality of 
 
depends on the number of 

surrogate signals used from E. The common practice is 

to use several (between 2 and 6) eigenvectors from both 

ends of the eigenvector spectrum, i.e., the columns of W. 

Using NTSPP the dimensionality of X can increase 

significantly. CSP, can be used to reduce the 
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dimensionality therefore combining NTSPP with CSP 

leads to increased separability while maintaining a 

tractable dimensionality [16]. Linear discriminant 

analysis (LDA) is used to classify the features at the rate 

of the sampling interval. 

An inner-outer cross-validation (CV), with 5 outer folds, 

is performed to find the optimal subject-specific 

frequency. In the outer fold, NTSPP is trained on up to 

10 trials randomly selected from each class (2 seconds of 

event related data from each trial). The trained networks 

then predict all the data from the training folds to produce 

a surrogate set of trials containing only EEG predictions. 

The 4 training folds from the outer splits are then split 

into 5 folds on which an inner 5-fold cross validation is 

performed for best subject specific frequency selection. 

After the subject specific frequency band selection, 

NTSPP-SF-CSP is then applied on the outer fold training 

set, where a feature set is extracted. The LDA classifier 

is trained at every time point across the trials and tested 

for that point on the outer test folds. The average across 

the five-folds is used to identify the optimal number of 

CSPs (between 1-3 from each side of W) and the final 

time point of maximum separation which are then used 

to setup the final classifier using all the training data, to 

be deployed online. The Fig. 3 illustrates the BCI setup 

used in this study.  

In the online processing, the classifier’s output 

translation to the game character movement was de-

biased to account for class bias behaviour and improve 

feedback stability. This de-biasing was carried out by 

continuous removal of the mean from the continuous 

classifier output, where the mean was calculated with a 

35s window on the most recent classifier output.  

Additionally, EEG dynamics throughout tasks execution 

were also explored through event-related 

(de)synchronization (ERD/S) analysis. The ERD/S was 

computed as power change respective to the baseline 

power as in [23] within the subject’s selected frequency 

band after applying independent components analysis 

and wavelet transform on the data for further artefacts 

removal [24].  

 

RESULTS 

 

Offline cross-validation classification accuracy (CA) for 

each run, along with online single-trial CA results for 

feedback runs, online results, and sample results from 

event-related (de)synchronization analysis are reported 

in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 respectively. Wilcoxon 

signed rank tests showed no significant differences 

between EII and MI (p > 0.05), although the EII training 

accuracies exceed the MI accuracies for most of the 

participants. ERD/S analysis showed EII tasks 

separability in the temporal and frontal channels; this can 

be seen in sample topographic maps for subject 2 in     

Fig. 7. The online classification results in Fig. 5 show 

decrease in accuracies for most of the participants 

compared to what was achieved in offline analysis for the 

feedback run. However, in each of the considered BCI 

strategies, there was one participant who achieved good 

online performance: one experienced participant 

achieved 81% in MI and another achieved 90% in EII 

online performance. The performance in the remaining 

participants is 64.18 ± 4.75% and 62.09 ± 2.03% for EII 

and MI respectively.  

 

 

Figure 4. The LOOCV classification accuracy for 

feedback and no-feedback runs. There were no feedback 

runs for subject 1.  

 

Figure 5. Online task classification accuracies for 

emotion inducing imagery and motor imagery during 

feedback runs. Note that there were no feedback runs for 

subject 1. 

 

 

Figure 6. Topographic maps of band power changes 

(ERD/S) in [8–13] Hz band during motor imagery task 

execution for subject 2, and time-course ERD/S observed 

from channel C4.  
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Figure 7. Topographic maps of band power changes in 

[8–20] Hz band during emotion inducing tasks execution 

for subject 2, and and time-course ERD/S from channel 

Fp1. 

DISCUSSION 

 

The objective of this pilot study was to investigate the 

discriminability of EEG during emotion inducing 

imagery, to investigate if emotion-inducing imageries 

could be used to control a video game using a BCI and to 

compare performances of EII with the extensively 

studied motor imagery based control strategies. The 

results suggest that emotions, which normally influence 

the way we live [25], may be intentionally modulated and 

actively translated  in a BCI control paradigm. 

Consequently, the study shows some of the first evidence 

to support the use of emotion inducing imagery as a 

replacement to motor imagery. This study was based on 

one off-line training session and online training session 

for both MI and EII. Although participants were limited 

by the amount of training, their classification accuracies 

exceed chance level which was 50%. It usually requires 

several training sessions to achieve good accuracy in 

motor imagery performance, so further validation with 

multiple sessions training and on a larger sample of 

participants is required to determine if emotion imagery 

could be used by BCI users who do not perform well with 

motor imagery. Subject 2 who achieved high online 

performance in MI is familiar with motor imagery based 

BCI and had achieved good accuracies in the past. The 

participant with highest accuracy in online EII (subject 5) 

reported in the post-session interview that meditation 

practice was the key technique used in executing tasks 

for EII; meditation has been shown to improve BCI 

performance [26], [27]. Subject 2 also reported regular 

meditation practice.  

Two participants showed acceptable online performance, 

whereas for the other participants’ online performance is 

diminished with respect to the calibration run (the run 

without feedback). Even though a reduction in accuracy 

was observed in the online runs, the baseline accuracy (1 

s before cue) were significantly lower that the peak 

accuracy during the task execution (p < 0.05) for all the 

participants indicating that above chance performance 

was achieved.  In addition, as this is single session and 

participants experienced on-screen feedback for the first 

time (except subject 2) along with distractors in the 

games (game score updates and bonus firing spikes), this 

likely had an impact on participants’ concentration, 

cognitive load [28] and maintaining focus and 

consistency between the runs. With additional sessions 

the BCI and participants’ performance may be more 

robust. 

 

CONCLUSION 

 

Emotion induced by imagining fictional events or 

recalling mnemonic emotional events with a continuous 

feedback in a BCI setup was investigated in this 

preliminary study, using a setup normally used for motor 

imagery. The comparison between online control of a 

game in single session with either motor imagery and 

emotion-inducing imagery showed that the performance 

difference is insignificant, suggesting that emotion-

inducing imagery may be used as an alternative to motor 

imagery. The reported results are from seven 

participants, each with one EEG recording session, so 

more analysis with a larger sample of participants and 

multiple training sessions is currently being carried out 

to thoroughly compare motor imagery and emotion 

inducing imagery BCI. Besides validating the 

comparison, there is a need to assess the effect of 

multiple training sessions on EII performance. 
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ABSTRACT: In this article a novel approach to spatial fil-
tering of electroencephalographic (EEG) signals – Adap-
tive Spatial Filtering (ASF) is proposed. The goal of ASF
is to enhance the components of EEG signals that are spe-
cific to the spatial location of analyzed electrode, while
at the same time to reduce the influence of components
originating from distant sources of brain’s bioelectrical
activity. For that purpose an approach is utilized, where
electrodes uncorrelated with analyzed electrode are used
as noise input for the multichannel Adaptive Noise Can-
celling algorithm. Proposed method is evaluated and
compared with most popular approaches to spatial filter-
ing: Common Spatial Patterns and its Filter Bank exten-
sion. Influence of compared algorithms on the classifica-
tion accuracy of motor imagery tasks is tested on the data
from ‘Dataset IVa’ provided for the ‘BCI Competition
III’ and ‘EEG Motor Movement/Imagery Dataset’ pro-
vided by the BCI2000 group. During all performed tests
ASF outperformed reference methods achieving 94%,
84% and 82% mean classification accuracies.

INTRODUCTION

Interpretation of the electroencephalographic (EEG) data
often involves speculation about the possible locations
of the sources inside the brain that are responsible for
the observed activity on the scalp [1]. Since it is diffi-
cult to interpret recorded EEG signals in terms of the site
of the underlying neuronal process, determining the re-
lationship between different signals recorded at various
scalp locations is required. It is desirable to eliminate or
account for the possible linear relation resulting from the
volume conduction [2]. This relation can be represented
in a form of weighted combination of some or all mea-
surement channels inside a defined neighbourhood of the
channel of interest. Such approach is often related to as
spatial filtering. It has gained a great popularity for EEG
processing problems in Brain-Computer Interface (BCI)
applications [3, 4]. In theory, use of spatial filters should
either lead to decomposition of the EEG data into com-
ponents containing activity related to specific sources or
elimination of the overlapping signals originating from
sources other than those in the direct neighbourhood of
the measurement electrode. The Common Spatial Pat-
tern (CSP) method represents one of the most popular

approaches to the spatial filtering. Is is a technique used
for the analysis of multichannel EEG recordings with two
classes of different EEG phenomena present [3]. For that
purpose it provides the set of spatial filters in form of
the transformation matrix. One of the drawbacks of the
CSP is that it’s performance is highly dependent on the
selected frequency bandwidth in which signals are ana-
lyzed. Thus, the theoretical assumption that the analysed
signals have been bandpass filtered to the most discrimi-
native frequency range for both classes [3]. An effective
solution to this problem was presented as the Filter Bank
CSP (FBCSP) [5]. In this method the EEG signals are first
bandpass filtered into few frequency subbands. Then, the
CSP algorithm is applied independently to each subband.
Since its introduction, FBCSP has become a state-of-art
approach for the spatial filtering of EEG signals contain-
ing motor imagery related tasks [5, 6].

In this article use of the Adaptive Noise Cancelling
(ANC) techniques for the elimination of source overlap-
ping effects from EEG recordings presented as a novel
algorithm - the Adaptive Spatial Filtering (ASF) is being
examined. The general idea of the proposed approach
is based on the assumption that signal measured by each
electrode consists not only of component that contains
information specific to the location of that electrode, but
also of unwanted ones that originate from sources closer
to other electrodes available in the experiment. There-
fore, signals recorded by these distant electrodes can be
used as a noise reference for any multichannel algorithm
of adaptive filtering. In theory, signal achieved as a re-
sult of such filtering will be free from the influence of
electrical sources that are distant from the analysed elec-
trode. At the same time, this decoupled recording will be
a reliable representation of the neuronal activity occur-
ring in the close localization of the measurement point.
Use of adaptive filters is a known practice in the process-
ing of EEG signals. Such algorithms are widely used for
the removal and correction of artifacts that, due to their
amplitude and shape, are clearly distinguishable from the
background EEG activity (e.q. eye blinks, muscular arti-
facts, electrode movement) [7]. In these classical applica-
tions some additional reference recording of noise signal
(i.e. electrooculogram) must be provided for the adap-
tation algorithm. Since such signal is not always avail-
able, a focus of researchers have been already drawn to
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the problem of utilizing EEG recordings for that purpose
[7]. However, to the best knowledge of the Author of this
article no research has ever been conducted on the use of
such approach for the problem of elimination of source
overlapping in EEG.

MATERIALS

Dataset IVa: One of two datasets used for the eval-
uation of proposed method was the ’Dataset IVa’ pro-
vided for the ’BCI Competition III’ organized by the
Berlin Brain-Computer Interface group which took place
in 2005 [4, 8]. All available signals were recorded using
BrainAmp amplifiers with 118 EEG channels with 1000
Hz sampling frequency and 16 bit accuracy, band-pass fil-
tered to the 0.05 ÷ 200 Hz range and then downsampled
to 100 Hz. The measurement electrodes were positioned
with regard to the extended 10-20 montage system. Data
was recorded from five healthy subjects denoted as aa,
al, av, aw, ay. For each subject 280 trials of either right
hand or foot movement imagination were available. Vi-
sual cues indicated for 3.5 s which of the motor action the
subject should imagine [4]. Detailed information about
used dataset can be found in [8].

EEG Motor Movement/Imagery Dataset: Second
dataset used in this research was ’EEG Motor Move-
ment/Imagery Dataset’ (EEGMMI) provided by the
BCI2000 group [9] and contributed to the PhysioNet plat-
form [10]. Signals were recorded using 64 electrodes
placed accordingly to the 10-10 montage system with
160Hz sampling frequency. The EEGMMI consists of
data recorded from 109 subjects. Each of whom was
asked to perform specific tasks organized in the follow-
ing sessions (either 7 or 8 repetitions per task): right vs.
left hand movement, imagination of right vs. left hand
movement, both hands vs. feet movement and imagina-
tion of both hands vs. feet movement. Each session was
repeated 3 times and lasted approximately 2 minutes. As
a result between 21 and 24 trials per class were obtained.
Duration of one trial was about 4-s long. In this research
only sessions with tasks involving motor imagery were
used. Additionally, since this work is focused on the two
class problems, sessions involving Left vs. Right hand
motor imagery were treated separately from the Hands
vs. Feet sessions. As a result, two different validation ex-
periments could be performed on the EEGMMI dataset.

Validation and parameter tuning: To test the pro-
posed ASF algorithm the following validation procedure
was performed. For ’Dataset IVa’ all trials were divided
into two sets depending on their class membership. Then
trials in each set were sorted chronologically. 70% of
consequent trials from each class were used to create a set
used for the classifier training and parameter tuning pur-
poses. The remaining samples formed a test set, which
was used only once, to evaluate algorithm’s accuracy.
Both sets were designed in way so that both classes were
represented equally. In order to assure that the results
achieved during the experiment are statistically meaning-

ful such validation was repeated 7 times. The new folds
were created by selecting consecutive 70% of trials be-
ginning from a different trial each time. These starting
trials were evenly distributed across all examples, so that
the best data coverage was provided. Consistency of the
data was achieved by implementing the circular buffer
idea in cases where the length of the training window ex-
ceeded the total data length. Organization of sessions in
the EEGMMI dataset allowed to approach the problem of
creating the data folds in a slightly different way. Since
there were 3 repetitions of both Left vs. Right and Hands
vs. Feet sessions (each containing 7 − 8 trials per class)
a more natural division was possible. In this research
one complete session of specific motor imagery tasks was
used as an independent test set, while remaining two ses-
sions containing the same mental actions were used for
training and parameter tuning purposes. That way it was
ensured that both classes will be represented by a similar
amount of examples. Additionally, such way of dividing
data guarantees that trials used for testing were recorded
during the same time window and that both test and train
examples maintain some kind on continuity. Described
validation procedures implemented for both datasets al-
low to take into consideration not only the order of sam-
ples from each trial but also the chronological order of the
trials. Proposed approach resembles a real life case where
training trials for the BCI calibration are recorded conse-
quently during specified time frame. Such examples will
share some common characteristics, that might differ for
trials recorded in later stages (i.e. during the operation of
the system). The resemblance of the proposed procedure
of data partitioning to the real applications is a signifi-
cant advantage over random choice of trials or individ-
ual samples. For most of the spatial filtering approaches
presented in the METHODS section to perform on a sat-
isfactory level, some parameters need to be properly se-
lected. The method of parameter tuning used in this work
requires that the data dedicated for training purposes is
divided accordingly to the procedure described for the
’Dataset IV’ earlier in this section. As a result two sub-
sets of the training set are created, which will be referred
to as subtraining and subtest. Then, the EEG signals are
processed with the different values of the tuned parameter
of specific spatial filtering method, the classifier is trained
on a subtraining dataset and the accuracy on the subtest
set is obtained. This is repeated 7 times and the param-
eter which achieved the highest median accuracy is se-
lected for the specific validation session. It must be noted
that the training data of the current validation session re-
mains uninvolved in the parameter tuning process. Since
Author of this article prioritize the research on the real-
time BCI applications, instead of classifying each trial as
a whole, the classifier output was provided for every sam-
ple tagged as containing imagination of motor movement
and belonging to the assumed region of interest. Due to
the nature of the experiment, the reaction time of the sub-
ject could potentially become a variable in the process
of evaluation of system’s accuracy. Since such influence
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is an uncontrollable factor, it is desirable to diminish or
remove it’s impact on the results. In this research, this
problem was avoided by selecting and classifying only
samples that appear after 0.5 s from the moment tagged
as a start of the trial.

METHODS

Adaptive Spatial Filtering: The idea behind the Adap-
tive Spatial Filtering of EEG signals proposed in this
work stems from the concept of Adaptive Noise Can-
celling [11]. In this methodology an auxiliary (reference)
input from at least one sensor is used in process of the
elimination or attenuation of the noise present in the pri-
mary input s. Let us assume that the analyzed signal s
consists of two additive components d0 and n0. There-
fore, it can be represented as s = d0 + n0, where d0
denotes the desired part of the s and n0 is a noise that
is not correlated with d0. Additionally, present is an
auxiliary signal n which also is not correlated with d0,
but in some unknown way correlates with the noise n0.
Such signals are often called reference and should be
recorded at noise field locations where the signal of inter-
est d0 is weak [11]. Providing more than just one refer-
ence input to the ANC algorithm can improve it’s perfor-
mance in scenarios where one source of noise is present
[11]. Moreover, if there are many sources of noise com-
ing from different locations, increased number of auxil-
iary signals recorded by specific sensors can be very ef-
fective [11]. In such cases n will consist of N signals
recorded by different sensors at varying locations. This
can be noted as n = {n1, n2, . . . , nN}. For applications
where N > 1 the algorithm is often referred to as Mu-
tichannel Adaptive Noise Canceller. If each of the input
reference signal components nk (k = 1, . . . , N ) could
be transformed (filtered) so that the their summed output
y =

∑N
k=1 yk would resemble the unknown noise com-

ponent n0 it could then be subtracted from the analyzed
signal s. Assuming that the signal nk after the transfor-
mation is denoted as a yk, described operation can be pre-
sented as in Eq. 1. As a result the estimate of uncorrupted
desired signal e ' d0 will be achieved. Signal e can also
be treated as the error of adaptation.

e = d0 + n0 − y (1)

In an ANC applications said transformation of recorded
noise input n is realized by an adaptive filtering. An adap-
tive filter automatically adjusts its own impulse response
through an algorithm that responds to an error signal e
[11]. If nk(t) ∈ RM is a segment of signal nk a time
index t consisting of M discrete samples with indexed
[t −M + 1, . . . , t − 1, t], then the output of a adaptive
filter at discrete moment t can be calculated as in Eq. 2.

yk(t) = nk(t)
Twk(t) (2)

The coefficients wk(t) ∈ RM of the filter are being ad-
justed individually for every input with each new sample.

The adaptive algorithm used for that in this work is the
Normalized Least Mean Squares (NLMS). If algorithm’s
error at index t is denoted as e(t) ∈ R and calculated ac-
cordingly to the Eq. 1, then the formula for updating the
filter coefficients for t+ 1 sample is presented in Eq. 3.

wk(t+ 1) = wk(t) + µ(t)e(t)nk(t) (3)

The NLMS guarantees a better stability than the classical
Least Mean Square algorithm thanks to the normalisation
of the fixed adaptation step µ0 with the power of input
[12]. The purpose of γ parameter is to prevent situations
where the denominator of that expression approaches 0.

µ(t) =
µ0

γ + nTk (t)nk(i)
(4)

It should be particularly emphasized that the described
Multichannel ANC algorithm satisfies all the causality re-
quirements and therefore is suitable for the real time ap-
plications. The block diagram of the described algorithm
is presented in Fig. 1.

Figure 1: Block diagram of a Multichannel ANC filter.

The general idea of proposed ASF approach is based on
the assumption that signal recorded by each electrode
consists of desired component which contains informa-
tion specific to the location of that electrode and un-
wanted, noise that originates from sources closer to other
electrodes available in the experiment. Additionally, un-
defined measurement noise and artifacts (i.e. muscular)
are in some way present in all recordings measured by all
electrodes. With simplification it can be assumed that as
the distance of the electrical signal from its bioelectrical
source increases, its amplitude decreases [2]. However, it
must be emphasized that said assumption does not state
that activity originating from the source closest to the
electrode will be the strongest one present in the raw EEG
recording [13]. Nevertheless, the introduced assumption
leads to an observation, that for the electrode labeled ch
signals recorded by electrodes from some subset elec-
trode labels Lch = {L \ ch} can be used as a noise refer-
ence for the multichannel ANC algorithm described ear-
lier in this section. In this scenario, L denotes the set of
all electrode labels that are available in the experiment. In
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theory, signal achieved as a result of such adaptive filter-
ing would be free from the influence of electrical activity
of sources that are distant from the analysed electrode ch.
At the same, this decoupled recording will be a reliable
representation of the neuronal activity occurring in the di-
rect localization of the measurement point. To guarantee
a satisfactory performance of the ASF, a proper selection
of the subset of electrodes used as the multichannel noise
reference must be ensured. According to the basic princi-
ples of the ANC algorithms, signals used for that purpose
cannot be correlated with the filtered signal [11]. There-
fore, for the analyzed electrode ch ∈ L adaptation is per-
formed only on the subset of electrodes Lch for which
the Pearson’s correlation coefficient r(ch, l) (∀l∈L) with
signal from ch is lower than some user-defined parameter
Tr. To maintain the compatibility with previously intro-
duced symbols, in this scenario, the secondary input to
the Multichannel ANC filter n will be composed of sig-
nals recorded by the electrodes whose labels belong to
the subset Lch. Therefore, proposed ASF algorithm re-
quires for a few parameters to be specified, such as the
number of filter coefficients M , initial adaptation step
µ0, parameter γ and the Pearson’s correlation threshold
used for selecting the reference electrodes Tr. During the
experiments performed for the purpose of this work, the
following, exemplary parameters were chosen for both
datasets: M = 3, γ = 0.01, Tr = 0.6. To ensure
the improved stability and effectiveness of the ASF algo-
rithm the µ0 was selected individually form the set of val-
ues µ0 = {0.0001, 0.0005, 0.001, 0.005, 0.01} for each
test with respect to the parameter selection approach de-
scribed in the MATERIALS section of this article. Dur-
ing the experiment the ASF algorithm was applied to the
raw EEG data. The subset of electrodes used as the ref-
erence Lch was selected individually for each analysed
electrode. The Pearson’s correlation values r(ch, l) were
calculated only on the basis of time segments containing
the interesting brain activity (i.e. during motor imagery
periods) from training sessions. Therefore, Lch was not
updated after the training stage. The signal power fea-
tures were extracted directly form the filtered data. All
of them were passed to the classification algorithm (no
feature selection stage was implemented). No artifact
correction or bandpass filtering was applied for the ad-
ditional processing of the EEG signals.

Reference methods: The influence of the proposed
ASF algorithm on the accuracy of classifying various
mental activity tasks was compared with three classical
approaches. First method used as the reference during
the comparison does not involve any spatial filtering and
will be referred to as the basic approach. Here, the raw
data is only bandpass filtered to the frequency range from
8 to 30Hz. This specific band was selected as it is often
associated with brain activity related to the planning of
movement [3, 14]. The bandpower features are then ex-
tracted directly from the filtered data. No additional steps
like feature/channel selection are used in this approach.
The Common Spatial Pattern method is a technique used

for the analysis of multichannel EEG recordings with two
classes of different EEG phenomena present [3]. As a
result of CSP the variance of the transformed signals is
maximized for examples from one class, while at the
same it is minimized for the other class. For that pur-
pose it provides the set of optimal spatial filters in form
of the transformation matrix. In general, only a few pairs
of filters from both ends of eigenvalue spectrum carrying
a discriminant information are used [3]. Therefore, a fea-
ture selection step is often required in order to maximize
the effectiveness of CSP decomposition. In this work,
the best number form between 1 and 8 of the consecu-
tive CSP filter pairs were selected for each subject and
each validation session during parameter tuning stage.
Since performance of the CSP method is highly depen-
dent on the selection of frequency bandwidth in which
signals are analyzed, they were bandpass filtered to the
frequency range from 8 to 30Hz befor the applying CSP.
Third method used for the comparison in this research is
the FBSCP [5]. In this method the recorded EEG signal is
first bandpass filtered into B, small and consequent fre-
quency subbands. In this research the same B = 9 sub-
bands as in the original paper of FBCSP were selected:
[4−8] Hz, [8−12] Hz, [12−16] Hz, [16−20] Hz, [20−24]
Hz, [24−28] Hz, [28−32] Hz, [32−36] Hz, [36−40] Hz
[5]. After filtering, the CSP algorithm is applied indepen-
dently to each frequency band. Then, for each CSP trans-
formation aC = 3 pairs of filters were selected and band-
power features were calculated for each sample. As a re-
sultF0 = 2×C×B = 54 features were extracted for each
time index in the region of interest. To avoid overfitting
of the classifier to the training data, the FBCSP requires
for the feature selection step to be performed. Authors of
this method have validated it with multiple feature selec-
tion algorithms [5]. According to the results of the men-
tioned study, the Mutual Information-based Best Individ-
ual Feature (MIBIF) method works very effectively with
the FBCSP. Based on the MIBIF only F1 best features
from the original subset of F0 is chosen for the further
analysis. In this work the number F1 was selected in-
dividually for each subject and each validation session
from the subset F1 ∈ {1, 2, 3, 4, 5} during the parameter
tuning stage. It must be noted that due to the pairing of
the CSP features, the corresponding feature from the pair
had to be additionally included if it was not selected by
the MIBIF algorithm.

All spectral filtering operations in this research were per-
formed with the Finite Impulse Response (FIR) filter of
order 364. Coefficients of the used filters were designed
using the Kaiser window. Linear phase characteristics of
the FIR filters make them ideally suited for the process-
ing of biomedical signals. On the other hand, the delay
introduced by such filtering may significantly influence
the quality of the BCI systems in terms of real-time per-
formance. Since the focus of this research was mostly
placed on the evaluation of the proposed spatial filtering
method it was decided that the filter’s delay should be ne-
glected. Therefore, the zero-phase filtering was applied
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during offline processing. This was achieved by a recur-
sive filtering of the original signal both forward and back-
ward in time [15]. As a result, a perfect frequency filtering
could be assumed in the performed experiment. This op-
eration was applied to all of the reference methods used
in the experiment. It must be noted that such approach
favours slightly these approaches as in the normal sce-
nario their output would be delayed resulting in worse
classification accuracy and generally decreased perfor-
mance of the BCI system.

Machine learning: The characteristics of the signals
achieved after their processing were described by the log-
arithm of their power in specific frequency ranges. To en-
sure the causality of the feature extraction step only the
analysed time index and those that precede it were taken
into consideration. In this research the 0.5 s-long time
window was used. The features were extracted for ev-
ery sample during each trial and provided as an input to
the Linear Discriminant Analysis (LDA) classifier. This
simple classifier has been successfully used in many BCI
systems and has generally produced a satisfactory results
[16]. One of the main motivations for the choice of LDA
classifier in this experiment was it’s simplicity and trans-
parency in data processing. Thanks to these features, the
participation of the classification algorithm in the feature
engineering process has been restricted. Thanks to that,
the results achieved in this research will not be biased by
the quality of cooperation between spatial filtering algo-
rithm and classifier in extracting features of the data.

RESULTS

In Tab. 1 presented are the mean accuracies obtained af-
ter 7 cross-validations performed for each subject from
the Dataset IVa. For each sessions used in this test the
best set of parameters was selected for each method. This
was achieved with accordance to the parameter tuning ap-
proach described in the METHODS section of this work.

Table 1: Dataset IVa - mean accuracies
Method Avg aa al av aw ay

ASF 0.94 0.93 0.95 0.89 0.96 0.96
FBCSP 0.81 0.78 0.92 0.66 0.86 0.84

CSP 0.79 0.71 0.90 0.67 0.85 0.84
basic 0.70 0.62 0.82 0.57 0.71 0.76

A more informative summary of the experiment per-
formed on the Dataset IVa can be found in Tab. 2. The
statistics used for the description of the achieved results
were the first quartile Q1, mean value, third quartile Q3

and standard deviation σ calculated from the accuracies
of all tests performed on all subjects for each method.
Therefore a more complex and profound overview of the
experiment was achieved.

Table 2 - Dataset IVa - statistics
Method Q1 Mean Q3 σ

ASF 0.88 0.94 1.00 0.08
FBCSP 0.74 0.81 0.87 0.10

CSP 0.71 0.79 0.86 0.09
basic 0.62 0.70 0.77 0.10

Since the EEGMMI dataset contains a large number of
subjects it was decided to omit the presentation of the av-
erage accuracies achieved for each of them. Instead, in
Tab. 3 the statistics calculated for Hand vs. Foot classifi-
cation task are shown. Likewise, same summary for Left
vs. Right hand discrimination task is presented in Tab. 4.
Values contained in both of these tables were obtained
analogously to those presented in Tab. 2.

Table 3: EEGMMI (Hand vs Foot) - statistics
Method Q1 Mean Q3 σ

ASF 0.78 0.84 0.90 0.08
FBCSP 0.54 0.63 0.69 0.11

CSP 0.58 0.66 0.74 0.11
basic 0.54 0.60 0.63 0.09

Table 4: EEGMMI (Left vs Right) - statistics
Method Q1 Mean Q3 σ

ASF 0.76 0.82 0.89 0.10
FBCSP 0.52 0.57 0.60 0.08

CSP 0.55 0.62 0.66 0.10
basic 0.51 0.56 0.60 0.08

DISCUSSION

Proposed in this work ASF algorithm significantly out-
performs classical spatial filtering methods like CSP
and FBCSP during tests performed on two class mo-
tor imagery-based BCI datasets. Statistics calculated for
the distributions of the achieved accuracies presented in
Tab. 2- 4 allow further assessment of the ASF perfor-
mance. It can be observed that for all three datasets the
mean accuracies of ASF are higher than for the reference
methods. Additionally, in all cases first quartile Q1 of
ASF is higher than third quartile Q3 of other methods
tested in this work. Although FBCSP and CSP achieved
expected mean accuracies on the Dataset IVa their per-
formance on the EEGMMI dataset is unsatisfactory. This
might be explained by a relatively small number of train-
ing trials for each validation session which ranged from
14 to 16 per class. As a result the number of training
examples provided for the CSP and its Filter Bank modi-
fication might be too small for them to achieve their full
potential. Training BCI systems with a limited number
of trials is a known problem which has been discussed in
the literature [4].
The tests to which the ASF and reference methods were
subjected to can be considered to be demanding not only
due to the high number of repetitions performed for each
dataset. The goal of providing the output for each sample
is generally considered to be more a more difficult task
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than the classification of the whole trial [6]. However,
since ASF was designed for the real-time BCI applica-
tions such approach to testing was necessary.
It must be noted that the due to their nature the adaptive
filters and ANC algorithms (such as ASF) are susceptible
to instabilities [12]. Therefore, selecting the proper adap-
tation step during the parameter tuning stage of the ASF
method was very important. The issue of stability of the
adaptive filtering algorithms used with the ASF method
should be a subject of further research. Due to the pre-
liminary character of this work the tuning of the channel
correlation threshold Tr was omitted in this work. This
shows that tuning of this parameter is not necessary for
the ASF to achieve a high level results. Nevertheless,
some future work must be devoted to the analysis of the
influence of this parameter on the effectiveness of ASF,
as it has the potential to additionally improve its perfor-
mance.

CONCLUSION

In this article a novel approach to spatial filtering of EEG
signals the Adaptive Spatial Filtering is proposed. The
algorithm has proved to significantly outperform the clas-
sic reference methods for two class BCI problems. The
fact that the ASF does not require providing the number
of classes present in the experiment is a great advantage
over CSP-based approaches. As a result it can be eas-
ily used with the multiclass problems without the need
of implementing strategies like One vs. One or One vs.
All. Additionally, adaptive properties of the algorithm
make it insusceptible to the changes of the EEG char-
acteristics which occurs with the passing of the exper-
iment time. Author of this work believes that the intro-
duction of the ASF algorithm can lead to an advancement
in the usable BCI technology capable of operating in the
real time. Future research regarding the ASF algorithm
will focus on its application to multiclass BCI problems.
Additionally, its performance with limited electrode con-
figurations (i.e. International 10-20 Standard) and with
feedback BCI systems will be evaluated.
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ABSTRACT:  
A fully implanted Brain-computer Interface was 

recently applied in a locked-in patient allowing for a 

one-dimensional control of a spelling board on a 

computer. The patient attempts to move her hand in 

order to generate a ‘click’, which is used to select 

letters. The optimal parameters to generate an accurate 

click were estimated from a cursor control task where 

the control signal was used to control the y-velocity of a 

cursor on the screen. However, the set of parameters 

used for the cursor control task was not accurate enough 

to be used for clicks. In order improve accuracy, three 

filters were designed to add features, smooth and z-

transform the signal before conversion to a click, in 

order to provide a more reliable communication channel 

that has less false positive events. 

 
INTRODUCTION 

 

People with severe paralysis who have lost the ability 

to communicate have only limited options to regain this 

ability. Since the 1990‘s Brain-Computer Interfacing 

(BCI) has been proposed as an assistant technology to 

reestablish this lost communication [1]. For optimal 

usability in daily life at the homes of the target 

population, such a system should be accurate and 

intelligent (i.e., it incorporates smart decoding 

algorithms that dynamically adjust to e.g. slow signal 

changes), fully implantable (i.e., permanently available 

and invisible), safe, stable, easy and comfortable to use 

[2]. However, even though technology advances fast, 

many of these requirements have not been met so far. 

Recently, a fully implantable BCI communication 

system [3] (Utrecht NeuroProsthesis, UNP, Figure 1) 

was implemented, which translates neuronal activity 

elicited upon attempted hand movements into a binary 

control signal for selection of characters in spelling 

software running in ‘switch-scanning mode’, where so-

called ‘brain-clicks’ can be used to select characters, or 

groups of characters, that are highlighted automatically 

and sequentially by the computer. The UNP system was 

implanted in a locked-in patient with late stage 

Amyotrophic Lateral Sclerosis, with a four-electrode 

strip covering the hand sensorimotor cortex. The bipolar 

pair to use for BCI control was chosen based on the 

highest correlation to a motor localizer task, where the 

patient alternated between trials of attempted hand 

movement and rest. The patient gave informed consent 

to this study, which was approved by the ethics 

committee at the University Medical Center Utrecht in 

accordance with the 2013 provisions of the Declaration 

of Helsinki. 

 

Extraction of good parameters 

A standard Cursor Control task (CCT, in BCI2000 

[4]) was used to estimate the optimal signal processing 

parameters for a one-dimensional continuous control 

signal. In this task the subject controlled the y-velocity 

of a ball on the screen (Figure 2), while the ball moved 

at constant speed on the x-direction in attempt to hit one 

of two targets displayed on the right hand side of the 

screen. The subject attempted to move her hand to move 

the ball up and relaxed to move it down. 

Across several months the average CCT performance 

using high-frequency broadband power (80±2.5 Hz) 

was 90.73±6.42 % (N=70 runs), which is significantly 

above chance (50%, p<0.01). However, the high 

performance with this continuous signal did not predict 

performance using the same electrode pair and 

frequency band for a binary signal (above or below a 

fixed threshold) to generate brain-clicks. The threshold 

was initially based on the midpoint between the 

averaged high-frequency band power during the active 

and during the inactive states. This resulted in a lower 

than expected performance during spelling and a need 

for frequent calibration. Errors were mainly unintended 

clicks (false positives), although misses also occurred. 

Hence, we were interested in investigating how the 

continuous brain signal could be translated optimally 

into brain-clicks that were usable for high accuracy 

spelling, with a low false positive rate and without 

compromising the sensitivity to intended actions. Two 

hypotheses based on the acquired signals were defined: 

1) Many false positives (FPs) were caused by the 

noisy and spiky morphology of the signal, hence 

smoothing of the signals would decrease the FPs; 

2) The power signal was not stable over time, hence 
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normalization of the signal would improve 

performance. 

 

 
Figure 1: Utrecht NeuroProthesis (UNP) fully implanted 

brain-computer interface system. 

 

 

 

Figure 2: CCT design as implemented in BCI2000. 

The ball moves towards the target at constant speed 

while the subject controls the y-velocity of the ball 

towards the target. 

 

 

MATERALS AND METHODS 

 

General description of the system 

The UNP system (Figure 1) consists of four 4-electrode 

ECoG strips, from which one strip is placed over the 

hand region of primary motor cortex. The subcutaneous 

amplifier and transmitter device, placed subclavicularly, 

transmits power signals to an antenna attached to the 

clothing, every 200ms (5 Hz) for one bipolar pair. As a 

first step to improve the reliable conversion of 

continuous brain activity into a ‘brain-click’ control 

signal, instead of only using the high-frequency band, 

we used a filter (linear classifier filter) that summed two 

frequency bands (Low Frequency Band, LFB, 

20±2.5Hz, weight -1; and High Frequency Band, HFB, 

80±2.5 Hz, weight +1) of the same bipolar pair (FHFB - 

FLFB). For more details about the motivation behind this 

filter see [3]. The resulting control signal was then 

thresholded through a threshold filter and converted into 

a binary signal, where 1 represents the samples above 

the threshold and 0 otherwise (Figure 3). Finally, this 

binary signal was converted into a click signal in the 

click translator filter, which defined a click when more 

than 5 samples (1 s) exceeded the threshold (Figure 3). 

The click was then sent to a spelling program where 

rows of characters, or individual characters, could be 

selected with a brain-click (Figure 4). Additionally, in 

order to address the two hypotheses, we tested and 

implemented two additional filters.  

 

 

Figure 3: The threshold filter converts the control 

signal (FHFB - FLFB) into a binary signal, whereas the 

click translator filter converts the binary signal in a 

click signal. 

 

 

Figure  4: Spelling program used during online 

research runs to spell 5 or 7-letter words. The 

computer automatically highlights each row or item 

sequently, looping from top to bottom and left to right, 

respectively. Each row of characters, or individual 

characters, can be selected with a brain-click. 

 

Addressing hypothesis 1: The Smoothing filter 

To tackle the problem of noisy and spiky signals 

intrinsic to neuronal recordings, a smoothing filter was 

designed to smooth each feature signal (FLFB and FHFB) 

independently (Figure 5). In the design of real-time 

feedback BCI systems the use of future samples to 

ITI (1s)

Target appearance (1-2s)

Cursor appearance

Cursor control (2-6s)

Score feedback (0.5s)
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smooth the signal is not possible. Therefore the 

smoothing function here implemented averages each 

incoming sample with the previous 5 samples (i.e., 1.2 s 

smoothing window). 

 

 
 

Figure 5: Smoothing filter averages each incoming 

sample (red square) with the previous 5 samples (black 

circles). The smoothing filter is applied to each feature 

signal (FLFB and FHFB) independently.  

 

 

Addressing hypothesis 2: The Z-Transform filter 

Another property of the signal that is crucial for 

accurate performance is the stability of the signal over 

long periods of time, i.e., the minimization of slow 

amplitude trends of the signal. A constant signal 

amplitude allows for the use of constant parameters, 

such as the threshold, across sessions. For that, 

normalization to a z-score can be used to diminish 

signal variability. Furthermore, when adding two 

different feature signals, their separate z-transformation 

allows for a straightforward combination for the signals 

(weights -1 for LFB and +1 for HFB, see [3] for more 

details). Hence, a z-transform filter (Figure 6) was 

implemented, by subtracting each incoming sample (of 

each feature signal FLFB and FHFB) with the mean of a 30 

s calibration window and dividing it by the standard 

deviation of the same window.  

 

 
 

Figure 6: The z-transform filter subtracts from each 

incoming sample (S) the mean of a 30s calibration 

window and divides the resulting value by the standard 

deviation (std) of the calibration window.  

 

 

Hypotheses testing 

Click-performance during online copy-spelling runs 

(see Figure 4 for an explanation of the speller 

application) was compared before and after the filter 

implementation, which also includes the addition of the 

LFB feature. An overview of the implemented filters 

can be found in Figure 7.  

Performance was assessed by means of false positive 

(FP) rate and true positive (TP) rate of the online runs. 

The patient performed a total of 35 copy-spelling runs 

before (words with 7 letters) and 69 after filter 

implementation (words with 5 letters). The number of 

FP, TP, true negatives and false negatives were 

determined automatically from the data recorded during 

online runs and visually inspected by two independent 

observers. Please note that no offline (post-hoc) 

processing was applied to the recorded data. 

 

 

RESULTS 

 

For comparison of click-performance before and after 

the filter implementation the FP rate and true positive 

(TP) rate during online runs (where the patient was 

asked to spell dictated words) were computed. Notably, 

we observed that many events classified as FPs were in 

fact intended clicks that were slightly too early or too 

late in time. For this reason a FP-rate-corrected was 

calculated, which did not include these timing mistakes. 

Timing mistakes were identified and marked by visual 

inspection of all runs performed by two independent 

observers. 

 

Performance before filter implementation 

There were on average 2.06 FP/min (N=35 7-letter 

words), yielding a FP rate of approximately 9%, a FP 

rate-corrected of 6% and a true positive (TP) rate of 

84% (Figure 8).  

 

Performance after filter implementation 

Regarding the smoothing filter, the optimal smoothing 

window (number of samples used to average each 

incoming sample) was optimized together with the 

threshold via a heat map (see supplementary material in 

[3] for more details), where the highest performance 

region was mapped in a two-dimensional matrix. For 

that the offline classification accuracy of recorded runs 

replayed with different smoothing window and 

threshold was computed. Within the hotspot, multiple 

sets of parameters were chosen and tested by the patient 

(compromise between effort and accuracy of the 

system) and the optimal ones (1.2s smoothing window 

and 0.85 threshold) were used for spelling [3]. This 

resulted in a score of 1.02 FP/min (N=69, 5-letter 

words), and a significant decrease in FP-rate and FP 

rate-corrected to 7% and 2%, respectively (p<0.001). 

True positive rate (TPR) also decreased significantly 

(p<0.05) to 76% (Figure 8), mainly due to an increase 

of False Negatives (FNs, i.e. a miss to click), which the 

user prefers over FPs because they do not require 

spelling correction (back-space).  
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Figure 8: FP rate and FP rate-corrected before and after 

the filter implementation. True positive rate before and 

after filter implementation, where mean FN is indicated 

as MFN. **p<0.001; *p<0.05. 

 

 

DISCUSSION AND CONCLUSION 

 

In our previous article [3], we demonstrated for the first 

time that a fully implanted BCI (UNP system) could be 

used to control a spelling program on a computer by 

converting brain activity into a one-dimensional ‘click’.  

Here we address in more detail than in our previous 

publication, the filter pipeline implemented to convert 

the continuous brain signal to binary brain-clicks, for 

control of a spelling program on a computer. As a first 

approach the settings used to produce a click were 

derived from the optimal settings of a standard Cursor 

Control task. However, this set of parameters was sub-

optimal for a reliable click production. Besides 

implementing a filter that combines two feature signals 

with a certain weight (FHFB - FLFB), the motivation for 

which can be found in [3], we implemented two filters 

to overcome the unstable characteristics of the signal: a 

smoothing filter and a z-transform filter. Combined, 

these three filters allowed for a more stable signal and a 

significant improvement of the performance of the 

system. The FP rate and FP rate-corrected for timing 

mistakes were significantly reduced after filter 

implementation. At the same time, the TP rate also 

reduced, mainly because of the increase in FN, which 

the patient preferred over FPs, because they do not 

require spelling correction. 

Finally, one note for the calibration window used for the 

z-transform filter. After actual implementation, this 

calibration window was recorded for multiple runs and 

the mean and standard deviation across runs showed to 

be consistent. These values were then used for z-

transformation, without need for repeated calibration 

and without a continuous adaption. Due to the 

normalization of the signal, the combination of feature 

signals with different amplitude ranges (i.e., FLFB and 

FHFB) was possible, and allowed for the setting of a 

constant threshold (to convert the control signal into a 

click) for over 9 months. During this period, user 

satisfaction of the UNP system was high or very high on 

all items of a modified QUEST2.0 user satisfaction 

questionnaire and the user used the system at home for 

communication without any technical staff present. 
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Figure 7: Filter pipeline implemented on the BCI2000 platform. The recording unit (gray block) streams power 

signals every 200 ms. Two frequency bands, LFB and HFB, are recorded, smoothed, z-transformed and summed  

(linear threshold classifier) with -1 and 1 weights, respectively. The resulting control signal is then thresholded 

and converted into a click. The latter was used to select rows or itens on a spelling program. Figure adapted from 

[3]. 
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ABSTRACT: An evaluation of a hybrid Brain-Computer 
Interface that combines input modalities of Steady State 
Visual Evoked Potential (SSVEP) and eye gaze is 
provided. Thirty volunteers participated and all but one 
could use the BCI, eye-tracker and hybrid system. The 
hybrid BCI was compared with SSVEP alone for 
navigating to four domotic tasks issued via a graphical 
user interface. Mean performance metrics of Accuracy 
(Acc.), Efficiency (Eff.) and Information Transfer Rate 
(ITR) all improved (mean Acc. = 93.3% to 99.84%, mean 
Eff. = 89.56% to 99.74%, mean ITR = 23.78 to 24.41 
bpm). While the absolute improvements are small, better 
performance may contribute to user acceptability, as the 
eye-gaze component adds minimal additional user effort 
to the interaction yet provides control that is more robust.  
 

 
INTRODUCTION 
 
The electroencephalogram (EEG) provides a recording 
of electrical activity within the brain. As complex as this 
activity is there are methods to extract meaningful 
information from the brain waves. By developing certain 
paradigms intentional modulation of brain activity can be 
established and used as a mechanism for communication 
and control. Known as Brain-Computer Interfaces (BCI), 
this technology has been explored extensively for over 
two decades as a mechanism to provide an input modality 
to a computing system that does not require the 
involvement of peripheral nerves and muscles [1]. 
Recording normally takes place under controlled 
laboratory conditions; in more recent years there has 
been an objective to extend the technology to users in the 
community, placing more emphasis on reliability, 
robustness and ease of use. Reliance on EEG features 
only is one of the key attributes with BCI systems, 
particularly important for users who have lost peripheral 
movement including eye gaze. However, BCI is 
recognized as a difficult assistive technology to establish 
for a user as successful deployment requires substantial 
tailoring to the user’s needs and individuality within their 
EEG.  
In contrast, for potential users with residual eye 
movement, eye-gaze technology has been deployed as an 
effective assistive technology, albeit with its own 
challenges in terms of attaining robust decision making. 
In particular, eye trackers have been used to navigate on-
screen commands; when a decision or action needs 
confirmed, features such as ‘dwell-time’ may be used to 
activate the classification.  

Combining active eye-gaze technology with BCI can 
bridge the gap between the two systems [2][3][4], 
creating a hybrid BCI (hBCI) system. BCI paradigms 
lend themselves to performing this confirmation or 
‘switch’ operation [5][6], providing complementary 
intentional control for the user. In some cases, the 
searching activity, can be employed to items and 
locations within the user’s physical environment, and this 
information provides a context to the decision to be made 
by the BCI system [7]. Meena et al., 2015 [8], proposed 
a hBCI combining motor imagery (using the event 
related desynchronization component) with eye tracking, 
aspiring to increase the number of available command 
choices. The eye gaze is used to detect (search for) the 
spatially located device, while the BCI (motor imagery) 
is used to select.  
Additionally, eye tracking has been used to provide the 
selection of ‘on-screen’ icons, with a BCI component 
confirming a choice. Galway et al., presented eye 
tracking selection of directional arrows to gain 
navigation through a Graphical User Interface (GUI) for 
control of domestic appliances [9]. The arrow icons flash 
to initiate Steady State Visual Evoked Potential (SSVEP) 
responses and thus perform the switch operation to 
activate the desired movement through the GUI or to 
activate a command on an external device. 
Kalika et al. [10] combined a P300 speller with eye 
tracking. Instead of a sequential search and select 
protocol, complementary inputs were combined and a 
Bayesian classifier enhanced the accuracy of selecting a 
character in the speller. Dong et al. [11] used a similar 
approach to combine motor imagery with eye gaze. Évain 
et al., [12] combined eye gaze and SSVEP inputs to 
enhance classification accuracy and demonstrated a 
speed up in operation and performance over existing BCI 
systems.  
In this paper, we provide an evaluation of an hBCI, which 
combines input modalities of SSVEP and eye gaze, and 
uses a similar signal processing approach as [13]. The 
aim was to evaluate the performance and usability of 
SSVEP for healthy participants and indicate 
improvements, that hBCI offers. The SSVEP paradigm 
provides a natural and intuitive procedure to collaborate 
with an eye-tracking algorithm.  Users interacted with an 
existing menu system [9], which provided navigation of 
a virtual smart home, on a desktop computer. They were 
required to observe and fixate on the navigation icon they 
wished to select; as the icons were collocated with 
frequency-modulated stimuli, the technique for 
interaction does not change from a user perspective. 
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MATERALS AND METHODS 
 
Ethical approval was granted by the Ulster University 
Research Ethics Committee (UUREC ethics number 
REC/16/0053). Thirty healthy volunteers (16 males and 
14 females), from staff and students at Ulster University 
and members of the public over the age of 18 years 
participated. Participant age ranged from 21-73 years, 
average 37.6 (SD 14.73).   Exclusion criteria prevented 
volunteers from participating if they were sensitive to 
flickering lights, had substantial problems with left-right 
discrimination, and hearing or visual impairments, which 
could not be corrected. Prior to beginning, participants 
undertook a practice run to familiarize themselves with 
the control paradigm and the GUI of the menu system. 
The assessment required participants to complete tasks to 
initiate domotic control, multimedia playback, 
communication, and free control of a smart-home 
environment.  Participants completed a pre-questionnaire 
to indicate expertise and their perceived level of 
tiredness/arousal and a post-questionnaire to provide 
some qualitative feedback. 
Setup time ranged between 4-26 mins, (average 13m:53s, 
SD 5m:35s) and total experiment time ranged from 50 
mins to 2 hours and 29 mins, dependent on the number 
of sessions that the participant completed, (average 1 
hour and 25mins, SD 20m:07s). From the 30 participants, 
12 had prior experience with eye tracking technology, 
nine had prior experience with SSVEP BCI, and 28 were 
experienced computer users. Eight participants required 
vision correction; six of which removed their glasses for 
the duration of the experiment to account for reflections, 
which may have adversely affected eye tracking 
performance.   
The experimental setup comprised dual LCD displays 
(refresh rate 60 Hz), an EyeTribe eye tracker, g.USBamp, 
g.LADYbird passive electrodes, g.GAMMAcap, and a 
Raspberry Pi home-automation server (for interaction 
with external devices such as lights).  The experiment 
was controlled by monitor one and participants were 
required to interact with the GUI displayed on monitor 
two. Participants were seated approximately 70 cm from 
this monitor. The EyeTribe Tracker was utilized to record 
gaze at a sampling rate of 60Hz, with a latency of <20 
ms. The device was calibrated on 9 points and with an 
accuracy in the range 0.5 – 1 degree. On-screen gaze 
coordinates were derived from the EyeTribe application 
programming interface. 
For SSVEP generation, four unique flickering stimuli 
(6.67 Hz, 7.5 Hz, 8.57 Hz, 12 Hz) were presented by 
modulating pixels on screen (rather than through external 
LEDs, which was adopted in previous studies). The four 
stimulation areas were set at the default size of 150 x 150 
pixels and by focusing attention on flickering stimuli, 
users could traverse through the menu structure by 
issuing a succession of left, right, up, and down 
commands.  The down command selected an item or 
navigated to a lower level in the hierarchical structure, 
and the up command returned to the previous (higher) 
level.  In addition, spoken feedback was provided after 

each command to reinforce the user experience by 
confirming the command.   The four stimulators were 
surrounded by a 250 x 250-pixel border, representing the 
maximum size that each stimulator could increase to 
without classification occurring. As an additional method 
of feedback, the stimulators were designed to grow 
dynamically in relation to the SSVEP amplitude of the 
respective frequency. This design was for two reasons: 1) 
it provides user feedback allowing participants to know 
when they have issued a command; and 2) larger stimuli 
produce a greater SSVEP response.  In the second case, 
real-time SSVEP visualization relating to the power 
estimation of the relevant frequency, decreases the time 
to select, as the response becomes increasingly more 
prominent in the EEG due to the increasing size of the 
stimuli; it is a positive feedback loop.        
Feature detection and command translation were based 
on signal processing methods realized by Volosyak et al. 
[13]. The SSVEP signal detection and classification 
process utilized the Minimum Energy Combination 
(MEC) method to create a spatial filter and enhance the 
SSVEP response while reducing ambient signals and 
other interference [13].  The system was designed to 
automatically determine the best spatial filter for each 
participant at each frequency.  The manifestation of each 
frequency in the EEG was detected by spatial filtering, 
power estimation, and a statistical probability method, 
which enhanced the quality of signal and separated 
channel-specific features.  Furthermore, an adaptive 
windowing technique was employed in order to 
determine a suitable window length based on online 
performance. Stimuli induced frequencies and harmonics 
were estimated in the recorded EEG. When this 
estimation exceeded a predefined threshold, as 
determined during calibration, a directional vote (i.e. 
SSVEPE left, right, up, down or no-control state) was 
transmitted to the data fusion component of the menu 
system, as illustrated in Fig. 1.  
 

 
Figure 1: Conjunction-based collaborative decision 
making process data flow 

 
In collaboration with the directional vote, coordinates of 
the participant’s gaze (CoordinatesG) were used to 
ascertain an overall command and concurrently 
transmitted to the Data Fusion component. Employing 
the conjunction of the estimated location derived from 
the participant’s gaze point and the directional vote, 
agreement of the intended command would occur if the 
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conjunction was found to be true.  Figure 2 illustrates the 
partitioning scheme utilized by the   Data Fusion 
component, which partitioned the overall GUI along the 
horizontal, vertical and diagonal axes, centered on the 
origin of the GUI, such that gaze coordinates were easily 
mapped to specific quadrants surrounding the SSVEP 
navigation icons.  
 

Figure 2: hBCI user interface partitioning scheme 
showing partitioning of screen along x, y and diagonal 
axes, placement of SSVEP navigation icon stimuli and 
no control state 

 
In addition, a no-control state within a predefined area 
centered on the origin of the GUI was used in order to 
permit the participants to view the currently active menu 
icon, which would appear in the center of the bespoke 
menu system. Accordingly, gaze coordinates were not 
acquired when the participant’s gaze was within the 
bounds of this zone, thus preventing the possibility of 
erroneous commands being issued by the Data Fusion 
module whenever the participant was regarding the 
active menu icon.  Directional decisions were calculated 
as follows:   
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where	Ϝ is a function of x and y, α is the horizontal 
resolution divided by two, β is the vertical resolution 
divided by two, and ϕ1, ϕ2, ϕ3, and ϕ4 are quadrants one, 
two, three, and four, respectively, and ߦ, ,ோߦ  and	,ߦ
 ,are the eye tracking vote for left, right, up, and down	ߦ
respectively. Upon successful command determination, 
the resulting command is transmitted by the Data Fusion 
component to the GUI resulting in continued traversal of 
the menu structure. 
Participants were instructed to complete four tasks, 
controlling the GUI-based menu system, to traverse a 
hierarchal-menu structure and activate features and 
functions of a smart-home environment. The 
instructions, issued by trained-research staff, requested 
that participants navigate the menu structure executing 
four-way control, e.g. left, right, up, and down 
commands.  The first task required participants to interact  
with smart home lighting in the dining room.  The second 
task asked if they could select a specified video for 
playback on the television set and subsequently end 

playback when requested.  The third task required users 
to navigate to the talk menu and communicate using 
predefined iconography and auditory feedback to 
indicate hunger (e.g., to a potential companion).  The 
fourth task required users to freely navigate the interface 
to complete a predetermined goal (in this case to go to 
the kitchen, find the extractor fan, and turn it off), without 
receiving a predefined set of instructed commands and 
therefore permitting users to initiate different command 
sequences to reach the goal.  Fig. 3 gives a representative 
example of task one, whereby participants were 
instructed to issue a minimum of 13 commands to 
traverse the hierarchal-menu structure and control room 
lighting. For the particulars of the individual tasks, please 
see [9]. 

 
Figure 3: The minimum commands to successfully 
traverse the hierarchal-menu structure and complete 
tasks two. 

In the case of an erroneous command (due to user error 
or misclassification), participants were instructed to 
rectify the mistake by issuing an additional command 
when required, which for subsequent analysis was 
considered as a ‘correct’ selection.  In certain 
circumstances, however, rectifying commands were not 
required, e.g. when a false-positive ‘up’ command was 
issued at the highest level of the hierarchy.  Such 
commands did not initiate traversal of the menu structure 
and therefore did not require rectification.  Each task was 
associated with a critical path (i.e. the minimum number 
of compulsory commands for successful completion). 
When completing the tasks, the total time for task 
completion, and the number of correct, incorrect, and 
rectified commands were recorded. Performance metrics 
for accuracy of target detection (Acc.), efficiency of the 
interaction (Eff.) and Information Transfer Rate (ITR) 
were computed offline.   
In some situations, the accuracy value provides a 
misimpression of participant performance. Due to the 
structure of the tasks, false-positive commands are often 
succeeded by a command to rectify the mistake, which is 
defined as an additional correct command.  The result 
from specific participants who issued several false-
positive commands suggests performance is of a higher 
level than in reality.  For this reason, Efficiency, as 
defined by Volosyak et al. [15], is calculated as follows: 
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commands (13 for Task 1 in our interface layout) and 
Ctotal is the total number of detected commands.  ITR was 
calculated as defined by Wolpaw et al. in [1]  and 
formularized as follows: 
 

ܴܶܫ ൌ 	൬݈݃ଶܯ  ଶ݈ܲ݃ܲ  ሺ1 െ ܲሻ݈݃ଶ 
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ܶ
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where M is the number of choices, P is the accuracy of 
target detections, and T (in seconds/selection) is the 
average time for a selection. 
 
RESULTS 
 
The experimental results, summarized in Fig. 4, provide 
an analysis of the individual accuracies, efficiencies, and 
ITRs as well as the averages across all participants. 
Furthermore, these results contrast the performance of 
SSVEP alone with hBCI, conveying a mean accuracy 
increase from 93.3% to 99.84%, mean efficiency 
improvement of 89.56% to 99.7%, and indeed an ITR 
improvement of 23.78 bpm to 24.41 bpm. The latter may 
be surprising as the eye tracker may be expected to 
somewhat dampen the responsiveness of the interaction 
(whether correct or incorrect), and contrast with the 
findings of Vilimek et al. in [16].  A paired t-test 
indicated that participants performed better using hBCI 
than BCI alone in terms of accuracy and efficiency with 
a significance of p < .001.  This finding indicates that 
there is a statistical significant difference between the 
two conditions that is not attributable to chance, and 
likely due to the independent variable manipulation.   A 
further paired t-test provided an analysis of the bit rates 
contrasting BCI-only and hBCI indicating a significance 
of p > 0.10.  This finding suggests that there is no 
statistical significant difference between these two 
metrics, and hence the difference of the means, in this 
case, is likely owing to chance.    
To compare these results with eye tracking-only please 
see the previous study  in which the same tasks were 
employed to assess the performance of eye tracking alone 
on healthy volunteers (N=12), indicating an average 
accuracy, efficiency and ITR of 88.88%, 81.20% and 
41.16 bpm, respectively.   
 

DISCUSSION 
 
This research indicates that the hBCI outperforms 
SSVEP-based BCI alone across all considered metrics, 
Acc., Eff. and ITR. Hence we believe that the hBCI is 
potentially more robust. This could go some way to 
addressing BCI acceptability outside the laboratory and, 
therefore, the additional cost and complexity of eye 
tracking can be readily justified. Indeed, the hardware 
cost in this case (a couple of hundred Euro) is minimal 
when compared to the BCI component as high spatial 
accuracy is not needed. Eye tracking is limited by false-
positive selections, however, which is often referred to as 

the ‘Midas Touch’ problem [18] (i.e. selecting everything 
unintentionally), while SSVEP performance is not robust 
enough for critical applications, e.g. false-positive 
selections in smart environments are known to produce 
intolerable events in the local environment, such as lights 
flashing on and off, doors opening and closing, security 
alarms triggering etc.  Therefore, the integration of both 
modalities as an hBCI has been demonstrated to improve 
the performance up to a level unobtainable by either 
modality on its own. 
An analysis of the post-questionnaire responses from the 
30 participants, conveyed that five preferred BCI alone, 
19 preferred the hBCI, and six had no preference.  
Multiple participants stated the hBCI improved 
confidence during interaction and one user in particular 
stated “the hybrid demonstrates a potential for more 
complex tasks”.  Other users substantiated this claim by 
mentioning that the hBCI seemingly offered enhanced 
robustness. A small subset of the participants 
contradicted these findings, however, by suggesting that 
SSVEP was superior as a sole input modality.  In some 
exceptional circumstances, for example, when 
participant 28 achieved remarkable performance using 
BCI alone (Acc. 100%, Eff. 100%, ITR 36.37 bpm), the 
hBCI merely slowed the interaction (Acc. 100%, Eff. 
100%, ITR 33.31 bpm).  Likewise, participant 6 who also 
preferred SSVEP alone, achieved Acc. 95.54%, Eff. 
93.88%, and ITR 23.36 bpm utilising BCI-only.  Their 
qualitative feedback was somewhat surprising 
considering their performance improved for the hBCI 
(Acc. 100%, Eff. 100%, ITR 21.91 bpm) for both accuracy 
and efficacy, albeit with a slight reduction in ITR.  While 
such a finding is inherently subjective, this participant 
was apparently more tolerant to errors than to an increase 
in time per selection, even if it meant 100% accuracy of 
target detection.  Participant 8, who did not achieve 100% 
hBCI accuracy and efficacy, expressed that they found 
“the hBCI control restrictive due to the fixed nature of 
the hardware”. This participant highlights a known 
restriction of eye tracking technology whereby 
calibration enforces users to remain stationary; for 
example, adjusting the seated positioning is known to 
produce erratic screen-based coordinates.    
The only volunteer who failed to complete the tasks, 
Participant 11, suffered from macular degeneration, a 
medical condition affecting the central field of vision, 
and would have been screened out if they had informed 
research staff prior to running the experiment. The result 
was labelled ‘inconclusive’ and excluded from 
subsequent numerical calculations. However, it 
reinforces that there will always be people that the BCI 
will not work with. Our intention is to assess the 
performance of people with brain dysfunction in the 
future and this will obviously pose additional challenges. 
A quantitative analysis comparing SSVEP with hBCI is 
represented in Fig. 3 (A) and (B).  From 30 participants, 
29 completed the tasks successfully.  Of those 29, only 
three failed to achieve 100% Acc. and Eff. and yet their  
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(A)                                                                                          (B) 

 
Figure 4: Data collected from 30 healthy participants. (A) The results from SSVEP-only achieved a mean Acc. 93.3%, 
Eff. 89.56%, and ITR 23.78 bpm. (B) The results from the hBCI (SSVEP + Eye Tracking) achieved a mean Acc. 99.84%, 
Eff.  99.74%, and ITR 24.41 bpm. 
 
performance still increased significantly in contrast with 
SSVEP-only.  In some cases, the ITR may have dropped 
moderately from SSVEP control to the hBCI.  As 
mentioned previously, and contradictory to prior research 
[16], the average bit rate improved for hBCI interaction.  
This is likely due to the ITR calculation, which is 
satisfied with three variables: 1) accuracy of target 
detection; 2) number of choices; and 3) time per 
selection.  A system that returns perfect accuracy can 
account for an increased time per selection and return a 
higher bit rate when compared with less accurate systems 
that have a decreased time per selection.  In an eye-gaze 
collaborative BCI this tradeoff is related to the dwell time 
of eye tracking decisions.  Optimal parameters in the eye 
tracking algorithm will ensure interaction speed does not 
diminish to a level that reduces bit rate.  An offline 
analysis of the data for a representative participant 
confirms this finding. Fig. 5 provides further 
interpretation of hBCI task one for a representative 
participant, confirming the eye tracker voted first on 12 
of the 13 selections.  For the most part, the eye tracker 
was not limiting performance, but for one of the 
selections, the up selection, the BCI had to wait for the 
eye tracker to agree before a selection could be issued, 
which increased the total time for task completion.  A 
common assumption, may suggest this should indicate 
the BCI-only version will return a higher ITR, but in 
certain cases this is incorrect. The hBCI still manages to 
outperform the BCI alone in terms of information 
throughput, if it issues slower selections with greater 
accuracy.  Comparison of the result of BCI alone and 
hBCI for Participant 2 when completing task one 
confirms this to be the case.  From period 45-48 seconds, 
it is clear the BCI was confident that the participant was 
attempting to issue an up selection but the eye tracker 
slowed performance, and yet the hBCI still exceeded the 
bit rate of BCI alone. This is particularly interesting as it 
suggests that refining the hybrid system may further 
improve performance. A softer decision process allowing 
selection based on confidence level of singular 
modalities would likely improve the system as an 

assistive technology.  Allowing decisions from one 
modality to surpass the other, however, prevents the 
assessment of individual components from a research 
perspective, e.g. eye tracking decisions that do not 
interact with BCI cannot be considered as an hBCI 
process, since decisions do not necessarily rely on 
activity from the brain.   

 
Figure 5: BCI, eye tracking, and collaborative selections for 
Participant 2 completing task one using the hBCI. 

Moreover, a comparative analysis of BCI and hBCI must 
always consider the same number of choices in the ITR 
calculations.  The BCIs discussed herein have four 
choices, the SSVEP stimuli for left (7.5 Hz), right (8.57 
Hz), up (12 Hz) and down (6.67 Hz) selections.   Each of 
these choices is reinforced with eye tracking decisions 
but the number of choices in the ITR calculation does not 
increase.  In a hybrid design, the number of choices could 
potentially increase significantly.  For example, a single 
frequency for SSVEP detection could be employed and 
12 choices added to an interface.  Each choice would be 
selectable via the user gaze and a BCI component.  In this 
form the hybrid utilizes BCI as a switch, but 
unfortunately the ITR cannot consider 12/13 choices.  
Doing so would provide a misimpression of performance 
and instead the ITR should be calculated using a single 
choice.      
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CONCLUSION 
 
The SSVEP paradigm provided a natural and intuitive 
procedure to collaborate with an eye tracking algorithm.  
Users were required to observe and fixate on the icon 
they wished to select, and if icons were also collocated 
with SSVEP stimuli, then the technique for interaction 
would not change at all from a user perspective. For the 
hBCI mean performance metrics of Acc., Eff. and ITR all 
improved. While the absolute improvements are small, 
they may contribute to user acceptability, as the eye gaze 
component adds minimal additional user effort to the 
interaction. BCI offers enormous hope for assisting 
communication/interaction for people with neurological 
disease. Further significant advances have been made in 
recent years. The hybrid discussed in this paper increased 
the performance metrics under study and generally the 
perceived robustness by the volunteers. Set up by an 
experienced user is still required, particularly regarding 
the thresholds to achieve best performance. Analysis of 
the eye tracking data and the collaborative decision 
process provides insight, showing that metrics can be 
further improved. This level of detail can also be used to 
quickly screen out people for whom the technology is 
inappropriate.   
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ABSTRACT: SigViewer is an open source cross-platform
biosignal viewer designed to visualize and annotate
biomedical data streams. It supports a wide variety of
file formats, including BDF, EDF, GDF, CNT, BrainVi-
sion, and BCI2000. Recently, support for loading multi-
stream XDF data has been added. Besides visualizing
raw data, SigViewer supports loading, displaying, cre-
ating, and editing events that can be used to annotate
specific segments within a signal. Other useful tools in-
clude offset removal, computation of event-related po-
tentials, and calculation of power spectral densities. To
our knowledge, SigViewer is the only open source cross-
platform multi-format biosignal viewer currently avail-
able that supports XDF files. Furthermore, SigViewer is
completely free in that it does not depend on any pro-
prietary software such as e. g. MATLAB. SigViewer is
actively maintained and widely used across the globe (as
measured by the monthly downloads). Filtering data in
the frequency domain before visualization to e. g. remove
line noise or excessive drift is one of the next planned fea-
tures for a future release.

INTRODUCTION

Inspecting and visualizing raw biophysiological data
such as EEG (electroencephalography), EOG (elec-
trooculography) or ECG (electrocardiography) remains
one of the first steps in any processing pipeline. Visual-
ization can help in assessing general data quality, which
includes detecting segments contaminated with artifacts,
identifying noisy or completely bad channels, and in-
specting events co-registered with the data.
Most available visualization tools are either tied to spe-
cific hardware, restricted to a small number of file for-
mats, limited to a specific operating system, depend on
proprietary programming environments, do not feature a
fully featured GUI, and/or need to be purchased (i. e. are
neither free nor open source). Relevant open source
tools that focus on EEG/MEG analysis and ship with
a visualization component include the MATLAB-based
toolboxes EEGLAB [1], FieldTrip [2], Brainstorm [3],

Biosig [4] (does not have a GUI1), and the Python pack-
age MNE [5] (does not have a GUI). Commercial tools
include the MATLAB-based g.BSanalyze2 as well as
BrainVision Analyzer3.
In contrast, SigViewer [6,7] is free, open source, cross-
platform, supports many different file formats, and is
written in standard-compliant C++ using the GUI toolkit
Qt4. Development of SigViewer started some 10 years
ago as a software project at Graz University of Technol-
ogy, Austria. A first public version was uploaded to a
dedicated SourceForge.net repository5 in May 2010. The
initial design goals of SigViewer can be summarized as
follows (note that they are still valid today for the most
recent release):

1. SigViewer should be cross-platform (i. e. it needs
to run on Windows, Mac OS X, and Linux) with a
native look-and-feel.

2. Visualization and interaction should be fast and re-
sponsive.

3. SigViewer should be completely free and open
source (that is, all components required to build
and run SigViewer should be available as open
source). This specifically excludes MATLAB as a
development environment, which many alternative
viewers are based on.

An important use case for SigViewer is post-hoc man-
ual signal inspection with the aim to identify and mark
continuous artifact segments within the data. In a typi-
cal workflow, once artifact segments have been selected
with SigViewer, they can be exported and thus integrated
in any subsequent data analysis pipeline. Figure 1 illus-
trates this use case with SigViewer’s main window dis-
playing three EEG channels and one ECG channel, to-
gether with different events shown as rectangular areas in
varying colors. Conveniently, these segments can be ex-
ported to a file for reuse in other stages of the processing
pipeline.

1Graphical User Interface
2http://www.gtec.at/Products/Software/g.BSanalyze-Specs-Features
3http://www.brainproducts.com/productdetails.php?id=17
4https://www.qt.io/
5http://sigviewer.sourceforge.net/
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FEATURES

SigViewer uses libbiosig from the BioSig project6 to sup-
port various file formats. Specifically, SigViewer pro-
vides read access for the following file types: BDF
(Biosemi), EDF (European Data Format), GDF (General
Data Format), CNT (Neuroscan), EEG/VHDR/VMRK
(BrainVision), and DAT (BCI2000). Recently, support
for XDF (Extensible Data Format) has been added. Other
file formats supported by libbiosig7 may work but are not
fully tested yet; official support for these formats may be
added at a later stage.

Figure 1: SigViewer running on Mac OS X.

After an initial search for global minimum and maximum
values on a per-channel basis (required for auto-scaling
the data), SigViewer renders the signal traces and events
contained in the loaded file. Smooth and rapid scrolling
through the file is supported, in contrast to many viewers
which feature only page-wise (and thus relatively slow)
navigation through a file.
In addition to visualizing the signals contained in a file, a
list of events is automatically generated in a separate tab.
Selected events can be deleted from this list.
Events can also be visualized, edited, and created within
the main signal view. Events are marked with colored
areas ranging from event onset to event offset. Multi-
ple events occurring at the same time can be discerned
by either assigning custom colors and/or alpha (trans-
parency) levels. Events with duration zero are drawn as
vertical lines. Events can be selected and edited graphi-
cally, which includes deleting and changing both the on-
set and offset as well as the event type. New events can
be created by dragging the mouse pointer over the desired
time range. Events can also be exported for use in other
applications.
Basic meta information about the data can be displayed
in a dedicated dialog window, which depends on the file

type. Possible displayed fields include file type, record-
ing time, patient ID, number of events, sample rate,
channel labels, data types, physical dimensions of the
recorded signals, and so on.

In addition to these visualization features, SigViewer also
supports simple signal processing operations. Currently,
power spectral densities as well as event-related poten-
tials can be computed for selected channels. Both tools
operate on (and thus require) selected event types in order
to compute averages.

RECENT DEVELOPMENTS

The latest stable release is 0.5.2, which has been avail-
able for almost four years. It can be downloaded from the
old SourceForge project website, but the project has since
moved to a new GitHub repository8. The latest source
code, issues, pull requests, and new releases will only be
available on the new GitHub website. The old Source-
Forge page will remain online until further notice.

Since this version, development has focused on adding
support for XDF files. Other minor changes include
switching to the latest version of the Qt library (from ver-
sion 4 to version 5) and replacing all icons with a more
modern monochromatic icon set.

XDF files are flexible XML-based containers that store
multiple data streams with different sample rates and data
types9. This makes XDF an ideal format for multimodal
data, which combines different modalities such as EEG,
eye tracking, motion capturing, and joystick and mouse
tracking into multiple synchronized data streams. To
import XDF files, SigViewer uses the dedicated library
libxdf, which handles all necessary conversions required
to reshape the data contained in an XDF file to a format
that SigViewer can process. Specifically, libxdf resam-
ples all data streams to a common sample rate, which
can be set by the user (see Figure 2). For this purpose,
SigViewer presents a dialog window when opening an
XDF file, which shows all streams contained in the file
with their sample rates and a suggested common sample
rate. Irregular streams (that is, streams without a con-
stant sample rate) are linearly interpolated for visualiza-
tion. Streams containing strings are treated as events (and
are therefore listed in the event table as well as plotted
over the signals).

Another new feature is detrending of signals, which is of-
ten required for EEG signals that were recorded without
a highpass filter. This works for many recordings, but a
more general solution using highpass frequency filters is
necessary for signals exhibiting a significant amount of
non-constant low-frequency activity.

6http://biosig.sourceforge.net/
7http://pub.ist.ac.at/˜schloegl/biosig/TESTED
8https://github.com/cbrnr/sigviewer
9https://github.com/sccn/xdf
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Figure 2: Resampling dialog window for XDF files.

There are two ways to save events for XDF files; events
are either stored in a new XDF file or appended to an ex-
isting XDF file. Another recent change regarding events
is that SigViewer now exports event to plain-text CSV
(comma separated values) files for all supported file for-
mats. Previously, it was only possible to export to bi-
nary EVT files (which are essentially GDF files with-
out signals). Such binary files are not straightforward to
open, whereas CSV files can be opened with any plain-
text editor (or imported and analyzed with more special-
ized software like Microsoft Excel, LibreOffice Calc, R,
and Python/Pandas). Table 1 shows how such an exported
CSV file might look like (note that -1 in the channel col-
umn means that an event is associated with all channels).

Table 1: Exported events example (names abbreviated).
position duration channel type name

767 2048 -1 768 Start
767 2048 -1 786 Cross

1535 0 -1 785 Beep
1535 320 -1 769 class1
1791 768 -1 781 Feedback
. . . . . . . . . . . . . . .

BUILDING SIGVIEWER

Building SigViewer is straightforward and completely re-
lies on open source tools. However, the exact steps vary
depending on which operating system is used. SigViewer
runs on Windows, Mac OS X, and Linux. Official builds
are available for Windows 10, Mac OS X (macOS) 10.9–
10.12, and recent Debian/Ubuntu/Arch Linux distribu-

tions. Older versions of these three platforms may work,
but are neither fully tested nor officially supported.
The source code of SigViewer is cross-platform, that is,
it works on all operating systems mentioned before with-
out further modifications. A prerequisite for building
SigViewer is therefore a folder with the source code,
which can be downloaded from the GitHub project site
(e. g. via downloading a zipped file or cloning the reposi-
tory).
On Windows, Qt 5.8 needs to be downloaded and in-
stalled together with the included MinGW 5.3 toolchain.
External dependencies must be copied to the external
folder within SigViewer’s source folder. At the time of
writing, libbiosig is a required dependency, but building it
on Windows is somewhat involved. Therefore, pre-built
binaries of this library are available on the old Source-
Forge repository10. The contents of this zipped file needs
to be extracted into the SigViewer source folder, which
automatically creates the required external folder struc-
ture. Next, SigViewer is ready to be compiled. The eas-
iest way is to open the source tree with Qt Creator (the
file sigviewer.pro needs to be opened). After selecting Qt
5.8 MinGW 5.3 as the toolkit, the project can be built as
a release by selecting Build – Build Project “sigviewer”.
This creates an executable in the bin/release folder.
On macOS, XCode (available from the App Store) and
the Command Line Tools (these can be installed by run-
ning xcode-select --install in a terminal) are
required. The source of the external dependency libbiosig
can be downloaded from the project website (this requires
at least version 1.8.4b). In the Makefile, the following
lines need to be adapted: lines 199 and 207 need to be
commented out, and 10.7 needs to be changed to 10.9
in lines 148 and 151. Furthermore, the program gawk
is required, which can be installed via Homebrew11 or
by downloading a pre-built binary such as the one avail-
ble from Rudix12. Then, make libbiosig.a can be
executed in a terminal. This creates the file libbiosig.a,
which needs to be copied to SigViewer’s source into ex-
ternal/lib. Similarly, the files biosig.h and gdftime.h need
to be copied to external/include. After that, qmake can
be run in a terminal within the SigViewer source tree, fol-
lowed by make. This creates the app in the bin/release
folder.
The procedure on Linux is almost identical to the one
described for macOS. The only difference concerns the
way required dependencies are installed. We recom-
mend to use the native package manager to install a GNU
toolchain with g++, gawk, and Qt 5.
Since details in this process can change rapidly with on-
going development, the most recent instructions on how
to build SigViewer can be found on the project web-
site. Note that we provide pre-built binary packages of
SigViewer for Windows, macOS, and Linux for users
who wish to skip the build process.

10https://sourceforge.net/projects/sigviewer/files/0.5.2/external-0.5.2-win32.zip/download
11http://brew.sh/
12http://rudix.org/packages/gawk.html
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DISCUSSION

SigViewer is an actively maintained open source viewer
for biosignals. The number of monthly downloads is
around 250 on average and around 20,000 in total accord-
ing to the download statistics available from SourceForge
(see Figure 3 for the monthly downloads over the past six
and a half years). Given that these downloads are for a
version that was released almost four years ago, we ex-
pect these numbers to increase when the new version with
support for XDF is released.
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Figure 3: Monthly downloads from SourceForge. The
total number of downloads since project upload until
2017-01-31 is 20079, and the average number of monthly
downloads is 248.

Planned enhancements for the near future include adding
support for spectral filters (highpass, lowpass, notch) to
improve visualization of signals with known noise char-
acteristics such as large low-frequency drifts or 50/60 Hz
power line noise. Other future efforts will be directed to
refactoring parts of the code base, for example to cre-
ate a more suitable header structure for meta informa-
tion (which facilitates displaying multi-rate streams with-
out the need for resampling), to implement a hierarchical
buffer which stores the signals in different resolutions for
rapid visualization in different zoom levels, and to imple-
ment a more modular file reader interface.

CONCLUSION

We have added several useful features to SigViewer,
most notably support for visualizing multi-stream XDF
files. Continued development ensures that SigViewer
will remain a valuable tool for inspecting raw biomedical
data, which is an important stage in any signal process-
ing pipeline including brain-computer interface (BCI) re-
search.
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ABSTRACT: Motor Imagery based Brain-Computer 

Interfaces (BCI) have shown potential for the 

rehabilitation of stroke patients. In order to make BCI 

systems available in the clinical environment new 

processing stages that increase the number of patients 

that can use these systems must be developed. This 

work presents a novel processing stage for BCI systems 

using the Filter Bank Common Spatial Patterns 

algorithm for feature extraction and Particle Swarm 

Optimisation for feature selection. The proposed BCI’s 

processing stage performance was evaluated with 

electroencephalography data of six stroke patients, 

which performed motor imagery of their paralysed 

hand. Offline tests reached average classification 

accuracies of 75±8 %. For 4 out of 6 patients, the 

proposed method showed a statistically significant 

higher performance (p<0.05) than the Common Spatial 

Pattern method. Therefore, although a higher sample is 

needed to confirm the observations, it is possible to 

significantly improve hand motor imagery classification 

by selecting filter bank common spatial patterns features 

with particle swarm optimization.   
 

 

INTRODUCTION 

 
Stroke is the first cause of disability worldwide [1]. 

Approximately 400 patients receive neurorehabilitation 

therapy for stroke sequelae each year in the National 

Institute of Rehabilitation, located in Mexico City. Loss 

of motor function (known as hemiparesis) is one of the 

most disabling consequences of stroke, which usually 

affects both upper and lower limbs from one side of the 

body.  
Assistive technologies such as Brain-Computer 

Interfaces (BCI) provide an artificial communication 

channel between the brain and an external device such 

as a robotic orthosis [2, 3]. BCI systems based on motor 

imagery (MI) of affected limbs have shown great 

potential as a tool for brain plasticity enhancement [4, 

5]. MI is a mental rehearsal of movements of a limb, for 

example the hand or foot, without muscle activation [6, 

7, 8]. MI elicits distinctive patterns in the electrical 

activity of the sensory-motor cortex, mainly in the 

frequency bands known as mu (8-13 Hz) and beta (14-

30 Hz) [6, 9]. A MI-based BCI system is comprised of 

four stages: acquisition, pre-processing, feature 

extraction and classification. Most BCI acquire 

electroencephalography (EEG) since is a non-invasive 

technique, has a good time resolution and is easy to 

accept by patients. Linear Discriminant Analysis (LDA) 

is the most used classification technique reported in BCI 

publications [10, 11]. One of the most effective feature 

extraction methods is the Common Spatial Patterns 

(CSP) algorithm, which computes a set of spatial filters 

that optimally differentiate two classes of MI. To 

achieve good classification performances using the CSP 

algorithm, the temporal filtering of the EEG signal must 

be performed on a specific frequency band, usually this 

band is comprised by the mu and beta frequency range. 

Two other parameters that need to be set up are the time 

interval from which features are going to be extracted, 

and the subset of spatial filters involved in the feature 

extraction process [12].   

The performance of CSP can be enhanced by selecting 

subject-specific parameters. Therefore, modifications to 

the original CSP method have been proposed to include 

this aspect. One of such modifications is known as 

Filter Bank Common Spatial Patterns (FBCSP); this 

method performs an automatic frequency band selection 

for temporal filtering of the EEG [13]. FBCSP 

algorithm employs a filter bank that decomposes the 

EEG into 9 different frequency bands covering the 

range of 4 to 40 Hz. Each of these 9 frequency bands is 

spatially filtered using the CSP algorithm; afterwards 

the extracted features for each band are selected with 

either the Mutual Information-based Best Individual 

Feature (MIBIF) or the Mutual Information-based 

Rough Set Reduction (MIRSR) algorithms. 

Classification is performed only with the selected 

features [13,14]. Feature selection is an important stage 

of the FBCSP algorithm, since it lowers the number of 

frequency bands needed for MI classification, and at the 

same time increases the classification performance of 

the BCI system. Feature selection is in fact an 

optimisation problem, and therefore artificial 

intelligence techniques, such as Particle Swarm 

Optimisation (PSO), could be used for finding a 

solution for it. PSO was originally proposed by Shi and 

Eberhart, inspired by the social behaviour of bird flocks 
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while searching for food. PSO performs a search in the 

space of the problem, with the aid of a population 

(called swarm) of individuals (called particles). Each 

particle executes a search based on its current position 

and velocity in the search space. In each iteration 

(called generations), the position and velocity of the 

particles are updated according to their best previous 

position (local search) and the best position of the 

swarm (global search) [15]. To the author’s knowledge, 

there are few studies that describe the use of PSO as a 

feature selection algorithm for BCI systems [16,17].  

In this work, a novel signal processing stage comprised 

of FBCSP for feature extraction, PSO for feature 

selection and LDA for classification was implemented 

as part of a BCI system. The proposed algorithm was 

evaluated offline with data of patients with subcortical 

stroke diagnosis.  

 
MATERIALS AND METHODS 

 
     Participants: The sample for this study comprised 6 

patients diagnosed with stroke (Mean = 55.8 ± 12 

years). In order to be considered for inclusion in the 

study, patients had to have a first stroke event of 

subcortical localisation, confirmed by a neurologist by 

means of neuroimaging studies (Magnetic Resonance or 

Computed Tomography); total or partial paresis of one 

of their hands; without clinical history of any other 

previous neurological or psychiatric diseases; right 

handed; with normal or corrected to normal vision and, 

with a normal performance in the subscales of digit 

detection and visual detection of the neuropsychological 

test NEUROPSI (this test has been validated for 

Spanish-speaking populations) [18]. The subscales 

evaluate the ability to follow instructions and 

concentrate in repetitive tasks. Subcortical stroke 

patients were selected since their brain damage does not 

involve the brain cortex and, therefore, they were less 

likely to present significant cognition impairments. 

Patients’ data are shown in Tab. 1. 

 

 

Table 1: Clinical and Demographic data of patients 

Patient Age Gender Hemiparesis Evolution 

1 50 Male Right 7 months 

2 57 Female Right 36 months 

3 58 Male Left 2 months 

4 79 Female Left 1 month 

5 46 Male Left 3 months 

6 45 Male Left 3 months 

 

 

     EEG acquisition: A g.USBamp biosignal amplifier 

from g.tec was used for EEG acquisition. EEG was 

acquired with 24-bits of resolution and sampling rate of 

256 Hz. Active EEG electrodes were used for 

acquisition, with 11 electrodes placed over the scalp of 

the patients, in positions C3, C4, Cz, T3, T4, F3, F4, Fz, 

P3, P4 and Pz of the international 10-20 system. Ground 

placement was set in the AFz position, and the reference 

electrode was placed in the right earlobe. To verify that 

no real movements were elicited during MI, 

Electromyography (EMG) was recorded from the deep 

flexor and superficial muscles of the fingers of both 

hands. For each patient, four recording sessions were 

performed in consecutive days, with 120 trials recorded 

in total. Recordings were performed in 4 days to avoid 

patients’ exhaustion, and all trials recorded per patient 

were included in the analysis. Patients were instructed 

to sit in a comfortable armchair, with a computer 

monitor placed at 150 cm in front of them. Visual cues 

shown in the monitor directed the patients to perform 

both rest with eyes open and MI from their paralysed 

hand. EEG acquisition was performed using a similar 

strategy as the one followed by the Graz paradigm [19]. 

Fig. 1 shows that the rest interval of the trials lasted 3 s 

and the MI interval lasted 5 s.  

     Implementation of the FBCSP+PSO algorithm: A 

one-second length window was extracted from 1.5 s to 

2.5 s to obtain the rest information for each trial. 

Another window of one-second length was extracted 

from the 3.5 to 4.5 s time interval of each trial, to obtain 

the MI information of the trials, as observed in Fig. 1. 

These time windows were selected based on previous 

studies which show that differentiation between MI and 

REST classes is higher in these time intervals [20]. The 

FBCSP algorithm encompassed the processing stage of 

the BCI system, and PSO was used for feature selection 

(named FBCSP+PSO). A diagram of the algorithm’s 

implementation is shown in Fig. 2.   

 

 

Figure 1: Illustration of the experimental paradigm. 

Dotted lines show the time windows extracted from 

EEG signals. 

 

 

 

Figure 2: Diagram of FBCSP+PSO implementation 
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EEG data were filtered in order to obtain 6 frequency 

sub-bands, each 4 Hz broad, and with 1 Hz of 

overlapping in order to avoid loss of information. 

Encompassing both alpha and beta frequency bands as 

follows: 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, 24-28 

Hz and 28-32 Hz. A 60 Hz band-stop filter was also 

applied to the EEG signals. All filters were FIR filters 

of 20th order, selected for their linear phase features.  

For the EEG data filtered in each sub-band, spatial 

filters were computed with the CSP algorithm. CSP 

performs a linear transformation on the EEG data, in 

order to obtain features whose variances are optimal for 

classification of two classes of MI, in a specific 

frequency band. Details of the CSP implementation can 

be found in the works of Blankertz et al. [21], and 

Ramoser et al. [22]. Spatial filters were computed using 

the MATLAB command 𝑊 = 𝑒𝑖𝑔 (𝑆1, 𝑆1 + 𝑆2) as 

suggested in the above-mentioned works. 𝑊 is the 

matrix containing the spatial filters, 𝑆1 and 𝑆2 are the 

covariance matrices of MI and rest computed from the 

EEG data of each filtered frequency sub-band. In the 

implementation of the original CSP, only the first and 

last 𝑚 columns of the 𝑊 matrix (𝑚 is generally 2) are 

used to generate the feature vector used for 

classification. With the goal of having a greater chance 

of finding the optimal sub-band for each patient, in this 

work all possible features were extracted with CSP. The 

feature vector generated for each trial 𝑖 is comprised as 

follows: 

 

𝑓𝑖 = [𝑓1,𝑖 , 𝑓2,𝑖 , 𝑓3,𝑖 , 𝑓4,𝑖 , 𝑓5,𝑖 , 𝑓6,𝑖] (1) 

 

Therefore, CSP features computed for the training set 

comprised by 𝑛𝑡 trials are: 

 

𝐹𝑇𝑟𝑎𝑖𝑛 = [𝑓1; 𝑓2; 𝑓3; 𝑓4; … ; 𝑓𝑛𝑡],       𝐹𝑇𝑟𝑎𝑖𝑛 ∈ ℝ𝑛𝑡×66   (2) 

 

Where 66 are the 6 frequency band features 𝑓 extracted 

for each of the 11 recorded electrodes. For feature 

selection, PSO was used for selecting a subset of 

features from 𝐹𝑇𝑟𝑎𝑖𝑛 in order to decrease both the 

classification error and the number of selected features. 

PSO was computed by solving two equations: 

 

𝑣𝑖
𝑛+1  =  𝑤 ∙ 𝑣𝑖

𝑛  +  𝑐1 ∙ 𝑟1 ∙  (𝑃𝐵𝑒𝑠𝑡𝑖
𝑛 – 𝑥𝑖

𝑛) +  𝑐2 ∙

𝑟2 ∙ (𝐺𝐵𝑒𝑠𝑡𝑔
𝑛 – 𝑥𝑖

𝑛)                                              
(3) 

 

                                 𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1 (4) 

 

Where 𝑥𝑖
𝑛+1 and 𝑣𝑖

𝑛+1 are the position and velocity of 

the 𝑖th particle of the 𝑛th generation. For PSO 

implementation 50 particles and 50 generations were 

used. 𝑤 is the inertial weight of PSO which linearly 

descends from 1 to 0 as generations of PSO are 

computed. 𝑐1 and 𝑐2 are positive constants set to 1. 𝑟1 

and 𝑟2 have random values between 0 and 1, which 

coupled to 𝑐1 and 𝑐2 set the local and global search 

properties of PSO. 𝑃𝐵𝑒𝑠𝑡𝑖
𝑛 is the best position reached 

by the 𝑖th particle in the 𝑛th generation. 𝐺𝐵𝑒𝑠𝑡𝑔
𝑛 is the 

best position (𝑔) reached by the entire swarm in the 𝑛th 

generation. The maximum position value that a particle 

could reach was 1 and the minimum was 0. Maximum 

speed of each particle was set to 1 and minimum speed 

to 0. In this work, the search space of PSO was 1𝑥𝐷 , 

where 𝐷 equals 66, and was comprised of the 66 

features that can be selected from the FBCSP algorithm. 

Each computed solution with PSO is a subset of the 

selected features. Solution values are in the range from 

0 to 1. If the value of an element of the solution was 

higher or equal to 0.5, then the corresponding feature 

was selected. The original CSP algorithm states that 

selected features must be paired, so complementary 

features of the selected ones were also included, in case 

they were not originally selected by PSO. Selected 

features from the training set were used for designing an 

LDA classifier. PSO fitness value was computed with 

the following equation: 

 

𝑣𝑎𝑙𝑢𝑒 = (𝑒𝑟𝑟×2) + (𝑛𝑠𝑒𝑙𝑒𝑐/66) (5) 

 

Where 𝑒𝑟𝑟 is the computed classification error from the 

training set. 𝑛𝑠𝑒𝑙𝑒𝑐 is the number of selected features. 

Variables 𝑒𝑟𝑟  and 𝑛𝑠𝑒𝑙𝑒𝑐/66 have values ranging from 

0 to 1. Both parameters 𝑒𝑟𝑟 and 𝑛𝑠𝑒𝑙𝑒𝑐/66 are 

summed, so that PSO can perform a reduction of both 

classification error and the number of features used for 

classification. The  value 𝑒𝑟𝑟 is multiplied by 2, so that 

the optimization priority of PSO is the reduction of the 

classification error over the selection of a lower number 

of features. The stop criteria used for PSO was either 

achieving 0% of classification error, or 50 generations. 

Fig. 3 shows a block diagram depicting the 

implemented PSO algorithm. 

 

 

Figure 3: Block diagram describing the implementation 

of the PSO algorithm 

 
With the final selected features (𝑥) and the training set, 

a LDA classifier was designed, which was later 

evaluated with the testing set. Features selected with 

PSO in the training stage were the same as the ones 

used for the testing stage of the classifiers. LDA 
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performance was measured by computing the 

percentage of classification accuracy (%CA). 

     Cross-Validation: A stratified cross-validation of 

10x10-Fold was used in order to avoid bias in the 

computation of %CA. Classifiers were tested using 

totally different datasets than the ones used for training. 

For each fold and repetition, the FBCSP+PSO algorithm 

was calculated. The 100 values of %CA obtained from 

this procedure were used to compute the average %CA 

for each patient.  

For comparison purposes, the performance of the 

FBCSP+PSO method was compared with that of the 

original CSP using the same training and test subsets, 

and applied to a frequency band of 8 to 32 Hz.  

     Statistical Analysis: In order to assess the reliability 

of the BCI system, both %CA and the practical level of 

chance were computed. The practical level of chance for 

each experiment was not 50%, since its value needs to 

be computed by means of a confidence interval as 

explained by Muller-Putz et al. [23]. Practical level of 

chance was computed with a binomial distribution using 

a 95% confidence interval, with 120 trials 

encompassing the data of each class. The computed 

%CA were compared with the practical level of chance 

in order to assess if a patient could control the BCI 

system.  

A paired t-test (α=0.05) was performed for comparing 

the %CA obtained with the proposed FBCSP+PSO 

method, and the original CSP (with a frequency band 

ranging from 8-32 Hz).  

      Computational cost: The averaged execution time of 

the proposed algorithm’s training stage for each 

patient’s cross validation was used to estimate its 

computational cost. All computations were performed in 

a PC with a 2.5GHz Core i7 processor and 12GB of 

RAM.  

 

RESULTS 

 

Tab. 2 shows the number of selected features by the 

FBCSP+PSO algorithm for each patient. This number is 

the mode from the 100 values computed from the 

10x10-Fold cross-validation with the train set. On 

average, for each patient, 10 features were selected by 

PSO. The most selected frequency band for all 

experiment’s repetitions is also shown: for 5 of the 6 

patients it was from 8 to 12 Hz, which comprises the mu 

rhythm, while for the other patient the selected 

frequency sub-band was 12 to 16 Hz. Tab. 3 shows the 

%CA obtained with FBCSP+PSO and the ones obtained 

with CSP with a frequency band from 8 to 32 Hz are 

shown. These percentages are the offline MI and rest 

recognition capabilities of the BCI. 

It is important to remember that the number of selected 

features with the CSP algorithm was always 4 (2×𝑚). 

An asterisk (*) was used to indicate if a statistically 

significant difference (p<0.05) was found between both 

methods. FBCSP+PSO showed better performance than 

CSP for the 6 patients. For 4 of the 6 patients, 

differences were statistically significant.  

Table 2: Feature selection performed with PSO. SD 

refers to standard deviation. 

Patient 
FBCSP+PSO 

Features Frequency Band (Hz) 

1 10 8-12 

2 8 12-16 

3 8 8-12 

4 10 8-12 

5 10 8-12 

6 12 8-12 

Mean(SD) 10(2) - 

 

 

Table 3: Performances of FBCSP+PSO and CSP. An 

asterisk (*) means that statistically significant 

differences (p<0.05) were found between both methods. 

SD refers to standard deviation. 

Patient 

FBCSP+PSO 

% Classification 

accuracy (SD) 

CSP 

% Classification 

accuracy (SD) 

1 83 (2) 82 (1) 

2 85 (2) 84 (1) 

3 68 (2)* 66 (1) 

4 65 (3)* 58 (2) 

5 76 (2)* 69 (1) 

6 74 (2)* 63 (1) 

Mean(SD) 75(8) 70(10) 

 

The average computational cost of FBCSP-PSO training 

stage across all patients was 3.6 s (SD=0.04 s).  

 

DISCUSSION 

 

The presented novel processing stage was comprised by 

the FBCSP algorithm for feature extraction and PSO for 

feature selection. Test results were compared to those 

from the original CSP algorithm with a frequency band 

from 8 to 32 Hz. The proposed method was designed in 

order to increase the BCI’s MI classification 

performance of the paralysed hand of stroke patients. 

Offline performances of the proposed processing 

algorithm achieved better performances than the 

original CSP. It is important to mention that for 4 out of 

6 patients, these performance differences were 

statistically significant. These results are different from 

the ones presented by Ang et al., who performed an 

offline evaluation of the FBCSP that employed the 

MIRSR feature selection algorithm. They performed 

their test with a public database comprised of 9 healthy 

subjects. In their work, it is shown that FBCSP using 

the MIRSR algorithm had better performances for 6 out 

of 9 subjects than CSP (using a 7 to 35 Hz band), but 

none of the performance differences were statistically 

significant [14]. Therefore, the FBCSP+PSO method 

seems to be a better option for automatic frequency 

band selection of each patient.  

The average offline performance computed for each 

patient is similar to the one reported by Ang et al. in a 

study which analysed the performance of 46 stroke 
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patients which achieved an average of 74% of correct 

classification. In order to acquire MI from the patients’ 

paralysed hands, authors recorded 27 EEG channels. 

The processing stage comprised the FBCSP using 

MIBIF as feature selection algorithm [24]. In the 

present work, similar offline performances were 

obtained, however only 11 EEG channels were 

recorded. PSO is an optimisation method for which 

extensive research has been conducted in order to 

ensure better convergence and to reduce stagnation of 

the search space. The heuristic nature of PSO implies 

that the method performance will not be limited by 

statistical features of the search space, since the method 

does not need to compute inverse matrices or other 

computations which often present restrictions, 

especially for high dimensional search spaces. 

Consequently, PSO can be easily adapted for feature 

selection in MI-based BCI with setups involving a high 

number of EEG electrodes; however, one of the main 

disadvantages of PSO optimisation is the high 

computational cost required for its training phase. In 

this work, computational cost was not an issue since a 

relative low number of EEG channels were recorded 

and processed. Offline performances of the BCI system 

show that PSO implementation for feature selection of 

FBCSP allows this method to have better performances 

than CSP. This performance is achieved by setting a 

multi-objective optimisation for the PSO algorithm, 

which is computationally efficient since it only required 

computing the LDA performance and the number of 

selected features. It is important to mention that, in 

order to achieve better performances, higher importance 

was given to the LDA’s classification performance than 

to the number of selected features in the fitness 

function. 

One of the limitations of the present study was that 

scalp location of the selected features was not analysed. 

However, all the recorded electrodes were placed over 

the sensorimotor cortex and, therefore, in an online BCI 

aimed for neurorehabilitation no maladaptive changes 

during neural re-organization would be elicited by the 

feedback. 

 

CONCLUSION 

 

This work presents a novel processing stage for BCI 

systems. The proposed processing stage comprised of 

FBCSP+PSO combined with LDA showed good 

performances for classification of MI from the 

paralysed hand of stroke patients. PSO as a selection 

algorithm for FBCSP features allows reducing the 

problem’s dimensionality and achieving better 

classification performances, compared to those obtained 

if only the original CSP is used. The next developing 

stage of the system will be to perform tests involving 

direct EEG acquisition from patients. An online 

implementation of the proposed algorithm must be 

assessed to further confirm its feasibility for stroke 

patients’ rehabilitation. 
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ABSTRACT: Deep Brain Stimulation (DBS) is a stan-
dard clinical tool for treating refractory stages of Parkin-
son’s Disease (PD). While current chronic DBS systems
apply constant stimulation patterns, improved clinical
effects are expected from adaptive DBS (aDBS) sys-
tems, which stimulate only when required, and for
which single-trial methods developed in the field of
BCI may prove fruitful. The development of aDBS
systems requires (among others) two key ingredients:
neural markers informative about the state of the pa-
tient’s motor system, and algorithmic control strategies
which translate the observed markers into stimulation
patterns. While both start to be investigated in human
patients, animal models of PD may drive aDBS research
forward at substantially higher speed and lower risks. In
this regard, we present a prototype setup of a closed-
loop aDBS system. It enables online recording, signal
analysis and stimulation for a rodent model of PD.
Our preliminary analyses show that the system – in
accordance to the literature – is able to evoke spectral
power changes of cortical and subcortical LFPs, and
thus provides the experimental basis to systematically
investigate informative markers and control strategies.

INTRODUCTION

Deep brain stimulation (DBS) of the subthalamic nu-
cleus (STN) has become a standard therapy for treat-
ing refractory stages of Parkinson’s disease (PD) [1].
Clinical applications of DBS usually rely on open-
loop technology, which means that the stimulation is
uninterruptedly delivered, disregarding the motor state
of the patient or his/her related brain activity signatures,
also called neural markers (NM). This type of DBS is
termed continuous DBS (cDBS). Despite proven clinical
benefits, cDBS systems are energetically inefficient,
leading to a reduced battery life, and are also known
to cause side effects like tolerance to treatment [2], [3],
[4] which may be related to the continuous stimulation.
In recent years, first closed-loop adaptive DBS (aDBS)
systems have been presented in research environments
[5], [6], [3]. They pursue the goal to provide stimulation

∗Both authors have contributed equally to this study

on-demand only, for example, by reducing or stopping
stimulation during periods of inactivity or when the
motor performance of the patient does not require it. The
envisioned effect of aDBS is an improvement of the PD
symptoms which is at least comparable to that of a cDBS
approach, while simultaneously minimizing the energy
input to the brain. Determining when and how to deliver
stimulation in closed-loop aDBS systems could directly
be based upon the observed motor ability of the patient.
For practical reasons, however, current approaches try
to replace the behavioral measurements by NMs which
describe the current motor state of the patient. Such
NMs can be extracted from local field potentials (LFPs)
recorded via electrodes which habe been implanted
in the STN for delivery of the DBS pulses [7], [8].
Although the identification of PD-relevant NMs has been
studied in recent years, the high intersubject variability
of the signal features makes the characterization of such
NMs a difficult task [9], [10], [11]. In addition, the
development of closed-loop control algorithms poses
a great challenge as (a) non-stationarities govern the
dynamics of measured brain activity, (b) artifacts of
biological and non-biological origin are contained in
the data, (c) the amount of labeled data per patient to
learn from is limited. Further studies on investigating the
mechanisms of the DBS [12] and on the optimization
of stimulation parameters [13], are additional examples
of the efforts done in this regard. Along these lines,
several studies on closed loop DBS in both compu-
tational and experimental neuroscience — such as by
[14], [15] and [16] — have been published, where the
development of systems that can record, analyze and
stimulate in an online closed-loop scenario seemed key
to scientific progress. The development of such systems
can be addressed using an experimental setup based
on animal models, as introduced in [17], [18], [19].
The 6-hydroxydopamine (6-OHDA) PD rat model is
an example of a neurotoxic model. It makes use of 6-
OHDA injected into the substantia nigra pars compacta
(SNC), medial forebrain bundle (MFB), or the caudate-
putamen complex CPu [20] to generate Parkisonian-
like biomarkers and behavior. In the present work,
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we introduce our initial work on a novel closed-loop
DBS stimulation system that allows recording, analysis
and stimulation of cortical and subcortical structures in
hemi-Parkinsonian rats, which has not been reported so
far in the literature. We also present preliminary results
on the spectral effects evoked by DBS when applied to
the STN of 6-OHDA PD rats.

METHODS

Animal Preparation

Stereotactic surgery was carried out for high precision
lesioning and electrode implantation. All protocols were
approved by the Animal Care Committee of the Uni-
versity of Freiburg (permit G-15/31). Female Sprague-
Dawley rats (300-320g) received inhalation anaesthesia
with isoflorane. A freshly prepared 6-hydroxydopamine
according to [21], kept in the dark and on ice, was
injected unilaterally into the ventrolateral CPu. The flow
rate of the injection was 0.5 µl/min and the injection was
carried out for 10 min using a micropefusion pump.
Four weeks after the operation, a rotational test was
carried out on each rat. Each animal was habituated to
the test environment for around 30 minutes. Then, the
animal was taken out, subcutaneously administrated with
apomorphine to evaluate the success of the lesioning
operation with drug-induced rotation, as explained in
[21]. The animals were placed back in the experiment
environment and the rotation was measured for 40
minutes. The animals showing drug-induced rotation
(PD rats from now on) were chosen for the electrode
implantation surgery.
The week after, electrodes implantation surgery was
carried out on 6 PD rats. Two electrodes were implanted
in two different regions of the brain. One tetrode in
the subthalamic nucleus (STN) with four contacts (two
stimulation and two recording), made from 50µm micro
wires (Science Products GmbH, Germany) and a bitrode
with two recording contacts in the motor cortex with
the same micro wires. Two anchors were placed on the
rat’s skull as reference and ground contacts, respectively.
After a week of recovery the closed loop experiment was
executed.

Signal Acquisition

The stimulation device used in this study was designed
and built in the Neuroelectronic System group (NES
STiM) of the University Medical Center Freiburg, Ger-
many [22],[23]. An Alphalab SnR (Alphaomega Co.,
Israel) recording device was utilized to capture the LFPs
of the rat’s brain during the experiment. The schematic
of the closed loop setup is depicted in Fig. 1. The signals
were recorded at 1395 Hz sampling frequency. For the
offline analysis, a frequency filter with a pass band of
0.7-90 Hz was applied before signals were downsampled
to 250 Hz.

model processing

acquisition

stimulation

monitoring

Figure 1. Schematic of the closed loop utilized in
this study. The signal of local field potentials (LFPs)
is captured using an Alphalab SnR device and streamed
out for visualization and into Matlab. Analysis of the
acquired signals, as well as the stimulation control was
performed online.

Experimental Design

The timeline of one experimental session is depicted
in Figure 2. Each rat was recorded for 10 mins after
being placed in the experimental environment (pre-
stimulation phase), followed by a stimulation phase of
10 min duration. Prior to the subcutaneous injection of
apomorphine and directly after it, the LFP baseline
activity was recorded for 10 s each. During the following
10 minutes, closed loop DBS stimulation was carried
out (stimulation phase). In this stage, the stimulation
onset was triggered when the power of the beta band
(13-25 Hz) activity averaged across channels surpassed a
threshold defined as the median of the power recorded in
the post-injection baseline interval. Once the stimulation
was triggered, it was delivered with constant intensity for
one minute. For later offline analysis of the simulation
effect, two time intervals of LFP signals of 10 s duration
each were extracted from the stimulation-free periods
directly before and after the stimulation. After a washout
period of 60 s, the threshold criterion became active
again and the next stimulation block could be delivered.
Within the 10 min stimulation phase, an average of 4.6
stimulation blocks were delivered per animal.

10 min

apomorphine

10s 10s

60s
60s

stim. block stim. block

10s 10s

Figure 2. Schematic of the recording sessions with
a depiction of the segments analyzed: baseline prior
to apomorphine delivery , baseline following apomor-
phine delivery , pre-stimulation , post-stimulation .
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Segments analyzed: Recorded signals were analyzed
under two different setups.

1) To determine the effects of DBS in the spectra
of the motor cortex and the STN, signals before
and after each stimulation interval were analyzed.
The 10 s of data before and after DBS stimulation
were segmented using 2 s rectangular windows with
90% overlap. Pre-stimulation and post-stimulation
spectra were compared using the Wilcoxon rank-
sum test to determine the statistical significance
of observed differences. For reference, the spectra
of two baseline recordings were also computed,
i.e., 10 s segments immediately before and after
apomorphine delivery, but prior to any DBS stim-
ulation. Refer to Figure 2 for an schematic repre-
sentation.

2) To analyze potential washout effects of the apo-
morphine, as well as cumulative effects caused by
repeated delivery of DBS periods over 10 minutes,
the 10 s segments of data collected before each
DBS stimulation (windowed as described above)
were correlated with the timestamp (time since
apomorphine delivery) of each window using the
Spearman’s rank correlation.

In all scenarios, PSD of the signals was computed using
a multitaper estimate with a multitaper windowing band-
width of 4 Hz. The frequency components around 30 Hz
were disregarded in the analysis due to a hardware-
related artifact in that frequency band.

RESULTS

Effects of DBS onto the spectrum

Figure 3 depicts spectra of all animals, four recording
locations and the four conditions: baseline prior (yellow)
and after (green) apomorphine, and the average of the
spectra prior (blue) and after (red) each DBS stimulation
block, according to the setup shown in Figure 2. It is
observed, that the administration of apomorphine causes
an increment in the signal power particularly in the low
frequency range. This phenomenon can be observed in
all the channels for subjects 2, 3, 4 and 6. DBS effects
are assessed by comparing pre and post segments of
each simulation block (blue vs. red). Various, subject-
specific effects were observed: For subject 1 synchro-
nization of activity in the 5-10 Hz range was observed
(mainly visible in channels m1, m2, and stn1). Subject 2
shows a contrary effect upon stimulation, where power
in the low frequency range decreases, as observed in
m2 and stn2. An even stronger power decrement can
be observed in the beta band (around 15 Hz) of this
subject, particularly evident in channels m2, stn1, and
stn2. Subject 3 shows a much more smooth spectrum,
with no specific frequency peaks standing out from
the background in either conditions, except for a low
frequency desynchronization present in stn2 and a beta
band synchronization detected in stn1. Subject 4 shows a
behavior similar to subject 1, presenting power decrease
in the lower part of the frequency spectrum for m2,

stn1, and stn2. Subject 5 shows the smallest spectral
changes caused by DBS stimulation, with a subtle power
decrement of the alpha-range component in channel m2.
Similarly to subject 3, power spectra of subject 6 do not
show any evident frequency components standing out
from the background, with the effects of the stimulation
decreasing the signal energy of the entire analyzed
spectrum.

Effects of time in PSD

Spearman’s rank correlation between the energy of each
of the frequency bins and the corresponding times-
tamp are provided in Figure 4. Subject 1 shows rather
heterogeneous changes in the spectra of m1 and m2,
however both stn1 and stn2 show a clear desynchro-
nization (marked in blue) in the lower frequency range.
Subject 3 shows a consistent power decrement in the
lower part of the spectrum for m1 and m2, and a
generalized increment of the power (marked in red) in
stn2. Subjects 4 and 5 show a generalized decrease in
the signal energy along time. It is worth pointing out
that for subject 4, alpha band was stable for m1, m2
and stn1, whereas beta was stable only for m1 and m2.
On the other hand, the time-related desychronization for
subject 5 is present in the whole spectrum, although a
stronger desynchronization in stn1 beta band can also
be observed. Finally, subject 3 reveals a weak power
decrement in the lower part of the spectrum for m2,
having stn1 the contrary effect. Channel stn2 presents
a power decrement, which is homogeneous across the
spectrum.

DISCUSSION

In this contribution, we presented (1) a closed loop
aDBS system allowing acquisition, analysis and stimu-
lation of subcortical and cortical structures of PD animal
models and (2) preliminary results on the individual
effects observed upon DBS on spectral characteristics
of LFP signals.

i Our system provides a suitable platform for acqui-
sition of subcortical and cortical signals in an on-
line scenario. Although, the real-time requirements
of the system have not been defined, its modular
construction allows for a flexible setup, that is easy
to customize. As future work, the exact temporal
characteristics of the system will be assessed.

ii DBS-evoked cortical and subcortical desynchroniza-
tion and synchronization effects in alpha and beta
bands have been observed. As the effects varied be-
tween animals, relevant NMs should be determined
individually for each subject. This finding underlines
the potential benefit of data-driven approaches for
driving aDBS methods forward.

iii We have shown that the experimental setup divided
in pre-, during, and post-stimulation phases is ap-
propriate to carry out the intended analysis.

iv Temporal structure of the spectral features confirms
the existence of non-stationary dynamics. While in
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Figure 3. Top: spectra of recorded channels displaying DBS- and apomorphine-evoked changes: baseline prior to
apomorphine , and baseline following apomorphine , pre-stimulation block , post-stimulation block . Bottom:
Graded scores of the ranksum test are provided in green to brown colors. They compare pre- vs. post-stimulation

spectra. In both figures, gray areas mark the spectral band affected by a technical artifact.

our setup, it could not be determined, if this non-
stationarity is caused by repeated DBS or by the
washout of the apomorphin, the results strongly
indicate, that non-stationarities must be considered
in analyses and aDBS systems.
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ABSTRACT: Measuring brain activity with non inva-
sive techniques as EEG and MEG allows to detect os-
cillatory sources related to neural processes. Covariance-
based spatial filters determined by linear subspace meth-
ods allow to extract narrow band sources whose band
power correlates with a given target variable in single
trial. Since knowledge about the frequency band of
interest usually is unknown, filterbank strategies are
commonly used. They rely on time domain filtering of
the signals to predefined frequency bands. We suggest
that the implementation can be optimized by computing
the covariance matrices directly in the frequency do-
main, thus rendering the iterative time-domain filtering
unnecessary. Our contribution shows that the imple-
mentation in the frequency domain is computationally
more efficient than the classic approach. We evaluated
the novel approach in the context of source power co-
modulation (SPoC) and give indications, how it can be
extended to other subspace methods such as common
spatial patterns (CSP) [1].

INTRODUCTION

Measuring electrical oscillatory activity of the brain by
using electroencephalography (EEG) provides functional
information about the underlying neural processes [2].
Extraction and analysis techniques of such oscillatory
components have been developed in the context of brain-
computer interfaces (BCI) [3], [4] and neuroscience [5].
As low signal-to-noise ratio (SNR) and volume con-
duction impedes the EEG analysis, spatial de-mixing
approaches are widely used in order to extract oscillatory
subspace components. For this purpose, unsupervised
techniques are widely used, with independent com-
ponent analysis (ICA) [6], [7] being most prominent
in the field. With specific prior knowledge, however,
more specialized methods like spatio-spectral decom-
position (SSD) [8] or slow feature analysis [9] may
prove valuable. If discrete labels are available, however,
then a supervised method like common spatial patterns
(CSP) [1] can improve the subspace representation, as
the spatial decomposition can be guided by the label
information. CSP is applicable when discrete labels are
given (e.g. class labels in a motor imagery task, hits
vs. misses in a perception task). CSP determines the
projecting components based on channel-space covari-
ance matrices, that maximize the contrast of oscillatory
activity between conditions.

In other paradigms, the additional information is pro-
vided in the form of continuous labels rather than
discrete class labels. A regression approach – like Source
Power Comodulation (SPoC), introduced by Dähne et al.
– is able to exploit these continuous labels in order to
extract spatial components [10], [11]. Both supervised
covariance-based subspace methods, CSP and SPoC,
have been designed to extract oscillatory components
whose band-power is informative. However, while CSP
expects discrete two-class labels and maximizes con-
trast, SPoC requires a continuous target signal and
identifies spatial components, which co-modulate in
their power with this known continuous univariate target
signal. For applications of SPoC on neural signals please
refer to [12], [10], [11], [13].
Choosing a suitable frequency band is a critical hyper-
parameter for these methods, since they require a narrow
band frequency filter to be applied to the data prior
to starting the search for subspace components [14],
[15]. If knowledge about expected informative frequency
bands is not available, a generic filter bank approach can
be used, as proposed by Ang et al. for CSP [16]. It runs
CSP separately on several versions of the data, each one
pre-filtered to a different frequency band. Finally, the
outcomes of the bands are merged, e.g. by a subsequent
feature selection or regression step as proposed by Nove
et al. [17].
Typically, filterbank strategies are implemented by fil-
tering the signals in the time domain. However, since
trial-wise stationarity of the signals is assumed for most
applications, the explicit representation of the temporal
dynamics within a trial may actually not be necessary.
In this regard, we propose the implementation of a
more computationally efficient filter-bank approach for
subspace methods that is based on the calculation of a
stationary frequency domain representation of the data.
We present results of a study carried out in the context
of SPoC for real EEG data.

METHODS

Forward Model of EEG Generation

Let X ∈ RNc×Nt be a multivariate signal describing
data of brain activity measured in the EEG sensor
space, where Nt is the number of time samples and Nc

the number of sensors. Furthermore, let S ∈ RNs×Nt

describe the time course of Ns neural sources, where
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Ns describes the number of hidden neural sources
considered. We assume a linear generative model, which
maps the source space to the sensor space as follows:

X = AS +E . (1)

In this model, matrix A∈RNc×Ns describes the pro-
jection of the sources to the sensor space, where the
columns of A, a∈RNc , are referred to as spatial pat-
terns. Furthermore, the matrix E contains spatially and
temporally uncorrelated noise to model measurement
noise.
An estimation of the time course of a source component
ŝ can be extracted from the measurements by applying a
spatial filter w ∈ RNc , which projects the data from sen-
sor space into source space. Thus we have ŝ = w>X .
For many problems, such a spatial filter w is not known
a priori and must be estimated from the data. However,
once a spatial filter (or an entire set thereof, denoted
by W ∈ RNc×Ns , where each column w represents a
single spatial filter) has been obtained, an estimate of
the corresponding spatial patterns can be obtained via
Â = CW

(
W>CW

)−1
, where C ∈ RNc×Nc denotes

the spatial covariance matrix of the data. See [18] for
further details on the relation between spatial filters and
spatial patterns.

Source Power Co-Modulation — SPoC

The multivariate analysis method called source power
co-modulation (SPoC) by Dähne and colleagues [10]
utilizes a supervised regression approach in order to
estimate a set of spatial filters W . The method assumes
that the recorded data X has been pre-filtered to a
narrow frequency band, which contains the oscillatory
source of interest.
Based on data of multiple epochs e, a filter w is
optimized such that the power of an epoch Θx(e) =
var[ŝ](e) of the spatially filtered data ŝ = w>X ,
maximally covaries with a known, epoch-wise defined
univariate target variable z(e). For the sake of simplicity
in the notation, ŝ will be noted as s, hereafter.
It can be shown that solving such an optimization prob-
lem is equivalent to solving the generalized eigenvalue
problem [10]

CzW = ΛCW (2)

where Cz = 〈C(e)z(e)〉 and C = 〈C(e)〉. 〈C(e)〉 and
〈C(e)z(e)〉 provide the (z-weighted) covariance of X ,
averaged across epochs e: C(e) = X(e)X(e)T. Matrix
Λ ∈ RNc×Nc contains the corresponding eigenvalues in
the main diagonal.
Given a spatial filter wtr determined on training data tr,
the true target variable z = [z(1) . . . z(Ne)]

> can sub-
sequently be approximated/estimated as ẑ on a single-
trial basis for unseen test data (te) epochs Xte via
ẑ(e) = var[w>trXte(e)]. While in most scenarios a small
number of filters is utilized, we limit our analysis for
the reminder of this contribution to the one spatial filter
w which corresponds to the biggest eigenvalue of the
aforementioned decomposition.

Filterbank SPoC

Until now, we have assumed that the target frequency
band is known. Unfortunately, this is typically not true,
thus exploring the full available spectrum is necessary.
SPoC can then be extended by using the filterbank con-
cept proposed by Ang and colleagues for the filterbank
CSP algorithm [16]. Here, a set of Nfilt frequency
bands are defined, for which the subspace decomposition
method is applied separately. In the context of SPoC, this
approach shall be termed filterbank SPoC (FB-SPoC)
hereafter. FB-SPoC results in a set of Nfilt different
estimations of ẑ. We define these intermediate band-
wise estimations ẑi. To obtain a final ẑ, a linear model
combining all the estimations of the target variables can
be applied:

ẑ(e) =

Nfilt∑
i

βiẑi(e) (3)

where the weights β are determined by solving the
optimization problem:

arg max
β

||ẑ − z||22 + λ||β||2p. (4)

In Eq. 4, λ is a positive real-valued regularization
parameter and p defines the type of regularization ap-
plied to the model, with p = 2 corresponding to the
classic Tikhonov regularization and p = 1 a sparseness
promoting prior, termed LASSO.

Computation of Covariance Matrices in the Frequency
Domain

In implementations of filterbanks for different al-
gorithms (as CSP, spatio-spectral decomposition [8],
among others), data initially is bandpass filtered in
the time domain using IIR or FIR filters. Thus, the
computational cost grows linearly with the number of
bands.
However, since the aforementioned methods are based
on the computation of the covariance matrix of the
signal, which is assumed to be stationary in the ana-
lyzed epochs, the actual computation of such covariance
matrices could alternatively be executed directly in the
frequency domain. According to the Plancherel theorem
[19], the dot product of two signals in the time domain
is equal to the inner product of their frequency repre-
sentation. Consequently, the covariance matrix C may
be computed for a specific frequency band f as

Cf
i,j = re(< X f

i ,X
f
j >) (5)

where re(·) is the real part of the argument, Xi are
the coefficients of the Fourier transform of channel
i in X , and superindex f indexes the frequency bin
corresponding to frequency bands of interest. The in-
tuition behind neglecting the imaginary part of the dot
product is that it provides information about the mean
phase difference between the considered distributions,
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Figure 1. Schematic representation of the filter bank
strategy applied to SPoC, FB-SPoC, compared to the
proposed approach of computing the covariance matrix
directly in the frequency domain (fFB-SPoC).

therefore it does not contribute to the co-varying power
information provided by the covariance matrix.
Computing the covariance matrix in the frequency do-
main requires a single calculation of the fourier trans-
form of X , and this computational effort is independent
of the number of frequency bands included in the
filter bank. Furthermore, a single copy of the signal is
required in memory, whereas for time domain filter bank
approaches, Nfilt versions of it are necessary. Thus,
the frequency domain representation optimizes memory
access operations and allows cheaper caching in hierar-
chical memory architectures. The proposed approach of
computing FB-SPoC using the frequency representation
of data X is termed fFB-SPoC hereafter. Figure 1
shows a schematic representation of the implementation
differences between FB-SPoC and fFB-SPoC

EXPERIMENTAL SETUP

The proposed approaches, FB-SPoC and fFB-SPoC,
were tested using real EEG data. Signals were recorded
from 64 passive Ag/AgCl electrodes (EasyCap /
BrainAmp DC amplifiers) placed according to the 10-
20 system and referenced against the nose. Data were
recorded while performing an auditory oddball exper-
iment with an interstimulus onset of 1 s. Information
about the paradigm was not used in the subsequent anal-
ysis. Signals were sampled at 1 kHz, then a band-pass
filter with a cut-off frequency of 0.7-90 Hz and a notch
filter at 50 Hz were applied to the data. Afterwards, it
was downsampled to 250 Hz.
A target source s, which would serve as the ground
truth source in a following simulation, was determined
by projecting the preprocessed EEG data onto a single
source. The corresponding filter v for this purpose was
chosen pseudo-randomly. The projected signal was then
filtered to the alpha band (8 − 12 Hz) and its envelope
was extracted via the Hilbert transform.
The final dataset for running performance comparisons
was obtained by segmenting the EEG and the ground
truth target source s data into 1 s windows with 50 %
overlap. The ground truth target variable z(e) for each

epoch e was defined as the average of the envelope of
the target source s for that epoch.

Performance Metrics

In order to quantitatively assess the performance of the
considered methods, the following performance metrics
were considered:

Correlation – corr: This metric evaluates the quality
of the final regression model. More precisely, it describes
the correlation between the target variable estimated by
the regression model ẑ and the true modulating signal
(target variable) z. A higher absolute value suggests a
better estimation.

Best Band Correlation – corr: This metric evaluates
the quality of estimation for the best performing fre-
quency band. More precisely, it describes the correlation
between the target variable estimated by the best filter
ẑi and the true modulating signal (target variable) z. A
higher absolute value suggests a better estimation.

Earth Mover’s Distance – emd: This metric can be
used to characterize the most important frequency band.
It measures the dissimilarity between the estimated and
the true spatial pattern â and a within a single frequency
band. The lower the value of emd, the more accurate
the estimation. As fFB-SPoC and FB-SPoC yield one
pattern per frequency band, emd is calculated in the
frequency band achieving the highest corr performance.

Angle Between Patterns – angle: Analogous to emd,
this metric describes the angle between the estimated
and true spatial patterns â and a. The lower the value of
angle, the more accurate the estimation. Since FB-SPoC
and fFB-SPoC yield patterns corresponding to more than
one frequency band, emd is calculated using the pattern
related to the most relevant frequency band, according
to the corr achieved.

Elapsed Time – et: Computational cost is compared
in terms of walltime required to compute the final
estimation of ẑ.

Parameter Sensitivity Analysis

The aforementioned metrics are assessed in a parame-
ter sensitivity analysis. For this, a random search was
performed, where the parameter space is defined by (1)
the number of bands in the filter bank, (2) the type of
spacing (grid) between passing bands of the filter bank
and their corresponding width, which can be linearly or
logarithmically spaced, and (3) the regularization type
for the regression model in Eq. 4. Random search of the
parameter space was performed using the random-search
tool provided by the publicly available sequential model-
based algorithm configuration (SMAC) toolbox1 [20],
whereas the parameters sensitivity analysis was per-
formed using functional ANOVA (FANOVA)2 [21]

1http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
2https://github.com/automl/fanova
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Figure 2. Marginalized performance of FB-SPoC and
fFB-SPoC for the considered metrics.

RESULTS

FB-SPoC vs fFB-SPoC: Overall Performance

Figure 2 shows the marginalized performance of FB-
SPoC and fFB-SPoC as computed with FANOVA. As
expected, correlation values achieved and the spatial
accuracy of the spatial patterns (as assessed by emd and
angle), are not significantly different for the considered
methods. On the other hand, marginalized walltime was
significantly lower for fFB-SPoC compared to FB-SPoC.

FB-SPoC vs fFB-SPoC: Parameter Sensitivity Analysis

Figure 3 shows marginalized effects of different config-
urations of the parameter space uppon the performance,
both for FB-SPoC and fFB-SPoC.
The number of frequency bands is the parameter that
had the greatest impact on the correlation achieved. The
grid type used for the definition of the filter bands plays
a less critical role, with the linear model showing a small
advantage over the logarithmic grid. The regularization
method of the regression model did not affect the
performance in terms of the marginalized correlation.
The effects of the parameter configuration upon emd and
angle are very similar. Comparably to the effects upon
the correlation metrics, the number of bands used in the
filter bank is the parameter that has the strongest impact
upon the spatial patterns, where as the grid type and the
regression model do not seem to be critical.
For both, the accuracy of the target variable (corr)
and the spatial pattern estimation, the optimal number
of frequency bands for the considered scenario are
approximately 5 bands. Using more than 5 bands does
not improve the performance, according to any of the
considered measures.
Finally, the bottom row of Figure 3 demonstrates the
computational advantages of fFB-SPoC, where the wall-
time required increases at a much slower rate than for
FB-SPoC. It is worth mentioning that between 1 and 3
bands, the metric et grows with the same rate for both
algorithms.

DISCUSSION

In this contribution, we extended the use of a filterbank
approach to the context of source power co-modulation

analysis, SPoC. Furthermore, we propose to perform the
covariance matrix calculation in the frequency domain to
speed-up the computation of filterbank-based subspace
techniques.

i A filterbank strategy for SPoC is a suitable approach
to estimate target variables that co-modulate with
the power of hidden neural sources. The proposed
approaches are specially valuable in scenarios where
the frequency band of interest is not known and,
consequently, a full exploration of the available spec-
trum is necessary. Such applications have already
been reported in the literature, for example [13],
[12].

ii Under the realistic scenario considered, the number
of frequency bands is the most important hyperpa-
rameter considering the high final correlation with
the target variable and a good reconstruction of the
true spatial pattern a. This might be explained by
the fact that a coarse segmentation of the frequency
spectrum leads to mixing of informative and noisy
frequency bands into the same filters, thus degrading
the performance. This is also observed in the vari-
ance of the performance itself — a sudden reduction
of the variance is observed once the number of
frequency bands becomes greater than five. It is
important to point out that the optimal number of
frequency bands should be defined individually and
for each application scenario, since the width of
the informative frequency band of the target source
and its location within the spectrum is not known a
priori.

iii For our data, where no label noise was involved, the
grid type and regression model had little influence.
Similarly to the number of frequency bands, the
grid type is likely to be application-dependent. The
regression model, on the other hand, is likely to be
independent of the frequency characteristics of the
target neural source, but may be sensitive to the level
of noise contained in its labels. In future work, we
will investigate the interaction of label noise noise
with different regression models.

iv We have also shown that the computation of the
covariance matrix using the frequency representation
of the EEG data is a suitable approach for filter
bank strategies. The computational advantage is not
only caused by the single-time computation of the
FFT compared to the Nfilt-many (sequential) time-
domain filtering steps. It also affects the calculation
of the covariance matrix itself, which has quadratic
runtime. When computed in the time domain, each
of the entries of the covariance matrix C corre-
sponds to the dot product of two time series, each
with length N . In contrast, when computed in the
frequency domain, each entry of C corresponds to
the dot product of two vectors containing a subset
of M frequency bins obtained after the Fourier
transform, with typically N >> M . It is important
to point out that the covariance is computed simul-
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Figure 3. Marginalized parameter sensitivity analysis comparing FB-SPoC and fFB-SPoC , in terms of the
considered performance measures.

taneously on the entire subset of M frequency bins
in a single step, and not for each bin individually.

v The main limitation of the frequency-domain fil-
terbank approach is the coarse granularity of the
frequency bands considered. Their resolution is lim-
ited by the number of frequency bins resulting from
the Fourier transformation, while filters in the time
domain can be defined in high precision.

vi Another limitation of applying SPoC in the fre-
quency domain is the smaller number of SPoC
components which can be derived per frequency
band. Specifically, the rank of the covariance matrix
is limited by the number of frequency bins contained
in the analyzed band. However, this limitation may
not be a relevant one in practice, as a full rank SPoC
decomposition often is not required and usually only
the first-ranked, most informative components are

used.
vii Finally, the proposed frequency domain approach

for filterbank analysis should easily extend to other
covariance-based subspace methods such as CSP or
SSD.
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Tangermann. Motor imagery for severely motor-
impaired patients: Evidence for brain-computer in-
terfacing as superior control solution. PLoS ONE,
9(8):e104854, 08 2014.

[5] Ole Jensen, Ali Bahramisharif, Robert Oostenveld,
Stefan Klanke, Avgis Hadjipapas, Yuka O Okazaki,
and Marcel AJ van Gerven. Using brain–computer
interfaces and brain-state dependent stimulation
as tools in cognitive neuroscience. Frontiers in
Psychology, 2:100, 2011.

[6] Scott Makeig, Anthony J. Bell, Tzyy ping Jung,
and Terrence J. Sejnowski. Independent component
analysis of electroencephalographic data. In in Ad-
vances in Neural Information Processing Systems,
pages 145–151. MIT Press, 1996.

[7] Aapo Hyvärinen and Erkki Oja. Independent
component analysis: Algorithms and applications.
Neural networks, 13(4-5):411–430, May 2000.

[8] Stefan Haufe, Sven Dähne, and Vadim V Nikulin.
Dimensionality reduction for the analysis of brain
oscillations. NeuroImage, 101:583–597, 2014.

[9] Sven Dähne, Johannes Höhne, Martijn Schreuder,
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ABSTRACT: Patients in completely locked-in state 

(CLIS) are unable to communicate with the external 

world because of complete paralysis of the motor 

system. Brain computer interface (BCI) aims to restore 

communication in CLIS patient by bypassing the 

dysfunctional motor system. Electroencephalography 

(EEG) based BCI has been used successfully in patient 

in Locked-in state (LIS), but once the patient transition 

in CLIS EEG-BCI fails to provide communication. 

Recently we reported the first single case report of 

functional near infrared spectroscopy (fNIRS) based 

auditory BCI control by an ALS patient in CLIS. Here 

we report fNIRS-BCI based communication in four 

ALS patients in CLIS, two of them in permanent 

completely locked-in state (CLIS) and two entering the 

CLIS without reliable means of communication. 

Patients learned to answer personal questions with 

known answers and open questions all requiring a “yes” 

or “no” thinking using fronto-central oxygenation 

changes measured with fNIRS. Online fNIRS 

classification of personal questions with known answers 

and open questions, using linear support vector machine 

(SVM), resulted in an above-chance-level correct 

response rate over 70%. Electroencephalographic 

(EEG) oscillations and electro-oculographic (EOG) 

signals did not exceed the chance-level threshold for 

correct communication despite occasional differences 

between the physiological signals representing a “yes” 

or “no” response. 

 

INTRODUCTION 

 
Amyotrophic lateral sclerosis is a progressive motor 

disease of unknown etiology resulting eventually in a 

complete paralysis of the motor system but affecting 

sensory or cognitive functions to a minor degree [1]. 

There is no treatment available; patients have to decide 

to accept artificial respiration and feeding after the 

disease destroys respiratory and bulbar functions or to 

die of respiratory or related problems. If they opt for life 

and accept artificial respiration, the disease progresses 

until the patient loses control of the last muscular 

response, usually the eye muscles. If rudimentary 

voluntary control of at least one muscle is present, the 

syndrome is called locked-in state (LIS) [2]; ultimately 

as the disease progresses most of the ALS patients lose 

the control of all the muscles, the resulting condition is 

called completely locked-in state (CLIS) [2]. Patients in 

CLIS are unable to communicate with the external 

world because all assistive communication aids are 

based on some remaining motor control; hence there is a 

vital need for an assistive technology to help patients in 

CLIS to communicate their needs and feelings to their 

family members/caregivers. Brain computer interface 

(BCI) represents a promising strategy to establish 

communication with paralyzed ALS patients, as it does 

not need muscle control. BCI research includes invasive 

(implantable electrodes on or in the neocortex) and 

noninvasive means (including electroencephalography 

(EEG), magnetoencephalography (MEG), functional 

magnetic resonance imaging (fMRI), and near-infrared 

spectroscopy (NIRS)) to record brain activity for 

conveying the user’s intent to devices such as simple 

word-processing programs. Non-invasive methods have 

been utilized more frequent than invasive methods for 

people with disabilities (such as those with ALS) [3-7]. 

For these conditions (LIS and CLIS) Brain-Computer-

Interfaces were developed and tested extensively since 

the first publication of Birbaumer et al (1999) [8] of two 

LIS patients suffering from ALS. Patients select letters 

or words after learning self-regulation of the particular 

brain signal or by focusing their attention to the desired 

letter or a letter-matrix (Farwell & Donchin) [9] and the 

attention related brain signals allow the selection of 

desired letter.  While healthy people and ALS patients 

up to the LIS showed successful BCI control and 

communication [10], completely paralyzed ALS 

patients in CLIS did not learn sufficient BCI control for 

brain communication (Kuebler & Birbaumer, 2008) 

[11]. A single case report by Gallegos Ayala et al., 2014 

[12] suggested that a CLIS patient with ALS could 

achieve BCI-control and “yes” - “no” communication to 

simple questions with known positive answers or 

negative answers and some open questions over an 

extensive time period. NIRS was used to measure and 

classify cortical oxygenation and deoxygenation 

following the questions. The BCI methodology used in 

this report departed radically from the previous BCI-
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procedures: a more “reflexive” mode based on learning 

principles of classical conditioning to simple questions 

was used to train the classifier separating “yes” and 

“no” thinking of answers by the patient and instead of 

neuroelectric recording (EEG) functional NIRS (fNIRS) 

was used. 

Hence, an extensive study was performed on four ALS 

patients in CLIS to train them to communicate “yes” 

and “no”. The fNIRS based BCI was employed 

successfully to train patients to regulate their fronto-

central brain regions in response to auditorily presented 

questions. After training a classifier separating “yes” 

from “no” answer for several days the patients were 

given feedback of their affirmative or negative response 

to questions with known answers and open questions 

over weeks [13]. 

 

 MATERIAL AND METHOD 

 

The Internal Review Board of the Medical Faculty of 

the University of Tubingen approved the experiment 

reported in this study and the patients’ legal 

representative gave informed consent for the study with 

permission to publish the results and show the face of 

patients in the publication. The study was in full 

compliance with the ethical practice of Medical Faculty 

of the University of Tubingen. The clinical trial 

registration number is ClinicalTrials.gov Identifier: 

NCT02980380. 

 

Patient 

Patient F (Female, 68 years old, completely locked-in 

state) was diagnosed with bulbar sporadic ALS in May 

2007, as locked-in in 2009, and as completely locked-in 

May 2010, based on the diagnosis of experienced 

neurologists. She has been artificially ventilated since 

September 2007, fed through a percutaneous endoscopic 

gastrostomy tube since October 2007, and is in home 

care. No communication with eye movements, other 

muscles, or assistive communication devices was 

possible since 2010.  

Patient G (Female, 76 years old, CLIS) was diagnosed 

with bulbar ALS in 2010. She lost speech and capability 

to walk by 2011. She has been fed through a 

percutaneous endoscopic gastrostomy tube since 

September 2011, artificially ventilated since March 

2012, and is in home care. She started using assistive 

communication devices employing one finger for 

communication in Feb 2013. Later she was diagnosed 

with degeneration of vision due to cornea defects in 

Sept 2013. After the failure of the finger communication 

device an attempt was made to communicate using eye 

tracking in early 2014. She stopped communicating 

with the eye in Aug. 2014 before the BCI was 

introduced and an attempt was made to communicate 

with the subtle twitch of eye lid which was not reliable. 

The husband and caretaker declared no communication 

with her since August 2014. 

Patient B (Male, 61 years old, CLIS) was diagnosed 

with non-bulbar ALS in May 2011. He has been 

artificially ventilated since August 2011, fed through a 

percutaneous endoscopic gastrostomy tube since 

October 2011, and is in home care. He started 

communicating with a speech device in his throat from 

Dec. 2011 which ultimately failed and he started using 

MyTobii eye-tracking device in April 2012. He was 

able to communicate with MyTobii until Dec 2013 after 

which the family members attempted to communicate 

by training him to move his eyes to the right to answer 

“yes” and left to answer “no”, but the response was 

variable. No communications was possible since August 

2014. 

Patient (Female, 24 years old, locked-in state on the 

verge of CLIS) was diagnosed of juvenile ALS in Dec 

2012. She was completely paralyzed within half a year 

after diagnosis and has been artificially ventilated since 

March 2013, fed through a percutaneous endoscopic 

gastrostomy tube since April 2013, and is in home care. 

She was able to communicate with eye-tracking from 

early 2013 to Aug 2014 but was unable to use the eye-

tracking device after the loss of eye control in Aug 

2014. After August 2014 family members were able to 

communicate with her by training her to move her eyes 

right to answer “yes” and left to answer “no” questions 

until Dec 2014. In Jan 2015 eye control was completely 

lost and she tried to answer yes by twitching the right 

corner of her mouth and that too varied considerably. 

 

Instrumentation 

A continuous wave (CW) based NIRS system, 

NIRSPORT (NIRX), which performs dual-wavelength 

(760 nm & 850 nm) CW near-infrared spectroscopic 

measurement at a sampling rate of 6.25 Hz, was used. 

The NIRS optodes were placed on the fronto central 

brain region.  

During the BCI sessions the EEG was also recorded 

with a multi-channel EEG amplifier (Brain Amp DC, 

Brain Products) from ten Ag/AgCl passive electrodes 

mounted on the same cap. Six electrodes were used to 

acquire EEG signals based on the international 10-10 

system and the selected channels were FC5, FC1, FC6, 

CP5, CP1 and CP6 while four electrodes were used to 

acquire the vertical and horizontal EOG. The signals 

were bandpass filtered using an FIR filter with a 

passband of 0.5 – 35 Hz. The EOG was filtered with 

different filters (3.5 Hz, 10 Hz, and 30 Hz) but none of 

the filters led to significant differences of 

neurophysiological patterns related either to the ocular 

activity or to their SVM-classification accuracies. Each 

channel was referenced to an electrode on the right 

mastoid and grounded to the electrode placed on the Fz 

location of the cap. Electrodes impedances were kept 

below 10 kΩ and the EEG signal was sampled at 500 

Hz.  During all BCI sessions the spontaneous EEG was 

visually controlled by one of the authors (NB or BX) to 

avoid longer periods of slow wave sleep. A BCI session 

was initiated only if the EEG was free of high amplitude 

slow activity below 3.5Hz. 

 

Experiment Procedures 
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An auditory based paradigm was employed to a) train 

patients on questions with known answers, b) give 

feedback on questions with known answers and c) 

answer open questions. Known questions are personal 

questions with known “yes” and “no” answer. Patients 

were asked to think yes or no and if possible also to use 

their previously successful eye movements. Open 

questions are general questions related to quality of life 

and questions of caretakers whose answer can only be 

known by the patient. The BCI study started with 

training sessions during which the patients were 

instructed to listen to 20 personal questions (with 

known answers) consisting of 10 true and 10 

semantically equivalent false sentences, presented in 

random order. Patients were asked to think “ja, ja, …” 

(German for “yes”) and “nein, nein, …” (German for 

“no”) for 15 seconds, during the inter stimulus interval 

(ISI), until they heard the next sentence, as shown in 

Fig1. After the end of each training session the NIRS 

feature necessary to differentiate between “yes” and 

“no” answers during ISI was extracted and classified. If 

the classification accuracies across at least 3 

consecutive training sessions were greater than 65% - 

70% the patients were given online feedback after each 

question. During the online feedback sessions again the 

patients were presented the same sentences as described 

above but now at the end of the 15 sec answering period 

they were given auditory feedback, whether their 

answer was recognized as “yes” or “no”. If the accuracy 

of online feedback was greater than 70% we presented 

the patient with open questions during which he/she was 

always given the auditory feedback of his/her answer. 

The validity of answers to open questions can only be 

estimated by a) face validity (i.e. questions of pain in 

the presence of an open wound), b) stability over time 

and c) external validity estimated by family members 

and caretakers and d) internal validity between 

questions (i.e. the concordance between the answers to 

semantically equivalent questions (e.g., “Berlin is the 

capital of France” and “Berlin is the capital of 

Germany”). Tab. 1 enumerates the total number of 

training, feedback and open questions sessions 

performed by each patient.  

 
Figure 1: The auditory brain computer interface 

paradigm used for communication in CLIS patient.  

 
Patient W received no open questions because of low 

classification accuracy which we and the parents 

attributed to her emotionality distracting her from 

concentrating on the responses due to the short time 

period of adaptation to the CLIS. 
Table 1: Lists the total number of training, feedback, 

open question sessions performed by each patient 

 
 

Data Acquisition and Analysis 

The schematic depicting the acquisition and analysis of 

NIRS and EEG data during the BCI sessions is shown 

in Figure 2. The NIRS data acquired online throughout 

all the sessions was normalized, filtered using a 

bandpass filter of 0.01 Hz – 0.3 Hz and processed using 

Modified Beer Lambert’s law, as described in Cope et 

al. (1987)
 
[14] and Chaudhary et al. (2011) [15], to 

calculate the relative change in concentration of oxy 

(O2Hb) and deoxy hemoglobin (RHb). The relative 

change in O2Hb, with respect to the baseline, calculated 

online during each training session was used to train a 

model and check the cross-validation classification 

accuracy. The offline classification procedure used the 

mean of relative change in O2Hb across each channel as 

input feature to train a 5-fold linear support vector 

machine (SVM) classifier [16]. The SVM [16] model 

interpolates the data corresponding to true and false 

sentences’ ISI in a two-dimensional space such that the 

two categories are divided by a hyperplane and the gap 

between them is as wide as possible. 

 
Figure 2:  The setup and flow diagram of the brain 

computer interface for communication in ALS patients. 

 

Firstly a model space was determined and the input 

feature, extracted from the recorded and processed 

NIRS signal, i.e., the relative change in O2Hb, was 

mapped onto the model space to determine the side of 

the hyperplane the input feature fell on. For the NIRS 

signal the mean of the relative change in O2Hb across 

all the channels was used as input feature to map onto 
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model space, while for EEG and EOG signals temporal 

and power spectral features were used.  The relative 

change in O2Hb, EEG and EOG data acquired during 

BCI sessions from Patient F, G, B and W were 

processed off-line separately for each patient to 

determine: 

1) The statistical difference in the particular 

physiological signal (O2Hb, EEG and EOG) during the 

ISI of true (yes) and false (no) sentences. 

T-tests between the averaged ISI of true and false 

sentences were performed to ascertain the significant 

difference, if any, between “yes” and “no” thinking. The 

t-test analysis was performed across all the channels in a 

session and for all the sessions of acquired O2Hb, EEG 

and EOG signals. Furthermore t-test was also performed 

between the ISI of all the 10 true sentences and all the 

10 false sentences across different channels in a session 

averaged over many sessions varying slightly between 

patients.  

2) Classification accuracy, using SVM as described 

above, of O2Hb, EEG and EOG signals across each 

session between the true and false sentences’ ISI. 

The shapes of the relative change in O2Hb and EOG 

during ISI corresponding to true and false sentences 

from all the sessions were plotted in Figure 3 and Figure 

5 respectively, while the power spectrum of the EEG 

signal, calculated using Welch’s method [17], during 

the same ISIs is plotted in Figure 4.  

 

RESULT 

 

The t-test analysis performed using the relative change 

in O2Hb showed a significant difference between the 

true and false sentences’ ISI across all patients (not 

shown here). While, the same analysis performed using 

the EEG and EOG data across all the training sessions 

showed no significant differences (p > 0.05) between 

the true and false sentences’ ISI across each. The 

relative change in O2Hb in five channels over the 

fronto-central brain region of Patient F, G, B and W 

during the true and false sentence ISI is shown in Figure 

3. Figure 3 illustrates that the shape of the change in 

O2Hb during true sentence ISI is qualitatively different 

from false sentence ISI. Figure 3 also illustrates that the 

shape of the change in O2Hb during a true or a false 

sentence ISI is not consistent between the patients even 

though within each patient the shape of the change in 

O2Hb is stable. Figures 4 illustrates the power spectrum 

density (PSD) of EEG oscillations, in the frequency 

band 0 to 10 Hz, during the true and false sentence ISI 

from patient F, G, B and W respectively. The PSD of 

EEG signal shows that there was no significant 

difference between the true and false sentences ISI 

across all patients. The eye movements (vertical or 

horizontal, patients were free to use any direction) of 

patient F, G, B and W while they were performing the 

“ja (yes)” or “nein (no)” thinking task is shown in 

Figure 5. It illustrates that there was no significant 

difference in the eye movements between the true and 

false sentences ISI for all patients, confirmed by the t-

test: Figures 6, 7, 8 and 9 depicts the SVM classification 

across all the sessions using the change in (a) O2Hb, (b) 

EEG and (c) EOG in Patient F, G, B and W; 

respectively. 

 
Figure 3: The averaged relative change in O2Hb across 

5 out of 20 channels corresponding to YES and NO 

sentence inter-stimulus interval (ISI) in Patient F, G, B 

and W.  In each subplot; five different colored trace 

corresponds to relative change in HbO2 across five 

different channels, x-axis is time in seconds and y-axis 

is relative change in HbO2. 

 
Figure 4:  Power spectrum density (PSD) of 

electroencephalographic (EEG) signal corresponding to 

YES (red solid trace) and NO (blue dashed trace) 

sentence ISI acquired from channel FC6 in Patient F, G, 

B and W.  
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A 65% cut off was used to define whether the 

classification accuracy was above or below the 

acceptable level [18].  

 
Figure 5: The electrooculogram (EOG) signal 

corresponding to YES (red solid trace) and NO (blue 

dashed trace) sentence ISI in Patient F, G, B and W.  In 

each subplot x-axis is time in second and y-axis is EOG 

in micro volt (μV).  

 

 
Figure 6 – Patient F:  Linear support vector machine 

(SVM) classification accuracy across all sessions 1) 

Training (bar plot in spotted black), 2) Feedback (bar 

plot in solid green) and 3) Open question (bar plot in 

solid red) obtained using a) Relative change in HbO2, b) 

EEG and c) EOG data. In each histogram plot x-axis is 

the number of sessions and y-axis is classification 

accuracy. The black horizontal line represents the 65% 

classification accuracy. 

 

The SVM results illustrates that highest classification 

accuracy was achieved using the change in O2Hb for 

which more than 75% of the sessions yielded greater 

than 65% classification accuracy for all the patients 

with an average classification accuracy of 70%.  

 

 
Figure 7 – Patient G:  The description of Figure is same 

as described in Figure 6. 

 

 
Figure 8 – Patient B:  The description of Figure is same 

as described in Figure 6. 

 

 
Figure 9 – Patient W:  The description of Figure is same 

as described in Figure 6. 

 

While the SVM classification accuracy obtained using 

EEG and EOG data only few sessions yielded greater 

than 65% classification accuracy across all patients. 

Classification results using fNIRS for open question in 
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patients F, B and G, using the criteria for correctness 

described above in paragraph 2.3 ranged between 75-

90% “correct”. Patient W with 24 years of age suffering 

from juvenile ALS with an extremely rapid disease 

progression (2 years from diagnosis to CLIS) was not 

asked open questions at that early stage but continue to 

train the BCI at present. 

 

DISCUSSION AND CONCLUSION 

 

All in all, 4 patients in CLIS communicated with fronto-

cortical oxygenation based BCI with an average correct 

response rate of 70% over a period of several weeks. 

Correct response rate for open questions as estimated by 

relatives exceeded even 75% in 3 of the 4 patients. 

Patient W, 24 years with juvenile ALS (completely 

locked-in within 2 years after diagnosis) is still in an 

emotional labile state which prevented us from asking 

her the difficult to validate open questions at the time of 

this study. Patient F, G and B answered open questions 

containing quality of life estimation with a yes response 

indicating a positive attitude towards the present 

situation and life in general as found in larger samples of 

ALS patients [19]. Correct classification of “yes” and 

“no” answers given mentally through fNIRS exceeded 

classification of EEG oscillations from 0-10 Hz (EEG 

frequencies in advanced ALS rarely show high 

frequencies) and vertical and horizontal EOG 

classification. However, despite the absence of reliable 

eye communication in all patients as the inclusion 

criteria in the study, EOG classification often was above 

chance despite the inability of the social environment to 

perceive them and eye tracker’s failure to use them for 

communication [10]. If replicated with ALS patients in 

CLIS, these positive results could indicate the first step 

towards abolition of complete locked-in states at least 

for ALS. 
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ABSTRACT:  
Brain-computer interfaces (BCI) control is a mentally 
tasking activity that requires the user’s concentrated 
attentional efforts. We hypothesized that mindfulness-
based exercises, such as a 20-minutes Mindfulness-
Based Stress Reduction training session (MBSR), can 
help to improve BCI performance. This pilot experiment 
demonstrated a BCI accuracy improvement after four 
subjects engaged in a 20-minute MBSR intervention 
session. The average BCI performance of the four 
subjects before the session was 67.42% and after the 
session was 78.94%, resulting in a performance increase 
of 11.52%. Three of the four subjects were considered 
BCI-illiterate (<70% accuracy) in the pre-MBSR session, 
and all three subject’s accuracies were improved to >70% 
in the post-MBSR session. Moreover, an enhanced event 
related desynchronization in the alpha frequency band 
was found in post-MBSR intervention. These results 
demonstrate promising potential for using mindfulness-
based exercises to improve BCI accuracy. 
 
INTRODUCTION 
Brain-computer interface (BCI) uses brain activity alone 
to control external devices or to communicate with the 
external world [1]. It provides a non-muscular channel of 
communication for severely disabled individuals who are 
totally paralyzed or ‘locked in’ by neurological disorders, 
such as amyotrophic lateral sclerosis, stroke, or spinal 
cord injury [1]. An electroencephalogram (EEG) based 
BCI measures brain activity through non-invasive 
electrodes at the scalp surface. One of the biggest 
challenges in BCI is for users to produce consistent and 
reliable EEG patterns, which can be significantly 
affected by the user’s mental state [2]. Stress, anxiety, 
fatigue, frustration, and loss of concentration may cause 
an unstable mental state which may in turn cause 
inconsistent EEG patterns to be produced. Even 
distraction during the experiment such as feedback 
presented by the BCI (i.e. in game control) can modify 
the user’s global mental state and hence their EEG, 
introducing noise to the system [3].  
 
Researchers have been attempting to apply different 
signal processing techniques to improve its signal-to-
noise input signal to increase the accuracy and 
classification of EEG-based BCI. Some studies trained 
the users through extensive neuro-/biofeedback training 

[4], [5]. Nevertheless, the inconsistencies in EEG due to 
mental state changes still remains to be a great challenge 
in EEG-based BCIs, whereas 15~30% of the users cannot 
usefully control a BCI, which is termed the ‘BCI-
illiteracy phenomenon’ [6]. 
 
It is suggested that psychological parameters such as high 
attention span, sustained focus and concentration could 
yield better BCI performance, as BCI-control requires a 
substantial amount of focused attention [7]. In event-
related desynchronization (ERD) based BCI, attention 
plays a significant role, with high attention correlating 
with to a significantly higher ERD value compared to 
lower attention [8]. Mindfulness based interventions 
have also been shown to lead to an increased level of 
attention, self-reported mindfulness and improvements in 
psychological functioning [9]. By providing participants 
who do not succeed in BCI control with such intervention 
to increase their oscillatory activation (ERD), it may lead 
to more accurate and consistent BCI performance and 
hence overcome the problematic ‘BCI-illiteracy 
phenomenon’ [7]. Previous research on meditation-based 
intervention and BCI accuracy demonstrated a 12-week 
meditation intervention program to significantly increase 
a group of 23 participants’ baseline accuracy from 58% 
to 64% [2]. This finding motivated us to investigate 
whether a shorter session of mindfulness-based 
intervention can lead to a similar effect of increasing BCI 
accuracy. 
 
The mindfulness-based intervention we will be 
investigating is a 20 minute standard Mindfulness-Based 
Stress Reduction (MBSR), which have shown to be able 
to increase mindfulness and well-being, while decreasing 
stress and improving psychological wellbeing [10], [11]. 
It has been proposed that the mechanisms responsible for 
positive changes following MBSR involve attentional 
improvements, the cultivation of a nonjudgmental 
attitude, and an intention to be present in the present task. 
This current study aims to examine the effect of 
mindfulness-based training on the ability to control a 
tactile BCI using selective sensation (SS) [12], [13], and 
to improve the performance accuracy for poorly 
performing BCI subjects.  
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MATERALS AND METHODS 
 
     Subjects 
A total of four healthy subjects participated in this 
experiment (all male, all right handed, age 20~25, mean 
age 22.75 ± 2.22 yr). All subjects had no prior experience 
with EEG. The study was approved by the Ethics 
Committee of the University of Waterloo, in Waterloo 
Canada. All subjects signed an informed consent form 
prior to participation.  
 
     Experiment Paradigm 
In order to discriminate the subject’s active attention to 
the sensations on respective hands, a vibration 
stimulation is provided to the subject’s respective wrist 
to help direct their attention. This task of paying attention 
to either the left or the right hand is termed tactile 
selective sensation (SS); SS-L for left hand and SS-R for 
right hand.   
 
Fig. 1 illustrates the experiment paradigm. The subject 
was seated on a comfortable armchair 1 meter in front of 
the display screen, with their forearms and hands resting 
on the armrest. They are instructed to limit all physical 
movements (i.e. facial, arm) and limit eye blinks to a 
minimum. During the experiment, a randomized series of 
one of two visual cues that correspond to the above SS 
task were displayed on the screen; a left-pointing red bar 
indicates the SS-L task and a right-pointing red bar 
indicates the SS-R task. After 3 runs of 40 trials (120 
trials total), the subject is asked to complete a 20-minute 
guided sitting MBSR session. After the MBSR session, 
the subject repeats 3 runs of 40 trials of SS (another 120 
trials total). 

 
Figure 1. An illustration of the experiment protocol. 
 
     MBSR Training Session 
During the 20-min MBSR training session, participants 
were guided through a ‘body-scan’ by the voice 
recording of a trained instructor. The participants were 
asked to sit quietly while focusing on the flow of their 
breath, with their eyes closed, and to adopt a 
nonjudgmental mentality while becoming aware of their 
thoughts, senses, and feelings. They were taught to calm 
down their mind by remaining focused on their breath, in 
performing the ‘body scan’. This brings awareness to the 
physical sensations throughout the whole body while 
nonjudgmentally allowing discursive thoughts to simply 
pass [2]. The link to this 20-min guided sitting meditation 
MBSR mp3 audio file can be found here1.  
 
     EEG recording and Sensory Stimulation 
A 32-channel wireless g.Nautilus EEG system from 
g.tech Australia was used to record EEG signals. The 
electrodes were placed according to the extended 10/20 
system, with the reference and ground placed on the right 

earlobe and forehead, respectively. A hardware notch 
filter of 60Hz was applied to the raw signals, which were 
digitally stamped at 250Hz. All EEG data were recorded, 
stored, and processed offline.  
 
Mechanical stimulation was applied to the wrists.   Linear 
resonant actuators (10 mm, C10-100, Precision 
Microdrives Ltd., typical normalized amplitude 1.4 G) 
were used for producing vibrotactile stimulation. The 
stimulation device produced a 23-Hz sine wave for the 
left wrist, and 27-Hz sine wave for the right wrist. Both 
stimuli were modulated with a 175-Hz sine carrier wave. 
 
     Algorithms and performance evaluation 
The EEG data was manually corrected for artifacts using 
EEGLAB toolbox [14]. The trials that were affected by 
artifacts such as swallowing and physical movement 
(either in baseline or task line interval), were excluded in 
the analysis. 

 
A fourth-order Butterworth filter of [8 26] Hz was 
applied to the raw EEG signals before the CSP spatial 
filtering. A 10×10 fold cross-validation was utilized to 
evaluate the BCI performance. 
 
RESULTS AND DISCUSSION 
 
     Tactile BCI performance improved with MBSR  
The BCI performance before and after the MBSR 
intervention is shown in Fig. 2, with a mean performance 
accuracy of 67.42% before MBSR and 78.94% after – an 
average improvement of 11.52%. This method 
demonstrated a clear benefit for poor-performing 
subjects (subject 1, 2, and 3 had <70% accuracy before 
MBSR). For example, subject 1 had a dramatic 
improvement from 55.50% before the 20-minute MBSR 
session to 77.5% after the session, a 22% improvement.  
 
This increase in BCI accuracy is consistent with another 
BCI study on the effect of a 12-week meditation training 

 
Figure 2. BCI performance before and after the MBSR 
training. The blue bar indicates BCI performance prior to 
the MBSR session; and the red bar indicates BCI 
performance after the MBSR session. 
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program that resulted in an accuracy increase from 58% 
to 64% – a significant increase of 6% in a group of 23 
subjects [2]. This study utilized motor imagery for BCI 
control [2].  
 
The ERD cortical distribution before and after the MBSR 
intervention with respect to different SS tasks can be seen 
from a representative subject (subject 1 in Fig. 3 
demonstrate an increased ERD activation between 8 to 
13 Hz of the frequency band. This could be one of the 
factors underlying the increase in classification 
discrimination.  
 
The effect of learning should also be taken into 
consideration, as the subjects will become increasingly 
familiar with the BCI system controls with practice and 
this may lead to an increase in BCI accuracy. Therefore, 
a control group should be implemented with future 
research. 
 

CONCLUSION 
   
Focused tactile selective attention was required in tactile 
BCIs, in which the subjects were instructed to focus their 
attention either to the vibration stimulation on either the 
left or right hand. The 20 minute MBSR based training 
session may have improved attention which in turn 
improved the subject’s BCI performance.  
 
In this study, we demonstrated that a 20 minute MBSR 
guided sitting meditation program can help improve BCI 
performance, accompanied by an enhanced ERD 
activation. Further research needs to be done on to 
understand the underlying physiological mechanism for 
the changes observed and to incorporate MBSR into a 
training paradigm to maximize the effect of MBSR in 
improving BCI performance and user compliance. 
 
 
 

  

 
Figure 3. Cortical activation distribution across the scalp (ERD within the [8 13] Hz alpha frequency band). (A) ERD 
topolot of the SS-L task in Pre-MBSR session. (B) ERD topolot of the SS-L task in Post-MBSR session. (C) ERD 
topolot of the SS-R task in Pre-MBSR session. (D) ERD topolot of the SS-R task in Post-MBSR session. The colour 
bar indicates the ERD/ERS value. 
 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-15

CC BY-NC-ND 78 Published by Verlag der TU Graz 
Graz University of Technology



REFERENCES 
 
[1] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain 

computer interfaces, a review,” Sensors, vol. 12, 
no. 2, pp. 1211–1279, 2012. 

[2] L. F. Tan, Z. Dienes, A. Jansari, and S. Y. Goh, 
“Effect of mindfulness meditation on brain-
computer interface performance,” Conscious. 
Cogn., vol. 23, no. 1, pp. 12–21, 2014. 

[3] A. Nijholt, B. Reuderink, and D. O. Bos, 
“Turning shortcomings into challenges: Brain-
computer interfaces for games,” Entertain. 
Comput., vol. 9 LNICST, no. 2, pp. 153–168, 
2009. 

[4] D. C. Hammond, “What is Neurofeedback: An 
Update,” J. Neurother., vol. 15, no. 4, pp. 305–
336, 2011. 

[5] H. J. Hwang, K. Kwon, and C. H. Im, 
“Neurofeedback-based motor imagery training 
for brain-computer interface (BCI),” J. 
Neurosci. Methods, vol. 179, no. 1, pp. 150–
156, 2009. 

[6] C. Vidaurre and B. Blankertz, “Towards a Cure 
for BCI Illiteracy,” Brain Topogr., vol. 23, no. 
2, pp. 194–198, Jun. 2010. 

[7] E. M. Hammer, S. Halder, B. Blankertz, C. 
Sannelli, T. Dickhaus, S. Kleih, K. R. Müller, 
and A. Kübler, “Psychological predictors of 
SMR-BCI performance,” Biol. Psychol., vol. 
89, no. 1, pp. 80–86, 2012. 

[8] K. Dujardin, P. Derambure, L. Defebvre, J. L. 
Bourriez, J. M. Jacquesson, and J. D. Guieu, 
“Evaluation of event-related desynchronization 
(ERD) during a recognition task: effect of 
attention,” Electroencephalogr. Clin. 
Neurophysiol., vol. 86, no. 5, pp. 353–356, 

1993. 
[9] S. E. Sauer-Zavala, E. C. Walsh, T. A. 

Eisenlohr-Moul, and E. L. B. Lykins, 
“Comparing Mindfulness-Based Intervention 
Strategies: Differential Effects of Sitting 
Meditation, Body Scan, and Mindful Yoga,” 
Mindfulness (N. Y)., vol. 4, no. 4, pp. 383–388, 
2013. 

[10] J. Carmody and R. A. Baer, “Relationships 
between mindfulness practice and levels of 
mindfulness, medical and psychological 
symptoms and well-being in a mindfulness-
based stress reduction program,” J. Behav. 
Med., vol. 31, no. 1, pp. 23–33, 2008. 

[11] C. G. Jensen, S. Vangkilde, V. Frokjaer, and S. 
G. Hasselbalch, “Mindfulness training affects 
attention—Or is it attentional effort?,” J. Exp. 
Psychol. Gen., vol. 141, no. 1, pp. 106–123, 
2012. 

[12] L. Yao, J. Meng, D. Zhang, X. Sheng, and X. 
Zhu, “Selective Sensation Based Brain-
Computer Interface via Mechanical Vibrotactile 
Stimulation,” PLoS One, vol. 8, no. 6, 2013. 

[13] L. Yao, X. Sheng, D. Zhang, N. Jiang, D. 
Farina, and X. Zhu, “A BCI System based on 
Somatosensory Attentional Orientation,” IEEE 
Trans. Neural Syst. Rehabil. Eng., vol. 4320, 
no. c, pp. 1–1, 2016. 

[14] A. Delorme, T. Mullen, C. Kothe, N. Bigdely-
Shamlo, Z. Akalin, A. V. Acar1, and S. Makeig, 
“EEGLAB, MPT, NetSIFT, NFT, BCILAB, and 
ERICA: New tools for advanced EEG/MEG 
processing,” Comput. Intell. Neurosci., vol. 
2011, p. 130714, 2011. 

 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-15

CC BY-NC-ND 79 Published by Verlag der TU Graz 
Graz University of Technology



DIMENSIONALITY REDUCTION FOR BCI CLASSIFICATION USING
RIEMANNIAN GEOMETRY

P. L. C. Rodrigues1, F. Bouchard1, M. Congedo1, C. Jutten1

1GIPSA-lab, CNRS, University Grenoble Alpes, Grenoble Institute of Technology, Grenoble, France

E-mail: pedro-luiz.coelho-rodrigues@gipsa-lab.fr

ABSTRACT: In the past few years, there has been
an increasing interest among the Brain-Computer Inter-
face research community in classification algorithms that
respect the intrinsic geometry of covariance matrices.
These methods are based on concepts of Riemannian ge-
ometry and, despite demonstrating good performances on
several occasions, do not scale well when the number of
electrodes increases. In this paper, we evaluate two meth-
ods for reducing the dimension of the covariance matrices
in a geometry-aware fashion. Our results on three differ-
ent datasets show that it is possible to considerably reduce
the dimension of covariance matrices without losing clas-
sification power.

INTRODUCTION

In recent years a new trend of algorithms using concepts
from Riemannian geometry have demonstrated remark-
able performance on classification of BCI signals, often
superior to the current state of the art. As shown in a
recent literature survey [1], such results gave rise to a
new generation of Brain-Computer Interface (BCI) sys-
tems that is becoming each year more popular among the
research community.
In BCI classification we are given a dataset containing
short-time recordings of EEG, each associated to a condi-
tion (or class). The goal is to train an algorithm on an en-
semble of trials with known labels and use it to correctly
classify a set with unknown labels. The usual approach is
to select certain features describing the trials and use sta-
tistical models to classify them [3]. A useful feature one
may consider when working with EEG signals is their
spatial covariance matrix, since different classes are ex-
pected to have different patterns of correlation between
electrodes. The core idea behind algorithms using Rie-
mannian geometry is to manipulate covariance matrices
in the manifold of symmetric positive-definite (SPD) ma-
trices and use them directly as features in a classifier that
respects their intrinsic geometry.
The computational complexity of algorithms based on
this premise is of concern for high-density EEG data.
This happens because Riemannian algorithms rely on
eigendecompositions, whose number of operations is on
the order of n3, where n is the number of electrodes.
Also, due to very low eigenvalues in the spectrum of
high-dimensional covariance matrices (mainly associated

to noise), logarithmic maps used by Riemannian algo-
rithms may encounter numerical difficulties. Further-
more, classifiers using high-dimensional covariance ma-
trices as features are prone to overfitting because of the
curse of dimensionality and the limited number of trials
usually available in BCI datasets [3].
Fortunately, the very nature of EEG recordings allows
us to consider only a subspace of the data without los-
ing much information. This is possible because of the
strong statistical correlation between signals recorded
from close positions and the small number of indepen-
dent sources that are active during brain activity. By ex-
ploring this redundancy, we can reduce the dimensions of
spatial covariance matrices and use Riemannian geomet-
ric algorithms more efficiently.
The literature of dimensionality reduction (DR) is very
rich and many methods already exist. Some are general-
purpose algorithms, like principal component analysis
(PCA) and multi-dimensional scaling (MDS), others are
specific to the analysis of EEG signals, such as common
spatial patterns (CSP). However, none of these alterna-
tives take into account the intrinsic geometry of the co-
variance matrices to reduce their dimensions in a princi-
pled manner.
Recently, in the computer vision literature, Ref. [4] pre-
sented two geometry-aware methods for reducing the di-
mensions of SPD matrices, a supervised and an unsuper-
vised approach. Both algorithms are based on the the-
ory of optimization on manifolds [7] and demonstrated
good results on image and video databases. Shortly after,
Ref. [5] applied the unsupervised dimensionality reduc-
tion described in [4] to datasets of Motor Imagery (MI)
BCI and obtained encouraging results.
In this work, we apply both algorithms given in [4] to the
context of BCI signals. We extend the results from [5] by
considering datasets with several subjects and test the al-
gorithms not only on MI but also on the P300 paradigm.
We examine the sensitivity of the classification algo-
rithms to the choice of the reduced dimension and inves-
tigate the conditions in which a DR would be advisable
or not. This paper continues with a section on Materials
and Methods, where we give a brief presentation of con-
cepts of Riemannian geometry and an overview of meth-
ods for geometry-aware dimensionality reduction. We
also present the datasets and the classification pipelines
used for assessing the quality of each dimensionality re-
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duction proposal. We continue with a section of Results
and Discussion and leave final comments to the Conclu-
sions section.

MATERIALS AND METHODS

This section begins with a brief introduction to concepts
of Riemannian geometry on SPD matrices. Then, we cast
dimensionality reduction as an optimization problem and
consider two cost functions encoding different criteria.
Finally, we describe the datasets in which we applied our
classification pipelines.
We denote by Xk 2 Rn⇥T the recording of T samples
on n electrodes of the kth trial in an ensemble of K trials
and yk the class associated to Xk. The spatial covariance
matrix Ck of Xk is a n⇥ n matrix estimated using

Ck =

1

T � 1

XkX
T
k . (1)

Riemannian geometry of SPD matrices: Given
enough samples, a covariance matrix estimated with (1)
is symmetric positive definite (SPD), which means that
all of its eigenvalues are strictly positive. Matrices with
such property form a manifold M, a set of points with the
property that the neighborhood of each x 2 M can be
mapped to an Euclidean space, also known as its tangent
space T

x

M. When associated to a metric, M becomes
a Riemannian manifold and fundamental geometric no-
tions are naturally defined, such as geodesics (shortest
curve joining two points), distance between two points
(length of the geodesic connecting them), the center of
mass of a set of points, etc.
We denote the manifold of SPD matrices by S++

n and
endow it with the affine-invariant Riemannian metric.
This metric induces a distance between any two matrices,
as [6]

�(Ci, Cj) = k log(C�1/2
i CjC

�1/2
i )kF , (2)

offering a more appropriate distance in the SPD space as
compared to the Euclidean distance. In fact, it is pos-
sible to show that S++

n is a manifold with nonpositive
curvature [6], so concepts from Euclidean geometry do
not necessarily apply. For instance, the sum of angles in
a triangle is different than 180 degrees (see Figure 1).
The center of mass M according to distance (2) of a set
of covariance matrices {C1, . . . , CK} is defined as [1]

M = argmin
M2S++

n

KX

k=1

�2(M,Ck). (3)

Note that M is the point in the manifold minimizing the
dispersion (variance) of the set of matrices. When n = 1

(Ck is a strictly positive scalar), M corresponds to the
geometric mean of the Ck’s.

Figure 1: The manifold S++
n is portrayed as a surface

with nonpositive curvature. The distance between any
two elements is the length of the geodesic.

This explains why many researchers adopt the term “ge-
ometric mean” to refer to the center of mass of a set of
covariance matrices. The geometric mean of two SPD
matrices is the half-way point of the geodesic that con-
nects them. For K > 2, there is no closed form solution
for M , so one has to resort to iterative algorithms [2].
The above definitions suffice for the intents of this paper.
The interested reader will find a thorough treatment of the
subject in the book of R. Bhatia [6].

Dimensionality reduction: Our approach for dimen-
sionality reduction determines a map that takes a set of
matrices {Ck} in S++

n to a new set {C#
k} in S++

p (p < n)
and keeps a maximum amount of information (under
some criterium) from the original matrices. To do so,
we search for a p-dimensional subspace of Rn containing
the most relevant features spanned by the columns of the
original Ck’s. This subspace is represented by a matrix
W 2 Rn⇥p whose columns form a basis for the subspace.
We use W to select linear combinations of electrodes in
Xk via

X#
k = WTXk,

which is the same as calculating

C#
k = WTCkW 2 Rp⇥p. (4)

Without loss of generality, we impose W to be an or-
thonormal matrix. Note that because W is full rank the
dimension-reduced matrices are guaranteed to be positive
definite.
The procedure for choosing W is cast as an optimization
problem,

minimize L(W ),

subject to WTW = Ip,
(5)

where L is a loss function that encodes the criteria for
reducing the dimension of the covariance matrices. One
possible criterium is that of making sure that the distances
of points Ck to a given “landmark” L do not change very
much for the dimension-reduced matrices in S++

p . This
can be written formally as

Lu(W ) =

KX

k=1

⇣
�2(Ck, L)� �2(WTCkW,WTLW )

⌘
.

If we choose L to be the geometric mean of the set of ma-
trices C, the loss function Lu is the one proposed in [4].
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Note that Lu is based on an unsupervised criterium, since
it does not assume knowledge of the labels yk of each co-
variance matrix. In the supervised case, W can be cho-
sen to enforce the separability of classes in the reduced-
dimension manifold, as in the function

Ls(W ) =

KX

i=1

KX

j=1

Aij�
2
(WTCiW,WTCjW ),

where the Aij’s encode a measure of affinity between ma-
trices Ci and Cj , so that

Aij = gw(Ci, Cj)� gb(Ci, Cj),

with

gw(Ci, Cj) =

(
1, if Ci 2 Nw(Cj) or Cj 2 Nw(Ci)

0, otherwise
,

and

gb(Ci, Cj) =

(
1, if Ci 2 Nb(Cj) or Cj 2 Nb(Ci)

0, otherwise
,

where Nw(Ci) is the set of nw nearest neighbours of Ci

with the same label as yi and Nb(Ci) contains the nb

nearest neighbours whose labels are different from yi.
With this definition, Ls tries to preserve the distances
between each pair of matrices in the dimension-reduced
space while at the same time enhancing the class sepa-
rability: for large positive values of Aij (within class)
the dimension-reduced matrices are encouraged to come
closer to one another, while for small negative values (be-
tween classes) their distances tend to increase. Figure 2
illustrates the two aforementioned criteria.

Figure 2: Illustration of the priorities for each type of di-
mensionality reduction. In the unsupervised case, the dis-
tances to a landmark point are preserved, while for the su-
pervised approach the intra-class distances decrease and
the inter-class distances tend to augment.

We should mention that the computational cost for calcu-
lating Lu and Ls is not comparable. In the unsupervised
case the number of operations increases linearly with K
since all distances are calculated with respect to a single
landmark. In the supervised algorithm the number of op-
erations scales quadratically with K, a rather problematic
aspect when working with large datasets.
Problem (5) has a special structure and can be solved as
an optimization problem on manifolds, a branch of ap-
plied mathematics with a considerable amount of recent
research [7] and excellent computational tools available
online, such as the Python package pymanopt [9] used
in this work. In particular, we use a version of the con-
jugate gradient algorithm adapted for manifold optimiza-
tion and solved (5) considering the W matrices as ele-
ments of a Grassmann manifold. We will not delve into
more the details of these procedures, but the interested
reader will find more information in [4] and [7].

Classification pipeline: We classify each trial Xk via
the minimum distance to mean (MDM) algorithm. It de-
termines the geometric mean of the covariance matrices
in each class of the training set and then assigns to each
matrix in the test set the class to which the distance to the
mean is the smallest [8].
We compare three different pipelines for classification:

MDM: No dimensionality reduction (DR) and
classification using the MDM algorithm.

unsDR + MDM: Unsupervised DR with Lu as cost
function and landmark L fixed to the geometric
mean of the dataset. Classification using MDM.

supDR + MDM: Supervised DR with Ls as cost
function, nw always fixed to the minimum number
of elements in each class and nb chosen via cross-
validation. Classification using MDM.

The performance of each pipeline is assessed via a 10-
fold cross-validation procedure and compared by their
AUC (area under the receiver operating characteristic
curve).

Datasets: We carried out our analysis on three
datasets, two from MI experiments and one using the
P300 paradigm. The first MI database comes from the
BCI Competition III – Dataset IV [10] and contains
recordings from 5 subjects with 118 electrodes. We
applied our classification pipelines on 140 trials corre-
sponding to tasks of left and right imagined hand move-
ments (70 for each class). The second MI database is
available at the Physionet website [11] and comprises
recordings on 64 electrodes from 109 subjects. We only
used the data from tasks of imagined hands and feet
movement, which corresponds to approximately 44 tri-
als per subject (22 for each class). The P300 dataset
comes from experiments performed in our laboratory on
the P300-based game Brain Invaders [12]. We used data
from 32 electrodes on 38 subjects with 720 trials each
(120 target and 600 non-target).
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The data from each BCI paradigm were processed differ-
ently. For MI we filtered the EEG signals in the 8-30 Hz
band and considered each trial as a segment from 0.5 to
2.5s after each trial onset. We estimated the spatial co-
variance matrices using (1). For the P300 data we used
filters from 1 to 20 Hz and considered each epoch with a
duration of one second and starting just after a flash. We
used the approach described in [13] to estimate a special
form of covariance matrices capturing signals of interest
in event-related potentials.

RESULTS AND DISCUSSION

This section describes the analysis on each dataset and
discuss the obtained results.

BCI III-IV: We began our investigations on a dataset
where dimensionality reduction is of major concern, be-
cause of its 118 ⇥ 118 covariance matrices. We com-
pared the classification pipelines with different values of
p, the dimension of the reduced covariance matrices, and
nb, the number of neighbors considered in Nb(Ci) for
the supervised DR. The three values of p were chosen in
the following way: obtain the geometric mean M of the
covariances of the dataset (all classes together) and com-
pute its eigenvalue decomposition. Sort the eigenvalues
in decreasing order and select the values of p for which
their cumulative sum equals to at least 80%, 95% and
99% of their total sum. For the BCI III-IV dataset this
corresponds to p = 4, 12, and 32, respectively.
The results in Figure 3 show that for p = 32 the AUC
of pipelines with dimensionality reduction were at least
equivalent to those using all 118 available electrodes.
This can be explained by the low-dimensional structure
of the subspace spanned by the columns of the spatial
covariance matrices. Consequently, most of the variance
of these matrices is associated to their first few principal
vectors. In contrast, reducing the dimensions to p = 4 de-
grades the classification performance on most subjects, a
consequence of the loss of discriminatory features in the
reduced matrices. Figure 3 also indicates that the param-
eter nb of supervised DR does not seem to have much
influence over the scores of the pipelines.

Physionet: In this second dataset we tested the per-
formance of classification pipelines on a wide range of
individuals. Having data from so many subjects allows
us to observe certain patterns and make general conclu-
sions that would be difficult otherwise. Figure 4 displays
the results on three subjects for multiple values of nb and
fixed p = 24. For certain choices of nb the score with
supervised DR was higher than the other pipelines, but
in general we did not observe any considerable improve-
ment. In fact, one could include a grid-search step to the
pipeline with supervised DR for choosing the best value
of nb for each subject. However, this would lead to a con-
siderable increase in processing time, since the quadratic
scaling of supervised DR makes it a quite expensive op-
eration by itself. With this in mind, we fixed nb = 10 in
all of the following analysis, accepting the compromise

that it might not be the optimal value for all subjects.

no reduction

(1) n = 118

(2) p = 4 
(3) p = 12
(4) p = 32 

unsupervised

supervised

  (5) p = 4,   nb = 2
  (6) p = 4,   nb = 5
  (7) p = 4,   nb = 10
  (8) p = 12, nb = 2
  (9) p = 12, nb = 5
(10) p = 12, nb = 10
(11) p = 32, nb = 2
(12) p = 32, nb = 5
(13) p = 32, nb = 10

Figure 3: AUC of the classification pipelines on five sub-
jects from dataset BCI III-IV. We considered pipelines
with p 2 {4, 12, 32}. For the supervised DR we fixed
nw = 70 and varied nb in {2, 5, 10}.

Figure 4: AUC of the classification pipelines with super-
vised DR on three subjects from the Physionet database.
We considered multiple values of nb and fixed nw = 22

and p = 24. Horizontal lines correspond to AUCs of
pipelines with no dimensionality reduction and unsuper-
vised DR.

Figure 5 compares the performances of the classification
pipelines on all subjects for different values of p and fixed
nb = 10. The curves in each plot correspond to the
AUC of each pipeline in decreasing order. We observe
the same behavior as before: on most subjects, when the
dimension of the reduced matrices (e.g. p = 4) is small,
the AUC of the pipeline with full matrices (64 ⇥ 64)
is higher as compared to both dimensionality reduction
methods. The score of all pipelines become close to one
another when p increases. Another important observation
from Figure 5 is that the classification performance of the
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pipelines varies smoothly with the choices of the dimen-
sion p of the reduced covariances. This is of great practi-
cal value because it demonstrates that we do not need to
choose a precise p for attaining good results; there exists
a certain range where all choices are equivalent.

Figure 5: AUC scores in decreasing order for classifica-
tions on all subjects from the Physionet database. We
fixed nb = 10 and nw = 22, and considered the values of
p indicated in the figure.

P300: The results for our investigations of the P300
dataset are displayed in Figure 6. We compare once again
the classification performance of a pipeline without di-
mensionality reduction (64 ⇥ 64 matrices) to classifiers
using either an unsupervised or a supervised approach.
We did all analysis with fixed nb = 10 and considered
multiple values of p. We observed the same behavior as
before for the performance of dimensionality reduction
algorithms: when p is too small the pipelines with DR
are clearly inferior, as seen for p = 8, whereas for higher
p the performances are all very similar.
The computing time for supervised DR in the P300
paradigm was excessively high, mainly because of the
large number of trials in the dataset. We tried using a
smaller set of trials, but in this case the classification per-
formance of all pipelines were lower. In fact, usually
P300 BCI systems are expected to improve their perfor-
mance when more trials are available, so having a dimen-
sionality reduction step that does not scale well with their
number is problematic.

Comparing all pipelines: Besides investigating the
conditions in which a dimensionality reduction would be
useful or not, we tested whether any of the methods had a
globally superior performance on the P300 and Physionet

datasets. In theory, we expect the supervised approach to
have better results because of the extra information it has
concerning the labels of each covariance matrix. To test
this hypothesis, we rearranged the results from Figures 5
and 6 into the plots in Figure 7, where each axis contains
the AUC of a different pair of pipelines.

Figure 6: AUC values in decreasing order for the three
pipelines applied to all subjects from the P300 database.
We fixed nb = 10 and nw = 120, and considered the
values of p indicated in the figure.

We estimated regression lines with intercept fixed to the
origin for each plot and used a F-statistic to test if we
could reject the hypothesis of its slope being equal to one.
None of the statistical tests rejected the null hypothesis
with type I error fixed to 5%, meaning that nothing can
be said about one pipeline being consistently better than
the others. This result indicates that the extra informa-
tion used by the supervised DR is not enough for improv-
ing its classification power. It also means that adding a
dimensionality reduction step to a classification pipeline
does not harm its performance, a very useful fact that
alleviates the computational burden of processing high-
dimensional features using Riemannian geometry.

CONCLUSION

In this work, we evaluated two methods for reducing
the dimension of positive-definite matrices and com-
pared their scores in classification tasks on different BCI
datasets. We observed that reducing too much the di-
mension discards important information from the origi-
nal high-dimensional space and degrades the classifica-
tion performance. Also, the choice of p showed a smooth
influence over the scores of the classification pipelines, a
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very useful result in practice.
Our statistical tests did not reject the hypothesis of each
pair of pipelines having equivalent performances, indicat-
ing that it is possible to reduce the dimensions of a spa-
tial covariance matrix without losing classification per-
formance. We should point out that we probably did not
obtain better results for the supervised DR because we
did not use a grid search for choosing the best nb on each
subject. However, if we had included this step the al-
gorithm would have become impractical, because of the
computational power that minimizing the loss function
Ls demands.

Figure 7: Scatter plots with the AUC scores of each pair
of pipelines in the axis. We used only the results for
p = 24 on both datasets. Coefficient m̂ is the slope of
a regression line with intercept fixed at the origin.

In comparison to [5], our investigations on BCI signals
were more thorough. We explored the effects of the
choice for the reduced covariance matrices, used a dataset
containing many more subjects and a BCI paradigm that
had not been considered until now. In future work, we
intend to explore new options for performing supervised
DR. The approach proposed by [4] does not scale well for
large datasets and we believe that there are better alterna-
tives. Also, we would like to explore more deeply the ef-
fects of reducing the dimensions of covariance matrices,
not only in terms of classification power but as a general

problem in Riemannian geometry. Finally, we should ex-
tend our comparisons to other proposals available in the
literature for reducing the dimension of EEG signals.
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ABSTRACT: We have previously shown that real-time
fMRI, despite the low temporal resolution of the BOLD
signal, can be used for BCI navigation, using motor-
imagery and -execution. Here we leverage the superior
spatial resolution of fMRI to implement a BCI paradigm
going beyond a single brain network for control, while
retaining an intuitive mapping between brain activity and
BCI functionality. The experiments simulate non-trivial
navigation and item selection tasks by a subject teleop-
erating an HRP-4 humanoid-robot. Motor actions are
mapped into simple navigation commands inside a room
and visual attention is mapped to direct the robot’s arm
toward one of three objects placed on a table. When the
correct item has been selected, the subject navigates the
robot toward the experimenter in order to simulate the
delivery of the object. We describe a method based on
two parallel classifiers, with four and three classes (inde-
pendent of the first four), offline and real-time classifica-
tion results from a single-subject pilot, performing sev-
eral times.

INTRODUCTION

This research is part of a thread of studies aimed at dis-
solving the boundary between the human body and a sur-
rogate robotic representation in a physical reality. The
subject is expected to act as if the robotic body is his own
body, and our aim was to provide the subject with an in-
tuitive thought-based control of this surrogate representa-
tion. The subject was located in Israel and the robot was
located in France; this geographic split was only made
due to the availability of the facilities.
Electroencephalogram (EEG)-based brain-computer in-
terface (BCI) for device control, despite much recent
progress, is still mostly based on three paradigms (with
some variants): motor imagery, P300, and steady state
visually evoked potential (SSVEP). Our overarching goal
in this research is to leverage the superior spatial resolu-

tion of blood-oxygen-dependent-signal (BOLD) in order
to explore novel BCI control paradigms based on multiple
brain systems simultaneously, such that we map different
types of mental patterns to relevant functional goals, ap-
proximating a realistic task. Specifically, in this study we
allow the subject to navigate using three motor classes, to
select one of three objects using the visual system, and a
null class.
There have been several studies including EEG-based
BCI control of avatars [1, 2, 3] and teleoperation of a hu-
manoid robot [4, 5], including studies with spinal cord
injured people [6]. We have demonstrated teleoperat-
ing a humanoid robot using motor imagery and execu-
tion with real-time functional magnetic resonance imag-
ing (fMRI) [7, 8], and others have demonstrated navigat-
ing a robot using covert visuospatial attention [9]. In this
pilot study we aim going beyond these studies, using two
different brain systems simultaneously.

MATERIALS

fMRI scans were performed on a 3T Trio Magnetom
Siemens scanner as described in [7, 10], with a repeti-
tion time (TR) of 2000ms. Our system includes a tool
for whole brain classification of raw data in real-time as
described in [11]. Visual feedback is provided by a mir-
ror, placed 11cm from the eyes of the subject and 97.5cm
from a screen, which results in a total distance of 108.5cm
from the screen to the eyes of the subject.
We used the vision system framework (VSF)1 to ac-
quire, transcode and transmit the video stream between
the scanner (in Israel) and the robot (in France) with min-
imum latency.

METHODS

We created a complete software suite for running a wide
range of real-time fMRI studies, which is able to process

1https://github.com/LIRMM-Beziers/visionsystem
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both brain data arriving in real time from the fMRI scan-
ner and pre-recorded fMRI data [11]. It supports various
experimental protocols, includes several analysis meth-
ods, is integrated with the Unity3D game engine for vir-
tual environment feedback, and can interface with other
external devices. Our tool is efficient in terms of process-
ing, can be configured for a wide range of experimental
protocols and was previously tested in several types of
real-time fMRI BCI experiments. It is based on statisti-
cal machine learning classification of subjects’ brain state
in real time, based on whole brain activity.

Figure 1: Sample stimuli for testing the visual category
task. From left to right the categories are: faces, tools and
houses.

Training and applying classifiers in real-time requires
that learning be executed faster than is generally done in
the application of machine learning to fMRI. Our sys-
tem is optimized for memory usage, processing speed,
and classification speed using feature reduction, fea-
ture selection, and redundant data reduction. The sys-
tem uses pre-recorded raw brain data for the purpose
of learning a classifier using Platt’s sequential minimal
optimization (SMO) version of the support vector ma-
chine (SVM) learning algorithm [12]. The system culls
empty voxels and the subject’s eyes and corrects non-
linear non-homogeneous drifts. For classification and
feature selection we use Weka, which is a collection of
machine learning algorithms [13]. For feature selec-
tion we use the information gain (IG) measure to se-
lect the most relevant voxels [14]. The filtered dataset
is passed into Weka’s [15] implementation of multi-
class [16] SVM [12], using default parameters. The result
of the training phase is an SVM classifier model that can
classify previously unseen vectors. The system automat-
ically verifies that the model classifies the training data
with perfect accuracy (“test on train” for sanity check)
and displays the selected voxels.
In the real-time classification stage, the subjects perform
a task and the system classifies their intentions in real
time. The system classifies a brain scan every time reso-
lution unit (TR), which in this case is 2 seconds. It uses
the filtering and normalization methods as in the training
stage and select the same voxels based on the IG filter-
ing performed at model training. The data is then passed
into the trained SMO model, and the classification re-
sult is then transmitted to the external application using a
user datagram protocol (UDP). The classification process
takes approximately 50 milliseconds. Before moving to
a free choice task the subject undergoes a cue-based part

of the study, the task is similar to training but feedback is
provided based on real time classification.

Figure 2: The HRP-4 humanoid robot’s state-machine
protocol for the visual-motor task.

The subject (female, 31) underwent several training ses-
sions for each classification task: i) motor execution (4
sessions) – moving left fingers, right fingers, toes, and a
null (rest) class; ii) motor imagery (4 sessions) – imag-
ining left hand, right hand, feet, and a null class; and
iii) visual categories (5 sessions) – viewing images of
houses, faces and tools. The motor execution classifier
was trained 3 months prior to this experiment, the motor
imagery classifier was trained 2.5 months prior and the
visual categories classifier was trained 24 days prior.
Each motor training session included 40 events from each
category, i.e., for four training sessions there are 160 la-
belled samples; all details are as in [10]. For visual classi-
fication training is done using a block design – a sequence
of images from the same category is flashed, one per sec-
ond, for 12 seconds, followed by a duration of six sec-
onds during which the category images were painted in
white to allow the signal to return to baseline. The subject
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was trained with 36 image sequences for each category,
i.e., for five training sessions there were 180 samples. In
test sessions each stimulus includes three images from
the three categories simultaneously, and the target cate-
gory is indicated by a fixation dot (Fig. 1). The subject
carried out three such test runs, with 30 stimuli in each
session (10 from each category).

The motivation behind the visual paradigm is to allow the
subject to select one of several objects by visual atten-
tion, even if the multiple objects are seen together. Our
processing pipeline assures that information from the ar-
eas surrounding the eyes is pruned prior to being fed into
the machine learning system [11]. Thus, we expect that
the machine learning system can classify this task by de-
coding, in real time, the activity of the well-known visual
areas in the cortex, corresponding to the visual categories
of faces, tools, and houses. Such decoding in real time
and as part of a BCI task has never been attempted to our
knowledge, and the task is especially challenging given
that the training and testing of the algorithm are not done
in the same conditions – the training is based on a single
image display and the testing is based on three images
shown simultaneously. The goal in this paradigm is to
move towards new naturalistic BCI paradigms, such that
training is done in controlled conditions, and the model
can be applied in real time, in naturalistic conditions,
which may be different than those available for train-
ing. In our case, we expect the classifier to be trained
separately over different object categories, whereas the
free choice task includes multiple object categories at the
same time.

The experiment and the robot’s control were based on a
predefined state machine (Fig. 2). The task included sev-
eral stages, including navigation and object selection (see
Fig. 3 and companion video2). The robot was placed in
a fixed orientation. First, the subject steered the robot
towards a table, by passing an obstacle chair and by uti-
lizing all four motor commands in order to reach the table
(Fig. 4, 3). The subject was instructed to guide the robot
around the chair and then turn towards the printed sign
as seen in 4(b) (on the right). The subject had to read,
through the eyes of the robot, the instructions from the
sign with the target object to select. After seeing the in-
struction, the subject was expected to navigate towards a
table, eventually stopping in front of it. On top of the ta-
ble we placed three objects: a (toy) doll’s head, a (toy)
house, and a tool (either a hammer or a tea cup). Prior to
the experiment, the subject was instructed that in order to
select an object she had to rotate towards the sign to learn
about the target object, and from that moment she had
to focus her attention to the target physical object on the
table at all times and study it, including while walking
to table, until it is selected. For example, if the experi-
menter revealed the word ”face” then the subject had to
focus attention to the head’s eyes, nose and chin, i.e., pay
attention to the features of the object. If the word ”tool”

is revealed, then the subject had to imagine herself using
that tool.
After walking the path, the subject was expected to stop
within grasping distance from the objects. Once the sub-
ject reached the table the steering was deactivated, the
robot stood still and the robot’s left hand was pointed
toward one of the items on the table. The item was se-
lected by a majority vote from the classification at times
0-16 seconds following the instruction from the experi-
ment (8 TRs). The 16 seconds delay was based on the
optimal classification time as determined in offline eval-
uation. If a majority vote did not take place (i.e., a draw)
the classification continued until there was a decision.

Following the classification, the subject had to indicate
whether she agrees with the selection or not using motor
categories. The subject used either motor execution or
motor imagery (in different runs), as follows: feet – try
again, right hand – activate a grasp motion. If the mo-
tor action was classified as null, then the subject received
feedback indicating her to repeat the motor action. The
subject repeated this step until she was satisfied with the
category that was selected. Immediately after the subject
activated the grasp motion by selecting the category, the
robot takes a few steps backward away from the table.
Only then the system is re-activated the steering and the
subject was allowed to control the robot and navigate it
towards the experimenter.

Figure 3: A schematic drawing of the intended walking
path inside the room. The red dot indicates the robot’s
fixed position. The path goes around the chair rotating
towards the sign, and then towards the table that has the
three category items placed on top. Following the visual
task, the path continues toward the experimenter.

During the task our system ran two classifiers in paral-
lel: motor (motor execution or motor imagery) and visual
categories, the former with four categories and the latter

2http://y2u.be/eYSb9Q5PcP8
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with three. The subject teleoperated the robot using all
seven classes: left, right, forward, null class, house, face
and tool. The longest run was 12 minutes. For each run
the subject was assigned with a different target category
(face, house, or tool). During the navigation part of the
experiment, the flow of high level commands (forward,
left, right, null, face, tool, house) was sent to the robot
through a user UDP connection with a latency of 100-150
milliseconds using the VSF.

RESULTS

Throughout the experiment we used three classifier mod-
els: motor execution, motor imagery, and visual cate-
gories. A combination of motor execution and visual cat-
egories was used on the first day of the experiment, and
a combination of motor imagery and visual categories on
the second day. Estimating accuracy for the free choice
is difficult, so we provide offline evaluation of the classi-
fication models.

Figure 4: The HRP-4 humanoid robot during a visual-
motor task, standing in front of three objects. Top: the
target objects as seen from the robot camera by the sub-
ject, bottom: the robot performing the task, escorted by
an experimenter for robot safety.

Offline analysis of the motor classifier is based on a sin-
gle training session (Fig. 5). As expected, a cue-based
session with real time feedback using the same classifier
yields similar results. More real-time data is required to
assess the difference in accuracy in TR3. The motor exe-
cution classifier was trained and tested three months prior
to this real-time experiment and test. Similarly, single-

run motor imagery classification accuracy results can be
seen in Fig. 6; we note that the pre-recorded and real-time
tests were done 3 & 2.5 months apart, respectively.

Figure 5: Motor execution cue-base classification accu-
racy comparison between a single pre-recorded and a sin-
gle real-time run.

Figure 6: Motor imagery cue-base classification accuracy
comparison between a single pre-recorded and a single
real-time run.

Figure 7: Cue-base classification accuracy, comparing
single and triple frame (best run and average).

Offline analysis of the visual classifier was performed as
follows. A single model was trained on five sessions –
overall 180 stimuli, each including one category. The
model was then tested in two conditions: i) another run of
36 stimuli with one image displayed on screen, and ii) a
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run of 36 stimuli, each comprising of all three categories
displayed on the screen simultaneously. Fig. 7 presents
the results, indicating that while both methods perform
significantly better than chance (33%), testing on a single
image is superior to testing on three parallel images.

A qualitative assessment of the subject’s performance can
be provided for the free choice task. In the motor exe-
cution experiment the subject performed the navigation
part successfully in all four experimental sessions. In the
motor imagery experiments the subject failed to stop the
robot near the table and was only successful in the third
session.

Thus, our subject had five attempts at the visual task: four
in the motor execution conditions and one in the motor
imagery condition. The subject succeeded in all cases,
but only in the second attempt (in all of the motor ex-
ecution sessions) or in the fourth attempt (in the motor
imagery session).

The classification seemed to be skewed towards the face
category. Fig. 8(A) shows several red dots that corre-
spond to a successful classification of the “face” com-
mand in each time point during 8 TRs. However, when
the subject was instructed to focus on one of the two
other categories (house or tool) there was category ri-
valry between the classes. Fig. 8(B) is a rivalry exam-
ple that show a fluctuation between “face” and “house”.
When category rivalry occurs, it prolongs the classi-
fication stage and it is harder to get a majority vote.
In other words, without rivalry there are less classi-
fication attempts and a majority vote occurs quickly.

Figure 8: Visual categories real-time classification exam-
ples. The subject was instructed to focus on a) face, b)
house.

DISCUSSION

We have developed a novel paradigm, based on simulta-
neous classification of both motor and visual brain net-
works, and have evaluated it in the context of a complex
navigation and object-selection task, involving teleoper-
ating of a humanoid robot. The pilot study with one
subject serves to demonstrate that our system is fully
operable, and provides a preliminary evaluation of the
paradigm. Our results indicate that the task can be per-
formed, although motor imagery and visual classification
are challenging. Specifically, further work is required to
refine the visual paradigm. Our offline evaluation results
suggest that training subjects on simultaneous images (in
the same fashion as the actual task) may be more appro-
priate.
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ABSTRACT: Introducing BCI technology in supporting 

motor imagery (MI) training has revealed the 

rehabilitative potential of MI, contributing to 

significantly better motor functional outcomes in stroke 

patients. To provide the most accurate and personalized 

feedback during the treatment, several stages of the 

electroencephalographic signal processing have to be 

optimized, including spatial filtering. 

This study focuses on data-independent approaches to 

optimize spatial filtering step. 

Specific aims were: i) assessment of spatial filters' 

performance in relation to the hand and foot scalp areas; 

ii) evaluation of simultaneous use of multiple spatial 

filters; iii) minimization of the number of electrodes 

needed for training. 

Our findings indicate that different spatial filters showed 

different performance related to the scalp areas 

considered. The simultaneous use of EEG signals 

conditioned with different spatial filters could either 

improve classification performance or, at same level of 

performance could lead to a reduction of the number of 

electrodes needed for successive training, thus improving 

usability of BCIs in clinical rehabilitation context. 

 

INTRODUCTION 

 

Brain-computer interface (BCI) technology allows 

people with severe motor disabilities to use their brain 

activity (e.g. the electroencephalographic, EEG, signals) 

to control external devices, thereby bypassing their 

impaired neuromuscular system, or receive a feedback 

related with their cognitive processes [1]. One of the 

most recent and promising BCI applications regards post-

stroke functional motor rehabilitation [2]. For instance, 

the introduction of BCI technology in assisting the motor 

imagery (MI) practice has been demonstrated to uncover 

the rehabilitative potential of MI, contributing to 

significantly better hand motor functional outcomes [3]. 

In order to facilitate the practice of voluntary covert and 

/or overt access to the affected hand, patients received a 

discrete feedback that should be the faithful 

representation of the brain activity (congruent with the 

affected hand).  

To bridge the gap between research-oriented 

methodology in BCI design and the usability of a system 

in the clinical realm requires efforts towards BCI signal 

processing procedures (feature extraction and 

translation) that would optimize the balance between 

system accuracy and usability. This study focuses on the 

process of feature extraction and more specifically on its 

spatial filtering step.  

Spatial filters are generally designed to enhance 

sensitivity to particular brain sources, improve source 

localization and/or suppress artifacts. Most commonly, 

spatial filters are a linear combination (i.e. weighted 

sums) of channels. There are several approaches for 

determining the set of spatial filter weights. These 

approaches fall into two major classes: data-independent 

and data-dependent spatial filters [4]. According to the 

review [5] of signal processing methods used in BCI 

studies, the surface Laplacian, the common spatial 

pattern, the common average reference and the 

independent component analysis are the most employed 

filters. For sensorimotor rhythms-based BCIs, the 

common average reference and Laplacian methods are 

superior to the ear reference method because they 

enhance the focal activity from the local sources and 

reduce the widely distributed activity [6]. Furthermore, 

concerning the two variations of the Laplacian filter, i.e. 

the large and the small Laplacian, it appears that they are 

the best filters in prediction and source identification, 

respectively [7].  

This study approached the spatial filtering step by 

hypothesizing that filtering the EEG data with a different 

data-independent spatial filters would return a better 

rendering of the scalp areas of interest to allow for a more 

suitable physiologically informed feature extraction. As 

such, this procedure would best lead to a reinforcement 

of individual correct EEG patterns during BCI training 

[3] and, thus, maximize target prediction in the 

rehabilitation training.  

In this view the specific study aims were: (a) to compare 

performances of different spatial filters as a function of 

the scalp areas relevant for hand or foot  executed motor 

tasks (i.e. areas of interest), (b) to compare performances 

of gold standard filters, e.g. Laplacian filters, versus 

those obtained by pooling information (EEG features) 

coming from different spatial filters, (e.g. two kinds of 

bipolar filters), (c) to evaluate the impact of  number of 

electrodes needed in those spatial filters which showed 

similar classification performance. 

Confirming the main hypothesis, we might suggest that 

the a priori (defined one time, before starting the 

analysis) choice of just one spatial filter at the start of the 
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BCI signal processing is not optimal.  

Common average reference (CAR), surface Laplacian 

(LAP) and bipolar filters, the latter commonly used in the 

EEG clinical field but not in sensorimotor rhythms-based 

BCI, were explored in this preliminary study on an EEG 

data set, acquired at IRCCS Fondazione Santa Lucia, that 

does not include stroke patients.  

 

METHODS 

 

     Subjects: Forty subjects (seven of them with severe 

motor disabilities due to traumatic spinal cord lesion or 

progressive neurodegenerative disorders) participated in 

the study. Each subject gave written informed consent 

prior to inclusion. The study was approved by the 

Fondazione Santa Lucia (Rome) ethics committee.  

     Experimental protocol: The protocol consisted of two 

main parts: the screening session and some training 

(weekly) sessions. During the initial screening session, 

subjects were comfortably seated on a reclining chair (or, 

when necessary, on a wheelchair) in a dimly lit room. The 

session was divided in 12 runs (30 trials each one). Each 

trial began with a target appearing on a side of the screen 

(up/down, i.e., vertical, or left/right, i.e., horizontal). The 

trial lasted 5.8 seconds, with the inter trial interval of 1.8 

seconds. Subjects were instructed to execute (first run) 

and imagine (second run) movements of their hands 

(opening and closing) or feet (flexion) upon the 

appearance on the screen of top or bottom target, 

respectively. When the targets appeared on the left or 

right side of the screen subjects were invited to move 

(third run) or to imagine (forth run) their left or right hand 

(opening and closing) upon the appearance of the target 

in the correspondent side. This sequence was repeated 

three times for a total of 12 runs. Subjects were instructed 

to minimize muscular, electrooculographic and blink 

activity. In the screening session, subjects were not 

provided with any feedback (any representation of their 

brain activity).  

     Experimental setup: Scalp EEG potentials were 

collected from 58, 59 or 61 positions assembled on an 

electrode cap (according to an extension of the 10-20 

International System) and amplified by a commercial 

EEG system (BrainAmp, Brain Products GmbH, 

Germany) which sampled signals at 200 samples/s (per 

channels). Electrical reference has been provided by both 

ear lobes. The BCI system was realized using the 

BCI2000 [8] software system.   

     Signal processing and feature extraction: Using 

Matlab, EEG signals were band-pass filtered (0.1-70 Hz) 

with a forth order Butterworth filter and notch filtered at 

50 Hz. The conventional ear reference, the common 

average reference (CAR), two different Laplacian 

derivations (small and large) [6] and two simple bipolar 

methods were considered in the study. In the bipolar 

methods (applied via software) each voltage difference 

was computed between two channels, longitudinally 

subtracting e.g. FCz from Fz and transversely subtracting 

e.g. Cz from C1.  

EEG data recorded and filtered with each spatial filter 

considered were divided into epochs 1 second long. The 

spectral analysis was performed on EEG data epochs 

corresponding to task employing the Maximum Entropy 

method (16th order model) with a resolution of 2 Hz and 

considering no overlapped epochs. All possible features 

in a reasonable range (i.e., 0-36 Hz in 2 Hz bins) were 

extracted and analysed. A feature vector (spectral 

amplitude at each bin for each channel) was extracted 

from each epoch.  

     Data analysis: Consistently with the aims of the study 

two analysis were planned.  

For the aim (a) just vertical runs, corresponding to the 

movement execution of hands or feet, were analysed. 

Hands opening/closing and feet flexion engage separate 

areas of the sensorimotor strip, different about 

anatomical and functional point of view.  

Basing on the sensorimotor rhythms, the analysis was 

constrained to features belonging to the sensorimotor 

strip (FC, C and CP channels) in the range from 7 Hz to 

31 Hz. The hands area was defined as the area containing 

derivations coming from FC, C and CP electrodes in all 

their even and odd positions (bilateral area); the feet area 

was defined as the area containing derivations coming 

from electrodes placed on the mid-line, e.g. FCz, 

according to the 10-20 International System.  

Features belonging to those areas, first separately 

considered, i.e., hands area, feet area, and then in the 

combined manner, hands and feet areas, were the input 

for the stepwise regression which identifies the optimal 

subset of predictor variables (i.e. the features in this case) 

and assigns weights to them in order to build an effective 

regression model to evaluate the relationship between the 

predictors and the dependent variable (here equivalent to 

subject’s movement intention). The maximum number of 

features to be selected by the stepwise regression 

algorithm was set, for all feature domain, to 8 because of 

results obtained in a preliminary study. The latter aimed 

to compute the optimal number of features from which 

the mean (among tasks and subjects) classification 

performance does not grow in a significant way. We 

concluded that increasing the number of features, from 

eight to largest values, does not significantly increase the 

performance values.  

In order to compare performances of the six spatial filters 

considered, after the features translation step in which a 

linear classifier is used to predict if the epoch examined 

belonged to hands movement trials or feet movement 

trials, the Area Under Curve (AUC) of Receiver 

Operating Characteristic (ROC) curve was assessed 

using a 15-fold cross-validation design.  

For the aim (b) both vertical and horizontal runs were 

analysed, allowing selection algorithm (stepwise) to 

choose features from both areas, hands and feet areas in 

combined manner for vertical runs and left and right hand 

areas in combined manner for horizontal runs. This 

analysis included six feature domains each one extracted 

from EEG signals pre-processed with one of six filters 

earlier defined and a new feature domain containing all 

(in sensorimotor strip and frequencies) features 

computed from EEG signals pre-processed by 
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longitudinal and transversal bipolar filters. The feature 

dimensionality reduction (stepwise regression), the 

classification (linear classifier) and the computation of 

performance index (AUC of ROC curve) followed the 

stages as proposed for (a).  

For the aim (c) three representative subjects for which 

different spatial filters showed (for each subject) in (b) 

the same classification performances were identified. 

The number of electrodes needed to realize the hardware 

montage containing the eight (as earlier defined) optimal 

features was computed for each spatial filters.  

  Statistical analysis: To investigate the performances of 

different spatial filters in relation to the scalp areas, AUC 

values (in movement execution runs) were analysed by 

repeated measures two factors analysis of variance 

(ANOVA). The filter factor had six levels (the six filters 

earlier listed), the area factor had three levels (hands area, 

feet area, hand &feet area).  

To the aim (b), for each task (vertical and horizontal task) 

AUC values were analysed by repeated measures two 

factors ANOVA in which filter factor had seven levels (6 

filters listed earlier and the new filter obtained combining 

longitudinal and transversal bipolar filters) and modality 

factor two levels, the movement execution and 

imagination. Horizontal and vertical runs were studied 

separately.  

The Tukey HSF post hoc analysis was conducted to 

assess pairwise differences. If not indicated otherwise, all 

results are presented as mean ± SE (standard error). For 

all statistical analysis, threshold for statistical 

significance was set to p < 0.05.    

 

RESULTS 

 

     Spatial filters and scalp areas relation: The repeated 

measures two factors ANOVA of the AUC values 

revealed a significant effect of both filter (F=28.72, p < 

0.01) and area (F=52.43, p < 0.01) factors and a 

significant area –filter interaction (F=9.59, p < 0.01). 

Figure 1 shows statistical analysis output and post-hoc 

tests result. The results are consistent with the findings in 

[6]: common average reference and large Laplacian 

methods are significantly superior to the ear-reference 

method.

 

 
Fig. 1. Classification performance (AUC values of ROC curve) presented as mean ± SE (standard error) evaluated in movement execution vertical 
runs (hands opening/closing and feet flexion tasks) using features selected (by stepwise regression algorithm) from hands area (in blue), feet area 

(in red), both areas (in green) on EEG data no filtered (RAW), filtered with common average reference (CAR), longitudinal bipolar (loBIP) and 

transversal bipolar (trBIP) filters, surface Laplacian in its derivation small (sLAP) and large (lLAP). The symbol * shows the significant 
differences (p<0.05) pointed out by the Tukey HSF post hoc test. The colour of the symbol expresses the area in which this difference is 

significant. Although figure does not report the comparison between RAW and others filters, post-hoc tests confirm findings in McFarland et al.,  

1997. 
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Table 1: List of the eight features selected (by stepwise algorithm) in the features domains obtained from EEG data filtered with small surface 

Laplacian (sLAP) and using both longitudinal and transversal bipolar filter feature domains (long + trans BIP, simultaneous use of multiple spatial 

filters). No statistical differences for this pair of filters from the previous analysis. Three representative subjects (S01, S02, S03) were considered 

for the comparison (results in table from movement execution of vertical runs, hand opening/closing and feet flexion). The AUC values, for each 
subject, are the same for both filters (sLAP and long+trans BIP). Channels positions are conformed with 10-20 International System. Each channel 

indicated in sLAP is the central electrode of the difference (e.g., C3 is the central electrode: the surface Laplacian involved its neighbours C1, C5, 

FC3, CP3).  
 

 S01 S02 S03 

 sLAP 

chan – freq (Hz) 

long + trans BIP 

chan – freq (Hz) 

sLAP 

chan – freq (Hz) 

long + trans BIP 

chan – freq (Hz) 

sLAP 

chan – freq (Hz) 

long + trans BIP 

chan – freq (Hz) 

1 C3 11 FC3-C3 11 CP4 11 FC4-C4 11 C4 13 FC3-C3 13 

2 Cz 27 Cz-C2 13 CPz 25 CP4-P4 25 CP3 13 C2-C4 13 

3 C4 13 Cz-CPz 29 C4 25 CPz-Cz 25 Cz 25 F5-FC5 17 

4 C4 21 CPz-Pz 21 C3 13 C1-Cz 11 C6 11 TP7-CP5 27 

5 Cz 21 FC3-C3 17 C2 29 CP3-P3 27 FC5 29 FC6-C6 13 

6 FC3 31 FC1-C1 11 FC3 15 CP1-CPz 25 C3 13 C1-Cz 25 

7 FC2 25 FC4-C4 21 CP4 25 FC4-C4 25 CP3 15 FC4-FC6 31 

8 CP6 13 C1-Cz 11 Cz 27 F5-FC5 19 C6 27 CPz-CP2 29 

Number of 

electrodes  

need to realize this 

hardware montage 

21 10 22 12 22 15 

 

 

 

     Simultaneous use of multiple spatial filters: The 

repeated measures two factors ANOVA of the AUC 

values revealed a significant effect of both filter 

(F=22.13, p < 0.01) and modality (F=46.72, p < 0.01) 

factors and a significant modality –filter interaction 

(F=2.79, p < 0.05). The post-hoc Tukey HSF test 

confirms findings in [6] about differences existing 

between apply and not apply spatial filters on EEG data.  

The tests disclose pairwise differences (p < 0.01) 

between the common average reference (mean=0.83) and 

the large surface Laplacian (mean=0.87), the longitudinal 

bipolar filter (mean=0.83) and the large surface 

Laplacian (mean=0.87), the transversal bipolar filter 

(mean=0.81) and the small surface Laplacian 

(mean=0.85), the transversal bipolar filter (mean=0.81) 

and the large surface Laplacian (mean=0.87) and, above 

all, between the transversal bipolar filter (mean=0.81) 

and the simultaneous use of longitudinal and transversal 

bipolar filters (mean=0.87). No significant differences 

were seen between performances obtained using features 

extracted from the new domain and those from the two 

variations (small and large) of the surface Laplacian 

filter.  

     Minimization of number of electrodes: Table 1 shows 

the comparison between the features selected from the 

new domain (longitudinal and transversal bipolar filters) 

and the small surface Laplacian domain for three subjects 

for which classification performance is the same for both 

domains. 

 

DISCUSSION 

 

Feature extraction and feature selection are crucial steps 

to ensure an optimal BCI system performance. When 

applying BCI to support clinical rehabilitation it is 

mandatory to comply with quality of EEG patterns 

reinforced via BCI training to promote post-stroke (good) 

plasticity leading to a better motor outcome. Yet, 

deployment of BCI systems with high level of usability 

enables the actual transfer of this technology in routine 

clinical usage. 

In this study the spatial filters commonly used in BCI 

control were compared with filters commonly used in 

EEG clinical application (e.g., bipolar filters) in order to 

allow for a handy feature selection but still taking into 

account the physiological requirements specific for this 

BCI application. 

Here, the relation between performances shown by 

several (BCI and clinical gold standard) spatial filters and 

sensorimotor strip areas, engaged in different tasks, was 

investigated. Considering scalp areas separately (i.e., 

hands area and feet area) highlights interesting 

differences (e.g., from longitudinal and transversal 

bipolar in the feet area) that do not emerge considering 

features in the sensorimotor strip altogether.  

Our findings indicate that the comparison between the 

transversal bipolar and the small surface Laplacian filters 

showed different performances in the three scalp areas of 

interest analyzed. In particular, we found better 

performance for transversal bipolar filter in the foot area 

and for small surface Laplacian in the hand area. The 

identification of a best spatial filter is, therefore, related 

to the scalp area (its anatomical and functional 

properties) of interest and thus, improving performance 

can be pursued using specific filters for specific areas.  

Further analysis will be oriented to investigate the reason 

why transversal bipolar filter shows better performance 

in the feet area. 

In addition, these findings require a consolidation by 

exploring their use with other motor tasks (different from 

hand opening/closing and feet flexion, analyzed in this 

preliminary study) and/or imagined movements.  

Furthermore, the integration of features information as in 

this case from longitudinal and transversal bipolar filters, 

led to an improvement of performance with respect to 
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considering each domain individually.  Specifically, no 

differences were found between the performance 

obtained with the integration approach and those 

obtained with the surface Laplacian filters (i.e., the gold 

standard when scalp areas were considered all together). 

Moreover, comparing the number of electrodes needed to 

realize the hardware montage containing just the 

appropriate features for the rehabilitation (both in case of 

features selected from integrated approach and surface 

Laplacian filter), We suggest that the use of a new 

integrated approach for feature extraction and selection 

might enhance the usability of the BCI technology in the 

field of rehabilitation. 

The next step to ultimately promote this approach to 

rehabilitation applications would be to analyze BCI data 

collected from stroke patients.  

 

CONCLUSION 

 

Different spatial filters show different performance in 

relation to the scalp areas of interest, suggesting that 

potentially useful information for optimal feature 

extraction in BCI contexts can be obtained taking into 

account neurophysiological aspects. This could be 

particularly relevant in the context of rehabilitation 

applications. Furthermore, to consider features from 

more than one feature domain improves classification 

performance and, comparing filters at same performance 

level, allows to reduce the number of electrodes, 

improving the usability of BCI technology. For these 

reasons, we suggest that the a priori choice of one spatial 

filter might not be optimal for BCI rehabilitation 

applications. 
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ABSTRACT: GUIDER is a graphical user interface 

developed in MATLAB software environment to identify 

electroencephalography (EEG)-based brain computer 

interface (BCI) control features for a rehabilitation 

application (i.e. post-stroke motor imagery training). In 

this context, GUIDER aims to combine physiological 

and machine learning approaches. Indeed, GUIDER 

allows therapists to set parameters and constraints 

according to the rehabilitation principles (e.g. affected 

hemisphere, sensorimotor relevant frequencies) and 

foresees an automatic method to select the features 

among the defined subset. As a proof of concept, we 

compared offline performances between manual, just 

based on operator’s expertise and experience, and 

GUIDER semiautomatic features selection on BCI data 

collected from stroke patients during BCI-supported 

motor imagery training. Preliminary results suggest that 

this semiautomatic approach could be successfully 

applied to support the human selection reducing operator 

dependent variability in view of future multi-centric 

clinical trials.  

 

INTRODUCTION 

 

Brain-computer interfaces (BCIs) collect the 

neurophysiological correlates of the brain activity (e.g. 

the electroencephalogram, EEG) and process them with 

the aim of controlling external devices, bypassing the 

neuromuscular system, or providing the user with a 

feedback of specific processes occurring in the brain [1]. 

A growing application field of this technology regards 

rehabilitation and more specifically the improvement of 

motor recovery in stroke patients [2]. In this context 

EEG-based BCIs monitor the modulation of brain 

activity induced by e.g. the imagination of movement. In 

fact, motor imagery (MI) practice elicits event-related 

desynchronization that occurs within EEG frequency 

bands (alpha and beta) and primarily over the scalp in 

sensorimotor cortical regions contralateral to the 

imagined part of the body. The introduction of BCI 

technology in assisting MI practice has been 

demonstrated to uncover the rehabilitative potential of 

MI, contributing to significantly better motor functional 

outcomes [3]. In order to reinforce a specific pattern, 

related to correct MI, appropriate choosing of BCI 

control parameters (EEG features) is needed. In [3], BCI 

features, channels and frequencies, were identified 

according to a “manual” procedure (following EEG data 

analysis from the screening session). Namely, 

neurologists and/or therapists identify the features taking 

into account neurophysiological evidence and 

rehabilitation principles and basing on the visualization 

of matrices obtained from the statistical comparison 

between two conditions (task and rest). This procedure is 

highly dependent on the operator and is not suitable for 

the majority of therapists because it requires experience 

for visualizing patterns of desynchronization in that 

form. 

With the aim to reduce the variability of this procedure 

in view of a wider employ of the BCI-based rehabilitation 

in stroke (e.g. for a multi-centric clinical trial), this study 

proposes the application of an algorithm to automatically 

choose EEG features.  

As reported in [4], the genetic algorithm, the principal 

component analysis, the distinctive sensitive learning 

vector quantization and the sequential floating forward 

selection are the most common features selection 

methods used in BCI studies, especially the last one in 

sensorimotor rhythms-based BCI. In the same context, 

McFarland [5] proposed a stepwise multiple regression 

procedure to periodically update the features used to 

control cursor movement across training sessions. 

According to the stepwise algorithm, the feature that 

most reduces the residual variance (i.e., the variance not 

accounted for by target location) and does so with p-

value less than 0.01 is added to the model. Additional 

features are then added in the same way. After each new 

addition, a backward stepwise regression removes any 

variables for which p-value is greater than 0.01. This 

process continues until no further features satisfy the 

addition/removal criteria. 

As previously mentioned, the identification of 

“appropriate” control features, consistent with 

rehabilitation principles in terms of frequencies and 

areas, is a milestone in rehabilitation protocols supported 

by BCI technology. For this reason, this study proposes 

the application of the method in [5], as automatic method, 

suggesting an essential improvement for the 

rehabilitative field: the inclusion of the operator, 

neurologist and/or therapist and his neurophysiological 
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knowledge, in the features selection procedure. With this 

in mind and in view of a wider employ of the BCI-based 

rehabilitation in stroke, a user-friendly graphical 

interface was developed to guide the operator in the 

feature selection procedure and give him the possibility 

to define some constraints in which the automatic method 

has to run. In the overview [6] of publicly available 

software platforms for BCIs, the presented tool might 

match needs of rehabilitation BCI researchers orientated 

to a translational approach, from machine learning to 

physiology and vice-versa.  

 

METHODS 

 

     Description and operating procedure: GUIDER is a 

graphical user interface (GUI) for semiautomatic and 

physiologically driven EEG features selection. It was 

designed and developed in MATLAB R2015a (The 

MathWorks, Inc., Natick, Massachusetts, USA) and runs 

until MATLAB R2011a. GUIDER allows users to 

interact with BCI data through a graphic interface 

without needing to use MATLAB syntax. Calling 

GUIDER in the MATLAB command window launches 

the first screen (Fig. 1) of the tool.  

 

 
 
Figure 1: MATLAB main window and typical screen shot of 

GUIDER (right side). 
 

The buttons “Load DATA” and “Load MONTAGE” 

allow importing BCI data (GUIDER supports several file 

formats) and montage files, respectively. More than one 

data file could be processed: files are concatenated.  

The “START ANALYSIS” button launches the 

following modules,  

(a) data conditioning module which applies spatial and 

frequency filtering, 

(b) feature extraction module which employs methods to 

estimate the signal spectrum,  

(c) statistical analysis module in which comparison tests 

of two conditions, i.e., two tasks, task vs rest, are 

implemented,  

(d) visualization module that gives output a matrix, 

channels and bins, where the statistical comparison index 

value of any feature is shown in a colour tint. A colour 

bar shows the colour range.  

At the end of these analyses, the user visualizes pattern 

of desynchronization in the form of statistical index 

matrices, each one obtained using a different spatial 

filtering [7], e.g., common average reference (CAR), 

bipolar filters, surface Laplacian filters (other filtering 

options can be implemented). The pop-up menu in the 

bottom part of GUIDER main window allows the choice 

of filtering option (how many and which filters). At this 

point, the operator is required to define topographical and 

spectral constraints taking into account 

neurophysiological evidence and rehabilitation 

principles. This step may be guided by GUIDER or 

manual (Fig. 2). According to the first modality, the 

operator checks which hemisphere and channels to 

include in the analysis. In the manual modality, instead, 

operator selects rectangular areas in the statistical matrix 

after inserting the number of areas of interest in the edit-

text box in GUIDER. The “OK” button closes all figures 

and opens the figures of statistical matrices, according to 

the number and the type of filtering earlier chosen, 

allowing the user to select rectangular areas accordingly 

(Fig. 3). 

The values of features belonging to the areas selected 

manually or by the guided modality, are the inputs for the 

features selection algorithm: the stepwise regression 

(SW). This algorithm identifies an optimal subset of 

predictor variables (i.e. the features) and assigns weights 

to them in order to build an effective regression model to 

evaluate the relationship between the predictors and the 

dependent variable (here equivalent to subject’s 

intention). During each iteration, the algorithm adds or 

removes a feature from the classification model in order 

to obtain a combination of features ensuring a good 

classification performance. GUIDER implements it 

using the MATLAB ® function stepwisefit.m.  

The optimal features and their weights are saved both as 

text file and external parameter file.  

     Proof-of-Concept: EEG dataset from three patients 

(subacute stroke patients with right-sided lesions, 

involved in previous studies at IRCCS Fondazione Santa 

Lucia, [3] for an extended description) were used to 

compare semiautomatic and manual procedure in terms 

of both features selection (channels and frequencies) and 

classification performance. Screening session’s data of 

each patient were analysed to identify the control 

features. Patients were instructed by the therapist to 

perform the movement (grasping and finger extension) 

imagination of their affected hand. During the initial 

screening session EEG signals were collected from 61 

electrodes according to an extension of the 10–20 

International System with 200 Hz as sampling frequency; 

scalp signals were referenced to the linked-ear signal. 

Each run consisted of 15 trials related to motor imagery 

task (grasping and finger extension) and 15 trials of 

baseline rest (9s each). Trials were randomly presented 

within a run. For each trial, we analysed the 4 epochs 

corresponding to the 4 seconds during which the patients 

performed the MI task. In the screening session, the 

subjects were not provided with any feedback of their 

brain activity.  
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To compare the procedures, the number of features 

automatically identified (in the constraints imposed by 

operator using GUIDER) is coherent with the number of 

features manually selected just by observing the 

statistical index matrix. These two control features drive 

the visual feedback to therapist and patient during the 

training sessions. In the training session the patients sat 

in a chair/wheelchair and their hands were covered by a 

white sheet on which a dedicated software projected a 

realistic visual representation of the patient’s hands. The 

therapist instructed the patients to imagine the movement 

(grasping and finger extension) of the affected hand and 

they received a feedback when the trial was successful. 

The feedback consisted in the replication of the imagined 

movement by the virtual hand. 

     Data Analysis: The spectral analysis was performed 

on EEG data epochs (1s long) corresponding to MI task. 

The Maximum Entropy Method (16th order model) was 

employed to estimate amplitude spectrum with a 

resolution of 2 Hz and considering not overlapped 

epochs. All possible features in a reasonable range (i.e., 

0-36 Hz in 2 Hz bins) were extracted and analysed. A 

feature vector, spectral amplitude at each bin for each 

channel, was extracted from each epoch. For each feature 

a contrast was performed to assess statistically significant 

modulation induced on a specific feature. To this aim, the 

coefficient of determination R-square, i.e., the proportion 

of the total variance on the feature samples accounted for 

by target position, was computed for each feature 

(dependent variable).  

     Validation: In order to compare the classification 

performance achieved with both human and 

semiautomatic selection, Area Under Curve (AUC) of 

Receiver Operating Characteristic (ROC) curve was 

assessed in auto-validation and cross-validation 

condition: screening data (previously exploited to obtain 

the control features and weights) and training data were 

used as testing dataset, respectively. Separately, outputs 

of the stepwise regression and the weights assigned by 

neurologists and/or therapists (conventionally, each one 

of -0.5) were the input of a linear classifier for the 

computation of the score used to calculate AUC values.

 

  
Figure 2: Screen shot of the window for the definition of topographical and spectral constraints. In the left side, guided procedure: the operator just 

checks the hemisphere and channels (in the sensorimotor area) to include in the analysis. In the right side, manual procedure: the operator just 

writes in the box the number of rectangular areas he would to select in the statistical matrix that it will following open.   

 
Figure 3: R-square matrix (channels and frequency intervals) obtained from EEG data analysis collected during the screening session and filtered 
using the filter chosen in GUIDER pop-up menu (e.g. CAR). The red rectangular areas (e.g. three areas as those written in Figure 2 right panel) are 

those selected by the operator (according neurophysiological evidence and rehabilitation principles) for the features selection using the GUIDER 

manual procedure.  
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RESULTS 

 

Figure 4 shows the graphic output of the GUIDER 

operating procedure until topographical and spectral 

constraints definition. It displays for Subject 1 (S01) the 

R-square values of all features (61 channels and 18 

frequency bins) after the filtering selection (in this case, 

CAR). The relevant control features selected, just based 

on R-square matrix visualization, by an expert 

neurophysiologist are reported in Table 1 for all three 

patients. The same operator, using the areas selection 

procedure in GUIDER, selected some rectangular areas: 

three for S01, from FCz to FC6, from Cz to C6, from CPz 

to CP6, all ranged from the forth and to the seventh bin 

in the R-square matrix. Two optimal, coherent with the 

number of features selected just based on R-square 

matrix visualization, features identified by the stepwise 

algorithm in those areas are in Table 1.  

The classification performance (AUC) in both auto-

validation and cross-validation condition using the 

features identified in manual and semiautomatic 

(GUIDER) procedure are summarized in Table 2. 

 

 

 

 

 

 

Table 1: Control features identified during BCI tasks at the 

screening session (for three subjects with right-sided lesions) by an 

expert neurophysiologist (manual procedure) and by the 

semiautomatic procedure implemented by GUIDER. For each 
feature EEG channel and frequency are reported (for each 

procedure) in the left and right columns, respectively. 

 

Subject 
Control 

feature 
Manual procedure GUIDER procedure 

S01 
1 CP4 9 Hz CP2 9 Hz 

2 C4 9 Hz C4 11 Hz 

S02 
1 C2 21 Hz C2 21 Hz 

2 CP2 23 Hz Cz 25 Hz 

S03 
1 C4 19 Hz C4 19 Hz 

2 CP4 19 Hz CPz 21 Hz 

 

 
Table 2: AUC values computed in auto-validation condition 

(namely, on data previously exploited to obtain the control features 

and weights) and in cross-validation condition (data from a 

rehabilitation training session used as testing dataset) for manual 
and semiautomatic procedure.  

 

Subject 
Validation 

(V) 

Manual  

procedure 

GUIDER 

procedure 

S01 
Auto-V 0.91 0.94 

Cross-V 0.88 0.88 

S02 
Auto-V 0.76 0.79 

Cross-V 0.74 0.74 

S03 
Auto-V 0.75 0.82 

Cross-V 0.70 0.65 

 

 
 
Figure 4: R-square matrix (channels and frequency intervals) obtained from EEG data analysis collected during the screening session from a 

subacute stroke patient with right-sided lesions (S01). The red (channels CP4 and C4 at 9 Hz) and yellow rectangles (channels CP2 and C4 at 9 Hz 

and 11 Hz, respectively) are features selected (for the rehabilitation training phase) by an expert neurologist and by GUIDER, respectively. 
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DISCUSSION 

 

Identifying the optimal control features is a milestone in 

rehabilitation protocols supported by BCI technology. In 

contrast to other fields of application where optimal 

cursor control is pursued, in a rehabilitation context the 

aim is also to reinforce the appropriate sensorimotor 

activation in terms of both topographic and spectral 

characteristics. Therefore, the feature selection procedure 

requires knowledge coming of neurophysiology and 

rehabilitation principles as well as expertise in 

visualizing pattern of desynchronization in the form of 

statistical index matrices. The manual procedure is 

highly dependent on the operator and is currently 

restricted to researchers with experience in the BCI field. 

Therefore, the aim of GUIDER is twofold: first, to reduce 

the intra- and inter- operator variability of feature 

selection supporting the procedure with a semiautomatic 

method but without giving up to neurophysiological 

principles that characterize the rehabilitation; second, to 

facilitate this procedure for therapists without experience 

with BCIs.  

GUIDER could be a (user-friendly) tool to support even 

non-expert operators in the reproducible identification of 

control features, since it considers both 

neurophysiological and machine learning approaches.  

However, in view of a wider employ of GUIDER, several 

limitations must be addressed in the near future. First, 

although involved operators anecdotally considered 

GUIDER a user-friendly tool, the needs of the target 

group in terms of usability haven’t been evaluated yet 

according to the user centered design approach.  Second, 

the implementation in MATLAB environment, which is 

subjected to licensing issue, will be considered and 

overtaken as a next step.   

The preliminary results suggest that the features 

identified by GUIDER are close to those chosen by 

experienced operators (manual procedure): e.g., CP4 vs 

CP2 at the same frequency and the same channel (C4) at 

neighboring bins (9 Hz and 11 Hz) for Subject 01. 

Furthermore, both procedure’s outputs are congruent 

with the physiological evidences. Also in terms of 

classification performance, the procedures give indices 

(values of AUC) comparable in cross-validation 

condition and higher in the GUIDER application that in 

manual procedure in auto-validation. Hence, the choices 

of neurologists could be reproducible by a semiautomatic 

method that includes the operator and his 

neurophysiological knowledge in the procedure.  

 

CONCLUSION 

 

The introduction of GUIDER and its application in a BCI 

rehabilitation context suggest that it is feasible to support 

the operators during the procedure of features selection 

with a user-friendly tool. GUIDER employs a 

semiautomatic method and takes into account 

neurophysiological evidence and rehabilitation 

principles. Performances are as good as manual selection, 

and GUIDER allows reproducibility of the procedure. 

The latter is a prerequisite for planning large multi-

centric clinical trials, including a larger number of 

patients with several different operators, ensuring the 

comparability of BCI results among centers and thus 

increasing the generalizability of the results.  
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ABSTRACT: Chronic stress is a significant contributor 

to emotional distress and a myriad of health issues. 

Some coping mechanisms for stress and anxiety often 

have significant barriers preventing people from seeking 

a remedy. A new home-based treatment method using a 

brain-computer interface provides people with visual 

feedback of their affective state. This study compared 

EEG and Sham Neurofeedback to find if short-term use 

of a brain-computer interface had any effect on stress. 

We found EEG Neurofeedback, in the short-term, does 

not significantly reduce an individual’s physiological or 

psychological stress response to an event-based stressor. 

One explanation is the participant’s self-reported 

feelings of control of the on-screen object showed no 

significant differences between groups, which may 

potentially highlight a design issue in neurofeedback 

games. Next steps will be to reconfigure the immediate 

feedback loop to enhance the responsiveness of the 

application to better match the reported relaxation score 

from the headset. 

INTRODUCTION 

Chronic exposure to stress has significant psychological 

and physiological effects on human beings. Long-term 

exposure to stress impairs people’s cognitive abilities 

for simple tasks like memorizing a list of words [1], 

inhibits academic performance in undergraduate 

students [2], increases the likelihood to engage in 

procrastination behaviours [3], and can even effect a 

person’s overall health [4]. While stress falls on 

continuum between positive and negative, the primary 

focus of this study is the human response to an event 

that creates a negative or distress response in the brain 

[5]. Negative stressors are generally unpleasant events 

and can exceed an individual’s coping abilities, 

resulting in anxiety. For most people, stress is a 

temporary state that can be easily overcome, but regular 

exposure to lower-level stress events over time 

increases the risk of mental and physical health issues 

[6], largely because the stress response doesn’t dissipate 

immediately following the stressful event. The stressful 

response can persist in the body and the mind long after 

the event is over [7], especially if there is no recovery 

period between events [8]. Without proper intervention, 

many people experiencing repeated short-term stress 

events may be subjected to the ill effects of chronic 

stress and significantly limit their career opportunities 

due to the typical avoidance strategies enacted by 

people who suffer from anxiety [9].  

Stress and Coping Mechanisms: When faced with a 

stressful event that exceeds a person’s coping ability, 

some people attend in-person therapy sessions to reduce 

anxiety [5], [9], [10]. In-person therapy is designed to 

increase an individual’s ability to self-regulate or 

control their response to stressful emotions [5], [9], 

[11]. These studies are based on self-reported claims 

and exclude physiological health markers, thus can only 

make claims regarding the individual’s perception of 

health versus triangulating the data with physiological 

health markers, making it difficult to ascertain long-

term health benefits. The therapies used in these studies 

require the active presence of a therapist, which reduces 

the immediacy of the response and requires active 

scheduling on behalf of the client. The therapies also 

don’t address new technologies and behaviours that 

engage individuals, like video games [12]. The negative 

effects of stress motivate research into developing 

effective coping strategies through interdisciplinary 

inquiry. Revised coping mechanisms can borrow from 

neuroscience, psychology, and technology to establish 

more immediate mechanisms for reducing the response 

to predictable stress events (e.g., a public speech, an 

exam, etc.), incorporate a continuous biometric measure 

to determine whether or not the treatment is working 

and implement the motivational elements of game play. 

If a method can be found to mitigate the effects of 

predictable stress events and people are motivated to 

prepare in advance of a difficult conversation, an exam, 

or a public speech could mean a shift in the approach to 

therapeutic practices.  

Brain-Computer Interfaces: Brain-computer 

interfaces may be a potential solution to reducing a 

person’s response to stress in the short-term. Several 

studies have already determined certain brainwaves 

(EEG) are an effective measure of stress [13], and 

today, consumer grade EEG devices are becoming 

increasingly popular. But consumer grade EEG devices 

in the health and psychology domain is not yet validated 

and still needs exploration [14].   

Amongst today’s growing number of brain-computer 

interfaces, we reviewed two systems that currently 

address stress and anxiety in a scholarly way: Mindlight 

and Brainball. Both Mindlight and Brainball use an 

EEG headset as the main input device to an application. 

Mindlight is a PC-based game that uses an individual’s 

attentional (beta waves) and relaxation (alpha waves) 

EEG scores as a means to interact with elements in a 

game-like environment (e.g., increased attention will 

turn on a light) [15]. Brainball is a real-world game that 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-20

CC BY-NC-ND 102 Published by Verlag der TU Graz 
Graz University of Technology



dynamically moves a physical ball across a table based 

on the user’s neural activity [16]. Mindlight and 

Brainball depend on a single game to address multiple 

concerns (attention and stress) and are dependent on a 

PC-based windows platform or physical objects 

respectively, limiting its deployment potential. The 

Mind-full application, on the other hand, is an Android-

based system with three 2D games that address different 

concerns: (1)a warm-up game using a pinwheel, (2) a 

meditation game using a paraglider visual, and (3) an 

attention game using stones with an inuksuk visual (i.e., 

digital representation of a human-made stone 

landmark). Each game animates an on-screen object 

(pinwheel, paraglider, or stone) based on the EEG 

scores of the user and changes the action of the on-

screen object based on whether the individual’s EEG 

scores are above or below a predefined threshold of 40. 

The visualization of neurofeedback in Mind-Full is 

intended for users to (a) better understand their current 

affective state by relating the position of the on-screen 

object to their relaxation levels and (b) over time, learn 

to self-regulate their stress-related emotions. The hope 

is with continued use of the device people will develop 

the ability to self-induce a state of relaxation without the 

support of any devices. To date both Mindlight and 
Mind-Full have demonstrated a reduction in anxiety 

with consistent long-term use [15], [17] but in neither 

case has a study been completed regarding the effects of 

short-term use. Brainball did demonstrate a reduction in 

stress in the short-term, but used a galvanic skin 

response to measure stress instead of the EEG device 

and had a limited number of participants [16]. No 

literature has been found that approaches any type of 

therapeutic practice from a short-term perspective, 

which is likely due to the embedded concepts 

established in psychology regarding habit development 

and reinforced learning [18]. By incorporating new 

elements into the therapeutic approach to stress 

reduction, like gameplay and neurofeedback, 

researchers have an opportunity to explore all potential 

uses of EEG Neurofeedback as a therapeutic tool.  

The goal of this study was to further explore the 

potential uses for consumer grade EEG devices and the 

practical applications for positively altering a person’s 

response to stress in the short-term. Should short-term 

use of an EEG neurofeedback device reduce the 

response to stress means that people can use the device 

in preparation for known event-based stressors (e.g., 

public speaking event). This study compared EEG 

neurofeedback with sham neurofeedback to understand 

if short-term use of a brain-computer interface can 

reduce the physiological or psychological stress 

response to an event-based stressor. 

Hypotheses: Participants actively controlling an on-

screen object using an EEG-based game, Mind-full, 

will: 

H1: have a higher average of relaxation scores during a 

stressful event as compared to participants who receive 

sham neurofeedback in the video condition. 

 

H2: self-report increased feelings of relaxation after a 

stressful event as compared to participants who receive 

sham neurofeedback in the video condition. 

 

H3: self-report greater feelings of control regarding the 

on-screen object as compared to participants who 

receive sham neurofeedback in the video condition. 

MATERIALS AND METHODS 

Participants: 24 students volunteered for this study, but 

1 participant’s data was excluded from the analysis due 

to incomplete data. As such all associated data from the 

participant is removed. Participants (N = 23) were 

female (n = 15) and male (n = 8) undergraduate (n = 21) 

and graduate students (n = 2) from Simon Fraser 

University between the ages of 18 and 25 (M = 22.1). 

Participants were recruited via the University research 

participant system, SONA, as well as through individual 

undergraduate classes. Each participant was randomly 

allocated to one of two groups: the video group (n = 9) 

and the EEG neurofeedback group (n = 14). Each 

participant was given a choice of compensation in the 

form of a $15 gift card or course credit. The university’s 

ethics board approved the study and each participant, 

prior to the start of the experiment, signed an online 

informed consent form. 

Procedure: Participants were randomly allocated to 

either the EEG Neurofeedback or Video condition with 

sham neurofeedback, a video recording of someone else 

playing the Mind-full game. Each participant wore an 

EEG headset (Neurosky Mindwave Mobile) paired via 

Bluetooth to a Samsung Galaxy tablet running the 

Mind-full application throughout the entire session. The 

EEG headset consists of two pieces: an ear clip to 

ground the signal and a dry EEG sensor positioned at 

Fp1; above the left eyebrow on the forehead [19]. The 

EEG sensor outputs 12 bit raw brainwaves (3 – 100 Hz) 

with a sampling rate of 512 Hz and EEG power 

spectrums (gamma, delta, alpha, beta, and theta) every 

second. This study used Neurosky’s proprietary eSense 

meter, meditation (relaxation is used to differentiate 

between the event and the EEG data score), which 

combines raw data from different brainwaves 

(emphasizes alpha) and converts it into a single 

Figure 1 - Participant using the EEG Headset with 

Mind-Full’s Meditation (relaxation) application. 
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relaxation score, which updates the tablet every second. 

A minor delay between the headset and the tablet is 

estimated to be approximately 16.7 ms. Participants 

were seated in a chair in a standard-sized office with the 

tablet mounted on a black frame about 30 cm away 

from the participant for optimal hands-free viewing 

(Figure 1). Each participant was asked to focus on two 

separate games in the experiment: (1) a Baseline 

practice event, in which participants were asked to relax 

while watching imagery of a rotating pinwheel and (2) a 

Meditation event, in which participants were asked to 

relax while watching imagery of a paraglider gently 

landing on the earth’s surface (Fig 2). Each participant 

was given access to an internet-enabled MacBook Pro 

laptop for online surveys as well as a black pen and 

paper surveys throughout the course of the experiment. 

 

Figure 1 - Image of the two 2 x 3 independent measures 

design 

 

A 2 (EEG Neurofeedback, Video) x 3 (Baseline, 

Meditation, Stress) independent measures experimental 

design was conducted (Fig 3). An independent measures 

design was selected due to the potential for a learning 

effect between conditions. The EEG Neurofeedback 

condition presented the participant with actual visual 

feedback of their neural activity, essentially connecting 

the animation of the on-screen object with their neural 

activity. The video condition was a representation of 

neurofeedback and presented the participant with an 

exact replica of the EEG Neurofeedback games 

withholding only the ability to control the object on-

screen based on the neural activity of the user; instead 

the participant watched a pre-recorded video of the 

game, referred to as ‘sham’ neurofeedback. All 

participants were exposed to three events: (1) a 3-

minute Baseline event that level set the data based on 

personal differences in neural activity, (2) a 10-minute 

Meditation event that captured the participant’s neural 

activity in a meditative state, and (3) a 3 to 5 minute 

Stress event containing a math test. The math test was 

selected as a stressful event based on assessments of 

math anxiety and findings from a previous EEG study 

[20]–[22]. Self-report data was collected in-between 

each of the events, creating a second 2 (EEG 

Neurofeedback, Video) x 3 (Baseline, Meditation, 

Stress) independent measures experimental design. At 

the end of the session, each participant was asked to rate 

how much control they felt over the on-screen object. 

Measures: The dependent variables are (1) continuous 

EEG data and (2) validated Stress-Trait Anxiety 

Inventory (STAI-6) to measure each participant’s 

response to the three pre-determined events. EEG data 

is based on Neurosky’s eSense meter parameters1 and 

measured on a scale of 0 to 100, with scores between 0 

and 40 classified as a non-relaxed state and scores 

between 41 and 100 as a neutral or relaxed state. The 

STAI-6 scales are on a scale of 0 to 4, with 0 being 

relaxed, and 4 being stressed. The STAI-6 has been 

documented as being both reliable and valid measure of 

stress [23]. Participants spent about the same amount of 

time in each activity in the EEG neurofeedback (M = 

14:54) and video condition (M = 13:23). One self-

reported question regarding the participant’s feeling of 

control was asked at the end of the study in which 
participants were asked to estimate how much control 

they felt they had of the on-screen object from 0% to 

100%.   

RESULTS 

 

This study aimed to discover if people have a reduced 

response to a stress event after they’ve actively 

controlled an on-screen object via a brain-computer 

interface for 10-minutes. Using two 2 X 3 independent 

measures ANOVA measuring both continuous EEG 

data (results per second) as well as self-report scales, 

this study found no significant differences between 

those who were actively controlling the object on screen 

in the EEG neurofeedback condition and those who 

were watching a video containing sham neurofeedback. 

 

H1: Participants actively controlling an on-screen 

object using an EEG-based game, Mind-full, will have a 

higher average of relaxation scores during a stressful 

event as compared to as compared to participants who 

receive sham neurofeedback in the video condition.  

 

We hypothesized participants receiving EEG 

neurofeedback would show higher relaxation scores 

after being exposed to a stress event. Shapiro-Wilks test 

indicate non-normal distribution (ps < .01), however 

since a factorial ANOVA was run, it will compensate 

for the non-normal distribution. The Levene’s Test for 

unequal variances was not violated (ps > .32), but 

Mauchly’s test indicated the assumption of sphericity 

had been violated χ2(2) = 13.64, p = .01, therefore a 

Greenhouse-Geisser correction was applied for within 

                                                           
1 http://developer.neurosky.com/docs/doku.php?id=esenses_tm  

Figure 2 - Mind-full Paraglider App 
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subject data. A 2 x 3 ANOVA showed a significant 

difference between the event types F(1.33) = 5.33, p = 

.02, ηp
2, = .20. The large effect size of .20 indicates a 

large difference in the magnitude or size between the 

events. Post-hoc analysis consisted of pairwise 

comparisons and found differences between the stress 

event (M = 48.61, SD = 2.07) and the main Meditation 

event (M = 55.75, SD = 1.32), p = .002, as well as 

between the Stress event and the Baseline event (M = 

56.36, SD = 1.20), p = .031 (see Fig 4 for between 

group means). There was not a significant main effect 

between the EEG Neurofeedback (M = 54.36, SD = 

1.59) and Video Condition (M = 53.07, SD = 1.27), F(1) 

= .41, p = .53, ηp
2, = .02. There was no significant 

interaction effect between Event type and Condition, 

F(1.33) = 2.01, p = .16, ηp
2, = .09, indicating no 

differences between the EEG neurofeedback and Video 

conditions between events. Thus, the first hypothesis is 

not supported. While both groups showed decreased 

relaxation scores during the stress event as compared to 

the Meditation or Baseline event, there were no 

significant differences between the EEG neurofeedback 

and Video conditions. 

 

H2: People actively controlling an on-screen object 

though an EEG neurofeedback device will self-report 

increased feelings of relaxation after a stressful event as 

compared to participants as compared to participants 

who receive sham neurofeedback in the video condition. 

 

We hypothesized participants receiving EEG 

neurofeedback would self-report feeling more relaxed 

as compared to participants receiving sham 

neurofeedback. Shapiro-Wilks test indicates a normal 

distribution for all instances (ps > .25) except in the 3rd 

STAI-6 survey in the control group (p = .02). Levene’s 

test did not suggest unequal variances for the STAI-6 (p 

> .10) and Mauchly’s test indicated no violation in 

sphericity χ2(2) = 2.13, p = .345. The validated stress 

scale, STAI-6 (α = .88), was considered reliable. A 2x3 

ANOVA showed no main effect of conditions on STAI-

6, as there were no significant differences between the 

EEG Neurofeedback (M = 1.83, SD = .16) and Video 

conditions (M = 1.72, SD = 13), F(1) = .32, p = .58, ηp
2 

= .02. There were no significant differences in the 

STAI-6 self-report surveys between the 1st survey 

baseline (M = 1.77, SD = .56), 2nd survey pre-test (M = 

1.71, SD = .51) and 3rd survey post-test (M = 1.85, SD = 

.52), F(2) = .44, p = .65, ηp
2 = .02 (see Fig 5 for between 

group means). There were no significant differences in 

the interaction between the event and the type of group, 

F(2) = 1.61, p = .21, ηp
2, = .07. Thus, the second 

hypothesis is not supported. There were no significant 

differences found between the self-reported surveys. 

H3: People actively controlling an on-screen object 

using an EEG-based game, Mind-full, will report 

greater feelings of control regarding the on-screen 

object as compared to participants as who receive sham 

neurofeedback in the video condition. 

 

We hypothesized participants receiving EEG 

neurofeedback would indicate a greater feeling control 

of the on-screen object. Four participant’s data was 

excluded due to missing data, leaving 12 participants in 

the EEG Neurofeedback and 7 participants in the video 

condition. Shapiro-Wilks test revealed a normal 

distribution (ps > .25) and Levene’s test for unequal 

variances was not violated (p = .83). A pooled t-test was 

run and found no significant differences between the 

EEG neurofeedback (M = 44.2, SD = .27) and Video 

condition (M = 47.1, SD = .29), t(17) = .22, p = .83, ηp
2 

= .003 (Fig 6). Thus, the third hypothesis is not 

supported and participants in the EEG condition did not 

report greater feelings of control compared to 

participants in the sham (video) condition. 

Figure 5 - Mean of Self-Report Surveys by type of 

event, separated by video and EEG neurofeedback 

conditions (95% CI). The blue dots represent the mean 

score of individual participants. 

Figure 4 - Mean of EEG data by type of event, 

separated by video and EEG neurofeedback conditions 

(95% CI). The blue dots represent the mean score of 

individual participants. 
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DISCUSSION 

 

This study aimed to discover if people had a reduced 

response to a stress event (e.g., demonstrated higher 

EEG relaxation scores) after they’ve actively controlled 

an on-screen object via a brain-computer interface for 

10-minutes. We found no significant differences 

between EEG Neurofeedback and video-watching 

conditions in either the physiological or psychological 

measures to an event-based stressor.  

One possible reason could be that the use of EEG 

Neurofeedback in the short-term (10 minutes) is 

insufficient time to train the brain to respond differently 

to a negative stimulus, as there is no literature studying 

the short-term effects of brain-computer interfaces on 

the stress response. In pre- and post- test studies, EEG 

neurofeedback devices appear to help people learn to 

self-regulate emotions after 8 weeks of use [17]. But in 

comparative studies in which there is both EEG 

neurofeedback and video (sham) neurofeedback, there 

are no significant differences between the sham and 

EEG neurofeedback conditions. For example, Mindlight 

reported that while there was a difference between pre- 

and post- tests, no differences were found between the 

treatment and control groups [15], which may suggest 

that neurofeedback games may be a support mechanism 

to help people remember to practice meditation skills 

instead of actively working to retrain the brain.  

There is potential that studies using consumer grade 

EEG devices with Neurosky’s proprietary eSense meter 

may not be an accurate measure of relaxation, however, 

the math test used in this study did report a significant 

difference between events, as well as in a previous 

study [22], indicating the eSense meter is picking up 

some significant changes in neural activity. It should 

also be noted that the Neurosky headset may register 

facial activity (e.g., eye blinks) [24], which may limit 

the findings of this study, despite Neurosky’s claims 

that the device accommodates for facial movements in 

its algorithms. 

The other possible explanation may be the perceived 

immediacy of feedback. Both the EEG Neurofeedback 

and Video group had approximately the same amount of 

time in relaxation with the only difference being that the 

EEG Neurofeedback group had active control of the on-

screen object. We expected the Video condition with 

sham neurofeedback to report a lack of control of the 

on-screen object, and were surprised to find no 

significant differences between the EEG Neurofeedback 

and Video (sham) condition. Currently the Mind-full 

application reports on whether or not the user is above 

or below a specific threshold of 40, and does not 

provide immediate feedback to changes in the affective 

state; users experience a delay between their neural 

activity and the response from the on-screen object 

(e.g., object position). For example, the user’s 

relaxation score has to be below 40 to send the 

paraglider upwards and above 40 to let the paraglider 

land, which means the user is not aware of the 

immediate changes to their affective state. Software 

design guidelines purport the need for users to receive 

immediate feedback when they perform an action, 

which may point to an important element that is missing 
from the user experience design: immediate feedback. 

Immediate feedback is a critical communication 

element between the user and the system [25], [26] that 

impacts an individual’s feeling of control over the 

system. If a sense of control is a factor in neurofeedback 

games, improving the feedback mechanisms within the 

application could make short-term use a possibility. The 

next step will be to reconfigure the immediate feedback 

loop to enhance the responsiveness of the Mind-full 

game application to better match the reported relaxation 

score from the headset.  

If feasible, the next study would test the effects of the 

design change to the system and investigate if the 

feeling of control is a factor in EEG Neurofeedback 

systems and short-term use. This study would use an 

concurrent parallel mixed methods independent 

measures design with one tablet application with 

improved immediate feedback (e.g., intervals of 20), 

one tablet application that utilizes the current 

parameters (0-40 and 40-100), and a control (video) 

condition with sham neurofeedback to test the 

individual feelings of control. A similar stress test 

would be used to measure their response to stress, 

followed by a brief interview to understand the 

participant’s perspective on the feeling of control and 

collect any additional game feedback. 
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Figure 6 - Mean of self-reported feelings of control of 

on-screen object in percent by condition (95% CI) 
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ABSTRACT: Non-invasive brain-machine interfaces 

(BMI) based on motor imagery (MI) of body limbs have 

been largely studied. However, a non-negligible 

percentage of users do not produce sufficient 

discriminable MI brain patterns. It has been suggested 

that this limitation could be explained by the non-

congruency of the delivered feedback with the attended 

MI task. Following this theory, we propose for the first 

time the use of sensory threshold neuromuscular 

electrical stimulation (St-NMES) during MI task to 

enhance kinesthetic strategies. We hypothesized that St-

NMES would foster subjects MI performance without 

any EEG artefactual contamination by NMES. In this 

offline study, five naïve healthy subjects were recorded 

over two different days using either a visual or St-NMES 

guidance during MI or resting exercises. Results showed 

how, St-NMES led to enhanced MI discriminability and 

classification accuracy. Our findings indicate that St-

NMES is a promising support for future online MI-BCI 

performances. 

 

INTRODUCTION 

 
Perirolandic µ and β rhythms modulations in response to 

motor actions, are a common input control signal for 

brain-machine interfaces (BMI) for healthy and 

paralyzed users [13, 2].  In particular, motor imagery 

(MI) is among the most common tasks to control devices 

via a BMI. MI is defined as a mental representation of 

body actions based on internal sensation of movement 

[10, 17]. However, in practice it can be very challenging 

for some subjects, especially naïve ones, to generate 

discriminable MI brain patterns [10]. A possible 

explanation to this large inter-subject performance 

variability is that the strategy used to perform MI plays a 

key role in the accuracy of MI production. It has been 

proven that the most efficient strategy to perform MI is 

based on kinesthetic imagery (internally feeling the 

movement) preferred over visual imagery (internally 

visualizing the movement) [17]. Indeed, contrary to 

visual imagery, only kinesthetic imagery activates 

sensorimotor brain networks, which are similarly 

observed during motor imagery and motor execution [17, 

7, 8]. Thus, the difference between these two kinds of 

imagery is crucial to improve BMI efficiency, as pointed 

out by previous works. In particular, several studies 

already remarked the importance of emphasized users’ 

kinesthetic experiences instead of visual representations 

during MI [6, 12]. However, despite it is currently well 

known that we have to brief users how to perform 

kinesthetic imagery, BMI remains poorly reliable and 

users’ performance is still limited.  Furthermore, most 

BMI systems are currently based on a visual feedback, 

although other types of feedback could possibly be more 

effective to help subject perform kinesthetic MI. The 

choice of the feedback modality could then have an 

important impact on the accuracy of the BMI. 

Instead of simply delivering the outcome of the 

movement imagery as is common use for visual 

feedback, one possible solution is the use of 

somatosensory afferences in order to deliver kinesthetic 

information and to help subjects to focus on the sensation 

of the movement. Recent studies have already 

implemented continuous somatosensory feedback, such 

as robotic orthosis, vibrotactile stimulation or 

neuromuscular-electrical stimulation (NMES) to 

improve MI performance. Among them, Vukelić et al. 

showed that subjects were able to better modulate β 

oscillatory rhythms with a proprioceptive feedback 

delivered by a robotic orthosis [18]. Reynolds et al. 

demonstrated that NMES during MI induces a larger 

desynchronization of the sensorimotor rhythm compared 

to motor imagery supported only by visual feedback [15]. 

However, the main drawback of the proposed approaches 

is that the use of somatosensory feedbacks alone (such as 

passive movement of the joint [18], muscular contraction 

[15] and even vibrotactile stimulation [5, 6, 9] may also 

activate similar sensorimotor networks [4, 11, 1], even 

without any voluntary motor imagery performed by the 

subject. Thus, it is not yet clear how to provide such rich 

kinesthetic feedback for online experiments or 

kinesthetic guidance for offline MI tasks, without 

interfering with the voluntary modulation of brain 

activity, limiting their usability for online applications. 

In this paper we propose a novel guidance modality to 

guide subjects during MI performance, based on sensory 

threshold neuromuscular electrical stimulation (St-

NMES). This stimulation conveys natural proprioception 

by depolarizing sensory and motor nerves, yet without 

eliciting muscular contraction [15]. The purpose of this 

offline study is to understand the possible impact of this 

new approach on MI classification compared to a 

standard visual guidance. We hypothesize that St-NMES 

guidance does not interfere with EEG detected brain 
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patterns, fosters MI and enhances the discriminability of 

EEG patterns during MI.   

 

MATERALS AND METHODS 

 
Experimental design 

Five right-handed healthy subjects (2 females, age 25.6 

±1.67) naïve in motor imagery practice, took part 
voluntarily in the experiment. The study was approved 

by an internal ethical protocol and participants gave their 

written informed consent before participation.  

The experiment (Fig. 1) was composed of two days of 

recordings during which all subjects were asked to 

perform continuous kinesthetic motor imagery (MI) of 

closing their dominant hand (day 1: n = 60 trials, day 2: 

n = 40 trials) or a resting task (same amount of trials). For 

both days subjects randomly started with one guidance 

modality (St-NMES or visual guidance) then with the 

other one (visual or St-NMES guidance). During the 

second day, a control condition was also recorded during 

which subjects received St-NMES whereas no MI was 

performed. For all 3 conditions (St-NMES, visual, 

control) each trial started with the preparation cue (3s), 

then a cue indicating the type of trial (MI or rest, 1s), 

followed by the task (MI or resting, 4s) and finished with 

the appearance of the stop cue. Inter-trial intervals lasted 

between 3 and 4.5 s.  

 

 

 
 

Figure 1: Schema of the experimental design. The order of the guidance 

modality was randomized across subjects. 

 

St-NMES guidance modality 

NMES electrodes were placed on the Flexor digitorum 

superficialis muscle at the anterior face of the forearm. 

Amplitude of the sensory threshold stimulation (St-

NMES) was fixed for each subject before each recording 

(but keeping the same for both days), and was on average 

5±1 mA. With sensory threshold stimulation subjects felt 

tingling sensation in their palm and forearm but they did 

not elicit any muscular contraction. The frequency of 

stimulation was fixed to 30 Hz for all subjects.  Subjects 

received sensory threshold NMES during the MI task and 

control trials. No stimulation was delivered during 

resting trials. No visual guidance was provided during the 

St-NMES condition. 

 
Visual guidance modality 

We compared our new approach to the standardly used 

cursor paradigm moving in a screen for MI [3] [14] [20]. 

Subjects were instructed to perform kinesthetic MI while 

seeing a bar going up (for MI trials) or going down (for 

resting trials). 

EEG acquisition and trials extraction 

EEG signal was recorded at 512 Hz using a gHiAmp 

system (gTec, Austria) from 60 channels equally 

distributed over the scalp following the 10/10 

International System. EEG was filtered within the 

[1,100] Hz (zero-phase Butterworth 4th order), re-

referenced to linked ears, then common-averaged 

referenced. Noisy channels (detected post-experiment by 

visual inspection) were manually replaced by the mean 

of the orthogonal neighboring channels. Trials were 

epoched and concatenated per condition (St-NMES, 

visual, control), and composed of a baseline from [-3s 0s] 

and a task time window [1s 5s]. Trials with a filtered EEG 

signal above 100 µV were considered artefactual and 

discarded.  

 
Features analysis 

We evaluated the discriminability of MI EEG patterns 

with both guidance modalities (St-NMES, visual) with 

single-sample classification. First, power spectral density 

(PSD) for the 16 channels covering the sensorimotor 

regions (Fz, FCz-1-3-2-4, Cz-1-3-2-4 and Cpz-1-3-2-4) 

were computed using the Welch method with 5 internal 

Hanning windows of 500ms (75% overlap). We 

extracted all the features from µ and β frequency bands 

for all channels, then fed them to principal component 

analysis (PCA). We evaluated the accuracy of each 

guidance modality (St-NMES vs rest, visual vs rest) 

using a linear discriminant analysis (LDA) as a function 

of the number of components retained from PCA (from 1 

to 20). Each classifier was trained with data from day 1 

and tested with data from day 2.  

Additionally, we investigated the impact of guidance 

modality by plotting the first two principal components 

extracted from 4 pairs of tasks: St-NMES MI vs rest; 

visual MI vs rest; visual MI vs St-NMES MI; and St-

NMES MI vs control. 

 

Classification analysis 

We further evaluated the LDA classification 

performance from the following pairs of tasks St-NMES-

MI vs rest, visual-MI vs rest, and control vs rest. Every 

classifier was trained with data from day 1 using the first 

8 principal components (optimal number of features, see 

below) and tested with data from day 2.  For the control 

condition the classifier was trained with data from St-

NMES-MI vs rest from day 1 and tested with the control 

data from day 2. Statistical significance of classification 

was defined from a binomial cumulative distribution 

assuming equal priors (p=0.5) and the number of trials 

available (n = 80) leading to a chance level of 0.60. 

The impact of the guidance modality during the training 

phase of the classifier on the final accuracy was assessed 

by comparing accuracies of classifiers with equivalent 

guidance between the training and testing set to different 

guidance (e.g. training with St-NMES and testing with 

St-NMES versus training with visual guidance and 

testing with St-NMES guidance).  
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RESULTS 

Features analysis 

Figure 2 shows the classification accuracy of MI 

compared to rest as a function of the number of selected 

features. We chose to use eight features as no discernable 

improvement was observed with more features. The 

averaged mean of accuracy across subjects was higher 

for the St-NMES (0.78±0.1) compared to the visual 

modality (0.69±0.1). Despite this improvement was not 

significant (Wilcoxon ranksum test, p=0.31), the power 

of the statistical analysis was low (0.5) and more subjects 

will be needed to draw further conclusions.  

 

Representative cases 

Figure 3 shows the representative case of one subject (s1) 

with larger discriminability with St-NMES compared to 

visual guidance; and another example of a subject (s3) 

who had low performances with both guidance 

modalities. S1 showed discriminable MI patterns with St-

NMES guidance but not with visual guidance. The 

discriminable EEG patterns were induced by MI 

performance and not by the device itself, since the control 

condition, where the subject received St-NMES without 

performing MI, was poorly discriminable from rest. On 

the other hand, s3 showed no clear dissociation between 

distributions during St-NMES and poorly separable EEG 

patterns during the visual condition. 

 
Figure 2: Classification accuracy between MI and rest as a function of 
the number of features selected, for both guidance modalities. The line 

(shade) represents the mean (standard error of the mean) of accuracy 

across subjects. The dashed line represents the chance level estimated 
at 0.60. 

 

 

Classification accuracy 

Figure 4 represents the accuracies of each subjects for 

each guidance modality (St-NMES and visual) as well as 

the classification of a possible bias induced by the St-

NMES itself (control). On average, the accuracy for the 

St-NMES guidance was higher than for the visual 

guidance (accuracies: 0.78 and 0.69, respectively). 

Importantly, the control condition showed no significant 
classification of the St-NMES itself compared to rest  

 

 

 

 
 

 

Figure 3: PCA analysis between the 4 pairs of tasks St-NMES (blue), visual (red), rest (green) and control (yellow). Representation of the two first 
principal components of each pairs of tasks. Each dot represent a sample. The ellipsoids represent the covariance matrix of the distriutions and the cross 

the mean of the distribution. The black line represents the hyperplane computed from an LDA classifier.  
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(accuracy: 0.59). For 3 subjects over 5 (s1, s4 and s5) the 

accuracy increased with the St-NMES compared to the 

visual guidance by 35%, 27% and 26% respectively.  

One subject (s2) had similar accuracy with both 

modalities (St-NMES: 0.84, visual: 0.85), and one 

subject (s3) had better accuracy with the visual modality 

(St-NMES: 0.61, visual: 0.69). Importantly, for every 

subjects except subject 1, the St-NMES itself (control 

condition) did not induce significant detectable EEG 

artefacts. In the case of subject 1, the St-NMES induced 

some discriminable patterns, but they did not explain 

completely the results obtained during MI with St-

NMES. 

 

 
Figure 4: Classification accuracies for each individual subject 
according to the guidance modality and the control condition. The 

averaged accuracy across subjects (with the standard error of the mean) 

is represented on the right part of the figure. The dashed line highlights 
the chance level. 

 

 

Impact of the guidance modality of the training data set 

on classification accuracy 

Previous classification analyses were based on 

equivalent guidance modalities between the training data 

set and the testing data set. However, as illustrated in 

Figure 5, the guidance of the training set had an impact 

on the classification accuracies. Indeed, if the guidance 

modality of the training data set was different than the 

testing set the accuracy was decreased (St-NMES—St-

NMES: 0.78±0.1, visual—St-NMES: 0.69±0.1 and 

visual—visual: 0.69±0.1, St-NMES—visual: 0.61±0.1).  

 

DISCUSSION 

 

In this work we show that St-NMES guidance enhanced 

discriminability of MI pattern and substantially increased 

classification accuracy without interfering with the 

recorded EEG signal. EEG pattern during MI were 

probably enhanced and stronger with the support of the 

St-NMES which led to a better classification. A plausible 

explanation of the obtained results is that St-NMES 

helped subjects to emphasize and focus on kinesthetic 

imagery.  

Figure 5: Classification accuracy based on the testing data set according 

to the guidance modality of the training data set. The dashed line 

represents the chance level.  

 

 

 

As described in the literature kinesthetic imagery 

activates sensorimotor brain regions similarly to motor 

execution [15, 8]. Moreover, it is known that MI is based 

on body representation and on the internal focus of 

sensation of movement. Thus, we believe that our 

somatosensory support delivered by St-NMES guided 

subjects to bring their attention toward the feeling of the 

limb movement and less on the outcome of the task. On 

the contrary, the standard visual guidance did not deliver 

information through somatosensory afferences, which 

may make less natural for subjects to focus on the 

sensation of the movement. As a result, subjects may 

have performed suboptimal strategy during MI based on 

visual guidance. Our results could be explained then by 

more accurate kinesthetic focus which induced more 

discriminable EEG patterns. 

Moreover, it has been shown that in the absence of 

somatosensory feedback, novice subjects were 

spontaneously less able to produce kinesthetic imagery 

[19], which can explain the lack of BMI reliability and 

accuracy [16, 6]. Our study shows that a somatosensory 

guidance appeared to be more suitable to support MI 

tasks and it could improve BMI classification. 

Importantly, our results show that the increase of 

classification accuracy was not due to a bias induced by 

the stimulation but by an improvement in MI task. 

Indeed, St-NMES during rest did not provide detectable 

sensorimotor network activations.  

The representative cases highlighted further elucidated 

the differences in accuracy obtained. S1 was barely able 

to modulate sensorimotor rhythms modulations with 

visual guidance (accuracy: 0.65), but able to perform 

accurate MI with St-NMES (accuracy: 0.88). As a result, 

no discriminable patterns were obtained with visual 

guidance whereas St-NMES guided the user to generate 

more discriminable brain patterns. Our explanation is 

that the visual guidance and the instructions of the task 

were insufficient to guide our subject to perform 
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appropriate MI strategy. In fact, this subject reported that 

it was easier to focus with St-NMES because he knew 

where to focus his attention (behavioral questionnaire, 

results not shown). However, for subject 3 no 

discriminable EEG pattern could be discerned during MI 

task even during St-NMES condition. Further studies 

will have to investigate the reasons of this remaining 

limitation.   

 

Our results are in line with current opinions on motor 

imagery performance. Neuper et al. [12] already pointed 

the importance of emphasizing kinesthetic imagery to 

improve single trial EEG classification. Moreover, other 

studies also showed that a somatosensory feedback such 

as a robotic orthosis [18], vibrotactile stimulation [1, 6] 

or NMES [15] improves BMI classification and may 

induce stronger MI neural correlates. In this study, we 

also showed that results are only due to subjects’ 

improvement and not biased by the feedback alone. On 

the contrary, a continuous robotic feedback which 

induces a passive movement of the joint may induce 

similar EEG patterns and thus, the detected EEG brain 

pattern will be biased by the passive movement and not 

due to an accurate MI. In a similar context, Chatterjee et 

al. [5] also proved that vibrotactile stimulation induces a 

significant bias in BMI MI features, and other studies 

showed that NMES eliciting muscular contraction cannot 

be used as a continuous feedback since it activates similar 

brain networks [11]. 

 

In sum, these results show that the choice of the guidance 

modality can have a significant impact on the induced 

EEG features and classification accuracy. Thus, future 

BMIs may benefit from the use of a continuous feedback 

that does not induce undesirable brain activations but that 

help subject to perform MI. Perhaps logically, this 

feedback should remain the same throughout the entirety 

of the sessions as results have shown that the 

transferability from one feedback to another leads to 

suboptimal performances. 

 

CONCLUSION 

 

MI-based BMI systems have become an interesting tool 

to induce motor recovery and motor learning. However, 

its applicability remains limited for an important amount 

of subjects. In this work, we propose a new kind of 

continuous guidance, St-NMES that has the potential to 

face some BMI limitations by delivering feedback 

congruent with the kinesthetic effort of the task without 

biasing the EEG recordings. Further analysis and online 

experiments will shed light on the applicability of the 

proposed feedback for online BMIs. 
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ABSTRACT: An affective brain-computer music inter-
face (aBCMI), developed for use as an aid to music ther-
apy, is trialled in a case study with an individual with
Huntington’s disease. The aBCMI aims to detect a users
current affective state and modulate music generated and
played to that user in order to manipulate their affective
state in a way that has potential therapeutic benefits. We
have previously demonstrated the efficacy of this aBCMI
on a population of healthy participants but it is unclear
whether it could work with individuals with Hunting-
ton’s.
Our case study demonstrates that there is some potential
for aBCMI systems to be used by individuals with Hunt-
ington’s disease. However, we also highlight some key
challenges that need to be overcome in adapting aBCMI
systems to this user group. Specifically, we identify a
need for more robust measures of ground truths of affec-
tive states to allow the aBCMI to be trained with this user
group.

INTRODUCTION

Brain-computer music interfaces (BCMIs) provide a
method for allowing a user to interact with music via
modulations of their brain activity and without the need
for movement [17, 11, 10]. We have previously de-
scribed and presented an evaluation of an affective BCMI
(aBCMI) that was able to identify an individual’s current
affective state from their neural and physiological activity
and use this to modulate music played to the individual
[7, 8].
We previously demonstrated the ability of this system to
modulate the affective states of a cohort of healthy in-
dividuals in a manner that has potential applications for
music therapy. Specifically, we were able to use our
aBCMI to increase felt valence (happiness), decrease felt

stress (increase valence and decrease arousal), and de-
crease felt arousal (calm) reported by our participants [8].
Our aBCMI system was developed with intended applica-
tions in music therapy for individuals with a range of dif-
ferent neurological, psychological, or physiological con-
ditions. One example application area is in the treatment
of affective changes resulting from Huntington’s disease.
Huntington’s disease is a progressive disorder of the cen-
tral nervous system that causes damage to the brain and,
over a period of typically 10-12 years leads to increased
difficulties with movement, cognition and behavior. It
also leads to disruption of an individual’s ability to ef-
fective regulate their affective states. Therefore, there is
potential utility in providing an aBCMI system to indi-
viduals with Huntington’s disease [1].
Huntington’s disease affects approximately between 7 to
12 in 100,000 people and there is currently no cure avail-
able [13]. Early symptoms of Huntington’s disease can
include change to personality, mood swings, cognitive
processing, and fidgety movement [14].
To begin to explore whether a physiologically informed
affective music therapy could be beneficial for individu-
als with Huntington’s disease, we provided our aBCMI
system to one individual with Huntington’s disease as a
case study. We had the following objectives in this study.

1. To determine if is it possible to deploy the aBCMI
with an individual with Huntington’s disease.

2. To explore how affective state reporting and detec-
tion may differ for this individual.

3. To determine whether we could accurately identify
affective states from an individual with Hunting-
ton’s disease.

4. To determine whether we could modulate affective
states for this individual.
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MATERIALS AND METHODS

Patient: We recruited one individual with genetically
confirmed Huntington’s disease (male, 43 years old), who
was at a very early stage of the disease.
Our participant received £20.00 (GBP) for each of the
sessions attended. The study was given a favorable ethi-
cal opinion according to the research ethics procedures of
the School of Systems Engineering, University of Read-
ing.

Brain-computer music interface: The aBCMI in-
cludes 4 stages: (1) data measurement, (2) affective state
detection, (3) case based reasoning, and (4) music gener-
ation. These are illustrated in Figure 1.

Figure 1: A schematic diagram of our aBCMI.
Data measurement: The data measured included elec-

troencephalogram (EEG), electrocardiogram (ECG), gal-
vanic skin response (GSR), blood pulse oximetry data,
and head movement data recorded via an accelerometer.
All data was recorded at a sample rate of 1,000 Hz via a
BrainAmp EEG amplifier and ExG amplifier (BrainProd-
ucts, Germany).
EEG was recorded from 32 channels positioned accord-
ing to the international 10/20 system for EEG electrode
placement. The reference channel was placed at electrode
FCz and the ground electrode was placed at position AFz.
The impedances on all the channels throughout the study
was less than 10 kΩ.
The ECG was recorded from the ventral positions on the
participant’s left and right wrists. GSR was recorded
from the ventral medial phalanx positions of the partic-
ipant’s index and middle fingers on the left hand. The
blood pulse oximetry information was recorded from the
participant’s left thumb with a pulse oximeter. Finally,
the participant’s head movement was recorded with an
accelerometer placed at position CPz.

Affective state detection: Affective state detection
was performed by first selecting features that were most
frequently associated with changes in affective states and
then classified via a combination of support vector ma-
chines (SVMs).
Features were extracted from the EEG by first segment-
ing the EEG into spatial regions depending on the region

of the scalp the EEG was recorded from. Specifically, the
EEG was subdivided into ten spatial regions, which are
listed in Table 1.

Table 1: Spatial regions of EEG features.
Region Channels
Whole head All channels
Frontal FP1, FP2, F7, F3, F4, F8
Central C3, Cz, C4, CP5, CP6, CP1, CP2
Parietal P7, P3, Pz, P4, P8, POz
Occipital O1, O2
Left temporal FT9, T7, TP9
Right temporal FT10, T8, TP10
Midline Fz, Cz, Pz, POz
Left hemisphere FP1, F7, F3, FT9, FC5, FC1, T7, C3,

TP9, CP5, CP1, P7, P3, O1
Right hemisphere FP2, F4, F8, FC2, FC6, FT10, C4, T8,

CP2, CP6, TP10, P4, P8, O2

Features were then subdivided further into 10 frequency
bands. Specifically, the EEG within each spatial re-
gion was filtered into the delta (1-4 Hz), slow theta (4-
5.5 Hz), fast theta (5.5-7 Hz), total theta (4-7 Hz), slow
alpha (8-10 Hz), fast alpha (10-12 Hz), total alpha (8-
12 Hz), sigma (12-14 Hz), beta (14-30 Hz), and gamma
(30-45 Hz) frequency bands.
From the physiological signals the mean peak-to-peak in-
terval time was extracted from the ECG and the blood
pulse oximeter. Additionally, the mean amplitude of the
GSR within a 1 s window was extracted and baseline cor-
rected against the previous 1 s of data.
This resulted in a set of 103 candidate features. A subset
of these features was then selected via a stepwise linear
discriminant analysis approach. Features were iteratively
added and removed from a linear regression model relat-
ing features (independent variables) to the participant’s
reported affective state over different trials (the depen-
dent variable). This process continued until the addition
or subtraction of further features did not significantly im-
prove the fit of the regression further. The remaining set
of features were then taken as the selected features for use
in classifying affective states via a set of SVMs during
online use of the aBCMI. Further details of this approach
are reported in [4].

Case based reasoning: The case based reasoning sys-
tem was used to identify the specific musical modulations
that are most effective at modulating our participant’s af-
fective state in the desired direction during each trial.
Specifically, case based reasoning was used to build a rule
set that determines, for a given current affective state ex-
perienced by the participant and a target final affective
state that we want them to be moved to, what is the best
set of modulations of the music generator that should be
applied.
The rule set of the case based reasoning system was
trained from the participant’s responses to the music
played during a series of 3 training sessions. Each trial
in these runs included different modulations to the mu-
sic generator. The participant’s felt affective states were
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recorded throughout the trial and used to determine the
relationships between the music manipulations and the
participant’s felt affective states.

Music generator: A music generator was used to pro-
duce the music stimuli use throughout this study for both
the offline training sessions and the online testing ses-
sions. This allowed a very large amount of varying musi-
cal stimuli to be produced for the experiments, preventing
well known effects of repeated listening on an individ-
ual’s affective state [9]. An affectively driven algorithmic
composition system was used to generate the music used
in this study. This system has been previously described
in [15, 16] and validated in [5].

Experiments: We attempted to train our aBCMI sys-
tem to identify affective states and modulate music to
achieve 4 key goals related to music therapy. Specifically,
we attempted to use the aBCMI to achieve the following.

1. Make the participant happier: increase their re-
ported valence.

2. Calm the participant: reduce reported arousal.

3. Reduce stress in the participant: simultaneously in-
crease valence and decrease arousal.

4. Excite the participant: increase reported arousal.

The experiments were split over 4 sessions conducted
over a 2 week period. The first three sessions were of-
fline training sessions in which the participant was played
a series of pieces of generated music intended to induce
a range of different affective states. The affective state
detector and case based reasoning system were trained
based on the data from these sessions. Finally, the fourth
session was an online session in which the aBCMI was
used to attempt to achieve each of the four goals listed
above.
Each training session contained 4 runs and was split into
18 trials per run (72 trials per session). In each trial the
participant first observed a fixation cross for 2 s and then
listened to music for 40 s. Each piece of music was gen-
erated to attempt to modulate the affective state of the
participant from one of nine discrete regions on the va-
lence arousal circumplex (high, neutral, and low valence
and arousal tuples) to a new position on the circumplex.
Specifically, the first 20 s of the music attempted to in-
duce the first affective state and the next 20 s attempted
to induce the second affective state.
While listening to the music the participant was in-
structed to report their currently felt affective state at each
moment in time via the use of the, joystick controlled,
FEELTRACE interface [3]. Before using the interface
the system was explained to the participant via a written
document, a power-point presentation, a video, and ver-
bally. The participant was also given the opportunity to
run through a practice session with the interface.
Between trials a distraction task was used to minimize
serial effects of changes in affective states between tri-
als. Specifically, the participant was asked to listen to a

series of beep tones, one of which was at a higher pitch
and occurred 20 % of the time and other occurred 80 % of
the time. The tones were played in random order and the
participant was asked to count the number of high pitch
tones they heard.
The online session consisted of 6 runs, each of which
contained 10 trials. In this session the aBCMI attempted
to move the participant from a current affective state to
a target affective state as described above. The affective
state detector and the case based reasoning system were
used to determine which modulations of the music gen-
erator were to be applied in each trial. The trial structure
was the same as the training sessions.

Evaluation: The success of the aBCMI was measured
by whether it was able to modulate our participant’s af-
fective state in the desired way significantly more often
than chance during the online testing session. This was
determined by inspecting the FEELTRACE reports pro-
vided by the participant during the online session. A first
order polynomial function was fitted to these complete
(40 s) traces over each trial and the angle of the resulting
line was measured. The distribution of these angles was
evaluated to determine if it differed significantly from a
standard normal distribution (mean = 0, standard devia-
tion = 1) via a Kolmogorov-Smirnov test. Specifically, if
the distribution of these angles did not differ significantly
from a standard normal distribution this would indicate
that the participant’s affective state had not been signifi-
cantly altered by the aBCMI.
Furthermore, in cases where the distribution of the an-
gles of the FEELTRACE reports was observed to differ
significantly from chance the mean angle of the reports
was inspected to determine whether it was moving in the
correct direction for a particular goal. For example, for
trials in which the aBCMI was attempting to increase the
valence felt by the participant the FEELTRACE report
of valence is expected to increase significantly over the
course of the trial.

RESULTS

The aBCMI was able to significantly increase the partici-
pant’s reported valence during trials in which the goal of
the system was to make the participant happier (p < 0.01,
ks-test, average of 17 trials per participant). This is illus-
trated in Figure 2.
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Figure 2: The participant’s reported mean FEELTRACE
responses over trials during the online session while us-
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ing the aBCMI to attempt to increase the valence.

Additionally, the affective state detection system was ob-
served to be able to correctly identify the participant’s felt
valence in 43.8 % of the trials (p < 0.001) and the par-
ticipant’s felt arousal in 50.8 % of the trials (p = 0.007).
These classification results, and their statistical signifi-
cance, were calculated using methods first described in
our earlier work [6].
However, unlike in the cohort of healthy participants re-
ported in [8], the aBCMI was not able to successfully
calm our participant. Specifically, no significant change
in arousal was noted. Additionally, the aBCMI was not
able to de-stress the participant, although it is worth not-
ing that a non-significant trend of increased valence (il-
lustrated in Figure 3) was observed during trials for which
the goal was to reduce the stress of the participant. Fi-
nally, the aBCMI was not able to excite the participant.
A significant increase in valence was noted during these
trials but no significant change in arousal (the intended
outcome of this goal) was noted.
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Figure 3: The participant’s reported mean FEELTRACE
responses over trials during the online session while us-
ing the aBCMI to attempt to de-stress (increase valence
and reduce arousal).

DISCUSSION

It is not, of course, possible to draw general population
wide conclusions from a single case study. Nonetheless,
a number of observations may be drawn which should be
considered when developing aBCMIs (and other types of
affective BCIs) for use by individuals with Huntington’s
disease.
First, the aBCMI was able to correctly increase our par-
ticipant’s reported valence during trials in the online ses-
sion in which the goal was to make our participant feel
happier. This suggests that there is some potential for
this aBCMI to be useful for at least some individuals with
Huntington’s disease.
Second, it is important to note that our participant had
some difficulty using the 2-dimensional, joystick con-
trolled, FEELTRACE interface to report their affective
states. Although our participant was carefully briefed
on what was meant by ”valence” and ”arousal” and how
to use FEELTRACE, they had difficulty with simultane-
ously reporting their valence and arousal. For example,

when the music attempted to first convey a neutral affec-
tive state (in terms of both valence and arousal) followed
by a high valence and high arousal affective state we ob-
served that our participant would only report an increase
in valence.
In cases where only the arousal of the music changed,
the participant used the FEELTRACE interface to report
an increase in arousal. However, in cases where both the
music’s valence and arousal changed our participant re-
ported only the change in valence. Upon careful ques-
tioning our participant reported that they felt a change in
both the experienced valence and arousal while listening
to the music. However, these were not reflected in his
FEELTRACE report.
It may be the case that the use of FEELTRACE to report
felt affect via continuously controlling a joystick is ef-
fecting the participant’s affective state. Continuous use of
the joystick requires a degree of concentration, and this is
likely to distract from conscious awareness of the current
felt affective state. However, FEELTRACE is used con-
tinuously for all affective states, thus, this effect is likely
to be uniform over all affective states.
It may also be the case that, as a construct, arousal is
more complex and less amenable to immediate self re-
porting than valence. Thus, it may have been harder for
our participant to make judgments on their arousal and,
consequently, their responses tended not to differ from
the default middle range of the reporting space.
This suggests that FEELTRACE may not always be the
most suitable tool for obtaining a ground truth mea-
sure of felt affective states. Alternative tools, such as
GTRACE, which allows independent reporting of va-
lence and arousal [2], and an alternative training process,
which doesn’t include any trials in which both valence
and arousal are simultaneously changed, may be needed
in these cases.
It is important to note that there is no completely agreed
upon method to measure affective state from the indi-
vidual [12]. Subjective measurements (such as FEEL-
TRACE) and objective measures (such as physiological
measurements) are both subject to error. The inaccuracy
in reporting may also, in part, explain the relatively lower
performance of the aBCMI with this participant com-
pared to our previous cohort of healthy participants [8]. If
we are not always able to obtain an accurate ground truth
measure of changes in valence and arousal this is going
to lead to lower classification accuracies in the affective
state detection system and lower performance during the
aBCMI’s online session.
Third, we did not observe noticeable signal quality prob-
lems with our participant. Some individuals with Hunt-
ington’s disease exhibit difficulties with movement and
fidgeting, which may lead to increased amounts of arte-
fact in the observed EEG. However, this was not observed
to be the case in our study. Nonetheless, in general robust
artefact removal methods are needed to assist with acquir-
ing good quality EEG signals from such patient groups.
Finally, our case study suggests that there may be some
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potential for our aBCMI as a tool to aid with some as-
pects of therapy for individuals with Huntington’s dis-
ease. However, a number of adjustments may need to
be made to the aBCMI in order for it to be more useful
for this population (for example by replacing the FEEL-
TRACE interface with a more appropriate measure of the
ground truth of the individuals affective state, such as
GTRACE, for training the system). Further research in
this area is needed.
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ABSTRACT: We consider the case of a noisy binary EEG-
based brain-computer interface where a human attempts
to generate two discriminable control signals but the re-
ceived signals are noisy and the optimal classification
boundary (or decoder) is not known or changing. In such
situations, it is common for the computer to accumulate
evidence over time before performing an action. Inter-
mediate feedback can be given to inform the user of the
current decoding along the way. Under these conditions
we have shown via Markov chain analysis that the infor-
mation transfer rate is higher when the user and computer
attach the responsive (to the intermediate feedback) mean-
ings of "continue/good" and "change-direction/bad" to the
two classes of noisy signals they generate instead of direct
commands "left" and "right". In this paper, we analyze
the first step of these systems and show that when there
is not yet a computer-interpreted response to respond to,
the "right/left" commands are most informative and that
a system where a first "right/left" step is combined with
future "good/bad" interactive commands gives the highest
information transfer rate. Finally we show that this hybrid
approach can be seen as a natural game-like interface.

INTRODUCTION

We consider the case of a human-controlled interface to a
computer where the received signals are noisy and not per-
fectly classifiable. Such signals arise in EEG-based brain-
computer interfaces (BCIs) but could also arise in other
noisy interfaces such as gesture recognition or speech
recognition in noisy environments or in some clinical pop-
ulations. For this paper, we restrict analyis to the binary
control case, where humans are trying to generate one
of two signals as is commonly used in motor-imagery
EEG-based brain computer interfaces.
For concreteness, we consider the scenario of a user using
an EEG-based motor-imagery brain-computer interface
with the goal of selecting one of two targets on the right
and left of the screen. Subjects require a certain level of
selection accuracy (e.g. 70% [5]) for performance to be
considered acceptable, and there are applications where it
is costly to output the wrong answer [11]. For these rea-
sons, it is common to accumulate evidence, and feedback
can be given to the subject over time. A common method
is to have the cursor move a step every processing window
(processing windows are usually 500ms to 1 second long).
The number of steps between the two target endpoints can
be varied to trade off accuracy and selection speed or can

be set to optimize information transfer rate (ITR) for a
given discriminability between the distributions of signals
for the two classes [2]. In text and figures below, we refer
to the number of possible cursor positions (NCP) which
is equal to twice the number of steps from the center to a
target plus one.

While EEG signals are high dimensional, after standard
signal processing [9, 1, 7] the signals are reduced to a
lower dimensional space, and it is common to approximate
them as Normal/Gaussian distributions and use simple lin-
ear classifiers in this projected space [10, 9, 8]. Once a
classifier is defined, the critical variable for classification,
is the side of the classification boundary (or more generally
the signed perpendicular distance from the classification
boundary). This is represented as the (single-step) one-
dimensional probability distributions diagrammed on the
right side of Figures 1, 2, 3, and 8. and given by the blue
dashed curves in Figures 4, 6, 7.

In any noisy machine learning problem with finite data, a
classifier will not be able to find the exact optimal classi-
fication boundary between the distributions. In problems
with non-stationary data such as EEG [3, 10], this issue
is especially true. In these cases, we have shown that by
changing the meaning of the single-step signals generated
by the humans, the information transfer rate can be in-
creased by changing the meanings of the two signals that
the user generates to “continue” and “change direction”
instead of “left” or “right” [2]. What this means is that
the same signals that the user generates are given different
semantics in the communication strategy. So for example,
right hand imagery could be used to mean “change direc-
tion (I am disatisfied with the current movement)” and left
hand imagery used to signal “continue (I am satisfied with
the current movement direction)”. This changes the com-
munication protocol from direct commands to interactive
commands that respond to the current interpretation as re-
flected by the feedback of the cursor movement. We have
shown that when a control signal is used “that depends in-
timately on what has already been transmitted, interpreted,
and received”, a much more robust communication system
results [2]. In particular the information transfer rate is
demonstrably higher with the interactive communication
system than with the standard direct communication sys-
tem when the classification boundary is not in the optimal
position. As in [2], we will refer to the direct method of
controlling with “move right” and “move left” signals as
an R/L control system and the interactive method of con-
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trolling with “change-direction/bad/Dissatisfaction” and
“continue/good/Satisfaction” as a D/S control system.
We examine the mathematics for single step systems
(where a target is reached in one step or NCP=3), and
based on this analysis propose a new hybrid approach,
where the starting cursor direction is fixed and known but
D/S commands are used. We show that in this case the
first step is equivalent to a “Right/Left” commanded step,
and the system makes less processing demand of the user
and results in a higher information transfer rate than the
previously proposed D/S method in [2] using random start
direction.

METHODS

The standard R/L method of control where the user gener-
ates one signal (e.g. right hand motor imagery) to mean
“Move the cursor to the Right” and another discriminable
signal (e.g. left hand motor imagery) to mean “Move
the cursor to the Left” can be shown to be modeled by
a Markov chain as shown in Figure 1 [2] whereas the
interactive D/S method of control that uses the same un-
derlying signals of right and left hand motor imagery can
be modeled by a Markov chain shown in Figure 2. In
this case, the state of the system contains the position and
cursor direction information.
If the system does not use multiple steps to reach the goal
(in other words, if NCP=3. See Figures 1,2,3), then the
interactive nature does not come into play. We can still
consider how a D/S control system might work in a one-
step system. In a D/S system the cursor would appear
moving in one direction (or simply appear as an arrow
instead of a circular cursor, and the user would generate
a "continue" (if they like that direction) or "change di-
rection" (if they don’t) signal which would influence the
one and only step. It might seem that the most natural
method would be to have the initial cursor direction be
drawn randomly from right/left as in [2] (and shown in
Figure 2 by the 0.5 probabilities for each possible starting
state). In this case, the accuracies are actually the same as
a function of the classification boundary for the D/S and
R/L system. However the error-rates when considered sep-
arately for the left and right classes can be quite different
as the boundary is moved from the crossing points of the
distributions. In the R/L system, if the boundary is offset
so "Right" is output more than it should be, the error rate
for the Left class will be higher than the error rate for the
right class. This is shown in Figure 4.
However for the D/S system, if the classification boundary
is not at the crossing point of the distributions, it will be
more likely to output "continue" or "change-direction". If,
the start direction (to which continue or change-direction
are responded to) is chosen randomly and the two classes
have equal prior probabilities, then the error-rate for the
left and right classes will be equal, as whatever happens
to the left class when the cursor starts in the left direction
will be matched by what happens to the right class when
the cursor starts in the right direction and what happens to

the left class when the cursor starts in the right direction
will be matched by what happens to the right class when
the cursor starts in the left direction. This can be seen in
Figure 4.
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Figure 1: This figure shows the Markov chain model for
the R/L control method for one step (NCP=3).
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Figure 2: This figure shows the Markov chain model for
the original D/S control method for one step (NCP=3)
with random start direction (RS). Notice that this model
is different from the Markov chain for the one step R/L
control method.
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Figure 3: This figure shows the Markov chain model for
the D/S control method with one step (NCP=3) and con-
stant left direction start (CS). The node and connections
with dashed lines represents states and transitions that are
not possible but are possible in the random start model.
Note how this Markov chain is equivalent to that of the
one step R/L control method with transition probabilities
given only by a and b.

Note, however, that if the cursor always starts in the left
direction, the one-step D/S method of control is equivalent
to the R/L method of control (with continue equivalent
to left and change-direction equivalent to right). (This is
shown in Figure 3). (Similarly if the cursor always starts
in the right direction, the one-step D/S method of control
is equivalent to the R/L method with continue equivalent
to right and change-direction equivalent to left.)
The number of steps (one in this case) are the same for
either starting strategy with the D/S method, but because
the accuracies are different for the two classes for the R/L
control and the D/S (random start), the information trans-
fer rate (ITR) ends up being different for the two systems.
As our classification rates can differ for the right and left
classes, we use the general equation for computing the
ITR.
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Figure 4: This figure shows the probability distributions
for two classes (bottom) and the error rate for the left and
right classes as a function of the classification boundary
(top). Note that with the R/L control method the error rate
is different for right and left trials whereas for the D/S
control system with random start direction, the error rates
are the same for the two classes as discussed in the text.
At the possible classification boundary given by the dotted
vertical line, the R/L control accuracy for the left class is
61.8% and the accuracy for the right class is 88.5%. The
accuracy for both left and right classes for the D/S control
(random-start) is the average of these two (75.14%) Also
shown in the bottom of the figure are the variables used
in the mathematical analysis of the one-step system. Note
that b and c will change as a function of the classification
boundary.

IT R =

(
C

∑
j=1
−p(y j) log2(p(y j))

+
C

∑
i=1

C

∑
j=1

p(xi)p(y j|xi)log2(p(y j|xi))

)
/T

where p(y j) = ∑
C
i=1 p(xi)p(y j|xi) and xi represents in-

tended class i and y j represents decoded class j. (For
our example C = 2). T is the total time (including over-
head/set up time) for the full trial to select either target.
Figure 6 shows by analysis of the Markov chain model
[2] that for the one-step system, the ITR is better for
the R/L (and equivalent D/S same-start) control than the
D/S random start method. We now prove this mathemat-
ically. For the purposes of the proof we will consider
the probabilities under the pdfs given by the distributions
in Figure 4. For R/L control the class on the left corre-
sponds to “Left trials” and the class on the right “Right
trials” and thus for R/L control P(y1|x1) = a,P(y1|x2) =
c,P(y2|x1) = 1−a,P(y2|x2) = 1−c. For the one-step D/S
system with random start (RS) the distributions actually
represent the “Continue” and “Change Direction” distri-
butions. In order to determine P(“Left”|le f t) we must
compute the expected value over both right and left start
directions. If the cursor starts right, then the accuracy is
given by the area under the change direction distribution
on the correct side of the boundary (i.e. 1− c). If the

cursor starts moving left, then the accuracy is given by
the area under the continue distribution on the correct side
of the boundary (i.e. b). So for equal probability of each
starting direction P(“Left”|le f t) = .5a+ .5(1− c). Like-
wise P(“Right”|right) = .5a+ .5(1− c). That is the error
rates are equal for the right and left classes and equal to
c+(1−a)

2 .
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Figure 5: Graphical view of the entities in ITRS and ITCS.
The magenta asterisks show H(x) and the Green circles
show G(x,∆) where ∆ = 1−a−c

2 . ITRS Subtracts the lower
magenta asterisk from the higher one (at x=.5). ITCS sub-
tracts the lower green circle from the higher one (at x=.5).
As H(x)−G(x,∆) (the difference between the magenta
asterisks and the green circles (a subset is shown by the
red curve near the bottom of the Figure)) has a minimum
at 0.5 on (0,1), ITCS ≥ ITRS. When ∆ = 0 (c = 1− a) ,
ITCS = ITRS.

ITRS =
2

∑
j=1
−p(y j)log2(p(y j))

+
2

∑
i=1

2

∑
j=1

p(xi)p(y j|xi)log2(p(y j|xi))

=H(.5)−H
(

c+1−a
2

)

where H(p) =−p log2(p)−(1− p) log2(1− p) is the dis-
crete entropy function for a Bernoulli random variable
with probability of one class given by p (and probability
of the other class given by (1− p)).

For the one-step D/S system with consistent left start (CS)
similarly assuming equal number of class 1 and class 2
patterns, the error rates are different for the right and left
classes (and are identical to an R/L system) and are re-
spectively given by 1−a and c we have:

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-23

CC BY-NC-ND 121 Published by Verlag der TU Graz 
Graz University of Technology



ITCS =
2

∑
j=1
−p(y j)log2(p(y j))

+
2

∑
i=1

2

∑
j=1

p(xi)p(y j|xi)log2(p(y j|xi))

=−
(

a+ c
2

)
∗ log2

(
a+ c

2

)
−
(

1− a+ c
2

)
∗ log2

(
1− a+ c

2

)
+ .5(1−a)log2(1−a)+ .5(a)log2(a)

+ .5(c)log2(c)+ .5(1− c)∗ log2(1− c)

=H
(

a+ c
2

)
− .5H(a)− .5H(c)

=.5H(.5− 1−a− c
2

)+ .5H(.5+
1−a− c

2
)

− .5H(
1−a+ c

2
+

1−a− c
2

)

− .5H(
1−a+ c

2
− 1−a− c

2
)

=G
(
.5,

1−a− c
2

)
−G

(
c+1−a

2
,

1−a− c
2

)
where we define

G(p,∆) =
H(p+∆)+H(p−∆)

2

for ∆ = 1−a−c
2 and we use H(x) = H(1−x) for x ∈ (0,1).

If we compare the ITCS with consistent start to the ITRS
with random start,

ITRS− ITCS = H(.5)−G
(
.5,

1−a− c
2

)
−

H
(

c+1−a
2

)
+G

(
c+1−a

2
,

1−a− c
2

)
To see whether ITCS is larger or smaller than ITRS we check
how H(x)−G(x,∆) varies as a function of x. Looking at
the first derivative of the function. H(x)−G(x,∆), we
have

d(H(p)−G(p,∆))
d p

=− log2(p)−1+ log2(1− p)+1

− .5(− log2(p+∆)+ log2(1− (p+∆)))

− .5(− log2(p−∆)+ log2(1− (p−∆)))

which equals 0 at p = .5.
The second derivative:

d2(H(p)−G(p,∆))
d p2 =− 1

p
− 1

1− p
+

.5
(p+∆)

+
.5

(1− p−∆)
+

.5
(p−∆)

+
.5

(1− p+∆)
> 0

is positive for p ∈ (0,1) and ∆ = 1−a−c
2 by the concavity

(Jensen’s inequality [4]) of 1
x . Therefore H(x)−G(x,∆)

where ∆ = 1−a−c
2 has its minimum for x ∈ (0,1) at x =

0.5 and therefore ITRS ≤ ITCS (and equality only when
c = 1− a at the optimal crossing point). That is more
information is transferred in the single step system using
the standard R/L control method and consistent start D/S
method than the random start D/S method. Note that by
symmetry, the direction of the start does not matter; it just
matters that it always starts in the same direction.
Following the results of [2] showing that in the multi-step
case, an interactive D/S control method is preferable to
the standard R/L control method for improved ITR in
the presence of noise, the one-step result showing that
the consistent start D/S control (equivalent to R/L con-
trol on the first step) is better than the random start D/S
control might be somewhat surprising, but the reason for
improved performance of interactive commands in the
multi-step D/S systems is because the user is responding
to the computer’s classification error. However in the one-
step systems, the user response is to a randomly generated
direction, not the result of the computer’s interpretation of
the user’s command, and so does not provide the benefit
of revealing the computer’s bias.
As the first step in a multi-step system (NCP>3) is equiva-
lent to a one-step system we conclude that for multi-step
systems it is also better to start with a consistent direction.
For reasons discussed below, we will consider the start
direction to be left. This new suggested control strategy
is shown in Figure 8. The ITR curves computed from
the Markov chain analysis [2] for chains with NCP=7 are
shown in Figure 7. The plots show that there is an ITR
benefit to having a consistent start direction, though the
effect is less with the models with more NCPs as should
be expected with a change that only changes the first step.
The difference is larger on the side when “continue” is
more likely to be output (on the right side of the figure) as
that is when fewer steps are taken, and an effect from the
first step will have a greater effect.

DISCUSSION

While for systems with larger NCPs the ITR difference
is not large between the random-start and same-start D/S
systems, there are also other human factors considerations.
When the original D/S control method was introduced,
there was a concern that the control system would require
more time for the user to process each step as they would
need time to determine whether to give a “change” or
“continue” command [2]. Thinking about each step com-
pared to constantly generating a “right” or “left” command
requires more processing and is less automatic. However,
starting the cursor movement in the same direction allows
the user responses to be more automatic. For instance if
the user knows that the cursor will always start moving
left and the change direction command is given by right
hand motor imagery, then for right targets, the user will
start with right motor imagery and will continue right im-
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agery until the cursor changes direction at which point
they will switch to left hand motor imagery (see Figure 9).
In this way, the user feels like they are pushing the cursor
(moving the hand that the cursor is moving away from).
If the subject desires the left target, he will start with left
motor imagery and again only change imagery when the
cursor changes direction. In this mode (left target), the
user feels like they are trying to bat the target back and
forth (moving the hand that the cursor is moving towards).
The user does not need to think about which hand is con-
tinue or change direction, they simply have to start with
the motor imagery of the hand in the desired direction (e.g.
left hand imagery for left target) and change whenever the
cursor changes direction.
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Figure 6: This figure shows the probability distributions
for two classes and the information transfer rate for the
R/L and D/S (random start (RS) and left/consistent start
(CS)) control methods with NCP=3 (the one-step systems).
Note the R/L and D/S left start curves are on top of each
other.
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Figure 7: This figure shows the probability distributions
for two classes and the information transfer rate for the
R/L and D/S (random start (RS) and left/consistent start
(CS)) control methods with NCP=7. The orange curve
shows the results with D/S control with consistent left-
moving start. The thin purple line, gives the result for D/S
control with random start direction, and the thick black
line shows the result using the standard R/L paradigm.

The idea behind the interactive communication method is
to allow a user to compensate for inaccuracies or biases in
the classification boundary that are inevitable with noisy
and non-stationary systems. This is similar to the idea

used in [11] where Wolpaw and colleagues required users
to activate two commands on opposite sides of a possibly
biased classification boundary. Notice in the multi-step
D/S control method, the forces pushing the cursor in each
direction are caused by transitions from each side of the
classification boundary (e.g. a and d cause transitions in
the same direction as do b and c in Figures 2, 3, and 8.)
It is also similar to the way that humans naturally change
to a more interactive style when giving directions to a
non-native speaker. If the person does not understand, we
don’t repeat the same sentences but attempt to give the
same instructions with different words. We also monitor
understanding and change our directions to react to their
understanding. Some HCI systems have a feature like
this; when performing a risky computer operation that
may have been incorrectly activated (e.g. delete a file),
the interface does not ask you to press the same button
that was originally (possibly mistakenly pressed), but to
respond to “Are you sure? (Yes/No).”
There are other practical advantages to the D/S control
system for many modalities of signal generation. In EEG,
for example, emotional, error, and frustration, responses
are combined with any signal the user is actively trying to
generate. Frustration with loss of control has been shown
to induce non-stationarity in EEG [3]. It has been shown
that some of these signals are in the same frequency bands
as the signals to be actively detected and are difficult to
separate [6]. By using the D/S control method, these un-
conscious signals actually add to the discriminability of
the signals rather than subtracting from them. This may
also be true in gesture-based systems where a person who
is happy with the progress may make more animated, or
otherwise somewhat different, moves than when unhappy.
Similarly in speech-based systems, affect is generally re-
flected in people’s speech signals.
We see this work as important for considering the human
and computer as cooperative agents. While the human
may be limited by the discriminability of the signals they
can generate and the computer is limited in its ability to
learn the best classification boundary (given finite data),
the two together can have greater information transfer
(from human to computer) by changing the semantics of
the signals the human generates.

CONCLUSIONS

To conclude, we have analyzed the first step and revealed
that the direct R/L control is better for this first step (where
the feedback is random and can’t provide the computer’s
interpretation of the user’s signal). Through incorporation
of this knowledge to restrict the intial cursor direction in
a D/S system, we have further improved the information
transfer rate of the D/S interactive control method over the
standard direct R/L control method. At the same time, this
change reduces the real-time processing requirements of
the user and reduces the task to a more reactive task requir-
ing less conscious effort. The change in how the first step
is handled maintains the other advantage of the D/S in-

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-23

CC BY-NC-ND 123 Published by Verlag der TU Graz 
Graz University of Technology



left trial

1

c

d

a a a a

d
b

ccc

d
bb

d
b

1

c
d

b
a

c b
a d

Change

ChangeContinue

Continue1 right trial

Figure 8: This Figure shows the Markov chain model for the new proposed D/S control method with constant left start
direction.

teractive control strategy: changes in emotion/frustration
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Figure 9: This figure shows the commands a user would
use after specific cursor movements with the D/S control
method (LEFT) and R/L control method (RIGHT). The
hand icon on the right/left side of the drawn screen rep-
resents right/left-hand motor imagery. The T represents
the desired target location/direction and the arrow repre-
sents the direction of the last cursor movement. Note that
with the D/S control the user changes command when the
cursor changes direction and that right hand targets can
be viewed/felt as the user performing a pushing behavior
giving the imagery of the hand that the cursor is moving
away from (as if to push it away). When the user desires
the left hand target, the user performs a batting back and
forth behavior where they perform imagery of the hand
that the cursor is moving towards (as if to bat it back).
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ABSTRACT: There are very few studies that try to solve 

the motion reconstruction problem, and those few studies 

focused on rehabilitation of amputee patients. In this 

paper, we will discuss the major problems in the field and 

propose possible solutions for them using a rehabilitation 

perspective considering long-term, real-world 

applications. In addition, we performed a preliminary 

study with five subjects using electroencephalography 

and electromyography, a virtual avatar to obtain the 

position of the hand, and a set of motions containing a 

wide range of motions. Among the participants, we 

obtained a mean correlation value between the real and 

reconstructed motion that was equal to 0.834. This result 

exceeds the average in the field, suggesting that our 

solutions are appropriate to solve the current problems. 

 

INTRODUCTION 

 
Brain Computer Interfaces (BCI) have been used for 

amputee rehabilitation for many years. It has been 

especially useful for motion reconstruction problems. 

Motion reconstruction is the problem of reconstructing or 

predicting the dynamics of an extremity using bio-

signals. Motion reconstruction is important for motion 

analysis and motor function assessment. In the case of 

amputees, motion reconstruction can be used to build a 

prosthetic device that substitutes the original limb using 

intuitive motions. The motion reconstruction problem 

can be classified by the extremity reconstructed by the 

system. In general, the distal part of the extremity (hand 

or foot) is comparatively easier to reconstruct than the 

proximally amputated part (arm or leg), because most of 

the motion related muscles are still present in the distal 

amputation. This makes it possible to use 

electromyography (EMG) signals for the reconstruction. 

There is also a large difference between reconstructing 

upper limb or lower limb movements. In the case of the 

leg, the dynamics are well known, and the prostheses are 

simpler since they reconstruct fewer degrees of freedom. 

For these reasons, motion reconstruction of the 

proximally amputated upper limb is the most complex 

reconstruction. There are two different types of upper 

limb proximal amputations: trans-humeral and shoulder 

disarticulation. We focused our study on trans-humeral 

amputations that, by definition, demonstrate 

conservation of the deltoidus muscle. A full prosthesis is 

needed to reconstruct every degree of freedom in the arm, 

including the elbow, wrist, and fingers. Since the 

shoulder has a few motion-related muscles that help 

control the hand, it is not possible to reconstruct the 

hand’s position using only EMG. Thus, BCI is also 

needed. Concerning the aforementioned limitations, we 

need to add the limitations that are produced from using 

the system for rehabilitation. For instance, the system 

must be able to work in real time, including 

preprocessing of bio-signals. Also, the accuracy required 

to build a prosthetic device that is needed for daily life is 

higher than the accuracy required for normal 

applications. 

Due to the complexity of the task, a simplification is used 

most of the time. Most commonly, only the position of 

the hand is reconstructed [1], [2]. We used this 

simplification as well in this study. Most of the studies 

that try to solve this problem use a neuroscientific 

approach, i.e., the main purpose is to determine the 

brain’s function during motion execution using 

electroencephalography (EEG). For this reason, we 

considered it necessary to create a roadmap regarding the 

problems and the challenges that we must confront to 

solve it, always keeping in mind the rehabilitation 

perspective. 

In this paper, we present the major problems that the 

motion reconstruction field faces when applied to 

rehabilitation, providing possible solutions that can be 

applied to real-world environments. We divided the 

system into six parts that are necessary to implement a 

rehabilitation system. These parts are very similar to 

those that compose any BCI system. For each part, we 

provide our analysis of how important the changes are to 

make the technology available under real-world 

conditions for trans-humeral amputees. 

1. Acquisition system: which signals are used as input 

for the predictor. The changes needed are not 

important. 

2. Training signal: which signal is used as output for 

the predictor. The changes needed are critical. 

3. Evaluation: the fitness value used for evaluating the 

system. The changes needed are of high importance. 

4. Task: which motion is performed during the training 

session. The changes needed are of medium 

importance. 

5. Preprocessing: the filters and transformations 

applied to the signals and the features extracted from 

them. There are no changes needed. 

6. Predictor: the architecture used for reconstructing 

the signal. There are no changes needed. 
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We excluded from our analysis the preprocessing and the 

predictor parts for two reasons. First, both parts are too 

complex to analyse in just one paper, even individually. 

The second and more important reason, is that they do 

not present problems as important as the other parts. 

Furthermore, these two parts have been revised the most 

in the literature. 

 

In addition, we performed an experiment implementing 

the proposed solutions for the acquisition system, the 

training system, and the task. The preliminary results are 

presented and discussed to analyse each one of the parts. 

 

MATERALS AND METHODS 

In each subsection, we present one of the mentioned parts 

along with our proposed solution and their 

implementation. 

 

   Subjects 

Five healthy right-handed subjects (3 males, 2 females, 

mean age 28, range 22-40) participated in the 

experiment. Permission from the Ethics Committee of 

the Graduate School of Engineering, Chiba University 

was obtained. All subjects participated voluntarily and 

gave informed consent without receiving any incentives. 

Participants were informed that they could stop the 

experiment at any time. 

 

     Acquisition Systems 

The first decision we made was which system we used 

for acquiring the data. When applied to prosthetics, there 

are two main constraints: the system must be non-

invasive and it must be portable. The most common 

solution, taking into consideration the constraints, is to 

use EEG. The use of EEG itself does not present a 

problem. In the BCI community, it is considered one of 

the best non-invasive methods to read brain signals. 

Additionally, near-infrared spectroscopy is becoming 

more common in BCI studies due to its higher spatial 

resolution and robustness against artefacts [3]. The major 

drawback of this technology is the lower resolution time 

compared to that of EEG. Both technologies can be used 

together to complement each other [4]. Nevertheless, 

EEG has rarely been combined with other technologies 

in motion reconstruction studies. Usually, EMG is not 

used for motion reconstruction. In the cases that used 

EMG [5], the goal was to control wearable systems and 

the electrodes were positioned all along the arm to get 

better results. In the case of trans-humeral amputees, this 

would be impossible. Nonetheless, EMG provides a 

signal highly correlated with motion, is more localised 

than EEG, and is also less noisy. We also recognise that 

both systems complement each other. 

In our experiment, we used an EEG cap (BioSemi 

ActiveTwo) with 16 active electrodes at 2048 Hz. We 

decided to place the electrodes in an asymmetric setup to 

better cover the contralateral motor area. The locations 

for the electrodes were Fz, F2, F4, FC2, FC4, FC6, Cz, 

C2, C4, C6, CPz, CP6, Pz, and P2. We covered a wide 

area since there is no consensus regarding which areas 

(other than the motor area) contribute to reconstruction 

of motion [1], [6]–[9]. 

In addition, we included four surface EMG electrodes 

(Delsys Trigno Wireless EMG) with a sample rate of 

2000 Hz. We placed two on the trapezius, one on the 

deltoidus, and one on the pectoralis major. The locations 

were identical to our previous study [9]. We placed the 

electrodes in the shoulder area to consider the 

rehabilitation goals. 

 

    Training Signal 

To train the systems, we paired the acquired bio-signals 

with the desired position of the hand. Most studies use a 

motion tracking system. Motion tracking systems use 

cameras to detect the position of the hand by using, for 

example, reflective devices. This kind of system tracks 

the position of the subject’s hand precisely in a 3D space. 

However, this approach cannot be used with amputee 

patients since there is no hand to track. 

There are two possible solutions: either use a virtual 

avatar, i.e. the subject looks at a virtual avatar moving the 

arm while he/she repeats the motion; or use a surrogate 

system in which the motion tracking device is placed in 

the trainer’s hand and the subject repeats the motion of 

the trainer. 

We decided to use the first approach, since this method 

confirms that the motion is always the same, since the 

position data comes from a virtual avatar that has a 

predefined motion compared to a human that may 

slightly vary the position for each iteration. In addition, 

implementing a system such as this would be easier, since 

there is no need for a specialized trainer and it can be used 

whenever the subject wants. The drawback of this 

approach is that it adds inherent error, because the 

position of the avatar and the real position cannot be the 

same. Thus, the subject’s motion cannot achieve a perfect 

correlation with the avatar’s motion. 

 

    Task 

Regarding which motion the subject should perform to 

train the system, there was little discussion as it is not 

considered an important part of the experimental design. 

The most common task used is the centre-out motion, 

which consists of moving the hand between a centre 

position to a set of surrounding positions, because it is 

easy to perform for the subject and has been used in 

neuroscience experiments for many years. We 

considered that these motions were not the best for a 

rehabilitation approach, so we decided to create a new set 

of motions. We thought that the motions should cover 

two aspects: wide variation of motions and useful 

motions that are required for daily life. 

Considering this, we included six motions in our training 

set. The first three were generic motions that covered 

motions in both shoulder and elbow joints. They included 

shoulder flexion-extension, shoulder abduction-

adduction and elbow flexion-extension. The other three 

motions included reaching motions at three different 

positions: right middle height, centre upper height, and 

left lower height. In our experiment, the motion was 
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performed with the left arm. 

For each motion, there were two phases: training and 

execution. During the training phase, the subjects could 

watch an animation as many times as they wanted. They 

could change the perspective freely to obtain a clear view 

of the motion. Also, they were asked to practice the 

motion and not only to watch the motion. The execution 

phase started when the subjects indicated that they were 

ready. During this phase, they had to perform the trained 

motion 10 times. They could also start each of the 10 

repetitions by pressing a button on a handheld controller. 

 

    Preprocessing 

During EEG recordings, movement of muscles can 

generate noise in the electrodes [10]. If the preprocessing 

is not performed correctly, this can result in poor results. 

Here, we have decided not to discuss this issue.  

In this experiment, the EEG signal was divided into 

windows of 1 s with 93.75% overlap. This resulted in 16 

different windows per second. Then we downsampled 

the signal to 10 Hz, using each of the points as a feature. 

This is similar to a process proposed by Bradberry et al. 

[1] and followed by Ofner et al. [2]. There is, however, 

discrepancy in the field about the validity of this method. 

The main argument against it is that the arm motion 

creates artefacts in the low frequency band, and the 

system uses those artefacts for reconstruction and not  

EEG data [10]. Still, there is an important argument 

against this statement. In every study that has analysed 

the relevance of each electrode for reconstruction, those 

located in the contralateral area have shown (especially 

in the motor area) better results. If the artefacts from the 

arm movements were so strong (or important for the 

reconstruction), a larger effect would be shown on the 

lateral area (since it is closer to the source of the artefact) 

or a uniform distribution over the scalp would be 

observed (compared to a more focused distribution on the 

motor cortex area). Nevertheless, these concerns are 

important and should be addressed in depth. 

For EMG, we also divided the signal in 1 s windows with 

93.75% overlap. Then, we calculated seven features from 

the time domain. The seven features were integrated 

EMG, modified mean absolute value 2, mean absolute 

value slope, simple square integral, zero crossing, slope 

sign change, and Wilson amplitude. For more 

information regarding the features, please refer to 

Phinyomark et al. [11] Please also see Fernandez-Vargas 

et al., [9] in which we provide an analysis on why these 

features were selected with additional information about 

them. Finally, for calculating the output for each window, 

we took the mean for each of the three position 

coordinates (x, y, and z) used a sliding window of 0.0625 

s (1/16 s) without overlapping. This position 

corresponded to the avatar’s hand and was acquired at a 

variable rate of ~60 Hz. 

 

    Predictor 

Excluding the preprocessing, the predictor is probably 

the component with the highest variability across studies. 

The most common predictor is the linear regression [1], 

[2], [12], [13]. This predictor creates a linear regression 

model using features of EEG as input and the position of 

the hand as output. One of the advantages of this method 

is that it is easy to interpret the results. Other options 

include the particle filter model [12], the kernel ridge 

regression method [13], or artificial neural networks [9]. 

For this study, we decided to use the linear regression 

approach for the EEG data because of its wide use, 

simplicity, and overall accuracy. For the EMG data, an 

artificial neural network was selected as previously 

published [9]. Then, the result of both predictors was 

used as input for a second linear regression. Additionally, 

to this second linear regression we used the previous two 

reconstructed points as input, and we refer to these two 

points in this report as temporal data. 

With this configuration, we divided the predictor into 

four different components: EEG, EMG, second layer, 

and temporal. EEG and EMG components correspond to 

the predictors that used only the EEG and EMG data, 

respectively. The second layer is the predictor that used 

the output of both previous components as input. Finally, 

the temporal component uses the previously 

reconstructed points. The actual predictor, represented in 

Figure 1, uses as input for the second layer the output of 

the EEG component, the EMG component, and the 

temporal data at the same time. Nonetheless, the second 

layer term refers to the result obtained when using only 

the data from the EEG and EMG components, whereas 

the “temporal” term refers to the result when the temporal 

data was added.  

 

    Evaluation 

In each study, the correlation value (CV) between the real 

position and the reconstructed position was used as the 

fitness value. In general, this approach is well accepted, 

despite its possible problems. 

The main problem is that the CV is calculated only with 

data obtained during the training session. Even if the task 

contains a wide range of motions, those motions will be 

repeated several times. Thus, the training, test, and 

validation sets will be similar, which could result in a 

lack of generalisation of the system. This is usually 

intended since, in general, we want to train the system 

with data that is similar to the data that we are going to 

use in the future. However, in this specific case, the 

problem is that the set of motions that the arm can 

perform is too large to train them all. If we were to use 

those systems in a real environment, the result would be 

 
Figure 1 Schematic representation of the predictor. Each 

component is marked with a rectangular shape to indicate 

the data that belong to that component.  
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worse than what we would expect by only considering 

the CV. In brief, any system excels at reconstructing 

motions similar to those that were used for training it. 

However, we cannot know how the system behaves with 

radically different movements. Since we cannot train the 

system with all possible arm motions, we need to 

calculate the quality of the system when presented with 

unexpected motions. 

As a solution, we propose to use a time related feature, 

which can be calculated after training the system. For 

example, the subject uses the trained system to move a 

virtual avatar or prosthetic device to perform a set of 

motions different from those included in the training task. 

The time to complete those motions would be used as the 

fitness value. Unfortunately, we were not able to 

implement this approach in our study; consequently, we 

used the CV as the fitness value. 

For training the system, we used a 10-fold leave-one-out 

cross validation procedure, and 9 out of the 10 repetitions 

of each motion then used the remaining motion as 

validation. This process was repeated 10 times, rotating 

which repetition was left for validation. The final CV was 

calculated as the mean of the obtained CV for each 

repetition. 

 

RESULTS 

Table 1 shows the results obtained during the experiment 

for every component of the system. In addition, we 

performed a permutation test to calculate the chance 

level, i.e., we calculated the obtained CV for the EEG 

component using random EEG data from the motion task. 

As a result, we obtained a CV <0.001.  

In three cases, the EMG component obtained better 

results than the EEG component. Nonetheless, in every 

case, the second layer was better than any of the other 

two components. In addition, the temporal component 

was also always better than the second layer. 

The correlations between the second layer and each 

component were EMG-second layer 0.905, p-value 

0.035; EEG-second layer -0.75, p-value 0.145; temporal-

second layer 0.687, p-value 0.2. 

Finally, Figure 2 presents the reconstruction of the 

system for subject #3. Note that the CV for this 

reconstruction was 0.789, which was below the mean CV 

for subject #3. As was explained before, the mean CV for 

every subject was obtained through a 10-fold validation 

process. This means that there were 10 different 

reconstructions with slightly different CVs among them. 

 

Table 1 Component CV and the mean CV of all 

subjects. 

# EMG EEG 2nd Layer Temporal 

1 0.672 0.584 0.747 0.870 

2 0.125 0.676 0.679 0.810 

3 0.350 0.693 0.716 0.794 

4 0.784 0.576 0.811 0.856 

5 0.621 0.586 0.732 0.838 

Mean 0.510 0.623 0.737 0.834 

DISCUSSION 

 
    Acquisition System 

The results obtained in this study show that the combined 

use of EEG and EMG provides an improved result in 

terms of CV compared to using only one of the systems. 

This also indicates that EEG and EMG contain different 

information regarding the position of the hand.  Notably, 

the variation of the CV of the EMG component is much 

larger than the CV of the EEG component. This suggests 

that the EEG component is more robust than the EMG 

component. This result is counterintuitive, since EEGs 

signal are noisier than EMG signals. In addition to the 

fact that the overall CV appears to correlate with EMG 

accuracy, it would be very important to study the reason 

for this. Also, results obtained in this study using only the 

EEG component are above average in the field, even 

using only 16 electrodes compared to the common 32-64 

used in most studies. 

 
Figure 2 Motion reconstructed from subject #3. Each line 

corresponds to one dimension. The position has no real-

world dimensions since it corresponds to the position of 

the avatar’s hand in the virtual world. The vertical thick 

lines divide each one of the six reconstructed motions that 

correspond to the motion described in the subsection 

“Task”. 
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Table 2 Problems and solutions summary 
Section Commo

n 

Approac

h 

Disadvantages Importanc

e 

Proposed 

Solution 

Expected Impact Implement

ed 

Acquisiti

on 

System 

Only 
EEG 

Noisy signal, difficult to 
analyse 

Low Adding EMG 
and temporal 

data 

Great accuracy 
improvement 

Yes 

Training 

Signal 

Motion 

Tracking  

Cannot be used by 

amputees 

Critical Using virtual 

avatar 

Accuracy 

decrease 

Yes 

Evaluatio

n 

CV May not represent the 
system’s real accuracy 

High Post-training 
measurement 

Better system 
evaluation 

No 

Task Centre 

out 

moveme
nt 

Is not a daily life 

movement 

Medium Using general 

and reaching 

movements 

More general 

predictor 

Yes 

This means that placing the electrodes on the 

contralateral motor area provides results that are 

similar to using more electrodes over the whole 

scalp. This result suggests that it possible to 

create cheaper systems for real-world 

applications. An additional advantage of using 

fewer numbers of electrodes is that the 

preparation time is shorter. 

 

    Training signal 

The most important solution that we 

implemented is the use of the virtual avatar for 

recording the training signal.  

The results obtained from the EEG component in 

this study are similar to those obtained in [1], [2], 

[6], [12], [13]. In addition, compared with our 

previously published results [9], the temporal 

component had a better result. Nonetheless, with 

these preliminary results, we do not have enough 

evidence to properly compare with other studies. 

We will perform more experiments to make a 

proper comparison in the future. 

 

    Task 

We consider that the reaching motions are the 

most important motions that the system should be 

able to reconstruct, because those motions are the 

most useful for amputee patients. Figure 2 shows 

that the reconstructions for reaching motions are 

more accurate than the reconstructions for the 

generic motions. Thus, if we only consider the 

accuracy of the reaching motions, the selected 

task is appropriate for the problem. Nonetheless, 

we should investigate what effect the different 

training sets have on the overall and specific 

accuracies.  

 

   Predictor 

Table 1 shows that adding more layers to the 

predictor and temporal data increases the 

accuracy in every case. In short, more complex 

predictors increase the CV. In our opinion, the 

predictor should be even more complex, with 

different parts predicting specific movement 

components. As an example, Figure 2 shows that 

the motion for the shoulder abduction-adduction 

has the biggest error, especially in the “x” 

dimension. To improve the accuracy of the 

system, we could add an additional layer that 

classifies the motion into subgroups. Then, once 

we know the subtype of motion, we could use the 

EEG and EMG data as input for different specific 

predictors. This could also be useful if we want 

to reconstruct wrist motions without moving 

other parts of the arm. 

 

CONCLUSION 

 

We identified four problems that the motion 

reconstruction field faces from the rehabilitation 

perspective (Table 2). Out of the four problems, 

we implemented a solution for three of them and 

obtained preliminary results that suggest that 

these are valid solutions, especially for the 

training signal and the acquisition system. 

However, there are still many problems to solve. 

We consider the problem of the evaluation 

method to be one of the most important problems 

that the field is currently facing.  
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ABSTRACT: Many brain-computer interfaces (BCIs)

measure brain activity using electroencephalography

(EEG). Unfortunately, EEG is highly sensitive to arti-

facts originating from non-neural sources, requiring pro-

cedures to remove the artifactual contamination from the

signal. This work presents a probabilistic interpretation

for artifact correction that unifies session transfer of lin-

ear models and calibration to upcoming sessions. A lin-

ear artifact correction model is derived within a Bayesian

multi-task learning (MTL) framework, which captures in-

fluences of artifact sources on EEG channels across dif-

ferent sessions to correct for artifacts in new sessions or

calibrate with session-specific data. The new model was

evaluated with a cross-correlation analysis on a real world

EEG data set. We show that the new model matches state-

of-the-art correlation reduction abilities, but ultimately

converges to a simple group mean model for the exper-

imental data set. This observation leaves the proposed

MTL approach open for a more detailed investigations of

artifact tasks.

INTRODUCTION

As opposed to artifact-computer interfaces, a brain-

computer interface (BCI) relies on decoding signals of

neural origin. Unfortunately, electroencephalography

(EEG) based BCIs are very prone to contamination with

non-neural noise sources. On the one hand, such ar-

tifacts may deteriorate the signal-to-noise ratio and de-

crease BCI performance. On the other hand, the perfor-

mance may misleadingly increase due to exploitation of

artifact patterns in the learning process. Hence, reduc-

ing the effect of artifacts is a key requirement for BCIs in

order to reliably decode brain activity from EEG signals.

Many successful techniques to enhance the signal-to-

noise ratio in EEG signals have been proposed for BCIs

over the last decades. However, advanced methods like

beamforming [1], Independent Component Analysis [8]
or Common Spatial Patterns [2] often require manual se-

lection of components by an expert for optimal perfor-

mance. While hybrid approaches have been reported to

work well [9], computing filters in the first place is also

prone to noise and may miss signals of interest in favor

of artifacts. It may therefore be advantageous to correct

the signal from known artifact sources before applying

further techniques. A popular method is the correction of

electrooculographic (EOG) artifacts caused by eye move-

ments and blinks using linear regression. This technique

aims to learn the influence of EOG electrodes on EEG

and subtracts EOG artifacts from the EEG signals. Note

that EOG electrodes may accidentally capture brain ac-

tivity from the frontal area, which is then unwantedly

removed in the process. Influence coefficients are usu-

ally determined by regressing the observed EEG signal

[10, 11, 12]. It has been found that averaging over co-

efficients from different signal segments, trials or sub-

jects may increase performance of the artifact correction

[13, 14]. However, approaches based on calibration data

from the upcoming session or time based re-calculation

of the coefficients were also suggested [3, 15]. These

findings motivate a common framework in order to ex-

ploit stability of transfer models while still retaining the

ability to calibrate regression models with new data.

In this work, a theoretical framework is presented that

unifies the combination of influence coefficients from dif-

ferent sessions and the adaptation with new artifacts. The

artifact correction problem is put into a probabilistic in-

terpretation and approached within a Bayesian multi-task

learning (MTL) framework that is already used to decode

brain activity [4, 5, 16]. The presented algorithm is able

to learn a matrix Gaussian prior distribution over artifact

influences from different signal segments, sessions and

subjects. The trained prior can be either used to directly

correct artifacts in new sessions or be calibrated with new

artifacts.

The remainder of this paper is organized as follows. The

method section introduces a probabilistic interpretation

for artifact correction and restates the problem with an

equivalent formulation in order to derive a closed form

solution. It is then shown how the new model can be im-

mediately used for artifact correction and later on adapted

with calibration data. Afterwards, the experimental setup
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and the evaluation of the new model against current arti-

fact regression models is described. The results section

shows that the new model operates on lower correlation

levels in comparison with other models. However, the

MTL algorithm is found to train a simple group mean

over influence coefficients for the artifacts in the data set.

Finally, this paper elaborates on the results with a discus-

sion and concludes with a short summary and future work

on the proposed framework.

METHODS

In this paper, scalars are denoted with lowercase, vectors

with bold lowercase, matrices with upper case and sets

with calligraphic uppercase letters.

Probabilistic Artifact Regression: In accordance with

the literature, we assume that an EEG measurement sam-

ple y ∈ R
k from k channels can be modeled with

y = s + Wn, where s ∈ R
k are the EEG signals,

n ∈ R
m are the artifact sources as measured by m arti-

fact channels and W ∈ R
k×m is the weighting matrix.

W explains the influence of the m artifact sources on

each of the k EEG channels. However, the signal that

is observed at the recording sites is additionally contam-

inated by noise contributions arising from other sources

that we do not keep track of. We therefore extend the

model to y = s + Wn + ε, where ε ∈ R
k repre-

sents the signal contribution from other noise. This model

can be put into a probabilistic relation by assuming that

the noise is distributed according to a zero-mean Gaus-

sian ε ∼ N
(

0, σ2Ik
)

with some variance σ2, where

Ik ∈ R
k×k denotes the identity matrix in k dimensions.

An observed EEG sample y is then drawn from a Gaus-

sian distribution

y ∼ N
(

s+Wn, σ2Ik
)

, (1)

centered at the linear model output and deviating accord-

ing to some noise encoded in σ2.

Multi-task Learning with Artifacts: The weight ma-

trix W is usually determined by linear regression on an

artifactual data set in order to find the influences of arti-

fact sources on EEG channels. However, these influences

may vary across subjects, sessions and trials. We there-

fore regard the regression problem for an artifact as an

individual task and denote the gathered data set of q tasks

with T =
{

D(t)
}q

t=1
. Each task data set D(t) ∈ T takes

the form

D(t) =
{(

n
(t)
i ,y

(t)
i

)}nt

i=1
⊂ R

m × R
k (2)

consisting of a single artifact contaminated segment with

nt EEG samples y
(t)
i measured at k channels and arti-

fact samples n
(t)
i recorded at m channels. Each data set

D(t) ∈ T is associated with a linear regression model de-

fined by its weight matrix W (t) ∈ R
k×m. We denote the

set of weight matrices with W =
{

W (t)
}q

t=1
. Follow-

ing the Bayesian MTL framework presented in [16], we

can state a data likelihood from the probabilistic interpre-

tation in (1) and introduce a prior distribution over the

weight matrices. The prior aims to capture commonali-

ties in the influence of artifact sources to EEG channels

across artifacts. In particular, we assume a matrix Gaus-

sian distribution p(W ) = MN (W | MW ,Σr;W ,Σc;W )
as prior model, where MW ∈ R

k×m is the mean weight

matrix, Σr;W ∈ R
k×k is the row covariance matrix that

captures correlations in the influence between the EEG

channels and Σc;W is the column covariance capturing

correlations between the artifact channels. Unfortunately,

pulling everything together to state a posterior objective

does not yield a closed form solution. However, the re-

lation between matrix and multi-variate Gaussians is ex-

ploited in the next section in order to obtain an analytic

solution for MTL artifact regression.

Bayesian Kronecker Regression: While the MTL

approach using a matrix Gaussian prior does not de-

rive in closed form, the problem can be restated into

a form that yields an analytic solution. First, note

that the matrix Gaussian MN (W | MW ,Σr;W ,Σc;W )
is equivalent to a multi-variate Gaussian of the form

N (vec (W ) | vec (MW ) ,Σc;W ⊗ Σr;W ), where vec :
R

k×m → R
km is the vectorization of a matrix stack-

ing the columns into a column vector and ⊗ : Rk×m ×
R

k×m → R
km×km is the Kronecker product of two ma-

trices [6]. Hence, instead of targeting the weight matrix

W itself, the vectorized version vec (W ) of the weights

can be optimized. In fact, the model stated in (1) is equiv-

alent to a Kronecker formulation of the form

y ∼ N
(

s+
(

n
T ⊗ Ik

)

vec (W ) , σ2Ik
)

. (3)

It turns out that by assuming that the source s and noise

signal n are independent, the artifact regression prob-

lem in this formulation is directly solvable by the MTL

algorithm from [16]. Hence, the maximum a-posteriori

(MAP) estimate of a task weight matrix W ∈ W for task

t is given by

vec (W ) =

(

Σ⊗

nt
∑

i=1

N
(t)
i

T

N
(t)
i + σ2Ikm

)−1

(

Σ⊗

nt
∑

i=1

N
(t)
i

T

y
(t)
i + σ2vec (MW )

)

,

(4)

where N
(t)
i = n

(t)
i

T

⊗ Ik and Σ⊗ := Σc;W ⊗ Σr;W .

Applying the iterative learning algorithm from [16] trains

the parameters of the multi-variate Gaussian prior, i.e. the

vectorized mean vec (MW ) and Kronecker covariance

matrix Σ⊗. The original weight matrix W can be easily

restored from the Kronecker model by reshaping the vec-

torized weights accordingly W = unvec (vec (W )). The

original row and column covariance matrices Σr;W and

Σc;W , respectively, may be obtained from the unvector-

ized weights using expectation maximization algorithms

[17]. An algorithm to obtain the matrix Gaussian param-

eters is outlined in Algorithm 1.
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Calibration-Free Correction: A prior model

MN (MW ,Σr;W ,Σc;W ) encodes shared characteris-

tics across artifact regression models. In fact, the mean

weight matrix MW can be used to parameterize a ma-

trix regression model y = s + MWn. A sample

(y,n) ∈ R
k × R

m from a new session can be there-

fore immediately corrected by computing

s = y −MWn (5)

and using s as the artifact-free sample. This correction

is based on the commonalities found across artifact influ-

ences in different sessions or subjects. Hence, in contrast

to the group mean approach, the MTL algorithm addi-

tionally updates the prior mean in dependency to the co-

variance relations.

Model Adaptation: The Bayesian setting of the MTL

model proposed in this work allows for a natural adap-

tation to calibration data. If a calibration data set D(∗)

becomes available, an adapted weight matrix W (∗) can

be inferred using the MAP estimate from (4) on the data

set D(∗). The prior then acts as a regularizer towards

the shared structure that is controlled by the variance fac-

tor σ2. The correction procedure then follows (5) where

we replace the prior mean MW with the adapted weights

W (∗). The adaptation is also eligible for calibration in

which new artifacts are obtained in an online setting, e.g.

by thresholding techniques [18] or the Riemannian Potato

[7].
Experimental Setup: We performed an evaluation of

the model on real EEG signals recorded from five sub-

jects with four to five sessions. Each subject sat on a com-

fortable chair in front of a screen and began the session

with a five minute resting state recording (eyes open, fix-

ating a cross on the screen). The subject then performed

five to 13 runs of mental imagery with nine trials per run.

As we are only interested in the artifacts of the record-

ings, the exact design of the imagery experiment is of no

further interest in this work (however, details on the data

set can be requested from the authors).

Brain activity during the experiment was recorded using

EEG with 128 electrodes positioned according to the ex-

tended 10-20 system (referenced at TPP10h). The signals

were sampled at 500Hz using actiCHamp amplifiers 1 and

active electrodes.

The recorded EEG signals were divided into training and

test segments. The five minute resting state recording was

used to extract EOG blinking artifacts for model training.

Each training segment consisted of a one second window

containing an EOG blink artifact in the center that was

automatically extracted by variance thresholding. In ab-

sence of explicitly placed EOG channels in the record-

ings, the artifacts were measured at two frontal electrodes

(Fp1 and Fp2) designated to act as sources for EOG ar-

tifacts that measure eye blinks. The data from the exper-

imental runs were then used as test signals for a cross-

correlation evaluation between artifact sources and EEG

Algorithm 1: Multi-task Kronecker Regression

Data: Training sets T as described in (2)

Result: Matrix-variate Gaussian prior

MN (MW ,Σr;W ,Σc;W )
1 Initialize MW = 0, Σr;W = Ik, Σc;W = Im ;

2 Initialize W =
{

W (t)
}q

t=1
with W (t) = 0 ;

3 Set Σ⊗ = Σc;W ⊗ Σr;W ;

4 for D(t) ∈ T do

5 for
(

n
(t)
i ,y(t)

)

∈ D(t) do

6 Compute N
(t)
i = n

(t)
i

T

⊗ Ik

7 while MW and Σ⊗ not converged do

8 for W (t) ∈ W do

9 Train vec
(

W (t)
)

using (4) ;

10 Restore W (t) := unvec
(

vec
(

W (t)
))

;

11 Update MW with the sample mean of the

weights in W;

12 Update Σ⊗ with the sample covariance of the

vectorized weights in W ;

13 Estimate Σr;W and Σc;W from W [17];

channels. Each test segment consisted of a four sec-

ond window where the subject was either in an imagery

phase (with rare eye blinks and little noise) or a pause

phase (with more frequent eye blinks and more noise).

In summary, the models were only trained from contami-

nated EEG samples, while the test segments consisted of

artifact-free as well as contaminated samples. All signals

were preprocessed with a common average reference and

band-passed in 1-40Hz (Butterworth, order 4).

We based our evaluation on the assumption that EEG

source signals are uncorrelated to artifact signals [13].
Accordingly, correction models with lower correlation

between artifact and EEG were considered better. We

compared the MTL regression model for artifact correc-

tion presented in this work against no correction, stan-

dard linear regression and a group mean of weight matri-

ces. The MTL prior and group mean are transfer models

and were trained from artifacts of the training segments

of all subjects, but excluding the subject that was evalu-

ated. The MTL prior model (MTL Reg (P)) was trained

using Algorithm 1. The group mean model (Mean Reg)

was constructed by averaging over the weight matrices

trained from individual artifacts. The standard regression

(Std Reg (A)) and adapted MTL regression (MTL Reg

(A)) were calibrated models trained from the artifacts in

the same session that was been evaluated.

The test segments were corrected with the models and the

Pearson correlation coefficient between the time series of

an artifact source and the cleaned EEG signals were com-

puted. This procedure resulted in 125 normalized cross-

correlation values for a total of 360 test segments (result-

ing in a total of 45000 correlations per artifact source).

The correlation coefficients were pooled and compared

according to their absolute total correlation, density

1BrainProducts GmbH, Gilching, Germany

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-25

CC BY-NC-ND 133 Published by Verlag der TU Graz 
Graz University of Technology



Figure 1: Correlation analysis between EOG electrode and the EEG channels. The Pearson correlation coefficient be-

tween EOG channel Fp1 and the 125 EEG channels were computed over all 360 test segments. The top and bottom left

plot show the mean (solid lines) and standard deviation (shaded areas) of the total absolute correlation of each model. The

bottom left plot rescaled the y-axis to highlight the differences between the transfer models. The histogram on the right

shows the density distribution of the correlation coefficients for each model.

Figure 2: An exemplary comparison of the artifact cor-

rection models on a preprocessed EEG time series of four

seconds recorded at channel AF7. The signal was band-

passed between 1 and 40Hz and contains an EOG blink

artifact at 1.5 seconds. All artifact correction methods

visibly attenuate the deflection and follow the original

signal in the segments where no artifact occurs.

distribution and topographic relations. In the following

section, we only present the results for EOG channel Fp1

and omit Fp2, as both channels showed identical behav-

ior.

RESULTS

We first compared the performance of each model in

terms of total correlation. Therefore, the mean correla-

tion values over all 360 test segments was taken at each

EEG electrode. Then, the mean and standard deviation of

the absolute correlations were computed across all chan-

nels. The results for the different models are shown in

Figure 1 (top left and bottom left). The calibrated models

(suffixed by (A)) were trained on an increasing number

of artifacts from the calibration session. The standard

regression approach (orange) shows similar total corre-

lation as opposed to not performing any regression at all

(brown). The MTL and mean regression models show

equal performance by decreasing the total correlation and

variance compared to both, no and standard regression.

The bottom left plot scales towards the MTL models and

the mean regression. Here, the MTL prior (green) and

adapted model (red) have minimally lower correlation

than the mean model (blue). The MTL adaptation per-

formance is equal to the MTL prior and does not change

with more session-specific artifacts to train on.

The top right plot of Figure 1 shows the density distri-

bution of the correlations in a histogram. Performing no

regression at all (brown) exhibits a clear peak at negative

correlations and a smaller at the positive tail. Standard re-

gression (orange) also has modes at the positive and neg-

ative tails, but induces another peak around zero. The

MTL models (red and green) and mean regression (blue)

are again indistinguishable and centered with most corre-

lation values around zero. Hence, the transfer models are

able to keep more correlation values closer to zero than

standard or no regression.

The topographic relations of the cross-correlations are

depicted in Figure 3. The topographies show the corre-

lation difference on each electrode between the two mod-

els pairs in a row and column. Red areas are positive

differences indicating that the row model has lower cor-

relation than the column model. Likewise, blue areas are

negative differences and indicate that the row model has

higher correlation than the column model. Performing

regression lowers correlations mainly at the very frontal

and occipital region. The transfer models (Mean Reg,

MTL Reg (P) and MTL Reg (A)) yield reduced occipital

and parietal correlations compared to standard regression

(Std Reg (A)). While topographic differences between the

MTL models compared to mean regression are present,

there are no clear brain regions where one model outper-
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Figure 3: Topographies of the correlation difference be-

tween two models for artifact source Fp1 and the EEG

channels. Red regions are positive differences and state

the the row-model induces a lower correlation at that re-

gion than the column-model. Likewise, blue regions are

negative differences and imply a lower correlation of the

column-model compared to the row-model. Notable dif-

ferences emerge for EEG channels near the frontal arti-

fact sources (associated with No Reg) and for the frontal

and occipital areas (associated with regression).

forms the other. The MTL prior model (MTL Reg (P))

and its calibrated version (MTL Reg (A)) show no differ-

ences at all.

Finally, Figure 2 shows an example of an EEG times se-

ries from a four second test segment at the frontal elec-

trode AF7. An eye blink occurred at 1.5 seconds and after

the preprocessing it is still clearly visible without EOG

regression (green). Standard regression (blue) manages

to reduce the amplitude, but the deflection is still visi-

ble. The transfer models (red and purple) manage to even

further reduce the amplitude and seem to have visually

corrected the artifact well. The corrected signals follow

the original signal before and after the artifact occurred.

DISCUSSION

The results suggest that the group mean and MTL models

outperform standard regression in terms of reducing cor-

relation between artifact sources and EEG channels. In

fact, standard correction seems to perform worse at some

EEG channels with a varying total correlation, similar to

the uncorrected signal and high negative and positive cor-

relation modes. The differences seem to also occur at rel-

evant brain regions within the frontal and parietal areas.

A possible explanation may be that the standard regres-

sion is able to regress out artifacts well, but corrupts the

signal at some channels when there is no artifact present.

The transfer methods on the other hand account for vari-

Figure 4: Visualization of the matrix Gaussian prior pa-

rameters trained by the MTL algorithm. The top two

plots show topographies of the learned weights associated

with the corresponding artifact source Fp1 or Fp2 on each

channel. In both cases, the influence gradually decreases

with increasing distance to the artifact source. The bot-

tom plot shows a heatmap of the prior covariance matrix

in Kronecker form that was estimated from the vector-

ized form with the standard sample covariance. The co-

variance matrix shows spatial block structures captured

across artifacts from different subjects and sessions.

ability in the artifacts, resulting in more stable regres-

sion models. These results agree with findings that

group means may outperform individual regression mod-

els [13, 14].

Notice that the group mean is a special case of the MTL

learning algorithm where only a single prior update is

performed. This equivalence led to our expectation that

the MTL prior will perform at least as good as the group

mean. Moreover, as the prior was used to regularize adap-

tation with session-specific calibration data, we expected

to further increase performance as opposed to using the

plain prior or group mean. Unfortunately, the MTL prior

and adaptation have trained the same weights and there

are only minimal differences between the MTL and group

mean model. The neglectable difference in total cor-

relation and density distribution indicate that MTL and

group mean essentially trained the same weights. This

conclusion is supported by the lack of correlation dif-

ferences at clear brain regions shown in the topographic

maps. We analyzed the MTL training process and found

that the prior quickly converges within a few iterations.

A possible explanation for the quick convergence may

arise from the rather low dimensionality of the feature
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space compared to the large amount of data points for

training. Hence, the resulting MAP estimates are mainly

based on the data likelihood and do not need to rely much

on the prior regularization. It is further worth noticing

that the MTL adaptation process to calibrate with session

specific artifacts does not increase performance over the

MTL prior. The covariance prior was also analyzed and

showed structure captured across artifacts (see Figure 4),

which implies general spatial feature directions for train-

ing. However, the captured structure did not seem to be

of relevance in case of EOG artifacts, as the final prior

ultimately converge to the group mean and could not be

improved through calibration. A solution to this problem

may have been to not only consider eye blinks, but further

horizontal and vertical saccades.

CONCLUSION

This work presented a probabilistic interpretation of arti-

fact correction that unifies inter-subject linear models and

session-specific calibration. The introduced method com-

bines influence distributions of artifact sources on EEG

channels within a Bayesian MTL framework in which in-

dividual artifacts across sessions and subjects constitute

the tasks. However, the final model ultimately converges

to a group mean of the weight matrices, implicating that

there was no additional session-specific structure across

EOG artifacts that further improved performance of the

model. The MTL framework has already proven to work

well in the case where tasks have few data points com-

pared to the feature dimensionality. In this sense, promis-

ing follow up work is the evaluation of this approach for

other tasks, artifacts and data sets that may contain ex-

ploitable structure across artifact tasks. Further promis-

ing future work may investigate and interpret the influ-

ence structure captured by the covariance matrix. Such

an analysis is likely to give further insights into the be-

havior of artifacts across sessions or subjects and may aid

the development of new models for artifact correction or

regression techniques on EEG signals.
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[14] Gasser T, Sroka L, Möcks J. The correction of EOG

artifacts by frequency dependent and frequency indepen-

dent methods, Psychophysiology, 1986, 23(6):704–712.
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ABSTRACT: Neurofeedback is a promising treatment 

for children with ADHD. However, although several 

studies have investigated its efficacy, the effectiveness of 

current approaches is still debated. This might be partly 

due to the biomarkers that are used and might not be 

enough specific of ADHD core symptoms. We here 

motivate the evaluation of P300-based BCI training as an 

alternative. We review the arguments in favor of this 

approach and reveal the design of an ongoing 

randomized and controlled clinical trial. Essentially, the 

P300 EEG evoked response is affected in ADHD. It does 

reflect selective attention and action selection. It is 

modulated by successful pharmacological intervention in 

ADHD. And it can be used in BCI for training purposes, 

through varied and engaging games. Interestingly, these 

games enable the use of precise instructions as well as 

multi-level feedbacks to favor learning. Finally, this new 

type of Neurofeedback allows for instantiating a highly 

specific control condition that is compatible with a 

double-blind design.  

 

INTRODUCTION 

 
Attention-Deficit/Hyperactivity Disorder (ADHD) is a 

common neurodevelopmental disorder, affecting 3-5% 

of children. ADHD refers to a variable cluster of 

inattention, hyperactivity and impulsivity symptoms. It is 

also associated with impaired social skills, poor school 

performance and even accidents or substance use [1].  

The predominant treatment for these children is 

pharmacological, with dopaminergic stimulant 

medication. The long-term effects of these treatments 

remain unclear, and close to 30% of children with ADHD 

do not fully respond to them. Moreover, some adverse 

effects of psychostimulants have been reported such as a 

decreased appetite and insomnia [2].  Hence a substantial 

number of parents are quite reluctant to give these drugs 

to their children. Additional, complimentary or 

alternative non-pharmacological interventions are 

therefore needed. In this paper, we briefly review the 

converging arguments supporting the hypothesis that 

P300-BCI based training of attention could potentially be 

effective in children with ADHD.  We also describe the 

main aspects of a double blind design that we just 

initiated to evaluate its efficacy.  Results of such a heavy 

longitudinal study will only be available after months, 

but discussing its theoretical grounds and practical 

aspects should already be useful to many readers in the 

field. 

 

CLASSICAL NEUROFEEDBACK IN ADHD  

 

One attractive and non-pharmacological alternative is 

EEG-based Neurofeedback. The aim of this technique is 

to enable the patient to learn how to modulate his own 

brain activity through operant or classical conditioning. 

By providing positive reinforcement when changes in 

brain activity are made in the desired direction, the 

subject can learn how to self-regulate her neuronal 

activity and normalize it [3]. It is expected that repeated 

practice will relief the patient of the main symptoms. 

ADHD is by far the disorder that is most targeted by 

Neurofeedback treatments today. 

 

Three main types of Neurofeedback protocols are 

typically used. They all rest on the modulation of an 

endogenous, spontaneous and continuous measure of 

some brain signals. 

The first application of Neurofeedback in hyperkinetic 

children aimed at training the sensory-motor rhythm 

(SMR) between 12 and 14Hz. This was motivated by the 

relationship between this rhythm and the process of 

motor inhibition. An increase in SMR amplitude would 

be associated with a decrease of ADHD symptoms [4].   

Besides, several quantitative EEG (QEEG) studies found 

excess power in the theta band (4–8 Hz) and diminished 

power in the beta band (13-30) in ADHD children 

compared to healthy children of the same age [5]. This 

led to proposing the online training of the theta/beta ratio 

(TBR) to reduce the activity in the theta band while 

increasing the one in the beta band [6]. 

Finally, a very slow component of the EEG known as the 

contingent negative variation (CNV) has been found to 

be reduced in ADHD children. This component is 

characterized by a negative shift of the signal, in 

anticipation of an expected event. Its reduction in ADHD 

children would reflect an impairment of self-regulation 

abilities [7]. To improve control on this component, 
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Neurofeedback training protocol targeting Slow Cortical 

Potentials (SCP) are carried out. SCPs are broadly 

assume to reflect the regulation of cortical excitability. 

With SCP training, children seem to become able to 

regulate their brain potentials and to produce more 

negative SCPs (i.e. CNV) [8]. 

Five meta-analysis have assessed the effectiveness of 

Neurofeedback.  The first one showed that this technique 

has a large effect on inattention and impulsivity and a 

medium size effect on hyperactivity [9]. All of the fifteen 

studies reported in this analysis did include a control 

condition but only a few of them were randomized trials. 

When including only the randomized studies, the effect 

on hyperactivity appeared to be reduced. Sonuga-Barke 

et al., 2013 [10], analyzed 8 randomized controlled trials 

(RCTs) and reported a significant effect of 

Neurofeedback when evaluation was based on “probably 

not blind assessments”, i.e., scores from raters closest to 

the therapeutic setting (e.g. parents), while they simply 

concluded to a trend when evaluation was based on 

“probably blinded assessments”, i.e. scores from placebo 

controlled trials or made by adults likely to be blind to 

treatment allocation. 

More recently, another meta-analysis based on 5 RCTs 

reported a significant effect of Neurofeedback on 

attention, when comparing it to semi-active or placebo 

conditions and when evaluated based on both “probably 

blinded” and “probably not blinded” assessments. An 

effect on hyperactivity/impulsivity was also found but 

only for “probably not blinded” assessments [11]. 

Finally, a last meta-analysis based on 13 RCTs [12] 

yielded a similar conclusion, namely that Neurofeedback 

training had a significant effect on inattention, 

hyperactivity and impulsivity as well as on the total score 

of the ADHD rating scale (ADHD-RS) but only with  

most proximal raters, not with probably blinded raters. 

Despite the growing number of studies and meta-analysis 

assessing the effect of Neurofeedback in ADHD 

children, the effectiveness of current treatments remains 

debated, calling for more studies and as well as new 

methods [13]–[16].  Studies that are included in these 

meta-analyses are in fact hard to compare with each 

other. First because different biomarkers are targeted by 

the Neurofeedback training (TBR, SMR or SCP). Also, 

because sample sizes are quite different between studies. 

Finally, different controlled groups are used. Semi-active 

conditions refer to treatments with no expected clinical 

benefit (e.g. EMG-based Biofeedback). They aim at 

controlling for the non-specific effect of Neurofeedback 

such as the interaction between the therapist and the 

children. Then active conditions aim at comparing the 

effect of Neurofeedback with another therapy (e.g. 

pharmacological intervention or behavioral therapy). 

Finally, rare placebo controlled studies have also been 

performed in order to control for all the nonspecific 

effects of Neurofeedback treatments. They can allow for 

a double-blind design but have proven difficult to 

instantiate. All these different control conditions between 

studies may have contributed to the heterogeneity of the 

results.   

 

Importantly, it has recently been questioned whether the 

above exploited biomarkers are specific enough of the 

targeted deficits. In particular, recent studies have 

reported an excessive TBR for a subgroup of ADHD 

children only [17]. Ogrim, Kropotov, & Hestad, 2012 

[18] found a significant increase of the TBR in 25.8% of 

ADHD patients, but also in 2.6% of healthy controls. 

Moreover, it has been shown that lots of cognitive 

processes elicit an increase in frontal-midline theta power 

[19], such as working memory or episodic memory. It has 

also been shown that sustained internalized attention or 

meditation can yield an increase of frontal-midline theta 

power. More recently, it has been reported that the up-

regulation of frontal-midline theta power facilitates 

memory updating and mental set shifting in healthy 

subjects [20]. Hence and contrary to the rational of TBR 

training, a correlation was observed between an 

improvement in the control of attentional resources and 

an increase in theta power. Finally and in line with those 

findings, the increase of TBR found in ADHD children 

seems to be more important when the children are 

engaged in a task, suggesting that this increase may 

simply reflect a compensatory mechanism [21]. The 

same authors suggested that TBR Neurofeedback “may 

not produce the best possible therapeutic effect as far as 

executive control functions are concerned”. These 

findings raise the question of whether current training 

protocols rely on the appropriate neurophysiological 

targets.  

 

ERP-BASED NEUROFEEDBACK  

 

Over the past two decades, electrophysiology has been 

used increasingly to investigate differences in cortical 

activity between children with and without ADHD. An 

often occulted research stream investigating deficits in 

children with ADHD has used Evoked-Related Potentials 

(ERPs) and several ERP components have proven altered 

[22]. The most consistent report is the reduction in 

amplitude of the P300 component, both in auditory [23] 

and visual tasks [24]. The P300 is a large positive 

complex that reaches its peak at approximately 300 

milliseconds after stimulus onset. It is in fact made of two 

subcomponents, a frontal P3a reflecting attentional 

capture by some external stimulation, followed by a 

parietal P3b elicited by the voluntary orientation of 

attention [25]. The amplitude of the P300 grows with the 

amount of attentional resources engaged in processing 

the external event [26]. This biomarker has never been 

used in Neurofeedback protocols for ADHD children so 

far. In contrast, it is very much used online for the control 

of Brain-Computer Interface (BCI) applications such as 

the well-known P300-speller [27]. The P300-speller aims 

at enabling Locked-in people to communicate by spelling 

a text on a computer screen. It is based on the principle 

of the visual oddball paradigm. The user must pay 

attention to a specific item on the screen while groups of 

items are lit up in a pseudo-random fashion. Every time 

the target letter is lit up, the brain produces a P300. 
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Conversly, no P300 will be produced for non-target 

letters. This way, but only if the user performs the task as 

requested, the computer can detect the target letter to be 

spelled. This selection process based on the orientation 

of spatial attention can be used in different settings, 

beyond spelling applications, such as in games for 

instance [28]. Interestingly, a few studies have 

investigated the effect of training on performances in 

P300-based BCIs. This was done on healthy adults [29]–

[31], or adults with motor impairments [32]. Although 

the training were quite short, and included only a few 

participants with no control group, results suggested that 

performances can indeed be improved with practice. This 

corroborates our own informal observations on a several 

volunteers who did practice with the P300-speller a lot in 

our lab. Since a good performance in P300-based BCI 

involves being able to selectively pay attention to the 

target, it appears very well suited for training children 

with ADHD who show difficulties in both sustaining 

focused attention (towards a target) and avoiding being 

distracted (by a non-relevant stimulation).   

 

P300 AND ADHD  

 

Overall, the P300 amplitude has been suggested to 

quantify the degree of engaged attentional resources in 

processing a particular stimulus [26]. Importantly, it has 

been shown that children with ADHD have a reduced 

P300 amplitude which can be up-regulated by 

Methylphenidate (MPH) intake . Sawada et al., 2010 [33] 

have shown an increase of P300 amplitude after intake of 

osmotic-release MPH in ADHD children. Seifert et al., 

2003 [34] have found that after the intake of MPH, 

ADHD children had no more P300 amplitude difference 

compared to control children. Moreover, two studies 

have shown an increase of the P300 amplitude following 

the intake of MPH but also a concomitant improvement 

of behavioral measures of attention in a Stroop [34] or a 

CPT task [35]. Yan-ling & Xu, 2013 [35] have found that 

good performers (i.e. children who improved their 

behavior after taking MPH), showed no difference of 

P300 amplitude compared to control children. On the 

contrary, poor performers (i.e. children who did not 

significantly improve their behavior), still showed a 

significantly reduced P300 compared to control children. 

To conclude, P300 is a specific neurophysiological 

marker of selective attention which, in one hand, is 

affected in ADHD children and, in the other hand, can 

evolve positively along with behavioral symptoms. 

 

P300-BASED NEUROFEEDBACK FOR ADHD 

CHILDREN 

 

All the above arguments speak quite strongly in favor of 

attempting to design a Neurofeedback like training that 

would yield an improvement of the P300 in ADHD 

children. If successful, we would then expect that this 

non-pharmacological treatment would yield a 

concomitant improvement of behavioral symptoms. 

However, since the P300 is a transient 

neurophysiological marker that is evoked by an external 

stimulation, this calls for drastically different 

Neurofeedback interfaces compared to classical trainings 

based on endogenous and continuous signals. 

Interestingly, P300-based BCI games have already been 

designed [28], [36]. They have shown that various and 

particularly engaging and entertaining games can be 

easily designed thanks to the transient and reactive nature 

of the targeted signal. These games typically involve an 

opponent and require from the user to develop a strategy 

(see for instance the well-known Connect 4, Space 

invader or Battleship). The mental effort needed to derive 

a strategy is independent from the one that has to be made 

to focus attention and send the proper neurophysiological 

command, but it certainly contributes to the engagement 

of the user and should thus favor the learning. This aspect 

is usually absent from classical Neurofeedback 

interfaces. Moreover, those games naturally instantiate 

an interaction where a clear instruction can be given to 

the user (e.g. to focus its gaze on the targeted screen 

location and to count the number of times it is lit up). 

Hence the user can easily infer the causal relationship 

between a successful attentional effort and a successful 

outcome in the game (having selected the desired 

location on screen).  

 

A DOUBLE BLIND RCT 

 

To demonstrate the effectiveness and specificity of 

Neurofeedback, it is important to conduct double blind, 

controlled and randomized studies. Interestingly, ERP-

based training as we propose makes this requirement 

from evidence-based medicine attainable.  

 

In our study, 60 children diagnosed with ADHD (aged 

between 8-17 years) will be recruited. 30 will be assigned 

following a randomized minimization procedure, to a 

P300-based Neurofeedback (group A, n = 15) or to an 

active control group (group B, n=15). 30 other children 

will be assigned to a third and passive control group 

(Group C). Children in groups A and B will undergo 30 

individual training sessions at a rate of 2 sessions per 

week. Each session will last an hour, including at least 30 

minutes of Neurofeedback training. During these training 

sessions, children will be offered to play various P300-

based video games to keep up their motivation. All these 

games are based on the same principle as the well-known 

visual P300-speller. Importantly though, an eye tracking 

system will be used to know which target the child is 

aiming at. This eye-tracking system will be useful for two 

reasons. First, by indicating to us what the target is, we 

will be able to assess the child’s accuracy in controlling 

the BCI over trials and sessions. Second, in active control 

group B, it will replace the BCI control so that the 

interaction with the game will only be based on gaze 

direction and will not depend upon the attentional effort. 

Importantly, this active control is thus identical to the 

P300-based condition in every aspect, except for the 

signal that will be accounted for to control the interface. 

Precisely, gaze location on the screen will be monitored 
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online for both groups. In group A, selection will be 

based on the most attended location, while in group B, 

selection will be based on the most looked-at location. In 

group A, although the most attend location also 

corresponds to the one that was mostly looked-at, the 

control will only be efficient with attentional effort. In 

contrast, children in group B will be able to control the 

BCI game by simply looking at the targeted location, no 

matter how they master their attentional control.  

This specific control condition further enables a double-

blind comparison of treatments A and B. Indeed, neither 

the children and the parents, nor the therapists will know 

if the children are controlling the interface with their 

EEG signals or with their gaze.  

For our recruitment, we will privilege children who are 

not under medication. However, a few children under 

medication will also be included inevitably, so that can 

meet our objectives in terms of inclusion.  Children under 

medication will be asked not to take their drugs on days 

of training and evaluation. Indeed, the P300 can be up-

regulated by MPH intake, suggesting that being trained 

while under medication would not be useful. To control 

for a putative interaction of medication and training, 

children under medication will be randomized between 

the two groups.  

The feasibility of this blind approach was assessed during 

a preliminary testing with about 30 healthy children who 

underwent a single session where they blindly switched 

from one type of control to the other in blocks. This way, 

we can control for all the non-specific effects of the 

Neurofeedback training. Children in both groups will 

receive exactly the same number of training sessions, 

they will enjoy the same games and receive the same 

instructions and support.  

 

Unlike classical BCI protocols, children will not have to 

perform any calibration prior to using the interface. 

Instead, template signals derived from the above 

mentioned 30 healthy children will be used. 

Classificaiton based on these template signals operate in 

the space of covariance matrices, using Riemannian 

geometry [37]. Making use of a template from healthy 

subjects has a twofold advantage. First, it eschews the 

need for a cumbersome calibration stage at the beginning 

of each Neurofeedback session. Second, since ADHD 

children typically exhibit a reduced P300 amplitude, it is 

more sensible to use template signals derived from a 

healthy population as model signals to be achieved by the 

patients with training. 

 

For the quantitative and qualitative evaluation of the 

treatment, four evaluation sessions will be performed by 

each child: one prior to any training, one after half the 

number of training sessions (i.e. 15), one at the end of the 

training (after the 30 sessions), and a final one two 

months after the end of the training, as a follow-up 

measure. During those sessions, children will undergo 

several paper-pencil and computerized tests in order to 

evaluate the evolution of their ADHD symptoms. Parents 

will also complete some questionnaires to evaluate the 

evolution of the symptoms and the quality of life of their 

child.    

 

Children included in the passive control group (group C) 

are only going to carry out these four evaluation sessions.  

  

 
Figure 1: flow chart of the RCT design for the evaluation 

of a P300-bsed BCI training for ADHD children. 
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ABSTRACT: Both Low Frequency Band (LFB) and 

High Frequency Band (HFB) features of the 

electrocorticography (ECoG) signal have been described 

and explored in the context of BCI. In literature, HFB 

power is emerging as a dominant control feature. 

However, the recently published Utrecht Neural 

Prosthesis (UNP) showed that HFB power from a bipolar 

electrode pair over the hand motor area alone was not 

good enough for stable high performance click-based 

BCI control [1]. Instead, a combination of LFB and HFB 

signals was optimal for click-based control. Here, we 

explore the spectral features that make up the LFB and 

HFB features of the bipolar ECoG signal used in the 

UNP. We demonstrate that the LFB of the bipolar signal 

is a combination of mu and low and high beta rhythms 

with independent functional and temporal characteristics.  

 

INTRODUCTION 

 
For continuous real-life use of a BCI implant, the 

standards of performance are much higher than those 

needed for proof of concept in a controlled lab setting. 

Optimal neural control signals in real-life use can differ 

significantly from those established for short 

experiments in the lab given the requirement for reliable 

and robust decoding for daily use.  

The Utrecht Neural Prosthesis (UNP) is a fully implanted 

communication BCI based on bi-polar 

electrocorticography (ECoG) signals recorded from the 

primary motor cortex (subdural Resume II electrodes, 

Investigational Activa® PC+S and Nexus System, 

Medtronic). We recently demonstrated that a subject with 

late-stage ALS is able to use the UNP system to generate 

reliable brief neural events to control a spelling device at 

home [1].  

Initial tests with a standard BCI cursor control task [2] 

showed high performance using the High Frequency 

Band (HFB) signal that has been most commonly used in 

human ECoG BCI studies [1, 3-7]. The HFB signal has 

been shown to be ubiquitous to human neocortex [8] and 

has been associated with increased asynchronous neural 

activity in the cortical tissue directly underneath an 

ECoG electrode [8-11]. 

However, in the case of the UNP it was also 

demonstrated that reliable click-based spelling control 

was dependent on a combination of the HFB signal and a 

Low Frequency Band (LFB) signal, the spectral range of 

which (indicate frequency band we use in LFB) is 

consistent with that of the classic LFB spectral feature of 

motor cortex reported in ECoG literature [6, 12]. The 

LFB signal overlaps the mu-band (6-12 Hz) motor 

rhythm often used in EEG-based motor BCI [13], in 

addition to other oscillatory features commonly reported 

in EEG and ECoG literature such as the theta (4-7Hz) 

[14], and beta (12-30Hz) [15] bands.  

A number of factors make the UNP control signal unique 

among human BCI systems. First, the chronic use click-

based control requires precise control of the timing of 

control features derived from cognitive tasks. Second, the 

UNP has a bi-polar ECoG signal source (as opposed to 

the generally reported Common Average Referenced 

(CAR) signals). Third, the signals are gathered from a 

subject with late stage ALS, who has been paralyzed for 

years. Hence, in this work we explored the temporal and 

spectral characteristics of the UNP control signal to gain 

a better understanding of the underlying neural features 

that compose the bipolar control signal. 

 
MATERALS AND METHODS 

 
     UNP ECoG signal: The primary control signal of the 

UNP device is recorded using a bi-polar electrode pair 

implanted over the ‘hand knob’ within the primary motor 

cortex of a subject suffering from late-stage ALS. (see 

Fig. 1 in [1]). Each electrode was 4 mm in diameter and 

the center-to-center separation was 1 cm. The cognitive 

strategy used to control the UNP signal is attempted 

movement of the contralateral hand. In addition to the 

online control mode of the UNP device, in which analog 

filtered spectral amplitude signal is relayed to the 

receiving tablet at 5Hz (see [1] Methods for details), non-

filtered ‘raw’ time domain signals can be transmitted at 

200Hz. This work uses off-line analysis of the time 

domain signal recorded during several types of research 

tasks. This raw signal is used to compute Event-Related 

Potential (ERP) responses, time-locked to cued 

attempted hand movements, in addition to time-locked 

responses in the frequency domain (see sections Spectral 

analysis and Spectral band analysis).  

     Attempted hand movement screening task: Signal 
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properties during repetitive attempted hand movements 

were assessed using time domain data from a screening 

task in which the subject was cued to make repetitive 

attempted hand moments or relax for periods of 15s each. 

In total 46 runs consisting of either 10 (17 runs) or 3 (29 

runs) alternated rest and attempted movement trials were 

used. 

     Short activation feedback task: In addition data from 

a task that cue the user to make brief 1s attempted hand 

movements was analyzed. This task also provided 

feedback to the user using the UNP control signal to 

control the vertical position of ball centered on the screen 

while alternating blocks of sky and grass scrolled from 

right to left across the top and bottom of the screen 

respectively. The blocks of sky were timed so that they 

took 1s to move pass the ball. The subject was instructed 

to make brief attempted hand movements to hold the ball 

at the top of the screen during the sky blocks and rest to 

allow the ball to reach the bottom of the screen during the 

grass blocks.  

     2-Target BCI control task: The signal properties 

during successful online BCI control were evaluated 

using time domain signal data from a subset of runs of a 

standard 2-target BCI control task (see [2] for details). In 

short, the subject was instructed to use attempted hand 

movements to control the vertical position of a ball 

moving at a constant speed from the left towards either 

an upper or lower target on the right of a screen. The task 

was administered using the BCI200 software package 

[ref] and used elevated power in the HFB (60-90Hz) to 

drive the ball up and relaxation (inducing a decrease in 

HFB power) to drive the ball down. A 1s cue, indicating 

either the top or bottom target, was presented before the 

ball appeared and began to move for a 2-4s period 

towards the right. Task performance was high (95%) for 

2 runs with 3s movement periods.      

     Spectral analysis: The amplitude for each  frequency 

bin from 1 to 90Hz (in steps of 1Hz) was computed 

offline for every time sample of each time domain data 

file using the real component of the convolution with a 

complex Gabor wavelet (span 4 cycles at full width half 

maximum) [16].  

     Spectral band analysis: In order to access the 

contributions of known distinct spectral bands to the 

UNP control signal, the Delta (1-4Hz), Theta (5-7Hz) Mu 

(8-12Hz), Low Beta (13-20Hz), and High Beta (21-

31Hz) in addition to the HFB (41-90Hz) were analyzed.  

Each band’s amplitude trace was computed for the 

duration of each data set by summing the mean 

normalized 1Hz bin amplitude traces over the above 

ranges. The amplitude trace of each band was then z-

score normalized.  

 

RESULTS 

 

The bi-polar spectral profile for attempted hand 

movements during the screening task closely matched the 

classic ECoG spectral profile for M1 activity [6, 12] (Fig. 

1). The range of 1-4Hz and 41 to 90Hz showed an 

attempted movement related increase in amplitude. A 

decrease in amplitude during attempted movement 

compared to relaxation was seen from 9 to 34 Hz. While 

the magnitude of the HFB increase is relatively uniform 

after 50 Hz, the LFB decrease shows a trough centered at 

25 Hz and approximately covering the high Beta (21-

31Hz) range.   

 

 

Figure 1: Attempted hand movement vs. rest condition 

spectral contrast. The classically reported HFB and LFB 

ranges [6, 12] are indicated with the red and blue 

highlights respectively. The mean + 1 standard deviation 

and mean – 1 standard deviation spectral contrast 

(attempted hand – rest condition) profiles (over trials and 

runs) are plotted in red and blue respectively. The green 

trace indicates the regions of the mean profile that are 1 

std above or below 0.  

 

Inspection of the mean spectrogram of the attempted 

movement and rest periods of the screening task (Fig. 2) 

shows that the decrease in High Beta amplitude parallels 

the increase in HFB and Delta band amplitude, which 

starts at attempted movement onset and continues until 

offset. In addition, a relative increase in amplitude in the 

High Beta range during the duration of the rest condition 

parallels the general decrease in the HFB and Delta 

ranges that begin at approximately 2s after the rest cue. 

However, it can also be seen in Fig. 2 that the lower 

portion of the LFB (9-20Hz) which consists of the mu 

and Low Beta bands  has a pronounced initial drop in 

amplitude in the period after attempted movement onset 

(compared to the period prior to the offset). Furthermore, 

this lower LFB range shows a very pronounced increase 

(referred to hereafter as a rebound) in amplitude just after 

attempted movement offset. This rebound last for 3-4 

seconds and does not continue for the duration of the rest 

periods. Strikingly, the rebound not only includes a peak 

in High Beta amplitude in the first 2s after attempted 

movement offset, it is accompanied by increased HFB 

amplitudes during the beginning of the rebound period. 
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Figure 2: Mean attempted hand movement and rest condition responses. A) Mean spectrograms for -1 to 14s periods 

centered on movement onset (left) and offset (right) cues (note: trials were 15s, meaning that last 1s of each trial is 

analogous to the -1 to 0 second periods in plots). The colors indicate positive (yellow to red) and negative (turquoise to 

blue) mean z-scores. In addition the HFB, High Beta, Low Beta, Mu, Theta, and Delta bands are highlighted in red, green, 

blue, cyan, orange, and magenta respectively. 

 

Fig. 3 depicts the temporal response patterns of the 

separate frequency bands (colored traces) to a series of 

short impulse like attempted hand movements made in 

the context of visual feedback (see section: Short 

activation closed loop feedback task). As with the 

repetitive attempted hand movements, a clear increase in 

HFB power (red trace) with a parallel decrease in High 

Beta (green trace) power can. Likely due to the 

anticipation facilitated by the feedback the coupled HFB 

and High Beta response starts approximately 1s before 

the cue. In addition, the same decoupling between the 

Mu/ Low Beta bands on the one hand, and the High Beta 

band on the other, that is seen in the sustained movement 

response, is seen in the short attempted movement 

response. Notably, the Low Beta band trace increases 

past zero and begins the rebound period just before the 

offset cue. This rebound period is also seen to continue 

to increase till past the cessation of the HFB increase and 

High Beta decrease. However, the short attempted 

movements also reveal that the Mu band response has a 

later negative peak and subsequent later rebound onset 

than the Low Beta band. The Theta band has a similarly 

timed decrease in amplitude as that of the Mu band, but 

does not show a post offset rebound. 

 

 

Figure 3: Spectral band responses to brief attempted hand 

movements during a feedback task. The mean z-scored 

traces and standard error margins (indicated by the 

shaded regions) are plotted (see legend for color 

indications) for the period of -1.5s to 3.5 time-locked to 

the onset of the sky blocks in the Short activation 

feedback task (see section Short activation feedback 

task).  

Given the separate temporal profiles of individual bands, 

it is interesting to consider the full range (1-90Hz) 

spectral response to the traditional 2-Target BCI control 
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task (Fig.4). As expected, the HFB increase used to drive 

the feedback is well timed to the up trials’ movement cue 

(vertical black line, left plot). Again this HFB increase is 

paralleled by a High Beta band decrease and a broad 

spectrum rebound after the target feedback cue which 

includes the Mu and Low Beta bands.  

However, the expected lack of HFB increase during the 

down trials (right plot) is not coupled by an increase in 

High Beta band amplitude. In fact, the High Beta band 

shows a decrease in amplitude coupled by a marked 

increase in the Low Beta band towards the end of the 

down trials. Furthermore, the rebound in amplitude seen 

after target feedback offset in the up trails is much 

diminished after the down trials. Another interesting 

features is the increase in Mu band amplitude just before 

and around the down trail movement cues which is 

clearly not present in the up trials. 

 

 

Figure 4: Mean up (attempted hand movement) on the left and down (rest) condition spectrograms on the right. The colors 

indicate positive (yellow to red) and negative (turquoise to blue) mean z-scores. The visual feedback corresponding to 

the successive periods of the task are depicted under the x-axis of the left plot. See Fig. 3 for explanation of color colored 

highlights.

DISCUSSION 

 

The bi-polar signal used with the UNP has 3 main 

distinguishable frequency bands. A 41-90Hz HFB which 

is well matched to the traditional HFB [6], and a 9-34 Hz 

LFB (matched to the traditional LFB [6]) that is made up 

of distinguishable Mu/Low Beta and High Beta band 

features.  

The results presented here indicate that the HFB is likely 

a segregate for the broadband component of the ECoG 

signal described by Miller et al. [8-9]. Since the HFB has 

been linked to synaptic mechanisms and irregular firing 

of single neurons [9-12] bi-polar referencing should only 

serve to strengthen its presence as a functional feature. If 

there is an increase broad band activity in one of the two 

neural populations under electrode pair then an increase 

in the differential bi-polar signal will be observed. In 

addition, due to the irregular or asynchronous nature of 

the broad band feature in the raw potential signal, if there 

is ab increase in both neural populations then the broad 

band (and hence HFB) component of the differential 

signal will be even further increased in amplitude. 

However, this does lead to more possible functional 

variance since two neuronal populations that are on a 

scale at which they are likely to be functionally 

independent [17] are reflected in the signal. This could 

have advantages and disadvantages. One advantage is the 

possibility for more distinct functional states. However, 

this also implies that larger range of cognitive tasks could 

affect the signal and lead to false positives in simple 

single click based system like the UNP.  

We also show that LFB is clearly present in the bi-polar 

signal. Since this range has traditionally been associated 

with synchronized neural population oscillation effects 

[18] and the LFB has been reported to be anatomically 

broader than the 1 cm separation of the electrode pair [6, 

12], it could be expected that synchronized suppression 

of the neural populations under the electrodes could lead 

to the LFB amplitude responses being subtracted out of 

the differential signal. However, the results presented 

here suggest that either the LFB is not synchronized 

across the covered populations or that a large enough 

phase shift in this range between the two populations 

exists to prevent this. This concept is exemplified by 

considering the subtractions of two signals with equal 

amplitude oscillations at the same frequency that are 

exactly out of phase. In this situation the amplitude of the 

differential signal would be doubled.  

In addition the LFB band can be divided into distinct 

oscillatory bands with distinct temporal function 
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response patterns. The High Beta (21-31Hz) component 

of the LFB shows task suppression consistent with 

hypothesized release of inhibition during cortical 

processing associated with the motor Mu rhythm [18]. 

On the other hand, the Mu/Low Beta component is also 

suppressed during attempted movement, but is not 

directly anti correlated with HFB. The rebound affect that 

has been reported for the Beta band [15] is most 

prominent in this range.  

 

CONCLUSION 

 

In addition to a clearly present HFB component, a multi-

faceted LFB component made up of distinct High Beta 

and Mu/Low Beta components is present in the to the bi-

polar signal. This LFB component is not only suppressed 

during attempted movements, it also shows a large post 

neural activation rebound affect. The combination of 

these effects helps improve robustness of HFB feature 

and leads to the stable single cognitive event features [1]. 
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ABSTRACT: Brain Computer Interfaces suffer from
considerable cross-session and cross-subject variability,
which makes it hard for classification methods to gen-
eralize. We introduce a transfer learning method based
on regularized discrete optimal transport with class la-
bels in the interest of enhancing the generalization ca-
pacity of state-of-the-art classification methods. We
demonstrate the potential of this approach by applying
it to offline cross-subject transfer learning for the P300-
Speller paradigm. We also simulate an online experiment
to assess the feasibility of our method. Results show
that our method is comparable to -and sometimes even
outperforms- session-dependent classification.

INTRODUCTION

Brain Computer Interfaces (BCI) are a means of com-
munication that connect a human brain and a machine,
bypassing any other neurological output. In particular,
during a non-invasive EEG-based BCI session, neuro-
physiological signals are acquired, processed, and trans-
formed into commands, for which the user receives some
form of feedback. Due to the very low Signal to Noise
Ratio (SNR) non-invasive EEG-based BCI suffer from,
advanced signal processing and machine learning tech-
niques need to be employed for the intermediate steps [1].
EEG signals also suffer from a high amount of session-to-
session and subject-to-subject variability, whose sources
are diverse [2]. It can be due to the use of different acqui-
sition means, to varying conditions during the day of the
acquisition, to neurophysiological differences between
one user and another, or to the fact that mental states and
levels of concentration change from one session to an-
other. Therefore, the classifier used to label mental tasks
needs to be trained before every use, a task commonly re-
ferred to as calibration. Furthermore, because variability
can occur within a session, the BCI may need to be recali-
brated during its use. Calibration can last several minutes
depending on the subject; it lists high among the reasons
why the use of BCI is still not widespread.
The design of a robust transfer learning classification al-
gorithm has been a subject of broad interest in the BCI
community. The first attempts towards zero-training BCI
are made for the Motor Imagery paradigm. Some of these
methods rely on recovering spatial filters to project the

samples onto a space where a pre-trained classifier will
generalize well [3, 4], others on the use of adaptive or en-
semble methods [5, 6]. The latter are also used in cross-
session and cross-subject classification for P300-based
BCI [7, 8], along with approaches under the Riemannian
framework [9].
This work handles transfer learning classification by
treating cross-session and cross-subject variability as a
unsupervised domain adaptation problem. Recent works
by Courty et al. [10] propose a solution based on regular-
ized optimal transport to tackle the problem of classifying
unlabeled test data that belong to a different domain from
which the training data is drawn. Transportation theory
applications to BCI have been researched under a mostly
theoretical framework in the works of Ma et al. [11] to-
wards generalizing the Posterior Matching Scheme to ar-
bitrarily many dimensions.
Our contribution is a methodological framework based
on regularized optimal transport with class labels which
can be used for transfer learning alongside existing clas-
sifiers. In this paper, it is assessed through offline cross-
subject experiments under the P300-Speller paradigm.
In the following sections, we first describe the problem
formally and introduce notations. We proceed by describ-
ing our method, the dataset used in the experiments, and
the experiments themselves. Then, we present our results
and discuss them. Finally, we give our conclusions and
propose future extensions.

MATERIALS AND METHODS

Transfer learning as a domain adaptation problem
Let S = {(xi, yi)}Ni=1 be the set of data acquired dur-
ing a BCI session, that is, the set of N extracted feature
vectors X = {x}Ni=1 ⊂ Rd of dimension d coupled with
the corresponding labels Y = {y}Ni=1. Furthermore, let
P(x) ∈ P(Ω) denote the probability distribution from
which the samples in X are drawn, where Ω ∈ Rd is a
measurable space of dimension d and P(Ω) the set of all
probability measures over the domain Ω.
We denote by Se an existing session for which the la-
bels are available, and by Sn a new session for which
they are unknown. We seek to train a classifier to recover
the unknown labels Yn. However, as a result of cross-
session and cross-subject variability, most classifiers do
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not give accurate results about Yn when trained on Se.
This effect can be modeled as a domain adaptation prob-
lem, known as covariate shift [2]: while the conditional
probability distributions P(y|xe) and P(y|xn) are equal,
the same does not hold for the probability distributions of
P(xe) ∈ P(Ωe) and P(xn) ∈ P(Ωn). Assuming that a
transformation causes the drift between domains Ωn and
Ωe, we propose to recover a transport plan to map the new
features onto the domain of the existing features (Ωe) us-
ing Optimal Transportation (OT) theory.

Regularized discrete OT with class labels
OT theory studies a problem known as the Monge-
Kantorovic transportation problem [12]. This problem
can be intuitively understood as the search for the opti-
mal way to transport mass between two probability dis-
tributions. The optimization criterion is the minimization
of a transportation cost; typically, the cost function repre-
sents some metric between the random variables of each
distribution. Also, constraints may be imposed so that
the mass is preserved during the transport. Since we only
have a fixed number of samples from each set, the dis-
crete adaptation of the OT problem boils down to match-
ing empirical measures µe, µn of P(xe) and P(xn).
We can now formally define regularized discrete OT with
class labels in the following way: consider the estimated
empirical marginal distributions µe =

∑Ne

i=1 piδxe
i

and
µn =

∑Nn

i=1 piδxn
i

of the samples in {xei}
Ne
i=1 = Xe

and {xni }
Nn
i=1 = Xn, where δxi is the Dirac function at

xi ∈ Rd and pi is the probability mass associated to the
ith sample,

∑N
i=1 pi = 1. We look for a probabilistic

coupling γ0 ∈ B satisfying the following minimization
problem:

γ0 = argmin
γ∈B

〈γ,C〉F + λRs(γ) + ηRc(γ) (1)

where 〈·〉F is the Frobenius dot product, and B is the
set of all probabilistic couplings between µe and µn,
B =

{
γ ∈ (R+)Ne×Nn | γ1Nn

= me, γ
T1Ne

= mn

}
where 1d denotes a d-dimensional vector of ones and
m ∈ RN denotes a vector of probabilities, each proba-
bility associated to a point in feature set X.
The first term of equation 1 is the discrete adaptation
of the Kantorovic formulation of the OT problem [13].
C is the cost function matrix, whose elements corre-
spond to a metric between two points, cij = d(xei , x

n
j ),

xei ∈ Xe, xnj ∈ Xn; it can be intuitively understood as
the effort required to move a probability mass from xei
to xnj . In this work, the metric we use is the squared
Euclidean distance d(xei , x

n
j ) = ‖xei − xnj ‖22, as it guar-

antees the existence of a unique coupling [12]. When the
squared euclidean distance is used as the cost function,
the first term leads to a sparse version of γ0
The second term regularizes γ0 by its entropy [14]:

Rs(γ) = λ
∑
i,j

γ(i, j) log γ(i, j) (2)

This allows for smoother variants of γ0, whose sparsity
gradually decreases as λ increases, and renders the trans-

port more robust to noise. Moreover, Rs(γ) can also be
interpreted as a Kullback-Leibler divergence between γ
and a uniform joint probability γu = 1

NeNn
, which allows

for the use of a computationally efficient algorithm based
on Sinkhorn-Knopp’s scaling matrix approach [15].
The third term is a regularizer, proposed by Courty et
al. [10], based on group sparsity which makes use of the
available class labels of session Se:

Rc(γ) =
∑
j

∑
cl

‖γ(Icl, j)‖2 (3)

where Icl denotes the set of indices belonging to class
cl ∈ {Target,Nontarget}. In this way, the j-th ele-
ment xnj ∈ Xn will not be coupled with elements from
Xe that belong to different classes.

OT applied to P300-based BCI
Based on the previous formulation of the OT problem,
we propose a transfer-learning method whose three main
steps are (a) feature extraction, (b) transportation of the
new features to the domain of the existing set and (c) la-
bel prediction. The pipeline of our method is illustrated
in Fig. 1.

Figure 1: Pipeline of the method. During the training process,
an existing set Me is given as input along with the correspond-
ing labels Ye. Then, (a) the X-DAWN spatial filters are learned
and (b) the extracted features Xe are used to estimate µe and
train the LDA classifier. When a new set Mn is given as input
to the trained classifier, (a) the trained X-DAWN filters are used
to extract features Xn, (b) µn and γ0 are estimated, and (c) X̂

n

is computed and given as input to the LDA classifier, which
estimates Yn.

Let m(t) ∈ RC be a measurement extracted from a
downsampled EEG signal over C electrodes at time t
during a P300-Speller session. After pre-processing,
Mi ∈ RC×T denotes the ith trial whose columns are T
consecutive measurements. From {Mi}Ne

i=1 = Me and
the corresponding labels Ye, we learn spatial filters us-
ing the X-DAWN algorithm [16], and project each Mi

onto the first Nf X-DAWN filters, yielding feature vec-
tors xi ∈ RNf×T .
We proceed by computing γ0 according to equation (1)
and use it to map Xn onto Ωe by computing a transfor-
mation based on barycentric mapping [10],

X̂n = diag(γ>0 1Ne
)−1γ>0 Xe (4)
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Each xn ∈ Xn will thus be mapped onto the weighted
barycenter of the features of Xe that it was coupled with.
In the end, a Linear Discriminant Analysis (LDA) clas-
sifier is trained on Se, and used to predict the labels
{yni }

Nn
i=1 = Yn that correspond to {x̂n

i }
Nn
i=1 = X̂n.

Dataset Description
The first dataset used in our experiments, Dataset A,
consists of EEG signals recorded during P300-Speller
sessions that were conducted by adult patients suffer-
ing from Amyotrophic Lateral Sclerosis. The experiment
took place in the premises of the Nice University hospi-
tal, and had been approved by the local ethics committee
CPP Sud Méditerrannée [17]. Each subject participated
in three free-spelling sessions, each one preceded by a
calibration session. In this paper, we use the calibration
sessions of 12 randomly selected patients. In each session
there are in total 200 trials in the Target class (consid-
ered to contain the elicited P300 component) and 1000
trials in the Nontarget class.
Dataset B includes EEG signals from four healthy sub-
jects, which were recorded during P300-speller ses-
sions conducted in the premises of Inria Sophia-Antipolis
Mediterranée. Each subject participated in two free-
spelling sessions, each one preceded by a calibration ses-
sion. Again, we only include the calibration sessions,
each one containing 66 trials in the Target class and 330
trials in the Nontarget class.
In both datasets, a Refa-8 amplifier (ANT) with 12
electrodes (Fz,C3,Cz,C4,P7,P3,Pz,P4,P8,O1,Oz,O2) was
used for the recording. The EEG signals are filtered with
a 5th order Butterworth filter between 1 and 15Hz. Each
signal is then downsampled from 256 Hz to 64Hz and
separated into trials Mi ∈ RC×T , where C = 12 and
T = 32 to account for a 0.5s epoch starting at the time of
the flash.

Cross-subject experiments
To demonstrate the potential of our approach, we ini-
tially conduct two offline experiments using Dataset A,
the difference between them lying in the composition of
the training (existing) set. In both cases, the labels as-
sociated to the testing (new) set are not taken into con-
sideration during the experiment, and are only used for
evaluation purposes.
In the first experiment we assess the generalization ca-
pacity of our classifier in pairwise transfer learning ex-
periments. For each experiment, the training set consists
of a single session, that is, a set Me

i of trials along with
the corresponding labels in Ye

i and the test set is Mn
j ,

where i, j ∈ I = {A1, A2, ..., A12} denote the sub-
ject index, and i 6= j. The cardinality of each set is
Ne = Nn = 1200.
For the second experiment, we evaluate the performance
of our classification method when trained with a larger
training set by performing Leave-One-Out transfer learn-
ing. As the test session contains data from a single
session, Xn

j∈I , here, the training set consists of the en-
tire dataset but session j. Hence, Me =

⋃
i∈I−

j
Mi and

Ye =
⋃

i∈I−
j

Yi, where I−j = I − {j} denotes the set of
indices of all subjects except subject j. In this setting,
Ne = 13200 and Nn = 1200.
Since the size of the training set is prohibitively large to
allow for the fast computation of γ0, we use an ensemble
classifier method known as Bootstrap Aggregating (BA)
or Bagging. Introduced by Breiman in 1996 [18], BA has
often been used in BCI [19, 20] to enhance classification
results. The pipeline of our method combined to BA is
illustrated in Fig. 2. Initially, BA creates k subsets of
length l, called bootstraps, by sampling the training set
uniformly and with replacement. We train an instance
of our classifier for each bootstrap. During testing, each
instance produces a prediction; all of the predictions are
aggregated via a voting scheme, that is, a majority vote,
to produce the final result.

Figure 2: Pipeline of our method with BA. Initially, BA cre-
ates k subsets from the training set. Then, an instance of our
classifier is trained for each subset. During testing, the new set
Mn is given as input to each instance. All instances produce
a prediction, and all predictions are aggregated via voting to
produce the final result.

Finally, we simulate one online experiment per session
in Dataset B, using the pairwise transfer learning classi-
fier from dataset A that produced the best performance.
The simulation proceeds in the following way: every
NF = 36 trials, the feature vector set is extracted from
{Mi}NF

i=1 = Mn, the transport map between Xe and
{xi}NF

i=1 = Xn is computed, and {yi}NF
i=1 = Yn is gen-

erated from the mapped set {x̂i}NF
i=1 = X̂n. Note that we

keep the chronological ordering of the trials within each
test session.
For all experiments, we use the first and last two X-
DAWN filters during feature extraction, resulting in a to-
tal of Nf × T = 128 extracted features. The best values
for the OT regularization terms are searched and selected
in λ, η ∈ {0.01, 0.1, 1, 10, 100}. For classifiers using the
BA method, k = 20 bootstraps of length l = 500 were
used, and we drew the same number of elements from
each class to remedy the issue of class imbalance.

RESULTS

We introduce this section by illustrating an example of a
transport between two pairs of sessions. Then, we report
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Table 1: Pairwise transfer learning. Columns display the average AUC value and standard deviation over 11 experiments where the
classifier is trained with the corresponding existing session; the last column is the average over 132 experiments. The first row shows
the results obtained by XD+LDA, while the second row shows the results from XD+OT+LDA.
Existing Session A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Avg.

XD+LDA
0.535 0.562 0.598 0.600 0.591 0.595 0.570 0.578 0.516 0.566 0.553 0.526 0.566
± 0.05 ± 0.07 ± 0.09 ± 0.07 ± 0.10 ± 0.08 ± 0.06 ± 0.06 ± 0.02 ± 0.07 ± 0.06 ± 0.02 ± 0.03

XD+OT+LDA
0.627 0.539 0.567 0.548 0.611 0.598 0.560 0.490 0.518 0.551 0.583 0.585 0.565
± 0.07 ± 0.02 ± 0.06 ± 0.04 ± 0.11 ± 0.07 ± 0.06 ± 0.17 ± 0.01 ± 0.04 ± 0.05 ± 0.06 ± 0.04

Table 2: Leave-One-Out transfer learning. Columns display the AUC score when the classifier is trained with all of dataset A except
for the corresponding new session. The last column is the average and standard deviation over 11 experiments. The first two rows
show results obtained whithout OT; in the first row, the BA method is not used either. The third row displays the results when both
BA and OT are used. The last row shows the AUC score of the Session-Dependent (SD) classifier of each session in dataset A.
New Session A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Avg.
XD+LDA 0.804 0.500 0.529 0.567 0.528 0.593 0.577 0.506 0.525 0.689 0.690 0.721 0.602 ± 0.099
BA+XD+LDA 0.778 0.535 0.720 0.808 0.623 0.698 0.739 0.596 0.521 0.696 0.673 0.809 0.683 ± 0.098
BA+XD+OT+LDA 0.779 0.529 0.835 0.790 0.732 0.541 0.802 0.608 0.673 0.740 0.655 0.809 0.708 ± 0.106
SD Classifier 0.724 0.593 0.709 0.713 0.648 0.624 0.692 0.658 0.548 0.694 0.702 0.781 0.673 ± 0.063

(a) Xe
A1 and Xn

A8, before transport.

(b) Xe
A1 and Xn

A8, after transport.

(c) Xe
A5 and Xn

A3, before transport.

(d) Xe
A5 and Xn

A3, after transport.

Figure 3: Examples of the barycentric mapping induced by γ0
for pairs of sessions. On the left we see the average response
and standard deviation of the first X-DAWN filter projection for
the Target and Nontarget classes. On the right side, we see
the 2D projection of the features, projected using t-SNE.

the experimental results of our method, which we refer
to as XD+OT+LDA. Motivated by the high level of im-
balance between the Target and Nontarget class, we
use the Area Under the receiver operating characteristic
Curve (AUC) as our performance metric.
We display two examples of the estimated optimal trans-
port in Fig. 3. In the first, the training and testing feature
vector sets are Xe

A1 and Xn
A8 respectively, while in the

second, Xe
A5 and Xn

A3. Fig. 3a and 3c show the original
datasets, while Fig. 3b and 3d illustrate the outcome after
computing X̂n

A8 and X̂n
A3. On the right side, we display a

2D projection of the features using t-distributed stochas-
tic neighbor embedding (t-SNE) [21]. On the left side,
we can observe the average response and standard devi-
ation of the first X-DAWN filter, estimated on Xe

A1(A5),
for both sessions and both classes. By looking closely
at Fig. 3b and 3d, we can see that the transport causes
a decrease in the variance of the response, for both the
Target and Nontarget classes.

Pairwise Transfer Learning
The results of pairwise transfer learning can be seen on
Tab. 1. To evaluate the performance of our method, we
compare it to the performance of an XD+LDA classi-
fier, i.e. an LDA classifier and X-DAWN features trained
on Me

i∈I , Ye
i∈I , where no transport takes place. For

each training session, we display the average AUC score
and the standard deviation of the 11 experiments con-
ducted with its corresponding classifier, where each one
of the remaining session was used as the test session,
Mn

j∈I , j 6= i. At first glance, the two methods seem
to perform equally well, yielding an average score of
∼ 0.56. We note however that the best performance over-
all is the one of our method when trained with session
Se
A1, which is equal to 0.627.

Leave-One-Out Transfer Learning
On Tab. 2, we display the results of Leave-One-Out trans-
fer learning; for each test session Mn

j∈I , we trained a
BA+XD+OT+LDA classifier (a combination of the BA
ensemble method and our method, where each bootstrap
is used to train an XD+OT+LDA classifier), using the
union of the remaining sessions. For comparison pur-
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poses, we show the corresponding results of two addi-
tional transfer learning classifiers: a classifier without
OT, in which BA is used to enhance the performance of
an XD+LDA classifier, and those of an XD+LDA clas-
sifier, where neither BA nor OT are used. Finally, the
performance of the session-dependent (SD) LDA classi-
fier trained on X-DAWN features, computed after 5-fold
cross-validation, is also displayed at the bottom.
Our findings demonstrate that merely using the BA
method produces better results than the simple XD+LDA
classifier. The average score of the BA+XD+LDA classi-
fication method is equal to 0.683, while the average per-
formance of the session-dependent classifiers is 0.673.
On top of that, when we use OT, we boost the per-
formance even more producing an average performance
equal to 0.708.

Online Simulation
After obtaining the results from pairwise transfer learning
and observing that the XD+OT+LDA classifier trained
with Me

A1,Ye
A1 generated the best performance, we used

it to simulate an online experiment using each one of the
four sessions {B1, B2, B3, B4} in Dataset B as the test
session (Sim 1). A label set Yni was produced every
NF = Nn = 36 trials; since each test set contains 396
trials, a total of 11 label sets Yni , i ∈ 1, · · · , 11, were
generated in the course of each experiment. For each sim-
ulation, we report on Tab. 3 the average AUC and stan-
dard deviation over all label sets Yni . We compare it to
an analogous online simulation using the XD+LDA clas-
sifier trained with Me

A4,Ye
A4, which generated the best

score in pairwise transfer leaning among all XD+LDA
classifiers (Sim 2). The AUC scores for the session spe-
cific classifiers of each test session, computed after 5-fold
cross-validation, are also reported.

Table 3. Results from the online simulations. Sim 1 is the
simulation where the XD+OT+LDA classifier is trained with
Dataset A session A1, while Sim 2 is the simulation where the
XD+LDA classifier is trained with Dataset A session A4.

Test Sess. B1 B2 B3 B4 Avg.
Sim 2 0.66 ± 0.11 0.60 ± 0.07 0.76 ± 0.14 0.86 ± 0.09 0.72 ± 0.11
Sim 1 0.78 ± 0.12 0.71± 0.14 0.77 ± 0.10 0.69 ± 0.10 0.74 ± 0.04
SD cl. 0.78 0.80 0.68 0.85 0.77

We can see that, 3 times out of 4, our best pairwise trans-
fer learning classifier outperforms the best pairwise trans-
fer learning XD+LDA classifier. For subject P3, both
classifiers score better than the session-dependent clas-
sifier.

Computation time
Regarding the complexity of our method, the average
computation time needed to compute each transport map
in pairwise transfer learning is equal to∼8 sec, compared
to ∼35 sec for Leave-One-Out transfer learning. Since
the test sets are much smaller in the online simulation,
the average computation time is ∼0.86 seconds per test
set. All experiments were conducted on a computer with
a 2.8 GHz Intel i7 processor and 8 GB of RAM.

DISCUSSION

The results presented in the previous section are strong
indicators that the OT approach can effectively enhance
transfer learning.
Regarding the mapping itself, the examples illustrated on
Fig. 3 give us some insight on the process and how it acts
on the components of the EEG signal. We see that, af-
ter the transport, the average values of the first X-DAWN
component of Target and Nontarget class match quite
well, especially for the Nontarget class. However, due
to the presence of a much larger number of Nontarget
class elements in the training set, it appears that samples
whose elicited P300 component is weak are drawn to the
training Nontarget class barycenter. Our decision to se-
lect an equal number of elements in each class to generate
the bootstraps for the BA method finds its motivation in
this observation.
Another product of barycentric mapping is the observed
decrease in the variance of the responses of the X-DAWN
filters, seen on Fig. 3b and 3d. This is a consequence of
the choices for parameter η and λ. For high values, the
“new” data points tend to be drawn to the mean of each
class in the existing set. Lower parameters generate a
larger variance in each mapped class; however, they also
reduce the separability of the classes in the mapped fea-
ture vector set.
Despite the fact that pairwise transfer learning did not
produce conclusive result in favor of OT, our method gen-
erated the two highest AUC scores. Concerning Leave-
One-Out transfer learning, we remark that the high level
of variability in the training set, due to the fact that it
contains trials from many different subjects, actually af-
fects the average prediction accuracy in a positive way.
Moreover, the use of the BA method induces a general
improvement in prediction accuracy, and leads to even
better results when OT-based mapping is used. However,
it increases the computational time, since the computa-
tional cost of computing γ0 depends on the size of the
number of elements in each set.
Fortunately, the computational time of ≤ 1 sec for each
small 36-trial set in the online simulation is low enough to
allow for a fast online implementation. Our findings dur-
ing online simulations show that our method outperforms
the state-of-the-art classification method. These observa-
tions encourage us to continue our research towards the
implementation of a zero-training OT-based classifier.

CONCLUSION

In this work, we have demonstrated that Discrete Reg-
ularized OT can be used in cross-subject transfer learn-
ing to improve the generalization capacities of existing
P300-based classification methods. The results obtained
by OT-based classifiers indicate that our method has the
potential to cancel the need for calibration.
Nevertheless, we are most interested in understanding
why some sets seem to contain more information than
others. In future works, we would investigate which are
the characteristics that qualify a good “map-to” candi-
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date. Subsequently, instead of using one specific session,
or a number of bootstraps generated from specific ses-
sions, we would be using a number of prototypical train-
ing sets that carry these characteristics. In that case, the
voting scheme could be bypassed by session-dependent
selection of one of these subsets with respect to a metric,
such as the Kullback-Leibler divergence or the Informa-
tion Geometry derived Riemannian distance.
While in this paper we concentrate on cross-subject trans-
fer learning, this work can be extended to cross-session
transfer learning or even be used to improve classification
results within a session classifier. Finally, we are also in-
terested in using this approach under Motor Imagery BCI
paradigms.
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ABSTRACT:

As the SSVEP paradigm (based on steady state vi-
sual evoked potentials) requires EEG-measurement,
high number of EEG electrodes might be impractical
in daily life scenarios because of the time consuming
electrode montage. Reducing the number of signal
electrodes can shorten preparation time but might
compromise signal quality.

This paper explores the number of signal electrodes
required to achieve sufficient control over multi-
target SSVEP-based BCI systems.

In this respect, two of the most commonly used
multi-channel classification methods, the minimum
energy combination method (MEC) and the canoni-
cal correlation analysis (CCA), are investigated.

Data from six healthy subjects recorded during a
copy spelling experiment using eight signal electrodes
were analyzed off-line. A spelling interface with 30
flickering targets was used. Results for all possible
channel combinations were evaluated, revealing that
already three electrode channels are sufficient for re-
liable BCI control.

INTRODUCTION

Brain-computer interface (BCI) describes a field of
technologies providing hope for the severely impaired
as brain activity patterns are translated into out-
put commands, allowing control of external devices
without using any muscle activity [1]. Among other
brain signals that can be utilized for spelling devices
are so called Steady-State Visual Evoked Potentials
(SSVEPs), which are evoked in the visual and pari-
etal cortexes when gazing at a flickering visual stim-
ulus [2]. Typically, SSVEPs are recorded noninva-
sively by electroencephalography (EEG). The graph-
ical user interface (GUI) usually presents a set of
stimuli flickering with distinct frequencies. If the
user focuses on a particular stimulus, the correspond-
ing frequency can be found in the recorded EEG.

Two established SSVEP signal detection meth-
ods are the minimum energy combination (MEC)
method, an approach based on principal component

analysis [3], and the canonical correlation analy-
sis (CCA), a method of extracting similarities be-
tween two data sets [4]. One of the major chal-
lenges of EEG-based BCIs is posed by the consider-
able preparation time that is necessary to get ready
for the EEG signal acquisition: Usually various sig-
nal electrodes are placed at the occipital areas, at the
back of the head, which are usually covered with hair.
For each of these electrodes electrolytic gel needs to
be applied to assure low impedances; usually thresh-
olds below 10 kΩ are required, depending on the type
of electrodes used. A proper preparation can only be
done by experienced personal. After use of the BCI-
system the hair of the BCI users needs to be washed.

Several studies aiming to circumvent parts of the is-
sues accompanying the EEG preparation procedure
have been conducted. Some articles focus on the
avoidance of electrolytic electrode gel. Water-based
electrodes, for instance, could simplify daily setup
and cleanup [5]. Dry-contact electrodes do not re-
quire any skin preparation or usage of gel at all [7].
However, the signal-to-noise ratio (SNR) might be
considerably lower with these electrodes. Mihajlović
et al. compared SSVEP-based BCI performance us-
ing dry, water and gel electrode setup[6]. By com-
paring the raw signal obtained within different EEG
channels they found that the severity of noise contri-
bution was higher for dry setup than for water-based
setup, and for the water-based than the gel setup.
Average classification accuracies across six partici-
pants were 63% for dry, 88% for water-based and
96% for gel electrodes.

Other research groups focus on a more practical elec-
trode placement. E.g. Hsu et al. compared the
amplitude-frequency characteristics of occipital and
frontal SSVEPs; although the latter could be an
alternative choice in design of SSVEP-based BCIs,
the amplitudes and SNRs of occipital SSVEPs were
significantly larger [8]. Similarly, Wang et al. em-
ployed EEG signals collected from non-hair-bearing
areas such as the neck and ears for their SSVEP-BCI
system [9]. While results from their high-density
EEG recording (256 electrodes) demonstrated that
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SSVEPs are detectable with behind-the-ear electrode
montage, SSVEPs acquired from occipital area were
the strongest.

Another approach is to reduce the number of used
electrodes in order to shorten the preparation time.
Several articles investigated the impact of the num-
ber and location of electrode channels. Müller-Putz
et al. investigated how the classification accuracy
of a 4-class BCI can be improved by localizing in-
dividual EEG recording positions [10]. In a study
with ten subjects, Friman et al. systematically ex-
cluded electrodes from offline analysis and stated
that the MEC benefits from more electrodes because
of the additional information gained about the nui-
sance signal [3]. Lin et al. also observed that using
more channels for the CCA approach might improve
recognition accuracy [4].

The presented paper further investigates the min-
imum number of signal electrodes for multi-target
SSVEP-based BCI applications. In this respect, a
spelling performance with a 30-target spelling appli-
cation was evaluated. All possible channel combi-
nations were evaluated off-line and ranked according
to detection accuracy. In addition, the SSVEP re-
sponse detection obtained with the MEC were com-
pared with results obtained later off-line using CCA.

The paper is organized as follows: the second sec-
tion describes the experimental setup, and intro-
duces the tested spelling application and used clas-
sification methods. The results are presented in the
third section, followed by discussion and conclusion.

MATERIALS AND METHODS

Participants: BCI performance of six healthy vol-
unteer subjects (two female, mean age 23.8 years) is
evaluated in this paper. All participants were re-
cruited from the Rhine-Waal University campus in
Kleve. This research was approved by the ethical
commitee of the medical faculty of the University
Duisburg-Essen; the experiment was conducted in
accordance with the Declaration of Helsinki. Before
participation, subjects gave written informed con-
sent. Participant information was not directly linked
to experiment data, but stored pseudonymously. The
EEG recording was conducted in a typical labora-
tory room with good light conditions and little back-
ground noise. Participation was not linked with a
financial reward.

Hardware: Participants were seated on a com-
fortable chair in front of a computer monitor (BenQ
XL2420T, resolution: 1920×1080 pixels, vertical re-
fresh rate: 120 Hz) at a distance of about 60 cm.
The used computer system operated on Microsoft
Windows 7 Enterprise running on an Intel proces-
sor (Intel Core i7, 3.40 GHz).

Ag/AgCl electrodes were used to acquire the signals
from the surface of the scalp for the EEG recording.

AF
z 

 C
z

 P
z

PO
3 

 O
1  O

z

PO
4 

 O
9 

 O
10 

 O
2 

Figure 1: Signal electrodes used in the on-line ex-
periment. Eight signal electrodes were placed at
PZ , PO3, PO4, O1, O2, OZ , O9 and O10. Ground was
placed over AFZ , the reference electrode over CZ .

Electrode placement in accordance with the interna-
tional 10-20 system was applied. The ground elec-
trode was placed over AFZ , the reference electrode
over CZ , and the eight signal electrodes were placed
at PZ , PO3, PO4, O1, O2, OZ , O9 and O10 (see also
Fig. 1). In order to assure high signal quality, stan-
dard abrasive electrode gel was applied between the
electrodes and the scalp to bring impedances below
5 kΩ. A g.USBamp (Guger Technologies, Graz, Aus-
tria) EEG amplifier was utilized with a sampling fre-
quency of 128 Hz. An analogue band pass filter (be-
tween 2 and 30 Hz) and a notch filter (around 50 Hz)
were applied.

Signal Acquisition: The MEC [2, 3] was used for
on-line SSVEP signal classification. This method
creates a set of channels (a weighted combination
of the electrode signals) that minimize the nuisance
signals. For EEG detection, we consider Nt samples
of EEG data. The sampled EEG signal data from
Ny electrodes can be written as Nt ×Ny matrix

Y = XfA+B. (1)

The Nt × 2Nh model matrix Xf associated with the
Nh harmonics of a stimulus frequency f is defined
by

Xf (t, 2k − 1) = sin(2πkft) (2)

Xf (t, 2k) = cos(2πkft) (3)

for k = 1, . . . , Nh. The matrix A contains the ampli-
tudes for the expected sinusoids and B contains the
information that cannot be attributed to the SSVEP
response. The noise and nuisance signal can be es-
timated by removing the SSVEP components from
the signal. In this respect, the signal Y is projected
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on the orthogonal complement of the SSVEP model
matrix,

Ỹ = Y −Xf (XT
f Xf )(−1)XT

f Y. (4)

As B ≈ Ỹ , an optimal weight combination for the
electrode signals can then be found by calculating
the eigenvectors of Ỹ T Ỹ (please refer to [2] for more
details). The calculated SSVEP power estimations
P̂f of the frequency f in the spatially filtered signals
were then normalized into probabilities,

pf =
P̂f∑Nf

j=1 P̂j

. (5)

For the implemented application, power estimations
for Nf = 30 frequencies, considering Nh = 2 har-
monics, were evaluated.

The CCA approach, on the other hand, works on
two variable sets (see e. g [4]). Here, one set was
chosen to be the electrode signals Y , and the other
was the SSVEP model matrix Xf associated with the
Nh = 2 harmonics of a specific stimulation frequency
f . CCA was applied for each of the 30 stimulation
frequencies; weighted vectors a and b such that the
linear combinations xf = XT

f a and y = Y T b are
maximally correlated were found by solving

max
a,b

ρf =
E[xTf y]√

E[xTf xf ]E[yT y]
. (6)

The maximum canonical correlation ρf was calcu-
lated for each frequency f ; the frequency associated
with the highest correlation value determined the
output command.

The on-line experiment was conducted using the
MEC. The classification was performed on the basis
of the hardware synchronization of the EEG ampli-
fier (g.USBamp). EEG data were transferred block-
wise to the computer. Each block consisted of 13
samples (101.5625 ms with the sampling rate of 128
Hz). Block-wise increasing classification time win-
dow were used (refer to [2] for more details). If
a particular stimulation frequency had the highest
probability, exceeded a certain predefined thresh-
old and the classification time window exceeded 20
blocks (approximately 2 seconds), the correspond-
ing command was classified. After each classifica-
tion the flickering stopped for approximately 914 ms
(9 blocks).

Figure 2: Graphical user interface used in the on-line
experiment. The spelling task was to write “RHINE
WAAL UNIVERSITY” (name of our University). In
total, 30 frequencies between 6.1 Hz and 11.7 Hz
flickered simultaneously.

During this gaze shifting period, the targets did not
flicker and the user changed his or her focus to an-
other target unhindered (please also refer to [2] for
more details).

Software: The spelling interface displayed 30 se-
lectable buttons representing the alphabet plus addi-
tional characters (see Fig. 2). Each button flickered
with a specific frequency. The button sizes varied
between 130×90 and 170×120 pixels in relation to
the SSVEP amplitude during the experiment as de-
scribed in [2]. Each button was outlined by a frame
which determined the maximum size a box could
reach. Additionally, to increase user friendliness,
command classifications were followed by an audio
feedback.

To implement the 30 stimulation frequencies a frame-
based stimulus approximation was used (see e. g [12,
11]). Frequencies between 6.1 and 11.7 Hz (loga-
rithmic distributed resolution, as suggested in [13])
were implemented. This range was used in previous
studies as well, as it avoids overlapping in the 2-nd
harmonics frequencies while still allowing a sufficient
difference between frequencies [14].

Experimental Setup: After signing the consent
form, each participant was prepared for the EEG
recording. Then participants went through a short
familiarization run, spelling short words such as
“KLEVE”, “BCI” or “BRAIN”. Thereafter, partic-
ipants were instructed to write the phrase “RHINE
WAAL UNIVERSITY”. Spelling errors were cor-
rected via the “delete” button. The entire session
took on average roughly 30 minutes.

RESULTS

For the evaluation of the BCI performance we consid-
ered the command accuracy P (the number of correct
command classifications divided by the total number
of classified commands Cn) as well as the commonly
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Table 1: Results from the analysis of the copy spelling task with different numbers of channels. Average accu-
racies [%] and ITRs [bpm] over all participants for the best channel configurations are provided for CCA and
MEC. Additionally, the amount of combinations surpassing accuracy thresholds of 90% and 70% are listed. The
last column displays the mean accuracy over all combinations with the given number of electrodes.

Electrodes
Acc. (ITR)
of the best
combination

Combinations
acc. >90%

Combinations
acc. >70%

Mean acc. (ITR)
over all

combinations

No.
Best

combination
CCA MEC CCA MEC CCA MEC CCA MEC

1 OZ 48 (15) 48 (15) 0/8 0/8 0/8 0/8 38 (10) 38 (10)
2 OZ ,O10 67 (25) 66 (24) 0/28 0/28 0/28 0/28 54 (17) 49 (15)
3 PZ ,OZ ,O10 84 (34) 87 (37) 0/56 0/56 20/56 12/56 67 (24) 63 (22)
4 PZ ,PO4,OZ ,O9 93 (41) 93 (41) 4/70 5/70 55/70 55/70 77 (30) 76 (29)
5 PZ ,PO4,OZ ,O2,O9 96 (42) 97 (43) 18/56 22/56 55/56 55/56 85 (35) 85 (35)
6 PZ ,PO4,O1,OZ ,O2,O9 98 (45) 99 (45) 19/28 19/28 28/28 28/28 91 (39) 92 (40)
7 PZ ,PO3,O1,OZ ,O2,O9,O10 99 (45) 100 (46) 7/8 7/8 8/8 8/8 96 (42) 97 (43)
8 PZ ,PO3,PO4,O1,OZ ,O2,O9,O10 98 (45) 100 (46) 1/1 1/1 1/1 1/1 99 (45) 100 (46)

used information transfer rate (ITR) in bits/min (see
e. g [1]). The number of bits per trial B is given by

B = log2N + P log2 P + (1 − P ) log2

[
1 − P

N − 1

]
,

where N represents the overall number of possible
outputs (N = 30, given by the number of targets).
To obtain ITR in bits per minute, B is multiplied by
the number of command classifications per minute.
In the on-line experiment the MEC with eight signal
electrodes was utilized. All participants completed
the copy spelling task without any errors achieving
a mean ITR of 45.9 bpm.
For the off-line analysis the recorded electrode signals
were re-evaluated and channel combinations were
ranked according to detection accuracy using the
MEC as well as the CCA. The time windows for the
off-line classifications were determined by the on-line
performance.
In order to investigate to what extend classification
accuracy drops with fewer electrodes, channels were
excluded systematically. E. g, to examine detection
accuracy using only five channels, the off-line anal-
yses was carried out with all

(
8
5

)
= 56 options to

choose five out of eight recorded signals. All possible
combinations composed of the eight recorded signals
were evaluated using the numerical computing en-
vironment MATLAB. Electrode combinations were
ranked according to the accuracies achieved in the
simulated experiment. Results based on the off-line
analysis are provided in Table 1, Fig. 3 and Fig. 4.

DISCUSSION

In the following we want to summarize and discuss
the most relevant results from the off-line analysis.
As also observed by Müller-Putz et al., optimal
recording channels differ between subjects, but some
electrodes tended to be important in a larger num-
ber of subjects [10]. All participants, achieved peak

performance with all eight channels. As expected,
the accuracy generally increases if a higher number
of channels is used. But some of the combinations
using less than four electrodes worked surprisingly
well. With the channel combination PZ ,OZ ,O10 av-
erage accuracies above 85% were achieved.

The results obtained with single electrodes show that
for most participants the OZ electrode yielded high-
est accuracies, followed by O1 and O2 (see Fig. 3).
The relevance of the PZ electrode for multiple chan-
nel combinations can also be seen in Tab 1. The
best electrode combinations using three electrodes
or more all included PZ . Further, the analysis of
combinations using seven electrodes (all but one of
the electrode signals) showed that the combination
excluding PZ was by far the weakest. While the av-
erage of all combinations using seven electrodes was
above 95%, the combination excluding PZ yielded
less than 85% accuracy. Interestingly, one partici-
pant, subject 2, reached 100% accuracy with channel
PZ alone.

Though electrodes O9 and O10 yielded lowest ac-
curacies of all single electrodes, all of the highest
ranked combinations (with more than one electrode)
included either O9 or O10 (see Tab. 1).

This findings might be interesting for the design of,
optically more pleasing and more practical EEG-
caps. For example, signal electrodes could be imple-
mented in the side and back straps of typical head
mounted displays (HMDs) used for virtual reality
(VR) simulations in respect to the aforementioned
locations; some articles already tested the SSVEP
method successfully in a VR HMD (see e. g [15]).

In general, results achieved with CCA and MEC are
relatively equivalent. There seems to be no difference
between the methods for different time windows (see
Fig. 4). This is consistent with previous findings by
Cecotti et al. [16]. The optimal electrode combi-
nations between the methods differed only slightly.
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It is worth noting that the mean accuracy over all
combinations with less than three electrodes was
slightly higher with the CCA. For combinations with
four electrodes or more the mean for the MEC was
slightly better (see Tab. 1).
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Figure 3: MEC detection accuracies for individual
channels. The entire experiment was re-evaluated
off-line for each single electrode.

The increased channel number could be more rele-
vant for the MEC, as it might lead to a more precise
estimation of the noise and nuisance signals due to
the additional information gained.
Fig. 4 also addresses the importance of classifica-
tion time window length. A dynamic time window
with minimal length of roughly 2 seconds was used,
a rather typical value throughout BCI literature (see
also [16]). It should be noted though, that some stud-
ies reported good results with smaller time windows
as well [2, 11].
Note that we tested these two methods in a rather
standard form and they usually could be improved
in several ways. Training sessions to choose elec-
trode scalp path as suggested by Lin et al. could im-
prove the CCA. Instead of sinusoidal reference sig-
nals, EEG training data could be incorporated in
the CCA templates, reflecting natural SSVEP fea-
tures (see e. g [17]). While the MEC does not re-
quire additional training, a user specific calibration
could enhance accuracies as well [18, 19]. Longer test
sessions with a broader population including partic-
ipants of the target group (severly disapled people)
are required to further investigate results under con-
ditions that are as realistic as possible.

CONCLUSION

The effect of channel selection of two multi chan-
nel SSVEP detection methods (MEC and CCA) was
investigated. Though both methods benefit from a
larger number of electrodes, presumably because of

the additional information gained about the nuisance
signal, some electrode configurations using a lower
amount of channels yielded good results.
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Figure 4: Comparison of MEC and CCA. The grand
average accuracy achieved using all eight recorded
signals is displayed as a function of the classification
blocks for both MEC and CCA. Dynamic classifi-
cation windows with a minimum length of roughly 2
seconds were used in the on-line experiment. Chance
level in target identification was 3.33%.

For both methods the minimum number of channels
required to achieve classification accuracies above
70% was three. Especially the channel combination
PZ ,OZ ,O10 yielded good results for both methods
which might be relevant for the design of practical
EEG-caps. Optimal channel sets all included the PZ

electrode.
The comparison of mean classification accuracies
show no significant difference between the CCA and
MEC. Further improvement of the detection could
allow a greater reduction of electrode channels and
simplify the setup.
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ABSTRACT: Many current brain-computer interfaces
(BCIs) rely on motor imagery or oculomotor paradigms
to transfer information, yet these functions are impaired
in people that suffer from late stage Amyotrophic Lateral
Sclerosis (ALS). Additionally, patients have limited ac-
cess to cutting-edge BCI technology for home-use because
the necessary, medical grade equipment is expensive and
difficult to setup.
We addressed both issues with the current study. First, we
devised a novel paradigm that relies on music imagery
and mental subtraction. We argue that these are motor-
independent abilities that can be reliably executed, without
the need for subject training. We find that both tasks can
be distinguished after only one experimental session with
a 124-channel EEG system, from the band-power in the
theta (4-8 Hz) and alpha (8-13 Hz) range. Second, we
tested our paradigm in combination with a low-cost EEG
system to show that it can be used to develop accessible
BCIs for patients in the future.

INTRODUCTION

Background For patients suffering from paralysis,
brain-computer interfaces (BCIs) offer the possibility of
renewed communication [1, 2, 3]. This is of great im-
portance for people who suffer from amyotrophic lateral
sclerosis (ALS), a motor-neuron disease that renders pa-
tients completely locked-in during its final stage [4]. How-
ever, BCIs for ALS patients suffer from two limitations:
The usability of existing paradigms varies greatly, and the
required technology is expensive and difficult to set up.
In the final stages of their disease, ALS patients are unable
to use most current BCIs that rely on motor-imagery or
oculomotor control [5], as these functions decay during
disease progression [1, 6]. Recently, efforts have been
made to combine motor imagery with higher cognitive
tasks including spatial navigation, meditation, mental cal-
culation to improve BCI usage for people with motor-
disabilities [7, 8]. Hohmann et al. [9, 12] devised a
self-paced strategy that relies on positive self-referential
thoughts to modulate activity in the Default-Mode Net-
work (DMN) as an alternative to motor-based strategies.
However, it was argued that repeatedly recalling a positive
memory may induce fatigue which limits the performance

of the BCI over longer time-periods.
Current Work We propose music imagery as another

motor-independent task for BCI control. Music imagery
fulfils three important criteria: First, it targets a cognitive
process that should be immediately accessible to everyone.
Second, it is unrelated to motor imagery. And third, it is
self-paced and stimulus-independent and should therefore
remain accessible to completely paralysed patients. We
argue that music imagery is a more concrete task than
self-referential thought generation and it may therefore
be easier to execute it repeatedly. Music imagery has
been found to modulate parietal alpha, similar to positive
self-referential thoughts [10].
Based on Hohmann et al. [12], we choose mental subtrac-
tion as the opposing task. Mental subtraction is related to
an increase in prefrontal theta and a decrease in parietal
alpha [13]. With music imagery and mental subtraction
we introduce an easy-to-use two-class paradigm that can
be performed without the need for motor-abilities.
BCIs are only accessible to patients if they are affordable
and easy to set up. To investigate the portability of our
paradigm, we tested our paradigm on a low-cost EEG
system, in addition to our recordings with a conventional
high-density EEG system.

MATERIALS AND METHODS

Experimental Paradigm We conducted a study with 10
healthy subjects that were seated in a chair approx. 1.25
meters away from a 17" LCD screen with a refresh rate of
60 Hz and a resolution of 1280x1024 px. For each trial
the instructions were presented in white font on a black
background. Between instructions we presented a fixation
cross in the middle of the screen.
After the resting phase we recorded two experimental
phases, where we employed the high-density EEG and
the low-cost EEG for recording. Each experimental phase
consisted of two blocks with a brief intermission that each
contained 10 trials for the mental subtraction task and 10
for the music imagery task, in randomized order. The
order of those two phases was counterbalanced between
subjects.
For the music imagery condition, participants were asked
to “imagine a favourite song”. In the mental subtraction
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task they were asked to “continuously subtract X from
Y” until the end of the trial, where X was a single-digit
number and Y was a three-digit number. We excluded
1, 2 and 5 for the single digit number and restricted the
range of the three digit number to the interval between
[800, 999]. Each trial took 35 seconds and began with
5± 0.50 seconds pause, after which the instructions were
displayed on screen as well as given acoustically by a
text-to-speech engine (CereProc Ltd., Edinburgh, United
Kingdom). The respective task then had to be executed
continuously for the whole trial.

Experimental Data The study was conducted at the
Max Planck Institute for Intelligent Systems in Tübingen,
Germany. Ten healthy subjects (five male and five female,
mean age 24.6 ± 3.6 years) were recruited from the lo-
cal community and received 12 Euro per hour for their
participation. Half of the subjects had previous experi-
ence with EEG studies. The experimenter informed them
about the procedure with standardised instructions. All
participants signed a consent form in advance to confirm
their voluntary participation. For the high-density sys-
tem, a 124-channel EEG was employed. Recordings were
conducted at a sampling rate of 500 Hz using actiCAP
active electrodes and a BrainAmp amplifier (BrainProd-
ucts GmbH, Gilching, Germany). Electrodes were placed
according to the 10-5 system with the left mastoid elec-
trode as the initial reference. For the low-cost system,
a 14-channel EPOC+ portable EEG system (EMOTIV,
San Francisco, U.S.A.) was employed. Recordings were
conducted at a sampling rate of 128 Hz. OpenViBE [14]
was used to record and store the EEG data. Because of
technical issues we excluded the recorded low-cost device
data for the first three subjects .

Data Analysis The analysis was performed offline.
To differentiate between the patterns of neural activity
related to music imagery and mental subtraction we com-
puted per-trial θ-bandpower features between 4 and 8 Hz
as well as α-bandpower features between 8 and 13 Hz for
all channels. For each subject the feature matrix contains
trials × features, which is one alpha and theta value
per channel per trial, so a 40 × (2 ∗ 124) matrix for the
high-density system (124 electrodes), and a 40× (2 ∗ 14)
matrix for the low-cost system (14 electrodes). The num-
ber of features is twice the number of electrodes since for
each electrode there are two bandpower values associated.
We used a transfer learning method by Jayaram et al.
[15] to account for variation across subjects and the is-
sues arising from large feature spaces. This method
fits a linear regression model for each subject individ-
ually but penalises deviations in the regression weights
from a Gaussian prior distribution. We evaluated
the classification performance on one subject in a 10-
fold cross-validation procedure, after learning a prior
on all others as follows. Afterwards we tested the
H0 : AccuraciesBrainAmp 6= AccuraciesEPOC+ by
a paired Student’s T-Test.
To investigate the meaningfulness of the weights learned
by the transfer learning framework, we multiplied the

learned weights with the feature covariance matrix [16].
The resulting matrix can be visualized as a topography
map where each value represents the importance the clas-
sifier has assigned to this channel based on the modulation
by the cognitive strategy.

RESULTS

We achieved a mean classification accuracy of 85% with
the high-density system and 77% with the low-cost system
(Fig. 1). The paired Student’s T-Test yields a significant
difference between the classification accuracies from sub-
jects S4 to S10 of the BrainAmp (M = 0.84, SD =
0.17) compared to the EPOC+ (M = 0.77, SD =
0.18); t(6) = −2.83, p = 0.03.

After multiplying the weights learned by the transfer learn-
ing framework with the feature covariance, we obtained
the relevance-map of all 124 features for both the theta
and alpha frequency-band (Figure 2).

The channel with the largest weight for the alpha features
is PO1 and for the theta features is AFF1. Figure 3 shows
the modulation in the power spectrum for both tasks at
both of those channels from the BrainAmp recordings.

DISCUSSION

We investigated whether the neural activity during music
imagery and mental subtraction could be discriminated
without prior subject-training. We found that we can clas-
sify both tasks with a mean accuracy of 85% for the high-
density EEG system, and 77% for a low-cost EEG system.
Additionally, we observed high classification weights for
frontal electrodes for the theta band-power features and
parietal ones for alpha.
Our results are consistent with previous publications
that show frontal activation during a mental subtraction
task [17, 18] and parietal activity in the alpha band for
music imagery [11]. Therefore the spatial patterns of the
relevant features for classification (Figure 2) are in line
with our hypotheses and previous research of both tasks.
All except one subject reported the tasks to be very easy.
Only subject S4 reported both tasks to be “boring”, which
might have lead them to not participating very actively
over the course of the experiment, causing the decrease in
performance as depicted in Fig. 1.
The performance of the low-cost system was significantly
lower than the performance of the full-sized system. This
may have been caused by the smaller amount of chan-
nels, the lesser quality of the electrodes, or non-optimal
positioning of the sensors for this paradigm. However,
on both the high-density and the low-cost system, we
achieved classification performances above 70%, which
is considered to be the threshold for building a meaning-
ful communication device. Therefore, we argue that our
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Figure 1: Classification accuracies for both devices (BrainAmp & EPOC+) for all ten individual subjects (S1-S10) in case
of the brain amp and the reduced subject set (S4-S10) for the EPOC+. The mean classification accuracy across subjects is
85% for the BrainAmp and 77% for the EPOC+. Chance level (50%) as well as both mean accuracies are indicated with a
solid tick on the right of the plot and are labeled accordingly.

results motivate further studies that focus on the devel-
opment of low-cost EEG devices with better electrode
placement with respect to the presented paradigm, or a
higher signal quality.
Asking subjects to imagine their favorite song is hard
to control, as songs vary in their genre, complexity, the
presence of lyrics, and personal relevance. The large vari-
ability could have affected the classification performance.
To get a better understanding of the effects, it would be
interesting to combine this EEG approach with an imaging
method like fMRI. This could provide some insight in the
related brain-networks which might be for example the
dorsal attention network as Scherer et al. [7] hypothesize.
Most importantly, an online BCI study with ALS-patients
in all stages of the disease is very important to investigate
the feasibility of this cognitive paradigm.

CONCLUSION

We find the neural activity elicited by music imagery and
mental subtraction to be distinguishable after only one ex-
perimental session. We believe, that our work can be used
as a foundation for future development of reliable and
accessible systems for paralyzed patients to communicate
throughout the whole progress of their disease.
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ABSTRACT: Cognitive brain-computer interfaces
(BCIs) are an auspicious alternative to BCIs based
on motor tasks for severely paralyzed patients, e.g.,
those in late-stages of amyotrophic lateral sclero-
sis. These patients, however, are often not able to
volitionally control their eye lids: Undeliberate eye
opening and closing affects modulation of theta- and
alpha-rhythms, which impairs decoding performance
in cognitive BCIs. Here, we demonstrate on EEG
data recorded from nine healthy subjects that a cog-
nitive BCI based on task-induced modulation of the
frequency of the parietal alpha-rhythm is more ro-
bust to eye lid movements than a BCI based on am-
plitude modulation. Specifically, we instructed sub-
jects to either open or close their eyes while perform-
ing cognitive tasks, and show that closing their eyes
decreases decoding performance relative to the eyes-
open condition for amplitude modulation but not for
frequency modulation features. This insight has im-
portant consequences for the design of cognitive BCIs
for severely paralyzed patients.

INTRODUCTION

Humans’ capability to interact with the environment
– whether via motion, sensation or communication –
relies on the precise control of muscles. Several dis-
eases may impair the capabilities of control. Tem-
porary or partially reversible disturbances up to a
complete degeneration of the necessary structures in
the central nervous system can be the consequence in
which case the (complete) locked-in state ((C)LIS) is
the inevitable final condition of the patient [1].
In this condition the only remaining devices for com-
munication are brain-computer interfaces (BCIs).
Most of the well-established designs, however, trig-
ger neural activity in brain areas that are impaired in
some of these patients [2]. Amyotrophic lateral scle-
rosis (ALS) is characterized by a creeping degenera-
tion of the upper and lower motor neurons impairing
motor control already at the central level and hence
neural activity therein [3, 4]. As well, long-lasting
paralysis as a consequence of disorders on lower lev-
els of motor control may likewise affect processing
in central regions due to neuroplastic changes that

result from omitted afferent projections [5–7]. It is
apparent that under these circumstances motor im-
agery based BCIs are likely to be compromised. Be-
cause P300 speller systems [8] indirectly require mo-
tor control to shift the visual attention, they are,
however, likewise affected. The degeneration of neu-
rons in central sensorimotor areas may eventually im-
pair the ability of oculomotor control [9] completing
the locked-in state [10] and impeding the use of BCIs
that directly or indirectly involve motor areas [11].
For these patients another class of BCIs, one that
lacks any involvement of the very areas, is necessary
in order to have a chance of establishing communi-
cation. Cognitive tasks that involve the imagination
of goals of movements [12], language processing [13],
working memory [14–16] and internal self-referential
attention [17, 18] share this characteristic and have
been shown to provide neural modulations useful as
control signals. The big advantage of the cognitive
strategy over another sensorimotor free approach –
learning volitional control over certain neural activi-
ties through neurofeedback training [19,20] – is that
it can be used intuitively. Tasks like mental calcula-
tion, the imagination of words or remembering one’s
own past are convenient, under precise conscious con-
trol and feasible without training.
Functional MRI studies indeed suggest that perform-
ing tasks of this kind induces modulations of large-
scale cortical networks which exhibit correspondent
alterations in the ECoG and EEG signal [16,21,22].
Topographies show the involvement of frontal and
parietal regions in line with networks related to
higher cognitive functions like working memory, at-
tention and self-referential thinking [14,23,24].
Despite this encouraging perspective, online commu-
nication with a CLIS patient using any of these tasks
in an EEG- or even in a less artifactual ECoG-based
BCI has failed to date [11]. A potential cause is di-
rectly related to the impairment and eventual com-
plete loss of volitional eye(lid) movements once the
CLIS state is entered [9,10]. In this condition erratic
and undeliberate eye closing and opening is likely to
occur. Given the vast differences in the electrophysi-
ological patterns resulting from closed and open eyes,
it may likely be that classification accuracies based
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on these signals do not remain unscathed.
The most prominent electrophysiological change that
accompanies eyes closed periods is the power increase
in the alpha band of the EEG in occipital visual
areas [25]. More elaborate investigations revealed,
however, that the power of all of the common EEG
frequency bands in virtually all brain regions is mod-
ulated and that a restriction of functional effects to
visual processing is unlikely [26]. Specifically, Geller
et al. found that besides alpha’s up-modulation in
occipital regions it is likewise affected in parietal
regions and that a spatially diffuse low-frequency
power increase (delta to beta) is accompanied by a
high-frequency (gamma) decrease in some areas [27].
This indicates effects on large-scale cortical networks
whose modulation is intended by cognitive BCIs.
The specific paradigm under investigation in the
present study utilizes activation and deactivation of
the default mode network (DMN) triggered by self-
referential thinking and mental calculation [18]. The
DMN is a prominent example of a large-scale cortical
network whose discovery is directly associated with
the recording of brain activity during closed eyes con-
ditions (EC) [24]. Since the common feature used
for classification in BCIs is task-induced amplitude
modulation (AM), the aforementioned may pose a
significant problem for cognitive BCIs aiming to es-
tablish communication with patients lacking control
over their eyelids. In that light, an interference be-
tween modulations induced by cognitive tasks and
an EC-induced activation appears to be likely.
Recently, another property of the EEG signal was
described to be similarly informative as AM in the
context of BCIs. Jayaram et al. found that task-
induced shifts of the pronounced peaks in the power
spectra of EEG signals (FM) can be used to predict
task conditions in motor imagery as well as in cog-
nitive BCIs [28]. This finding provides a promising
perspective for the design of communication systems
for severely paralyzed patients. Here we test to what
extend AM and FM based classification in a cognitive
BCI is affected by the EC condition and whether this
condition leads to structural differences of the task-
induced AM compared to the open eyes condition
(EO).

MATERIALS AND METHODS

Experimental Paradigm: The mental tasks
performed by the participants were identical to those
described in [18]. The experiment was composed ac-
cording to a randomized block design. Each block
consisted of 10+10 randomized trials in which par-
ticipants had to either memorize a personal posi-
tive experience or perform a mental subtraction task
(trial-conditions). In total, four of these blocks had
to be completed. During two of them participants
were asked to keep their eyes open and during the

other two to keep them closed (block-conditions).
The order of block-conditions was randomized for
each participant. Each trial started with the in-
struction to either recall a positive memory or suc-
cessively subtract a given one-digit number from a
given three-digit number. Trial length without in-
struction time was 35 s. Instructions were presented
both visually and vocally on a computer screen and
via headphones. Before each trial, a 5 s pause sep-
arated it from the preceding one. Experiments al-
ways began with 2×5min of consecutive resting state
recording, one in EO and the other in EC condition.
During these participants were asked to relax and
let their mind wander at will. Following, the ex-
perimental blocks began between which participants
were allowed to have a break if desired.

Data Acquisition: The study was conducted at
the Max Planck Institute for Intelligent Systems in
Tübingen. Ten healthy subjects (5 female, 5 male)
with a mean age of 26±3 years participated and re-
ceived an allowance of 12e per hour. Before the
start of the experiment participants had to fill out
a consent and a questionnaire asking personal data,
former experience with the use of BCIs, the pres-
ence of neurological disorders, drug abuse and level
of fatigue. The experiment started after a detailed
explanation of the task and a demonstration of the
stimuli. Participants were seated in a chair at a dis-
tance of 1.25 m to the screen and asked to remain as
still as possible and to minimize eye blinks during
trials.
EEG was recorded at a sampling frequency of 500 Hz
using actiCAP active electrodes (124 channels) and
the BrainAmp amplifier (BrainProducts GmbH,
Gilching, Germany). Electrodes were mounted ac-
cording to the extended 10-20 system with the left
mastoid electrode as the initial reference and the
AFz-electrode as ground. Before data analysis,
recordings were re-referenced to common average.
Data streams were digitized and stored via Open-
ViBE [29], stimuli were implemented using a custom
BCI GUI. After each experiment behavioral ques-
tions were asked to rate the perceived difficulty of
performing the tasks in the different conditions on a
scale between 1 and 10.

Data Analysis: Preprocessing of the data in-
cluded band-pass filtering between 0.1 Hz to 45 Hz.
Visual inspection lead to exclusion of one participant
due to an abnormal shape of the power spectrum. No
further artifact reduction was performed since the
frequency band of interest is largely robust against
the main sources of EEG artifacts [30]. Bandpower
modulation and frequency modulation for each chan-
nel and trial were computed for the common alpha
band (8 Hz to 13 Hz). The former via FFT and the
latter according to the method described in [28].
This method relies on the analytic signal which is
obtained through the Hilbert transform and provides
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Figure 1: Distributions of the performance across participants for the different features (AM/FM), block-
(EO/EC) and classification-conditions (O/S). Black lines mark the mean and white the median accuracy. Dif-
ference between AM EO O and AM EC O is significant (pmedian = 0.038).

phase information. Derivation of the instantaneous
phase with respect to time yields the instantaneous
frequency. To obtain the location of a trial’s alpha
peak its data was band-pass filtered between the al-
pha band and the median of each data point’s es-
timate used as the instantaneous frequency of that
trial. Linear discriminant analysis was used for clas-
sification. According to the paradigm’s underlying
hypothesis concerning the involved brain areas, clas-
sification was based on channel Pz and channel Fz
providing a two dimensional feature space. Classi-
fication accuracy of each participant and condition
was computed by 100 repetitions of 10-fold cross val-
idated LDA (random split). Mean values across rep-
etitions are reported. To test the significance of clas-
sification against chance level permutation tests were
used, i.e. class labels were randomly permuted 1000
times and for each iteration the classification accu-
racy was calculated again. The fraction of values
greater than or equal to the original accuracy con-
stitutes the p-value. An analog procedure was used
to test the differences between conditions. Here the
difference between the means across participants of
two conditions was used as test statistic and its value
was calculated 1000 times by randomly splitting the
combined set of accuracies into sets of equal size.
The fraction of differences greater or equal to the
original difference constitutes the p-value. Permuta-
tion tests were calculated for each of the LDA repeti-
tions separately yielding distributions of p-values for
each comparison whose median value is the reported.

To further probe the differences between the block-
conditions the classification accuracies obtained by
using the condition’s own classifier, i.e., training and
prediction based on the same data set (O condition),
and the accuracies obtained by swapping the clas-
sifier (S condition), i.e., training on the EC data
and predicting EO data and vice versa, were com-
pared. Perceived difficulties of the tasks in different
conditions were compared using the non parametric
Wilcoxon rank sum test.

RESULTS

Average performance across participants of all con-
ditions was significantly above the chance level of
50 % (p-values not reported here). Fig. 1 shows the
accuracy distributions across participants for each
block- and classification-condition based on AM and
FM within the alpha band at channels Pz and Fz.

Table 1: Mean (top) and median (bottom) accu-
racies across participants separated by trial- and
block-condition in correspondence with Fig. 1 (val-
ues in [%]).

AM EO AM EC FM EO FM EC
O S O S O S O S

75.3 66.7 61 62.1 72 69.2 75 66.8
69.6 57.9 59.4 59.5 80.3 70.4 72.9 67.5
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Figure 2: Individual performances separated by feature and block-condition. Dashed line marks chance level.
AM EO: amplitude modulation in the eyes open condition. AM EC: amplitude modulation in the eyes closed
condition. FM EO: frequency modulation in the eyes open condition. FM EC: frequency modulation in the
eyes closed condition.

Tab. 1 shows the corresponding mean (top) and me-
dian (bottom) values. A significant difference be-
tween the EO and the EC condition was observed
if classification was based on the AM feature in the
O classification-condition (72 of the 100 p-values ob-
tained by LDA iterations were smaller or equal to
0.05, pmedian = 0.038). No significant differences were
found neither between block-conditions if classifica-
tion was based on the FM feature nor between the O
and S classification-conditions of both features. Im-
portantly, classification performance based on FM
is on average roughly the same as based on AM,
though, considering the individual accuracies shown
in Fig. 2, the feature which performs better varies
from participant to participant.
Analysis of the behavioral data suggested no dif-
ference in the perceived difficulty of performing the
memory or the mental calculation task in EO or EC
conditions (pMemory = 0.53, pCalculation = 0.85).

DISCUSSION

We could show that discriminability between trials
with mnemonic content and those without based on
AM in the common alpha range significantly drops
in the EC condition compared to the EO condi-
tion. This is not the case for classification based on
FM; here distinguishability between trial-conditions
is roughly the same in the EO and the EC condi-
tion. Furthermore, classification based on FM meets
the level of the well established AM, concerning the

median values FM even exceeded AM by more than
10 %, proving it to be a very promising feature for
the use in BCIs. Although our initial hypothesis
that a classifier trained on trials of the EC condi-
tion but applied to EO data performs significantly
worse than the condition’s own classifier was not
met, results still indicate a downswing and, in ad-
dition, that the downswing is stronger for AM than
for FM (comparing AM EO O/AM EO S and FM
EO O/FM EO S in Fig. 1). If significant, this effect
would have been evidence for the hypothesis that
task related AM exhibits diverging structures in the
two block-conditions impairing the classifier and con-
tributing to the failure of current BCI systems to es-
tablish communication with patients lacking control
over their eyelid movements.
From another perspective, though, the fact that the
classifier trained on EC data performed better if ap-
plied to EO data than if applied to EC data itself
sheds new light on the issue. It suggests that train-
ing the LDA model on either EO or EC data resulted
in a similarly oriented decision boundary and, hence,
that orientation of the task-induced AM in the EC
condition was preserved but less pronounced in com-
parison with the EO condition.
Another possible explanation for the accuracy drop
from AM EO to AM EC is that it is more diffi-
cult to concentrate on the cognitive tasks during
EC periods causing a weaker modulation of the neu-
ral activity. The rational behind this explanation is
that closing one’s eyes might increase the likeliness
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of mind-wandering and/or effects of fatigue leading
to a weaker involvement with the tasks. However,
probing the ratings of perceived difficulty to that ef-
fect suggests no difference between block-conditions.
Furthermore, in the case of a behavioral cause the
accuracy drop in the EC condition should likewise
be observable if classifying the FM feature. Taken
together, these arguments speak in favor of a gen-
uine effect within the alpha band caused by an in-
terference of the EC related up-modulation and the
task-induced modulations.
The strong up-modulation of the alpha band during
EC periods is a result of a corresponding synchro-
nization of neural activity. A straightforward expla-
nation for the observed drop is, hence, that alpha
synchrony is largely saturated during the EC condi-
tion and that modulation atop triggered by the cog-
nitive task is therefore less effective. This is in line
with the hypothesis that the orientation of the mod-
ulation is preserved in the EC condition but less pro-
nounced. An interference of that kind is supported
by fMRI studies suggesting effects of EC periods on
the topology of large-scale networks [31,32]. Xu et al.
report that the EC condition leads to a higher global
processing efficiency compared to EO and relate this
to an activation of the “introceptive” network which
includes the DMN. Including the assumed correlates
of DMN activation in the EEG [17,33] these findings
provide neurophysiological evidence.
In light of this argumentation it remains unclear why
classification is not impaired if based on FM. As-
suming the activation of the DMN along with EC as
well as along with self-referential thinking and fur-
ther that this activation reflects in an alpha power
increase in either case it may be expected that FM
would suffer the same fate. Nonetheless our results
indicate a dissociation between AM and FM which
can be explained by three settings. First, there is one
neural network whose activity is likewise triggered
by the EC condition and by the task but unlike AM
task-induced FM is effective atop EC-induced effects.
Second, there is one neural network but FM is only
induced by the tasks and not by closing and open-
ing the eyes, or third, there are two distinct neural
networks involved one of which features AM and the
other FM. Considering a study by Thuraisingham et
al. the second option can likely be rejected. Estimat-
ing the instantaneous frequency of EEG recordings
during EO and EC conditions via an Hilbert-Huang
transform they were able to distinguish with an high
level of accuracy between those two conditions [34].
This points to the significance of our results. As in
contrast to AM, the task-induced FM withstands the
block-condition related FM described by Thuraising-
ham et al. – whether because of the involvement
of two distinct neural networks or whether effective
modulations atop the EC-induced modulation –, FM
should be among the routinely considered features

when designing communication systems for severely
paralyzed patients.

CONCLUSION

Frequency modulation appears to be a more consis-
tent feature than amplitude modulation across eyes
open and eyes closed periods in a cognitive BCI
that relies on modulations of parietal alpha rhythms.
This property might help to improve BCI systems for
patients who lost control over oculomotor functions.
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1Institute of Psychology, University of Würzburg, Würzburg, Germany
2Institute of Computer Science, University of Würzburg, Würzburg, Germany

E-mail: sebastian.halder@uni-wuerzburg.de

ABSTRACT: We used a brain-computer interface (BCI)
system controlled with event-related potentials (ERPs)
evoked by tactile stimulation to control a mobile plat-
form.
Eight tactile stimulators were attached in four pairs to
the arms, legs and back of the participants (N=12). The
electroencephalogram (EEG) was recorded via a modi-
fied Emotiv headset. All participants were trained in the
laboratory, then four participants controlled the mobile
platform in an outdoor environment.
Inside the laboratory the participants achieved average
accuracies of 72%. Outside four participants achieved
average accuracies of 61% (range 52-88%).
Technical problems with the responses of the mobile plat-
form and high outside temperatures prevented higher lev-
els of control with the mobile platform. A mobile plat-
form better suited for the discrete control implemented
with the BCI or a different control scheme will be needed
for future experiments. Nevertheless, subjects were able
to control the mobile platform with tactile ERPs using
low-cost EEG equipment in a real world environment.

INTRODUCTION

Since the first demonstration of Farwell and Donchin that
the visual P300 event-related potential (ERP) component
of the electroencephalogram (EEG) can be used to con-
trol a brain-computer interface (BCI) the usefulness of
this method for communication has been shown in nu-
merous studies, also with persons with severe motor im-
pairments [1, 2]. Another application in which assistive
technologies, such as BCIs, have the potential to improve
the quality of life of persons with disabilities is personal
mobility. Control of mobile platforms with BCIs has been
shown mostly using motor imagery (see e.g. [3]). The
disadvantage of this approach is that control over more
than two classes is difficult to obtain without a long train-
ing period. A potential alternative are P300 BCIs that
do not rely on visual stimulation and thus leave the vi-
sual channel unoccupied to observe the environment [4].
In studies using a simulated wheelchair tactile evoked
ERPs were shown to be a viable control method with four
classes [5]. In the current study we used a modified Emo-

tive headset (see [6]) to control a physical mobile plat-
form [7, 8, 9] in an outdoor environment using the same
setup as in [5].

MATERIALS AND METHODS

We recruited twelve healthy participants (six female, av-
erage age 23.4 SD 3.4, range 20-32) without a history
of neurological or psychological disorders. Participants
signed informed consent and were compensated with e 8
per hour. None of the participants had experience with
tactile P300 BCIs, six of the participants had experience
with visual P300 BCIs.

Figure 1: Setup used to control the mobile platform.
The control PC received the EEG data from the modified
Emotiv headset, classified the data and sent commands to
the microcontrollers that controlled the mobile platform.
Eight tactile stimulators were attached two to the left arm,
two to the right arm, two to the left leg and right leg and
two to the back.

Eight tactile stimulators (C2 Tactors, Engineering Acous-
tics Inc., Casselberry, USA) were attached in pairs, as
suggested in [5], to the arms, legs and back of the partic-
ipants (see Figure 1). To steer to the left the participants
attended to the stimulators on the left arm, to steer to
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the right the participants had to attend to the stimulators
on the right arm, to move forward to the stimulators on
the legs and to move backwards to the stimulators on the
back. The stimulators were placed at least 10 cm apart.
The stimulus duration was set to 250 ms with a frequency
of 250 Hz and an inter-stimulus interval of 375 ms. For
one selection each pair of stimulators was activated ten
times. Between selections there was a pause of five sec-
onds to give the participants enough time to choose the
next command to attend to. Participants were seated in
a comfortable chair in a quiet room and received verbal
feedback on the selected direction.
For calibration each of the four directions had to be
chosen twice (eight selections) in one run. A total of
three runs were performed for calibration (24 selections).
Based on this calibration data a classifier was trained us-
ing stepwise linear discriminant analysis (SWLDA; for-
ward p < 0.1, backward p > 0.15, 60 features). The data
was segmented into 800 ms epochs and subsampled to 16
samples.
After calibration the participants were asked to perform
another two runs with a total of twelve selections (the
participants were asked to “copy” a specific sequence of
twelve commands) and a third run in which they had to
plan a route and choose the appropriate commands them-
selves (the participants were asked to “drive” the mobile
platform from a starting to an an end point shown to them
on a piece of paper).
Four participants with over 90% accuracy in the previ-
ously described tasks participated in a second experiment
in which the physical mobile platform was controlled.
The calibration for this task was performed in a large hall
in which also other activities were taking place. Thus the
environment was noisy. The driving task was performed
outside. Outside it was quiet except during the experi-
ment of participant six (construction noise). The partici-
pants performed the same calibration task as in the previ-
ous experiment while seated in a chair and selected five
commands to confirm that the calibration was successful.
Participant three was chronologically the first participant
to perform the driving task (participant twelve the sec-
ond, participant two the third and participant six the last).
Due to a higher amount of noise when operating the BCI
in the hall where the calibration was performed a 9 Hz
low-pass filter was activated for all participants after par-
ticipant three. Then the participants were asked to move
outside to the start position of the route that was to be
navigated with the mobile platform. While the mobile
platform was controlled with the BCI one of the experi-
ment supervisors held an emergency stop button. The last
two participants first controlled the mobile platform with
a keyboard to gain familiarity with the behaviour of the
mobile platform and the route. From the starting position
the participants drove around a patch of grass and back to
the starting position. If this was not accomplished with
60 commands the experiment was aborted. The optimal
path needed 36 correct selections. The mobile platform
was configured to change the angle of the steering wheels

if the left or right command was chosen. Choosing for-
ward or backward would move the mobile platform in the
corresponding direction for approximately one meter.
Leave one-run-out cross validation accuracy was calcu-
lated for the four participants that performed both ses-
sions (training and driving ) also using SWLDA. ERP
analysis was also performed on the calibration data be-
cause this is the only data with target markers in the sec-
ond session (the driving task was performed without pre-
defined selections).
The EEG was recorded using 14 passive Ag-AgCl elec-
trodes placed in plastic holders in an elastic EEG cap
(Easycap GmbH, Herrsching, Germany). The electrodes
were positioned at Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3,
Pz, P4, PO7, Oz and PO8 with the ground at AFz and
the reference on the right mastoid. The amplifier was a
modified version of an Emotiv EPOC headset (EMOTIV
Inc, San Francisco, California, USA), for a description
see [6]. The amplifier was connected via bluetooth to
BCI2000 [10]. The output of the classifier was sent to the
mobile platform via a python script. The EEG was sam-
pled with 128 Hz, notch filtered at 50 Hz and additionally
bandpassfiltered from 0.1-30 Hz (for the driving experi-
ment of participants two, six and twelve this was set to
0.1-9 Hz).

RESULTS

While performing the training in the laboratory the av-
eraged accuracy of the twelve participants during the se-
lection task with predefined commands was 72.2%. Two
participants reached 100% and eight participants accu-
racies over 70%. The accuracy decreased to an aver-
age of 55% during the task in which the participants had
to plan the route themselves. Five participants achieved
accuracies of 70%. Participants two (average accuracy
both tasks 80%), three (86.7%), six (75.2%) and twelve
(100%) took part in the second session to control the mo-
bile platform in an outdoor environment. For a summary
of the accuracy of all participants see Figure 2. The de-
pendency of the accuracy on the number of stimulus repe-
titions for the four participants that performed both train-
ing and driving is shown in Figure 3. Only participant
twelve would have been able to control the mobile plat-
form with a lower number of stimulus repetitions.
The participants needed between 36 and 57 minutes to
make 60 selections (the maximum until the experiment
was aborted) on the outside course. None of the partic-
ipants reached the end point of the course. During the
experiment conducted with participants two, three and
six the outside temperatures were around 30 degrees Cel-
sius and the sun was shining. The first participant of the
outside driving task (participant three) expressed that the
sun did not bother her, nonetheless the subsequent partic-
ipants were shielded with an umbrella. During the exper-
iment with participant twelve the sun was behind clouds.
Participant two performed 65% of the selections as in-
tended. The experiment was interrupted once to correct
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the angle of the steering wheel.

Participant three performed 65% of the selections as in-
tended and the emergency button had to be pressed twice
to prevent collisions with the sidewalk. Twice the mobile
platform did not move backwards even though the correct
command was selected.

Participant six performed 52% of the selections as in-
tended. A possible negative influence may have been
construction noise 100 m away from where the experi-
ment was conducted.

Participant twelve performed 88% of the commands as
intended. The mobile platform had to be reset during the
task due to the battery indicator erroneously showing a
charge state of 0%. Twice the emergency button had to
be used to prevent collisions. Five selections of the com-
mand move to right direction were not executed by the
mobile platform. After a second reset the problem was
resolved.

ERP data of the target responses in the calibration data of
the four participants that performed the outdoor driving
task is shown in Figure 5.

All participants said they found the control of the mobile
platform to be intuitive and felt to be in control during
the experiment. The particularly enjoyed the realistic set-
ting. All participants expressed their frustration about the
mobile platform not always executing the selected com-
mand.

Figure 2: Online accuracies of the participants during the
training task (left group of bars) and during the driving
task (right group of bars). Participants selected for the
driving task are shown in dark gray. Accuracy is the av-
erage of all tasks excluding calibration.

Figure 3: Offline accuracies of the participants that per-
formed training (dashed line; session one) and driving
(continuous line; session two) tasks. The accuracies were
calculated using the calibration data. Accuracy is shown
per sequence (i.e. the number of stimulus repetitions;
higher number of repetitions increase the signal to noise
ratio of the ERP compared to the background EEG but
also increase selection times). Participant two in blue,
participant three in red, participant six in yellow and par-
ticipant twelve in purple.

Figure 4: The area where the outdoor experiment was
conducted. Participants started at the location indicated
by the red circle. The paths shown are an exemplary path
using the steering wheel of the mobile platform (red) and
a path using keyboard control to give discrete commands
analogous to the BCI experiment (blue). Trajectory data
during the BCI experiment is not avaliable. The satellite
image was obtained from Google Maps.
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Figure 5: Exemplary event-related potentials based on

the calibration data from session one of the four partic-
ipants that performed the outdoor experiment in session
two. The blue line shows the the target response, the red
line the non-target response. Note that amplitude scales
and channel location differ between participants.

DISCUSSION

With 72% the average accuracies across all twelve partic-
ipants would have been sufficient to control the BCI. Task
difficulty appears to have had an effect on performance
in our sample as the accuracy decreased to 55% when
the participants had to plan the path themselves. Con-
sidering the EEG hardware that was used the 62% aver-
age accuracy the four participants that performed the out-
door driving task achieved are comparable to the 69% in
a binary choice task also using the modified Emotiv and
conducted outdoors that was reported in [6]. The stim-
ulation unit that was used in the current study was also
used for control of a virtual wheelchair inside the labora-
tory and the accuracies were higher with on average 85%
[5]. In the current study, the EEG recordings showed a
lot of noise in the environment of the hall where the cal-
ibration for the driving task was conducted in the second
session and the low-pass filter was reduced to 9 Hz for
three of the four participants in this session. It is uncertain
whether such problems may have been avoided with an-
other amplifier as other studies using a similar paradigm
were conducted in a lab environment [5].
Distractions in the form of additional tasks or the envi-
ronment as well as fatigue have a detrimental effect on
BCI performance [11]. High temperatures may have had
a detrimental effect on the outdoor performance of par-
ticipants two, three and six. Nonetheless, an ideal BCI
should function under any condition and BCIs should be
evaluated under different environmental conditions out-
side of the laboratory. To deal with changes in the en-
vironment, adaptations to the signal processing used in
the BCI may be necessary [12]. Additionally, the signal
processing methods used in the current publication may
benefit from being updated to the approaches outlines in
e.g. in [13].
In its current form the mobile platform we used for the
experiments is not well suited for BCI control. Some-
times commands were not executed, in particular if there
was a slight slope, which had a frustrating effect on the
participants. There may have also been an effect of fric-
tion as sometimes the steering angle could not be set. It
has to be considered that driving short distances of about
one meter with low speeds is not optimal for the motor of
the mobile platform.

CONCLUSION

We were able to show that low-cost EEG hardware can
be used to control a mobile platform using tactile ERPs
an a real world driving task. The mobile platform must
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be adapted to react precisely to the discrete commands is-
sued with a ERP BCI. Environmental influences are a key
component for this type of experiment. Even if they have
a negative impact on the performance of the BCI should
only be protected against to the extent as not to cause any
discomfort for the user. To summarize, we were able to
show that BCI control of the mobile platform with tac-
tile stimulation is possible and important steps for future
research were determined.
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ABSTRACT: Brain-computer Interface (BCI) 

applications present significant assistive potential for 

disabled individuals. BCI software is typically 

implemented on desktop and laptop computers. Mobile 

platforms such as smartphones and tablets however 

possess comparable processing power to desktops and 

laptops.  Recent studies have investigated BCI 

implementation using mobile phones [1, 2]. However, 

the programs developed in these studies are intended for 

specific platforms and recoding is required to 

implemented the programs on other mobile devices. 

This paper investigates the implementation of the P300 

Speller Paradigm using web development languages. 

This provides an avenue for universal implementation 

of the paradigm without the need for recoding for 

specific platforms. The developed paradigm was tested 

to ensure that the temporal properties of the paradigm 

complied with the required timed delays. The testing 

showed a maximum mean error of 5.17ms and standard 

deviation of 11.23ms for 100ms temporal segments. 

This work demonstrates that web languages are a 

promising avenue for the implementation of BCI 

paradigms. However, modalities for increasing timing 

compliance will be explored. Further work will also 

investigate incorporating data collection and signal 

processing into the developed program to implementing 

training and testing sessions for full BCI 

implementation. 

 

INTRODUCTION 

 
Brain-Computer Interfaces (BCIs) allow user control 

of external devices using inherent brain activity. BCI 

paradigms require users to perform tasks which 

represent commands for external devices. For example, 

some paradigms can require users to gaze at a left arrow 

to issue motive commands to a driven wheelchair [3]. 

BCIs are responsible for recording the raw brain activity 

and processing the signals to interpret the subject 

command. This involves multiple hardware and 

software stages and the anatomy of the standard BCI is 

presented in Fig. 1. 

 

Figure 1: Anatomy of the standard BCI. 

 

BCIs can be implemented using a host of paradigms. 

These paradigms include the P300 Speller [4], Steady 

State Visually Evoked Potentials (SSVEP) [5], Slow 

Cortical Potentials (SCP) [6] and Motor Imagery (MI) 

[7]. BCIs have been employed for a host of assistive 

applications such as wheelchair navigation [8] and 

keyboard control [9]. 

BCIs are typically implemented on desktop and 

laptop computers. Mobile platforms such as 

smartphones and tablets however possess comparable 

processing power to desktop and laptop machines whilst 

being smaller and more affordable. Recent studies have 

investigated BCI implementation using cell phones [1, 

2].  

These studies however implemented programs on 

select phone models using device specific software 

libraries and operating systems. This presents a hurdle 

to implementing the developed programs on other 

mobile platforms since code would have to be rewritten 

to be compatible on other devices. 

This paper investigates the feasibility of 

implementing the P300 Speller Paradigm using web 

development languages. The expression of the P300 

Speller in web development languages allows for 

implementation on all devices with web browsers 

regardless of operating systems. These devices include 

desktops, laptops, tablets and smartphones. This work 

however treats with the presentation aspects only. 
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MATERIALS AND METHODS 

 

The development, testing and analysis was 

performed on a Dell Inspiron17R laptop with an Intel® 

Core™ i7-4500U CPU clocked at 1.8GHz with 8.00GB 

of Random Access Memory (RAM). The browser used 

for laptop testing was Google Chrome Version 

55.0.2883.87m.  The mobile phone used for testing was 

the Digicel DL1 manufactured by TCL. 

 

P300 SPELLER DEVELOPMENT 

 

This section provides background on the P300 

Speller Paradigm as well as details of the 

implementation of the P300 Speller using web 

development languages. 

 

P300 SPELLER PARADIGM 

 

The seminal work on P300-based BCIs was done by 

Farwell and Donchin [10]. Various modifications to the 

P300 Speller have since been implemented such as 

alterations to the paradigm character set and stimulus 

delivery patterns. 

The P300 Speller Paradigm itself is an oddball 

paradigm in which rare target stimuli are presented 

amongst frequently delivered non-target stimuli [11]. 

The Speller Paradigm requires subjects to view a single 

matrix element during the randomly ordered flashing of 

all matrix elements [12]. When a matrix element the 

subject is focusing on is flashed, the P300 response is 

evoked and the detection of the P300 is used to identify 

user focus [13]. The P300 Speller has been used for a 

host of practical BCI applications [8]. 

 

WEB DEVELOPMENT LANGUAGES 

 

The sequential operation of the P300 Speller is 

embodied in the flow chart of Fig. 2. This flow chart 

represents the specific case of 100ms flash time and 

Inter-Stimulus Interval (ISI). 

 

Figure 2: P300 Speller Paradigm Flow Chart 

 

 

There are 3 main client-side programming languages 

that are used to implement webpages. They are Hyper 

Text Markup Language (HTML) [14], Cascading Style 

Sheets (CSS) [15] and JavaScript (JS) [16]. There are 

also server-side programming languages that are 

utilized in live websites. However, the P300 Speller 

developed in this work is intended to be used offline 

without the need for an active internet connection. This 

work therefore does not involve server-side 

programming languages. 

The client-side languages each perform different 

functions as it relates to webpages. Some of their 

functions are pictured in Fig. 3. 
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Figure 3: Functions of client side programming 

languages 

 

 

There are some elements of the P300 Speller that do 

not vary with time. These time-static elements such as 

background colour and button positions can be realized 

using HTML and CSS. However, it can be seen from 

Fig. 2. that the P300 Speller also has time-dynamic 

elements such as element colour changes and timing 

delays. The only client-side language capable of 

expressing time-dynamic behaviour is JS. This work 

also uses JQuery [17] which is a JS Library capable of 

shorthand coding conventions. 

 

PROGRAM IMPLEMENTATION 

 

This section presents some code snippets and 

technical information regarding the developed program. 

The P300 Speller was implemented using HTML, CSS 

and JS.  

The matrix of P300 Speller elements was realised as 

a table in HTML as shown in Fig. 4. The HTML code 

for the first row of Speller element is presented below. 

The remaining 5 rows denoted by the vertical ellipsis 

are identical to tow 1 besides the text and HTML ids. 

 

<table> 

<tr> 

 <td id="A">A</td> 

 <td id="B">B</td>  

 <td id="C">C</td> 

 <td id="D">D</td> 

 <td id="E">E</td>  

 <td id="F">F</td> 

</tr> 

⁝ 
</table> 

Figure 4: P300 Speller Paradigm HTML code snippet 

 

Each element of the P300 Speller matrix was given a 

unique id label in HTML. This was done to enable easy 

targeting by the CSS for character flashing. The CSS 

code snippet that defines the margins and background-

foreground colour for the P300 elements is presented in 

Fig. 5. 

 

table { 

color: white; 

background-color: black !important; 

margin-left: auto; 

margin-right: auto; 

} 

 

td { 

width:120px; 

height:120px; 

font-size:6em; 

text-align: center; 

font-family: Arial; 

} 

Figure 5: P300 Speller Paradigm CSS code snippet 

 

The JS code snippet that was responsible for the 

time dynamic aspects of the P300 Speller Paradigm is 

showed in Fig. 6. 

 

function flash() { 

i=0; 

if(i<c) { 

var flash_index = new_chars[i]; 

light_unlit(flash_index,1); 

 

setTimeout(  

function() { 

 light_unlit(flash_index,0); 

  setTimeout(flash,ISI); 

} 

,flash_time); 

} 

i++; 

} 

Figure 6: P300 Speller Paradigm JS code snippet 

 

The ‘new_chars’ variable with length ‘c’ is defined 

outside of the function and contains the total list of 

characters to be flashed based on the number of trials.  

The “light_unlit” function flashes a P300 matrix 

element if the second function input is ‘1’ and reverts 

the element base colour to white if the second input is 

‘0’.  

The JS language does not contain a standard delay 

function that halts code execution for a predefined 

period. The paradigm timing is therefore implemented 

using the “setTimeout” JS function. The “setTimeout” 

function waits for a certain time before running some 

specified code. Recursion is then employed to ensure 
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that the code progresses to highlight and then revert 

character colours until the total character set is flashed. 

The developed P300 Speller as viewed on a laptop is 

shown in Fig. 7. 

 

 

 

Figure 7: P300 Speller on Laptop Chrome Browser 

 

 

A mobile version of P300 Speller was also 

developed and is viewed in Fig. 8. This is a modified 

P300 Speller with a smaller command matrix intended 

for better viewing on a mobile platform. The commands 

are tailored for the control of a vehicular platform which 

is a common P300-based BCI application. 

 

 

 

Figure 8: P300 Speller on Android Chrome Browser 

 

 

 

 

RESULTS 

 

The developed paradigm was executed on the 

Google Chrome Browser for Windows. The paradigm 

also successfully ran on Internet Explorer and Mozilla 

Firefox however Chrome was preferred due to previous 

author experience with the browser. A scaled down 

P300 Speller was also developed for Chrome on 

Android to highlight the feasibility of the program for 

mobile platforms. 

The developed program accurately implemented the 

stimulus sequencing required of the P300 Speller. 

However, stimulus flash times and ISIs were obtained to 

determine compliance with the stimulus timing 

requirements. The PC monitor was therefore recorded 

using a software screen recorder which ran concurrently 

with the paradigm. The recording was done at 60 frames 

per second (fps) which coincides with the screen refresh 

rate. The recorded videos were then imported into 

MATLAB and decomposed into individual frames 

which were analysed to determine the stimulus flash 

times and ISI. 

Fig. 9 and Fig. 10 presents examples of the image 

processing that was done to determine where a stimulus 

was flashing or base colour. The technique used utilised 

the non-flashing case as a subtractive reference image. 

The result image for subtraction from the non-flashing 

case is therefore a blank image output. The result for 

subtraction from the screen capture of the flashing case 

is a non-zero image. The latter result was therefore 

discriminated against the former using a basic RGB 

intensity count feature.   

 

 
 

Figure 9: Image subtraction for ISI period 

 

 
 
Figure 10: Image subtraction for stimulus highlight 
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The P300 Speller was run for 5 trials which entailed 

180 individual character flashes. The frame analysis 

therefore testing two main timed elements: (1) 180 flash 

times and (2) 179 ISIs. The flash times and ISIs were 

collected for each session. This was repeated for 30 

experiments in total and the average times were 

obtained. 

Fig. 11 presents the histogram of stimulus highlight 

times in terms of number of frames for a single session. 

Fig. 12 shows a histogram of ISIs for a representative 

session. It is worth noting that 6 frames are equivalent 

to the programmed time of 100ms. 

 

 

 

Figure 11: Histogram of stimulus flash times 

 

 

 

Figure 12: Histogram of ISIs 

 

 
The global mean and standard deviation of stimulus 

flash times and ISIs across all testing sessions are 

presented in Table 2. 

 

Table 2: Programmed and actual timings for P300 

Speller 

Feature 
Programmed 

Timing 

Mean 

observed 

time 

Error 

Mean SD 

Flash 

Time 

100ms 94.83ms 5.17ms 10.65ms 

ISI 100ms 96.17ms 3.83ms 11.23ms 

 

 

DISCUSSION 

 

This work investigated the implementation of the 

P300 Speller using web development languages. The 

developed paradigm was executed on both laptop and 

Android variants of the Google Chrome browser. The 

paradigm was captured and analysed to determine the 

compliance of the programmed timing delays. This was 

useful in evaluating time skew due to computational 

overheads and determining if time skew was significant. 

The results revealed that the actual flash times and ISIs 

deviated at most 5.17ms from the programmed time. 

These timing errors are expected in any time-based BCI 

paradigm. However, their magnitudes in this work were 

not detrimental to the success of the paradigm. 

The successful implementation of the P300 Speller 

using web development languages provides a useful 

proof of concept for BCI implementation in a web 

browser. In addition, the advent of Android compatible 

EEG headsets [18] provides a pathway for full 

implementation of a BCI using mobile platforms such 

as smartphones and tablets. 

There are also benefits to coding the P300 Speller in 

web development languages such as HTML/CSS/JS 

instead of device standard languages such as C++ and 

Java. Web pages can be executed on all modern devices 

with a web browser. This averts the requirement for any 

special library or virtual runtime and promises universal 

execution. This allows the benefit of a single program 

which can run on every operating system that 

implements a web browser without considerations for 

library and hardware constraints. 

 

CONCLUSION & FUTURE WORK 

 

This paper investigated the implementation of the 

P300 Speller Paradigm using web development 

languages. The results demonstrate that the developed 

paradigm complied with the timing delays required of 

the P300 Speller. The paradigm was executed 

successfully on both a laptop and Android smartphone. 

This paper therefore provided an important proof of 

concept for web browser based BCI paradigm 

presentation.  

However, there are possible avenues of future work. 

The developed paradigm must be integrated to data 

collecting and signal processing elements to allow for a 

full BCI implementation that included training and 

testing sessions. Virtual PC COM ports provide an 

avenue for this integration. This would allow for the 

communication of data between JS and data collection 

programs in MATLAB for example. In addition, the 

user interface can be improved to allow for selectable 

parameters. This can be further expanded to allow for a 

testbed based approach. 
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ABSTRACT: An auditory brain computer interface 

system which utilizes pleasant  water-drop sounds is 

proposed in this study. The purpose of this study is to 

explore the property of the paradigm which uses 

water-drops as stimuli. The results show that the 

water-drop paradigm can improve the user friendness 

and get robust performance in items of online 

classification accuracy. The group average online 

accuracy is 73.33% which is acceptable. 

 
INTRODUCTION 

 
Brain computer interfaces (BCIs) can provide a new path 

to communicate with the external world for people who 

have lost the ability to control their muscles (such as 

individuals with amyotrophic lateral sclerosis (ALS)) [1]. 

The P300 event-related potential is a large positive 

component appearing at about 300 ms after a rare 

task-related event happened [1]. A single-modal BCI 

based on the P300 can be categorized into one of three 

groups according its modality of stimulation: visual BCI, 

auditory BCI or tactile BCI [2]. Our research mainly 

focuses on the auditory P300 BCI paradigm in this study. 

For people who cannot rely on visual BCIs, auditory 

BCIs can provide another way for them to improve their 

quality of life. Among the proposed works related to 

auditory BCIs, the acoustic stimuli used have included 

beeps with different frequencies, Arabic Numbers or 

animal vocalization [2-4]. As one kind of environmental 

sound which can be heard often, water drops have not 

been explored as stimuli in an auditory BCI system.  

In this study, water drops are chosen as stimuli. Water 

drops are natural environmental sounds. The positive 

effect of using natural sounds as stimuli for auditory 

BCIs has been discussed in Höhne et al’s work [5]. 

Among the existed auditory paradigms for BCIs using 

natural sounds as stimuli, water drop sounds remain 

unexploited. The use of water drops is mentioned in 

research related to how to reduce the noise in the 

environments and this research showed that water sounds 

are the best sounds with which to mask the environment 

noises and reduce the annoyance of people [6]. It should 

be taken into consideration that the environment of BCI 

usage might not be as quiet as in the lab. Hence, the water 

drops have its special advantage compared with other 

kind of sounds in the auditory paradigm. In this study, 

the potential of water drop sounds as auditory stimuli 

materials are investigated. A hypothesis that the auditory 

BCI system using water drops as stimuli can get good 

performance in terms of both accuracy and user 

friendness is investigated. 

 
MATERALS AND METHODS 

 

     Stimuli 

 

Three water-drop sounds are extracted from a music 

work (Fragile Hope (WANDER/WONDER, Balam 

Acab). The criterion of selecting the water-drop sounds 

is to make sure that each water drop sounded different 

but not obtrusive.  

All the audio files are edited with Adobe Audition CS6 

5.0. A pair of earphones (Sennheiser CX200) is used to 

play sounds. Direction cues (left, middle, and right) are 

added to the water-drops to decrease the difficulty of the 

tasks. To maximize the difference between directions, 

the right sound channel of the left water drops is muted 

and the left sound channel of the right water drop is 

muted. The details of the stimuli in both paradigms are 

shown in the Fig.1. All the stimuli lasted 200 ms, and the 

inter-stimulus interval (ISI) is 350 ms. The minimum 

TTI (Target to Target Interval) is 900 ms. In this study, 

the target stimulus indicated that one of the stimuli which 

is asked the participant to focus on and the non-target 

stimuli are the ignored stimuli. The probability of the 

target stimulus appearing is 1/3.  All the stimuli are 

played in a pseudorandom order that the same stimulus 

would not appear consecutively to avoid the 

double-flashing effect. Although the probability of the 

target stimuli is fairly high, the long TTI can evoke high 

quality ERPs.   
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Figure1: The acoustic waveforms of the auditory stimuli.

 

Experiment set up 

 

EEG data is recorded from 15 channels of a 64-channel 

‘g.EEGcap’ EEG cap (Guger Technologies, Graz, 

Austria). The electrode positions used are F3, Fz, F4, T7, 

C3, Cz, C4, T8, CP3, CPz, CP4, P3, Pz, P4, and Oz from 

the international 10-20 system. The right earlobe is used 

as the reference and FPz is used as the ground. A 

16-channel ‘g.USBamp’ amplifier (Guger Technologies, 

Graz, Austria) with a 512 Hz sampling rate is used to 

measure the EEG. The data is band pass filtered between 

0.1-100 Hz and the notch-filter is applied at 50 Hz.  

Ten healthy students (21-26 years old, mean 23.8) 

participated in this study. Six of them had attended BCI 

experiments before. The participants are asked to keep 

their eyes open and focus on a fixed point on the screen. 

They are also asked to avoid eye blinking and other body 

movements during the experiments. The volume of 

system is adjusted to a suitable level according to each 

participant’s demand. In the offline experiments, three 

sessions are conducted. Each session contains five runs; 

each run had sixteen trials; each trial contained three 

sub-trials (one stimulus). Before each run, an audio cue 

would prompt participant the target stimulus. When 

participants finished one run, the offline training data of 

one target is collected. When participants finished one 

session, they had a short rest for 3 minutes. After the 

offline experiments, online experiments are executed. 

The online task had 36 given target-selections to 

complete. An adaptive method, proposed by Jin et al, is 

used in the online experiments [7]. In this study, it 

needed ~7 iterations for most participants to finish one 

target-selection. The whole online task lasted about 10 

minutes. 

 

Feature extraction and classification 

 

A third order Butterworth band pass filter between 0.1 

and 30 Hz is used to filter the raw EEG data. The filtered 

EEG data is downsampled from 512 Hz to 64 Hz and 

1000 ms of data after each stimulus is extracted. The size 

of the feature vector is 15×64 (15 channels by 64 time 

points). 

The classification algorithm in this study is Bayesian 

linear discriminant analysis (BLDA). BLDA has better 

performance on classification accuracies and lower risk 

of over-fitting when deal with high dimension data than 

Fisher’s discriminant analysis (FLDA) [8]. 

 

RESULT 

 

Online accuracy results of each participant are shown in 

Tab. 1. The grand average amplitudes of ERPs across ten 

participants are presented in the Fig.2 (A). The 

topographic maps of average amplitudes of the P300 and 

N400 are shown in Fig. 2 (B). 

 

Table 1: The average online accuracy of each participant. 

Participant Online accuracy (%) 

S1 75 

S2 63.89 

S3 80.56 

S4 69.44 

S5 80.56 

S6 88.89 

S7 66.67 

S8 69.44 

S9 69.44 

S10 69.44 

Avg 73.33 

 

DISCUSSION 

 

The goal of this study is to explore the property of 

water-drops as auditory stimuli and the results show that 

water-drops sounds can be reliable auditory materials for 

auditory BCI systems.  

 

ERPs 

 

The grand average ERP amplitude of targets and 

non-targets across all participants at electrodes Fz, Cz, 

CPz, and Pz are shown in Fig.2 (A). Obviously, the target 

amplitudes are different from the non-target amplitudes. 

No clear N1 component and N2 component are found in 

the early period between 0-200 ms. P300 and late 

negative components are the key potentials that are used 

to distinguish the target amplitudes from the non-target 

amplitudes. The spatial distributions of P300 and late 

negative components are presented in the Fig 2 (B).  
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Figure 2: (A) The grand average amplitude of ERPs across ten participants at Fz, Cz, CPz, and Pz. (B) The topographic 

maps of average amplitudes of P300 and N400.

 

 

Online accuracy 

 

As shown in the Table 1, the group average online 

accuracy is above 70%, which is considered by some to 

be the minimum value to meet the communication needs 

of BCI users [9]. Compared with other works [8, 10-12], 

this accuracy is in the middle level. The mental fatigue 

increases during the online task that explores the 

performance of this BCI system in a long-term usage. A 

phenomenon, observed in most participants, is that 

during the online period, the accuracy would decrease 

after finishing some targets and then increase after a 

short time (the time varies with individuals). The jitter of 

the accuracy might be caused by the level of fatigue 

when the participants are executing the task. 

 

CONCLUSION 

 
This paper proposed an auditory BCI paradigm with 

water-drops as stimuli and verified its utility. The online 

results shown that this paradigm could be a reliable 

choice for auditory BCI systems to provide a better 

experience for users. The future work is to increase the 

classes of this paradigm and optimize the water drops to 

get higher performance on classification accuracy while 

retaining the pleasant user experience.  
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ABSTRACT: Learning from label proportions (LLP) is
a recently introduced unsupervised classification method
for event-related potential (ERP) based brain-computer
interfaces. It estimates the target and non-target means of
brain signal epochs based on a known proportion of these
classes in different subsets of the data, which can be gen-
erated by interleaving different stimulus sequences, e.g.,
in a visual ERP speller. In contrast to other unsupervised
methods, estimations obtained by LLP have the theoret-
ical property of converging to the correct class means.
However, the convergence is rather slow. In this paper,
we investigate the effect of varying EEG channel num-
bers as a simple form of regularization onto the perfor-
mance of LLP classifiers by offline analyses. We found
that reduced channel sets can outperform the full set both
in terms of single event classification rate and symbol se-
lection accuracy. This is especially pronounced in the
initial learning phase. These findings suggest that LLP
classification can be significantly improved by reducing
the feature dimensionality.

INTRODUCTION

One of the fundamental tasks in brain-computer inter-
faces (BCI) is to tune the decoder to reliably detect a
user’s intention. This is a challenging problem because
signals do not only differ between subjects, but also be-
tween sessions for the same subjects. While some in-
formation can be transferred from other subjects or ses-
sions [1–3], a portion of task-specific information re-
mains unknown prior to the start of each session. Hence,
the traditional approach is to conduct a calibration ses-
sion before going into the online application. While this
generally works well, some problems are associated with
it, namely that it requires additional time, that wrongly
labelled data may be recorded when the user incorrectly
follows the instructions and that the effect of feedback is
not present during the calibration session, possibly lead-
ing to different data distributions between calibration and
online use of the system [4].

To overcome these problems and avoid calibration ses-
sions, unsupervised methods have been introduced to the

BCI communities which can learn from scratch with-
out requiring label informations. They have the addi-
tional benefit of continuously learning during a session,
thus adapting to possible non-stationarities in the data.
One example is the expectation-maximization (EM) al-
gorithm by Kindermans et al. [5] which is applicable for
BCI paradigms that use event-related potentials (ERPs)
of the electroencephalogram (EEG). It optimizes a like-
lihood function given a probabilistic model of the data.
While it generally works well in practice, it relies on a
good random initialisation and has no guarantee to con-
verge to the right solution. As an alternative unsuper-
vised learning method, we recently introduced learning
from label proportions (LLP) to the BCI community [6].
This method estimates the average responses to target and
non-target stimuli based on ERP data. It exploits known
proportions of target and non-target stimuli contained in
different subsets of the data, but does not require the la-
bels for each stimulus. In contrast to the EM approach,
LLP is guaranteed to converge to the correct class means
(and thus, to the corresponding decoder) given sufficient
amount of data. It also has the advantages of being easy
to implement, has extremely short runtime and is deter-
ministic. However, the convergence is often slower as for
the EM-algorithm. Further details on LLP are provided
in the method section.

An important argument against unsupervised learning is,
that these methods go through an initial learning phase
in which the feedback is relatively unreliable. The major
reason of this effect is the limited amount of (unlabelled)
training data in this initial phase, in combination with the
high dimensionality of the feature space leading to a dif-
ficult unsupervised learning problem. In this paper, we
re-analyse data from a previous experiment to answer the
question whether a reduced number of channels, corre-
sponding to a reduced number of features, can improve
the performance of LLP and shorten this initial ramp-up
phase.

MATERIALS AND METHODS

Learning from Label Proportions

For classification, we used the recently introduced learn-
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ing from label proportions (LLP) for ERP data [6] which
is based on the work of Quadrianto and colleagues [7].
The main idea is to tune the stimulus presentation of
a visual ERP-BCI paradigm such that the prerequisites
of LLP are satisfied – in this way, the experimental
paradigm and decoder are very closely linked and should
be seen as a whole and not as independent steps. In or-
der to enable LLP to estimate the target and non-target
class means, it is necessary that the recorded visual ERP
responses consist of at least two subsets, and that one of
the sets has a higher target proportion than the other. Ad-
ditionally, these proportions have to be known.

The way we created two different subsets is by ran-
domly interleaving two sequences in each single trial
(i.e. spelling one character) of a visual speller. In each
highlighting event of the first sequence, 12 characters are
highlighted, while an event of the second sequence only
highlights 3 or 4 characters resulting in average of 3.5
highlighted characters per event. Because there is a total
of 32 selectable characters, this leads to an average target
ratio of 12/32 = 3/8 and 3.5/32 = 2/18 for the first and
second sequence respectively.

By manipulating the stimulus presentation in that fashion,
we can write the average responses of the two sequences
µ1 and µ2 as a combination of target µ+ and non-target
responses µ−, therefore utilizing our knowledge about
the average proportions.

µ1 =
3

8
µ+ +

5

8
µ−

µ2 =
2

18
µ+ +

16

18
µ−

(1)

As we are interested in the mean target and non-target
ERP responses, we solve the equations for µ+ and µ−
which yields the following two equations.{

µ+ = 3.37µ1 − 2.37µ2

µ− = −0.42µ1 + 1.42µ2

(2)

Two steps are necessary to obtain an estimate of the aver-
age target and non-target ERP responses. In a first step,
the sequence means (µ̂1 and µ̂2) are estimated. In a sec-
ond step, these estimates are plugged into the equation
set 2. Given independent and identically distributed (IID)
data points, the estimated sequence means will converge
to their true value, such that the true class means can be
obtained in the limit.

An implicit assumption of LLP in this formulation is the
homogeneity assumption, which states that the average
target and non-target responses have to be the same in
both subsets. The first precautionary measure to accom-
plish this is to randomize the order of events from both
sequences within each single trial. This should guarantee
that the target-to-target interval (TTI) does not depend on
the sequence, which seems like a desirable characteris-
tic given the known influence of target-to-target intervals

onto e.g. the P300 amplitude [8]. The second precau-
tionary measure we propose is to match the overall vi-
sual stimulus intensity between both sequences. It is ex-
pressed by the overall number of symbols highlighted on
the screen in one point in time. To reach a balanced set-
ting, the traditional P300-spelling matrix was extended
by 10 additional blank/hash symbols (’#’). These are
included only in the second highlighting sequence and
should never be attended by the subject, thus they never
serve as targets. This simple trick ensures that events
of both sequences have the same number of highlighted
symbols per event while having the predefined target and
non-target ratios. An example is depicted in Fig. 1. Apart
from these manipulations, the sequences were generated
in a pseudo-random manner using a heuristic approach
designed by Verhoeven et al. [9] with the goal to mini-
mize double flashes and adjacency distractions. We pre-
viously showed that the homogeneity assumption holds
for the data generated in the above way [6].

Fig. 1: Examples of pseudo-randomized highlighting
events of sequence 1 (left) and sequence 2 (right). Se-
quence 1 never highlights ’#’ symbols, while sequence
highlights 8-9 ’#’ symbols per event.

Classification

Given estimates of the class means, several classifier ap-
proaches are possible. It was previously observed that the
ERP responses for targets and non-targets closely follow
a multivariate normal distribution with the same covari-
ance matrix [10]. Based on this assumption, linear dis-
criminant analysis (LDA) classifier have shown to be very
competitive in ERP-BCI paradigms [11]. These are lin-
ear classifiers looking for the best projection w such that
samples x are assigned to the target class if w · x ≥ 0
and to the non-target class otherwise. It is known that
the optimal projection can be found solely by knowing
the shared covariance matrix Σ and the class-wise means
µ+ and µ− in the following way [10]:

w = Σ−1
(
µ+ − µ−

)
.

In the formulation of Blankertz et al. [10], the class-
wise covariance matrix is used as Σ. However, one can
show that the pooled covariance matrix, i.e. the covari-
ance computed on the complete data-set, leads to a pro-
jection which has the same orientation, but is scaled dif-
ferently [12]. As no label information are used for the
pooled covariance estimation, we can replace the class-
wise covariance matrix by the pooled covariance matrix
and still obtain the same classifier — if the means are
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correctly estimated. In addition, it was shown that regu-
larizing the estimated covariance matrix towards an iden-
tity matrix leads to better performance. Hence, we adopt
the covariance-shrinkage by Ledoit & Wolf as proposed
in [10]. In summary, data is classified by combining the
mean estimations derived from LLP with the regularized
pooled covariance in order to obtain a linear classifier.

To compare the LLP-approach to a traditional classifier,
we included a supervised classifier into our comparisons.
Again, we used a LDA classifier with regularized covari-
ance matrix [10], which is precisely the same model as
described above, only that the class-wise means and co-
variances are estimated using the sample statistics based
on the label information. As supervised classifiers are
much more prone to overfitting than unsupervised ap-
proaches, we estimated the generalization performance
on increasing data sets in a chronological 5-fold cross-
validation.

Data

The data used in this work was previously described in
our paper on LLP [6]. A short summary is given here.
In an online copy spelling tasks, thirteen subjects (5 fe-
male, average age: 26 years) spelled three times the
same sentence of 63 symbols. The stimulus onset asyn-
chrony (SOA) was 250 ms. To spell an individual sym-
bol, a train of 68 highlighting events were presented.
This train is the result of randomly interleaving 32 events
of sequence 1 and 36 events of sequence 2, which had
been generated as described before. A very salient high-
lighting method proposed by Tangermann et al. [13] us-
ing a combination of brightness enhancement, rotation,
enlargement and a trichromatic grid overlay was used.
EEG signals were recorded at 1 KHz sampling rate with
31 passive Ag/AgCl electrodes (EasyCap) placed on the
head according to the extended 10-20 system. The ref-
erence was placed on the nose. After a baseline cor-
rection of each EEG epoch, the ERP features were ex-
tracted as the average potential values in the six intervals
[50, 120], [121, 200], [201, 280], [281, 380], [381, 530]
and [531, 700] ms. Outlier epochs were not removed at
any time during the data processing, however, visual in-
spection ensured, that classification was not performed
based on eye movement artefacts.

The data of all 13 subjects is freely available online at:
http://doi.org/10.5281/zenodo.192684.

Performance Measures

The selection accuracy is the percentage of characters in-
tended to spell by a user and that were decoded correctly
by the BCI system. As the selection accuracy is only
based on 63 symbols per sentence, it is quite a noisy per-
formance metric. It can be evaluated online by reporting
the actual performance observed during the experiment,
but it can also be estimated by a post-hoc offline analysis.

For the latter, we decided to simulate the experiment sev-

eral times and on different subsets of the data. Within
each sentence, the classifier was restarted multiple times
to obtain a better estimate of the selection accuracy. A to-
tal of 7 classifiers were simulated per sentence, and each
classifier was trained on data of 21 characters: The first
one used the characters 1-21, the second one used charac-
ters 8-28, . . ., and the last one used the characters 43-68.
Finally, these spelling accuracies were averaged across
the classifiers, subjects and experimental blocks.

We also looked at how well single targets (attended high-
lighting events) can be discriminated from non-targets
(not-attended highlighting events). This was quantified
by the area under the curve (AUC) of the classifier out-
puts as a threshold-independent and robust performance
metric. The AUC values range between 0 % and 100 %,
with a theoretical chance level of 50 %. An AUC value
of 100 % indicates perfect separation between the two
classes, i.e. the classifier can correctly tell for each high-
lighting event whether it was attended or not. To compute
these values in this paper, we simulated an online exper-
iment with different number of channels where the LLP
classifier was retrained after each character. The perfor-
mance was then computed on the complete data-set up to
that point by using the given label information. Please
note that overfitting is not a problem in this context, be-
cause the classifiers do not use the label information for
training.

Channel Selection

To determine the importance of an EEG channel in iso-
lation, it is a common strategy to estimate its informative
content with respect to the target vs. non-target classi-
fication task. We estimated this by assessing univariate
informative content expressed by the AUC between the
target and non-target features derived from the same six
intervals as mentioned before. This was computed for
each subject and channel. The AUC values were rescaled
to have a theoretical chance level of 0 by applying the
following formula:

AUCrescaled = |(AUCregular−0.5) · 2|

These values were then averaged across all subjects and
intervals to obtain one relevance score per channel. Un-
like in wrapper methods for channel selection [14], this
simple and fast relevance score does not grasp informa-
tive content of a channel which is only expressed in com-
bination with other channels.

RESULTS

Channels sorted according to their descending impor-
tance are shown in Fig. 2. One can observe that the oc-
cipital channels O1 and O2 have the highest importance
which is in accordance with our expectations for a visual
ERP experiment [6] that should elicit class-discriminative
visual ERP components for electrodes located over the
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occipital cortex. The five next top-ranked channels are
mostly located over the centro-parietal cortex, showing a
slight lateralization to the right hemisphere.
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Fig. 2: Channels sorted according to their importance.
The y-axis shows the averaged AUC value across all 13
subjects for each channel.

According to these results, we selected the n first-ranked
channels for n ∈ {3, 5, 10, 31} to run offline experiments
with classifiers trained on smaller channel subsets. In
the simulation with growing amounts of data, the clas-
sifiers were retrained after each additional character and
directly applied to classify the current character. The tar-
get vs. non-target LLP performances reported in Fig. 3
overall reflect a growing amount of information provided
by larger and larger training data sets. Interestingly, a re-
duced number of 10 channels outperforms the complete
set of 31 channels, even if the full amount of data is used.
The difference between channel subsets and the full chan-
nel set is especially pronounced, when data from only few
epochs is available, which corresponds to the early stages
of a spelling session. With more and more training data
available, the configuration with 10 channels remains on
top, while 5 and 31 channels are close behind. The con-
figuration with 3 channels falls back by a good margin.
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Fig. 3: Average simulated LLP classification accuracy
in dependence of the number of channels and training
points. Per trial, the p-value of a Wilcoxon signed-rank
test is given, comparing the results of 31 channels and 10
channels.

When looking at the selection accuracy in the initial
ramp-up phase of LLP in Fig. 4, a similar behaviour is ob-
servable. Again, the full set of channels is outperformed
by a reduced number of channels. Around 70 % of the
characters are already classified correctly from the third
character on, when using a reduced channel number. This
corresponds to less than a minute of training time. After
a bit more than 2 minutes of training time, the selection
accuracy already exceeds 80 % for the configuration with
5 or 10 channels.
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Fig. 4: Average simulated LLP selection accuracy as
a function of training time / amount of data points and
channels.

Finally, we ran a simulation of a supervised shrinkage-
LDA classifier to compare the effect of reduced channel
subsets with those observed for LLP. Fig. 5 shows that
10 channels significantly outperform 31 channels when
few data is available. However, the supervised classifier
is able to learn much quicker and utilize the additional in-
formation from all channels leading to significantly bet-
ter performance when data of more than 15 characters is
available.
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Fig. 5: Average simulated supervised single epoch ac-
curacy as a function of training time / data points and
channels. For each character, the complete data up to that
point was divided in 5 chronological parts and a cross-
validation was applied. The p-values show the outcome
of a Wilcoxon signed-rank test between the configura-
tions with 31 and 10 channels.
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DISCUSSION

In theory, more information is contained in the complete
channel set. Reducing the number of channels corre-
sponds to a reduced model complexity and less free pa-
rameters and effectively regularizes the learning problem,
which can be a beneficial strategy for smaller data sets.
In accordance with this reduced complexity, the LLP was
able to learn the essential characteristics in our simula-
tions much faster with reduced channel sets. The best per-
formance could be achieved with 10 channels. While this
is an expected outcome, it is interesting that LLP could
not reach a superior performance for the full channel set
despite the full amount of data provided. To explain this,
one hypothesis is that even when a lot of data is avail-
able, a reduced number of channels, which are highly
correlated to the control task, could facilitate the learning
of LLP in comparison to using more channels which are
potentially polluted by task-irrelevant features, including
noise. The alternative hypothesis is that our experiment
has just not delivered a sufficient amount of data in order
to make the 31 channel LLP outperform the smaller sub-
sets. Looking at the results from the supervised classifi-
cation, one can see a similar behaviour in the early stage,
but the configuration with 31 channels quickly rises to the
top.

The similarity of the behaviour is in accordance with our
theoretical considerations in [6], where we introduced the
term noise amplification factor (NAF). It measures how
much more data is necessary for LLP to reach the same
accuracy in the class mean estimation compared to the
supervised case. This NAF metric depends on the tar-
get and non-target ratios of each sequence and can be in-
fluenced by designing the experimental paradigm. For
the sequences used in this data-set, the NAF was around
20. We observe that – with growing data – the un-
supervised LLP behaves like a slowed-down supervised
method. This is expressed by a qualitatively similar be-
haviour of the curves, as they display the same order of
intersection points in Figures 3 and 5 with growing data
set sizes. Observing this similarity in the behaviour of
the LLP and the supervised methods supports the second
hypothesis that the LLP configuration with 31 channels
will eventually outperform the smaller channel sets when
a sufficient amount of data is available.

We cannot directly observe a slowing factor of 20, which
would correspond to the NAF. One of the causes is that
the performance of these classifiers is not only dependent
on the quality of the estimated class means, but also on
the quality of the estimated covariance matrix.

Realizing the slow ramp-up behaviour of LLP with large
channel sets, a possible mitigation strategy is to start with
a low number of channels and incrementally increase the
number of channels and features over time. A similar
approach was already proposed for motor imagery data

classification [15, 16]. By developing new adaptive fea-
ture selection methods, other unsupervised methods, e.g.
the MIX method [17], which is the combination of LLP
and an expectation-maximization algorithm, could also
benefit.

CONCLUSION

By re-analysing data from 13 subjects performing a copy-
spelling task, we showed that the unsupervised LLP clas-
sifier can be significantly improved by simply reducing
the number of utilized features. Interestingly, this is not
only the case during the initial ramp-up, but even during a
later stage of the experiment when more data is available.
In contrast, a supervised classifier only benefits from a
reduction of features in the early stage. This behaviour of
the unsupervised LLP method can be understood by con-
sidering it as a slowed-down version of the supervised
algorithm with the same guaranteed convergence. Future
work will go towards the development of adaptive feature
selection method for unsupervised classifiers utilizing the
observations made in this paper.
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ABSTRACT: The majority of brain-computer inter-
face classifiers assumes that repeated events elicit
brain potential responses which follow the same
class-wise distributions. A few adaptive classifiers
can deal with violations of this assumption and
compensate for non-stationarities occurring on time
scales of minutes to hours. This work reports on non-
stationarities observed on much shorter time scales.
An electroencephalogram study was conducted with
elderly subjects (N = 20) using an auditory event-
related potential paradigm with bisyllabic words as
stimuli and a stimulus onset asynchrony of 250 ms.
The collected data reveals three effects within a sin-
gle sequence of 90 stimuli: (1) habituation: the du-
ration of the ongoing sequence negatively correlates
with the P300 amplitude, (2) outliers: stimuli at the
start and end of each sequence have a special struc-
ture, and (3) order effects: longer target-to-target
intervals lead to higher P300 amplitudes. Observing
that the performance of linear discriminant analysis,
a widely used classifier, suffers from these effects, we
propose several mitigation strategies.

INTRODUCTION

The centrepiece of a Brain-Computer Interface (BCI)
is the decoder which translates brain signals into
meaningful control commands, e.g., to spell text
without using muscular pathways [1]. One of
the most widely used brain signal features in the
electroencephalogram (EEG) are so-called event-
related potentials (ERPs), transient potential re-
sponses elicited by events such as visual or auditory
stimuli. In a ERP-based BCI, the decoder is decid-
ing for each stimulus whether it was attended (target
stimulus) or not (non-target stimulus). Generally,
this is achieved by training a classification model on
calibration data under the assumption of stationar-
ity, i.e. that both, the (labelled) calibration data
and any data recorded during online use share the
same distribution. For instance, in ERPs, a com-
mon assumption is that both classes – targets and
non-targets – are multivariate Gaussian distributions
which share the same covariance [2].

Even though it is well-known that the distribution

of brain signal features can change over the course
of a session [3–5] or between calibration phase of a
BCI and its online use [5,6], many classifiers assume
that all data points are independent and identically
distributed (IID) [2]. Adaptive classifiers exist which
can continuously adapt to changing distributions and
may not even require label information [3, 7]. How-
ever, this adaptation of classifiers typically happens
on time scales of minutes to hours. For shorter time
scales, adaptive approaches are not feasible if they re-
quire the tracking of distributions in order to achieve
the adaptive behaviour. In this work, we focus on
non-stationarities and violations of the independence
assumption in the data distribution, which take place
on very short time scales. We systematically analyse
(1) the effect of habituation, (2) effects of stimuli
at the beginning and the end of a stimulation se-
quence and (3) order effects, specifically the influence
of target-to-target distances. All of them are inves-
tigated within the time frame of a single sequence of
90 stimuli, which typically lasts only a few seconds
in ERP-BCI paradigms. While these three aspects
have been reported in the literature, existing studies
either lack a connection to BCIs, have used very long
interstimulus durations or have covered only a single
aspect of the overall problem [8–14].

The habituation effect describes how the repeated
presentation of a stimulus affects the ERP response.
In two studies [8,9], Polich and colleagues have stud-
ied the habituation of the P300 amplitude in an au-
ditory oddball task – which is to discriminate a high
tone from a low tone – with a relatively long stim-
ulus onset asynchrony (SOA) of 1.2 s and 2 s, re-
spectively, which clearly are beyond the fast SOA
values utilized in current ERP-BCI paradigms. In
the first study [8] it was found that the P300 ampli-
tude decreased only slightly over repeated stimulus
presentations, and it was reported to remain con-
stant in the second study [9]. For another oddball
study by Murphy and colleagues (SOA=1.2 s−1.6 s)
a decrease in amplitude was reported as long as the
length of each stimulus sequence was unpredictable
for the subjects [10].

The second aspect of our study is the response to
stimuli which are located at the beginning and end of
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each sequence. From the literature, it is known that
brain responses to novelty (P3a ERP component) are
different from responses to infrequent, task-relevant
stimuli (P3b) in latency, peak position and peak am-
plitude [11]. We suspected to see outlier responses in
the form of P3a ERP components at the beginning
and end of the stimulus sequence while observing a
P3b within the running sequence.

Third and lastly, we focused on how the target-to-
target interval (TTI) influences the brain responses.
The TTI is defined as the time between the onset
of the current and of the preceding target stimulus.
Based on the literature, we assumed that longer TTI
values yield stronger P300 responses (see [12] for a re-
view). In addition, it has been reported that longer
TTIs yield higher amplitudes of the early negativ-
ity (with a latency of approx. 150 ms post stimulus
onset) in an auditory oddball task with TTI values
ranging from 1 to 16 s [13], which is again beyond the
TTI range used in current BCI paradigms. Specifi-
cally, the first target was found to have a much higher
P300 amplitude [14]. Taken together, a confirma-
tion of these three effects in the context of realistic
BCI stimulus conditions would clearly violate the as-
sumption that each stimulus elicits an independent
and identically distributed brain response and would
leave room for improving the classification approach
in BCI. So far, only a few attempts have been un-
dertaken to realize this improvement. Citi and col-
leagues suggested a weighting of the classifier out-
puts depending on their TTI [12]. A contribution
by Martens et al. suggested training one classifier for
each TTI [15]. However, both of these studies only
focused on TTI, neglecting the other two effects.

The goal of this work is to conduct a comprehensive
analysis of violations of the IID assumption under
realistic SOA conditions (250 ms) and by using bi-
syllabic words as stimuli which are more complex
and realistic compared to traditional oddball tones.
The results are discussed in the context of BCI classi-
fiers for which we will propose possible enhancement
strategies.

MATERIALS AND METHODS

An EEG study with N = 20 normal hearing subjects
(10 female, mean age 60.20 yrs, SD 8.04 yrs) was con-
ducted. It was approved by the Ethics Committee of
the University Medical Center Freiburg, and subjects
expressed written informed consent prior to partici-
pation. EEG signals from 63 passive Ag/AgCl elec-
trodes (EasyCap) were recorded, which were placed
approximately equidistantly according to the ex-
tended 10–20 system. Impedances were kept be-
low 20 kΩ, and channels were referenced against the
nose. The signals were registered by multichannel

EEG amplifiers (BrainAmp DC, Brain Products) at
a sampling rate of 1 kHz.

Subjects were seated within a ring of 6 loudspeak-
ers (AMUSE paradigm, [16]). Six bisyllabic German
words (Drucker, Flasche, Glocke, Knöpfe, Stempel,
Trichter; length=300 ms) were chosen as stimuli by
the following constraints: Words should have sim-
iliar frequency in the German language, should be
unambiguous and represent objects which can be de-
picted. They were played with a 1:1 relation between
words and loudspeakers and had an SOA of 250 ms.
We define a trial as a series of 90 word stimuli. In
total, 36 trials were recorded per subject, each con-
sisting of 15 target- and 75 non-target stimuli. The
target word/direction was cued at the start of each
trial and changed between trials. Within each trail,
we grouped 6 consecutive stimuli as one iteration,
yielding 15 iterations per trial. A target occurred
once per iteration. The exact sequences were pseudo-
randomized over iterations such that between 2 and
10 non-target stimuli appeared between two targets.
The complete stimulus sequence of a single trial took
90 · 0.25 s = 22.5 s to play.

Data was analysed offline. A third order bidirec-
tional Chebyshev Type II bandpass filter between 0.5
and 12 Hz was applied and data was downsampled to
100 Hz. Eye artefacts were projected out using bipo-
lar EOG recordings [17]. We extracted signal epochs
from [−250, 1000] ms relative to each stimulus onset.
They were corrected for baseline drifts observed in
the interval [−250, 0] ms. Epochs in which the dif-
ference between maximum and minimum exceeded
60µV were treated as outliers and excluded from fur-
ther analysis. In total, 9.41% of target epochs and
9.03% of non-target epochs were excluded.

Classification was performed using a shrinkage-
regularized linear discriminant analysis (shrinkage-
LDA), a commonly used classification model for ERP
signals in BCI [2]. For all 63 channels and 9 inter-
vals per channel located between 100 ms and 1000 ms
post stimulus, the average amplitude was computed
and used as features for classification, resulting in a
567-dimensional feature vector per epoch.

RESULTS

Overall, the observed ERP responses revealed three
kinds of violations of the IID assumption within the
course of a single trial (90 stimuli).

First, habituation of the target P300 amplitude was
observed over the trial duration of 22.5 s. On the
grand average view (see Fig. 1) the habituation was
expressed by a decreased target response in the cen-
tral channel ’Cz’ from 2.8µV in the first iteration to
only 0.8µV in the second to last iteration. Fitting a
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linear regression model yielded a significant influence
of the iteration number (p = 2.28e− 08, r = 0.31):

Amp = 2.49µV − 0.17µV · Iteration#.

We chose 580 ms for the evaluation, as the maximum
of the grand average target response was located at
this latency. The value of the second to last iter-
ation was reported, because ERP responses in the
last iteration were subject to another effect which is
described in the next paragraph.

Iteration number
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Fig. 1: Grand average (N=20) target ampli-
tude in Cz at 580 ms post stimulus as a func-
tion of the iteration number. Error bars show
the standard deviation across subjects.

This leads to the second type of observed non-
stationary behaviour, expressed by the different re-
sponses to the first and last stimuli within a se-
quence. For both, the masking effect due to (miss-
ing) neighbouring stimuli is different from stimuli in
the middle of a sequence. This effect is visualized
via the observed grand average non-target ERP re-
sponses in Fig. 2. The top plot reveals strong ampli-
tudes in frontal to central channels, which represent
a P1-N2-P3a complex for the average first non-target
ERP response. These responses are strongly reduced
for stimuli played in the middle of the sequence as
shown by depicting an average non-target response
observed at the 45th position of sequences (middle
plot). The response to the last non-target (bottom
plot) shows relatively strong amplitudes after ap-
prox. 400 ms, which could indicate an ERP response
upon the non-event of a missing 91st stimulus.

The third effect is the influence of the TTI onto the
P300 amplitude. We could replicate results from the
literature showing a decreased P300 amplitude with
shorter distances between two targets, see Fig. 3.
This is a clear violation of the independence assump-
tion of target epochs and also shows that the dis-
tributions are not identical. The negative peak at
around 200 ms was not affected systematically by the
TTI. This is especially interesting, as this ERP com-
ponent shows a class-discriminative amplitude dif-
ference between target and non-target stimuli in au-
ditory paradigms [16, 18–20]. The P300 was practi-
cally non-existent for a TTI of 750 ms (brown line),

which corresponds to exactly two non-target stimuli
between target stimuli.
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Fig. 2: Grand average non-target ERP re-
sponses for epochs at the beginning (top), the
middle (center) and the end of a stimulus se-
quence (bottom). Each line depicts the ERP re-
sponse of one EEG channel, with frontal to occipi-
tal channels coloured in blue to yellow. Numbers in
parentheses correspond to the number of averaged
epochs, with differences caused by artefact removal.

Fig. 3: Grand average target amplitudes in
channel Cz sorted by the number of non-target
stimuli appearing prior to the target stimulus, e.g.,
t5-7 indicates that since the last target stimulus a
number of five to seven non-target stimuli had been
played before the next target stimulus was presented.
First : First epoch per trial, t : Number of preceding
non-targets of each target. T and NT : average tar-
get and non-target responses over all possible TTIs.
Numbers provided in parentheses indicate the num-
ber of averaged epochs.

The effect of the TTI upon the classifier has been
described previously by Citi et al. [12] for a visual
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paradigm. We show how the two other effects, ha-
bituation and stimulus position, can affect the clas-
sifier performance as well. We chose to test a regu-
larized LDA classifier [2], as a state-of-the-art classi-
fier in BCI. The classifier was rescaled such that the
mean target and non-target classifier outputs of the
training data are mapped to +1 and −1. The classi-
fier performance was estimated by 5-fold chronologi-
cal crossvalidation, an approach in which the epochs
are divided in 5 consecutive blocks, from which 4
blocks are always used for training and one for test-
ing the classifier. Classifier outputs of all test epochs
were sorted according to their positions within the
sequence of 90 stimuli, averaged over all trials and
subjects and plotted in Fig. 4.

Fig. 4: Grand average classifier outputs for
target- and non-target epochs plotted as a function
of their position within a trial’s sequence.

It can be observed, that the non-target classifier out-
puts for this unseen test data remain relatively stable
around −0.85 over the trial, while the target outputs
decrease over the duration of a trial’s sequence. In
addition, target epochs located at the first sequence
position may appear as outliers, as their classifier
outputs are similar to those of non-target epochs.
These two effects show that the discriminatory power
of the classifier suffers especially in the beginning and
with the ongoing length of a trial.

DISCUSSION

We showed how the stimulus position within a se-
quence and the preceding stimuli can influence the
ERP responses, and that these effects lead to system-
atic variations during a single sequence of 90 stim-
uli. Most findings were coherent with the literature.
However, we observed no changes in the amplitude
of the early negativity as a function of the TTI which
was previously reported in [13]. We also found that
habituation was more pronounced than previously
reported in the literature. We observed a reduction
in mean amplitude from 2.8µV to 0.8µV correspond-

ing to a drop of 71 %. In contrast, Polich et al. [9] ob-
served no difference in amplitude values for any ERP
component as a function of the epoch number. In a
second study by Polich [8], a significant decrease was
found, however it was rather weak and concluded to
be “more spurious than real”. Concerning TTI, we
observed almost a complete extinction of the P300
response for short TTIs. This is also surprising as
an auditory oddball experiment by Höhne et al. [18]
showed P300 components for SOA values as short as
125 ms.

We believe that three effects contribute to these ob-
servations: (1) Using words instead of simple tones
can lead to delayed ERP responses [21], (2) the
short SOA of 250 ms may reduce the amplitude of
ERP responses [18] and (3) elderly subjects have
been reported to show weaker and later P300 am-
plitudes [22] compared to many BCI offline studies
performed with young subjects.

Not surprisingly, we found indications, that an LDA
classifier, which assumes IID data points, is suffer-
ing from these effects. In the following, we propose
different mitigation strategies to overcome these non-
stationarities and improve current classifiers.

Adjusting the stimulus order

An easy-to-implement solution is to change the or-
der of stimuli. Instead of allowing for a wide range of
TTIs, it might be beneficial to limit them to a narrow
range of possibilities, e.g., 4-7 non-targets between
two targets in our paradigm. Following the obser-
vations of Tangermann et al. [23], it may not even
be necessary to retain uncertainty in the sequence.
To some extent, this concept is already implemented
by the pseudo-randomization of the stimuli order,
which at least avoids the subsequent highlighting of
the same symbol in visual speller and is used by many
groups [24–26].

Weighting individual epoch

Citi et al. proposed an approach in which classifier
outputs of each epoch were weighted according to
their TTI [12]. To select a target at the end of a
trial, this approach should give a higher relevance to
more informative epochs. This approach could also
be used to deal with the special brain responses in
the beginning and end of each trial, e.g., by reducing
their influence. A downside of this approach is that it
does not actually solve the underlying problem of the
violation of the IID assumption, but rather fights the
symptoms of bad classifier outputs for some epochs.

Training of sub-classifiers

In contrast, Martens and colleagues outlined an ap-
proach in which an individual classifier is trained for
each TTI [15]. They showed that specifically those
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targets with small TTI can benefit. Considering
a bias-variance trade-off, this approach will have a
smaller bias, as the individual classifiers are able to
capture the characteristics of the epoch-wise brain
responses and their dependency on TTI more accu-
rately. However, it will have a larger variance as
fewer data points can be used to train each of these
individual classifiers.

A similar idea was previously applied in another con-
text by Höhne et al. [27], who observed that ERP
responses vary for each of the individual stimuli due
to different stimulus properties, e.g., length, pitch or
loudness. They exploited this observation by creat-
ing individual LDA classifiers for each of the stimuli
which give higher weight to the mean estimation of
that specific stimuli and thus, reduce the influence
of the other stimuli on the mean estimation. Their
results show that this approach can improve perfor-
mance in auditory ERP data and could be easily
transferred to deal with habituation or TTI effects.

Adding additional features

The TTI and epoch number can be given as addi-
tional features to the classifier enabling it to learn
dependencies on those parameters as well and thus,
to partly overcome independence violations and non-
stationarities in the data. However, one has to be
careful whether the classifier model is suited for dis-
crete features or not. Linear discriminant analysis
(LDA), for example, assumes multivariate normally
distributed features and may perform suboptimally
with discrete features.

Data correction

To account for the observation that the first epochs
are not influenced from preceding epochs and that
they include a novelty P3a, one could add a template
of an average non-target and remove a template of a
P3a to those ERP responses. The templates could be
learned based on data from the same or other sub-
jects. A similar procedure may mitigate the prob-
lems observed for epochs at the end of a trial.

CONCLUSION

We showed three different effects – habituation, out-
lier effects of first and last stimuli, and effects based
on the target-to-target interval – which influence the
event-related potential responses within a single se-
quence of 90 stimuli. They clearly violate the as-
sumption that brain responses to single stimuli are
class-wise independent and identically distributed
(IID). We showed how the decoding performance of a
state-of-the-art classifier, regularized linear discrim-
inant analysis, varies within a sequence of 90 stimuli
as a result of this violation. To overcome this loss

in discriminatory power, we proposed several mitiga-
tion strategies, partly by modifying the stimulus pre-
sentation and partly by changing the data process-
ing and classification. The next step will be to im-
plement and compare these strategies to ultimately
enhance the decoding quality in ERP-based BCIs.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support by
BrainLinks-BrainTools Cluster of Excellence funded
by the German Research Foundation (DFG), grant
number EXC 1086 and by the state of Baden-
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ABSTRACT

An ideal decoder in brain-computer interfaces (BCIs)
would not require any calibration period and instead start
with the actual online application right away. While
we cannot reach this goal yet, two novel unsupervised
classification methods for BCIs based on event-related
potentials (ERPs) of the electroencephalogram (EEG)
have recently been proposed which do not require a cal-
ibration session. The first method estimates the pro-
jection weights of the classifier heuristically using an
expectation-maximization approach, while the second
utilizes slight changes of the ERP paradigm and determ-
inistically learns from label proportions. As both un-
supervised methods have pros and cons, we propose to
combine their strengths in a novel MIX approach. Un-
der realistic unlabelled conditions, we compare the online
performances of the mixed and the two original methods,
finding that for our data recorded during visual spelling
with 6 subjects, the mixed approach reveals strong per-
formance gains. Users got perfect selection accuracy
after an average of only 2 minutes of online usage.

INTRODUCTION

In Brain-Computer Interfaces (BCI) based on event-
related potentials (ERP), the user is presented with a pre-
defined set of different control commands. For example
in the original P300-speller [1], a BCI for spelling text,
these options are symbols of the alphabet highlighted on
a screen. The user is asked to focus on the symbol that
he or she wants to spell. When this target symbol is high-
lighted, the brain of the user elicits a different brain re-
sponse compared to the case when other non-target sym-
bols are highlighted. The decoder in the BCI has the task
to classify the recorded ERP responses as target or non-
target and subsequently detect the desired symbol. In this
way, the user can spell words symbol by symbol, solely
by attending to the symbols on the screen.

To discriminate between target and non-target responses
in the brain, machine learning (ML) techniques are often
used [2, 3]. With ML, previously recorded ERPs are used

by the classifier to learn how to discriminate between the
two classes of responses. Newly recorded ERPs are then
processed by this classifier to assign them to one of these
classes. A common ML technique used in BCIs is linear
discriminant analysis (LDA), which searches for a one-
dimensional projection x ·w of the ERP response signal
features x in order to assign the target label t+ to the re-
sponse when x ·w ≥ 0 and label t− otherwise.

It was shown that ERP-BCI data follows a Gaussian dis-
tributed with class-wise means µ+ and µ−, and shared
covariance matrix Σs [4]. Under this assumption, the op-
timal projection w∗ in LDA can be computed as follow-
ing [4]:

w∗ = Σ−1
s

(
µ+ − µ−

)
. (1)

Training the classifier comes down to estimating the val-
ues of the class-wise mean responses µ+, µ− and the
shared covariance Σs. In a traditional supervised scen-
ario, labelled data would be collected during a calibration
session on which these three quantities can directly be es-
timated by using the sample statistics. In unsupervised
learning, no label information are present which makes it
a more challenging learning problem.

It can be shown that if the means are estimated cor-
rectly, then replacing the shared covariance by the pooled
covariance Σ, i.e. the covariance computed on all data
disregarding label information, leads to the same direc-
tion of the projection w. This follows from the equival-
ence of least square regression with rescaled outputs and
LDA [5]. No label information are needed to estimate the
pooled covariance matrix.

In BCI systems, the data is usually high dimensional and
the amount of data recorded during calibration is low. It
was shown that this makes the estimation of the covari-
ance matrix less accurate [4] This can be compensated
for by introducing a regularization term to obtain the
(shrinkage)-regularized covariance matrix ΣR

ΣR = (1− λ)Σ + λI (2)

where I is the identity matrix and λ is the regularization
parameter.
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The learning problem in the unsupervised case now boils
down to estimating the class means µ+ and µ− and the
shrinkage parameter λ. Everything else can be computed
without using label information.

To compute the class means, we recently proposed to
combine two unsupervised methods [6]. The first method
is an expectation-maximization (EM) algorithm which
estimates the class means to maximize the likelihood of
the recorded data [7]. It is a heuristic which relies on a
good random initialisation to obtain accurate class estim-
ates.

The second method is based on the learning from label
proportions (LLP) concept [8]. In this approach, the train
of stimuli is divided in two interleaved sequences with
different proportions of targets and non-targets. The av-
erage response in these two sequences is calculated and
used together with the known proportional composition,
to set up two linear equations. The two unknowns are
the class means. Solving the linear problem provides an
estimate of these class means. We presented the applic-
ation of the LLP method in BCI recently [9]. In con-
trast to the EM method, there is no variance in the res-
ult as there are no randomly initialized parameters in this
method. Furthermore, the estimation of the mean ERP
response is guaranteed to converge to the true solution as
more data is recorded [9]. This convergence slowly leads
to an increasing classification performance.

Two different options have been previously used to com-
pute the regularization parameter λ. An analytical for-
mula for λ has been presented by Ledoit and Wolf [10],
see Blankertz et al. for an application in BCI [4]. An-
other approach directly optimized λ as part of the EM-
algorithm [11].

The EM-means and LLP method for unsupervised ERP
classification clearly show complementary strengths and
weaknesses [6]. We proposed to exploit the different
strengths by combining their individual mean estimations
in a data-driven fashion. This resulted in a third method
which we call MIX. We previously evaluated this ap-
proach by comparing LLP, EM and MIX by simulating
an online experiment on existing visual ERP data [6]. In
this previous study all three classifier used the analytic
formula by Ledoit and Wolf for computing λ. To have
comparable results to the original EM-method, we used
the direct regularization of the EM-method in this current
study, while both other methods use the analytic formula
to find regularization parameter λ. The following table
shows an overview of the three different methods used in
this paper.

Table 1: Overview of classification methods

Method Mean estimation λ estimation
LLP Using known proportions Ledoit&Wolf
EM Maximizing data likelihood Direct (EM)
MIX Combining LLP and EM Ledoit&Wolf

Previous simulations showed that the MIX method sig-
nificantly outperformed both other methods [6]. How-
ever, as simulation on previously recorded data are pos-
sibly prone to overfitting, this work presents the first on-
line evaluation of the MIX method with 6 subjects and its
comparison with the LLP and EM algorithm. The goal
of this work is to compare the three methods under equal
conditions on unlabelled and unseen data. With this com-
parison, we hope to contribute further to the integration
of unsupervised classification methods in calibrationless
BCIs and as such to improve the usability of these sys-
tems.

MATERIALS AND METHODS

The MIX model

In the MIX method, the estimation of the class-wise
means is proposed as a mixing of the estimation found
with the LLP and EM method:

µ̂(γ) = (1− γ)µ̂EM + γµ̂LLP (3)

where µ̂ denotes the new estimator of the mean target
or non-target response, µ̂EM and µ̂LLP denote existing
estimators and γ ∈ [0, 1] is the mixing coefficient, indic-
ating the weight given to each estimator. See our previous
work about LLP [9] and the EM-algorithm [7] for more
details about these two unsupervised classification meth-
ods.

To minimize the expected mean squared error between
the estimator value µ̂ and the unknown true parameter
value µ, we proposed an analytical solution for the mix-
ing coefficient γ∗ [6]:

γ∗ =
1

2

(∑
d V ar

[
µ̂EM,d

]
−
∑

d V ar
[
µ̂LLP,d

]
‖µ̂EM − µ̂LLP ‖2

+ 1

)
(4)

Here, V ar
[
µ̂(·),d

]
denotes the variance on the estima-

tion of the dth entry of the estimated mean µ̂. This vari-
ance is a measure for the uncertainty on the estimated
value. The higher the uncertainty on the output of the
EM method, the higher the weight given to the output of
the LLP method in the MIX method and vice versa.

Implementation

In practice, the original EM algorithm and the one used
in the mean estimation of the MIX method are different
in terms of the number of parallel initialisations. It is
known that the EM-algorithm requires a good random
initialisation and therefore, it profits from many paral-
lel initialisations. A number of 5 was used before in the
EM algorithm [11]. In contrast, the MIX method in our
previous paper only used 1 initialisation of the EM al-
gorithm [6]. We keep these values to make the results
comparable.
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Experiment

Six healthy subjects (3 female, aged 22-31) performed a
visual copy-spelling task. The EEG study was approved
by the Ethics Committee of the University Medical Cen-
ter Freiburg and the subjects gave informed written con-
sent prior to the beginning of the session. They were
compensated with 8 Euros per hour. The experiment was
almost identical with the one described in [9]. A short
overview is provided here. Each subject was asked to
spell the 35 characters: ”FRANZY JAGT IM TAXI DURCH
DAS ” three times. Each time, a different classifier (MIX,
LLP, or EM) was trained from scratch such that each sub-
ject used each classifier exactly once. With 6 subjects,
each possible order of the three different classifiers was
used once to reduce order effects, see Fig. 1 for a schem-
atic overview.

Figure 1: Experimental structure. Each subject per-
formed three copy-spelling blocks with each of the three
classifiers in varying order. Each block consisted of 35
characters.

The classifiers were retrained after each character util-
izing the complete data set up to that point. Label in-
formation were not used for the training of the classifiers
at any point in time, they were solely used to assess the
performance. To spell one character, a train of 68 high-
lighting events with a stimulus onset asynchrony (SOA)
of 250 ms was presented. An example of a highlighting
event is shown in Fig. 2. Classifier outputs for each high-
lighting event and symbol were summed up and the sym-
bol with the highest sum was selected and shown to the
user.

Figure 2: Spelling Interface. The ’#’ symbols serve as
visual blanks, meaning that they are always non-targets,
and are part of the LLP decoding strategy.

EEG and Feature Extraction

EEG signals from 31 passive Ag/AgCl electrodes (Easy-
Cap) were recorded, which were placed approximately
equidistantly according to the extended 10–20 system,
and whose impedances were kept below 20 kΩ. All
channels were referenced to the nose. The signals
were registered by multichannel EEG amplifiers (Brain-
Amp DC, Brain Products) at a sampling rate of 1 kHz.
The data was then bandpass filtered between 0.5 and
8 Hz and downsampled to 100 Hz. Epochs were win-
dowed to [-200, 700] ms relative to the stimulus onset
and corrected for baseline shifts observed in the interval
[-200, 0] ms. Per channel, the mean amplitudes of six
intervals ([50, 120], [121, 200], [201, 280], [281, 380],
[381, 530] and [531, 700] ms) were finally computed as
features. This resulted in a total of 6 · 31 = 186 features.

Performance estimations

Two performance metrics were used to evaluate the per-
formance of the three different classifier during the on-
line experiment. First, we looked at how well single tar-
gets could be discriminated from non-targets. This was
assessed in terms of area under the curve (AUC) as a
threshold-independent robust performance measure. The
AUC values can range between 0 and 1, with a theoret-
ical chance level of 0.5. An AUC value of 1 indicates
perfect separation between the two classes, i.e. the clas-
sifier can correctly tell for each single stimulus whether
it was attended or not. To compute this score during the
online experiment, the unsupervised classifiers were re-
trained after each character and applied to the complete
previous data up to the current point of the experiment.
The given label information were then used to compute
the AUC. Please note that overfitting is not a problem in
this context, because the classifiers do not use the label
information for training.

Second, we looked at the selection accuracy, i.e. to which
percentage a user could spell the intended characters. To
obtain more robust estimates, this metric was evaluated
on sub-blocks of 5 trials, i.e. on characters 1-5, on char-
acters 6-10, and so on.

In addition, we performed an offline analysis after the ex-
periment to assess the overall quality of the data and to
judge whether there is an interaction between classific-
ation method and classification performance. This was
done by training and testing a supervised shrinkage-LDA
classifier [4] in a 5-fold chronological cross-validation.
This is the same classification method as described be-
fore – only that all quantities are estimated with the (su-
pervised) sample statistics. The offline analysis was done
individually for each subject and block.

RESULTS

First, we assessed the quality of the data of the online re-
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cordings by looking at the grand average ERP response
shown in Fig. 3. A strong early negativity with a peak
around 160 ms in the occipital area is observable in target
responses while the non-targets only have a very weak
rhythmic response. Furthermore, a central positivity ex-
ists for targets, which is however smaller in amplitude
and more washed out than the early negativity. The
strongest class discriminant information comes from the
early visual component. This is in accordance with earlier
studies using the same highlighting scheme [9, 12].

O1
Cz

Figure 3: Grand average (N=6) ERP plot. Top row:
Average responses evoked by visual target (blue) and
non-target (green) stimuli in the occipital channel O1
(thick) and the central channel Cz (thin). The signed r2

values for channels O1 and Cz over time are provided
by two horizontal colour bars with the same scale as
in bottom row scalp plot. Middle rows: Scalp plots
visualising the spatial distribution of mean target and
non-target responses within four selected time intervals
marked by blue/pink shading. Bottom row: Scalp plots
with signed r2 values indicate spatial areas with high
class-discriminative information.

Classifier influence on the data quality

To quantify the quality of the ERP responses and judge
whether there is an interaction between classification
method and performance, a supervised classifier was ap-
plied in an offline analysis after the experiment. The
resulting target vs. non-target AUC performances were
sorted according to the classifier used in each block and
are shown in Fig. 4. One can see that the quality of the
data is very high with all subjects having an AUC above
95 %. This is most likely due to the high saliency of
the optimized stimuli [12]. In addition, a paired t-test
between the supervised classification values of the three
methods showed no significant differences. Hence, we
cannot reject the null hypothesis that there is no interac-

tion between classifier and performance. This means that
we observed no effect of the feedback on the user per-
formance probably due to the small sample size. Other
studies did observe this effect [13, 14].

MIX EM LLP
Supervised performance sorted by data blocks
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Figure 4: Supervised offline cross-validation perform-
ance sorted by the classification method used per
data block. Bars show the mean ± std of the super-
vised performances for each sentence sorted according
to the decoding method. Individual dots and numbers
indicate the subject numbers. MIX = Mixing method,
EM = Expectation-maximization, LLP = Learning from
label proportions.

Next, we compared the performance of the three different
classifiers in the online experiment. Fig. 5 shows the av-
erage and individual AUC performances for all subjects
over time. While LLP starts at relatively high level and
slowly improves over time, the EM algorithm behaves di-
chotomous: depending on its initialisation, it can either
achieve a very high performance early on or it can fail to
improve over a prolonged time period. The MIX method
combines the strengths of both decoders by starting on
a relatively high level and quickly finding a very good
projection with almost perfect decoding performance by
utilizing the complementary information of the LLP.
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Figure 5: Online decoding performance over time. The
y-axis shows the AUC of separating target from non-
target epochs for each decoder. Thick line depicts the av-
erage performance while thin lines show results for each
individual subject.
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Another way of looking at the decoding performance is
by considering the number of correct character selections.
One can see in Fig. 6 that the MIX method slightly out-
performs the LLP and that both these methods outper-
form the EM-method by a big margin. This is due to the
two sentences in which the EM-algorithm found the right
projection only relatively late, see again Fig. 5.
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Figure 6: Online character selection accuracy for each
decoder. The y-axis shows the percentage of correctly
classified characters for sub-blocks of 5 characters each.

When looking at the correctly and incorrectly spelled
characters of all three methods for each subject in Fig. 7,
similar results are visible. After a short learning phase of
2-8 characters corresponding to an average of around 2
minutes of training time, users gain perfect control with
the MIX method. Depending on the initialisation, the
user can get very good control with the EM-algorithm
at an earlier or later stage of the experiment. The LLP
determines many characters correctly already after a few
trials, but fails to display a very high reliability in the later
stage.

5 10 15 20 25 30

S
u

b
je

c
t#

1
2
3
4
5
6

MIX

5 10 15 20 25 30

S
u

b
je

c
t#

1
2
3
4
5
6

EM

# Characters
5 10 15 20 25 30

S
u

b
je

c
t#

1
2
3
4
5
6

LLP

Figure 7: Correctly (yellow) and incorrectly (blue)
spelled characters of all three methods in the online
experiment.

DISCUSSION

The goal of this study was to show that the unsupervised
MIX method can work in an online scenario and compare
it to the EM and LLP method. We found that the MIX
method could quickly and reliably decode the users’ in-
tention for all 6 subjects clearly outperforming both other
methods. Remarkably, we observed almost perfect single
epoch classification accuracy, meaning that the classifier
could assign almost each highlighting event correctly as
being attended or not. Here, the unsupervised classifier
also profited from the very salient highlighting scheme.

On the other hand, spelling speed was not the focus of
this work. Indeed, it was rather low with around 2.4 char-
acters per minute after the initial training phase. This is
due the high and constant number of 68 epochs per trial
and long SOA of 250 ms. A moderate single epoch classi-
fication accuracy is already sufficient to correctly decode
most characters with 68 highlighting events per char-
acters. Hence, the additional performance in the MIX
method is only slightly rewarded in terms of spelling
speed or accuracy in this set-up. However, it could eas-
ily be boosted by implementing dynamic stopping [15],
where the classifier stops a trial when he reaches a pre-
defined certainty threshold.

Results from the online study showed that an average of
around 2 minutes of online training time is sufficient to
obtain perfect control over the BCI with the MIX method.
Remarkably, this result was achieved without prior calib-
ration or transfer learning. And even the data from the
initial training phase can be corrected, when a more ad-
vanced classifier from a later stage of the experiment is
re-applied to the initial data. In this way, initial mistakes
due to limited data can be post-hoc corrected in unsuper-
vised classifiers [11]. Hence, a potential user could dir-
ectly start spelling with this MIX method when trusting
the re-analysis.

CONCLUSION

The online ERP study showed that the MIX method is
combining the strength of the probabilistic EM algorithm
and the deterministic LLP approach. This opens the door
for short ramp-up times combined with a very high reliab-
ility. Further desirable properties like the lack of calibra-
tion phase, the continuous learning, the guaranteed con-
vergence and the possible post-hoc analysis, make this
method an attractive alternative to traditional supervised
methods. Future work will go towards increasing the us-
ability of the system by increasing the information trans-
fer per time. This can be achieved by implementing an
SOA reduction, dynamic stopping, transfer learning, ad-
aptive channel selection and using language models.
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ABSTRACT: This work presents the recoveriX system, 

a hardware and software platform specially designed for 

stroke rehabilitation, as well as the preliminary results of 

testing it within clinical environment. Three patients with 

motor impairments due to stroke participated to the 

current study. In every session, the patients had to 

imagine 120 left and 120 right hand movements. The 

electroencephalogram (EEG) data was analyzed with 

Common Spatial Patterns (CSP) and linear discriminant 

analysis (LDA). The feedback was provided in form of 

an extending bar on the screen. During the trials where 

the correct imagination was classified, the FES was 

activated to move the corresponding hand. All patients 

were able to achieve high accuracies, even above 95% in 

at least one session, and all exhibited improvements in 

motor function. These first results showed that the stroke 

patients can control the motor-imagery BCI system with 

high accuracy and reflect the efficacy of combining 

movement imagination, the bar feedback and the real 

hand movements. 

 

INTRODUCTION 

 
Motor imagery-based brain-computer interface (BCI) 

have been used to assist people with motor disabilities 

since many years. The BCI systems extract commands in 

real-time, commands which can be used to control 

cursors or external devices like robots or 

neurostimulators. In the last few years, the control of 

functional electrical stimulation (FES) devices, termed as 

neurostimulators, became very interesting for post-stroke 

rehabilitation. A patient can use the movement imagery 

to induce real-time movements of specific limb 

segments. 

In the last decade, a new field of application for motor 

imagery (MI) –based BCI proved to be of great interest. 

Many publications provide evidence that using MI-based 

BCIs can induce neural plasticity and thus serve as an 

important tool to enhance the rehabilitation outcome in 

stroke patients [1-4]. In here, MI is used to introduce 

closed-loop feedback within conventional motor 

rehabilitation therapy. This approach pairs each user’s 

MI with stimulation and feedback, such as activation of 

a FES stimulator, avatar movement, and/or auditory 

feedback indicating successful task completion [5]. 

FES is a rapidly developing technology having the 

potential to restore the body motor functions. For 

example, FES has been used to restore hand grasp and 

release in people with tetraplegia [6] and standing and 

stepping in people with paraplegia [7]. The feasibility of 

integrating a non-invasive BCI system with a FES device 

eliciting foot dorsiflexion by means of surface electrode 

over the tibial anterior muscle has been investigated in 

[8]. Five healthy subjects performed 10 trials of idling 

and repetitive foot dorsiflexion to trigger BCI-FES 

controlled dorsiflexion of the contralateral foot. The 

epochs of BCI-FES controlled foot dorsiflexion were 

highly correlated with those of voluntary foot 

dorsiflexion (correlation coefficient between 0.59 and 

0.77) with latencies ranging from 1.4 s to 3.1s. The 

classification of the mental states was based on a linear 

Bayesian classifier. Moreover, all subjects managed to 

achieve a 100% BCI-FES response (no omissions), and 

one subject had a single false alarm. 

Daly et al. [9] tested a combined BCI and FES system on 

a patient presenting stroke-related dyscoordination of 

isolated index finger joint extension of the metacarpal 

phalangeal joint. The experiment took into account trials 

in which the user attempted to move a finger and alternate 

that with relaxation, as well as trials in which the finger 

movement has been imagined.  The BCI2000 software 

has been used to process the recorded EEG signals. In the 

first session the patient exhibited highly accurate control 

of brain signal for attempted movement (97%), imagined 

movement (83%), and some difficulties with attempted 

relaxation (65%). During the session number six, control 

of relaxation improved to more than 80%. In three weeks 

time, meaning a total of nine sessions, it has been 

concluded that the patient’s volitional isolated index 

finger extension has been improved. 

In [10], Rüdiger Rupp and colleagues made an overview 

of neuroprosthesis for the upper extremity in individuals 

with spinal cord injury and its control with noninvasive 

BCIs.  

In this paper we introduce the recoveriX system, a 

complete new hardware and software platform that can 

record, analyze and utilize EEG activity in real time to 

“close the loop” in stroke rehabilitation. Fig. 1 presents a 

schematic illustration of the conceptual approach used in  
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Figure 1: The schematic view of the recoveriX system. 

 

recoveriX. The user imagines or performs specific 

movements, such as wrist dorsiflexion. The resulting 

EEG activity is detected through electrodes positioned in 

an electrode cap, then sent to an amplifier. 

After the signals are amplified and digitalized, they are 

sent to a computer which manages the data analysis and 

presentation of feedback. Like in conventional therapy, 

the recoveriX users are instructed to perform motor 

imagery and receive feedback (specifically, visual 

feedback on a monitor and through FES stimulation). 

Unlike conventional therapy, RecoveriX users also wear 

an EEG cap that monitors MI that influences the 

feedback. The key element is the real-time connection 

between brain activity and feedback. recoveriX provides 

feedback only when the user correctly imagines the left 

or right hands movement. Thus, unlike conventional 

therapy, the feedback is always paired with the brain 

activity.  

This paper presents further details about our system, 

experimental procedures, results from three patients 

clinical trials, and future research directions. Many of our 

future research directions will be addressed within the 

new RecoveriX project, an SME Instrument active from 

2016-2018.  

 
MATERALS AND METHODS 

 
     Subjects: Three patients participated in this study, as 

all of them experienced a sylvian ischemic stroke. 

Subject 1 is a 61 years old woman, right-handed, who 

suffered a stroke that left her with difficulties in moving 

the right hand. One month after the stroke, she 

participated in 24 recoveriX training sessions. Subject 2 

(male, 69 years, right handed) joined our study 4 months 

after suffering a stroke. At that time, he was not able to 

perform any kind of movements with the right hand 

fingers. He performed 22 training sessions with our 

system. Due to personal problems, patient P2 had to leave 

the hospital 2 days earlier than planned, therefore missing 

the last 2 training sessions. The third subject (male, 64 

years, right handed) joined our study three months after 

the stroke and performed 24 training sessions with 

recoveriX. At the time he started the training, he was able 

to perform only some limited movements with the left 

arm.   

All three patients were recorded in an open room at the 

Rehabilitation Hospital of Iasi. The patients were not 

placed in an anechoic chamber to reduce noise that might 

affect the EEG, and none of the equipment was placed in 

a shielded area. During the period the patients attended 

the recoveriX training session, they performed also 

conventional rehabilitation therapy consisting of passive 

movements helped by a physiotherapist.  

Data acquisition and experimental paradigm: the EEG 

data were recorded using a g.HIamp device (g.tec 

medical engineering GmbH, Austria) with a sampling 

frequency of 256 Hz and digitally filtered with a 0.5-

30Hz 8th order bandpass Butterworth filter. The electrode 

cap had 45 active electrodes (g.LADYbird, g.tec medical 

engineering GmbH, Austria) arranged according to the 

10-20 International System. Fig. 2 shows the recoveriX 

system mounted on a patient (left) and the electrode 

displacement on the scalp (right). The data classification 

was done using common spatial patterns (CSP) and a 

linear discriminant analysis (LDA) classifier. The study 

was approved by the institutional review board of the 

Rehabilitation Hospital of Iasi, the ethical approval has 

been granted, and all patients signed an informed consent 

before the start of the study.  
The patients were seated in a comfortable chair in front 

of a computer monitor that presented cues and feedback 

(see Fig.2) with FES pads positioned over the forearm of 

each upper limbs to induce wrist extension and fingers 

opening. The FES stimulation was provided through an 

8-channel neurostimulator (MOTIONSTIM8, 

Krauth+Timmermann GmbH, Germany). For all 

patients, the first session was a training session, where 

each subject got trained regarding the correct motor 

imagery taks (in all three cases, hand opening), and then 

conducted two practice runs for getting familiar with the 

experience of electrical stimulation and visual feedback. 

During all subsequent sessions, after setting up the 

system, each patient performed six runs each lasting 

about 6 minutes. Each run contained 40 8-seconds trials 

with a randomly chosen inter-trial time interval between 

1 to 2 seconds. Each MI trial started with the display of a 

cross in the center of the monitor. After 2 seconds, a beep 

informed the user about the upcoming cue. The patients 

were instructed to start imagining the movement of either 

left or right hand when an arrow pointing to the left or 

right side was presented as a cue. After the cue 

dissapearance, the users began to receive visual and 

proprioceptive feedback.  The visual feedback consisted 

of a blue bar starting in the center of the monitor and 

exending to the rignt or left side, according to the 

classified MI. The patients had to continue imagining the 

hand opening and closing movements for 4 seconds after 

the cue, until the visual feedback presentation ended. The 

neurostimulator induced the fingers and wrist extension 

of the coresponding hand only if the classified MI was 

the one dictated by the cue.  

Motor assessment: we assessed the motor improvement 

for patients 1 and 3 using the 9-hole PEG test. In this 

game, the user has to fill 9 holes of a wooden board with 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-38

CC BY-NC-ND 205 Published by Verlag der TU Graz 
Graz University of Technology



 

 

Figure 2: The recoveriX system mounted on a patient 

(left) and the EEG electrode positions over the scalp 

(right). 

 

Figure 3. The time course of a single trial. 

 

sticks placed on the table, and then to put the sticks back 

on the table one by one. The test has to be performed for 

both hands and the time for accomplishing the task and 

the number of dropped sticks are counted, representing 

the score for that evaluation. 

The muscle contraction by FES was sufficient enough to 

cause movement of the affected hand for all patients. 

The feedback period lasted four seconds. The time course 

of a single trial is presented in Fig. 3. 

Feature extraction and classification: The CSP method 

is very well known for discrimination of two motor 

imagery tasks [11] and was firstly used for extracting 

abnormal components from clinical EEG [12]. By 

applying the simultaneous diagonalization of two 

covariance matrices, one is able to construct new time 

series that maximize the variance for one task, while 

minimizing it for the other one. 

Considering N channels of EEG for each right and left 

trial X, the CSP method outputs an N x N projection 

matrix. This resulting matrix reflects the subject specific 

activation patterns of the data during motor imagery of 

left or right hand in this study. The decomposition of a 

trial can be written as: 

Z=W∙X    (1) 

This transformation projects the variance of X onto the 

rows of Z and results in N new time series. The columns 

of W-1 are a set of CSPs and can be considered as time-

invariant EEG source distributions. 

Due to the definition of W, the variance for a left 

movement imagination is largest in the first row of Z and 

decreases with the increasing number of the subsequent 

rows. The opposite is the case for a trial with right motor 

imagery. For classification of the left and right trials, the 

variances have to be extracted as reliable features of the 

newly designed N time series. However, it is not 

necessary to calculate the variances of all N time series. 

The method provides a dimensionality reduction of the 

EEG. Mueller-Gerking and colleagues [13] showed that 

the optimal number of common spatial patterns is four. 

Following their results, after building the projection 

matrix W from an artifact corrected training set X, only 

the first and last two rows (p=4) of W are used to process  

new input data X. Then the variance (VARp) of the 

resulting four time series is calculated for a time window 

T. After normalizing and log-transforming four feature 

vectors are obtained (2). These four features are used as 

input for a linear discriminant analysis (Fisher’s LDA 

[14]) classifier which categorizes the MI as left-hand or 

right-hand movement. 
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Using the training data recorded during runs 1 to 4, 5 sets 

of spatial filters and classifiers were calculated from two 

seconds time windows shifted in time with a 0.5 seconds 

Hamming window based on the data from the time 

interval from 4 to 8 seconds in each trial. The classifier 

with the highest ten-fold cross validated accuracy [15] 

was chosen to provide the visual and FES feedback while 

recording runs 5 and 6. These last two runs were used to 

calculate the online accuracy of the chosen classifier for 

the current session. The classifier calculated in the 

previous session was used to provide the feedback while 

recording the first 4 runs. 

 

RESULTS 

 

Figure 4 presents the BCI control accuracy for all three 

patients based on the online results. All three patients 

started with accuracies above 80%. Patient P1 reached an 

average accuracy of 90.5% over all sessions, while 

patient P2 reached 85.4% and patient P3 87.1%. Each 

patient attained accuracy above 96.2% in at least one 

session. There are sessions were the accuracies were low 

for all patients. These lower scores are highly correlated 

with each patient’s degree of tiredness, emotional state or 

other health conditions during that day. Patient 1 reported 

that she could not sleep during the night before the 

session 16, when she achieved the lowest accuracy. 

Patient 2 got a cold and coughed a lot during sessions 15 

and 16.  

Table 1 presents the score of the 9-hole PEG test for 

patients P1 and P3, for the paretic and for the healthy 

hand. For patient P1, the evaluation was performed 

before starting the first recoveriX training session and the 

results were considered as baseline for the subsequent 

evaluations, which were done once at each 3 sessions of 

training. P3 patient’s condition didn’t allowed him to 

perform the 9-hole PEG test before and during the first 6 
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Figure 4. The online accuracy plots of the three patients across the training sessions with the recoveriX system. 

 

 
 

Figure 5. The snapshots with the moves that patient P2 was able to do after 22 sessions of training with recoveriX. 
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Table 1: The results of the 9-hole PEG test for patients 

P1 and P3 

Sessions 

Time [s] / dropped PEGs 

Paretic hand Healthy hand 

P1 P3 P1 P3 

0 65 / - - 31 / - - 

3 54 / - - 32 / - - 

6 45 / - - 32 / - - 

9 42 / - 90 / 1 31 / - 26 / - 

12 42 / - 77 / - 31 / - 26 / - 

15 38 / - 94 / - 29 / - 26 / - 

18 34 / - 60 / - 29 / - 25 / - 

21 30 / - 61 / - 29 / - 25 / - 

24 30 / - 52 / - 29 / - 26 / - 

Time 

improve-

ment [sec] 

35 38 2 0 

 

training sessions. After 9 sessions of training, the motor 

functions of his left hand improved, and he was able 

perform the test for the first time. In his case, the results 

of the evaluation after the 9th session were considered as 

baselines for the next evaluations. 

The last line of Tab.1 presents the time improvements of 

each hand for patients 1 and 3. Both patients improved 

the time exercise of the paretic hands with 35 seconds, 

respectively 38 seconds, and the time exercise for the 

healthy hands remained relatively constant. After the last 

training session, P1 managed to perform the test with the 

paretic hand in 30 seconds, almost the same time as with 

the healthy hand.  

Patient 2 could not perform the 9-hole PEG test during 

the study. He started to move the thumb after the 12th 

session, and during the last sessions of training he started 

to perform small range voluntary movements also with 

the other fingers. Fig. 5 presents two snapshots taken 

while patient 2 performed voluntary movements with his 

right hand after the last session of training. 

 

DISCUSSION 

 

Results discussion: Before starting this study, we 

supposed that patients will have difficulties in achieving 

high accuracies. These first results showed the opposite. 

This may occur because these patients are highly 

motivated to participate in a study to improve their motor 

functions. All patients reported that they were eager to 

come back for further recoveriX sessions especially after 

they seen the first functional improvements. The high 

accuracy, coupled with rewarding feedback, also 

motivated the patients to perform the motor imagery 

effectively. In addition to motivating patients, the blue 

bar feedback is important to maintain patients’ attention. 

A feedback is also provided by the FES system that 

actively moves the hand as long as the person imagines 

the movement. This activates tactile and proprioceptive 

systems that feed back to the sensorimotor system. The 

BCI system is able to manage this feedback, and the CSP 

and LDA algorithms can adapt to changes in each user’s 

brain activity. Even though motor improvements were 

reported after the last training session for all three 

patients, in this early stage of the study we do not exclude 

the possibility that the motor improvements were due 

spontaneous remission or due to concomitant 

physiotherapy. This crucial point will be better discussed 

after testing the system on a higher group of patients and 

the results compared with the ones of a control group, as 

planned. Anyway, even though a control group is missing 

the feedback from the clinicians has been a positive one 

and according to their experience dealing with patients in 

the same condition, the recoveriX system has certain 

potential to induce voluntary hand movement in stroke 

patients.  

Future research directions: This paper validates the 

recoveriX approach from a technical perspective by 

demonstrating that, at least with the three patients using 

the prototype system presented here, our system can 

function in real-world settings. Up to now we found that 

the participants to our study had sometimes difficulties 

with the bar feedback when the classification was 

incorrect, because it was hard to associate the 

corresponding movement with the feedback. Therefore, 

one of our future development directions involve 

improved immersive software to present feedback and 

maximize the patients’ engagement by replacing the 

graphically simple feedback with more advanced 

environments such as different views of an avatar whose 

movements attempt to mimic the movements that the 

user imagines [16]. At the beginning of each trial, the left 

or right hand moves for 1 second, which triggers the 

patient to start the corresponding movement imagery. 

When the BCI system correctly classifies the activity, 

then the avatar hand movement is prolonged and the FES 

is triggered. When the classification is wrong, then the 

avatar and the FES are temporarily inactive. Apart of the 

avatar feedback, we are also exploring improved 

hardware. In this work the experiments were performed 

using 45 channels wired electrode cap with gel 

electrodes. Recently, we developed a wireless version of 

the system using only 16 gel electrodes overlying over 

the motor areas. The new amplifier is lightweight (only 

70 grams), placed on the back side of the electrode cap 

 

 
 

Figure 6. The experimental setup with avatar feedback 

and FES. 
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and transmits wireless, in real time, the recorded data to 

the laptop/PC.  

The FES device will be replaced by our new g.Estim 

neurostimulator developed mainly for BCI applications. 

Fig. 6 illustrates the future setup of the system, using the 

avatar, wireless EEG cap and the new neurostimulator. 
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ABSTRACT: In brain-machine interface (BMI) re-
searches, a fast and accurate detection of user intention
is an important research issue for an efficient human-
machine interaction. Among electroencephalography
(EEG)-based BMI paradigms, a movement-related cor-
tical potential (MRCP) could be useful to recognize user
intention due to its characteristics of spontaneity and low
latency. Therefore, in our study, we propose a MRCP fea-
ture selection method for decoding user intention under
the powered exoskeleton environment. We combined two
spectral features that were extracted from readiness po-
tential (RP) and movement-monitoring potential (MMP)
sections, respectively. In each MRCP section, we es-
timated optimal frequency bands for the discriminative
feature using a nested cross-validation. Five healthy sub-
jects who were wearing the exoskeleton performed a self-
initiated walking task. Our results showed the grand
averaged classification accuracy of 87.6%. To our best
knowledge, we first validated a single-trial analysis us-
ing the MRCP data acquired from self-initiated exoskele-
ton walking. Our experimental results present that the
proposed MRCP-based exoskeleton control system is be-
coming more feasible for real-world applications.

INTRODUCTION

Brain-machine interface (BMI) is a communication sys-
tem between users and machines, in which users can
control the external devices through conveying user’s
intention without direct manipulation or the activations
of peripheral nerve system [1]. The BMI techniques
have commonly used electroencephalography (EEG) sig-
nals to recognize user intention for controlling external
devices such as wheelchairs, robot arms, or robotic ex-
oskeleton [2, 3]. Recently, EEG-based BMI has been de-
veloped for not only healthy people but also the patients
with paralysis or nerve damage in neuro-rehabilitation
[4].
Movement-related cortical potential (MRCP) is one of
the representative slow cortical potential (SCP) com-
ponents, which is measured by a slow decrease in the
EEG amplitude over primary motor cortex (M1) during
a motor task in human. Also, it is a spontaneous poten-
tial which is generated by execution or imagination of
either cue-based movement paradigm known as a contin-
gent negative variation (CNV) or self-paced movement

paradigm. MRCP comprises two main components that
are readiness potential (RP) and movement-monitoring
potential (MMP). RP is a negative cortical potential
which has two fundamental parts before the movement
onset. Negative slope, called ‘early bereitschaftspotential
(BP)’, begins about (1 ∼ 2)s before voluntary movement
onset. About 1s before the movement onset, steeper neg-
ative slope is called ‘late BP’ or ‘motor potential (MP)’
(Fig. 1). In contrast, MMP is a positive cortical poten-
tial which reflected an outcome of the motor process.
After the movement onset, the MMP generated as an
increase deflection for returning to initiate state (Fig.
1). MRCP reflects the stepwise process of movement
preparation/planning and execution [5]. It could be a
useful feature for an intuitive assistive robot control due
to its advantages of spontaneous potential and early de-
tection of user intention based on a single-trial. MRCP
researches have been investigated to amyotrophic lateral
sclerosis (ALS), stroke, and paralysis patients for reha-
bilitation with assistive robots as well as to the normal
person for controlling BMI-based external devices [6].
Therefore, the researchers in previous studies decoded
user’s movement intention from MRCP in the various
experiment paradigm (e.g. self-paced arm movement
(reaching task) [7], executed and imagined foot move-
ment (foot dorsiflexion) [8], self-initiated walking [9]).
They have applied MRCP decoding system to BMI-based
rehabilitation for inducing patient’s brain plasticity effec-
tively. These studies have utilized different EEG data
acquisition techniques with different electrode montage,
brain signal enhancement technologies, and some of them
presented an usefulness of EEG data acquired in the real-
time BCI. They verified that their approaches could be
useful for accurate detection or classification of user in-
tention from MRCP. Also, various machine learning ap-
proaches were applied for a single-trial MRCP analysis
[10, 11].
However, MRCP-based BMI systems have a low perfor-
mance to recognize movement intention in the single-trial
basis. The system performance to detect user intention
still requires more stable accuracy for efficient and reli-
able BMI system. Also, the current MRCP-based detec-
tion systems are difficult to apply in asynchronous BMI
system. Because the MRCP is primarily extracted from
the narrow frequency ranges (i.e. the SCP ([0.1-1] Hz
and delta ([1-4] Hz) band, etc.) for all subjects.
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Figure 1: Representation of MRCP amplitude fluctuation
at Cz electrode. Movement onset is defined at the time
point 0s. The MRCP comprises RP and MMP sections.
(In RP section, (-2 ∼ -1)s is early BP, (-1 ∼ 0)s is late BP,
(-0.5 ∼ 0)s is motor potential (MP), and after movement
onset, (0 ∼ 1)s is MMP section).

For these reasons, we hypothesized that the MRCP detec-
tion performance would be improved using the subject-
dependent MRCP feature selection method. We ap-
proached in two main perspectives. In spectral-domain
perspective, we extracted the optimal frequency band by
nested cross-validation based on classification accuracy
across each filter bank. In temporal-domain perspective,
we approached that motor-cortical fluctuations in EEG
have different frequency power in the pre-movement state
(RP section) and after the movement onset (MMP sec-
tion) during the MRCP evoked time. We also designed an
exoskeleton control system for acquiring the MRCP data
under the real-world exoskeleton environment. Hence,

we propose a subject-dependent MRCP feature selection
method for the accurate detection of user intention on the
single-trial basis.

MATERIALS AND METHODS

A. Experimental protocols: Fig. 2 shows our de-
signed experiment system for acquiring MRCP data un-
der a lower limb exoskeleton walking environment.
First, we used the lower limb exoskeleton (REX, Rex
Bionics Ltd) module. The exoskeleton has various func-
tions; self-balancing, self-supporting, and programmed
motions (e.g. walking, turning, sitting, standing, and
shuffling). It allows a person to move by joystick or
wireless interface [12]. In our experiment, the exoskele-
ton was controlled by electromyogram (EMG) signal
which generated from muscle movements. We used a
wireless EEG and EMG module (MOVE, BrainProduct
GmbH). The EEG and EMG signals were transmitted
to the recording program (BrainVision Recorder, Brain-
Product GmbH) simultaneously. The signal amplifier was
located on the right arm of the exoskeleton. The EEG
module was used for decoding the user’s walking inten-
tion from MRCP. The EMG module was used for acquir-
ing the electrical signals by muscle movements from the
right leg. The EMG module detected the movement onset
triggers that generated when the EMG activity exceeded
a pre-defined threshold value.
Five healthy subjects without any neurological or physi-
cal disorder history participated in the experiments (aged
26-29, five males). The EEG data were acquired using
32 Ag/AgCl electrodes (Fp1, Fz, F3, F7, C1, FC5, FC1,
C3, T7, CPz, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8,
CP6, CP2, Cz, C4, T8, C2, FC6, FC2, F4, F8, Fp2, and
POz) following 10/20 international systems. The ground
electrode was mounted on FPz and reference electrodes

Step 1. Generating walking 

intention (EEG) with muscle 

activation (EMG)

Step 2. Transmission of  EEG 

and EMG signals in wireless

Step 3. Processing EMG signals 

for exoskeleton walking

Step 4. Operating exoskeleton

EEG

EMG

Powered 

exoskeleton

Wireless EEG and 

EMG data transmitter

EMG module

EEG module

Wireless EEG and 

EMG data receiver

Figure 2: Experimental modules (left) and protocols (right) for MRCP data acquisition under lower limb exoskeleton
environment. The subjects performed the self-initiated exoskeleton walking task during the experiment. The exoskeleton

is controlled by the EMG activation.
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Figure 3: Experimental paradigm. After the experiment starts, the subjects performed self-initiated walking whenever
they intended to walk in 50 trials. The lower limb exoskeleton is operated walking task for 8s (movement onset triggers
were marked). After one-step exoskeleton walking, the resting state was given for 8s (the resting triggers were marked).

on FCz. All impedance of electrodes were maintained
below 10kΩ. The sampling frequency rate was 1000Hz.
A notch filter frequency rate was 60Hz for reducing DC
power supply noise.
The EMG data were recorded using two bipolar Ag/AgCl
electrodes on the tibialis anterior (TA) and biceps femoris
(BF) muscles of the right leg. These muscles were se-
lected because of fast muscle activation in walking [8].
The EMG data were preprocessed using 2s sliding win-
dow size with a 100ms shift. The data filtered by a
zero-phase Butterworth fourth-order band-pass filter at
[0.05-60] Hz and were rectified using the absolute value
of filtered EMG data and calculated the moving average
of the EMG amplitudes window size in an online manner.

B. Experimental paradigm: In exoskeleton walking
task, the subjects performed the self-initiated exoskele-
ton walking when they intended to walk. The lower limb
exoskeleton was operated by the movement onset trigger
which was generated by EMG activation. (Note that the
experiments were conducted by self-paced walking, not a
cue-based instruction) The exoskeleton operated for 9s as
one-step walking. After one step had been performed, the
resting state was given to the subject for 10s. The sub-
jects were asked to relax the muscle because the muscle
tension could affect contamination of EMG signal. This
experiment process is a single-trial of the entire experi-
ment paradigm. The subjects performed the self-paced
exoskeleton walking over 50 trials (Fig. 3).

C. Data processing: The acquired EEG and EMG
data were processed using a BBCI toolbox [13]. First, we
composed the frequency filter bank for extracting subject-
dependent optimal frequency band. The frequency filter
bank was comprised by thirty different frequency bands
such as [0.05-1,2, ...10] Hz, [0.1-1,2, ...10] Hz, and [0.5-
1,2, ...10] Hz. The EEG data were randomly selected
80% of the trials as training set and use remaining 20%

as test set for applying the principle of nested cross-
validation to design the framework of signal processing
(Fig. 4). In the inner loop (blue line), we selected subject-
dependent optimal frequency bands based on the MRCP
classification accuracies using training set, which is band-
pass filtered using the frequency filter bank according to
each RP and MMP section. After the inner loop step,
the selected frequency bands were updated as band pass
filter parameter for the outer loop (red dashed line). In
the outer loop, the MRCP detection performance was cal-
culated using selected subject-dependent frequency band
with test set.
More in detail, in the inner loop, the acquired EEG data
were pre-processed by 2nd Butterworth band-pass filter
according to each frequency band at the filter bank and
down-sampled from 1000Hz to 100Hz. The filtered data
were then spatially filtered using large Laplacian filter
to maximize spatial distribution for the poor spatial res-
olution [15]. The large Laplacian filter was applied at
C1, C2, CPz, and Cz channels, respectively, using the
surrogate 8 channels. We did not apply the artifact re-
jection techniques because the subject who wearing the
exoskeleton maintained the standing state only (Fig. 3).
The spatially filtered data were segmented from (-6 ∼ 4)s
by the movement onset. The epoched data were divided
into RP section (-2 ∼ 0)s and MMP section (0 ∼ 1)s
respectively (Fig. 1). The data of RP and MMP sections
were defined as “walking intention state” class. The data
in the interval of (-5 ∼ -2)s were defined as “resting state”
class. Each class consisted of the data which is filtered
by each frequency band. Especially, in the resting state,
we also divided the epoched data as (-5 ∼ -3)s and (-3
∼ -2)s. The data for each interval applied the same fre-
quency band used for filtering the RP and MMP section,
respectively.
Before the extracted the RP and MMP features, the
epoched data were computed the correlation coefficient
signed r-square values between walking intention and
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Figure 4: The flowchart of the subject-dependent MRCP feature selection for decoding of walking intention

resting state classes for detecting statistically significant
time intervals for each channel. In the RP section, the
signed r square values showed relatively high values be-
tween walking intention and resting state at Cz, C1, C2,
and CPz channels. In the MMP section, the signed r
square values showed relatively high values at Cz, C1,
C2, FC1, and FC2 channels (Fig. 5). Specifically, the
signed r square value showed significant discriminant
values between classes at Cz, C1, C2, CPz, CP1, CP2
channels nearby motor cortex compared to other chan-
nels. Therefore, Cz, C1, C2, and CPz channels were
selected for extracting MRCP features.
For extracting MRCP feature, we extracted mean ampli-
tude feature in the 0.2s intervals at all classes (walking
intention and resting state) from epoched data.
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Figure 5: Topographic plots of signed r-square values
between walking intention and resting state classes at
subject E. The signed r-square represented the relatively
discriminant degree between classes in each channel.

The extracted features composed 15 × 4 matrix (feature
vector × channel). The features were classified as walk-
ing intention and resting state classes using regularized

linear discriminant analysis (RLDA). The RLDA is one
of the methods to simple classification modeled with nor-
mal distribution in each class samples. In our data pro-
cessing, the RLDA was used as a classifier to detect walk-
ing intention depending on each frequency band. 10-fold
cross validation was applied for evaluating of MRCP de-
tection performance.
Therefore, through the inner loop, we obtained thirty
MRCP classification accuracies using the frequency filter
bank depending on RP and MMP section, respectively.
The subject-dependent optimal frequency bands were se-
lected to have the best classification accuracy at each RP
and MMP section.
In the outer loop, the selected frequency bands for each
section were updated to band-pass filter parameter in the
pre-processing step. The raw EEG data were band-pass
filtered using the updated frequency bands.The EEG data
processing step of the outer loop is processed the same
way as in the inner loop (i.e. down-sampled frequency
rate 1000 Hz to 100 Hz, applying large Laplacian spatial
filter, channel selection, time segmentation, extraction of
mean amplitude feature). The processed RP and MMP
features were concatenated for comprising either walk-
ing intention class or resting class. Finally, the RLDA
classifier was used as detection of user’s walking inten-
tion from subject-dependent MRCP feature. The MRCP
detection performance was evaluated using test set.
Through the proposed method, we obtained the subject-
dependent frequency parameter for robust MRCP detec-
tion system.

RESULTS

Tab. 1 shows the selected frequency bands in each
RP and MMP section across subjects and the results
of MRCP classification accuracy based on a single-trial
analysis. The grand average classification accuracy is
87.61% across five subjects. Through this results, we ob-
served that the frequency bands were extracted discrimi-
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natively for each RP and MMP section. Also, the optimal
frequency bands were different in each subject.
Fig. 6 shows the significant MRCP patterns which were
observed in self-initiated exoskeleton walking task. The
actual movement onset (0s) were set when the EMG sig-
nals exceeded pre-defined threshold amplitude. The av-
eraged MRCP patterns are indicated from (-2 ∼ 1)s at Cz
electrode in subject C and E. The MRCP were baseline
corrected from (-2 ∼ -1.5)s by the movement onset time.
The black line indicates the MRCP patterns filtered by
the selected frequency bands in subject C and E. In sub-
ject C, the MRCP features were filtered by [0.1-1] Hz and
[0.05-9] Hz across RP and MMP section, respectively.
Also, in subject E, the MRCP features were filtered by
[0.1-10] Hz and [0.5-2] Hz across sections. The steeper
negative slope indicates from (-1 ∼ 0)s (RP section) and,
after movement onset, the positive slope indicates from
(0 ∼ 1)s (MMP section).

Table 1: Selected frequency bands and classification ac-
curacies of MRCP for each subject

Subject
Selected frequency band [Hz]

Performance (%)
RP section MMP section

Sub A [0.5-10] [0.1-7] 94.12

Sub B [0.5-4] [0.5-2] 75.22

Sub C [0.1-1] [0.05-9] 85.29

Sub D [0.5-3] [0.5-9] 86.36

Sub E [0.1-10] [0.5-2] 97.06

Average 87.61 ± 8.5

Scalp topographies are plotted to show the spatial dis-
tribution of MRCP patterns (Fig. 6). The time interval

separated into three sections to observe the specific time-
spatial changes of MRCP patterns. As we mentioned
(Fig. 1), the time interval of (-2 ∼ -1)s is ‘early BP’ in
the RP section, (-1 ∼ 0)s is ‘late BP’ in RP section. (0 ∼
1)s is MMP section. Scalp topographies in the RP sec-
tion (-2 ∼ 0)s appeared gradually negative distribution in
the central and post-central area. Especially, in the range
of (-1 ∼ 0)s, the scalp topography shows significant the
negative distribution relatively nearby motor cortex in
Cz, CPz, C1, and C2 channels. After the movement on-
set in MMP sections (0 ∼ 1)s, the intensity of the spatial
distribution was observed returning from negative to ini-
tial distribution.
Therefore, we confirmed that the scalp topography in
‘late BP’ section shows the relatively more negative spa-
tial distribution compared to ‘early BP’ section. Also,
scalp topographies in MMP section shows certainly pos-
itive spatial distribution.

DISCUSSION

In this paper, we propose a subject-dependent MRCP
feature selection method for robust detection of user’s
walking intention on the single-trial basis. Also, we de-
signed a single-trial MRCP acquisition system under the
lower limb exoskeleton environment. Due to our de-
signed system, we could obtain the EEG signals with re-
spect to walking intention from MRCP feature with the
self-initiated exoskeleton walking.
Through the proposed method, we have observed that
movement intention can be decoded above chance level
using optimal frequency bands for each subject compared
to different EEG frequency bands (i.e. SCP, delta bands,
etc.).
Regarding system performance, we used a systematic ap-
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subject C and E. Representation of scalp topographies from MRCP using selected frequency bands in each section.
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proach for detecting the onset of self-initiated exoskele-
ton walking to extract user’s walking intention. Outcome
of the proposed method showed that subject-dependent
EEG features are also important to detect the movement
intention from MRCP. Also, we validated that subject-
dependent optimal frequency parameter could improve
the performance of MRCP detection system compared to
the heuristic frequency bands.
Our current study, however, focused on applying to stroke
patients or lower limb discomfort people who are able to
extract EMG signal for the real world application con-
trol or gait rehabilitation. Hence, we have developed our
system can be applied in the online environment without
EMG. We have implemented a 3s sliding window which
can filter in real-time with an optimal RP frequency band
of 2s and an optimal MMP frequency band of 1s.

CONCLUSION

In the context of BMI-based real world application con-
trol or gait rehabilitation, the robust detection of move-
ment intention is an essential and critical issue for the
development of self-initiated BMI control systems. Fast
and accurate detection of self-initiated movement inten-
tion using MRCP has raised hope for rehabilitation sce-
narios in which neural plasticity and brain function re-
covery implicitly.
In our study, we proposed the subject-dependent MRCP
feature selection method for robust MRCP detection
based on a single-trial. The result showed that grand-
averaged classification accuracy is 87.6 ± 8% using the
single-trial MRCP data acquired from the self-initiated
exoskeleton walking task in the ambulatory environment.
In our method, the temporal intervals of MRCP are di-
vided into two sections of RP (-2 ∼ 0)s and MMP (0
∼ 1)s. The optimal frequency band has validated from
each temporal interval independently. We firstly report
that the RP and MMP component have different optimal
frequency ranges, and it highly depends on the individ-
ual subject. Our data were acquired by healthy subjects
whose wearing the lower limb exoskeleton.
Our study still needs to demonstrate the possibility of ap-
plying to the stroke patients or the lower limb discom-
fort people for the online system. Hence, future work
will target to devote the robustness of our method with
those people, and prove the possibility of MRCP-based
exoskeleton system as a real-world application.
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ABSTRACT: Mental-Imagery based Brain-Computer In-
terfaces (MI-BCIs) enable users to control applications
using their brain activity alone, by realising mental-
imagery tasks. Although promising, MI-BCIs remain
barely used outside laboratories, notably due to the diffi-
culties users encounter when attempting to control them.
We claim that understanding and improving the user-
training process could greatly improve users’ MI-BCI
control abilities. Yet, to better understand the training
process, we need a model of the factors impacting MI-
BCI performance. In other words, we need to understand
which traits and states impact MI-BCI performance, how
these factors interact and how to influence them to im-
prove this performance. Such a model would enable us to
design adapted and adaptive training protocols, to guide
neurophysiological analyses or design informed classi-
fiers, among others. In this paper we propose a theoretical
model of MI-BCI tasks, which is the first step towards the
design of this full cognitive and computational model.

INTRODUCTION

Mental-Imagery based Brain-Computer Interfaces (MI-
BCIs) enable users to control an application using their
brain activity alone, through the realisation of mental im-
agery tasks. For instance, using MI-BCIs, paralysed pa-
tients can control a wheelchair by imagining left/right
hand movements to make the wheelchair turn left/right,
respectively [33]. Although very promising for a wide
range of applications, MI-BCIs remain barely used out-
side laboratories, in particular due to the difficulties users
encounter when attempting to control them. Indeed, 10
to 30% of users are unable to control MI-BCIs [3].

Two main factors have been identified to explain the low
reliability of MI-BCIs. The first, which has been ex-
tensively investigated, concerns brain signal processing,
current classification algorithms being still imperfect [3].
On the other hand, the potential role of user-training in
MI-BCI performance requires much further investigation.
Controlling an MI-BCI requires the acquisition of spe-
cific skills, and particularly the ability to generate stable
and distinct MI brain activity patterns [21]. An appro-
priate training procedure is required in order to acquire
these skills and an inefficient training protocol could con-
sequently be partly responsible for users’ modest perfor-
mances. Yet, although current training protocols are the-

oretically inappropriate for skill-acquisition, rather little
research is done towards their improvement [10]. We
claim that understanding and improving the user-training
process could greatly improve MI-BCI performance.

In [11], we reviewed the available literature on MI-BCI
training protocols, which gave rise to several guidelines
for the design of MI-BCI training protocols. For instance,
regarding the instructions, it appears promising to explic-
itly specify the object of the training process. Further-
more, we should provide training tasks that are specific to
each user. Then, visual feedback with emotional connota-
tions seems to increase user motivation levels and, conse-
quently, performance, although formal comparisons with
non-emotional feedback are missing. Finally, it has been
shown that gamifying the training environment increases
motivation, and consequently performance.

These guidelines show that several promising avenues re-
garding the training protocols have been explored. Unfor-
tunately, such studies remain scarce and, critically, their
results are rarely taken into account by the BCI commu-
nity. By building on theories in disciplines such as psy-
chology and instructional design, it is possible to sug-
gest new approaches for further improving user perfor-
mance. However, being able to do so requires to under-
stand the MI-BCI training process, and how it is impacted
by users’ specificities, in order to adapt the training pro-
tocols to their individual profiles. In order to reach a
better understanding of the training process, we need a
model of the factors impacting MI-BCI skill acquisition.
In other words, we need to understand which users’ traits
and states impact MI-BCI performance, how these factors
do interact and how to influence them through the exper-
imental design or specific cognitive training procedures
in order to improve MI-BCI performance. Such a model
is called a Cognitive Model. Busemeyer and Diederich
describe cognitive models as models which aim to scien-
tifically explain one or more cognitive processes or how
these processes interact [7]. Three main features charac-
terise cognitive models: (1) their goal: they aim to ex-
plain cognitive processes scientifically, (2) their format:
they are described in a formal language, (3) their back-
ground: they are derived from basic principles of cog-
nition [7]. Cognitive models guarantee the production of
logically valid predictions, they allow precise quantitative
predictions to be made and they enable generalisation [7].

In the context of BCIs, developing a cognitive model is
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a huge challenge due to the complexity and imperfection
of BCI systems. Indeed, BCIs suffer from many limi-
tations, independent from human learning aspects, that
could explain users’ modest performance. For instance,
the sensors are often very sensitive to noise and do not
enable the recording of high quality brain signals while
the signal processing algorithms sometimes fail to recog-
nise the correct mental command. But it is also a huge
challenge due to the lack of literature on the topic and to
the complexity and cost associated with BCI experiments
that are necessary to increase the quantity of experimen-
tal data. Nonetheless, as stated earlier, a cognitive model
would enable to reach a better understanding of the MI-
BCI user-training process, and consequently to design
adapted and adaptive training protocols. Additionally, it
would enable us to guide neurophysiological analyses by
targeting the cognitive and neurophysiological processes
involved in the task. Finally, it would make it possible
to design classifiers robust to variabilities, i.e., able to
adapt to the model factors. To summarise, building such
a model, by gathering the work done by the whole BCI
community, could potentially lead to substantial improve-
ments in MI-BCI reliability and acceptability.
Different steps are required to build a cognitive model
[7]. First, building a cognitive model requires a formal
description of the cognitive process(es) to be described
based on conceptual theories. Next, since the conceptual
theories are most likely incomplete, ad hoc assumptions
should be made to complete the formal description of the
targeted cognitive process(es). Third, the parameters of
the model, e.g., the probabilities associated with each el-
ement of the model, should be determined. Then, the
predictions made by the model should be compared to
empirical data. Finally, this process should be iterated to
constrain and improve the relevance of the model.
In this paper, we propose to do the first step of this pro-
cess: the formal description of the cognitive processes
involved. Therefore, in a first section, we will introduce
briefly the different factors depicted in the literature as in-
fluencing MI-BCI performance. Then, we will describe
the first step of the cognitive model. Finally, we will pro-
pose future work that will aim at completing the model.

FACTORS IMPACTING MI-BCI PERFORMANCE

In [12] we proposed a literature survey dedicated to
the description of the factors impacting MI-BCI perfor-
mance, also called predictors. It has to be noted that we
used the classification accuracy as a measure of perfor-
mance, as most current MI-BCI studies do. This survey
enabled us to classify most of the predictors into three
categories representing higher-level cognitive concepts:
Category 1 - The user-technology relationship & the no-
tion of control: indeed, it appears that people who appre-
hend the use of technologies (and more specifically the
use of BCIs) and who do not feel in control, experience
more trouble controlling BCIs. This category gathers dif-
ferent concepts such as self-efficacy, mastery confidence,

sense of agency, computer anxiety or self-reliance.
Category 2 - Attention: this category includes both atten-
tional abilities (trait) and attention level (state). The latter
can fluctuate with respect to different parameters such as
mood or motivation. Both these aspects of attention have
been repeatedly suggested to be predictors of BCI perfor-
mance, and more generally of learning performance.
Category 3 - Spatial Abilities: many predictors depicted
in the literature are related to motor abilities (e.g., 2-hand
coordination) or to the ability to produce mental images
(e.g., kinaesthetic imagination). These predictors can be
gathered under the label of “spatial abilities”, which are
described as the ability to produce, manipulate and trans-
form mental images [28].
As explained in [12], the involvement of Category 1 pre-
dictors can be explained by the fact BCI users were naı̈ve
[1], while the involvement of Category 2 and Category 3
predictors is relevant with the Ackerman model [2]. In-
deed, this model states that inter-individual differences
of performance in early stages of training are due to dif-
ferences in attentional (Category 2 predictors) and task-
specific (Category 3) abilities. Interestingly enough, this
model was already used by Neumann and Birbaumer to
interpret BCI performances in 2003 [20].

COGNITIVE MODEL - STEP #1: DESCRIPTION OF
THE COGNITIVE PROCESSES

While our survey in [12] enabled us to gather the BCI
performance predictors into 3 categories, it lacks a global
view of the relationships between these factors, of how
they interact to impact MI-BCI performance and of how
they can be influenced by external factors. We propose
to fill this lack in this section. It should be noted that
we only considered the factors that are supposed to im-
pact performance based on the MI-BCI literature: thus,
several relevant factors, that have not yet been studied by
the BCI community, are likely to be missing. They will
be investigated in the second phase of the construction of
this model. Also, since we are dealing with a model, it is
of course only a simplified representation of the complex
cognitive processes underlying MI-BCI tasks that will re-
quire formal validation, testing and updating in the future.
To provide a formal description of the cognitive processes
leading to good BCI performances, two steps had to be
completed. First, we described both the intrinsic factors
(i.e., users’ states and traits) which impact performance
as well as the connections between these factors. Then,
the extrinsic elements impacting the users’ states/traits,
and consequently their performance, as well as the nature
of this impact was formalised. These extrinsic elements
include design artefacts and different cognitive activities
or exercises. The next paragraphs are dedicated to the
description of both these stages.

Stage 1 - Building a Model of the Intrinsic Factors Influ-
encing MI-BCI Performance
The intrinsic factors included in this model correspond
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Figure 1: This network gathers the factors impacting MI-BCI performance, according to the literature and the extrinsic
elements that can influence these factors. The factors are represented by hexagons. The circles represent ways to measure
these factors: they are either neurophysiological markers or psychometric test scores. Moreover, vertically juxtaposed
hexagons as well as unidirectional arrows represent causal relationships (if factor A is above factor B, then factor A in-
fluences factor B). The plus and minus signs indicate if the causal relationship between 2 factors is positive or negative.
Concerning the links with extrinsic factors, solid lines represent a “direct influence on user state”, dashed lines correspond
to a “Help for users with a specific profile” while dash-dot lines represent extrinsic factors that can “Improve abilities”.
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on the one hand to users’ cognitive and motivational
states and on the other hand to users’ traits, i.e., person-
ality traits and malleable cognitive abilities that can be
trained. All these factors are represented as hexagons
in the model, see Figure 1. The circles represent ways
to measure these factors: they are either neurophysio-
logical markers or psychometric test scores. Moreover,
the plus and minus signs indicate if the causal relation-
ship between 2 factors is positive or negative. Subse-
quently, we briefly describe all the factors included in
the model. For more information about these factors or
the studies that revealed their relationship with MI-BCI
performance, please refer to our review of performance
predictors in [12]. This first model can be divided into 3
main parts, corresponding to the 3 categories of predic-
tors mentioned earlier. On the left of the model we can
find the factors related to the user-technology relationship
(in orange), in the middle, those related to attention (in
green) and to mood (in pink) and on the right, the factors
related to the ability to perform an MI-task (in blue). All
these factors can modulate the user’s ability, at a given
moment in time, to perform a MI task and to reach good
performance. Each of these blocks is described more pre-
cisely in the following paragraphs.
Factors pertaining to the user-technology relationship are
gathered on the left of Figure 1. Users showing low self-
reliance traits, according to the 16-PF5 test [8], tend to
perceive the task as more difficult [19]. Moreover, the
phenomenon of computer anxiety, that is to say the appre-
hension of the user towards BCI use, has been shown to
reduce users’ self-efficacy [29], which in turn will induce
a higher perceived difficulty [6] and a decrease in perfor-
mance. On the other hand, by reducing computer anxiety,
and consequently improving self-efficacy, it is possible
to improve users’ engagement towards the task and thus
their motivation and performance [1]. This can be ex-
plained by the fact that self-efficient users do not consider
difficulty as a threat but as a challenge which encourages
them to persevere to reach good performance [1]. In order
to reduce computer anxiety, the sense of agency should
be improved. Besides, a high sense of agency will also
increase the feeling of mastery of the system and conse-
quently reduce perceived difficulty, increase motivation
and performance [31]. Finally, tense(anxious) users tend
to have lower performances which is notably due to the
fact they devote a lot of resources to off-task considera-
tions (such as worrying about their performance) and thus
have fewer resources to allocate to focusing attention on
the task [6]. To summarise, in order to enable users to
reach good performance, training protocols should enable
them to experience a high sense of agency and a low level
of computer anxiety. Also, protocols should be adapted
to non self-reliant and highly tense users so that their per-
sonality does not hinder their progress.
Tiredness has a negative impact on motivation, focused
attention and mood. However, a good mood positively
affects motivation and performance [25]. Then, the
block in the middle comprises factors related to atten-

tion. We have previously shown that engagement towards
the task as well as motivation are modulated by the user-
technology relationship and by users’ state (mood and
tiredness). Motivation as well as general attentional abil-
ities will determine how much focused attention is ded-
icated to the MI-BCI task. The more resources are allo-
cated to the task, the better the performance. One neuro-
physiological predictor has been shown to correlate with
attention state: the central gamma power (in attentional
networks related to executive control - [9]).

Finally, on the right of the model the elements represent
the various factors that have been suggested to be related
to the ability to perform MI tasks. Indeed, abstractedness
abilities correspond to the ability to produce mental im-
ages [8]. Also, visual-motor coordination is one aspect of
spatial abilities. Finally, active learners prefer “learning
by doing” [16] and might thus be more prone to produc-
ing kinaesthetic mental images, which have been shown
to be more efficient than visual ones [22]. These abilities
can be measured by different scores such as the Kinaes-
thetic Imagination score, the Visual-Motor Imagination
Score [32] or the Mental Rotation Score [30] (the latter
correlating with BCI performance [13, 10]). Moreover,
the mu rhythm could enable, to a certain extent, to mea-
sure the ability to perform motor-imagery. Indeed, [4]
have shown that a high mu amplitude at rest correlates
with motor-imagery based BCI performance.

Stage 2 - A First Attempt at a Cognitive Model of the Task

Once all the intrinsic factors had been integrated into a
network, we added the extrinsic elements that can be seen
as levers to optimise users’ performance, see Figure 1.
These extrinsic elements are mainly based on theoreti-
cal hypotheses. Their impact on the users’ states, traits
and performance are yet to be quantified. Thus, although
these links make sense from a theoretical point of view,
they should still be considered with caution. These ex-
trinsic elements are of two kinds: design artefacts and
cognitive activities. We determined three types of links
between the extrinsic elements and the intrinsic factors:
“Direct influence on user state” (solid lines): this link
connects extrinsic elements in the “design artefacts” cat-
egory to intrinsic states (mainly). These extrinsic fac-
tors are suggested to influence the user’s state and, con-
sequently, are likely to have a direct impact on perfor-
mance. For instance, proposing a positively biased feed-
back has been suggested to improve (novice) users’ sense
of agency [17]. “Help for users with a specific profile”
(dashed lines): this link connects extrinsic elements to
traits; they indicate that these extrinsic elements could
help users who have a specific profile to improve their
performance. For instance, proposing an emotional sup-
port has been suggested to benefit highly tense users [26].
“Improved abilities” (dash-dot lines): finally, this link
connects extrinsic elements in the “cognitive activities”
category to abilities that could be improved thanks to
these activities. For instance, attentional neurofeedback
has been suggested to improve attentional abilities [34].
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The extrinsic elements related to the experimental de-
sign that theoretically impact users’ state are listed here-
after. First, providing novice users with a positively bi-
ased feedback [17] is thought to improve their sense of
agency and consequently decrease perceived difficulty
and increase their motivation. Then a transparent map-
ping as well as the priority, consistency and exclusiv-
ity principles [31] all aim to improve users’ sense of
agency. Moreover, providing users with emotional sup-
port and social presence could improve their motivation
[26]. Emotional support can be provided as smileys or
avatars, but not only. It is also important not to forget
the role of the therapist/researcher/experimenter, notably
concerning: (1) the demystification of the BCI technol-
ogy to reduce a priori computer anxiety, through scien-
tific mediation and communication with the media, (2)
the writing of informed-consent forms and explanations,
that should be clear and informative, and provide an ob-
jective estimation of the benefit on risk balance and en-
able to regulate any form of hope that may be gener-
ated [24], and (3) the social presence and trust relation-
ship with the user, which are essential in facilitating the
learning process [15]. Finally, adapting the difficulty and
proposing progressive difficulty has also been suggested
to improve performance [33]. On the other hand, medi-
tation, emotional support and social presence have been
suggested to help highly tense and non-autonomous users
[27]; while cognitive support (i.e., guidance to find a
good strategy) could help users to produce mental-images
that the system can recognise efficiently. Finally, the last
type of links (dash-dot links) connects cognitive activi-
ties/exercises to the specific abilities they could benefit.
Indeed, video-games, meditation and attentional neuro-
feedback have been suggested to improve attentional abil-
ities [5]; while video-games and spatial-ability exercises
may improve the ability to create mental-images.

FUTURE WORK

The model proposed comprises intrinsic factors impact-
ing BCI performance, their relationships, as well as ex-
trinsic factors that can be manipulated to modulate BCI
performance. This model has been built based on the
BCI and skill acquisition literature. As such, it represents
the first phase in the development of a cognitive model
[7], here for MI-BCI tasks. The next phases will con-
sist first in making assumptions about the missing fac-
tors that should be included. For instance, our model in-
cludes factors also present in the ARCS (Attention Rel-
evance Confidence and Satisfaction) model [14], notably
attention and confidence, but relevance and satisfaction
are missing. Yet, they may prove meaningful as well
for MI-BCI. Then, with all the factors and their rela-
tionships identified, we will have to computationally im-
plement this model, e.g., using a Bayesian network, and
thus to determine its parameters (i.e., the probabilities for
each factor and the weights -impact- of each factor on
the BCI performance). Ideally, this could be estimated

from data. Finally, we will have to assess this compu-
tational model based on unseen BCI experiments data.
It will also be worth considering alternative performance
metrics, beyond classification accuracy [18]. This could
indeed bring additional insights about MI processes.

CONCLUSION

In order to bring BCIs out of the lab, both their relia-
bility and usability should be enhanced. To this end, all
their components should be considered: EEG caps should
be both reliable and aesthetic [23]; algorithms should en-
able the improvement of BCI robustness and reduction of
the calibration time [35]; the user training should be im-
proved [12]. In this paper, we focused on this last axis.
Indeed, we have provided the first theoretical cognitive
model of MI-BCI performance. This is the first step to-
wards a full model of MI-BCI tasks, which appears nec-
essary to fully understand and then improve MI-BCI user
training approaches, as well as to inform MI-BCI signal
processing tools. In the future, we are going to try to
complement this model with additional relevant factors,
start first computational implementations of it and collect
additional data to make that implementation possible. We
hope other BCI researchers could join us in that endeav-
our to contribute to make the full model a reality.
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A. Kübler, K.-R. Müller, G. Curio, and T. Dickhaus.
Neurophysiological predictor of SMR-based BCI
performance. Neuroimage, 51(4):1303–09, 2010.

[5] T. Brandmeyer and A. Delorme. Meditation and
neurofeedback. Frontiers in psychology, 4, 2013.

[6] M. J. Brosnan. The impact of computer anxiety and
self-efficacy upon performance. Journal of com-
puter assisted learning, 14(3):223–234, 1998.

[7] J. R. Busemeyer and A. Diederich. Cognitive mod-
eling. Sage, 2010.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-40

CC BY-NC-ND 220 Published by Verlag der TU Graz 
Graz University of Technology



[8] R. B. Cattell and H. E. Cattell. Personality structure
and the new fifth edition of the 16pf. Educational
and Psychological Measurement, 55:926–37, 1995.

[9] M. Grosse-Wentrup. What are the causes of perfor-
mance variation in brain-computer interfacing? In-
ternational Journal of Bioelectromagnetism, 2011.

[10] C. Jeunet, E. Jahanpour, and F. Lotte. Why stan-
dard brain-computer interface (BCI) training pro-
tocols should be changed: an experimental study.
Journal of neural engineering, 13(3):036024, 2016.

[11] C. Jeunet, F. Lotte, and B. N’Kaoua. Brain-
Computer Interfaces 1: Foundations and Methods,
chapter Human Learning for Brain–Computer Inter-
faces, pages 233–250. Wiley Online Library, 2016.

[12] C. Jeunet, B. N’Kaoua, and F. Lotte. Advances
in user-training for mental-imagery-based BCI con-
trol: Psychological and cognitive factors and their
neural correlates. Progress in brain research, 2016.

[13] C. Jeunet, B. N’Kaoua, S. Subramanian, M. Ha-
chet, and F. Lotte. Predicting mental imagery-based
BCI performance from personality, cognitive pro-
file and neurophysiological patterns. PLOS ONE,
10(12):e0143962, 2015.

[14] J. M. Keller. Motivational design for learning and
performance: The ARCS model approach. Springer,
2010.

[15] S. Kleih, T. Kaufmann, E. Hammer, I. Pisotta, F. Pi-
chiorri, A. Riccio, D. Mattia, and A. Kübler. Mo-
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ABSTRACT: The event related potential is traditionally
obtained in time domain by computing ensemble aver-
age. However, due to non-stationarity and poor localiza-
tion of these signals, this may result in erroneous feature
extraction. In this present study, a standard database is
considered to elucidate this problem. It is shown that
a frequency domain decomposition followed by the es-
timation of spectral distance by measures like Itakura-
Saito distance may partially resolve the problem. How-
ever, recognizing the contribution of endogenous and ex-
ogenous inputs to each event related potential, it is fur-
ther argued that a Wavelet Packet Decomposition may be
more useful since each signal in the frequency domain
can be further decomposed into five characteristic do-
mains (delta, theta, alpha, beta, and gamma) and based on
the feasibility of contributions from each domain a better
feature extraction will be possible.

INTRODUCTION

Oddball paradigm is an experimental standard used in
several studies to elicit event related potential (ERP) and
analyze its subcomponents. In this paradigm, a visual
stimulus is presented where a sequence of random el-
ements are displayed with a high likelihood (80-90%),
non-target stimuli and is interjected by a low likelihood
(5-20%), the “oddball” stimuli, which might vary in du-
ration and intensity [1].
The salience associated with stimulus ensures the occur-
rence of P300; more the event has an element of surprise
to it, stronger is the response. Hence the stimulus should
be designed in such a way that the desired event be ran-
domly positioned and infrequently presented among a se-
ries of non-target events. The present study focuses on
an enhanced component of ERP, the P3b observed at the
parietal region; commonly known as the P300. It occurs
around 300ms +/- 100ms after the onset of target stimu-
lus. The amplitude of P300 varies directly with the rele-
vance of the eliciting events and inversely with the prob-
ability of the stimuli [2].
The ERP waveform has the observable peaks and
troughs; however, it has also the unobservable latent com-
ponents. It is these latent components that give measure
of neuronal response to visual stimulation task, the peaks
are a summation of latent components. The latency, am-
plitude and duration of latent components vary across tri-

als. Once the ensemble averaging over multiple trials is
done, nothing can be ascertained about the behaviour of
these components.Given this, latency and amplitude may
not be sufficient measures to compare two ERPs [3].Ad-
ditionally,ERP phase can also shift across trials,which
would imply, that the signal to noise ratio will deteriorate
after ensemble averaging. Using the well-known time-
frequency inverse relation; it is hypothesized that a large
shift in time latency will depict as a small variation in
the frequency of ERP component. Thus, irrespective of
shift in phase; using frequency as the feature could deter-
mine presence of P3b-ERP. To further argue the choice
of frequency as a probable feature in a practical system,
one may assume a small window of samples taken after
each run. Within this window the amplitude and phase
are non-deterministic whereas frequency is a determinis-
tic parameter.While state of the art algorithms are well
equipped to analyze deterministic signals, it is still chal-
lenging to investigate the non-deterministic signals.For
some time, wavelet transforms have been used to observe
ERPs by choosing appropriate mother wavelets and ma-
nipulation of bases functions gives a closer look at the
wave shapes. This approach helps with choice of filters
to be used, extraction of single trial ERP, breaking down
ERP response into various frequency bands, detection of
overlapping peaks[4]. [5] Another study discusses which
single channel wavelet transform to auditory evoked po-
tentials in cats. It also draws attention to limitations of
sole reliance on amplitude and latency and highlights
ability of wavelet transform to identify ERP components
and effects of various experimental conditions on proper-
ties of these components. [6]This study used simulated
EEG data generated using Gabor logons and chirped sig-
nals. To extract P300, time frequency transformation us-
ing morlet wavelet and reduced interference distribution
(RID) are fed as inputs to principal component analysis
(PCA). It reduced three dimensional data to two dimen-
sional vectors which further retrieved P300 ERP. Wavelet
analysis indicated that appreciable theta activity was re-
lated to the more novel non-target stimuli; primarily tar-
get component delta coefficients were affected by the dis-
crimination difficulty variable. In the present study, it is
proposed that a frequency domain analysis be followed
after the time domain ensemble averaging. Further the
ERP be decomposed and visualized in terms of basic
brain rhythms using wavelet packet decomposition.
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MATERIALS AND METHODS

The present study uses P300 speller dataset from BCI
competition III webpage with due acknowledgement
[7].In the beginning, an ensemble average of a single trial,
corresponding to a target is obtained; the spectral compo-
nents of the signal are extracted, using DFT.Following
this, the spectral components of all ensuing trials are
computed. Subsequently, using some of the spectral dis-
tance measure techniques, the spectral distances between
the initial trial and each of the subsequent trials are com-
puted. It is assumed that if a threshold for each of these
spectral distances is selected, and then target and non-
target may be differentiated.
The input EEG signal is sampled at 240Hz.There are 85
epochs, each having a target character. Also an epoch
contains 7794 samples, but for the purpose of ERP re-
trieval, individual trails are extracted from within each
epoch. Each trial has 240 samples. The process of ex-
tracting samples from epochs can potentially corrupt the
original signal by introducing noise. To avoid this, appro-
priate window functions are applied to the signal while
deducting samples. Windows are selected so that the sig-
nal smoothly approaches zero at both ends.
The fast Fourier transform algorithm has been be used
for ensemble average of each trial, i.e. 240 samples taken
over 1000ms while DFT is designed for signal extending
from 0 to ∞. For such a case, nothing can be known
about the signal behavior outside the measured interval
and the Fourier transform makes an implicit assumption;
that the signal is repetitive. This assumption leads to dis-
continuities that are not really present in signal. Since
sharp discontinuities have broad frequency spectra, this
will cause frequency spectra to spread out. Consequently,
the signal energy which should be concentrated only at
one frequency instead leaks into other frequencies. This
will lower the signal to noise ratio. Secondly, the spec-
tral leakage from a large signal component may be severe
enough to mask other smaller signals at different frequen-
cies.
Thus, the signal is multiplied within the measurement-
time, by some function that smoothly reduces the signal
to zero at the end points; hence, avoiding the discontinu-
ities altogether and curtailing the spectral leakage. Fur-
ther it is expected to reduce the contribution of each fre-
quency to one DFT bin.
The basic discrete Fourier transform (DFT) synthesis and
analysis equations are

X[k] =
N−1∑
n=0

x[n]ejkΩon, 0 ≤ k ≤ N − 1 (1)

x[n] =
1

N

N−1∑
k=0

X[k]e−jkΩon, 0 ≤ n ≤ N − 1 (2)

X[k] and x[n] are periodic sequences in frequency and
time domains respectively. X[k] is equal to samples
of periodic fourier transform X(ejω). X[k] will be the

transform of a periodic extension of x[n] for n outside
the interval 0 ≤ n ≤ N − 1. In defining DFT representa-
tion, we are recognizing that we are interested in values
of x[n] only in the interval 0 ≤ n ≤ N−1 because x[n] is
really zero outside this interval. k represents discrete in-
stances in frequency, n represents the number of samples
in time, N the period, j represents

√
−1, Ωo represents

discrete frequency [8].
Distance measure is a common technique used to mea-
sure difference between a model/estimate(s) and its ob-
servations.The spectral distances are computed using sec-
ond order properties of signal. Current study uses asym-
metric and symmetric distance measures to gauge target
and non-target ERP responses.
The Itakura-saito distance measure is defined as

DIS(P (wk), P̂ (wk)) =
1

N

N−1∑
k=0

|X[k]|2∣∣∣X̂[k]
∣∣∣2

− 1

N

N−1∑
k=0

log
|X[k]|2∣∣∣X̂[k]

∣∣∣2 − 1


(3)

where k = 0, 1, ..., N − 1 and P (wk) = |X[k]|2
It is a measure of difference between original spectrum
(template P300 in present context) P (w) and a typical
observation that can be considered as an approximation
P̂ (w) of that spectrum. It is intended to reflect structural
dissimilarity. Further Itakura-Saito distance is a Bregman
divergence which is not a true metric since it fails to meet
the symmetry and inequality axioms.
Spectral distances between two spectral densities P (wm)

and P̂ (wm) can be measured using Lq norm of the dif-
ference between them, depicted as;

D(P (wm), P̂ (wm)) =
∥∥∥P (wm)− P̂ (wm)

∥∥∥
q

(4)

Such distances satisfy triangular inequality and symme-
try property and are thus true distances [9].
A spectral distance measure D can be symmetrized by
extending DIS as shown:

Dcosh =
1

N

N∑
m=1

[
P (wm)

P̂ (wm)
− log

P (wm)

P̂ (wm)
+

P̂ (wm)

P (wm)

]

− 1

N

N∑
m=1

[
log

P̂ (wm)

P (wm)
− 2

]
(5)

One of the main spectral deviation measures is log spec-
tral, defined by Lq norm of difference between log of

spectra D =
∥∥∥log P (wm)

P̂ (wm)

∥∥∥
q

where q = 2 for root mean

square (rms) or the mean quadratic distance given below:

Drms =
1

2N

N∑
m=1

[
log

P (wm)

P̂ (wm)

]2

(6)

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-41

CC BY-NC-ND 223 Published by Verlag der TU Graz 
Graz University of Technology



Given a signal, the wavelet packet decomposition filters
the signal into equal low-frequency and high-frequency
subspaces. Present study uses MATLAB software for
wavelet packet decomposition. Averaged trials from in-
dividual epochs were the input signals and decomposi-
tion into the lower frequencies was repeated till level 5.
Daubechies wavelet of order 8 was used as the mother
wavelet. The outcome was signals divided into delta,
theta, alpha, beta, gamma activity.

RESULTS AND DISCUSSION

Ensemble averaging is one of the most popular time do-
main methods for extraction of ERP signatures. During
the course of present investigation, it was found that this
signature makes significant departure from its known pat-
tern across trials. Fig. 1-3,are manifestations of the same.
Fig. 1-3 are time domain ensemble average of target and
non-target responses at frontal (Fz), Parietal (Pz) and oc-
cipital (Oz) electrodes, taken over duration of one second.
In Figures 1 and 2, the target responses peaks at nearly
450 ms though the peaks begin to appear around 200 ms,
modulated by a higher frequency noise. Both patterns
closely match upto an expected ERP. It has to be noted
though that they are not same, because, while what ap-
peared at Pz correspond to P3b component, the response
to rare target, in an oddball paradigm. The response at
Fz is directing to P3a component which corresponds to
non-target [10]. This distinction is important to make, in
order to choose the right channel for analysis.

A marked departure from the said pattern can be seen in
Fig. 3, which is a time domain ensemble average of target
responses computed over central midline at the occipital
lobe. Contrary to the norm, there is rather a dip spread-
ing across 250-380 ms. One possible explanation could
be that the ERP response is getting superimposed by a
more prominent activity at the occipital lobe [11]. It is
imperative to recognize the patterns associated with non-
target responses. Ideally a non-target stimulus does not
elicit the endogenous ERP component, specifically peak
around 300ms. For example, the non-target in Figures 1
and 2 depicts compliance to the rule, while in Fig. 3, it
does not. An small unanticipated peak appears between
300-400ms. A classifier such as PCA which is not able
to handle jitters will not be able to make the system very
much efficient with such responses in given signal. The
present study proposes to compute spectral distances be-
tween two spectra. One is a fixed spectrum, that of a tem-
plate or estimated ERP. The other is a dynamic spectrum
which changes with each trial; in other words, spectrum
of each subsequent trials. Itakura-Saito reveals the spec-
tral distances between the two. The procedure to compute
Itakura-Saito distance is as follows: 1- The first input is
estimated and its spectrum is computed as follows: The
grand average of responses to target stimuli for a single
channel is taken.

Figure 1: Target(T) and Non-Target(NT) responses at Fz.

Figure 2: Target(T) and Non-Target(NT) responses at Pz.

Figure 3: Target(T) and Non-Target(NT) responses at
Oz.

To avoid high frequency noise modulation an appropri-
ate window function is applied right before it is mapped
onto the frequency domain using DFT. The spectral com-
ponents thus retrieved are considered as desired markers
of an ERP.
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Figure 4a Frequency spectrum for target and non-target
responses at Pz.

Fig 4b Closer look at frequency spectrum for target and
non-target responses at Pz.

Fig 4c Closer look at frequency spectrum for target and
non-target responses at Pz.

2- The template evaluated in earlier step is compared
with respect to spectral components of each subsequent
trial. These spectral components are computed in a simi-
lar fashion as described in the above step.

Figure 5a: Frequency spectrum for two target responses
at Pz.

Figure 5b: Closer look at frequency spectrum for two
target responses at Pz.

Figure 5c: Closer look at frequency spectrum for two
target responses at Pz.

3- The Power spectra for estimated spectra as well as
of individual trials are computed to evaluate the Itakura-
Saito distance as described in equation (3). The Itakura-
Saito distances was measured between, a target and a
non-target, as well as, between two targets and following
interesting observation were made. Ideally the frequency
components while attending to the target and non-target
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stimulus should differ, as attention to a target stimulus
should elicit ERP response containing peak component at
300ms after stimulus onset. It was observed that both tar-
get and non-target responses had overlapping frequency
components, to a certain degree Figures 4,5. Frequency
spectrum of target responses between two trials is shown
in Fig.5a-c, again while some components are overlap-
ping; a disparity can also be observed. It can be explained
by going back to jitter effects between trials in time do-
main.

Figure 6: Itakura-Saito distance measure between the
response corresponding to target stimuli and the

non-target stimuli.

Figure 7: RMS Log Spectral distance measure between
the response corresponding to target stimuli and the

non-target stimuli.

Given the non-stationary nature of EEG signals, and pres-
ence of both endogenous and exogenous components in
the ERP response these manifestations are hard to deal
with by a simple mapping from time to frequency do-
main. This ambiguity calls for a more specific decompo-
sition of the ERP. The overlap in frequency components
of both targets and non-targets demands that the endoge-
nous component, which is unique to target response be
separated.

Figure 8: COSH distance measure between the response
corresponding to target stimuli and the non-target

stimuli.

In order to achieve this, wavelet packet decomposition
(WPD) could be carried out, using an appropriate basis
function. This shall be explained later in this section. If a
standard pattern manifests every time an ERP is elicited,
a measurement of spectral distance between a template
target spectrum and response of subsequent ERP trials
will be able to classify between target and non-target.
Fig. 6-8 illustrate spectral distance measures between tar-
gets and non-targets for which, Pz channel is selected.
At first, an asymmetric spectral distance measure is com-
puted using Itakura-Saito distance. This distance is cal-
culated between estimated spectrum and individual tri-
als. The range of Itakura–Saito distance lies within 0-
120 units which are divided in 50 bins. 87.5% of Nontar-
get and 81.1% of target responses falls within 0-25 units.
This shows that high percent of both target and non-target
stimuli lie in the same range and hence results in poor
detection of target responses. It also depicts the gener-
alization of our said observation for Fig. 4 and 5 across
all trials. As the detection of target responses in Itakura-
Saito became intricate, symmetric spectral distance mea-
sures were attempted. Here, RMS log spectral and COSH
spectral distances were computed and their outcomes are
shown in Fig. 7 and 8. In Fig. 7, RMS log spectral dis-
tance varies between 11- 22 units which is divided into 50
bins. 92.5% of nontarget and 94.7% of target stimuli falls
within above range. It is observed that the responses are
broadly distributed over a large range of distance. In Fig.
8, 91.5% of non-target and 88.2% of target responses are
between 0-20 units of COSH distances. Consequently,
the differentiation of target stimuli from non-target be-
comes obscure in both symmetric as well as asymmetric
spectral distance measure methods. At this juncture, in-
stead of looking at the ERP as a whole, wavelet packet
decomposition was used to separate the ERP to lower fre-
quency bands. After wavelet packets decomposition, an
ERP could be visualized in terms of delta, theta, alpha,
and beta rhythms. Fig. 9 shows decomposition of target
and non-target activity at Pz.
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Figure 9: Average Delta, Theta, Alpha and Beta
activities at Pz, corresponding to Target(T) and

Non-Target(NT) responses.

As ERP is not a single response but rather a coagula-
tion of exogenous and endogenous responses to the vi-
sual stimulation; coming from a highly non-linear sys-
tem, the human brain. Decomposing ERP into multi-
ple frequency bands rather than visualizing it as a whole
shall be more befitting approach, to extract the endoge-
nous P3b response to target stimuli.In present work when
target and non-target responses were decomposed into
multiple frequency bands using wavelet packet decom-
position, Fig. 9. The delta rhythm associated with target
has higher amplitude than for non-target. Theta activ-
ity is known to increase with increasing memory load; a
slightly higher theta activity was observed for target re-
sponses. Alpha activity for target stimulus had higher
amplitude compared to non-target when observed at Pz.
The alpha activity is associated with idle state of brain
region under consideration. But this statement would be
an oversimplification given the fact that, different areas
of brain possess their unique alpha activity. Parietal al-
pha power is known to increase as task load increases.
There is a marked difference between beta activity of tar-
get and non-target. Such can be considered as a feature
which can be used for classification between targets and
non-targets. By keeping these results as basis, we will
continue to take on a more thorough investigation on ERP
components and identify more features for robust target
classification.

CONCLUSION
The present study summoned up the non-stationary na-
ture of event related potentials. On that premise, a
scrutiny of common approaches for extraction of event
related potentials from raw EEG data was instigated. The
limitations of those approaches were accounted and the
study proceeded to computation of spectral distance mea-
sures expecting to mark distinction between target and

non-target ERP responses.
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ABSTRACT: Rapid advancements in brain-computer in-

terfaces (BCIs) have fostered the wide-spread applica-

tion of biometric systems built on electroencephalogra-

phy (EEG) measurements in recent years. While cur-

rent subject identification approaches exhibit high per-

formance, most efforts rely on limited number of EEG

recording runs to validate the feasibility and practical us-

ability of EEG-based biometric systems. For a realistic

system however, quantitative assessment over long time

series is essential due to the intrinsic non-stationary be-

haviour of EEG signals. In this work, we propose a more

practical scenario of the resting EEG-based subject iden-

tification system for off-line analysis using public dataset.

Moreover, we implement a subject recognition system

based on widely-adopted functional connectivity mea-

sures. The system is applied to assess performance vari-

ations under consecutive EEG recording runs over time.

We also provide a simple approach to overcome the per-

formance degradation and eventually, raise several issues

as potential future works relating EEG-based systems.

INTRODUCTION

In spite of copious research in BCI technology and its

applications in neuroscience and cognitive psychology, it

is only recently that the possibility of EEG measurement

utilization in biometric systems has emerged [1-3]. Un-

like existing technologies that use fingerprints, speech,

iris, and facial features as identifiers for human authenti-

cation, EEG signal stands out as a unique physiological

biometric that is robust against forgery and falsification.

Various paradigms have been proposed for biometric sys-

tems based on event-related potentials (ERP) [4,5] or spe-

cific tasks related mental states [6]. Since these brain-

waves are evoked after a specific time onset, the sys-

tem is possible to utilize the temporal characteristics of

brain signals. Nonetheless, EEG in resting state mani-

fest beneficial advantages regarding user-friendliness in

that it does not require additional stimulatory devices and

any conditions/ instructions for subjects. In addition,

the high potentials of biometric systems based on rest-

ing state EEG should not be undermined as these resting

state signals differ considerably among subjects [7].

State-of-art studies of brain functional connectivity mod-

ulated by resting state networks have advanced our un-

derstanding of human brain functions. The traits of func-

tional connectivity are reported to fully exploit physi-

ological information and represent functionally coupled

brain regions thus, serving as appropriate tools for EEG-

based biometric systems yielding high performance.

Although a number of works based on various functional

connectivity measures have been reported [8,9], the sys-

tem performance were validated within a limited sce-

nario comprising of only a single run of EEG record-

ings. In particular, researchers have confirmed the po-

tential usability and feasibility of such systems by ap-

plying their proposed methodologies on divided non-

overlapping EEG segments resulting from the one record-

ing run. In the realm of practical adoption however, such

biometric systems should be able to operate successfully

in the presence of discontinuous signal inputs as well. Es-

pecially, the performance and reliability of these systems

should be scrutinized prior to realization since EEG sig-

nals have inherent non-stationary characteristics due to

various physical and mental drifts.

In this study, we mainly focus on a subject identifica-

tion system among the various biometric-related topics.

Given an input EEG signal, the identification system is

required to find and recognize the correct subject label

from a database containing various EEG information of

several subjects as depicted in Fig. 1. We aim to propose

a more realistic and practical scenario of an EEG-based

subject identification system for off-line analysis using

publicly available dataset. The proposed scenario allows

us to determine whether a novel approach would perform

reliably as we treat discontinuous trials over time. We

then implement the wll-known EEG-based biometric sys-

tem exploiting the functional connectivity measures and

validate it for the proposed scenario. Furthermore, we

present a simple approach to enhance the performance of

the system and highlight certain issues to be considered

as future work.

METHODS

In this section, we describe the approaches undertaken.

Our main focus is to investigate and comprehend the per-

formance variation of subject identification incurred by

non-stationary EEG signals as the recording runs are pro-

cessed gradually. Simulations are conducted using public
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Figure 1: Schematic diagram of electroencephalography-based subject identification system.

dataset and the accuracy assessed under different spectral

bands using two prominent feature extraction methods for

multiple test runs over time.

A. Dataset

The publicly available “Physionet EEG Motor Move-

ment/Imagery Dataset” acquired by BCI2000 system

from 109 subjects was used in our study [10,11]. The

EEG signals were recorded from 64 scalp electrodes at

the international 10-10 locations and 160 Hz sampling

rate was used. The dataset consists of two baseline

tasks (eye-open resting state and eye-closed resting state)

and twelve motor movement (MM)/ motor imagery (MI)

tasks. In our study, we used the twelve MM/I dataset

were used, of which the first run was designated as the

training data for an enrolment stage and the remaining

eleven runs as consecutive testing data for the recognition

stage of the performance evaluation process. By exclud-

ing subjects with less than fifteen conducted MM/I trials

from the dataset, our experiment was finally carried out

for a reduced set of 103 subjects.

B. Pre-processing

In the signal pre-processing phase, the dataset was

epoched to a range of -4 to 0 seconds with respect to

the instructing MM/I target onset. We assumed that the

EEG signal in this time period corresponds to the rest-

ing states awaiting the cue instruction. Since each sub-

ject produced fifteen trials, the fifteen resting state epochs

prior to the MM/I trials are extracted in each run. The

non-overlapping epochs of 4 seconds were treated as sep-

arate trials in the subject identification system.

The extracted epochs were band pass filtered separately

to account for the effects of EEG spectral bands. The six

different frequency bands that were considered are delta

(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30

Hz), gamma (30-50 Hz), and the complete range (0.5-50

Hz). The accuracy results were analysed and presented in

terms of the spectral ranges of the EEG signals.

C. Feature Extraction

Based on recently reported methods for biometric subject

identification, we applied widely-used brain connectivity

analysis schemes on the EEG signals. We now describe

the methods to obtain inter-channel connectivity.

• Inter-channel relation measures: We calculated

two of the most widely-used brain functional

connectivity metrics namely, inter-channel Pear-

son’s correlation coefficient (COR) [12], and inter-

channel phase lag index (PLI) [9,13]. The inter-

channel COR reveals the strength of the linear rela-

tion of pairwise channels by magnitude as it varies

from -1 to 1. It measures linear correlation in the

time domain between two signals at zero lag. On

the other hand, the PLI measure discards phase dis-

tributions that center around 0 mod π, in order to

be robust against the presence of common sources.

The PLI calculates the asymmetry of the distribu-

tion of phase differences between two signals vary-

ing from 0 to 1, and serves significant in volume

conduction and active reference problems.

• Eigenvalue centrality (EC): Indicators of central-

ity represent the most important nodes within a

graph in the context of network analysis. One such

measure is EC which is used to characterize con-

nectivity and has evidently shown high accuracy

performances for brain connectivity-based biomet-

rics [9]. We computed EC for the inter-channel

Pearson’s correlation coefficient, and phase lag in-

dex which are structured as 64 × 64 matrices (the

number of channels is 64). The EC result of each

matrix was used as a feature vector. The functional

connectivity with EC approach with respect to PLI

showed high performance in literature [9].

D. Feature Classification
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For off-line analysis of the biometric system, dataset

composed of twelve runs from 103 subjects were used.

By labelling each individual as a distinct class, the sys-

tem can be treated as a multi-class classification problem

with 103 classes. The fifteen epochs in the first MM/I run

from all subjects were allocated to training trials, while

the remaining eleven runs (consisting of fifteen epochs

each) were assessed in a consecutive manner.

As mentioned earlier, the inter-channel COR and PLI-

based ECs were computed for each spectral band of the

resting state EEG signals. Using the feature vectors ex-

tracted by EC, we then calculated the Euclidean distance

for the classification process. The subject label show-

ing the minimum Euclidean distance between the train-

ing dataset and test trial were then compared for every

single test trial of the 103 subjects. We treated the fifteen

epochs of all subjects in each test run as fifteen sets com-

posed by 103 subjects’ single epoch. In every test run (a

total of eleven test runs), the classification procedure was

repeated fifteen times for a sequence of 103 subjects’ tri-

als. The accuracy was calculated by classifying the epoch

out of all the subjects. Finally, we computed a mean and

a standard deviation of the accuracies in each test run.

RESULTS

Simulations results for performance variation with con-

secutive multiple runs with respect to different spectral

ranges and functional connectivity measures are provided

in this section.

Fig. 2 illustrates the performance variations plots for con-

secutive test runs at six different spectral bands. In each

run, fifteen trials from 103 subjects were tested to iden-

tify the correct subject label. The accuracy was calculated

based on the number of correct subject identification re-

sults, and represented as the mean and standard deviation

from the fifteen repeated recognition results in every run.

In general, the resting EEG states in beta (13-30 Hz) and

gamma (30-50 Hz) bands showed relatively higher accu-

racy compared to the other spectral bands. Our results

are in accordance with the existing works that have re-

ported high classification rates in these two bands [9]. Al-

though the COR-based approach resulted in better perfor-

mance as compared to its PLI counterpart in most spec-

tral bands, the PLI-based functional connectivity feature

shows highest accuracy in the gamma spectrum. How-

ever, the performance of this approach in the gamma band

also decreased to 57.67 ± 3.8% over time in the worst

case.

The classification matrices of eleven test runs using the

PLI-based approach in the gamma band are shown in

Fig. 3. Each matrix represents the estimated results for

each subject given the actual labels of subject indexes.

Therefore, the diagonal of each matrix shows the result

of correct classification, whereas the remaining elements

correspond to the mis-classification results. We observe

that with increase in the number of test runs, the number

of mis-classified subjects also gradually increases. For

sake of comparison, we reproduced the optimistic iden-

tification results (> 90%) reported by the authors in [9]

by implementing the same signal processing procedure

(band pass filter, PLI, EC, and Euclidean distance-based

classification) and evaluated the system performance for

our proposed scenario.

Apart from obtaining high accuracy in several runs, we

also account for reliable and persistent performance over

long time series as important assessment measures in our

scenario. To improve the performance over time, we in-

cluded the mean values of various combinations of the

training dataset as additional features for classification.

Since the EEG signals are non-stationary, even a small

number of training sets may possess non-stationary traits.

Hence, calculating the mean values from several EEG

segments would de-noise and reduce variations of the

training sets. We repeated the same simulation process

after adding training features made by taking the sum

of three consecutive trials, sum of five consecutive trials,

and sum of all the trials. Fig. 4 displays performance vari-

ation in gamma bands for the added features. Through

such simple addition of enhanced features, the PLI-based

performance of the worst case (57.67± 3.8%) improved

to 61.93± 3.12% (around 4.2% accuracy improvement).

We observe that understanding the stationary features can

be a possible solution to overcome performance degrada-

tion over time.
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Figure 2: Performance evaluation of consecutive test runs

using phase lag index (PLI) and Pearson’s correlation co-

efficient (COR)-based approaches in six different spectral

bands.
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Figure 3: Classification matrices of eleven test runs in gamma band (30− 50 Hz) where phase lag index-based approach

is applied.
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Figure 4: Performance comparison of consecutive test

runs using phase lag index (PLI) and Pearson’s correla-

tion coefficient (COR)-based approaches in gamma band

and comparison with enhanced feature sets.

DISCUSSION

As EEG signals exhibit non-stationary characteristics,

BCI features vary from training to testing stages during

a BCI experiment. Through off-line analysis, we con-

firmed that the EEG-based biometric system requires a

novel methodology to ensure stable operation over time.

One possible approach to enhance the permanence of

such biometric systems is the development of signal pro-

cessing techniques to identify stationary traits hidden in

the EEG signals of individual subjects and improve accu-

racy via a simple averaging approach. One of the issues

concerning data processing is to find a unique feature ap-

pearing individually and a common feature prominent in

all the subjects. The distinct stationary signal features

extracted using machine learning and pattern recognition

techniques eventually result in the enhanced performance

of the biometric subject identification system.

Not only would the stationary traits of EEG sources from

training dataset (feature extraction step) enhance the per-

formance, but also would the proper classifier derived

by training dataset (classification step). Although linear

classification based on Euclidean distance measure was

adopted in the our simulation environment, other forms

of non-linear classifiers have potentials to strengthen the

robustness and improve the reliable accuracy over long

runs. Particularly, approaches built on deep neural net-

works that find and learn the features directly from the

data would serve more efficient when handling large vol-

umes of data.

Another appealing approach would be designing an adap-

tive experimental paradigm for biometric system proto-

cols. Though we assumed the EEG signals before in-

structing target onset as the resting state, subjects may
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reveal different mental states, for instance, expecting the

next instruction, being affected by the surrounding envi-

ronment, feeling exhausted due to long experimentation

time. The protocol design to maintain stationary men-

tal states between training and test stage would therefore,

enhance the biometric system.

CONCLUSION AND FUTURE WORKS

In this paper, we demonstrated the performance evalu-

ation of an EEG-based subject identification system for

a more practical scenario via off-line analysis. We im-

plemented the well-known functional connectivity mea-

sures for the biometric system which showed high per-

formance in single run recording data. We further ap-

plied the state-of-art biometric system to consecutive runs

over time and observed the accuracy degradation, and

consequently, highly emphasized on prominent issues re-

garding the necessity of the realistic scenario for rational

and reliable evaluation of the practical EEG-based sub-

ject identification system. Finally, We discussed possible

approaches to overcome current limitations and provided

research guidelines for follow-up in future works.

We expect the EEG based biometric system would be

spread to be accessed gradually from limited environ-

ments requiring an advanced security (such as banks, mil-

itary or companies) to personal usages. To be the practi-

cal application, the longitudinal studies exploring unique-

ness and distinctiveness of the brainwaves are fundamen-

tally required.
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ABSTRACT: This paper suggests a theoretical 

background for the hypothesis of P300 BCI based 

cognitive rehabilitation training to be a successful 

intervention for post-stroke aphasia [1].  

 

POST-STROKE APHASIA 

 
Up to 30% of all stroke survivors are affected by 

language comprehension or language production 

deficits [2]. In case of Broca aphasia, lesions affect the 

opercular and triangular areas of the inferior frontal 

gyrus, the Broca language area as well as tempoparietal 

regions and related neuronal circuits [e.g. 3]. While 

language comprehension is intact, self-expression is 

limited or impossible. In some cases, phonemes or 

words can be produced, however, communication with 

the environment still is challenging. Traditional speech 

therapy, as provided by the healthcare system, includes, 

among others, articulation training, slowing of speech 

rate, prosody training, face muscle, lip and tongue 

control training and use of compensatory strategies [e.g. 

4]. Best results for speech therapy were found for 

patients in the subacute phase and for patients with 

language comprehension as compared to language 

production deficits [5], which is why alternative 

approaches are urgently needed for this latter group. 

Chronic cases are numerous, as up to 50% of all patients 

do not fully recover [6]. Inability to communicate 

negatively affects relationships [7] and may even lead to 

depression [8]. 

 

BCI BASED POST-STROKE REHABILITATION 

 

BCI based rehabilitation interventions were suggested 

as treatments for stroke survivors. This line of research 

was mainly focused on motor rehabilitation [e.g. 9; 10; 

11; 12; 13]. Often, motor imagery based BCI 

interventions were used to increase neuronal plasticity 

of perilesional areas and clinically relevant 

improvements were obtained [10].  

 

More recently, also cognitive rehabilitation after stroke 

was investigated by applying BCI based neurofeedback 

paradigms to people after stroke with cognitive 

impairment such as attention deficits [14] or deficits in 

memory functioning [15]. A BCI based rehabilitation 

training improving attention capacities might also be 

beneficial for patients diagnosed with motor aphasia as 

a link between attention allocation ability and language 

production was suggested [16].  

 
ATTENTION AND APHASIA 

 
In their theory, Hula and McNeil [16] suggested a link 

between attention and aphasia. They state parallel 

processing to be based on intact neuronal network 

functioning throughout the cortex. Disruption of the 

network (by e.g. stroke) might therefore lead to loss of 

the ability to process information simultaneously, and 

thus, the ability to produce language. Their idea is 

supported by findings in patients with motor aphasia 

that show successful communication in case task 

complexity was decreased [17]. If the ability to produce 

language would be lost only due to anatomical damage, 

task complexity reduction would not be helpful for 

patients with aphasia.  

 

Interestingly, there is also an anatomical overlap 

between areas that are known to play a major role in 

language production and those that are hypothesized to 

be included in the generation of the P300 amplitude. 

While the P300 can still be detected in patients with 

motor aphasia [18], its amplitude is reduced [19]. 

Integrity of the temporoparietal junction was 

emphasized as a pre-requisite not only for language 

production but also for P300 generation. Therefore, 

P300 based training could support the activation of this 

temporoparietal region and thereby activate areas that 

are involved in language production.  

 

A BCI based rehabilitation method for aphasia patients 

based on an auditory BCI was already suggested [20]. 

This approach is based on the above-mentioned 

assumption of a link between aphasia symptoms and 

attention; however, possible brain anatomical overlap 

was not discussed [20]. In their study, the authors 

presented sentences. Participants chose the correct last 

word to finalize presented sentences by allocating 

attention to one of several words that were presented. 

This procedure allows for closing the language loop of 

trying to produce a word and receiving the sensory 

feedback that this effort led to the intended word 

production. While this approach is very interesting, it 

requires the participant to be able to keep in mind the 

sentence to be finalized while choosing the last word. 

Further, a participant with aphasia must be able to 
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understand the spoken sentence in the presented speed 

to decide which is the appropriate word to finalize the 

sentence. These issues can be adjusted to individual 

needs of patients and a first feasibility test in a stroke 

patient were successful [21]. However, when using a 

visual P300 BCI paradigm in which words and 

sentences can be spelled, the user might be more 

directly engaged in working with language material and 

train communicational skills by attempting to read the 

spelled words or messages.  

 

THE VISUAL P300 SPELLING PARADIGM 

 

The P300 signal on which the P300 speller [22] is based 

varies depending on the amount of attention allocated to 

the task at hand [23]. Therefore, it can be used as an 

indicator of the attention level and might be trainable 

with time ([1], see figure 1). Additionally, language can 

be produced by using the spelling paradigm, which 

might support neuronal plasticity of perilesional sites, 

but also increase the motivation of participants. 

Psychological well-being is an indicator for 

rehabilitation success [24]. Kleih and colleagues found 

first results to be promising when training patients 

diagnosed with Broca aphasia. All patients could use the 

P300 spelling paradigm, even though individual 

adjustments were necessary. These individual 

adjustments such as supporting the patient to use the 

speller matrix, should only be used in the beginning to 

familiarize the end-user with the paradigm. In the 

course of the training, the end-user should be enabled to 

use the P300 speller as described.  

 

 
 

Figure 1. People with Broca aphasia can still perceive 

language (light grey boxes). Language production is 

prevented (dark grey boxes). By using a P300 BCI 

training, usual pathways can be circumvented while 

training the ability to focus attention.  

 

INTERVENTION SPECIFICITY 

 

Concerning aphasia subtypes, a distinction between 

different forms of aphasia, such as Broca, Wernicke, 

transcortical and anomic and according brain lesions is 

required for the here presented approach to be 

successful. An activation of brain regions involved in 

language production and attention allocation was 

hypothesized to support Broca aphasia rehabilitation 

after stroke. In case the lesion is not located in the 

described areas, only the effect of using the P300 BCI 

as an attention training could be investigated. As brain 

regions affected by a lesion might be large, overlapping 

and very heterogeneous between patients, it might be 

difficult to judge whether a patient is a possible training 

candidate.  

 

CONCLUSION 

 

P300 based BCI may support post-stroke rehabilitation 

in patients with aphasia. It should be further 

investigated how it can be best adapted to the end-user, 

i.e clinicians and patients alike, following the user-

centred design [25]. Questions to be answered are for 

example: how much training is necessary? Does the 

increase of the P300 amplitude correlate with regaining 

of speech function? And, does this type of intervention 

yield superior results as compared to traditional speech 

therapy approaches which, from a technical point of 

view, are easier to apply? These questions are to be 

addressed by future research to judge the usefulness of 

the here presented approach.  
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ABSTRACT: Eye movements and their contribution to
electroencephalographic (EEG) recordings as ocular arti-
facts (OAs) are well studied. Yet their existence is typi-
cally regarded as impeding analysis. A widely accepted
bypass is artifact avoidance. OA processing is often re-
duced to rejecting contaminated data. To overcome loss
of data and restriction of behavior, research groups have
proposed various correction methods. State of the art ap-
proaches are data driven and typically require OAs to be
uncorrelated with brain activity. This does not necessarily
hold for visuomotor tasks. To prevent correlated signals,
we examined a two block approach. In a first block, sub-
jects performed saccades and blinks, according to a vi-
sually guided paradigm. We then fitted 5 artifact removal
algorithms to this data. To test their stationarity regarding
artifact attenuation and preservation of brain activity, we
recorded a second block one hour later. We found that
saccades and blinks could still be attenuated to chance
level, while brain activity during rest trials could be re-
tained.

INTRODUCTION

In the last two decades extensive research on the neural
encoding of upper limb movement kinematics has been
carried out [1]. Experiments on kinematics decoding typ-
ically comprise visuomotor (VM) tasks [2–4]. Such tasks
inherently involve visual feedback e.g. the distance be-
tween a target and an end-effector. Naturally, subjects
would foveate between or track objects of interest [5].
This is typically avoided in laboratory conditions by in-
structing subjects to fixate their gaze to an arbitrary fixa-
tion point and reduce blinking to a minimum [2, 3, 6].
We want to emphasize that solely removing frontal chan-
nels from the analysis, while allowing eye movements is
not sufficient to attenuate ocular artifacts (OAs) [4]. Cen-
tral and parietal channels would nonetheless exhibit high
correlations with saccade directions [7].
If the protocol allows saccades and blinks, literature typ-
ically separates between three independent types of ar-
tifacts [7, 8]. (1) Corneo-retinal dipole (CRD) artifacts
cause signal changes that depend on eyeball rotation size
and direction [7]. (2) Eyelid artifacts emerge from blinks,
eyelid saccades and post-saccadic eyelid movements [7].
They elicit a large potential and are generated by the eye-
lid, whose displacement changes the impedance between

positively charged cornea and extraocular skin [8]. (3)
The saccadic spike potential (SP) is most prominent on
periorbital electrodes and believed to result from contrac-
tion of extra-ocular muscles [8].
In future, we plan to apply the methods developed here on
decoding kinematics from continuous visuomotor tasks.
Previous studies consistently reported significant decod-
ing information in low frequency components (<2 Hz)
[2, 3, 6, 9]. We therefore focus on CRD and eyelid move-
ments, since SP artifacts emerge in a frequency range
>20Hz [8].
An alternative strategy to OA avoidance is correction.
Literature provides numerous offline correction methods.
For a recent review see [10]. Most common methods are
either source estimation [7, 11, 12] or regression based
[13] or a hybrid variant [14]. They all assume a linear
mixing model:

x(t) = As(t) = A(b)s(b)(t) + A(a)s(a)(t) (1)

with the scalp recordings x(t) at time t being a mixture of
sources s(t). The mixing matrix A is unknown. It can be
separated into mixing coefficients A(b) for brain sources
s(b)(t) and A(a) for artifact sources s(a)(t).
Cortical control of an end-effector requires online re-
moval of OAs. One approach is to use adaptive algo-
rithms to iteratively estimate A(b) [14]. An advantage is
that they can track changes of mixing coefficients due to
i.e. a changing electrode scalp interface. However, they
assume uncorrelated brain activity and artifacts [10]. This
does not necessarily hold true for VM tasks. An alterna-
tive correction approach proposed in [13] is to use a block
based experimental design. In the first block subjects
perform voluntary eye artifacts. Thereupon a correction
model is learned and applied online in the main block,
during which subjects perform the actual task. Here time
invariant mixing coefficients are assumed. Consequently,
artifacts and brain activity can be correlated during the
actual experiment. If the correlated brain activity con-
tributes negligibly to the estimated eye artifact signals,
only the artifact fraction is removed.
To our knowledge literature lacks a thorough compari-
son of how the previously listed correction approaches
perform on the described block design. We selected five
representatives and assessed their artifact correction per-
formance on held out data. The algorithms are briefly
outlined in the remainder of this section.
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EYE-REG: A regression based algorithm originally
proposed for block design [13]. It requires designated
EOG channels to compute vertical and horizontal esti-
mates of eye artifact source signal ŝ(a)(t). The model,
defined in equation 1, can be rewritten as

x(t) = A(a)s(a)(t) + n(t) (2)

with the brain activity considered as noise n(t). The au-
thors used the least squares solution to calculate an esti-
mate Â(a). The cleaned channels xc(t) are then:

xc(t) = x(t)− Â(a)ŝ(a)(t) (3)

If the empiric estimates Â(a) and ŝ(a) are close to the
unknowns, we can recover the brain activity by inserting
equation 2 in 3:

xc(t) = A(a)s(a)(t) + n(t)− Â(a)ŝ(a)(t) ≈ n(t) (4)

MARA1: Multiple Artifact Rejection Algorithm
(MARA) is an independent component analysis (ICA)
based algorithm [12]. ICA is used to estimate an unmix-
ing matrix V that transforms equation 1 into:

ŝ(t) = Vx(t) = VAs(t) ≈ s(t) (5)

and recovers independent components (ICs) ŝ(t). MARA
then applies a plug-and-play classifier to identify artifac-
tual ICs and rejects them [12].

EYE-EEG1: Here, artifactual ICs are rejected based on
a variance ratio metric [7]. An IC’s variance is computed
during designated saccade and fixation periods2. If their
ratio exceeds a threshold, the IC is rejected. In [7] an eye
tracker was employed to detect saccades and fixations.

REGICA1: Regression-ICA is a hybrid method [14].
The authors showed that artifactual ICs carry more ocular
and less brain activity than scalp channels. Hence, they
proposed to apply regression to artifactual ICs only.

EYE-SUB1: Artifact subspace subtraction is another
approach to correct equation 1 for eye artifacts. Instead of
using fixed linear combinations of EOG channels, like for
regression, an artifact unmixing matrix V(a) is computed.
It recovers an estimate of the eye artifact signals ŝ(a)(t):

ŝ(a)(t) = V(a)x(t) (6)

In combination with an estimated artifact mixing matrix
Â(a) equation 3 transforms to:

xc(t) = x(t)− Â(a)ŝ(a)(t) = (I− Â(a)V(a))x(t) (7)

The columns of Â(a) are computed by finding the sub-
space which is maximally different between two condi-
tions e.g. up vs. down saccades [11].

1We used the publicly available eeg-lab extension. Available online:
https://sccn.ucsd.edu/wiki/EEGLAB_Extensions

2Fixations are defined as periods during which no eye movements
happen [7].

MATERIALS AND METHODS

Participants: Five persons, aged 23.6±3.9 years, par-
ticipated in this study. Three of them were female. All
subjects had corrected to normal vision. They had al-
ready participated at least once in an EEG experiment
before. All signed an informed consent after they were
instructed about purpose and procedure of the study. The
experimental procedure conformed to the declaration of
Helsinki and was approved by the local ethics committee.

Stimulus Presentation: Subjects were seated in a
shielded room at 1.4m distance to a computer screen
(NEC Multisync 27” IPS TFT, 60Hz refresh rate, FullHD
resolution). Stimuli were restricted to a square of 0.32 m
x 0.32 m around the center of the screen (∼13° x 13° vi-
sual angle).

Data Acquisition: EEG and EOG were recorded with
a 64 channel ActiCap system connected to a BrainAmp
amplifier. It sampled the data at a rate of 1 kHz and ap-
plied a first order highpass filter with a cutoff frequency
of 0.016 Hz. 58 electrodes were placed at frontal, central,
parietal and occipital sites according to the extended 10-
20 system. The remaining 6 electrodes were placed on
the outer canthi, infra and superior orbital to the left and
right eye respectively. Ground and reference were placed
on AFz and the right mastoid, respectively.

Experimental Procedure: The paradigm is illus-
trated in Figure 1. It defines four conditions. REST:
subjects were instructed to fixate a blue sphere for 10 s.
HORZ/VERT: the sphere moved on a continuous hori-
zontal/vertical trajectory. Subjects were directed to ac-
curately follow it with their gaze. BLINK: The sphere’s
vertical diameter shrunk 8 times for 0.5 s instructing sub-
jects to blink once each time.
We decided to implement a visually guided paradigm to
have control over saccades and blinks. It simplifies split-
ting the data into corresponding epochs. An eye tracker,
originally required by EYE-EEG, was not necessary ei-
ther. Figure 5 (right) illustrates the accordance of the
stimulus with subject behavior (EOG derivatives).
The recording time was divided into 3 blocks. The first
and last followed the presented paradigm. Both consisted
of 27 trials (9 REST, 6 HORZ, 6 VERT and 6 BLINK).
The choice of 27 trials and their partition was motivated
by the requirements of the algorithms. Recordings of the
middle block, lasting roughly 60 minutes, followed a dif-
ferent paradigm and will be published elsewhere.

Preprocessing: The EEG data was first downsam-
pled to 250 Hz. To attenuate 50 Hz line noise, a 2nd order
Butterworth bandstop filter was applied. Slow drifts were
removed by a zero-phase 4th order Butterworth highpass
filter with 0.4 Hz cutoff frequency.
We visually inspected the data for bad channels and
flagged 1 to 3 channels across subjects. They were spher-
ically interpolated. We then extracted epochs of 7 s start-
ing 1 s after cue presentation and rejected 1.7±1.2 trials
per block by visual inspection.
Three of the five algorithms, that we compare, process
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Figure 1: Experimental task. (left) The visual stimuli consisted of a 3D grid and a sphere, located in the center of the screen. Every trial
started with a break lasting 2 to 3 seconds (uniformly distributed). Thereupon the sphere color changed to blue. After 1 s a condition
dependent pattern was presented for 10 s. (right) First 5 s of the condition dependent patterns (blue). REST: the sphere remained in the
center of the screen. HORZ: it moved along the horizontal plane according to a windowed sinusoid with a frequency of 0.5 Hz. VERT:
the same movement but along the vertical plane. BLINK: the vertical diameter of the sphere changed, instructing the subject to blink.
Additionally horizontal, vertical and radial EOG derivatives for selected trials of subject 1 are plotted (black).

the data in IC space. Before computing ICA we applied
principal component analysis (PCA) on the 64 EEG/EOG
channels and retained components explaining 99.9% of
the variance. We then applied the extended Infomax al-
gorithm to compute the unmixing matrix V of equation 5.
The regression based algorithms require EOG compo-
nents as artifact sources ŝ(a)(t). The horizontal EOG
(HEOG) derivative was computed as the difference be-
tween right and left outer canthi, vertical EOG left/right
(VEOGL/R) as the difference between left/right superior
and inferior electrode, and the radial EOG (REOG) com-
ponent as the average of all six EOG electrodes.

Fixation, saccade and blink detection: EYE-EEG
required separating the data into fixation and saccade
periods. Since we asked subjects to avoid eye move-
ments during REST condition, we used REST trials as
fixation periods. For saccade detection the HEOG and
VEOG3 component were first lowpass filtered (zero-
phase Butterworth, 2nd order, 20 Hz cutoff frequency).
Horizontal/vertical saccade periods were extracted from
HORZ/VERT condition trials if the absolute value of
the H/VEOG component was above 10 µV for at least
200 ms. The sign was also used to split the data into
left/right and up/down saccades.
Blink detection is also based on the lowpass filtered
VEOG component. Samples during BLINK trials were
set to be blink related if the VEOG amplitude was above
200 µV. The limits of these periods were expanded by
75 ms to include blink on- and offset.

3VEOG is the arithmetic mean of VEOGR and VEOGL.

EYE-REG: In [13] the authors argue to omit the REOG
component, since it also captures considerable brain ac-
tivity. We, therefore, used only HEOG and VEOGL/R as
predictor variables for multiple linear regression.

EYE-SUB: First, penalized logistic regression (PLR)
[11] with a regularization factor of 10−3 was applied to
compute four artifact source signals ŝ(a)(t) (4x1) that
have a maximum magnitude difference between either
left/right, up/down, blink/up or blink/down conditions.
Similar to the regression approach, given ŝ(a)(t), Â(a)

(64x4) can be computed by the pseudo inverse. The rest
data was used to estimate a noise covariance matrix Rn

(64x64). Considering Rn, the unmixing matrix V(a)

(4x64) can be calculated by the regularized weighted
least squares solution [11]:

V(a) =
(
Â(a)TRnÂ(a) + Λ

)−1

Â(a)TRn (8)

with Λ = λI and regularization factor λ = 10−4.
EYE-EEG: Similar to the original paper we set the

threshold for the variance ratio to 1.1 [7].
REGICA: Precomputed ICs were flagged using the

correlation between each IC and HEOG, VEOG with a
threshold of 0.2. Multiple linear regression was applied
to flagged ICs only. We used H/V/REOG as predictor
variables.

Evaluation: All algorithms were fitted to the first block
of data i.e. computation of ICA, regression weights and
fitting of hyper parameters. The second block was solely
employed for testing.
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To assess artifact attenuation, we computed absolute val-
ues of Pearson correlation coefficients |r| between EOG
derivatives and each EEG channel. HEOG was used
for HORZ, VEOG for VERT and blink periods during
BLINK condition, respectively. Bootstrapping was ap-
plied to estimate chance level for |r|. Thus, we first
merged the test trials of all subjects. We then randomly
sampled 5 trials4 of e.g. HORZ condition and computed
|r| with EEG channels of 5 random REST trials. The
shuffling was repeated 5000 times for each condition.
This yielded a 95%-quantile of 0.11 in every of the three
conditions.
Preservation of neural activity was assessed twofold.
Firstly, through computing the root mean squared error
(RMSE) between cleaned xc and uncleaned x signals
during REST condition trials [14].

RMSE(k) =

√√√√ 1

Ns

Ns∑
n

(x[k, n]− xc[k, n])2 (9)

with k being the channel index and Ns the total number
of samples in the test set.
Secondly, by computing the ratio between power spectral
density of cleaned (Pxxc) and uncleaned (Pxx) signals

Pxxratio(k, f) =
Pxxc(k, f)

Pxx(k, f)
(10)

for each EEG channel k and frequency bin f [13]. We
applied Welch’s method to estimate the power spectral
density for each trial and averaged across a subject’s test
trials.

RESULTS

Figure 2 depicts grand average topoplots of the 58 EEG
channels after correction. The plots summarize mean test
set performance for each metric and algorithm. The first
row represents the uncorrected EEG. We observed typical
eye artifact patterns for HORZ, VERT and BLINK con-
ditions. Table 1 complements Figure 2. It lists mean and
standard deviation across subjects for frontal, central and
parietal channel groups.
Regarding the RMSE during REST, all algorithms ex-
hibit a gradient from pre-frontal to occipital regions.
MARA and EYE-EEG removed most activity, whereas
EYE-REG and EYE-SUB achieve lowest RMSE across
channel groups.
Figure 2 and Table 1 also summarize the absolute corre-
lation |r| between EEG channels and EOG derivatives af-
ter correction. One can clearly see that MARA could not
identify ICs related to horizontal and vertical eye move-
ments. This results in correlation values of up to 0.28
for frontal regions, which are clearly above the estimated
chance level (0.11). The topoplots of the other algorithms
show consistent attenuation of horizontal eye movements
over scalp regions. Concerning vertical eye movements,

4Average number of trials in a subject’s test set after rejection.

Figure 2: Topoplots (58 EEG channels) summarizing the
average test set performance of the algorithms across sub-
jects. (left) RMSE between corrected and uncorrected sig-
nal during REST condition, (right) absolute correlation |r|
with HEOG/VEOG/VEOG during HORZ/VERT/BLINK con-
ditions.

EYE-SUB, EYE-EEG and REGICA could attenuate the
correlation to similar levels as for horizontal ones. We
also found that EYE-SUB and REGICA could attenuate
blinks to chance level for frontal/central and parietal re-
gions.
For visualization purposes, subsequent Figures show only
the four algorithms that could attenuate artifact correla-
tions to chance level, namely, EYE-REG, EYE-SUB, EYE-
EEG and REGICA.
To estimate their performance decrease, we calculated
group level means for train and test set. Figure 3 dis-
plays them for the average EEG channel. The barplots
indicate mean and 95%-confidence interval for each con-
dition and its associated metric. Non-overlapping train
and test set confidence intervals, indicate a significant
difference. The absolute correlation |r| increased signifi-
cantly for EYE-SUB (HORZ) and EYE-EEG (HORZ and
BLINK).
The power spectral density ratio Pxxratio between cor-
rected and uncorrected EEG revealed further differences
across algorithms. Group level mean and its 95%-
confidence interval are depicted in Figure 4 for frontal,
central and parietal regions. EYE-SUB had its mean clos-
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Table 1: Group level summary of performance metrics for
frontal, central and parietal channel groups on the test set. Mean
and standard deviation across subjects are stated per metric. The
lowest value per metric and channel group is highlighted.

Condition REST HORZ VERT BLINK
Metric RMSE |r| |r| |r|
Unit µV - - -

Frontal (F3, Fz, F4)
EYE-REG 1.8±0.5 0.06±0.04 0.11±0.07 0.19±0.15
EYE-SUB 1.4±0.1 0.08±0.03 0.06±0.04 0.11±0.08
MARA 3.1±1.0 0.12±0.13 0.28±0.25 0.23±0.08
EYE-EEG 2.3±0.4 0.06±0.02 0.06±0.05 0.15±0.09
REGICA 2.0±0.2 0.07±0.02 0.07±0.04 0.10±0.04

Central (C3, Cz, C4)
EYE-REG 1.0±0.4 0.06±0.04 0.10±0.04 0.16±0.10
EYE-SUB 1.1±0.4 0.07±0.05 0.06±0.04 0.08±0.05
MARA 2.5±1.0 0.10±0.13 0.24±0.22 0.14±0.09
EYE-EEG 2.2±0.9 0.05±0.02 0.05±0.02 0.12±0.07
REGICA 1.3±0.3 0.05±0.03 0.04±0.03 0.08±0.04

Parietal (P3, Pz, P4)
EYE-REG 0.7±0.2 0.07±0.04 0.12±0.06 0.12±0.06
EYE-SUB 1.0±0.4 0.06±0.04 0.07±0.04 0.10±0.08
MARA 2.2±1.0 0.10±0.13 0.20±0.21 0.12±0.03
EYE-EEG 2.1±0.8 0.04±0.02 0.06±0.04 0.10±0.08
REGICA 1.2±0.4 0.05±0.02 0.04±0.03 0.09±0.03

Figure 3: Algorithm performance on the average EEG channel
for train (dashed) and test (solid) set. Mean and 95%-confidence
interval across subjects are plotted for RMSE (left) and absolute
correlation |r| (right). Significant differences between train and
test set are marked by *.

est to an ideal ratio of 1 and least variability of the mean
across frequencies. EYE-EEG showed similar behavior
for frontal, but larger attenuation in delta/theta frequency
bands for central and parietal areas. EYE-REG resulted in
largest mean attenuation in frontal areas, closely followed
by REGICA. This improved considerably for central and
posterior areas. We could also observe a larger variance
of REGICA for the beta frequency band. It peaked in
frontal channels.

DISCUSSION

In this work we compared five ocular artifact (OA) re-
moval algorithms with regard to their applicability in a
two step block design. We first trained the algorithms
on a 5 min block of recordings. We then assessed their

Figure 4: Mean and 95%-confidence interval of the group level
power spectral density ratio Pxxratio for frontal (F3/z/4), cen-
tral (C3/z/4) and parietal (P3/z/4) channels during REST condi-
tion. An ideal algorithm would yield a ratio of 1 for all frequen-
cies.

OA removal quality on a test block recorded 60 minutes
later. This approach implies a constant mixing matrix
A(a) for artifact sources. Our results, mainly Table 1 and
Figure 3, give evidence that it is a reasonable assumption.
We found that correlations for saccades and blinks could
be attenuated to chance level, even 60 minutes after train-
ing. We emphasize that the difference between train and
test set, displayed in Figure 3, captures not only the dif-
ference in time but also whether the data was used for
parameter estimation. Therefore, we can not rule out if a
significant difference was due to changing scalp projec-
tions or over-fitting on the train data.
As already pointed out in the introduction, allowing eye
movements while only removing frontal channels is in-
sufficient. Average correlations of up to 0.5 for uncor-
rected central and parietal channels (Figure 2) demon-
strate the necessity for correction.
Regarding the algorithms, MARA, which did not rely
on any label information, achieved lowest performance.
While EYE-SUB, which required most information (an-
notated saccade and blink events), could attenuate ar-
tifacts to chance level and maintain low RMSE dur-
ing REST condition. REGICA and EYE-EEG showed a
tendency to achieve better attenuation for saccades and
blinks in central and posterior areas but also to remove
more brain activity.
The visually guided paradigm allowed us to control arti-
fact occurrence. This simplified an automated annotation
of artifact types (e.g. up/down saccades). In general, all
algorithms tested here can be applied online. After arti-
fact rejection and model calibration, which takes around
5 minutes, the correction process itself involves only ma-
trix multiplications.
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Figure 5: Representative examples in time domain for 2 s windows of selected trials. Displayed are 11 channels before (black) and after
correction with EYE-SUB (red).

CONCLUSION

Based on the average performance on the test set, we
found that MARA is not suitable for the investigated block
design. Our results indicate, that artifact subspace sub-
traction (EYE-SUB) could achieve the best trade-off be-
tween attenuating eye artifacts and maintaining rest brain
activity. Figure 5 depicts the difference between cor-
rected and uncorrected EEG for representative trials and
channels.
To complement our findings, we plan to analyze the effect
on a kinematics decoder. This is a necessary step, since a
significant performance drop was reported for a linear de-
coder after correction for OAs [6]. This demonstrates that
eye artifacts were correlated with the dependent variables
(x/y/z velocities). Our block design accounts for such a
scenario, which encourages further research in this direc-
tion.
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ABSTRACT: Decoding the human brain state with BCI
methods can be seen as a building block for human-
machine interaction, providing a noisy but objective,
low-latency information channel including human re-
actions to the environment. Specifically in the context
of autonomous driving, human judgement is relevant
in high-level scene understanding. Despite advances in
computer vision and scene understanding, it is still
challenging to go from the detection of traffic events
to the detection of hazards.
We present a preliminary study on hazard perception,
implemented in the context of natural driving videos.
These have been augmented with artificial events to
create potentially hazardous driving situations. We de-
code brain signals from electroencephalography (EEG)
in order to classify single events into hazardous and non-
hazardous ones. We find that event-related responses can
be discriminated and the classification of events yields
an AUC of 0.79. We see these results as a step towards
incorporating EEG feedback into more complex, real-
world tasks.

INTRODUCTION

Humans can hardly compete with machines in purely
computational tasks. Though the progress in machine
learning and artificial intelligence in general has led to
computers outperforming humans in difficult tasks such
as playing the game of Go, it is still challenging to pro-
vide adequate interaction policies between humans and
machines. This challenge is faced in application areas
in which machines and humans both are actors, such as
in collaborative manipulation tasks with robot arms or
autonomous cars sharing the road with humans. Robots
often require a high amount of adaptation to the human
user, specifically by learning from her or him. In the
following, we will focus on the driving domain, where
many challenges in the interaction between intelligent
vehicles and humans (be it as passengers, drivers or
pedestrians) arise [1].
When considering complex (e.g., residential) driving
environments, it is not sufficient to consider humans in
the scene merely as (dynamic) obstacles. Rather, it is
desirable to have a task-specific label for these obstacles,
such as the respective hazardousness.

potential hazards

EEG

Figure 1: Experimental Paradigm: Recordings of driving
scenes have been augmented with potentially hazardous
events (artificial pictograms). The resulting videos are
shown to the subjects while brain signals are recorded
using electroencephalography.

We propose to utilize electroencephalography-based sig-
nals (EEG) to gather human feedback about the environ-
ment in a passive way. Alternative approaches to incor-
porating human teaching input, such as learning from
demonstrations, can also be valuable tools [2]. However
the situation- and context-dependence of preferred be-
havior (e.g., whether a situation should be treated as
hazardous or not) suggests to instead gather feedback
from the human, while she or he is acting within the
target environment or within a reasonable approximation
thereof. EEG signals, as opposed to behavioral feedback
like button presses, offer the advantages of being non-
intrusive and having a low latency. Additionally, brain-
computer interfaces (BCIs) provide an unbiased feed-
back channel that corresponds to the subject’s individual
scene perception.
As the low signal-to-noise ratio of EEG poses practical
challenges, it may be reasonable to seek for a balanced
trade-off between a constrained lab environment and
the final application environment to run experiments.
Therefore, in this study we investigate passive viewing
behavior of humans in continuous driving videos as a
step towards monitoring humans as passengers in cars,
with a possible application in the area of autonomous
driving.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-45

CC BY-NC-ND 242 Published by Verlag der TU Graz 
Graz University of Technology



As illustrated in Figure 1, we use videos of natural
driving scenes as stimulus material and augment them
with realistic salient pictograms of hazardous and non-
hazardous events. With this, we focus on the domain-
specific meaning (hazardousness) of the event rather
than on the sole detection of an event (as in an oddball
setting).
In the context of this paper, events are considered
as hazardous when they would be dangerous (to the
pedestrian or the driver), are hard to predict and, most
importantly, require special attention or reaction by the
(robot) driver (e.g., more defensive behavior or slowing
down). As an example, a child or a pedestrian walking
on the sidewalk would be considered as non-hazardous
whereas a child running from occlusion onto the street
(c.f, Figure 1) would be hazardous. While we focus on
hazardousness here, we view it merely as an example
for a high-level semantic scene information.

RELATED WORK

Substantial prior work addresses scene understanding
for intelligent vehicles in the presence of humans (c.f.,
the survey by Ohn-Bar and Trivedi [1]). As a relevant
example, Møgelmose et al. [3] present an integrated
approach on pedestrian detection, tracking and hazard
inference. For the latter, they leverage map data (prox-
imity to street) to assign hazardousness to pedestrians.
However, as also discussed in the following section, the
mere presence of humans in the vicinity of the car does
not necessarily imply a hazard.
Utilizing BCIs in the context of human-machine inter-
action, substantial previous work has been performed on
decoding user state from brain signals for improved user
experience or performance. For example, workload or
drowsiness can be detected from EEG in different task
settings [4], [5] and can be used to adapt tasks based on
the decoded user state [6].
At the intersection of BCI research and, both simulated
and real, driving, several works have addressed the
utility of brain responses for human-machine interaction.
Haufe et al. [7] investigated using brain signals in early
detection of emergency braking. They report that using
event-related potentials for detection of braking signals
is feasible both in simulation and real-world driving,
whereas oscillatory signals do not provide complemen-
tary information. Khaliliardali et al. [8] focused on the
anticipation and prediction of the type of driver’s actions
in an automotive go/no-go paradigm. Zhang et al. [9]
investigated the response to directional cues presented
by driving assistant systems and classified whether these
correspond to the user’s intention based on error-related
brain activity.
Whereas the subject’s desired reaction to a stimulus is
immediately clear in the first two studies or only requires
a comparison with a street sign in the third, in this
paper we consider a more unconstrained stimulus setting
in which both the context and partly the movement of
stimuli is relevant for the class assignment of an event
as a step towards more ecological validity [10].

Figure 2: Exemplary events from the stimulus material.
The top row consists of events that have been labeled
as hazardous, whereas events in the center and bottom
row are labeled as non-hazardous. Only half of the
actual width of the video frame is displayed for layout
purposes.

MATERIALS AND METHODS

Five healthy subjects participated in the study by watch-
ing natural video sequences of traffic scenes. All subjects
gave their written informed consent and the study has
been approved by the Ethics Committee of the Univer-
sity Medical Center Freiburg.

Experimental Design: The stimulus material consists
of video sequences based on actual car recordings from
the KITTI dataset [11] with a resolution of 1242x375 px.
Parts of the sequences were edited by inserting events
with pictograms in order to introduce potential hazards.
A selection of exemplary events is depicted in Figure 2.
The pictograms introduced in the natural scenes are
generally salient and easily discoverable. However, a
substantial portion of events consists of pictograms
appearing from occlusion (both with or without prior ap-
pearances in the scene). The appearance of a pictogram
from occlusion does not automatically imply that it is
a hazard, which needs to be inferred from the context
instead.
Different types of pictograms (such as children, pedestri-
ans, cyclists) and different colors are used. However, the
type of pictogram or color does also not imply the class
label, i.e., hazardousness of the event (c.f., the color
distribution by event class in Figure 3). Similarly, events
in close proximity to the car can be both hazardous or
non-hazardous (e.g., a child running close to the curb
compared to a pedestrian with a dog in Figure 2).
In total, each subject watched 240 scenes (videos) of 20 s
each. The total of 240 scenes is grouped into blocks of
12 scenes. Each block is balanced between scenes in
simple (e.g., highways) and complex (e.g., residential)
environments.
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Figure 3: Event counts from a full experiment ses-
sion, grouped by stimulus color and class label. The
“red+blue” group consists of stimuli consisting of mul-
tiple participants (e.g., mother and child). It is apparent
that the assignment of an event to a class cannot be
performed solely based on stimulus type or stimulus
color.

Embedded in these scenes are 262 unique events, out
of which a portion was repeated over the course of
the experiment, resulting in a total of 450 events in an
experiment session. Out of all events in an experiment
session, 97 are labeled as hazardous and 353 as non-
hazardous.
During the experiment, subjects were seated approxi-
mately 80 cm in front of a 24 inch monitor, where videos
were presented at 10 frames per second (corresponding
to the recording rate of the source material). Subjects
were instructed that they should assume being passen-
gers in an autonomous vehicle and that they should
press a button (in their right hand) in case of hazardous
situations. Pressing the button could be seen as relaying
the desire to drive more defensively to the vehicle.
During the experiment, however, the videos continued
normally, disregarding the button press.
EEG signals were recorded from 63 passive Ag/AgCl
electrodes (EasyCap), which were positioned according
to the extended 10-20 system and referenced against
the nose. Impedances were kept below 20 kΩ. The
signals were registered by multichannel EEG amplifiers
(BrainAmp DC, Brain Products) at a sampling rate of
1 kHz.

Data Analysis: The recorded data was analyzed
offline. It has been bandpass-filtered from 1.1 Hz to
15 Hz and downsampled to 100 Hz. Subsequently, the
continuous recording has been divided into one segment
per event. Each segment has a duration of 1200 ms,
consisting of 200 ms preceding the first frame containing
the pictogram and 1000 ms succeeding it. Note however
that due to occlusions the pictogram is often not yet
fully visible in the first frame of its appearance.
Before subsequent processing steps, channels whose
variance was smaller than 0.5 for more than 10 % of
the segments were rejected.

Additionally, segments that violated either a min-max
threshold of 70 µV at frontal electrodes or whose vari-
ance was excessively large were rejected as artifactual.
For base correction, the mean amplitude of the first
200 ms (corresponding to the duration of the two video
frames preceding the pictogram) is subtracted from the
signal.
Each segment was labeled as hazardous or non-
hazardous (c.f., Figure 2). We use annotated class labels
instead of using the behavioral button response of sub-
jects to have constant class distributions and therefore
better comparability across subjects.
As features for classification, mean voltages in 100 ms
windows from 100 ms to 900 ms after the first visible
pictogram frame were used. Both single time intervals
and cumulative time intervals (i.e., concatenating the
channel means of the interval with all preceding ones)
were used as feature vectors (see Figure 5 for the used
intervals).
Analyzing each subject individually, we train and evalu-
ate classifiers in a chronological 5-fold cross-validation.
Classification was performed by regularized linear dis-
criminant analysis (with analytic determination of the
shrinkage parameter). Classification results are reported
as the area under the receiver operating characteristic
(AUC). Assigning predictions at random would result
in a chance-level AUC of 0.5.

RESULTS

Participants gave qualitative feedback that the events
labeled as hazardous were perceived as such, and sub-
jects pressed the button in 74 % of hazardous events.
Based on the rejection policies described in the previous
section, 12 % of all epochs were rejected. Rejection rates
were similar for both classes such that the original class
distribution was preserved.
We observed event-related responses to both hazardous
and non-hazardous events with peak amplitudes around
600 ms after the first (partial) appearance of a po-
tentially hazardous stimulus. Spatially, we observed a
predominantly non-lateralized response throughout the
subjects. Central and parietal electrodes offer highest
discriminative information between hazardous and non-
hazardous events for four of the five subjects.
Figure 4 visualizes data of a subject with average
decoding results. Both hazardous and non-hazardous
events show event-related potentials compared to base-
line intervals taken from video segments at least 5 s
from each annotated event. However, hazardous events
elicit a stronger response. This is most prominent from
500 ms to 800 ms after the event’s first video frame, as
depicted by the color bars representing the channel-wise
discriminatory information between hazardous and non-
hazardous events.
Using eight time intervals within the range of 100 ms
to 900 ms after the first visible frame of the event,
classification yielded a mean AUC of 0.79 over all
subjects, with a minimum AUC of 0.75 and a maximum
of 0.87 across the five subjects.
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Figure 4: Event-related responses of an exemplary subject (with average classification quality) at seven electrodes.
Lines show the mean voltage at the given electrode over all hazardous, non-hazardous events or baseline segments,
respectively (N = 79, 297, 315). Baseline segments are extracted from parts of scenes that are separated by at least 5 s
from other events. The mean of the first 200 ms of the interval (i.e., before the appearance of the pictogram) has been
subtracted from each channel. The colorbars depict the signed r2 value between hazardous and non-hazardous events.

Focusing on the features’ influence on single-trial de-
coding quality (see Figure 5), one can see that classifiers
trained on features from 300 ms to 400 ms after onset
show the first reasonable performance (AUC of 0.66).
The best single time windows have latencies of 500 ms
to 600 ms and 600 ms to 700 ms after onset. Cumula-
tively using all time windows up to a given point, we
see gains until 800 ms after the event.

DISCUSSION

We find that distinguishing between hazardous and non-
hazardous events is possible with a reasonably good
quality for all five subjects (minimum AUC of 0.75).
Although results need to be supported by more subjects,
the observation that discriminative information from the
first 600 ms already result in a mean AUC of 0.76
suggests the possibility for close-to-realtime utilization
as an information source in online systems.
For this study we did not perform exhaustive feature
engineering or hyperparameter optimization, but rather
focused on obtaining a realistic decoding result using
“best practice” methods in order to evaluate the feasibil-
ity of distinguishing between high-level event classes. It
appears reasonable to expect that better decoding results
are possible by, e.g., adapting time intervals or spatial
filters to individual subjects.
On a cursory glance, the question might arise whether
the results just resemble a “classical” P300 effect in an
oddball scenario. We argue that this is not the case since
we aim to distinguish between two different types of
events (hazardous and non-hazardous) which are both
similarly (un)expected. Observed effects are not based
on the sole occurrence of an event compared to a
baseline stimulus.

Despite the smaller amount of hazardous events com-
pared to non-hazardous ones (since traffic scenes should
maintain some degree of realism), both classes are “odd”
events that differ strongly from regular parts of the
scenes (also in their brain response, as depicted by the
baseline class in Figure 4). Hence, rather than discrim-
inating rare unexpected events from regular ones, our
classes distinguish between the contextual meaning of
an event. Furthermore, due to the priming of participants
(e.g., by pedestrians appearing before occlusions) and
some repetitions in the later course of the experiments,
we argue that the sole occurrence of (both classes of)
events is not always unexpected.

The comparatively high latency of the event-related
response could be attributed to the fact that stimuli
are still partly occluded at time 0 s. Additionally, it
has to be noted that the decision whether a pictogram
is hazardous could not always be made immediately
at its appearance since movement with respect to the
scenes is critical for judging the event. Alongside the
different latencies after which participants noticed the
pictograms, these differences between time-alignment
of events could potentially be mitigated by relying
on fixation-related potentials [12]. Nevertheless, these
latencies are common to both classes so we expect only
minor influence upon the quality of classification.

Since subjects performed button presses during the
experiment, the question arises whether the decoding
results might be solely based on the motor activity of
the subject. However, this appears to not be the case
since there is not a clear lateralization of the response
as would be expected from a single-handed motor ac-
tivity. Additionally, artifact rejection should diminish the
effects of muscular artifacts in the analyzed signal.
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As the preceding paragraphs suggest, the complex set of
stimuli might lead to several effects that might be con-
sidered confounders in the context of the classification.
As discussed above for a selection of important candi-
dates, we aimed to either control for these or check that
they did not heavily affect the results. More importantly,
we would like to stress that real-world use cases of BCIs
most likely also implicate substantial confounders to the
main task and in the light of ecological validity of BCI
studies, these have to be dealt with in the analysis rather
than solely by restricting the experiment.

While we focus on hazardous and non-hazardous events
in the context of the paper, these labels should be
considered as representatives of semantic classes that
can easily and “intuitively” be distinguished by humans
whereas it is challenging to infer them from alternative
sensor data.

Regarding the applicability of the performed experi-
ments to real-world driving, we want to discuss two
major impediments of the current setup. First, the exper-
iments are limited to video-based stimuli in a laboratory
setting and events have been artificially introduced into
the scenes. While this has been motivated by having
repeatable experiments with material that is similar in
quality, style and salience of stimuli, there is still an
apparent mismatch with car recordings in real traffic.
Regarding the signal quality, an automotive environment
including abrupt movement is certainly a more difficult
recording environment. However, such an environment
can also be expected to create a much higher immersion
than the laboratory setting, which might also transfer
to more distinct subject reactions. Additionally, it is
reasonable to expect some generalization to a car setting
since the stimulus material is comparatively realistic
and a transfer across similar ERP-based tasks has been
shown to be feasible [13].

A second constraint of the presented analysis is the
assumption of having temporal alignments for the po-
tentially hazardous candidate events. However, in the
context of autonomous driving it is reasonable to assume
that additional sensor equipment (such as cameras or
laser scanners) are able to detect candidate events (e.g.,
the appearance of dynamic obstacles or identification of
pedestrians [1]).

Generally, we find that the combination of BCI-based
monitoring in the context of autonomous machines
promises to be especially helpful in the generation
of labels from humans with high temporal resolution.
During development of systems, this can be utilized to
directly associate training data from other modalities
with continuous human feedback, e.g., to evaluate the
compliance of the machine to the human’s requirements.
Additionally, due to the potentially subject-specific but
unbiased nature of responses, BCIs can become building
blocks for adapting complex systems to individual users,
e.g., by optimizing parameters based on the perceived
hazardousness.
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Figure 5: Classification results on different time intervals
relative to the event’s first visible video frame. Each
point represents the mean AUC over all subjects along
with a bootstrapped 68 % confidence interval. The dotted
line represents classification results on the respective
100 ms interval whereas the dashed one shows results
based on including all time preceding intervals as fea-
tures.

CONCLUSION

In order to investigate the discriminability between dif-
ferent high-level semantic events in complex environ-
ments with passive BCIs, we describe preliminary ex-
periments with five subjects on distinguishing hazardous
and non-hazardous appearances of pictograms in natural
driving videos. We find that the event-related responses
differ not only compared to baseline stimuli but also be-
tween classes. Single-event classification yields a mean
AUC of 0.79, suggesting that reasonable discrimination
is possible in the context of complex realistic baseline
stimuli.
We view these results as a step towards utilization of
BCIs as a monitoring and feedback channel of hu-
man scene understanding and assessment for improved
human-machine interaction.
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ABSTRACT: Passive brain-computer interfaces have 

been formally introduced and defined almost a decade 

ago, and have gained considerable attention since then. 

Here, we provide a new perspective on this field. We 

refer to neuroadaptive systems, and identify a key 

aspect with regards to which various passive BCI-based 

systems differ from each other: interactivity. With 

increased interactivity, the systems become increasingly 

responsive, autonomous, and capable to adapt to the 

user. We give an overview of four separate categories of 

interactivity using examples of past and current 

research. This categorisation of passive BCI-based 

neuroadaptive systems helps identify and pinpoint 

relevant human-computer interaction aspects and 

possibilities for future neuroadaptive technology and 

research. 

 

INTRODUCTION 

 
The term and concept of passive BCI was formally 

introduced at the 4th Graz BCI Conference in 2008 [1]. 

Although at that point, with hindsight, a number of 

previous works could be said to have already made use 

of passive BCI, e.g. [2-5], it was in the year 2008 that it 

was highlighted by two research groups, independently 

of each other, as a promising research endeavour of its 

own. BCI methodology that, up until then, was 

primarily aimed at clinical applications for direct 

communication and control, they argued, could also be 

used to provide implicit input [6-7] to a system to the 

benefit of any ongoing human-computer interaction 

without placing any additional demands on the user. 

To that end, a passive BCI system [8] derives its 

output from automatic, involuntary, spontaneous brain 

activity, interpreted in the given context [9]. The brain 

activity in question is not expressly or voluntarily 

modulated in order to make use of the BCI system, but 

rather reflects aspects of the naturally present cognitive 

or affective state of the user. The system takes this 

context-sensitive interpretation of the user’s state as 

implicit input, enabling it to adapt and support the user 

with their task. 

This is contrasted with active BCI, where brain 

activity is consciously and purposefully modulated to 

achieve explicit BCI-based communication or control, 

and with reactive BCI, where the signal itself is not 

generated voluntarily, but its external elicitation is made 

possible by voluntary attention shifts [8]. For example, 

an active BCI may rely on imagined movements of the 

left and right hands to steer a prosthesis to the left or 

right [10], and a reactive BCI may use the evoked 

potentials resulting from presented stimuli to detect 

which stimulus was attended to [11]. 

The concept of passive BCI was ultimately 

included in the 2012 standard work on BCI [12], 

although the term “passive” was criticised for lacking a 

neuroscientific definition. Indeed both the concept and 

the terminology assume a perspective centred on the 

user experience, with the user remaining passive (i.e., 

undertaking no explicit actions) with respect to the BCI. 

However, indeed care should be taken when 

presuming that user actions and mental states can be 

readily categorised as either “voluntary” (re/active BCI) 

or “spontaneous” (passive BCI). For example, the user’s 

knowledge of the supposedly passive BCI system may 

still lead to certain voluntary changes in activity; or, a 

supposedly active BCI system may take into account 

brain activity that is not fully voluntarily modulated.  

From the user-centred perspective, a thought 

experiment can clarify the issue. If the same user 

behaviour and brain activity would be observed if the 

user was not aware of their influence over a system, 

then we can say that this is “natural” behaviour and 

activity that in that moment does not depend on the 

presence of the system. In this article, when referring to 

passive BCI systems, we refer to systems that are—or 

can be—based on such natural brain activity.  

Regardless, however, of these definitory issues, the 

concept of using BCI methodology to provide computer 

systems with a measure of its user’s mental state as 

implicit input has endured and received increasing 

attention over the past decade.  

The BCI Society categorises BCI systems based on 

the intended function of the output. They recognise five 

categories of applications: BCI systems can replace, 

restore, enhance, supplement, or improve the user’s 

natural output [12-13]. The BNCI Horizon 2020 

roadmap for the BCI community [13] lists a total of six 

future applications for the two categories improve and 

enhance, five of which rely on passive BCI as defined 

here. The category supplement is not included in the 

roadmap, but, as mentioned by Wolpaw and Wolpaw 

[12], this, too, is partially the domain of passive BCI. 

Since its inception around a decade ago, passive 

BCI applications have thus come to represent a 

relatively large and promising area of BCI research. 
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Among passive BCIs themselves, however, a 

further categorisation is possible. Whilst already 

focusing on the user’s behaviour to define the scope of 

passive BCI, we propose to also focus on the BCI’s 

behaviour, rather than its consequences. By focusing on 

the system’s behaviour rather than its intended function, 

a clearer and more formal emphasis is placed on how 

the two adaptive agents (i.e. the human and the 

computer) cooperate and interact with each other. In 

BCI applications for communication and control (i.e. 

replace, restore), the intended division of labour 

between man and machine, and the feedback given from 

machine to man, is relatively clear. In passive BCI 

systems however, as they are intended to be unobtrusive 

and inconspicuous, the machine’s influence can 

manifest in a number of different ways, with different 

implications for the human-machine system as a whole. 

It is important to take this into account when designing 

such systems. 

We identify four categories of systems, listed 

ordinally by increasing degree of interactivity. 

Interactivity denotes “the ability of a computer to 

respond to a user’s input” (Oxford English Dictionary, 

Oxford University Press, 2016). By the proposed 

measure, most past and current research into passive 

BCI as well as suggested future applications, including 

all those mentioned in the BCI roadmap, provide 

relatively little interactivity and fall into the lower 

categories. We found only two recent examples for the 

final identified category. We believe that a lot can be 

gained by focusing on increased interactivity when 

designing new passive BCI systems. 

This categorisation suggests a new way to think 

about passive BCI systems, and highlights BCI-based 

opportunities for increased human-computer synergy. A 

more detailed review and discussion of these categories 

can be found in our contributed chapter for the BCI 

Handbook (in press), of which this conference 

submission is a summary aimed more at current BCI 

researchers. 

The following four sections will describe one 

category each: mental state assessment, open-loop 

adaptation, closed-loop adaptation, and automated 

adaptation. The paper concludes with a discussion and 

outlook. 

 

MENTAL STATE ASSESSMENT 

 

The first category encompasses systems the sole 

purpose of which is the measurement of mental states, 

without providing any feedback. Because feedback is 

lacking, these are not BCI systems, nor is there any 

interactivity. This category of mental state assessment 

[14-15] is still included, however, to serve as a 

theoretical zero point on the interactivity scale, and 

because mental state assessment does provide the basis 

for all higher systems. 

The measurement and quantification of mental 

states can be helpful and informative by itself in various 

fields where no interactivity is required. Instead, user 

state information is gathered to be analysed and studied 

afterwards, to answer different questions. 

For example, mental state assessment based on BCI 

methodology is being used in the field of 

neuroergonomics, “the study of brain and behaviour at 

work” [16]. One mental state that is highly relevant to 

ergonomics and human factors research is the state of 

high workload [17]. Whilst there are disagreements as 

to its precise definition and measurement in theory [18], 

BCI can offer a data-driven approach based on reference 

measurements. For example, Gevins and Smith [19] 

simulated controlled working conditions of three 

different load levels. Based on differences they found in 

frontal theta and parietal alpha, they constructed a 

cognitive workload index that could then be used to 

analyse other, less controlled recordings.  

Using such pre-calibrated indices, mental state 

assessment can be used, for example, to compare 

alternative graphical user interface designs with respect 

to the workload they induce. See [20] for a review. 

Such an approach has a number of advantages 

compared to traditional methods to obtain information, 

such as questionnaires. Brain activity provides a 

continuous source of data, and its recording does not 

interfere with the state that is measured. The method 

can be individually calibrated, side-stepping 

intersubjective reference issues as well as conceptual 

conflicts. Certain mental states may not even be 

possible to ascertain otherwise. 

All this, however, hinges on the ecological validity 

of the recordings and corresponding interpretations. 

Special care must be taken to validate the 

measurements, ideally cross-context. See e.g. [21-22] 

for a discussion of pitfalls and lessons learned in mental 

state assessment research, which also applies to 

(passive) BCI research more generally. 

 

OPEN-LOOP ADAPTATION 

 

Interactivity denotes the computer’s ability to respond 

to a user’s input. In the case of passive BCI 

applications, this input is the implicit input [6-7] 

gathered by the system by analysing the user’s natural 

brain activity in real time. In BCI terminology, the 

system’s response to this interpreted input is generally 

termed feedback [12], denoting an action and/or piece of 

information resulting from the input that is subsequently 

“fed back to” (i.e. perceived by) the user.  

As mentioned above, passive BCI systems can be 

unobtrusive and inconspicuous, and their responses to 

user input may thus be similarly hidden. It is for this 

reason that we refer to adaptation as a more generic 

term for the system’s response to input. Traditional 

feedback—e.g. a cursor moving on a screen or a 

prosthetic limb moving—can be one form of such 

adaptation, but, as this categorisation will also highlight, 

the nature of passive BCI enables other meaningful 

types of adaptations as well. When adaptation is based 

on (natural) brain activity, we refer to these systems as 

neuroadaptive [23]. 
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It is through the system’s adaptations in response to 

user input that different levels of interactivity can be 

achieved. The first level of interactivity—the second 

category overall—consists of open-loop adaptations. 

Systems from this category of applications apply mental 

state assessment to obtain a measure of a mental state 

on-line, and respond to certain states with specific pre-

programmed actions in an open-loop fashion. 

“Open loop” refers to the absence of any direct or 

intended coupling of the adaptation back to the input. 

For example, in the above example of a workload 

index, open-loop adaptation could be used to assess the 

load level in real time, and give a warning every time a 

certain threshold is exceeded [24]. 

Prominent in the literature is the use of the error-

related negativity as indicative of the mental state “error 

perception” [25]. Once the system learns that its user 

perceived an error, the system adapts, for example by 

correcting the error in case of a binary decision [3]. 

Note that such input corrections can also induce errors, 

rather than correcting them, when the initial mental state 

was not correctly detected. 

Other examples include the detection of an 

“intention to interact” mental state to replace an explicit 

selection command in hybrid gaze/BCI systems [26-27]. 

Once such an intention is detected upon fixating an 

interactive on-screen element, a “mouse click” can be 

automatically executed. 

In a gaming context, Van de Laar et al. [28] showed 

how, once a certain threshold of “relaxation” (versus 

“tension”) is passed, the user’s in-game character would 

switch from one set of abilities to another. 

Open-loop adaptive systems, based on passive BCI, 

use a measurement of the user’s state as implicit input. 

The user states of interest can be transient, such as error 

perception, or more constant and continuous ones such 

as moods or workload. As such, the former ones need to 

be clearly linked to the context (e.g., what was 

perceived to be in error?) for the adaptation to be 

effective [9]. This implicit input can then be used as a 

basis to execute timely adaptations. Continuous mental 

states are better suited to control an application’s mode.  

As mentioned above, it is important to validate that 

the mental state that is intended to be measured is 

indeed the one that is measured. Real-time adaptation in 

response to these measurements can provide an indirect 

validation that at least the system functions as intended. 

Open-loop adaptation reflects simple stimulus-

response logic: single, independent state detections 

result in single, fixed actions. More interactivity can be 

achieved when the system’s adaptations have an 

influence that reaches beyond the single responses, 

affecting further input and future actions; for example, 

when interactive applications exhibit closed-loop 

control, discussed next. 

 

CLOSED-LOOP ADAPTATION  

 

In closed-loop systems, the system’s output is fed back 

to the system as new input, or otherwise influences the 

next input cycle. In our present context, the ultimate 

source of input is the human user, and the input given to 

the adaptive system constitutes a measure of their 

mental state. In a closed-loop passive-BCI system, the 

initiated adaptation must thus influence the mental state 

that is being measured. Closed-loop adaptive systems 

apply mental state assessment to obtain a measure of a 

mental state on-line, and adapt to certain states—or 

changes in states—by means of actions that influence 

that same mental state.  

The adaptations can be either discrete or 

continuous. For example, sounding an alarm bell to call 

to attention someone who has been detected to doze off 

is a discrete countermeasure, aimed at promoting the 

state being monitored: vigilance.  

Kirchner [29] used a sequence of discrete events of 

increasing saliency: if an initial alarm was not perceived 

(as detected by the passive BCI), the alarm was repeated 

with a higher intensity.  

Continuous adaptation can provide a more fine-

grained approach. For example, adaptive automation 

[30] attempts to match task demands to the current 

capacity of the user, in real time. When workload 

increases, certain tasks are automated in order to keep 

the user in a productive state of engagement. As more 

capacity becomes available again, task control is 

gradually handed back to the user, keeping the 

equilibrium. 

For example, Kohlmorgen et al. [31] implemented a 

form of passive BCI-based adaptive automation in the 

car. During highway driving, one of the participants’ 

tasks would be automatically suspended and 

unsuspended depending on measured workload levels. 

Similarly, Yuksel et al. [32] demonstrated closed-

loop adaptation of educational material. The pacing of 

the learning process was adjusted dynamically in real 

time in order to sustain the student’s performance, based 

on a measure of workload. 

In a gaming context, [33] applied the concept of 

closed-loop adaptation to Tetris, adjusting the game’s 

speed in order to maintain a level of optimal 

engagement. 

These examples show how closed-loop feedback 

mechanisms can increase interactivity and human-

computer synergy. The system’s adaptations enable it to 

respond purposefully, as well evaluate the effect of each 

adaptation, such that the system obtains a qualitative 

participation in the ongoing interaction. The system not 

merely adapts to given input, but influences the next 

input and with that, its next adaptation. The implicit 

input is now part of a more interactive implicit dialogue 

between a user and the system. 

Closed-loop systems go beyond open-loop systems 

by influencing the next interaction cycle. They can thus 

have a continuous, dynamic effect on their users and the 

interaction as a whole. The logic of a single closed loop, 

however, is still a limited one, usually reflecting the 

limited amount of input gathered by the system. 

Coupling adaptation directly to a limited range of input 

necessarily limits the range of the adaptation. By 
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distancing the adaptation itself from the input, a further 

step can be made beyond closed-loop systems towards 

increased interactivity, discussed next. 

 

AUTOMATED ADAPTATION 

 

Purely closed-loop systems are restricted by their 

respective loops in that the adaptations directly follow 

the input signal. In case of input derived from 

neurophysiological signals, such as EEG, its bandwidth 

and dimensionality are generally limited. It gives insight 

into momentary mental states, but not into likely causes, 

or appropriate responses. The adaptive systems 

mentioned thus far are embedded in fixed, known 

contexts. As such, it is reasonable to assume that, for 

example, an increase in workload is caused by the task 

demands of that same environment, and can be 

counterbalanced by increased automation. These 

interactive functions however are constrained by this 

logic that is predetermined by known contexts. 

In this next category, the adaptive logic itself is 

adaptive, such that a system can support its user across 

different and changing contexts. To that end, the system 

needs access to context information as well as the user’s 

mental state. By collating and co-registering these, the 

system can learn its user’s behaviour and responses in 

different scenarios. Based on that, it can then decide 

how and at what times to give support. Automatically 

adaptive systems apply mental state assessment 

alongside other methods of information gathering in 

order to build a model to represent aspects of the user’s 

cognitive or affective responses. This model then serves 

as a basis for the system’s own autonomous behaviour. 

Zander et al. [7, 23] detected error- and 

satisfaction-related brain activity not in order to 

immediately correct perceived errors, but to learn, over 

time, the user’s preferences. To that end, the system 

exhibited different behaviours and registered which 

system actions led to negative evoked responses and 

which led to positive ones, depending on the given 

context.   

Specifically, this approach was applied to two-

dimensional cursor control. The system moved to the 

cursor autonomously, whilst registering the evoked 

responses to the movements in different directions. 

Over time, the system could learn the pattern behind 

these responses and as such, learned where the user 

wanted the cursor to go. Already during the learning 

process, the system adapted its behaviour to steer the 

cursor towards the suspected target. 

Iturrate et al. [34] demonstrated a similar principle 

using a robotic arm. Participants observed its 

movements whilst their error-related responses to 

certain movements were tracked and remembered. The 

robotic arm was guided based on the inferred 

information. 

In automated adaptation, the gathering of 

information is the primary system adaptation in lieu of 

direct actions, with action to follow only once the 

system autonomously determines it to be appropriate. 

The parameters of adaptation are learned automatically 

by the system itself. This increased autonomy also 

translates into increased interactivity, as the system 

learns to respond in different ways even to input that 

was given in the past, or not even given at all. 

 

DISCUSSION AND OUTLOOK 

 

We propose a categorisation of passive BCI-based 

neuroadaptive systems based on the behaviour of that 

system in terms of its interactivity.  

The category of mental state assessment systems 

represent a base category. These systems provide no 

interactivity, but by registering natural brain activity 

that is not influenced by the system itself, they lay the 

foundation for passive BCI and interactive 

neuroadaptive systems. 

The most basic way to implement interactivity is to 

enable open-loop adaptation, giving systems the ability 

to respond to given input in an open-loop fashion: 

simple input-output response logic connects a mental 

state to a specific action, with no further dependencies 

between them. 

In closed-loop adaptation, the system’s output 

influences its upcoming input. The system now 

purposefully attempts to influence the user’s mental 

state. Interactivity is increased as the system’s actions 

do not merely inform, but purposefully act upon the 

user and thus influence the interaction as a whole.  

Automated adaptation, finally, refers to the 

category of systems that learn to adapt and act 

autonomously based on (implicit) information gathered 

previously. Increased interactivity is due to the system’s 

increased autonomy with respect to its adaptations and 

adaptive strategies. 

 

These three adaptive behaviours are, of course, not 

mutually exclusive. An automated adaptation system 

might predict what a user intends to do and execute that 

action in advance, but then, in an open-loop fashion, 

undo the action when it is detected that the prediction 

was in error.  

Note also that whether the above error-correction 

example should be considered open-loop or closed-loop 

depends on the exact state that is being targeted. Error 

perception, as a transient state in the form of e.g. an 

error-related potential, cannot always or necessarily be 

used as such in closed-loop systems. A more persistent 

state, perhaps reflecting general dissatisfaction (initially 

caused by the error), however, can be influenced in a 

closed loop. 

It is important in general that researchers and 

designers pay close attention to exactly define the user 

state they are targeting. This categorisation also helps in 

formalising that. 

  

Four out of five future scenarios suggested in the BCI 

roadmap under the relevant categories fall into the 

open-loop adaptation category. The one remaining 

example of passive BCI systems in the BCI roadmap 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-46

CC BY-NC-ND 251 Published by Verlag der TU Graz 
Graz University of Technology



uses closed-loop adaptation. 

We would thus encourage researchers to also look 

further afield. Human-computer synergy can only be 

achieved by close cooperation between the two agents. 

Human-human communication is a dynamic, 

continuous process, and hinges on a shared 

understanding of the world and informative as well as 

empathic models of the conversation partner [35]. 

Human-computer interaction can be improved by 

mirroring such processes: by dynamic, responsive 

adaptation, and by having the system learn 

autonomously how to optimise that behaviour. Passive 

BCI methodology in particular can help us attain such 

close human-computer cooperation, as it can give 

systems access to an individually calibrated, real-time 

source of subjective and personally relevant information 

concerning the user.  

A formalisation of passive BCI-based 

neuroadaptive systems helps identify and pinpoint 

relevant human-computer interaction aspects during the 

design and development of such systems, and aids the 

design of and discourse about future neuroadaptive 

technology. 
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ABSTRACT: With an increased interest to develop 

brain-computer interface (BCI) applications that can be 

used in real-world contexts, comes an increased need to 

deal with the myriad sources of artefacts that interfere 

with the signal of interest. We present real-world data 

recorded in a moving car, contaminated with muscle 

artifacts, mechanical artifacts, and noise produced by the 

car’s electrical systems. We use artifact subspace 

reconstruction and independent component analysis to 

rigorously clean and filter the data. We demonstrate that 

using state-of-the-art methods, it is possible to identify 

cortical processes even in heavily contaminated data.  

 

INTRODUCTION 

A number of current developments in brain-computer 

interface (BCI) research point towards an increased 

interest in real-world implementations. We see the 

development of easy-to-apply, commercial, dry electrode 

systems [1-3] as well as a number of wireless, mobile 

solutions for BCI [4-5]. These developments are no 

longer aimed at neurophysiological research per se, nor 

limited to support motor-impaired users. Also the 

ongoing proliferation of passive BCI [6-7], where BCI is 

used by individuals without disabilities to support 

ongoing human-computer interaction, indicates an 

increased interest in applying BCI to real-world 

scenarios, outside of the experimental laboratory.  

At the same time, developments in other areas are 

showing a clear need for information reflecting a user’s 

cognitive or affective state. As systems become 

increasingly automated, researchers attempt to make the 

automated adaptation match the needs and preferences of 

the individual user. As these may vary between contexts  

and over time, it is important that this information can be 

assessed in real time within the given context [8]. Such 

information can be provided using passive BCI 

methodology. This can be fed into neuroadaptive [9] 

systems as implicit input [10], enabling them to support 

their users in a timely and individualized fashion. 

One drawback of real-world scenarios is that they 

cannot be experimentally controlled. For EEG-based BCI 

in particular, the presence of electromagnetically active 

sources may interfere with or obscure the signal of 

interest. On top of that, users of real-world applications 

tend not to sit motionless for the duration of the activity. 

Thus, the myoelectric signals produced by the 

contracting shoulder, neck, and facial muscles 

contaminate the EEG recording. These movements as 

well displacements of the equipment itself may also 

introduce mechanical artifacts in the EEG recording. 

We focus here on the real-world use scenario of an 

autonomously driving car. The use of in-car EEG and 

BCI have recently been investigated by e.g. [11-14], 

establishing that state detection is possible, although the 

signal-to-noise ratio is low due to environmental noise 

and movement artefacts. Here, we focus on rigorous 

cleaning methods in order to implement neuroadaptivity 

in the context of autonomous driving.  

There is an increasing prevalence of automated 

driving systems taking over drivers’ tasks. While there 

are clear benefits to this in terms of comfort and safety, 

the human driver is more and more disconnected from 

the activity and left out of the loop. The behavior of 

current automated driving systems could benefit from 

additional information concerning the human driver’s 

perspective. That way, the human brain can serve as an 

additional sensor for the car, allowing the car to adapt to 

the needs and wishes of human driver. The driver can be 

implicitly kept in the human-machine interaction loop, 

and the car can benefit from the continuous, context-

sensitive implicit input provided by the passive BCI.  

The future car, thus, presents a highly promising but 

also challenging environment for BCI applications. 

In this paper we present real-world, moving-car EEG 

recordings of drivers confronted with different types of 

behaviors from the car’s adaptive cruise control (ACC) 

system. We investigate the detectability of elicited 

neuroelectric responses amidst unrelated myoelectric and 

electromagnetic noise. To that end, we use state-of-the-

art data cleaning and filtering systems that can also be 

used online. We present event-related potential (ERP) 

analyses as well as classification accuracies.   

 
MATERALS AND METHODS 

Participants 15 participants (6 female) aged 24-60 

participated. All possessed a valid driver’s license for at 

least three years. They received a monetary reward for 

their participation. This study was conducted in 

accordance with the Army Research Laboratory’s IRB 

requirements (DoDI 3216.02).  
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Experimental Set-Up The experiment was conducted in a 

modified Toyota Prius, in which a TNO-designed ACC 

system was installed [15]. The car was driven on the test 

circuit of the Dienst Wegverkeer Test Centre Lelystad, 

Netherlands. Other vehicles were present on a larger 

track surrounding the track but did not interfere with the 

experimental procedure. The experimenter was present in 

the backseat of the car during the whole experiment.  

We used a 64-channel BioSemi Active-Two to record 

EEG. We additionally recorded EOG above and below 

the left eye, ECG, and EMG on the left and right 

trapezius muscles. Peripheral data is not discussed in this 

paper (ECG and EOG findings are described [16]). All 

physiological signals were recorded at a sampling rate of 

512 Hz using the same amplifier.  

 

Task and Procedure Participants were told that we are 

working on automated detection of the driver’s desired 

deceleration settings for an ACC, without requiring the 

driver to explicitly communicate this desire. We told 

them that since this is not yet possible, we use a recording 

of a human voice to represent the desired setting for each 

trial (i.e. “soft brake please”, or “hard brake please”). 

Participants started with 10 practice trials to get familiar 

with the task and car dynamics, followed by 300 

experimental trials. 

 
Figure 1: Overview of one trial. 

 

The events constituting one experimental trial are 

depicted in Figure 1. The car drove at 35 km/h on the 

track when a human voice indicated the desired 

deceleration (either soft or hard, in Dutch; 50% chance). 

The participant pressed down a lever to activate the ACC 

deceleration. Before executing the deceleration, the ACC 

announced through a computer voice whether it would 

decelerate softly or strongly. In 80% of trials, the wish 

expressed by the human voice was followed (match trial), 

while in 20% it was not (mismatch trial). A variable time 

between 0.5 and 3.5 s after the ACC’s announcement, the 

car decelerated to 25 km/h, following either a steep or a 

shallow velocity profile (i.e. strong or soft deceleration, 

a maximum deceleration of 3 or 0.7 m/s2, respectively; 

total deceleration time of 0.9 or 2.8 s). Following this, the 

human voice asked the driver to accelerate again. The 

driver indicated whether the ACC had followed the 

desired type of deceleration or not, and pushed the lever 

up to have the ACC accelerate back to 35 km/h. 

 

Data Processing We used EEGLAB [17] for processing. 

We compare the data after two different processing 

paths: “standard” and more rigorously ICA-cleaned data. 

Standard preprocessed data was first high-pass 

filtered at 1 Hz using a Hamming windowed sinc finite 

impulse response filter. Heavily artifact-contaminated 

channels were then rejected using the pop_rejchan 

function, based first on kurtosis, and then on probability. 

ICA-cleaned data received additional, more rigorous 

processing. First, the data was high-pass filtered as above 

at 2 Hz. Artifact subspace reconstruction (ASR; [18]) 

was used to clean the data. ASR uses a section of clean 

reference data to compute baseline statistics, and then 

detects subspaces in continuous data that significantly 

differ from this reference. It reconstructs the contents of 

the identified sections using a mixing matrix calculated 

on the reference data. We used those settings that led to 

the most rigorous cleaning within the recommended 

range (burst criterion: 3, window criterion: .05). 

Infomax independent component analysis (ICA) on 

CUDA architecture [19] was applied to the ASR-cleaned 

data. ICA transforms the mixed-source EEG as recorded 

in sensor space into time series that are statistically 

maximally independent (independent components; ICs). 

Under the assumption that signals from different cortical 

processes and sources as well as artefactual sources are 

statistically independent from each other, this method 

thus transforms the data into ‘source space’. ICA results 

in a transformation matrix, i.e. a filter matrix weighting 

the individual channels in sensor space, to isolate the 

different source activities. These independent activities 

can then be identified and subtracted individually. 

The resulting transformation matrix was then copied 

back to the standard preprocessed data. The additional 

filtering and ASR cleaning was thus only applied in order 

to obtain a “clean” transformation matrix. Using this 

matrix, we then removed artefactual ICs from the 

standard preprocessed data. In the end, we compare 

standard preprocessed data versus that same data with 

artefacts removed through ICA. 

Artefactual ICs were identified by manual inspection 

of their scalp projection and frequency spectrum, as per 

[20]. Artefactual ICs were removed from the data such 

that only activity remained that could reasonably be 

assumed to be cortical. In brief, components were not 

removed only if they clearly fit two main criteria: a) 

dipolar, not too superficial projection pattern, and b) 

clear, smooth peaks in the power spectrum at frequencies 

known to have clear cortical correlates, mostly below 30 

Hz, with no high power beyond those frequencies.  

The windowed means approach using regularized 

shrinkage linear discriminant analysis [21], implemented 

in BCILAB [17], was used for classification. Data was 

band-pass filtered between 1 and 15 Hz and segmented 

into six non-overlapping consecutive time windows of 50 

ms each, from 0.2 to 0.5 s after the respective event—a 

time window that, a priori, could be expected to contain 

relevant responses to the experimental manipulations. 

We compare the response to the ACC announcing the 

upcoming braking behavior (match versus mismatch, 

strong versus soft), as well as to the actual braking. We 

used a five-fold nested cross-validation to compute 

classification accuracy estimates.  
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ERP analyses include statistics computed per sample 

between subjects on the amplitude differences of the two 

classes, using permutation tests with 1000 permutations.  

ASR and ICA cleaning was applied to the whole 

dataset. Cross-validated BCI performance estimates are 

calculated based on these cleaned sets as an additional 

measure of potential differences between the sets. 

 

RESULTS 

An average of 4 channels (ranging from 0 to 8) were 

removed from the initial data. From the on average 60 

remaining independent components, an average of 8 

(ranging from 2 to 14) ICs were identified as being 

cortical. All others were removed. See figure 2 for a small 

but representative selection of ICs that were kept. 

 

 
Figure 2: Four ICs that fit the main criteria: spectral 

speaks in sub-gamma bands and dipolar patterns. 

 

The artefactual noise was not spread evenly across 

the channels, but was most prominent on parietal and 

occipital sites. Figure 3 shows grand-average ERPs for 

the four comparisons. We focus mostly on Oz, a highly 

contaminated site showing the effect of the ICA cleaning 

most clearly. To illustrate the vast differences of the noise 

distribution between the different sites, and the effect on 

cleaner sites, for one condition, we also present the ERP 

at the less contaminated electrode Cz. ERPs extracted 

from standard-preprocessed data are shown on the left; 

the ICA-cleaned data on the right. Significant differences 

(p < 0.05) are highlighted in grey. 

Significant differences can be seen between the peak 

amplitude around 200 ms in the ICA-cleaned data at 

electrode Oz comparing the announcement onset of hard 

versus soft upcoming braking behavior. Also at Oz in 

ICA-cleaned data, significant differences can be seen 

around 500 to 600 ms after hard versus soft brake onset. 

These late differences are most likely due to the 

experience of the braking itself and not relevant to the 

driver’s mental preparation thereof—thus, we did not 

update our classification approach to go beyond 500 ms. 

Tables 1 to 4 list the individual and mean 

classification accuracy estimates for the same classifier 

calibrated on standard-preprocessed data and on ICA-

cleaned data for all four comparisons. These results are 

summarized and discussed in the next section. 

 

CONCLUSION AND DISCUSSION 

We have recorded data from 15 participants controlling a 

moving car. They were confronted with different and 

sometimes unexpected behavior of the automated driving 

system, in the form of either strong or soft deceleration. 

We applied state-of-the-art cleaning and filtering 

methods in order to investigate the detectability of 

cortical events amidst the many artifacts produced by the 

car itself and the participants’ movements. 

The ICA cleaning of the data was rigid, removing, in 

one case, all but only two independent components, and 

in all cases no less than three-fourths of all components. 

We see, however, that even in this heavily contaminated 

data it was still possible to identify cortical activity: we 

see clear event-related potentials reflecting cortical 

responses to various driving-related events, on electrodes 

where the original preprocessed signal was completely 

drowned out by large-amplitude artifacts (e.g. Oz).  

Indeed, even given very large-amplitude artifacts (up 

to 23 µV on Oz), the relatively small cortical signals (<1 

µV on that same electrode) could be identified with 

sufficient sensitivity to allow significant differences to 

become apparent between the classes. 

At less contaminated sites, e.g. electrode Cz, we see 

that the signal is hardly affected even by such rigorous 

cleaning. The cortical signals remain intact. 

The ERP plots show no significant difference 

between match and mismatch trials. The experimental 

set-up likely did not make this distinction sufficiently 

meaningful to the participant to evoke a clearly 

discriminable signal. Participants were not instructed to 

pay attention to this, and were occupied by the primary 

task of driving, so indeed little effect was expected [22].  

Because of this, we also see no general classifiability 

of match versus mismatch events, nor an improvement in 

classification accuracy after to ICA cleaning. Given the 

imbalanced number of classes, chance level is at 68% 

(±5.2, α = 0.05). Neither standard preprocessed nor ICA-

cleaned data is classifiable. We do, however, see an 

increase in the balance of the classes after ICA cleaning 

(i.e. the true positive divided by the true negative rate). 

Comparing hard versus soft trials, chance level here 

is 49% (±5.6, α = 0.05). Time-locked to brake onset, we 

see a very high classification accuracy of 94% in standard 

preprocessed data. This decreases significantly after ICA 

cleaning (p < 0.01). This is likely because in the non-

cleaned data, strong mechanical and muscular artifacts 

correlate to these two classes: a steeper braking profile 

will lead to increased muscular activity and movement. 

These artifacts are used by the classifier. In the cleaned 

data, these artifacts are removed and the classifier is only 

given the activity that was identified to be cortical. This 

still leads to a classification accuracy of 77%, 

significantly better than chance. 

Time-locked to the onset of the announcement, 

classification accuracy is 63% without cleaning, and 

cleaning does not significantly change this (p = 0.32). 

This shows a cortical response to the announcement that 

is detectable at a single-trial level. The lack of impact on 

classification accuracy shows that ICA cleaning does not 

negatively affect these cortical aspects of the data.  

The ASR cleaning method can be applied online. 

Although the precise ICA implementation used here was 

not online, methods have been developed to calculate 

ICA transformation matrices online [23]. The two 

measures on which component selection was based, scalp 

projection and power spectrum, are thus also available 

online. It is likely, in fact, that online ICA will give better 
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results as it can be configured to put more weight on 

current time windows, making it adaptive to the current 

context. In [23], the selection of which components to 

keep and which to remove can be done online but must 

be done manually. However, (semi)automatic component 

identification is underway [24]. 

These methods, thus, allow for strong, rigorous 

cleaning and filtering of data during continuous, online 

BCI operation. As we have shown here, these state-of-

the-art methods are capable of identifying cortical 

processes even amidst large-amplitude artefacts that 

would otherwise drown out the signal of interest.  

ICA-based cleaning can target artefactual activity 

specifically, affecting cortical processes only to a 

minimal degree. This can provide a large advantage for 

real-world neuroadaptive technology in realistic settings. 
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 Announce match vs. mismatch 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 32 74  0.42  66 44 61 0.72 58 

2 25 77  0.33  66 39 74 0.53 67 

3 30 74  0.40  66 37 64 0.58 58 

4 37 78  0.47  69 48 59 0.82 57 

5 32 78  0.41  69 47 73 0.64 67 

6 40 76  0.53  69 35 60 0.58 55 

7 23 71  0.33  62 33 64 0.52 58 

8 25 68  0.37  59 42 59 0.70 56 

9 33 70  0.48  62 38 63 0.61 58 

10 38 75  0.51  68 43 66 0.65 62 

11 30 68  0.44  60 42 56 0.75 53 

12 52 85  0.61  78 45 75 0.60 69 

13 40 76  0.53  69 43 65 0.66 61 

14 30 68  0.44  61 38 59 0.65 55 

15 48 79  0.61  72 47 61 0.77 58 

 34 74 0.46 66 41 64 0.65 59 

 
Table 1: Classification accuracy estimates for all fifteen 

participants based on standard-preprocessed data and 

ICA-cleaned data. Classification distinguished between 

match versus mismatch trials, time-locked to 

announcement onset. P = participant number, TP = true 

positive rate, TN = true negative rate, Rat. = TP/TN, Acc. 

= combined classification accuracy. Due to class 

imbalances, chance level is at 68% (±5.2, α = 0.05). 

 

 Announce hard vs. soft 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 64 61 1.05 63 63 57 1.10 60 

2 66 55 1.19 60 66 59 1.13 62 

3 47 63 0.75 55 56 59 0.94 57 

4 61 59 1.03 60 61 66 0.92 63 

5 55 61 0.89 58 52 53 0.99 52 

6 57 63 0.89 60 61 59 1.03 60 

7 78 74 1.05 76 68 68 1.00 68 

8 54 63 0.85 58 62 56 1.10 59 

9 49 48 1.01 48 45 55 0.82 50 

10 78 69 1.13 74 67 71 0.95 69 

11 68 68 1.01 68 58 55 1.06 57 

12 72 65 1.10 69 74 67 1.10 71 

13 64 73 0.88 68 55 61 0.90 58 

14 55 55 0.99 55 62 59 1.06 60 

15 59 70 0.85 65 52 55 0.94 54 

 62 63 0.98 63 60 60 1.00 60 

 
Table 2: As table 1, with classification distinguishing 

between hard versus soft brake trials, time-locked to 

announcement onset. Chance level is at 49% (±5.6, α = 

0.05). 

 

 Brake match vs. mismatch 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 16 69 0.23 59 44 65 0.67 61 

2 35 72 0.48 65 37 67 0.54 61 

3 31 66 0.47 59 36 61 0.60 56 

4 39 73 0.54 66 36 57 0.63 53 

5 22 67 0.32 58 28 62 0.46 55 

6 27 75 0.36 65 37 64 0.57 59 

7 22 69 0.32 59 40 59 0.68 55 

8 29 74 0.39 65 33 65 0.51 59 

9 31 61 0.51 55 36 63 0.57 58 

10 17 73 0.23 61 43 70 0.62 64 

11 44 73 0.61 67 44 61 0.72 58 

12 28 77 0.37 67 50 67 0.75 63 

13 33 64 0.52 58 40 61 0.66 56 

14 30 64 0.47 57 47 54 0.86 53 

15 38 65 0.57 59 31 59 0.53 54 

 29 69 0.43 61 39 62 0.62 58 

 
Table 3: As table 1, with classification distinguishing 

between match versus mismatch trials, time-locked to 

brake onset.  

 

 

 

 

 

 

 Brake hard vs. soft 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 94 85 1.10 89 91 79 1.16 85 

2 99 90 1.10 95 79 74 1.07 77 

3 87 85 1.02 86 68 69 0.99 69 

4 98 93 1.05 96 80 72 1.11 76 

5 95 94 1.01 95 65 68 0.96 67 

6 99 90 1.10 94 75 77 0.97 76 

7 99 96 1.03 98 79 69 1.14 74 

8 95 83 1.15 89 67 64 1.05 65 

9 99 94 1.05 96 96 90 1.07 93 

10 97 90 1.08 94 93 85 1.10 89 

11 88 79 1.11 83 88 72 1.22 80 

12 100 99 1.01 99 82 76 1.07 79 

13 100 98 1.02 99 68 62 1.09 65 

14 99 99 1.01 99 75 67 1.13 71 

15 99 96 1.04 97 92 79 1.17 85 

 97 91 1.06 94 80 73 1.09 77 

 
Table 4: As table 2, with classification distinguishing 

between hard versus soft trials, time-locked to brake 

onset.  
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Figure 3: Grand average (n=15) event-related potentials of standard-preprocessed (left) and ICA-cleaned data (right). Top 

to bottom: ERP at Cz time-locked to the ACC announcement onset of the upcoming braking behavior, match versus  

mismatch trials; ERP at Oz time-locked to the same, announcing “hard” versus “soft”; ERP at Oz time-locked to the onset 

of the braking behavior itself, match versus mismatch trials; ERP at Oz time-locked to the same, hard versus soft braking. 

Significantly different samples are highlighted in grey, modulated by p-values (lower p-value = darker grey).  
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ABSTRACT: In a vision of a perfect brain-computer inter-
face (BCI), a user would be able to use the system instantly
without the need for a subject-specific calibration, and the
performance would remain stable and not deteriorate over
time. However, this remains a vision, due to two char-
acteristics of the electroencephalography (EEG) signals:
non-stationarity and inter-subject variability. Inter-subject
variability describes the fact that the EEG of each per-
son is different and for sufficient BCI communication,
the BCI needs to be calibrated separately for each user.
Non-stationarity describes a change over time of the EEG
signals leading to a decrease in BCI performance with
prolonged use. In an approach to better understand these
issues, we analyzed the event-related potentials (ERP) and
spectral EEG data of 23 subjects in terms of these charac-
teristics. We found that both issues highly affect the data,
but we were able to identify a method that nearly elim-
inates non-stationarity, whereas inter-subject variability
remains a major issue that needs to be further addressed.

INTRODUCTION

Using EEG for the signal acquirement in BCI applications
is very common and broadly used in research but has some
obstacles that prevent a user friendly usage out of the lab.
Since scalp EEG recordings represents the summarized
activity of a great number of neurons, small changes in the
mental state of the user can already make a difference in
the overall activity that can be measured. Therefore, train-
ing phases before every session are necessary to adapt the
system to the current EEG characteristics and mental state
of the user in order to guarantee a good performance of
the system. Even with long training phases before the start
of a session major decrease in performance can occur with
increasing time of the session. This will result in a loss of
usability and increasing frustration of the subject, which
is naturally not desired. Non-stationarity of the signal can
be the cause of this, introduced for example by mental
changes of the subject (fatigue, disengagement,..) or tech-
nical changes (drying electrode gel), leading to differences
in the appearance of the trained target signals which in
turn leads to a failure of the classifier. Decreasing perfor-
mance with duration of a session or especially in between
offline and online sessions due to a change of the target
signal has been observed numerous times. An online, real-
time, adaption of the classifier to the upcoming changes

in the brain activity is one way to deal with this issue. The
classifier is recalibrated by integrating currently recorded
data into the already existing data. Supervised [1] as well
as unsupervised [2,3] methods have been proposed for the
implementation of adaption mechanisms, partly solving
this issue. It has also been suggested that the combination
of different types of classifiers can reduce the issue of
non-stationarity, as they complement each other [4].
Apart from issues within a single session or between on-
line and offline sessions, there are also issues between
different subjects that have hardly been solved so far. The
issue can be referred to as inter-subject variability which
prevents the successful transfer of a previously trained
classifier to a new subject, since the differences in EEG
signals are usually too big between subjects even though
the same task is performed. In some cases normalization
methods have been used in order to deal with this vari-
ability as for example scaling the data to the mean and
standard deviation of a certain number of baseline trials
[5]. This can reduce the problem but still cross-subject
classification is significantly worse than within subject
classification, leaving cross-subject classification an open
problem. Other methods like transfer learning, super-
vised as well as unsupervised, provide the same portion
of solution. Information from previously collected trials
and subjects can be used to infer knowledge to new and
unknown data. Approaches using hierarchical Bayesian
models based on Gaussian probability distributions [6,7]
or k-Nearest Neighbor approaches [8] for training and
optimizing a classifier based on old and new data have
been introduced. Almost all approaches are still adap-
tive since the collection of new and subject specific data
is necessary to update the classifier and to integrate sub-
ject specific information into the classification approach,
therefore persisting the necessity of individual training.

In contrast to this, other approaches were implemented
in which researchers used the distinct differences of EEG
signals of different subjects during the same task to their
advantage. It could be shown that an identification or
authentication of a specific subject out of many is possible.
Armstrong and colleagues used ERP characteristics [9]
and Palaniappan features based on the power spectrum
[10] for the authentication of a specific subject which was
successfully with almost no errors. This opens up new
possibilities for applications using EEG-BCI technology.
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The aim of the analysis of this paper is to quantify the
extent of non-stationarity and inter subject variability in
EEG data to better understand these properties. A large
dataset from a standard BCI application was chosen for
an anew analysis with respect to the mentioned factors.
The data set allowed within and between session as well
as between subject comparisons which were evaluated
with classical correlation and classification measures. The
following sections will describe the properties of the
chosen dataset, the methods used for quantification of
the two stated issues and several approaches to deal with
non-stationarity in EEG data.

MATERIALS AND METHODS

Data: A dataset of Spüler and colleagues [11] consist-
ing of EEG recordings of 23 subjects participating in a
P300 speller experiment was used for the analysis. The
dataset consists of 2 sessions on two different days for
each subject. The participants can be divided into three
groups according to their age and health status. Group 1
consists of 9 subjects between age 20 - 28, Group 2 of 8
subjects between age 39 - 52 and the third group was a
patient group with severe motor impairments consisting of
6 subjects between the age of 36 - 63. The montage was,
in standard 10/20 positions, with electrodes at positions
F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4,
PO7, PO8, Oz. Ground and reference electrodes were
placed at the left and right mastoid, respectively and the
signal was sampled at 256 Hz. The P300 speller consisted
of a 6x6 matrix in which the 12 rows and columns of sym-
bols were flashed in random order. Each intensification
lasted for 62.5 ms and the matrix remained blank for 125
ms between flashes. In one sequence, each row and col-
umn were flashed exactly once. One trial contained 2-10
sequences, depending on the subject. This dataset was
chosen as it was comparably big and it included two ses-
sions per subject. Therefore, it provided the opportunity
to investigate changes across subjects and changes over
time within a session as well as across sessions. To that
end, inter subject variability as well as non-stationarity
can be evaluated and compared within this dataset.

Data processing: For the analysis, ERPs and power
spectra of the data were evaluated. The power spectra
were calculated for each trial separately with Burgs maxi-
mum entropy method [12] (modelorder 16), from 1 to 30
Hz in 1 Hz bin. In contrast to that, ERPs were averaged
over several target intensifications, to improve the signal
to noise ratio. One ERP in the analysis was calculated
by sequentially averaging over 50 target intensifications
using a sliding window approach with a step size of 10.
This lead to an average number of 237 trials (± 49) and
145 (± 68) ERPs for session one and 273 trials (± 80) and
169 (± 68) ERPs for session two.

Inter subject variability: Evaluating the effect of inter-
subject variability was done by a classification approach
that aimed to assign ERPs and power spectra to the sub-
ject they originated from. Two different approaches were

tested, one with the aim to identify a subject correctly on
the basis of the ERPs (or power spectra) and the other
one with the aim to authenticate a subject on the same
signals. Since distinct differences between subjects are
assumed to be present, a SVM classification approach
should be able to separate the data of different subjects ac-
cording to their differences. For the identification scenario
a one vs one classification was implemented in which it
is tested how well a subject can be identified within a set
of subjects. Therefore, one classifier was trained on one
session for each pair of subjects and tested on the second
session of all possible pairs. To determine the accuracy a
multiclass-classification was performed.
For the authentication scenario a one vs all classification
was implemented. One individual classifier was trained
for each subject to distinguish between data of the subject
itself and the data of all others. Again one session was
used for training, the other session used for testing. In this
case sensitivity and specificity were used as performance
measures to account for the highly unbalanced classes. If
the signals of one subject can be extracted from a variety
of signals, it validates that the signal of a single subject
does stand out and is distinct. It can be seen as an au-
thentication approach since a yes or no decision is made,
answering the question if the signal belongs to the person
in question.
In consequence both classification approaches reveal a
measure to quantify the inter-subject variability within
the given dataset. The higher the performance measures
the higher the variability between subjects. For both ap-
proaches a C-SVM from the libsvm implementation [13]
for Matlab was used in a 5-fold cross-validation. The data
of all 16 electrodes was used for the classification.

Non-stationarity: To evaluate the non-stationarity of
the signal linear regression models were fit to the ERPs
(and the power spectra) and the time of their occurrence
in the recording (1...n), again in a 5-fold cross-validation.
The occurrence in the recording was labeled consecutively
with increasing numbers representing the time of appear-
ance. This was done individually for each subject and
session. The regression models are evaluated by calculat-
ing R2 values to estimate how well the time of recording
can be predicted from the EEG signals. The R2 value de-
notes the proportion of variance in the target variable that
is explained by the predicted values. Systematic changes
over time that can be described by a linear function should
lead to a strong correlation, therefore, quantifying non-
stationarity to a certain extent. In addition to quantifying
non-stationarity, several methods to decrease the influ-
ence of non-stationarity were tested and evaluated. The
measure for quantification of non-stationarity after the
application of the tested approaches remained the same:
A fitted linear regression model and its corresponding R2

values, representing the correlation between actual and
predicted time in recording.
(1) First covariate shift adaption was applied to the data.
It reduces trial to trial variability in the distribution of
spectral power, by normalizing the power with an averag-
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ing approach shifting over a certain number of preceding
trials. The originally proposed window size of w = 15 was
used [14].

(t) = P (t)− 1

w
(

w∑
i

P (t− i)) (1)

The hypothesis is that an overall reduced variability might
erase the change in signal introduced by non-stationarity.
(2) As a second approach lateral symmetry was calculated
on the data for the electrode pairs (F3-F4, T7-T8, C3-C4,
Cp3-Cp4, P3-P4, Po7-Po8). It reveals lateral disparities
or asymmetries between the two hemispheres and could
possibly minimize systematic changes that are present in
the signal. Two different ways of calculating the differ-
ence were applied. Once the signal of the two electrodes
was subtracted before transferring it into the frequency
domain, and the other time the signal was subtracted after
transferring it to the frequency domain.
(3) As a last approach event related desynchronization
or synchronization (ERD/S) was computed by using the
difference of the power spectral density of the trial and
a time frame of equal size shortly before (pretrial) [15].
The quotient of the difference and the power of the pretrial
reveals the ratio of how much the power has changed due
to an event by a (de-)synchronization of firing neurons.
Again the hope is that this mathematical approach might
erase a possibly present systematical change in the signal.

ERD/S =
Ptrial − Ppretrial

Ppretrial
(2)

RESULTS

Tab. 1 shows the results of the analysis concerning non-
stationarity in the data. It includes the R2 values between
the actual time in recording of a trial and the predicted time
(with regression methods) for session one. Session two
revealed the same trend which is why only the results of
one of the two is shown. The individual columns represent
the different signals that were used for the analysis, stan-
dard ERP and power spectrum and the transformed data
according to the four suggested methods. When looking
at column two and three it can be seen that the prediction
quality is much higher for the spectral density distribution
than for the ERPs on average for all subjects. When com-
paring those two columns to the remaining ones in the
table it can also be seen that applying lateral symmetry
(difference calculated after) to the data reduces the R2

value notably, whereas ERD/S reduces it to almost 0. The
other two methods have smaller or no notable effects on
the correlation with the time of recording. Tab. 2 shows
the results of the evaluation of inter-subject variability. It
is quantified by the classification performance measured
in accuracy or sensitivity and specificity depending on the
mode of classification. The table is divided into two parts,
each representing one mode of classification. Identifying
the signals of an individual subject (across sessions), rep-
resented in the left part of the table, works better on the

basis of ERPs than on the basis of the spectral density
distribution (One vs One). The same observation can be
made for the authentication approach (One vs All). The
One vs All approach reaches very high specificities (TNR)
for both signal types (above 97%), whereas the sensitivity
(TPR) is much lower in both cases, but significantly better
for ERP than spectral data (0.76 vs 0.49 on average respec-
tively). In both approaches it can be seen that the variance
of the performance between subjects is rather high, espe-
cially for classification on the spectral data. Both tables
reveal that there seem to be differences between the three
groups of subjects more or less pronounced throughout
the various approaches.

Figure 1: The colors indicate the squared correlation (R2)
between spectral features and the time of recording for
each subject and both sessions. Channels from top to
bottom: Po8, Oz, Po7, P4, Pz, P3, Cp4, Cp3, T8, C4, Cz,
C3, T7, F4, Fz, F3)
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Table 1: Correlation (R2) of the actual time and predicted
time of each trial in the recording, regression based, for
23 subjects of 3 groups. a) Covariate Shift adaption, b)
Lateral symmetry (before), c) Lateral symmetry (after), d)
ERD/S

Sub ERP Spec a) b) c) d)
S01 0.20 0.38 0.40 0.38 0.22 0.01
S02 0.37 0.80 0.62 0.82 0.71 0.11
S03 0.37 0.33 0.63 0.20 0.04 0.03
S04 0.20 0.23 0.57 0.72 0.04 0.01
S05 0.30 0.67 0.46 0.60 0.45 0.12
S06 0.29 0.22 0.43 0.29 0.06 0.06
S07 0.50 0.24 0.51 0.35 0.08 0.07
S08 0.20 0.16 0.49 0.31 0.06 0.01
S09 0.21 0.26 0.36 0.10 0.05 0.02
Mean 0.29 0.37 0.50 0.42 0.19 0.05
S10 0.16 0.41 0.46 0.47 0.19 0.01
S11 0.49 0.73 0.36 0.48 0.35 0.02
S12 0.14 0.26 0.20 0.32 0.15 0.03
S13 0.34 0.81 0.62 0.76 0.71 0.04
S14 0.30 0.22 0.66 0.44 0.09 0.06
S15 0.19 0.83 0.32 0.73 0.69 0.07
S16 0.28 0.54 0.35 0.59 0.14 0.02
S17 0.13 0.67 0.43 0.57 0.32 0.04
Mean 0.25 0.56 0.42 0.55 0.33 0.04
S18 0.12 0.85 0.36 0.89 0.75 0.11
S19 0.08 0.81 0.54 0.80 0.58 0.01
S20 0.18 0.78 0.37 0.80 0.76 0.10
S21 0.02 0.74 0.60 0.66 0.77 0.01
S22 0.14 0.89 0.25 0.56 0.87 0.04
S23 0.08 0.60 0.71 0.75 0.55 0.03
Mean 0.10 0.78 0.47 0.74 0.71 0.05
Mean 0.23 0.54 0.46 0.55 0.37 0.04
std 0.13 0.26 0.14 0.22 0.30 0.04

Especially notable are the high R2 values for spectral data
of the patient group in contrast to the other two groups
of subjects. Fig. 1 visualizes the analysis of the non-
stationarity by plotting the R2 values for each channel and
the respective spectral features of each subject for both
sessions. It is included as a showcase to show the vari-
ance between and within subjects to highlight the problem
statement.

DISCUSSION

The results presented in Tab. 1 and Tab. 2 revealed that
non-stationarity and inter-subject variability can be mea-
sured and quantified with the proposed methods. Both are
highly present in the dataset underlining the importance of
awareness of these issues during BCI development. Non-
stationarity was assessed by detecting a systematic change
of EEG characteristics over time by linear regression meth-
ods. It is strongly present in the power spectra of the signal
and a little less prominent in the ERP data. Depending
on the application, this change in signal might not be a
relevant issue, but to ensure the use of valid features that
are related to the cognitive process of interest and not to a
systematically introduced artifact, this effect needs to be
eliminated.

Table 2: Classification performance quantified in accuracy
or TPR (sensitivity) and TNR (specificity) in a single-
subject approach - training on session 1 - testing on ses-
sion 2, with a C-SVM and a linear kernel in a 5-fold
cross-validation.

One vs All One vs One
Sub ERP Spec ERP Spec

TPR TNR TPR TNR Acc Acc
S01 0.80 1.00 0.95 0.98 0.99 0.90
S01 0.95 1.00 0.61 0.99 0.99 0.79
S03 0.98 1.00 0.81 0.95 0.99 0.91
S04 0.82 1.00 0.80 0.97 0.97 0.91
S05 0.88 1.00 0.40 0.99 0.85 0.18
S06 0.59 1.00 0.44 0.93 0.65 0.18
S07 0.90 1.00 0.53 0.94 0.85 0.72
S08 0.78 0.98 0.85 0.99 0.91 0.90
S09 0.86 1.00 0.39 0.97 0.96 0.51
Mean 0.84 0.99 0.64 0.96 0.90 0.66
S10 0.67 1.00 0.96 0.99 0.70 0.95
S11 0.75 1.00 0.00 0.99 0.95 0.00
S12 0.85 0.99 0.48 0.95 0.92 0.45
S13 0.86 1.00 0.38 0.97 0.99 0.53
S14 0.97 1.00 0.85 0.99 0.99 0.72
S15 0.25 0.99 0.00 0.96 0.33 0.01
S16 0.63 0.99 0.00 0.96 0.80 0.00
S17 0.94 1.00 0.18 0.98 0.93 0.38
Mean 0.74 0.99 0.36 0.97 0.82 0.38
S18 0.80 1.00 0.66 0.90 0.80 0.88
S19 0.33 0.99 0.22 0.94 0.56 0.24
S20 0.60 0.99 0.01 1.00 0.75 0.00
S21 0.53 1.00 0.26 1.00 0.65 0.27
S22 0.82 0.98 0.59 0.94 0.88 0.70
S23 0.97 1.00 0.89 0.95 0.97 0.94
Mean 0.67 0.99 0.44 0.95 0.77 0.51
Mean 0.76 0.99 0.49 0.97 0.84 0.53
std 0.20 0.01 0.32 0.02 0.17 0.35

Our analysis was able to show that the systematic change
over time can be reduced by using the lateral symmetry
(R2 of 0.30), whereas ERD/S can reduce the effect of
time to a minimum (R2 of 0.04) if not eliminate it com-
pletely. The systematic change over time affecting ERPs
was rather weak. The R2 value accounted for a squared
correlation of 0.23 on average, leading to the assump-
tion that the effect is merely present or can at least not
be predicted well with linear regression methods. Non-
stationarity therefore seems to be a bigger issue when
dealing with frequency-domain than with time-domain
features. Interestingly the patient data (subject 18-23)
showed a much higher correlation with time in the power
spectra than all other subjects did. Nevertheless ERD/S
provided a solution for this equally well to subjects with
high and also to subjects with low correlation of the power
spectra with time of recording. No further universal trends
can be derived concerning the different groups of subjects.
At this point it needs to be mentioned that the evaluated
non-stationarity is linear only, non-linear non-stationarity,
which also exists, has not been accounted for in this pa-
per and needs to be addressed further. It can be observed
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that the variance is in general very high for all evaluated
measures between the groups but also within the groups
leading over to the topic of inter-subject variability. A first
assumption can be made that the inter-subject variability
is supposedly very high since a high variance between the
R2 values can be observed. No pattern across subjects
is visible, hence for each subject other features provide
discriminability. Inter-subject variability was investigated
with a classification approach and the achieved perfor-
mance measures suggest differences between subjects are
reflected more strongly in ERPs than in the power spectra.
The assignment of the current trial to the correct subject, in
a pairwise or overall comparison, can express the stability
of the signal across time and sessions or the great variabil-
ity between subjects. Both are equally valid assumptions
that do not exclude each other. The results showed that
an assignment of the correct subject based on the ERPs
was possible in both classification approaches with good
performance values whereas the assignment on the basis
of the power spectra worked less well. Since the train and
test set were taken from two different sessions it can be
assumed that ERPs contain very specific sections that can
be identified across sessions. Due to the high performance
values it can also be assumed that differences between the
subjects must be very distinct, again at least for the ERPs.
The performance values therefore suggest, that a biometric
use of P300 ERPs could be feasible for an identification
as well as an authentication of the subject in question.
Regarding the classification on the power spectra it can be
said that the variability between subjects must be severe
since a high (close to perfect) specificity can be achieved.
The rather low sensitivity leads to the assumption that the
signal is likely to be not unique enough or too different
between sessions that the identification is not viable. This
means that an authentication is possible, though with a
high rejection rate on the power spectra in this very sce-
nario. Overall it can be said that an authentication on the
basis of brain signals is a possibility for future applica-
tions as the specificity is very high despite a rather large
rejection rate. Since it is desirable with respect to secu-
rity aspects to rather need several trials to be successfully
authenticated, than to grant access to someone that is not
allowed to have access, a real world usage seems to be
feasible.

CONCLUSION

Non-stationarity in the power spectra of EEG signals can
be modeled with linear regression models and almost be
eliminated by using ERD/S instead of the plain power
signal. Therefore, using ERD/S could prevent a decline
in classification performance with increasing time of the
experiment or the need of a recalibration during a session.
Inter-subject variability was quantified by classification
approaches revealing that differences between subject spe-
cific ERPs (power spectra) must be very distinct as an
authentication of the correct subject to a corresponding
signal was possible reliably. It remains a big issue that

needs to be further addressed in terms of BCI develop-
ment, but it can be turned to an advantageous feature when
considering subject authentication and identification as an
application. It can be suggested that P300 ERPs work
as a biometric measure for identifying subjects, whereas
the spectral features of a P300 were less suitable for that
cause.
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ABSTRACT: Looking at the past 30 years of research into 

the so-called P300 BCI reveals an almost exponential 

growth of publications on this topic as indexed in Pubmed. 

The striking increase has started around 2010 and is 

currently plateauing at a high rate. Certain aspects of the 

P300, such as stimulus presentation, feedback modality, 

classification procedures, or application to be controlled 

have been intensively investigated. The bulk of studies 

comprises one session approaches in the laboratory 

environment with healthy subjects, but patient end-users 

are increasingly included in studies. However, a lack of 

long-term studies with end-users in the field is obvious and 

indicates a translational gap. On the basis of more than 300 

studies included, we discuss reasons for this gap and 

propose remedies; however, this paper presents a coarse 

overview only and constitutes the basis for a thorough 

meta-analysis.  
 
INTRODUCTION 

The motivation for this overview arose from the 

observation that a strikingly high amount of manuscripts to 

be reviewed by the authors do not sufficiently take into 

account and build upon existing results within the field of 

the P300 BCI.  

The foundations of the P300 BCI were laid with the 

first description of the P300 by [1] � an event-related 

potential that could be elicited in a so-called oddball 

paradigm with rare target and frequent standard stimuli. In 

1988 Farwell and Donchin [2] implemented the oddball 

paradigm in a stimulation set-up to control a BCI. Letters 

and numbers were presented in a matrix on a monitor. 

Rows and columns of the matrix were flashed in random 

order and participants were required to focus attention on 

the letter to be selected. Focusing of attention was 

reinforced by asking the participants to count how often the 

target letter flashed. By this procedure, each letter to be 

selected becomes a rare target in comparison to all other 

letters, which turn into standard stimuli. Ever since, this 

paradigm has been adopted, adapted, changed, and 

extended in many ways, and reliable target selection in 

healthy subjects and patients with disease alike has been 

demonstrated in a plethora of studies. The primary aim of 

the P300 BCI has been communication and control to 

replace lost function in patients with severe motor 

 

 

 

impairment. Only recently have other aspects, such as for 

rehabilitation after post-stroke aphasia, i.e. to improve lost 

function (see the BNCI Horizon 2020 website for a 

categorization of BCI according to their application 

purpose), gained more attention [e.g., 3].  

Despite the many studies aiming at improving 

different aspects of the P300 BCI such as accuracy, 

information transfer rate (ITR), or usability, P300 BCIs are 

not used in daily life by the targeted end-users with disease 

albeit most studies claim this to be the final goal and 

motivation for the experiment at hand.  

Thus, we face two gaps: (1) a translational gap, 

which prevents the many positive results arriving at the 

end-users� home and (2) an awareness gap, i.e. researchers 

sub-optimally build on the results achieved by the 

community. Therefore, approaches to the P300-BCI and 

controlled applications remain idiosyncratic rather than 

evoking a joint effort toward bridging the translational gap.  

In the following we will give a brief overview of the 

topics covered by P300 BCI related publications (Table 1) 

and then discuss questions and answers which we consider 

relevant for the field of the P300 BCI. Those may partially 

transfer to BCIs with other input signals.  

 

MATERIALS AND METHODS 

We used Pubmed as source for our literature search on the 

P300 BCI. We entered the search terms �Brain� AND 

�Computer� AND �Interface�. This search yielded n=733 

hits. Those were then screened for true P300 BCI content 

and studies in languages other than English were excluded 

(n=12). Based on the abstracts, studies were then 

categorized according to the participants included 

(healthy subjects vs. participants with disease), 

environment of data collection (laboratory vs. field), 

number of (daily) sessions (one vs. more than one). Other 

categories were: �use of existing data sets�, �reviews�, 

and �theory and frameworks�. During the process of 

categorization, the category �sample unclear� had to be 

created because it could not always be derived from the 

abstract what kind of sample was included.  
 
 

.  
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RESULTS

A sample of n=366 studies were included for analysis. 

Figure 1 depicts the number of publications per year. A 

gap of 12 years is visible between Farwell and Donchin�s 

and subsequent papers. Thus, the next papers follow in 

2000. By 2004 the number of publications per year was 

slowly increasing. Since 2011 it has reached a plateau of 

around 45 papers per year

Figure 1: Number of P300 BCI related publications per year. Note, the gap between 1988 and 2000.  

 
Figure 2: Number of studies (x-axis) per category. It can be clearly seen that the majority of studies was conducted with 

healthy subjects in the laboratory environment. Studies with patients and in the field are far less in number. The arrow 

denotes the translational gap.  

Most of the studies included healthy subjects and 

were conducted in the laboratory environment. Patients 

included were diagnosed with amyotrophic lateral 

sclerosis (ALS), cerebral palsy, disorders of consciousness 

(vegetative state, minimally conscious state [MCS], 

emerging MCS), epilepsy, locked-in syndrome after brain 

stem stroke, multiple sclerosis, post-stroke aphasia, and 

 

 

 

spinal cord injury (SCI). Forty-two studies included 

patients and 32 both healthy participants and patients. If it 

was not otherwise mentioned, we assumed that the 

experiment was conducted in the laboratory. Forty-five 

studies report on data collection in the field. The vast 

majority of studies report results from one session and only 

17 present data from more than one session; of those 12  
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were with patients (see Figure 2). The Table provided an 

overview of some aspects investigated in P300 BCI 

related papers. Similar effort was invested in how to best 

separate target from non-target responses. Analysis of 

classification procedures and the effect of the different 

manipulations on accuracy, ITR, and usability were 

considered beyond the scope of this overview. 

 

Table 1: Topics investigated in P300 BCI publications (a full reference list can be ordered from the first author). 

Presentation of 

stimuli 

Stimulation 

modality, 

recording, and 

elicited ERPs 

P300 BCI set-up Psychological 

variables 

potentially 

influencing P300 

BCI performance 

Predictors of 

P300-BCI 

performance 

P300-BCI 

controlled 

applications 

-Matrix size 

-Matrix colour 

Moving matrix 

-Location of 

stimuli 

-Luminance 

-Size of stimuli 

-Spatial position 

of stimuli 

-Character 

grouping 

-Flash rate 

-Flash pattern 

-Rapid serial 

visual 

presentation 

-Suppressing 

stimuli 

-Faces as stimuli 

(famous, 

familiar, 

inverted) 

-Facial 

expression 

modulation 

-Avoidance of 

redundant 

stimuli 

-Multi-level 

matrices 

-Polyphonic 

music stimuli 

-Two-stimulus 

paradigm 

-Stimulus 

modality: visual, 

auditory, tactual, 

multimodal 

-Additional ERPs 

(N100, MMN, 

N150, N200, 

N400, visual 

evoked potential 

(VEP), motion-

onset VEP) 

-Error potentials 

Input signals 

(EEG, MEG, 

ECoG, EOG) 

-Combination of 

input signals 

(hybrid: SMR, 

SSVEP, EMG, eye 

movement) 

 

-Inter stimulus 

interval 

-Length of P300 

segment 

-Number of 

channels / 

sensors 

-Amount of 

training data 

-Source of errors 

-Asynchronous 

dynamic 

stopping of 

stimuli 

presentation 

-Mindfulness 

training 

-Dictionary 

predictive 

spelling 

-Language 

models 

shared control 

-Auto-calibration 

and laymen set-

up 

-Motivation 

-Emotion 

-Satisfaction  

-Empathy 

-Cognitive 

performance 

-Attention 

-Memory 

-Workload 

-Fatigue 

-Heart rate 

variability 

-Root-mean-

square 

amplitude 

-Negative peak 

amplitude of the 

target ERP 

-Auditory 

oddball P300 

-Concentration 

-Working 

memory 

-General 

intelligence 

-Spelling 

-Word 

presentation 

-Virtual 

apartment 

-Internet surfing 

-Gaming 

-Wheelchair 

control 

-Brain painting 

-(Telepresence-) 

Robot control 

-Standard 

assistive 

technology 

-Emailing 

-Prosthesis 

-Robotic arm 

-Multimedia 

player 

DISCUSSION 

A tremendous amount of work to improve the speed and 

reliability of the P300 BCI has been done in the past 10 

years. By now, basic principles of stimulation, 

presentation, and classification are known [e.g., 4]. 

Reasons for the impressive increase in research effort may 

have been better classification algorithms and more 

sophisticated ways of presenting the stimuli. For example, 

the introduction of overlaying faces instead of flashes 

 

 

 

 

resulted in a boost of performance of up to one 

repetition sequence with no decrease in accuracy 

which stayed at 100% [5].  

When looking more closely at the success 

stories, they are mainly attributed to few studies each 

belonging to specific research groups. Even within 

the field of the P300 BCI, successful modifications 

are only reluctantly or not at all taken up by the 

community. A positive example is the use of SWLDA 
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for classification. Contrarily, face stimuli were only taken 

up by few groups and new ways of stimulus presentation 

are still compared to the classic P300 spelling matrix 

instead of the most successful presentation mode at any 

given point in time.  

If the field is seriously aiming at bringing BCIs to 

end-users in the field, be it patients or healthy subjects, 

researchers have to leave the laboratory and work in exactly 

this field. The needs and requirements of end-users must be 

clearly defined and the few available studies indicated that if 

researchers make this effort, BCIs are indeed an option for 

communication and control in daily life [6,7].  

 

CONCLUSION 
The lack of interaction between research groups and 

integration of results keeps the P300 BCI below its 

possibilities. We argue that by now, we have sufficient 

knowledge for standardization and recommendations beyond 

which current and future research should not fall behind. 

This knowledge should be thoroughly applied for the benefit 

of end-users. 
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ABSTRACT: As part of the Utrecht NeuroProsthesis 

(UNP) project, a late stage ALS patient has been 

implanted with a BCI system that allows her to 

communicate at home. The BCI system converts short, 

transient changes in brain activity from the motor hand 

area into ‚brain-clicks’, which are used to control 

spelling software. On request of the participant, we 

added the option to use the control channel for 

producing a second output command, giving her the 

possibility to call for attention at any time. Here, we 

show that the user is able to produce sustained increases 

in activity for this purpose and that these signal changes 

can be clearly distinguished from the transient changes 

used as ‚brain-clicks’. We conclude that it is possible to 

use a one-dimensional control signal based on motor 

hand activity to produce two different output 

commands.  

 
INTRODUCTION 

 

The Utrecht NeuroProsthesis (UNP) project aims to 

provide locked-in patients with an implanted BCI 

system for communication, which they can use at home 

without the presence of research staff. So far, one 

woman with late stage ALS has been implanted with the 

UNP system and uses it at home [1]. Although being 

able to speak one’s mind freely (in the case of someone 

with locked-in syndrome: spell) is a vital aspect of 

communication, another important component is the 

ability to call for attention at any moment, for example 

when there is physical discomfort or pain. On request of 

our participant, we aimed to implement this additional 

feature into the UNP system.  

The UNP system is a click-based system with one 

control channel. It converts short and voluntary changes 

in brain-activity from the motor hand area into ‚brain-

clicks‘, which can be used to navigate through a 

custom-made interface, called the UNP menu, based on 

BCI2000 software [1,2]. Within the UNP menu, the user 

can navigate to and control commercial spelling 

software (Communicator 5, Tobii Dynavox), play brain 

games, and change settings.  

To make sure that the additional feature to call for 

attention is always available, i.e. from any part of the 

UNP menu, including the spelling software and the 

games, a second control signal is required. Earlier 

observations (see the Supplementary Appendix of the 

original article [1], Figure S4-D) indicated that the user 

was able to generate longer periods of increased activity 

(here referred to as sustained activity). We aimed for 

this sustained activity to activate an escape pop-up 

menu, containing ‚call-caregiver‘, ‚return to main 

menu‘ and ‚continue‘ buttons. After activating the pop-

up menu, the user could then use regular clicks to select 

the different options within the pop-up menu.  

Importantly, some key selections within the UNP menu 

require a ‘double click‘ (i.e. two regular clicks shortly 

after one another), to prevent accidental selections of 

menu options that can be difficult to correct (e.g. a 

settings change). For accurate control of these double 

clicks and the activation of the escape pop-up menu, 

these two types of neuronal activity profiles need to be 

clearly distinguishable from one another. Here, we 

investigated: 1) the optimal duration of the  break 

between double clicks, aimed at minimizing unwanted 

escape menu pop-ups during double clicks, while 

keeping double clicks as fast as possible; 2) the optimal 

duration of the sustained activity for the escape pop-up 

menu activation.  

 

MATERALS AND METHODS 

 

     Participant: Our participant is a sixty year old 

woman with late stage ALS. She is locked-in and 

communicates with eye blinks (yes - no), an eye tracker, 

and/or the UNP system. 

     Hardware and Data: Data was recorded with the 

implanted UNP system. Electrocorticography surface 

electrodes (Resume II ®, Medtronic) are located 

subdurally on the left M1 hand knob area and leads are 

subcutaneously tunneled to an implanted 

amplifier/transmitter device (Activa ® PC+S, 

Medtronic), which is located subcutaneously under the 

left clavicle [1]. Brain activity from one bipolar 

electrode pair was converted into power data over two 

frequency bands (low frequency band, LFB: center 

frequency 20 Hz; high frequency band, HFB: center 

frequency 80 Hz) in the Activa ® PC+S device and 
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streamed wirelessly at a rate of 5Hz to an antenna 

connected to a research laptop running BCI2000. To 

obtain the control signal, both channels were 

normalized in our BCI2000 filter pipeline, after which 

the z-scored LFB channel was subtracted from the z-

scored HFB channel [1]. All reported data was recorded 

at our candidate’s home. 

To allow for a second output command, we 

implemented a new filter called the escape filter into our 

existing BCI2000 pipeline. This filter runs in parallel 

with the regular click filters [1], but settings are set such 

that it only activates during sustained increases of the 

control signal. When this filter is activated, the escape 

menu pops up.  

Prior to this escape project (and thus the quantification 

of escape related sustained activity) our participant 

already used the escape filter at home. Initial settings 

were found empirically (i.e. we changed settings online, 

based on user feedback), using regular click settings as 

a starting point. In this period before the escape project, 

the length of escapes (i.e. how long the control signal 

needs to be above threshold for escape activation) was 

adjusted several times based on home-use experience. A 

fixed escape threshold of 0.35 (based on the regular 

click settings) however always seemed to work well, 

and was therefore used as the default threshold value in 

this project. (For more information on determining 

optimal regular click settings, please see our previous 

paper [1, Figure S6].) 

     Validation Task: We used a custom-made BCI2000 

task called the MultiClicks task to address our research 

questions. Task layout was as follows: A cursor was 

presented at a fixed location at the horizontal and 

vertical middle of the screen. The background moved 

from left to right at a fixed pace. Different colours in the 

background instructed the participant to relax or to 

produce transient or sustained activity by attempting to 

tap the fingers of her right hand (Figure 1). More 

specifically, our candidate attempts flexion of ring 

finger and thumb until they ‘touch’ (of course, they do 

not actually touch because they do not move), and then 

extension of both fingers. Our participant reports that 

one such sequence of attempted movement takes 

approximately one second. Attempted movement is 

repeated as long as active cue lasts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Screenshot of task. The background moved 

from left to right (direction of arrow) at a fixed pace, 

while the red cursor remained in the middle of the 

screen. When the cursor crossed a blue block, the 

participant was instructed to attempt finger movement. 

When the cursor crossed a black block, she was 

instructed to rest. Width of blue and black blocks varied 

across conditions. From left to right side of screen is 10 

seconds. 

 

The MultiClicks task was performed four times in one 

session with the same set of conditions each time. 

Conditions comprised single clicks, double clicks, and 

sustained activity. The break between double clicks 

ranged from one to five seconds, and the length of the 

sustained activation condition varied between four and 

seven seconds (all in steps of one second). To prevent 

potential false positive escape activations during regular 

clicks, four seconds was chosen as the shortest escape 

duration, because we have previously seen that the 

increase in control signal associated with short active 

cues of 1 second (required length of regular clicks) can 

last up to 3 seconds [1, Figure S4-D]. Every condition 

was presented twice in each run. All runs lasted 

approximately four minutes and the duration of the 

inter-trial interval (i.e. rest blocks) was seven seconds. 

Condition order was randomized. No visual feedback 

was presented. The subject was instructed to time her 

mental strategy based on the visual cues, and not to 

anticipate.  

 
RESULTS 

 

The participant was able to generate broad and 

sustained peaks in the control signal for up to 7 seconds 

(the longest period of sustained activity tested, Figure 

2). For all durations of sustained activity tested, LFB 

power decreased shortly before cue onset and increased 

after cue offset (beta rebound). Moreover, HFB 

increased sharply at cue onset, and stayed high 

(although with somewhat more signal variability than 

LFB) until cue offset. Although the candidate was 

instructed not to anticipate, there did seem to be some 

anticipation in brain activity shortly before actual cue 

onset, especially in the LFB band (Figure 2).  
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Figure 2: Mean trace (± standard deviation in pink) 

from the 7 second sustained activity condition, based on 

all trials from the presented four runs. Top plot: Control 

signal normally used for clicking (based on both LFB 

and HFB power, see methods for details). Bottom left: 

LFB signal. Bottom right: HFB signal. All plots have z-

values on the y-axis and time in seconds on the x-axis. 

Vertical green and red lines indicate cue on- and offset, 

respectively. The horizontal purple line in the top graph 

indicates threshold for detecting sustained activity 

(0.35).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Double click plots with mean trace and 

standard deviation fill, based on all trials from the 

presented four runs. Top panel: 3-second break 

condition. Bottom: 2-second break condition. Both 

panels contain main plot with control signal, and two 

subplots with LFB and HFB signal. All plots have z-

values on the y-axis and time in seconds on the x-axis. 

On- and offset of both clicks are plotted (vertical green 

and red lines, respectively). The horizontal purple lines 

in the control signal graphs indicate threshold for 

detecting sustained activity (0.35). 
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With regard to the break between double clicks: The 

participant was able to generate two separable clicks 

with intervals of 5, 4 and 3 seconds (Figure 3, top 

panel). However, a 2 second break between two clicks 

did not consistently allow a sufficient decrease of the 

control signal below the threshold (Figure 3, bottom 

panel). As a result, the control signal of double-click 

trials with a 2 second break may be mistaken for 

sustained activity. 

Interestingly, the decrease of the control signal between 

two clicks with 3 second separation could be mostly 

attributed to a transient decrease in HFB amplitude. In 

contrast, the LFB signal stays low during both clicks 

comprising double clicks and also during the break 

between those clicks, and does not contribute to the 

separation of the clicks in the 3 second break condition. 

In the 4 and 5 second break conditions however, LFB 

increases during the break, contributing to the 

separation of the two clicks.  

 

DISCUSSION 

 

As part of the UNP project we explored the separability 

of control signal changes associated with double clicks 

and sustained activity. From the data we concluded that: 

1) the user can produce sustained increases in the 

control signal for at least seven seconds; 2) the user is 

able to produce two clearly separable clicks when the 

break between the clicks is at least three seconds. 

The optimal duration of sustained activity required for 

activating the escape pop-up menu is based on two 

considerations: 1) the length of sustained activity should 

be as short as possible, so the user can activate the 

escape as fast as possible; 2) the length of the sustained 

activity should be long enough for it to be 

distinguishable from double clicks, to prevent double 

clicks without a clear dip between clicks (which is 

uncharacteristic based on presented data, but possible) 

from activating the escape pop-up menu.  

For the current user we found that 5.6 seconds of 

sustained activity is feasible. Our user chose this length 

based on required effort and reliability of escape 

activation when using a 3 second break strategy during 

double clicks. Since we fixed these settings during the 

escape project  (December 2016), they have not been 

changed. Our participant can now reliably activate the 

escape pop-up menu using a sustained activity length of 

5.6 seconds, while minimizing false positive escape 

menu pop-ups by applying a 3 second break between 

double-clicks.  

Double clicks with an interval of 3, 4 and 5 seconds all 

showed a clear decrease in the control signal between 

the two clicks. Since we wanted to optimize speed, we 

focused on a 3 second break between double clicks for 

this project. Moreover, our participants‘s home-use 

settings use a length of 5.6 seconds for sustained 

activity although she can produce longer sustained 

activity (up to 7 seconds at least). From these two points 

we concluded there is a range of usable settings beyond 

the current settings: we could increase both the 

sustained activity length and the break in double clicks 

in case our user is no longer satisfied with her home-use 

settings in the future. These changes might increase 

reliability at the cost of speed. 

By using a one-dimensional control signal to produce 

two different types of outputs, we have expanded our 

implanted BCI’s functionality. Moreover, the 

MultiClicks task developed for this project can be used 

with future candidates to determine a range of usable 

double click and escape settings early on in the UNP 

project. Because an escape if probably a useful feature 

for all users, this is an important point. Sustained 

activity is currently used to activate an escape pop-up 

menu, which allows our user to select a call-caregiver 

button as the first option. The other two options in the 

escape-menu are resuming the current application or 

quitting to the main menu. Sustained activation could be 

used for other purposes, depending on a user’s wishes 

and needs, such as reversing scanning order within 

spelling software or jumping to a next category or page 

(this could increase spelling speed).  

 

CONCLUSION 

 

A one-dimensional control signal recorded from a 

bipolar pair of subdural ECoG electrodes allows for two 

different types of output commands based on short and 

sustained activity increases. The newly added sustained 

activity feature allows our candidate to activate an 

escape button at any time.  
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ABSTRACT: The detection of brain state changes can
dramatically improve the comprehension of cerebral
functioning. To reach this aim, machine learning based
automatic tools may be extremely useful to correctly clas-
sify different brain responses. The performance of these
instruments depends on the features and the classification
algorithm employed, but also from a good data prepro-
cessing able to improve the poor signal-to-noise ratio [4]
of the EEG signal. In this work, we combine data prepro-
cessing with a feature selection based on the filter ReliefF
and the linear SVM classifier LibLinear in order to anal-
yse the data deriving from a P300 speller paradigm on pa-
tients with Amyotrophic lateral sclerosis (ALS). The pur-
pose of this study is twofold: on the one hand we want to
maximize the predictor’s performance, but most impor-
tantly, we aim at showing how the features ranking can
be used to support scientific hypotheses or diagnoses.

INTRODUCTION

In neuroscience, a fundamental theme is the study of
brain functioning, for different scopes, such as neuro-
rehabilitation, diagnosis support and brain activity mon-
itoring in general. The detection of brain state changes
plays a fundamental role because it can dramatically im-
prove the comprehension of cerebral functioning. Evoked
potentials, for example, which are the electrical responses
recorded from the brain after specific stimulations, are
widely used by researchers and clinicians to support sci-
entific hypotheses [7] or to make diagnoses [8]. Recently,
in [1] a feature ranking approach combined with SVM
classifier was applied over the EEG signal of nine healthy
subjects. The subset of features identified for each subject
was physiologically correct. Indeed the filter was able to
detect physiological components elicited during the pro-
tocol either in space or in latency. In this work we try to
use a similar approach over Amyotrophic lateral sclerosis
(ALS) patients, even thought the poor signal-to-noise ra-
tio that characterise this kind of electroencephalographic
(EEG) signal makes this task more difficult to perform.
The rest of this paper is structured as follows: Material
and Methods provides a description of the dataset used
and of the strategy defined. Results shows the outcomes
both in terms of predictor’s performance and physiolog-
ical components detection. Discussion contains a com-
parison of the results obtained with the standard strategy

and the one proposed in this work. Finally, Conclusion
contains a brief summary of this work.

MATERIALS AND METHODS

The analysed dataset is the one proposed in [5] that can
be downloaded from the BNCI Horizon 2020 database [6]
(Dataset 8: P300 speller with ALS patients (008-2014)).
The dataset consists of eight patients affected by ALS,
and each patient was shown a 6 by 6 matrix containing
alphanumeric characters. The user’s task was to focus at-
tention on characters in a word that was prescribed by the
investigator (i.e., one character at a time). All rows and
columns of this matrix were successively and randomly
intensified at a rate of 4 Hz. Two out of 12 intensifica-
tions contained the desired character (i.e., one particu-
lar row and one particular column). Scalp EEG signals
were recorded from eight channels according to 10-10
standard (Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8). The
EEG signal was digitized at 256 Hz and band-pass fil-
tered between 0.1 and 30 Hz. Participants were required
to copy-spell seven predefined words of five characters
each (runs), by controlling a P300 matrix speller. Rows
and columns on the interface were pseudo-randomly in-
tensified for 125ms, with an inter stimulus interval (ISI)
of 125 ms, yielding a 250 ms lag between the appear-
ance of two stimuli (stimulus onset asynchrony, SOA).
For each character selection (trial) all rows and columns
were intensified 10 times (stimuli repetitions) thus each
single item on the interface was intensified 20 times and
the total number of flashes was 120. For each channel,
240 samples after stimuli onsets were selected for the
analyses. The dataset consisted hence of 4200 instances.
Drawing inspiration from [5], we split the dataset by us-
ing the first three words as training, and the last four as
testing set. We considered four different versions of the
dataset:

Single Trial we considered the original dataset, that is
4200 instances with 1921 attributes (240 samples
× 8 channels plus the attribute that represent the
row or the column intensified for each trial);

Decimated EEG data were then resampled in the time
domain by replacing each sequence of 12 samples
with their mean value, yielding 17× 8 samples per
epoch (eight being the number of channels), which
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were concatenated in a feature vector of size 137

Decimated 5-averaged EEG data were resampled in
the time domain as in the previous dataset ver-
sion, but also in the instances domain, so that five
consecutive instances of the same stimulation class
were replaced by one instance of their average; this
dataset version was then formed by 840 instances
and 137 attributes;

Decimated 10-averaged This version is similar to the
previous one, except that averages in the instances
domain were computed every 10 consecutive in-
stances of the same stimulation class; this dataset
version was then formed by 420 instances and 137
attributes;

The three decimated datasets were obtained by using
standard techniques for increasing the signal to noise ra-
tio and hence should represent an improvement over the
Single Trial dataset. However, it should be noted that,
for online applications, the time necessary to perform a
classification increases proportionally to the number of
the averaged instances. Following the results described
in [1], we use the filter ReliefF for feature selection, see
[3]. ReliefF is a robust feature selection filter that can deal
with incomplete and noisy data. This method randomly
selects an instance Ri, then searches for k of its nearest
neighbours from the same class called nearest hits Hj ,
and also k nearest neighbours from each of the different
classes, called nearest misses Mj(C). It updates the qual-
ity estimation W [A] for all attributes A according to their
values for Ri, hits Hj and misses Mj . Due to the noise
of the data we have decided to weight nearest neighbours
by their distance.
We tested different SVM based classifiers and the most
efficient one was LibLinear described in [2], since it re-
sulted the best on all the datasets, and it is also fast in
terms of time for building the model. Liblinear returns
an hyperplane wTx + b, that discriminates among the
two classes. It is important to stress that we did not use
the standard classification function of LibLinear (that is
y(x) = sign(wTx+b)), but we exploited the information
on the protocol that there is exactly one target element ev-
ery six instances. Therefore, we assigned the target class
to the maximum over the six flashes of wTx + b both
for rows and columns. Whenever this assignment does
not correspond to the real target, it results in both a false
positive and a false negative.
We compare our results with the standard strategy in BCI
(used also in [5]), that is SWLDA. SWLDA uses a step-
wise method to perform a multilinear regression of the re-
sponse values. We used the Matlab implementation with
its default setting and with the decision function exploit-
ing the knowledge on the protocol. Therefore, also for
this method, we assigned the target class to the maximum
over the six flashes of wTx+b both for rows and columns.

RESULTS

The following tables show, for each patient and for each
kind of dataset, the accuracy, the Cohen’s Kappa, and the
true positives rate on the test set (that we recall is the last
4/7 of the whole dataset), obtained both with SWLDA
(default setting, and with the decision function described
above) and with our strategy, that is LibLinear combined
with the feature selection given by ReliefF.

A01 SWLDA OUR
dataset acc k TP acc k TP

orig 0.8145 0.3323 0.4436 0.811 0.320 0.434
dec 0.854 0.475 0.563 0.854 0.475 0.563

5-avg 0.925 0.730 0.775 0.917 0.700 0.750
10-avg 0.958 0.850 0.875 0.958 0.850 0.875

Table 1: Results for Patient A01 on all the datasets

A02 SWLDA OUR
dataset acc k TP acc k TP

orig 0.8187 0.3474 0.4561 0.815 0.335 0.446
dec 0.828 0.382 0.485 0.837 0.412 0.510

5-avg 0.938 0.775 0.813 0.933 0.760 0.800
10-avg 0.967 0.880 0.900 0.967 0.880 0.900

Table 2: Results for Patient A02 on all the datasets

A03 SWLDA OUR
dataset acc k TP acc k TP

orig 0.8371 0.4135 0.5113 0.836 0.411 0.509
dec 0.869 0.529 0.608 0.873 0.544 0.620

5-avg 0.917 0.700 0.750 0.942 0.790 0.825
10-avg 0.925 0.730 0.775 0.942 0.790 0.825

Table 3: Results for Patient A03 on all the datasets

A04 SWLDA OUR
dataset acc k TP acc k TP

orig 0.824 0.365 0.4712 0.835 0.408 0.506
dec 0.856 0.481 0.568 0.843 0.433 0.528

5-avg 0.854 0.475 0.563 0.867 0.520 0.600
10-avg 0.892 0.610 0.675 0.950 0.820 0.850

Table 4: Results for Patient A04 on all the datasets

A05 SWLDA OUR
dataset acc k TP acc k TP

orig 0.849 0.456 0.5464 0.832 0.395 0.496
dec 0.850 0.460 0.550 0.863 0.505 0.588

5-avg 0.933 0.760 0.800 0.942 0.790 0.825
10-avg 0.975 0.910 0.925 0.967 0.880 0.900

Table 5: Results for Patient A05 on all the datasets

A06 SWLDA OUR
dataset acc k TP acc k TP

orig 0.850 0.459 0.5489 0.835 0.405 0.504
dec 0.881 0.571 0.643 0.878 0.562 0.635

5-avg 0.958 0.850 0.875 0.946 0.805 0.838
10-avg 0.967 0.880 0.900 0.975 0.910 0.925

Table 6: Results for Patient A06 on all the datasets

A07 SWLDA OUR
dataset acc k TP acc k TP

orig 0.860 0.495 0.5789 0.830 0.389 0.491
dec 0.873 0.541 0.618 0.863 0.508 0.590

5-avg 0.933 0.760 0.800 0.963 0.865 0.888
10-avg 0.967 0.880 0.900 0.967 0.880 0.900

Table 7: Results for Patient A07 on all the datasets
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A08 SWLDA OUR
dataset acc k TP acc k TP

orig 0.911 0.678 0.7318 0.906 0.663 0.719
dec 0.933 0.757 0.798 0.928 0.7396 0.783

5-avg 0.983 0.940 0.950 0.979 0.925 0.938
10-avg 0.983 0.940 0.950 0.983 0.940 0.950

Table 8: Results for Patient A08 on all the datasets

In order to show the physiological significance of the fea-
ture selection that we use, in Figure 1 (patient A02) and
Figure 2 (patient A07) are shown the target signals (or-
ange) vs the non target signal (blue) on all the electrodes
for patient A02 and patient A07. N200 VEP component
can be observed in Fig. 1 on Oz, Po7 and Po8 whereas the
P300 component can be observed on both patients in the
400-500 ms range and on Fz and Cz electrodes. Despite
the fact that these averages were obtained from a rele-
vant number of trials (300 targets vs 1500 non targets),
they appear to be quite different from those known from
the literature and from healthy subjects for two main rea-
sons: first of all the EEG signals from these patients have
a lower signal to noise ratio, and secondly the responses
overlap after each stimulation as they are elicited (every
250ms) before the physiological response in extinguished
(usually after no less than 800ms), thus causing some in-
terference.

Figure 1: Target (Orange) vs Non-Target (Blue) for Pa-
tient A02.
We have selected these two patients because they repre-
sent opposite classifiers performance: A02 is among the
worst while A07 is one of the best, as shown by the re-
sults in Tables 2 and 7.

Figure 2: Target (Orange) vs Non-Target (Blue) for Pa-
tient A07.
In order to investigate whether the features selected by
ReliefF are coherent with the physiological signals rep-
resented in Figures 1 and 2, we compared topographic
maps (Fig.3, A02; Fig. 4, A07) computed at certain time
interval, and according to three different methods:

- on the left we draw the weights chosen by SWLDA
for each feature;

- in the center we have the ERPs

- on the right the score computed by ReliefF

In all maps plotted values are relative to 7 distinct time
intervals, and averaged across 12 consecutive time sam-
ples. SWLDA and ReliefF weights were computed after
averaging 10 consecutive instances of the same stimula-
tion class and using 3/7 of the whole dataset. So, 180
instances with 1921 attributes (1920 from the signals and
one from the label) were used for training them. Note
that each of the 1920 obtained weights are bound to a
feature and then to a sample and an electrode. Weights
are then reduced after averaging 12 consecutive of them,
in order to further increase the signal to noise ratio. Note
that this approach preserve time and space information so
that each weight is still bound to an electrode and a time
(in this case an interval of 12 samples).
From all the possible maps, one for each time interval, a
subset of 7 (the most significant ones) is represented in
Figures 3 and 4.
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Figure 3: Topographic maps relative to patient A02 com-
puted according to 3 different methods and 7 different
time intervals.

From both Figures 3 and 4 it can be seen that maps com-
puted from features selected from ReliefF are very simi-
lar to those obtained from the ERPs whereas those com-
puted from SWLDA weights are quite different. This
clearly suggests that features selected with our approach
are more related to physiological signals than those se-
lected from SWLDA.

Figure 4: Topographic maps relative patient A07 com-
puted according to 3 different methods and 7 different
time intervals.

DISCUSSION

The reported results show how our approach based on Re-
liefF and LibLinear represents a valid alternative to the
widely used SWLDA, since it provides results compara-
ble to SWLDA in terms of accuracy and Cohen?s Kappa,
but selecting features that are physiologically relevant
while the features selected by SWLDA show scarce cor-
relation with the ERPs. This kind of information might
furnish relevant insights to identify which brain areas and
when are involved during certain cerebral activities, thus
improving the comprehension of brain functioning and
furnishing a valuable instrument for supporting scientific
hypotheses or diagnoses. It is also clear how the prepro-
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cessing of the data (especially the averaging of the signal)
is effective at improving the performance of the classi-
fier, as shown by the increasing accuracy (and Cohen’s
Kappa) obtained over the four datasets.

CONCLUSION

The detection of brain state changes translates into clas-
sification problems with a huge number of features that
make difficult to distinguish those relevant ones for di-
agnostic use. Therefore, distinguishing significant char-
acteristics not only would improve the predictor’s perfor-
mance, but would also provide a better understanding of
the underlying cerebral process that generated the data.
From classification point of view, the obtained results
show how our approach represents a valid alternative to
the standard SWLDA approach. More significantly, as
for the feature selection, the performance obtained with
our strategy outperforms SWLDA, since it turns out that
also in the case of ALS patients, this feature selection
filter is particularly robust, and returns a subset of se-
lected feature that is physiologically compatible. Figures
3 and 4 show how ReliefF was able to detect physio-
logical components elicited during the protocol either in
space (e.g. Cz, Pz, ...) or in latency (e.g. P300).
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Arnaldi B. A review of classification algorithms for EEG-
based brain?computer interfaces Journal of Neural Engi-
neering, 2007; 4(2).
[5] Riccio A, Simione L, Schettini F, Pizzimenti A, In-
ghilleri M, Olivetti Belardinelli M, Mattia D, Cincotti
F. Attention and P300-based BCI performance in people
with amyotrophic lateral sclerosis. Frontiers in Human
Neuroscience 2013;7:732.
[6] BNCI Horizon 2020. The Future of
Brain/Neural Computer Interaction: Horizon 2020
http://bnci-horizon-2020.eu/database/
data-sets
[7] L. Bianchi, at all. Which physiological components
are more suitable for visual ERP based brain computer
interface? A preliminary MEG/EEG study. Brain Topog-
raphy, 23:180-185, 2010
[8] DECODER Project, European ICT program FP7-ICT-
2009-04; Grant Agreement 247919

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-51

CC BY-NC-ND 278 Published by Verlag der TU Graz 
Graz University of Technology



ERROR-RELATED POTENTIALS WITH MASKED AND UNMASKED
ONSET DURING CONTINUOUS CONTROL AND FEEDBACK

C. Lopes Dias1, A. I. Sburlea1, G. R. Müller-Putz1

1Institute of Neural Engineering, Graz University of Technology, Graz, Austria

E-mail: gernot.mueller@tugraz.at

ABSTRACT: Brain-computer interfaces (BCIs) are
prone to errors in the decoding of the user’s intention, yet
the detection of errors can be used to improve the perfor-
mance of BCIs. We recorded the EEG data of 8 subjects
who participated in an experiment to study error-related
potentials (ErrPs) with masked and unmasked onset, dur-
ing a task with continuous control and continuous feed-
back. The masked ErrPs had a delayed onset and less
pronounced peak amplitudes when compared to the un-
masked ErrPs. We obtained an average classification rate
of 94% for correct trials and of 80% for error trials. The
classification rates for masked errors against unmasked
errors were at chance level.

INTRODUCTION

Brain-computer interfaces (BCIs) provide control to their
users, by recognising their intention from neuronal activ-
ity [1]. BCIs are susceptible to errors in the decoding of
the user’s intention and benefit from the ability to detect
what the user perceives as erroneous in order to improve
performance. This is possible because the recognition of
an error elicits a neuronal response that is associated with
a coarse differentiation between favorable and unfavor-
able outcomes [2] and that can be measured using vari-
ous techniques, e.g. electroencephalography (EEG). The
electrophysiological signature of error detection is named
error-related potential (ErrP) and is obtained by subtract-
ing the averaged electrophysiological trace following cor-
rect events from the averaged trace following erroneous
events.
Different types of ErrPs have been described in litera-
ture [3]: response ErrPs occur in speeded response time
tasks in which subjects are asked to respond as quickly
as possible to a stimulus; observation ErrPs occur when
subjects observe an error being committed by an external
agent; feedback ErrPs occur when subjects receive the in-
formation that the action they performed was not correct;
and interaction ErrPs occur in the context of BCIs, when
users believe that the command they issued was misinter-
preted by the interface.
In BCIs that are controlled in a discrete way, the occur-
rence of interaction ErrPs is well established [4, 5]. In
this context, interaction ErrPs can be detected on a single-
trial basis [5, 6, 7]. This enables their real-time detection,
either with the aim of correcting erroneous actions of the

BCI [8] or with the aim of reducing the possibility of the
error reappearing [9, 10].

BCIs that operate in a continuous way have gained at-
tention in the last years because they offer a more natu-
ral interaction between user and interface [11, 12, 13].
This has prompted the study of interaction ErrPs dur-
ing the use of BCIs with continuous control or feedback.
Kreilinger et al. [14, 15] investigated the occurrence of
interaction ErrPs in a BCI using simultaneously contin-
uous and discrete feedback. Spüler et al. [16] studied
interaction ErrPs in a task with continuous control and
continuous feedback, given through a cursor, without any
additional discrete feedback.

The study of asynchronous detection of ErrPs during con-
tinuous movement is still in the early stages. Spüler
et al. introduced the asynchronous detection of interac-
tion ErrPs [16]. In the context of an observation task,
Omedes et al. asynchronously detected observation ErrPs
with sudden and gradually unfolding errors [17, 18]. In
the case of gradually unfolding errors, the moment of the
error onset was not evident to the observer.

In the current work, we investigate interaction ErrPs with
masked and unmasked onset, during a task with con-
tinuous control and continuous, jittered and non-jittered,
feedback. We consider as unmasked the errors that occur
during trials without jittered feedback and as masked the
errors that occur during trials with jittered feedback. We
hypothesize that masked ErrPs occur later than unmasked
ErrPs, when time-locked to the error onset.

MATERIALS AND METHODS

Hardware and data acquisition: EEG data were
recorded at 1000 Hz using BrainAmp amplifiers and an
actiCap system (Brain Products, Munich, Germany) with
61 active electrodes. The electrodes were placed at po-
sitions Fp1, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4,
F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8,
T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3,
P1, Pz, P2, P4, P6, P8, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, Oz, and O2. The ground electrode was placed
at position AFz and the reference electrode was placed on
the right mastoid.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-52

CC BY-NC-ND 279 Published by Verlag der TU Graz 
Graz University of Technology



Experiment overview: Eight subjects, 5 male, with
ages between 19 and 27, participated in the experiment
after reading and signing an informed consent form. The
experiment consisted of 12 blocks with 30 trials each.
Each trial lasted on average 4.6 s. Between the trials, sub-
jects were given 2.5 s to rest. Between the blocks, sub-
jects were allowed to rest for as long as they needed. One
third of the trials of each block were randomly assigned
as error trials, described below. Half of the blocks, ran-
domly selected, consisted of trials with jittered feedback,
also described below.

Trial and task description: In the beginning of each
trial, 4 equally spaced squares were displayed on the up-
per part of a computer’s screen, at the same distance from
its centre. One of the squares was randomly chosen to be
the target and colored yellow, whilst the others were blue.
On the lower part of the screen was a red circle, which
represented the cursor (see Fig. 1).
The task consisted in moving the cursor from its initial
position to the target with a joystick. The joystick’s dis-
placement from its resting position controlled the direc-
tion of the cursor’s displacement, which moved at con-
stant velocity. The cursor was only allowed to move in-
side the grey area. A trial ended when the cursor reached
the target or when it hit the boundary of the grey region.
In order to minimise eye movements during the trials, the
participants were instructed to fixate their gaze on the tar-
get at the beginning of each trial, and to start moving the
joystick afterwards [19].

Error trials: In these trials, the subject lost the control
of the cursor when it was located at a randomly assigned
distance from the center of the screen, within the area de-
limited by the green half-circles depicted in Fig. 1. When
this happened, the cursor moved perpendicularly to its
direction at the moment of the error onset, until the trial
ended. The side to which it deviated was randomly as-
signed.
Subjects were instructed to keep their gaze fixed on the
target and to bring the joystick back to the resting posi-
tion when recognising that the control over the cursor was
lost.

Jittered feedback: With the intention of masking the
onset of the errors, in these trials the cursor jittered per-
pendicularly to the direction of the movement.

Preprocessing: The data were resampled from
1000 Hz to 250 Hz for the electrophysiological analyses
and to 25 Hz for the time-locked classification. In addi-
tion, a Butterworth filter of order 4 was applied to band-
pass the data between 1 and 10 Hz. Then the data were
segmented into correct and error trials. To epoch the cor-
rect trials, we considered the trials in which the partici-
pants successfully guided the cursor to the target and ex-
tracted a 1.5 s interval beginning with the cursor crossing
the horizontal midline of the screen depicted in Fig. 1.
The error trials were segmented using a 1.5 s interval
starting 0.5 s before the error onset. For the electrophysi-
ological results, a CAR filter was additionally applied.

Figure 1: Experimental protocol: a possible setup at the
beginning of a trial. The green half-circles delimit the
region in which the errors occur. The green horizontal
line represents the onset of the correct trials. The green
elements are invisible to the subjects.

Outliers rejection: Box-and-whisker diagrams were
used to reject outliers [20]. For each channel, the vari-
ance of the voltage during correct and error trials was
calculated. The lower and upper quartiles, Q1 and Q3, of
the channels’ variances were used to calculate the inter-
val [Q1 − k(Q3 − Q1), Q3 + k(Q3 − Q1)], with k = 3.
Channels whose variance lied outside this interval were
excluded.
To remove outlier trials, correct and error trials were
treated separately. The variance of the voltage at FCz in
correct and error trials was used to calculate two intervals,
using the procedure described for the channels’ rejection.
Correct and error trials whose variance of the voltage at
FCz lied outside the respective interval were excluded.
Additionally, trials whose variance of the voltage at FCz
was smaller than 2µV were also excluded because they
reflected problems with the electrode during the record-
ing. On average, 5.64% of the trials were excluded.

Time-locked classification: The raw data were resam-
pled to 25 Hz, bandpass-filtered and segmented as de-
scribed above. The amplitudes of each channel at each
time point of correct and error trials were used as fea-
tures for training a shrinkage LDA classifier [21], which
was tested using 10 times 5-fold cross validation. When
classifying correct trials against error trials, training and
testing sets were composed of 70% correct trials and 30%
error trials. When classifying masked errors against un-
masked errors, training and testing sets were balanced.

RESULTS

Electrophysiological analyses: Fig. 2 shows the av-
erage signal in error trials (red curve) and correct trials
(green curve) at channel FCz for the 8 subjects. The
shaded areas represent the 95% confidence interval of the
average curves. In the averaged error signal, a sharp neg-
ative peak appears at 192 ms after the onset of the error
(t = 0). It is followed by a pronounced positive peak at
300 ms. Finally, a broader negativity appears, peaking at
592 ms after the error onset. Fig. 2 depicts also the grand
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average ErrP (black curve). Fig. 3 depicts the grand aver-
age ErrP signal at different scalp positions. Electrodes
over the central regions of the scalp show ErrPs with
higher peak amplitudes.
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Figure 2: Grand average correct and error signals at chan-
nel FCz. The shaded areas represent the 95% confidence
interval of the average curves. The black curve represents
the grand average ErrP.
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Figure 3: Grand average ErrP at different channels. The
diagram on the bottom right indicates the axes’ scale of
the labeled plots.

Masked and unmasked errors: The grand average cor-
rect and error signals, masked and unmasked, are shown
in Fig. 4. The averaged unmasked error signal presents
a first negative peak 184 ms after the error onset, a posi-
tive peak at 316 ms and a broader negativity that peaks at
572 ms. The averaged masked error signal presents a first
negative peak at 196 ms, followed by a positive peak at
348 ms and a broader negativity that peaks at 600 ms. The
averaged masked error signal is delayed in comparison to
the averaged unmasked error signal, when time-locked to
the error onset. The peaks of the averaged masked error

signal have a lower amplitude than the ones in the aver-
aged unmasked error signal.
Fig. 5 displays the averaged correct and error signals,
masked and unmasked, for each subject individually. The
first negativity of the grand average error signal, masked
and unmasked, is not present in the error signals of all
the participants. A delay in the masked error signal in
comparison with the unmasked error signal is present in
the signals of the majority of the subjects. Subject 5
does not display ErrPs at channel FCz after CAR filtering.
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Average of unmasked error trials
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Figure 4: Grand average correct and error signals,
masked and unmasked, at channel FCz. The shaded ar-
eas represent the 95% confidence interval of the average
curves.

Time-locked classification: Both masked and un-
masked trials were considered to classify correct trials
against error trials. Tab. 1 shows the percentages (mean
and standard deviation) of successfully recognised cor-
rect and error trials for each subject and their average.
Tab. 1 also shows the Cohen-κ coefficient for each sub-
ject and their average. We obtained an average of 94.3%
recognition rate for correct trials and of 80.3% for error
trials. The average Coehen’s κ coefficient obtained was
of 0.76.
We also tried to classify masked errors against unmasked
errors but the results obtained were at chance level (50%),
as shown in Tab. 2.

DISCUSSION

We presented results on the electrophysiology of inter-
action ErrPs and compared errors with masked and un-
masked onset. In our study, the ErrP displayed a very
similar shape to the error signal because the correct signal
was not associated with any event. The masked error sig-
nals were delayed in comparison to the unmasked ones,
when time-locked to the error onset. We assume that this
is due to subjects taking longer to recognise masked er-
rors. The first negative and positive peaks in the masked
error signals presented lower amplitudes than in the cor-
responding peaks in the unmasked error signals. This oc-
curred either due to a variability of the moment in which
subjects recognised the error in masked trials or due to
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a change in the cursor’s direction causing more surprise
in unmasked trials than in the masked ones, in which the

participants were used to some instability in the feedback.
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areas represent the 95% confidence interval of the mean curves.
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Table 1: Percentages (mean and standard deviation) of
successfully classified correct and error trials and Cohen-
κ coefficient.

Subject Correct (%) Error (%) κ

1 98.4 ± 1.4 91.9 ± 5.6 0.91 ± 0.04
2 99.1 ± 1.4 87.5 ± 7.3 0.89 ± 0.06
3 95.0 ± 3.2 81.2 ± 7.1 0.78 ± 0.06
4 93.4 ± 3.2 82.1 ± 8.4 0.76 ± 0.08
5 90.3 ± 4.1 68.7 ± 11.0 0.60 ± 0.12
6 92.0 ± 3.9 77.3 ± 9.9 0.70 ± 0.10
7 92.3 ± 3.8 77.6 ± 10.5 0.71 ± 0.11
8 93.7 ± 3.0 76.1 ± 9.6 0.71 ± 0.09

Average 94.3 ± 4.3 80.3 ± 11.0 0.76 ± 0.13

Table 2: Percentages (mean and standard deviation) of
successfully classified masked and unmasked error trials.

Subject Masked (%) Unmasked (%)

1 64.9 ± 13.1 68.8 ± 15.7
2 63.2 ± 12.1 54.4 ± 17.6
3 65.8 ± 15.9 70.1 ± 13.6
4 51.3 ± 16.0 62.1 ± 14.1
5 68.4 ± 15.9 68.1 ± 13.4
6 66.4 ± 13.3 55.9 ± 15.3
7 51.0 ± 14.7 55.5 ± 15.3
8 41.9 ± 17.7 41.1 ± 13.8

Average 59.1 ± 17.4 59.5 ± 17.4

CONCLUSION

We investigated interaction ErrPs with masked and un-
masked onset. The masked error signals were delayed in
comparison to the unmasked ones, when time-locked to
the error onset. The first negative and positive peaks in
the masked error signals presented lower amplitudes than
the corresponding peaks in the unmasked error signals.
We obtained good classification rates for correct trials
against error trials using time domain features. Neverthe-
less, our classification results for masked errors against
unmasked errors were at chance level.
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ABSTRACT: While promising for many applications,
Electroencephalography (EEG)-based Brain-Computer
Interfaces (BCIs) are still scarcely used outside labora-
tories, due to a poor reliability. It is thus necessary to
study and fix this reliability issue. Doing so requires to
use appropriate reliability metrics to quantify both signal
processing and user learning performances. So far, Clas-
sification Accuracy (CA) is the typical metric used for
both aspects. However, we argue in this paper that CA is
a poor metric to study how well users are learning to use
the BCI. Indeed CA is notably unspecific, discrete, train-
ing data and classifier dependent, and as such may not
always reflect successful EEG pattern self-modulation by
the user. We thus propose new performance metrics to
specifically measure how distinct and stable the EEG pat-
terns produced by the user are. By re-analyzing EEG data
with these metrics, we indeed confirm that CA may hide
some learning effects or hide the user inability to self-
modulate a given EEG pattern.

INTRODUCTION

While they are very promising for numerous applica-
tions, such as assistive technology or gaming, Electroen-
cephalography (EEG)-based Brain-Computer Interfaces
(BCIs) are still scarcely used outside laboratories [1].
This is mostly due to their poor reliability, as they of-
ten recognize erroneous mental commands from the user.
One of the main current challenges of the community is
thus to improve BCI reliability [1]. This is currently ad-
dressed at different levels, such as trying to design more
robust EEG signal processing algorithms, or trying to
improve BCI user training approaches, which have been
shown to be inappropriate and a major cause of poor per-
formances, both in theory and in practice [1, 3, 8]. Im-
proving these different aspects requires to measure this
reliability and thus BCI performances. Indeed such per-
formance metrics could identify what are the limitations
of a given algorithm or training approach, which is a nec-
essary first step towards fixing these limitations [1].
User performance metrics are particularly useful for
studying and improving Mental Imagery (MI) BCI user

training. Appropriate performance metrics could indeed
help to understand what users have successfully learned
or still need to improve, which can then be used to guide
them, i.e., to provide them with appropriate training tasks
and feedback. In EEG-based BCI, the most used met-
ric is Classification Accuracy (CA), i.e., the percentage
of mental commands that were correctly recognized by
the BCI [11, 12]. CA, together with other machine learn-
ing evaluation metrics [11, 12], have been successfully
used to quantify the decoding performance of the BCI,
i.e., how well the BCI recognizes the users’ commands.
However, CA is also used to study BCI user learning, i.e.,
how well users can modulate/self-regulate their EEG sig-
nals to control the BCI, and how much they learn to do so.
For instance, CA is typically used to study how different
feedbacks impact BCI user training [5], or how different
psychological factors impact BCI user learning and per-
formances [4].

In this paper, we argue and demonstrate that CA alone, as
used in online MI-BCI, is not enough to study BCI user
learning and performances. Indeed, this metric is notably
unspecific, discrete as well as classifier and training data
dependent, among other. In order to fully understand BCI
user skill acquisition, alternative or additional metrics are
thus necessary. Therefore, in this paper, we also pro-
pose new, simple and computationally efficient metrics
to quantify various aspects of MI-BCI skill acquisition
and compare them with the classically used online CA.
We show that using online (or simulated online) CA as
metric may actually hide several relevant aspects of BCI
skill acquisition. In particular, online CA may miss user
learning effects or fail to identify that a mental task per-
formed is actually no different than rest EEG. Our new
metrics can overcome these limitations.

This paper is organized as follows: The next section
presents the material and methods, and notably how on-
line CA is measured, and what its limitations are, as well
as the new metrics we propose. It also presents the data
set on which these measures are compared. Then the Re-
sults section compares the performances estimated with
all metrics, which are then discussed in the Discussion
section. The last section concludes the paper.
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MATERIALS AND METHODS

Classification accuracy and its limitations
As indicated before, CA is the most used metric to quan-
tify BCI performances. Typically, the classifier is trained
on the EEG signals from the trials of the first BCI runs
(calibration runs) and applied to classify the users’ EEG
signals from the trials of the subsequent runs. CA is de-
fined as the percentage of these EEG trials that were cor-
rectly classified [11]. From the classification results, we
can also obtain a more detailed information on the perfor-
mances from the Confusion Matrix (CM), which informs
about how many trials from each class were estimated to
be from each one of the possible classes. The CM is de-
fined as follows for a two class problem:

Table 1: Confusion matrix for two classes
Estimated class

Class 1 Class 2
Real Class 1 a b
Class Class 2 c d

Here, the number in row i, column j is the number of tri-
als from class i that was classified as belonging to class
j. Thus, a and d correspond to correct classifications (the
real and estimated classes are the same), and c and b to er-
roneous classifications. CA (in %) can thus be computed
as a+d

a+b+c+d × 100. From there we can also estimate the
CA of each class, e.g., a

a+b × 100 is the percentage of
trials from class 1 that were correctly classified.
This CA metric is very useful to quantify the decoding
performance of a BCI [11]. However, when it comes to
studying how well users can voluntarily modulate their
EEG signals to control the BCI, we argue that such met-
ric actually suffers from many limitations.
First, CA is unspecific: it only provides the global perfor-
mance, but not what is (in)correctly classified, nor why it
is so. Then, CA is a discrete measure: a trial is either
correctly classified or not, there is no middle ground. As
such, even if the user produces a stronger EEG modula-
tion than before, but not strong enough to make the trial
correctly classified, CA will not change.
CA is also strongly classifier and training data depen-
dent. Changing the classifier type, its parameters, or the
amount and/or quality of the training data will change the
CA, irrespectively of how well users can modulate their
EEG activity. Therefore variations of CA might not al-
ways reflect users’ proficiency at BCI control. Classifiers
are also sensitive to non-stationarities, and thus would
lead to poor CA when applied on EEG data from a differ-
ent distribution than that of the calibration runs. This is
likely to happen if users are trying out various strategies
or are learning. When based on a discriminative classifier
such as Linear Discriminant Analysis (LDA), the most
used classifiers for BCI [1], CA does not reflect how well
a given mental command can be recognized but rather
how distinct the mental commands are from each other.
Therefore, if users are unable to modulate their EEG sig-
nals for one class (e.g., left hand MI), they may still ob-

tain very high CA as long they can modulate their EEG
for the other class (e.g., right hand MI), since the EEG
signals from the two classes are distinct.
This leads to a last limitation: in BCI, CA usually consid-
ers the MI EEG signals only, but not the rest EEG signals.
As illustrated just before, this prevents us from identify-
ing whether the user’s EEG patterns during MI are actu-
ally any different from rest EEG. For all these reasons,
CA may not be able to reveal some important aspects of
BCI user performance and BCI user learning, which thus
calls for new metrics to quantify these aspects. This is
what we propose in the following sections.

New Performance metrics
To address some of the limitations mentioned above, a
possible approach (not new in itself but typically not
used to study BCI user learning) would be to perform
Run-Wise Cross-Validation (RWCV). The idea is to use
CV to estimate offline the CA of each run. With RWCV,
the trials from the current run are divided into K parts,
K-1 parts being used for training the classifier, and the
last part for testing it, the process being repeated K times,
and the obtained CA averaged over the K testing parts.
This thus also provides class-specific CV accuracies, as
done with the standard CA. We will assess this approach
in this paper. Since training and testing are performed on
each run, and for different parts of each run, this makes
RWCV CA much less sensitive to training data and to
non-stationarities. This metric remains non-specific and
discrete though, and still ignores the background EEG. It
is also computationally expensive.

To further improve on the metrics mentioned above, we
thus need metrics that are also specific, continuous, that
consider rest EEG signals and that are computationally
cheap. To go towards more specific metrics, we can first
consider that the goal of BCI user training is typically
defined as to enable users to produce stable and distinct
EEG patterns, so that these patterns can then be recog-
nized by the classifier. As such, it would make sense to
design a set of metrics dedicated to estimating how sta-
ble and distinct the EEG patterns for each MI task ac-
tually are. A stable pattern would be a pattern that is
not changing dramatically between trials, and thus with a
small variance. A distinct pattern would be both 1) a pat-
tern that is distinct from the rest EEG pattern, i.e., there
is a specific signature to that pattern and 2) a pattern that
is distinct from the EEG patterns of the other MI tasks.
Interestingly enough, metrics quantifying these various
properties can be defined using distances in a Riemannian
geometry framework. Indeed, Riemannian geometry of-
fers an efficient and simple way to measure distances be-
tween covariance matrices, such matrices being increas-
ingly used to represent EEG patterns [2, 14]. Given ma-
trix Xi ∈ RNc×Ns of EEG signals from trial i, with
Nc the number of channels and Ns the number of sam-
ples per trial, the covariance matrix Ci of this trial is de-
fined as Ci = 1

Ns
XT

i Xi, with T being transpose. There-
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fore, the diagonal elements of Ci represent the EEG band
power for each channel, and the off-diagonal elements,
their covariations. Such spatial covariance matrices are
used - implicitly or explicitly - to represent EEG sig-
nals in numerous MI-BCI designs, notably those based on
the Common Spatial Patterns (CSP) algorithm, and many
others [9, 14]. The Riemannian distance δR(Ci, Cj) be-
tween covariance matrices Ci and Cj can be defined as:

δR(Ci, Cj) = [
n∑

i=1

log(λi)
2]1/2 (1)

where the λi are the eigen values of C−1
i Cj . This Rie-

mannian distance is particularly interesting since it is
affine invariant: it is invariant to linear transformations,
i.e., to variations such as normalization or channel dis-
placement [14]. As such, the Riemannian distance has
been used successfully for robust EEG signal decoding,
in various kinds of BCIs [14]. In this paper, we show that
this distance can also be a very relevant tool to quantify
how distinct and stable the EEG patterns produced by a
BCI user are. In particular, how distinct the EEG patterns
from two tasks are could be quantified using the Rieman-
nian distance between the average covariance matrices
for each task. Then, the stability of a given EEG pat-
tern can be defined using the average distance between
each trial covariance matrix and the average covariance
matrix for this task, which is a form of Riemannian stan-
dard deviation [14]. More formally, let us first define the
Riemannian mean C̄ of a set of covariance matrices Ci

[14] as:

C̄ = argminC

N∑
i=1

δ2R(Ci, C) (2)

and the standard deviation σC of a set of matrices Ci as:

σC =
1

N

N∑
i=1

δR(Ci, C̄) (3)

From there we propose to define the distinctiveness class-
Dis of the EEG patterns from two classes A and B as:

classDis(A,B) =
δ(C̄A, C̄B)

0.5× (σCA + σCB )
(4)

where C̄K and σCK are respectively the mean and stan-
dard deviation of the covariance matrices from class K.
This equation can be seen as the extension of the t-
statistic to covariance matrices. Similarly, we propose to
define the distinctiveness restDis between the EEG pat-
terns from one class and those from the rest state as:

restDis(A) =
δ(C̄A, C̄rest)

0.5× (σCA + σCrest)
(5)

where C̄rest and σCrest are respectively the mean and
standard deviation of the covariance matrices of the rest
EEG. Finally, we can define the stability of the EEG pat-
terns from one MI task as being inversely proportional

to the standard deviation of the covariance matrices from
that task:

classStab(A) =
1

1 + σCA

(6)

These are simple, intuitive and computationally efficient
metrics to quantify some aspects of users skills at BCI
control. They are also training data and classifier in-
dependent, as well as robust to some non-stationarities
given the affine invariance of δR. In the following, we
compare them offline with CA and RWCV CA.

Data set and evaluation
To compare the performance metrics, we used the motor
imagery EEG data from the experiment described in [3].
This data set comprises the EEG signals of 20 BCI-naive
participants, who had to learn to do 2 MI-tasks, namely
imagining left- and right-hand movements. Participants
first had to complete a calibration run, without feedback,
followed by 4 feedback runs. Each run was composed of
20 trials for each of the two MI tasks. At the beginning
of each trial, a fixation cross was displayed. Then, after
2s, a beep sound occurred. Then, at t = 3s, the instruction
appeared as an arrow the direction of which indicates the
MI task to be performed, i.e., an arrow pointing left indi-
cated a left hand MI and an arrow pointing right a right
hand MI. From t = 3.250s, a feedback was provided for
4s in the shape of a bar the direction of which indicating
the mental task that has been recognized and the length
of which representing the classifier output.
EEG data were filtered in 8-30 Hz, using a 5th order but-
terworth filter. For each trial, the MI EEG segment used
was the 2s long segment starting 0.5s after the cue (left or
right arrow), i.e., from second 3.5 to 5.5 of each trial. For
the rest EEG signals, we used the 2s long segment im-
mediately before the cue, i.e., from second 1 to 3 of each
trial. For CA and RWCV, we used 3 pairs of Common
Spatial Pattern (CSP) spatial filters and a LDA classifier,
as in [3]. For the standard (here simulated online) CA,
we trained the CSP and LDA on the EEG data from the
calibration run and used it to classify the EEG data from
the 4 subsequent runs, as in [3]. For the RWCV CA, we
used 4-fold CV on each run. For classDis, restDis and
classStab, the covariance matrices for each trial were es-
timated using automatic shrinkage using the method from
[7].

RESULTS

Average results
Figure 1 shows the average measures of distinctiveness
between classes (MI tasks), i.e., CA, RWCV CA and
classDist, for each run. CA displays some oscillations in
performance, but no global learning effect. On the other
hand, both RWCV CA and classDist reveal a clear con-
tinuous increase in distinctiveness between classes over
runs. Despite the high inter-subject variability, the 2-way
ANOVA Metric*Run (Metric: CA, RWCV CA, classDist
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- transformed to z-score to enable comparisons; Run: 2 to
5) for repeated measures showed a significant metric*run
interaction [F(1,19) = 4.432; p < 0.05; η2 = 0.189], see
also Figure 2. Figure 3 shows the measures of distinc-
tiveness per class (class-wise CA and restDist). Here
as well, CA does not show any obvious learning, while
RWCV CA shows some and restDist shows a contin-
uous learning for one of the two classes. The 3-way
ANOVA Metric*Class*Run (Metric: CA, RWCV CA,
classDist (z-score); Class: left- vs. right-hand MI; Run:
2 to 5) for repeated measures showed a strong tendency
towards a main effect of the metric [F(1,19) = 3.826;
p = 0.065; η2 = 0.168] but no metric*class*run interac-
tion [F(1,19) = 0.195; p = 0.664; η2 = 0.010]. Concerning
the stability metric (classStab, Fig. 4), no clear learning
is visible over a single session, at least on average.

Figure 1: The average measures of distinctiveness be-
tween classes, across runs.

Figure 2: The z-score transformed distinctiveness mea-
sures, revealing learning with RWCV and classDist only.

Figure 3: The average measures of class specific distinc-
tiveness, across runs.

Figure 4: The average measures of stability.

Some subject specific results
As stated earlier, we observed a high inter-subject vari-
ability, therefore it is interesting to further investigate the
different patterns observed in terms of metrics’ evolution
across the runs, for individual subjects. It will enable the
analysis of the behavior of the different metrics and pro-
vide insights on their pros and cons.
For instance, all the distinctiveness measures for subject
S5 could reveal a clear learning effect. However, the
same metrics for subject S4 did not show any learning
effect with the online CA, whereas both RWCV CA and
classDist revealed clear learning over runs (see Fig. 5).
Metrics for subject S9 (Fig. 6) revealed another interest-
ing phenomenon. While both CA and RWCV CA did
not show any learning, classDist did. However, restDist
revealed that class 1 actually became increasingly more
similar to rest EEG over the runs (restDist for class 1
sharply decreased), and thus that the increased classDist
was probably due to the BCI discriminating rest vs right
hand MI rather than left vs right MI. CA cannot identify
such a phenomenon since it ignores rest EEG.

Figure 5: Examples of 2 subjects for which, either CA
measured a learning effect like the other metrics (top), or
did not whereas the other metrics did (bottom)

Finally, analyzes of Subject 19’s data (Fig. 7) showed
decreasing class discriminability with CA and classDist,
however still revealed learning, with restDist continu-
ously increasing over runs, for both classes. This could

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-53

CC BY-NC-ND 288 Published by Verlag der TU Graz 
Graz University of Technology



mean this subject learned to modulate his EEG signals
so that they differ from rest EEG, but may have more
troubles generating consistently distinct patterns between
the two MI tasks. Such phenomenon has also been ob-
served with simultaneous EEG-fMRI in [15], in which
some subjects showed modulations of brain activity dur-
ing MI with respect to rest signals, but no lateralization
of the patterns. The restDist metric could thus be a cheap
and easy way to identify this phenomenon in EEG.

Figure 6: Subject 9, for which class 1 became like rest

Figure 7: Subject 19 produced EEG patterns increasingly
more different than rest, but not distinct from each other.

DISCUSSION

Globally, average results showed a significant metric*run
interaction. This suggested that some metrics (here
RWCV CA and classDist) revealed learning while an-
other (CA) did not. This is all the more interesting given
the fact that (1) we considered only one training ses-
sion, so it is very likely that several subjects did not ac-
tually learn over such a short time and (2) the feedback
was based on the CA metric. Indeed, participants were
asked to make the blue bar feedback, that depended on the
CA, as long as possible in the correct direction. Despite
such feedback based on a possibly incomplete metric (as
shown above), most of the participants showed that they
were able to learn to modulate their EEG patterns, some-
times leading to metrics increase. This result is promis-
ing for the future as it suggests that with a better feed-
back, the ability of the participants to learn to modulate
efficiently their EEG patterns, in order to improve their
BCI control, could be enhanced. On the other hand, these
results also suggested that different performance metrics
can reveal different aspects of BCI user learning. No-
tably, they first showed that CA may not always reveal
that users have learned to modulate their EEG patterns,
whereas metrics such as RWCV CA and classDist can
reveal such learning. They even revealed fast learning ef-
fects in several subjects, with continuous progress over
runs, over a single day of training. This can have pro-
found implications for the study of BCI user training. For
instance, the present results may explain why in [6], it
was concluded that most BCI studies - and notably those
based on machine learning - do not actually involve hu-
man learning. Indeed, in most of the studies surveyed in
[6], CA was used as the performance metric. As such,
human learning might have occurred, but CA might not
have been able to measure it. It thus seems necessary
to re-analyse EEG data from previous studies with com-
plementary performance metrics such as the ones pro-
posed here, to assess whether or not human learning was
actually involved. The fast learning over runs revealed
by the alternative metrics also stresses the need for co-
adaptive BCI systems, and explains the success of these
approaches, see, e.g., [13]. Interestingly enough, these
works also studied EEG changes due to BCI learning, in
a univariate way at each channel, using the R2 metric.
The restDist metric also highlighted the need to consider
rest EEG when evaluating the BCI user skills. Not doing
so may prevent us from realizing that the user is not able
to perform one of the MI tasks, and should thus probably
be specifically trained to do so.

CONCLUSION

In this paper, we argued that CA, the most used metric
to quantify BCI performance, should not be used alone to
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study BCI user learning. We indeed identified many limi-
tations of CA for this purpose and proposed new metrics,
based on Riemannian distance, to do so. An evaluation of
these metrics indeed confirmed that online CA may hide
some learning effects and cannot identify how different
an MI class is from rest EEG. We therefore conclude that,
when studying user learning and performance, CA should
be used with care, and complemented with metrics such
as the ones proposed.
Naturally, this study needs to be extended by assess-
ing these metrics on other data sets, as well as across
several sessions, to measure long-term learning as well.
Nonetheless, this study and metrics open many promis-
ing perspectives. In particular it would be interesting
to re-analyze the relationship between users’ profile, no-
tably neurophysiological, personality and cognitive pro-
file, and these new performance metrics (so far done by
looking for correlation with CA only [4]), which could
reveal new predictors of performance, and thus new ways
of improving BCI user training. In the future, these met-
rics could also be used as the basis to design new feed-
backs, and in particular explanatory feedbacks [10]. In-
deed, these metrics being based on simple distance mea-
sures, they could be computed online, using incremen-
tally estimated average covariance matrices. In contrast,
the RWCV CA metric cannot be used online, notably
due to its computational cost. The classDist, restDist
and classStab metrics could thus be provided as online
feedback, to tell users whether they should improve the
distinctiveness with rest, with another class, or the sta-
bility of their patterns, for instance. These concepts be-
ing abstract and unusual for BCI users, a considerable
work would be needed in terms of user-centered design
and human-computer interaction to find out the best ways
to provide such an explanatory feedback. These metrics
revealing fast learning effects, they could also be used as
a cheap, possibly online way (faster and more convenient
that CV) to identify when to update and retrain classifiers.
Finally, it would be relevant to further refine these met-
rics, for instance by defining sub-metrics, for subset of
EEG channels, over specific brain areas, to study brain
area specific learning processes. Overall, we are con-
vinced that BCI user training should be further studied,
and we hope these new metrics could be a new way to
look at these aspects.
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ABSTRACT: We develop and test three deep-learning re-
current convolutional architectures for learning to recog-
nize single trial EEG event related potentials for P300
brain-computer interfaces (BCI)s. One advantage of the
neural network solution is that it provides a natural way to
share a lower-level feature space between subjects while
adapting the classifier that works on that feature space.
We compare the deep neural networks with the standard
methods for P300 BCI classification.

INTRODUCTION

Brain-computer interfaces (BCIs) are being developed as
communication methods for people with locked-in syn-
drome who have lost the ability to control their mus-
cles and thus can’t move, speak, or eventually even move
their eyes in a well-controlled way. Electroencephalog-
raphy (EEG) provides a cheap non-invasive monitoring
channel with excellent temporal precision and is the most
used signal for brain-computer interfaces. Classifying the
EEG signals however is a difficult task as the signals are
subject to poor spatial resolution, sensitivity to other elec-
tromagnetic sources as well as to the impedance of the
electrode-scalp interface. The accuracy of classification
algorithms for interpreting EEG data is a major barrier to
the improvement of the EEG based BCI systems.
P300 based BCIs attempt to recognize a single-trial P300-
like response that occurs when a subject attends to a pre-
sented rare or meaningful item. P300 responses have
been studied in Cognitive Neuroscience for years and are
referred to as event related potentials as they are time-
locked to the presentation of the stimulus (event) [1].
Modern P300 BCIs classify the single-trial version of the
event-related potential. Single-trial processing of EEG
data has to date largely been most successful with very
simple algorithms due to the large amounts of noise in
the data and the paucity of data.
Many studies [2,3] have generally found that linear clas-
sification methods such as linear support vector machines
(SVM) and linear discriminant analysis (LDA) worked
better for classifying P300 BCIs than simple shallow non-
linear methods such as multilayer perceptron and Gaus-
sian kernel support vector machines. However, these
classifiers treat every spatio-temporal sample equally (for

example they perform identically if channel data are con-
sistently permuted), and therefore do not benefit from the
potential assumption that local temporal and spatial pat-
terns exist in the data. By preserving the spatial orga-
nization of electrodes in the representation of the data,
we could attempt to learn local spatial filters present in
the data. Overall, a classifier should consider both spa-
tial and temporal information while classifying the P300
EEG signal.

Recently deep neural networks have transformed the
fields of handwriting recognition, speech recognition [4],
large scale image recognition [5] and video analysis [6,7],
and are rapidly transforming machine learning more gen-
erally. More recently convolutional neural nets and re-
current nets have been used in the realm of EEG signal
classification. Cecotti et al.[8] used convolutional neu-
ral networks for P300 EEG classification. Mirowski et
al.[9] used convolutional networks to predict epileptic
seizures before they happen. Bashivan et al.[10] used a
deep recurrent-convolutional network to learn represen-
tations from EEG, and demonstrated its advantages in the
context of a mental load classification task. They success-
fully preserved the spectral, spatial, and temporal struc-
ture of the data during classification. There are multi-
ple reasons to believe that deep learning could transform
EEG processing: a) convolutional neural networks pro-
vide an intuitive and well understood way to deal with
natural spatial relationships [5], b) neural networks eas-
ily allow filtering and classification to be combined in one
discriminative framework, and c) recent advances in re-
current neural network (RNN) structures such as Long
Short Term Memory (LSTM) [11] provide an intuitive
and well understood way to deal with natural temporal
relationships.

Our goal is to develop various deep learning architec-
tures for classifying the P300 EEG signals. The pro-
posed classifiers respect the spatial and temporal nature
of the EEG signals, optimally combine their informa-
tion, and naturally permit the sharing of sub-structure be-
tween tasks and between subjects. We propose a three-
dimensional convolutional neural network (3D-CNN)
[6,12] in conjunction with a two-dimensional convolu-
tional neural network (2D-CNN) and LSTM to capture
spatio-temporal patterns in the EEG signals We also ex-
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plore the use of transfer learning, where the information
can be shared between different subjects [13].
Transfer learning is important in EEG analysis as due
to cortical folding and other differences between people,
EEG classifiers trained on one subject do not generalize
as well to other subjects. However, it is time-consuming
to collect training data from each new subject, so a de-
sirable strategy is to train a “proto-classifier” with many
previous subjects and then refine it with a small amount
of training data from the new subject.
Our proposed method for P300 EEG signal classification
is closely related to the one that is proposed by Bashivan
et al.[10]. This method preserved the spatial structure of
the data by transforming EEG into 2D image frames, and
combined 2D-CNN and LSTM for the classification. In
contrast, we propose the use of a 3D CNN in order to pre-
serve spatio-temporal features, and also employ transfer
learning to further increase classification performance.

MATERIALS AND METHODS

EEG DATASET: Data were collected from a P300 seg-
ment speller paradigm where letter segments were flashed
and subjects had to mentally note which stimuli were seg-
ments from their target letter[19]. That is, targets were
colored segments that form part of the desired letter and
non-targets were differently colored segments that are not
part of the letter. There were 10 segments total and each
segment has a unique color. Subjects were cued with
the colored segments at the beginning of each trial. Re-
sponses to target segments give similar P300 responses to
target letters in a more common P300 BCI paradigm.
We performed experiments using two training datasets.
EEG dataset 1 was recorded from 4 subjects using a 64-
channel active electrode EEG system (BioSemi Active
II) with a sampling rate of 512 Hz and bilaterally refer-
enced to the average of the two mastoids. Later, the data
were segmented and temporally downsampled to 128 Hz.
EEG Dataset 2 was recorded from 5 subjects using the
BrainVision BrainAmp 64-channel EEG system. The na-
tive sampling rate was 5 kHz, downsampled to 100 Hz
for classification. Data were re-referenced to common
mean (montage average reference). On both the datasets,
the EEG signal is bandpass filtered with an FIR filter
of length 68-taps, with passband between 2 and 35 Hz
and stopband cutoffs at 0.1 and 40 Hz. Also, the signal
from 150 ms to 800 ms after segment flash onset was seg-
mented and downsampled to ten frames.
The classification task is to classify an EEG signal signal
into a target class or a non target class. The target class
refers to the signals collected when a target segment is
flashed, while the non target class refers to the signals
collected when a non target segment is flashed. The di-
mension of each input signal is 64 x 10 (Channels in 3D
space x Time Points).

DATA PRE-PROCESSING: Our goal is to improve the
detection/classification of P300 responses by learning

representations from the EEG data. We preserve spatial
information, by projecting the EEG data into a 2D grid
as in [10]. The EEG electrodes are located in a three di-
mensional space over the scalp. Transforming the EEG
measurements from 3D locations on the head into a 2D
grid is accomplished through spatial interpolation. An
azimuthal equidistant projection [14] is used to project
the position of electrodes in a 2D surface. Subsequently,
cubic spline interpolation [15] is applied on the resultant
2D mapping of the electrodes to obtain a 2D grid of size
n x n, where n is the number of points in each row. A
square with roughly 8 or 12 interpolated points on each
side seems sufficient for capturing the spatial variation.
For this experiment, we use 8 interpolated points on each
row and column resulting in an 8 x 8 2D grid, analogous
to a 2D image with pixel dimension of 8 x 8. 2D images
are constructed for every time window for each trial, and
are given as an input to the deep convolutional neural net-
work. The input dimension for each signal is 10 x 8 x 8 x
1 (Time Samples x height x width x Depth).

PROPOSED MODEL ARCHITECTURES: In order to
learn the inherent spatial and temporal features from an
EEG signal, we use a model which combines a deep hi-
erarchical feature extractor with the one that can learn to
recognize and synthesize the temporal features.
General multilayer perceptrons have not been widely suc-
cessful in EEG as the massive number of unconstrained
interdependent parameters can lead to overfitting. The
convolutional framework allows for successfully learning
complex relationships in images without overfitting for at
least two reasons: (1) Each filter is only applied to a few
local inputs, and (2) each filter is learned based on multi-
ple windows (replicated throughout the training pattern)
in each labeled example. This effectively increases the
amount of training data available for learning the param-
eters.
Moreover, human brain activity is a temporally dynamic
process. Variations of the signals between time points
may actually contain additional information about the un-
derlying P300 response. Hence, Long Short Term Mem-
ory (LSTM) is adopted on top of the CNN, to learn tem-
poral patterns as has been done for action recognition in
videos [7].
Generally, convolutions are applied on 2D feature maps
to compute spatial features, and later recurrent layers are
used to compute temporal features. However, the 2D
ConvNets do not take the temporal information into ac-
count while performing the spatial convolutions on each
frame. Hence, we propose an approach based on 3D Con-
vNets, which initially perform spatio-temporal convolu-
tions, to consider both spatial information in each frame
and temporal information encoded in multiple contiguous
frames, preserving the temporal information of the input
signal.
Here are the proposed architectures to extract the spatial
and temporal information from the EEG signal.

• 2D3−L: Layers of 2D-CNN are stacked on top of
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each other, and used on each frame to extract the
spatial information, while LSTM was used to ex-
tract the temporal information, on the sequence of
frames.

• 3D−2D3−L: A 3D-CNN was used initially to ex-
tract spatiotemporal features, and then a 2D-CNN
and LSTM are applied on top of the 3D CNN.

• S(3D)−2D3−L: A transfer learning approach is
used on 3D−2D3−L architecture, where we pre-
tain the network on a different dataset, freeze the
3D CNN layers, and train the rest of the network on
the current dataset. S(3D) in S(3D)−2D3−L de-
notes that we are sharing the weights of 3D-CNN
across the subjects.

We implemented the architectures using the Keras library
and Theano framework. As described in the previous sec-
tion, the EEG electrode positions are projected and inter-
polated into an 8x8 2D square grid and a sequence of 8x8
images are extracted over the successive time windows.

2D3 − L Architecture: Here, we combine a 2D-CNN
and LSTM, as a result separately utilizing both the spa-
tial and temporal information for the classification.
As described in the previous section, in order to account
for the temporal activity, we extract 10 frames from each
trial ie., EEG signal, by dividing each trial into 10 time
windows, and averaging over each time window. The se-
quence of these images are given as input to the CNN.
The input data to the CNN is of the following dimension:
Total Number of Trials x 10 frames per each trial x 8
width x 8 height x 1 depth
The outputs of the 2D-CNN are fed into a recurrent net-
work, where we investigate the temporal activity in the
EEG signals.
During training, the input to the CNN is a fixed-size 8x8
image. The image is passed through a stack of convo-
lutional (conv.) layers, where we use filters with a very
small receptive field: 3 x 3 (the smallest size to capture
the notion of left/right, up/down, center). The convolu-
tion stride is fixed to 1 pixel with rectified linear (ReLu)
activation functions. In order to preserve the spatial res-
olution of the image, spatial padding of 1 pixel is used
in each convolutional layer. Multiple convolution lay-
ers are stacked together and followed by a Max-pooling
layer. Max-pooling is performed over a 2 x 2 pixel win-
dow, with stride 2. Using dataset D1, Best results were
obtained by stacking 3 convolutional layers, with kernels
respectively 32, 48 and 64, together, followed by a Max-
Pooling layer. The dimension of the input image for each
time step by the end of the 3rd Conv Layer is 8 x 8 x 64.
After applying pooling, the dimension reduces to 4 x 4 x
64.
Fig. 1 illustrates the optimal CNN configuration.

Figure 1: 2D Convolutional Neural Network for process-
ing each temporal frame

This 2D-CNN architecture was adopted for each frame.
The number of parameters in the network were reduced
by sharing the parameters of the CNN over all the frames.
A recurrent layer is applied on top of 2D-CNN. In order
to use recurrent layers, the 3D output of 4 x 4 x 64 for
each time step is converted into a 1D output of size 1024.
The input dimension when training the recurrent neural
network is 10 x 1024 (Time Steps x No. of Features).
RNN’s provide an elegant way of dealing with sequential
data that embodies correlations between data points that
are close in the sequence. Though RNN’s are successful
in classifying many tasks such as speech recognition and
text generation, they have difficulty with long term de-
pendencies, due to the vanishing and exploding gradient
problem [11], which results from propagating the gradi-
ents back through many layers. LSTMs are capable of
handling the long term dependency problem; they learn
when to forget previous hidden states and when to update
the hidden states. We experimented (using subject D1)
with various number of LSTM layers and memory cells
in each layer. The best results were obtained when using
a single LSTM layer with 32 memory cells.
For our implementation, we fed the extracted CNN out-
puts of 10 frames to the LSTM layer. The prediction of
the LSTM layer at each time step was propagated up to
the fully connected layer. The classification is done by
averaging scores across all the frames. The outputs of the
LSTM layer are fed into a fully connected layer, followed
by a sigmoid layer.

Figure 2: Overall architecture which combines 2D CNN
with LSTM.
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We also compared using temporal convolutions instead of
LSTM, in order to evaluate the performance of LSTM in
extracting temporal information from a sequence of EEG
images (2D3 − 1D). In this model, the 2D CNN outputs
across time frames are fed into a 1D CNN with 32 kernels
of size 3 and a stride of 1 frame. These kernels capture
different temporal patterns across multiple time frames.
Fig. 2 shows the proposed 2D3 − L architecture.

3D − 2D3 − L Architecture:
The 3D ConvNets are well-suited for spatio-temporal fea-
ture learning. The 3D Convolution is achieved by con-
volving a 3D kernel to the cube formed by stacking multi-
ple contiguous frames together[12]. Therefore the feature
maps in the convolutional layer are connected to multiple
contiguous frames in the previous layer, thereby captur-
ing the temporal information.
Initially, the multidimensional input signal, with dimen-
sion 8 x 8 x 1 x 10 (Height X Width x Depth x Time
Steps) is fed into a 3D-CNN. We tried various configura-
tions of 3D-CNN, involving different number of kernels
and kernel size. Our findings indicate that using one 3D
Conv layer with 24 kernels of size 3 x 3 x 3 (kernel Depth
x Kernel Height x Kernel Width) is the best option. The
dimensions of the signal by the end of this layer would be
8 x 8 x 24 x 10 (Height x Width x Depth x Time Steps).
We used the 2D3−L architecture (Fig. 2) on top of the 3D
CNN. The output of the 3D Conv layer in Figure Fig. 3 is
fed into the 2D3−L network. The input for the 2D3−L
network would be 10 frames of size 8 x 8 x 24. One
layer of 3D-CNN with 24 kernels is followed by 3 layers
of 2D-CNN with kernels 32, 48, 64 respectively for each
time step.

Figure 3: 3D convolutional neural network on EEG sig-
nal. Input signal (Red Cube) is of dimension 8 x 8 x 1
x 10 (Height x Weight x Depth x Time Points). The Red
cube is basically formed by stacking up the 10 2D frames
of size 8 x 8. A 3D -Conv layer of 24 filters with 3 x 3 x 3
size is applied (Blue cubes). The resultant output of size
8 x 8 x 10 x 24 is converted to 8 x 8 x 24 x 10 (Orange
cubes). This would be the input to 2D3 − L network,
where 2D CNN is applied on each block of size 8 x 8 x
24, and the corresponding output of the blocks from 10
time steps is given to LSTM

Overall, the 3D-CNN helps us to extract the broad spatio-
temporal features, and the 2D-CNN and LSTM find the
hidden spatial and temporal features respectively.

S(3D)− 2D3 − L Architecture:

One advantage of the neural network approach is the ease
in applying transfer learning where lower layer weights
can be taken from a network trained on other subjects
and then frozen for training of the whole network on the
new subject [13].

The base network, which uses the 3D − 2D3 − L archi-
tecture was initially trained on multiple subjects, and the
corresponding parameters used in training the target net-
work, which involves a fresh subject. Once the weights
corresponding to the base network are copied to the tar-
get network, the 3D conv layer in the target network are
frozen and do not change during the training. Only the
weights corresponding to the higher layers (2D-CNN,
LSTM, FC) of the target network change. We chose to
freeze the CNN layers, instead of fine-tuning them, as the
dataset is small and the number of parameters is large.

RESULTS

The network was trained and tested on two datasets.
Dataset 1 comprises 4 subjects, while Dataset 2 com-
prises 5 subjects. The goal is to classify a signal as a
P300 Target Signal or a Non-target signal. A split of
80% - 10% - 10% was used while dividing each fold into
training, validation and testing respectively. Training is
performed by optimizing the cross-entropy loss function.
The network is trained using Adadelta, a variant of gradi-
ent descent which adapts over time using only first order
information and has minimal computational overhead. In
order to counteract possible overfitting due to the large
number of weights, we used L2 Regularization penalty
of 0.001 and Dropout of 20%. The architecture was the
same for all subjects, where model tuning was done only
on subject D1.

We compared the classification results of the proposed
architectures with standards in the field - Stepwise LDA
and shrinkage LDA. The shrinkage LDA algorithm uses
automated shrinkage computation using the formula de-
veloped by Schaefer and Strimmer [18] based on the
work of Ledoit and Wolf[17]. All tests were run with
identical training/valid/test splits so that sensitive pair-
wise comparisons of accuracy could be made between the
different algorithms. 50 different accuracy measurements
were made for each network as follows: We made 5 ran-
dom shuffles of the dataset and for each of these obtained
10 test sets by using an 80% train/10% validation/10%
test division where each 10% of the data is used as the
test set once.

Table 1: AUC measures for the proposed models on Dataset 1
Sub. A1 Sub. B1 Sub. C1 Sub. D1

Stepwise LDA 0.67 0.65 0.69 0.65
Shrinkage LDA 0.69 0.64 0.71 0.65
2D3 − 1D 0.65 0.65 0.67 0.64
2D3 − L 0.66 0.66 0.70 0.67

3D − 2D3 − L 0.68 0.67 0.72 0.68
S(3D)− 2D3 − L 0.69 0.70 0.72 0.69
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Table 2: AUC measures for the proposed models on Dataset 2
Sub. A2 Sub. B2 Sub. C2 Sub. D2 Sub. E2

Stepwise LDA 0.60 0.69 0.68 0.72 0.77
Shrinkage LDA 0.62 0.71 0.69 0.75 0.78
2D3 − 1D 0.58 0.66 0.59 0.62 0.74
2D3 − L 0.61 0.68 0.62 0.70 0.76

3D − 2D3 − L 0.64 0.70 0.67 0.75 0.76
S(3D)− 2D3 − L 0.65 0.72 0.67 0.75 0.76

Tab. 1 and Tab. 2 reports the Area under the ROC curve
(AUC) for the baseline models and the proposed models
on Dataset 1 (4 subjects) and Dataset 2 (5 subjects) re-
spectively.
For the transfer learning in Dataset 1, we pretrain the
3D CNN network on all the subjects other than the cur-
rent subject, and finally freeze the 3D convolutional layer
and train the network on the current subject. For transfer
learning in Dataset 2, due to the discovery of one subject
(D2) with a very different ”P300” signal (possibly more
of an error-related potential signal), using all other sub-
jects for transfer learning was not very successful, so one
subject (E2) was used as transfer for the other subjects
(A2-D2). For subject E2, all the other subjects (A2-D2)
were used for transfer learning. To provide an alternate
perspective, we replicated positive samples as done in [8]
instead of subsampling. The first 70% was used for train-
ing, and the next 15% for validation and the last 15% for
testing. The results comparing the performance of LDA
with shrinkage and S(3D) − 2D3 − L are presented in
Tables 3 and 4.

Table 3: Comparing AUC on Dataset 1
Sub. A1 Sub. B1 Sub. C1 Sub. D1

Shrinkage LDA 0.67 0.58 0.7 0.59
S(3D)− 2D3 − L 0.68 0.69 0.7 0.7

Table 4: Comparing AUC on Dataset 2
Sub. A1 Sub. B1 Sub. C1 Sub. D1 Sub. E1

Shrinkage LDA 0.58 0.64 0.68 0.78 0.7
S(3D)− 2D3 − L 0.66 0.7 0.65 0.74 0.78

DISCUSSION

We measured and compared the performance of the pro-
posed and baseline models using a paired t-test.
On Dataset 1, Our S(3D) − 2D3 − L performed signif-
icantly better than the stepwise LDA on all the subjects,
and performed significantly better (pairwise t-test) than
Shrinkage LDA on subjects B1 (p = 2.32×10−7) and D1
(p = 2.31×10−4). The results from the S(3D)−2D3−L
net did not differ significantly from the shrinkage LDA
results on subjects A1 and C1.
On Dataset 2, S(3D)− 2D3 −L performed significantly
better than 3D−2D3−L on a few subjects and performed
equally well on the other subjects. S(3D) − 2D3 − L
performed better than Shrinkage (p = 6.98 × 10−4) and
Stepwise LDA (p = 5.9 × 10−3) on subject A2. Also,
it performed significantly better than stepwise LDA, (but
not Shrinkage LDA) on subjects B2 (p = 2.73 × 10−5

vs Stepwise LDA) and D2(p = 6.27 × 10−5 vs Stepwise
LDA). However, the shrinkage LDA performed signifi-
cantly better than the S(3D) − 2D3 − L on subjects C2

(p = 8.74× 10−4) and E2 (p = 0.0324).
Overall, the proposed models work better than step-
wise LDA and work better than the best baseline model
(shrinkage LDA) on a few subjects and relatively lower
on some other subjects.
The 2D3 − L architecture performed numerically bet-
ter than 2D3 − 1D for all subjects and the difference
reached statistical significance on 7 out of the 9 subjects
(p- values between 3.42 × 10−11 and 0.0498). Thus it
appears that LSTM did better in dealing with temporal
patterns in the EEG signals compared to temporal con-
volution (1D-CNN) at least among the architectures we
tried. The LSTM has richer temporal dynamics and can
look at temporal patterns arbitrarily far back in time. 1D-
CNN just looks for specific patterns in time of length up
to the kernel length, while the LSTM understands and
keeps track on the previous patterns and perform back-
propagation through time [16].
From Tab. 1 and Tab. 2, we notice that the 3D−2D3−L
architecture performs better than the 2D3 − L architec-
ture. Moreover, the difference reaches statistical sig-
nificance on 6 out of the 9 subjects (p-values between
1.17× 10−6 and 0.0016). Even though, the performance
gap is very small, it is a consistent difference. The 3D-
CNN model effectively learns spatio-temporal patterns of
the EEG signal.
Moreover, the transfer learning approach managed to
perform better than the 3D-CNN, which states that 3D
conv layer potentially learns spatio-temporal represen-
tations that are subject-independent, and the 2D-CNN
and LSTM are able to deal with the intra-subject spatial
and temporal patterns. The 3DConv layer captures the
underlying spatial and temporal information, which are
subject-independent.
Overall, the results suggest that deep learning may be
used as an alternative compared to traditional machine
learning techniques and that a 3D-CNN architecture is an
effective model for learning the nature of P300 EEG sig-
nals.

CONCLUSION

In this work, a new approach for P300-EEG signal clas-
sification is demonstrated. As opposed to the traditional
techniques, the proposed classifiers respect the inherent
spatial and temporal nature of the EEG signals. This
is accomplished by representing the multi-channel EEG
time series as a sequence of 2D image frames. Inspired
by the state-of-the-art video classification techniques, we
train a deep convolutional and recurrent neural network
on these sequence of 2D images. We proposed three dif-
ferent architectures. We discovered that using a 3D-CNN
in conjunction with 2D-CNN and LSTM performed bet-
ter than using 2D-CNN and LSTM. The 3D-CNN ap-
pears to most effectively model spatial and temporal in-
formation.
The best performance is obtained when using a transfer
learning approach, where we pretrain a network compris-
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ing 3D Conv, 2D Conv and LSTM layers on different sub-
jects, freeze the 3D Conv Layers, and perform classifica-
tion training and then testing on a fresh subject. The clas-
sification performance of the proposed models are com-
pared with common best performing classifiers in this
field - Stepwise LDA and shrinkage LDA. The proposed
models perform relatively better than the base line mod-
els on a few subjects. However, there is plenty of scope
for improvement.
One of the benefits of the neural network approach is that
spatio-temporal generalizations arise naturally. Combi-
nations of 3D and 2D kernels could be used to optimally
extract all the spatio-temporal structure that distinguishes
the signals in P300 BCIs (or other temporal ERP signals).
As a future direction, we will work on further increasing
the performance, as improving the classification rates in
BCI systems would make many more applications feasi-
ble and could improve the quality of life for those that are
not able to communicate in other ways.

ACKNOWLEDGMENTS

Supported by NSF grants SMA 1041755 and IIS 1528214

REFERENCES

[1] Kutas M, McCarthy G, Donchin E. Augmenting men-
tal chronometry: the P300 as a measure of stimulus eval-
uation time. Science. 1977 Aug 19;197(4305):792-5.

[2] Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh
S, McFarland DJ, Vaughan TM, et al. A comparison of
classification techniques for the P300 Speller. Journal of
neural engineering. 2006 Oct 26;3(4):299.

[3] Mirghasemi H, Fazel-Rezai R, Shamsollahi MB.
Analysis of P300 classifiers in brain computer interface
speller. InEngineering in Medicine and Biology Society,
2006. EMBS’06. 28th Annual International Conference
of the IEEE 2006 Aug 30 (pp. 6205-6208). IEEE.

[4] Hinton G, Deng L, Yu D, Dahl GE, Mohamed AR,
Jaitly N, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four re-
search groups. IEEE Signal Processing Magazine. 2012
Nov;29(6):82-97.

[5] Krizhevsky A, Sutskever I, Hinton GE. Imagenet
classification with deep convolutional neural networks.
InAdvances in neural information processing systems
2012 (pp. 1097-1105).

[6] Karpathy A, Toderici G, Shetty S, Leung T, Suk-
thankar R, Fei-Fei L. Large-scale video classification
with convolutional neural networks. InProceedings of
the IEEE conference on Computer Vision and Pattern
Recognition 2014 (pp. 1725-1732).

[7] Donahue J, Anne Hendricks L, Guadarrama S,

Rohrbach M, Venugopalan S, Saenko K, et al. Long-term
recurrent convolutional networks for visual recognition
and description. InProceedings of the IEEE conference
on computer vision and pattern recognition 2015 (pp.
2625-2634).

[8] Cecotti H, Graser A. Convolutional neural networks
for P300 detection with application to brain-computer
interfaces. IEEE transactions on pattern analysis and ma-
chine intelligence. 2011 Mar;33(3):433-45.

[9] Mirowski PW, LeCun Y, Madhavan D, Kuzniecky R.
Comparing SVM and convolutional networks for epilep-
tic seizure prediction from intracranial EEG. InMachine
Learning for Signal Processing, 2008. MLSP 2008. IEEE
Workshop on 2008 Oct 16 (pp. 244-249). IEEE.

[10] Bashivan P, Rish I, Yeasin M, Codella N. Learn-
ing representations from EEG with deep recurrent-
convolutional neural networks. arXiv preprint
arXiv:1511.06448. 2015 Nov 19.

[11] Hochreiter S, Schmidhuber J. Long short-term mem-
ory. Neural computation. 1997 Nov 15;9(8):1735-80.

[12] Ji S, Xu W, Yang M, Yu K. 3D convolutional neural
networks for human action recognition. IEEE transac-
tions on pattern analysis and machine intelligence. 2013
Jan;35(1):221-31.

[13] Yosinski J, Clune J, Bengio Y, Lipson H. How
transferable are features in deep neural networks?. In
Advances in neural information processing systems 2014
(pp. 3320-3328).

[14] Snyder JP. Map projections–A working manual. US
Government Printing Office; 1987.

[15] Alfeld P. A trivariate clough—tocher scheme for
tetrahedral data. Computer Aided Geometric Design.
1984 Nov 1;1(2):169-81.

[16] Werbos PJ. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE. 1990
Oct;78(10):1550-60.

[17] Ledoit, O. and Wolf, M. (2004). A well-conditioned
estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis, 88:365–411.

[18] Schaefer, J. and Strimmer, K. (2005). A shrink-
age approach to large-scale covariance matrix estimation
and implications for function genomics. Stat. Appl.
Genet. Mol. Biol., 4(1).

[19] Stivers, J.M. and de Sa, V.R. (2017). Spelling in
parallel: towards a rapid, spatially independent BCI.
Proceedings of the 7th Graz Brain-Computer Interface
Conference 2017.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-54

CC BY-NC-ND 296 Published by Verlag der TU Graz 
Graz University of Technology



BRAIN ACTIVATION MAP DURING BCI COMMUNICATION IN 

COMPLETE LOCKED IN STATE 

 

A. Malekshahi1, A. Rana1, S. Silvoni2, N. Birbaumer1,3, U. Chaudhary1,3 

 
1 Institute of Medical Psychology and Behavioral Neurobiology, University of Tuebingen 

2 Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, 

Mannheim, Germany 

3 Wyss Center for Bio and Neuroengineering, Genéva, Switzerland 

E-mail: niels.birbaumer@uni-tuebingen.de; ujwal.chaudhary@uni-tuebingen.de 

 

 
ABSTRACT: Nonverbal and verbal communications 

are completely lost in patients with complete motor 

paralysis, leaving no other means of communication 

except brain-computer interfaces (BCIs). BCIs translate 

the thought to generate control signal, by which an 

individual can control a spelling device or external 

mechanical and electrical devices for communication. 

Recently we developed a functional near infrared 

spectroscopy (fNIRS) based auditory BCI, which was 

used by four patients in completely locked-in state 

(CLIS) to answer “yes” and “no” to known and open 

questions. Patients used fronto-central oxygenation 

concentration measured with fNIRS to answer “yes” and 

“no”, while electro-encephalographic (EEG) signal was 

used to detect any vigilance drop during BCI sessions. 

Here, we evaluated frontal-central cortical activation by 

applying general linear model (GLM) to the fNIRS data 

and EEG signal time-frequency analysis  to explore the 

metabolic and neuroelectric processes occurring during 

“yes” and “no” questions presented to CLIS patients. 

 

INTRODUCTION 

 
Amyotrophic lateral sclerosis may cause an individual 

to be in complete locked-in state (CLIS), a condition in 

which the patient is fully conscious and aware of their 

surroundings but is unable to perform any kind of 

movement leaving them completely paralyzed without 

any means of communication [1-2]. In such a scenario 

brain computer interface is the only remaining direct 

communication pathway between patient’s brain and an 

external device [3-4]. 

It has been demonstrated that all of existing BCI 

techniques such as P300 endogenous event-related 

potential, slow cortical potentials (SCP) [5], extracting 

different features in frequency domains of the electro-

encephalographic signal (EEG) [6] and subdurally 

implanted electrodes on the surface of the brain [6-7] do 

not reach a sufficient level of success for 

communication purposes [5]. Based on the unreliability 

of the aforementioned BCI, fNIRS based auditory BCI 

was used for binary communication in four 

Amyotrophic Lateral Sclerosis (ALS) patients in CLIS. 

Patients were able to successfully answer simple “yes” 

and “no” questions using the developed BCI [6]. 

Patients performed several sessions of BCI spread over 

weeks to learn to answer “yes” and “no” to personal and 

open questions, as described in Chaudhary et al. (2017) 

[6]. Here we present the fNIRS activation results and 

EEG time-frequency results from one of the patient.  

 

MATERIALS AND METHODS 

 

The Internal Review Board of the Medical Faculty of 

the University of Tübingen approved the experiment 

reported in this study and the patient's legal 

representative gave informed consent for the study with 

permission to publish the results and show the face of 

patients in the publication. The study was in full 

compliance with the ethical practice of Medical Faculty 

of the University of Tübingen. The clinical trial 

registration number is ClinicalTrials.gov Identifier: 

NCT02980380. 

 

Patient 

The study was performed on four patients, but here we 

present the results of one patient whose details are 

below. 

Patient (Female, 76 years old, CLIS) was diagnosed 

with bulbar ALS in 2010. She lost speech and capability 

to walk by 2011. She stopped communicating with eyes 

in August 2014 which was confirmed by eye movement 

recordings. Before the brain computer interface was 

introduced an attempt was made to communicate with 

the subtle twitch of eye-lid, which proved to be 

unreliable. The husband and caretakers declared no 

communication with her since August 2014. 

 

Instrumentation 

A continuous wave (CW) based fNIRS system, 

NIRSPORT (NIRX) was used to acquire fNIRS data 

while multi-channel EEG amplifier (Brain Amp DC, 

Brain Products, Germany) was used to record EEG data 

simultaneously. EEG signal was recorded only to check 

the drop of vigilance based on changes of EEG signal 

power in the low frequency bands. 
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The 8 sources and 8 detectors fNIRS optodes, and 8 

EEG channels that were placed on the patient's scalp 

encompassing mainly primary somatosensory cortex, 

primary, pre-motor and supplementary motor cortex, 

Broca’s area and dorsolateral prefrontal cortex is shown 

in Fig. 1.  

 
Figure 1: Source-detector layout in the fronto-central 

cortex with 10 source-detector pairs (channels) each on 

the left and right cortices and 8 EEG channels.  

 

EEG channels locations were FFC5, FFC3, FFC4, 

FFC6, FCC5, FCC3, FCC4 and FCC6. Four electrodes 

were used to acquire the vertical and horizontal EOG, 

the result of EOG is presented in Chaudhary et al. 

(2017) [6]. 

 
Experiment Design  

Patients were presented an auditory paradigm consisting 

of two kind of yes/no sentences: questions with known 

answers for training and feedback sessions (i.e. known 

question) and with unknown answers for the open 

question sessions (i.e. open question). Known questions 

were based on the life of patient and its answer is 

known by family members, caretakers and the 

experimenters (e.g. “Are you from Germany?”), while 

open questions can only be answered by the patient (e.g. 

“Do you have pain?”). 

In each training and feedback session patients listened 

to 10 true and 10 false known questions which are 

presented randomly. Patients were asked to think “ja, ja, 

…” (German for “yes”) and “nein, nein, …” (German 

for “no”) for 15 seconds, during the inter stimulus 

interval (ISI), until they heard the next sentence after an 

average interval of 5 seconds rest, as shown in Fig. 2. 

After the end of each training session, change in oxy-

hemoglobin features corresponding to “yes” and “no” 

thinking was extracted and fed to the Support Vector 

Machine (SVM) classifier to differentiate between 

“yes” and “no” answers. After successful training (i.e. 

the classification accuracy of training sessions was 

greater than the threshold of 65%) [8] patients were 

presented with feedback session. During this session 

they were always provided with an auditory feedback of 

their answers at the end of the response time (i.e. “Your 

answer was recognized as yes” or “Your answer was 

recognized as no”). In this paper we performed the 

analysis using 16 training, 6 feedback sessions and 1 

open question session performed by the patient over a 

period of several days. 

 

 
Figure 2: The auditory brain computer interface 

paradigm used for communication in CLIS patient.  

 

Online fNIRS signal processing 

The fNIRS data acquired online was normalized, 

filtered using a bandpass filter between 0.01-0.3 Hz and 

processed using the Modified Beer-Lambert law to 

calculate the relative change in concentration of oxy- 

(O2Hb) and deoxy-hemoglobin (RHb). 

The mean of relative change in O2Hb across each 

channel was used as feature to train the SVM model 

through a 5-fold cross-validation procedure. 

Since the classification accuracy as documented by 

(Chaudhary et al, 2017) [6] was higher for the mean of 

relative change in O2Hb across each channel, the SVM 

model generated using O2Hb was used to provide online 

feedback for known as well as open questions sessions. 

 

EEG signal processing 

Each EEG-channel was referenced to an electrode on 

the right mastoid and grounded to the electrode placed 

at Fz location of the scalp. Electrode impedances were 

kept below 10 kΩ and the EEG signal was sampled at 

500 Hz. The signals were band pass filtered using a 

finite impulse response filter with a bandpass of 0.5–30 

Hz and the filter order 8250 of EEGLAB [9]. As in 

complete locked state patients there is no eye movement 

[6], there is no EOG artifact contamination in EEG 

signal.   

 

Offline and general linear model (GLM) analysis of 

fNIRS signal 

Signal processing of fNIRS signals and the GLM 

analysis was done with nirsLAB (v2014.05). The fNIRS 

signal was bandpass filtered between 0.01-0.3 Hz. The 

Modified Beer–Lambert law was used to quantify the 

changes in the concentrations of O2Hb and RHb from 

the absorption of near-infrared light. A statistical 

parametric mapping method (SPM)[10-11]was 

employed to extract dynamic features from 

hemodynamic responses and map this information to 

head-space models. The regressors are four conditions, 

“yes” question presentation, “no” question presentation, 
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“yes” question ISI, and “no” question ISI, while the 

dependent variable was oxy hemoglobin (O2Hb). A 

canonical HRF with a time-series of stimulus onsets 

was convolved [11]. 

 

Offline Time-Frequency analysis of EEG signal 

Offline Time-Frequency analysis of EEG signal was 

done using Short-Term Fourier Transform to identify 

low frequencies power spectra alteration during 

response time (ISI interval). This analysis served to 

exclude the slow-wave sleep state during BCI sessions. 

 

RESULTS 

 

In order to investigate the activated areas of brain, GLM 

coefficients were interpolated to elucidate activation in 

the fronto-central brain region of the patient during 

“yes” vs. “no” thinking as shown in Fig. 3. Fig. 3 shows 

the activation map for the change in the concentration of 

O2Hb for “yes” vs. “no” responses (p<0.05) across the 

23 sessions performed by the patient. Fig. 3 explicates 

significant differences between “yes” and “no” response 

in the left fronto-central brain region of the patient. 

The GLM coefficients for “yes” and “no” response over 

all the sessions performed by the patient are shown in 

Fig. 4, which shows the fNIRS channels with greatest 

contrast between “yes” and “no” response. 

Fig. 5 and Fig. 6 illustrate the time frequency 

decomposition of EEG signal for all EEG channels 

during “yes” and “no” response, respectively.  Fig. 5 

and Fig. 6 elucidate that the dominant frequencies 

during “yes” and “no” thinking are the ones in the high 

theta and low alpha bands. 

 

 
 

Figure 3: Activation map of change in oxy-hemoglobin 

across 23 sessions performed by the patient. (Contrast, 

“no” response > “yes” response, p<0.05, O2Hb) 

 

 

Figure 4: GLM coefficients for “yes” and “no” 

responses over all the sessions performed by the patient. 

In the Fig. y-axis is the GLM coefficient after 

normalization and x-axis is the fNIRS channels. Grey 

block represents the “yes” response and white block 

represents the “no” response. 

 

 
Figure 5: Time-Frequency decomposition for “yes” 

responses  

 

DISCUSSION AND CONCLUSION 

 

In patients completely motionless over years with 

restricted vision because of eye-muscle paralysis and 

drying of the cornea and likely reduced afferent input 

from the sensorimotor system reduced vigilance 
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measured with EEG and a fragmented sleep-wake cycle 

was documented by Ramos et al. (2011) [7]and 

Soekadar et al. (2013) [12]. De Massari et al. (2013) 

[13] have shown that reduction of P300 amplitude 

across the BCI paradigm presentation predicted 

negative performance, again suggesting excessive loss 

and excessive variation of wakefulness and attention as 

a major limiting factor for BCI applications in such 

severely compromised patients. As it can be seen from 

time-frequency analysis the patient had a reduced EEG 

frequency band (around 6-7 Hz) compared to healthy 

population and almost no activity in the low frequency 

bands. These findings suggest that the patient was not in 

the sleep state, i.e., the patient was awake, mentally 

thinking yes or no. 

 

 
Figure 6: Time-Frequency decomposition for “no” 

responses 

 

On the other hand, fNIRS signal showed significant 

difference (“no” response > “yes” response, p<0.05) 

between “yes” and “no” thinking in left hemispheres, 

see Fig. 3. The activation was more pronounced in the 

left hemisphere when compared with the right 

hemisphere, also shown in Fig. 4 the difference between 

“yes” and “no” response in the fNIRS channels placed 

on the left hemisphere of fronto-central brain region.  

This suggests that in CLIS condition processing of 

“yes” and “no” response involves different neural 

substrates, in a similar manner as reported in healthy 

population [14]. Our result also suggests that, although 

the patient entered the complete locked in state from 

2014, the high level cognitive functions (such as 

language comprehension, semantic processing and 

stimuli discrimination) are preserved. 

Here we have presented the results from one out of four 

patients enrolled for this study; currently we are 

working on the detailed data analysis of the remaining 

three patients. 
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ABSTRACT: In this paper we propose, describe, and
evaluate a novel deep learning method for classifying bi-
nary motor imagery data. This model is designed to per-
form CSP-like feature extractions. It can be seen as a
neural network with a specifically designed architecture
where the latent space corresponds naturally to the fea-
tures found in CSP methods. Our model allows for easy
generalization from spatial filters to spatio-temporal fil-
ters. It also allows for the feature extraction and filtering
stages to be optimized jointly with the classifier. This
allows standard regularization methods to include the fil-
tering stage. In addition the network provides the expres-
siveness and robustness of deep learning to improve upon
the efficiency of CSP filtering methods.

INTRODUCTION

Motor-imagery (MI) brain-computer interfaces (BCIs)
work by detecting decreases in power in the mu (7-13
Hz) and beta (13-30 Hz) frequency bands. Decreases
in power in those frequencies are known to occur both
prior to and during movement, as well as during imagined
movement [1]. The relevant decreased power or desyn-
chronization is spatially localized over the motor cortex.
Any body part, when imagined to be moving, has a cor-
responding region of cortex.
Spatially discriminative mu-desynchronization is recog-
nized using a filter that emphasizes the spatial differences
between the different motor-imagery classes.
The most commonly used method is the Common Spatial
Patterns, or CSP, [2] which finds a set of filters that max-
imizes the projected variance (power) for one class while
minimizing it for the other. Applying CSPs to band-pass
filtered signals can greatly emphasize the spatially segre-
gated power differences between the different classes and
is common in MI-based BCIs [2].
Let a column vector xt ∈ RC be the band-passed EEG
signal for time t where C is the number of EEG channels
on the scalp and R indicates the set of real numbers. The
estimate of the covariance matrix for a two-class experi-
ment can be calculated from the training data using tra-
ditional methods. Let the covariance matrix for the two
classes 1 and 2 be specified as:

Σy ∈ RC×C y ∈ {1, 2} (1)

CSP aims to find a projection w ∈ RC which maximizes
the variance of signals for one condition and at the same
time minimizes the variance of signals of another condi-
tion. One can find w for class 1 by solving the following
Rayleigh quotient:

R(w) =
wT Σ1w

wT (Σ1 + Σ2)w
(2)

The solution for this problem can be found by solving the
generalized eigenvalue problem given in the form:

Σ1w = λ(Σ1 + Σ2)w (3)

There are C generalized eigenvectors where w1 corre-
sponding to the largest eigenvalue maximizes the vari-
ance for class 1 while minimizing for class 2 and wc cor-
responding to the smallest eigenvalue maximizes the vari-
ance for class 2 while minimizing for class 1. It is com-
mon in the CSP algorithm to select some number (often
3) of the top and bottom eigenvectors as the discrimina-
tive spatial filters [3].
Once the CSP filters have been learned, the data are trans-
formed according to the CSP filters, and the class band-
power is computed (via the sum of the squared filtered
data, or equivalently, the variance of filtered, zero-mean
data). The logarithm of this power output is often taken
as the log-power is more normally distributed. These log
powered features are then fed into a simple linear clas-
sifier such as linear discriminant analysis (LDA) with
shrinkage, step-wise LDA, logistic regression, or linear
support vector machines. These simple algorithms have
been preferred because of their robustness to the large
amounts of noise in, and scarcity of, EEG data. Many
studies with shallow non-linear algorithms have failed
to beat these simple linear algorithms However, recent
advances in deep convolutional neural networks (CNNs)
have transformed the fields of handwriting recognition,
speech recognition, computer vision, and video analy-
sis [4, 5], and are rapidly transforming machine learning
more generally. We aim to leverage the advantages cen-
tral to all of these results for the task of improving MI
classification.
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There have been other variants on the basic CSP al-
gorithm, some of which are reviewed in [6]. Com-
mon spatio-spectral patterns (CSSP) [7] uses the tem-
poral structure information to improve CSP. Spectrally
weighted common spatial patterns (Spec-CSP) [8] learns
the spectral weights as well as the spatial weights in
an iterative way. Invariant CSP (iCSP) [9] minimizes
variations in the EEG signal caused by various artifacts
using a pre-calculated covariance matrix characterizing
these modulations. Stationary CSP (sCSP) [10] regular-
izes CSP filters into stationary subspaces. Local tem-
poral common spatial patterns (LTCSP) [11, 12] uses
temporally local variances to compute the spatial fil-
ters. Canonical correlation approach to common spa-
tial patterns (CCACSP) incorporates the temporal struc-
ture of the data to extract discriminative and uncorrelated
sources [13].
A neural network implementation of CSP filtering easily
allows for the development of new spatio-temporal ex-
tensions to CSP. We note that these extensions may be
implementable in a standard filtering pipeline, but that
implementing them as part of a neural network allows for
easy, quick extensions to well-studied variations of CSP,
and, moreover, allows for testing novel architectures that
may not be intuitive in the framework that CSPs are typ-
ically studied and used in. By considering CSP filtering
as a special case of convolutional neural networks, one
can quickly run through entirely novel CSP extensions,
and optimize them in tandem with the classifier, simply
by modifying a few canonical parameters.
Also because the CSP filters are typically trained with
non-iterative algorithms, and without validation, they are
prone to overfitting. Implementing both filtering and clas-
sification in one framework allows for joint monitoring
and regularizing, to combat overfitting.
A major advantage of CNNs over traditional neural net-
works is that they are a special case of the latter. Convolu-
tional networks are motivated by, and based on, the struc-
ture of the visual system [14–17]. Convolutional neural
networks have a shared weight structure – local recep-
tive fields are learned and the learned structure is shared
throughout the input [17]. This means that each training
sample provides many windows of training data for the
same (shared) sets of weights which greatly increases the
effective training data.
CNNs can be seen as an architectural constraint on neu-
ral networks in general, specifically, they are constrained
such that they perform operations that have traditionally
been used, in a non-machine learning setting, to great ef-
fect on the same task. This approach allows us to op-
timize the filters and classifier together, and to transpar-
ently leverage a validation set.
We hypothesize four explicit advantages to employing
the CSP filtering as part of the classification network.
First, early stopping or other, more advanced, deep learn-
ing regularization techniques can be used to prevent the
spatial filters from overfitting. Second, the filtering and
classification being optimized together may result in im-

proved performance than performing these separately, as
our filters are going to differ from CSP in that they are
sensitive to classification accuracy as opposed to just
class variance. Third, the CSP algorithm finds linear spa-
tial filters whereas the neural network extension would
be able to find smooth non-linear extensions. Finally,
once implemented in a neural network, the network may
be modified, in the common ways described in the deep
learning literature, to improve on the CSP algorithm. The
natural extensions to both can be leveraged to extend and
strengthen the basic model described here. For exam-
ple, the network’s architecture can be easily extended, via
weight-sharing, to allow for natural structurally-restricted
spatial filters.

MATERIALS AND METHODS

EEG data were recorded from 6 healthy participants re-
cruited from the UC San Diego student population. Par-
ticipants were naive to BCI and signed a consent form
approved by the University Institutional Review Board
before participating in the experiment. Participants were
instructed to perform kinesthetic motor imagery of their
right or left hand to control a cursor to hit a target on
a monitor in front of them. The cursor and the target
were each represented by a circle having 2 cm diame-
ter and colors blue and white respectively. The cursor
moved discretely, one second at a time. Each trial began
with the cursor at the center of the screen and the tar-
get at either end - the center was three cursor steps away
from each end. After 1.5 seconds the target disappeared
to minimize distraction for the participant and the cursor
began moving towards or away from the target. Partic-
ipants were lead to believe that they were in control of
the cursor; however, in order to provide consistent cursor
movements between participants, the cursor was moved
based on a pre-programmed sequence. There were a total
of 10 blocks and each block consisted of 20 trials [18].
Data were collected with a 64-channel EEG system
(Brain Products GmbH). The electrodes were arranged
based on the 10-20 international system. Data were col-
lected at 5000 Hz sampling rate and were down-sampled
to 500 Hz. Pre-processing of the data was done in MAT-
LAB [19] and EEGLAB [20] where the data were first
bandpass filtered with an FIR filter of order 500 in 1 to
200 Hz. Then clean-line [21] which is an EEGLAB plug-
in, was applied to remove the line noise. Then up to five
channels with high power in frequencies above 60 Hz -
indicating muscle artifacts - were removed. Next, the
EEG on each channel was re-referenced to the common
average over the remaining channels. Data were visually
inspected for large muscle artifacts and less than 10% of
the trials were removed. Independent component anal-
ysis (ICA) was applied and ICA components regarding
muscle and eye were removed. The pre-processed data
were bandpass filtered with FIR filters with 500 taps in
the following eleven frequency bands: 1-3, 2-5, 4-7, 6-
10, 7-12, 10-15, 12-19, 18-25, 19-30, 25-35, and 30-40
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Hz and epoched from 150 to 950 ms after each cursor
movement.
As baseline, we used CSP in combination with regular-
ized linear discriminant analysis (LDA). CSP is trained
on data from each filter and the top 3 filters for each im-
agery class is selected to be passed into an LDA. Fig. 1
shows the structure of CSP+LDA classifier. We ran 3 in-
stances of 5-fold cross-validation

Figure 1: Conventional CSP+LDA method.

We have created two methods inspired by the success of
CSPs. First we introduce a hybrid CSP/Deep Net model,
which will serve as a control or reference, that learns and
feeds CSPs of our eleven pass bands into a fully con-
nected neural network with 500 hidden units. Second,
we introduce the proposed model, a fully deep net with
CSP-like architectures. This network’s architecture has
been structured such that its latent space naturally en-
codes for the same variance-optimizing spatial transfor-
mations described above. Similar to the hybrid net, our
CSP like Neural Network, or CSP-NN, is trained on all
eleven passbands of a signal.
The convolutional network computes the equivalent of a
convolution of a “receptive field” with the input. It is im-
plemented by having local connectivity between a neuron
in the convolutional layer and the lower input layer. This
neuron is then replicated with shifted input connectivity.
The key feature is that the weights are shared between all
of the neurons within a map in the layer, so that they are
all forced to learn the same receptive field/kernel. At the
same time many maps may be learned in parallel. These
convolutional layers are commonly followed by pooling
layers that combine the input from several nearby neu-
rons within the same map. Common pooling operations
are max-pooling where the maximum value of the com-
bined inputs are output, average-pooling, where the av-
erage value of the combined inputs are output. There is
also norm-pooling where the Lp norm of the combined
inputs is output [22].

Hybrid CSP Net
Our hybrid model performs a standard D-dimensional
CSP on each passband. treating each epoch as a data
point. D is necessarily an even number, as we choose
the first D/2 and last D/2 vectors of the CSP solution.The
CSP filtered signals are then fed as inputs to a densely
connected neural network which performs binary classi-
fication. This densely connected neural network is com-
posed of 500 neurons fitted with hyperbolic tangent acti-
vation. We used a dropout mask with a probability of .5
in this dense layer as decided for the proposed networks
discussed next. We selected binary cross-entropy as our
objective function due to the binary classification nature
of our network. The activations are fed into a single sig-
moid output unit. The dense layer was implemented and
trained in Keras [23], using Theano [24] as a backend.
Fig. 2 shows the architecture of this network.

Figure 2: Structure of the hybrid CSP network.

CSP-NN
Our CSP-NN takes the 11 chosen passbands, and feeds
each into one of 11 parallel 1-D convolution layers. We
use D convolution kernels, where D is analogous to the
number of CSP dimensions described above. Thus, we
generate 11 × D feature maps per data point. Each of
these feature maps are element-wise squared and globally
summed, analogous to the process of extracting variance
in CSP, creating 11×D positive scalars. Note this oper-
ation corresponds to using norm 2 pooling instead of the
commonly used max pooling, and it simulates the opera-
tion of extracting variance from CSP projections.
Interestingly, max pooling was originally motivated in
the classical deep learning architectures [15, 16] moti-
vated by complex cells and their translation invariance.
However, the energy model of complex cells [25], “the
de facto standard description of complex cells in primary
visual cortex (Adelson and Bergen 1985)” actually mod-
els them as computing the sum of squared simple cells,
and this has been found to produce a better fit [26]. These
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pooled output scalars are fed into a fully connected net-
work, identical to the net used in the hybrid-model, which
generates our predictions. This process is detailed below.
By building a net of this architecture, and by differentiat-
ing through a global sum of squares (norm 2 pooling),
we create a model that learns convolution kernels that
are analogous to the CSP filter solutions found in tradi-
tional approaches. Initially, we use convolutional kernels
of length one. These convolutions apply the same set of
spatial weights across all time points as in the standard
CSP spatial filters. Details of our models can be found
in Fig. 3. We also tested kernels with some temporal
sensitivity, replacing the length-1 filter with a length-T or
T-degree convolution through time. These later convolu-
tions can be said to apply a spatio-temporal filter with a
T-point temporal resolution, which is analogous to com-
mon spatial temporal patterns, or CSTP filtering methods.
CSTP-NN is based on sensitivity to temporal dependen-
cies between windows of successive points. CSTP-NN
is an example of a simple extension, a single parameter
change in fact, to the CSP-NN that corresponds to a major
class of CSP extensions in the traditional BCI literature.

The parameters learned by our proposed method code for
similar features to the traditional CSP and CSTP meth-
ods. However they are not trained to maximize vari-
ance/power for one class and minimize it for the other,
but aim to discover the set of kernels that provide optimal
classification performance for the network as a whole.
This latter advantage increases the possibility of overfit-
ting, which we handle with a very strict early-stopping
schedule as described above and detailed below. Within
our method, an epoch is bandpassed into 11 separate band
signals, which are concatenated into an 11 by C by T
array, where C and T are number of channels and time-
points, respectively. Each level of this array is fed into
one of eleven separate 1-D convolutional layers, each
containing D unique feature kernels, where D is chosen
to always be even, and is 6, 10, or 16 in our analysis.
The length of each kernel is 1, and the width of each is
equal to the number of EEG channels in our data, which
is 64. These kernels are convolved through time, and are
functionally similar to applying a CSP-like spatial filter
to each time-point in our 11 signal bands. This yields
11 × D feature maps, or filtered signals, each of which
is element-wise squared and globally summed, or norm-
2 pooled. This operation yields 11 × D feature scalars,
and is functionally similar to extracting variance of the
first and lastD/2 spatial filters in CSP. These features are
concatenated and fed as an 11×D input vector into dense
neural network layer, which always has 500 hidden units
with hyperbolic tangent activation. This layer is fed into
a single sigmoid unit. The network is trained end-to-end
using stochastic gradient descent, with Nesterov momen-
tum of .9 and training rate of .0001. We use dropout in
the 500 hidden units, setting a random half of them to 0 at
each training epoch. The CSP-NN, and by extension, the
CSTP-NN, are both implemented in Theano [24], using
the Lasagne library [27]. Again, CSTP-NN differs from

CSP-NN by only a single parameter in our implementa-
tion.
The training duration was set to a maximum of 5000
epochs with early stopping. If 50 of the last 100 epochs
resulted in worse validation accuracy, then early stopping
was triggered, and the weights were set to those that pro-
duced the recorded best validation results. We searched
over the following hyperparameters for participant 1 in
the CSP-NN and kept the parameters the same for every
other participant: Dropout (p = .5) vs non-dropout, learn-
ing rate, .001 vs .0001, number of kernels, 6 vs 10 vs 16
and kernel lengths, 1, 5,10, and 15. We tested hyperbolic
tangent vs. rectified linear (ReLU) as activation function
in the hidden layer and found that hyperbolic tangent per-
formed better. We selected binary cross-entropy as our
objective function due to the binary classification nature
of our network.

Figure 3: Structure of the CSP-NN or CSTP-NN, depend-
ing on kernel length (1 vs. > 1).

RESULTS

Results are reported for 5-fold cross-validation in Tab. 1.
The rate for the baseline method, i.e. CSP+LDA, and the
hybrid CSP method are reported as the average of 3 in-
stances of 5-fold cross-validation. In each instance, the
number of trials in right and left classes were balanced
by dropping trials from the class with more trials.
The proposed methods, i.e. CSP-NN and CSTP-NN,
were also tested in a 5-fold cross-validation scheme. We
applied this cross-validation scheme to each participant
individually, and we report the mean accuracy across all
five folds per participant. Again, we made sure that the
right and left classes were balanced. Our proposed meth-
ods outperformed on certain participants (P-2, P-3 and
P-6), but underperformed on P-4. We also found that
the increasing the length of the 1-D convolution also im-
proves performance, but also increases the error bounds
significantly. This is consistent with the small size of our
data. We found that 16 kernels per convolution layer, as
well as a kernel length, (or temporal sensitivity) of 5 pro-
duced the strongest results from among the values tried
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in Participant 1 (and was used for all subjects). Consid-
ering only length-1 kernel instances, the best results were
found with the same parameters in Participant 1, includ-
ing 16 kernels per convolution layer.

Table 1: Results - Classification accuracy. Note that *
is used for CSP-NN and CSTP-NN for P-1 as results for
this participant may be overfit due to parameter tuning.

ID CSP+LDA Hybrid NN CSP-NN CSTP-NN
P-1 0.8629 0.8307 0.8297∗ 0.8459∗

P-2 0.6482 0.6381 0.7311 0.7041
P-3 0.6485 0.6553 0.6351 0.7243
P-4 0.6526 0.6571 0.6069 0.5250
P-5 0.7173 0.7104 0.7125 0.6750
P-6 0.7105 0.6970 0.7338 0.7730

The standard error among 5-fold for the results reported
in Tab. 1 is at most 0.025.

DISCUSSION

The CSP-NN and CSTP-NN methods perform compa-
rably to standard methods. It is possible that the pro-
posed methods would have even stronger performance,
with tighter error bounds, if given a larger corpus of data.
Grand averages across all participants show that CSTP-
NN and CSP-NN are the highest performing methods that
we attempted however there is large variability between
participants.

CONCLUSION

CSP-NN style approaches perform similarly to standard
non end-to-end models, and can be easily extended when
implemented. They can also be regularized more trans-
parently. We find that this class of model suffers from
the same dependence on large corpus of data as all CNN
models, but offers a stronger method when that data is
available, and we will further study the advantages and
disadvantages of this class of model in the future.
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ABSTRACT: Robust methods for continuous brain state
decoding are of great interest for applications in the field
of Brain-Computer Interfaces (BCI). When capturing
brain activity by an electroencephalogram (EEG), the
Source Power Comodulation (SPoC) algorithm enables
to compute spatial filters for the decoding of a con-
tinuous variable. However, as high-dimensional EEG
data generally suffer from low signal-to-noise ratio,
the method reveals instabilities for small data sets and
is prone to overfitting. We introduce a framework for
applying Tikhonov regularization to SPoC by restricting
the solution space of filters. Our findings show that
additional trace normalization of covariance matrices
is a necessary prerequisite to tune the sensitivity of
the resulting algorithm. In an offline analysis on data
of N = 18 subjects, the introduced trace normalized
and Tikhonov regularized SPoC variant (NTR-SPoC)
outperforms standard SPoC for the majority of individ-
uals. With this proof-of-concept study, a generalizable
regularization framework for SPoC has been established
which allows for implementing different regularization
strategies in the future.

INTRODUCTION

Designing electroencephalography (EEG)-based Brain-
Computer Interfaces (BCIs) require translating EEG
signals into messages or commands for an applica-
tion, e.g. by converting EEG activity recorded during
imagined hand movements into cursor movements [1].
In most current BCIs for communication and control,
this is typically achieved using machine learning and
classification algorithms [2]. During online use, EEG
signals are then assigned to a discrete set of classes
(e.g. left or right hand imagined movements).
A widely used component for effective classification
of EEG signals is spatial filtering [3]. Addressing
volume conduction effects, spatial filter methods esti-
mate sources, whose signals are more different between
classes than signals obtained at the sensor level. The
most popular spatial filter algorithm to classify oscilla-
tory EEG activity is the Common Spatial Pattern (CSP)
algorithm [3], [4]. It aims at finding filters such that
the spatially filtered signals have a variance (and thus
a band power in narrow-band filtered signals) that is

maximally different between classes. While the CSP
algorithm proved very efficient and has become a gold
standard in BCI, it is sensitive to noise, non-stationarity
and limited data. To address these limitations, various
regularized variants of CSP have been proposed making
this algorithm effectively more robust [5], [6], [7]. Typ-
ically, these approaches inject prior knowledge into the
CSP objective function, e.g. in the form of regularization
terms. The regularization approaches try to guide the
optimization process towards good solutions, despite
noise and non-stationarities.

However, not all BCIs are based on classification meth-
ods. Several brain signal decoding problems require
regression techniques to estimate continuous rather than
discrete mental states. For instance, BCIs can be used
to estimate continuous workload levels [8] or reaction
time from oscillatory activity [9]. As for classifica-
tion techniques, regression models can also significantly
benefit from the use of spatial filters. Thus, Dähne et
al. proposed the Source Power Comodulation (SPoC)
algorithm, which can be seen as an extension of CSP to
regression problems [10]. Indeed, SPoC aims at finding
spatial filters such that the power of the filtered EEG
signals maximally covaries with a continuous target
variable.

Due to similar mathematical formulations, CSP and
SPoC share a number of pros and cons. Both algorithms
can deliver informative oscillatory signal features but
are prone to noise, non-stationarity and limited data.
However, while robust variants of CSP have been pro-
posed based on regularization approaches [5], there are
no such robust variants for SPoC. Hence, this leaves
SPoC with sub-optimal performances when used on
noisy data such as those encountered outside laboratories
for practical BCI use. In this paper, we aim at addressing
this limitation. In particular, we present a novel method
to apply Tikhonov regularization to the existing SPoC
algorithm. We show how this regularization approach
combined with appropriate normalization can indeed
outperform the basic SPoC approach. We also illustrate
the impact of various regularization parameters on the
resulting oscillatory components.

The reminder of this paper first presents in detail the
original SPoC algorithm and the regularized variant we
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propose. Then it presents an evaluation of these two
methods on real EEG data sets for motor performance
prediction, before discussing the results.

MATERIALS AND METHODS

1) Source Power Comodulation (SPoC): Supervised
spatial filtering algorithms are widely used in EEG-
BCI applications. Those filters represent a linear trans-
formation to project the multi-variate EEG data to a
lower dimensional subspace. This work focuses on the
Source Power Comodulation algorithm (SPoC; [10])
which optimizes a spatial filter by solving a linear
regression problem.
In the following, x(t) ∈ RNc describes the time course
of the multivariate bandpass-filtered EEG data acquired
from Nc sensors. In accordance with the generative
model of the EEG [11], a spatial filter w ∈ RNc de-
scribes the linear projection of the sensor space data x(t)
to a one-dimensional source component ŝ(t) = w>x(t).
Translating x(t) into segments of Ne single epochs
x(e) ∈ RNc×Ns with Ns sample points per epoch,
then SPoC learns a spatial filter w such that the band-
power Φ(e) = Var[ŝ(e)] of ŝ has maximal covariance
with a given epoch-wise univariate target variable z(e).
Formally, this translates to maximizing the objective
function

J1(w) = Cov[Φ(e), z(e)] = w>Σzw (1)

by defining a z-weighted averaged covariance matrix
Σz := 〈Σ(e) z(e)〉 based on the trial-wise spatial co-
variance Σ(e) = (Ns − 1)−1x(e)>x(e). 〈.〉 defines the
average across Ne epochs. Furthermore, a norm con-
straint on w is applied by setting J2(w) = Var[ŝ(e)] =

w>Σavgw
!
= 1, where Σavg = 〈Σ(e)〉 describes the

averaged covariance matrix. Overall, this translates to
the Rayleigh quotient of the original SPoCλ formula-
tion [10]:

J(w) =
J1
J2

=
w>Σzw

w>Σavgw
(2)

Technically, maximizing J(w) can be solved as a
generalized eigenvalue problem and returns a set
{w(j)}j=1,..,Nc of Nc spatial filters with j indexing the
rank which is determined in descending order of the
eigenvalues and thereby according to the covariance.
Spatial filters allow for a visual interpretation
by estimating the corresponding activity pattern
a = Σavgw as highlighted by Haufe et al. [12].

2) Tikhonov Regularization: The SPoC objective
function directly builds upon sample covariance matrices
Σz and Σavg as stated by Eq. 2. Their estimation is
very sensitive to noisy data, with small training data
sets and a high dimensionality aggravating the problem.
Finally, poorly estimated covariance matrices will not
describe the intended neural processes well and thus
mislead the spatial filter optimization. To overcome this,
regularization by adding a penalty term P (w) to the ob-
jective function’s denominator is a common mitigation

strategy [13], [14]. The penalty is expressed by a prior
that restricts the possible solution space. In this paper,
we assign a quadratic penalty term P (w) = w>1w =
‖w‖2 with 1 ∈ RNc×Nc stating the identity matrix. As
this penalty scales with the spatial filter norm, solutions
with small weights are preferred. Overall, the penalty
term is added to the denominator with a regularization
parameter α leading to the following maximization
problem:

JP (w) =
w>Σzw

w>[(1− α)Σavg + α1]w
(3)

This formulation is known as Tikhonov regularization
(TR, [15]) and has similarly been established for the
CSP algorithm [5]. Directly solving Eq. 3 refers to SPoC
with Tikhonov regularization (TR-SPoC) in this paper.
In case of an extreme regularization expressed by α = 1,
the Rayleigh quotient in Eq. 3 collapses to the one of
the Principal Component Analysis (PCA, [16]).
The Rayleigh quotient in Eq. 2 and 3 relates two
sample covariance matrices. In order to control for their
relative scaling, a normalization by the trace might be a
suitable strategy [4], [17], e.g. Σ′(e) = Σ(e)/tr(Σ(e)).
Trace normalization will be applied to Σ(e) and Σavg
entering Eq. 3, but not upon Σz as the z-weighting
shall be maintained. This version of the algorithm
will be stated as normalized Tikhonov regularization
of SPoC (NTR-SPoC). Applying the same scheme of
trace normalization to the standard SPoC algorithm
(Eq. 2), will be referred to as trace-normalized SPoC
(TN-SPoC).

3) Data Set for Offline Evaluation: To evaluate
the introduced regularization algorithms, data of 18
subjects performing a visuomotor hand force task was
used. The paradigm allowed to derive a trial-wise motor
performance metric [18], [9]. Each subject completed
one session with 400 trials. Within each trial, a ”get-
ready” interval preceded a ”motor execution” phase
which was initiated by a clear go-cue. EEG signals
were used to predict the trial-wise reaction time (RT)
of the motor task based on the time interval [-800,
-50] ms prior to the go-cue. EEG activity was acquired
by multichannel EEG amplifiers (BrainAmp DC, Brain
Products) with a sampling rate of 1 kHz from 63 passive
Ag/AgCl electrodes (EasyCap) placed according to the
extended 10-20 system. After preprocessing and outlier
rejection following the methods described in [9], we
restricted our analysis to oscillatory features within the
alpha-band frequency range of [8, 13] Hz. The bandpass
was realized applying a zero-phase butterworth filter of
6th order. The number of data points Ne remaining after
outlier removal varied across the 18 subjects, ranging
from 142 to 352 trials. In summary, the following
evaluation is based upon RT as a trial-wise continuous
target variable ztrue, which we aim to predict utilizing
the individual oscillatory bandpower features of the
pre-go EEG activity.
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4) Evaluation Scheme: In an offline analysis, we
evaluated the proposed algorithms NTR-SPoC and TR-
SPoC w.r.t. the regularization parameter α by varying its
value in the range {0; [10−8, 100]}. Overall, 40 discrete,
logarithmically spaced evaluation points were chosen. At
each α-value the following K = 10-fold chronological
cross-validation (CV) scheme was applied:
First, the spatial filter set {w(j)}j=1,..,Nc

was gained
on training data xtr and the first Nf = 4 highest
ranked components selected. Second, a linear regression
model with coefficients {βj}j=0,..,Nf

was trained upon
the bandpower features Φj,tr = Var[w

(j)
tr xtr]. Finally,

those coefficients were used to predict the trial-wise
target variable zest(e) using the bandpower features
Φj,te(e) = Var[w

(j)
tr xte](e) of unseen test data xte:

zest(e) = β0 +

Nf∑
j=1

βjΦj,te(e) (4)

In order to compare the estimated zest with the true
motor performance ztrue, different metrics can be
calculated [9]. For simplification, we focused on a
single evaluation metric only. Per data set, the evaluation
was carried out by transferring the continuous labels
ztrue into a two-class scenario according to the 50th
percentile of ztrue. This enabled the utilization of the
receiver operating characteristics (ROC) curve which is
calculated upon the estimated target variable zest given
the true two-class labels [19]. As ROC performance
can be reduced to a scalar value by calculating the
area under the ROC curve (AUC), we will name this
metric z-AUC as it characterizes the separability of the
estimated target variable zest.

5) Selection of Regularization Parameter: To esti-
mate the future performance of the proposed algorithms,
we compared two alternative selection strategies in order
to determine a suitable regularization parameter αopt for
each subject.
First, a leave-one-subject-out (LOSO) cross-validation
was applied by determining the regularization parameter
αopt based on the grand average z-AUC across Nsub−1
subjects, calculated for the 40 evaluation points of α.
Second, αopt was selected by a subject-wise nested
K = 10-fold chronological CV. The inner CV served
for estimating the individually optimal regularization
parameter αopt among 10 logarithmically scaled values
ranging from α ∈ [10−6, 10−2]. In comparison with
the LOSO scheme, we chose fewer α values for
computational reasons. The value maximizing the
z-AUC metric was selected and applied to the outer
CV in order to train the respective spatial filtering
algorithm and the linear regression model.

RESULTS

Sensitivity to Regularization Parameter: The sensitiv-
ity of the introduced approaches TR-SPoC and NTR-
SPoC in terms of the regularization parameter α is

Figure 1. Sensitivity analysis wrt. the regularization
strength for TR-SPoC and NTR-SPoC. (A) Averaged
z-AUC performance is reported as grand average (GA)
across all 18 subjects (solid line) and for five good
subjects (dashed line). (B) Standard deviations of the
corresponding averages are depicted. For comparison,
the displayed performance at α = 0 corresponds to the
non-regularized SPoC versions.

displayed in Fig. 1. For each α, the z-AUC is reported as
a grand average (GA) across all 18 subjects (solid lines).
For an individual subject, the impact of the regulariza-
tion may depend upon the initial performances obtained
with basic SPoC. Hence, we decided to separately report
the performance for five good subjects (dashed lines).
They were selected as the subjects with the best SPoC
performance values z-AUC(SPoC) > 0.55. However,
as the absolute best subject with z-AUC(SPoC) = 0.77
represents a very strong (positive) outlier compared to
the full set of 18 subjects, it was not included into this
group. (compare with Fig. 2)
For TR-SPoC, an increased regularization strength pa-
rameter does not affect performance within a wide
range of 10−8 < α < 10−3. While even stronger
regularization with values of 10−1 < α < 100 sightly
improves the grand average performance, it comes at the
cost of a higher standard deviation (see Fig. 1(B)).
The situation looks different for NTR-SPoC as three
major effects can be observed when increasing regu-
larization strength controlled by α. Within the range
10−8 < α < 10−6, the performance remains on a
stable level. Enlarging the regularization strength to
10−6 < α < 10−2, the performance increases (two
local maxima) with best average performance obtained
at α = 1.4 · 10−5. Extreme regularization expressed by
α > 10−2 results in a drastic drop of performance. The
standard deviation of the reported performance means
constantly remain on a high level, indicating that the
sensitivity wrt. the regularization parameter α varies
strongly across subjects.
In Fig. 1, the effect of trace normalization upon per-
formance can be evaluated for α = 0, which describes
the absence of any regularization. Thus, the performance
reported for TR-SPoC at α = 0 corresponds to that of
standard SPoC, while α = 0 for NTR-SPoC directly
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Figure 2. Performance comparison of NTR-SPoC with
standard SPoC, using both LOSO and individual nested
cross-validation. Each blue marker corresponds to one of
the 18 subjects. For both of the selection strategies, the
first number reports the percentage of subjects for which
NTR-SPoC outperforms SPoC. Percentage values given
in brackets are restricted to those data points located
outside the red shaded area. It encloses all subjects
which do not reach a threshold criterion on z-AUC for
meaningful predictions.

maps to TN-SPoC. On the grand average evaluation, the
performance of TN-SPoC is increased by 5 %, compared
to SPoC while the corresponding standard deviations of
both methods are on comparable levels.
As these intermediate results show, that NTR-SPoC
effectively outperforms the non trace-normalized
alternative TR-SPoC, we will restrict the evaluations in
the next paragraphs to NTR-SPoC.

Individual Selection of Regularization Strength: In
Fig. 2, the subject-wise performance comparison of
NTR-SPoC to standard SPoC is reported for the two
regularization parameter selection strategies LOSO and
subject-wise nested cross-validation.
In Fig. 2, the circle-shaped markers report the
individual performances obtained with LOSO. Building
upon the sensitivity analysis, for 15 out of 18
subjects the regularization parameter is selected as
αopt = 7.9 · 10−6, for the remaining three subjects it
was chosen as αopt = 2.4 · 10−5. Those values are
in good accordance with the global maximum of the
grand average performance reported in Fig. 1. The
diamond-shaped markers correspond to the validation
by individual nested cross-validation. To compare
the two selection strategies, we make use of two
different group statistics. First, the overall ratio of
subjects for which NTR-SPoC outperforms SPoC is
provided (72 % for LOSO and 83 % for nested CV).
In addition, the values in brackets consider only those
individual performances which manage to cross a

Figure 3. Effect of regularization parameter upon the
performance and the spatial patterns for an exemplary
subject VP9. (A) Performance of NTR-SPoC for choos-
ing α ∈ [10−8, 100]. (B) Corresponding activity patterns
along first four ranked components at the marked eval-
uation points (a)-(i).

threshold of minimum meaningful performance at
z-AUCth = 0.59 (red shaded area). Details on how
this threshold is determined have been reported in [9].
A two-sided Wilcoxon rank sum test on the full data
set yields for both selection strategies that NTR-SPoC
achieves statistically significant higher performances
than SPoC. (The corresponding p-values obtained were
pLOSO = 2.2 · 10−2 and pNested = 1.4 · 10−3.)

Effect of Regularization Upon Oscillatory Compo-
nents: For an exemplary subject, the effect of the reg-
ularization strength in NTR-SPoC upon the underlying
first four ranked oscillatory components is depicted in
Fig. 3. In (A) the z-AUC is reported for the different
α values, in (B) the first four ranked patterns of the
marked evaluation point (a)-(i) are shown. As the sign
of a pattern a is arbitrary, they have been corrected to
be consistent across the displayed patterns and scaled by
their norm.
Consistent with the results presented in Fig. 1, three
different α ranges can be identified for the selected
subject. The ranges can be characterized according to
two aspects, the performance (A) and the underlying
spatial patterns (B).
For very small regularization values, represented by
evaluation points (a) and (b), the performance as well as
the spatial patterns are stable despite of increased α. In
other words, NTR-SPoC is not sensitive for such small
values of α. The gray shaded area in Fig. 3(A) encloses
the evaluation points (c)–(f). This range is sensitive
to changes of α which is revealed by performance
improvements as well as rank switches among the
spatial patterns (e.g. rank #4 from (d) tracked by a
solid red line to (f)) or even novel patterns that appear
among the top four ranks (e.g. rank #3 at position
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(d)). In Fig. 3(B), novel patterns are marked by a
red circumference. Regularization beyond α > 10−2

((g)–(i)) leads to a slight drop in performance. This is
accompanied by an increased number of components
among the first ranks, which display higher spatial
frequencies in their activation patterns. The latter
observation was made for most subjects and usually
affected patterns of ranks 2–4.

DISCUSSION

We introduced the concept of Tikhonov regularization
for the SPoC algorithm. Its performance was evaluated
by applying a regression model upon the Nf = 4 top-
ranked components. Nonetheless, this number was not
optimized and thus leaves room for improvement.
As reported on the grand average of 18 subjects, the
pure Tikhonov regularization of SPoC (TR-SPoC) is not
detrimental for a low to medium amount of regulariza-
tion. Under strong regularization the approach becomes
only slightly favorable in terms of performance. How-
ever, most strongly regularized TR-SPoC components
seemed to show less plausible patterns in the subjective
opinion of the authors (data not shown here). Based on
even a full regularization parameter sweep, an operating
range has neither been observed for a linear nor a
logarithmic spacing of α-values along different orders
of magnitude as the Rayleigh coefficient of TR-SPoC
stated in Eq. 3 is mostly insensitive to the added penalty
term.
We tackled this issue by incorporating the trace normal-
ization to the Tikhonov regularization of SPoC (NTR-
SPoC). As a result, the NTR-SPoC becomes sensitive
to the penalty term over a range of small regularization
parameters (see Fig.1 and 3). In addition, we have shown
that similar regularization parameters mostly lead to
comparable performance increases. As originally pro-
posed by Ramoser et al. [4], the trace normalization of
the covariance matrices involved in Eq. 3 balances the
influence of the nominator and the denominator. We have
shown that NTR-SPoC can improve the performance
of individuals, but have also observed that optimal
operating ranges varied across subjects. As a positive
side effect, the approach brings up new meaningful
components. This observation is in accordance with
Tikhonov regularization of the CSP algorithm [13].
However, NTR-SPoC comes at a prize, as for some in-
dividuals we observed a performance decrease. In these
cases, trace normalization may unfortunately remove
meaningful information. Though we did not identify a
predictor yet, that could indicate, if trace normalization
is useful in a new subject or not. Thus, we propose to
evaluate both approaches in parallel. In the future, we
aim to run the algorithms also on simulation data as this
enables e.g. to control for the underlying SNR of the
data. As this proof-of-concept motivated the inclusion
of the trace norm, applying this to other variants of
regularization will help to characterize the effect behind
it.

CONCLUSION

In summary, we have presented an approach to regu-
larize the existing SPoC algorithm using a Tikhonov
regularization which favors spatial filter solutions with
small norms. Our findings show that by simply adding
a penalty term to the original SPoC objective function,
the filter solutions are insensitive to the regularization
term and performance does not improve. We applied
an additional trace normalization as a remedy and ob-
served, that it enhances the algorithm’s sensitivity for
the regularization. This enabled us to define a subject-
specific operating range of the regularization and thus
improve the achievable performance for most subjects.
This proof-of-concept study opens up future research
upon different regularization strategies and allows for
an in-depth characterization of data sets.
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ABSTRACT: In the real-time indication of cogni-
tive workload in realistic settings, the main chal-
lenge in comparison to laboratory studies is the
missing control of environmental variables of the
participant. This introduces strong intrasubjec-
tal/situational changes in EEG and makes most in-
dicators built on one part of the data fail in an-
other. We propose novel features reflecting the
spatio-spectral brain state on multiple timescales as
information for the workload indication. This allows
the classifier to interpret the current brain state (es-
timated from the last 10 s) in reference to the slower
changing background state (estimated from the last
10 mins). In a validation on an inland-waterway
study, classification improves in a semi-realistic sim-
ulator setting from 19 % average error down to 13 %.
In a corresponding real-world EEG measurement on-
board a freight-ship, the improvement is less pro-
nounced but workload estimation is possible.

INTRODUCTION

For the continuous indication of cognitive workload
from electroencephalography (EEG), often averages
of extracted features based on small time windows of
seconds to minutes are used. The EEG features used
for classification/indication are usually bandpass-
filtered, spatially-filtered, spectral components, com-
binations of those or similar approaches[1,2,3].

While smaller windows bring the indication closer to
real-time, bigger windows smooth the output and of-
ten reduce the influence of artefacts and thus improve
classification accuracy[1].

While in laboratory settings cognitive workload in-
dication can mostly be successfully performed, the
transfer to realistic or semi-realistic environments re-
mains a challenge. First of all, the participant is
mostly more aware and concentrated on all of her/his
actions as they have real-world effects. Also, the re-
duced setting of a laboratory or simulator might not
elicit all the perceptual input of a real scenario and,
thus, brain states might be more profound, distinct

and situation-dependent in realistic situations. In
addition, EEG experiments usually consist of many
repetitions the data of which is then averaged to fil-
ter out unrelated signal components. This is mostly
unfeasible in realistic scenarios.

With the aim to handle in particular the stronger
changes in brain signals in realistic scenarios, we in-
troduce a method that provides the classifier with
the information about the recent past spectrum of
the EEG. This leads to the possibility of filtering
current changes out of ongoing activity.

MATERIALS AND METHODS

EEG recordings: The EEG was recorded with
a BrainVision BrainAmp setup involving EasyCap
ActiCaps System with 32 gel-based Ag/Ag-Cl elec-
trodes and a sampling frequency of fs = 1kHz.
This amplifier setup guaranteed stable electrode
impedances and high immunity to all kinds of noise
and artefacts. All electrode impedances were ensured
to be below 10 kOhms before recording the actual
EEG.

Preprocessing & Artefact reduction: The raw
EEG was low-pass filtered at 40 Hz with a
Chebyshev-filter of order 10 and then downsampled
to 100 Hz. After that, a PCA-based artefact reduc-
tion was performed [4]. To this end, all PCA compo-
nents with a higher standard deviation than 70µV
were removed from the original data. After this,
spectrograms were built involving the Fast-Fourier-
Transform (FFT) with a Hamming-window of length
500ms.

Moving Average Spectrum: For moving average
calculation, 2 different window-lengths were chosen:
1 min and 10 mins. These were calculated on the
spectrograms with sampling frequency fs = 100Hz.

Feature Selection: We used two different sets of
feature vectors for comparison of our new approach
to a common approach. From each, the spectrograms
and the moving averages, 10s averages were built
without temporal overlap. The first investigations
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were done on a feature vector xa only containing the
averages over 10s-windows of the spectrum from 3
to 20 Hz in 1 Hz bins. For the moving average spec-
trum approach, the 3 feature vectors of 10 s, 1 min
and 10 mins - each containing Frequency x Channels
- were then combined to a joint feature vector xb.

Classification: The feature vectors were then
classified in a 2-class approach involving linear dis-
criminant analysis (LDA) with regularized shrinkage
[5]. The classes were ’high’ and ’low’ workload ac-
cording to expert ratings about the difficulty of the
sailing in an inland waterway cargo ship task as de-
scribed below in the section Class labels.

Validation: To estimate the performance of the
classifier/indicator on unseen data, a cross-validation
was performed with a chronological block-wise sam-
pling. As error measures we decided for the class-
wise normalized loss and the Area under Curve
(AUC) of the receiver operator characteristics of the
classifier output [6]. The AUC was inspected to see
how well the classifier separates classes and could
perform under a decision boundary shift.

Scalp Topographies: To investigate what fea-
tures the classifier had actually picked, the resulting
weight vectors were transformed to scalp topogra-
phies A by multiplication with the covariances of the
features [7]:

A ∝ ΣXw

where ΣX is the covariance matrix of the features
X and w the LDA weight vector. For the classifier
weights, the classifiers and the covariance were cal-
culated on the whole dataset.

Experiments: Professional captains performed
the passage of different bridges and one lock in a ref-
erence section between two locks on the river Main
near Würzburg in Germany. Three captains per-
formed several repetitions of the two bridge passages
in the simulator of the Federal Waterways Engineer-
ing and Research Institute (German Bundesamt für
Wasserbau BAW) in Karlsruhe with different water
levels and travel directions. Additionally, another
captain’s EEG was measured while passing both lo-
cations and the part connecting them on a routine
travel with the same cargo ship as in the simulator.
The ship was a 186 m long push tow of 2 units (GMS
’Odeon’ and GLS ’Elly’).

Class labels: The labels for the workload classes
”high” and ”low” were chosen under consideration
of expert ratings. The bridge passages under investi-
gation were described by experts to be difficult. We
chose the last 3 mins before the bridge passages in the
simulator as ”high” workload. In order to have a low
workload phase to contrast this against, we chose the
time window 1 min after the bridge passage as the
ship was very long and took time to pass it. Also, a
period of 15s after the start of each run until 4 mins
after the start was used as a ”low” workload time

window. In the on-board scenario we chose longer
periods of 7 mins in a similar scheme but added in-
termediate low workload phases to increase the avail-
able amount of data to the classifier and improve
sampling over time.

RESULTS

Simulator: The classification in the simulator was
in general successful with a class-wise average clas-
sification loss of 19 % for our common 10 s-window
approach Xa and 13 % for the moving average based
feature vector xb, which can be seen in Table 1.

Table 1: Classification results
Subject 10s average 10s+1min+10min

SF1 26% (0.16) 19% (0.09)
SF2 13% (0.06) 11% (0.03)
SF3 18% (0.09) 10% (0.03)

Average 19% (0.10) 13% (0.05)

SF4 on-board 43% (0.41) 41% (0.34)
Class-wise normalized loss with AUC in parentheses.

We found spatial topographies that suggest neural
origin as main features for classification in all par-
ticipants. As we were operating in a semi-realistic
environment with multiple angles of vision and the
captains moving relatively freely in their chairs, eye
movement, blinking, muscle and general movement
artefacts were inevitable. PCA-based artefact reduc-
tion removed the strongest components which were
mainly contributed to eye movements. But, as can
be seen in Figure 1-4, some artefact components were
most probably left in the data, discriminative of the
workload and thus were used by the classifier. Strong
local patterns from peripheral channels like frontal
or occipital electrodes are likely to be artefacts in
form of e.g. eye artefacts of SF1 or neck muscle
artefacts of SF4. Still, the topographies for both
xa and xb consisted mostly of central patterns, espe-
cially above 7 Hz. Interestingly, the classifier know-
ing the recent past had mostly weighted the 10 s av-
erage most strongly and often contrasted it against
the recent past in form of 1 min and 10 min averages.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-58

CC BY-NC-ND 315 Published by Verlag der TU Graz 
Graz University of Technology



SF1 SF2 SF3 sum

−25

−20

−15

−10

−5

0

5

10

15

20

25

14.5−19Hz +

+

+

+

+

+

+

+

=

=

=

=4−6Hz

7−9Hz

10−14Hz

Figure 1: The scalp topographies of the classifier for
feature vector xa only containing 10 s average spec-
tra. A positive sign represents positive weight for the
class ’high’ (the sign of the classifier is ’high’-’low’).
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Figure 2: The scalp topographies for subject SF1
of the classifier for feature vector xb containing 10 s,
1 min and 10 min average spectra.
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Figure 3: The scalp topographies for subject SF2
of the classifier for feature vector xb containing 10 s,
1 min and 10 min average spectra.
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Figure 4: The scalp topographies for subject SF3
of the classifier for feature vector xb containing 10 s,
1 min and 10 min average spectra.

In Figure 5 the Grand Average of the classifier out-
put from a within subject block-wise cross-validation
over the three subjects is shown on a map of the river
Main. The classifier output interpreted as a work-
load indicator was in particular ’high’ just in front
of the bridges with an overall smooth increase and
decrease.
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low
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Figure 5: The workload indicator for the different
scenarios in the simulator from multi-timescale fea-
ture vector xb. The circles depict the position of
the bridges. On the bottom right is an overview
of the area with the two bridges and the labeling
scheme. The abbreviations are as follows: NW low
water bridge 1 - MW normal water bridge 1 - HWM
I high water mark I bridge 1- MHF location bridge
1 - LT downstream bridge 2 - LB upstream bridge
2. LT is shifted horizontally on the overview map to
fit into one picture.

On-Board: In the on-board data, classification
worked less well in general. Classification could be
performed with a class-wise averaged loss of 41%
(AUC 0.34) with feature vector xb, while the 10 s
average based xa performed with 43% (AUC 0.41),

which can be examined in Table 1. The output
of the multi-timescale feature vector xb was much
smoother, than that of xa. The classifier was trained
on much less samples and, also, more artefacts were
visible in the spectra.
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Figure 7: The scalp topography of the classifier for
for subject SF4 with the 10 s only feature vector
xa. A positive sign represents positive weight for the
class ’high’ (the sign of the classifier is ’high’-’low’).
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Figure 8: The scalp topography of the classifier for
subject SF4 with the 10 s-1min-10 min feature vector
xb.
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Figure 9: The workload indicator of the on-board
experiment for the 10 s feature vector xa and the
multi-timescale feature vector xb on the river Main.
The upper most circle depicts bridge 2, the one in
the middle the lock and the lower circle bridge 1.

DISCUSSION

Simulator data: The simulator data can be clas-
sified with a high average accuracy of 80-90 % for
all of the three subjects. Scalp topographies might
still include systematic movement artefacts but the
connected motor activity in the brain also appears
discriminative. Activity over primary sensory and
motor areas of the hands could have lead to the
slightly lateralized central activity in the alpha/mu-
band. The workload indication within the labels was
successful with high accuracies and also the overall
picture of workload indication in the unmarked time
spans was reasonable. Workload was ”high” only in
turns or close to bridges while staying ”low” in be-
tween.

On-Board: Classification of the on-board data
seems more challenging in general but also the much
smaller amount of data has to be taken into ac-
count. Additionally, the investigation of behavior
lead to very different impressions for the different
time points of the trip, that were not solely connected
to the bridge and lock passages. Additional commu-
nication took place, unplanned vessels crossed the
way and more movement was necessary for the cap-
tain as the bridge was bigger. One big point was
that the main display was mounted to the left of
the captain, at which he seemed to look more fre-

quently during sailing-induced higher workload. Ac-
cordingly, the main challenge with the on-board data
of this subject seems to be the systematic motor ac-
tivity connected to the observation of the display to
the left of the captain. This could also be found
in the scalp topographies connected to the classifier
weights, as the neck muscles could have lead to the
strong signals from the right occipital electrodes used
for classification.

Moving average classifier: The moving average
classifier improves the classification accuracy on the
simulator data by 6 % on average. The scalp topogra-
phies suggest that mainly the actual 10 s-data xa
was effectively used and the 1 min and 10 mins mov-
ing averages were only slightly used, but improved
the results. This supports our hypothesis that sup-
plying the classifier with the recent past makes it
more robust to experimentally unconnected tempo-
ral changes commonly exhibited in the EEG within
single subjects. Compared to the simulations, more
of the 10 min average was used in the on-board classi-
fication in general. All kinds of artefacts seem more
pronounced for this realistic scenario. Less data is
available and the class labels are probably more noisy
because many more latent variables not related to
the bridge and lock passage have an effect on the
cognitive workload. The classifier performed slightly
better than the 10 s only feature vector xa-based.

Classifier Scalp Topographies: The topographies
show in general a main effect of brain activity while
more predominant artefacts are also discriminative
for the classification compared to most laboratory
studies. Different movement patterns and viewing
directions are most probably significant of the class
label, as in the high-workload phase most captains
seemed to steer more and also watch the displays
more frequently. This is inevitable but, additionally,
the results are not fully homogeneous over subjects.

CONCLUSION

In a series of linked simulator and on-board ex-
periments on the cognitive workload of profes-
sional inland waterway captains, we successfully
performed classifications involving LDA on multi-
timescale spectral features. The classifier output
generalizes between situations and can be used as a
linear workload indicator within our data. The work-
load indication in semi-realistic and realistic scenar-
ios seems possible in general. More challenges might
be raised by the step from the simulator onto the
board of a real ship, as performance drops drasti-
cally here. Still, our approach involving the data
of the most recent past seems to perform slightly
better than a simple 10 s window feature vector in
the on-board scenario and improves the results from
the simulator. Sadly, the simulator data of subject
SF4 could not be recorded to compare and transfer
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the simulator results from this subject to the on-
board measurements. It was planned to also take
the on-board captain to the experiments in the sim-
ulator but, due to timing issues, this was not possi-
ble. This is planned for the future and could help to
measure the transferability of the indicator extracted
from simulator data to more realistic on-board sce-
narios. Also, the amount of training data would be
increased by this. As this was a simple pilot study
only involving three subjects in the simulator and
one on-board, results have to be carefully interpreted
with this limitation in mind. Still, the differences in
the results for different subjects, in particular for the
topographies, could be related to different individual
strategies. For example, one captain may correct his
course more in the ”high”-workload phase, while an-
other might be more precise and concentrated and
thus correcting his course less. Also, one captain
may solve the tasks more visually while another is
more focused on his sensory input and motor actions
which leads to different brain activity patterns. The
multi-timescale spectral feature based workload indi-
cator has to be further investigated but first results
show relevance to realistic EEG experiments.
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ABSTRACT: Major issues in Brain Computer Interfaces
(BCIs) include low usability and poor user performance.
This paper tackles them by ensuring the users to be in a state
of immersion, control and motivation, called state of flow.
Indeed, in various disciplines, being in the state of flow
was shown to improve performances and learning. Hence,
we intended to draw BCI users in a flow state to improve
both their subjective experience and their performances. In
a Motor Imagery BCI game, we manipulated flow in two
ways: 1) by adapting the task difficulty and 2) by using
background music. Results showed that the difficulty adap-
tation induced a higher flow state, however music had no
effect. There was a positive correlation between subjec-
tive flow scores and offline performance, although the flow
factors had no effect (adaptation) or negative effect (mu-
sic) on online performance. Overall, favoring the flow state
seems a promising approach for enhancing users’ satisfac-
tion, although its complexity requires more thorough inves-
tigations.

INTRODUCTION

The Brain Computer Interface (BCI) community today’s
priority is to assure the system robustness and its usability.
It is quite a difficult task, considering the abundant inter and
intra-subject variability. The major obstacle lies in the large
spectrum of sources of variability during BCI usage, rang-
ing from (i) imperfect recording conditions e.g. environ-
mental noise, humidity, static electricity etc. [22] to (ii) the
fluctuations in the user’s psycho-physiological states, due
to e.g., fatigue, motivation or attention [13]. There are yet
more improvements to be done for a system ready to be eas-
ily used in real life conditions [38].
BCI systems showed quite an improvement with adaptive
methods, i.e. adapting the machine to the changeable brain
signals of the user during a BCI task. Currently, adaptation
is mainly done by using different signal processing tech-
niques without including human factors [23]. However, if
the users do not understand how to manipulate a BCI sys-
tem, or are not motivated to make necessary effort for such
manipulation, then they are not able to produce stable and
distinct EEG patterns. In that case, no signal processing al-
gorithm would be able to decode such signals [19]. Thus,
for designing a BCI, ignoring certain information about the
users, e.g. their skills, cognitive abilities and motivations,

may represent one of the major drawbacks for the advance-
ment of BCIs.
A potential improvement in BCI is to acknowledge how dif-
ficult it can be to learn to produce mental commands (a very
atypical skill) without a proper feedback about the progress
one has made. In every discipline, a certain feedback on
ones performance is necessary to enable learning, as shown
in the earliest work about Operant Conditioning and Rein-
forcement Learning [34]. Notably, this question was stud-
ied by behaviorists for decades on animals, using rewards
e.g. food, as extrinsic motivation to promote desired behav-
ior. As humans have more complex cognitive functions, a
more effective way to promote learning is in a social con-
text, with a tutor who would prepare and adapt a task ac-
cording to the student’s competences. The tutor’s feedback
and well organized tasks would lead the disciple to grad-
ually build up knowledge and skills, to feel confident and
to be intrinsically motivated, or to be in the Zone of Prox-
imal Development (ZPD)[36]. Derived from cognitive de-
velopmental theories [36] and refined through instructional
design theories [17, 24], intrinsic motivation is to be a sub-
stantial element for learning. Thus, it is important to care-
fully design the feedback if we want to encourage learning
and optimal performance.
Unfortunately, for long this was not the case in BCI com-
munity, as BCI systems were improved mostly with novel
machine learning techniques [23]. The result of neglecting
the feedback design led to often monotonous and repetitive
content, further discouraging the user, and leading to re-
duced skill and impaired performance [4, 18], thus highly
affecting the system’s accuracy. Potentially, instructional
design theories could add a missing piece for designing op-
timal BCI feedback [19].
There have been extensive literature describing higher BCI
user performance and experience using game-like feedback
[31, 32]. Immersive and game-like environments attract
users’ attention, induce intrinsic motivation, thus promote
learning and performance with less effort and frustration
– for a review see [20]. Even using extrinsic motivation
such as monetary reward can encourage users to perform
better [18]. Some studies showed that user’s belief on their
performance with biased feedback induced motivation and
thus higher performance [2]. Hence, sometimes it is worth
to trade the system’s accuracy to the perceived, subjective
user’s feeling of control.
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Keeping that into account, a way to promote efficiency and
motivation while respecting the principles of instructional
design leads us to the Theory of Flow introduced by Csik-
szentmihalyi in [7]. He was fascinated by the capacity of
artists to be in a state of enjoyment while effortlessly fo-
cused on a task so immersive that one looses the perception
of time, of self and of basic human needs (hunger, sleep
etc.). When in the flow state, people are absorbed in an ac-
tivity, their focused awareness is narrowed, they lose self-
consciousness, and they feel in control of their environment.
As a consequence, they often perform to the best of their ca-
pacity with a sense of automaticity and a high level of con-
fidence. Studies report flow experience in numerous activ-
ities including rock climbing, dancing, chess, reading, etc.
[7, 8].
Another pertinent element which encourages intrinsic mo-
tivation and is showed to be in relation with flow, is music
[6]. Recent studies showed that music has an ergogenic
effect on humans, i.e. physical enhancement while per-
forming a physical activity [1]. In [14] was reported that
Haile Gebrselassie, an athlete who broke 10 000m world
record in 1998, paced his running on music he was lis-
tening to, i.e. synchronous music. There is evidence that
synchronous music, as a strong motivational effect, directly
enhances physical performance [33] while asynchronous
(background) music induces flow when accomplishing a
task [28, 27]. Most of all, background music with medium
tempo (speed) has showed highest impact on flow [15].
To be in the state of flow, a task needs to have the following
requirements:

• To be immersive, with attractive visual/audio stimuli
to maintain the user’s attention. The principle of pre-
serving flow with aesthetically pleasing and ergonomic
content have been researched largely in the context of
human computer interaction [37] and Internet naviga-
tion, e.g. e-learning [9];

• To adapt the task difficulty with the user’s skills, i.e.
an easy task might be boring as a difficult one might be
frustrating, hence finding the golden middle is the way
of feeling in control and keeping the motivation. Such
difficulty adaptations were found in games, to keep the
gamer in flow [3], or during teaching activities [5] to
improve learning and keep the student in the ZPD [36].

• To have clear goals and immediate feedback / re-
wards; aspired for educational purposes [12], so that
learning becomes an enjoying and autotelic (self-
rewarding) process [25].

Therefore, in order to improve BCI users’ performance,
learning, and experience, it seems promising to try to guide
them towards the state of flow. This is what we start to ex-
plore in this paper. In particular, our research question is:
Does flow improve BCI user performance? We chose to
manipulate flow in a ludic BCI environment with 2 factors:
1) Feedback adaptation, i.e. perceived difficulty adaptation
to the user skills, and 2) Asynchronous music to encourage
the user. Thus, our following hypotheses are:

H1. Adapting the feedback improves flow, thus improves
performance.
H2. Asynchronous music improves flow, thus improves
performance.
In consonance with the Flow theory, we presented a motor
imagery (MI) BCI task in an open-source 3D video game
(TuxRacer 1). We investigated the effects of these two flow
factors on user’s flow state as well as on user performance,
i.e. classification accuracy.

MATERIALS AND METHODS

Manipulating Flow: In order to fulfill Flow theory require-
ments, we considered the following:

• An immersive and ludic environment, here the
TuxRacer video game was adjusted for a 2-class Mo-
tor Imagery (MI) BCI. The game depicts a ski course,
in which a virtual penguin, Tux – controlled by the
player – slides through various slopes and has to catch
as much fish as possible. With the BCI adjustments,
Tux was maneuvered with kinesthetic imagination of
either left or right hand, see Figure 1.

• The adaptation of the feedback bias, i.e. users were
made to believe they performed differently from what
they really did, in order to be in the flow state. If they
had poor performances they were positively biased to
a higher degree than if they had fairly good perfor-
mances. However, when the performances were too
good, then the users were slightly negatively biased,
so that the task would not seem too easy. This was
achieved by adaptively increasing or decreasing the
classifier output, i.e. the decoding of MI commands
would seem different from what it was in reality.

• Asynchronous music consisted of 3 songs with
medium tempo (120-160 beats per min), played in the
background during the BCI task. 15 persons voted
on social media for songs which would motivate them
while playing TuxRacer. The selected songs are "Epic"
by Alexey Anisimov (113s), "Confident & Successful"
by MFYM (168s) and "Acoustic Corporation" by OAP
(132s), all available on Jamendo2.

• Clear goals with immediate audio and visual feed-
back, i.e. to collect maximum points by manipulat-
ing Tux to move either left or right to catch fish. The
feedback is clear – once caught, the fish disappears
with a brief audio stimuli stressing that the target was
reached.

Experimental design: We created a 2 (adapt vs no-
adapt) by 2 (music vs no-music) mixed factorial design, i.e.
a between-subject adaptation factor, and a within-subject
background music factor.

Protocol: 28 healthy subjects, naive to BCI, participated
in the ~2 hour-long experiment (5 women, mean age: 25.23

1https://extremetuxracer.sourceforge.io/
2https://www.jamendo.com/
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Figure 1: Participant using MI commands to play TuxRacer, e.g.
imagining right hand movement to catch fish on the right.

years, SD: 2.98). The first 30 minutes consisted of (i) sign-
ing a consent form, (ii) installing of a 32 channels Brain
Product LiveAmp EEG, (iii) instructions given to the user
and preparation, (iv) ~10 minutes system calibration (40 tri-
als of 7s) with the standard 2-class MI BCI (left/right hand)
Graz protocol [29]. In the Graz protocol, the user was pre-
sented with arrows indicating the left or right side, to in-
struct the participant to imagine a left or right hand move-
ment. Afterwards, each participant took part in 2 counter-
balanced conditions of ~20mins each with TuxRacer, (a)
with and (b) without background music. 3 songs were re-
peated to accompany the music condition of 6 runs (1 song
per 2 runs). Each condition comprised of 6 × 3min-runs,
with 22 trials per run (11 for left and 11 for right hand, in
random order), see Figure 2. Each trial consisted in per-
forming left/right hand MI to move Tux in order to catch
fish on the left/right of the ski course, respectively. There
were 7 closely arranged fish per trial, to be caught within
3 seconds. During 5-second long breaks between trials, the
BCI controls were disabled so that Tux would return in a
neutral position (center on the ski course) and participants
could rest. The study was approved by the Inria ethics com-
mittee, COERLE (Comité opérationnel d’évaluation des
risques légaux et éthiques).

Figure 2: The experiment started with ~10min calibration [29],
followed by 2 conditions: either with or without music – 6 runs
of 3 minutes per condition. The adapt group received an adapted
(biased) feedback, contrary to the no-adapt group. Adaptation is
symbolized by the magnet. Both groups were asked to fill Edu-
Flow2 [12] questionnaires for the flow state assessment and BMRI
[16] questionnaire for investigating the quality of music.

Questionnaires: Prior to the experiment, a Swedish

Flow Proneness Questionnaire (SFPQ) [35] was sent to sub-
jects to fill in at home. This 5 points Likert scale question-
naire measures flow proneness – flow as a person’s trait. To
estimate to which extent users were in the state of flow, they
were asked to fill in the EduFlow2 questionnaire [12] after
each condition (music or no-music). The EduFlow2 mea-
sures flow state through 4 dimensions: cognitive control,
immersion, selflessness and autotelism – a self rewarding
experience. To have a measure of the quality and motivation
of the selected music, the participants also filled a dedicated
questionnaire, the Brunel Music Rating Inventory (BMRI)
[16].

Signal processing: The acquired EEG was band-bass
filtered with a Butterworth temporal filter between 8 and
30Hz. We computed the band power using a 1s time win-
dow sliding every 1/16th s. We used a set of Common Spa-
tial Patterns (CSP) spatial filters to reduce the 32 original
channels down to 6 "virtual" channels that maximize the
differences between the two class motor imagery [30]. A
probabilistic SVM (Support Vector Machine) with a linear
kernel was used to classify the data between left and right
classes (regularization parameter C = 1). That way, the out-
put of the SVM between 0 and 1, indicated a class recog-
nized with a certain degree of confidence, e.g. 1 means that
the right- hand class was recognized with high confidence.

Performances: The online performance corresponds to
the peak accuracy of the classifier that controlled the video
game, i.e. the highest classification accuracy over all trials’
time windows. The offline performance was computed af-
terwards with a 4-folds cross validation, i.e. regarding only
the data recorded during the interaction with the video game
for training and testing. In other words, data recorded dur-
ing the Graz protocol was not used to compute offline per-
formances. We used a LDA (Linear Discriminant Analysis)
for the offline classification, since it is less computation-
ally demanding. Both for online and offline analyses, one
accuracy score was computed over the music / no_music
condition (i.e. 6 runs of 22 trials).

Game controls: The TuxRacer game was controlled via
a virtual joystick. When a right hand movement was recog-
nized (SVM output of 1) the virtual joystick was tilted to-
ward the right at its maximum angle, 45 degrees. Inversely,
when a left hand movement was recognized (SVM output
of 0), the virtual joystick was tilted 45 degrees to the left.
Between 0 and 1, the values of the virtual joystick were
mapped linearly (from minus 45 degrees to 45 degrees).
Thanks to this simple virtual joystick, we did not need to
modify the usual input commands to the complex BCI ones
in the game. Basically, the virtual joystick can act as or
replace the usual computer controls, such as keys on the
keyboard. Our freely available source code3 could be used
to control any (linux) joystick-based game with a BCI.

Game modifications: We designed the BCI TuxRacer
game so that its timing and structure mirror that of the Graz
motor imagery BCI protocol [29], but in an immersive and
motivating environment. We modified the shape of the ter-
rain, curving it alike a bobsleigh course. Consequently, by

3https://github.com/conphyture/LSL2joy

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-59

CC BY-NC-ND 322 Published by Verlag der TU Graz 
Graz University of Technology



the force of gravity, Tux would slide back to the middle of
the screen between trials, when the commands were deac-
tivated. Between trials, Tux would still be skiing towards
the following trial with constant speed, enabling the users
to see the next fish. We fixed the position of the fish on the
ski course edges, so that the targets were equidistant from
Tux at the beginning of each trial, i.e. same distance from
the center of the ski course. The reason for this is to enable
the user to provide equivalent potential effort for both MI
classes (left/right hand). By assuring a constant speed for
Tux, a race (run) always lasted 3 minutes.

Game adaptation: The no_adapt group was the first
to participate in the experiment. Thanks to the fact that
there was a correlation between the user’s flow state and
the performances in the control group, we empirically cal-
culated a performance level (classifier accuracy) for which
users felt most in flow. We used that value as an attrac-
tor or a quasi-flow value to lure Tux in. At each instant
(1/16thsec sliding window) we would retrieve the classi-
fier output and add to it a value which would push Tux
a half way towards our attractor. This value was deter-
mined intuitively from Flow theory, to keep the difficulty
in the "golden middle". Consequently, when user perfor-
mances were very poor, Tux was boosted to a higher ex-
tent towards the attractor, i.e. in this case users were helped
(positively biased) more than when their performances were
fairly good. However, when the performances were too
good, the perceived performances were deteriorated (feed-
back was negatively biased). The "flow" function would
then be: f(si) = si +

(a−si)
2 , si ∈ [−1, 1], where si stands

for user skill, which is given by the classifier output and
scaled to ease the computation (-1 for left, 1 for right), for
all instants i within 22 trials, (i = 1, ..16Hz × 66s). Fi-
nally, a = 0.79 denotes the attractor for the right class
(a = −0.79 for left class).

RESULTS

The normal distribution of all the data was verified using a
Shapiro-Wilk normality test.

Flow-factor’s influence on EduFlow2: We tested the
effects of our mixed factorial design on each of the 4 di-
mensions measured by the EduFlow2 questionnaires using
a Markov Chain Monte Carlo (MCMC) method [10]. The
MCMC showed a significant difference between adapt and
no-adapt along the 1st dimension (p < 0.01). Participants
in the adapt group reported higher cognitive control (mean:
5.38, SD: 0.84) compared to the no-adapt group (mean:
4.49, SD: 0.83), see Figure 3.
There was no significant difference between groups regard-
ing their flow trait, measured with SFPQ (1-way ANOVA, p
= 0.25). ANCOVA tests showed that it was not a confound-
ing factor for neither EduFlow2 nor performances.
There was no difference between groups regarding BMRI
(1-way ANOVA, p = 0.53). Mean score: 15.80, SD: 4.14 –
maximum score with the questionnaire we distributed: 25.3.
There was no correlation between BMRI scores and flow
(p = 0.54) nor with user performance, online (p = 0.78) or

offline (p = 0.20).
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Figure 3: The EduFlow2 score (7 Likert scale) for the first dimen-
sion (cognitive control) depending on the between-subject factor
adapt and on the within-subject factor music. Users were in higher
cognitive control in the adapt condition (left).

Flow-factor’s influence on performance: The question
whether our conditions could directly improve the online
performances was tested with a 2-way ANOVA. There
was a significant interaction between music and adapta-
tion (p<0.05). Music had a significant effect on the on-
line performance (mean with music: 0.62, SD: 0.09, mean
with no_music: 0.65, SD: 0.11, p<0.05) but adaptation
had not (p=0.08), see Figure 4. A post-hoc Tukey analy-
sis reveals that the one significant interaction occurs in the
no_adapt condition, between music (mean: 0.64, SD: 0.11)
and no_music (mean: 0.68, SD: 0.13) (p<0.001).
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Figure 4: The peak performance during the completion of the
video game depending on the between-subject factor adapt and on
the within-subject factor music. In the no_adapt condition (right),
users had better online performances without music.

Correlation between EduFlow2 & performance:
There was no correlation between flow (mean of all the
EduFlow2 dimensions) and online performance (p=0.12),
however there was a positive correlation between flow and
offline performance (Pearson coefficient: 0.35, p<0.01), see
Figure 5. More precisely, offline performances are signif-
icantly correlated with two dimensions of flow: the 2nd –
immersion (p<0.01, Pearson coefficient: 0.38) and the 4th
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– autotelism, (p<0.05, Pearson coefficient: 0.32). We cor-
rected the p-values for multiple comparisons with false dis-
covery rate [26].
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Figure 5: Positive correlation between EduFLow2 scores (mean
of 4D) and offline performance (Pearson coef:0.35, p<0.01).

DISCUSSION

H1. validated: Adapting the task difficulty to users skill
improved one dimension of flow state, cognitive control.
People who faced a challenge better suited to their skill felt
more in control. Thus, taking into account user’s predispo-
sitions could lead to a greater user experience.
H2. in contradiction: Not only the presence of a back-
ground music had no effect on flow, but it deteriorated the
online performance. Therefore, this result contradicts our
second hypothesis.

Music pace mismatch. As opposed to what we expected,
we could not directly improve performance by manipulating
the flow factors we chose (adaptation and music). The latter
could be explained by the songs we chose, since the moti-
vational qualities of the music (measured with the BMRI
questionnaire) were not very high and not correlated to any
dimension of flow. Instead of picking those songs from the
public domain, users may have been more motivated should
they have chosen their own music. The decrease of perfor-
mance in the music condition might come from the mis-
match between the rhythm of the music and the pace of the
game, i.e. with the pace of the imagined hands movements.
Indeed, some users shared informally that they were imag-
ining playing their musical instrument as MI commands and
that the songs further disturbed their pace.

Different training environment. There was no corre-
lation between flow state (EduFlow2) and online perfor-
mances. That could be due to the differences between
the calibration environment (Graz protocol) and the game,
e.g. the first being minimalistic and the latter a 3D video-
game. Moreover, as the calibration was done without mu-
sic, maybe the performances online were better without it
because the EEG signals might have changed, therefore the
classifier could not recognize them anymore.

Flow increases with performances. These later assump-
tions are strengthened by the fact that there was a posi-

tive correlation between flow and the offline performances,
when only game data was taken into consideration. The
state of flow was then positively correlated with users’ per-
formance: the feeling of immersion and the autotelic expe-
rience (i.e. the completion of the task was self-rewarding)
increased with the offline performance. Hence, not only en-
couraging a state of flow would produce BCIs more pleas-
ing to the users, but it might also benefit the accuracy of the
system. We still have to identify the direction of the corre-
lation though: does flow state increases performances or do
good performances increase flow state?
Overall, the discrepancy in our results could stress that flow
is a complex phenomenon, and however beneficial to ob-
taining better BCI, the emerging interaction between its
components should be more thoroughly investigated.

CONCLUSION

By investigating means to improve BCI user performance
and usability through instructional design theories, we came
across the Flow Theory. This theory, which describes an op-
timal user state, showed to improve performances in many
fields. We hypothesized that the state of flow could benefit
BCIs. In a MI BCI task, we manipulated flow by adapting
the perceived difficulty and by adding a background mu-
sic. We used an immersive environment, a 3D video game,
TuxRacer (the modification can be found online 4).
Our main findings show that the adaptation increases one of
the dimensions of flow – cognitive control, and that user’s
offline performances are positively correlated with flow. In
the future we could attempt to better suit the adaptation of
the task to the users: it could be biased adaptively over time,
across several sessions, following the progress of the user.
We could also try to account for the amount of effort that
the user puts into the completion of the task in order to bet-
ter comprehend such complex phenomena. For example,
measuring workload could facilitate the assessment of the
challenge that users are facing and computationally predict
the state of flow[3].
According to the literature, we chose asynchronous music
with medium tempo to follow the BCI task. Unexpect-
edly, the background music impeded the performances of
the user. This result stresses the importance of the choice
of music to accompany a task. One explanation could lie in
the very BCI paradigm we chose. Indeed, a motor imagery
task might share similarities with actual physical activity,
where it had been shown that synchronous music could ef-
fectively stimulate the sensory-motor cortex[11]. Hence, a
future work would consist in synchronizing music to game’s
cues (e.g. trials sequences) or to user’s motor imagery pace.
Such music, generated in real time, might enhance the flow
state and intrinsic motivation. Concurrently, we should ver-
ify if the user is musically educated, as in some cases users
imagined playing instruments as MI commands, and be-
cause musicians elicit different brain activity in motor ar-
eas[21].

4https://github.com/jelenaLis/tux-modifs)
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Flow is not only a promising research direction to improve
BCI systems, but it raises a new question: should we put all
our efforts in favoring the machine accuracy, or rather the
human subjective experience?
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ABSTRACT: Brain computer interfaces are an important
tool to enable communication for patients suffering from
amyotrophic lateral sclerosis. Yet most existing devices
use cognitive functions that are impaired in later stages
of the disease. Systems based on higher cognitive pro-
cesses provide new possibilities for this field. However,
many patients in the target group suffer from memory
impairments. As many higher cognitive processes in-
volve memory, this could be an interference. The present
study investigates the differences between a currently ex-
isting cognitive paradigm using autobiographic memories
and a new paradigm using a guided imagery story. Both
are developed to be used in patients and try to target the
same processes, with the new paradigm being less depen-
dent on memory functions. Assessment of EEG- and be-
havioral data in healthy subjects results in two working
paradigms for brain computer interface control. Higher
classification accuracies and more favorable behavioral
ratings are achieved by the previously existing paradigm.

INTRODUCTION

Patients suffering from the neurodegenerative disorder
amyotrophic lateral sclerosis (ALS) can use brain com-
puter interfaces (BCIs) for communication [1] [2]. Most
of these BCIs are based on EEG or single-unit features
from somatosensory or motor areas of cortex [3]. This is
problematic for ALS patients as with the progress of the
disease neurons in motor cortex, especially giant pyrami-
dal neurons, degenerate [4]. Another class of BCIs makes
use of visual evoked potentials to detect an attended or in
this case preferred stimulus [3]. As this class relies on eye
movement, and oculomotor dysfunction - especially dys-
function of effective pursuit - is common in ALS [5], it is
also not suitable for late-stage ALS patients. Therefore,
particularly for patients that reach the completely locked
in stage, different classes of BCIs are needed. Until now
there are no reliable BCIs for those patients available [6].
One approach are BCI systems that are based on higher
cognitive functions. Hohmann et al. introduced a system
that allows answering of binary questions by either think-
ing about a positive experience or focusing on ones breath
[7] or, in a more recent version, doing mathematical cal-
culations [8]. Making use of positive memories, how-
ever, includes a possible interference: Retrieval of auto-
biographic memories needs both self-referential process-

ing and memory retrieval processes [9]. As those systems
are designed to serve as communication devices for ALS
patients the impact of the disease on memory processes
is an important factor. A study by Mantovan et al. (2003)
showed episodic memory deficits in ALS patients without
dementia, with subjects having problems both in encod-
ing and in retrieval [10]. When performing a battery of
neuropsychological tests on a patient sample, nearly half
of the sample showed cognitive impairments including
memory, changing of judgement and reasoning and ver-
bal fluency, as well as behavioral discontrol [11]. Those
ALS patients who show cognitive impairment measured
by a verbal fluency test also show frontal lobe dysfunc-
tion, as indicated by abnormalities in a PET scan [12].
Further, patients exhibit white matter changes in temporal
regions, including motor pathways as well as non-motor
areas including association fibres to the frontal lobe and
anterior cingulate gyrus, that are accompanied by deficits
in executive functions and memory [13]. In cognitively
unimpaired ALS patients white matter changes were not
as strong but still present [13].
These findings encourage the idea to create a BCI for
which memory processes are less relevant, as well as mo-
tor and oculomotor functions, to make it usable for ALS
patients in all stages of disease even when memory func-
tions are impaired.
The system introduced by Hohmann et al. is likely to tar-
get up- and down regulation of parietal nodes in the de-
fault mode network (DMN). ALS patients even in late
stages showed to be capable of modulating activity in the
target region without prior training [7]. This is supported
by the argument that in locked-in state patients connectiv-
ity in the DMN is not significantly different from the one
in controls [14]. The DMN is associated with remember-
ing the past, especially autobiographic remembering [15],
and is also seen as the seat of self-referential processing
in the brain [16] [17]. As a brain system for internal
mentation the DMN is most active during spontaneous
cognition including mental processes that create fantasy,
imagination, daydreams and thoughts. It also takes part
in self-relevant mental simulation, which means imag-
ination of scenarios or hypothetical events [15]. Self-
related thoughts correlate with an increase in spectral
power mainly in the α-band (8-13 Hz), showing spatial
patterns consistent with DMN modulation [16] [2]. It is
proposed that the DMN consists of two systems: a sys-
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tem related to associations and memory retrieval, and a
system related to self-relevant thoughts and self referen-
tial judgments [15]. Anatomically, the posterior cingulate
cortex (PCC) is described as a critical node of the DMN
[18] and the Precuneus (pC)/PCC node as possible side
of interaction of the two proposed subsystems [19].
Considering these properties of the DMN, a scenario that
could very well up-regulate the DMN is a guided imagery
story. It is directed to the self and includes imagination
and fantasy without being bound to autobiographic mem-
ory. Yet, for creating a binary BCI with external stimula-
tion, this stimulation has to be presented simultaneously
to enable subjects to make a decision. Some existing
auditory BCI systems with simultaneous stimulation on
both ears work with event related potentials like the N1
and P3 component and reach high accuracies even in on-
line scenarios [20]. Studies working on decoding of au-
ditory streams from EEG data like the one by O’Sullivan
and colleagues additionally show that subjects are very
well capable of following a story on one ear, when get-
ting presented a different one on each ear [21].
In the present study this ability of selective attention is
used for an auditory BCI targeting DMN activity. The
task introduced by Hohmann et al., including positive
memories and a math task [8], is compared to a new task
including a guided imagery story and math tasks, both
read to the participants simultaneously. During guided
imagery a participant has to imagine for example being
on a field in the sun or walking through the forest, experi-
encing the different tones and smells. The former will be
referred to as ”Memory” paradigm and the later as ”Im-
agery” paradigm. The goal of this study is twofold: First,
to find out whether the ”Imagery” paradigm is suitable
for a BCI system targeting DMN modulation, and second,
which of the two paradigms shows a better classification
performance.

MATERIALS AND METHODS

Experimental Paradigm: Participants were placed in
a chair 1.25 m away from a 17” LCD screen with a reso-
lution of 1280x1024 pixels and a 60 Hz refresh rate and
were provided with Phillips SHB9250 headphones. The
background of the screen was black, with a white fix-
ation cross in the center. Subjects were briefed on the
experimental procedure and the different tasks and their
comprehension was assured. They performed four ex-
perimental blocks with brief intermissions in which they
rated each block. Each experimental block consisted of
thirty trials, in which participants were asked questions
(fifteen correct and fifteen incorrect) in pseudo random-
ized order. The questions were binary general knowl-
edge questions designed to be as easy as possible (e.g. “Is
Christmas celebrated in December?” or “Is Berlin the
capital of Italy?”). Participants indicated their answer to
the questions by performing a certain task. After each
question an instruction was given to remind the subject
which task means ”yes” and ”no” (cf. Figure 1). One

Figure 1: Example trial for the ”Memory” and ”Imagery”
paradigm.

block lasted about 15 minutes. In two of the four blocks
the task was to remember a positive experience or to sub-
tract a number between three and nine continually from
a higher number (between 800 and 850) for either ”yes”
or ”no”. The concerning numbers were named in the in-
structions and the task was performed in silence (”Mem-
ory” paradigm).
In the other two blocks subjects were instructed to
indicate their answer by focusing on the sound on
one ear while ignoring the sound on the other ear.
On the right side a guided imagery story was read
(based on stories published on www.hierfindichwas.de
and www.planetsenior.de, accessed September 2016) and
on the left side mathematical calculations (addition or
subtraction of two digit numbers) were asked. The two
different sounds were presented simultaneously over the
whole task time (”Imagery” paradigm).
Each trial began with five seconds rest, followed by the
question and instructions. The time to indicate the answer
by performing the instructed task was 17 seconds, to be
sure to not cut any of the auditory recordings, which were
approximately 15 seconds long. The task for either ”yes”
or ”no” stayed constant within one block but changed be-
tween blocks. The resulting different blocks with differ-
ent paradigms and instructions were alternated and coun-
terbalanced across participants. Questions remained the
same for each block. After all four blocks participants
got a questionnaire with all 30 general knowledge ques-
tions asked during the experiment to ensure they knew
the correct answers.

Experimental Data: The study was conducted at the
Max Planck Institute for Intelligent Systems in Tübingen,
Germany. Ten healthy subjects (German native speakers,
5 female, 5 male) with a mean age of 34.4 ± 11.2 years
took part in the experiment. All of them reported to have
unimpaired hearing abilities. They received 12 Euro per
hour for their participation. All participants signed a con-
sent form to confirm their voluntary participation in ad-

Table 1: Questions (originally in German)
1) How easily could you concentrate on the task?
2) How exhausting was it to concentrate on the task?
3) How stressful was performing the task?
4) How tiring was performing the task?
5) How successful could you follow the instructions?
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Figure 2: Left side: Encoding model for ”Memory” paradigm. Right side: Encoding model for ”Imagery” paradigm.
Dark colors show the areas most relevant for classification, with the transfer learning algorithm, in arbitrary units.

vance, after being fully informed about the procedure.
The study was approved by the ethics committee of the
Max Planck Society. For EEG recordings a 124-channel
system with a sampling frequency of 500 Hz with act-
iCAP active electrodes and a BrainAmp amplifier (pro-
vided by BrainProducts GmbH, Gilching, Germany) was
used. Electrode placement was according to the extended
10-20 system with the left mastoid electrode as the initial
reference. All recordings were converted to common av-
erage reference previous to analysis. The BCI2000 tool-
box was used to implement the application [22]. Behav-
ioral data was obtained by handing a pen and paper ques-
tionnaires to participants after each block of the exper-
iment. The questions asked to participants are listed in
Table 1. All answers could be indicated on a seven point
Likert-scale, with one being the most favorable and seven
the most unfavorable answer.

Data Analysis: The 17 seconds per trial in which sub-
jects could indicate their answer to the given questions
were used for EEG analysis. As previous studies [16]
[7] showed that the α-frequency range is the range of
most significance for modulations of the DMN, analysis
was restricted to this frequency band. We used the Dis-
crete Fourier Transform with a Hann window to compute
the log-bandpower of the α-frequency band (8–13 Hz) at
every channel in every trial. As the α-frequency range
is not very susceptible to muscular or oculomotor arti-
facts, preprocessing only included the removal of elec-
trodes that showed malfunctioning for at least one partic-
ipant, reducing the feature space from 124 to 117. For ob-
taining optimal decoding with the relatively small num-
ber of trials recorded, we used a transfer learning tech-
nique further described by Jayaram et al. [23]. It allows
to simultaneously learn decoders for all subjects while
still accounting for inter-individual differences, using a

linear regression model. We employed a nested cross-
validation procedure, with leave-one-subject-out cross-
validation for learning priors over decoders and ten-fold
cross-validation to estimate decoding accuracy on each
individual subject. To spatially depict the resulting en-
coding model, we multiplied the priors obtained by the
transfer learning algorithm with the covariance matrix of
the extracted features, both averaged over subjects [24].
This was plot as a topography to illustrate the areas most
relevant for classification.

RESULTS

EEG Data: On average subjects achieved a de-
coding accuracy of 75.5% (SD 20.1%) in the ”Mem-
ory” paradigm and 64% (SD 14.7%) in the ”Imagery”
paradigm. The encoding models used by the transfer
learning algorithm for each paradigm are shown in Figure
2. Individual decoding accuracies can be seen in Table 2.
Both paradigms classify significantly better than chance
(p < 0.001) when tested with a permutation test with
1000 permutations of class labels. On an individual level

Table 2: Individual Accuracies
Subject ”Memory” ”Imagery” Differences
S1 50% 63.3% -13.3%
S2 70% 65% 5%
S3 96.7% 90% 6.7%
S4 95% 40% 55%
S5 51.7% 53.3% -1.6%
S6 90% 51.7% 38.3%
S7 95% 83.3% 11.7%
S8 46.7% 61.7% -15%
S9 73.3% 61.7% 11.6%
S10 86.7% 70% 16.7%
Mean 75.5% 64% 11.5%
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Figure 3: Mean values and standard deviations of rating data, showing a different perception of the two paradigms.

there was a high variability and some subjects did not
succeed using one or the other or both paradigms while
others were highly successful (Table 2). When comparing
the two different paradigms in a paired permutation test
with 104 permutations, the ”Memory” paradigm achieved
a better performance (+11.5%), yet this difference was
not significant (p = 0.126).

Behavioral Data: Mean rating values of each ques-
tion of the pen and paper questionnaire are shown in Fig-
ure 3. Participants indicated by their ratings that they
found it more difficult and more exhausting to concen-
trate on the ”Imagery” task as well as more stressful and
tiring. They also rated to have been more successful in
performing the ”Memory” task. Over all, the ”Mem-
ory” paradigm achieved lower mean rating values (2.94,
SD 0.07) compared to the ”Imagery” paradigm (3.21, SD
0.59). A paired sample t-test revealed this difference to
be significant (p = 0.0167).

DISCUSSION

Results of EEG- and behavioral data of the ”Memory”
paradigm and the ”Imagery” paradigm lead to further
support for the ”Memory” paradigm to be a well function-
ing BCI system and introduced the ”Imagery” paradigm
as a new approach for classification based on DMN mod-
ulation. The ”Memory” paradigm showed a better per-
formance and was also more liked, based on participants’

ratings. This pattern of results shows to be robust even
when using a different approach of data preprocessing to
completely omit including possible residual muscular ar-
tifacts: When performing artifact correction using an in-
dependent component analysis approach [25], instead of
using the unfiltered EEG signal, the mean accuracy for
classification in the ”Memory” paradigm was 73.2% (SD
18%) and for the ”Auditory” paradigm 60.3% (SD 8.2%).
The areas weighted as being most relevant for classifica-
tion by the encoding model of the transfer learning algo-
rithm show a spatial distribution that is consistent with
bandpower modulation in the pC/PCC [2]. The pC/PCC
node interacts strongly with the rest of the DMN [19]
and, regarding the proposition that the DMN consists of a
system related to associations and memory retrieval and
a system related to self-relevant thoughts and self refer-
ential judgements [15], the key role of communicating
between those systems is assigned to the PCC/pC node
[19]. Even though both tested paradigms appear to target
the region of the PCC/pC node, there is the possibility
that each of them triggers a different system of the DMN,
with the ”Memory” paradigm triggering system one and
the ”Imagery” paradigm triggering system two. This pos-
sible explanation is supported by the finding that the in-
dividual accuracies of both paradigms are not highly cor-
related (Pearson’s ρ = 0.315).
A potential explanation for the differences in decoding
accuracy across paradigms is provided by the over all dif-
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Figure 4: Baseline difference of α-power between
paradigms over all participants. Approximate overlap of
areas with largest differences and areas most relevant for
classification.

ferences in α-power during baseline periods within each
trial. The mean value of the α-log-power over all sub-
jects and channels was −1.789 (SD 0.32) and −1.831
(SD 0.31) for the “Memory” and “Imagery” paradigm,
respectively. This over all difference showed to be signif-
icant (p = 0.031) when tested with a paired permutation
test with 104 permutations. The distribution of the dif-
ferences over the scalp can be seen in Figure 4. These
findings can be related to the research of Blankertz et al.,
who detected that for BCI systems based on sensorimotor
rhythms (SMRs) strength of idling SMR in EEG is pre-
dictive for BCI performance.
They calculated this predictor with the maximum eleva-
tion in power spectral density compared to a noise floor
over a sensorimotor area in resting state. The higher this
maximum, the better the performance as it opens the pos-
sibility for a bigger difference when SMRs are attenuated
[26]. Related to the current study this could mean that the
over all lower α-power in the ”Imagery” paradigm leaves
less space for big differences due to task dependent mod-
ulations. The areas having the largest differences (Figure
4) also approximately correspond to the areas most rele-
vant for classification. As stress is correlated negatively
with α-band power [27], and participants rated the ”Im-
agery” paradigm as more stressful, this could be the ori-
gin of the detected difference.
Nevertheless, the finding of a new paradigm working with
binaural auditory stimulation supports the development
of more auditory BCI systems. They could be an attrac-
tive alternative to vision based BCIs for ALS patients be-
cause, as Hill and colleagues report [20], even if vision
remains intact, listening is less exhausting for most pa-
tients. Additionally, eye movements are getting more and
more tiring with progressing disease. The high accuracies
throughout studies support acoustic BCIs as promising
tools [20] [28]. However, what should be kept in mind
regarding this development is the opinion of the users.

For example binaurally presented beep sounds are judged
as unpleasant by participants [20] and also in the present
study participants rated the paradigm presenting binau-
ral acoustic stimuli as less appealing than the ”Memory”
one. Yet, the results presented here correspond to the
performance and opinion of a sample of healthy subjects
with no memory impairment. Until tested on an ALS pa-
tient sample, it is not clear if this pattern of results will
be replicated in this special group of subjects with com-
pletely different preconditions. It is important for future
research to pay attention to crucial differences between
populations to be able to transfer results to target groups
and develop assistive devices that can improve patients
everyday life.
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ABSTRACT: Motor imagery is one common paradigm
in brain computer interface (BCI) systems where the user
imagines moving a part of his/her body to control a com-
puter. Motor imagery is endogenous and requires a large
amount of training for the user to be able to control the
BCI. Therefore, the feedback that is provided to the user
is critical to ensure informative insight into improving
imagery skills. In this study, we investigate a new proto-
col for providing motor imagery feedback and compare it
to the conventional feedback scheme. The proposed feed-
back focuses on ‘elaborating’ how the user can improve
imagery as opposed to the conventional training proto-
cols which only provide information on whether the user
was ‘correct’ in performing imagery. Our results show
that providing more easily interpretable feedback results
in more efficient motor imagery training and is preferred
by the users.

INTRODUCTION

Brain computer interface (BCI) systems attempt to infer
certain cognitive or affective states based on neural sig-
nals collected from the brain while bypassing common
neuromuscular pathways [1, 2]. One modality to collect
brain signals is electroencephalography (EEG) which is
popular for being non-invasive and inexpensive. Motor
imagery is one common paradigm in EEG-based BCIs in
which the user imagines moving a part of her/his body,
such as a hand, foot, tongue, etc. Motor imagery of dif-
ferent body parts results in different spatial patterns of
decrease in power across the scalp in mu (8-13 Hz) and
beta (14-30 Hz) frequency bands [3, 4, 7, 8]. These fea-
tures are used to distinguish among the imagined classes.
One of the advantages of motor imagery based BCIs is
that they are endogenous [5]; they do not depend on user
response to external stimulation. Endogenous BCIs have
several benefits: 1) They do not require the user to have
good visual or other sensory responses to respond to ex-
ogenous stimuli, 2) They do not require the computer
presentation of (possibly annoying or fatiguing) stimuli,
and 3) They have the potential to be used in natural asyn-
chronous communication. However, because they are en-
dogenous and depend on the user generating the signal,
there are large individual differences in the ability to gen-
erate different discriminable motor imagery patterns for

different imagined body parts. Therefore, training users
to provide classifiable motor imagery signals is critical.
So far, there have been a few training methods proposed
in the literature, e.g. [9–14]. Lotte et al. [15] investigated
the current state-of-the-art training approaches and iden-
tified flaws in their design based on instructional design
literature. They looked at the training approaches at the
level of feedback provided to the user, instructions pro-
vided to her/him and the task itself. Our current study fo-
cuses on the feedback that the user receives. In traditional
motor imagery BCI training, the feedback provided to the
user is evaluative and corrective, where it only tells the
user whether he/she has performed the task correctly and
possibly with what confidence [15]. In other words, tra-
ditional motor imagery training involves giving the user
feedback on the output of the classification. When classi-
fication is unsuccessful, however, this feedback does not
provide any information about why it failed. For exam-
ple, participants may fail to be successful at right hand vs.
left hand motor imagery because they do not induce suf-
ficient mu-desynchronization or the induced desynchro-
nization is bilateral for both right- and left-hand motor
imagery.
Motivated by work of [6] we hypothesized that providing
richer feedback while users are learning motor imagery
would result in faster and better learning. To do so, we
decided to provide the users with not just the classifica-
tion output and its confidence, but a perceivable form of
features that are used by the classifier. In other words,
our proposed feedback is an example of ‘elaborated feed-
back’ as described by [25], where it will provide more
easily interpretable feedback and will let users evaluate
their performance based on the input to the classifier.

METHODS

We recorded data from 6 healthy participants recruited
from the UC San Diego student population. All partic-
ipants were naive to BCI and motor imagery skills and
before participating in the study, signed a consent form
that was approved by UC San Diego Institutional Review
Board. The demographic details of the participants (i.e.,
age, gender and handedness) are specified in Tab. 1.
Each participant participated in a one-session experiment
consisting of 5 blocks, each consisting of 20 motor im-
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agery trials. Each trial began with an arrow on the screen
pointing to the right or the left to specify the trial type.
After 1.5 seconds, the arrow disappeared and a cross
showed up in the center of the monitor and 1 second later,
a term “imagery” on top of the cross appeared. Partici-
pants were instructed to begin motor imagery of the cor-
responding hand (depending on the direction of the ar-
row) for 3 seconds until the cross disappeared. The par-
ticipants were instructed to imagine their action of choice
so long as it involved a hand movement. Fig. 1 shows an
example of the frames shown in one trial. At the end of
each trial in blocks 1, 3 and 5, no feedback was provided.
In blocks 2 and 4, the conventional and proposed elab-
orated feedback were provided which will be described
next. Participants 1, 2, and 6 were shown the elaborated
and conventional feedback in blocks 2 and 4 respectively.
Participants 3, 4, and 5 on the other hand, were presented
with the conventional feedback in block 2 and elaborated
feedback in block 4. This is to balance the order of the
provided feedback types.

Table 1: The demographics of participants.
Participant ID Age Gender Handedness
P1 18 Female Right
P2 18 Female Right
P3 19 Female Right
P4 21 Female Right
P5 21 Male Right
P6 18 Female Right

We designed our experiment in python using the python-
based Simulation and Neuroscience Application Platform
(SNAP) toolbox [20]. In each trial, data were downsam-
pled to 100 Hz and Laplacian filtered [19] to partially
compensate for spatially distributed artifacts by subtract-
ing the mean of the four directly neighboring channels
from each channel. Next, an FIR filter of order 225
was used to calculate the average of the power in 3 sec-
onds of motor imagery in the 8-13 Hz frequency band for
the channels specified over the right and left motor cor-
tices in Fig. 2. The average power in each channel was
then normalized with respect to the sum of power in all
channels specified in Fig. 2. The conventional feedback
was provided as the difference between the power on the
two sides and the proposed feedback protocol showed the
power on both sides. In each trial, the feedback was pro-
vided as a single (static) image after the imagery period
was over. Fig. 3 shows an example of the two types of
feedback. Since motor imagery results in contra-lateral
de-synchronization of power [7, 8] the participants were
instructed to maximize the bar height on the motor im-
agery side.
As the power over motor cortices may be biased towards
one side, we trained a threshold to be the average of the
difference in the normalized power on right and left sides
of the motor cortex across trials of each block. In blocks 2
and 4, the threshold that was trained with trials in blocks
1 and 3 respectively, was used to adjust for the potential

bias. Therefore, the provided feedback to the participant
was based on the adjusted bar heights.

Feedback 
/ or blank 

n-th trial 
n+1-th trial 

Figure 1: An example of a trial in the experiment.

Figure 2: Electrode locations in 10-20 international sys-
tem EEG cap. The selected electrodes were used to cal-
culate power on each side of the motor cortices.

Conventional Elaborated 

Figure 3: Types of feedback.

EEG data were recorded with a 64-channel BrainAmp
system (Brain Products GmbH) located based on the in-
ternational 10-20 system, as Fig. 2 shows. EMG data
were also recorded with the same system through two sets
of bipolar electrodes on each arm and wrist — for more
details on the set-up please refer to [16]. Data were col-
lected with sampling rate of 5000 Hz but were downsam-
pled to 500 Hz for further processing in offline analysis.
We chose 500 Hz instead of 100 Hz — which was the rate
of the downsampled signal in the online experiment — to
keep information in higher frequencies for the purpose of
running independent component analysis (ICA) later.
MATLAB [17] and EEGLAB [18] were used for offline
analysis. Data were processed in two cases: 1) without
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artifact removal to investigate the effect of the feedback
that was provided to the participants during the experi-
ment. 2) with artifact removal to investigate the effect
of training on brain signals and to verify that the partici-
pants are not potentially using facial muscle movements
to control the bar heights.
In the first case, the raw data were filtered from 8 to 13 Hz
with a 500-tap FIR filter. Laplacian filter [19] was ap-
plied to partially compensate for spatially distributed ar-
tifacts by subtracting the mean of directly neighboring
channels from each channel. We looked at the classifier
score of each trial in blocks 2 and 4 where the feedback
was present. This score is estimated as follows: first the
power on each channel over motor cortices is calculated
— as shown in Fig. 2. Then the power on each channel
was normalized to the sum of the powers on the specified
10 channels and the average of the power on each side of
the motor cortex was used as the classifier score.
We also looked at the classification rates in blocks 1, 3
and 5 where no feedback was provided. To do so, we se-
lected three non-overlapping one-second time windows
to cover 3 seconds of imagery period in each trial. Since
there are 20 trials in each block, each block has a total
of 60 one-second windows of imagery. Next we applied
common spatial patterns (CSP) [23] to data from all 64
channels and selected the top 3 filters for each class. Lin-
ear discriminant analysis (LDA) [24] was chosen as the
classifier to classify right/left imagery classes.
For the second case, we first filtered the raw data using
a 500-tap FIR filter in 1 to 200 Hz. Next, we removed
up to 6 noisy channels with large muscle artifacts mostly
from the temporal and one from the occipital sites. Then
the Cleanline EEGLAB plug-in was used to remove the
line noise [21]. We removed parts of the EEG data that
were suffering from large muscle artifacts; however, no
information from the 3 seconds of imagery was removed.
We ran independent component analysis (ICA) using the
AMICA [22] EEGLAB plug-in to isolate eye and mus-
cle artifacts. Eye and muscle artifacts from the top 30 IC
components were removed. Similar analysis to the pre-
vious case were performed and the results are described
next. Significance in what follows is calculated with
a paired-sample two-tailed t-test with 0.05 significance
level.
EMG data (4 channels, two on each hand and arm) were
bandpass filtered in 10 to 200 Hz using a 500 tap FIR
filter, and the line noise was removed with the Clean-
line plug-in [21]. EMG data during the three seconds
time interval of motor imagery were epoched into non-
overlapping one second intervals and used for classifica-
tion. Results are presented in the next section.

RESULTS

To investigate how the right/left classifier score changes
over time, we looked at it as a function of the trial number
in blocks 2 and 4. For each participant in each trial, the
right/left classifier score is calculated as the ratio of the

power on the corresponding side as described in the pre-
vious section. A line was fit and the slope of the line was
estimated. Fig. 4 shows the slopes calculated in case one
(without artifact rejection) as height of the bars in blocks
2 and 4 in separate plots based on whether conventional
feedback was provided in block 2 and elaborated in block
4 or vice versa. Fig. 5 shows the same for data from case
two (with artifact rejection). Note that P1, P2 and P6
show some improved performance when the elaborated
feedback is provided to them — i.e., in block 2. How-
ever, they show decreased performance across the trials
in block 4 — where conventional feedback was provided
subsequently. P3 and P5 who were provided with conven-
tional feedback first in block 2, show decreased perfor-
mance; however, they both show improved performance
during the elaborated feedback in block 4. P4 shows im-
proved performance during both feedback types; how-
ever, the improvement is higher in the elaborated feed-
back block when only brain signals are considered, i.e. in
Fig. 5. This shows that the proposed feedback paradigm
could potentially be more effective than the conventional
feedback.
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Figure 4: Percent change of classification rate per trial in
data during feedback blocks, without artifact rejection.

To verify how the percent change in classification rates
per trial (i.e. the height of the bars in Fig. 4 and Fig. 5) are
different in the two elaborated and conventional feedback
conditions among the 6 participants, we ran a paired-
sample two-tailed t-test between the bar heights across
participants. We found significant difference in both
cases with p-values 0.036 and 0.006 for cases one and
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two respectively — i.e., with and without artifact rejec-
tion.
Classification results in no-feedback blocks — 1, 3, and 5
— are provided in tables 2a, 2b, 3a, and 3b. The training
and testing were performed within each block separately
and we made sure that both train and test sets were bal-
anced and the test set was absolutely separate from the
training. We ran 10-fold cross-validation while making
sure that the three one second time windows from one
trial will appear all in either train or test sets and the re-
sults are presented in Tab. 2a and Tab. 2b. For ease of
comparison, we have included the type of feedback in
blocks 2 and 4 in these tables: EF and CF stand for elab-
orated feedback and conventional feedback respectively.
The first number in each table specifies the mean and the
second number is the standard error.
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Figure 5: Percent change of classification rate per trial in
data during feedback blocks, with artifact rejection .

Table 2a: P1, P2, P6 performances without artifact rejection
ID B1 B2 B3 B4 B5
P1 0.58 / 0.048 EF 0.60 / 0.051 CF 0.37 / 0.074
P2 0.73 / 0.051 EF 0.85 / 0.058 CF 0.80 / 0.065
P6 0.75 / 0.057 EF 0.85 / 0.058 CF 0.78 / 0.043

Table 2b: P3, P4, P5 performances without artifact rejection.
ID B1 B2 B3 B4 B5
P3 0.52 / 0.080 CF 0.57 / 0.037 EF 0.65 / 0.063
P4 0.82 / 0.072 CF 0.87 / 0.048 EF 1.00 / 0.000
P5 0.42 / 0.057 CF 0.57 / 0.057 EF 0.52 / 0.052

P1, P2 and P6 were provided with the elaborated feed-
back in block 2. P2 and P6 show improvement in block

3 compared to block 1 which can be associated with
the training they received in block 2; however, this im-
provement is not significant. These two participants also
show decreased performance in block 5 which is right
after block 4 where they were provided with the conven-
tional feedback but the decreased performance is not sig-
nificant. Performance of P1 in all three blocks is below
chance level which is calculated as described in [26] to
be 62% with significance level of 0.05.

P3, P4 and P5 were provided with conventional feedback
in block 2 and elaborated feedback in block 4. P4 shows
significant improvement after being exposed to the pro-
posed elaborated feedback in block 4; however, P3 and
P5 show chance level performance in all blocks.

To make sure that the classification rates are not affected
by non-brain sources including eye and muscle move-
ments, we performed the same analysis described above
with the ICA-cleaned data. In this case, we filtered each
trial in 8 to 30 Hz frequency band to include both mu
(8-13 Hz) and beta (14-30 Hz) frequency bands. The
reason we did not include the beta band when we were
classifying the non-ICA-cleaned data is that beta band is
usually more contaminated with muscle artifacts. After
filtering the data, non-overlapping one second time win-
dows were selected and 10-fold cross-validation was per-
formed — while making sure that the three one second
time windows from one trial will appear all in either the
train or test set — to classify right/left motor imagery in
blocks 1, 3, and 5 separately. Tab. 3a and Tab. 3b show
the classification results. The first number in each table
specifies the mean and the second number is the standard
error. For ease of comparison, we have included the type
of feedback in blocks 2 and 4 in these tables: EF and CF
stand for elaborated feedback and conventional feedback
respectively. P3 and P4 who were provided with the con-
ventional feedback first and proposed feedback next, both
show significantly improved classification rates in block
5 compared to blocks 1 and 3. Moreover, P3 shows sig-
nificantly disimproved performance after being exposed
to conventional feedback in block 2. On the other hand,
P1 and P5 show chance level performance in all of the
blocks before and after artifact rejection. P2 and P6 do
not show much difference in performance between blocks
3 and 5 after artifact rejection, which was not the case be-
fore artifact rejection. It is possible that these participants
have been controlling the bars with muscle movements
after elaborated feedback not brain signals. Nevertheless,
this shows that the elaborated feedback was more effec-
tive for the participant to somehow (either through brain
signals or muscle) control the bars. Note that since the
number of samples in each class is 30, chance level cal-
culated as described in [26] is 62% with significance level
of 0.05.
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Table 3a: P1, P2, P6 performances with artifact rejection
ID B1 B2 B3 B4 B5
P1 0.55 / 0.043 EF 0.55 / 0.056 CF 0.47 / 0.060
P2 0.82 / 0.084 EF 0.85 / 0.046 CF 0.85 / 0.052
P6 0.77 / 0.079 EF 0.85 / 0.058 CF 0.83 / 0.043

Table 3b: P3, P4, P5 performances with artifact rejection.
ID B1 B2 B3 B4 B5
P3 0.68 / 0.052 CF 0.52 / 0.052 EF 0.78 / 0.071
P4 0.80 / 0.074 CF 0.82 / 0.063 EF 1.00 / 0.000
P5 0.43 / 0.051 CF 0.55 / 0.043 EF 0.55 / 0.086

Aside from EEG data, we looked at classification rate
of a right/left classifier trained on EMG data in each
block. Non-overlapping one second time windows were
selected and 10-fold cross-validation was performed —
while making sure that the three one second time win-
dows from one trial will appear all in either the train
or test set. As Tab. 4 shows, all classification rates are
chance level or very close to chance level which is 62%
with significance level of 0.05 except for participant 4
in block 3. However, this participant shows improved
EEG classification after the elaborated feedback block in
which the classification rate on EMG rate is chance level.

Table 4: EMG classification results per block.
ID B1 B2 B3 B4 B5
P1 0.58 0.57 0.52 0.43 0.68
P2 0.32 0.60 0.57 0.55 0.40
P3 0.55 0.47 0.48 0.47 0.48
P4 0.50 0.43 0.82 0.48 0.48
P5 0.58 0.48 0.53 0.62 0.38
P6 0.52 0.33 0.63 0.68 0.57

DISCUSSION AND CONCLUSION

In this pilot study, we have explored the capability of a
visually richer elaborated feedback in training motor im-
agery BCI and proposed a training protocol that suggests
providing the participant the input to the classifier, i.e.
an interpretable version of the features that are available
to the classification algorithm as opposed to the classi-
fier output. Since any classifier needs data to be trained
on and our participants were all naive to motor imagery
BCI, we chose to use a very simple classifier, i.e. a
threshold, to minimize the effect of instability in a clas-
sifier trained with motor imagery data that is changing as
the user learns how to control his/her event-related de-
synchronization signal. All our participants (6/6) chose
the elaborated feedback in an answer to a question on the
post-study questionnaire: “Which type of feedback did
you like better and found more useful?”. This shows that
the elaborated feedback approach has the potential to re-
place the standard conventional feedback paradigm for
motor imagery training.
Our results from offline analysis show that the elaborated
feedback protocol is potentially more powerful in training
motor imagery which is expected as described in [25]. In
fact, our participants found the proposed feedback more

‘informative’ which again emphasizes this point.
One downside of the conventional feedback strategies
that our proposed protocol could overcome is the need to
have the first block of training with no-feedback or sham
feedback as there is no data yet to train a classifier on
— the conventional feedback is the output of a classi-
fier. The issue occurs if the participant does not provide
proper imagery during this time period, then the classi-
fier is trained on ‘incorrect’ data. Our method provides
the features to the user that later could be used to train a
classifier on. We propose to use the power on the motor
imagery cortices and train a threshold to compensate for
biases towards either side. Even if the bias is not compen-
sated for, the participant could still be provided with the
power on two sides of motor cortices and be instructed to
control the bars towards the ideal bar heights, i.e. sup-
pressed power on left side in right hand motor imagery
and suppressed power on right side in left hand motor
imagery trials. Hence, our proposed elaborated feedback
can function without training data.
To evaluate the elaborated feedback further, we are in-
terested in investigating providing participants with the
power on both sides of motor cortices normalized with
respect to a ‘baseline’ time period where the partici-
pant is relaxed and not performing motor imagery. An-
other aspect worth investigating further is how the two
approaches differ across multiple sessions and to see
whether there is more significant difference between the
two schemes when more time elapses between training
sessions.

ACKNOWLEDGMENTS

This work was supported by the NSF grants IIS 1219200,
SMA 1041755, IIS 1528214, and UCSD FISP G2171.

References
[1] Farwell, Lawrence Ashley, and Emanuel Donchin.

“Talking off the top of your head: toward a men-
tal prosthesis utilizing event-related brain potentials.”
Electroencephalography and clinical Neurophysiol-
ogy 70.6 (1988): 510-523.

[2] Wolpaw, Jonathan R., Dennis J. McFarland, Gregory
W. Neat, and Catherine A. Forneris. “An EEG-based
brain-computer interface for cursor control.” Elec-
troencephalography and clinical neurophysiology 78,
no. 3 (1991): 252-259.

[3] McFarland, Dennis J., Laurie A. Miner, Theresa M.
Vaughan, and Jonathan R. Wolpaw. “Mu and beta
rhythm topographies during motor imagery and ac-
tual movements.” Brain topography 12, no. 3 (2000):
177-186.

[4] Pfurtscheller, Gert, and Christa Neuper. “Motor im-
agery and direct brain-computer communication.”
Proceedings of the IEEE 89.7 (2001): 1123-1134.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-61

CC BY-NC-ND 336 Published by Verlag der TU Graz 
Graz University of Technology



[5] Nicolas-Alonso, Luis Fernando, and Jaime Gomez-
Gil. “Brain computer interfaces, a review.” Sensors
12.2 (2012): 1211-1279.

[6] Jeunet, Camille, Alison Cellard, Sriram Subrama-
nian, Martin Hachet, Bernard N’Kaoua, and Fabien
Lotte. “How Well Can We Learn With Standard BCI
Training Approaches? A Pilot Study.” In 6th Interna-
tional Brain-Computer Interface Conference. 2014.

[7] Pfurtscheller, Gert, C. Brunner, A. Schlögl, and FH
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ABSTRACT:  

 

The aim of the MoreGrasp project is to develop a non-

invasive, multimodal user interface including a brain-

computer interface (BCI) for intuitive control of a grasp 

neuroprosthesis to support individuals with high spinal 

cord injury (SCI) in everyday activities. We describe the 

current state of the project, including the EEG system, 

preliminary results of natural movements decoding in 

people with SCI, the new electrode concept for the 

grasp neuroprosthesis, the shared control architecture 

behind the system and the implementation of a user-

centered design. 

 

INTRODUCTION 

 
In Europe, there are 11,000 new cases of SCIs per year 

with a total population of 330,000 [1]. More than half of 

the individuals with SCI are tetraplegic, meaning that 

they not only suffer from paralysis of the lower but also 

of the upper extremities. The bilateral loss of hand 

function with its associated dependency on caregivers 

result in a tremendous decrease of quality of life and 

represent a major barrier for inclusion in professional 

and social life. Besides the burden for each affected 

individual, the consequences of a high SCI also have a 

substantial impact on the healthcare system. 

Motor neuroprosthesis, systems based on functional 

electrical stimulation (FES), can be used to restore lost 

functions in particular of the grasp function. Basic grasp 

patterns such as the palmar or lateral grasp can be re-

established by positioning FES electrodes on dedicated 

positions on the forearm of an end user [2]. For the 

control of such systems mainly the contralateral 

shoulder can be used, if there are enough residual 

voluntary movements present. This only works if the 

shoulder function is not restricted at all. If the shoulder 

control cannot be used, a BCI offers an alternative to 

implement a simple grasp control by the detection of 

imagination of movements [3, 4, 5, 6]. Most of the 

studies in the field are single case studies that show the 

feasibility of coupling BCI with FES. However, up to 

now no BCI-controlled neuroprosthesis has showed its 

successful use in the everyday life of potential end 

users. To overcome this situation, the European 

collaborative project MoreGrasp aims at the following 

objectives: 

(O1) development of novel multimodal user interfaces 

based on noninvasive BCIs, which detect intentions of 

various hand movements from EEG using gel-less 

electrodes and wireless amplifiers. 

(O2) development of a sophisticated noninvasive 

multichannel motor and sensory grasp neuroprosthesis 

including the integration of orientation, position and 

force sensors and implementation of haptic feedback as 

well as a closed-loop control concept for semi-

autonomous operation. 

(O3) implementation of the concept of personalization 

and user-centered design. 

(O4) setup of a web-based service infrastructure by a 

registration and matchmaking platform for the 

assessment of priorities of individuals with disabilities; 

screening of potential users’ functional, neurological 

and personal status with a specific evaluation toolkit; 

documentation of the BCI and FES performance and 

evaluation of the training of end users with a training 

toolkit. 

(O5) evaluation of the novel technology with a long-

term clinical study with end users in real need of a grasp 

neuroprosthesis to demonstrate its reliability, usefulness 

and impact on the end users’ quality of life. 

 
MATERALS AND METHODS 

 
     EEG Amplifier: From the EEG recording technology 

point of view, the MoreGrasp project final objective is 

to develop easy-to-use, wearable, ergonomic and 

comfortable systems that can be used over an extended 
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period of time in everyday conditions. One of the main 

ways to increase user friendliness is to abandon gel-

based electrodes. To achieve this goal, MoreGrasp is 

developing three EEG systems. The first two systems 

use water–based electrodes and will be integrated in the 

evaluation toolkit (32-channel amplifier) for screening 

and in the mobile toolkit (16-channel one) for training.  

Fig. 1 shows both amplifiers. They record EEG with a 

sampling rate of 256 Hz, 24-bit, RMS noise under 1μV, 

input range ±100 mV and [0,40] Hz bandwidth. The 

dimensions of the 16-channel amplifier are 78x72x32 

mm and weighs 125g. The 32-channel version is a little 

bit larger (107x72x32 mm) with a weight of 164g. They 

are designed to be carried on the cap, or attached to the 

upper arm or the wheelchair. They have Bluetooth 

connectivity and include an inertial measurement unit 

(IMU) to measure motions during operation, one digital 

input, one photodiode input and, in the case of the 32-

channel system, 2 extra ExGs inputs. 

The third system will be used to evaluate the control of 

the final system using dry electrodes. It is still under 

development and will integrate as few sensors as 

possible placed in those locations that optimize the 

control of the MoreGrasp system. This cap will have the 

amplifier integrated within a small and light support 

structure. With the current prototypes, a setup and time-

to-signal well under four minutes for 12 sensors is 

possible. Signal-to noise-ratio is not as good as water-

based systems, but preliminary tests have shown that the 

brain processes required for MoreGrasp can be 

measured (motor-related cortical potentials (MRCPs), 

error potentials and sensorimotor rhythms). Fig. 2 

shows MRCPs and ERD/S measured with the dry 

technology.  

 

 
Figure 1: 32- and 16-channel MoreGrasp amplifiers 

(left). 16-channel system with the sensors and amplifier 

on a commercial cap (right).  

 

Figure 2: MRCPs measurements (top) and ERD/S 

(bottom) during self-paced grasping of able-bodied 

subjects. Results show the average EEG patterns of 10 

subjects (100 trials each), measured in CP1 location. 

The dashed vertical line shows the EMG onset. 

 

     Decoding of natural movements with EEG: 

CLASSIFICATION OF SINGLE JOINT MOVEMENTS: Based 

on EEG signals from 0.3 to 3 Hz, we found 6 different 

upper-limb movements to be discriminable with a 

classification accuracy of 37% in a group of 15 able-

bodied subjects. The classifier sources originated 

mainly from premotor and primary motor areas. 

CLASSIFICATION OF DIFFERENT GRASP TYPES: We 

conducted an EEG study in 15 able-bodied subjects to 

find out whether palmar, pinch and lateral grasps can be 

discriminated from each other and from a no-movement 

condition. Our results show that time-domain features 

located in the low frequency range provide sufficient 

information for classification (binary classification of 

74% grasp vs. grasp).  

CLASSIFICATION RESULTS IN SCI PATIENTS: Based on 

the previous results on able-bodied subjects [7], we 

conducted preliminary studies in a clinical environment 

with individuals with SCI (see Tab. 1). EEG was 

obtained from 61 channels covering frontal, central, 

parietal and temporal areas using active gel-based 

electrodes (g.tec medical engineering GmbH, Austria). 

The reference electrode was placed on the right mastoid, 

ground on AFz. We used an 8th order Chebyshev 

bandpass filter from 0.01 Hz to 200 Hz and sampled 

with 512 Hz. Power line interference was suppressed 

with a notch filter at 50 Hz. We downsampled the data 

to 32 Hz, removed artifacts based on statistical methods, 

and bandpass filtered the data with an 4th order zero-lag 

Butterworth filter from 0.3 to 3 Hz. 

 

Table 1: Neurological and functional characteristics of 

the participants with SCI. EU = end user, NLI = 

neurological level of injury, AIS = American Spinal 

Injury Association (ASIA) impairment scale. 

EU NLI AIS Status of upper extremity 

motor function 

P1 C3 D rudimentary grasps 

P2 C5 B Little finger and hand function 

right hand 

P3 C4 B No finger function in (dominant) 

hand 

P4 C4 C Little index finger and thumb 

movements 

P5 C3 D Right: finger function, but no 

sensory perception 

Left: no motor function 

 
GRASPS VERSUS PRONATION/SUPINATION (PARADIGM 

WITH ICON CUES): In this experiment, data of the 5 

participants (P1-P5) were recorded while they attempted 

to perform two different grasp patterns and a rotation of 

the forearm. Recording was done using a cue-guided 

paradigm. At second 0 a cross appeared on the screen 

together with an auditory beep to get the participants’ 
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attention. At second 2 a cue indicating the type of 

movement was shown. This cue consisted in a hand 

icon in different postures, according to the movement 

type. The cue was on the screen for 4 seconds. As soon 

as the cue appeared, the participant was asked to 

attempt to perform the movement according to these 

instructions: starting from a neutral, slightly opened 

hand position, perform a grasp and return to the starting 

position. For arm rotation, participants were asked to 

perform a pronation followed by wrist supination. 
GRASP PATTERNS VERSUS HAND OPENING (PARADIGM 

WITH OBJECT CUES): In this experiment, instead of the 

hand icons explicitly representing the movement types, 

objects were used as cues. Participants P3 to P5 were 

asked to perform/attempt the appropriate grasping 

action for the designated cue. The objects presented and 

respective instructions were: 

1. Glass - attempt to perform palmar grasp and release 

2. Spoon - attempt to perform lateral grasp and 

release 

3. Glove - attempt to open your hand with spread 

fingers like putting on the glove 

4. Bush - diverse object, just look at it and rest (not 

used for classification) 

The EEG data from both experiments were then 

classified with a shrinkage regularized linear 

discriminant analysis (LDA) classifier using the time-

lags 0, 100 and 200 ms of the EEG as input. As both 

experiments comprised 3 classes, we applied a 1-vs-1 

classification strategy. The results were then validated 

with a 10-fold cross-validation. 

Fig. 3 shows the classification accuracies of the icon 

paradigm. The maximum average classification 

accuracy was 53 % at 2.6 s after trial start. The 

classification accuracies of the object paradigm can be 

seen in Fig. 4. The maximum average classification 

accuracy was 57 % at 2.6 s after trial start. Fig. 5 and 

Fig. 6 show the MRCPs. 

 

 
Figure 3: Classification accuracies of 5 EUs with SCI 

for grasps and pronation/supination (icon paradigm). 

The dashed line is the significance level. 

 

New electrode concept for the grasp neuroprosthesis: 

Apparent disadvantages of todays grasp neuroprostheses 

based on a set of single surface electrodes include 

difficulties with daily reproduction of the desired 

movements and large variations in finger and thumb 

movements during wrist rotations due to electrode-skin 

shifts.  

 

 
Figure 4: Classification accuracies of 3 EUs with SCI 

for grasps and hand open (object paradigm). The dashed 

line represents the significance level. 

 
 

Figure 5: MRCPs evolving in the icon paradigm. 

 

 
 

Figure 6: MRCPs evolving in the object paradigm. 

 

In MoreGrasp, an electrode array has been developed, 

which consists of up to 64 electrodes integrated into a 

forearm sleeve (Fig. 7), which is personalized to the 

anatomy of each individual end user. The first prototype 
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consists of a sleeve made from medical-grade silicon, in 

which an electrode array made from conductive silicon 

material is embedded. In the final version, the silicon 

array electrodes will be integrated into a textile sleeve to 

improve handling and comfort in particular in respect to 

sweating. The electrodes of the array can be 

electronically merged to larger electrode clusters 

according to context-specific demands such as varying 

wrist rotation angles. For measurement of the wrist 

angle a set of position and orientation sensors (IMUs) 

have been integrated in the electrode sleeve to allow for 

automatic adjustment of stimulation schemes (selection 

of electrodes, amplitudes) according to the sensor data.  

With this approach, we have shown in two able-bodied 

subjects that dynamic electrode and skin shifts during 

operation can be compensated and a stable grasp pattern 

can be achieved. 

Another important issue for users is to have feedback 

from the neuroprosthesis to perform fine motor tasks. 

Foil force sensors attached to everyday objects will 

allow for measurement of grip forces. Data of grip 

forces will be transmitted by a Low Energy (LE)-

Bluetooth module to a central control unit, where a 

semi-autonomous grasp control can be implemented. By 

assignment of unique identifiers to different Bluetooth 

modules an automated selection of an object-dependent 

grasp pattern is possible. If the user moves her or his 

hand near the object of interest, the neuroprosthesis will 

automatically switch to the grasp pattern predefined for 

this object. By using additional FES electrodes in parts 

of the body with preserved sensation, e.g., the upper 

arm or the upper torso, electrotactile feedback about the 

applied grip forces will be provided to the end user. 

 

 
Figure 7: First prototype of a multi-electrode forearm 

electrode sleeve. (a) individual gypsum model of the 

forearm with electrode cavities, (b) prototype of 

personalized arm sleeve made from non-conductive 

medical silicon with integrated conductive silicon 

electrodes and cables, and Inertial Measurement Units 

(IMUs) for measurement of the wrist and elbow 

position and calculation of the wrist rotation angle. 

 

      Shared control principles: Successful FES-

supported grasping requires continuous, real-time 

control, but existing neuroprostheses are driven by low-

bandwidth, constrained input channels such as an EEG-

based BCI or a shoulder position sensor. Efficient 

interfaces are required that maximize the control of 

these channels with minimum effort. Environmental 

sensing can be used to gather broader context about 

reaching and grasping tasks, and has the potential to 

empower users to conduct everyday tasks through the 

limited control channels available. Therefore, we 

developed a shared control architecture for the 

MoreGrasp project. The aim is to maximize grasping 

performance with minimum user effort by supporting 

human control processes with environmental sensing. 

The development of our shared control architecture was 

driven by the following principles: the system should be 

able to reason under the uncertainty of noisy and 

ambiguous input; to gracefully handle sensor failure; 

and to respond safely to emergency situations. 

The proposed shared control architecture has a set of 

loosely coupled, configurable elements as illustrated in 

Fig. 8 (top panel). A sensor encoder unit estimates the 

probabilities of binary events such as “is the hand close 

enough to an object to grasp?”, “is the user activating 

the shoulder joystick?”, and “is the BCI indicating an 

intended wrist rotation?” from sensor feature vectors. A 

Bayesian network with binary nodes estimates the 

intention of the user in terms of discrete FES 

stimulation outcomes, and the certainty of that estimate. 

User feedback from this unit indicates prediction of user 

intentions. An action-state-machine monitors the 

probability of actions, and switches between activity 

states (e.g. “begin open grasp fully now”) when 

probability thresholds are crossed. Outputs affecting the 

estimation of intention (e.g. “the user is unlikely to 

release grasp 5 ms after opening it”) are fed back to the 

Bayesian network. User feedback from this unit 

indicates prediction of future actions. A continuous 

dynamics module generates the signals to open/close, 

rotate or reconfigure the hand smoothly when the 

action-state-machine indicates a change of state, 

separating the synthesis of continuous values from 

underlying discrete states. Direct feedback from the 

sleeve inertial sensing will be used for closed-loop 

control in this module. The “emergency stop” estimator 

feeds directly in here to override all pattern generation 

and return safely and quickly to a neutral state. The 

electrode pattern generator generates appropriate FES 

patterns across the electrode array to satisfy the 

continuous dynamics required. 

The system is fully probabilistic between the sensor 

input vectors and the action-state-machine, which 

makes it practical to support sensors with widely-

varying reliability and also to provide meaningful 

feedback about inferred user intentions. It is feasible to 

reason about the intention decoding process because of 

our simplifying assumptions that (i) intention can be 

mapped onto a set of (unknown) latent binary variables, 

(ii) that actions can be seen as transitions in a finite-

state machine (iii) continuous closed-loop physical 

output can be generated from discrete internal 

transitions. The factorization of the decoding/control 

process allows different elements of behavior to be 
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implemented by altering the Bayesian Network, without 

interfering with the optimization of electrode patterns or 

the continuous-time dynamics. Each of the pipeline 

elements can be developed with a significant degree of 

independence; for example, the electrode pattern 

generator can be optimized automatically without 

changing the sensor interpretation model. This 

framework is also flexible enough to support interaction 

spread over time. For example, a grasp may be “cued” 

by the BCI in advance and only executed when the 

probability of being close enough to an object is 

sufficiently high. Alternatively, the BCI could 

immediately issue commands, but be “locked out” by 

holding the shoulder joystick high to suppress control. 

Estimates of both local reliability (per-command) and 

general reliability (e.g. tiredness detection) from the 

BCI can be encoded as rules in the Bayesian network to 

support control across the full spectrum of signal 

quality. User feedback via electrotactile (primary) and 

audio/visual (secondary) channels includes the system’s 

estimate of what the user is trying to do (intention); the 

certainty of that intention (reliability); and the 

prediction of the future action sequence that is going to 

occur imminently (predicted action). Simple feedback, 

like “countdown” style displays on LED strips or via 

electrotactile, can be used alongside display modes that 

show the uncertainty or “tension” within the inference 

engine. 

 

Appraisal, Monitoring and Training Services: As has 

been described already, the MoreGrasp system 

comprises a range of complex devices and subsystems 

that must work in harmony to accomplish the desired 

task: restoring autonomy in grasp function. To benefit 

from it, users need to learn the skills to use it.  

The consortium emphasizes adoption going beyond 

proof of concept, and designing a set of services to walk 

the user from finding out about MoreGrasp, through 

appraisal, training, customization of the 

neuroprosthesis, to a practical use.  

 

 

  
 

 

 
Figure 8: Shared control structure, showing the internal processing pipeline and the user in the loop. A probabilistic 

intention decoder is connected to a deterministic action synthesizer (top panel). MoreGrasp screening and training 

schemes leading to the final MoreGrasp system, including FES and BCI and respective stages of use of MET and MTT 

(middle panel). MET during BCI screening (lower panel, right) and MET during FES screening (lower panel, left). 
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WEB SERVICES FOR DATA COLLECTION AND 

MONITORING: In the MoreGrasp approach, a potential 

user with SCI registers, if necessary with the help of a 

caregiver or relative, on the MoreGrasp registration 

platform (online since 03.2016). A decision maker is 

notified to schedule a screening visit with the potential 

user. He/she uses a matchmaking platform to overview 

the status of all registered users, filtering by medical 

pre-injury conditions to assign new users to a screening.  

To assess if the potential user can benefit from 

MoreGrasp, two different screenings need to be 

performed: a clinical evaluation including a FES 

screening and a BCI screening. In both cases, an expert 

brings the hardware to the potential user and, with the 

aid of a Mobile Evaluation Toolkit, gathers the needed 

data, which are then used for the decision of study 

inclusion. A user passing the screening receives an ID 

and enters a training program. During the months of 

FES and BCI training the personalized MoreGrasp 

system is manufactured and is finally delivered to the 

end user. The systems used during screening and 

training collect data and seamlessly deliver it to a cloud 

service for analysis and personalization. These steps are 

represented in Fig. 8 (middle panel). 

THE MOREGRASP MOBILE TOOLKIT: The MoreGrasp 

system consists of two subsystems: control and 

presentation. The control subsystem is a self-contained 

system with a computational unit connected to the EEG 

and FES systems. It includes algorithms for control, 

feedback, and data collection modes. A presentation 

subsystem was developed with interfaces for experts 

and caregivers to configure the control subsystem for 

data collection during screening and training. Both 

subsystems communicate over a private secure network 

with a proprietary protocol, optimized for streaming. 

There are two versions of the system with two distinct 

functions: evaluation (Fig. 8, lower panel) and training. 

The mobile evaluation toolkit (MET) is used for 

evaluation (screening) mainly by experts, who visit a 

potential end user to acquire data about the user’s 

condition, residual abilities and the possibility for 

inclusion in the MoreGrasp training programme. Two 

separate screening steps are carried out: Clinical/FES 

screening and BCI screening. The clinical screening 

assesses the clinical and neurophysiological condition 

of the potential end user as well as the degree of 

denervated muscles, which cannot be activated by FES. 

BCI screening assesses the ability of the PU to produce 

distinct brain patterns by the imagination of movements 

as a prerequisite for BCI control.  

The mobile training toolkit (MTT) is used to tap the 

residual abilities of the user and turn them into the 

ability to operate a neuroprosthesis. The MTT is mainly 

operated by caregivers and relatives. It includes periodic 

training sessions for FES and BCI. The FES training 

aims to gradually strengthen the muscles of the end user 

for grasping. During the BCI training the user is 

expected to learn how to modulate his/her brain signals 

to operate the BCI. 

 

 

CONCLUSION 

 

In its current state the MoreGrasp project has created 

substantial basic knowledge together with various hard- 

and software components for a noninvasive, intuitive 

BCI-controlled motor and sensory grasp neuroprosthesis 

and the associated services for registration, evaluation 

and training of end users. In the next few months, a 

clinical proof-of-concept study will be conducted to 

obtain information about its impact on everyday life in 

end users with high SCI and to quantify their perceived 

changes in quality of life. 
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ABSTRACT: Arm movements have already been 

decoded non-invasively from electroencephalography 

(EEG) signals. In this study we analyzed whether the 

target or the movement direction of the arm can be 

decoded from the EEG. Ten healthy subjects executed 

right arm movements to one out of two targets and 

simultaneously received feedback on a computer screen. 

We then inverted the feedback movements to analyze if 

the EEG carries information about the target or about 

the movement direction. We found two groups, one 

encoding the target and one encoding first the 

movement direction followed by the target. These 

findings are relevant for the development of future 

motor neuroprostheses and non-invasive robotic arm 

control. 

 

INTRODUCTION 

 
Brain-computer interfaces (BCIs) can be used to control 

neuroprostheses or robotic arms. Together, these 

technologies allow to restore or replace basic movement 

function of spinal cord injured (SCI) persons. For 

example, in [1] a robotic arm was successfully 

controlled using an invasive BCI. Also non-invasive 

BCIs based on electroencephalography (EEG) signals 

can be used to restore movement function in persons 

with SCI. Our group demonstrated the restoration of 

grasp function [3], [4] and elbow function [5], [6] with a 

sensorimotor rhythm (SMR)-based BCI. SMR-based 

BCIs detect movement imagination (MI) and use it as a 

control signal. However, the MI itself is often not 

intuitive (e.g., a foot MI may be used to control the right 

arm). Furthermore, only the process of imagination can 

be detected but not the movement itself. For example, 

imagining squeezing a ball and playing tennis may not 

be distinguishable with a SMR-based BCI. However, to 

control a neuroprosthesis in a more natural way or even 

a robotic arm with its many degrees-of-freedom, more 

information about the movement needs to be extracted 

from the EEG. Interestingly, low-frequency EEG 

signals carry more specific information about the 

movement and can be used to decode even movement 

trajectories [7]–[9] or movement directions/targets [10]–

[13]. However, the accuracy of a non-invasive 

movement trajectory decoder is not yet sufficient for 

real-time control, not to mention the decoding of 

imagined movement trajectories. The decoding of 

movement direction or movement target combined with 

a system which then generates the trajectory may be a 

more promising approach. 

A general issue of studies decoding movement targets is 

that hand or cursor movements towards a certain target 

always requires a certain movement direction, i.e. 

movement targets correspond to movement directions. 

That blurs the results of such studies because it cannot 

be determined whether targets or movement directions 

are being decoded. However, that information is 

important when training a decoder (e.g., if targets 

should be shown in the training paradigm). 

Furthermore, in a real life application there is always a 

variable number of potential targets. A decoder based 

on the imagined or attempted movement direction 

would be independent on the number of targets but not a 

decoder based on movement targets. To investigate 

whether a decoder is based on targets or the movement 

direction, we conducted a study (here with executed 

movements) where subjects moved their arm to one out 

of two targets and received feedback on a computer 

screen. Then, we inverted the feedback and conducted 

the same number of trials to analyse whether our 

decoder is based on the movement direction or the 

movement target. We hypothesize that in case of target 

decoding, the classification accuracies would be above 

chance level. Classification accuracies below chance 

level would indicate the decoding of the movement 

direction. 

 

 
MATERIALS AND METHODS 

 

     Subjects: For the experiment 10 healthy subjects 

(one female), all of them right-handed and with normal 

or corrected-to-normal vision, were recruited. None of 

them had participated in any prior BCI experiments. 

They were aged between 25 and 32 (mean 27.7 and SD 

of 2) years. All of them signed an informed consent. 

 

     EEG Measurement: We used 68 passive electrodes 

covering frontal, central, parietal and temporal areas for 

recording EEG signals from the scalp. An electrode cap 

with equidistant electrode positions was used. Also, 

three electrooculography (EOG) electrodes, positioned 

above the nasion and below the outer canthi of the eyes 

were used. Reference was placed on the left mastoid, 

ground on the right mastoid. All electrode impedances 

were tried to keep below 5kΩ. An 8-th order Chebyshev 

band-pass filter from 0.01Hz to 200Hz and a Notch 

filter at 50Hz was applied. Signals were sampled with 
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512Hz using biosignal amplifiers (g.tec medical 

engineering GmbH, Austria). Moreover, we measured 

electrode positions with ELPOS (Zebris Medical 

GmbH, Germany). EEG, EOG and movement data (3D 

positions and joint angles of the right arm) were 

recorded with a customized TOBI Signal Server [14] 

and Matlab (MathWorks, Massachusetts, USA). For 

recording the movement data a custom made plugin for 

the ARMEO Spring software was used.  

 

     Experimental Paradigm: Subjects were seated in a 

chair and their right arm was fixed in an ARMEO 

Spring rehabilitation device (Hocoma, Switzerland). 

The ARMEO Spring is basically an exoskeleton and 

supports the subjects’ arm from gravity to prevent 

muscle fatigue. With the sensors of the ARMEO Spring 

it is possible to keep track of the hand- and elbow 

position and joint angles.  

For the experiment a self paced center-out reaching task 

was employed. Subjects moved their right arm from a 

starting position (about 150 degrees elbow flexion, 60 

degrees shoulder flexion and 0 degree abduction in the 

shoulder joint (see Figure 1)) to one of two targets (red 

and blue) presented on a computer screen. The red and 

blue target were positioned in the right upper corner and 

in the left lower corner, respectively (see Figure 2). The 

final position for reaching the red target required a 100 

degree flexion and 20 degree abduction in the shoulder 

joint and a 150 degree elbow flexion. For reaching the 

blue target it was a 60 degree flexion, 20 degree 

adduction and 30 degree internal rotation in the 

shoulder joint and a 150 degree elbow flexion. The 

computer screen also showed an arm model as a visual 

feedback (see Figure 2). The arm model was previously 

built with the software MSMS (MDDF, University of 

Southern California, Los Angeles, California). The 

model received its joint angles and coordinates from the 

ARMEO Spring and showed the participants their actual 

hand-/arm position in real time. 

The experiment consisted of two conditions: (i) normal 

condition where the virtual arm on the computer screen 

moved exactly like the subjects’ arm and (ii) inverted 

condition where the virtual arm movements were 

inverted to real arm movements (i.e. subjects had to 

move their arm to the opposite target to reach the actual 

target with the virtual arm).  

 

 
Figure 1: Experimental setup. A subject connected with 

the ARMEO Spring, EEG mounted in the position in 

front of a screen which presents feedback to the subject.   

 

The paradigm is shown in Figure 3. At second 0 an 

audio cue started a trial by either saying „Red“ or 

„Blue“. The subjects got instructed to immediately look 

at the specific target to avoid eye movements during the 

reaching phase which could have affected the 

classification. Three to 5 s after the trial start a beep 

sounded representing the go cue. The participants got 

instructed to start their reaching movements to the 

specific target 1 to 3 s after the go cue. When the virtual 

arm on the computer screen touched the specific target, 

a second beep tone sounded serving as a success cue.  

 

 
Figure 2: Upper: MSMS arm model, for giving real time 

feedback to the subjects. Lower: Arm model in 

experimental setup, i.e. first person view, transparent 

scapula, all joints in starting position and including both 

targets 

 

 

 
Figure 3: Paradigm and timing of a single trial. 

 

 

After successfully touching a target subjects moved 
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their arm back to the starting position. The trial ended 2 

s after the success cue. After a trial, a break between 1 

and 3 s followed. Each run consisted of 30 trials (15 

trials for each target, randomly distributed). 12 runs 

were recorded - 6 for normal condition and 6 for 

inverted condition, always changing the condition after 

2 runs. Thus, in total we recorded 180 trials - 90 trials 

for each condition. Additionally, we recorded 2 resting 

state runs and 2 runs with deliberate eye movements 

(not used in this work). 

 

     Signal Processing: We removed trials which were 

suspected to contain muscle, technical or movement 

artifacts. Therefore the data got filtered from 0.3Hz to 

70Hz (4-th order zero-phase Butterworth filter) and 

trials that exceeded a threshold of 3 times the standard 

deviation of the absolute value, Kurtosis or joint 

probability were excluded from any further processing 

steps. 

For determining the movement onset a principal 

component analysis (PCA) was done on the x/y/z hand 

position data recorded by the ARMEO Spring. We 

differentiated the first principal component and detected 

a movement onset whenever a certain threshold was 

crossed after the go cue. The threshold was found 

empirically. 

For calculating the movement-related cortical potentials 

(MRCPs) a 0.3 Hz - 35 Hz 4-th order zero-phase 

Butterworth band-pass filter was applied and data 

segments averaged. MRCPs were calculated for both 

conditions and electrode positions FCz, C3, Cz and C4. 

In order to discriminate between the two red and blue 

targets, we applied a shrinkage linear discriminant 

analysis (sLDA) [15] to calculate classification 

accuracies. A 0.3Hz - 3Hz 4-th order zero-phase 

Butterworth band-pass filter was applied on the raw 

EEG data to extract low frequency signals. 

Subsequently, we downsampled data to 16Hz for 

computational convenience. We computed the 

classification accuracy within the time window -2s to 2s 

relative to movement onset. In one analysis, we 

classified a moving time window of 750ms using data 

from all band-pass filtered EEG channels, i.e., we used 

all EEG data within a window of the past 750ms (12 

sample points) and then moved the window one sample 

further. Classification accuracies were calculated using 

a 10x10 fold cross-validation. This analysis was 

separately performed for the normal and inverted 

condition. 

In another analysis, we used the data of the normal 

condition as training data and the data of the inverted 

condition for testing in order to find out whether it was 

target or movement direction decoding.  

 

RESULTS 

 

     Classification of directions: Figure 4 and 5 show the 

classification accuracies for the normal condition and 

inverted condition, respectively. Classification 

accuracies are scaled from 0 to 1 and time is relative to 

the movement onset (=0s). The significance level was 

61.35% (⍺ = 0.05, adjusted Wald interval, Bonferroni 

corrected for the number of shown sample points) [16]. 

The maximum average classification accuracies were 

0.78 (normal) and 0.79 (inverted). Table 1 shows the 

average movement times to the targets for each 

condition. 

 

Table 1: average time and standard deviation in seconds 

to reach red and blue target during normal and inverted 

condition 

Target Normal cond. [s] Inverted cond. [s] 

Red 1,20 ± 0,65 1,36 ± 0,76 

Blue 1,41 ± 0,74 1,10 ± 0,65 

 

 

 
Figure 4: Cross-validated classification accuracies in the 

normal condition (all subjects and the grand average). 

 

 

 
Figure 5: Cross-validated classification accuracies in the 

normal condition (all subjects and the grand average). 

 

     Classification (testing with inverted conditions): We 

trained the classifier on the normal condition and tested 

it on the inverted condition. Accuracies below chance 

level indicate movement direction decoding as hand 

movements were executed in the opposite direction to 

the target. Accuracies above chance level indicate target 

decoding. Two groups arose: group I shows an 

increasing classification accuracy after the movement 

onset (Figure 6); group II shows first a decrease of 

classification accuracy followed by an increase (Figure 

7). Time is relative to the movement onset (=0s) and the 

significance level was 61.35%. The maximum average 

classification accuracies were 0.71 (group I) and 0.70 

(group II).  

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-63

CC BY-NC-ND 346 Published by Verlag der TU Graz 
Graz University of Technology

https://paperpile.com/c/EPJPsQ/AvSr
https://paperpile.com/c/EPJPsQ/3bio


 

 
Figure 6: Classification accuracies when training on the 

normal condition and testing on the inverted condition 

(group I). 

 

 

 
Figure 7: Classification accuracies when training on the 

normal condition and testing on the inverted condition 

(group II). 

 

Motor related cortical potentials: Figure 8 and 9 show 

the MRCPs for the normal and inverted condition, 

respectively. The figures show the confidence intervals 

as determined with a bootstrap test (⍺ = 0.05) at the 

electrode positions FCz, C3, Cz and C4. In the normal 

condition, differences between the two targets are 

observable at movement onset and around the approach 

to the target. The inverted condition shows more distinct 

differences between the targets. These amplitude 

differences are from ca. 0.5s before movement onset up 

to 2s after movement onset. 

 

 
Figure 8: MRCPs evolving in the normal condition. 

Shown are the MRCPS for both targets (red, blue) 

 

 

 
Figure 9: MRCPs evolving in the inverted condition. 

 

 

DISCUSSION 

 

We demonstrated the decoding of movements to one out 

of two targets from low-frequency time-domain EEG. 

Movements were decoded with normal and with 

inverted feedback. It was possible to decode the 

movement before movement onset, i.e. in the motor 

planning phase. Keeping in mind the lag introduced due 

to the 750ms classification time window, the 

classification accuracies peaked in the movement 

execution phase before the targets were reached. Our 

results are in line with other EEG studies which 

analyzed time-domain features during movement 

direction/target decoding [10], [12], [17]. However, also 

power modulations mostly in low-frequency bands and 

the high-gamma band have been shown to carry 

movement direction/target related information [12], 

[13], [18]. 

The motivation of our study was to analyze if low-

frequency time-domain EEG signals carry information 

about the movement direction or the target. We did this 

by inverting the feedback when testing the classifier. In 

case of target decoding, the classifier would not be 

affected by the required inversion of movements and 

classification accuracies would still be above chance 

level. In case of movement direction decoding, 

however, the classifier would be affected and 

classification accuracies would be below chance level, 

i.e. mirrored around the chance level. Our results can be 

divided into two groups: in one group the decoder was 

mainly based on the movement targets, in the other 

group the decoder first decoded movement directions 

and then movement targets. This finding has to be 

considered when novel control systems for future 

neuroprostheses or robotic arms are developed. 

Generally, classification accuracies around the time 

when the target was reached have to be interpreted with 

caution. The paradigm was designed to avoid eye 

movements at movement onset, but subjects may not 

have suppressed eye movements when approaching a 

target with the virtual hand as this was a visuomotor 

task requiring hand-eye coordination. Thus, eye 

movements may have happened at the end of the 

reaching movement and the classifier may have picked 

up the change of the electrical field of the eye dipole. 
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Further analysis has to quantify this effect. Furthermore, 

systematic differences between the movement times of 

the two targets may be responsible for the successful 

classification. Different MRCPs may have been evolved 

not because of different targets but because of different 

movement times or movements amplitudes (MRCPs are 

influenced by movement parameters, e.g. movement 

speed [19]). 

The MRCPs show a typical negative peak around 

movement onset [19]. The inverted feedback condition 

was more difficult to the subjects than the normal 

condition and therefore challenged more the motor 

planning and the movement execution. This higher 

difficulty probably enhanced the differences between 

the MRCPs in the inverted condition. The differences 

before movement onset correspond to the motor 

planning and are intrinsic. However, the amplitude 

differences after movement onset are either due to the 

execution of a motor plan which accounts for the 

inverted feedback (intrinsic) or due to different 

movement profiles (extrinsic), e.g. more correction 

movements. If the differences are extrinsic in nature, the 

same differences may evolve in the normal condition 

with the same altered movement profile. 

We report here a study with healthy subjects. Further 

studies have to confirm if the same effects can be found 

in persons with SCI. 

 

CONCLUSION 

 

We show the decoding of movements to one out of two 

targets from low-frequency time-domain EEG. 

Furthermore, we found evidence that the decoding is 

based on movement targets but also on the movement 

direction. 
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ABSTRACT: Brain-Computer Interfaces (BCIs) enable
users to control devices or communicate by using brain ac-
tivity only. While BCIs based on visual evoked potentials
(VEPs) have been shown to achieve high performance, we
present a different paradigm for BCI control: random VEP
(rVEP). We designed a regression model, trained on VEPs
of fully random bit codes. Afterwards, the model is able
to perform a bit-wise prediction of a previously unseen
stimulation sequence, which in turn can be used for BCI
control. In an offline study, the model predicts unknown
stimulation sequences with an average ITR of 94.5 bits
per minute (bpm) and up to 281 bpm on a single-trial level.
In a copy-spelling task, the model achieved an average
ITR of 64.3 bpm and up to 115.5 bpm.

INTRODUCTION

Using a Brain-Computer Interface (BCI), a user is able
to control a computer by brain activity without physical
activity. In general, BCIs are used to restore functionali-
ties of handicapped people, like restoring communication
ability of people who are not able to communicate by
muscle activity. The EEG of the brain’s response to a
visual stimulus, called visual evoked potential (VEP), is
one commonly used method for BCI control.
For rare stimuli (less than 2 Hz) the VEP includes three
major early components: C1 (60-80 ms), P1 (80-120 ms),
and N1 (120–180 ms) [1]. If stimuli become more rapid,
the single VEPs can no longer be determined. How the
brain responds to overlapping stimuli is not entirely clear,
as it could be a simple overlap of the VEPs or the brain is
entrained to the stimulus frequency [2].
One of the earliest papers proposing the use of VEPs
for BCI control was published by Sutter in 1984 [3]. To
date, several types of stimuli were tested for BCI control,
most commonly steady state VEPs (SSVEPs) or code-
modulated VEPs (cVEPs). SSVEP BCIs make use of
frequency modulated stimuli, and the brain’s response can
be interpreted, for example, by using the frequency do-
main. For cVEP BCIs, the stimuli are code modulated, i.e.
a pseudorandom code with a low auto-correlation which
is shifted for the different targets. The fastest SSVEP
BCI has an information transfer rate (ITR) of 319 bits per
minute (bpm) [4], whereas the fastest cVEP BCI achieves
an ITR of 144 bpm [5].
Current BCIs based on VEPs have been shown to achieve

high performance, but all methods are not able to interpret
VEPs of arbitrary stimuli. The only study, known to us,
researching VEPs of arbitrary stimuli is by Thielen et al.
[6]. They developed a convolution model, making the
assumption that the composition of VEPs induced by the
parts of a decomposed modulation sequence should yield
the same result as the VEP pattern induced by the modu-
lated sequence. For this, the model was trained to predict
the ”single” VEPs of a decomposed modulation sequence,
which in turn are composed to the predicted chain of VEPs.
For an unseen modulation sequence the predicted chain
of VEPs is then compared to the real measured brain’s
answer, in order to select one of the 6 ˆ 6 “ 36 targets.
But the modulation sequences are not fully random, as
they are composed of short and long pulses.
In this paper, we present a method to predict the bit-
sequence of a fully randomly modulated stimulus and
demonstrate how this can be used for BCI control based
on random visual evoked potentials (rVEP).

MATERIALS AND METHODS

The rVEP BCI is based on a simple regression model,
which is able to interpret the EEG signal during an arbi-
trary stimulation. The model uses a bit-wise prediction of
the modulation sequence, which in turn can be applied for
BCI control.

Bit-wise prediction: Yet, it is unclear how the VEPs
are generated by the brain if the duration of two successive
stimuli is lower than the duration of a single VEP (approx.
250 ms). We propose a new paradigm where sliding win-
dows of 250 ms of the EEG data are used to predict the
modulation sequence. After training, the regression model
is able to predict an arbitrary and previously unseen mod-
ulation sequence by sliding the window sample-wise. A
schematic representation of the rVEP prediction is illus-
trated in Fig. 1. For each 250 ms window of the EEG
signal, the regression model predicts a real number. In
order to get a bit-sequence, we defined that each predicted
value above 0.5 is a boolean 1, and 0 otherwise. To get
the prediction accuracy, we use the hamming distance be-
tween the predicted bit sequence and the stimulation bit
sequence. Because the distances are 1’s and 0’s, the aver-
aged distance of all samples corresponds to the accuracy
of how much of the stimulation sequence can be predicted
correctly. In short, we do an ongoing prediction of the
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Figure 1: Schematic of the rVEP prediction. A Once the model is trained, an unseen (random) stimulation sequence can be
used for prediction. B A 250ms window (highlighted in green) will be slided sample-wise over the spatially filtered EEG
signal. For simplicity, it is shown bit-wise using 3 exemplary windows. C The trained model predicts a real number for
each 250ms window (again, highlighted in green). The red dashed line indicates a value of 0.5. D Each value above 0.5
is interpreted as boolean 1, and as 0 otherwise. The resulting bit sequence can be compared to the stimulation sequence
(match = green, mismatch = red).

modulation sequence using the following 250 ms of the
EEG data after the stimulus.

BCI control: For BCI control, we need a method to
choose the correct target out of others. For this, we used
two methods: (1) The most obvious method is to compare
the predicted bit sequence to modulation sequences of all
possible targets, the one with the highest accuracy will be
chosen. But the bit-wise prediction does not allow differ-
entiation between how large (or small) the predicted real
number really is, this approach wastes additional informa-
tion. (2) To address this, we used a ”distance” prediction
of each target. We calculated euclidean distances of pre-
dicted real numbers to the corresponding target bits and
the one with the shortest distance will be chosen.

BCI design: The rVEP BCI consists of an EEG am-
plifier, a personal computer (PC) and a CRT Monitor,
because of its near-to-zero reaction time and the resulting
sharp transitions between black and white. The presen-
tation of the stimuli are operated from the PC and syn-
chronized with the EEG amplifier by using the parallel
port. BCI2000 [7] is used as a general framework for
recording the data. The visual stimuli are presented on
a 17 inch CRT Monitor with a 60 Hz refresh rate and a
resolution of 1280ˆ1024 pixel. The subjects are seated
approximately 80 cm in front of the monitor. To ensure
synchronization of the presented stimuli with the refresh
rate of the CRT monitor, DirectX (Microsoft Inc.) is used
for programming the stimulation module.
A stimulus can either be black or white, which can be
represented by 0 or 1 in a binary sequence. Each stimulus
was modulated with a random binary sequence using a
60 Hz refresh rate. The rVEP BCI consists of 32 targets
(i.e. stimuli) which are arranged as a 4ˆ8 matrix and
surrounded by 28 complementary non-target stimuli. The
targets were used to select one of the 26 letters from the
alphabet as well as underscore and numbers 1 to 5. A
screenshot of the layout that was displayed to the subjects
can be seen in Fig. 2.

Figure 2: Screenshot of the rVEP BCI during a trial show-
ing the target layout and non-targets.

EEG data was recorded with a g.tec g.USBamp at a sam-
plingrate of 600 Hz and a Brainproducts Acticap system
with 32 channels. Locations of the 29 EEG electrodes are
depicted in Fig. 3. The ground electrode was positioned at
AFz and the reference electrode at FCz. Three electroocu-
logram (EOG) electrodes were placed beside the left eye,
right eye and at the center above the eyes. The data was
notch-filtered by the amplifier at 50 Hz.

Figure 3: Location of the 29 EEG electrodes. Ground
electrode (GND) was positioned at AFz and reference
electrode (REF) at FCz.
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A spatial filter is applied to the EEG data using the Canon-
ical Correlation Analysis (CCA) as described by Spüler
et al. [8]. First, one needs to find the best EEG channel
where the cVEP is most prominent. The EEG data of this
channel is averaged over all cVEP sequence cycles and
used to calculate the spatial filter. For this, each subject
has to perform some cVEP trials. The spatially filtered
EEG signal is used as input for the regression model.
During the training we use fully random stimulation se-
quences and do a regression on each 250 ms window
(shifted sample-wisely) of the spatially filtered EEG data
to its corresponding bit modulated at the time the win-
dow starts (see Fig. 4). We make the assumption that
a fully random stimulation should be sufficient to cover
most possibilities of different stimulation patterns within
a window of 250 ms, provided that the random sequence
is long enough. Afterwards the coefficients obtained by
the regression model are used for prediction.

0 100 200 300 400 500 600 700 800 900 1000

250ms 250ms 250ms

measured EEG

random stimulation sequence

Figure 4: Training of the rVEP model. Each 250ms win-
dow of the spatially filtered EEG data will be projected to
its correspondig bit (1 or 0, highlighted in green) of the
corresponding random stimulation sequence.

Experiment design: To test the system, 9 healthy sub-
jects, named S1 to S9, were recruited. All subjects had
normal or corrected-to-normal vision. A summary over
age, sex and vision of the subjects can be found in Tab. 1.
Each subject participated in one session and completed the
whole experiment. None of the subjects ever participated
in another VEP EEG study.

Table 1: Subject overview. Sex and age of the subjects
and if they are wearing glasses.

Subject: S1 S2 S3 S4 S5 S6 S7 S8 S9
Sex: w m m w w w w m m
Age: 21 19 17 18 20 19 20 22 19
Glasses:

‘

ˆ ˆ ˆ ˆ
‘ ‘

ˆ ˆ

The experiment was structured in three phases consisting
of 16 runs in total. The first 3 runs were used for the spa-
tial filter, the following 3 runs are the training phase of the
BCI and the remaining 10 runs form the testing phase. At
each run the subjects had to perform a copy-spelling task
where they had to look once at each of the 32 targets in
lexicographic order (A-Z, underscore, 1-5). The duration
of the 32 trials was constant within each run of a phase,

but varies between the three phases. At the end of a trial a
target was selected, meaning that the corresponding box
was highlighted in yellow for 100 ms while the rest of
the matrix was darkened for the same time, to guide the
subject through the experiment. During the time between
the trials, called pause, the flickering continued, but the
recorded EEG data was not used for training or classifica-
tion. The pause between the runs amounted approximately
30 to 60 seconds.

Spatial filter phase: A cVEP modulation was used dur-
ing the spatial filter phase, because random modulation is
unsuitable to train a spatial filter since the EEG data has to
be averaged over a static modulation in order to filter the
noise. The cVEP setup was equal to the system of Spüler
et al. [5]. For modulation of the targets we used a 63-bit
binary m-sequence, because of its low auto-correlation
property [9]. For each target the same m-sequence was
used for modulation, but shifted circularly by 2 bits for
each successive target. During each trial, the stimulation
sequence was repeated 3 times. Because the length of
the stimulation sequence is 63 bit{60 bit{s “ 1.05s, the
duration of a trial is 3 ¨1.05s “ 3.15s. One stimulation se-
quence is presented during the inter-trial-pause, therefore,
the subject had 1.05s to move on an fixate the next target.
In total, the spatial filter phase consists of 3 ¨ 32 ¨ 3 “ 288
presented m-sequences, excluding the pauses.

Training phase: During the 3 runs of the training
phase, each trial had a length of 5 seconds in which 300
random bits were presented. The inter-trial-pause had a
length of 2 seconds during which the subject had to look
at the subsequent target. Since the layout has 32 targets,
the subjects have to pass 96 trials. Each trial was spa-
tially filtered, resulting in vectors of 3000 samples (10
samples per bit). Each vector was split into windows of
150 samples (= 250 ms), shifted by 1 sample. Since the
last 150 windows do not have 150 successive samples,
they are excluded from the data. The resulting matrix
is of size 2850 ˆ 150. The vector of the corresponding
random modulation sequence has also a length of 2850
samples (last 150 samples are excluded, too). The matrix
and the random modulation sequence vector are used as
input (predictors and observed responses, respectively) of
the ridge regression model (see Fig. 4). Since the method
is a proof-of-concept, we did not optimize the regression
parameter λ, but it was set to its default value 1. The
output of the trained model are 151 coefficients, one for
each input sample and a constant term.

Testing phase: The 10 runs of the testing phase are sim-
ilar to the ones of the training phase, except that a trial had
a length of 2 seconds instead of 5 seconds, resulting in 320
trials (32 per run). Each test trial was spatially-filtered and
split into windows of 150 samples, same procedure as for
the training trials, resulting in a matrix of size 1050ˆ 150
(last 150 windows were skipped). Afterwards, the matrix
was applied to the trained regression model (multiplied
with the coefficients), resulting in a vector of 1050 sam-
ples, this is called the model prediction.
In order to use the model prediction p for BCI control,
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we used two different methods: (1) Interpret each model
prediction value above 0.5 as a binary 1 and 0 otherwise.
The result is a predicted binary vector b which can be
compared to the binary modulation sequences si of all tar-
gets i. For this we used the hamming distance hi between
b and each possible si. The target i with the lowest hi
was selected. (2) The second method is to calculate the
euclidean distance ei between p and si for each target i.
The target i with minimum ei is selected.

Random bit generation: During both the training and
testing phase the MT19937 [10] random generator was
used for modulation of the 60 boxes. At each monitor re-
fresh a random integer (0 or 1) is generated for each of the
60 boxes (targets and non-targets), therefore, each box’s
binary sequence is always random without conscious rep-
etitions and generated with a rate of 60 bits per second,
continuously. The ”order” of the generated bits can be
varied by an assignable random seed.

Performance Evaluation: To compare the results for
the different subjects and for the different modulation
types (rVEP and cVEP), the accuracy of both the model
prediction and the target classifier as well as the corre-
sponding information transfer rate (ITR) [11] were used.
The ITR can be computed with the following equation:

ITR “ log2 N ` P log2 P ` p1´ P q log2
1´ P

N ´ 1

with N the number of classes and P the accuracy.

RESULTS

Although a cross-validation could be used, such a sim-
ulated online design takes into account non-stationarity
effects over time that can also occur in online experiments.
As such non-stationary effects don’t play a role in an evalu-
ation using a cross-validation, the evaluation used is closer
to the realistic online BCI.

Bit sequence prediction: To analyze the performance
of the bit sequence prediction, all 320 predicted test se-
quences of each subject were compared to their modulated
random bit sequence. For this, the accuracies of correctly
predicted bits were calculated. The results are shown in
Tab. 2. On average, the regression model achieves a per-
formance of 59.1% over all subjects, meaning that 59.1%
of all 302,400 bits were predicted correctly, which corre-
sponds to an average ITR of 94.5 bits per minute (bpm).
It should be noted that subject S9 achieves an average
performance of 63.7%, which implies an average ITR of
197.2 bpm.

Target prediction using hamming distance: In order to
use the method for an online BCI, it is required to identify
the correct target. For this, we calculated the hamming
distances between all possible target sequences and the
predicted sequence. The one with the minimal hamming
distance was chosen. Averaged over all runs and all sub-
jects, 60.6% of all targets were predicted correctly, this is
an ITR of 44.8 bpm, including the inter-trial time of 1s.
Subjects S8 and S9 achieved an average performance of

ą90% (ITRą83 bpm). A comparison of the target predic-
tion and the bit prediction is shown in Tab. 2. Excluding
the inter-trial time, the ITR of the target prediction is 27.2
bpm lower compared to the bit prediction.

Table 2: Comparison of the bit prediction and target
prediction using the hamming distance. Accuracies (P)
are given in percentages of correctly predicted bits and
percentages of correct classifications of the 32 targets, re-
spectively. 60 bits are presented per second, whereas the
trial duration of the target prediction amounts 2s. The
Information Transfer Rates (ITR) are estimated excluding
the inter-trial time.

target prediction bit prediction
P (%) ITR (bpm) P (%) ITR (bpm)

S1 28.1 17.5 54.8 24.3
S2 78.4 95.4 60.6 116.7
S3 47.8 42.5 57.2 55.3
S4 91.6 124.9 62.9 174.5
S5 53.1 50.4 58.2 70.6
S6 52.2 49.0 58.3 72.5
S7 69.1 77.2 60.0 104.0
S8 33.1 23.1 55.9 35.6
S9 91.9 125.1 63.7 197.2
I 60.6 67.3 59.1 94.5

Target prediction using euclidean distance: The re-
sults of the correctly predicted targets within each run
of all subjects are shown in Tab. 3. Using this method,
on average 66.9% of all targets were predicted correctly.
This implies an average ITR of 52.6 bpm (including the
inter-trial time of 1s). It is worth to note that subject S9
achieves 100% in 4 of the 10 runs with an minimum accu-
racy of 93.8% and an average ITR of 94.8 bpm. Excluding
the inter-trial time, the ITR of the target prediction is 15.6
bpm lower compared to the bit prediction.

Table 3: Performance of each subject using the ”distance”
method for target prediction. Accuracies (P) are given in
percentages of correct classifications of the rVEP test runs
and the cVEP runs, respectively. The trial duration (T)
differs for rVEP and cVEP runs. The Information Transfer
Rates (ITR) are estimated including the inter-trial time of
1s.

rVEP cVEP
P T ITR P T ITR

(%) (sec) (bpm) (%) (sec) (bpm)
S1 31.9 2 14.4 39.2 1.05 30.0
S2 87.8 2 77.2 75.3 1.05 87.0
S3 51.6 2 32.0 53.1 1.05 49.2
S4 93.1 2 86.0 88.9 1.05 115.5
S5 59.7 2 40.6 55.2 1.05 52.4
S6 65.6 2 47.4 63.5 1.05 65.8
S7 76.9 2 61.5 47.6 1.05 41.1
S8 37.8 2 19.2 33.7 1.05 23.2
S9 97.8 2 94.8 88.5 1.05 114.7
I 66.9 2 52.6 60.6 1.05 64.3
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Comparison to cVEP sequence prediction: In order to
compare the rVEP BCI with other VEP BCIs, the cVEP
trials of the first 3 runs were applied to the model and tar-
gets were predicted. Because each trial consists of 3 cVEP
cycles, each cycle is predicted separately, meaning that
each run has 3 ¨ 32 “ 96 trials. Averaged over all subjects,
the accuracy is 60.6%. The results for a bit-wise predic-
tion on the c-VEP dataset are shown in Fig. 5 for each
subject, it is worth noting that subject S4 achieved an aver-
age accuracy of 66.3% of correctly predicted bits, which
implies an average ITR of 281.1 bpm. The prediction
of the cVEP m-sequence, can be predicted significantly
better than the random sequences (pă0.005).
The results of the target prediction using the euclidean
distance are shown in Tab. 3 including a comparison to
the to the rVEP stimulation. On average, 60.6% of all
targets were predicted correctly, resulting in an ITR of
64.3 bpm with an inter-trial time of 1s.
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Figure 5: Prediction of the cVEP targets’ modulated bit
sequences. For each subject S1 to S9, the bit prediction
accuracies of all 288 cVEP trials are plotted.

DISCUSSION

In this work, a novel method to classify VEPs is evaluated.
While previous methods make use of special modulation
codes, i.e. with a low auto-correlation, to achieve the
maximum performance, we pursued a different approach.
We want to address the ”overlapping” VEP behavior from
the ground. Since the assumption of linearity of VEP
generation is investigated by several other studies [12,13],
we proposed a new method based on linear ridge regres-
sion. Using random codes, we assume to cover most of
the possible ”overlapping” VEPs in order to predict arbi-
trary modulation sequences afterwards. Aside from this,
the method has several advantages: trials can have an
arbitrary length, phase-lock is not required (like it is for
m-sequences), and the number of targets can be chosen
arbitrary.
With an average ITR of 86.5 bpm, our model proves that
it is possible to reconstruct arbitrary unseen (random)

modulation sequences with an average accuracy of 59.1%
(without repetition). Surprisingly, the prediction of the
cVEP m-sequence, can be predicted significantly better
with an average accuracy of 60.6% and up to an ITR of
281.1 bpm. This could be due to the low auto-correlation
of the m-sequence and proves clearly that our model is
also able to handle cVEP modulation, although it never
has seen the m-sequence during the training phase.
As mentioned before, we loose information by using a sim-
ple threshold to construct the bit sequence. This effect can
also be seen in the results of the target prediction, where
the ITR is 27.2 bpm lower compared to the bit prediction.
But part of this difference might also be attributed to some
general problems of using ITR. By using the euclidean
distance to target prediction, the ITR drops significantly
less (15.6 bpm), and is therefore recommended for BCI
control.
Interestingly, the variance between the subjects is very
high. While two subjects achieved a poor accuracy during
the whole experiment with ITRs of lower 30 bpm, two
other subjects achieved average ITRs of always above 114
bpm and up to 281.1 bpm. This variance could be caused
by problems during the EEG preparation and/or because
of some subjects wearing glasses.
Using either the rVEP modulation or cVEP modulation,
our method also performed better than the re-convolution
BBVEP of Thielen et al. r10s which achieved an average
ITR of 48.4 bpm using their early-stopping trials.

CONCLUSION

In this paper, we have introduced the rVEP BCI, a new
approach to predict arbitrary VEP modulation sequences
based on random sequence learning. We showed that
our model was able to predict bits of fully random se-
quences as well as m-sequences. The model predicts
random sequences with an average accuracy of 59.1% and
m-sequence with an average accuracy of 60.7%. Surpris-
ingly, the average ITR of the m-sequence prediction of
S4, excluding the inter-trial time, amounts to 281.1 bpm
although the model has never seen the m-sequence before.
This clarifies the capability of our rVEP BCI. Also it is
quite interesting why m-sequences can be predicted signif-
icantly better than random sequences, although the model
was trained on random sequences. This could be due to
the low auto-correlation or the amount of bit changes. We
also showed that our approach can be used for BCI control
with an average ITR of 64.3 bpm and up to 115.5 bpm.
In future work, the rVEP BCI will be tested in an online
study. Due to the sliding window prediction, we also want
to use an early-stopping method, in which a trial ends
when a certain reliability-threshold is reached. Once we
found a threshold the method can be applied to an asyn-
chronous BCI, because targets will only be selected if the
threshold is reached and this should only be the case if
the user fixates a target. Additionally, the use of error-
correcting codes could be used for stimulus modulation in
order to improve the prediction.
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ABSTRACT: Past research into motor-independent 

communication for the severely disabled has mainly 

focused on developing brain-computer interfaces (BCIs) 

implementing neuroelectric signals. More recently, also 

hemodynamic brain signals have been explored for BCI 

purposes. Here, we introduce a novel, straightforward, 

and easy-to-implement yes/no communication paradigm 

relying on mental imagery (mental drawing) and 

portable functional near-infrared spectroscopy. To 

hemodynamically encode answers to binary questions, 

participants either performed mental drawing (for 

encoding “yes”) or did not change their mental state (for 

encoding “no”). Participants’ answers were decoded 

offline using univariate and multivariate statistics. In 

approximately half of the participants, accuracies 

reached 70% or higher, which is considered a sufficient 

performance for binary communication BCIs. As the 

proposed communication technique requires relatively 

little cognitive capabilities, it might not only serve as a 

useful communication means but also as a diagnostic 

tool for detecting preserved conscious awareness in 

non-responsive patients. 
 

INTRODUCTION 
 

Communication is an essential element of human 

interaction. In the so-called ‘locked-in’ syndrome (LIS) 

[1], fully aware and conscious patients have lost the 

ability to naturally communicate due to severe motor 

paralysis. To help affected patients in this fateful 

condition, motor-independent communication through 

brain-computer interfaces (BCIs) has been suggested 

[2]. BCIs rely on brain signals that an individual can 

intentionally generate to encode an intention (e.g., to 

communicate a “yes” or a “no” answer). These brain 

signals are then measured with a functional 

neuroimaging method and finally decoded back into 

their originally intended meaning using signal-

classification methods. In the field of BCI an accuracy 

of at least 70% is considered sufficient for a two-class 

communication BCI [3]. For almost 30 years now, BCI 

research has focused on developing communication 

BCIs using neuroelectric signals mainly based on 

noninvasive electroencephalography (EEG) [e.g., 4-6]. 

Though these ‘classic’ communication BCIs have been 

applied successfully in affected patients [e.g., 7,8], not 

all individuals achieve proficiency in EEG-based BCI 

control (a phenomenon referred to as ‘BCI illiteracy’ 

[9]). Thus, there is an urgent need to explore further 

possibilities for brain-based communication. Recently, 

hemodynamic brain signals as measured with functional 

magnetic resonance imaging (fMRI) [10-13] and 

functional near-infrared spectroscopy (fNIRS) [14-16] 

have been suggested and tested in this context. For 

example, our group has developed a letter speller based 

on differently timed mental-task performance and real-

time fMRI that allows convenient back-and-forth 

communication of any word [17]. The robust letter 

speller requires almost zero pre-training or preparation 

time and can be of great benefit for short-term 

communication. However, the fMRI-based BCI 

approach is costly and tied to clinical or research 

institutions making it unsuitable for everyday-life usage. 

A primary need of LIS patients and their families, 

however, is immediate access to and frequent use of 

BCI communication. FNIRS is a functional 

neuroimaging method that relies on the same 

(hemodynamic, i.e., vascular) brain response as fMRI 

[18]. While being spatially less specific than fMRI, 

fNIRS is relatively easy to apply, inexpensive, safe and, 

most importantly, portable [19]. These factors open the 

possibility to transfer the developed fMRI 

communication paradigms to the more compact and 

portable fNIRS technology, making fNIRS an ideal 

candidate for future daily-life application. Due to its 

straightforward implementation it could be readily 

handled maybe even by the patient’s care givers. 
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Here, we suggest a novel, straightforward yes/no 

communication procedure employing mental imagery 

and fNIRS. In our suggested procedure, participants 

performed two localizer runs, one at the beginning of 

the experiment and one at the end. Each of these runs 

consisted of twenty 10 s periods of mental-task 

performance that alternated with twenty-one 20 s 

baseline blocks, adding up to 10 min 20 s per run. 

Between localizer runs, six answer-encoding runs were 

performed, during which participants were asked to 

answer biographical questions (e.g., “Do you live in 

Maastricht?”) by intentionally modulating their brain 

activation. For encoding “yes”, participants were asked 

to start mental drawing as soon as “yes” was aurally 

presented and to halt mental-task performance as soon 

as “stop” was presented. For encoding “no”, participants 

were asked to stay at rest for the whole length of the 

run. Each answer-encoding run consisted of five 10 s 

answer-encoding trials, alternated with six 20 s baseline 

periods, adding up to 2 min 50 s (Fig. 1). Participants’ 

brain responses were decoded offline. 
 

MATERIALS AND METHODS 
 

     Participants: Twenty healthy subjects (nine female, 

three left-handed, age = 26.0± 8.0 years [mean ± SD], 

all with normal or corrected-to-normal vision and 

reportedly normal hearing) participated in the study. 

Tab. 1 documents individual participants’ 

characteristics. All participants gave written informed 

consent according to procedures approved by the local 

ethics committee and received financial compensation. 

     Mental-drawing paradigm: To intentionally evoke 

fNIRS signals, participants were instructed to: “Imagine 

drawing simple geometric figures (such as circles, 

triangles, cubes, etc.) or small contour drawings (e.g., a 

butterfly, star, car, tree, boat, or house) with the right 

hand at a comfortable but consistent speed. Imagine 

using a pen. This might support your imagination.” 

     Participant preparation: Prior to the experiment, 

participants were familiarized with the general 

procedure of the study. They shortly practiced mental 

drawing and answer encoding until they felt 

comfortable (ca. 15 min). Moreover, a list of 45 binary 

biographical questions, simple yet unobtrusive enquiries 

about their lives, was provided. Six of those questions 

were selected by an independent experimenter: three to 

be answered with “yes” and “no”, to assure equal 

distribution of answer options. After placement of the 

cap with the fNIRS optodes, participants were seated 

comfortably in a noise-dimmed cabin, which was 

equipped with a loudspeaker and microphone to enable 

verbal communication between participant and 

experimenter during the experiment.  

     Data acquisition: Self-induced hemodynamic brain 

signals were obtained using a NIRScout-816 system 

(NIRx Medizintechnik GmbH, Berlin, Germany) 

equipped with six detector and three source optodes 

(LEDs emitting wavelengths of both 760 nm and 

850 nm). Sources were positioned according to the 

international 10-20 EEG system on FC3 (1), C3 (2) and 

CP3 (3) and detectors were positioned on FC5 (1), C5 

(2), CP5 (3), FC1 (4), C1 (5) and CP1 (6) (Fig. 2). 
 

Figure 2: fNIRS optode set-up with the source optodes 

in red (optodes 1, 2 and 3 in the middle horizontal line) 

and detector optodes 1-6 in green. 
 

This limited number of optodes was chosen to ensure 

clinical applicability (i.e., reasonable optode-placement 

time allowing for rapid bedside measurements of 

patients). Recorded optical signals were sampled at a 

rate of 12.5 Hz. Due to the limited number of sources 

and detectors, the optodes’ montage covered a confined 

Figure 1: Encoding scheme for an answer-encoding run including expected oxyhemoglobin changes (white curve/line) 

in motor imagery-related brain regions. When a participant wants to encode “yes”, he/she performs motor imagery 

causing oxygenated hemoglobin to rise. When a participant wants to encode “no”, he/she stays at rest causing no 

relative change in oxygenated hemoglobin. Note that participants encoded the same answer five times in one run. 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-65

CC BY-NC-ND 356 Published by Verlag der TU Graz 
Graz University of Technology



area above the left-hemispheric fronto-parietal 

(sensorimotor) cortex (Fig. 2). Auditory stimuli were 

presented using in-house stimulation software [20]. 

     Subjective ratings: After each run, participants rated 

the experienced fNIRS comfortability according to a 

Likert-scale ranging from 0 (extremely uncomfortable) 

to 10 (extremely comfortable). We predicted that 

comfortability ratings would decrease over time. After 

completion of the experiment, the participants rated the 

general easiness and pleasantness of the employed 

mental-imagery paradigm (mental drawing) again using 

a Likert-scale ranging from 0 (extremely 

difficult/unpleasant) to 10 (extremely easy/pleasant).  

     Data analysis: FNIRS time series were analyzed 

using Satori (v0.92, Brain Innovation B.V., Maastricht, 

The Netherlands). During preprocessing, raw data time 

course values were converted to oxygenated 

hemoglobin (oxy-Hb) and deoxygenated hemoglobin 

(deoxy-Hb) values. Linear trend removal, temporal low-

pass filtering (Gaussian full width at half maximum 

[FWHM]: 40 data points) and high-pass filtering (cut-

off: 10 cycles [localizer runs] or 2 cycles [answer-

encoding runs] per time course) were applied. These 

filtering parameters correspond approximately to a 

band-pass filter of 0.1-0.016 Hz for the localizer runs 

and 0.1-0.012 Hz for the encoding runs. The subsequent 

data analysis was focused on the 14 ‘direct-neighbor’ 

channels (i.e., channels emerging from sources-detector 

combinations of close proximity; see Fig. 3). Two types 

of analyses were conducted: univariate general linear 

model (GLM) analysis and multi-channel pattern 

(MCP) analysis.  

(1) GLM analysis. First, a single channel of interest was 

determined individually for each participant using the 

data of the first localizer run (called ‘best channel’ in 

the following). For this purpose, channel-wise (whole-

run) GLM analysis was performed separately for oxy- 

and deoxy-Hb time series using a predictor 

corresponding to the motor-imagery condition and 

applying the statistical contrast “motor imagery vs. 

resting”. For selecting the best channel we calculated a 

criterion value by averaging the obtained oxy-Hb and 

deoxy-Hb t-values per channel. The channel with the 

highest criterion value was considered the best channel 

and selected for further analysis. As a next step, the data 

of the first “yes” and “no” answer-encoding run per 

participant was analyzed as follows: For each of the ten 

trials (five “yes” and five “no” trials) the individual 

criterion value was calculated. Then, a mean across 

these ten individual criterion values was computed. This 

average value was used as ‘cut-off’ value for decoding 

the answers of the remaining four answer-encoding 

runs. Values above or below the cut-off value resulted 

in decoding the answer-encoding data as “yes” or “no”, 

respectively. Encoded answers were compared post hoc 

to the actually intended answers given by the 

participant. Next to individual and group-mean single-

trial (ST) accuracies, we computed multi-trial (MT) 

accuracies for each individual and for the group. Multi-

trial accuracies were derived by integrating the five 

separate yes/no decisions per run using majority voting 

(e.g., three answers encoded as “yes” and two answers 

encoded as “no” were considered as a “yes” answer). 

Resulting single-trial accuracies were evaluated in a 

confusion matrix per participant using a Chi square test 

to assess if decoding accuracies were significantly 

above chance level (p < 0.05).  

(2) MCP analysis. MCP analysis was conducted using a 

support vector-machine as classifier [21]. For this 

analysis, all channels (n = 14) were used to define the 

spatial features for the MCP analysis. In order to ‘train’ 

(and ‘test’) the classifier, means of raw values for oxy- 

and deoxy-Hb were estimated in a time window from 

6 s to 17 s after trial onset of the mental drawing trials. 

This window was defined for the mental drawing trials 

as it corresponds to the time points where the mean 

hemodynamic response was expected to be the highest. 

For the rest conditions an 11 s time window was chosen 

from 11 s to 22 s after trial onset of the rest conditions, 

during which the mean hemodynamic response is 

expected to be at baseline. The single-trial data of the 

two localizer runs served as training data. Analysis of 

the six answer-decoding runs resulted in five single-trial 

predictions (corresponding to the five separate answer-

encoding trials) per run. As in the GLM approach, each 

prediction was compared to the actual answer given by 

the participant. Again, mean single- and multi-trial 

accuracies were calculated individually and for the 

group as described above for the GLM approach. 

Resulting single-trial accuracies were tested for 

significance (p < 0.05) using permutation tests (10.000 

permutations). For both the GLM and MCP analysis, 

the average sensitivity – P(yes decoded | yes encoded) – 

and specificity – P(no decoded | no encoded) – was 

calculated. Correlations were run between the single-

trial and multi-trial accuracies of both approaches. 

Means and SEs will be calculated with the subjective 

ratings. 
 

RESULTS 
 

     GLM analysis: For each subject, a best channel 

could be selected based on the procedure described 

above (see Tab. 1 for selected channels and individual 

criterion values). Fig. 3 illustrates how often each 

channel was selected across participants. Using the 

GLM approach, participants’ answers could be decoded 

correctly with an average accuracy of 64.25% on a 

single-trial basis (theoretical chance level being 50%). 

Individual single-trial accuracies varied from 35.00-

95.00% (Tab. 1). In eight participants, single-trial 

accuracies were significantly above chance level as 

assessed with a Chi-Square test (Tab. 1). The classifier 

showed no bias, as “yes” and “no” answers were 

decoded respectively on 50.25% and 49.75% of the 400 

trials. The average sensitivity was 65.00% and the 

average specificity was 65.50%. On a group level, the 

multi-trial accuracy was 65.00%. Individual multi-trial 

accuracies varied from 25.00-100.00% (Tab. 1). For the 

group of nine subjects with individual single-trial 

accuracies of 70% or higher, the average single-trial 
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accuracy was 79.44% (SE = 2.82), whereas their 

average multi-trial accuracy was 84.09% (SE = 4.20). 

For the eleven other subjects, the average single-trial 

accuracy was 51.82% (SE = 2.88), whereas their 

average multi-trial accuracy was 47.73% (SE = 5.28). 
 

 
Figure 3: Frequency of best-channel selections within 

the GLM approach. The red and green numbers indicate 

source and detector optodes, respectively. Note that the 

most frequently selected channels correspond to brain 

areas [22] commonly associated with motor imagery. 
 

 

     MCP Analysis: Using the multi-variate approach, 

participants’ answers could be decoded correctly from 

single trials with an average accuracy of 62.33%. 

Individual single-trial accuracies ranged from 33.33-

76.67% (Tab. 1). In eleven subjects, single-trial 

decoding accuracies were significantly above chance 

level as revealed by permutation tests (Tab. 1). “Yes” 

and “no” answers were decoded respectively on 62.00% 

and 38.00% of the 600 trials. The sensitivity was 

75.67% and the specificity was 51.67%. The multi-trial 

accuracy was 63.33% on the group level and individual 

multi-trial accuracies ranged from 33.33-100.00% 

(Tab. 1). When focusing the analysis on the ten subjects 

with single-trial accuracies of 70% or above, the single-

trial accuracy was 72.33% (SE = 0.87), whereas the 

multi-trial accuracy was 85.71% (SE = 2.38). For the 

group of ten subjects with individual single-trial 

accuracies below 70%, the average single-trial accuracy 

was 52.33% (SE = 3.06), whereas their average multi-

trial accuracy was 59.09% (SE = 7.22). 

 

 
Figure 4: FNIRS comfortability ratings (group means 

and SEs) across runs. Values range from 0 (extremely 

uncomfortable) to 10 (extremely comfortable). Note that 

the first and eighth run were localizer runs. 

     Subjective ratings: FNIRS comfortability ratings 

were medium to high (see group means in Fig. 4). 

Comfortability decreased across time and dropped 

considerably for the last run (second localizer). 

Participants generally experienced the mental-drawing 

task as pleasant (M = 7.2, SE = .07) and easy to perform 

(M = 8.0, SE = .07). 

     Accuracy correlations: Correlations between the 

accuracies of the different approaches were all 

insignificant (p > .05): GLM MT and MCP MT 

(r = .21); GLM ST and MCP ST (r = .36). 
 

DISCUSSION 
 

A novel yes/no communication paradigm using mental 

drawing and fNIRS was tested in healthy participants. 

In LIS patients an fNIRS-based binary BCI has been 

tested recently [15,16]. However, in those studies a 

classifier was trained for several sessions over several 

days. The current approach has the potential of enabling 

immediate communication in the order of ca. 30 min 

(±15 min training; ±10 min localizer, ±6 min encoding). 

Of course, this should be tested using real-time 

decoding and in affected patients. We deem this will be 

successful as Naito et al. [14] found an accuracy rate 

above 75% in 23 out of 40 LIS patients with their 

fNIRS-based binary BCI using mental 

calculation/singing. Our results indicate that it is 

possible to obtain sufficiently high (≥ 70%, [3]) and 

reliable answer-decoding accuracies in healthy subjects 

by using the current paradigm and various data-analyses 

methods. On average, multi-trial accuracies were only 

marginally higher than single-trial accuracies. However, 

when focusing on participants reaching an accuracy of 

70% or higher, there is a trend for multi-trial accuracies 

to be higher than single-trial accuracies in both GLM 

and MCP analysis. Closer inspection of these 

participants’ data indicated relatively prominent 

hemodynamic responses, suggesting that the multi-trial 

approach is most advantageous when single-trial 

measurements have a sufficiently high signal-to-noise 

ratio. 

The GLM approach might be particularly suited in the 

context of a communication BCI due to its simplicity. 

We expect that at least some LIS patients are also able 

to use the binary BCI presented here, as accuracies of 

70% or higher were reached by approximately half the 

participants after a mere 15 min of training. Since our 

communication BCI relies on only a single fNIRS 

channel, preparation time can in principle (when having 

determined the best channel in a previous fNIRS 

session) be rather short. The similar sensitivity 

(65.00%) and specificity (65.50%) emphasizes that 

there is no bias to either “yes” or “no”. The MCP 

approach might be especially useful in the context of 

detection of remaining consciousness in non-responsive 

patients because in contrast to the GLM approach, it 

does not require the calculation of a yes/no cut-off 

value. Nevertheless a localizer containing differential 

activity (mental imagery vs. rest) is still required to train 

the classifier, which might not be easily obtained in this 
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patient group. Encouraging is the high specificity 

(75.67%) of this approach. In three of the four cases in 

which participants intentionally changed their brain 

states, this change was detected.  

The two data-analysis approaches differ in the number 

of subjects reaching a level of significance (9 in the 

GLM vs. 11 for the MCP approach; see Tab. 1). In 

addition, GLM analysis accuracies do not correlate 

significantly with any of the MCP analysis accuracies. 

However, comparison of the two methods is hampered 

by several fundamental differences: (1) In the GLM 

analysis, the data from only one channel was 

considered, whereas all channels are considered in the 

MCP analysis. (2) In the MCP analysis, more single-

trials could be considered, resulting in a higher chance 

of getting significant results. (3) Due to the 

fundamentally different nature of both approaches, 

different significance tests were employed (Chi-square 

vs. permutation testing). 

A general shortcoming of our study, affecting both the 

GLM and MCP analysis accuracies, is the absence of 

localizer data for the “no” condition. As there was no 

separate localizer to identify signal characteristics while 

participants do not change their brain state, the training 

data for encoding “no” answers was selected as the time 

window in the end of the resting period after each task 

performance. Obtaining proper localizer data for the 

“no” condition should be done it future experiments, 

albeit this would be at the cost of additional 

measurement time.  

We noted large differences between individual 

participants’ classification accuracies: some participants 

performed exceptionally well whereas for others 

classification accuracy was at chance level. Blood 

pressure, respiration and heart rate are known to 

influence the fNIRS signal [23]. Future studies taking 

into account these physiological measures may filter out 

such influences in order to improve the contrast-to-noise 

ratio of the fNIRS measurements. Moreover, given the 

very short training period, participants with chance-

level performance may be retested after providing them 

with additional training. 

We monitored comfortability over time and measured 

perceived easiness and pleasantness, as it is known that 

subjective motivation can influence BCI performance 

[24, 25]. Comfortability ratings across the experimental 

session decreased slightly with a drop in the last run. 

This could be due to the fact that performing a localizer 

run after the answer-encoding runs was experienced as 

comparatively boring. Overall, application of our BCI in 

affected patients is encouraged by the fact that our 

participants gave overall positive easiness and 

pleasantness ratings.  

 
Table 1: Participant characteristics, subjective rating, channel selection and classification results.  

    MD SR   GLM accuracies MCP analysis 
accuracies 

P H S E P BS  Crit. ST (%) MT (%) ST (%) MT (%) 

1 R M 8 7 2-4 16.69 75.00° 75.00 53.33* 66.67 

2 R F 9 8 2-5 5.28 55.00 50.00 33.33 33.33 

3 R F 10 10 3-3 101.44 70.00 75.00 70.00* 66.67 

4 R M 9 8 2-5 313.42 95.00° 100.00 76.67* 83.33 

5 R F 8 7 1-2 291.52 75.00° 75.00 70.00* 66.67 

6 L M 4 6 2-1 44.25 60.00 75.00 56.67 50.00 

7 R F 9 9 2-2 90.16 60.00 50.00 73.33* 100.00 

8 R M 7 6 3-6 71.26 45.00 50.00 53.33 50.00 

9 R M 7 7 2-1 177.18 70.00 75.00 76.67* 83.33 

10 R F 8 9 2-5 90.60 40.00 25.00 70.00* 66.67 

11 R F 6.5 6 2-3 73.27 60.00 50.00 66.67 66.67 

12 R F 7.5 5 1-2 26.03 45.00 25.00 63.33 83.33 

13 R M 6 4 2-6 2.59 85.00° 100.00 43.33 33.33 

14 R F 9 8 2-5 85.33 55.00°  75.00 70.00* 66.67 

15 R M 10 8 2-2 44.18 75.00° 100.00 73.33* 83.33 

16 R M 8 6 2-2 49.52 85.00° 100.00 73.33* 83.33 

17 R M 9 8 3-6 35.18 65.00 50.00 56.67 83.33 

18 L M 8 8 2-6 24.08 35.00 25.00 46.67 16.67 

19 L M 8 7 2-5 114.92 50.00 50.00 50.00 33.33 

20 R F 8 7 2-1 58.75 85.00° 75.00 70.00* 50.00 

Mean   7.92 7.20     64.25 65.00 62.33 63.33 

SE   .07 .07     3.72 5.56 2.77 4.93 

Notes. P = participant, H = handedness, R = right, L = left, S = sex, M = male, F = female, MD SR = mental 

drawing subjective rating, E = average easiness rating across runs, P = average pleasantness rating across runs, 

BS = best channel, Crit. = Criterion, ST = single trial, MT = multi-trial, ° p < .05 based on Chi-Square, * p < .05 

based on permutation testing. 
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CONCLUSION 
 

The presented yes/no communication procedure using 

fNIRS and mental imagery might constitute a useful 

communication means for LIS patients. Moreover, as 

the suggested encoding paradigm requires relatively 

little effort from individuals, it has potential as a 

diagnostic means to detect preserved conscious 

awareness in non-responsive patients. 
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ABSTRACT: We present a general approach to the 

development of an unobtrusive and fast passive brain-

computer interface that could be deeply integrated with 

gaze based control for fluent translation of intentions 

into actions, as well as the results of a pilot test of its 

online version in 9 healthy participants. The new hybrid 

Eye-Brain-Computer Interface (EBCI) utilizes an 

electroencephalogram component presumably related to 

the expectation of feedback from the gaze controlled 

interface. Online operation of the EBCI was made 

possible using Resonance, a new platform for fast 

prototyping of BCIs, enabling fast synchronized 

processing of multimodal signals from varying 

hardware with scripts written in R. In the online mode, 

EBCI provided the result of 19 channel EEG 

classification almost immediately when gaze dwell on a 

screen object (a colored “ball”) exceeded 500 ms time 

threshold. For the first time, non-random online EBCI 

classifier performance was demonstrated. 

 

INTRODUCTION 

 
     Selection with gaze – Selection of an object among 

several different objects on a screen is one of the most 

fundamental user’s operation in interaction with 

computers. This operation typically involves a gaze 

dwell on the same object, so automatic detection of such 

dwells with the eye tracking technology can be used to 

predict a user’s command. Based on this approach, 

various systems for assisting paralyzed people with 

preserved gaze control and for helping healthy users in 

certain situations have been developed [1]. While these 

systems are serious competitors of the non-invasive 

brain-computer interfaces (BCIs), they all suffer from 

their inherent limitation known as the Midas touch 

problem [2]: a system that respond to a certain 

intentional gaze behavior, such as an intentional gaze 

dwell on a link to a web page, would respond in many 

cases to unintentional gaze behaviors, i.e. spontaneous 

gaze dwells used for vision or related to mind 

wandering. While this problem is not critical in gaze 

typing, it severely hinders the use of gaze based input in 

many other application areas. Approaches developed for 

solving the Midas touch problems (e.g., using long 

dwell time threshold or additional gaze gestures for 

command confirmation) requires additional efforts from 

the user [1, 3].  

     Selection with gaze plus a passive BCI – A radical 

solution to the Midas touch problem could be the use of 

a BCI that would produce “mouse clicks” only when 

they are required by the user: “point with your eye and 

click with your mind!”, proposed as early as in 1996 

[4]. Unfortunately, typical noninvasive BCI 

technologies, such as mental imagery based BCIs, are 

rather slow for such a task (e.g., [5]); moreover, they are 

based on execution of additional mental tasks that 

require attentional resources. A promising alternative is 

the use of passive BCI approach [6], here, the use of a 

BCI that make a click only when the gaze fixation is 

accompanied by an EEG pattern specific to the intention 

to act at the fixated location. Early attempts to 

implement this approach [7, 8] made use of rather long 

fixations (1-2 s; this is still a relatively inconvenient 

duration); more importantly, experimental paradigms in 

these studies involved elements of visual search (see the 

next paragraph), where strong P300 could arise and 

enable good classification, while the approach could fail 

if targets were not assigned in advance. 

     Communicating intention vs. communicating 

relevance – The gaze plus passive BCI combination is 

currently actively explored in the explicit visual search 

paradigm (e.g., [9, 10, 11]) and its applications for 

estimation of the implicit information’s relevance to the 

user are also developed [12, 13]. Similarly to these 

tasks, communicating intention involves informing a 

computer about what is relevant to the user in the 
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context of his or her current task. Both communicating 

intention and visual search tasks may involve single-

trial analysis and immediate triggering of the interface. 

Both communicating intention and communicating 

implicit relevance use primarily individual information. 

Specific to the communicating intention is that the user 

can form his or her intention freely at any time moment, 

and typically can also refrain from forming an intention. 

Communicating intention with a BCI combined with 

gaze fixations can be done only if sufficient accuracy is 

achieved already with single-trial analysis of short EEG 

segments, because immediate response of the interface 

is needed and because group average (which can be 

relevant in the visual search tasks) is typically not 

possible. While communicating a user’s intention is the 

most usual task for human-computer interfaces, 

including BCIs, specific for gaze plus passive BCI 

combination (if it would be successfully applied for this 

task) could be that it would turn intentions into 

computer actions in the most effortless way. 

     An EEG marker for the new hybrid Eye-Brain-

Computer Interface (EBCI) – In our previous study [14] 

we recorded and compared the electroencephalogram 

(EEG) during gaze dwells intentionally used for control 

and during similar spontaneous gaze dwells (all 500 ms 

duration or longer). In the gaze dwells used for control, 

but not in the spontaneous ones, a slowly progressing 

negative wave was found in the occipitotemporal area, 

likely related to the expectation of the interface 

feedback. Feature extraction was oriented on using this 

wave as their main source. It was possible to classify the 

“controlling” vs. spontaneous dwells using features 

from 13 EEG channels and only 300 ms length epochs 

[14]. 

     The problem of fast prototyping of multimodal 

interfaces –  The new interface, the EBCI, should be 

able to classify the EEG synchronized with gaze events 

in online mode and provide a response as soon as 

possible when the dwell time threshold is exceeded. 

Creating such an interface from scratch would require a 

vast amount of programming work, because many 

computational and user interface configurations may 

need to be tested before finding optimal ones, while 

each of these configurations should be adapted for 

sufficiently synchronized operation together with quite 

different sources of data streams, the interface and the 

experiment control tools. A platform specifically 

oriented on developing multimodal interfaces could be a 

solution, especially if it could support high-level 

programming languages for more flexible, fast and 

inexpensive designing of highly varying configurations 

needed at the early stage of the development of the new 

types of human-machine interfaces. A number of open 

source software platforms for BCI prototyping have 

been developed ([15, 16, 17, 18, 19]; see also [20, 21] 

for reviews); however, as follows from the publications, 

online fusion of signals from different sources was 

either not planned by their developers or was not their 

primary concern. 

     The Resonance platform – The Resonance platform 

is developed (by Y.O.N.) specifically for supporting the 

development of the interfaces that need to process 

online data streams from different sources. The platform 

takes care of data and event transmissions, 

synchronization and recording, and running 

classification algorithms. An R package (also named 

Resonance; freely available at https://github.com/tz-

lom/Resonance-Rproj ; [22]) allows not only to process 

data in online mode but also to apply efficiently the 

same R code offline to the recorded data for a precise 

reconstruction of the online processing to debug and 

verify the algorithms. For programming the visual part 

of the interface, its “behavior” in response to detected 

user’s intentions and organization of an experiment, 

integration with QML is provided. This platform (in its 

earlier version) was used to create a gaze controlled 

game EyeLines for capturing EEG synchronized with 

gaze interaction events in [14]. Recently, it was used for 

the online EBCI tests using the same game [23].  

     The problem of the access to a ground truth in 

relation to EBCIs – In our first attempt to test the EBCI 

online [23] we found it especially difficult to obtain the 

ground truth when the user is given freedom in defining 

the ways to solve a task. Similar problems may appear 

in free operation using any kind of interface, yet their 

severity can be specific to EBCIs because both the gaze 

and brain components may contribute to it: gaze dwell 

may occur out of conscious control at a location that is 

already studied unconsciously as a candidate for making 

a click on it, and similar patterns can be expected from 

brain’s activity that accompany preparation to the 

action. Indeed, our participants told us that EBCI false 

alarms (the events they were not going to elicit) often 

looked as meaningful “hints”, and that in such cases it 

was tempting to them not to report these events as false 

alarms. In addition, in this preliminary study we asked 

to press a key for reporting a false alarm, and this 

instruction also could lead to the refrain from reporting 

because of the need to switch to a manual task from a 

fully non-manual one (this problem can be also 

observed in pure BCI and gaze control studies). 

Therefore, we could not evaluate the online 

performance of the EBCI reliably. 

     The aim of the current study was to test several 

changes in our previously developed protocol for EBCI 

performance evaluation: modified instruction (focus on 

the identity of the interface response with intention 

instead of its “correctness”) and reporting tool (use of 

the EBCI instead of the keyboard for reporting 

deviations from intentions) in the free operation test; 

two new tests with fixed tasks for separate estimation of 

sensitivity and specificity (see details below). We also 

planned to get the preliminary EBCI performance 

estimations if the changes would turn to be successful. 

 
METHODS 

 
     Participants – Nine healthy volunteers (four female; 

age 18 to 50, median 24) took part in the study after 

signing an informed consent.  
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     Apparatus and software were generally the same as 

in our previous work [23]. Resonance platform (see 

above) and specific modules controlled all aspects of 

the experiment. The game module (written in QML) 

implemented game logic and presented the game visual 

interface on a computer screen. It communicated with 

EyeLink 1000 eye tracker (SR Research, Canada) to 

control its settings and acquire gaze data. Eye tracking 

data (at 500 Hz rate) were converted to dwell events 

with a spatial (dispersion-based) criterion: the events 

were generated when gaze stayed in a 2° × 2° square 

region for 500 ms (the dwell time threshold), and 

medians of X and Y coordinates during the dwell were 

taken as its position. When the game module received 

such event, it sent a message to the Resonance data 

processing module which ran an R script that performed 

synchronization of the EEG and gaze dwell events, 

feature extraction and classification. If classification 

result was positive, a “click” event was sent back to the 

game, typically in tens of milliseconds after exceeding 

the dwell time threshold. The EEG data (also at 500 Hz 

sampling rate) were captured by actiCHamp EEG 

amplifier with actiCAP active electrodes (Brain 

Products, Germany). Its synchronization with the eye 

tracking data was based on synchronization pulses sent 

from the eye tracker to the EEG amplifier trigger port at 

the beginning of each trial.  

     The gaze controlled game – As in our previous work 

[23] EyeLines, the gaze controlled version of the 

computer game Lines (also known as Color Lines), was 

used both for the EBCI classifier training and its online 

testing. In EyeLines, each move consists of at least two 

gaze “clicks”: the participant had to select one of the 

colored balls presented in the game board with a gaze 

dwell on it (the selected ball was indicated by a frame 

around it), and then make another dwell to indicate the 

location where it should be moved. The game board 

subtended 18 × 18° on the monitor screen (Fig. 1). 

When 4 balls of the same color formed a line, it 

disappeared, and the player get a score. After each 

move, three new balls of randomly selected colors 

appeared on the board at random positions (see [14] for 

details).  

 

 
 

Figure 1. EyeLines game board.  

 

     Classifier training – EEG data for classifier training 

were collected, for each participant, in four games that 

were played with 500 ms (or longer) gaze dwells (each 

game lasted 5 min). An additional element (shown left 

to the 7 × 7 square board in Fig. 1) was used in the 

game interface at this stage of experiment, as in [14, 

23]: participants had to switch on the gaze based control 

prior to each move by fixating a special “switch-on 

button” (a location outside the game board). Dwells not 

preceded by switching control on made no effect in the 

game and were considered as spontaneous. 271 to 369 

EEG epochs related to controlling gaze fixations (on 

balls and on new locations for them) were collected. In 

[14, 23], the “switch-on button” disappeared from time 

to time, to provoke more spontaneous gaze dwells. In 

the current study, we used EEG related to spontaneous 

dwells only to adjust the classifier threshold and to test 

the classifier. Thus, less such data were needed, and the 

“switch-on button” was made available to a participant 

during all the game. It was found in our previous study 

[14] that averaged EEG related to spontaneous fixations 

has very low amplitude. Therefore, we now decided to 

use EEG epochs sampled from random time instances to 

imitate “spontaneous” data for classifier training. The 

number of such epochs was equal to the number of 

control-related epochs for each participant. 

     To obtain 152 features, EEG amplitudes from 19 

channels (Fz, F3, F4, Cz, C3, C4, Pz, P1, P2, P3, P4, 

POz, PO3, PO4, PO7, PO8, Oz, O1, O2) were averaged 

in 50 ms windows started at 8 time instances (+300, 

+320, ... +440 ms relative to dwell start), separately per 

channel and window. +200..+300 ms interval was used 

for baseline correction. No high-pass filter was used. It 

was shown earlier that such a procedure ensures that the 

features are not affected by EOG contamination [14]. 

Shrinkage LDA from Fieldtrip toolbox [24] 

(http://www.ru.nl/neuroimaging/fieldtrip) was used to 

train the classifier. Threshold was adjusted to obtain 

specificity of about 0.90 on a validation subset.  

     Game playing with online EBCI – After classifier 

training, participants played another four EyeLines 

games, now with a hybrid EBCI. Now, control was 

always switched on, and 500 ms gaze dwells made 

effects if confirmed by the EEG classifier. To 

compensate for the EEG classifier’s misses, additional 

threshold was used (following a suggestion from [8]): if 

gaze dwell time exceeded this threshold (1000 ms), 

“click” was made in any case, without applying the 

classifier to the EEG. In the first game using the online 

EBCI, the rate of its positive responses was computed 

and used in two of the remaining three games for a 

“random classifier” that provided responses with this 

rate irrespective the current EEG data.  

     The participants’ task in the games was almost the 

same in the classifier training stage and in the online 

EBCI stage of the experiment: they were asked just to 

play the game with gaze dwells only. They were told 

that their EEG will help to recognize their intention to 

click in the online EBCI stage, so there will be no 

“switch-on button”, but sometimes their intentions will 
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be not recognized correctly. They were also told that it 

is important to report each case when they notice that 

the selected ball is not exactly that one that they decided 

to select, and even cases when a “good” ball was 

selected when they were about to make a decision to 

“click” on it, but before they actually made a clear 

decision. Unlike in our previous study [23], the 

participants did not need to switch to manual tools for 

reporting such cases: instead, they had to deselect the 

ball by continuing looking on it. However, they were 

not aware of the difference between the real and random 

classifier conditions. 

     Online tests for sensitivity and specificity were run in 

the end of the experiment to obtain online classification 

data with well known ground truth. For these tests, a 5 × 

5 board was used instead of the 7 × 7 used in the games. 

First, balls with random colors appeared one by one at 

random locations, and the participants had to set them 

into four lines from left to right, top to bottom (Fig. 2). 

This test was used to estimate online EBCI sensitivity. 

Then, the participant was asked to remember the 

locations of the balls with three colors most frequently 

presented at the moment. The remembering task lasted 

for two minutes, and then the participant had to indicate 

the ball locations on a paper sheet. The EBCI was on 

but not used intentionally, and participants were told to 

ignore ball selections that sometimes happened. This 

test was used to estimate online EBCI specificity. Two 

pairs of the tests, one with real and one for random 

classifier (in random order), were used for four 

participants, and a double number of them was used for 

another five. 

 
 

Figure 2. The board being filled with balls during a test 

for estimating online EBCI sensitivity. 

 

     EBCI classifier performance was estimated for ball 

selection in the first four games where no online EEG 

classification was used (Offline Performance in Games), 

for next four games played with online EBCI 

(separately for real and random classifiers, Online 

Performance in Games), and for the final tests (also 

separately for real and random classifiers, Online 

Performance in Tests).  

     Offline Performance in Games was estimated using 

five-fold cross-validation (the test subset did not overlap 

with the validation subset for threshold estimation). We 

computed ROC AUC, sensitivity, specificity and 

Youden's J index (J = sensitivity + specificity – 1; 

similarly to ROC AUC, it can be helpful when 

specificity gets higher on expense of sensitivity, and 

vice versa. While it is less reliable estimate than ROC 

AUC, its advantage is that it could be computed both for 

offline and online classifier performance.) 

     Online Performance in Games was quantified as 

sensitivity, specificity and J values, assuming the 

following meanings of the observed events: true 

positives for the gaze “clicks” with the short (500 ms) 

dwell time threshold (i.e., confirmed by the EEG 

classifier) not followed by de-selection; true negatives 

for dwells with duration between 500 ms and 1000 ms 

not confirmed by the EEG classifier; false positives for 

gaze “clicks” with the short (500 ms) dwell time 

threshold (i.e., confirmed by the EEG classifier) 

followed by de-selection; false negatives for gaze 

“clicks” with the long (1000 ms) dwell time threshold 

(spontaneous dwells of this duration are rare in playing 

EyeLines [14]).  

     Online Performance in Tests was also quantified as 

sensitivity, specificity and J values, but sensitivity and 

specificity were computed separately for the two tests 

(see above their description). 

 

RESULTS 

 

     EBCI offline performance appeared to improve 

compared to our previous results: ROC AUC was 

0.74 ± 0.04 (M ± SD) for classification of dwells on 

balls (Tab. 1, second column), while, for example, in 

[14] it was 0.69 ± 0.09 for dwells on “switch-on 

button”, where more prominent EEG potentials were 

observed comparing to dwells on balls. Among the 

changes in methodology that account for this 

improvement could be, as our additional pilot analysis 

suggested, the use of randomly sampled EEG epochs 

instead of spontaneous fixation-related data as the non-

target class in classifier training.  

     Estimation of the EBCI online performance in games 

yielded, unfortunately, inconsistent results (not 

presented in Tab. 1): the random classifier demonstrated 

apparently non-random behavior. It seemed that the 

participants often did not reported the false positives for 

at least two reasons: because of not noticing the 

selection (especially if it appeared just before a saccade 

to a different location) or because of difficulty to 

differentiate a clearly formed decision from a decision 

that was yet being prepared during the dwell.  

     EBCI online performance in tests appeared more 

sensible (see Real and Rand columns in Tab. 1). 

Youden's J index for the random classifier did not differ 

from zero significantly (p = 0.15, according to 

Wilcoxon signed rank test), while for the real classifier 

it differed from zero (p = 0.016) and from random 

classifier J values (Z = 2.52, p = 0.012). Specificity was 

also significantly higher for the real classifier 

comparing to the random one (Z = 2.10, p = 0.036). 

Difference between real and random classifier for 

sensitivity was not significant (Z = 1.52, p = 0.13), but it 

was also in favor for the real classifier. Thus, although 

tests used to measure sensitivity and specificity were 

performed under different conditions, it appeared to be 
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very likely that the significant difference in Youden's J 

represented non-random online performance of the 

EBCI. Nevertheless, online performance in tests was 

lower than offline performance (compare Offline and 

Real columns in Tab. 1). Significant decrease in online 

mode was observed, comparing to offline results, for 

Youden's J (Z = 2.55, p = 0.01) and for sensitivity (Z = 

2.55, p = 0.01), while for specificity it decreased 

nonsignificantly (Z = 0.18, p = 0.86).  

 
Table 1: Performance of the classifier: offline results for games and online results for tests 

 AUC Sensitivity Specificity Youden’s J 

Sbj Offline Offline Real Rand Offline Real Rand Offline Real Rand 

29 0.80 0.50 0.10 0.10 0.86 1.00 0.90 0.36 0.10 0.00 

30 0.74 0.39 0.25 0.09 0.88 0.87 0.90 0.27 0.12 -0.01 

32 0.74 0.42 0.15 0.08 0.88 0.85 0.86 0.30 0.00 -0.06 

33 0.67 0.22 0.11 0.00 0.90 0.94 0.84 0.12 0.05 -0.16 

34 0.79 0.37 0.05 0.05 0.91 0.92 0.92 0.28 -0.03 -0.03 

35 0.74 0.29 0.21 0.25 0.89 1.00 0.78 0.18 0.21 0.03 

36 0.75 0.36 0.30 0.23 0.87 0.80 0.73 0.23 0.10 -0.04 

37 0.69 0.29 0.17 0.14 0.89 0.88 0.84 0.18 0.06 -0.02 

38 0.70 0.22 0.24 0.29 0.96 0.87 0.74 0.18 0.11 0.02 

M 0.74 0.34 0.18 0.14 0.89 0.90 0.83 0.23 0.08 -0.03 

SD 0.04 0.09 0.08 0.10 0.03 0.07 0.07 0.08 0.07 0.06 

 

DISCUSSION 

 

This pilot study, for the first time, provided substantial 

evidence indicating that the Eye-Brain-Computer 

Interface based on the user’s expectation of gaze 

controlled interface feedback may function in online 

mode. However, there were several issues in this study 

that should be resolved in future work: 

      (1) Online performance in this study was lower than 

in offline modeling. This could be related to unfavorable 

testing conditions. In the previous study [14] we found 

that the EEG marker for the gaze dwell used to send a 

command degrades along controlling gaze dwells that 

closely followed each other. Although it was not fully 

clear whether this was indeed a result of close 

positioning of the controlling dwells in time, the same 

effect, if it exists, could affect the marker in many gaze 

dwells intentionally used for control in the EyeLines 

game, because moves are often made rather 

automatically, without much thinking. In the sensitivity 

test, the required actions could be also too automatic for 

developing a strong expectation-related activity in the 

EEG. 

     (2) Sensitivity and specificity were calculated from 

data obtained under different conditions. This could bias 

Youden’s J metric if these conditions affected classifier 

sensitivity and specificity differently. 

     (3) The EEG components that are related to the 

completion of a visual search task rather than to freely 

formed intention/expectation could contaminate the 

online test results. The participants had to locate each 

new ball in the test for sensitivity and to locate the balls 

related to the same color in the task of specificity, so the 

components related to finding a target, such as the P300 

wave, could arise each time the fixation on these balls 

started. If the classifier was sensitive to these 

components, the results of these tests would be biased 

toward higher sensitivity and lower specificity 

compared to what should be observed under the use of 

intention-related components only; if the effect on 

sensitivity prevailed, Youden’s J would be inflated. The 

time courses for the intentional dwells in EyeLines on 

which the classifier was trained (both them and 

topographies were similar to what was observed with 

our earlier studies with EyeLines, see Fig. 4 and Fig. 7 

in [14]) were different from what is specific to the P300, 

however, this could not guarantee that classifier was 

completely insensitive to the P300 in tests.  

      All these issues imply that better methodology must 

be designed for EBCI testing. Issue (3) is especially 

important to resolve to finally prove if the expectation 

based EBCI is selectively sensitive to the user’s 

intention. For assessing prospects for practical 

application, other challenging factors should be 

included into tests, such as saliency of relevant and 

irrelevant objects [25]. It is also evident that EBCI 

performance improvement is strongly needed. As 

suggested by our preliminary results, this may become 

possible with finding more adequate feature sets [26] 

and classifiers [14] for the EBCI. 

 

If its further development will be successful, the 

expectation based EBCI could practically implement the 

idea of Grey Walter who proposed, as early as in 1960s, 

to use the expectation-related activity in the EEG for 

“the direct cerebral control of machines”, “by-passing 

the operant effector system” [27]. 

 

ACKNOWLEDGEMENTS 

 

This work was supported by the Russian Science 

Foundation, grant 14-28-00234. 
 

REFERENCES 

 

[1] Majaranta P, Bulling A. Eye tracking and eye-based 

human–computer interaction. In: Fairclough SH, 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-66

CC BY-NC-ND 365 Published by Verlag der TU Graz 
Graz University of Technology



Gilleade K (Ed.). Advances in Physiological 

Computing: Human–Computer Interaction Series. 

Springer, London 2014, pp. 39–65 

[2] Jacob RJ. The use of eye movements in human-

computer interaction techniques: what you look at is 

what you get. ACM Trans. Inf. Syst. 1991;9: 152-

169 

[3] Velichkovsky B, Sprenger A, Unema P. Towards 

gaze-mediated interaction: collecting solutions of 

the “Midas touch problem,” in Proc. INTERACT'97, 

Chapman and Hall, London, UK, 1997, 509-516 

[4] Velichkovsky BM, Hanse JP. New technological 

windows into mind: there is more in eyes and brains 

for human-computer interaction, in Proc. CHI '96, 

1996, 496-503 

[5] Zander TO, Gaertner M, Kothe C, Vilimek R. 

Combining eye gaze input with a brain–computer 

interface for touchless human–computer interaction. 

Int. J. Hum. Comput. Interact. 2010;27: 38-51 

[6] Zander TO, Kothe C. Towards passive brain–

computer interfaces: applying brain–computer 

interface technology to human–machine systems in 

general. J. Neural Eng. 2011:8:025005  

[7] Ihme K, Zander TO. What you expect is what you 

get? Potential use of contingent negative variation 

for passive BCI systems in gaze-based HCI, in Proc. 

ACII’11, 2011, 447-456 

[8] Protzak J, Ihme K, Zander TO. A passive brain-

computer interface for supporting gaze-based 

human-machine interaction, in Proc. UAHCI’13, 

2013, 662-671. 

[9] Brouwer AM, Reuderink B, Vincent J, van Gerven 

MA, van Erp JB. Distinguishing between target and 

nontarget fixations in a visual search task using 

fixation-related potentials. J. Vis. 2013;13:17.  

[10] Finke A, Essig K, Marchioro G, Ritter H. Toward 

FRP-based brain-machine interfaces–single-trial 

classification of fixation-related potentials. PLoS 

ONE. 2016;11:e0146848.  

[11] Ušćumlić M, Blankertz B. Active visual search in 

non-stationary scenes: coping with temporal 

variability and uncertainty. J. Neural Eng. 

2016;13:016015 

[12] Jangraw DC, Wang J, Lance BJ, Chang SF, Sajda P. 

Neurally and ocularly informed graph-based models 

for searching 3D environments. J. Neural Eng. 

2014;11(4):046003 

[13] Golenia J, Wenzel M, Blankertz B. Live 

demonstrator of EEG and eye-tracking input for 

disambiguation of image search results. In: 

Blankertz B, Jacucci G, Gamberini L, Spagnolli A, 

Freeman J (Ed.). Symbiotic Interaction. LNCS, vol 

9359. Springer, Cham, 2015, pp. 81-86 

[14] Shishkin SL, Nuzhdin YO, Svirin EP, Trofimov 

AG, Fedorova AA, Kozyrskiy BL and Velichkovsky 

BM. EEG negativity in fixations used for gaze-based 

control: Toward converting intentions into actions 

with an Eye-Brain-Computer Interface. Front. 

Neurosci. 2016;10:528 

[15] Schalk G, McFarland DJ, Hinterberger T, 

Birbaumer N, Wolpaw JR. BCI2000: a general-

purpose brain-computer interface (BCI) system. 

IEEE Trans. BME. 2004;51(6):1034-1043 

[16] Renard Y, Lotte F, Gibert G, Congedo M, Maby E, 

Delannoy V, ... Lécuyer A. OpenViBE: An open-

source software platform to design, test, and use 

brain–computer interfaces in real and virtual 

environments. Presence: teleoperators and virtual 

environments. 2010;19(1):35-53 

[17] Venthur B, Dähne S, Höhne J, Heller H, Blankertz, 

B Wyrm: A brain-computer interface toolbox in 

python. Neuroinformatics. 2015;13(4):471-486 

[18] Breitwieser C. TiD--Documentation of TOBI 

Interface D. arXiv:1507.01313. 2015 July 6  

[19] Lee MH, Fazli S, Kim KT, Lee SW. Development 

of an open source platform for brain-machine 

interface: openBMI. In Proc. 4th Int. Winter Conf. 

on BCI, 2016 

[20] Brunner C, Andreoni G, Bianchi L, Blankertz B, 

Breitwieser C, Kanoh SI, Kothe CA, Lécuyer A, 

Makeig S, Mellinger J, Perego P. BCI software 

platforms. In Towards Practical Brain-Computer 

Interfaces. Springer, Berlin 2012, pp. 303-331 

[21] Torniainen J, Henelius A. A short review and 

primer on online processing of multiple signal 

sources in human computer interaction applications. 

arXiv:1609.02339. 2016 Sep 8 

[22] Nuzhdin YO. 2016. [A library for data processing 

in a brain-computer interface.] Lomonosov-2016. 

Moscow, Russia, pp. 78-80 (in Russian) 

https://lomonosov-

msu.ru/archive/Lomonosov_2016/data/8342/uid739

90_be24b87706be48e2ea8263b7d53dd62a7822e46b

.pdf 

[23] Nuzhdin YO, Shishkin SL, Fedorova AA, Trofimov 

AG, Svirin EP, Kozyrskiy BL, Medyntsev AA, 

Dubynin IA, Velichkovsky BM. The expectation 

based Eye-Brain-Computer Interface: An attempt of 

online test. Proc. BCIforReal'17, Limassol, Cyprus, 

2017, pp. 39-42 

[24] Oostenveld R, Fries P, Maris E, Schoffelen JM. 

(2011). FieldTrip: open source software for 

advanced analysis of MEG, EEG, and invasive 

electrophysiological data. Comput. Intell. Neurosci. 

2011:156869 

[25] Wenzel MA, Golenia J-E and Blankertz B. 

Classification of eye fixation related potentials for 

variable stimulus saliency. Front. Neurosci. 

2016;10:23 

[26] Shishkin SL, Kozyrskiy BL, Trofimov AG, 

Nuzhdin YO, Fedorova AA, Svirin EP, Velichkovsky 

BM. Improving eye-brain-computer interface 

performance by using electroencephalogram 

frequency components. Bull. RSMU. 2016;2:36–41 

[27] Walter WG. Expectancy waves and intention waves 

in the human brain and their application to the direct 

cerebral control of machines. Electroenceph. Clin. 

Neurophysiol. 1966;21:616 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-66

CC BY-NC-ND 366 Published by Verlag der TU Graz 
Graz University of Technology



VISUAL INPUT AFFECTS THE DECODING OF IMAGINED
MOVEMENTS OF THE SAME LIMB

P. Ofner1, P. Kersch1, G. R. Müller-Putz1

1Institute of Neural Engineering, Graz University of Technology, Graz, Austria

E-mail: gernot.mueller@tugraz.at

ABSTRACT: A better understanding how movements are
encoded in electroencephalography (EEG) signals is re-
quired to develop a more natural control for motor neuro-
prostheses. We decoded imagined hand close and supina-
tion movements from seven healthy subjects and investi-
gated the influence of the visual input. We found that mo-
tor imagination of these movements can be decoded from
low-frequency time-domain EEG signals with a maxi-
mum average classification accuracy of 57.3±5.0%. The
simultaneous observation of congruent hand movements
increased the classification accuracy to 64.1 ± 8.3%.
Furthermore, the sole observation of hand movements
yielded discriminable brain patterns (61.9±5.5%). These
findings show that for low-frequency time-domain EEG
signals, the type of visual input during classifier training
affects the performance and has to be considered in future
studies.

INTRODUCTION

Understanding the encoding of movements in the human
brain is paramount for the development of a new and
more intuitive control of motor neuroprostheses. Our
group already restored movement function in persons
with spinal cord injury (SCI) with motor neuroprosthe-
ses [1, 2, 3, 4] based on functional electrical stimula-
tion (FES) [5, 6]. However, the control of FES via a
non-invasive brain-computer interface (BCI) is in gen-
eral unintuitive and unnatural. The BCI requires sub-
jects to learn the expression of brain patterns which can
be unrelated to the actual restored movement (e.g. imag-
ination of foot movement to control the hand). Fur-
thermore, the imagined movements are usually repet-
itive movements and not single movements. These
BCIs are usually based on sensorimotor rhythms (SMR)
extracted from electroencephalography (EEG) signals.
However, newer research suggests that more details of
movements can be decoded from low-frequency EEG
signals [7, 8, 9, 10]. Furthermore, our group decoded
six single movements (elbow extension/flexion, prona-
tion/supination, hand open/close) of the upper limb from
low-frequency time-domain signals [11]. This is of spe-
cial interest in the context of neuroprosthesis control as,
e.g., persons with SCI may then imagine or attempt one
of these single movements to control a motor neuropros-
thesis more naturally. However, as there are no overt

movements causing a change in the sensory feedback, the
visual input (here: movement observation) becomes po-
tentially more important and may have an impact on the
decoding performance. In fact, a sole observation of an-
other movement is known to interfere with the execution
of a movement [12], and affects brain rhythms [13, 14].
Furthermore, the visual system can partly substitute the
somatosensory system [15]. This point is of special in-
terest because we speculate that the decoding of move-
ments from EEG may depend on a closed loop between
the motor cortex and the spinal cord, i.e. proprioceptive
feedback may partly be responsible for the modulation of
low-frequency EEG signals which is then decoded with
a BCI. In this work, we analysed if the lack of varying
sensory feedback during motor imagination (MI) can be
partly substituted by visual input which in turn may im-
prove the classification accuracy. We hypothesize that the
simultaneous observation of hand movements which cor-
respond to imagined movements improves the classifica-
tion accuracy. As a control condition, we used abstract
visuals.

MATERIALS AND METHODS

Subjects: Seven healthy and right-handed subjects
participated in the study. They were aged between 20
and 28 years. Three of them were female. The subjects
received payment for their participation.

Paradigm:
The subjects sat in a comfortable chair in front of a hor-
izontal computer screen which was used to give instruc-
tions and visual input to the subjects. The right arm was
positioned under the computer screen (see Fig. 1). We
instructed the subjects to perform kinesthetic motor im-
agery (MI) [14] of closing the right hand (CLOSE) or
rotating the right arm (SUPINATION) while observing a
movie showing a congruent realistic or an abstract move-
ment. The realistic visual input (RVI) was pre-recorded
from a human arm performing the movements while the
abstract visual input (AVI) was an animation of a cir-
cle turning into an ellipse (see Fig. 2). The circle nar-
rowed either from the top and bottom corresponding to
CLOSE or from the left and right side corresponding
to SUPINATION. Additionally to CLOSE and SUPINA-
TION, we recorded a REST condition where we showed
a picture (realistic or abstract) instead of a movie. In
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REST subject were instructed to not perform any MI.
However, REST was not further analysed in this work.
To disentangle the effect of MI and the observation of
visual input, we employed a movement observation con-
dition. In this condition, subjects were instructed to omit
any MI while observing the movie (OBS). Thus, we had
three types of conditions: CLOSE/SUPINATION/REST
(movement condition), AVI/RVI (visual input condition)
and MI/OBS (mental task condition) (see Fig. 3). Fig. 4
shows the sequence of one trial. At the beginning of one
trial, the subjects were informed on a computer screen
whether MI has to be performed synchronously to the
upcoming movie or whether the movie should only be
observed. When the movie appeared, it immediately
started to play for 2 seconds, paused then and finally
disappeared at the end of the trial, i.e. every MI or ob-
servation lasted 2 seconds. The movie was either an
RVI or AVI type and the movement shown was either
CLOSE, SUPINATION or REST. The initial frames of
the movies were exactly the same (AVI) or indistinguish-
able (RVI). After the movie stopped playing, a 1.5 s long
idle period followed and then the trial ended. Subse-
quent to one trial, an inter-trial interval with a random
duration of 1.5 - 2.5 s followed. We used a block de-
sign to record the trials and runs. Each block exclu-
sively comprised 3 AVI or 3 RVI runs and the blocks
where arranged as follows: RVI/AVI/AVI/RVI. Before
the first RVI and AVI run, respectively, we additionally
recorded a training run. This two training runs were used
to familiarize the subjects with the paradigm and were
not further evaluated. At the beginning, middle and end
of a recording, we also recorded runs in which subjects
performed eye movements or rested. However, those
runs were not further used in this work. Each run com-
prised 11 trials per CLOSE/SUPINATION class and 5 tri-
als per REST class. Thus, in total we recorded 66 trials
(CLOSE/SUPINATION) and 30 trials (REST) for each
RVI/AVI and MI/OBS condition.

Figure 1: Subjects observed or performed MI according
to real visual input or abstract visual input. The right hand
was under the computer screen.

Figure 2: Subjects observed movements or performed MI
with real visual input or abstract visual input.

Figure 3: Types of conditions. Subjects perceived real
(RVI) or abstract visual input (AVI). They performed
MI of CLOSE/SUPINATION/REST or observed (OBS)
CLOSE/SUPINATION/REST.

Figure 4: Trial sequence. An instruction was shown at
second 0 for 500 ms to inform the subject if a MI has
to be performed synchronously to the upcoming movie
(”think”) or if the movie should only be observed (”ob-
serve”). Subsequently, a movie appeared after a random
interval and started to play.
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Recording: We recorded 61 EEG channels covering
frontal, central, parietal and temporal areas of the head
as well as 3 EOG channels placed above the nasion and
the outer canthi of the eyes. Signals were recorded with
active electrodes and biosignal amplifiers (g.tec medical
engineering GmbH, Austria) with the reference placed on
the right mastoid and ground on AFz. We applied an 8th-
order Chebyshev bandpass filter from 0.01 Hz to 200 Hz
and sampled the signals at 512 Hz. Furthermore, a notch
filter at 50 Hz suppressed line noise.

Preprocessing: First, EEG channels were visually in-
spected and noisy or defective channels were removed.
To prepare the data for an independent component analy-
sis (ICA), we band-pass filtered with a zero-lag 4th-order
Butterworth filter from 0.3 Hz to 70 Hz. Then we cal-
culated the median absolute deviation (MAD) for each
channel using data only from trials (i.e. not from inter-
trial intervals) and marked EEG samples as artefact con-
taminated if they exceeded a threshold of 7.41 times the
MAD (corresponding to 5 times the standard deviation
for normally distributed data) of the respective channel.
All samples which were not marked as artefact contam-
inated were subjected to an Extended Infomax ICA [16]
implemented in EEGLAB [17] (which was applied using
the first n principal components explaining 99 % of the
variance of the data). ICA components corresponding to
eye movements and muscle artefacts were marked as arte-
fact contaminated. The above mentioned sample-based
MAD method was solely used to detect transient artefacts
which can impair an ICA. However, for the actual clas-
sification we used EEGLAB to detect artefact contami-
nated trials with: (1) amplitudes above/below -80µV and
80µV, respectively; (2) trials with abnormal joint prob-
abilities; (3) trials with abnormal kurtosis. The methods
(2) and (3) used 4 times the standard deviation of their
respective statistic as a threshold to detect artefacts.
Finally, we applied a 0.3 Hz to 3 Hz zero-lag 4th-order
Butterworth band-pass filter the original (unfiltered) EEG
data to extract low-frequency time-domain features from
the EEG, and removed independent components and tri-
als previously marked as artefact contaminated.

Classification: We classified the two classes CLOSE
and SUPINATION in each RVI/AVI and MI/OBS con-
dition. We used a shrinkage linear discriminant analysis
(sLDA) [18, 19] and a sliding window. In more detail,
we used the time lags -200 ms to 200 ms in 100 ms time
intervals relative to the center of the sliding window as an
input to the sLDA classifier (i.e. 5 time lags). We moved
this window over the trials (from -1 s to 3 s in 62.5 ms
time steps relative to the start of the movie) and report
the classification accuracies associated to the center point
of the sliding window. The classification results were val-
idated with a 10x10-fold cross-validation at each classifi-
cation time step.

Topoplots: To calculate the topoplots, we first inter-
polated removed channels. Then, we calculated the dif-
ference between the average scalp potentials (monopo-
lar) of CLOSE and SUPINATION for each RVI/AVI and

MI/OBS condition at each time point within a trial (using
a time resolution of 62.5 ms). Afterwards, we took the
absolute value of each channel value and time averaged
over the movie period of 2 s. Finally, we averaged over
subjects.

RESULTS

Classification Accuracies: Fig. 5 shows the classifica-
tion accuracies of CLOSE vs SUPINATION for all con-
ditions. Classification accuracies were calculated from
-1 s to 3 s relative to movie start with a time resolution of
1/16 s. The significance level with respect to a single sub-
ject is 64 % (α = 0.05, adjusted Wald interval [20, 21],
Bonferroni corrected for the time duration in Fig. 5). Five
subjects exceeded the significance level between 0 s and
2 s in the RVI-MI condition, 6 in RVI-OBS, 4 subjects in
AVI-MI, and no subject in AVI-OBS. RVI yielded higher
classification accuracies than AVI, and MI yielded higher
classification accuracies than OBS, c.f. Table 1. We con-
ducted a two-way repeated measure ANOVA with 2 fac-
tors - RVI/AVI (visual input) and MI/OBS (mental task)
- and compared the classification accuracies at the time
point of maximal average classification accuracy. The vi-
sual input main effect was significant (F (1, 6) = 8.25,
p = 0.03), i.e. the classification accuracy increase be-
tween AVI and RVI was significant. The mental task
main effect (F (1, 6) = 0.79, p = 0.41) and the in-
teraction effect (F (1, 6) = 0.04, p = 0.84) were not
significant. The sphericity assumption was tested with
Mauchly’s test and was not violated (p = 0.57).

Figure 5: Classification accuracies for RVI/AVI and
MI/OBS conditions. Shown are the individual subjects’
accuracies and the grand average in bold. At second 0 the
movie started to play for 2 seconds. The horizontal solid
line is the chance level, the dashed line is the significance
level on a single subject basis.
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Table 1: Maximum average classification accuracies with
standard deviations and times relative to the movie start

RVI-MI RVI-OBS AVI-MI AVI-OBS
max acc [%] 64.1 61.9 57.3 54.4
std dev [%] 8.3 5.5 5.0 4.3
time [t] 0.69 0.81 0.94 0.50

We also analysed the classification accuracy of MI vs
OBS with RVI. For this purpose, we aggregated CLOSE
and SUPINATION trials in the RVI-MI and RVI-OBS
conditions and classified these two conditions, see Fig. 6.
The significance level with respect to a single subject is
60 %.

Figure 6: Classification accuracy of MI vs OBS with RVI.
Shown are the individual subjects’ accuracies, the grand
average in bold, the chance level (horizontal solid line),
and the significance level (dashed line).

Topoplots: Fig. 7 shows the topoplots where a promi-
nent central pattern is observable for motor imagery dur-
ing real visual input (RVI-MI).

Figure 7: Topoplots. Shown are subject averaged abso-
lute differences between the CLOSE and SUPINATION

scalp potential maps. All plots have the same scale (blue
is the minimum, red the maximum).

DISCUSSION

We showed the classification of two MIs from the same
upper limb based on low-frequency time-domain EEG
signals. Importantly, the MIs were not repetitive as in
classical SMR-based BCIs but single ones, which are
closer to ordinary movements. Furthermore, the MIs cor-
responded closely to movements which currently could
be restored with a motor neuroprosthesis [6]. Some sub-
jects reached a significant classification accuracy when
observing abstract visual input. This indicates that the
analysed imagined movements can be decoded even in
the absence of any realistic visual input. This is in line
with [22, 23], where imagined hand movements were de-
coded from the frequency-domain of EEG. Furthermore,
consistent with our initial hypothesis, the results show
that the classification accuracy can be increased when
serving realistic visual input. Perhaps by substituting
the somatosensory feedback at the somatosensory cor-
tex with forwarded input from the visual system as in
[15]. However, in our experiment there was no dedicated
phase to incorporate the observed hand in ones own body
schema.
In a practical setup, we cannot simply present realistic
visual input to improve the classification accuracy be-
cause that would require knowledge about the indented
movement before it was classified. The idea is rather to
bootstrap the classification, i.e. presenting realistic visual
input in the initial training of the classifier when no feed-
back is provided yet (open-loop). If the classifier perfor-
mance is on an acceptable performance level, the subject
can then be trained with actual feedback (closed-loop).
A principle which has been applied in invasive studies
[24, 25] with a robotic arm. However, their the idea
was rather to obtain kinematic data for decoder calibra-
tion than observing human movements. A robotic arm
is different to a human arm, however the boundary be-
tween abstract and realistic visual feedback is probably
not sharp but continuous and the robotic arm may have
been perceived similar to an human arm. Further stud-
ies could investigate if the presentation of a human hand
is advantageous to a robotic arm in the open-loop clas-
sifier training. However, in the context of motor neuro-
prostheses, movement function is restored without using
a robotic arm and this question does not arise.
Most surprisingly, the sole observation of hand move-
ments yielded classification accuracies comparable to MI
(c.f. RVI-MI and RVI-OBS). Movement observation has
been reported to modulate brain rhythms [13, 14] (with
respect to a no-movement condition). In this work, we
show for the first time (to the best of our knowledge) that
the observation of different movements of the same limb
can be decoded from low-frequency time-domain EEG
signals. In the context of motor neuroprosthesis control,
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this raises the question if the discriminability in RVI-MI
is solely due to the simultaneously observed movement.
The classification accuracies in AVI-MI indicate that a
classification is basically possible, regardless of the vi-
sual input. Furthermore, the results show that MI and
movement observation are discriminable during real vi-
sual input. However, it can not be answered in this study
whether the classification accuracy increase is (1) solely
due to movement observation or (2) whether the neural
correlate of MI is modulated by the movement observa-
tion in a way which increases the discriminable informa-
tion or (3) a combination of both. Nevertheless, the open-
loop/closed-loop training approach may still work even
when the increase of classification accuracy is solely due
to the movement observation. Thus, the impact of this
finding on the open-loop/closed-loop training has to be
investigated in forthcoming studies. If the observation of
movements has activated the mirror neuron system which
in turn facilitated the classification is debatable. Mir-
ror neurons fire only when observing meaningful move-
ments. However, in our study no interaction of the move-
ment with the environment was given, i.e. the observed
movements were non-goal-directed and should not have
activated the mirror neuron system.
The amount of discriminative information in the 4 dif-
ferent conditions is also reflected in the topoplots. The
RVI-MI topoplot shows the largest amplitude differences
between CLOSE and SUPINATION, followed by RVI-
OBS and then the two AVI conditions. The observed RVI
patterns are widespread. However, central motor areas
are pronounced the most, showing that the discrimina-
tive information is indeed encoded in brain signals. Inter-
esting is that RVI-MI has a more amplified pattern than
RVI-OBS but similar classification accuracies. This may
be due to a more stable pattern during the video sequence
(topoplots are averaged over the whole movie period as
opposed to the classification accuracies). This indicates
that the discriminative information is encoded differently
between MI and movement observation.

CONCLUSION

We show the classification of two imagined movements
of the same upper limb and show that the classification
accuracy can be increased if the movement is simultane-
ously observed in a video. Furthermore, we show that
also the sole observation of movement videos yields dis-
criminable brain patterns.
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ABSTRACT: Sparse Bayesian Learning (SBL) is a basic
tool of machine learning. In this work, multiple linear re-
gression models under the SBL framework (namely Mul-
tiLRM), are used for the problem of multiclass classifica-
tion. As a case study we apply our method to the detec-
tion of Steady State Visual Evoked Potentials (SSVEP),
a problem we encounter into the Brain Computer Inter-
face (BCI) concept. The multiclass classification prob-
lem is decomposed into multiple regression problems.
By solving these regression problems, a discriminant fea-
ture vector is learned for further processing. Furthermore
by adopting the kernel trick the model is able to reduce
its computational cost. To obtain the regression coef-
ficients of each linear model, the Variational Bayesian
framework is adopted. Extensive comparisons are carried
out between the MultiLRM algorithm and several other
competing methods. The experimental results demon-
strate that the MultiLRM algorithm achieves better per-
formance than the competing algorithms for SSVEP clas-
sification, especially when the number of EEG channels
is small.

INTRODUCTION

Brain Computer Interface (BCI) is a communication sys-
tem that allows a connection between the brain and the
computer[1, 2, 3]. The basic goal of a BCI system
is to help people, suffering from neuromuscular dis-
orders, to establish a communication channel between
their brain and external environment without using ”tra-
ditional” pathways. The brain responses can be mea-
sured by adopting various acquisition modalities such as
functional Magnetic Resonance Imaging (fMRI), func-
tional Near-Infrared Spectroscopy (fNIRS) and elec-
troencephalography (EEG). From the above acquisition
modalities, the EEG signal is the most frequently used
because of its noninvasiveness, its high temporal reso-
lution, ease of acquisition, and cost effectiveness com-
pared to other brain activity monitoring modalities. In
the literature, there exists several BCI modalities which
are characterized with respect to various brain responses
such as sensorimotor responses, event-related potentials
and visual-evoked potentials[4, 5, 6, 7, 8, 9, 10, 11, 12].
From the above modalities, SSVEP BCI systems have at-
tracted special interest due to lower training requirements

and higher information transfer rates (ITR)[12].
A SSVEP is the brain’s response evoked in occipital and
occipital - parietal areas of the brain by a visual stimu-
lus flashing at a fixed frequency [10]. SSVEP responses
normally include the fundamental frequency of the visual
stimulus as well as its harmonics. SSVEP BCI systems
detect the different frequency components corresponding
to the visual stimuli and translate them into commands.
The detection of SSVEP responses is achieved by using
an EEG pattern recognition algorithm. Due to frequency
characteristics of SSVEPs, power spectrum density anal-
ysis (PSDA)-based methods such as fast Fourier trans-
form (FFT) were widely used for frequency detection.
Also, Support Vector Machines (SVMs) and the Linear
Discriminant Analysis (LDA) are used to detect SSVEPs.
A comparison between the above approaches is presented
in [13].
Others algorithms used for SSVEP detection are based on
Canonical Correlation Analysis (CCA) methodology and
its extensions [14]. The CCA-based approaches are mul-
tichannel techniques which consider a fixed set of ideal
templates. However, in cases where the signal is of small
duration the template is not able to represented it well.
Furthermore, their performance is deteriorated when we
have a small number of EEG channels. A situation which
is present when new, low cost and wireless EEG acqui-
sition devices are used such as Emotiv device[15]. To
alleviate the above problems we can use the Multivariate
Linear Regression (MLR) approach [16], since the MLR
does not use templates. In addition, it is not strongly de-
pended by the multichannel nature of the signal. How-
ever, the MLR approach is based on least squares prob-
lem formulation and hence lacks robustness to the out-
liers while it can not handle situations where the prob-
lem is ill - posed. On the other side, Sparse Bayesian
Learning (SBL)[17] is a robust technique that can suc-
cessfully solve the aforementioned problems of the MLR
approach. Furthermore, SBL has been successfully ap-
plied to classify event-related potentials (ERP)[4].
In this work, we propose a method, named MultiLRM,
for SSVEPs classification. The multiclass classification
of SSVEPs is decomposed into multiple regression mod-
els. When using a regression model an important issue is
how to determine its order. Estimating the proper order
is very important since models of small order may lead
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to underfitting, while large order values may become re-
sponsible for data overfitting. SBL framework provides
an elegant solution to this problem due to the constraints
that are imposed on the model through sparse priors. Af-
ter learning the regression coefficients, the predictive dis-
tribution of each regression model is used to create new
discriminant features helping the subsequent classifica-
tion.

MATERIALS AND METHODS

Let X be a matrix of size M × P containing the samples
from one EEG trial, where M is the number of channels
and P the number of time samples. In our analysis we
construct a feature vector from one EEG trial by concate-
nating the P temporal points from M channels into one
vector x. Let x1,x2, · · · ,xN ∈ <D be a set of EEG trials
(feature vectors), where D = M × P the feature vector
dimension and N is the number of training samples. It
is worth noting that D is generally high compared to N
in the context of BCI applications. The classes are repre-
sented by adopting the 1-of-K coding scheme, where K
is the number of classes. More specifically, for a training
sample xi belonging to class m, its label is specified as:

yi = [y1, y2, · · · , yK ], where yj =

{
1, if j = m

0, otherwise

The above formulation provides us with the indicator ma-
trix Y = [y1,y2, · · · ,yN ]T ,∈ <N×K . Assuming that
each column of matrix Y can be expressed as a linear
combination of feature vectors, we obtain the following
K regression models:

yk = Xwk + ek, k = 1, · · · ,K (1)

The above assumption leads us to K regression models
where each regression model learns the labels of one class
versus the rest. To obtain an estimate for the model pa-
rameters wk we will resort to the framework of Sparse
Bayesian Learning. But before that it is needed to pro-
vide relevant information related to Eq. (1). The vector
yk ∈ <N contains 0’s and 1’s, with the n-th element be-
ing 1 if the n-th feature vector belongs to class k. The
matrix X ∈ <N×D contains the EEG sampes (feature
vectors) xi, i = 1, · · · , N and ek denotes the noise of
the model following a Gaussian distribution with zero
mean and precision (inverse variance) βk. Finally, the
wk ∈ <D is a vector containing the model parameters.

Sparse Bayesian Learning: Since we make the as-
sumption of independence between the K regression
models, we can treat them independently. Our goal is to
infer/learn the model parameters wk and then use them
to make predictions about the class labels of unseen EEG
samples. For the remaining of this subsection we will
omit the subscript k. In our study, we adopt a prob-
abilistic view of model analysis, and more specifically
a bayesian setting of the model through priors distribu-
tions. These types of models can be treated by using the

bayesian evidence framework or the variational bayesian
(VB) framework[17]. In our approach, we follow the VB
framework since it provides us the ability to use prior
(and hyperprior) distributions over all model parameters.

Sparsity is a very helpful property since processing is
faster and simpler in a sparse representation where few
coefficients reveal the information we are looking for.
Hence, sparse priors help us to determine the model or-
der in an automatic way and to reduce the complexity of
the model. A natural choice for the prior distribution is
the ARD prior [18, 19]. More specifically, the parameter
vector w is treated as a random variable with Gaussian
prior of zero mean and variance a−1

i for each element in
the vector w:

p(w|a) =
D∏
i=1

N(0, a−1
i ), (2)

where D is the length of the vector w.

The overall precision (inverse variance) β of the
noise follows a Gamma distribution: p(β) =

Gamma(β; b, c) = 1
Γ(c)

β(c−1)

bc exp
{
− β

b

}
, where b and

c are the scale and the shape of the Gamma distribu-
tion, respectively. We use the Gamma distribution for
the noise components for two reasons: first, this distri-
bution is conjugate to the Gaussian distribution, which
helps us in the derivation of closed form solutions, and
second it places the positivity restriction on the overall
variance and the scaling parameters. Each parameter ai,
which controls the prior distribution of the parameters
w, follows a Gamma distribution, so the overall prior
over all ai is a product of Gamma distributions given
by: p(a) =

∏D
i=1Gamma(ai; ba, ca). So, the over-

all prior over model parameters {w,a, β} is given by:
p(w,a, β) = p(w|a)

∏D
i=1 p(ai)p(β). The likelihood of

the data is given by:

p(y|w, β) = β
N
2

(2π)
N
2
· exp

{
− β

2 (y −Xw)T (y −Xw)
}

(3)

To apply the VB methodology[17] we need to define an
approximate posterior based on one factorization over the
parameters {w,a, β}. In our study we choose the follow-
ing factorization: q(w,a, β) = q(w|a)

∏D
i=1 q(ai)q(β).

Applying the VB methodology, and taking into account
the above factorization, the following posteriors are ob-
tained:

q(w) = N(ŵ,Cw), (4)
q(β) = Gamma(β; b′, c′), (5)

q(a) =
D∏
i=1

Gamma(ai; b
′

ai , c
′

ai), (6)
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where

Cw = (β̂XTX+ Â)−1, (7)

ŵ = (β̂XTX+ Â)−1β̂XTy, (8)
1

b′ai
=

1

2
(ŵ2

i +Cw(i, i)) +
1

ba
, (9)

c
′

ai =
1

2
+ ca, (10)

âi = b
′

aic
′

ai , (11)
1

b
′
β

=
1

2
(y −Xw)T (y −Xw) +

tr(XTXCw) +
1

b
, (12)

c
′

β =
N

2
+ c, (13)

β̂ = b
′

βc
′

β , (14)

In the above equations the matrix Â is a diagonal matrix
with the mean of parameters ai in its main diagonal. The
Eqs. (7) - (14) are applied iteratively until convergence.
Given a feature vector x, the full predictive distribution
is given by: p(y|x) =

∫ ∫
p(y|x,w, β)p(w, β)dwdβ.

However, the above integration over both w and β is in-
tractable. But we can approximate the predictive distribu-
tion by p(y|x) =

∫ ∫
p(y|x,w, β̂)q(w)dw. The above

integration results in a Gaussian distribution p(y|x) =

N (xT ŵ, β̂+xTCwx). In our analysis we use the predic-
tive mean xT ŵ as a new feature. More specifically, when
a new unseen feature vector x is provided, the K predic-
tive means are calculated, constructing the new discrimi-
nant feature vector, and then the k-nearest-neighbour (k-
NN) algorithm is applied to perform the classification.

Kernel approach: It is worth to note here that the
regression models of Eq. (1) can be easily kernelized
[20]. Instead of working on the original feature space de-
scribed from the following equation yk = Xwk + ek =∑D
n=1 wknxn+ ek, we can work on kernel feature space

by applying the kernel trick. In that case each regression
model is described by yk =

∑N
n=1 w

′
knk(x,xn)+ek =

X′w′k + ek where the matrix X′ is a N ×N symmetric
matrix with elements Xnm = k(xn,xm), k(·) is the ker-
nel function and w′k ∈ <N is the new vector of regres-
sion coefficients. Now in these regression models we can
apply the same bayesian analysis procedure described in
the previous subsection. It is worth to note here that the
kernel method can be useful in high dimensional settings,
even if we only use a linear kernel. More specifically, to
compute the regression coefficients wk into the original
feature space (primal variables) the computational cost is
O(D3), while in the kernel feature space is O(N3)[20].
When D >> N , as it is the case for the SSVEP analysis,
the computational cost of working into the original fea-
ture space is considerable compared to the computational
cost of kernel feature space.

RESULTS

In order to validate the performance of the proposed clas-
sification algorithm for SSVEP classification, we use the
EEG dataset described in [14]. In this dataset a 12-target
visual stimuli were presented on a 27-inch LCD mon-
itor. Ten healthy subjects with normal or corrected-to-
normal vision participated in this study. EEG data were
recorded with 8 electrodes covering the occipital area.
For each subject, the experiment consisted of 15 blocks.
In each block, subjects were asked to gaze at one of the
visual stimuli indicated by the stimulus program in a ran-
dom order for 4s, and complete 12 trials corresponding
to all 12 targets. Data epochs, comprising eight-channel
SSVEPs, were extracted according to event triggers gen-
erated by the stimulus program. All data epochs were
down-sampled to 256Hz. The EEG data have been band-
pass filtered from 6Hz to 80Hz with an infinite impulse
response (IIR) filter using the filtfilt() function in MAT-
LAB. As indicated in [14] a latency delay of 0.135ms in
the visual system is considered. The experiments have
been performed using the EEG processing toolbox[21].
The goal of a SSVEP pattern recognition algorithm is to
to take as input one EEG trial, X , and assign it into one of
K(=12) classes where each class corresponds to a stim-
ulation frequency fk, k = 1, · · · ,K. CCA-based algo-
rithms compare the EEG trial with reference signals in or-
der to make the decision. The reference signals could be
purely artificial such as sines and cosines or they could be
constructed by using EEG trials. On the other side, meth-
ods, such as the MLR approach and the MultiLRM, do
not need reference signals and are based on the linear re-
gression model. In addition, for the MultiLRM approach
we can use its kernelized version in order to reduce the
computational cost.
In our study we compared the proposed algorithm with
four algorithms reported in the literature. More specif-
ically, the standard CCA, the individual template based
CCA (itCCA), the combination method of standard CCA
and itCCA (CombitCCA)[14], and the MLR approach
[16] are used. In addition, a PCA-based preprocessing
step was performed before using the MLR as described
in [16]. For MultiLRM approach we use uniformative
priors over ai and β (i.e. ba = b = 106,ca = c = 10−6)
and the linear kernel. Also, for the MLR and the Mul-
tiLRM, the number of neighborhoods in k-NN classifier
was set to five. Finally, for each method (except classical
CCA), the performance of each classifier was evaluated
using a leave-one-out cross-validation scheme.
The mean accuracy over all subjects for each method
is provided in Fig. 1. At first we calculate the accu-
racy using all available channels of the occipital area
(8 channels). The results are shown in Fig. 1(a). We
can observe that when the duration of the trial is small
enough (≤0.5sec) the MultiLRM approach provides us
with higher accuracy compared to others methods. Fur-
thermore, McNemar’s test analysis [22] has shown that
the differences in classification accuracy are significant
at 5% significance level (MultiLRM vs CompitCCA:
p = 4.8 · 10−4, MultiLRM vs MLR: p = 1 · 10−3).
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If the duration of the trial becomes larger( ≥1sec) the
CombitCCA approach presents the higher accuracy. This
could be explained due to spatial filtering that it is per-
formed inside this method. Furthermore, we can ob-
serve that MultiLRM and MLR approaches presents sim-
ilar behaviour (with MultiLRM being slightly better) and
clearly these two approaches achieve higher accuracy
than itCCA and CCA when the duration of trial is small
(≤2secs), while the itCCA outperforms the above two ap-
proaches in larger trials duration (>2secs).

We have performed two additional analyses related to
the number of channels. In the first experiment we have
used 3 channels, the channel Oz and two other channels,
which are based close to O1 and O2. In the second ex-
periment we have used 2 channels where we have ex-
cluded the Oz from the previous 3 channels. The above
settings correspond to devices such as the EPOC Emo-
tiv [15] where very few channels in the occipital area are
available. In both aforementioned experiments the Mul-
tiLRM approach presents the higher accuracy among all
approaches. In addition we can observed in Figs. 1(c)
and (e) that the performance of MultiLRM is consider-
ably better when the trial duration is small (≤2secs). Fur-
thermore, we can observe that CombitCCA deteriorates
significantly at these two experiments. This is expected
since the spatial filters do not work sufficiently well when
we have small number of channels. Finally, McNemar’s
test analysis, at 0.5sec, has shown that the differences
in classification accuracy are significant at 5% signifi-
cance level (MultiLRM vs CompitCCA: p = 5 · 10−6,
MultiLRM vs MLR: p = 3 · 10−8 for 3 channels, Mul-
tiLRM vs CompitCCA: p = 2·10−4, MultiLRM vs MLR:
p = 1 · 10−11 for 2 channels ).

Furthermore in our study we compared the above meth-
ods by using the Information Transfer Rate (ITR)[10].
The ITR is a measure that takes into account, besides
classification accuracy, the number of classes and the trial
duration, which is needed, to achieve a particular classi-
fication. The results for the channel configuration (8, 3
and 2 channels) are reported in Fig. 1 (b),(d) and (f) for
various values of trial duration. In the case of 8 channels,
when the trial duration is 4 secs, we can observe that all
methods present similar ITRs (around 1 bps). However,
the interesting point is the behaviour of the methods when
the trial duration is short (≤ 1.5secs). We can observe
that at 0.5sec the MultiLRM approach presents the best
ITR values (∼4bps) among all methods, all trials dura-
tion and all channels configuration. In addition by exam-
ining the results in the case of fewer channels (3 and 2
channels) the superiority of MultiLRM approach is terms
of ITR measure is evident. To summarize, the MultiLRM
approach presents the best performance in terms of ITR
measure and among various channels configuration. Fur-
thermore, when using accuracy as the comparison mea-
sure, we can see that the MultiLRM approach is supe-
rior to other methods when a small number of channels is
used (2 or 3 channels).

CONCLUSION

In this work we propose a new method for SSVEP clas-
sification under the SBL framework. More specifically,
our approach is able to handle multiclass classification
problems by adopting multiple regression models and
constructing a new discriminant vector of features. The
MultiLRM approach has been used in order to study the
detection of SSVEP responses in the field of BCI. The
proposed method has shown superior performance, com-
pared to other well - known methods of the SSVEP litera-
ture, in cases where the trial duration is small and we have
few recordings channels. Furthermore, its kernelized ver-
sion gives us a way to reduce the computational cost of
the procedure when the method is applied in SSVEP-BCI
problems. In future communications we intent to provide
various versions of the MultiLRM by introducing depen-
dencies between the linear models either by assuming a
common covariance for the noise or by treating carefully
the priors over the regression coefficients. Also, it would
be useful to incorporate techniques for kernel learning.
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Figure 1: Mean Accuracy and Information Transfer Rate using 8 channels (a,b) using 3 channels (c,d) and using 2 channels
(e,f).
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ABSTRACT:  In this publication, data of a vibro-tactile 

P300 BCI are shown. The tool serves for two tasks: for 

assessment of consciousness in people with disorders of 

consciousness (DOC) and locked-in syndrome (LIS), 

and for communication to provide YES/NO answers. 

Results from one patient, classified in unresponsive 

wakefulness state and two LIS patients are compared to 

three healthy controls. The shape of the event related 

potentials and differences between healthy controls and 

patients are investigated. We discuss which evoked 

potentials result in successful communication and 

provide online results of communication tests for all 

participants. 

 

INTRODUCTION 

 

Brain-computer interfaces (BCIs) have provided 

communication for severely disabled users for many 

years [1]. The P300 speller is the preferred BCI control 

strategy for these users, since it provides a high 

information transfer rate and requires very limited 

training [2]. Most of these systems use a visual P300 

speller, providing the whole alphabet plus numbers 

and/or additional control commands with only one 

classifier output. However, visual P300 spellers require 

sight and gaze control [3], although there are attempts to 

reduce the need for gaze control [4]. P300 BCIs could 

also be designed with auditory [5] or tactile stimuli [6].  

Consciousness has two clinical dimensions: 

wakefulness and awareness [7,8]. A disorder of 

consciousness (DOC) results from interference with 

either or both of these systems [7]. In the unresponsive 

wakefulness state (UWS), people show complete 

unawareness of themselves and the environment, but 

show sleep-wake cycles with some preservation of 

autonomic brain-stem functions [9]. Patients in the 

minimally conscious state (MCS) show limited but 

clearly discernible evidence of consciousness of self or 

environment [10], but are unable to communicate. The 

correct classification of UWS and MCS is a challenge. 

Schnakers and colleagues compared the accuracy of 

diagnosis between the clinical consensus versus a 

neurobehavioral assessment [11]. Out of 44 patients 

diagnosed VS based on the clinical consensus of the 

medical team, 18 (41 %) were found to be in MCS 

following standardized assessment with the Coma 

Recovery Scale-Revised (CRS-R). BCI-based 

assessment could help overcome the limitations of tests 

based on observable behavior. 

Locked-In Syndrome (LIS) patients have full 

consciousness but limited or no voluntary muscle 

control. This can include losing the ability to control 

gaze. A tactile BCI could also provide communication 

for these users.  

In 2014, we introduced our tactile P300 BCI and tested 

it with healthy controls and LIS patients [12,13]. Now, 

we compare data from one patient classified UWS and 

two LIS patients to data from three healthy controls. 
The aim of this publication is: to compare the event 

related potentials (ERPs) of patients vs. healthy controls 

to explore signals that could be used for assessment of 

consciousness and for communication. Assessment tests 

with two and three vibro-tactile stimulators are 

presented. Accuracy plots are calculated, which show 

how well a linear discriminant analysis (LDA) classifier 

can separate the EEG patterns after different kinds of 

stimulation. The ERPs are averaged and discussed. 

Furthermore, each participant performed an online test 

to simulate real-time communication ability. 

 

MATERIALS AND METHODS 

 

     Participants: Three patients and three healthy users 

were recorded for this publication (see Tables 1 and 2). 

P1 was diagnosed before the test as UWS, and P2 and 

P3 as LIS patients. The patients’ tests were done at the 

University of Palermo, the healthy controls were 

assessed in Schiedlberg, Austria. All sessions were 

approved by the local ethical committee. Informed 

consent was obtained either from the participants or 

their legal representatives if patients were not capable. 

All healthy participants performed two sessions. P1 

performed three sessions, while P2 and P3 one session 

each. 
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    Paradigms: Three kinds of paradigms were tested: 

vibro-tactile assessment with 2 tactors (VT2), vibro-

tactile assessment with 3 tactors (VT3) and a 

communication test. During the VT2 paradigm, the left 

and right wrists are randomly stimulated with a vibro-

tactile stimulator for 100 ms each. One stimulator 

delivers 87.5 % of the stimuli, and the other stimulator 

presents only 12.5 % of the stimuli. The subject is 

verbally instructed to silently count 15 stimuli on the 

hand that receives the less probable target stimuli, 

which is called the target hand. The number of 

presented non-target stimuli is 7*15=105. During each 

run, the subject performs this task four times, with the 

target hand selected randomly each time, which results 

in a recording time of 2.5 min. The resulting data are 

analyzed to provide two figures: the averaged ERPs of 

target and nontarget trials; and an accuracy plot, 

showing how well the ERPs can be separated.  

During the VT3 paradigm, in addition to tactors on the 

left and right hands, one tactor is placed to the back or 

shoulder of the subject as a distracter. The distracter 

receives 75 % of the stimuli, while the left and right 

wrist each receives 12.5 % of the stimuli. Then, the 

subject is instructed through earplugs to count stimuli to 

the target hand (15 targets, 7*15 non-targets), which is 

either the left or right hand. During each run, the subject 

performs this task four times, with the target hand 

selected randomly each time, resulting in a recording 

time of 2.5 min. This run results in the same kind of 

accuracy plot and averaged ERPs. Furthermore, an LDA 

classifier is created that will be used in the 

communication test.  

The communication test is an online evaluation to see if 

the tool could be used for answering simple YES-NO 

questions. The positions of the vibro-tactile stimulators 

are the same as in the VT3 paradigm. Five questions are 

asked to the participant, in which the correct answer is 

known beforehand. For example: “Were you born in 

Austria?” The experimenter instructs the participant to 

answer YES by counting the stimuli on the left hand, or 

answer NO by counting the stimuli on the right hand. 

After asking a question, the system presents 30 stimuli 

to the left hand, 30 stimuli to the right hand and 180 

stimuli to the distracter, in randomized order. The 

classifier generated in the VT3 run is used to analyze all 

those presented stimuli. The system can convey YES if 

the left hand was classified as target hand, or NO if the 

right hand was classified as target, and it provides no 

output if the distracter was classified as target. After the 

five questions were answered, the number of correctly 

answered questions is counted. A communication test is 

considered successful only if 4 or 5 out of 5 total 

questions were answered correctly.  

     Signal processing: EEG data were acquired from 

eight sites (Fig. 1) using a g.USBamp and g.LADYbird 

active electrodes with a sample rate of 256 Hz. Data 

segments of -100 ms to 600 ms around each stimulus 

are extracted. To calculate the accuracy plot (see the 

bottom rows of Figures 2-8), the following procedure is 

repeated ten times, and the results are averaged into one 

single plot.  
The target and nontarget trials are randomly assigned 

into two equal sized pools. One pool is used to train a 

classifier, and the other pool is used to test the classifier. 

The classifier is tested on an increasing number of 

 
Figure 3: Results of P1, Session 2.  

 
Figure 2: Results of P1, Session 1. Left and middle 

column top show the averaged EPs of VT2 and 

VT3. The bottom rows show the accompanying 

accuracy plot. In the right column one sees that the 

communication test was not successful. 

 
 

Figure 1: Acquired EEG positions. The red spots 

mark the positons of eight active EEG electrodes. 

The reference was placed on the right earlobe (blue), 

the ground electrode at FPz (yellow). 
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averaged stimuli out of the test pool. At first, it is tested 

on only one target and seven nontarget stimuli. If the 

classifier detected the target stimulus correctly, the 

resulting accuracy is 100 %; otherwise, it is 0 %. This 

process is repeated for two averaged target stimuli and 

14 averaged nontarget stimuli, for three nontarget 

stimuli and 21 target stimuli, and so on until the full test 

pool is used. This produces a plot of 30 single values 

(for 30 target stimuli in the test pool), each one either 

100 % or 0 %. The averaging of 10 single plots results 

in values ranging from 0 % to 100 %. Increasing the 

number of averaged stimuli will increase the accuracy if 

the subject follows the task, because this averaging 

reduces random noise in the data. An accuracy 

significantly beyond the chance level of 12.5 % shows 

that the subject can direct attention to the task of 

counting target stimuli for most or all of a run. 

The ERPs from target and nontarget trials are averaged 

for all channels separately. Each trial is baseline 

corrected before averaging, using the time segment 100 

ms before stimulus onset. For each sample point, a 

Kruskal Wallis test (p<0.05) is done to find statistical 

differences between target and nontarget trials. The top 

parts of Figures 2-8 show the averaged ERPs of site Cz. 

The thick red line presents the averaged nontarget trials. 

The thin red lines above and below it presents the 

standard error. The averaged target trials and their 

standard error are plotted in blue. The magenta vertical 

line shows the trigger time. Green areas mark areas in 

which the target vs. nontarget lines differ significantly.  

   Experimental procedure: Each session consisted of 

three runs in pseudorandom order: A VT2 assessment 

run, a VT3 assessment run and communication run.  

 

RESULTS 

 

   Results from patients: Table 2 and Figures 2-6 present 

results from patients. In each figure, the first column 

represents the results of the VT2 run, the second column 

the result of the VT3 run and the third column shows 

the result of the communication run (successful or not). 

In session 1, P1 attained 100% accuracy during the VT2 

assessment but poor accuracy in VT3, and did not 

successfully communicate (Figure 2). P1 was able to 

successfully communicate in session 2, with accuracy of 

80% or more in both the VT2 and VT3 runs (Figure 3). 

In session 3, his VT2 assessment yielded only modest 

accuracy, and the VT3 assessment attained 0% accuracy 

(Figure 4).  

The two locked-in patients were both able to 

communicate, with high accuracy in both VT2 and VT3 

(see Figures 5 and 6).  

   Results from healthy controls: Table 1 summarizes 

results from healthy controls. Figures 7 and 8 focus on a 

notable result, which is that H3’s second 

communication attempt was not successful. Also, the 

accuracy from the preceding VT3 is worse than in other 

results from the healthy controls. Otherwise, the healthy 

subjects performed very well.  

 

DISCUSSION 

 

All six participants were able to communicate via vibro-

tactile stimulation in at least in one session. All ERPs of 

the healthy subjects showed a P300 peak.   

 
Figure 7: Results of H3, Session 1.  

 
Figure 6: Results of P3, Session 1.  

 

 
Figure 5: Results of P2, Session 1. 

 

 
Figure 4: Results of P1, Session 3.  
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Only one of the patients, P2, exhibited a small P300 in 

the VT2 condition only.  Nonetheless, classification was 

often accurate, indicating that other ERP components 

contributed heavily to classification for most patients.    

P1 showed a negative deflection in all three sessions. In 

session 2 only, this deflection produced a stable long-

lasting significant difference between target and 

nontarget stimuli. In sessions 1 and 3, the significant 

areas are much shorter, and communication was not 

successful. The absence of activity that reflects 

voluntary stimulus processing in sessions one and three 

may be consistent with the previous classification of 

UWS. Thus several tests on different days should be 

conducted before reaching a final decision about a 

patient’s status. 

Visual inspection of the ERPs shows that the P300 was 

generally not the main signal that differed between 

targets vs. nontargets. In most patient data, the 

normative P300 is not apparent. Thus, it seems that 

ERPs before and after the P300 probably contribute 

substantially to effective classification.  

The observation that the ERPs of the patients did not 

show a P300 but still could be used for communication 

is consistent with earlier publications. In an auditory 

oddball experiment, Lulé and colleagues [14] show that 

classification relied largely on a negative deflection. 

Another study [15] presented LIS patient with a large 
negative deflection in a vibro-tactile oddball 

experiment. 

Notably, H3 failed in the communication test during the 

first session. Although his ERPs show a high amplitude 

P300 during VT3 (Figure 7), the accuracy plot resulting 

from VT3 showed only 60% of accuracy across 30 

target stimuli. Therefore, the accuracy plot provides a 

useful measure of target vs. nontarget separability when 

looking at averaged ERPs could be misleading. 

Nevertheless, in addition to the accuracy plots, we 

chose an approach of performing online communication 

involving real questions. This validated the 

practicability of our device to be used for patients with 

DOC and LIS. 

The results also support the general approach of 

assessing users with VT3 prior to communication. In all 

results from both patients and healthy users, accuracy 

during the VT3 run effectively predicted the likelihood 

of successful communication. This is reasonable, as the 

communication runs are similar to the VT3 assessment 

runs in many ways.  

As with other P300 BCIs, our approach required very 

little time to train the classifier. Collecting data to train 

the VT3 paradigm took 2.5 minutes. More training data 

could improve classifier performance. However, when 

working with severely disabled patients, longer training 

times could cause fatigue and ultimately provide worse 

results. Worse, patients with UWS or related conditions 

could end wakefulness during a session, meaning that 

effective communication is no longer possible that 

session.  

The VT2 runs are not used for communication. Those 

runs are intended as an initial assessment of 

consciousness as well as a way to familiarize each user 

with the system.  

 

CONCLUSION 

 

This publication showed that DOC and LIS patients 

could use a vibro-tactile paradigm for communication. 

This result further supports the nascent consensus that 

BCI technology could be helpful for assessment of 

awareness in these patients and for communication. 

 

Table 2: Patients and their results 

ID 

Session 

# Sex Age Diagnosis 

Disease Duration 

(months) 

Clinicial 

Description 

VT2 

(%) 

VT3 

(%) 

Communication 

successful? 

P1 1 m 19 TBI 12 UWS 100 0 No 

 

2 

     

80 80 Yes 

 

3 

     

60 0 No 

P2 1 f 76 ALS 145 LIS 100 90 Yes 

P3 1 f 68 ALS 89 LIS 95 100 Yes 

 Table 1: Healthy subjects and their results 

ID 

Session 

# 

Sex/

Age 

VT2 

(%) 

VT3 

(%) 

Comm 

success.? 

H1 1 f 100 90 Yes 

  2  26 100 100 Yes 

H2 1 f  100  100 Yes 

 

2 36 100 80 Yes 

H3 1 m 100 60 No 

  2  33 100 100 Yes 

 

 
Figure 8: Results of H3, Session 2.  
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Even users who do not have a robust P300 in the 

paradigms used here could attain good performance 

based on other ERP differences.  The simplicity and low 

cost of a noninvasive EEG-based BCI makes this 

technology very promising for these groups of patients, 

compared to fMRI or invasive electrodes. More data 

will be needed though to show the reliability for all 

groups of potential users. 
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ABSTRACT: There exists a variety of electroencephalo-
gram (EEG) based brain-computer interface (BCI) as-
sisted stroke rehabilitation protocols which exploit the
recognized nature of sensorimotor rhythms (SMRs) dur-
ing motor movements. For novel approaches indepen-
dent of motor execution, we investigate the changes in
resting-state sensorimotor EEG with motor learning, re-
sembling the process of post-stroke recovery. In contrast
to the neuroimaging studies based on visuomotor tasks,
we study motor learning during an actual physical mo-
tor adaptation learning experiment. Based on analysis of
EEG data collected throughout a force-field adaptation
task, we observed a spectral power increase of resting
SMRs across subjects. The modulation across resting-
states in an early adaptation phase of the motor task was
further shown to predict individual motor adaptation per-
formance measures.

INTRODUCTION

Over the last few decades, EEG activity of the human
sensorimotor cortex is widely targeted as a biomarker
in BCI-assisted stroke rehabilitation protocols to support
motor restoration and induce neural plasticity [1− 3].
In general, these approaches utilize congruent haptic
feedback of neurally decoded movement intent through
SMRs, by a rehabilitation robot [4− 6], and were shown
to support modulation of SMRs during training and en-
hance post-stroke recovery [7]. Stroke recovery involves
a form of motor learning, which has also motivated stud-
ies aimed at gaining insights into the neural processes un-
derlying human motor behavior [8]. In this context, var-
ious brain imaging studies focus on analyzing recorded
neural data during motor learning experiments [9, 10].
However, motor learning related sensorimotor activity
changes in the resting brain, independent of motor exe-
cution, are yet to be studied.
Within this scope, several pieces of previous work have
studied the concept of visuomotor learning [11− 13].
However visuomotor tasks generally require learning of
an underlying mapping between the actual motor task
space and the visual feedback environment. Hence as
a confounding factor, this further incorporates separate

processing of different visual mapping aspects into the
learning process [14, 15]. We argue that such neuroimag-
ing studies should dissociate learning of an underlying vi-
sual mapping from the pure motor learning process. Con-
ventionally in motor rehabilitation literature, motor learn-
ing is studied either in the form of motor adaptation or
skill learning [16], particularly with force-field adaptation
tasks [17, 18]. Accordingly, we investigate resting-state
sensorimotor EEG changes with pure motor learning dur-
ing a force-field adaptation task performed within an ac-
tual physical environment using a robotic setup, without
a separate artificial visual feedback environment.

Based on statistical analysis of experimental data from
twenty-one healthy subjects, we observed an increase
of resting-state α-band (8–14 Hz) sensorimotor activity
across subjects throughout motor learning. Moreover,
regression analysis demonstrates that the amount of the
observed increase in sensorimotor activity across resting
stages in an early adaptation phase of the motor task is
predictive of individual motor adaptation learning perfor-
mances. Finally we discuss how these motor learning re-
lated changes in resting-state EEG can be exploited in
future BCI-assisted stroke rehabilitation protocols.

MATERIALS AND METHODS

Subjects and Experimental Data: Twenty-one right
handed healthy subjects (14 male, 7 female; mean age
23.8 ± 3.1) participated in this study. All subjects were
naive to the force-field adaptation task. Before the ex-
periments, all participants gave their informed consent
after the experimental procedure was explained to them
in accordance with guidelines set by the research ethics
committee of Sabancı University. Throughout the ex-
periments, the robotic setup recorded data at 500 Hz
sampling rate and a 64-channel EEG was recorded at
512 Hz sampling rate, using active EEG electrodes and
a BioSemi ActiveTwo amplifier (Biosemi Inc., Amster-
dam, The Netherlands). Electrodes were placed accord-
ing to the 10-20 system. All data were re-referenced to
common average reference offline.
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Figure 1: Illustration of the task workspace. Four target lo-
cations are placed on the board at the northeast, northwest,
southeast, and southwest positions with equal distances of 200
mm from the center.

Study Design: Participating subjects performed a
force-field adaptation task under simultaneous EEG
recordings. The goal of the task was learning to perform
planar center-out reaching movements under an unknown
force-field, as straightly as possible. During the experi-
ments, subjects sat in front of a horizontally placed board
constructing the task workspace. Subjects were hold-
ing a handle, henceforth referred to as an end-effector,
with their right hands that was suspended from above
onto the board. The end-effector was attached to a 3
degrees-of-freedom modified delta robot which had con-
strained motion on z-axis and was only capable of two-
dimensional movements that were restricted to fall within
a circle with a radius of 200 mm. Idle starting position of
the end-effector corresponded to the center of this circle.
There were four target locations placed on the circle at
the northeast, northwest, southeast, and southwest posi-
tions. The target locations were indicated with holes over
the board containing LEDs inside. An illustration of the
task workspace is provided in Fig. 1.
Before the experiments, all subjects performed a pre-
flight phase of eight trials (i.e., reaching movements)
without any force-field to get familiar with the task
workspace and trial flow. As part of the force-field adap-
tation task, each subject performed 200 trials in total,
which were divided into three blocks of 40, 80, and 80 tri-
als. Within each of these blocks, there were equal number
of trials per target location.
In order to investigate the changes in resting-state sen-
sorimotor activity with motor adaptation learning, along-
side the force-field adaptation task, five-minute resting-
state EEG recordings were performed throughout the ex-
periment. First resting-state recording was performed be-
fore the force-field adaptation task, second recording af-
ter the first block of 40 trials and a third resting-state
recording after completion of the force-field adaptation
task. During these recordings, subjects were placed ap-
proximately 1.5 meters in front of a computer screen and
instructed to relax with eyes open, looking at a fixation

cross displayed in the middle of the screen. Resting-state
recordings were performed with subjects’ eyes open to
construct a baseline condition for the force-field adapta-
tion task that involved visual processing [19]. Same ex-
perimental setup and data were also presented and used
in our previous work for different analyses [20, 21].

Force-Field Adaptation Task: The task involved two-
dimensional center-out reaching movements within the
task workspace, while a velocity dependent external
force-field was applied to the end-effector by the robotic
setup to disturb subjects’ motions. Specifically, end-
effector velocity vector ~v was multiplied with a constant
matrix B, representing the viscosity of the imposed envi-
ronment, to compute ~f = B~v at each time point, where
~f represented the forces that the robotic setup is pro-
grammed to produce on the end-effector as the subject
performed reaching movements. The constant matrix B
was the same as in [22].

Throughout the experiments, subjects performed 200 tri-
als with a randomized order of 50 trials for each of the
four target locations. At the beginning of each trial, the
target location was indicated with a blinking LED light.
As the subject reached for the target location using the
end-effector and then moved back to the starting position,
a calculated score within a range of 0–100 was read out
to the subject through a speaker. The score in each trial
indicated how straight the movement trajectory was in the
corresponding trial. To calculate the score, we first com-
puted the sum of perpendicular distances of each point
on the movement trajectory to the ideal path (i.e., straight
line from center to target) [23]. Secondly, this sum served
as an input variable to a sigmoid function, indicating a
gradually diminishing increase [24]. Third, the value of
the sigmoid function was multiplied by the elapsed time
of the trial as a penalty on the score. At the end of each
trial, the subjects were informed about their movement
performance by inversely mapping this value to a range of
0–100; a higher score denoting a faster and more straight
reaching movement. Aim of the subjects was to increase
the score throughout trials.

Resting-State Sensorimotor EEG Processing: For all
analyses in this study, from the 64-channel EEG data
recorded during the experiments, we only used the C3,
CP3, C4, and CP4 electrodes that are known to mainly
represent sensorimotor activity of the brain [25− 28].
As each resting-state five-minute time-series data consti-
tuted a high dimensional matrix (4 channels x 153600
samples), we implemented dimensionality reduction in
the temporal domain. Specifically, we transformed EEG
data of each electrode into the spectral domain and com-
puted log-bandpowers in four main frequency bands; θ-
band (4–7 Hz), α-band (8–14 Hz), β-band (15–30 Hz),
and γ-band (55–85 Hz). We computed resting-state log-
bandpowers using an FFT in conjunction with a Hann
window spanning the whole five-minute resting phase.
This analysis resulted in resting-state powers in four main
frequency bands and four electrodes for each subject.
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Changes in Resting Sensorimotor Activity: We used
a Wilcoxon signed-rank test to investigate if there is a
significant frequency-specific change in the resting-state
sensorimotor activity across subjects from first to the sec-
ond resting-state with an early adaptation, or from first to
third resting-state throughout the complete adaptation pe-
riod. In particular, for all frequency bands and four elec-
trodes separately, differences of bandpower values be-
tween first and second resting-state recordings, and first
and third resting-state recordings were computed and was
used to test the null hypothesis of zero median across
twenty-one subjects.

Relation with Motor Adaptation Learning: Resting-
state sensorimotor activities that showed significant
power changes across subjects were further inspected on
whether these changes are related with the motor adapta-
tion learning process. As trial-to-trial variability in per-
formance is not of interest in this context, individual rate-
based motor adaptation learning metrics were quantified
from the feedback scores for each subject. Specifically,
in order to represent an early motor adaptation learning
performance in the first block of 40 trials, where the ini-
tial exposure to the force-field occurs, the ratio of average
scores of the first ten trials over average scores of the last
ten trials of the first block is computed. Similarly to rep-
resent the complete adaptation period, the ratio of average
scores of the first ten trials over average scores of the last
ten trials of the whole experiment is computed. A smaller
value of these metrics indicates greater motor adaptation
in the corresponding time period. These measures served
as the dependent variables in separate multivariate linear
regression models, where the changes in resting sensori-
motor activity were used to predict learning performance
in the corresponding time period.

Before regression analyses, we checked all subjects’ per-
formance measures and EEG features on whether it ex-
ceeded three standard deviations of the median across
subjects, as an outlier rejection criterion. The differences
of the four electrode powers between the first and the sec-
ond resting-state blocks served as the independent vari-
ables to the regression model to predict early motor adap-
tation learning rates using a leave-one-subject-out cross-
validation protocol. Similarly the differences between
first and third resting-state EEG features were used to pre-
dict the complete adaptation learning metrics.

Statistical Significance Testing: To quantify the
strength of a prediction model, the correlation coefficient
between actual and predicted performance measures was
computed. Significance of this correlation was tested
with a permutation test. To test the null-hypothesis of
zero correlation, we randomly permuted the assignment
of performance measures to EEG features across subjects
10,000 times and estimated the frequency at which the
prediction model achieved a higher correlation coefficient
than with the true assignment of EEG features to perfor-
mance measures as the p-value.

RESULTS

Obtained p-values of the Wilcoxon signed-rank tests on
potential frequency-specific changes of resting-state elec-
trode bandpowers across subjects from first to the sec-
ond resting-state with early adaptation, or from first to
third resting-state with complete adaptation, are given in
Tab. 1. In particular, we observe a significant increase
of α-powers across twenty-one subjects in all four elec-
trodes (C3, CP3, C4, and CP4) located over sensorimotor
areas (i.e., SMRs) with early adaptation. Moreover, this
across-subjects increase in SMR activity is preserved in
C3 and CP4 electrodes, but not still statistically signif-
icant in CP3 and C4 (p = 0.06) after the experiment,
with complete adaptation. We do not consider the other
two statistically significant p-values obtained by the elec-
trode C3 as notable due to lack of consistency. For all
four electrodes, resting-state α-power levels of all sub-
jects and the mean across subjects are presented in Fig. 2,
mainly showing an increase of α-powers resulting in the
significant p-values of Tab. 1.
Subjects explicitly show motor adaptation learning ef-
fects in terms of the feedback score metric they are pro-
vided (see Fig. 3a). In particular, we observe that most
of the adaptation occurs in the first block of 40 trials
with the initial exposure to the force-field. Investigating
the relation between the observed resting-state α-power
changes and individual adaptation rates, the early adap-
tation linear regression model shows statistically signifi-
cant results. Specifically, the differences of the four elec-
trode α-powers between the first and the second resting-
state blocks (i.e., through early adaptation) of the sub-
jects were found predictive of individual early adaptation
learning rates, which span a wide range of performance
measures across subjects (ρ = 0.55, p < 0.01, see Fig. 3b
and 3c). On the other hand, difference of α-powers be-
tween the first and third resting-state recordings was not
able to predict the complete adaptation learning rate met-
rics (ρ = −0.30, p > 0.05).

Table 1: p-values of the Wilcoxon signed-rank test on observed
changes of bandpower activity in the early or complete adapta-
tion phases across subjects. Colored cells indicate statistically
significant results (p ≤ 0.05).

Bandpower Adaptation C3 CP3 C4 CP4

θ-band
Early 0.01 0.37 0.90 0.15

Complete 0.76 0.47 0.56 0.98

α-band
Early 0.03 0.01 0.04 0.05

Complete 0.02 0.06 0.06 0.05

β-band
Early 0.84 0.52 0.76 0.33

Complete 0.04 0.06 0.09 0.66

γ-band
Early 0.47 0.82 0.68 0.59

Complete 0.41 0.18 0.16 0.45
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Figure 2: Normalized α-power levels of the four electrodes during three resting-state recordings of all subjects. Mean α-powers across
subjects are presented at the rightmost slot.

DISCUSSION

In this study, we investigate resting-state changes in
sensorimotor EEG activity throughout motor adaptation
learning by a force-field adaptation task. The task was
performed within an actual physical environment to dis-
card any visual mapping confounders that potentially ex-
ist in most visuomotor task based neuroimaging studies.
Subjects showed apparent motor performance increases
throughout the task. We observed explicit increase in
resting-state α-powers across subjects both after an early
adaptation and after the adaptation was complete. More-
over, the changes in resting α-power was found predictive

of individual measures of distinct adaptation rates during
an early adaptation time period of the experiment.

We hypothesize that the observed SMR-power increase
across subjects, which is mostly evident after an early
adaptation, is likely to indicate a cortical reorganization
of the SMR activity. Even though there exist a variety of
studies indicating the relation of SMRs and human motor
behavior, a non-invasive neuroimaging based evidence on
resting activity modulations was not reported with a pure
motor learning task before. While the continuity of these
resting-state changes for longer durations is not estab-
lished on one hand, on the other hand, these results can be
further exploited in novel stroke-rehabilitation paradigms
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Figure 3: (a) Average subject feedback scores learning curve. Trial groups represent the sequential order of the 200 trials grouped in 20
trials each. Each point on the red curve represents an average score of 20 trials. Shaded region indicates the standard deviation. (b) Dis-
tribution of the early adaptation performance measures used in regression across subjects. (c) Observed versus predicted performance
measures of the early adaptation regression model (ρ = 0.55, p < 0.01). One dot represents one subject.
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that can potentially incorporate neurofeedback [29] or
stimulation based alterations of the electrical activity of
the brain [30, 31] by subject specific SMR localization.
With a similar approach, several studies have previously
focused on BCI-based sensorimotor training to improve
motor behavior during a reaction-time task [27] or a
joystick-based cursor-movement task [28]. Nevertheless,
it is important to note that the evidence presented here
is not sufficient to claim that modulating such brain ac-
tivity ensures an increase in motor learning performance
[32]. The present work solely focuses on investigating
SMR activity, however we have recently studied EEG
correlates of motor adaptation learning in a broader range
of brain regions both during resting-state and movement
preparation phases with a different analysis approach on
this collected data [33]. These evidences can potentially
be exploited in mentioned novel BCI-assisted stroke re-
habilitation protocols.
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ABSTRACT: Awareness detection in patients with DOC
is a challenging task, which is commonly addressed
through behavioral observation scales. In this study, we
proposed a gaze-independent audiovisual brain computer
interface (BCI) for patients with disorders of conscious-
ness (DOC). Semantically congruent and incongruent au-
diovisual number stimuli were presented one by one to e-
voke event-related potential (ERP) components. Subjects
were instructed to selectively attend to the congruent au-
diovisual stimuli (target) whereas ignoring the incongru-
ent audiovisual stimuli (nontarget). Ten healthy subjects
first participated in the experiment to evaluate the system.
The results demonstrated the audiovisual BCI system out-
performed the corresponding auditory-only and visual-
only systems. Multiple ERP components including the
P300, N400 and LPC were observed in the audiovisual
condition, which enhanced the discriminability between
the brain responses for target and nontarget stimuli. This
system was then applied to detect the awareness in eight
patients with DOC. The results demonstrated the com-
mand following as well as number recognition in three of
the eight patients. Therefore, this gaze-independent au-
diovisual BCI system might be used as a supportive bed-
side tool for awareness detection in patients with DOC.

INTRODUCTION

A potential application of Brain-computer interfaces (B-
CIs) is in awareness detection for patients with disor-
ders of consciousness (DOC), such as vegetative state
(VS) and minimally conscious state (MCS). Currently,
the clinical diagnosis of DOC patients is generally based
on behavioral scales such as the JFK Coma Recovery
Scale-Revised (CRS-R), which rely on overt motor re-
sponses to external stimuli at the time of observation [1].
However, these patients are usually deprived of the ca-
pacity to make normal physical movements [2]. As a
consequence, the clinical misdiagnosis rates have been
relatively high, ranging from 37%-43% in VS and M-
CS patients [3]. Recently, several BCI paradigms have
been presented for patients with DOC [4, 5, 6, 7]. In
our previous study [7], we developed a visual hybrid B-
CI combining P300 and SSVEP to detect awareness in
eight patients with DOC (4 VS, 3 MCS and 1 LIS) and

successfully demonstrated command following in three
patients (1 VS, 1MCS and 1 LIS). However, BCI-based
awareness detection in patients with DOC is still in its in-
fancy. The performance of the BCIs designed for these
patients is generally poor because the patients’ cognitive
ability is considerably lower than that of healthy subjects.
Furthermore, there existed big differences of EEG signal-
s between the patients with DOC and healthy individuals
because of severe brain injuries in these patients. One
possible solution is to develop novel BCIs to improve
awareness detection.

For BCI-based awareness detection, an important issue is
the modality of stimulation. To date, most BCI studies
have focused on unimodal (e.g., auditory-only or visual-
only) stimuli. Compared to unimodal stimuli, congruent
multisensory stimuli may cause additional neuronal ac-
tivities and result in faster behavioral responses and more
accurate perception/recognition [8]. However, multisen-
sory stimulus paradigms have barely received attentions
in the field of BCIs [9]. In this study, we focused on the
potential benefits of audiovisual stimuli for the improve-
ments of BCI performance. Since the patients with DOC
lack the control of gaze movements, this study proposed
a gaze-independent audiovisual BCI for their awareness
detection. Specifically, the stimuli included semantical-
ly congruent and incongruent audiovisual numbers (25%
congruent vs. 75% incongruent). Furthermore, all the au-
diovisual stimuli were presented one-by-one, this made
the paradigm completely gaze-independent. With this s-
tudy we aimed at (1) developing and validating a nov-
el gaze-independent audiovisual BCI using semantically
congruent and incongruent audiovisual stimuli; and (2)
testing if this BCI system could serve as a supportive bed-
side tool for detecting covert conscious awareness in pa-
tients with DOC.

MATERIALS AND METHODS

Subjects Ten healthy subjects (nine males; mean age
± SD, 29 ± 2 years) and eight patients with severe brain
injuries (seven males; five VS and three MCS; mean age
± SD, 42 ± 12 years; see Tab. 1) from a local hospital
participated in this experiment. None of the patients had
a history of impaired visual and auditory acuity. This s-
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tudy was approved by the Ethical Committee of the Gen-
eral Hospital of Guangzhou Military Command of Peo-
ple’s Liberation Army, which complies with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki). Written informed consent was obtained from
the patients’ legal surrogates. The eight patients attended
a CRS-R assessments in the week before the experiment,
with the CRS-R scores presented in Tab. 1.

GUI and audiovisual paradigm The GUI used in this
study is illustrated in Fig. 1. A visual button was set at
the center of a 22-inch LED monitor. Two loudspeak-
ers were placed behind the monitor to present auditory
stimuli. The visual stimuli consisted of 10 visual num-
bers (0, 1, · · · , 9), whereas the auditory stimuli included
10 spoken numbers ((0, 1, · · · , 9; 22 kHz, 16 bit). The
intensities of sounds were adjusted by equalizing the root
mean square power across all sound files. Each stimulus
presentation (300 ms) included a pair of the visual and
spoken numbers which could be semantically congruent
(such as a visual number 8 and a spoken number 8) or in-
congruent (such as a visual number 5 and a spoken num-
ber 6). Furthermore, there was a 700-ms interval between
two consecutive stimulus appearances. Note that all the
audiovisual stimuli are presented one-by-one with the vi-
sual stimuli appeared in the same location of the screen.
This made the paradigm a gaze-independent one.

Figure 1: GUI of the audiovisual BCI.

Experimental procedures
The healthy subjects participated in Experiment I, where-
as the patients with DOC participated in Experiment II.
Experiment I contained three sessions in a random or-
der, corresponding to the visual (V), auditory (A) and au-
diovisual (AV) stimulus conditions, respectively. In each
session, there were first a calibration run of 10 trials for
training the support vector machine (SVM) model and
then a evaluation run of 40 trials. Note that we collect-
ed a small training data set for each subject, because this
BCI system was designed mainly for patients with DOC
who are easily fatigued during the experiment.
The experimental procedure of one trial of the audiovi-
sual session is illustrated in Fig. 2. Four pairs of audio-
visual stimuli were first constructed, in which one pair
of audiovisual stimuli were semantically congruent and
the other three pairs were semantically incongruent. Un-
der the condition of semantic congruency/incongruency,
these visual stimuli and auditory stimuli were pseudo-
randomly chosen from the visual and spoken numbers
(0, 1, · · · , 9). Each trial began with the visual and au-
ditory presentation of the task instructions, which last-

ed 8 s. The instruction was “Count the number of times
that the congruent audiovisual stimulus pairs appeared.”
Following the instruction, the four audiovisual stimulus
pairs constructed as above were presented one by one for
8 times in a random order. Specifically, four number but-
tons flashed from appearance to disappearance in a ran-
dom order. When a number button appeared, a spoken
number was presented for 300 ms simultaneously. The
subject was instructed to count the appearances of the
congruent audiovisual stimuli (target) while ignoring the
incongruent audiovisual stimuli (nontarget). After 32 s,
a feedback result determined by the BCI algorithm ap-
peared in the center of the monitor. If the result was cor-
rect, a positive audio feedback of applause was given for
4 s to encourage the subject. Otherwise, no feedback was
presented and the screen was blank for 4 s.

Figure 2: Procedure of one trial in the audiovisual condi-
tion.

For the visual and auditory sessions, the experimental
procedure was similar to that for the audiovisual session
with the following two exceptions. First, the instruction
was “Focus on the target number (e.g., 8), and count the
number of times that the target number is presented”;
Second, there were visual-only stimuli for the visual ses-
sion and auditory-only stimuli for the auditory session.
Experiment II contained an audiovisual session in which
the procedure of each trial was the same as that for the
audiovisual session of Experiment I. Eight patients par-
ticipated in this experiment, which included a calibration
run of 10 trials and an online evaluation run of 40 trial-
s. Because the patients were subject to fatigue, the cali-
bration and evaluation runs were divided into five blocks
each of which contained 10 trials and was conducted on a
separate days. Using EEG data from the calibration run,
we trained a SVM classifier for the first evaluation block.
For each of the later blocks, the classification model was
updated using the data from the previous block. For ex-
ample, we used the data from Block 2 to update the SVM
model and then began the evaluation Block 3. During the
experiment, the experimenters and families explained the
instructions repeatedly so that the patient paid attention
to the audiovisual target stimuli. The patient was care-
fully observed by an experienced doctor to ensure task
engagement. Additionally, the break between two con-
secutive trials was extended to at least 10 s depending on
the patient’s level of fatigue.
Data acquisition A NuAmps device (Neuroscan, Com-
pumedics Ltd, Victoria, Australia) was used to collect s-
calp EEG signals. Each patient wore an EEG cap (LT
37) with Ag-AgCl electrodes. The EEG signals were
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Table 1: Summary of patients’ clinical status.

Patient Age Gender Clinical
Diagnosis Etiology Time Since Onset

(months)
CRS-R score (subscores)
Before the experiment

VS1 34 M VS ABI 2 5 (1-1-1-1-0-1)
VS2 55 M VS TBI 5 7 (1-1-2-2-0-1)
VS3 41 M VS CVA 1 6 (1-1-1-1-0-2)
VS4 48 M VS ABI 3 6 (1-1-2-1-0-1)
VS5 22 M VS TBI 18 5 (1-1-1-1-0-1)

MCS1 53 F MCS ABI 3 9 (1-3-2-1-0-2)
MCS2 37 M MCS TBI 4 8 (1-3-1-1-0-2)
MCS3 38 M MCS TBI 2 9 (1-3-2-1-0-2)

ABI, anoxic brain injury; CRS-R, coma recovery scale-revised; CVA, cerebrovascular accident; and TBI, traumatic
brain injury; JFK CRS-R subscales: Auditory, visual, motor, oromotor, communication, and arousal functions.

referenced to the right mastoid. The EEG signals used
for analysis were recorded from 32 electrodes placed at
the standard positions of the 10-20 international system.
The impedances of all electrodes were kept below 5 k Ω.
The EEG signals were amplified, sampled at 250 Hz and
band-pass filtered between 0.1 Hz and 30 Hz.

Data processing We performed the same online anal-
ysis for each session in Experiments I and II. In the fol-
lowing, we illustrated the online detection in an audio-
visual session, as an example. For each trial of the cal-
ibration and evaluation runs, the EEG signals were first
filtered between 0.1 and 20 Hz. We extracted an epoch
(0-900 ms after the stimulus-onset) of the EEG signal-
s for each channel and each stimulus appearance. This
EEG epoch was down-sampled by a rate of 5 to obtain a
data vector consisting of 45 data points. We concatenated
the vectors from all 30 channels to obtain a new data vec-
tor, which corresponded to a stimulus appearance. Sec-
ond, we constructed a feature vector for each audiovisual
stimulus pair by averaging the data vectors across the 8
appearances in a trial. Third, we trained an SVM classifi-
er using the feature vectors with labels from the calibra-
tion data. Finally, for each online trial, the SVM classifier
was applied to the four feature vectors corresponding to
the four audiovisual stimulus pairs, and four SVM scores
were obtained. The detection result in this trial was de-
termined as the audiovisual stimulus pair corresponding
to the maximum of the SVM scores.

We performed ERP analysis using data from the evalua-
tion run in each session of Experiment I. Specifically, for
each trial, after band-pass filtering (0.1-20 Hz), the EEG
epochs of each channel were extracted from 100 pre-
stimulus to 900 ms post-stimulus, and baseline correct-
ed using the data of the interval of 100 ms pre-stimulus.
For artifact rejection, the epochs were discarded from av-
eraging if the potential exceeded 60 µV in any one of
channels. ERPs responses were extracted by time-locked
averaging the EEG signal across 40 trials in the evalua-
tion run for each of the stimulus conditions.

We also compared the ERPs for the target and nontar-
get stimuli to illustrate the effectiveness of our audiovi-

sual BCI paradigm. Specifically, statistical analysis of
the ERP components were conducted as follows [10].
First, based on the averaged ERP waveforms extracted
above, the ERP components and their corresponding time
windows were selected for all conditions. The width of
the time window for each ERP component was 200 m-
s, referring to existing references such as [11]. Then,
peak latency of each component was computed separate-
ly for each subject/condition individually. The latencies
of maximum peaks were individually computed to ensure
that each individual component’s peak was enclosed in
its corresponding time window. Next, mean amplitudes
of these components were computed using a small win-
dow (50 ms in this study) surrounding the peak maxi-
mum. Finally, amplitude differences between targets and
non-targets were tested with two-way repeated measures
analyses of variance (ANOVA) on stimulus condition (the
AV, V, and A conditions) and electrode site (“Pz”, “Cz”,
and “Fz”) as within-subjects factors for each of the ERP
components. Post-hoc t-tests (Tukey-corrected for mul-
tiple comparisons) were further performed when neces-
sary. Results were considered significant when p values
were below 0.05.
For each session, the accuracy was calculated as the ratio
of the number of all correct responses (hits) among the
total number of presented trials. We used a binomial test
based on Jeffreys’ Beta distribution to calculate the sig-
nificant level in a four-class paradigm as described below
[12]:

λ ≈

{
a+

2(N − 2m)z
√

0.5

2N(N + 3)

}
+ z

√
a(1− a)

N + 2.5
, (1)

where N is the number of trials, m is the expected num-
ber of successful trials, a is the expected accuracy (0.25
in this study), λ is the accuracy rate, and z is the z-score
based on the standard normal distribution. Given a signif-
icance level of 0.05 for a one-sided test, z is 1.65. Using
(1), we could obtain the accuracy rate λ corresponding to
the significance level, which is 37.3% for 40 trials.
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RESULTS

Results for healthy subjects Ten healthy subjects par-
ticipated in Experiment I. Tab. 2 summarized the online
classification accuracies for all healthy subjects. Among
the AV, V and A conditions, the A one exhibited the low-
est online accuracy for each healthy subject. The audio-
visual online accuracies for nine of the ten healthy sub-
jects were better than or equal to the visual-only online
accuracies. The average online accuracy across all sub-
jects were 92%, 84.75%, and 74.75% for the AV, V and
A conditions, respectively, as shown in Tab. 2. A one-
way repeated measures ANOVA was conducted to test
the effect of stimulus condition on the online accuracy.
The analysis revealed that the stimulus condition exerted
a significant effect (F(2, 27) = 7.849, p≤0.01). Further-
more, Post-hoc Tukey-corrected t-tests indicated that the
online average accuracy was significantly higher for the
AV condition than for the V or A condition (all p≤0.05
corrected).

Table 2: Online accuracies for healthy subjects.

Subject
Accuracy (%)

A V AV
H1 75 80 90
H2 70 85 85
H3 55 85 85
H4 87.5 87.5 92.5
H5 70 80 90
H6 82.5 90 100
H7 67.5 80 100
H8 80 90 85
H9 82.5 87.5 97.5

H10 77.5 82.5 95
Average 74.75±0.09 84.75±0.04 92±0.06

We compared the brain responses evoked by the target
and nontarget stimuli in the AV, V and A conditions in
our ERP analysis. The group average ERP waveforms
from 0 to 900 ms post-stimulus at the “Fz”, “Cz”, and
“Pz” electrodes are shown in Fig. 3(a). Three ERP com-
ponents P300, N400, and LPC were observed. We fur-
ther determined the time windows for these ERP compo-
nents (P300 window: 300-500 ms; N400 window: 500-
700 ms; and LPC window: 700-900 ms). A two-way
ANOVA showed no significant interaction between fac-
tors of stimulus condition and electrode site on each of
the ERP components. The electrode site had no signifi-
cant effect for each of the ERP components. However, the
analysis demonstrated a significant main effect of stimu-
lus condition (the audiovisual, visual-only, and auditory-
only conditions) on each of the ERP components (P300:
F(2,63)=7.928, p≤0.01; N400: F(2,63)=8.708, p≤0.01;
LPC: F(2,63)=12.557, p≤0.01). Furthermore, Post-hoc
Tukey-corrected t-tests revealed the following: (i) For the
P300 component, the amplitude differences between tar-
get and non-target were stronger in the AV condition than
in the A condition (p≤0.01 corrected). (ii) For the N400
component, the amplitude differences between target and

non-target were stronger in the AV condition than in the
V or A condition (all p≤0.05 corrected). (iii) For the LPC
component, the amplitude differences between target and
non-target were stronger in the AV condition than in the
V or A condition (all p≤0.01 corrected).
We further evaluated the discriminative features in the
AV, V and A conditions using point-wise running t-tests
(two-tailed) for target vs. nontarget responses. It follows
from Fig. 3(b) that there were more discriminative fea-
tures within certain time windows, such as 300-500 ms,
500-700 ms, and 700-900 ms, for the AV condition than
for the V and A conditions.

Figure 3: ERP waveforms and comparison results in the
audiovisual (AV), visual-only (V) and auditory-only (A)
conditions. (a) Average ERP waveforms of all healthy
subjects from the “Fz”, “Cz”, “Pz” electrodes. The solid
and dashed curves correspond to the target and nontarget
stimuli, respectively. (b) Point-wise running t-tests com-
pared target with nontarget responses across all healthy
subjects for 30 electrodes. Significant differences were
plotted when data points met an alpha criterion of 0.05
with a cluster size larger than seven.

Patients’ results Eight patients participated in Exper-
iment II, with the online results for the patients presented
in Tab. 3. Three of the eight patients (VS4, MCS2, and
MCS3) achieved accuracies (ranging from 40 to 45%)
that were significantly higher than the chance level 25%
(accuracy ≥37.3% or p≤0.05, binomial test). For pa-
tients VS1, VS2, VS3, VS5, and MCS1, the accuracies
were not significant (i.e., ≤37.3%; ranging from 22.5 to
35%).
For the eight patients with DOC, the ERP waveforms
were calculated. Specifically, the ERP waveforms from 0
to 900 ms post-stimulus were obtained by averaging the
EEG channel signals across all 40 trials. Fig. 4 shows the
average EEG signal amplitudes of the electrodes “Fz”,
“Cz” and “Pz” for the eight patients; the solid red and the
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dashed blue curves correspond to the target and the non-
target stimuli, respectively. For the three patients (VS4,
MCS2, and MCS3) whose accuracies were significantly
higher than the chance level, a P300-like component is
apparent in each target curve, whereas the N400 and LPC
responses were not apparently evoked as in the healthy
controls. For the other five patients (VS1, VS2, VS3,
VS5, and MCS1), none of the P300, N400, and LPC com-
ponents were observed.
Among the five patients who were determined to be en-
tirely vegetative based on repeated behavioral JFK CRS-
R assessments, two patients (VS2 and VS4) progressed
to MCS during the experiment. Furthermore, the pa-
tient VS4 subsequently emerged from MCS after the ex-
periment. The patients MCS2 and MCS3 subsequent-
ly emerged from their conditions and showed motor-
dependent behavioral communication two months after
the experiment. Other patients (VS1, VS3, VS5, and M-
CS1) remained clinically unchanged at follow-up.

Table 3: Online accuracy of each patient.
Subject Trials Hits Accuracy p-value

VS1 40 11 27.5% p = 0.7150
VS2 40 9 22.5% p = 0.7150
VS3 40 12 30% p = 0.4652
VS4 40 16 42.5% p = 0.0106
VS5 40 13 32.5% p = 0.2733

MCS1 40 14 35% p = 0.1441
MCS2 40 16 40% p = 0.0285
MCS3 40 18 45% p = 0.0035

Figure 4: ERPs waveforms from the “Fz”, “Cz” and “Pz”
electrodes for the eight patients with DOC. The solid red
curves correspond to the target stimuli, and the dashed
blue curves correspond to the nontarget stimuli.

DISCUSSION

In this study, we proposed a novel audiovisual BCI sys-
tem using semantically congruent and incongruent audio-
visual stimuli of numbers. All the audiovisual stimuli
were presented in a serial manner, which made the BCI
system gaze-independent. With respect to classification
accuracy, the experimental results for ten healthy sub-
jects demonstrated that the audiovisual BCI system out-
performed the corresponding visual-only and auditory-
only BCI systems. Furthermore, we applied the pro-
posed audiovisual BCI for awareness detection in patients
with DOC. Among the eight DOC patients (5 VS, 3 M-
CS) involved in the experiment, three (1 VS, 2 MCS)
achieved accuracies significantly higher than the chance
level (Tab. 3). To some extent, these results demonstrated
both command following and residual number recogni-
tion ability in these three patients.
Here, our paradigm was different from the classic ‘odd-
ball’ paradigms. The stimuli in our paradigm included se-
mantically congruent and incongruent audiovisual num-
bers (25% congruent and 75% incongruent audiovisual
stimuli), which were presented one by one. Using this
paradigm, our experimental results for healthy subjects
showed that two main ERP correlates of semantic pro-
cessing (N400 and LPC) as well as the P300 were elicit-
ed in the audiovisual condition. As shown in Fig. 3(a),
the ERP responses to semantic processing first includ-
ed a negative shift (N400) with a latency of 500-700 ms
at electrodes “Fz”, “Cz” and “Pz” for semantically in-
congruent stimuli (nontarget). Then, a following posi-
tive peak (LPC) during 700-900 ms was observed for se-
mantically congruent stimuli (target) at electrodes “Fz”,
“Cz” and “Pz”. These results are consistent with previ-
ous reports on semantic processing [13, 14]. In our ERP
analysis for the healthy subject, a stronger P300 response
was recorded in the AV condition than in the A condi-
tion, and both N400 and LPC responses were stronger in
the AV condition than in the V and A conditions. Fur-
thermore, as shown in Fig. 3(b), in several time windows
corresponding to the P300, N400 and LPC components,
the difference between the target and nontarget respons-
es was greater for the AV condition than for the V and
A conditions. This enhanced difference was useful for
improving the performance of the BCI (see Tab. 2).
As previously mentioned, misdiagnosis rates based on
behavioral observation scales such as CRS-R are rela-
tively high. BCIs can be used as a supportive bedside
tool to assess patients’ residual cognitions. For instance,
if awareness is detected in a VS patient using a BCI sys-
tem, we may conclude that the patient possesses the cog-
nitive functions associated with the experimental task and
that a misdiagnosis might occur. In this study, the ex-
periment results showed that one VS patient (VS4) was
able to perform the BCI experimental task with a signif-
icant accuracy. This result corroborates previous fMRI
([15]) and EEG ([16]) data that some patients who meet
the behavioral criteria for VS might have residual cogni-
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tive functions and even consciousness. In fact, accord-
ing to the behavioral CRS-R assessments, this VS patient
progressed to MCS one month after the experiment and
further emerged from MCS three months later. This be-
havioral observation supports our BCI assessment result
for this VS patient.
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ABSTRACT: In recent years, implanted BCIs gained 

increasing interest. Relying on subdural or intracortical 

electrodes, these systems carry the advantage of brain 

signals gathered at the source. Successes in this field have 

been reported in controlling robotic arms, intended for 

severe paralysis or arm amputation, and recently also for 

replacing communication. A prerequisite for long-term 

use of implantable BCIs is that there is no decrease in 

signal quality over time. In this paper we examined the 

signal stability of a fully implanted BCI system for 

communication over a period of 12 months. Three 

different tasks were used to investigate signal stability 

since implantation, all of which show a stable and 

decodable signal, indicating that the implanted electrodes 

are durable and information transfer is preserved for at 

least 12 months. These findings suggest that ECoG-based 

BCI systems are robust and can be used at home for long-

term in patients that need them. 

 

INTRODUCTION 

 

For people with severe paralysis and communication 

problems, assistive technologies are an important part of 

their lives, particularly for people suffering from locked-

in syndrome (LIS). LIS is characterized by the loss of all 

voluntary movement, resulting in quadriplegia and the 

loss of speech. LIS can be divided into three categories, 

classic LIS, where only vertical eye movement and eye 

blinks remain, incomplete LIS, which is the same as 

classic LIS, but with additional voluntary movement 

other than vertical eye movements, and complete LIS, 

which is LIS without any voluntary movement. In all 

variants cognition is intact and people are aware of their 

surroundings [1]. The causes of LIS are very diverse and 

include brainstem stroke, trauma and motor neuron 

diseases like amyotrophic lateral sclerosis (ALS). The 

latter affects about 5 in 100.000 people and especially 

late-stage ALS patients on invasive ventilation may 

progress into LIS. The ability to communicate is 

correlated with quality of life in people with LIS [2], [3]. 

Current methods for communication mainly rely on 

residual motor control such as eye-movements or 

minimal movement of a finger [4]. When also that last 

motor function fails, communication becomes almost 

impossible and a BCI becomes one of the last remaining 

options. 

Since the beginning of BCI-research, non-invasive, 

mostly EEG-based, BCIs have promised to be a 

replacement for communication in patients [5], [6]. 

However, the clinical application is only slowly realized 

and for LIS-patients, EEG-BCI performance is lower 

than for less severely paralyzed people [7]. Recently, 

functional near-infrared spectroscopy (fNIRS) was used 

to enable complete locked-in patients to communicate 

[8]. However, the application of such a device at the 

patients’ home is currently not an option as experts need 

to setup the system.  

Implantable BCIs, utilizing the brain signal recorded with 

electrodes on or in the brain, have the potential to become 

a useful solution to the daily obstacles of people suffering 

from LIS, due to their high signal quality and potential 

24/7 availability. The promises of implantable BCIs have 

been investigated and demonstrated in a laboratory 

setting [9]–[11] but recently, the first successful 

independent home-use of an implantable BCI by an ALS-

patient was described by our group [12]. We showed high 

spelling performance and user-satisfaction, bridging the 

gap between research and the application of implantable 

BCIs at home. The system was implanted in November 

2015 and is still used at home by the patient. In order to 

allow the current patient, as well as future users, to use 

the system with high accuracy for an even longer period 

of time, the long-term stability of the measured ECoG 

signal is important. Long-term use of an ECoG-based 

BCI has not been tested before and signal recordings 

have mainly been done in epilepsy patients or patients 

receiving, experimental, closed-loop Deep Brain 

Stimulation (DBS). Sillay and colleagues showed long-

term stability of impedance in both subdural and depth 

electrodes, indicating a stable tissue-electrode contact a 

prerequisite for good signal recordings [13]. 

Here we report on the signal stability of a fully implanted 

BCI system, the Utrecht NeuroProsthesis (UNP) during 

a period of 12 months, and conclude that implanted BCIs 

can be a long-term solution for LIS-patients.  
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MATERIALS AND METHODS      

     

     The implanted system: The UNP consists of two four-

electrode ECoG-strips connected to an implanted 

amplifier/transmitter device (the device; Activa® PC+S 

Medtronic) by subcutaneous leads. The strips are placed 

subdurally over the left sensorimotor hand area and on 

top of the left prefrontal cortex. Both locations were 

preoperatively determined by functional MRI. Here we 

only report on data collected by the strip placed on the 

left sensorimotor hand area. The device was implanted in 

the left thorax and filters and amplifies the signal before 

it sends it wirelessly to a computer outside the body. 

Outside the body, the signal is received by a receiver 

module connected to a Windows tablet running custom 

software based on the BCI2000 platform [14] for signal 

processing and translation. For a complete lay-out of the 

implant see figure 1. 

    Patient: For this study a locked-in patient (58-year-old 

female) who suffers from late-stage ALS was implanted 

with the UNP.  

     Tasks and data acquisition: Shortly after 

implantation, the best performing bipolar electrode pair 

within the strip was selected based on the correlation of 

the high frequency band (HFB) power (65-95Hz) with a 

screening task (expressed as R2) measured at a sampling 

rate of 200Hz. The screening task consisted of alternated 

blocks of attempted movement of the right hand (finger 

tapping) and rest. At home, weekly repetitions of the 

screening task enabled us to track the R2 values over 

time, as an indication of signal stability.  

Additionally, we did regular baseline/rest measurements 

in order to follow the raw signal over time. For this we 

used a baseline task, in which the patient had to look at a 

screen with a blue circle for 3 minutes and think of 

nothing in particular. Data were recorded with a sampling 

frequency of 200Hz and HFB-power was calculated for 

each run using multitaper time-frequency transformation 

based on multiplication in the frequency domain (average 

power over 65-95Hz, 1Hz bin, Hanning window) [15]. 

Finally, in order for the patient to learn to control her 

brain signal we used a one-dimensional continuous 

cursor control task (cursor task). For this task the patient 

controlled the vertical speed of a cursor travelling from 

the left side of the screen to the right (horizontal speed 

was fixed), using attempted movement to steer the cursor 

up and rest to lower the cursor in order to hit a target on 

the right side. The cursor task was performed regularly 

after implantation, allowing us to follow the usability of 

the control signal over time. Data for the cursor task were 

recorded in the energy-saving mode of the device, this 

means that bandwidth filtering on HFB was done on the 

device with 5Hz sampling frequency. For each repetition 

of this task, following an initial calibration run to acquire 

offset and gain values for that day, a 5 minute run was 

done. The amount of trials varied during the year as 

feedback time was reduced from 6 to 2 seconds. 

Therefore, the amount of total trials in a 5 minute run was 

between 26 and 47 during the year. The score was 

calculated as the percentage of correct target hits. Besides 

the score, we report here the average power during the 

baseline (down) trials, as transmitted by the implanted 

device. For all tasks, data acquisition and stimulus 

presentation were done on the BCI2000 software running 

on a separate research laptop. 

 

 
Figure 1: Electrode Placement and System Setup in the 

Brain–Computer Interface System. Panel A shows the 

contact points of the electrode strips, which are indicated 

by white dots, over the sensorimotor and dorsolateral 

prefrontal cortex; the positions of electrodes were based 

on postoperative computed tomographic (CT) scans 

merged with the pre-surgical MRI. Electrodes e2 and e3 

on the electrode strip were chosen for brain–computer 

interface feedback. Panel B shows a postoperative chest 

radiograph displaying the transmitter device (Activa® 

PC+S, Medtronic), which was placed subcutaneously in 

the chest, and wires leading to the electrodes. Two of four 

wires were connected to the device. Panel C shows the 

postoperative CT scan with the locations of four 

electrode strips. The dots on the four wires are 

connectors. Panel D shows the components of the brain–

computer interface system, including the transmitter, 

receiving antenna, receiver, and tablet. (Copyright © 

2016, Massachusetts Medical Society) 

 

RESULTS 

 

The results of the screening task showed a stable R2 for 

the bipolar pair used from 0.88 just after implantation to 

0.86 one year after implantation (Figure 2).  

After an initial 21% decrease of HFB power 8 weeks 

post-surgery, mean baseline/rest HFB power was stable 

and remained so for the following year. The cause for the 

fluctuation of 8.8% (relative Std) in mean HFB power 

during that year, which was also apparent in the rest 

periods of the cursor task (down trials; 5.7%), is 

uncertain but possibilities include biological factors such 
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as, temperature, level of fatigue and circadian rhythm.  

The average performance on the cursor task over 12 

months with sensorimotor control was 91 ± 6%, which is 

significantly above chance (50%, p<0.001). 

 

 
Figure 2:  R2 values of the bipolar pair used for brain-

computer interface control (HFB power), measured 

frequently with the screening task for one year. 

 

DISCUSSION 

 

Here we show that a fully implantable, ECoG-based BCI 

system can be used by a late-stage ALS-patient at home 

for over a year. Twice weekly visits during a year and 

regular visits after that year show that the signal 

measured is stable and can be used for BCI-control.  

This is the first study to show long-term ECoG-BCI 

control-signal stability. Earlier ECoG-BCI studies have 

mainly been performed with epilepsy patients, who were 

temporarily implanted with ECoG electrodes. In these 

patients, the time constraints of the clinical procedure 

generally does not allow for long-term BCI 

measurements. Available data did indicate, however, that 

ECoG-based BCI performance is good for multiple days 

when calibrating or using adaptive algorithms [16], [17].  

In 2009, Blakely and colleagues showed robust BCI 

control over the course of 5 days without the need of 

retraining or adaptive algorithms [18].  

Long-term ECoG measurements have been performed 

before for other purposes than BCI. Earlier studies with 

implanted electrodes in non-human primates show that 

most signal changes occur in the first months and that 

relevant motor system frequencies (beta and gamma 

bands) are detectable over the course of 24 months [19]. 

Additionally, in humans, long-term ECoG recordings 

have been done in patients receiving experimental 

closed-loop DBS as a treatment for epilepsy or Tourette’s 

syndrome [13], [20], concurrent with our results that 

signal transfer is maintained for long-term. 

A stable and robust BCI control signal for long-term use 

is important as it ensures availability of a BCI for patients 

who are likely to need the device for years. Additionally, 

it is also needed for reducing, or even to circumvent, the 

need for (re)calibration, making the system faster to start 

up and easier to use. Importantly, the current results 

suggest that there is no indication that in the future signal 

quality will decrease.  

 

CONCLUSION 

 

In conclusion these data indicate that implanted ECoG 

electrodes provide a durable signal quality and 

information transfer is preserved over the course of at 

least 12 months. These results demonstrate that long-

term ECoG signal quality suffices for meeting the needs 

of late-stage ALS patients for a reliable communication 

device for home use. 
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ABSTRACT: In this study we investigated the cue-locked
(P300 and later event-related potentials components)
and response-locked electroencephalography (EEG) phe-
nomena associated to externally and internally-driven tar-
get selection. For that we designed a novel paradigm, that
aimed to separate the selection of motor goals according
to the respective task rules from the actual programming
of the upcoming motor response. Our paradigm also
made possible the estimation of the onset of a self-paced
reach-and-grasp movement imagination for better captur-
ing the associated movement-related cortical potentials
(MRCPs). Our preliminary results indicate that differ-
ences between the externally and internally-driven con-
ditions are present in the cue-locked event-related poten-
tials, but not in the response-locked MRCPs. Our study
contributes for a better understanding of the neurophysio-
logical signature of movement-related processes, includ-
ing both perception and actual motor planning, which are
so extensively used in brain-computer interfaces (BCIs).

INTRODUCTION

Movement planning consists in all the movement-related
processes that happen before the actual movement initi-
ation. This broad definition of movement planning in-
cludes not only the processes that define how the move-
ment will look like, e.g. in trajectory, but also the cog-
nitive processes that allow us to decide on motor goals
[1]. Wolpert and Landy defended that movement plan-
ning is a decision-making process, where both sensory
and motor decisions are integrated [2]. In a narrower per-
spective, Wong et al. proposed to limit motor planning
to the processes that allow the translation of the abstract
definition of a motor goal to the concrete movement spec-
ifications [1]. Perception/cognition and motor planning
are then linked at the moment when the motor goal is
defined. For example, if we want to grasp a glass, we
first observe the environment and rely on attention to lo-
cate the glass (target). Only then we decide on how we
will reach it. The selection of the target is usually depen-
dent on task rules, which are encoded in the prefrontal
cortex [3]. These rules can be externally or internally-
driven (e.g. I will pick the wine glass because I intend
to drink wine.) and their application is critical to the def-

inition of the motor goal. Undoubtedly, understanding
the processes that lead to the final course of action, in-
cluding the definition of motor goals, is of great inter-
est not only for basic neuroscience but also for research
fields which rely on the neurophysiological signature of
movement-related processes, like in brain-computer in-
terfaces (BCIs) research [4]. Studies on event-related po-
tentials (ERPs) show that there is a modulation of ERPs
later components, like the P300, as a function of com-
plexity of cognitive control prior to motor tasks [5]. The
explanation that only attention is modulating these ERP
components started to be questioned. To elucidate the
P300’s role in information processing, Nieuwenhuis et al.
integrated evidence to suggest that the P300 reflects the
response of the locus coeruleus-norepinephrine system to
the outcome of decision-making responses [6]. Another
interesting component of the ERP is the positive slow
wave, which emerges after the P300, and has been asso-
ciated to decision-making prior to the preparation of a re-
sponse [7]. Recently, our group showed that the presence
of motor goals is modulated in the EEG time-domain sig-
nals in the delta band around movement onset [8]. These
slow EEG fluctuations, when associated with motor tasks
(e.g. movement execution or imagination) are known as
movement-related cortical potentials (MRCPs) [9]. We
now aim to investigate goal-directed movements when
several targets are presented simultaneously and in two
main conditions: in the internally-driven conditions the
subjects decide which of the five or two possible targets
will be their motor goal and in the externally-driven con-
dition the subjects just have one option. After selecting
their target according to the task rule, the participants
imagined a single reach-and-grasp movement. In a novel
paradigm, we aim to separate the target selection from ac-
tual motor planning. Further, we decided on a self-paced
motor imagery task since we will later investigate new
methods for movement detection for BCI control. In this
paper we present and discuss the results obtained, in re-
spect to the cue-locked (P300 and later ERP components)
and response-locked (MRCPs) potentials. We study these
two phenomena since the first are thought to mainly re-
flect stimulus processing, while the second reflect the up-
coming motor response.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-73

CC BY-NC-ND 400 Published by Verlag der TU Graz 
Graz University of Technology



0 2 15
Time (s)

(A) Externally-
     -driven (ED)

(B) Internally-
     -driven (ID)

(C) Internally-
     -driven II (ID II)

Baseline Target selection + MI Break
1.5 s

Reporting Period

Figure 1: Trial representation. Each trial consisted of a baseline period, followed by one of the three conditions: (A)
externally-driven, (B) internally-driven or (C) internally-driven II. This was followed by a reporting period, where subjects
were asked to report (1) the number that was shown in the scroller (center of the virtual table) when they started the reach-
and-grasp movement imagination (MI) and (2) the target of the MI.

MATERIALS AND METHODS

Participants: Six healthy participants (age 24 ±
3.3 years, 1 male) took part in this study. Participants
gave their informed consent and the study was conducted
in accordance with the protocol approved by the ethics
committee of the Medical University of Graz. Subjects
had normal or corrected-to-normal vision and no his-
tory of neurological or psychiatric disorders. All sub-
jects were right-handed. Subjects sat in a comfortable
chair, in a shielded room, facing the computer monitor
that was placed at a distance of 130 cm in front of them.
Their arms were supported in both armrests. Addition-
ally, a wireless keyboard was placed in front of them, at
the same level as their arms.

Conditions and Paradigm: Participants were in-
structed to perform a reach-and-grasp movement imagi-
nation task. After the end of each trial, there was a report-
ing period in which they used the keyboard. Participants
performed three different conditions that were shown in a
randomly alternated order, but with the same frequency.
An average of 68 trials per condition were recorded, sep-
arated into runs. The trials had a variable duration de-
pendent on the subject, due to the presence of a reporting
period, and were followed by breaks of 1.5 seconds. All
cues were presented on the monitor. Fig. 1 represents one
trial in the three experimental conditions. Each trial be-
gan with a two-second baseline, followed by a cue that in-
dicated one of the three conditions. In all conditions, five
glasses showed up at second 2 in addition to a scroller
that showed consecutive numbers every 750 ms. This
scroller was positioned in the center of the screen. In the
externally-driven (ED) condition, represented in Fig. 1.A,
one glass was filled with water. In this condition, the sub-
jects knew that the target of their reach-and-grasp move-
ment imagination (MI) was the glass filled with water. In

the internally-driven (ID) condition, Fig. 1.B, all glasses
were empty and subjects were instructed to chose one of
the five possible targets. In the second internally-driven
(IDII) condition, Fig. 1.C, two of the five glasses had wa-
ter and subjects were instructed to chose one of them.
The glasses which had water in both ED and IDII condi-
tions were pseudo-randomly positioned and all positions
were covered with the same frequency. We instructed the
participants to select the target as soon as they saw the
glasses. After selecting their target according to the con-
dition rule, subjects were asked to perform the imagina-
tion of a reach-and-grasp to the selected glass, as if it
was positioned in front of them. At the moment they felt
the urge to start the MI, they were instructed to memo-
rize the number that was on the scroller and perform the
reach-and-grasp movement imagination. Inspired by Li-
bet’s clock experiments [10], we used the reported num-
bers to estimate the time when the participants perceived
the urge of performing the movement imagination. Later,
we time-locked the data to this event. Subjects had 13
seconds to select the target and perform the self-paced
movement imagination. At the end of the trial, as showed
in Fig. 1, there was a reporting period in which subjects
reported the number they memorized (from now on called
“reported number”) and the target they selected from 1
to 5. Fig. 1 also shows an example of a correct report-
ing for the IDII condition. After a break of 1.5 s, a new
trial started. Subjects were asked to keep their gaze in
the center of the monitor and specifically to avoid mov-
ing their eyes towards the selected target during the trial.
Moreover, subjects were asked to minimize blinks and
muscular artifacts. During the reporting period, those ar-
tifacts were allowed. All subjects performed reach-and-
grasps to a real glass at the beginning of the experiment
and practised the MI task.
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EEG Recordings: EEG and electrooculography
(EOG) signals were recorded using 64 active actiCAP
electrodes (BrainProducts GmbH, Germany). Reference
was placed on the right mastoid and ground on AFz.
Three EOG electrodes were placed above the nasion and
below the outer canthi of the eyes. Biosignals were sam-
pled at 1kHz using two 32-channel BrainAmp amplifiers
(Brain Products GmbH, Germany). For the recordings
and time-synchronization we used the lab streaming layer
(LSL) framework.

EEG Processing: Raw data were first inspected visu-
ally and noisy channels were removed. We excluded the
trials in which participants reported an incorrect scroller
number and/or target number according to the task rules.
After bandpass filtering (1-70 Hz, zero-phase 4th order
Butterworth), we epoched the data from 0 to 13 s in re-
spect to the start of the trial and we used EEGLAB [11]
to: (1) find values outside an interval between -200 µV
and 200 µV, (2) reject trials with abnormal joint prob-
abilities and/or (3) abnormal kurtosis. A threshold of
5 times the standard deviation was used for each statis-
tic. On average, 25 trials were discarded per subject.
After rejecting those trials, we applied principal compo-
nent analysis (PCA) for dimensionality reduction and re-
tained components that explained 99 % of the variance
of the data. We then used independent component anal-
ysis (ICA) on the PCA-compressed EEG and EOG data
using the extended Infomax algorithm [12]. We marked
the independent components that corresponded to ocular
artifacts. In the unfiltered data, after rejecting the afore-
mentioned artefactual trials, we used the weights of the
ICA to back-project the non-artefactual components into
the channel-space. ERPs were locked to the cues which
distinguished the three different conditions (i.e. second 2
in Fig. 1). Individual averages were collapsed to calcu-
late the grand-average cue-locked ERPs and topograph-
ical maps of the scalp ERPs distribution were obtained.
We analysed the MRCPs as response-locked EEG neural
correlates of movement intention. After bandpass filter-
ing from 0.1 to 3 Hz with a 4th order zero-phase Butter-
worth filter, we time-locked the trials to the correspon-
dent reported numbers and computed the grand-averaged
MRCPs, separately for the three conditions.

RESULTS

Cue-locked ERPs and their topographical maps at time
windows of interest for the three different conditions
are depicted in Fig. 2.A and Fig. 2.B, respectively. For
all conditions, the P300 positive deflection starts around
260 ms after the cue and peaks at 340 ms. While the peak
latency is the same among conditions, the amplitude is

different between the ID or IDII and the ED condition.
As shown by Fig. 2.B, the differences between the inter-
nally (both ID and IDII) and externally-driven (ED) con-
ditions are first more central distributed (200-300 ms) and
then more parietal (300-400 ms). P300 amplitudes then
decrease until 500 ms after the cue, followed by a slow
positive component, which is stronger in the ED condi-
tion. These differences are seen in the centroparietal elec-
trodes, according to the maps in Fig. 2.B. Fig. 3.A shows
the grand-average MRCPs at electrodes FCz, C3, Cz, C4,
CP3, CPz and CP4 for the three conditions and Fig. 3.B
shows the respective topographical distribution around
the reported number. The self-paced MI was preceded
by a negativity that started at around one second before
the reported number. The negative peak was higher in the
midline electrodes (FCz and Cz) at 900 ms after the re-
ported number. No differences were observed among the
three conditions around this event.

DISCUSSION

Using a novel paradigm, we investigated the cue-locked
and response-locked EEG phenomena associated to ex-
ternally and internally-driven target selection. In a pre-
liminary analysis, our results indicate that differences be-
tween the externally and internally-driven conditions are
present in the cue-locked, but not in the response-locked
ERPs (MRCPs). Specifically, the P300 and the follow-
ing slow ERP components are different among the condi-
tions. The P300 is associated to stimulus processing [13],
which is present in all three conditions. Furthermore,
there was the need of mapping a rule to the presented
stimuli, but this rule varied in complexity among the con-
ditions. The necessity of target selection was limited to
the two internally-driven conditions (ID and IDII) which
indicates a higher demand in these conditions when com-
paring to the externally-driven condition. As suggested
by Niewenhuis et al., later ERP components encode pro-
cesses of guiding the future response in the service of task
demands and rules [6]. While it could be argued that an
increase in task demand is due exclusively to the differ-
ent number of targets available (1 in the ED against 2
or 5 in the IDII and ID, respectively), we found no dif-
ferences between the IDII and ID conditions. For that
reason, our first results indicate that increased amplitudes
are associated to a higher demand caused by the need of
target selection in both internally-driven conditions. But
an important question arises: are the observed differences
strictly related to the upcoming motor response? It would
be interesting to know whether the need of motor plan-
ning directly influences these components by introducing
a condition where no motor task is necessary.
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Figure 2: Results of the ERP analysis. (A) Cue-locked grand-average waveforms for electrodes FCz, C3, Cz, C4 and
CPz. (B) Topographical maps in the time windows of interest. The first three rows show the topoplots for the three
conditions and the last row shows the differences between the internally-driven (ID) condition and the externally-driven
(ED) condition. Differences between IDII and ED are not shown since they are similar to the ID vs. ED differences here
plotted.
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Figure 3: Grand-average movement-related cortical potentials in respect to the imagery onset (i.e. reported number). (A)
Time-domain signals for electrodes FCz, C3, Cz, C4, CP3, CPz and CP4 separately for the three different conditions. (B)
Topographical maps of the EEG activity around movement onset.

Internally-driven processes have been linked to the more
frontal areas of the brain: fronto-striatal circuits, dorso-
lateral prefrontal cortex and sensorimotor area (SMA)
[14]. We found out that the differences in amplitudes be-
tween the conditions are first mainly frontally distributed
(higher for the internally-driven conditions) and then lo-
cated in more parietal areas. The role of parietal ar-
eas in visuomotor transformations has been extensively
studied [15]. Claiming exactly which brain areas con-
tribute to the observed differences would be premature
at this early stage, but the topographical distribution of
the ERP components suggest the involvement of the same
brain regions. With regard to the MRCPs, internally and
externally-driven conditions did not differ in respect to
both amplitude and latency of the negativity observed
when time-locking the trials to the reported number. Par-
ticipants were instructed to select their target as soon as
they saw the five glasses. Since the motor goal had been
previously decided according to the task rules, at the time
the participants felt the urge to start the imagination, only
the pure movement preparation (i.e. the abstract kinemat-
ics [1]) was necessary. These processes were the same
for all the conditions but they were then dependent on the
spatial location of the motor goal (i.e. position of the se-

lected glass), which will then define the trajectory of the
reach. Since a motor goal was always present, no differ-
ences were expected due to the experimental conditions.
Differences can be expected depending on the target lo-
cation, since low-frequency time-domain signals contain
information about movement direction [4]. It is also im-
portant to mention that in our paradigm the MRCPs were
not closely related (in time) to the cue-locked ERPs, since
the minimum time between cue and reported number was
3.4 seconds out of all recorded trials. An interesting dis-
cussion point is then whether in paradigms in which cue
and response are very close in time there is an accumula-
tion of these two cue-locked and response-locked events.
Given the nature of the self-paced task (movement imagi-
nation), we included the scroller and the reporting period
to obtain a time-locking event for motor imagery. Data
time-locked to this event can later be used to train a model
for movement detection intention which is then tested in
a pseudo-online manner. We preferred memorization to
an actual motor task (e.g. key press at the end of the task)
since there is the high chance that an additional motor
task interferes with the motor imagery task, making the
observed pattern questionable. Further, we could use this
intermediate task to separate target selection from the ac-
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tual motor task. To determine the consistency of the EEG
phenomena observed we will measure more participants
and conduct the appropriate statistical analysis to access
the significancy of our results. Behavioural analysis still
needs to be performed, specifically to investigate the in-
teraction between the response times (i.e. time between
the cue presentation and the reported number marking the
MI start) and the type of condition.

CONCLUSION

In this study we analysed the event-related potentials
(cue-locked and response-locked) associated to target
selection in a self-paced motor imagery task. Our
first results show that differences between internally
and externally-driven target selection are present in cue-
locked but not response-locked ERPs. In the future we
will analyse more subjects and conduct a careful sta-
tistical analysis to assess the significance of the results.
Further, the paradigm that we implemented allows for
a more accurate determination of a time-locking event
in movement imagination tasks, which can be important
for single-trial movement detection of self-paced move-
ments.
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ABSTRACT: The aim of the study is to quantify 

individual changes in scalp connectivity patterns 

associated to the affected hand movement in stroke 

patients after a 1-month training based on BCI-

supported motor imagery to improve upper limb motor 

recovery. To perform the statistical evaluation between 

pre- and post-training conditions at the single subject 

level, a resampling approach was applied to EEG 

datasets acquired from 12 stroke patients during the 

execution of a motor task with the stroke affected hand 

before and after the rehabilitative intervention. 

Significant patterns of the network reinforced after the 

training were extracted and a significant correlation was 

found between indices related to the reinforced pattern 

and the clinical outcome indicated by clinical scales. 

 
INTRODUCTION 

 

In neuroscience, the concept of brain connectivity is 

crucial to understand how communication between 

cortical regions is organized or re-organized in presence 

of a brain injury or brain disease [1], [2]. Group analysis 

studies are commonly performed when the aim is to 

evaluate the relevant differences between experimental 

conditions and/or the consistency of a treatment effect 

and how the differences or effects might affect the 

functional brain network configuration. 

As such, this approach holds some limitations related to 

the unavoidable heterogeneity in the experimental group 

and further, specific effects that a given brain lesion has 

on neural networks (e.g. stroke) at the single patient 

level might be hidden. Thus, there is the need to provide 

measures that might account for individual pathological 

network configuration associated with different level of 

patient’s impairment. 

In this study, an approach based on the use of the 

resampling was applied to evaluate the brain network 

reorganization in each individual patient who underwent 

a rehabilitative training after stroke. Indeed typically a 

statistic comparison of two patient’s conditions cannot 

be performed as the amount of data collected in an EEG 

recording session (multi-trial EEG dataset) are entirely 

used to obtain an unique connectivity estimation. To 

overcome this limitation, in the present work we applied 

jackknife approach [3] to multi-trials EEG data, thus 

generating a distribution of datasets out of a single 

observation (ie, single patient). These datasets can be 

then subjected to connectivity estimation to obtain a 

distribution of the connectivity estimator in each of the 

patient experimental condition as described below. We 

used motor task-related EEG data recorded on subacute 

stroke patients in two recording sessions: one preceding 

and one following a rehabilitative intervention based on 

motor imagery with the support of Brain Computer 

Interfaces (BCI) [2]. The BCI training in [2] lasted one 

month, with 3 weekly session in which patients were 

asked to perform motor imagery of the stroke affected 

hand to control a specifically designed BCI system. 

Control features for BCI were selected from a screening 

session among electrodes from sensorimotor strip on the 

affected hemisphere only, at frequencies relevant for 

sensorimotor activation (mainly beta). The patterns 

underlying the attempted movement of the paralyzed 

hand obtained before and after the intervention from 

each stroke patients were compared, in order to describe 

the individual significant connectivity changes induced 

by the BCI-assisted training. Connectivity matrices 

were also analyzed by means of a graph theory 

approach, and a correlation analysis was performed to 

test the existence of a relationship between the 

organization of brain networks (graph-theory derived 

indices) and the functional outcome measures specific 

for the upper limb motor function. 

 

MATERALS AND METHODS 

 

     Partial Directed Coherence 

As a frequency-domain version of Granger causality 

[4], PDC reveals the existence, the direction and the 

strength of a functional relationship between any given 

pair of signals in a multivariate data set. 

In this study we used the squared formulation of 

PDC due to its higher accuracy and stability [5].  

     Resampling approach: Jackknife 

To achieve a distribution of connectivity estimations 

allowing a comparison between conditions, in this study 

we exploited a resampling approach. Given an EEG 

dataset characterized by a certain number of trials, 

Jackknife performs leave-N-out on trials, where N is a 

percentage of trials to be randomly excluded from the 
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estimation. Repeating the procedure for K replications, 

we can obtain K datasets to be subjected to connectivity 

estimation. Here, we set the parameters to the following 

values: K = 200 replications, percentage of excluded 

trials N = 50%. 

     Experimental design 

EEG signals were acquired from 12 subacute stroke 

patients (mean age, 62.1 ± 9.9 years; time from the 

event: 1.75 ± 1.21 months; 6 left/6 right affected 

hemisphere). All the patients underwent standard motor 

rehabilitation and a newly proposed add-on intervention 

based on a BCI-assisted upper limb motor imagery 

training [2]. Immediately before and after the training 

intervention, the patients were subjected to two 

screening sessions (PRE and POST) including clinical 

assessment and EEG recordings during the attempt of a 

simple movement (grasping) by the hand affected by the 

motor deficit. The clinical assessment included the 

evaluation of the upper limb function by means of Fugl-

Meyer Assessment (FMA, upper limb section). 

     Signal processing 

After data preprocessing (down-sampling at 100 Hz 

with anti-aliasing filter, band pass filtering (1-45 Hz), 

and artifact rejection), we obtained for each patient and 

each condition (PRE and POST) an EEG dataset 

consisting of approximately 60 artifact-free trials related 

to the motor task. Then we applied the jackknife 

method. Brain connectivity was estimated from 29 

channels by means of PDC. The achieved estimations 

were averaged within 5 frequency bands defined for 

each patient according to Individual Alpha Frequency 

[6]: theta [IAF-6;IAF-2], alpha [IAF-2;IAF+2], beta1 

[IAF+2;IAF+11], beta2 [IAF-11;IAF+20] and gamma 

[IAF+20;IAF+35]. 

Once the patterns distributions were obtained for each 

patient, condition and frequency band, we performed 

the statistical comparison between PRE and POST 

conditions. In particular, to evaluate the effects of the 

rehabilitative intervention, we focused on the pattern 

that was significantly reinforced for each patient in the 

POST with respect to the PRE session (POST vs PRE). 

To perform this comparison, we used a nonparametric 

test: the values in the POST pattern above the thresholds 

related to the percentile of 97.5% of the PRE 

distribution, were considered significantly reinforced. 

The PRE vs POST comparison (inverse condition) was 

also tested as control. 

To summarize the properties of the reinforced networks 

we computed some binary graph indices able to 

evaluate the network organization [7]. 

- Characteristic Path Length 
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where Li is the average distance between node 𝑖 and all 

other nodes and dij is the distance between node i and 

node j. 

- Clustering Coefficient 

The binary directed version of Clustering Coefficient is 

defined as follows: 
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where ti represents the number of triangles involving 

node i, ki
in and ki

out are the number of incoming and 

outcoming edges of nodes i respectively and gij is the 

entry ij of adjacency matrix. 

- Smallworldness 

A network G is defined as small-world network if LG > 

Lrand and CG >> Crand where LG and CG represent the 

characteristic path length and the clustering coefficient 

of a generic graph and Lrand and Crand represent the 

correspondent quantities for a random graph. On the 

basis of this definition, small-worldness can be defined 

as follows: 
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(3) 

A network is said to be a small world network if S>1. 

 

    Correlation analysis 

As a last step of the analysis, we performed Pearson’s 

correlation (significance level 0.05) between the above 

defined neurophysiological indices extracted from the 

reinforced networks and the functional scale (FMA).  

For the clinical measure, to account for the high inter-

subject variability in terms of degree of the impairment, 

and for the consequent different level of recovery, we 

computed the parameter "effectiveness" [8], defined as 

follows: 

100*
max PRE

PREPOST
FMA

FMAScore

FMAFMA
Eff




  

(4) 

where Scoremax is the maximum score that can be 

reached in FMA scale.  

 

RESULTS 

 

Fig. 1 shows the connectivity pattern reinforced at the 

end of the rehabilitative training obtained for a 

representative patient with a stroke in the left 

hemisphere: the pattern in the motor-related frequency 

band (beta1) shows a higher involvement of channels 

over the motor areas of the affected (left) hemisphere 

during the attempt to move the right hand. 

Results of the Pearson correlation computed between 

graph measures extracted from the connectivity pattern 

and the clinical indices across the 12 stroke patients are 

reported in Table I and in Fig. 2. Such results show that 

the properties of the functional network reinforced after 

the training are significantly correlated with the clinical 

outcome selectively in beta1 band. 
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Figure 1: Reinforced connectivity pattern obtained in 

beta1 band (typical of sensory-motor rhythms) for a 

representative patient with lesion in the left hemisphere. 

The scalp is seen from the above, with the nose pointing 

to the upper part of the page. The effective connections 

between scalp electrodes (29 channels: Fp1, Fpz, Fp2, 

F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, 

C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, 

Oz, O2) are represented by arrows whose color and 

diameter code for the corresponding PDC values. 

 

 

Table 1: Results of the Pearson correlation computed 

between graph indices extracted from the reinforced 

pattern of motor task and the clinical recovery 

(effectiveness of Fugl-Meyer Assessment). 

Significances are highlighted in bold. 

 
 

 

In particular, the direct correlation between these 

neurophysiological measures and the clinical indices 

informs that the patients with higher clinical recovery 

show a better organization of the reinforced network 

related to the motor function (high clustering, low path 

length, high smallworldness). The PRE vs POST 

comparison performed as control returned no significant 

results. 

 

 
Figure 2: a) Scatter plot obtained between Path Length 

and the clinical recovery (effectiveness of Fugl-Meyer 

Assessment) in beta1 band; b) scatter plot obtained 

between Clustering and the clinical recovery measure in 

beta1 band. 

 

 

DISCUSSION  

 

In the present work, we performed a statistical 

evaluation of the individual brain network 

reorganization following a rehabilitative training in a 

population of subacute stroke patients. To perform the 

single-patient statistical comparison between the two 

conditions (pre- and post- intervention), jackknife was 

applied to multi-trial EEG datasets. The comparison 

between the 2 distribution of data set relative to PRE 

and POST sessions (POST vs PRE) revealed that the 

properties of the brain networks associated to attempted 

movements were reinforced as a function of the 

functional improvement (FMA effectiveness) observed 

after the BCI-assisted rehabilitation training. 

The correlation between normalized indices of the 

network properties (clustering, path length, 

smallworldness) and the normalized index of the 

functional recovery (FMA effectiveness) suggests that 

patients with higher level of functional motor recovery 

show a better organization of the reinforced network 

such as high clustering, low path length, high 

smallworldness. Consistently, such correlation was 

specific for motor-related frequency band (beta 1) while 
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no similar results were achieved for any other frequency 

band (Table I).  

To assess the clinical recovery, we computed the 

effectiveness parameter, one of the most used 

rehabilitation impact indices [8]. One limit in applying 

such effectiveness parameter resides in the possible 

underestimation of clinical improvement in moderate 

versus severe stroke.  

Although these are encouraging findings, the small 

patients sample (n=12) and the high variability within 

the group limits their interpretation. Future studies 

including a larger patient sample subjected to a 

stratification according to the clinical impairment at 

baseline, are thus needed. 

In a previous study, [2], we showed that BCI-supported 

motor imagery training can significantly improve the 

upper limb motor outcome in a population of subacute 

stroke patients. 

The current study represents a first step forward as it 

addressed i) the need of single patient estimation of 

connectivity networks to better isolate efficacy of 

treatment with respect to the high inter-individual 

variability in stroke population and ii) the estimation of 

task –related reorganizational scalp connectivity 

patterns changes (with respect to the resting state 

network), thus targeting the main outcome of the 

rehabilitative intervention described in [2], i.e. upper 

limb motor recovery. 

An important aspect to discuss is related to the 

connectivity estimation performed with EEG sensor 

time series. It is known that this procedure can lead to 

the detection of spurious connections due to the mixing 

effects caused by volume conduction [9]. In this study 

we performed a statistical comparison between two 

experimental conditions that represents a way to 

mitigate these effects. Furthermore, in view of clinical 

application scalp EEG analysis can represent a more 

suitable procedure with respect to the use of method for 

solving the inverse problem that needs to take into 

account the presence of brain lesions. Altogether, the 

presented results show the feasibility of the procedure in 

a study aimed at capturing intervention-related 

variations in patients’ physiological activity, in 

challenging conditions characterized by high individual 

variability. 

 

CONCLUSION 

 

In conclusion, the proposed procedure provided 

quantifiable measures of brain networks changes after a 

BCI-based training at the single subject level; such 

measures correlate significantly with the variations 

captured behaviourally by functional scales commonly 

used in the clinical practice 
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ABSTRACT: Several groups have recently demonstrated 
in the context of randomized controlled trials (RCTs) 
how sensorimotor Brain-Computer Interface (BCI) 
systems can be beneficial for post-stroke motor recovery. 
Following a successful RCT, at Fondazione Santa Lucia 
(FSL) a further translational effort was made with the 
implementation of the Promotœr, an all-in-one BCI-
supported MI training station. Up to now, 25 patients 
underwent training with the Promotɶr during their 
admission for rehabilitation purposes (in add-on to 
standard therapy). Two illustrative cases are presented. 
Though currently limited to FSL, the Promotɶr 
represents a successful story of translational research in 
BCI for stroke rehabilitation. Results are promising both 
in terms of feasibility of a BCI training in the context of 
a real rehabilitation program and in terms of clinical and 
neurophysiological benefits observed in the patients.   
 
INTRODUCTION 
 
Several groups have recently demonstrated in the context 
of randomized controlled trials (RCTs) how 
sensorimotor Brain-Computer Interface (BCI) systems 
can be beneficial for post-stroke motor recovery [1]–[3]. 
At Fondazione Santa Lucia (FSL) we demonstrated in a 
RCT that an EEG-based BCI-supported Motor Imagery 
(MI) training can improve motor rehabilitation of the 
upper limb in subacute stroke patients with clinically 
relevant benefits as well as neurophysiological signs of 
increased activation of the affected hemisphere [4]. A 
further translational effort was made at FSL with the 
implementation of an all-in-one BCI-supported MI 
training station, namely the Promotœr, which is currently 
employed in add-on to standard therapy in patients 
admitted for rehabilitation.  In this paper we will briefly 
retrace the path of BCIs for stroke rehabilitation at FSL, 
from prototype design, through clinical validation, to 
actual use in everyday practice as a possible successful 
example of translationality in BCI research. Furthermore, 
2 case reports of training with the Promotœr will be 
presented.  
 

 
 
MATERALS AND METHODS 
 
The prototype in [4] was developed with continuous 
involvement of rehabilitation experts and endowed with 
strong rehabilitation principles such as: an ecological 
feedback for correct hand MI performance, selective 
reinforcement of correct brain activation (i.e. 
enhancement of affected hemisphere activation), 
continuous assistance of an expert therapist during the 
BCI training (the therapist is indeed part of the training 
setting receiving feedback of the patient's brain activity 
on a dedicated screen). Inputs on acceptability from 
professionals and patients were collected first in the form 
of a proof-of-principle study [5] and continuously 
throughout the experimentation. 
Subsequently we conducted a RCT in 28 subacute 
patients [4]. Fourteen patients received the BCI 
supported hand MI training across four weeks, while 14 
performed the MI training without the BCI support. At 
completion of training, the BCI group had a significantly 
greater improvement in Fugl-Meyer Assessment (FMA) 
scores that was clinically relevant. This improvement 
was accompanied by a significant increase of EEG 
motor-related oscillatory activity over the lesioned 
hemisphere only in the target group.  
The continuous interaction with the clinical counterpart 
and the experience gathered in the RCT prompted us to 
implement an all-in-one BCI-supported MI training 
station, which we called Promotœr, for its main aim to 
promote motor recovery after stroke. The Promotœr 
comprises a computer, a commercial wireless EEG/EMG 
system, a screen for the therapist feedback (EEG and 
EMG activity monitoring) and a screen for the ecological 
feedback to the patient (a virtual hand performing the 
imagined movement in successful trials). Two Promotœr 
are currently installed in a rehabilitation ward at 
Fondazione Santa Lucia (Fig. 1). 
During training with the Promotœr, the patient is seated 
on a chair (or wheelchair) with arms resting on a pillow. 
A visual representation of the forearms and hands is 
given on a dedicated screen, adjusted in size, shape and 
position as to resemble the patient’s own hands. The 
patient is asked to perform MI of affected hand (timing 
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of exercise is provided via a spotlight on the screen 
enlightening the target hand and reinforced verbally by 
the therapist). During MI, the therapist is provided with 
continuous feedback of the patient’s brain activity on a 
dedicated screen; in brief, desynchronization occurring 
on electrodes placed above the affected sensorimotor 
area at sensorimotor relevant frequencies (BCI control 
features) is represented by a cursor moving towards a 
target (with speed proportional to the desynchronization). 
In successful trials (i.e. when the cursor reaches the 
target) the patient receives a positive reward represented 
by the visual representation of the affected hand moving 
accordingly with the imagined movement; otherwise, no 
visual feedback is represented on the patient’s screen. 
Along the whole session, the therapist is allowed to 
monitor the patient’s EEG and EMG activity (recorded 
from forearm muscles) in order to ensure complete 
relaxation and to guide/encourage him/her during the 
exercise.   
Training sessions are carried out with the assistance of 
the same therapist in charge of the standard treatment for 
each patient, thus encouraging a further integration of our 
approach within the specific rehabilitation program of 
each patient. Before and after training, patients undergo 
a neurophysiological assessment in a similar way as 
described in [4] but with reduced number of EEG 
electrodes (31 positions vs 61). The aim of the screening 
is twofold: a) to extract EEG features for BCI training b) 
to evaluate the expected reinforcement of MI induced 
brain activation in the affected hemisphere (pre – post 
training). During the neurophysiological assessment, 30 
trials of MI of affected hand are performed, randomized 
with 30 trials of rest of equal duration. BCI training is 
conducted with 8 electrode positions (vs 31), 
personalized according to the initial screening session: 
control features are selected among electrodes placed 
above the affected sensorimotor area (4 electrodes) and 
the montage is completed with the 4 homologous 
electrodes on the contralateral hemiscalp.  
 

 
 
Figure 1: Training session with the Promotɶr. The 
patient is seated on a wheelchair with arms resting on a 
pillow. A visual representation of the forearms and 
hands is given on a dedicated screen, resembling the 
patient’s own hands. The patient is asked to perform MI 
of affected hand and the therapist is provided with 
continuous feedback of the patient’s EEG and EMG 
activity (recorded from forearm muscles).   
 
 

RESULTS 
 
Up to now, 25 patients completed training with the 
Promotɶr during their admission for rehabilitation 
purposes (in add-on to standard therapy). Of these, 21 
suffered from ischemic or haemorrhagic unilateral 
stroke, while the remaining four had other type of 
acquired brain injury resulting in motor impairment of 
the upper limb. Twelve patients were in the subacute 
phase (< 6 months from the event) while 13 where 
chronic.  In total, approximately 300 BCI training 
sessions were carried out. No drop-outs in the scheduled 
training program were observed, while two patients did 
not perform the post- training neurophysiological 
assessment   (for being discharged beforehand or moved 
to another hospital).  
We will present the cases of two patients (A and B). 
Patient A is a 77 years-old woman; she suffered from an 
ischemic stroke in the territory of the right middle 
cerebral artery and was admitted to FSL for rehabilitation 
with severe left hemiparesis. She started training with the 
Promotɶr approximately one month from the event, 
performing 11 training session across one month of 
admission. Control features were selected according to 
the pre- neurophysiological screening (Fig. 2, left panel) 
on the right hemisphere, on the central line (C2) at 
frequency of 13-14 Hz. At the end of the training, the 
neurophysiological assessment was repeated showing an 
increased activation on the right hemisphere at EEG 
frequencies employed for BCI control (Fig. 2 right 
panel). A significant increase in upper limb FMA score 
was observed after training (from 31 to 46, i.e. above the 
threshold of Minimal Clinically Important Difference of 
7 points). 
Patient B is a 20 years-old man who had a traumatic 
haemorrhage in the left hemisphere with severe right 
hemiparesis and motor aphasia (initial upper limb FMA 
of 9). He was attending FSL outpatient service for 
rehabilitation and started training with the Promotɶr 
approximately one year from the event, performing 22 
training session across two months of admission. Control 
features were selected according to the pre- 
neurophysiological screening (Fig. 3, left panel) on the 
left hemisphere, on the central line (C1) at frequency of 
9-10 Hz. At the end of the training, the 
neurophysiological assessment was repeated showing an 
increased activation on the left hemisphere at EEG 
frequencies employed for BCI control (Fig. 3 right 
panel). Clinical assessment of upper limb function did 
not show a relevant improvement, however a reduction 
in upper limb pain was reported. 
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Figure 2: Pre- and Post- training neurophysiological 
assessment in representative patient A. Statistical maps 
of Rsquare values of Rest vs- left hand motor imagery 
at 13-14 Hz (frequency employed for BCI control; 
electrodes used for BCI training are circled in red).  
 

 

Figure 3: Pre- and Post- training neurophysiological 
assessment in representative patient B. Statistical maps 
of Rsquare values of Rest vs- right hand motor imagery 
at 9-10 Hz (frequency employed for BCI control; 
electrodes used for BCI training are circled in red). 
 
DISCUSSION 
 
The story of BCIs for post-stroke motor rehabilitation of 
the upper limb at FSL started within the TOBI project in 
2008 (www.tobi-project.org). During the development 
and testing of our system, we fostered continuous 
involvement of rehabilitation experts, which resulted in a 
RCT on subacute patients supporting the efficacy of our 
approach [4]. A further translational effort led us to 
implement the Promotɶr, a dedicated all-in-one station 
for BCI supported MI-training of the upper limb, which 
is currently used in the clinic outside any specific 
research program.  
In this preliminary report, we are able to confirm some of 
the main results of the RCT [4].  
First, a large number of patients/sessions with virtually 
no drop-out: it is indeed possible to integrate BCI 
technology in the real rehabilitation program of (mainly 
stroke) patients. Though anecdotal, general impressions 
from patients are enthusiastic, as they are extremely 
motivated to carry on the training sessions with the 
Promotoer.  
Similarly, the close interaction with the clinical 
rehabilitation team is running smoothly, confirming a 

high acceptance of the approach among rehabilitation 
professionals [5]. 
The representative Patient A was a subacute stroke 
patient (thus comparable with the RCT population) 
showing a clinically relevant improvement of upper limb 
function accompanied by a reinforcement of 
sensorimotor related activity on the affected hemisphere 
(specific for the EEG feature employed in the training).  
These confirmative results have some important 
implications. Since in the Promotɶr we were able to 
simplify the setting (e.g. reducing the number of EEG 
electrodes for both training and Pre- Post- assessment) 
and maintain the main principles of the original system 
[4], we are now optimistic about the feasibility of a 
larger, multi-centric RCT to extend our results beyond 
our own institution. In this perspective, the challenges to 
prove the efficacy of our approach on a large scale are 
partially shared with other post-stroke rehabilitation 
strategies: a solid clinical trial design with proper 
randomization and proper sham/control conditions; a 
reliable follow-up evaluation to establish the duration of 
the effects. Other important aspects to take into 
consideration in view of a multi-centric RCT are strictly 
related to the BCI approach: the reliability of the system; 
the reproducibility of some operator dependent 
procedures such as features selection. 
Furthermore, the possibility to extend our approach to 
chronic patients and patients with central nervous system 
lesions from different etiology (as for Patient B) paves 
the way for possible novel applications.  
Patient B was in the chronic phase, with a severe, 
stabilized motor impairment. We were able to show an 
increase in sensorimotor related activity on the affected 
hemisphere throughout the training (specific for the EEG 
feature employed in the training). The subjective report 
of upper limb pain reduction along the training sessions 
is promising in terms of possible new applications. 
 
CONCLUSION 
 
The Promotɶr represents a successful story of 
translational research in BCIs for stroke rehabilitation 
[6]. Though restricted to our institution, this experience 
allowed us as a BCI laboratory to be fully integrated in 
the clinic and receive daily inputs from rehabilitation 
experts. On one hand, the positive experience with the 
Promotɶr prompts us to pursue a further clinical 
validation in a large, multi-centric RCT. On the other 
hand, everyday interaction with the clinical team extends 
our views beyond the specific intended application (e.g. 
spasticity or pain) which might apply not only to our 
approach, but to the use of BCIs in rehabilitation in 
general [7], [8].  
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ABSTRACT: Mental-Imagery based Brain-Computer In-
terfaces (MI-BCI) are neurotechnologies enabling users
to control applications using their brain activity alone.
Although promising, they are barely used outside labo-
ratories because they are poorly reliable, partly due to in-
appropriate training protocols. Indeed, it has been shown
that tense and non-autonomous users, that is to say those
who require the greatest social presence and emotional
support, struggle to use MI-BCI. Yet, the importance of
such support during MI-BCI training is neglected. There-
fore we designed and tested PEANUT, the first Learn-
ing Companion providing social presence and emotional
support dedicated to the improvement of MI-BCI user-
training. PEANUT was designed based on the litera-
ture, data analyses and user-studies. Promising results re-
vealed that participants accompanied by PEANUT found
the MI-BCI system significantly more usable.

INTRODUCTION

Brain-Computer Interfaces (BCI) are neurotechnologies
which enable users to control external applications us-
ing their brain-activity alone [22], often measured us-
ing ElectroEncephaloGraphy (EEG). In this paper, we
focus more specifically on Mental-Imagery based BCI
(MI-BCI) with which commands are sent using mental-
imagery tasks (imagining movements for instance). Be-
cause they enable users to control devices or applica-
tions without moving, MI-BCI are extremely promising
in various fields ranging from assistive technologies (e.g.
wheelchairs or neuroprosthetics) to video games [15].
Nevertheless, some important issues inherent to MI-BCI
make it so that these technologies are not reliable enough
for applications such as navigation and control, therefore
preventing them from being widely used outside labora-
tories. Among these issues, some are due to hardware
limitations (the electrodes are sensitive to noise) and oth-
ers to software issues (brain-signal processing algorithms
are still imperfect). Though, the issue we will focus on
here, which is rather little explored [13], concerns the
users themselves. Indeed, before being able to use an
MI-BCI, users have to learn how to produce brain pat-
terns that the computer will be capable of discriminating.
However, the literature [14] as well as experimental re-
sults [7] suggest that current MI-BCI training protocols

Figure 1: A participant taking part in a BCI training
process. Along the training PEANUT (on the left) pro-
vides the user with social presence and emotional support
adapted to his performance and progression.

are theoretically and practically inappropriate for acquir-
ing skills. Therefore, understanding and improving MI-
BCI skill-acquisition is essential to make BCI accessible.
Previous research results [8] suggest that users with spe-
cific personality profiles face difficulty when learning to
use an MI-BCI. More specifically, highly tense and non-
autonomous people (based on the “tension” and “self-
reliance” dimensions of the 16 PF5 psychometric ques-
tionnaire [2]) experience the greatest difficulties.
Indeed, the MI-BCI training process does lack aspects
of utmost importance for learning: social presence and
emotional support [9]. In “Distance Learning” applica-
tions (i.e., learning without a teacher or classmates, using
a computer for instance) [19], the absence of social pres-
ence and emotional support has been efficiently compen-
sated by the use of learning companions [16, 11]. Learn-
ing companions are virtual or physical characters that can
speak and have facial/bodily expressions. They provide
the learner with different kinds of interventions, such as
support or empathy, in order to overcome the lack of so-
cial interactions and emotional support. Despite their po-
tential to improve MI-BCI user-training, both in terms of
performance and user-experience, the use of a social pres-
ence and an emotional support as provided by a Learning
Companion has never been explored in this context.
Thus, the object of this work was to design, implement
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and validate the first learning companion dedicated to im-
proving MI-BCI user-training. We called this compan-
ion PEANUT for Personalised Emotional Agent for Neu-
rotechnology User-Training. PEANUT is a physical and
anthropomorphic character providing interventions to the
user in between two BCI trials. Such interventions con-
sist in pronouncing an encouraging sentence, and display-
ing corresponding facial expressions of emotions.
In the following sections, we will describe the different
steps which led to the companion’s appearance and in-
tervention design. Finally, we introduce the experiment
dedicated to validate PEANUT’s efficiency in improving
MI-BCI user-training before proposing a general discus-
sion and presenting future work.

DESIGNING PEANUT

Designing a learning companion requires to identify an
appropriate appearance and intervention content, due to
their impact on the user’s motivation, experience and
learning [1]. Thus, our design was based on the literature
and a couple of user-studies.

Defining the physical appearance of PEANUT
First, we focused on the appearance of PEANUT. The lit-
erature guided our choice towards the use of a physical
companion, increasing social presence in comparison to
a virtual one [5]. Also, anthropomorphic features seem to
facilitate social interactions [3]. Moreover, for the com-
panion to be relevant, the combination of physical charac-
teristics, personality/abilities, functionalities and learning
function had to be consistent.
Since PEANUT’s functions are simple and it is unable
to interact with the user (PEANUT can talk, but cannot
receive input from the BCI user), we chose to propose
a cartoon-like character with anthropomorphic child-like
shapes. Thus, we used the voice of a child to record
PEANUT’s interventions (which also enabled us not to
associate PEANUT with a gender).
Regarding PEANUT’s face, we asked a designer to cre-
ate three styles of faces expressing each of these eight
emotions: Trust, Joy, Surprise, Admiration, Boredom,
Sadness, Anger and a Neutral expressions. We wanted
the faces to be cartoon-like, so that they fit the body and
complied with the recommendations from the literature.
Prior to the experiment, an online user-survey in which
96 people gave their opinion on the different faces design
expressing the different emotions was led. It enabled us
to select the style of face that would fit the most the re-
quirements from the literature. Interestingly, the results
indicated that the presence of eyebrows could influence
positively the expressiveness of a cartoon face.

Defining the Behaviour of PEANUT
Second, we concentrated on the content of PEANUT’s
interventions. One intervention corresponds to the asso-
ciation of a sentence and a facial expression. Sentences
were selected from the following five main categories,

elaborated through recommendations from the literature
[10, 23, 21, 6], with respect to subject’s MI-BCI perfor-
mance and progression, i.e. the context of intervention.

• Temporal interventions, related to the temporal
progress of the experiment [10] (ex. “I am happy
to meet you”, when starting the first session)

• Effort-related interventions, focusing on the fact
that learning is the goal, and intended to minimise
the importance of current performance while pro-
moting long-term learning [23]. (ex. “Your efforts
will be rewarded”)

• Empathetic interventions, which aim at letting
users know that their companion understands that
they are facing a difficult training process [21]. (ex.
“Don’t let difficulties discourage you”)

• Performance/results and progression associated in-
terventions, which were designed to motivate users
by focusing on the abilities they had already ac-
quired [6]. (ex. “You are doing a good job!”)

• Strategy-related interventions which aim at encour-
aging people to keep the same strategy when pro-
gression was positive or to change strategy when
it was negative/neutral. (ex. “You seem to have
found an efficient strategy”)

Then, we also explored different sentences’ characteris-
tics, e.g., exclamatory or declarative (ex. “You are doing
good!” or “You are doing good.”); and personal (second
person) or non-personal (third person) mode (ex. “You
are doing good!” or “These results are good!”). To
determine which characteristics the intervention should
have depending on the context (performance & progres-
sion), we led an online user survey with 104 persons.
The study consisted in an online questionnaire giving
users similar instructions and mental imagery tasks as the
ones given during actual BCI training. Simulated perfor-
mances (since the surveyed users were not actually us-
ing a BCI) were displayed and were evolving positively,
neutrally or negatively given the group the user was ran-
domly assigned to. After the situation was introduced,
two different intervention sentences were displayed on
screen Users were asked to rate each of them (on a Likert
scale ranging from 1 to 5) based on five criteria: appro-
priate, clear, evaluative, funny, motivating.
The results of these questionnaires revealed that users
facing a negative progression should only be provided
with declarative personal interventions and those facing a
neutral progression with either declarative or exclamatory
personal interventions. Results also revealed that partici-
pants showing a positive progression should be provided
with declarative non-personal sentences (when the goal
was to give clear information about the task) or exclama-
tory personal sentences (when the goal was to increase
motivation) (see also Figure 2). One should add that
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Figure 2: PEANUT’s rule tree. Depending on performance and progression (”-”=negative, ”=”=neutral”, ”+”=positive),
a set of rules is determined. Type of sentences: ”perso.” for personal, ”NoPerso.” for non-personal ; Mode of the sen-
tence: ”decl.” for declarative, ”excl.” for exclamatory. Interventions: ”GEff” for general effort, ”SEff” for support effort,
”GEmp” for general empathy, ”SK” for strategy keep, ”SC” for strategy change, ”RG” for results good, ”RVG” for results
very good, ”PG” for progress good, ”PVG” for progress very good. Moreover, ”∧” sign represents the logical operator
”and” while ”∨” sign represents the logical operator ”or”.

when an exclamatory sentence was used for the interven-
tion, the emotion displayed through PEANUT’s facial ex-
pressions was made more intense than for an equivalent
declarative sentence. We could then translate these vari-
ous results into rules, and more precisely into the the rule
tree presented in Figure 2. This rule tree enables the sys-
tem to select one specific rule (i.e., an intervention con-
tent - sentence & expression - and style) with respect to
the context (performance and progression).

In particular, we determined a bad, average and good
performance according to the 25th and 75th percentile
of each user performance at the first run. Similarly, we
determine a negative, neutral or positive progression ac-
cording to the 25th and 75th of the user progression
during the first session. Progression was estimated as the
slope of the regression line of the user performance over
the last 10 trials.

Implementation of PEANUT
Users’ EEG signals were first measured using a g.tec
gUSBAmp (g.tec, Austria) and processed online using
OpenViBE 0.19.0 [18]. OpenViBE provided users with
a visual feedback about the estimated mental task, and
computed users’ performances which were then transmit-
ted to a home-made software, the rule engine using the
Lab Streaming Layer (LSL) protocol. The rule engine
processed performance measures received from Open-
ViBE to compute progression measures and browsed
the Rule Tree described in Figure 2 in order to select
an appropriate intervention for PEANUT (sentence and
facial expression) with respect to the context. The se-

lected intervention was then transmitted to an Android
smartphone application by WiFi, which enunciated the
sentence and animated PEANUT’s facial expression.

VALIDATION OF THE EFFICIENCY OF PEANUT TO
IMPROVE BCI USER-TRAINING

Once the companion created, the next step consisted in
studying its efficiency to improve MI-BCI user-training
both in terms of performance and user-experience.

Participants
Our study included twenty MI-BCI-naive participants (10
women; aged 21.05±1.64), and was conducted in accor-
dance with the relevant guidelines for ethical research ac-
cording to the Declaration of Helsinki. This study was
approved by Inria’s ethics committee, the COERLE. All
participants signed an informed consent form at the be-
ginning of the experiment and received a compensation
of 50 euros.
Our experiment comprised 2 participant groups, which
determined the support they would receive throughout
the MI-BCI training sessions: no learning companion
(control group) or a learning companion adapted to their
MI-BCI performance & progression, i.e., PEANUT (ex-
perimental group). As the control group, we used the
results obtained from 10 subjects in a previous experi-
ment [8]. This experiment used the same protocol, but
without PEANUT. Among the 18 participants of this pre-
vious study, 10 were selected so that they matched, as far
as possible, the characteristics of the participants from
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the experimental group in terms of gender and initial MI-
BCI performance. Furthermore, tension and self-reliance
scores were comparable for the two groups.

Experimental Protocol
Before the first session, participants were asked to com-
plete a validated psychometric questionnaire, the 16 PF-
5 [2], that enabled us to compute their tension and self-
reliance scores. Each participant took part in 3 sessions,
on 3 different days. Each session lasted around 2 hours
and was organised as follows: EEG cap setup, five runs
during which participants had to learn to perform three
MI-tasks (around 60 min, including breaks between the
runs), removing the EEG cap and debriefing. The MI-
tasks (i.e., left-hand motor imagery, mental rotation and
mental subtraction) were chosen according to Friedrich et
al. [4], who showed that these tasks were associated with
the best performance on average across participants. Dur-
ing each run, participants had to perform 45 trials (15 tri-
als per task, presented in a random order), each trial last-
ing 8s. At t=0s, an arrow was displayed with a left hand
pictogram on the left (L-HAND task), the subtraction to
be performed at the top (SUBTRACTION task) and a 3D
shape on the right (ROTATION task). At t=2s, a ”beep”
announced the coming instruction and one second later,
at t=3s, a red arrow was displayed for 1.250s. The direc-
tion of the arrow informed the participant which task to
perform, e.g., an arrow pointing to the left meant the user
had to perform a L-HAND task. In order to stress this in-
formation, the pictogram representing the task to be per-
formed was also framed with a white square until the end
of the trial. Finally, at t=4.250s, a visual feedback was
provided in the shape of a blue bar, the length of which
varied according to the classifier output. Only positive
feedback was displayed, i.e., the feedback was provided
only when there was a match between the instruction and
the recognised task. The feedback lasted 4s and was up-
dated at 16Hz, using a 1s sliding window. During the first
run of the first session (i.e., the calibration run, see next
Section), no real feedback could be provided, since the
classifier has not been calibrated yet for this user. Thus,
in order to limit biases with the other runs, e.g., EEG
changes due to different visual processing between runs,
the user was provided with a sham feedback, i.e., a blue
bar randomly appearing and varying in length, irrespec-
tively of the user’s actual EEG (this feedback was based
on the data from a previous user), as in [4]. A gap lasting
between 3.500s and 4.500s separated each trial.
The experimental group was accompanied by PEANUT
during the training, from the second run of session 1 (af-
ter the calibration run). PEANUT intervened every 6 ± 2
trials (the exact trial during which PEANUT intervened
was randomly selected in that interval), during the inter-
trial interval. PEANUT’s interventions were adapted to
participants’ performance during the first session, and to
their performance and progression during the second and
third sessions.

EEG Recordings & Signal Processing
The EEG signals were recorded using 30 active scalp
electrodes (F3, Fz, F4, FT7,FC5, FC3, FCz, FC4, FC6,
FT8, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P5,
P3, P1, Pz, P2, P4, P6, PO7, PO8, 10-20 system), ref-
erenced to the left ear and grounded to AFz. EEG data
were sampled at 256 Hz.
In order to classify the 3 mental imagery tasks on which
our BCI is based, the following EEG signal processing
pipeline was used. First, EEG signals were band-pass
filtered in 8-30Hz, using a Butterworth filter of order 4.
Then EEG signals were spatially filtered using 3 sets of
Common Spatial Pattern (CSP) filters [17].
The CSP algorithm aims at finding spatial filters whose
resulting EEG band power is maximally different be-
tween two classes. To provide a participant-specific feed-
back, each set of CSP filters was optimised during a cal-
ibration run (i.e., the first run of the first session) to dis-
criminate EEG signals for a given class from those for
the other two classes. We optimised 2 pairs of spatial
filters for each class, corresponding to the 2 largest and
lowest eigen values of the CSP optimisation problem for
that class, thus leading to 12 CSP filters. The band power
of the spatially filtered EEG signals was then computed
by squaring the signals, averaging them over the last 1
second time window (with 15/16s overlap between con-
secutive time windows) and log-transforming the result.
These resulted in 12 band-power features that were fed
to a multi-class shrinkage Linear Discriminant Analysis
(sLDA) [12], built by combining three sLDA in a one-
versus-the-rest scheme. As for the CSP filters, the sLDA
were optimised on the EEG signals collected during the
calibration run, i.e., during the first run of the first ses-
sion. To reduce between session variability, the sLDA
classifiers’ biases were re-calculated after the first run of
sessions 2 and 3, based on the data from this first run, as
in [4]. The resulting classifier was then used online to
differentiate the 3 MI-tasks during the 3 sessions.
The sLDA classifier output (i.e., the distance of the fea-
ture vector from the LDA separating hyperplane) for the
mental imagery task to be performed was used as feed-
back provided to the user. In particular, if the required
mental task was performed correctly (i.e., correctly clas-
sified), a blue bar with a length proportional to the LDA
output and extending towards the required task picture
was displayed on screen and updated continuously.
This processing pipeline led to a total of 64 classification
outputs per trial (16 per second for 4 seconds). Open-
ViBE thus computed the user’s performance for this trial
as the rate of correct classification outputs among these
64 outputs, and sent it to the rule engine (which in turn
computed progression measures).

Variables & Factors
We studied the impact of the group (no companion, com-
panion) on participants’ MI-BCI performance, with re-
spect to the session and participant’s profile (tension and
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self-reliance scores). MI-BCI performance was assessed
in term of mean classification accuracy (mean perfor-
mance measured over all the windows of the feedback
periods from all the different runs). We also evaluated
the impact of the group on MI-BCI usability, with re-
spect to MI-BCI performance. MI-BCI usability was
assessed using a questionnaire focusing on 4 dimensions:
learnability/memorability (LM), efficiency/effectiveness
(EE), safety and satisfaction.

Results

First of all, statistical tests (t-tests) revealed no significant
differences between the two groups in terms of tension,
autonomy or initial cross validation performances on the
calibration. This ensures the two groups are comparable.
Therefore, we analysed each group’s MI-BCI perfor-
mance in term of mean classification accuracy, for this
3-class BCI (thus with a chance level of 33%). The group
with no companion obtained 51.65% ± 3.78 and the
group with the companion obtained 50.85%± 7.94 mean
classification accuracy. An ANOVA did not find any sig-
nificant difference between the mean performance of the
two groups [F(2,18)=-0.29, p=0.777] though their vari-
ance is significantly different [F(2,18)=4.737, p=0.043]
(see Figure 3).

Figure 3: Mean classification accuracy per users group.

The subtantial difference of variability between the two
groups might suggest that PEANUT had a beneficial ef-
fect on some participants and a detrimental effect on
some others. However, this is only an hypothesis, and
the number of participants included in the study does not
allow us to identify the characteristics of those benefiting
(or not) from PEANUT.
Finally, we analysed the influence of the group on us-
ability scores. We performed four one-way ANCO-
VAs (one per dimension) with the Group as factor,
the usability score for the target dimension as depen-
dent variable and the mean classification accuracy as
co-variable, since better classification accuracy is likely
to lead to better perceived efficiancy, irrespectively of
the condition. Results revealed a main effect of the
group on the learnability/memorability (LM) dimension

[D(1,18)=6.073; p≤0.05, η2=0.263]: participants who
were provided with a companion considered the system’s
learnability/memorability to be higher than those with no
companion (see Figure 4).

Figure 4: LM scores with respect to users’ group.

DISCUSSION & CONCLUSION

In this paper, we introduced PEANUT, the first learn-
ing companion dedicated to MI-BCI user-training. The
strength of this companion is its design: a combina-
tion of recommendations from the literature and of user-
studies. PEANUT was validated in a relatively large MI-
BCI study (20 participants, 3 sessions per participant),
with two conditions: one control group with no learning
companion and one experimental group with a learning
companion whose behaviour was adapted to users’ per-
formance and progress. The higher variance in terms of
performance in the group with PEANUT might suggest
that PEANUT had a beneficial influence on some par-
ticipants’ performance but a detrimental one on others,
although this hypothesis remains to be formally tested.
This is in accordance with some previous studies indicat-
ing a differential effect of learning companion depend-
ing on sex and previous knowledge [1]. Nonetheless, this
study also revealed that using PEANUT has a significant
impact on user-experience. Indeed, participants who used
PEANUT found it was easier to learn and memorise how
to use the MI-BCI system than participants who had no
learning companion. This confirmed that carefully de-
signing PEANUT based on literature from educational
psychology and user-centered design methods substan-
tially benefited MI-BCI training user-experience.
In the future, PEANUT’s behavior could be improved by
adapting its interventions to the user’s profile and state
(frustration, overload, joy, boredom, etc.). We also plan
to have PEANUT providing cognitive support, i.e., help
to guide users towards the acquisition of specific skills.
In order to be able to provide such support in an appro-
priate way, we first have to define a cognitive model of
MI-BCI user-training, i.e., a model describing the fac-
tors impacting MI-BCI performance. Such a cognitive
support, also known as explanatory feedback, is recom-
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mended by the educational psychology literature to en-
sure efficient training [20]. It would also be interesting
to define more refined performance metrics and user state
measures in order to provide more specific/adapted inter-
ventions, possibly further improving the support.
Overall, we are working towards providing a better cog-
nitive and emotional feedback to MI-BCI users thanks
to the use of learning companions. We hope that such
companions could become broadly used tools for MI-BCI
user-training in order to push BCI performance and us-
ability much further. In this view, we designed and imple-
mented PEANUT for a low cost, using only open-source
and free software. We hope this work will contribute to
make MI-BCI more widely accessible technologies.
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ABSTRACT: One of the main goals of modern brain-

computer interfaces (BCIs) is that they should be simple 

and intuitive to use. Long-lasting training and learning 

periods are demotivating for the intended user. 

Therefore, the training should be reduced to a 

minimum. This particularly applies to P300-based BCIs, 

which are known as highly accurate and robust.  

In this paper, we evaluated an approach that uses a 

generic classifier for P300 spelling instead of the usual 

personalized classifier, which  users have to train before 

they can use the P300-based BCI. The generic classifier 

was calculated using the training data of 18 persons and 

evaluated with the data of 7 persons. Results were 

compared to the results achieved with personalized 

classifiers. We found that the generic classifier achieved 

comparable results regarding the effectiveness and 

efficiency. Therefore, our approach seems to be an 

appropriate, zero training alternative to personalized 

classifiers. 

 

INTRODUCTION 

 

The electroencephalogram (EEG) can be used to 

establish a noninvasive communication or control 

channel between the human brain and a computer, a so-

called brain-computer interface (BCI) [1].  

A very prominent BCI application is the P300 speller 

[2]. This type of BCI is mainly based on the positive 

component of an event-related potential (ERP) that 

appears approximately 300ms after a rare stimulus 

occurred among frequently occurring stimuli.  

P300-based BCI provide high accuracies in combination 

with low illiteracy rates. Therefore, they are often used 

for communication and control systems. Various 

applications (e.g., speller [3], Brain Painting [4], music 

composer [5], and web browser [6]) are implemented. 

Prior using such an application, training of a classifier is 

required. Normally, the training is performed by copy-

spelling 5-10 predefined symbols and takes between 5 

and 10 minutes. However, the question is, whether this 

training is really necessary. 

Different approaches are proposed to avoid or reduce 

the training of the classifier. Kindermans et al. 

introduced a probabilistic zero training framework for 

ERPs [7]. They report high accuracies after a certain 

number of sequences. A sequence is defined as all rows 

and columns of the P300 matrix flashed once. However, 

the accuracy is still poor, when the number of sequences 

is limited to 3 or 4. 

Lu et al. introduced a subject-independent model, 

learned offline from EEG of a pool of subjects, to 

capture common P300 characteristics [8]. They 

compared the learned model with a subject-specific 

classification model and a cross-subject model. Results 

indicate that this approach delivers high classification 

accuracies (on average approx. 84%) in combination 

with zero training. The number of sequences was 

defined with ten. No statement was given regarding the 

accuracies achieved with a lower number of sequences. 

 

We asked whether the measured ERP during a P300 

spelling task is stable enough to use a generic classifier. 

Consequently, the aim of this paper is to evaluate the 

power of a generic classifier (GC). The GC was 

calculated with the training data of eighteen P300 BCI 

users. The shrinkage regularized linear discriminant 

analysis (sLDA) was used for classification. Blankertz 

et al. suggested to use this method as a new standard for 

classifying ERPs [9].  The GC was evaluated with the 

data of seven users regarding the efficiency, in terms of 

highlighting sequences that are needed to reach certain 

accuracy. Effectiveness was investigated by 

recalculating the results of a prior study [10] with the 

GC: seven users had to spell four words and to control a 

multimedia player and a web browser with the P300 

BCI. The accuracies of the online measurements and the 

offline simulations were compared. 

 
MATERALS AND METHODS 

 
     Data acquisition:  

The EEG data were acquired with a tap water-based 

biosignal amplifier (Mobita, TMSi, Oldenzaal, the 

Netherlands). Data were taken from six scalp electrodes 

(Fz, Cz, Pz, PO7, PO8, Oz) placed according to the 

extended international 10-20 system. A sampling rate of 

250 Hz was used. The signal processing was performed 

in Matlab (MathWorks, Natick, USA). The EEG signal 

was filtered between 0.1 and 60 Hz with a 4
th

 order 

Butterworth band pass filter. These filter settings were 

chosen to compare the results of this evaluation to the 

results of a prior study [10]. 
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     Generic training data generation: 

Eighteen healthy volunteers (5 female, mean age: 29.39, 

SD:12.71 years) performed a standard P300 classifier 

training procedure: the participants were seated in a 

comfortable chair approximately 60 cm away from a 

computer screen showing the P300 stimulation matrix, 

see Fig. 1. The training was performed with fifteen 

highlighting flashes per row and column. Each 

highlighting had a duration of 50 ms and the time 

between flashes was set to 125 ms. The task of the 

participants was to copy-spell five characters out of a 6 

x 6 matrix filled with letters and numbers. The 

characters were ''H3P5FU'', which were equally 

distributed over the matrix. Elements of the matrix were 

highlighted with famous faces [11].  

 

     Test data generation: 

Data from the study presented in [10] were used as test 

data. Seven  participants (1 female, mean age 25.29, 

SD:2.75) performed a training, hereinafter called 

personal training, two copy-spelling tasks, a multimedia 

player, and a web browser control task with the same 

data acquisition system, which we used to gather the 

training data. None of the seven participants 

participated in the generic training data generation 

measurements and the data were acquired at least half a 

year later than the training data. In [10] the personal 

training setup and signal processing were the same as 

described for the generic training data generation, 

except the word ‘’BRAIN’’ was spelled. 

The copy-spelling tasks consisted of spelling 4 words 

with 5 letters each. The participants were advised to 

spell the German words ‘’SONNE’’ (engl. ‘’sun’’), 

‘’BLUME’’ (engl. ‘’flower‘‘), ‘’TRAUM‘‘ (engl. 

‘’dream’’), and ‘’KRAFT’’ (engl. ‘’force’’). Between 

the second and the third word additional tasks, see 

below, were performed. The users were instructed not to 

correct wrongly spelled letters. The matrix was the same 

for training and copy-spelling.  

The multimedia player task was to control a multimedia 

player to look at pictures. The minimal number of 

selections was 10 and the maximum number was 15. 

The participants were advised to correct 

misclassifications. The web browser task was to look 

for ‘’BCI’’ in Google and to select and read the 

Wikipedia webpage about BCI. The minimal number of 

selections was 9 and the maximum number was 18. The 

participants were advised to correct misclassifications. 

The P300 matrices for the multimedia player and the 

web browser task were different, cf. [6]. 

 

     Generic classifier creation: 

The generic training data of the eighteen volunteers 

were divided into epochs of approximately 800 ms (204 

samples) after stimulus onset. The epochs were 

averaged per channel and row or column. Afterwards, 

the data were downsampled by the factor of 12 to 

reduce the number of features per channel. The data of 

each channel were concatenated to receive one feature 

vector per row and column. Thus, ten target feature 

vectors (2 vectors * 5 characters) and fifty non-target 

feature vectors (10 vectors * 5 characters) were 

available per volunteer.  

In sum, 180 target feature vectors and 900 non-target 

feature vectors were used to train a generic sLDA 

classifier. 

 

     Generic classifier evaluation:  

The GC was evaluated with the test data described 

before. We compared the accuracies calculated with the 

personalized classifier (PC), i.e., the classifier trained 

with data from the personal training, and the GC, 

respectively. PC accuracies for every flashing sequence 

were calculated per participant by a leave-one-letter-out 

cross validation of the personal training data. The same 

personal training data were classified with the GC. 

Accuracies per sequence and participant were calculated 

to evaluate the efficiency of the GC. The efficiency is 

high when a small number of sequences suffice to 

achieve high accuracy, i.e. above 70%. This is the 

proposed minimal level of sufficient accuracy for BCIs, 

cf. [12-15]. 

Additionally, we compared the online accuracies of the 

different tasks with simulated accuracies calculated with 

the GC to investigate the effectiveness of the GC. 

 

RESULTS 

 

The spatial GC weight distribution is shown in Fig. 2. 

To highlight only important weights, absolute values 

below 0.2 are not shown. 

Fig. 3 shows the average accuracies and confidence 

intervals of the GC and the PC using the training data of 

[10]. The confidence intervals show no significant 

differences. Interestingly, the GC on average showed 

better classification accuracies after sequence 13: the 

accuracies of the GC stayed stable at 100% or 2.9% 

above the PC accuracies. The proposed minimal level of  

Figure 1 – P300 stimulation matrix with letters and 

numbers. Rows and columns were highlighted with the 

face of Albert Einstein. 
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Figure 3 – Average (N=7) accuracies achieved with a certain number of sequences. The accuracies for the personal 

classifier were calculated with a leave-one-letter-out cross validation. Gray and green areas indicate the confidence 

intervals (CI) for proportions. The red dashed line indicates the minimal level of sufficient accuracy. 

Figure 2 – The graphs show the averaged EEG data of 18 participants after targets stimulations (blue solid lines) and 

non-target stimulations (red dashed lines). Additionally, the weights of the GC are represented by different gray tone 

areas. Due to the downsampling of the signals, weights are shown as areas. 
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Table 1 – Offline (simulated) accuracies of the copy-spelling tasks using the generic classifier (GC) and the 

personalized classifier (PC). Different results are marked in bold. Sp1, Sp2…Spelling run 1, 2; MMP…Multimedia 

player; WB…Web browser. 
 

Part. Sequ. 
GC accuracies in %  PC accuracies in % 

Sp1 MMP WB Sp2 Av. SEM  Sp1 MMP WB Sp2 Av. SEM 

1 8 100 100 81.8 100 95.5 10.4  100 100 90.9 90 95.2 10.7 

2 8 100 90 100 80 92.5 13.2  100 100 90.9 100 97.7 7.5 

3 9 100 100 100 100 100 0.0  100 100 100 100 100 0.0 

4 10 80 91.7 88.9 80 83.9 18.4  100 91.7 100 90 95.4 10.4 

5 11 70 100 66.7 80 79.2 20.3  80 64.3 73.3 70 71.9 22.5 

6 13 100 100 100 100 100 0,0  90 100 90 100 95.0 10.9 

7 14 100 100 100 100 100 0.0  100 100 100 90 97.5 7.8 

 

sufficient accuracy (70%) was reached by the GC on 

average after 2 (71.4%) and by the PC after 3 (77.1%) 

sequences. However, the lower limits of the confidence 

intervals exceeded this level after 5 sequences (PC) and 

7 sequences (GC), respectively, see Fig. 3. 
 

The GC evaluation showed comparable results between 

the PC and GC, see Tab. 1. Differences are marked in 

bold. On average the GC outperformed the PC four 

times (range 0.3 – 7.3%) and the PC outperformed the 

GC two times (5.2% and 11.5%, respectively).  

The average accuracies are far above the level of 

sufficient accuracy (70%). 

 

DISCUSSION AND CONCLUSION 

 

We showed that it is possible to use a P300-based BCI 

with zero training and high accuracies using a generic 

classifier. The results indicate that in terms of efficiency 

and effectiveness both classifiers are about equal. 

Moreover, the simulated GC spelling results partly 

outperformed the PC results.  

The comparison of the accuracies for a defined number 

of sequences, see Fig. 3, shows that in case of a small 

number (between 1 and 4) no differences were 

detectable. For a medium number (between 5 and 10), 

the PC achieved better results than the GC. Finally for a 

large number (above 12), the GC outperformed the PC. 

However, the confidence intervals overlap most of the 

time and to make a more accurate statement more data 

must be taken into account. 

During the spelling and control tasks the participants 

used a defined number of flashing sequences, see Tab. 1 

second column. Comparing the averaged results 

indicates that participants (P2, P4) who used a medium 

number of sequences (between 8 and 10) would achieve 

better results with the PC. On the other hand, 

participants (P5, P6, and P7) who used a large number 

of sequences (above 10) would achieve higher 

accuracies with the GC.  

 

One limitation of this comparison is that the presented 

online results were achieved with an SWLDA classifier 

and the simulated results were achieved with an sLDA 

classifier. Another limitation is that the GC was 

evaluated with data obtained by the same setup 

regarding the biosignal acquisition system, the signal 

processing etc. as the training data. It might be 

reasonably assumed that using a different biosignal 

acquisition system requires an adapted generic 

classifier. 

 

Lu et al. also reported high P300 spelling accuracies 

using a generic classifier [8]. However, they performed 

two similar sessions with ten participants spelling the 

same 41 characters twice and performed a two-fold 

cross validation. No information was given regarding 

the time between the sessions and they did not evaluate 

the efficiency of their subject-independent model. We 

trained the GC with the data from different users and 

tasks than we evaluated it. In addition, we used different 

matrix sizes, cf. [6]. Finally, we used only six electrodes 

instead of eight in [8]. 

 

The next step would be to test the GC online with a 

representative number of people. In addition, it is 

conceivable to adapt the GC to a person by recalculating 

the GC with data of the actual user. Our results indicate 

that it should be sufficient to use a high number of 

sequences at the beginning to achieve almost 100% 

accuracy with the GC. This data can be used to 

recalculate the GC and adapt it to a person. 

Subsequently, the number of stimulation sequences can 

be reduced afterwards. 
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ABSTRACT: Most Brain-Computer Interface (BCI) 

work has focused on detecting specific sensory or motor 

information, but BCIs are beginning to be applied to 

more abstract domains like covert speech and 

communication of semantic thought. One potential 

approach to decoding more abstract information is linear 

zero-shot classification via semantic attributes, which is 

computationally efficient and may facilitate real-time 

processing. In this work, several variations of this model 

are applied to electrocorticography (ECoG) data 

recorded during a picture-naming task with nine patients. 

Performances of encoding and decoding models are 

compared, and results are discussed in the context of BCI 

applications. 

 

INTRODUCTION 

 

Sensory and motor information can be understood and 

encoded in terms of physical functions and attributes, and 

brain-computer interface (BCI) applications typically 

utilize models based on these characteristics, e.g. limb 

motion [1] or speech [2]. These approaches are not 

applicable in more abstract domains, such as lexical 

semantics and conceptual thought. However, words or 

concepts can be decomposed into sets of meaningful 

attributes [3], so one can study how those attributes are 

encoded in the brain. For example, the concept of 

“lettuce” might be encoded with heavy weight on the 

attributes “green,” “edible,” and “plant” and low weight 

on the attributes “black,” “manmade,” and “hard.” 
     By using machine learning methods to derive these 

decompositional models from neural data, e.g. functional 

magnetic resonance imagery (fMRI), a better 

understanding of how more abstract concepts are 

represented in the human brain has been achieved [4, 5, 

6, 7]. Stimuli can be represented by their constituent 

semantic attributes, and mappings can be learned 

between each attribute and the observed neural 

responses. In the same way, stimuli can be recovered by 

induction after applying the mapping to novel neural 

data.  

     While this approach has been a boon for studying how 

abstract representations are semantically encoded in 

neural activations, there are clear advantages for neural 

decoding applications as well. Semantically decoding 

neural signals in this manner allows for the classification 

of novel classes of stimuli. This process, coined zero-shot 

classification [5], differs from traditional pattern 

recognition, in which models are tested on new data from 

the same classes used to train the model. In zero-shot 

classification, models are tested on data from new classes 

that were not used to train the model. Zero-shot 

classification has been successfully demonstrated in 

several applications such as computer vision [8] and 

target detection [9].  

     Zero-shot classification on neural signals would allow 

for BCIs to handle novel stimuli more robustly. In 

previous work [10], it was demonstrated that zero-shot 

classification of recognized objects was possible from  

electrocorticography (ECoG) at high levels of 

performance on par with whole-brain fMRI [4]. 

Demonstrations of reliable neural decoding performance 

from electrophysiological responses like this suggest a 

viable path to BCIs for more abstract domains. For 

example, zero-shot decoding could potentially be used to 

classify and/or semantically annotate novel stimuli that 

produce P300 responses [11], such as anomalous images 

[12] or frames of video [13]. Furthermore, 

communication BCIs, such as those used by locked-in 

individuals [14], could potentially use zero-shot 

classification to decode conceptual thought as opposed to 

individual characters. 

     While promising, applications of zero-shot decoding 

to ECoG are new and not well-explored. The mapping 

between semantic attributes and neural features may be 

learned as an encoding model,  i.e. a map from attributes 

to neural features [4, 10], or as a decoding model, i.e. 

direct prediction of attributes from neural signals [5, 6], 

but the efficacy of these approaches have not been 

compared. The mapping is often assumed to be linear, 

and typically learned by either least-squares [4] or ridge 

regression [5, 6, 10] to limit the possibility of overfitting. 

Support vector machines (SVMs) have been used for 

classifying neural data in past studies of human-computer 

interaction [15], as well as in zero-shot classification for 

computer vision [8]. However SVMs have not yet been 

investigated for zero-shot ECoG decoding. In this paper,  

we build on the encoding model described by our group 

in [10] to compare different approaches to zero-shot 

decoding in ECoG.  
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MATERIALS AND METHODS 

 
     The experiments carried out for this work utilized 

ECoG recordings collected during a picture-naming task. 

Data was recorded from 9 patients with intractable 

epilepsy (2 female, 31-44 years old) during inpatient 

monitoring for pre-surgical localization of their ictal 

onset zone and eloquent cortex. All patients provided 

informed consent according to a protocol approved by 

the Johns Hopkins Medicine Institutional Review 

Boards. 

     The stimulus set was originally reported in [4], and 

the data collection paradigm and analyses were originally 

reported in [10]. White line drawings of objects were 

briefly presented on a black background, and a white 

fixation cross was shown between stimuli. Each image 

was shown for one second, with a rest interval varying 

randomly between 3.5 and 4.5 seconds. Participants were 

instructed to name the image as soon as possible, or pass 

when necessary. Six blocks of data were collected per 

patient, with all 60 objects being shown in pseudo-

random order within each block. ECoG signals were 

sampled at 1000 Hz, digitized, and recorded using the 

BlackRock Neuroport system.  

     The stimuli consisted of line drawing representations 

of 60 nouns from 12 semantic categories as listed in Tab. 

1.  Each of the 60 nouns was uniquely mapped to a vector 

of 𝑃 = 218 semantic attributes originally used in [5]. 

The attributes were generated by crowdsourcing answers 

to a series of 218 questions via Amazon Mechanical 

Turk. All 218 questions were asked of 1,000 different 

objects, including all 60 of the objects included in this 

study. Questions probed a variety of semantic properties, 

including size, usage, composition, and category, with 

answers on an ordinal scale [−1, −0.5, 0, 0.5, 1]. It was 

empirically determined that regression models tended to 

perform better when the vector of attributes for a given 

noun was normalized to unity length. 

     A high-level illustration of the neural feature 

extraction process is shown in Fig. 1. After data 

collection, excessively noisy channels were discarded, 

 

Table 1: List of stimulus nouns and their categories. 
Category Nouns 

Animals bear, cat, cow, dog, horse 

Body parts arm, eye, foot, hand, leg 

Buildings apartment, barn, church, house, igloo 

Building 

parts 

arch, chimney, closet, door, window 

Clothing coat, dress, pants, shirt, skirt 

Furniture bed, chair, desk, dresser, table 

Insects ant, bee, beetle, butterfly, fly 

Kitchen 

Utensils 

bottle, cup, glass, knife, spoon 

Manmade 

Objects 

bell, key, refrigerator, telephone, 

watch 

Tools chisel, hammer, pliers, saw, 

screwdriver 

Vegetables carrot, celery, corn, lettuce, tomato 

Vehicles airplane, bicycle, car, train, truck 

 
Figure 1. Illustration of neural feature extracton from 

ECoG recordings, adapted from [10]. 

 
Figure 2: Illustration of encoding (top) and decoding 

(bottom) models, adapted from [10]. 

and the signals that were retained were spatially filtered 

using local common-average referencing. Signals were 

then low-pass filtered, resampled to 256 Hz, and time-

gated from stimulus onset to one second post stimulus 

onset. Features were extracted from the FFT spectrogram 

by integrating over 12 octaves with center frequencies 

spaced by half-octaves beginning at 2 Hz and time offsets 

of 250 and 500 ms post-stimulus. Because the number of 

electrodes varied per subject, the number of potential 

ECoG features varied as well. Features were down-

selected by ranking them according to their stability over 

stimulus presentation, which has precedence in similar 

studies [4, 5, 6]. The stability of a particular neural 

feature was calculated by averaging all pairwise Pearson 

correlations between responses in blocks of trials. Up to 

200 of the most stable neural features were considered. 

     The collected ECoG features and the accompanying 

semantic attributes for each stimulus can be used to learn 

an encoding or decoding model. The manner by which 

these models relate the neural and semantic features to 

one another are illustrated in Fig. 2. 

      Let 𝒔 be a 𝑃-dimensional vector of semantic 

attributes, and 𝒏 be an 𝑀-dimensional vector of neural 

features. The encoding model takes the form of a linear 

mapping of 𝒔 onto each 𝑛𝑚, for 𝑚 = 1,2, … , 𝑀: 

�̂�𝑚 = 𝒔𝑇𝜷𝑚
(𝑒𝑛)

 (1) 

     The parameter vector 𝜷𝑚
(𝑒𝑛)

 consists of the regression 

coefficients for encoding the 𝑚th feature. In prior work, 
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𝜷𝑚
(𝑒𝑛)

 was learned using ridge regression [10], and the 

same is done here since the model output �̂�𝑚 is 

continuous-valued. The ridge regression solution for 

𝜷𝑚
(𝑒𝑛)

 is given by 

𝜷𝑚
(𝑒𝑛)

= (𝑺𝑇𝑺 + 𝜆(𝑒𝑛)𝑰)
−1

𝑺𝑇𝒏𝑚, (2) 

where 𝑺 is the 𝑇 × 𝑃 matrix of semantic attributes, where 

𝑇 is the total number of trials used to train the model, 𝒏𝑚 

is the 𝑇 × 1 vector of values of the 𝑚th neural feature 

(normalized to zero-mean, unit-variance), and 𝜆(𝑒𝑛) is a 

regularization parameter determined empirically by grid 

search amongst five values between 1 and 10. 

     Conversely, the decoding model takes the form of a 

linear mapping of 𝒏 onto each 𝑠𝑝, for 𝑝 = 1,2, … , 𝑃: 

�̂�𝑝 = 𝒏𝑇𝜷𝑝
(𝑑𝑒)

, (3) 

     The parameter vector 𝜷𝑝
(𝑑𝑒)

 consists of the regression 

coefficients for decoding the 𝑝th attribute. The ridge 

regression solution for 𝜷𝑝
(𝑑𝑒)

 is given by 

𝜷𝑝
(𝑑𝑒)

= (𝑵𝑇𝑵 + 𝜆(𝑑𝑒)𝑰)
−1

𝑵𝑇𝒔𝑝, (4) 

where 𝑵 is the 𝑇 × 𝑀 matrix of neural features, 𝒔𝑝 is the 

𝑇 × 1 vector of values of the 𝑝th attribute, and 𝜆(𝑑𝑒) is a 

regularization parameter determined empirically by grid 

search amongst five values between 100 and 1000. 

     The discrete-valued output �̂�𝑝 suggests that a classifier 

may be more appropriate than regression for learning the 

decoding model. As suggested by [8], a linear SVM is 

also used to learn 𝜷𝑚
(𝑑𝑒)

. For a binary problem where 

𝑠𝑝 ∈ [−1,1], the SVM solves the following optimization 

problem, which maximizes the margin between the 

classes:  

𝜷𝑝
(𝑑𝑒)

= arg min
𝜷

{𝑐 ∑ max[0,1 − 𝑠𝑝(𝜷𝑇𝒏𝑡)]
2

𝑇

𝑡=1

+ ‖𝜷‖2}  

 (5) 

    To train the SVM, the elements of 𝒔 were re-quantized 

to [−1,0,1] by combining the [-0.5, 0, 0.5] responses. Re-

quantization casts the original attribute values as simple 

answers: no, don’t know, and yes. The liblinear 

software package was used to train three one-versus-one 

SVM classifiers to discriminate each pair of values [16]. 

Tuning parameters 𝑐 = {1, 10, 100} were considered, 

with per-class weighting according to the number of 

training samples. Voting amongst the three classifiers is 

used at test to predict �̂�𝑝. To assess the effect of 

modifying the attributes in this manner, ridge regression 

was also applied to the re-quantized attributes in another 

version of the decoding model. 

     After learning the mapping between neural features 

and attributes, a novel stimulus can be decoded by a 

distance-based classifier in neural space (if an encoding 

model was used) or semantic space (if a decoding model 

was used). Let the cosine distances resulting from the 

encoder output be denoted as 

𝑑𝜙
(𝑒𝑛)

=  
�̂� ⋅ 𝒏𝜙

‖�̂�‖ ⋅ ‖𝒏𝜙‖
, (6) 

where 𝒏𝜙 is the output of the trained encoder applied to 

𝒔𝜙, the true attribute vector for noun 𝜙, and  

�̂� = [�̂�1, �̂�2, … , �̂�𝑀]𝑇. Therefore, neural decoding by 

means of an encoding model takes the form of 

�̂�(𝑒𝑛) = arg min
𝜙

{𝑑𝜙
(𝑒𝑛)

}. (7) 

Similarly, neural decoding by means of a decoding model 

takes the form of 

𝑑𝜙
(𝑑𝑒)

=  
�̂� ⋅ 𝒔𝜙

‖�̂�‖ ⋅ ‖𝒔𝜙‖
, (8) 

�̂�(𝑑𝑒) = arg min
𝜙

{𝑑𝜙
(𝑑𝑒)

}, (9) 

where 𝒔𝜙 is the decoder output and �̂� = [�̂�1, �̂�2, … , �̂�𝑃]𝑇. 

 

RESULTS 

 

     Experiments were conducted to assess performance of 

zero-shot stimulus prediction using four different 

modeling approaches: Ridge Encoder, Ridge Decoder, 

Ridge Decoder Re-Quantized Attributes, and SVM 

Decoder with Re-Quantized Attributes. The zero-shot 

problem was simulated by employing leave-one-noun-

out cross-validation; feature selection and training were 

performed using 59 of the 60 nouns, and one noun was 

held out for testing. Therefore, the number of trials used 

to train the models was 𝑇 = 6 × 59 = 354 per subject. 

Two options for testing were compared: predicting from 

the average ECoG feature vector over all 6 trials, and 

predicting from single trials. Performance was measured 

via the mean rank accuracy (MRA). The MRA 

represents the average rank accuracy (RA) of the zero-

shot test class, taken across the full set of 60 nouns ranked 

according to the cosine distance, 

𝑀𝑅𝐴 =
1

60
∑ 𝑅𝐴𝜙

60

𝜙=1

, (10) 

where 𝑅𝐴𝜙 is the relative (percentage) rank of the test 

noun 𝜙 within a ranked list of potential classes, 

𝑅𝐴𝜙 = 100 × (
60 − 𝑟𝜙

59
), (11) 

and 𝑟𝜙 is the rank of 𝑑𝜙
(𝑒𝑛)

 (if  an encoding model was 

used) or 𝑑𝜙
(𝑑𝑒)

 (if a decoding model was used). The MRA 

could also be calculated on a per-category basis by 

averaging the MRA of all nouns within the same 

category.  

     The per-noun and per-category MRAs were tested for 

significance using a Monte Carlo procedure. A total of 

1,000 null encoding and decoding models were trained 

for each subject by permuting the rows of 𝑺, and the 

maximum MRA was calculated over all choices of 𝑀 and 

𝜆(𝑒𝑛) or 𝜆(𝑑𝑒). The 𝑝-values for the MRAs achieved by 

the alternative models were then computed using the 

distribution of the MRAs achieved by the null models. 

     The observed per-noun MRAs of the four decoding 

approaches are summarized in Tab. 2 and Tab. 3. The 

reported values represent maximum performance over all 

numbers of neural features and choices of 

regularization/tuning parameters that were considered. 

Tab. 2 summarizes the performance for decoding block-

averaged neural responses, and Tab. 3 summarizes the 

performance of decoding single-trial neural responses. 

     The MRA for block-averaged neural features were 
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Table 2: Per-noun MRA using block-averaged neural 

features at test. Boldface indicates significance at  

𝑝 < 0.01, italics indicates significance at 𝑝 < 0.05, and 

the highest performance per subject is underlined. 

 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 84.11 79.19 80.08 75.25 

S2 83.92 79.75 78.33 77.33 

S3 65.64 62.86 62.47 60.79 

S4 66.69 65.69 64.47 62.81 

S5 68.17 67.42 67.58 65.93 

S6 67.14 70.81 70.11 64.19 

S7 67.31 69.67 69.47 64.07 

S8 75.61 73.00 72.36 71.03 

S9 87.69 82.75 81.75 80.58 

 

Table 3: Per-noun MRA using single-trial neural 

features at test. Boldface indicates significance at  

𝑝 < 0.01, italics indicates significance at 𝑝 < 0.05, and 

the highest performance per subject is underlined. 
 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 74.80 71.07 71.17 64.05 

S2 75.70 72.65 71.81 70.82 

S3 57.55 56.31 55.77 54.99 

S4 59.15 57.86 57.13 56.80 

S5 60.13 60.62 60.58 57.75 

S6 59.13 61.74 61.59 57.15 

S7 65.07 66.19 65.38 60.16 

S8 64.15 62.28 61.81 61.18 

S9 80.63 76.65 75.56 73.09 

 

higher than single-trial MRA because averaging repeated 

trials mitigates noise. Performance varied within 5% 

MRA for most subjects. For all but one subject, S2, the 

Ridge Encoder/Decoder MRA was significant at  

𝑝 < 0.01. For most of the subjects (S1-S4, S8, and S9 for 

block-average and single trial decoding, S5 for block-

average decoding only) the Ridge Encoder also yielded 

the highest MRA and is consistent with performance in 

similar fMRI studies, e.g. [4]. For the other subjects (S5 

for single-trial decoding, S6 and S7 for both types of 

decoding), the Ridge Decoder was slightly better and re-

quantizing the attributes did not significantly affect 

performance. 

     The per-category MRA, for both block-averaged and 

single-trial neural features at test, is summarized in  

Tab. 4 and Tab. 5, respectively. All per-category MRAs 

were significant at 𝑝 < 0.01. For each subject, the 

highest per-category MRA tended to be no more than 5% 

less than the highest per-noun MRA. For three subjects, 

the Ridge Decoder performed best, and the Ridge and 

SVM Decoders with Re-Quantized Attributes were each 

best for one subject. 

     The RA of each noun was analyzed by comparing the 

results of the best-performing (S1) and worst-performing 

(S3) subjects. Those results are illustrated in Fig. 3 and 

Table 4: Per-category MRA using block-averaged neural 

features at test. Boldface indicates significance at 𝑝 <
0.01, italics indicates significance at 𝑝 < 0.05, and the 

highest performance per subject is underlined. 
 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 80.54 79.17 79.86 73.87 

S2 82.19 79.63 79.19 78.31 

S3 62.99 62.99 62.83 61.33 

S4 65.55 65.12 64.42 63.18 

S5 64.77 67.01 66.09 67.03 

S6 66.52 70.63 70.46 64.79 

S7 68.79 70.13 69.96 65.49 

S8 70.18 73.34 73.36 70.92 

S9 82.23 81.99 81.22 80.59 

 

Table 5: Per-category MRA using single-trial neural 

features at test. Boldface indicates significance at  

𝑝 < 0.01, italics indicates significance at 𝑝 < 0.05, and 

the highest performance per subject is underlined. 
 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 72.39 70.63 70.77 63.37 

S2 74.16 72.65 72.31 70.41 

S3 56.52 56.00 55.85 55.34 

S4 58.56 58.01 57.81 57.16 

S5 58.50 59.48 59.25 57.55 

S6 58.87 61.79 61.78 57.77 

S7 66.47 66.55 66.01 60.63 

S8 62.11 62.37 62.04 60.97 

S9 76.48 75.84 75.34 72.63 

 
Fig. 4, respectively. The nouns are listed in descending 

order of RA by the Ridge Encoder. Note that the 

performance of the three decoder models does not follow 

the same trend as the performance of the encoder model. 

In fact, some of the nouns that are decoded poorly by the 

Ridge Encoder (e.g., hand and foot for S1, fly and bed for 

S3) are actually decoded with much higher RA by the 

three decoder models.  

 

DISCUSSION 

 

For a majority of subjects, zero-shot stimulus prediction 

via an encoding model was superior to decoding models 

for ECoG signals recorded primarily from temporal and 

basal occipital regions. The difference in MRA between 

the encoding model and the best decoding model was 

within 5%. A possible explanation may be that the 

encoding model is more robust. The semantic attributes 

used to fit the encoding model are deterministic, while 

the ECoG features used to fit the decoding model are 

noisy. 

     The SVM Decoder was the worst performing model 

for most subjects and yielded less significant MRAs, 

suggesting that it makes several incorrect assumptions 

about the decoding problem. One might be the training
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Figure 3: Per-noun RA using block-averaged neural 

features for S1 (best performer). Nouns are listed in 

order of descending RA by the Ridge Encoder. 

set size. In [8], the SVM was applied to visual features 

extracted from a set of 75,489  images belonging to 57 

classes – a much larger data set than what was considered 

in this study.  It is possible that the smaller training set 

may be bolstered by use of a kernel function, but this 

introduces another tuning parameter which would need 

to be optimized for each attribute to avoid overfitting. 

     The SVM also assumes the training set is balanced 

between classes, so that maximizing the margin 

minimizes the classification error. However, of the 218 

attributes, only 50 had reasonable balance between the 

re-quantized classes 𝑠 = −1, 𝑠 = 0, and 𝑠 = 1. We 

attempted to soften this assumption by weighting the 

SVM cost parameter (𝑐) proportionally to the size of each 

class, but the effect was negligible. One could soften the 

balanced-class assumption further by optimizing 𝑐 for 

each attribute, but that was not explored in this study. 
      Several aspects of this work suggest that some form 

of a semantic BCI may be viable. First, we demonstrated 

that the semantic zero-shot learning approach to semantic  

decoding can be fruitfully applied to ECoG using 

encoding or decoding models. As pointed out in [5], “It 

is intractable to collect neural training images for every 

possible word in English, so to build a practical neural 

decoder we must have a way to extrapolate to 

recognizing words beyond those in the training set.” Our 

study only focused on the ability to classify among 60 

zero-shot nouns, and the problem will become more 

difficult as the scale increases to more classes, especially 

when the attribute-to-noun mapping is ambiguous or 

completely unknown. In such cases, simply outputting 

the most highly-weighted semantic attributes may still be  

 
Figure 4: Per-noun RA using block-averaged neural 

features for S3 (worst performer). Nouns are listed in 

order of descending RA by the Ridge Encoder. 

useful for communicating a novel word or concept.  

     One issue that would need to be addressed is 

collection of adequate training data, which can be time 

consuming and costly. But efforts in fMRI demonstrating 

how voxel-wise models can be built from large datasets 

of activity elicited by natural stimuli, like movies and 

stories, suggests these might be more economical 

strategies for collecting training data [17, 18]. 

Furthermore, efforts in large-scale pattern classification 

using semantic hierarchies to trade specificity for 

accuracy suggest a potential avenue towards robust 

classification of a wide variety of novel classes [19].  

    Another obstacle that must be overcome in developing 

a practical semantic BCI is consistency in real-time 

decoding performance. While the highest MRAs were 

achieved when averaging across multiple trials, there was 

a modest drop (< 10%) in performance when decoding 

nouns or categories from single trials. In addition, our 

encoding model did not account for temporal variability 

in semantic processing, as our features were extracted 

from fixed time windows post stimulus onset. However, 

the superior performance observed for the encoding 

model implies that accurate real-time decoding may be 

possible by cross-correlating a recorded neural signal 

against a pre-computed lookup table of signals predicted 

from various combinations of attributes. 

 

CONCLUSION 

 

     Four approaches to zero-shot stimulus prediction were 

compared for predicting recognized objects from ECoG 

signals evoked during a picture-naming task. All four 

approaches attempt to learn a mapping between neural 
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features and semantic attributes, but differ in what they 

consider to be the direction of the mapping and in how 

the mapping is learned from training data. Performance 

was relatively consistent from subject to subject between 

the four approaches, though in most cases the Ridge 

Regression Encoding model yielded the best 

performance. These results represent an initial step 

toward realizing semantic BCI, and suggest that the next 

generation of neuroimaging technologies paired with the 

algorithms demonstrated here could help new BCI 

applications to come to fruition.  
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ABSTRACT: BrainHack is a Coordination and Support 
Action project funded by the European Commission 
with the goal of engaging the international artistic 
community experimenting with Brain Computer 
Interface (BCI) technologies and link it to the BCI 
scientific community. In this paper we reported on 
BrainHack activities, focused on two hackathons. The 
hackathons involved participants with a wide range of 
artistic and scientific backgrounds, successfully 
achieving the purpose of encouraging knowledge 
exchange in a multidisciplinary environment and 
creating a meeting point between Art and BCI 
technology. However some limits were identified in the 
scientific aspects of some of the projects, due to the 
obstacles encountered when dealing with BCI 
technology within a limited interval of time. 
Suggestions to go beyond such limits were inspired by 
the results of the interviews performed with 
participants, mentors and guest speakers. 

 
INTRODUCTION 
Studies on brain computer interface (BCI) published in 
the last decades were mostly focused on clinical 
applications. Within clinical applications, effort was 
made in developing BCI for providing new channels of 
communication for severely disabled persons [1], [2] 
and on rehabilitation, to improve motor function after 
stroke [3], [4]. Recently the reliability of EEG-based 
BCI systems improved, together with the interest of 
scientists in developing applications for healthy users. 
Such applications aimed at enhancing human functions, 
allowing the monitoring of users’ workload in 
operational contexts [5]–[7], decoding car drivers’ 
error-related brain signals [8] or monitoring subjects 
affective/cognitive states [9]. Furthermore the interest in 
designing BCI applications related to the creation and 
the experience of Art has significantly grown [10]. 
Indeed, monitoring persons’ affective cognitive state 
can be used to influence an application to modify an 

artistic environment (e.g. modifying animations and 
musifications) expressing users’ emotions. 
Within this approach BCI has been used to create music 
performance, modifying music in response of 
performer’s and listener’s affective state [11] or to 
perform collaborative sonification [12]. Brain-to-brain 
coupling between performer/s and spectator/s was also 
used as means of controlling audio-visual creative 
outputs [13]. Furthermore BCI was used to allow people 
with severe motor disability to express themselves 
through painting [14]. 
BrainHack is a Coordination and Support Action project 
funded by the European Commission, under the 
Horizon 2020 FET Open program (http://hackthebrain-
hub.com). The main goal of BrainHack is to 
engage/organize the international artistic community 
experimenting with BCI technologies and link it to the 
BCI scientific community, to bring together 
interdisciplinary groups of artists, scientists (and 
developers) to mutually exchange knowledge on 
applications and implications of neuro-technology, to 
investigate if and how these groups develop new 
relevant insights, and to encourage discussion and 
reflection around ethical issues related to (artistic) 
applications of BCI. 
BrainHack activities are centered around three 
hackathons over two years. Hackathons are problem-
focused computer programming events, where people 
with different background collaborate intensively in a 
short period of time (usually 3-4 days) to develop an 
idea and make it a prototype. Within the BrainHack 
project hackathons represent an environment where 
ideas and knowledge are exchanged between artists and 
scientists: a collaboration space supporting the creation 
of new concepts. Results of an hackathon would be the 
production of codes, hardware, sculptures, wetware 
prototypes or speculative prototypes. 
In this paper we will report about two hackathons which 
were organized by the BrainHack consortium. We will 
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also report about the methods which were applied to 
evaluate the hackathons and to collect insights for the 
next ones. 
 
MATERIALS AND METHODS 
 
Hackathons 
BrainHack consortium organized two (out of the three) 
hackathons in 2016. The third one will be held in Dublin 
(Science Gallery) in June 2017.  
The first one took place in Amsterdam ( Medieval Waag 
Society building), between the 24

th
 and the 26

th
 of June, 

and was titled “Hack yourself better (or worse)”. 
Participants had access to the FabLab and Open Wetlab 
facilities in the Waag building. FabLabs are digital 
fabrication laboratory, equipped with a range of digital 
manufacturing technologies, allowing people to turn 
their ideas into products. The Open Wetlab is a space 
for bio-art, bio-design and biotechnology. 
The second hackathons was held in Prague, between the 
2nd and the 4th of December 2016. 
During both the hackathons, participants had access to a 
range of technologies: G-Tec g.Nautilus (g.tec medical 
engineering GmbH, Austria), SmartBCI (Novatech 
EEG), Open BCI (http://openbci.com/), Neurosky 
Mindwave http://store.neurosky.com/pages/mindwave), 
TMSI 
Mobita(http://www.tmsi.com/products/systems/item/mo
bita), Emotive Epoc (http://emotiv.com/epoc/), 
Necomimi(http://www.necomimi.com/), 
Muse(www.choosemuse.com). 
A pre-event was organized one-month before each of 
the two hackathons, consisting in an event which lasted 
one evening and was aimed at stimulating participants’ 
involvement and boosting their knowledge. 
During the hackathons, participants worked in teams, 
and were involved in the implementation of a project in 
which art met BCI technology. Mentors with various 
backgrounds, supported them in planning and 
developing the projects. Mentors’ backgrounds were 
cognitive scientists, neuroscientists, software 
developers, programmers, mathematicians, physicists, 
visual artists and film creators. Also scientists working 
in BCI field, neuroscientists, and experts in the 
connection between Art and Science, gave lectures 
during the three-day hackathons, in order to provide to 
participants an overview on the state of art in their 
respective fields. 
 
Jury evaluation 
A jury composed of experts in BCI research, 
neuroscience, art, philosophy and ethics was 
established. They evaluated the teams projects scoring 
them from 1 to 5, within 4 criteria: i) Artistic value 
(weight 40%), ii) Scientific value (weight 30%), iii) 
Level of maturity (weight 10%), iv) Novelty (Weight: 
20 %). 
 
 
 

Hackathon evaluation 
In order to perform an evaluation of the hackathon, 
consortium members administered a structured (open) 
interview to mentors. 
The interview was structured in different points 
regarding i) the importance of mentors’ expertise in 
supporting participants during the hackathons, ii) the 
competences that the participants had and the 
competences that they developed during the hackathons, 
iii) which different expertise the hackathons would 
havebenefitted from among both the participants and the 
supervisors, iv) the awareness of participants about what 
they were working on and v) the quality of the 
interaction of the participants within and between the 
groups. 
 
Ethics 
Consortium members also conducted interviews 
about ethics. The interviews were aimed at gaining 
insight about the ethical aspects of BCI technologies, 
particularly regarding the role of Art in such field. 
The topics of privacy, intellectual autonomy, free 
will, personal identity, and technological 
determinism were addressed [15]. 
 
RESULTS 
Hackathons participants 
Sixty-two people attended the hackathon in Amsterdam. 
Eleven of them were consortium members and 53 
people were an active part of the teams working at the 
projects. Within the participants the backgrounds of 37 
of them were categorized as “scientist and/or developer 
expert” or “other” and 25 of them were categorized as 
“artists and developer expert”. Artists background 
varied from fashion design, speculative design, media 
arts and sculpture. Scientists and developers 
backgrounds included philosophy, commercial BCI 
development, medical science, neuroscience and 
computer science. Eleven teams working at 11 projects 
were created. 
Forty-seven people with a wide range of different 
backgrounds attended the Prague hackathon. Within 
the participants 16 of them were “software 
developer”, 6 of them were artists, and 3 defined 
their background as in the between of Art and 
science, 11 were psychologists, 3 neuroscientists and 
7 were classified as having “others background”. 
 
Interview 
Four mentors were interviewed during the two 
hackathons. Their backgrounds were 
scientists/developers, neuroscientists and BCI experts. 
They were all very satisfied of the hackathon experience 
and of the role that they covered in the event. Results of 
the interviews showed that they considered their 
expertise relevant in supporting the participants in i) the 
initial process of brainstorming and creating a 
framework ii) merging technical processes, hardware 
and software, iii) clarifying computer science and 
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programming concepts, iv) applying neurophysiology 
concepts to obtain BCI control. 
Two mentors reported that the participants were initially  
unaware about science limitations i.e. what can be 
achieved with scientific methods in a limited time slot. 
In their opinion, during the hackathon, participants 
gained a greater awareness about “the limitation of 
science“, and it was indeed one of the most valuable 
competence that the participants gained . 
On the interaction between participants with different 
backgrounds, all the mentors reported that participants’ 
backgrounds were complementary and allowed them to 
learn from each other, within and between the groups. 
Mentors underlined as important factors for teams 
success i) the balance across members backgrounds 
(stated from all the interviewees)  ii) the quality of the 
initial brainstorming on intention and ideas about the 
projects (stated from 2 interviewees). Weakness 
identified by the mentors were i) the low number of 
participants with an expertise in computer graphics,  
graphic design and visualization of data, to design 
accessible interfaces and highlight both the artistic and 
the scientific parts of the projects (stated from 1 
interviewees) ii) the restricted number of participants 
with a background of neurophysiology applied to BCI 
(stated from 3 interviewees). 
 
Projects 
Seven teams participated at the Prague hackathon, each 
developing its own project. In a total of six projects 4 
were dealing with the classification of 
attention/concentration and two with the classification 
of emotions. Artistic products in projects focused on 
concentration were i) virtual reality, visual and auditory 
animation based on theta activity, ii) sonification and 
virtual reality environment based on frontal alpha and 
beta and on theta activity in parietal lobe, iii) a sculpture 
representing a kinetic worm moving on the basis of 
frontal alpha modulation, iv) an environmental (visual 
and auditory) change aimed at maintaining high level of 
concentration, monitored classifying frontal lobe 12-18 
Hz. 
In the two projects dealing with emotions, it was 
developed i) a real-time video mirror to reflect the 
emotional state of the person (beta levels) and ii)an 
emotion detection device using frontal alpha asymmetry 
to influence the brightness of some LEDs, inserted in a 
polystyrene sculpture representing a head. 
Advisory board members noted that almost everyone 
(except 1 team) described the EEG signals which were 
classified and half of the teams did it adequately in 
depth. Three teams used a standard, scientific tools to 
induce emotions (affective pictures database) and one 
project had scientific and real-life potential. However 
some of the projects did not go beyond the traditional 
applications, and advisory board members noted a lack 
of knowledge of neuroscience state of art. 
 
 
 

Ethics 
Fifteen interviews about ethics were conducted with 
hackathon mentors, guest speakers, and participants. 
Interesting patterns of convergence and divergence 
emerged. There was a good deal of disagreement about 
to what extent BCI technologies can provide us with a 
new kind of self-insight or self-awareness; many 
interviewees have mentioned the paradoxical way in 
which Art can teach lessons (about curiosity, about 
critical thinking) by refusing to teach overt lessons; 
there has been a fascinating discussion about the fact 
that field-based constraints can actually generate 
creativity, with the caveat that overcoming those 
constraints through collaboration can also be extremely 
fruitful. 
 
DISCUSSION 
In this paper we reported about the BrainHack project 
objectives. Two hackathons were organized within the 
project, which involved a total of 109 participants 
organized in 17 teams. Methods utilized to obtain 
feedback and ethics insight collection, were reported. 
The hackathons attracted people with different 
backgrounds. Artists’ backgrounds varied from fashion 
design to performance, speculative design, media arts, 
sculpture and design. Scientists had a background 
varying from philosophy, commercial BCI 
development, medical science, neuroscience and 
computer science. Therefore hackathons successfully 
achieved the purpose of involving people with different 
expertise, encouraging the knowledge exchange in a 
multidisciplinary environment and creating a meeting 
point between Art and BCI technology. Also the 
members of the advisory board underlined the positive 
results of the hackathons in terms of multidisciplinary, 
and quality of some of the projects developed. 
However some limits were identified in the scientific 
aspects of some projects. Mentors noted that working on 
a project dealing with BCI in a limited interval of time 
(3-days hackathon), presents some weakness in 
identifying the features to be extracted to train the 
classifier, and obtain an online feedback (mentor 
interview).  
In order to improve the hackathons quality, the 
following solutions were identified. Given the 
complexity of transferring BCI methodology to Art, e.g. 
using the online classification of cognitive emotional 
states, a starting point would consists in concentrating 
introductory lectures on neurophysiology and BCI 
methodologies, and in increasing the number of mentors 
with this background. 
Also participants could be encouraged to identify and 
communicate their interests in advance (topics on which 
they would like to work), so that pre-existing algorithms 
could be shared by the hackathon organizer on a 
common platform. Such algorithms could be used by 
the participants, who would have more time for working 
on a final product, without focusing too long on details 
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CONCLUSION 
From the ethical insight obtained by interviewing 
participants, mentors and speakers, about the interaction 
between Art and BCI, it can be speculated that because 
artists are not bound by the same practical limitations as 
are scientists, Art can function as a testing ground that 
explores the risks of new technologies without incurring 
their negative consequences: when an artwork elicits 
strong emotional reactions, it can spark public debate 
about controversial topics. Is there an ethical imperative 
to use the aesthetic realm in this way? How do we 
balance this imperative with the ideal of artistic 
freedom? Some Hackathon artists saw their role as 
entirely amoral, while some implied that Art's very 
detachment from moral duties is what enables those 
who encounter it to live a good life. For example, Art 
themed around BCI technology can increase audiences’ 
capacity for empathizing with the disabled and/or 
expand ideas of "the human" to better account for 
disabled individuals. 
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ABSTRACT: Motor imagery (MI) modulates the neural
activity within the primary sensorimotor areas of the cor-
tex and can be observed through the analysis of electroen-
cephalographic (EEG) recordings. It is particularly inter-
esting for Brain-Computer Interface (BCI) applications.
In most MI-based BCI experimental paradigms, subjects
realize continuous motor imagery (CMI), i.e. a repetitive
and prolonged intention of movement, for a few seconds.
The system detects the movement based on the event-
related desynchronization and the event-related synchro-
nization features in electroencephalographic signal. Cur-
rently, improving efficiency such as detecting faster a mo-
tor imagery is an important issue in BCI to avoid fatigue
and boredom. The purpose of this study is to show the
difference, in term of classification, between a discrete
motor imagery, i.e. a single short MI, and a CMI. The re-
sults of experiments involving 16 healthy subjects show
that a BCI based on DMI is as effective as a BCI based
on CMI and could be used to allow a faster detection.

INTRODUCTION

Motor imagery (MI) is the ability to imagine performing
a movement without executing it [1]. According to Jean-
nerod [2], MI represents the result of conscious access to
the content of the intention of a movement, which is usu-
ally performed unconsciously during movement prepa-
ration [3]. MI has two different components, namely
the visual-motor imagery and the kinesthetic motor im-
agery (KMI) [4]. KMI generates an event-related desyn-
chronization (ERD) and an event-related synchronization
(ERS) in the contralateral sensorimotor area, which is
similar to the one observed during the preparation of a
real movement (RM) [5]. More precisely, compared to a
resting state taken before a motor imagery, several power
modulations are observed in in the alpha (8-12 Hz) and in
the beta (18-25 Hz) bands of the electroencephalographic
signal measured over the sensorimotor area correspond-
ing to the body part involved in the motor imagery. Firstly
there is a gradual power decrease in the alpha and in

the beta bands, called ERD. Secondly, a low power level
is maintained during the movement. Finally, from 300
to 500 milliseconds after the end of the motor imagery,
there is a power increase called ERS or post-movement
beta rebound with a duration of about one second. Al-
though several studies showed an activity uniquely in the
contralateral area [6], other studies showed that ERD and
ERS are also in the ipsilateral area [7].

Emergence of ERD and ERS patterns during and after a
MI has been intensively studied in the Brain-Computer
Interface (BCI) domain [8] in order to define detectable
commands for the system. Hence, a better understand-
ing of these processes could allow for the design of better
interfaces between the brain and a computer system. Ad-
ditionally, they could also play a major role where MI
are involved such as rehabilitation for stroke patients [9],
monitoring consciousness during general anesthesia [10]
or the recovery of the motor capacity after neurological
damage. For example MI training is a promising ap-
proach in facilitating paretic limb recovery.

Currently, most of the paradigms based on MIs require
the subject to perform the imagined movement several
times for a predefined duration of a few seconds. In this
study, such a task is commonly referred to as a contin-
uous motor imagery (CMI). However, first the duration
of the experiment is long. Second a succession of flex-
ions and extensions generate an overlapping of ERD and
ERS patterns making the signal less detectable. In fact,
one simple short MI, referred in this article as a discrete
motor imagery (DMI), could be more useful for two rea-
sons. Firstly, a DMI could be used to combat fatigue and
boredom for BCI users improving ERD and ERS produc-
tion [11]. Secondly, the ERD and ERS generated by the
DMI could be detectable at a higher quality and more
rapidly compared to a CMI. This was found in a previous
study that established a relationship between the duration
of the MI and the quality of the ERS extracted [12]. It
also showed that a brief MI (i.e. a 2-seconds MI) could
be more efficient then a sustained MI. Our main hypothe-
sis is that a DMI generates robust ERD and ERS patterns

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-80

CC BY-NC-ND 435 Published by Verlag der TU Graz 
Graz University of Technology



which could be detectable by a BCI system. Results in-
dicate that a DMI produces a robust ERS and is as de-
tectable as a CMI.

MATERIALS AND METHODS

Participants: 16 right-handed healthy volunteer sub-
jects took part in this experiment (9 men and 7 women,
from 19 to 43 years old). They had no medical his-
tory which could have influenced the task such as di-
abetes, peripheral neuropathology, renal insufficiency,
anti-depressant treatment or motor problem. All subjects
gave their agreement and signed an information consent
form approved by the ethical INRIA committee before
participating. This experiment follows the statements of
the WMA declaration of Helsinki on ethical principles
for medical research involving human subjects [13].

Real movement: The first task consisted of an isomet-
ric flexion of the right index finger on a computer mouse.
A low frequency beep indicated when the subject had to
execute the task. The right-click is recorded as a trigger
and has allowed to know exactly when the participant ex-
ecutes the RM.

Discrete imagined movement: The second task was a
DMI of the previous real movement. A low frequency
beep indicated when the subject has to execute the task.

Continuous imagined movement: The third task was
a CMI during four seconds of the real movement of the
first task. More precisely, the subject imagined several
(around four) flexions and extensions of the right index
finger. This way, the DMI differed from the CMI by the
repetition of the imagined movement. For this task, two
beeps, respectively with low and high frequencies, sepa-
rated by a four second delay, indicated the beginning and
the end of the CMI.

Protocol: Each of the three tasks introduced in sec-
tion corresponds to a session. The subjects completed
three sessions during the same day. All sessions were
split into several runs. Breaks of a few minutes were
planned between sessions and between runs to avoid fa-
tigue. Before each session, the task was described, and
the subject practiced the tasks. At the beginning of each
run, the subject was told to relax for 30 seconds. Condi-
tion 1 corresponded to RMs was split into 2 runs of 50
trials. Conditions 2 and 3 corresponded to discrete and
continuous imagined movements, respectively, was split
into 4 runs of 25 trials. Thus, 100 trials were performed
by subjects for each task. Each experiment began with
condition 1 as session 1. Conditions 2 and 3 were ran-
domized to avoid possible bias cause by fatigue, gel dry-
ing or another confounding factor. For conditions 1 and
2, the timing scheme of a trial was the same: one low
frequency beep indicated the start followed by a rest pe-
riod of 12 seconds. For condition 3, a low frequency beep
indicated the start of the MI to do during 4 seconds, fol-
lowed by a rest period of 8 seconds. The end of the MI is
announced by a high frequency beep (Fig. 1).

Figure 1: Timing schemes of a trial for each task: Real
Movement (RM, top); Discrete Motor Imagery (DMI,
middle); Continuous Motor Imagery (CMI, bottom). The
DMI and CMI sessions are randomized.

Figure 2: Schematic representation of the experiment.
A low frequency beep indicates the start of the (real or
imagined) movement. A high frequency beep indicates
the end of the continuous imagined movement. Depend-
ing on the task, the subject presses or imagines pressing
the button of the mouse.

Behavioral data: A custom-written scenario for
OpenViBE [14] was designed to automate the generation
of beeps, and to record triggers and EEG signals. The
triggers corresponding to the right-click allowed us to de-
tect potential behavioral errors. All non realized move-
ment were removed from the analysis. For all three tasks,
we used a fixed preparatory period duration in which the
subjects could anticipate the GO signal.

EEG data: EEG signals were recorded through the
OpenViBE platform with a commercial REFA amplifier
developed by TMS International. The EEG cap was fitted
with 9 passive electrodes re-referenced with respect to the
common average reference across all channels over the
extended international 10-20 system positions to cover
the primary sensorimotor cortex. The selected electrodes
are FC3, C3, CP3, FCz, Fz, CPz, FC4, C4, CP4. No
additional filtering was used during the recording. Skin-
electrode impedances were kept below 5 kΩ. Incorrect
trials were removed from the analyses.

ERD/ERS patterns: To evaluate more precisely the
modulation produced by the tasks, we computed the
ERD/ERS% using the “band power method” [5] with
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a matlab code. First, the EEG signal is filtered be-
tween 8-30 Hz (Alpha+Beta) for all subjects using a 4th-
order Butterworth band-pass filter. Then, the signal is
squared for each trial and averaged over trials. Then it is
smoothed using a 250-millisecond sliding window with
a 100 ms shifting step. We have chosen a specific slid-
ing window because the nature of the real and imagined
movement, as well as the components ERD/ERS that un-
derline them, require a short window. Finally, the aver-
aged power computed for each window was subtracted
and then divided by the averaged power of a baseline cor-
responding to 2 seconds before each trial. Finally, the av-
eraged power computed for each window was subtracted
and then divided by the averaged power of a baseline cor-
responding 2 seconds before each trial. This transforma-
tion was multiplied by 100 to obtain percentages. This
process can be summarized by the following equation:

ERD/ERS% =
x2 −BL2

BL2
× 100 , (1)

where x2 is the average of the squared signal over all tri-
als and samples of the studied window, BL2 is the mean
of a baseline segment taken at the beginning of the corre-
sponding trial, and ERD/ERS% is the percentage of the
oscillatory power estimated for each step of the sliding
window. It is done for all channels separately.
ERD and ERS are difficult to observe from the EEG sig-
nal. Indeed, an EEG signal expresses the combination of
activities from several neuronal sources. One of the most
effective and accurate techniques used to extract events
is the average technique [15]. We decided to use this
technique to represent the modulation of power of the Al-
pha+Beta rhythms for three tasks (Real Movement, Dis-
crete Motor Imagery and Continuous Motor Imagery).

Common Spatial Pattern: We used the algorithm
called Common Spatial Pattern (CSP) to extract motor
imagery features from EEG signals; this generated a se-
ries of spatial filters that were applied to decompose
multi-dimensional data into a set of uncorrelated com-
ponents [16]. These filters aim to extract elements that si-
multaneously maximize the variance of one class, while
minimizing the variance of the other one.

Feature extraction and linear discriminant analysis:
We trained a linear discriminant classifier to distinguish
the features of motor imageries from the ones of a resting
state. We applied the common spatial pattern algorithm to
obtain 3 pairs of linear combinations from the 8-30 Hz fil-
tered EEG signals. Then for each linear combinations we
computed the logarithm of the variance for a studied win-
dow. We considered a 2 seconds window taken 3 seconds
before the GO signal for the resting state. The 1 second
window before the GO signal is not taken into considera-
tion because the beep can generate an audio ERP and the
subject usually prepares the movement in advance. So it
not really a resting state. The features of a DMI is com-
puted from 0.2 to 1 second after the GO signal (Fig. 5,
Tab. 1). The features of a CMI is computed from 0.2 to 3
seconds after the GO signal (Fig. 5, Tab. 1).

Figure 3: Grand average ERD/ERS% curves (in black,
Average) estimated for the RM, the DMI and the CMI
within the alpha + beta band (8-30 Hz) for electrode C3.
The average for each subject is also presented. A first
beep indicated the start of the (real or imagined) move-
ment. A second beep indicated the end of the continuous
imagined movement.

Figure 4: Grand average ERD/ERS% curves estimated
for the RM (blue), the DMI (green) and the CMI (orange)
within the alpha + beta band (8-30 Hz) for electrode C3.
A first beep indicated the start of the (real or imagined)
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movement. A second beep indicated the end of the con-
tinuous imagined movement.

Figure 5: Accuracies obtained by linear discriminant
analyses for the 3 conditions (RM, CMI and DMI). The
features of a RM and DMI are computed from 0.2 to 1
second after the GO signal. The features of a CMI are
computed from 0.2 to 3 seconds after the GO signal.

Table 1: Grand average accuracies obtained by linear dis-
criminant analyses for the 3 conditions (RM, CMI and
DMI) and 3 frequency bands (alpha, beta and alpha +
beta).

RESULTS

To prove the usability of a DMI in BCI-domain, firstly
we computed ERD and ERS patterns to study the rela-
tive power (8-30 Hz) for the electrode C3. Secondly, we
verified the detectability of a DMI in calculating classifi-
cation rate.

ERD and ERS modulation: To verify if a DMI gen-
erates ERD and ERS patterns which could be detectable
by a CMI, we studied the relative power (8-30 Hz) for
the electrode C3. Electrode C3 is suitable for moni-
toring right hand motor activity. A grand average was
calculated over the 16 subjects. We used a Friedman’s
test to analyze whether ERS were significantly and re-
spectively different during the three conditions. Due to
eyes-closed experiment, the alpha band is disturbed (con-
firmed by the time-frequency analysis) and not consid-
ered for this study. Consequently values corresponding
to the desynchronization during the real and imagined
movements will appear smaller. Moreover a visual in-
spection of time-frequency analysis shown modulations
of alpha + beta power between 8-30 Hz for all the 16
subjects (Fig. 3).

ERD and ERS modulation during/after a real move-
ment: The ERD/ERS% averages (Fig. 4) indicate that

one second after the cue, the power in the 8-30 Hz band
increases by around 60%, reaches its maximum and re-
turns to the baseline 7 seconds after. The evolution from
ERD to ERS is rapid (less than one second) and should be
linked to the type of movement realized by the subjects.
Interestingly, each subject (except Subject 9 and Subject
16) has the same ERD/ERS% profile (i.e. a strong re-
bound) after the real movement (Fig. 3).

ERD and ERS modulation during/after a discrete mo-
tor imagery: The ERS post-DMI reaches 18% which is
weaker compare to the other tasks (Fig. 4). Some sub-
jects (S1, S2, S5, S6, S10) have a stronger robust ERS
produced by DMI while others have no beta rebound.
Some subjects (S9, S10, S15) have a strong ERD after
the task (Fig. 3). This variability between subjects could
explain the weakness of the ERS post-DMI. The presence
of ERD and ERS during/after a DMI suggest that a DMI
could be used in BCI-domain.

ERD and ERS modulation during/after a continuous
motor imagery: During the CMI, the subjects imagined
several movements in a time window of 4 seconds. Fig.
4 shows a global decrease of activity during the CMI and
stronger modulation in 8-30 Hz after the CMI. The results
of the grand average shows a low desynchronization dur-
ing this time window. It is interesting to note that some
subjects (S7, S9, S11) have no desynchronization during
the CMI task and could have a negative effect on the clas-
sification phase. Other subjects (S2, S15) have a differ-
ent profile which shows that a first ERS is reached one
second after the beginning of the CMI, then the power
increases and decreases again, being modulated during 3
seconds. Indeed, this global ERD can be considered as
the concatenation of several ERDs and ERSs due to the
realization of several MIs. The variability between sub-
jects during this period could also have a negative effect
on the classification rate.

Detection results: Discrete motor imageries generate
robust ERD and ERS (see previous section). In this sec-
tion, we will study if they are detectable enough to have a
faster detection in BCI than using continuous motor im-
ageries. For each subject, 4 runs of 25 trials were avail-
able. The process of the cross validation consisted in us-
ing trials of 3 runs for train classifier and 1 run for test it.
Four permutations were possible and we averaged accu-
racies obtain by the 4 classifiers on their testing run for
a better evaluation. This method of cross validation was
chosen because of its proximity to online condition. Fig-
ure 5 presents the accuracy for each subject and the mean
accuracy. The mean accuracy for RM, DMI and CMI are
respectively 78,4%, 71,9% and 71,4%. The detection of
real movement is easier than the one of motor imageries.
The difference between the two motor imageries is not
statistically significant at a level of 5%. The precision
of the ME is 0,78 (22% of false positive) and the recall
is 0.79. The precision of the DMI is 0.71 (29% of false
positive) and the recall is 0.74. The precision of the CMI
is 0,73 (27% of false positive) and the recall is 0,68. In-
terestingly, some subjects (S5, S6, S9, S16) have a better
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detection for the DMI task. In Tab. 1, we computed the
grand average of accuracies for the three conditions (RM,
DMI and CMI) for three frequency bands (alpha, beta and
alpha + beta). It appears that the 8-30 Hz frequency band
increases the classification rate. Furthermore, the com-
parison of the classification rate between a DMI and a
CMI on the same period (0.2s-1s) shows an equivalence.

DISCUSSION

The subjects carried out voluntary movements, DMI and
CMI of an isometric flexion of the right hand index finger.
Results show that the power in the 8-30 Hz band is mod-
ulated during the three tasks. The comparison between
ERSs suggests that subjects on average have a stronger
ERS during a CMI than a DMI. However, this is not the
case for all subjects. Furthermore, the detection rate for a
DMI is as effective as for a CMI.

EEG system: It is well established that a large num-
ber of electrodes allows having a good estimation of the
global average potential of the whole head [17]. Al-
though we focused on specific electrodes, our results
were similar by using method of the derivation, which
corresponded with the literature. We chose to study C3
without derivation because we are interested in designing
a minimal system to detect ERD and ERS during general
anesthesia conditions.

ERD/ERS modulation during real movements: The
results are coherent with previous studies describing
ERD/ERS% modulations during motor actions. The
weakness of the ERD can be linked to the instruction that
was focused more on the precision than the speed of the
movement [18]. However, although some subjects were
making efforts to do a voluntary movement, we must con-
sider that an isometric flexion movement on a mouse is a
movement setting in the subject’s memory. This can have
an impact on the low ERD amplitude. We also showed
that the rebound starts before the click. Since a mouse
click, is a really fast movement, we expect that the beta
rebound will appear fast as well [19].

ERS modulation during motor imageries: The results
show that the ERS is lower after a DMI or a CMI than af-
ter a real movement, which has been already been demon-
strated previously [20]. However, the novelty is the beta
rebound is stronger on average after a CMI than DMI for
a few subjects.

ERD modulation during continuous motor imagery:
When the subjects performed the CMI, the ERD was
highly variable during the first 4 seconds. For some sub-
jects, our hypothesis is there are some intern-ERD and
intern-ERS into this period. The difficulty is that the CMI
involves several MI, that are not synchronized across tri-
als, unlike the DMI which starts and ends at roughly the
same time for each trial, due to the cue. Normally, for
continuous real movement, the ERD was sustained dur-
ing the execution of this movement [21]. However, in
our data it is possible to detect several ERDs during the
4 seconds of CMI where the subject performed 4 MIs.

This assumes that the ERD and ERS components overlap
in time when we perform a CMI. Several studies already
illustrate the concept of overlap of various functional pro-
cesses constituting the beta components during RMs [22].
Moreover, the beta rebound generated by a median nerve
stimulation is reduced when the stimulation is made dur-
ing different types of real or imagined hand movements
[23], [24]. However, even if the components cancel each
other out in the signal, it does not mean that the operation
of the underlying processes are similarly affected. This
interpretation assumes implicitly that the components are
combining each other, which means that the temporal su-
perposition of an ERD and an ERS would result in an
intermediate amplitude signal. This could explain why
the ERD during a CMI could be less detectable and more
varied than the ERD during a DMI. To validate this hy-
pothesis, we plan to design a new study to explore how
two fast-successive movements (or MIs) can affect the
signal in the 8-30 Hz frequency band.

Detection rate: We showed that the detection of a real
movement was easier than discrete and continuous motor
imageries but we could discuss about the weakness of the
classification rate for the three task. Usually, a real move-
ment has often a high classification rate and it is not the
case in this study. However, it is important to remind that
the subject performed real movement, DMI and CMI of
an isometric flexion of the right hand index finger. The ra-
pidity and the precision of the three tasks could be linked
with the low classification rate. One limitation of this
study is that all trials of a type had the same length and
was not randomized within a block.

Establishing a link between the ERD/ERS users pro-
files and the detection rate: Our study shows results
which could allow to understand more differences, in
term of ERD and ERS, between subjects. Indeed, we
showed that for a same task (RM, DMI and CMI), for
some subjects a strong ERS appeared whereas for some
others, no ERS appeared. We observed the same phe-
nomenon for ERD. It could be interesting to establish a
link between the particular ERD/ERS users profiles and
the detection rate. The importance of BCI users profiles,
especially for patients with severe motor impairments has
already been established by other studies [25]. This is
why, we expect designing an adaptive BCI based on the
specific motor activity of the motor cortex. More subjects
are necessary to precise this BCI user profile.

CONCLUSION

This article examined the modulation of power (8-30 Hz)
in EEG during a real movement, a discrete motor im-
agery (DMI) and a continuous motor imagery (CMI).
We showed that during a real voluntary movement cor-
responding to an isometric flexion of the right hand in-
dex finger a low ERD appeared, and was followed by a
rapid and powerful ERS. Subsequently, we showed that
the ERD and ERS components were still modulated by
both a DMI and a CMI. The ERS is present in both cases
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and shows that a DMI could be used in BCI domain. The
classification results show no any difference between a
CMI and a DMI and confirm that a DMI could have a
future impact in BCI-domain to save time and avoid fa-
tigue.
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ABSTRACT: In this study we have assessed the quality
of experience objectively when vertical disparity is intro-
duced in the stereoscopic presentation of images. Four
different conditions including a cube in 2D and the same
cube in 3D with and without vertical disparities are com-
pared based on the EEG signals recorded from 17 sub-
jects. Two different vertical disparity levels are stud-
ied. Event-related potentials (ERPs) corresponding to
four conditions are compared in time-frequency domain.
The results show an increase in beta power of the occipi-
tal region for the images with vertical disparity compared
to the 3D image with no vertical disparity. An increase
in beta power in this region correlates with an increase in
the level of attention which in our case is caused by the
vertical disparity component in the stereoscopic images.

INTRODUCTION

Stereoscopic imaging technologies are used since almost
two centuries for inducing the illusion of visual depth by
providing images from horizontally slightly shifted focal
points to the two eyes of the observer [1]. In recent years,
this technique became popular again in various applica-
tion domains and is used to create or increase the impres-
sion of greater realism and immersion e.g. for entertain-
ment, as in movies or computer games, or in data visu-
alization. New application scenarios in virtual and aug-
mented reality environments are in reach with the advent
of market-ready head mounted displays such as the Ocu-
lus Rift. The imaging systems’ quality experienced by the
user is crucial for the success of these applications. One
aspect driving the quality of experience for systems based
on stereoscopy is visual comfort that can be severely im-
paired e.g. by accommodation/vergence conflicts, exces-
sive binocular parallax, dichoptic errors and other factors
[2]. As for most multimedia signals and their impair-
ments, unfortunately, no reliable objective computational
model is currently available. Therefore, assessing the per-
ceived quality of imaging systems relies on behavioral
tests. These tests are typically carried out as psychophys-
ical judgment experiments, during which a subject has to

rank the quality of a set of test stimuli by giving an overt
response. Thus, the outcome of these tests is the result of
a cognitive process of the subject. This leads to different
drawbacks of this method: The ratings are highly variable
across subjects and prone to subjective factors as bias,
expectations and strategies. As such tests are exhaustive
for the subject, participants’ ratings may become unreli-
able over time and the duration of psychophysical quality
assessment test should not take longer than 30 minutes
[3]. Moreover, it is very difficult, if not impossible, to
integrate this kind of behavioral procedure in real-time
assessment of perceived quality.
To overcome these limitations, brain activity recordings
for directly monitoring the users cognitive state have
shown promising results recently. Electroencephalogra-
phy (EEG) in particular is one of the easiest and most mo-
bile devices to record brain signals and has been used to
study neural correlates of perceived quality of multime-
dia, such as audio [4] and 2D [5, 6, 7, 8] and 3D video [9].
[10] and [11] provide a comprehensive overview on ap-
proaches to assessing perceived quality physiologically.
If the two focal points in a stereoscopic imaging system
are not aligned vertically, vertical disparities occur along-
side horizontal disparities. While the latter serve as depth
cue, vertical disparities commonly cause visual discom-
fort experienced by the observer that can ultimately even
lead to physical pain. In this paper we address the assess-
ment of visual discomfort caused by vertical disparities
using EEG. For that the brain signals recorded for two
amounts of vertical disparity are compared to no verti-
cal disparity and a 2D image on channel level in time-
frequency domain. More detailed analysis of this data set
with a focus on the ERP components is presented in [12].
The next section describes the experimental setup and ex-
plains the event-related potentials (ERPs) which are stud-
ied in time-frequency domain. The results show signif-
icant differences in time-frequency domain, more pre-
cisely larger beta power for occipital region in vertical
disparity conditions. The results and discussion are pre-
sented in more details in the last two sections.
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METHODS

Experimental Setup: In an objective approach we have
studied EEG features caused by the vertical disparity in
stereoscopic images. The vertical disparity is simulated
for a 3D image of a cube in which the right camera is
shifted upwards relative to the left one. Two conditions
are simulated in this way while the amount of vertical dis-
parity in one condition (3D-2) is 40 % less than the other
condition (3D-3). The cube is presented to the subjects in
four different conditions in two categories of 2D and 3D,
i.e. three images in 3D including two different 3D images
with vertical disparity levels and one 3D image without
vertical disparity. The same cube is also presented in 2D
shown in Figure 1 a).

   a)                                                         b)

Figure 1: a) The cube is presented in 2D and in three dif-
ferent 3D conditions (3D, 3D-2 and 3D-3). b) A cross in
3D is presented in between the epochs as a pause interval.
The cross is projected on the cube in this figure to show
its exact location relative to the center of the cube.

Each image is presented randomly for 120 trials (epochs)
for 4 seconds and between the images a cross is presented
in 3D for an interval of 3 seconds. This interval is imple-
mented for subjects to be able to rest their eyes and it
helps to reduce the amount of ocular artifacts.
In Figure 1 b), the cross is projected on the cube to vi-
sualize the exact position of it relative to the cube. To
keep the subjects attentive they were asked to do a task:
they were supposed to press a button when an image of
a cat was shown. 120 images of a dog (80%) and a cat
(20%) appeared randomly among other stimuli between
two fixation crosses. If the subject successfully hit the
target image (cat) by a minimum 90% accuracy he/she
was rewarded by 5 e extra. All subjects were rewarded
for their participation by 8.5 e per hour. The horizontal
angle of view is 20.76 degrees while the distance between
the subject and the screen is 280 cm. The subjects wear
3D polarized glasses during the experiment. According
to a previous study [13] polarized passive glasses tend to
be more comfortable than the active shutter glasses. The
experiment was conducted in a dimly lit and silent room.
The 3D screen is JVC 3D LCD Monitor (model num-
ber: GD-463D10E). EEG signals are recorded by an acti-
Cap from Brain Products GmbH with 64 active electrodes
(Fp1,2, F1 to F8, FC2 to FC6, T7 and T8, C1 to C6, Cz,
Tp7, Tp9 and Tp10, Pz, P1 to P8, PO3 and PO4, POz,
PO7 to PO10, O1 and O2, Oz, AF3, AF4, AF7, AF8,
FT7 to FT10, FC3 and FC4, CP3 and CP4, CPz, VEOG)

and the impedance of electrodes was kept below 10 KΩ.
21 subjects have been recorded out of which 4 data sets
have been excluded due to the low signal-to-noise values
and high number of rejected trials. The data from 17 sub-
jects, 6 male and 11 female, with the average age of 25.83
is analyzed. All subjects have been checked to have nor-
mal or corrected to normal vision and are tested for their
3D vision and gave informed consent. We have received
a permission for the experiment in accordance with the
declaration of Helsinki from the IRB of Technische Uni-
versität Berlin (TU Berlin).

Pre-processing of EEG data: EEG data is low-pass
filtered below 30 Hz during the analysis besides the fil-
ter applied by the EEG amplifier hardware at 0.016 Hz.
FCz was selected as the original reference electrode dur-
ing the experiment and the data is re-referenced to the
common average for the analysis. Muscle artifacts are
removed from the data by removing the trials with the
variance larger than a threshold. The baseline in the time
interval between -200 ms, i.e. 200 ms before the stimulus
onset and the stimulus onset is subtracted from the time
course of each epoch. Ocular artifacts are removed by
regression through projecting out part of the data which
is correlated with EOG electrodes. For this purpose a
short measurement was conducted before the experiment
in which the subject was supposed to blink when a circle
appeared on the screen. Meanwhile the vertical ocular ac-
tivity was measured by an electrode underneath the right
eye (VEOG) and Fp2. The horizontal ocular activity of
the subjects was also recorded in a similar approach in
which the subject was supposed to follow a circle on the
screen which moved from the right end to the left end of
the screen and vice versa. The difference between two
electrodes, i.e. F7 and F8 is estimated as the horizontal
component while the difference between Fp2 and VEOG
is estimated as the vertical component. Part of the EEG
data which is correlated with these two components is
then projected out from the data. For more details on the
method please refer to [14]. In an additional step epochs
in which the difference between maximum and minimum
amplitude exceeds 70 µV are rejected.

Event-related potentials: Part of the responses in EEG
signals are phased-locked with the stimulus however with
a very low signal to noise ratio due to the non-phase
locked activities which are considered as noise when the
focus is on the event-related potentials (ERP). EEG data
is averaged over all trials to cancel out all non-phase-
locked activities and therefore to increase the signal-to-
noise ratio. The time window of this average is selected
between 200 ms before the stimulus onset and 900 ms
after that because the brain activity appeared not to be af-
fected by the stimuli after 900 ms anymore. The BBCI
toolbox, which is a Matlab-based toolbox [15], is used
for the ERP analysis.
The ERP components might vary for different conditions
both in amplitudes and latencies of the peak. Differ-
ent conditions are ideally differentiable from each other
based on their different ERP components. We have stud-
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ied ERP components in time-frequency domain to extract
the features correlated with different conditions.

Statistical tests: To verify the significance of the dif-
ferences between time-frequency analysis results of dif-
ferent conditions a combination of Jackknife re-sampling
method and the student’s t-test is applied.
One alternative would be a student’s t-test between data
sets of ERPs of 17 subjects for two classes. However
since the signal-to-noise ratios of single subject ERPs are
low, we have taken another approach. As it is described
in [16], Jackknife re-sampling test in combination with a
one sample Student’s t-test is applied. Jackknife is per-
formed as follows: the averaged ERP of each single sub-
ject is left out each time and the grand average ERP is
estimated by averaging over the rest of subjects (16 sub-
jects in 17 iterations). The differences between the ab-
solute values of wavelet transformed ERPs are then es-
timated for each two conditions and each iteration and a
one sample t-test is applied to test the null hypothesis that
the mean of the distribution is zero. Note that in this case
the t values i.e., t, should be corrected to tc

tc =
t

(n− 1)
(1)

where n is the number of subjects. The proof of this ad-
justment is provided in [16].
Another issue to be considered is the correction for the
problem of multiple comparison. The correction is ap-
plied as it is suggested in [17] for controlling the false
discovery rate (FDR). The p-values are sorted and c is
estimated as

c =
N∑
i=1

1

i
(2)

where N is the number of all samples. In the case of
time-frequency analysis it will be the number of p-values
of all time and frequency points. For the largest i where

Pi 6
i× q

N × c
(3)

Pi is selected (q is the desired false detection rate which
is usually set to 0.05.) and if Pi is larger than the signif-
icant threshold of Bonferroni, it will be replaced as the
new significance level. Otherwise the level will be set to
the Bonferroni level. All p-values are then compared to
the new significance level.

RESULTS

EEG signals are averaged over all trials for single sub-
jects in the interval between -200 ms and 900 ms after
the baseline correction is applied. To increase the signal-
to-noise ratio of single subjects ideally we average over
all subjects given that subjects are consistent enough. To
verify the consistency the ERPs on channel O2 for sin-
gle subjects averaged over all epochs for condition 2D in
Figure 2 are compared to each other and to the ERP of
the grand averaged data, i.e., the ERP average over all

subjects shown in the thick red curve in the same Figure.
It is shown that the peaks in single subject curves have
slight differences in amplitude and peak latencies which
correspond to normal differences between subjects and
therefore we found them consistent enough to be aver-
aged. We have also checked the scalp topographies of
single subjects for intervals of 50 ms starting from -200
ms up to 900 ms and observed strong similarities between
subjects’ topographies. Therefore in the following analy-
sis we only focus on the grand averaged data.
We are interested to figure out how the corresponding dif-
ferences between conditions shown in Figure 3 are be-
having in different frequency ranges. For this reason, we
have applied wavelet transformation to the ERP signals
averaged over all epochs for single subjects and for each
condition. The absolute values are then averaged over all
subjects to be studied in the time frequency domain. The
wavelet window applied in our analysis is a Morlet win-
dow. The baseline correction is applied to the wavelet
transformation of averaged ERP of each subject by sub-
tracting the mean of the absolute value of wavelet trans-
formed data in the interval of -200 ms and 0 ms from
the absolute value of the rest of the wavelet transformed
data. In Figure 4 differences of the absolute values (sec-
ond row) of wavelet transformations for each two condi-
tions are plotted together with the p-values (first row) cor-
responding to each time point and frequency point. The
statistical test is performed as it is described in Section
Statistical Tests using Jackknife and student’s t-test. The
significance threshold (alpha) is corrected according to
the FDR method for the time frequency window to con-
sider the problem of multiple comparisons.
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Figure 2: ERPs averaged over all epochs for each subject
on channel O2 and condition 2D are plotted in the time
interval between -200 ms and 900 ms. The thick line in
red shows the grand average ERP, i.e. the average over all
subjects. The absolute value of the curves are normalized
by their norms. Single ERPs have different amplitudes
and differences in latencies but in general they are con-
sistent enough to be averaged over subjects.

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-81

CC BY-NC-ND 443 Published by Verlag der TU Graz 
Graz University of Technology



s

20406080100

-1

0

1

Time (ms)
-200 0 200 400 600 800 1000

M
ic

. 
V

-4

-2

0

2

4

6

8

10

2D

3D

3D-2

3D-3

Figure 3: ERPs of grand average corresponding to each
channel are plotted on the scalp in the top figure. On the
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Except for the condition 2D and 3D-3, the comparisons
between 2D and 3D, 3D and 3D-2 as well as 3D and 3D-
3 all show significant differences in the frequency band
between 14 Hz and 17 Hz starting very early (almost 22
ms) after the stimulus onset up to 150 ms. This effect is
shifted towards 200 ms for the comparison between 3D
and 3D-2 and 3D and 3D-3 in the same frequency band.
The brain activities in the frequency of interest (Beta
band) in the occipital region, i.e. O2 channel in our analy-
sis, are reported to be correlated with the level of attention
in previous studies [18, 19, 20]. According to these stud-
ies, an increase in the attention caused the beta power in
the occipital cortex to increase. In Figure 4.a the power
in 3D is subtracted from the power in 2D which shows
larger power values for 2D compared to 3D. This means
the attention level in condition 2D was higher for sub-
jects than in 3D. Figure 4.c shows higher power for 3D-2
than 3D and Figure 4.d shows higher beta power for 3D-
3 compared to 3D. Logically the amount of information
which is presented to the subjects in 3D-2 and 3D-3 is
higher due to the vertical disparity simulated in these two
conditions. In 3D-3 most of the subjects reported that the
vertical disparity was very strong and noticeable. Since
this parameter changes the stimuli to be a less normal
stimuli it is expected to observe higher amount of atten-
tion in this condition compared to 3D which is confirmed
by the results as well. However, what surprises us in the
first glance is the higher attention level in 2D compared
to 3D. It was expected that the depth information in 3D
increases the attention level in the subjects in contrast to
our results. Our hypothesis in this case is that this effect
is caused by a change in the dimensionality of presenta-

tion in the 2D condition. As it was mentioned before, a
three dimensional cross is presented before the stimulus
onset in all conditions. In the case of 2D stimulus, there is
a switch from a three dimensional cross to a two dimen-
sional cube which might be the reason of higher attention
level in 2D. However the 3D condition follows a three
dimensional cross and therefore no switching is happen-
ing in the dimensionality of the cross and the cube and
therefore less increase in the attention level is observed.
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Figure 4: Time frequency analysis on the differences be-
tween conditions: Each figure contains two plots. The
plot on the second row shows the difference between the
absolute values of wavelet transformations for two condi-
tions and the plot on the first row shows the correspond-
ing p-values.

CONCLUSION

In this study the simulated vertical disparity in stereo-
scopic images was the focus of an objective test for the
quality of experience. Time frequency analysis of ERP
components has shown a significant increase in the beta
band power in 3D-2 and 3D-3 compared to the 3D con-
dition. In previous studies the increased occipital beta
power has been linked to the increase in the attention
level. An increased attention level in 3D-3 and 3D-2 com-
pared to 3D was observed which sounds reasonable due
to extra unexpected amount of information in these two
conditions due to the vertical disparity component. We
suggest that an increase in the occipital beta power can
be extracted from the data as a feature correlated with
an increase in the vertical disparity of stereoscopic im-
ages even before the subjects show first signs of visual fa-
tigues. However we have also observed an increase in the
beta power for 2D compared to 3D. This increase in atten-
tion can be explained by the change in the dimensionality
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of the cross presented before the cube in 2D. Since the
cross is presented in 3D in all pause intervals, the switch
happening between the three dimensional cross and the
two dimensional cube has been probably the reason of
higher attention for 2D condition than the 3D condition
in spite of our expectation for a higher attention in 3D
than 2D.
In future work we will investigate multimodal [21] and
deep [22] approaches for quality assessment of stereo-
scopic images.
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ABSTRACT: This paper reviews the state of the art of 

using Brain-Computer Interfaces (BCIs) in combination 

with Augmented Reality (AR). First it introduces the 

field of AR and its main concepts. Second, it describes 

the various systems designed so far combining AR and 

BCI categorized by their application field: medicine, 

robotics, home automation and brain activity 

visualization. Finally, it summarizes and discusses the 

results of the survey, showing that most of the previous 

works made use of P300 or SSVEP paradigms with EEG 

in Video See-Through systems, and that robotics is a 

main field of application with the highest number of 

existing systems. 

 

INTRODUCTION 

 

Research in the field of BCIs has gained more and more 

popularity over the past few decades. BCIs have been 

used in a wide variety of applications, rehabilitation [3], 

robotics [7], entertainment [24] or in association with 

different input modalities: gaze trackers or 

electromyography systems. They have also extensively 

been used in Virtual Reality contexts [27], and more 

recently with Augmented Reality [22, 30], which is itself 

gaining more interest nowadays.  

Brain-Computer Interfaces and Augmented Reality are 

two fields that can be combined for interaction and/or 

visualization purpose. On the one hand, AR-based 

systems usually rely on Head Mounted Displays (HMD) 

equipped with cameras, that can be used in scenarios 

requiring hands-free interaction [9]. BCI paradigms can 

provide such means of input, either to interact with 

virtual [16] or real objects [36]. On the other hand, BCIs 

can take advantage of AR in order to interact with the real 

world. AR can also provide interesting ways of 

displaying feedback by integrating it in the real world 

environment. This feedback is important for a BCI-based 

system to enable users to access and modulate their 

cerebral activity [26, 32].  

Despite this, combining BCIs and AR is not an easy task. 

Many constraints have to be taken into consideration. 

First, at the hardware level, both technologies can require 

head mounted devices that cannot easily be worn at the 

same time and, if worn, it is necessary to make sure that 

they do not interfere. BCIs use very low amplitude 

signals and are thus very noise-sensitive. Then, software 

constraints have also to be taken into account. It is for 

instance necessary to have a middleware or an 

intermediary agent in order to synchronize between them 

and to combine inputs. Finally, recording brain activity 

in the context of AR where users are generally free to 

move may also be difficult as muscle activity provokes 

artifacts in the BCI recordings [17]. 

This paper aims to give an overview of the state of the art 

of systems combining BCIs and AR. Section 2 introduces 

the field of augmented reality, highlighting some of its 

most important concepts. Section 3 reviews existing 

BCI-AR applications, by categorizing them according to 

their application field. Section 4 summarizes and 

discusses the results of our survey. Finally, section 5 is a 

general conclusion. 

 

INTRODUCTION TO AUGMENTED REALITY 

  

Definition of Augmented Reality 

Augmented Reality relates to the integration of virtual 

objects and information in the real world in real-time 

[40]. According to Azuma [5] three characteristics define 

an AR system: (1) the combination of real and virtual 

content, (2) the real-time interaction, (3) the 3D 

registration of the virtual content in the real environment. 

Contrarily to Virtual Reality where the user is immersed 

in a completely virtual world, AR mixes virtual and real 

content, ideally, making them appear to coexist in the 

same space [5].  

Milgram and Kishino [31] established a continuum 

ranging from complete virtuality to complete reality. 

Between them, exist different combinations of real and 

virtual environments, depending on the level of each one 

in the scene (see Figure 1). 

In the scope of this paper, only visual AR applications 

are considered. 

Types of Augmented Reality 

Augmented Reality is generally divided between: (1) 

Video See-Through (VST) AR: in which real images are 

Figure 1: Representation of Milgram and Kishino Virtuality 

continuum of mixing real and virtual environments (from [31]). 
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shot by the camera of a device (tablet, phone, etc.) before 

being visualized through a screen, augmented with 

virtual information; (2) Optical See-Through (OST) AR: 

in which the virtual content is directly displayed in front 

of the user’s eyes onto a semi-transparent screen (e.g., 

Microsoft Hololens); and (3) Projective AR (a.k.a. 

Spatially Augmented Reality): in which virtual content is 

projected into a real environment object [4]. 
Tracking and Registration 

An essential part of any AR system, is the ability to 

collocate virtual and real objects, which is known as 

registration. Afterward, tracking allows to properly 

render the change in virtual objects according to the 

position of the camera and thus, ensuring their credible 

integration into the real world [40]. Registration of 

virtual elements can be done using fiducial markers 

placed in the real environment, through pattern 

recognition techniques to identify real objects or with 

active sensors [5]. One popular way of achieving the 

tracking, consists in using the Simultaneous Localization 

And Mapping (SLAM) algorithms [8] related to the 

resolution of the problem of enabling a robot to 

simultaneously discover its surroundings and infer its 

position [37]. Originally designed for robots’ navigation 

[14], it has been adapted for use in AR [13] as it allows 

the tracking of objects in unknown environments [8]. 

Interaction  

Interaction is a major challenge for AR as it is necessary 

to provide the user with means to act on the virtual 

elements [40] and to manipulate them. However, being 

in the context of wearable computers, new ways of 

interaction, different from mouse and keyboard, have to 

be employed. So far, this has mainly been done through 

voice commands  and hand gesture recognition [21] (as 

with Microsoft’s Hololens), gaze tracking [20] or with 

physical buttons [34] (as with Google Glasses). BCIs 

could particularly contribute to AR-based systems 

interaction means, especially on visual selection tasks 

that can be done via SSVEP or P300 for example [19, 

25].  

 

APPLICATIONS COMBINING AR AND BCIs 

 

In theory, combining AR and BCI could potentially be 

applied to most topics where BCIs can, e.g. assisting 

disabled people, entertainment, sports. There are 

different reasons why to combine AR and BCI. First, 

from a BCI point of view, AR offers new ways to 

integrate feedback in real world environment, thus, 

bringing new interaction possibilities and enhancing the 

user experience. Second, from an AR point of view, BCIs 

offer new hands-free paradigms for interaction with 

physical and virtual objects as well as new physiological 

information about the user’s mental state, allowing to 

create more adaptive scenarios. 

This section presents the state of the art of combined BCI 

and AR systems, categorized according to their 

application fields which are: (1) medicine; (2) robotics; 

(3) home automation; (4) brain activity visualization. 

Medicine 

Three main types of applications combining AR and 

BCIs for medicine can be identified: (1) surgeons aid or 

training, (2) psychological treatments and (3) disabled 

people assistance. 

An attempt to aid surgeons during operation is the work 

of Blum et al. [9] who developed a Video See-Through 

Head Mounted Display (VST HMD) AR system granting 

“X-ray Superman-like vision” to surgeons in order to let 

them have more in-depth vision of patients under 

surgery. The goal of this application was to combine a 

BCI with a gaze-tracker, the latter selecting the area 

where to zoom-in and the former being used to control 

the level of zoom. The main utility of using a BCI in this 

context, is that surgeons act in a totally hands-free 

context, as their hands are sterilized and hence, cannot be 

used to interact with the AR-System [9]. However, their 

final setup relied on EMG instead of EEG.  

When it comes to help surgeons, this can either be done 

by providing them with tools to use during operations [9], 

or to provide ways for them to train before to operate. 

This has been done by Barresi et al. who developed a 

prototype called BcAR [6]. They combined BCIs and AR 

feedback in order to train surgeons for Human-Robot-

Interaction based surgeries. In BcAR, surgeons train for 

robot-assisted laser microsurgery. They have to 

manipulate a "retractable" scalpel represented by a haptic 

arm. AR feedback, displayed through a Video See-

Through Head Mounted Display (VST HMD), is used to 

show them their attention level – measured through the 

BCI – represented by the length of the scalpel, so that 

they can adapt it (see Figure 2 (a)). The goal of the system 

is to teach surgeons keep their concentration during the 

whole time of the operation. Another therapy that has 

been enhanced by combining AR and BCI is the 

“exposure therapy”. To cure patients from phobias and 

anxiety, Acar et al. developed an EEG based system to 

help patients overcome their fear [1]. The AR system 

consisted of a smartphone, displaying a camera view 

augmented with the entity the user feared (such as 

insects), to help them confront it. EEG was measured in 

order to determine the efficiency of this AR-enhanced 

exposure therapy. As stated before, BCIs and AR can 

also be combined in order to enhance psychological 

therapies. Correa-Agudelo et al. [12] developed 

ViLimbs, a computer screen based AR-BCI for phantom 

limb pain treatment. In this system, a patient is placed in 

front of a wide screen displaying a facing camera stream. 

Thanks to a fiducial marker placed on the beginning of 

the missing limb, the patient has an image of himself with 

both arms, allowing him to move the missing one from 

painful positions. It is hence, an enhanced version of the 

mirror therapy. Brain and muscle activity are used to 

determine user's motion intent to allow him to move his 

virtual limb. Despite using EEG, authors’ prototype 

relied 80% on myoelectric signals and far less on Motor 

Imagery [12]. A last kind of medical application 

combining BCIs and AR is about assistive technologies, 

particularly electric wheelchair control. This has been 

explored by Borges et al. [10] who are designing an 
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environment to allow disabled people to safely learn how 

to drive a wheelchair. Among different modalities to 

drive the wheelchair, they designed an SSVEP-based 

solution to control the direction. The goal of AR in this 

system was to be able to provide different driving 

scenarios by integrating virtual obstacles to the real 

world scene while still ensuring users’ safety.  

Robotics 

BCIs and AR have particularly been used in the field of 

Robotics: (1) to explicitly steer or control a robot agent 

or (2) to manipulate a robotic arm. It is possible through 

AR, to provide a first-person view of the real world, 

augmented with contextual visual commands. This has 

been demonstrated by works like Escolano et al. who 

developed a P300-based AR system to control a mobile 

robot [15]. The robot was in a different room, equipped 

with a camera displaying a first-person view on a 

computer screen, augmented with a P300 menu to control 

it. A similar work had also been done by Gergondet et al. 

[19] who proposed a system to steer a robot using 

SSVEP. Their system allowed users to control a robot 

equipped with a camera displaying the augmented 

robot’s view on a computer screen. But in this case, the 

menu consisted on four flickering commands. In addition 

to merely steer the robot, it was possible to select 

different speeds. Petit et al. developed a robot navigation 

system to allow users to interact with a robot [33]. 

Thanks to a fiducial marker placed on the user’s VST 

HMD, the user can make the robot come towards him. 

Then, a body part selection happens with fiducial 

markers placed on different parts of the user’s body 

beginning to flicker so that they can be selected through 

SSVEP for the robot to interact with. 

BCIs and AR have also been used to control robotic arms 

through goal selection (shared control) rather than step-

by-step control. This has notably been done by Lenhardt 

and Ritter [25] who have used a P300 oddball paradigm 

in order to make a robotic arm move real objects on a 

table. The objects were 5 cubes tagged with AR markers 

that had 3D virtual numbers appearing on top of them 

when seen through a VST HMD. The numbers were 

highlighted in a random order to elicit a P300 response 

when the user wanted to select one of them. When an 

object was selected, a grid appeared on the table. Each 

case representing a possible target destination that was 

also selected through the P300 paradigm. After the 

selection of both target object and destination, the robotic 

arm performed the motion. Another robotic arm control 

project has been achieved by Martens et al. They 

designed a robotic arm for two tasks [29]. The first 

consisted to select and move objects through P300 

paradigm. The ‘stones’ to move were augmented when 

seen through a VST HMD so that the user could focus on 

the stimuli. The second task was to control the robotic 

arm to insert a key in a keyhole and was done through the 

augmentation of the HMD view with four SSVEP 

commands. Lampe et al. have used Motor Imagery (MI) 

for the purpose of controlling a robotic device present in 

a different location than the user [23]. The robot was 

equipped with two cameras, one for hand view and the 

other for the scene view, and both displayed on a 

computer screen. Whenever a selectable object entered 

the field of view, it was augmented so that the user could 

select the object to grasp through MI, and the robotic arm 

autonomously grabbed it. In this case, three commands 

were sent through Motor Imagery: left, right, to select 

which object to grasp, and confirmation. These 

commands respectively corresponding to left or right 

finger tapping and toe clenching.  

Home automation 

Another application is the ability to control smart 

environments, whether it is to provide comfort automated 

mechanisms or assistive control to manipulate home 

appliances. In this case, combining BCIs and AR is 

achieved through mainly two different strategies: (1) 

direct interaction [36], (2) indirect interaction through a 

robot agent [22].  

The first strategy has been used by Takano et al. in a 

P300-based AR-BCI system to control multiple devices 

at home [36]. They tagged house appliances with AR 

markers which, when seen-through an Optical See-

Through (OST HMD), make a control panel appear over 

them. The P300 paradigm is then used to select the 

command to execute (see Figure 2 (b)).  

Indirect interaction has been proposed by Kansaku et al. 

[22], with a system that allows users to control a distant 

robot in a house environment through brain activity. The 

robot was equipped with a camera displaying a video 

stream of its environment where appliances were tagged 

with fiducial markers. When one of them entered the 

robot’s field of view, a control panel was displayed, 

allowing users to control it. 

Brain activity visualization 

BCIs can also be useful for brain activity visualization 

purpose. Whether it is (1) for neurofeedback or (2) for 

pedagogic reasons, AR can offer a natural way to display 

how the brain works and integrate it in real life context. 

The notion of neurofeedback is an essential part of the 

Figure 2: examples of applications combining AR and BCIs (a) Surgeon laser microsurgery training [6]; (b) Home automation system 

to control a lamp using P300 [36]; (c) TEEGI, brain activity visualization puppet [18] (d) MindMirror: brain activity visualization [30]. 
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training for BCI use [28]. Neurofeedback has been 

provided in AR either by projecting it on real life objects 

[18], or displaying it directly on the representation of the 

user [30]. Mercier-Ganady et al. [30] developed an 

application called MindMirror using AR for the purpose 

of neurofeedback. The system consisted of a smart mirror 

- a LCD Screen with a facing camera - displaying the user 

in a somehow X-Ray vision way (see Figure 2 (d)) 

showing him/her the activated areas of his/her brain 

through EEG measurement. More precisely, the system 

displayed the distribution of the electrical potential over 

the surface of the virtual brain. Frey et al. developed a 

projected AR system called Teegi [18]. It consists on a 

tangible figurine on the head of which, the recorded EEG 

of the user is displayed (see Figure 2 (c)). The goal of 

Teegi was educational as it was designed for people to 

understand how EEG works. 

Research studies 

 Some works do not totally fall in one of these categories. 

They are proof of concepts and feasibility/research 

studies. It is the case for the system of Faller et al. who 

developed a proof of concept of SSVEP-based BCI to 

control a virtual character augmented on a real table [16]. 

Their system included a VST HMD device, and the users' 

goal was to make the character move through a series of 

points represented by flickering checkerboards. Another 

feasibility study was performed by Uno et al. who wanted 

to determine the effect of an uncontrolled real space 

background on the performance of a P300-based BCI 

[39]. Their preliminary results showed no effect of real 

space background on the selection accuracy, thus 

encouraging the use of combined AR-BCI applications. 

Chin et al. developed a prototype in which users could 

reach and grasp virtual objects augmented on a real table 

[11]. The user’s hands were augmented with virtual ones 

that he could control through Motor Imagery. The whole 

scene was displayed on a computer screen and no impact 

of AR was found on MI performance. Another type of 

applications has made use of fNIRS in the context of 

wearable devices. Afergan et al. developed a fNIRS-

based BCI called Phylter [2]. Used in combination with 

Google Glasses, their system helped prevent the user 

from getting flooded by notifications. It was passively 

analyzing user's cognitive state to determine whether or 

not he/she could receive notification. The decision was 

based on the level of cognitive workload of the user 

determined after training the classifier on different user’s 

states. Still using fNIRS-based BCIs, Shibata et al. 

presented a prototype of a Google Glass application 

called Zero Shutter Camera [35] which consisted on a 

passive photo trigger, based on user's mental workload. 

The system took the predicted user mental state as input 

and automatically triggered a camera snapshot at 'special 

moments' estimated when user's mental workload was 

above a threshold determined through training. 

 

DISCUSSION 

 

Table 1 summarizes the previous works combining AR 

and BCIs according to the BCI paradigm, the type of AR 

display and the brain sensing technology used. This table 

shows first that most of the time augmentation is done 

either through computer screens or HMDs, and that only 

a few number used Optical See-Through AR. The reason 

Work BCI paradigm AR type AR display BCI sensor Field Objective 

Escolano et al. [15] P300 VST CS EEG Robotics Robot steering 

Lenhardt et al.[25] P300 VST HMD EEG Robotics Robotic arm control 

Takano et al. [36] P300 OST HMD EEG HA Direct HA  

Kansaku et al. [22] P300 VST CS EEG HA Indirect HA 

Uno et al. [39] P300 VST CS EEG PoC Feasibility study 

Martens et al. [29] P300/SSVEP VST HMD EEG Robotics Robotic arm control 

Broges et al. [10] SSVEP N.A N.A EEG M Wheelchair control 

Gergondet et al. [19] SSVEP VST CS EEG Robotics Robot steering 

Petit et al. [33] SSVEP VST HMD EEG Robotics Robot steering 

Faller et al. [16] SSVEP VST HMD EEG PoC Virtual char. control 

Lampe et al. [23] MI VST CS EEG Robotics Robotic arm control 

Chin et al. [11] MI VST CS EEG PoC Virtual hand grasping 

Correa et al. [12] MI/EMG VST CS EEG M Phantom Pain therapy 

Blum et al. [9] EMG VST HMD EEG M Surgeons assistance 

Barresi et al. [6] Concentration VST HMD EEG M Surgeons training 

Acar et al. [1] Raw data  VST Smartphone EEG M Phobia therapy 

Mercier et al. [30] Raw data  VST CS EEG BAV Neurofeedback 

Frey et al. [18] Raw data  SAR Puppet EEG BAV Education 

Afergan et al. [2] MW OST HMD fNIRS PoC Proof of Concept 

Shibata et al. [35] MW OST HMD fNIRS PoC Proof of Concept 

Table 1: Overview of previous systems combining AR and BCIs. CS: Computer Screen; VST: Video See-Through; HMD: Head 

Mounted Display; OST: Optical See-Through; HA: Home Automation; PoC: Proof of Concept; M: Medicine; BAV: Brain Activity 

Visualization; SAR: Spatially Augmented Reality. N.A: Proof of concept, no AR implemented. M.W: Mental Workload. 
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for this may be that the first solution is convenient for 

prototyping and the second very intuitive, enabling more 

mobility for users. However, if screen-based AR clearly 

prevents users from moving, the state of BCIs 

development so far, also prevents them from moving 

with HMDs due to the risk of muscle artifacts. As 

combining AR and BCI is relatively new, the question of 

mobility did not seem to be discussed in most of the 

papers using HMDs. But, the development and 

improvement of BCI technology, notably developing 

filtering methods to efficiently remove muscle artifact is 

a prerequisite for using BCIs as AR interaction tool to its 

full potential. The second observation that can be made 

is that the majority of works has made use of EEG. A 

reason may be the real-time nature of AR interaction, for 

which the time resolution of EEG seems more 

appropriate than fNIRS for example.  Regarding BCI 

paradigms, although a number have been considered, 

SSVEP and P300 paradigms are the most used ones. This 

popularity could be due to the graphical aspect of the 

augmentation, as AR is based on displaying graphical 

virtual elements on the users’ field of view, hence, 

vision-based paradigms are well suited for selection 

tasks. However, it is important to explore more deeply 

the effect of AR on BCI performances, not only from the 

system point of view but also in terms of users’ cognitive 

load as evolving in a AR context may be more 

cognitively demanding. In addition, most of the works 

were still at the stage of prototypes. They made use of 

intermediary computers to translate brain activity and 

integrate it in the interaction. If SSVEP seems rather 

robust to synchronization issues, P300 is probably more 

sensitive to jitter. Using intermediary computer between 

BCI and AR device might introduce a bias and decrease 

P300 performances. A solution to this, could be to 

develop all-in-one wearable devices, powerful enough to 

directly process mental activity, this would dispense 

from the use of external intermediary agent and reduce 

the risk of desynchronization. Besides, it could be 

interesting to explore other BCI paradigms in AR 

context. Covert Attention [38] for instance could be 

interesting to study as AR implies elements in the whole 

field of view of users with no limitation to the screen’s 

borders. It is noticeable from Table 1 that most of the 

works relied on active BCI paradigms (including 

reactive). They were mostly used for manipulation and 

voluntary control of physical or virtual objects. Passive 

BCIs have for their part, mostly been used for gathering 

neurophysiological information about the user to 

determine his mental state. Such passive paradigms could 

be more deeply studied in future works. 

Finally, it seems necessary to consider AR-BCI systems 

from a Human-Computer Interaction perspective to 

evaluate and improve them. In addition, more and other 

fields of application could study and benefit from 

combining AR and BCIs in the future. Examples include: 

entertainment and gaming, rehabilitation, education, or 

communication and videoconferences. 

 

CONCLUSION 

 

This paper presented the state of the art of combining 

Brain-Computer Interaction an Augmented Reality. It 

first introduced the field of AR which can be divided into 

Optical See-Through, Video See-Through and Projected 

AR. Then it presented the previous works combining AR 

and BCIs in the fields of medicine, robotics, home-

automation, brain activity visualization as well as proofs 

of concept or feasibility studies. Our survey showed that 

most of the previous works made use of P300 or SSVEP 

paradigms in VST setups, that EEG was the most 

employed brain sensing technology and that robotics was 

the field with the highest number of applications. 

Combining AR and BCIs seems useful in scenarios 

favoring hands-free interaction, but there is little doubt 

that future works will explore this combination in many 

more application fields, and that new interaction 

techniques will be designed as well as new feedback 

modalities will be invented, taking advantage from both 

technologies. 
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ABSTRACT:  The clinical evaluation of the disorders 

of consciousness (DOC) is challenging, leading to a 

high rate of misdiagnosis. Herein, we aimed to evaluate 

somatosensory responsiveness in Unresponsive 

Wakefulness Syndrome (UWS) patients using a 

vibrotactile P300-based BCI and explore its predictive 

role on consciousness recovery.  

Methods: 10 UWS patients were enrolled and 

participated in a BCI session including two vibrotactile 

paradigms (i.e. VT2 and VT3). All patients were 

followed up for six months after the BCI assessment. A 

correlation analysis was used to evaluate whether the 

VT2 and VT3 Accuracy rates were associated with the 

clinical outcome.  

Results: Four UWS patients showed clear 

responsiveness at the vibrotactile paradigms. Accuracy 

rates showed no correlation with clinical variables.  

At 6-months follow-up, the clinical outcome expressed 

as Coma Recovery Scale-Revised (CRS-R) scores, 

strongly correlated with the VT2 and VT3 Accuracy 

rates.  

Conclusions: somatosensory discrimination can be 

detected in UWS patients and might play a predictive 

role in the recovery of consciousness. 

 

INTRODUCTION 

 
 In the clinical practice, the Disorders of Consciousness 

(DOC) are assessed by the bedside administration of 

behavioral tools, aiming to collect verbal or motor 

responsiveness to the environment. Unresponsive 

Wakefulness Syndrome (UWS) is a disorder of 

consciousness characterized by spontaneous eye 

opening without consistent behavioral responses to 

external stimuli. When reproducible signs of awareness 

are detected, the clinical condition is defined as 

Minimally Conscious State (MCS). However, the 

behavioral assessment of awareness has objective 

limitations, leading to up to 30-40% of diagnostic 

errors
1
. In the last decades, several EEG-based protocols 

have been applied to the detection of consciousness, 

with the aim of increase the diagnostic accuracy of the 

DOC. These approaches included BCIs, mostly based 

on auditory evoked potentials
2
. The Event-related 

potentials evoked by the violation of local and global 

auditory regularity have been proposed as a marker of 

consciousness
3
.  

In preliminary studies, a vibrotactile P300-based BCI 

was used to detect command following, and to allow 

communication in healthy subjects and patients with 

locked-in syndrome/complete locked-in syndrome 

(LIS/CLIS),
4,5

.  

In the present research, we used two different 

vibrotactile BCI paradigms to explore awareness in 

UWS patients, and evaluate the predictive role of 

somatosensory discrimination on the recovery of 

consciousness. 

 
MATERALS AND METHODS 

 
Participants  

We enrolled 10 patients (8 males, 2 females) affected by 

UWS (Coma Recovery Scale-Revised [CRS-R] ≤ 6). 

Three patients had a traumatic brain injury, seven a non-

traumatic disease (Table 1). Mean age was 53.3 years 

(SD= 25.1), median disease’s duration was 62 (IQR 45-

260) days since disease’s onset. Clinical characteristics 

of the patients are shown in Table 1. Behavioral 

responsiveness was repeatedly assessed using CRS-R. 

Written informed consent was obtained from the legal 

guardians of the patients. All procedures were approved 

by our Ethics Committee.  

 

Hardware  

The mindBEAGLE system® (g.tec, Austria) provided 

the hardware and software platform for all recordings, 

stimulus presentation and real-time data analysis. It has 

been validated for assessment of consciousness and 

communication on healthy subjects, DOC patients, and 

locked-in patients
6
. The system includes a laptop with 

installed software, three vibrotactile stimulators, two in-

ear headphones, one g.USBamp biosignal amplifier 

with 16 channels and 24 Bit ADC resolution and one 

EEG cap with 16 g.LADYbird active electrodes. The 

EEG is sampled with 256 Hz and filtered between 0.1-
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30 Hz. Data were recorded from Fz, C3, Cz, C4, CP1, 

CPz, CP2, PZ for the P300 paradigms.  

 

Experimental procedure  

All the experiments were performed in the ward by a 

trained physician, with the patients lying in bed.  

To prepare each session, the experimenter mounted first 

the electrode cap on the participant’s head according to 

the International 10-20 system. A small amount of 

electrode gel was then placed under each electrode to 

establish a good connection between each electrode and 

the corresponding scalp region (for scalp electrodes) or 

earlobe (for the earlobe clip electrodes).  

One earbud in each of the participant’s ears, as well as 

one vibrotactile stimulator on each of three locations: 

the left wrist, right wrist, and the right ankle.  

A system check was performed to ensure that the 

electrodes were providing high quality data and that the 

earbuds and stimulators were both operating correctly. 

Then, the experimenter provided the instruction to the 

patient in the subject’s mother tongue.  

 

Assessment  

This study presents two of mindBEAGLE’s assessment 

paradigms for evoking potentials (EP) like the P3 

response:  

 

Vibro-tactile stimulation with two tactors (VT2): In this 

paradigm, the left and right wrist are randomly 

stimulated with a vibrotactile stimulator for 100 ms 

each. One stimulator delivers 87,5% of the stimuli 

which are used for distraction. The other stimulator 

delivers 12,5% of the stimulation thereby evoking a 

P300 response. The subject is verbally instructed to 

count the stimuli silently on the hand that receives the 

less probable target stimuli. Afterward, 480 trials are 

presented to the subject in a random order where 12.5% 

of all trials (60 trials) are stimulation on the target hand. 

During each run, the subject performs this task four 

times whereby the location of the target hand is selected 

in a random order.  

 

Vibro-tactile stimulation with three tactors (VT3): A 

third tactor was added to the VT2 paradigm whereby the 

number of 480 trails presented to the subject stayed the 

same. The positions were on the left, right wrist and one 

tactor placed on the foot or the back as an additional 

distractor. The distractor receives 75.% of the stimuli 

(360 trials) while the left and right wrist each receives 

12,5% (120 trials, 60 trials per hand) of the stimuli. The 

subject is instructed through earplugs to count stimuli to 

the target hand which is either the left or right wrist. 

Afterward, 120 trials are presented to the subject in a 

random order where 12.5% of all trials are stimuli on 

the target hand, 12.5% of all trials are stimuli on the 

non-target hand, and 75% of all stimuli are on the 

distractor. During each run, the subject performs this 

task four times whereby the location of the target hand 

is selected in a random order.  

 

Table 1 | Clinical Characteristics and Classification Accuracy results of the patients.  

 

Patient 

 

Gender 

 

Age 

 

Diagnosis 

 

Disease 

Duration 

(days) 

VT2 Classification 

Accuracy 

VT3 Classification 

Accuracy 

 

1 

 

M 

 

19 

 

TBI 

 

360 80 80 

 

2 

 

M 

 

19 

 

TBI 

 

300 30 10 

 

3 

 

F 

 

36 

 

TBI 

 

60 45 10 

 

4 

 

M 

 

34 

 

HBI 

 

240 20 30 

 

5 

 

M 

 

91 

 

STROKE 

 

49 30 0 

 

6 

 

M 

 

82 

 

SDH 

 

64 20 0 

 

7 

 

M 

 

61 

 

HBI 

 

45 50 60 

 

8 

 

M 

 

66 

 

STROKE 

 

180   

 

9 

 

F 

 

65 

 

ME 

 

35 50 50 

 

10 

 

M 

 

60 

 

HBI 

 

45 0 15 

       
 

TBI: Traumatic Brain Injury, HBI: Hemorrage Brain Injury, ME: meningoencefalitis  

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-83

CC BY-NC-ND 454 Published by Verlag der TU Graz 
Graz University of Technology



Signal Processing and Classification  

 

The raw EEG data and the stimulation time points are 

recorded during each run with a sample rate of 256. The 

EEG data is filtered between 0.1 and 30 Hz. Data 

segments from -100 ms to 600 ms from each stimulation 

point are created. The data are classified using linear 

discriminant analysis (LDA). To evaluate the 

classification, a classification accuracy is created 

ranging from 0% to 100% averaged over 30 trials.  

 

To calculate the classification accuracy, the following 

procedure is repeated ten times and the results are 

averaged over 30 trials: The target and nontarget trials 

are randomly assigned into two equal sized pools. One 

pool is used to train a classifier, and the other pool is 

used to test the classifier. The classifier is tested on an 

increasing number of averaged stimuli out of the test 

pool. At first, it is tested on only one target and seven 

nontarget stimuli. If the classifier detected the target 

stimulus correctly, the resulting accuracy is 100 %; 

otherwise, it is 0 %. This process is repeated for two 

averaged target stimuli and 14 averaged nontarget 

stimuli, for three nontarget stimuli and 21 target stimuli, 

and so on until the full test pool is used. This produces 

30 single values (for 30 target stimuli in the test pool), 

each one either 100 % or 0 %. The averaging of 10 

single results in values ranging from 0 % to 100 %. 

Increasing the number of averaged stimuli will increase 

the accuracy if the subject follows the task, because this 

averaging reduces random noise in the data. An 

accuracy significantly beyond the chance level of 12.5 

% shows that the subject can direct attention to the task 

of counting target stimuli for most or all of a run.  

 

For the calculation of the EPs, the system compares the 

data segments from -100 ms to 600 ms from the target 

and non-target stimuli. The data are extracted, baseline 

corrected and averaged. Trials with an amplitude above 

100 μV are rejected. A Kruskal-Wallis-Test was 

performed that presents areas under the curve with 

significant differences between targets and non-targets 

as green-shaded (p<0.05). An example for such an 

elicited Evoked Potential response can be seen in Figure 

1. Results from Patient 1 and Patient 9 are shown.  

 

Data Analysis and Statistics  

We divided the patients into two groups according to 

the Accuracy rates. Patients with an Accuracy rate equal 

or greater than 4 x class probability (4 x 12.5 % = 50) 

were considered responsive, while patients with lower 

Accuracy rates were dubbed as unresponsive. 

Continuous variables were compared using the Mann–

Whitney U test. The Spearman rank correlation 

coefficient was used to evaluate if the neural correlates 

of somatosensory discrimination were associated with 

the behavioral assessment of consciousness, expressed 

as CRS-R scores, at six months following the 

investigation.  

 

RESULTS  

 

Patients n. 1, 7 and 9 showed responsiveness at both 

VT2 and VT3 paradigms, patient n. 8 obtained a 

positive score only at VT2.  

Overall, the patients obtained higher Accuracy rates at 

VT2 than VT3 (p 0.018 T-Test Paired).  

Responsive patients didn’t differ from unresponsive 

patients in age (Mann-Whitney U Test [MWUT], VT2: 

p=0.9, VT3: p= 0.6), disease’s duration (MWUT, VT2: 

p=0.9, VT3: p=0.6) and CRS-R (MWUT, VT2: p= 0.4, 

VT3: p=0.18).  

At 6-months follow-up, Patients n. 2 and 5 had died. 

Patients n. 1 and 7 evolved to an MCS, whereas Patient 

9 recovered full consciousness. Correlation analysis 

showed a strong association between the VT2 and VT3 

Accuracy rates and the 6-months CRS-R scores (VT2: 

rs = 0.77, p 0.004, VT3: rs = 0.85, p 0.01) but not with 

age (rs =0.23, p 0.5) and disease’s duration (rs =0,1, p 

0.7).  

 

DISCUSSION  

 

We aimed to detect neural signatures of consciousness 

in UWS patients using two vibrotactile P300-based BCI 

paradigms. Results demonstrated that a considerable 

proportion of UWS patients shows neural signatures of 

volitional behavior. The two paradigms allowed us to 

explore discrimination of an infrequent stimulus along a 

regular stimulation (VT2) and left/right somatosensory 

localization and suppression of irrelevant stimuli (VT3). 

Overall the patients obtained higher scores at VT2 than 

VT3, as a consequence of the different complexity of 

the mental tasks.  

However, six-months follow-up showed that the 

Accuracy levels at both VT2 and VT3 paradigms 

correlate with the recovery of detectable behavioral 

responses.  

This evidence fosters the importance of integrating 

neurophysiological approaches into clinical evaluation 

of the DOC. EEG-based quantitative measures of 

cortical responsiveness represent a non-invasive and 

easily repeatable diagnostic tool, which provides also 

prognostic information.  
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Figure 1:| The elicited Evoked Potential responses from Patient P1 and P9 from the Cz electrode position. In the left 

column the EPs from the vibro-tactile 2 paradigm (VT2) can be seen, in the right column the Eps elicited from the 

vibro-tactile 3 paradigm (VT3) can be seen.  
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ABSTRACT: In the field of Brain-Computer Interfaces
(BCIs), Electroencephalography (EEG) is a widely used,
but very noisy method. To improve signal-to-noise ratio
(SNR) of the recorded signals, spatial filtering is com-
monly applied. This paper concentrates on spatial filter-
ing methods to enhance the SNR of evoked- or event-
related potentials (ERPs). While methods like Canoni-
cal Correlation Analysis (CCA) or xDAWN have been
shown to provide good spatial filters, this paper intro-
duces an alternative view on spatial filtering, showing
that spatial filtering can be seen as a regression problem.
It is shown how regression methods can be used to con-
struct spatial filters and their use is evaluated on an EEG
dataset containing error-related potentials (ErrPs), show-
ing that classification accuracy is significantly improved
using regression-based spatial filtering. As arbitrary re-
gression methods can be used for construction of spatial
filters, non-linear spatial filters can be constructed and
new approaches, like deep learning, can be used for spa-
tial filtering.

INTRODUCTION

A Brain-Computer Interface (BCI) allows a person to con-
trol a computer by using only his brain activity, without
the need for muscle control [1]. While its main goal is to
enable communication in paralyzed patients [2], it is also
used in other fields like rehabilitation of stroke patients or
the detection of mental states. As Electroencephalogra-
phy (EEG) is a relatively cheap and non-invasive method,
it is commonly used to measure the brain activity for the
use with BCI. However, EEG is a rather noisy technique,
which makes it difficult to correctly interpret the recorded
brain signals.
One commonly used method to improve the signal-to-
noise-ratio (SNR) of EEG, is the use of spatial filters.
Spatial filters can be seens as mathematical operation,
which mixes the signal from the EEG electrodes in a
way that the signal of interest is enhanced, while noise or
artifactual components are reduced. This can be imple-
mented by a linear transformation matrix Ws that trans-
forms the raw input signal Xr into the spatially filtered
signal Xs.

Xs = Ws ·Xr (1)

The general question is, how to find an optimal Ws that
enhances the signal while reducing the noise.

There are basic spatial filters like common average refer-
encing (CAR) or Laplacian spatial filters [3], which can
be applied for any type of EEG signal and whithout any
training process. There are also more sophisticated, data-
driven methods for the creation of spatial filters like com-
mon spatial patterns (CSP) [4], whitening [5], xDAWN [6]
or canonical correlation analysis (CCA) [7], which are
optimized on a specific dataset and therefore need data
to be trained. Depending on the type of BCI, different
spatial filtering methods can be applied. For BCIs in
which classification is done in the frequency domain, e.g.,
motor-imagery BCIs, CSP can be used to improve the
SNR of selected oscillations. If classification is done in
the time domain, to detect evoked- or event related po-
tentials like in the popular P300 speller [8], methods like
whitening, xDAWN or CCA can be used. It should be
noted that CCA is also often used in SSVEP and c-VEP
BCIs, where it is used as a method for combined spatial
filtering and classification [9, 10] or used solely for spa-
tial filtering in combination with a different method for
classification [11].
In the course of this paper, only spatial filter for time-
domain classification will be considered. Unsurprisingly,
data-driven spatial filter work better than basic spatial fil-
ters [7], but a clear comparison of the three methods is
missing. In [7] whitening and CCA were compared on
five different datasets with CCA yielding the better re-
sults on average, although whitening performed exactly
the same on some datasets. Roy and colleagues [12] found
that CCA performed slightly better than xDAWN in a test
on workload EEG data, but the difference was not sig-
nificant. Iwane and colleagues [13] compared CCA and
xDAWN of data containing error-related potentials, and
also showed CCA to have better results, but again, the
difference was not significant.
As an alternative to the previously mentioned methods,
this paper describes how spatial filtering can be seen as a
regression problem and how arbitrary regression methods
can be used to construct spatial filters. As all previously
used spatial filtering methods create linear filters, it is of
special interest that the use of regression methods also
allows the construction of non-linear spatial filters.

METHODS

In this section, it is explained first, how Canonical Cor-
relation Analysis (CCA) can be used for spatial filtering.
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Based on this method, it is shown how spatial filtering can
be seen as regression problem and how regression meth-
ods can be used to design spatial filters. At last, different
spatial filtering methods are evaluated on an EEG dataset
containing error-related potentials (ErrPs).

CCA for spatial filtering
CCA is a multivariate statistical method developed by H.
Hotelling [14]. When having two datasets, which may
have some underlying correlations, CCA can be used to
find linear transformations for these two datasets, which
maximize the correlation between the transformed datasets.
Assuming there are two multidimensional datasetsX and
Y and their transformed datasets x = WT

x X and y =
WT

y Y , CCA can be used to find the two transformations
Wx and Wy , which maximize the correlation between x
and y by solving

max
Wx,Wy

ρ(x, y) =
WT

x XY
TWy√

WT
x XX

TWx ·WT
y Y Y

TWy

(2)

The process of using CCA for spatial filtering was pre-
viously described in [7]. To use CCA for spatial filter-
ing, one needs to make a distinction between one-class
problems and two-class problems, because the process of
creating a spatial filter is slightly different in both cases.
For one-class problems (e.g. c-VEPs or SSVEPs), the
classification is based on properties of the potential, like
the time delay (c-VEP) or the frequency (SSVEP). For
two-class problems (e.g. P300 or ErrP), the presence of
such a potential is classified, if such a potential is found
or not.
As signal-to-noise ratio (SNR) of single-trial EEG data is
usually low, a common method to improve SNR is to av-
erage over multiple trials. The idea behind using CCA for
spatial filtering is to find a linear transformation that max-
imizes the correlation between the recorded signal and
the average evoked response, thereby improving the SNR
of the transformed signal on a single-trial basis.
For the application of CCA, X is the raw EEG data and
Y is the waveform of the average evoked response. CCA
is then applied to find Wx and Wy , with Wx being used
as spatial filter.
In the case of a one-class problem, we have k trials with
EEG data, each consisting of a n×mmatrix with n being
the number of channels and m being the number of sam-
ples. For the application of CCA, all trials are concate-
nated to a new matrixX with new dimensions n×(k ·m).
To obtain Y , first the average waveform of the evoked po-
tential R is generated by averaging over all k trials, then
R is replicated k times, to obtain a n × (k · m) matrix
Y = [RR . . . R]. Since R does not necessarily has to
contain all n channels, also a subset of ns ≤ n chan-
nels can be used, so that Y has dimensions ns × (k ·m).
Regardless of the channelsubset used in R and Y , re-
spectively, all n channels should be used in X , since this
achieved better performance in previous, unpublished of-
fline experiments.

For two-class problems, CCA is used similarly. Assume
we have the EEG data X1 containing all trials without
the evoked potential and X2 containing all trials with the
evoked potential. For X1 and X2, Y1 and Y2 are obtained
in the same way as for a one-class problem. Then X
and Y are generated by concatenating X = [X1X2] and
Y = [Y1Y2] and CCA is applied onX and Y to findWX ,
which can be used as a spatial filter.

Regression for spatial filtering
A regression tries to predict a variable yi based on a vec-
tor xi, with xi having n dimensions. In the case of a
least-squares regression, the squared difference between
the actual variable yi and the prediction ŷi is minimized

min
w

m∑
i=1

(yi − ŷi)2 (3)

For an optimal prediction, the goal is to find a set of
weights w which minimize the above equation.

ŷi =
n∑

j=1

xijwj (4)

Regarding the use of regression for spatial filtering, it
should be noted that the raw EEG signal consists of the
ERP signal plus a lot of noise. A good spatial filter trans-
forms the raw EEG signal in a way that the noise is re-
duced while keeping the ERP signal. As the averaged
EEG signal contains the (nearly) noise-free ERP signal,
we want to find a transformation, so that the transformed
signal is very similar to the noise-free ERP signal. Using
the notation of the regression described above, we want
to find a set of weightsw, which minimizes the difference
between the noise-free ERP signal y and the spatially fil-
tered EEG signal ŷ.
When applying a regression to find a spatial filter matrix
W , the first step is the same step as for CCA, where X
is created as a concatenation of the single-trial EEG data
and Y is the concatenation of the (noise-free) averaged
potentials, with Yc being a vector containing a concate-
nation of the averaged potential at EEG channel c andXc

being the concatenation of the raw signal at channel c.
After that, a regression method is used for each channel
c to find a transformation wc that minimizes the distance
between the spatially filtered signal Ŷc and the average
potential Yc.

min
wc

||Yc − Ŷc|| (5)

min
wc

||Yc − wcX|| (6)

By concatenating the wc of all channels, a quadratic fil-
ter matrix W can be obtained, which can be multiplied
with the raw EEG signal to obtain a spatially filtered sig-
nal. Essentially, arbitrary regression methods can be used
to find the spatial filter weights wc for each channel c.
As the above formulation only considers linear regres-
sion methods, it is important to note, that also non-linear

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-84

CC BY-NC-ND 458 Published by Verlag der TU Graz 
Graz University of Technology



methods can be used in which wc is not a vector, but a
function that is optimized.

min
wc

||Yc − wc(X)|| (7)

Thereby also kernel methods or deep learning methods
could be applied to find an optimal spatial filter function.

Evaluation on EEG dataset
To test the spatial filtering methods, we used data col-
lected in a previous study [15], which contained error-
related potentials (ErrPs). The subjects had to use a P300
speller [8] and if the BCI detected the wrong letter, the
user should recognize the error and an ErrP should be
elicited by the erroneous feedback. By detecting the ErrP,
the wrong letter could be deleted and thereby the detec-
tion of ErrPs serves as an error correction system. EEG
was recorded from electrodes F3, Fz, F4, T7, C3, Cz,
C4,T8, CP3, CP4, P3, Pz, P4, PO7, PO8, Oz with a
g.USBamp amplifier (an internal 0.5-30 Hz order eight
Chebyschev bandpass filter was active) and digitised at
256 Hz. Ground and reference electrodes were placed
at the left and right mastoid, respectively. We kept the
impedance of all electrodes below 10 kΩ , in most cases
below 5 kΩ. Impedance was measured before and after
every session.
The 23 participating subjects were split into 3 different
groups. H1 was drawn from the student population (N =
9, four female, mean age = 24.6 (SD ±2.3), range 20 −
28), all right-handed). H2 comprised a second group of
elderly subjects age-matched to the group of participants
with motor impairment(N = 8, two female, mean age = 45
(SD±5.2), range 39−52). Group A2 (N = 6, one female,
mean age = 51.2, SD ±10.2, range 36 − 63) includes 5
individuals diagnosed with ALS and one individual with
Duchenne muscular dystrophy (participant A2u).
To evaluate the benefit of the different spatial filtering
methods, we used the ErrP data from the above men-
tioned study, which consisted of 2 sessions per subject.
To simulated the online case, we used the same data for
training and testing the classifier as was used online. The
training data consisted on average of 294 trials per subject
(SD±45), while the test data consisted on average of 217
trials per subject (SD ±78). After the display of the let-
ter (at t=0 ms), the interval t=100-800ms was used as in-
put for classification. After spatial filtering the raw EEG
data, the data was bandpass filtered in the range of 0.5-
16 Hz (by fast Fourier transform (FFT), removal of un-
wanted frequency bands, followed by inverse FFT). Sub-
sequently the data was downsampled to 32 Hz. There-
after, linear trends were removed from the EEG data and
the data was scaled by centering and mapping the abso-
lute maximum value to ±1. All 16 channels were used
as input for classification. As classifier we used a Sup-
port Vector Machine (SVM) with the LibSVM [16] im-
plementation (RBF-Kernel with default parameters γ =
1/(2σ) andC = 1). Due to the imbalanced classes (more
correct trials than erroneus ones), we used a weighted
SVM [17] with w−1 = 0.3.

Table 1: Classification accuracies on the ErrP
dataset using different methods for spatial filter-
ing: no spatial filtering (none), canonical correla-
tion analysis (CCA), ridge regression (RR), linear
support vector regression (lSVR) and support vec-
tor regression with an RBF-kernel (rSVR)
Subj. none CCA RR lSVR rSVR
H1a 79.2 % 84.0 % 82.2 % 79.5 % 78.9 %
H1b 81.8 % 89.5 % 87.7 % 86.8 % 81.8 %
H1c 82.8 % 93.6 % 91.7 % 88.7 % 84.4 %
H1d 64.3 % 75.9 % 73.8 % 69.7 % 67.0 %
H1e 66.7 % 79.3 % 78.4 % 78.7 % 65.8 %
H1f 77.6 % 87.1 % 79.7 % 87.0 % 74.6 %
H1g 77.1 % 87.0 % 82.3 % 86.7 % 74.0 %
H1h 65.0 % 80.8 % 80.3 % 73.4 % 61.1 %
H1i 62.4 % 81.0 % 77.0 % 73.0 % 71.2 %

mean 73.0 % 84.2 % 81.5 % 80.5 % 73.2 %

H2j 76.4 % 100 % 100 % 100 % 100 %
H2k 60.4 % 68.9 % 59.5 % 60.4 % 59.5 %
H2l 93.4 % 93.4 % 92.9 % 82.5 % 81.5 %

H2m 75.6 % 100 % 100 % 100 % 100 %
H2n 81.6 % 84.0 % 84.4 % 86.0 % 80.8 %
H2o 78.0 % 87.0 % 85.3 % 79.1 % 72.9 %
H2p 62.1 % 80.3 % 76.8 % 74.2 % 59.6 %
H2q 79.6 % 84.1 % 76.6 % 76.6 % 76.6 %

mean 75.9 % 87.2 % 84.4 % 82.3 % 78.9 %

A2s 63.8 % 81.5 % 82.3 % 66.9 % 61.5 %
A2t 80.0 % 92.0 % 91.5 % 93.0 % 84.5 %
A2u 76.6 % 87.3 % 78.5 % 78.5 % 78.5 %
A2v 75.0 % 78.6 % 79.7 % 79.7 % 79.7 %
A2w 82.4 % 80.7 % 77.3 % 79.8 % 74.0 %
A2x 63.7 % 78.3 % 78.3 % 73.3 % 72.0 %

mean 73.6 % 83.1 % 81.3 % 78.5 % 75.0 %
mean 74.2 % 85.0 % 82.5 % 80.6 % 75.6 %

For the different spatial filter methods, we evaluated clas-
sification accuracy without any spatial filter, when using
CCA for spatial filtering and when using three different
regression methods. We usedthe MATLAB implementa-
tion of a ridge regression with a regularization parameter
of λ = 0.0001 and a support vector regression with de-
fault paramters. To also test a non-linear regression, we
evaluated the support vector regression with an RBF ker-
nel using the LibSVM [16] implementation with default
parameters.

RESULTS

The detailed results for the classification accuracy on the
ErrP dataset with different spatial filtering methods can
be seen in Table 1. While the average accuracy without
spatial filtering is 74.2 %, it could be improved to 85.0 %
by using CCA for spatial filtering, which is significantly
better (p < 0.001, Wilcoxon ranksum test). Using ridge
regression for the creation of a spatial filter resulted in
an average accuracy of 82.5 %, which is not significantly
lower than CCA (p > 0.05). Using support vector regres-
sion for spatial filter creation results in an average accu-
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racy of 80.6 % when using a linear kernel and 75.6 %
with an RBF kernel. Results with linear kernel are not
signficantly different to CCA(p > 0.05), but results with
RBF kernel are significantly worse (p < 0.005).

DISCUSSION AND CONCLUSION

In this paper, it was described how spatial filtering of
EEG can be seen as regression problem and how arbi-
trary regression methods can be used for the construction
of spatial filters. Three different regression methods were
tested and compared to CCA on an EEG dataset contain-
ing error-related potentials. Classification accuracy was
highest when using CCA for the construction of spatial
filters, but performance with linear regression methods
was not significantly worse. Using a non-linear support
vector regression with an RBF-kernel resulted in signifi-
cantly lower performance.
Based on the presented results it should be discussed what
the benefits of using a regression method for spatial filter-
ing are, or if there are any at all. Although performance
difference to CCA was not significant, the results give
a hint that when in doubt, better use CCA. Also from
a theoretical standpoint, CCA seems to be better suited.
As CCA uses two transformation matrices Wx and Wy ,
Wx is used as spatial filter and Wy transforms the av-
eraged potential to a subspace containing different ERP
components. With this last step, CCA bears similarity
to principal component analysis (PCA). The spatial filter
generated by CCA thereby does not try to increase the
SNR on EEG sensor level, but separates the average ERP
into (uncorrelated) components and improve the SNR for
those components. On the other hand, regression tries to
increase SNR on EEG sensor level. As neighboring sen-
sors are correlated, regression-based spatial filters deliver
some redundant information and thereby the spatial fil-
ter created by CCA might be better for classification as
components are uncorrelated and thereby contain less re-
dundant information.
The most interesting thing about using regression meth-
ods for spatial filtering is the possibility to use non-linear
methods. So far, all spatial filtering methods used in
EEG signal processing are linear methods. Being able
to use arbitrary regression methods for spatial filtering
means that also kernel methods or artificial neural net-
works and deep learning can be used for the creation of
spatial filters. But why should non-linear spatial filters
be superior to linear filters, as the results in this paper
rather point in the other direction? The signal recorded
at the EEG sensors is generally considered to be a lin-
ear mixture of electrical sources in the brain and arte-
factual/noise sources [18]. As spatial filters are trying
to eliminate noise sources, it is basically a reversal of
this mixture process and if the mixture is a linear pro-
cess, a linear spatial filter should be able to yield opti-
mal results. However, this is only true under certain as-
sumptions: that all sources are stationary and that there
are equal or less sources than we have channels. If a

source is moving, the influence of the source on the sen-
sors depends non-linearly on its position and therefore
non-linear filters might be better to remove those sources.
If there are more sources than sensors (and assuming some
independence between the sources) the sources can not
be perfectly reconstructed and hence, non-linear methods
might achieve better results in reconstructing and remov-
ing these sources. So, it depends on the assumptions one
makes about EEG if non-linear spatial filter can provide
better results than linear filters.
A further argument that questions the use of non-linear
spatial filters (or spatial filtering in general) is that clas-
sifiers can also integrate spatial filtering. Assuming an
optimal spatial filter function s(x), the raw EEG data xr
and a classification method that always finds an optimal
classifier. If this method is trained on the spatially filtered
data xs = s(xr) it would return a function g(x), so that
g(xs) is the optimal classification result. But as the clas-
sification method always finds the optimal classifier, it
would return the function f(x) = g(s(x)) if it is trained
on the raw EEG data. Thereby, if one has a classification
method that always gives the optimal classifier, spatial fil-
tering is obsolete and a non-linear classifier would be able
to also learn a non-linear spatial filtering. However, this is
a rather theoretical remark. As this and previous papers
[5, 6, 7, 12, 13] have shown, for classifiers commonly
used in BCI applications spatial filtering always improves
results. It should also be noted that an optimal classifier is
only able to learn spatial filtering when trained on the raw
EEG data, i.e. time-domain features. If there is a feature
extraction step, like power spectrum estimation, an opti-
mal classifier can not learn the spatial filtering anymore.
While SSVEP is a good example where evoked potentials
are often classified in the frequency domain, a classifica-
tion of event-related potentials in the frequency domain
can also be used if there is no clear stimulus onset, as it
was shown for such asynchronous classification that Er-
rPs [19] and P300s [20] can be reliably detected based
on power spectral features. In these cases a spatial fil-
ter could be trained on ERP data and then applied before
power spectral estimation.
Coming back to the question if non-linear spatial filtering
can improve results compared to linear spatial filtering,
the results presented in this paper should be seen merely
as a proof-of-concept to demonstrate that non-linear spa-
tial filtering is possible. In future work, different non-
linear methods like neural networks should be tested to
evaluate if non-linear spatial filtering can improve results
compared to what linear spatial filters can offer. As linear
regression did not provide better results than CCA, CCA
is still being recommended for the creation of spatial fil-
ters as it is easy to use and already implemented in all
major frameworks like R, Python or MATLAB.
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ABSTRACT: This article intends to compare two rivaling
technology tools that could reestablish communication
for people with severe disabilities. One of the tested tech-
nologies, steady state visual evoked potentials (SSVEPs)-
based Brain-Computer Interface (BCI), detects patterns
in brain activity. Eye-tracking devices, on the other hand,
measure the eye position, blinks, saccades, fixation paths,
and other eye-specific parameters. Both methods can
be used to interpret the users intent allowing control of
spelling applications. Accuracy and speed of these two
control methods are compared. A graphical user interface
(GUI) with 30 targets (letters of the alphabet and special
characters) was developed implementing each of the two
technologies. Nine participants (two female) completed
the phrase “RHINE WAAL UNIVERSITY” with both
technologies. As expected, the achieved ITR with the
eye-tracking device was significantly higher (91.8 bpm
compared to 38.2 bpm for the SSVEP-based BCI). How-
ever, the eye tracking did not work for all of the partici-
pants, in this case the SSVEP-based interface can offer an
alternative. The optimal interface needs to be customized
individually.

INTRODUCTION

A brain-computer interface (BCI) can be seen as a spe-
cific type of Human-Cumputer Interaction (HCI) device.
BCI can be defined as system that replaces, restores, en-
hances, supplements, or improves natural central nervous
system output [1], or more general, as a device that com-
municates with other devices (or adjust the communica-
tion between them) via the brain signals [2]. The most
common BCI approaches are the event-related desyn-
chronization/synchronization (ERD/ERS) [27], steady
state visually evoked potential (SSVEP) [28, 29, 16], and
the P300 event-related potential (ERP) [3]. This arti-
cle focuses on BCIs based on SSVEPs, neural responses
which are evoked by repetitive visual stimuli (e. g. flick-
ering boxes on a computer screen).
Though SSVEP-based BCIs have shown to be fast and
reliable [4, 5], its dependency on eye gaze could exclude
patients with lack of oculomotor control from using such
systems and they therefore compete with other healthcare
applications based on gaze direction. Another control
method that also depends on gaze direction is eyetrack-
ing. Eye trackers are devices that compute the gaze di-

rection; the calculated gaze coordinates can be used to
classify objects the user is interested in. Typically, the
eye movements are tracked by utilizing infrared technol-
ogy and a high-resolution camera. Meanwhile commer-
cial eye-tracking devices have become a valuable tool in
augmentative communication [6].
Eye-tracking devices are generally considered more prac-
tical than SSVEP-based BCIs as they are faster and the
required setup is much simpler; usually only the short
calibration is necessary. However, some studies suggest
that the performance gap between the two technologies
might be smaller than expected. Kishore et al. compared
the two methods using a head-mounted display (HMD) as
a means of controlling gestures of a humanoid robot [7].
They found that both methods are appropriate for usage
in immersive settings, but results for the eye tracker were
surprisingly poor (two out of ten participants did not suc-
ceed in triggering gestures of a controlled robot using the
eyetracker). It was stated though, that there were tech-
nological differences in this setup. Kosmyna and Tarpin-
Bernard tested eye tracking in combination with different
BCI paradigms in a gaming setup. Though they stated
that the combination of eye tracking and SSVEP was
slightly slower, it was more accurate than the pure Eye-
Tracker [8].
One major obstacle with the eye tracking technology is
the so called “Midas touch-problem” (see e. g. [9]). Usu-
ally the activation of a selected target object is based on
dwell times; the user has to focus on a target object for
an extended period. But the system cannot differentiate
intentional from unintentional fixation, which can easily
lead to false classifications. Another disadvantage is that
any visual correction such as glasses or contact lenses can
reflect the infrared (IR) light and thus make the read-
ings inaccurate (optical eye trackers use the reflection
of IR light for pupil recognition). Suefusa and Tanaka
compared the eye-tracking with SSVEP when dealing
with small targets [10]. They found that for short selec-
tion times the SSVEP-based BCI had higher information
transfer rates (ITRs) then the eye-tracking interface for
small size (square, 20 mm) targets. They suggested also
that for small screen sizes (e. g. smartphone, tablets) BCI
can be a better choice then eye-tracking.
The implementation of SSVEP-based BCIs as spelling
interfaces has been a major research field in the BCI
community. An important issue preventing a broader
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use of BCIs is so-called BCI illiteracy (also synony-
mously called BCI deficiency), basically describing the
fact that a BCI cannot detect the intentions of the user
accurately [11]. That also takes into account the situa-
tions, if the classification accuracy cannot surpass a cer-
tain threshold of e. g. 70% [12]. The BCI literacy rate is
defined reciprocally as the percentage of users who are
able to achieve effective control over the BCI.

Meanwhile, a high number of targets can be implemented
using SSVEP-based BCIs. Higher number of visual
stimuli generally allow higher information transfer rates
(ITRs). Hwang et al. developed a SSVEP-based BCI
spelling system adopting a QWERTY-style LED key-
board [13]. Such multi target applications can also be im-
plemented on computer screens using the frequency ap-
proximation method [14]. Up to 84 simultaneously flick-
ering targets can be controlled utilizing this method [15].

This allows a direct comparison of the two technologies.
In this respect, the reliability, speed and user friendli-
ness of each system was investigated. Each technology
was tested using a custom-made graphical user interface
(GUI) utilizing 30 targets (letters of the alphabet and ad-
ditional characters).

MATERIALS AND METHODS

Participants: Nine users (two female) with a mean
age 23.8 years participated in the study, all students or
employees of the Rhine-Waal University of Applied Sci-
ences in Kleve. Participants were asked not to wear spec-
tacles if their vision was sufficient to identify the indi-
vidual targets, this was necessary because the extra IR
reflection would lead to misreadings of the gaze coordi-
nates. This study was conducted in accordance with the
Declaration of Helsinki. All participants (healthy adult
volunteers) gave written informed consent prior to the
experiment. Information needed for the further analy-
sis was stored anonymously, and cannot be traced back
to the participants. No financial reward was granted for
participation. This research was approved by the Ethical
Review Board of the Medical Faculty of the University
Duisburg-Essen (reference 16-6955-BO).

Hardware: Participants were seated in front of a LCD
screen (BenQ XL2420T, resolution: 1920 × 1080 pixels,
vertical refresh rate: 120 Hz) at a distance of about 60 cm.
The used computer system operated on Microsoft Win-
dows 7 Enterprise running on an Intel processor (Intel
Core i7, 3.40 GHz).

Figure 1: The Graphical User Interface. A participant
was spelling the word “RHINE WAAL UNIVERSITY”.

For the BCI experiment, standard Ag/AgCl electrodes
were used to acquire the signals from the surface of the
scalp. The ground electrode was placed over AFZ , the
reference electrode over CZ , and the eight signal elec-
trodes were placed over PZ , PO3, PO4, O1, O2, OZ , O9

and O10 in accordance with the international system of
EEG electrode placement. Standard abrasive electrolytic
electrode gel was applied between the electrodes and the
scalp to bring impedances below 5 kΩ. An EEG am-
plifier, g.USBamp (Guger Technologies, Graz, Austria),
was utilized.
The sampling frequency was set to 128 Hz. During the
EEG signal acquisition, an analogue band pass filter (be-
tween 2 and 30 Hz) and a notch filter (around 50 Hz) were
applied directly in the amplifier.

Signal Acquisition: The minimum energy combina-
tion method (MEC) [16] was used for SSVEP signal clas-
sification. To detect the signal-to-noise ratio (SNR) of
a specific frequency in the spatially filtered signals the
SSVEP power estimations for all Nf frequencies were
normalized into probabilities,

pi =
P̂i∑Nf

j=1 P̂j
, with

Nf∑
i=1

pi = 1 , (1)

where P̂i is the ith power estimation, 1 ≤ i ≤ Nf .
Further, in order to increase the difference between prob-
abilities, a Softmax function was aplied:

p′i =
eαpi∑j=Nf

j=1 eαpj
with

i=Nf∑
i=1

p′i = 1 , (2)

with α = 0.25.
All classifications were performed online on the basis
of the hardware synchronization of the EEG amplifier
(g.USBamp); the new EEG data were transferred to the
PC in blocks of 13 samples (101.5625 ms with the sam-
pling rate of 128 Hz). The classification was performed
with a blockwise increasing time window (up to 160
blocks) [5, 16].
If the ith stimulation frequency had the highest proba-
bility p′i and exceeded certain predefined thresholds βi
the corresponding target was classified. The thresholds
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Figure 2: Thirty SNR values (equivalent to the number of flick-
ering targets) for one participant (# 1) during spelling of the
word “RHINE WAAL UNIVERSITY”. The black line repre-
sents the SNR value of the frequency of the relevant box with
the letter “I” and the threshold value (in this case 6) The SNR
values representing the previous selection (letter S) is marked.

Figure 3: Path of the Eye-movement from the letter “S” to the
letter “I” for participant # 1. The participant was spelling the
word “RHINE WAAL UNIVERSITY”. Before the selection of
the letter “I” the eye tracker (TheEyeTribe) recorded several
gaze positions across the path from “S” to “I”, when the eye
focused sufficiently long (2 seconds) on the desired box, the
letter was selected.

of the SSVEP GUI were determined in a short calibra-
tion session where the user was asked to spell a short
word of free choice. After each classification the clas-
sifier output was rejected for 914 ms (9 blocks). During
this gaze shifting period, the targets did not flicker and
the user could change her or his focus to another target
unhindered (please also refer to [16] for more details). In
this study the minimal classification time window was set
to 2 seconds, same to the dwell time of the eye tracking
interface.
This minimal time window is based on our previous
studies that implemented this frequency approximation
method [15, 17]. We have observed that a certain
time (greater then the minimal 800 ms for SSVEP re-
sponse [16]) is needed until the desired stimulation fre-
quency can be detected in the EEG signal, in other words,
the brain response to this duty cycle needs longer time
windows.
In the frame-based stimulus approximation method a
varying number of frames is used in each cycle [14, 15].
The stimulus signal at frequency f is generated by

stim(f, i) = square[2πf(i/RefreshRate)], (3)

where square(2πft) generates a square wave with fre-
quency f and i is the frame index.
E. g., the black/white reversing interval for the approx-
imated frequency 17 Hz includes 17 cycles of varying
length (three or four frames). By using the formula
above, the one-second stimulus sequence of 17 Hz can
be generated: (4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4
3 4 3 4 3 4 3 4 3 4 3 4 3 ). For the online spelling task
with the SSVEP GUI approximated frequencies between
6.1 and 11.8 Hz (logarithmically distributed resolution,
as suggested in our previous research [17]) were used to
avoid overlapping in the 2-nd harmonics.
The Eye-Tracker (TheEyeTribe, Kopenhagen, Denmark)
with the sizes 20 × 1.9 × 1.9 cm, sampling rate 30 Hz,
connected through USB 3.0 port to the PC was used for

tracking the users gaze coordinates. For each participant
a short (below 1 minute) eye tracking calibration run took
place (9 point matrix) with the provided software.

Software:
The spelling interface displayed 30 buttons which were
arranged into 5 rows (see Fig. 1). For the SSVEP sys-
tem each box flickered, using the aforementioned frame-
based stimulus approximation method. Any desired char-
acter could be selected in a single step. Each box was
outlined by a frame which determined the maximum size
a box could reach. The box sizes varied between 130×90
and 170×120 pixels, mirroring the current SNR power
distribution of the corresponding frequency. For the eye-
tracking system the box size mirrored the duration of the
total gaze position frames over the box during the dwell
time (longer gazing time on a box = bigger box). In order
to further increase the user friendliness, every command
classification was followed by an audio feedback with the
name of the selected command or the letter spelled.

Experimental Setup: After signing the consent form,
each participant was prepared for the EEG recording.
Participants were asked to complete spelling tasks for
both devices in random order. Initially users participated
in a familiarization run, spelling the word “KLEVE” and
a word of their own choice (e. g. their first name). After-
wards, they were instructed to spell the phrase “RHINE
WAAL UNIVERSITY” (name of our University). The
spelling phase ended automatically when the phrase was
spelled correctly. In case a user was not able to exe-
cute a desired classification within a certain time frame,
or if repeated false classifications occurred, the experi-
ment was stopped manually. Spelling errors were cor-
rected via the “delete” button. Information needed for the
further analysis was stored anonymously during the ex-
periment. After the test phase the participants completed
a post-questionnaire, answering questions regarding the
preferred spelling application. The entire session took on
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Table 1: Results of the spelling performance. The phrase “RHINE WAAL UNIVERSITY” was spelled with the SSVEP,
and Eye-Tracker interface, respectively. For each system one participant was not able to gain sufficient control. These
two participants (3 and 9) were excluded from the calculation of the corresponding mean values.

SSVEP Eye
Subject Time Acc. ITR character/min Time Acc. ITR character/min

[s] [%] [bpm] [s] [%] [bpm]
1 184.133 81.82 35.91 10.75 62.867 100.00 98.35 20.04
2 188.906 78.38 36.47 11.75 64.796 100.00 95.42 19.45
3 N/A N/A N/A N/A 107.111 86.21 59.43 16.24
4 91.711 100.00 67.41 13.74 56.063 100.00 110.28 22.47
5 431.641 73.33 17.36 6.26 60.125 100.00 102.83 20.96
6 200.180 83.87 32.39 9.29 70.890 95.65 86.39 19.47
7 114.359 100.00 54.06 11.02 61.242 100.00 100.96 20.57
8 156.914 95.65 39.03 8.79 75.563 95.65 81.05 18.26
9 276.859 86.21 22.99 6.28 N/A N/A N/A N/A

Mean 205.588 87.41 38.20 9.74 69.832 97.19 91.84 20.18
SD 107.309 10.07 16.10 2.62 16.280 4.85 16.02 1.34

average about 35 minutes for each user. Participants had
the opportunity to opt-out of the study at any time.

RESULTS

The overall BCI performance for both tested spelling ap-
plications is given in Table 1. Provided are the time T
needed to complete the task, the command accuracy P
and the commonly used information transfer rate (ITR)
in bits/min:

B = log2 N + P log2 P + (1− P ) log2

[
1− P

N − 1

]
, (4)

whereB represents the number of bits per trial. The over-
all number of possible choices (N ) was 30.
The accuracy P was calculated based on the number of
correct command classifications divided by the total num-
ber of classified commands Cn. To obtain ITR in bits per
minute, B is multiplied by the number of command clas-
sifications per minute. To obtain the average command
classification time, the total time needed for the spelling
task, T , was divided by Cn.

DISCUSSION

As can be seen in Table 1, BCI performance varied con-
siderably between participants. While most participants
performed better with the eye tracking GUI, not all were
able to use it.
The average accuracy achieved with the SSVEP in-
terface (87%) was significantly lower than the accu-
racy of the Eye-Tracking device (97%). A paired Stu-
dent’s t-test (with unpooled variances) revealed a statis-
tically significant difference between the mean accura-
cies t(10) = 2.475, p¡0.05. Further, participants reached
a mean ITR of 38.2 bpm with the SSVEP-based BCI
and 91.8 bpm with the Eye-Tracking device, respectively.
However, for each of the interfaces, one participant did
not gain sufficient control.

Except for subject 9, all participants achieved better per-
formance with the Eye-Tracking system.
Some users stated that the SSVEP interface was the
more exhausting one. The comparably low accuracy also
caused frustration for some participants. In addition to
that, the time the user had to focus their gaze at a target
was generally larger for the SSVEP GUI. The average
command classification time (including the gaze shifting
period) was 7.3 seconds for the SSVEP GUI, which is
considerably longer than the mean classification times for
the eye tracking system (on average 5.9 seconds). The
importance of the of appropriate time window length has
already been discussed e. g. in [18].
The obtained performance with the SSVEP GUI is quite
promising; a mean ITR of 29.82 bpm was achieved.
These results indicate the potential use of noninvasive
SSVEP-based BCIs as a standalone high-speed commu-
nication tool. Though multitarget BCIs usually allow
higher speed, slightly worse BCI accuracies have been
previously reported with a higher number of stimuli [15].
The literacy rate is generally higher with BCIs imple-
menting a low number of visual stimuli; some larger BCI
studies with only four targets reported that even all users
were able to gain control over the application [4, 5, 19].
Higher classification accuracies can be achieved with
fewer targets [15]. Low target SSVEP-based BCI are
therefore more suitable for hybrid systems, which com-
bine input signals of different brain patterns, or biosignals
such as eye gaze (see e. g. [20, 21, 22, 23, 24]).
Reliability of such systems could be improved further
e. g. through user specific parameter setup [5].
While speed attracts much attention in development of
BCI application, high accuracies are the priority for con-
trol applications and also tend to provide the highest liter-
acy rate. This is especially relevant as demographic fac-
tors influence BCI performance, e. g. elderly people are
slightly poorer BCI performers [25]. Eye tracking de-
vices, on the other hand, may be affected by the ethnicity
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(e. g. asian origin) or physiology (e. g. ptosis of the eye-
lid) factors of the participant [26].
Further tests with brain-injured patients are desirable, as
results might differ from findings of this study. In fu-
ture our focus lies on further development of low target
SSVEP-based BCIs and data fusion with eye tracking de-
vices.

CONCLUSION

The presented study compares performance of an
SSVEP-based BCI with an Eye-Tracking device. These
two communication technologies were tested with nine
healthy participants in order to explore the speed and ac-
curacy of each system.
Though all participants achieved reliable control over at
least one of the tested systems; both the SSVEP-BCI sys-
tem as well as the system based on Eye-Tracking could
not interprete the user intend accurately in all cases. The
comparison of mean values for literate participants shows
that ITR as well as classification accuracy was signifi-
cantly higher for the Eye-Tracking device. The results
demonstrate, however, that each of the devices has its
advantages and disadvantages, and should be chosen for
each user individually.
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ABSTRACT: BCI Spellers for end-users utilize 

numerous different techniques, but many require that 

stimuli in different areas of the screen be foveated for 

best performance. Spatial independence, however, is of 

considerable value for patients suffering from locked-in 

syndrome, which significantly attenuates their capacity 

for voluntary movements. To this end, we have designed 

a 10-segment library of letter subsets, which 

combinatorially create the letters of the alphabet. 

Segments can thus be centrally presented, allowing 

letters to be cued in parallel while maintaining the spatial 

independence of RSVP-style spellers. A 68% segment-

classification accuracy yields a reasonably rapid speller, 

with several avenues for maximizing accuracy and 

information transfer rate. 

 

INTRODUCTION 

 

Neurodegenerative diseases have an increasingly 

significant impact on public health as life expectancies 

and treatment strategies improve. Locked-in syndrome 

(LIS) in particular – whether caused by injury or illness 

– poses significant challenges for patient and healthcare 

professionals. While the inability to communicate needs 

or discomforts can have a deleterious effect on one’s 

health, the lack of social interaction can also pose a 

significant issue. P300 BCI spellers are a popular 

technique for ameliorating these challenges.  In the 

original P300 system developed by Farwell and Donchin 

[1] the user observes a screen with a grid of symbols; 

individual rows and columns are flashed pseudo-

randomly and the user is told to count the times their 

target symbol flashes.  Due to the large size of the letter 

grid and the small size of the flashed letters, eye 

movements must be made to the vicinity of the desired 

letter.  

 

This can be a problem for late-stage ALS patients who – 

even if they have some residual voluntary eye movement 

capacity – are not always able to make voluntary gaze 

shifts to direct overt attention [2,3].  To address this issue, 

rapid serial visual presentation (RSVP) spellers have 

been developed, which serially present whole letters 

flashed in the center of the screen [4,5]. While alleviating 

the problem of eye movements, the lack of 

simultaneously flashed items results in less 

combinatorial efficiency and a lower information transfer 

rate for these systems [5]. In this paper we describe 

preliminary experiments to develop a hybrid system with 

the benefits of combinatorial efficiency as well as 

centrally presented stimuli.  As segments occur in many 

letters, we have the combinatorial advantage of one flash 

probing for many letters. 

 

MATERIALS AND METHODS 

 

Segment Library: Our stimuli or segment library was 

similar to the work of Minett et al. [6], wherein Chinese 

stroke-based text systems are used as the basis of a BCI. 

Since English letters are not composed of a series of 

ordinal strokes, a new system needed to be designed. 

Moreover, since our segments would by definition be 

arbitrary, it was important to design segments that are 

both simple to visualize, yet sufficiently distinct to allow 

easy comparison. To this end, we projected all 26 letters 

of the English alphabet onto a 7x5 grid of circular nodes, 

using a derivative of the scoreboard font. This allowed us 

to reduce the spatial complexity of characters into more 

general elements.  

 

Our speller used a 10-segment library (Fig. 1) of letter 

subsets as query stimuli. Each segment consisted of 2-5 

contiguous nodes on the 7x5 grid. The segments were 

assigned a specific color, which – along with their 

positions on the grid – was invariant. The color-segment 

mapping allowed participants to identify segments either 

through their colors or their relative spatial positions, 

minimizing the difficulty in making a correct 

discrimination. Not all nodes were contained within a 

segment; said independent nodes were colored white (see 

Fig 1). 

 

Relative to a given letter, segments could be classified as 

“targets” or “non-targets”, based on whether they are 

subsections of that letter (Figure 1). As most letters are 

made of a unique combination of segments, the responses 

to individual stimulations can be used to predict the target 

letter probabilistically via Bayesian inference. With our 

current library, O and D cannot be discriminated purely 

through segments, which could be a challenge in a 

standalone system. Language modeling and other 

techniques (see “Output-Letter Checks”, Discussion) can 

easily resolve this shortcoming. 

 

Experimental Paradigm: At the start of each block, the 

participant was assigned a random letter of the alphabet. 

For this initial test of the system, we excluded I, V, X, 

and  Y  from  the  list  of  potential  targets  due  to  their  
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Figure 1: The segment library consists of 10 unique, 

invariant letter subsets. Each letter can be spelled with 

its own combination of segments. Depending on the letter 

to be spelled, component segments are deemed ‘targets’, 

whereas all others are ‘non-targets’. 

 

unique morphologies. The target letter was displayed for 

2.5 seconds, with the component segments colored 

appropriately.  This served to inform the subject of their 

target letter and target segments (shape and color).  

Afterwards, individual segments were presented serially, 

with a stimulus duration of 390 ms, and an inter-stimulus 

interval of 180 ms (total stimulus onset asynchrony 570 

seconds). 

 

The experiment consisted of an offline “training” phase, 

wherein data were collected to train a classifier, and an 

online “testing” phase, wherein the users’ responses were 

analyzed and fed back to the system in real time. During 

the training phase, target segments were presented 30% 

of the time, and a total of 30 segments were presented 

before a block ended. During the analysis of the testing 

phase, stimuli were flashed until a) a letter was identified 

by the segment model or b) a total of 30 segments had 

been presented. During the experiment, incorrect letter 

selections were not a block-stopping criterion, in order to 

acquire more data for pseudo-online analysis. 

 

Data Collection and Analysis: Data were collected from 

6 undergraduates (4 Female, 1 Left-handed, mean age 

19.5.) Stimulus presentation and timing were coordinated 

via the Simulation and Neuroscience Application 

Platform (SNAP, SCCN). The subjects’ EEG data were 

collected using a BrainAmp (BrainVision) 64-channel 

active electrode system. Data were 

collected at 5 kHz. The marker and data 

streams were synchronized via 

LabRecorder, a Lab Streaming Layer 

derivative. Offline data analysis was 

performed using EEGLAB v 13.6.5b[7]. 

Data were downsampled to 500 Hz. For 

the topographic plots, the Artifact 

Subspace reconstruction designed by 

Christian Kothe [8] (clean_rawdata, 

EEGLAB) was used to clean artifactual 

data, and data were bandpass filtered 

from .1 to 5 Hz using EEGLABs 

hamming window sinc FIR filter 

(implemented in pop_eegfiltnew, 

EEGLAB). For visualizing plotted 

traces (Figure 2), data were re-

referenced to the mastoids, and 

bandpass filtered from .1 to 10 Hz using 

the same filter. 

 

Classifier: To train the classifier, class 

means were specified using 5 windows 

(100ms length) from 300ms to 800ms 

post-stimulus. For training of the 

classifier, data were downsampled to 

100 Hz and bandpass filtered from .1 to 

5 Hz using BCILABs [9] built-in FFT filter. The FFT 

filter has a much shorter length; beneficial for online 

filtering of 100 Hz downsampled data. LDA with 

automated shrinkage determination [10] as implemented 

in BCILAB was used. Due to the 30% target rate, a 

random subset of the nontarget trials were used to train 

to the classifier, in order to avoid erroneous solutions 

derived from imbalanced training classes. While the 

exact number of target trials (and thus nontarget trials) 

used for training varied slightly between subjects, about 

320 trials for each class were used as training data. 

 

Segment Model: During the online phase, a probability 

vector keeps track of the probabilities given to each 

possible letter of the alphabet. At the beginning of a 

block, the system assumes a uniform probability over all 

letters. In an end-user’s speller application, this can be 

replaced with the probability mass function for initial 

letters in the language of the user; future letters can be 

initialized by a conditional probability function 

conditioned on the previous character. 

 

Given the responses and results of the trained classifier 

on the serially presented segments, the model updates the 

letter probabilities based on the classifier response.  In 

the case of a “target” decision by the classifier:  

 

P(l |"target", seg)=
P("target"|seg,l) × P(l)

P("target"| seg)
 

where P(“target”|seg,l) = target segment hit rate for 

letters (l) with segment seg in them and 

P(“target”|seg,l) = target segment false alarm rate  
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for letters (l) without segment seg in them, P(l) is the 

prior probability for letter l before receiving the 

response to the flashed segment seg. 

P("target"|seg) is the normalizing factor that keeps the 

total probabilities over all letters summed to 1. 

 

Likewise in the case of a “non-target” decision by the  

classifier: 

P(l|"nontarget",seg) =
P("nontarget"|seg,l) × P(l)

P("nontarget"|seg)
 

 

where P(“nontarget”|seg,l) = target miss rate  

for letters (l) with segment seg in them and 

P(“nontarget”|seg,l) = target correct rejection rate  
for letters (l) without segment seg in them.     

 

P(l|seg) = P(l|"target",seg)when a target is detected and 

P(l|"nontarget",seg) when the classifier declares a non-

target.  These can be updated in parallel for all letters. 

Letter selection can be based on P(l|seg) exceeding a 

given threshold (e.g. 0.5) or P(l1|seg) being more than a 

threshold above P(l2|seg) where 𝑙1is deemed the most 

probable letter, and 𝑙2the second most probable.  For 

these experiments, we used this latter rule with threshold 

of .2.    

 

Note that for the purposes of these analyses (and the 

segment selection discussed below), we assume that the 

hit rates are the same for all segments that are present in 

the letters and the false alarm rate is also the same for all 

segments that are not present in the letters. For this work, 

we assumed a hit rate of 65% and a false alarm rate of 

35%.  This is very close to what was observed in the 

training data. 

 

Given the letter probabilities and the mapping of 

segments to letters as well as estimates of the false-alarm 

and miss rates, the expected information gain acquired by 

receiving the response to each flashed segment can be 

computed. Segments are chosen to maximize: 

Eseg(KL(P("targ"|seg)P(l|"targ",seg) + 

P("nontarg"|seg)P(l|"nontarg,seg),P(l)) 
 

That is, we maximize the expected Kullback-Leibler 

divergence between the expected letter probabilities after 

the response and the current letter probabilties.   

 

Table 1: Per-subject global segment accuracy (acc), as 

well as class confusion performance (T/F – True, False; 

P/N –  Positive, Negative) from the online testing phase. 

 
Figure 2: Grand average traces for the target (blue) and 

nontarget (red) classes, with the difference in black. 

Shaded regions reflect regions of significant difference 

between classes (p < .01, without correction). 

 

Note that in the case of ties, the segment with the lowest 

index was selected. This does not hold true, however, if  

said segment was presented within the last two trials. 

Instead, the segment with the next lowest index was 

chosen. 

 

Pseudo-Online Letter Selection: To probe the 21x25 

class letter selection accuracy (Table 2), we decided to 

merge each subject’s offline and online data, roughly 

doubling the number of blocks evaluated. As the 

experimental design between the offline and online phase 

is – to the participant – identical, this should be a 

reasonable approach. For training the pseudo-online 

classifier, we balanced the classes by splitting nontargets 

trials into two disjoint sets, and trained these sets 

separately, using all target-class trials. Using the same 

classifier, we split the data into 10 folds, using 2 folds of 

the data for testing. 

 

Classifier outputs were yielded for each trial, reflecting 

P(“target”|seg) vs P(“nontarget”|seg). As each nontarget 

trial was in the test set twice, and each target trial was in 

the test set four times, the classifier outputs for each 

given trial are averaged. Then, seperately for each block, 

classifier outputs are fed into the segment model to infer 

the expected target. Table 2 reflects selections made a) 

when P(l1|seg) more than .2 P(l2|seg) or b) at end of a 

block, where P(l1|seg) is selected as the model’s output. 

 

RESULTS 

 

 Offline analyses: Comparing responses from the target 

class (class 1) and the nontarget class (class 2), we see 

the expected significant difference in subject responses 

at Pz, averaged across all subjects (Figure 2). While the 

onset time of this stimulus is significantly longer than the 

300ms that lends its name, it is not an unreasonable onset 

latency for a visual task [11]. A distinct N2 can be seen 

for the time-locked stimulus, as well as for the prior and 

subsequent letter stimulations. The N2 appearing at a 

typical latency improves our confidence in our observed 

high-latency P3. Fig, 2 also hints at a potential issue for 

the current system. The offset latency of the positive-

 
acc TP TN FP FN 

S1 0.628 0.625 0.630 0.370 0.375 

S2 0.664 0.639 0.675 0.325 0.361 

S3 0.692 0.647 0.718 0.282 0.353 

S4 0.712 0.740 0.697 0.303 0.260 

S5 0.723 0.689 0.740 0.260 0.311 

S6 0.597 0.559 0.615 0.385 0.441 
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trending difference wave is – relative to 

stimulus onset – later than the onset of the 

following stimulus.  

 

The per-subject topographic plots show an 

interesting trend. Excluding subject 4, all 

show a positive-amplitude posterior signal, 

reflecting a higher class 1 response amplitude 

consistent with a P300. The low amplitude of 

signal shown in Subject 6’s (S6) plots may 

explain the poor classification results (Table 

1). S4 shows a significantly different response 

pattern, relative to all other subjects. While 

some very posterior, positive-trending 

activity can be noticed in windows 2-4, its 

spatial pattern is distinct, with no immediately 

apparent dipole. 

 

Online analyses: As seen from Table 1 the 

true negative rate was equal to or greater than 

true positive rate for most subjects. The one 

exception – S4 – also possessed a unique 

spatial pattern in their [target - nontarget] 

class responses (Fig. 3). S6 also has a 

somewhat unique topography; the differences 

between the class means appear attenuated in 

this subject. This could explain the uniquely 

poor classification results for S6. 

 

Of the actual online blocks using the threshold 

method, 61.4% ended with the segment model 

outputting a potential letter. Of those output letters, 

31.7% matched the blocks target. Letter   selection   

accuracies   could   be   improved   by increasing the 

threshold for selection of an “output letter”. Implemented 

along with more segment presentations per target, correct 

target accuracy could increase dramatically.  

 

Pseudo-Online Results: As can be seen from Table 2, the 

incorrectly selected output-letters tend to share common 

characteristics. Sums along the columns – especially 

relative to diagonals – reflect high false selection rates 

for a given letter. Of the 261 letters selected output by the 

model, 88 (33.7%) matched the target letter for their 

given block.  

 

We can see from this array (Table 2) that dense-segment 

letters – particularly B, E, G, and R – suffer from poor 

selection accuracies. Erroneous outputs tend to share 

many shape characteristics with the true target, however, 

and each of said letters shares at least 2 segments. Longer 

trials or a more conservative threshold could lead to 

increases in ITR, even at the cost of increasing time. 

 

DISCUSSION 

 

Spatially independent spellers pay a non-trivial cost as  

they restrict themselves to specific regions of the visual 

field [3,5]. In many cases this cost must be assessed, as 

directing overt attention towards a target is not feasible 

Figure 3: Per-subject topographic plots for the offline 

phase. Each row of plots is a scrolling average (100 ms 

window, 100 ms step between plots) extending from 300 

ms to 800 ms. Due to the planar depiction of the 3-D 

electrode locations, electrodes further down the head 

extend beyond the head model. 

 

for all end-use scenarios [2]. Moreover, BCIs that require 

accurate eye movements must compete with eye trackers 

that overcome many of an EEG BCI’s shortcomings. Our 

system was designed with patients suffering from LIS in 

mind. A high information transfer rate despite the spatial 

independence is nevertheless important, especially when 

designing a channel of communication. 

 

The classifier’s discrimination of subject responses 

benefits from the distinct class-specific posterior 

potential, which we believe to be a P300. In this case of 

S5, however, no significant posterior response is elicited. 

Despite this, the online accuracy of the subject is slightly 

above the rest of the participant cohort’s average. It is 

possible that the anterior negativity present in the second 

and third windows nevertheless allows the classes to be 

discriminated. Alternatively, the ocular activity in the 

prefrontal channels, or other artefactual    sources    may 

be responsible. The 5 Hz lowpass attenuates most of the 

muscle activity, but it is also possible that unconscious 

reflexes elicited in some class-specific manner could be 

driving classification. These peripheral signals should be 

more salient in the topographic plots, however, so we 
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find this unlikely. Increasing 

single-segment classification 

is an obvious goal moving 

forward. A Markov Chain, 

coding previous trial class as 

state could be fruitful, as the 

duration of the subjects’ 

responses to targets are longer 

than the SOA. This would be 

especially useful if stimulus 

rates grow faster than 2 Hz; 

with a 300 ms SOA, the onsets 

of the preceding P3 (here, 

latency 500 seconds) and the 

subsequent N200 would 

overlap. 

 

Output-Letter Checks: Letter selection accuracies could 

be improved by increasing the threshold for selection of 

an “output letter”. We have previously tested output letter 

feedback via full letter presentations. These presentations 

can either be timed identically to the segment stimuli, or 

the output-letter checks can be flashed with longer 

preceding and anteceding inter-stimulus intervals. 

Preliminary tests on small numbers of trials suggest that   

 

Table 2: This confusion matrix reflects all output-letters 

selected by the segment model. The rows correspond to 

target stimulus, and the columns correspond to classifier 

output. ‘Blocks’ reflects the number of time a given letter 

was a target. Shaded version in Fig. 4. 

Figure 4: Visualization of the confusion matrix shown in 

table 2. Rows represent the target letter for a given block, 

whereas columns represent the letter output by the 

segment model. Thus, (1,1)/ (A,A) is the sum of all A’s 

output by the segment model while A was the target. 

 

both yield responses distinct from the segments. This is 

not surprising, as while the segments are subsets of 

letters, the complete letter arrays are – by design – 

relatively complex images [11]. 

 

Consequently, a second independently-trained classifier 

will be the most appropriate implementation. It is 

possible that responses to these flashed “test letters” 

would be more like an error-related response than a P300 
 

A B C E F G H I J K L M N O P Q R S T U V W X Y Z Blocks 

A 6 1 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 12 

B 2 2 1 0 2 0 0 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 14 

C 0 0 5 3 1 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 13 

E 1 1 3 6 1 0 0 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 3 20 

F 0 0 0 5 4 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 12 

G 1 3 0 1 1 0 1 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 1 0 2 14 

H 2 0 0 0 0 0 4 0 0 0 1 1 0 1 1 0 0 0 1 2 0 0 1 0 0 14 

J 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 6 

K 0 0 0 0 2 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 9 

L 0 0 2 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 9 

M 2 0 0 0 0 0 0 0 0 1 1 4 4 0 0 1 0 0 0 0 1 0 0 1 0 15 

N 0 0 1 0 0 0 2 0 0 0 0 1 7 0 0 0 0 0 0 0 0 4 0 0 0 15 

O 0 1 2 0 0 0 0 0 1 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 1 15 

P 1 0 1 0 3 0 0 0 0 0 0 1 1 4 5 0 1 0 0 0 1 1 0 0 0 19 

Q 0 0 1 0 1 0 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0 1 1 0 0 13 

R 0 0 1 0 0 0 0 0 0 2 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 7 

S 0 0 1 0 0 2 0 1 1 0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 10 

T 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 8 0 0 0 0 0 0 12 

U 0 0 0 0 0 0 0 0 5 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 9 

W 0 0 1 0 0 0 1 0 1 0 0 0 4 1 0 2 0 0 0 1 0 2 1 0 0 14 

Z 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 5 9 
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response. 

 

Furthermore, given the letter selection frequency in the 

30-trial online blocks, a larger maximum trial cap is an 

obvious change going forward. As the discrimination 

difficulty and input fatigue make the task somewhat 

strenuous, brief breaks may be necessary as blocks 

lengthen. Current, trials last no longer than 20 seconds, 

and responses may grow increasingly non-stationary due 

to fatigue if that duration significantly increases. 

 

One advantage of the segment speller is that errors tend 

to be to visually similar letters (letters with similar 

subsets of segments) as opposed to neighboring letters in 

the grid for standard P300 grid and hexagonal spellers.   

This means that perfect selection of letters may not be 

necessary for typed words to be readable, as replacing 

letters by visually similar ones can still be quite legible. 

 

An important question to consider is whether the 

combinatorial advantage of using segments justifies the 

increase in task difficulty. The complexity of the oddball 

task increases significantly when moving from letters to 

segments, and the chances of misidentification also 

increase. Moreover, task difficulty has been shown to 

attenuate P3 amplitude [12], especially that of the more 

frontal P3a [13]. It is possible that the high latency, 

posterior distribution of our responses is a consequence 

of this difficult categorization task. Consequently, future 

experiments could compare responses to an easier 

oddball task, to help contextualize the data. 

 

CONCLUSION 

 

The online classification of target vs nontarget segments 

proved possible for all subjects, with an average segment 

accuracy of 68%. The segment model – designed to 

probabilistically infer the target letter based on segment 

classification – outputs a target 61.4% of the time. Of 

these output targets, the correct letter was selected 31.7% 

of the time. As only 30 segments could be queried per 

target letter, we expect a longer selection block paired 

with a higher threshold should significantly improve final 

letter accuracy and rate. 
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ABSTRACT: P300-based spellers are one of the main
methods for electroencephalogram (EEG)-based brain-
computer interface, and the detection of the target event
with high accuracy is an important prerequisite. The
rapid serial visual presentation (RSVP) protocol is of
high interest because it can be used by patients who have
lost control over their eyes. In this study we wish to ex-
plore the suitability of recurrent neural networks (RNNs)
as a machine learning method for identifying the target
letter in RSVP data. We systematically compare RNN
with alternative methods such as linear discriminant anal-
ysis (LDA) and convolutional neural networks (CNN).
Our results indicate that RNN does not have any advan-
tages in single subject classfication. However, we show
that a network combining CNN and RNN is superiour
in transfer learning among subjects, and is significantly
more resilient to temporal noise than other methods.

INTRODUCTION

Neural networks have recently been shown to achieve
outstanding performance in several machine learning do-
mains such as image recognition [15] and voice recog-
nition [12]. Most of these breakthroughs have been
achieved with CNNs [16], but some promising results
have also been demonstrated by using RNNs for tasks
such as speech and handwriting recognition [11, 10], usu-
ally when using the long short-term memory (LSTM) ar-
chitecture [13]. CNNs are feed forward networks that
implement receptive fields. RNNs, on the other hand,
contain directed cycles and are thus able to “remember”
the previous activation state of the network, which makes
them especially suitable for learning sequences.
There have been some studies on using “deep neural net-
works” for P300 classification [5, 19]. The results re-
ported, despite some success, do not show the same dra-
matic progress achieved by ‘deep learning’ methods as
compared to the previous state of the art; while in ar-
eas such as image or voice recognition ‘deep’ neural net-
works have resulted in classification accuracy exceeding
other methods by far, this has not yet been the case with
EEG in general and P300 detection specifically. The
small number of samples typically available in neuro-
science (or BCI) is most likely one of the main reasons.

In addition, the high dimensionality of the EEG signal,
the low signal to noise (SNR) and the existence of out-
liers in the data, pose other difficulties when trying to use
neural networks for BCI tasks (see [18]). The main ques-
tion in this research is whether the RNN model, and par-
ticularly LSTM, can enhance the accuracy of P300-based
BCI systems and if so, under what conditions.

BACKGROUND

P300-based BCI systems can recognize a taregt stimu-
lus out of a set of stimuli, typically letters and numbers,
by examining the subject’s EEG data. The first system
that used the P300 effect was presented by [8] and since
then different versions of P300 based BCI systems were
suggested. One example of such a paradigm is the P300
rapid serial visual presentation (RSVP) speller. In this
paradigm letters are presented one after the other in a
random order, and the subject is asked to pay attention
only to one of the letters, reffered to as the target (e.g., by
counting them silently).
There are a lot of methods for identifying the target letter
for a BCI task. Blankertz et al. [4] suggest to select the
time interval with maximal separation between the tar-
get and non target samples, average their electro-potential
value and use shrinkage LDA to classify these features.
Using this method has a drawback due to the low com-
plexity of LDA model [6]. The winner of the BCI com-
petition III: dataset II used an ensemble of support vector
machines (SVM) [21], and other methods include hidden
Markov model, k-nearest neighbours, and more [6].
More recently, given the success of ‘deep’ neural net-
works [15], there have been several attempts to ap-
ply ‘deep learning’ for BCI related tasks. Cecotti and
Graser [5] were the first to use CNNs for a P300 speller.
In their work, they train an ensemble of CNN-based P300
classifiers to identify the existence of P300. Manor and
Geva [19] used CNN for the RSVP P300 classification
task and suggested a new spatio-temporal regularization
method, which have shown improvement in the perfor-
mance.
Unlike feed forward network models such as CNN and
multi-layer perceptron (MLP), the RNN architecture al-
lows directed cycles within the network, which enable
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the model to “memorize past events”. LSTM [13] is a
type of RNN, which includes a special node that can be
described as a differentiable memory cell. The specific
architecture of LSTM enables it to overcome some of the
weakness of simple RNNs [3].
There are several reasons why LSTM is a good candidate
for modelling the P300 pattern. First, RNN and LSTM
have shown success when modeling time series for tasks
such as handwriting and speech recognition [11, 10, 28].
Second, RNN is known to have the capability to approx-
imate dynamical systems [17], which makes it a natural
candidate for modelling the dynamics of EEG data. An-
other motivation is that RNN can be seen as a powerful
form of hidden Markov models (HMM), which have been
shown to classify EEG successfully [23, 20, 6]; RNNs
can be seen as HMMs with an exponentially large state
space and an extremely compact parametrization [24].
LSTM was already used for analysing EEG data for emo-
tion detection [22] and a phenomena called behavioral
microsleeps [7]. Bahshivan et al. [2] modeled inter-
subject EEG features for identifying cognitive load by
using convolutional LSTM. Their representation of the
input was a “video” comprised of topographic scalp maps
in three different band powers over time. One of the ma-
jor differences between their work and ours is that we use
the original signal without any feature extraction (such as
band power), and we focus specifically on P300 speller
data.

MATERIALS AND METHODS

We compared the performance of LSTM based meth-
ods with other methods on a dataset from a RSVP P300
speller study [1]. We used average prediction across 10
trials to measure the P300 speller accuracy as applied
in [1].
The dataset includes 55 channels of EEG recordings from
11 subjects. Each subject is presented with 10 repetitions
of 60 to 70 sets of 30 different letters and symbols. In to-
tal there are approximately 20,000 samples for each sub-
ject where 1/30 of them are supposed to contain a P300
wave. While the original experiment contains 3 different
settings (interval of 116ms with/without colors and 83ms
with color), we used the experiment setting of 116ms in-
tervals with letters in different colors. For more detail,
see [1].
In addition to the filters applied in [1], all models that
we used share the same pre-processing stage of down-
sampling the input frequency from 200Hz to 25 Hz. The
result is that each learning sample is a matrix of 55 chan-
nels with 25 time samples each, or 55 ∗ 25 = 1375 fea-
tures. Each sample thus covers exactly 1 second around
the target event, at times [-200,800] ms.
The models evaluated in this experiment are:

• LDA - A common method used in P300 classifica-
tion for BCI [1, 4]. Here we used a simplified ver-

sion; unlike [1] we use all the timestamps as fea-
tures, and we are using a non-shrinkage version of
LDA.

• CNN (Fig.1a) – The CNN model we use is similar
to the one used in [5]. The first layer is composed
of 10 spatial filters, each of size 55 ∗ 1 – the num-
ber of channels. The second layer contains 13 dif-
ferent temporal filters with size of 1 ∗ 5. Each one
of the temporal filters processes 5 subsequent time
stamps without overlapping. The third and fourth
layers are simple fully connected layers followed
by a single cell with a sigmoid activation function
that emits a scalar.

• LSTM large/small (Fig.1b) – LSTM large/small
are both composed of single LSTM layers with 100
and 30 hidden cells in each, correspondingly. Both
models end with a single cell with a sigmoid acti-
vation layer that emits a scalar.

• LSTM-CNN large/small Fig.1c – The model has
CNN as a first layer (the spatial domain layer) and
LSTM as the second layer for the temporal domain.
The first convolutional layer is the same as in the
CNN model. Unlike the CNN model, the temporal
layer is an LSTM layer with 100/30 hidden cells.
The last layer contains a single cell with a sigmoid
activation layer that emits a scalar.

In order to examine the power of each method in mod-
elling the inter-subject and intra-subject variance we have
conducted the following experiments:

1. Training and testing on each subject’s data sepa-
rately in order to explore intra-subject generaliza-
tion.

2. Training and testing on all the different subjects
data combined in order to investigate the impact of
larger amounts of data.

3. Training on all subjects expect one. We conduct
this experiment in order to explore the performance
of a model that was trained off-line, on different
subjects, and then applied to a new subject, with or
without additional calibration, as a test of transfer
learning.

4. Testing different models when introducing tempo-
ral noise.

A highly desired property from BCI systems is tolerance
to a small degree of noise in the stimuli onset time, and
this is the objective of the fourth experiment. In order
to evaluate the resistance to such noise, we use a model
trained on the original stimuli onset (i.e, noise level =
0ms) and evaluate its performance on different stim-
uli onset: noise levels of -120ms,-80ms,-40ms, +40ms,
+80ms, and 120ms. We conducted this experiment using
10-fold cross validation in order to be able to get statis-
tically significant results. This last experiment was con-
ducted only on the CNN and LSTM-CNN models and
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(a) CNN model (b) LSTM model (c) CNN-LSTM model

Figure 1: Schematic diagrams of the neural networks evaluated. FC stands for fully connected layers.

used data from all subjects (as in experiment 2 described
above).
For all the experiments, the different models were trained
using the RMSProp [26] optimizer: first for 30 epochs
with a learning rate of 0.001 and then continued training
for additional 30 epochs with a learning rate of 0.00001.
RMSProp [26] is a stochastic gradient descent (SGD)
method. Unlike simple SGD, the method adapts a dif-
ferent learning rate for each parameter separately by ap-
plying a moving average across the magnitude of the past
gradients, and then re-scaling the learning by this past
gradient. We decided to use RMSProp since it is said to
be robust and fast [27, 14, 25].

RESULTS

Tab. 1 summarizes the results of the different experi-
ments; all results are based on an average of 10 consec-
utive trials to detect the target letter, as in [1]. The re-
sults for training and testing on the same subject indicate
that LSTM is inferior (82%), and even the LSTM-CNN
combined model performs less than the the simple LDA
method (86 and 93% in the LSTM-CNN models and 96%
using LDA) . A possible advantage for LSTM only be-
comes apparent with larger amounts of data – when train-
ing and testing on all the subjects together (Tab. 1). The
large LSTM model performs poorly – 77%; we suspect
that this is due to the large number of trainable parame-
ters – 62501 (“over-fitting”); this is why we introduced
CNN as a first layer and reduced the number of hidden
LSTM cells.
Tab. 2 summarizes the results per single subject. There
is a significant difference among subjects, across the dif-
ferent models. For example subject fat results in higher
accuracy than icn regardless of the tested model. Even-
tually, the best network method - using training on other
subjects and recalibration with a combined CNN-LSTM
large model, is able to boost the results of the worse sub-
ject to 86%.

Tab. 3 is aimed at estimating learning across subjects – it
provides the detailed results when training the models on
all subjects except one, and then testing on that subject.
In the second stage, we continue training the model on the
rest 3/4 of the test subject’s data using a smaller learn-
ing rate (0.0001 using RMSProp) for 30 epochs – this
is presented in columns CNN and LSTM-CNN all except
one fine tune . The results indicate that the LDA accuracy
is much poorer than those of the CNN and LSTM-CNN
models (65% as opposed to 84%); i.e., the neural net-
works are superior under these conditions of inter-subject
variability. When we allow calibrating the model for each
subject, we achieve an average accuracy of 97% for both
CNN and LSTM-CNN; there is no standard method for
similarly re-calibrating an LDA algorithm, so we do not
have an equivalent comparison.

Resistance to temporal noise is displayed in Tab. 4. In
this test we also see that LDA accuracy drops signifi-
cantly. Both CNN and the combined LSTM-CNN seems
to overcome such noise; the LSTM-CNN model results
in 4% or 5% when adding or removing 40ms to the origi-
nal stimuli onset, and a t-test indicates that this difference
is statistically significant (p < 0.05).

A possible explanation can be seen when looking at the
two models’ saliency map (Fig. 2). In order to investigate
the “attention”, or the sensitivity of the LSTM model, and
compare it to the CNN model, we used a technique sug-
gested by [9] and draw the absolute gradient of the neural
network with respect to the input.

If f(x1, ..., xn) is a differentiable, scalar-valued function,
its gradient is the vector whose components are the n par-
tial derivatives of f , which is a vector-valued function.
In our case of f(x|θ) is the neural network with fixed
weights θ and input x. The partial derivatives of f(x|θ)
with respect to x can be interpreted as “how changing
each value of x will change the prediction score”. This
gradient should not be confused with the gradient used
for training, where the goal is to optimize the model pa-
rameters θ when x is fixed.
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Table 1: Average accuracy across all experiments; x marks experiments that were not performed.

model
number of
parameter

accuracy
per subjects

accuracy
all subjects all but one all but one

after fine tuning

LDA 1375 0.96 0.79 0.65 x
LSTM large 62501 0.82 0.77 x x
LSTM small 10351 0.86 0.9 x x
CNN 7924 0.98 0.92 0.84 0.97
LSTM-CNN

large 49041 0.93 0.9 x x

LSTM-CNN
small 5511 0.89 0.93 0.84 0.97

Table 2: Average accuracy per subject comparing all models.

subject LDA LSTM large LSTM-CNN large CNN LSTM small LSTM-CNN small

fat 1.00 0.98 0.98 0.98 1.00 0.95
gcb 0.91 0.82 0.88 0.92 0.74 0.75
gcc 1.00 0.84 0.92 1.00 0.92 0.97
gcd 0.97 0.80 0.90 1.00 0.76 0.93
gcf 1.00 0.92 0.94 0.95 0.97 0.95
gcg 0.94 0.74 0.96 0.96 0.80 0.87
gch 0.97 0.93 0.96 0.97 0.97 0.96
iay 0.94 0.62 0.92 0.98 0.75 0.86
icn 0.94 0.62 0.86 0.98 0.77 0.77
icr 0.93 0.97 0.98 0.98 0.98 0.98
pia 0.97 0.82 0.94 1.00 0.77 0.81
mean 0.96 0.82 0.93 0.98 0.86 0.89

In the case of P300 prediction, x is a matrix of C × T
(C - number of channels, T - number of time steps)
and f(x|θ) is the neural network where θ is the model’s
weights after training. The gradient ∇f(x|θ) (see Eq.1)
is a matrix with the same size as the input x, where the
amplitude of each cell reflects its impact on the function
value. Cells with high absolute value can be interpreted
as the cells that have a significant influence on the predic-
tion function.

∇f (x|θ) =


∂f(x|θ)
∂x(c1,t1)

... ∂f(x|θ)
∂x(c1,tT )

... ... ...
∂f(x|θ)
∂x(cC ,t1)

... ∂f(x|θ)
∂x(cC ,tT )

 (1)

The results displayed in Fig.2a and Fig. 2b show the av-
erage absolute gradient across all the target samples of a
single cross validation test data: the warm colors corre-
spond to high gradient values, indicating that the model
is more sensitive to change in these input features. We
can see the sensitivity of the CNN model spreads across
the recording relatively evenly as opposed to the LSTM-
CNN which is focused around the 250ms and 450ms
time-stamps.

Table 4: Accuracy when introducing temporal noise. The
best results are boldfaced when the differences are statis-
tically significant.

Noise CNN LSTM CNN LDA

-120 0.058 0.044 0.016
-80 0.275 0.299 0.016
-40 0.825 0.864 0.565
40 0.848 0.896 0.608
80 0.335 0.390 0.260
120 0.042 0.042 0.059

DISCUSSION

In this work we examined using LSTM neural networks
for the task of the BCI task of P300 speller. Despite
its temporal nature, no version of LSTM investigated in
this work has shown a significant advantage compared
to the CNN model suggested by [5]. LSTM results im-
proved with large amounts of data from multiple sub-
jects, and superior results are obntained with a combined
CNN-LSTM model; moreover, we have shown that this
combined model is significantly more robust to tempo-
ral noise in the stimuli onset. We also show that the
sensitivity of the LSTM based model is much more fo-
cused on the area between 250ms to 450ms than CNN
based model, which is in line with our expectation from
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Table 3: Accuracy when training and testing on different subjects.

subject
LDA

all except one
CNN

all except one

CNN
all except one

fine tune

SMALL LSTM-CNN
all except one

SMALL LSTM-CNN
all except one

fine tune

fat 0.94 1.00 1.00 0.98 1.00
gcb 0.43 0.83 0.91 0.86 0.92
gcc 0.79 0.98 0.98 0.95 0.97
gcd 0.66 0.80 0.99 0.83 0.97
gcf 0.68 0.89 0.98 0.79 0.98
gcg 0.52 0.81 0.94 0.77 0.90
gch 0.87 0.97 0.97 0.97 0.99
iay 0.48 0.69 0.98 0.67 0.97
icn 0.44 0.58 0.92 0.61 0.95
icr 0.63 0.81 1.00 0.89 1.00
pia 0.77 0.87 0.96 0.91 0.97
mean 0.65 0.84 0.97 0.84 0.97

(a) CNN (b) LSTM-CNN

Figure 2: Average gradient in target samples, comparing CNN and LSTM-CNN.

the P300 ERP. To conclude – in the dataset we have ex-
plored a simple algorithm such as LDA performed ex-
tremely well when trained and tested on the same sub-
ject, but additional experiments involving cross-subject
training and temporal noise expose the possible advan-
tages of ’deep’ networks, and especially the LSTM-CNN
combined method.
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ABSTRACT: Canonical correlation analysis (CCA) is 

one of the most popular methods in the field of Brain 

Computer Interfaces (BCIs) based on steady-state visual 

evoked potentials (SSVEPs). The efficacy of the method 

has been widely proved, and several variations have been 

proposed. However, most of the approaches still consider 

only the first canonical correlation as a feature for 

classification, which can leave some important 

information behind. Notably, if the signal shows phase 

transitions, its informative content can be diffused over 

more than one coefficient. We show here that considering 

the first two canonical correlations, instead of the largest 

one only, can significantly improve classification 

accuracy without increasing computational load, and that 

an adjunctive pre-processing step with sinc-windowing 

can further enhance the results. 

 

 

INTRODUCTION 

 
A Brain-Computer Interface (BCI) is a system creating a 

direct communication channel between the brain and the 

outside [1]. EEG-based BCIs can be based on slow 

cortical potentials (SCPs), event-related 

desynchronization/synchronization (ERD/ERS), event-

related potentials (like P300), or steady-state evoked 

potentials (SSVEPs) [2]. Among these, SSVEP-based 

systems are appealing for their high accuracy and 

information transfer rate (ITR), due to the high signal-to-

noise ratio of SSVEPs even without user training [2]. 

SSVEPs are periodic evoked potentials induced by 

repetitive visual stimulations at frequencies greater than 

6Hz [3]. If two or more targets (LEDs, squares, symbols) 

flicker at different frequencies, an analysis of the 

frequency content of SSVEPs can lead to conclude which 

stimulus the user is gazing at.  

An intuitive and commonly used frequency detection 

approach is the one based on power spectral density 

analysis (PSDA). In PSDA methods, power values are 

evaluated from the spectrum at the target stimulation 

frequencies, and used for classification. Recently, the 

application of Canonical Correlation Analysis (CCA) 

was proposed in the field of SSVEP BCIs [3]. The 

efficacy of the method has been widely proved by several 

studies (e.g. [4], [5]). Furthermore, its superiority to 

PSDA both in terms of computational load and accuracy 

has been shown [6], [7], so several variations of CCA 

have been proposed [8]–[18]. 

In this work, we present a SSVEP BCI based on the 

classical CCA method. However, we introduce here two 

variations in i) the pre-processing of the signals and ii) 

the composition of the feature vector. We show that both 

modifications can significantly improve classification 

accuracy, without an excessive increase of the 

computational load. 

 
MATERIALS AND METHODS 

 

     EEG recording: The EEG was recorded from 8 

electrodes (PO7, PO3, O1, POz, Oz, PO4, O2, PO8) 

positioned according to the international 10-20 layout. 

The signals were acquired using the Brainbox EEG-1166 

amplifier (Braintronix), with 256Hz sample frequency 

and a 50Hz notch filter on.  

 

     The BCI system: The online BCI system was 

implemented using LabVIEW, for a better 

synchronization of the signal recording and the stimulus 

presentation modules. SSVEP stimulation was provided 

through two blue LEDs, emitting lights flickering at two 

different frequencies, f1 and f2. A NI MyDAQ device 

controlled the behavior of the LEDs, which were 

arranged around the screen of the PC running the 

software (Figure 1). We chose the LED stimulus 

implementation to provide accurate and stable flickering 

frequencies, avoiding any operating system control delay 

and independently from the screen refreshing rate. 

The implemented software was organized into three 

modules: training (T), validation (V) and free mode (F). 

During T and V, a yellow square appeared on the screen 

indicating the LED to gaze at. This permitted to deduce 

the true class label to train (T module), validate (V 

module) and use (F module) the underlying system 

classifier. During both T and V, the stimulus was 

presented in the form of subsequent trials. Each trial was 

composed by a preamble, a stimulus and a break period. 

During the preamble, the yellow square appeared near 

the target LED, then both lights started flickering 

(stimulus), and the trial ended with a break period where 

the squares disappeared and the LEDs shut off. No 

feedback was provided to the user during T module, 

while in V the recognized target was highlighted at the 

end of each trial. Both in T and V, the target sequence 

presentation was balanced and in random order. 

The free mode module F was designed to simulate a real 

operating condition. During F, both the LEDs 
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continuously flickered, while a square appeared near the 

one recognized by the classifier, as a continuous 

feedback for the user (Figure 1). 
 

 
Figure 1: Operation of the system in free mode (F). 

 

     Signal processing: In all the three modules (T, V and 

F), 1.5s-long epochs (no overlapping) were processed by 

the software in three steps: i) sinc-windowing, ii) CCA 

analysis and iii) SVM training/classification. 

First of all, the EEG segments were convolved with an 

adequately modulated sinc function (sinc-windowing) to 

perform a high-Q band-pass filtering around the two 

main stimulation frequencies, f1 and f2, and Nharm 

harmonic frequencies. As it is known, the inverse Fourier 

transform of an ideal rectangular band-pass filter, 

centered on f0 and with M bandwith, is: 

 

𝑟𝑒𝑐𝑡 (
𝑓 − 𝑓0
𝑀

)+ 𝑟𝑒𝑐𝑡 (
𝑓 + 𝑓0
𝑀

)
𝐹−1

→ 2𝑀𝑠𝑖𝑛𝑐(𝑀𝑡)cos(2𝜋𝑓0𝑡) (1) 

 
where f is the frequency and 𝐹−1 is the inverse Fourier 

transform. Thus, the extraction of f1 and f2 components 

and their Nharm harmonics was performed with a 

convolution of the signals and the following function: 

 

ℎ(𝑡) = 2𝑀𝑠𝑖𝑛𝑐(𝑀𝑡)( ∑ cos(2𝜋𝑛𝑓1𝑡) +cos(2𝜋𝑛𝑓2𝑡)

𝑁ℎ𝑎𝑟𝑚

𝑛=1

) (2) 

 
with M bandwidth and Nharm number of considered 

harmonics. A preliminary analysis suggested using 

M=2Hz and Nharm=3. 

After sinc-windowing, canonical correlation analysis 

(CCA) was performed for feature extraction. CCA is a 

multivariate statistical method [19] revealing the 

underlying correlation between two sets of data. Notably, 

given two sets of variables X ∈ ℝ𝑝𝑥𝑡 and Y ∈ ℝ𝑞𝑥𝑡  
(p≤q), CCA finds two corresponding sets U=AX and 

V=BY, called canonical variables, so that the correlation 

between each pair (Ui,Vi) is maximized: 

 

𝜌𝑖 =
𝑐𝑜𝑣(𝑈𝑖 , 𝑉𝑖)

√𝑣𝑎𝑟(𝑈𝑖)𝑣𝑎𝑟(𝑉𝑖)
 (3) 

 
while every pair (Ui,Vj), (Ui,Uj) and (Vi,Vj) is 

uncorrelated if i≠j. The p resulting ρi are called canonical 

correlations, and are a measure of similarity between the 

two sets of data. 

The use of CCA in the field of SSVEP-based BCIs was 

first introduced by Lin et al [3], which proposed to 

perform k CCAs - one for each stimulation frequency fk - 

between the set of acquired EEG signals in X and a set 

Yk of pure SSVEP responses. Each set Yk is composed 

as follows: 
 

𝒀𝑘 =

(

 
 
 
 
 

cos(2𝜋𝑓𝑘𝑡)

sin(2𝜋𝑓𝑘𝑡)

cos(2𝜋2𝑓𝑘𝑡)

sin(2𝜋2𝑓𝑘𝑡)
⋮

cos(2𝜋𝑁ℎ𝑎𝑟𝑚𝑓𝑘𝑡)

sin(2𝜋𝑁ℎ𝑎𝑟𝑚𝑓𝑘𝑡))

 
 
 
 
 

 (4) 

 

with fk stimulation frequency and Nharm number of 

considered harmonics. Even though every CCA 

generates multiple correlation coefficients, usually only 

the largest one is considered. After performing CCA 

between each set Yk and the recorded signals in X, the 

segment is assigned to the frequency fk showing the 

largest canonical correlation. 

The efficacy of the CCA method in the SSVEP-based 

BCI field has been widely proved [4], [5] and many 

variations were proposed [8]–[18]. However, most 

approaches consider only the first canonical correlation 

as a feature for classification, which can leave some 

important information behind. Moreover, usually the 

CCA method is employed without any pre-filtering of the 

incoming signals (the only exceptions are [17], [18], 

using IIR filter banks). 

In the present work, we decided to implement the 

standard CCA method proposed by Lin et al [3] with two 

slight variations: i) convolution of the signals with the 

above introduced sinc-windowing function (Equation 2) 

and ii) consideration of the two largest canonical 

correlations instead of the largest one only. The rationale 

behind this is that, if EEG shows phase transitions, the 

information can be diffused over more than one 

coefficient. We further hypothesize that, if the largest 

canonical correlation is mainly referred to the sine 

(cosine) at a certain frequency, then the second largest 

correlation will probably be linked to the cosine (sine) at 

the same frequency. We therefore decided to consider, 

for each frequency fk, the square root of the sum of 

squares of the largest two canonical correlations: 

 

𝑟𝑘 = √𝜌𝑘1
2 + 𝜌𝑘2

2
 (5) 

 

If it is true that the second canonical correlation 𝜌𝑘2 holds 

an information content complementary with respect to 

𝜌𝑘1, then this combination of the two should incorporate 

a more complete information regarding the investigated 

frequency fk., thus increasing the completeness of the 

feature and, hopefully, the achievable accuracy. 

The values of r1 and r2 were extracted, for each EEG 

segment, from the two CCAs between X and Y1 and X 

and Y2. The data were finally used to train and use a 

linear SVM classifier, for which we chose a soft margin 

parameter c=2. 
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     Experimental paradigm and subjects: Four healthy 

volunteers (age 25 to 27, three females and a male) took 

part in the system test. All participants had normal or 

corrected to normal vision. The flickering frequencies for 

the two LEDs, f1=12Hz and f2=17Hz, were selected 

beforehand and were the same for all subjects. We chose 

these frequencies to exploit the SSVEP peak responses 

without harmonics overlapping. During the experiment, 

participants seated in a comfortable chair, approximately 

60cm distant from the PC monitor. 

Each volunteer underwent one training (T) and four 

validation (V) repetitions. Throughout the entire 

experiment, the system considered 1.5s-long epochs for 

feature extraction. Each training (T) was composed by 16 

trials with 6s stimulus duration, so a total of 16*6/1.5=64 

elements composed the training set. Each validation (V) 

was composed by 24 trials with 4.5s stimulus duration, 

so a total of 24*4.5/1.5=72 elements composed each test 

set. 

 
     System evaluation: We computed the online 

classification accuracy for each subject and validation 

repetition. To evaluate the influence of the two proposed 

variations (sinc-windowing and feature composition) on 

classification accuracy, all data were re-analyzed to test 

all the possible combinations. We therefore tested our 

method against i) sinc-windowing + CCA with classical 

feature extraction (first canonical correlation) ii) no sinc 

windowing and CCA with the proposed feature 

extraction and iii) no sinc-windowing and CCA with 

classical feature extraction. 

Just for the sake of comparison, we repeated simulations 

also with a PSDA-based method. In this case, we 

composed the feature vector by using the periodogram-

estimated powers in 2Hz-large bins around f1, f2 and Nharm 

respective harmonics. 

Each accuracy was compared to chance level [20] via 

confidence intervals (α=0.05). As regards the 

comparisons between methods, to account for the fact 

that multiple data came from the same subject (i.e. the 

samples could not be assumed to be completely 

independent), we ran the evaluations as post-hoc tests of 

a repeated measures ANOVA. The ANOVA design 

included both the factors “method” (the within-subject 

factor) and “subject”, thus considering all dependencies 

among data. The post-hoc analyses were performed 

through Fisher’s LSD. A preliminary Kolmogorov-

Smirnov test confirmed the normality of data 

distributions, which justified the use of parametric 

statistical tests. 

The computation times for the presented procedure and 

PSDA were also evaluated and compared trough a paired 

t-test, and the proportion of time required for sinc-

windowing was further investigated. 

The average and peak information transfer rate (ITR) 

[21] were finally computed according to: 

 

𝐼𝑇𝑅(𝑏𝑖𝑡/𝑚𝑖𝑛) = 
60

𝑇
(𝑙𝑜𝑔2(𝑁) + 𝑝𝑙𝑜𝑔2(𝑝) + (1 − 𝑝)𝑙𝑜𝑔2 (

1 − 𝑝

𝑁 − 1
)) (6) 

 

where N=2 is the number of choices, p is classification 

accuracy and T is the epoch duration (1.5s).  

 

RESULTS 

 

The classification accuracies obtained for the five 

methods are detailed in Table 1 for each subject and 

validation repetition, and summarized in Figure 2. The 

chance level at α=0.05 for our experimental setup was 

61.25%, so all the obtained accuracies were significantly 

higher than chance, with the only exception of PSDA. 

The results of the post-hoc comparisons between each 

pair of methods are detailed in Table 2. 

 

Table 1: Detailed accuracies (each subject and validation 

repetition) for the five methods. 
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S1   val1 97.2 97.2 94.4 94.4 77.8 

val2 95.8 91.6 94.4 91.6 76.4 

val3 98.6 98.6 97.2 97.2 88.9 

val4 100 100 98.6 93.1 87.5 

S2   val1 88.9 84.7 91.7 84.7 70.8 

val2 87.5 79.2 83.3 80.6 65.3 

val3 80.6 75.0 72.2 68.1 47.2 

val4 94.4 94.4 93.1 90.3 68.1 

S3   val1 87.5 84.7 81.9 81.9 69.4 

val2 86.1 83.3 86.1 83.3 66.7 

val3 93.1 90.3 93.1 87.5 61.1 

val4 86.1 88.9 86.1 80.6 59.7 

S4   val1 81.9 76.4 72.2 69.4 63.9 

val2 75.0 75.0 79.2 77.8 65.3 

val3 84.7 80.6 86.1 79.2 66.7 

val4 80.6 80.6 80.6 76.4 69.4 

Average 88.6 86.3 86.9 83.5 69.0 

Peak 100 100 98.6 97.2 88.9 

 

Table 2: p-values from the post-hoc tests between each 

pair of methods. 
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The implemented method performed significantly 

(p<0.001) better with respect to standard CCA method 

with no sinc-windowing. The accuracy improvement 

occurred indeed in almost every subject and session, with 

an average improvement of 5.1% and a peak 

improvement of 12.5%. As regards the influence of the 

single factors we can observe that the consideration of 

the first two canonical variables significantly 

outperforms the consideration of the largest only, both in 

the sinc-windowing (p<0.01) and no-sinc-windowing 

(p<0.001) condition. As regards the PSDA method, this 

confirmed to perform significantly worse (p<0.001) than 

any CCA variation. 

As regards computation times, our CCA-based method 

confirmed to be significantly (p<0.001) faster with 

respect to PSDA, with an average time per operation of 

approximately the half (110μs against 239μs). As 

concerns sinc-windowing, it contributed for 

approximately a third on average (35μs) with respect to 

the total time of each operation (110μs). 

As regards the information transfer rate of the presented 

system, we obtained a peak ITR of 40bits/min and an 

average ITR of 20.12bits/min. We don’t detail the ITRs 

for each subject and validation to avoid repetition, but 

they can be easily computed from Table 1. 

Figure 2: A box-plot showing the classification accuracy 

distributions for the five methods. The double star ** 

indicates a p-value<0.01, while triple star *** a p-

value<0.001. The horizontal, dashed line marks the 

chance level (α=0.05). 

DISCUSSION 

 

Our results show how the consideration of two canonical 

correlations instead of using the largest one only, 

significantly improves the achievable accuracy without 

increasing computational load. The described effect is 

probably due to the fact that, since the canonical variables 

Ui are uncorrelated, the second canonical variable U2 will 

contain information which are in quadrature with those 

contained in the first canonical variable U1. So, if U1 is 

mainly explained e.g. by the sine at a certain frequency, 

then U2 will be mainly explained by the cosine at the 

same frequency. Then, taking the previously described 

combination of the largest correlations will include a 

more complete information. 

Although Table 1 and 2 suggest that the consideration of 

two canonical correlations improves the performances 

regardless of sinc-windowing, we still retain that a pre-

processing step is important. We indeed hypothesize that 

the positive influence of sinc-windowing may emerge 

depending on both the subject and the set of stimulation 

frequencies. To give an example, if a subject showed an 

enhanced peak near one of the stimulation frequencies, 

independently from the stimulation condition (e.g. if the 

subject showed an enhanced spontaneous alpha rhythm 

and one of the selected frequencies was in the alpha 

range), then the adjunctive role of a narrow-band filtering 

would be enhanced. Since sinc-windowing only affects 

the total computation time for approximately one third, 

we think it is reasonable to keep and recommend this 

feature in future implementations. However, further data 

are required to confirm the importance of its role. 

As regards the comparison with PSDA, our results 

confirm the ones in literature [6], [7], which indicate the 

superiority of CCA both in terms of accuracy and 

computational load. 

As regards the performances of our system in absolute 

terms, it is difficult to compare ITRs because most of the 

recent studies implement more than 2 classes, which 

drastically increases ITR. The most recent 2-class BCI 

based on SSVEPs found in literature is the one in [22], 

which reports a peak accuracy of 89.9% and a peak ITR 

of 10.30bits/min. Since our average accuracy and ITR 

were of 88.6% and 20.12bits/min, we think we can say 

our results are at least in line with the reported ones. A 

multi-class implementation of the presented paradigm 

could lead to an improvement in ITRs too. 

 

CONCLUSION 

 

In the present work we implemented a 2-class SSVEP-

based BCI system. The system was based on CCA 

analysis, and our results indicate that considering two 

canonical correlations instead of the largest one only can 

significantly improve accuracy without increasing the 

computational load. An additional narrow-band filtering 

permits to gain an average 5.1% and a peak of 12.5% 

accuracy with respect to classical CCA. Even though this 

is only a 2-class paradigm, it can be easily extended to 

multi-class to improve ITR. An advantage of the 
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presented system is that it remains quite simple, light and 

fast, since it only performs sinc-windowing of the 

incoming signals, followed by a CCA feature extraction 

and SVM classification. We think taking low 

computational costs and simple procedures is an 

important aspect, especially to favor the spread of low-

cost and high-portability devices. 
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ABSTRACT: Severe acquired brain injury often leads to  
a disorder of consciousness (DOC) which can be 
classified in vegetative state (VS) or minimally 
consciousness state (MCS) according to its severity. 
While the standardized Coma Recovery Scale Revised 
(CRS-R) is considered the gold-standard for the 
diagnosis of DOCs, fluctuations in the level of awareness 
and/or operator-dependence variation may hinder 
diagnostic accuracy (up to 40% of misdiagnosis for VS).  
Here we aimed at providing reliable EEG-based indices 
extracted from resting state networks that can corroborate 
clinical diagnosis with high level of accuracy, even in 
absence of behavioral signs of consciousness. Advanced 
methodologies for connectivity estimation and graph 
theory were applied to EEG resting state data from 15 
DOC patients (2 groups: 6 VS and 9 MCS). Indices 
describing the global properties of the resting networks 
and the information flows between anterior and posterior 
brain regions resulted significantly different between the 
two groups. Moreover, they allowed the discrimination 
between VS from MCS with accuracy above 80%. These 
findings boost the role of EEG synthetic indices as 
valuable and reliable tool to support DOC clinical 
diagnosis.  

 
INTRODUCTION 

Disorders of Consciousness (DOCs) after severe 
acquired brain injury include, in the acute phase, coma 
and in the post-acute phase, vegetative state (VS) and 
minimally conscious state (MCS). The VS is a condition 
that follows coma, when the patient recovers vigilance 
(eyes opening), but not awareness, defined as the ability 
to interact with the surroundings, in spite of eyes opening 
and partial recovery of the sleep-wake circadian cycle 
[1]. More recently, the European Task Force has 
introduced the definition of “unresponsive wakefulness 
syndrome” (UWS) [2] to replace the term “vegetative 
state,” although it has not been universally accepted [3]. 
Here, we will use the term VS/UWS. The MCS has been 
described as a condition in which the patient recovers eye 
tracking ability or fluctuating commands, while 
remaining unable to communicate [4]. 

The current gold-standard in diagnosis of DOC 
patients is the JFK Coma Recovery Scale Revised (CRS-

R) which allows the clinical assessment of residual 
visual, auditory, motor, verbal functions, patients’ 
communication ability and awareness [5]. Reliance on 
behavioral assessment presents however, significant 
challenges and may lead to a misdiagnosis up to 40% (in 
VS) with evident impact on DOCs assistance and 
rehabilitation [6].  

In light of this, several studies investigating 
neuroelectrical and hemodynamical brain signals at rest 
and during batteries of auditory, visual and tactile stimuli 
have been conducted in DOC patients in order to isolate 
quantitative markers of awareness independently of 
behavior [7]–[9]. The most promising studies appears to 
be those based on the analysis of alterations in DOC 
resting state networks, particularly in the so-called 
Default Mode Network, with respect to healthy subjects 
[10].  

Hemodynamical and neuroelectrical measures have 
recently gained growing interest as a tool that may—in 
perspective—support the diagnosis of patients with 
different DOC by circumventing the need for behavioral 
responses. The networks defined by the statistical 
relationship between different signals (and their 
properties at different frequencies) can be seen as indirect 
correlates of the information processing by the patient’s 
brain. 

EEG shows invaluable advantages with respect to 
other neuroimaging techniques, both at the theoretical 
and at the practical level: it allows to capture the 
dynamics of brain connectivity and its spectral 
distribution, by keeping it viable to handle severely 
disabled patients even with bedside testing, being 
therefore eligible for routine clinical application. 

Previous studies have identified markers derived from 
a combination of connectivity estimators and graph 
theory able to classify MCS patients from VS/UWS and 
healthy subjects with an accuracy slightly above chance 
[11], [12].  

In this study, we employed Partial Directed 
Coherence, as spectral multivariate connectivity 
estimator [13] combined with asymptotic statistic 
method to assess patterns of connectivity [14] and graph 
theory to extract EEG indices describing the topology of 
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resting state networks in DOC [15]. As such, the 
combination of these computational methods was 
demonstrated to provide accurate, reliable and repeatable 
patterns in different experimental conditions and under 
different levels of signals quality [16]. The aim was to 
provide EEG-based indices to accurately 
discriminate/classify between different DOCs.  

 
MATERALS AND METHODS 
     Participants: Fifteen patients were included in the 
study (age: 50±16 years, 8 males; lesions: 5 left, 5 right, 
5 bilateral; etiology: 7 stroke and 8 traumatic brain 
injury). All the patients were recruited at the post coma 
unit of the Neurorehabilitation Hospital “Fondazione 
Santa Lucia,” Rome, Italy. According to their CRS-R 
scores, patients were divided in two groups: 6 VS/UWS 
and 9 MCS. No significant differences between the two 
groups were found in terms of age, gender, and lesion 
site. One MCS subject was excluded from the analysis 
because of the presence of artifacts in EEG traces.  
     Scalp EEG recordings: All patients were subjected to 
an experimental session including EEG recordings 
during 2 minutes of eyes-closed resting condition (19 
electrode cap, positioned according to 10-20 
International System as used in clinical routine, reference 
on both earlobes and ground at left mastoid, sampling 
frequency of 250 Hz, g.USBamp amplifier, Guger 
Technologies, Austria). 

   Connectivity Analysis and graph theory: EEG 
signals were downsampled to 100 Hz and band pass 
filtered at 1–45 Hz. EEG traces were segmented in 
epochs of 1s length and then subjected to PDC 
estimation.  

PDC is a is a full multivariate spectral measure used to 
determine the directed influences between pairs of 
signals in a multivariate dataset. Let us suppose that the 
following multivariate autoregressive (MVAR) process 
is an adequate description of the dataset Y: 

 
∑ ݐሺ݇ሻܻሺܣ െ ݇ሻ ൌ ሻݐሺܧ
ୀ    (1) 

 
Where Y(t) is the data vector in time, E(t) = 

[e1(t),…,eN(t)]T is a vector of multivariate zero-mean 
uncorrelated white noise processes, A(1),A(2),…,A(p) 
are the NxN matrices of model coefficients, and p is the 
model order. PDC can be computed as follows [13]: 

ሺ݂ሻߨ ൌ
หܣሺ݂ሻห

ଶ

∑ หܣሺ݂ሻห
ଶே

ୀଵ

		 (2)

where ܣሺ݂ሻ represents the frequency version of the ij 
entry of matrix A.  

 
The estimated PDC values were averaged in five 

frequency bands: delta (1–3 Hz), theta (4–7 Hz), alpha 
(8–12 Hz), beta (13–25 Hz), and gamma (26–40 Hz).  

PDC significance was assessed against null-case by 
means of asymptotic statistics approach with a 
significance level of 5%. Such approach allows to derive 
the probability distribution of the null-case squared PDC 

estimator (the χ2 distribution), by knowing its asymptotic 
variance [14], [16]. 

To compute indices describing the main local and 
global properties of the investigated patterns, we adopted 
measures derived from a graph theoretical approach [17], 
computed on the adjacency matrix G resulting from the 
assessment procedures [15]. In particular, we considered 
the following indices: i) ant/post asymmetry, anterior 
density, ant/post influence for describing the 
involvement of anterior areas with respect to the 
posterior ones, ii) inter-hemispheric connections, 
left/right divisibility, left/right modularity for describing 
the information exchange between left and right 
hemispheres [16] iii) clustering, global efficiency, local 
efficiency, path length for characterizing the global 
properties of the network such as the efficiency in 
communication or the tendency to create clusters [17].  
     Statistical analysis and classification: An 
independent samples t-test was performed (significance 
level 0.05, corrected by means of False Discovery Rate) 
between the indices extracted from VS/UWS and MCS 
networks. To check whether such indices were able to 
characterize each individual patient, we built a support 
vector machine (SVM) classifier with linear kernel, using 
as features the indices resulted as statistically different 
between VS/UWS and MCS. The classifier was built for 
each couple of indices and each frequency band. We 
employed a leave-one-out cross-validation approach, 
testing one subject each time. The corresponding 
classifier training was performed on two groups of 
patients of the same size. As a performance parameter, 
we computed the percentage of subjects whose state has 
been correctly classified. 
Finally, the brain connectivity indices were correlated 
(Spearman correlation, p<0.05) with the clinical (CRS-
R) scores. False discovery rate correction was used to 
correct for multiple correlations. 
 
RESULTS 

As reported in Fig. 1, (panel a), we found significantly 
higher values of ant/post asymmetry, ant/post influence, 
and anterior density in MCS patients with respect to 
VS/UWS as estimated in delta band of frequency. The 
ant/post asymmetry and ant/post influence indices were 
also significantly different between VS/UWS and MCS, 
in favor of MCS, in the theta band of frequency (Fig.1, 
panel a). Altogether, these results indicated a lower 
functional involvement of the frontal regions in VS/UWS 
patients as indicated by negative values of these indices 
in that experimental group. No significant differences 
were found between the two groups as for the indices of 
functional interhemispheric communication, namely the 
inter-hemispheric connections, left/right divisibility,  
left/right modularity (Fig.1, panel b) in both delta and 
theta bands. Regarding global properties of the resting 
state networks (Fig.1, panel c), we found significantly 
higher values of clustering coefficient and local 
efficiency and lower values of path length in MCS with 
respect to VS/UWS only in delta band.
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Table1 - Classification accuracy obtained using as features graph indices derived from DOC’s resting state connectivity networks in delta band. A 
SVM classifier with linear kernel and three support vectors was built for comparing VS/UWS and MCS for each combination of graph indexes 
(reported on x- and y-axis). Classification accuracies above 70% were highlighted in bold. 

 
 

 

Figure 1: Bar diagrams reporting results related to the graph indices 
extracted separately for VS/UWS and MCS in delta and theta bands. 
Indices are grouped as follows: anterior/posterior (panel a), left/right 
(panel b), global indices (panel d). P-values associated to the 
statistical comparison between VS and MCS are reported for each 
index (independent samples t-test). In bold, values related to an 
alpha = 5% (P < 0.05). 

 
No significant differences were found in the other 

bands for all the three groups of indices. 
All the graph indices were used, in couples, as features 

to feed the SVM classifier. We built a classifier for each 
pair of indices (45 pairs in total) and two frequency bands 
(delta and theta). Results are reported in Table1. In 
particular, we found that accuracy above 70% was 
obtained only when the couple included indices such as 
those relative to functional communication between 
anterior and posterior areas and to the global properties 
of the networks. Worth of note are the accuracies above 
80% obtained considering as features the ant/post 
asymmetry and tree global indices (clustering, local 
efficiency and path length). The accuracy obtained in 
theta band resulted lower than that in delta band.  
     Regarding the results of the Spearman correlation 
between the CRS-R scores and the ant/post asymmetry in 
the delta band. A significant positive correlation (R=0.6, 
p=0.024) between the ant/post asymmetry index and the 
CRS-r scores was observed only in the delta band. 

No statistical correlations were found for the other 
indices in all frequency bands. 
 
DISCUSSION 

In this paper we aimed at providing quantitative and 
reliable indices extracted from EEG resting state 
networks, to discriminate VS/UWS from MCS in order 
to corroborate the clinical/behavioral diagnosis of DOC 
patients.  

According to our findings, the main differences found 
between VS/UWS and MCS can be quantified by 2 
classes of indices: i) those describing the relationship 
between anterior and posterior areas of the brain and ii) 
those describing global properties of resting state 
networks such as efficiency and tendency to create 
clusters. In particular, VS/UWS’s resting state networks 
present a reduced connectivity in frontal regions of the 
brain and a decrease in the communication flows going 
from the anterior to the posterior regions with respect to 
MCS. This is in line with previous studies pointing out in 
VS/UWS patients a deactivation of areas related to 
Default Mode Networks (including anterior cingulate 
cortex and medial pre-frontal cortex) and a reduction of 
the fronto-parietal connections [18], [19]. Furthermore, 
resting state networks in MCS were characterized by 
higher communication efficiency and higher tendency to 
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organize their structure in clusters with respect to 
VS/UWS as underlined by the significant differences in 
clustering, local efficiency and path length indices. 
Finally, most of the significant results were found in slow 
frequency bands (delta and theta), which have been 
related to cognitive tasks [20] and to different 
unconsciousness levels [21].  Overall, we speculate that 
this could reflect a global deterioration of the resting 
state networks in VS/UWS patients. 

Previous EEG studies based on graph theory indices 
extracted from connectivity networks at rest, have 
already pointed out the distinctive aspects of DOCs’ 
brain networks with respect to healthy subjects also 
providing correlations of resting state networks with the 
degree of behavioral responsiveness or hidden awareness 
in DOCs [22]. However, the characterization of DOC’s 
resting state networks has been made only on the basis of 
global indices, such as clustering and path length, which 
give information about general properties of the 
networks. In this paper, we firstly confirmed what 
already found in terms of global properties of DOCs’ 
networks. Then, we provided information about the 
spatial reorganization of DOCs’ resting state netwroks 
induced by the brain injury. In particular, we employed 
indices describing the level and direction of information 
flow between anterior and posterior areas and between 
the two hemispheres. Regarding the global indices, we 
found results similar to those in [22] even considering a 
reduced number of electrodes (19 instead of 32). The 
simplification of the experimental setup without any loss 
of accuracy in the DOCs characterization is an important 
issue which has to be addressed if we are interested in 
employing such indices in the clinical diagnosis of 
DOCs. 

Notably, the ant/post asymmetry index values appear 
to vary as function of the CRS-R scores. As yet, the same 
set of indices (in couple) was also reliable in 2-class 
discrimination analysis, that is VS/UWS and MCS were 
classified with up to 80% of accuracy. This finding 
further strengthens the relevance that such surrogate 
measure of the consciousness disorders might have to 
improve clinical diagnosis of DOC patients.  

Once our findings would be confirmed in a larger 
group of patients we will move from a supervised 
approach where the classifier is trained on the basis of the 
results of CRS-R scale to an unsupervised approach 
entirely data driven in order to remove the dependence of 
the results on the diagnosis provided by CRS-R scale.  
      
CONCLUSION 
Our findings, if confirmed in a larger group of DOC 
patients, indicate how surrogate measures of 
consciousness disorders based on EEG might allow to 
improve the accuracy of the gold-standard clinical 
instruments for diagnosis. This can be achieved with  just 
few minutes of EEG signal recording without requiring 
any voluntary contribution by the patient, provide that 
these findings are confirmed in a larger cohort of DOCs. 
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ABSTRACT: Recently a locked-in ALS patient was 
equipped with the Utrecht NeuroProsthesis (UNP), a 
fully implantable electrocorticography (ECoG)-based 
BCI system. The UNP system translates the neuronal 
activity from this patient to a control signal that is used 
to make selections within a graphical user interface 
(GUI) and speller application. This paper describes the 
current architecture of the UNP system from brain 
signal to GUI and speller control. 
 
INTRODUCTION 
 
Due to severe paralysis, patients with Locked-In 
Syndrome (LIS) are no longer able to communicate 
with the outside world independently. Although their 
cognition is still intact, LIS patients do not have the 
ability to move or speak anymore. Using assistive 
technology, LIS patients may use eye movements to 
control (communication) devices. As an alternative, 
BCI solutions are occasionally used to employ brain 
activity for control. Our BCI system is the first fully 
implanted  ECoG-based system, where electrode strips 
are placed - subdurally - directly on the cortical surface 
and connected to a transmitter device inside the chest. 
Because the electrodes are permanently implanted, 
caretaker assistance for using the system only involves 
placing an antenna over the implanted transmitter and 
connecting it to the computer. In addition, brain 
potentials are measured directly from the cortex so we 
can record brain activity with a high spatial and high 
temporal resolution. Over the past 1.5 years we have 
developed a signal processing pipeline and GUI to 
allow the patient to control the UNP independently. By 
means of this pipeline and GUI, the patient is now able 
to alert her caregiver, spell sentences and practice tasks 
to improve control [1]. The UNP-system employs brain 
driven ‘clicks’ as the primary input to the GUI. Input by 
means of brain clicks was chosen since this would 
provide the most robust control for the patient. The aim 
of this paper is to describe the features and architecture 
of the UNP system that the patient currently uses. 
 
MATERIALS AND METHODS 
 
The UNP system was implanted in a 58-year-old 
locked-in patient who suffers from late stage 

Amyotrophic Lateral Sclerosis (ALS). A subdural four-
electrode strip (Resume, Medtronic, 4mm electrode 
diameter, 1cm inter-electrode distance) was placed over 
the hand region of the left motor cortex, which activates 
on attempted hand movements [2]. The electrode strip is 
connected to a left infraclavicular, subcutaneously 
placed amplifier and transmitter device (Activa PC+S, 
Medtronic). The Activa device can process and 
amplify signals from each bipolar electrode pair on a 
single strip. We selected the electrode pair showing the 
strongest responses in high frequency band power 
(HFB, 65-95 Hz) during attempted hand movement. For 
the UNP, we configured the Activa S to transmit 
power in two frequency bands: Beta power (center 
frequency 20Hz) and Gamma power (center frequency 
80Hz) from the selected electrode pair at a rate of 5Hz. 
During use of the system, an antenna is placed on the 
chest over the device to receive the amplified and 
converted signal. The received signal is forwarded to a 
signal decoding computer (Microsoft Surface Pro 4 
Tablet), which runs both a signal processing pipeline 
and GUI implemented on the BCI2000 platform [3]. 
The tablet running the pipeline and GUI is placed in 
front of the patient. She currently uses attempted hand 
movements to control the UNP-system. 
 
RESULTS 
 
The signal processing pipeline consists of six 
consecutive filters: Time smoothing, Z-transformation, 
Linear classification, Escape sequence, Threshold 
classification and Click translation (see Fig. 1). Each 
filter takes one or more input channels, manipulates or 
interprets the channels and sends output to the next filter 
or to the application. At the beginning of the pipeline, 
each of the two frequency bands is received on a 
separate channel, the Beta power on one channel and 
the Gamma power on another. 
     Time Smoothing: The incoming power signal from 
each channel is smoothed over time by taking the 
average over the current and previous 5 samples (a 
smoothing window of 1.2 seconds). Time smoothing is 
applied to deal with the noisy and spiky characteristics 
of ECoG measured brain signals.  
     Z-Transformation: The smoothed signal from each 
channel is taken from the previous step and normalized 
by subtracting the mean and division by the standard 
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deviation of that channel. This normalization step 
stabilizes slow amplitude trends in the signal (i.e. 
different days or parts of the day). Initially, the mean 
and standard deviation were based on a 30 second pre-
run calibration. However, since the amplitude and 
deviation of the signal proved to be stable over a longer 
period of time, a fixed mean and standard deviation are 
currently used.  
     Linear Classification: The normalized (z-scored) 
Beta and Gamma signals from the previous step are 
combined into a single control signal by subtracting the 
low frequency (Beta) channel from the high frequency 
(Gamma) channel. 
     Escape Sequence: The incoming signal proceeds 
through this filter without modification. This filter 
specifically detects long periods of sustained activity 
produced by the user, and, if detected, it outputs an 
‘escape’ trigger directly to the GUI. The duration is 
currently set to 5.6 seconds of sustained activity. 
     Threshold Classification: The control signal from the 
linear classification is converted to a binary signal based 
on a threshold value. For every incoming sample the 
filter will output a ‘1’ if the control signal is above the 
threshold, or a ‘0’ if below the threshold. 
     Click Translation: The incoming binary signal is 
converted to clicks. This filter buffers the incoming 
samples and sends out a single click if a pre-defined 
number of consecutive ‘1’-samples is received from the 
previous filter (currently set to 5 samples). After 
sending out a click, the filter sets a refractory period of 
3.6 seconds where no clicks can be made.  
 

 
Figure 1: Overview of the processing pipeline. When 
click-control is required to control the GUI, the signal 

will pass through all six filters. If continuous-control is 
required then only the first four are enabled, skipping 
the Threshold Classification and Click translation steps.  
 
The GUI connects at the end of the pipeline. By making 
(brain) clicks, the patient can navigate through the GUI 
menus (see Fig. 2).  
 

 
Figure 2: The GUI, showing the start menu, the speller 
menu and the speller click settings menu. Each menu in 
the GUI consists of icons organized in rows and 
columns. A selection rectangle will loop from top to 
bottom over each row. The patient can select a row by 
making a (brain-)click. When a row is selected a 
selection rectangle will loop from left to right within the 
row, allowing the patient to click an icon in the row. If 
no icon is clicked, the selection will revert back to row 
selection. If an icon is clicked, the selection rectangle 
will stay there for 3 seconds, requiring the patient to 
make another click within that time to confirm that 
option. 
 
Over the past 1.5 years, several features were 
introduced into the pipeline and GUI to help the patient 
use the UNP. 
     Practice Games: A number of research tasks/games 
have been developed and are performed regularly in 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-90

CC BY-NC-ND 491 Published by Verlag der TU Graz 
Graz University of Technology



order to improve control over the (spelling) system. 
These tasks allowed us to find the optimal parameters 
for control and allow her to gain control over her brain 
activity. Normally these tasks are started by the 
researcher during home visits. However, since these 
tasks provided a good mean of practice for signal 
control, we included them in the GUI, allowing her to 
practice independently. 
     Spelling: The patient is able to start spelling software 
by choosing the ‘Typer’ icon in the GUI. When the 
patient chooses to start spelling in the menu, Tobii 
Dynavox Communicator 5 is started and takes focus on 
the tablet. The Tobii software is set to work in a similar 
way as the GUI, but instead shows a letter matrix for 
spelling and only single clicks have to be made. Clicks 
coming from the pipeline are relayed by the GUI to 
clicks in the Tobii application, allowing her to spell and 
pronunciate letter, words and sentences.  
     Optimizing pipeline parameters: As soon as the 
tablet is switched on, the pipeline is booted 
automatically with standard parameter values (e.g. a 
smoothing window of five samples). The standard 
parameter values were calculated from research task 
data. However, in certain circumstances, the user may 
wish to change these settings, for example to make 
clicking easier. In order to facilitate such changes, the 
UNP allows the patient to set some of the parameters 
values herself through the GUI (see Fig 2). For the 
speller (Tobii) and practice tasks she is able to set the 
smoothing window and various click parameters. 
     Escape: The escape sequence accommodates the 
need for the patient to stop what she is doing in the GUI 
and/or call for care. As soon as the escape sequence is 
made (keeping the control signal high for 5.6 seconds), 
the GUI shows a popup menu asking her if she wants to 
call the caregiver using audio, stop what she is doing or 
continue what she was doing. This feature allows her to 
always signal her caregiver, and from any place within 
the GUI and speller. 
     Continuous control: The UNP system has two 
control modes, a click control mode and a continuous 
control mode. The mode for click control involves all 
six filters. The patient uses this mode to navigate the 
menus, practice click-based tasks and use the spelling 
software. The mode for continuous control only uses the 
first four filters and is currently used in only one of the 
practice games. In this mode the amplitude of the signal 
controls the vertical position of a ball on the screen. The 
GUI can automatically switch modes in the pipeline 
depending on the tasks or program she is using. 
 
DISCUSSION AND CONCLUSION 
 
The UNP-system allows the patient to communicate 
using speller software and brain-clicks. In addition to 
spelling, the pipeline and GUI allow the patient to alert 
the caregiver, practice tasks to improve control signal 
regulation and fine-tune parameter settings 
independently. The patient has reported good user 
satisfaction with the implantable BCI system [1], and 

uses it on a regular basis without help from the research 
team. Although the system provides in a number of 
needs, improvements can be made. For example, the 
spelling speed could be improved by allowing her to 
experiment with the click refractory period and the 
number of consecutive above-threshold samples 
required for a click. In the coming period, we will work 
on further fine-tuning the system. The input of the 
participant is invaluable in this process, since only a 
system that fully meets the wishes and needs of the end-
users will be interesting for further development and 
commercialization and eventually become available for 
the people who need it. 
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ABSTRACT: The field of Brain-Computer Interface 

(BCI) research has seen a steep expansion during the last 

years, and interesting progress has been made in all 

different aspects of the BCI pipeline. Despite that, BCIs 

are not yet widely used by either the diseased or healthy 

target populations. In the current study, we asked BCI 

researchers worldwide to fill out a questionnaire about 

how they see the future of BCI research, what hurdles 

need to be taken for BCIs to become available and widely 

used applications, and the research that is needed to 

accomplish this. The data reveal that researchers foresee 

that real BCI applications will appear on the market in 

the coming years, but that important improvements are 

needed in especially the hardware, performance and user 

friendliness of BCIs. 

 

INTRODUCTION 

 

Since the pioneering work on brain-computer interfaces 

(BCIs) in the late sixties and early seventies of the 

previous century [1,2], BCI research has seen a fast 

growth. The new insights gained as a result of that have 

led to the BCI field currently recognizing several types 

of application scenarios, each with their own target 

populations [3,4], ranging from applications to replace 

lost brain function (e.g. BCI-control of communication 

devices) to tools that enhance the daily functioning of 

healthy people (e.g. BCI-driven detection of attention 

lapses for airline pilots). Despite these developments, 

BCIs seem to remain largely a laboratory tool and are 

hardly available on the market. As a result, only a very 

limited number of patients and healthy people use BCIs 

in home, work or clinical settings.  

In order to make sure that potential end-users, in time, 

will start to benefit from BCIs, it is important to identify 

the most promising BCI applications and target groups, 

and to signal topics that need more attention. To this 

purpose, a group of European BCI stakeholders (i.e. the 

BNCI Horizon2020 project, funded within the European 

Commission’s Framework Programme 7) worked on the 

development of a roadmap for the BCI field [5], between 

November 2013 and May 2015. As part of this project, 

the consortium approached BCI researchers worldwide 

with the request to fill out a questionnaire, asking them 

about their view on the current status and the future of 

their field. A summary of the findings was presented in 

one of the Appendices of the BNCI Horizon2020 

roadmap. Here, we present the results of the 

questionnaire in more detail.   

 

MATERALS AND METHODS 

 
 Approach: In May 2014, the BCI researchers’ 

questionnaire was sent to 3291 BCI researchers by email, 

followed by two reminders to non-responding 

researchers before the first round was closed in July 

2014. A second round ran from December 2014 until 

January 2015.  

Questionnaire: The questionnaire contained three 

sections:  

1) Respondents. Here, researchers were asked to 

answer a list of multiple choice questions on e.g. 

their education, lab size, and BCI research focus, 

with the purpose to characterize the respondents. 

2) Near future. In this section, researchers were asked 

to shortly describe a BCI application that they 

considered feasible within the near future, and assign 

it to one of the BCI scenarios (replace, restore, 

enhance, improve, supplement and research tool). 

Then, they were presented with a list of potential 

bottlenecks and a list of possible research directions. 

For each item, they had to indicate to what extent it 

applied to the BCI application they just described, on 

a five-point rating scale that ranged from strongly 

agree to strongly disagree. 

3) Far future. Here, respondents were asked to think out 

of the box and into the far future, and shortly 

describe a potential killer application or major 

research breakthrough, for both non-invasive and 

implanted BCIs.  

Data analysis: Data analysis was performed 

separately for each section. 

1) Respondents. Numbers of selections of multiple 

choice items were computed as percentages of the 

total number of respondents.  

2) Near future. The described BCI applications were 

evaluated for clarity and correctness of assignment 

to the application scenarios and re-assigned if 

necessary. Ratings were labeled with weights, i.e. 

‘not applicable’ with 0, ‘totally disagree’ with 1, 

‘disagree’ with 2, ‘neutral’ with 3, ‘agree’ with 4, 

and ‘totally agree’ with 5. Subsequently, the ratings 

given by the respondents to each of the 
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bottlenecks/research direction statements were used 

to compute, per statement, a center of mass (COM). 

COM values >3.5 indicated that most respondents 

agreed/strongly agreed with a statement, whereas 

COM values <2.5 indicated disagreement or strong 

disagreement. Values between 2.5 and 3.5 indicated 

not particularly relevant or irrelevant.  

3) Far future. Incomplete and unclear answers were 

excluded from analysis. The other statements were 

used to assemble a list of numbered codes (topics). 

The final list covered all issues described by the 

respondents. Subsequently, each statement was 

annotated with one or more codes of the list. Finally, 

for each code, the number of instances among all 

statements on non-invasive and implanted BCIs was 

counted.  

 

RESULTS 

 

 Respondents: In total, the questionnaire was filled out 

by 298 respondents, mostly from Europe, North-America 

and Asia. Almost 90% of them worked with non-invasive 

BCIs, the rest on implantable BCIs. The percentage of 

respondents working on implantable BCIs in North-

America (26%) was substantially larger than in Europe 

and Asia (both < 10%).  

     Near future: The 298 respondents described and rated 

363 BCI applications, of which 317 were included in the 

analysis. Most of the applications were related to 

replacing lost central nervous system (CNS) output, 

followed by tools to improve lost CNS output (Table 1). 

Over 80% of the applications were suggested to be 

developed using a non-invasive BCI approach.  

Bottleneck statements that respondents considered most 

relevant for their non-invasive applications were those 

related to insufficient system performance (COM>3.5 for 

6 out of 6 BCI scenarios, i.e. replace, restore, enhance, 

improve, supplement and research tool), the unawareness 

of end-users about BCIs (COM>3.5 for 5/6 scenarios), 

the complexity of BCI systems (COM>3.5 for 5/6 

scenarios), and the fact that wishes and needs of end-

users are not met sufficiently (COM>3.5 for 4/6 

scenarios). 

 

 

Table 1: Number of respondents describing an implanted 

and non-invasive solution for applications within the six 

BCI scenarios in the Near future section. 

Scenario Implanted Non-

invasive 

Total 

Replace 21 83 104 (33%) 

Restore 6 11 17 (5%) 

Improve 9 75 84 (26%) 

Enhance 3 47 50 (16%) 

Research 4 19 23 (7%) 

Supplement 1 38 39 (12%) 

Total 44 (14%) 273 (86%) 317 

 

For replace applications with an implanted BCI 

approach, respondents agreed (COM>3.5) that durability 

and performance are insufficient, and that there is 

insufficient evidence of system performance, durability 

and the risk/benefit ratio for end-users. Also here, 

respondents agreed that end-users are insufficiently 

aware of BCIs.  

Research directions considered most relevant for non-

invasive applications were related to sensors and signal 

processing techniques to improve system performance, 

clinical trials to demonstrate system performance and 

identification of the wishes and needs of end-users. For 

implanted BCIs to replace CNS function, all research 

directions of the list received a COM rating of more than 

3.5, indicating agreement/strong agreement with each of 

these. 

 Far future: In total, 169 and 178 far future statements, 

for non-invasive and implanted BCIs respectively, were 

included in the analysis. Statements were used to define 

a list of topics, and were subsequently labelled according 

to this list. Each statement received one or more label. 

Topics most often addressed in the statements were ‘user 

friendliness’ and ‘hardware: sensors’. Both these topics 

occurred most often in the non-invasive out-of-the-box 

statements. For implanted BCI out-of-the-box 

statements, ‘communication and environmental control 

for patients’ and ‘prostheses and artificial limbs for 

patients’ were referred to most often. In addition, 

‘accuracy and reliability of signal processing and 

decoding’ was often addressed. 

 

DISCUSSION 

 

Here, we describe the view of BCI researchers about the 

future of their field, as determined by the responses to the 

BCI researcher’s questionnaire. Most respondents of the 

questionnaire worked on non-invasive approaches, 

which may not be surprising because of the practical 

difficulties associated with implanted BCI research, such 

as the limited number of available subjects and the access 

to the required medical context. Interestingly, our data 

showed a difference between North-America and 

Europe/Asia in the balance between non-invasive and 

implanted BCI research, which has been described before 

[6], and which may be related to a different perception or 

different regulations regarding implants. The percentages 

of researchers working on non-invasive (89%) and 

implanted (11%) BCIs corresponded largely with the 

percentages of applications using these respective 

approaches (86% vs 14%) that were described in the Near 

future section. This indicates that the opinion of the 

respondents about the bottlenecks and requirements for 

future research is based on actual expertise and 

knowledge of these issues, which subscribes to the 

validity of the results of this questionnaire.  

There was quite some consistency about the bottlenecks 

and research directions that were considered relevant for 

the six non-invasive BCI application scenarios. One of 

the most important hurdles seems to be system 

performance. In fact, for 75% of the described non-
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invasive applications, the respective respondent 

indicated that (long-term) system performance is not yet 

good enough. Moreover, system complexity and the 

insufficient incorporation of the needs and wishes of end 

users needs to be addressed. Also for implanted BCIs to 

replace CNS function, system performance, as well as 

durability, needs to be improved. Moreover, respondents 

indicated that more data on performance, durability and 

the risk-benefit ratio are needed.   

Interestingly, for both non-invasive and implanted BCI 

application descriptions, respondents indicated that 

potential users are unaware of BCIs. This finding does 

not agree with other studies involving healthy and 

disabled end-users, which showed that 50-80% of the 

interviewed potential end-users were aware of BCIs [7-

9]. Whether this discrepancy reflects an inclusion bias of 

the respective studies, or whether our respondents 

underestimated the BCI-awareness of potential end-users 

remains to be determined.  

When BCI researchers were asked to think out of the box 

and into the far future, and describe a killer application 

or major research breakthrough within the non-invasive 

BCI field, they most often referred to ‘user-friendliness’, 

indicating that systems have to become easy-to-use (in 

any environment), as well as wearable and durable. It is 

unlikely that the respondents of the questionnaire 

considered implanted BCIs more user-friendly than their 

non-invasive counterparts. Rather, the stage of the 

implanted BCI research field may be viewed as too 

premature to consider user-friendliness. Most out-of-the-

box statements on implanted BCIs referred to replacing 

lost CNS function, indicating that a major breakthrough 

is needed to apply neuroscientific knowledge into actual 

BCI applications for patients. 

Limitations of the current study include the limited 

number of respondents, which may be caused by the 

length and the relative complexity of the questionnaire, 

and a potential bias towards European BCI researchers. 

Despite that, several of our results correspond to previous 

reports, suggesting that the outcome of this questionnaire 

and the identified topics reasonably reflect the view of 

the BCI research field.  

 

CONCLUSION 

We conclude that BCI researchers are quite optimistic 

about the feasibility of BCIs becoming real and available 

applications for patients and healthy end users. However, 

more research is needed to solve several crucial issues 

related to hardware, performance and user friendliness 

before these products adequately meet the wishes and 

needs of the end-users and can eventually penetrate the 

market. 
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ABSTRACT: Brain-computer interfaces are now enter-

ing real-life environments. Particular hybrid systems 

using more than one input signal, e.g. electroenceph-

alography (EEG) and functional near-infrared spectros-

copy (fNIRS), offer a broad spectrum of applications in 

basic research and clinical neuroscience. Here, we pro-

vide an overview of recent EEG-electrode and fNIRS-

optode approaches that aim to improve usability. We 

include our new multi-function clip-on design that al-

lows the use of conventional gel-based ring electrodes 

with water. For EEG electrode approaches (convention-

al gel, solid gel, new custom water-based) we compared 

impedances and frequency response over multi-hour 

recordings. While the water-based solutions showed 

comparable performance in terms of signal quality, 

applicability and comfort, solid-gel electrodes on hairy 

skin required additional contact pressure. Overall, how-

ever, all tested EEG electrode types were well compati-

ble with concurrent fNIRS recordings using a novel 

hybrid fNIRS/EEG headgear, paving the way for cogni-

tive workload experiments under real-life conditions. 

 

INTRODUCTION 

 

In the past years, electroencephalography (EEG) and 

(continuous wave) functional near-infrared spectrosco-

py (NIRS) have significantly advanced towards higher 

miniaturization and mobility. While EEG allows as-

sessing brain electric activity with high time- but low 

spatial precision, NIRS measures the metabolic (oxy-

gen-dependent) activity of brain areas with high spatial 

but lower temporal precision.  In general, this new gen-

eration of wearable hardware enables new approaches in 

many domains related to neuroscience and neurotech-

nology, such as in diagnostic medicine, cognitive sci-

ence, psychology and brain-computer-interfaces (BCIs). 

In non-invasive BCI, traditional approaches provide 

an active communication interface, e.g. for severely 

impaired or locked-in patients. Taking advantage of the 

recent trends in wearable instrumentation, BCI research 

increasingly focuses on domains beyond these applica-

tions [1] [2]. Amongst them are exoskeletons [3], [4], 

rehabilitation and mobility aids as well as adaptive 

neurotechnology research [5], [6] and neuroergonomics 

[7]: These BCIs aim to improve work environments, 

efficiency and security while advancing the understand-

ing of brain function in everyday life scenarios. Howev-

er, taking non-invasive neurotechnology further out of 

the lab and into everyday-life environments bears sever-

al multidisciplinary challenges.  

I. New instrumentation needs to fulfill requirements 

w.r.t. size, power consumption, weight and cost 

while maintaining high acquisition performance in 

single wireless devices and body sensor networks  

II. Signal and analysis approaches have to face lower 

signal to noise ratios (SNR), and increased influ-

ence of non-stationarities due to environmental in-

fluences and physiological artifacts, while further 

progressing with respect to robustness and overall 

accuracy / performance. 

III. Usability: To achieve a wider adoption of neuro-

technology outside of the laboratory, ergonomic 

aspects such as user-friendliness, preparation and 

set up times play a key role. Here, the interface be-

tween acquisition hardware and user is subject to 

research and developments. This includes head-

gear and fixation concepts as well as EEG elec-

trodes and fNIRS optodes.  

One way of tackling these challenges is by jointly 

using EEG and NIRS, for instance in hybrid BCIs [2], 

[8]. These bi- or multimodal systems exploit shared and 

complementary information in the acquired signals and 

use their respective strengths with respect to spatial and 

temporal resolution and artifacts to improve perfor-

mance [9], [10]. Both technologies are relatively low 

cost and can be miniaturized and integrated in portable / 

wearable devices. We did this in our Mobile Modular 

Multimodal Biosignal Acquisition (M3BA) architecture 

[11], designed to tackle many of the challenges in mo-

bile and out-of-the lab BCI. The M3BA modules are 

wireless miniaturized hardware for joint acquisition of 

EEG, fNIRS, electrocardiography (ECG) / electromyog-

raphy (EMG) and accelerometer signals. We now inte-

grated two modules into a new headset for mobile hy-

brid-BCI based experiments towards out of the lab sce-

narios. For headgear in mobile and life-like scenarios, 

optimization of usability and ergonomics of electrode 
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and optode solutions are crucial. Several non-traditional 

solutions have been presented in both research and 

industry in the past years [12] [13].  

In this paper, we present results of our evaluation 

and work towards practical and user-friendly elec-

trode/optode solutions for mobile EEG-NIRS based 

neurotechnology applications. We present a custom 

water-based open electrode design concept that enables 

the cost effective and easy upgrade of gel-based AgCl 

ring electrodes to water-based electrodes, allowing full 

integration into existing gel-based technology, such as 

the EasyCAP ring electrode products. We provide eval-

uation results of impedance measurements using differ-

ent new electrode types and characterize the so far out-

standing frequency response of solid-gel electrodes 

from [14] in a new epidermis-based experimental setup. 

Furthermore, we briefly discuss our developments in the 

field of spring-loaded and flexible NIRS optode holders. 

 

MATERALS AND METHODS 

 

Here, we categorize and summarize (without claim 

of completeness) existing solutions for EEG-electrodes 

and NIRS-optodes and our new approaches (see fig. 1, 

new approaches encircled in blue). We then present 

methods conducted for evaluation. 

Traditional EEG electrodes 

In EEG, a standard solution is the use of head caps 

made from stretch fabric with wet or dry electrodes at 

positions specified by the 10-20 (or 10-5) system. Con-

ventional wet electrodes are usually based on AgCl 

material with an electrolyte (NaCl) based gel that also 

acts as a buffer, reducing motion and shift artifacts. 

Because a second person is required for the application 

of gel and hair cleaning after the measurements, usabil-

ity of conventional wet gel electrodes is not optimal.   

Dry electrodes are usually active (including built-in 

pre-ampliers), need no further preparation and rely on 

direct contact to skin. Different numbers and shapes of 

pins for skin-contact / hair penetration are available. 

They have higher impedances and thus show lower 

SNR and need a relatively high contact pressure that 

many users perceive as unpleasant over time. Further-

more, they are more prone to movement artifacts.  

When there is no or little hair, sticky electrodes can 

be directly applied to the skin and provide good signal 

quality. Due to hair on the head, this type of electrodes 

is, however, usually not suitable for EEG.  

With these electrode types, integration of BCI into 

everyday life and combination with wearable equipment 

seems not feasible. To achieve this, other solutions are 

more promising 

Recent EEG electrode approaches 

To perform EEG measurements in / around the ear, 

dry or wet electrodes in the ear [15] and sticky C-

shaped electrodes around the ear [16] were proposed. 

For on-scalp measurements, many recent solutions fo-

cus on wet alternatives to sticky gel, such as non-

adhesive new solid gel electrodes [14] and water-based 

electrodes. The latter combine sponges, pressed up wool 

Figure 1:  Strategies for (wet) EEG electrodes and NIRS optode attachment, our approaches encircled in blue. A: con-

ventional gel ring electrode; B: ring electrode with solid-gel from [14], C/D: our new water-based adapter for EasyCAP 

ring electrodes. C: with rolled sponge/pressed cotton similar to [17],  D: In a new approach with sponge and soft syn-

thetic felt brush pen tips (I) or cotton bud heads (II). E: chain-link optode holders as in [21]; F: our spring-loaded open-

NIRS design [24]; G: conventional, as in [19]; H: flexible PCB (as in [22]) / rubber mat (our M3BA headset).  
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or rolled-up cotton [17] soaked in a NaCl dilution with 

AgCl electrodes and have been successfully applied in 

BCI applications [18]. 

Novel Developments 

In a new water-based approach, we developed an 

easy-to-apply upgrade for EasyCAP ring-electrodes 

enabling a variety of applications. The electrodes can 

either be directly attached to a headset or to a 10-20 cap 

and allow traditional use with gel (fig. 1A), solid-gel 

(fig. 1B) and our custom water-based solutions: 

Core of the invention is a 3D-printed clip-on reservoir 

for standard Easycap B10 series ring-electrode holders. 

The electrode is used upside-down, with its surface 

facing up towards the reservoir. The reservoir is clipped 

onto the holder with an O-ring seal. When used with cut 

and rolled sponge cloth (fig. 1C) stuck through the cen-

ter of the electrode and a water based NaCl-shampoo 

solution, the resulting electrodes can be used similarly 

to [17] and TMSI water-electrode products.  However, 

rolled cotton or sponge cloth creates a single contact 

surface that is more likely to be obstructed from direct 

skin contact by dense hair. Fig. 1D I) and II) show an-

other new approach using our clip-on design. The reser-

voir is filled with sponge material soaked with the water 

based NaCl-shampoo solution. Either contact to the 

scalp is established with three synthetic felt brush-pen 

tips (fig. 1D I) or three cotton bud heads with hollow 

tubes (fig. 1D II). Similar to multi-pin dry electrodes, 

these soft pins can pass obstructing hair more easily. 

While being far more comfortable than solid dry metal 

pins and enabling direct (water-based) conduction, they 

offer only minimal surface for evaporation of water.  

NIRS optode Approaches 

In continuous wave NIRS, solutions depend on the 

optode architecture: many older instrument generations 

use rather heavy and bulky fiber optics to transfer light 

from the emission/detection hardware to the scalp. 

These are usually not suited for wearable equipment. 

Newer generations, few of which also support mobile 

applications, integrate LEDs and photo diodes into the 

optodes that are then attached directly to the scalp. They 

can be statically attached (fig. 1G) on stretch fabric caps 

similar to EEG [19], mechanical headsets or static me-

chanical mounting structures that do not allow the sub-

ject to move [20].  For wearable headset applications, 

chain link holders (fig 1.E) [21] for the whole head and 

flexible PCB / rubber mat pads for the forehead (fig 1H) 

[22] as well as forehead-covering headsets (e.g. [23]) 

were proposed.   

Here, we implemented 4 NIRS emitters and detec-

tors each, resulting in 10 channels (with 3.5cm optode 

distances), into a stretchy rubber mat piece with 3D 

printed mechanical holders for the user’s forehead (fig 

1H). The patch can easily be integrated into a headset 

and is the most convenient solution for non-haired re-

gions, while at the same time blocking ambient light 

from the regions of interest.  

Optical NIRS signals are prone to optode move-

ments resulting in artifacts that are hard to distinguish 

from physiological changes in signals. Spring-loaded 

solutions (fig. 1F/G) can remedy this partly, but are 

mechanically more sophisticated. For headset-based 

optode attachment on hairy regions, we developed a 

double-spring-loaded optode solution (see fig. 1F). It 

ensures fast and easy perpendicular placement and ac-

cessibility of hair for preparation (for details please 

refer to the openNIRS project, [24]).  

Experiment I: Evaluation of electrode impedances  

To evaluate and compare the electrode-to-skin im-

pedances of traditional gel (Abralyt 2000, EasyCAP), 

Mg and Ca based solid-gel and the new water-based 

electrode approaches, we conducted the following ex-

periment. Two electrodes of each type (A, B, C, DI and 

DII) were applied to hairy regions of the head on 10-20 

positions AF7/8, F1/2, C3/4, P5/6, AFz, Fpz and Oz on 

an EasyCAP. Impedances were measured using a com-

mercially available signal amplifier (BrainAmp®, 

BrainProducts, Gilching, Germany), with a gel-based 

electrode reference on the left mastoid for A, C, DI, DII 

and a solid gel-based electrode reference on the right 

earlobe for B. Impedances were measured repeatedly 

every 30 min. over the course of 4 hours. 

Experiment II: a) solid-gel impedances frequency 

response, b) solid-gel electrode impedances 

Frequency responses and DC-characteristics of 

AgCl electrodes in a NaCl solution (gel- or water-

based) are well known. Toyama et al. evaluated and 

compared their new solid-gel electrodes in several ways 

[14] and reported impedances and signals comparable to 

those from conventional paste-based recordings, but no 

frequency response. To enable a comparison of 

conventional gel and solid gel electrode frequency 

characteristics in the EEG-Spectrum over time, we now 

performed an experiment repeatedly measuring the 

Figure 2: Custom 3D-printed holders, epidermis sample 

(E) with thickness D1, sine signal (SIG) and ground 

electrode (GND). Measurement electrodes   (1, 2, 3) 

placed equidistantly (R1) to GND, to each other and to 

SIG; are covered by cylindrical conductive volumes (C) 

with defined radius (R2) and thickness (D2): Solid gel 

based on Mg (electrode 1), solid gel based on Ca (elec-

trode 2), conventional electrolyte gel (electrode 3). 
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frequency responses of both the Mg/Ca based solid-gel 

and sticky paste (Abralyt 2000) together with 

conventional AgCl ring electrodes.  

To enable a realistic, but controlled, close to real-life 

measurement scenario that includes interaction of the 

materials with skin/tissue over longer periods of time, 

we designed a custom 3D-printed holder. It allows 

precise positioning of the electrodes and electrolyte 

material on an epidermis-based phantom using a tissue 

sample of pork belly with 15 mm thickness and 

conventional AgCl EEG ring electrodes (see figure 2).  

Two 3D-printed holders (T, B) fixate the electrodes on 

the epidermis sample (E) at defined positions. An ad-

justable sine current is impressed into the tissue be-

tween a centered signal electrode (SIG) and a consumer 

load electrode (GND) that is connected to signal genera-

tor ground via a 150 Ω resistance. Signal measurement 

electrodes (1, 2, and 3) are placed equidistantly (R1= 17 

mm) around the center GND electrode, furthermore 

equally distant from each other and from the signal 

(SIG) electrode. Between the measurement ring elec-

trodes and the epidermis surface, cylindrical volumes 

with radius (R2) 16mm and height (D2) 3mm are filled 

with the conductive materials that are to be investigated: 

Mg based solid gel pads (electrode 1), Ca based solid 

gel pads (electrode 2) and standard abrasive electrolyte 

gel (EasyCAP Abralyt 2000) (electrode 3). 

We performed three experiments at a constant room 

temperature of 23±1 °C, using three epidermis samples 

over the course of 4 hours. The impedance and 

frequency dependent attenuation of each channel (1-3) 

were measured within intervals of 30 minutes using a 

100 mVpp offset free sine signal in the range of 1-200 

Hz with the following frequency steps: 1-50 Hz in 1 Hz 

steps, 50-200 Hz in 10 Hz steps.  

Signals were generated with an Agilent Technology 

DSO-X 2014A device and acquired at all electrodes 

using a National Instruments USB-6003 data acquisition 

card. For each step in the frequency spectrum, 2 s were 

sampled with 1 kHz / 16 Bit resolution. From the 

datasets, average AC root mean square values and 

spectral power in the target frequency using FFT 

(Hamming window) were calculated for each frequency 

and each channel. Attenuation factors for the overall 

frequency response [dB] were calculated using the ratio 

of signal powers measured at the electrodes. The ADC’s 

quantization limit and the maximum signal amplitude of 

100 mV yielded a precision of the attenuation 

measurements of 0,026 dB. Tissue property influences 

that are assumed to be equal for all measurement 

channels as well as homogeneous changes over the 

course of the experiment (such as changes in moisture 

level and conductance), are minimized by pointwise 

subtraction: The differences ΔAttMg/Ca between 

frequency responses of the electrolyte gel AE(f) and of 

the solid gel electrodes (AMg(f) and ACa(f) respectively), 

depict deviations between the responses of both types. 

ΔAttMg/Ca [dB] = AMg/Ca(f) – AE(f) [dB].  (1)   

Offsets of the average ∆Att frequency responses, 

being all in the same order of magnitude, were then 

removed for better comparability, as they are based on 

constant tissue inhomogeneities between the electrode 

pairs.  

 

RESULTS 

 

Electrode impedances: Experiment I and IIb 

The new designed reservoir-clip water electrode 

adapters (fig 1C and 1D I/II) were successfully applied 

in impedance measurement experiments and showed 

comparable EEG signal quality to that acquired with 

conventional gel. Figure 3 EI shows the impedances of 

all three water electrode types over the course of 4 h 

compared to gel. All three types showed impedances 

around 10 kΩ without additional preparation. Over the 

timecourse of the experiment, impedances dropped 

further below 10 kΩ.  

The impedances of the solid gel electrodes showed 

poor performance on hairy regions in experiment I 

when no additional manual pressure was applied and 

were discarded from the set of data. Figure 3 EIIb 

shows the impedances of the Ca- and Mg-based solid 

gel electrodes measured in the epidermis probe 

Figure 3: 

EI: Water vs. gel 

based electrode 

impedances and all 

5 electrode types on 

EasyCap 

EIIb: Solid gel vs. 

gel based electrode 

impedances 

EIIa: grand average 

ΔAttMg and ΔAttCa

over all three exper-

iments and 

timepoints. Shaded 

bars: average stand-

ard deviation of  

ΔAtt(f) over all 

timepoints. 
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Figure 4: New hybrid EEG-NIRS M3BA headset.

A: M3BA module in custom holder. B: channel place-

ment. Blue: 10-20 EEG electrode positions; orange: 

GND; grey: linked mastoid reference; red/green: NIRS 

emitters/detectors; purple: NIRS channels. C: Headset.  

 

Experiment IIb. These exemplify the solid-gel 

performance when applied directly on skin for longer 

time periods. Here, 14 kΩ and 19 kΩ  were initially 

measured for the Mg-based and the Ca-based solid-gel 

respectively. Both impedances then further decreased 

significantly towards 8 kΩ (Ca) and 11 kΩ (Mg) over 

the timecourse of the experiment.  

Solid gel frequency response: Experiment IIa 

The average attenuation of the sine signal by the 

tissue was approx. -3 dB for all electrode types.   

Figure 3 EIIa shows the grand average delta frequency 

responses (all experiments and timepoints) for both 

solid-gel materials over the 4 hour experiments (blue 

solid and black dashed line). We observed a continuous 

change in the relative offsets of the delta frequency 

responses over the whole time-course. The grand aver-

age delta responses were roughly equal to the single 

responses measured at the midterm of the experiments. 

To depict the offset-shift of delta frequency responses 

relative to midterm over time, shaded bars show the 3-

experiment average of the delta responses’ standard 

deviation using the attenuation factors of all measured 

time points for a respective frequency bin. The meas-

urements show negligible differences between the time-

average frequency response of the electrolyte gel and 

both solid-gel materials over the range of 1-200 Hz. 

Over all time points, the delta frequency responses of 

both materials deviate less than ±0.06 dB from the aver-

age, which is only a little bit more than twice the meas-

urements’ precision bound of 0.026dB.  Over the whole 

time-course, the maximum difference between the ref-

erence electrolyte’s frequency response and Ca- and 

Mg- based solid gel responses was less than 0.31 dB 

and 0.24 dB, respectively. 

 

DISCUSSION 

 

All new water-based approaches (cotton bud heads, 

sponge cloth and brush pen tips) competed well with 

conventional gel electrodes and none excelled the others 

with respect to impedances and signal quality. While the 

new water-based types were easy to set up and comfort-

able to wear, reduction in their preparation time was not 

noteworthy. However, depending on the user’s residual 

functional capability, they can decrease or obviate the 

need for support by a second person. 

The solid-gel electrodes did not perform well on 

hairy regions without additional (manual) pressure. In 

the epidermis-based experiments however, they showed 

coinciding impedance results (range and time-courses) 

with those measured by Toyama et al. [14]. While the 

preparation of solid-gel electrodes required the least 

amount of time, the design and pressure of an optimized 

headset seems necessary. The frequency response eval-

uation results indicate that the time-averaged solid gel 

frequency responses deviate less than 0.155 dB (1.8%, 

Ca) and 0.11 dB (1.3%, Mg) from the conventional 

electrolyte over the range of 1-200Hz. While the 

attenuation is constant over all frequencies, the time 

courses of the attenuation offsets showed a total change 

of <0.31 dB for Ca and <0.24 dB for Mg based solid gel 

over the course of 4 hours. These offsets over time are 

likely due to the decline of solid gel electrode 

impedance over time in the experiment. 

The set-up was designed symmetric and with 

equidistant electrode positions to enable a maximum 

comparability between the three measurement channels. 

However, despite the careful selection of tissue samples 

with minimal natural inhomogeneities, the exact impact 

of these tissue inhomogeneities on attenuation 

differences in the measurement channels cannot be 

determined completely. Thus, the acquired data can 

only be used for pessimistic upper bound estimates of 

the differences in the material’s frequency responses. 

However, we consider these upper bound estimates 

to be a good indicator that the solid-gel electrodes can 

be used for biopotential/EEG measurements leading to 

results comparable with conventional electrolyte gel. 

 

CONCLUSION & OUTLOOK 

 

Fusing the results of our work on hybrid EEG-NIRS 

acquisition and electrode/optode technology allowed us  

to design a new stand-alone hybrid EEG-fNIRS headset 

utilizing two M3BA modules and one rechargeable 

LiPo battery (up to 10 hours continuous acquisition), 

resulting in 9 EEG, 10 NIRS and 3 EMG/ECG channels 

and two 3D accelerometer signals (see figure 4). The 

headset weighs 150 g and can be worn on top of an 

additional EEG cap to enable change in number and 

standardized positions of electrodes, if desired. It ena-

bles the use of all electrode and optode solutions dis-

cussed in this paper and exemplifies one of several 
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alternatives for new mobile experiments. In this layout, 

the headset’s channel placement was chosen to enable 

acquisition of frontal/parietal alpha/theta EEG power 

and metabolism, frontal asymmetries (in both the EEG 

spectrum and NIRS oxygenation signal), Error Poten-

tials and Event Related Potentials. We will soon apply it 

in mobile cognitive workload detection experiments that 

are currently in preparation. 
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ABSTRACT: Central Neuropathic Pain (CNP) is a 

frequent chronic condition in people with spinal cord 

injury (SCI). In a previous study, we showed that using 

laboratory brain-computer interface (BCI) technology for 

neurofeedback training, it is possible to reduce pain in 

SCI people who suffered from CNP for many years.  In 

this study, we show initial results from 12 people with 

SCI and CNP who practiced neurofeedback on their own 

using our portable BCI, consisting of a wearable EEG 

headset (Emotiv, EPOC, USA) and a computer 

tablet. Eight participants showed a positive initial 

response to neurofeedback and seven learned how to use 

portable BCI on their own at home. In this paper, we 

present a portable BCI and discuss the main challenges 

of training lay people, patients and their caregivers, to 

use a custom designed BCI application at home. 

 

INTRODUCTION 

 

Brain-computer Interface has been a focus 

of multidisciplinary research for almost two decades, and 

most of its applications have been designed for patients. 

Yet with the exception of  BCI spellers for nearly locked 

in people [1] and brain painting BCI [2], there is no 

reported application of BCI that patients can use at home 

on their own, though several studies explored priorities 

of potential BCI home users, including patients with SCI 

[3] . There are several consumer 

BCI systems in the research phase or on the market [4], 

but their applications are mainly for gaming 

or improving the concentration of the able-bodied 

population. Furthermore, consumer BCI applications 

typically do not involve EEG recording during training 

allowing post hoc analysis, so it is hard to check user’s 

actual performance. 

It is reasonable to assume that the main users of 

consumer BCI systems are people who like technical 

innovations [4]. The experience of these people might 

not necessarily be directly transferable to patients who 

may have a physical or cognitive disability, belong to an 

older age group and possibly do not share a passion for 

technical innovations. 

With the advent of portable and inexpensive 

EEG [4], it became possible to organize feasibility 

pragmatic studies, on a larger number of participants to 

observe how lay people, with mild to severe physical 

impairments and with average consumer technical 

literacy use BCI on their own. Due to the nature of 

participants, it is equally important  to understand the 

attitude of their caregivers towards an unconventional 

assistive/rehabilitation device.  

In this paper, we present, to the best of our knowledge, 

the first pragmatic (not directly controlled by a 

researcher) feasibility study of neurofeedback treatment 

of SCI patients based on [5], using BCI technology 

in a home environment. We present the main 

components of custom-made software for portable BCI 

and the effect of training on pain. The main focus of the 

paper is however patients’ experience of using the BCI 

system on their own.  

 
MATERIALS AND METHODS 

 
Patients: Twelve patients (54±9, 2F) with chronic 

SCI and with previously diagnosed CNP were included 

in the study (Table 1).  Paraplegic and tetraplegic adult 

patients, with complete or incomplete injury, were 

included in the study. Americal Spinal Injury 

Association (ASIA) impairment scale level A-D 

corresponds to the different levels of severity of motor 

and sensory impairments [6]. The level of injury C 

(cervical) correspond to tetraplegia while T (thoracic) 

and L (lumbar) to paraplegia (Table 1).  

Exclusion criteria were the patients’ inability to 

understand the task, epilepsy or any self-reported mental 

health problem. Minimum computer literacy and 

Internet access were required. Patients were asked to try 

not to change their regular pain medications (pregabalin 

or amitryptiline) throughout the study as this could   

influence the outcome. Only patients with CNP equal to 

or greater than 4 on the Visual Numerical Scale VNS 

(0=no pain, 10=worst pain imaginable) were included in 

the study. All patients signed the informed consent. 

Ethical permission was obtained from the local 
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national healthcare service Ethical Committee.  

BCI software: Custom-made software was created in 

visual C++.net. It consisted of three main parts: raw EEG 

data collected through a wireless communication with 

the headset, signal processing following the algorithm 

described in [5], and a graphical user interface. The 

graphical user interface had three screens (Fig.1). It 

consisted of the main screen for neurofeedback training, 

pain diary screen and screen for setting system 

parameres. Control buttons on the main screen were 

color coded to enable persons with mild vision problems 

to easily recognize different commands. 

Electronic pain diary (in VNS units) had to be filled out 

before the start of training and before logging off. EEG 

signal was recorded during training and the experimenter 

could remotely access patients’ EEG to upload the data if 

patients allowed  access.  

     Neurofeedback training: Prior to taking portable BCI 

home for neurofeedback training, patients had up to four 

30 min long neurofeedback pre-training sessions 

using a laboratory device usbamp (Guger Technologies, 

Austria) following protocol [5]. The EEG sampling 

frequency was 256 samples/s, the right ear served as a 

reference and the left ear as a ground. The impedance 

 was set prior to the EEG recording to a value under          

5kΩ.  At the very beginning, a 2 min  EEG was recorded 

to serve as a baseline for subsequent neurofeedback. 

Training was provided from C4, located over the primary 

motor cortex, which is an area typically targeted by 

neuromodulatory treatments of CNP [7]. Patients were 

presented with a graphical user interface (GUI) showing 

three bars. The bars changed size and color, to either red 

or green (Fig .2). Patients were instructed to “do 

whatever necessary to make bars green”. Three bars 

represented the theta, alpha and higher beta (20-30 Hz) 

band relative power. Relative power was calculated as a 

power of a chosen frequency band divided by a power in 

2-30 Hz band. The bars representing theta and beta 

band had a green color when the relative power was 10% 

or more, below the baseline value, otherwise, they 

had a red color. A bar representing the alpha band had a 

green color when the power was 10% or more, above the 

baseline value, otherwise was red. Chosen features were 

based on our study defining markers of CNP [8]. Four 

sessions for the initial assessment of the effect of 

neurofeedback on pain were chosen based on 

the literature [9]. A subset of patients, who 

reported a reduction in pain of at least a 1 grade on 

the VNS and in addition reported sensations such as 

tingling or pleasant heat during neurofeedback pre-

training, were included in the 2nd part of the study, using 

BCI at home.  In the previous study [5] it was noticed that 

these sensations often precede the reduction of pain. 

Because patients were not informed about these 

sensations prior to training, this served as a quick “anti-

placebo” test.      
Questionnaires and Communication with Patients:  

Upon arrival at the laboratory, the purpose of the study 

was explained to patients. A semi-structured interview 

was either audio recorded or notes were taken by two 

experimenters. After briefly demonstrating how the BCI 

system works, on the first session, they were asked to 

complete a custom-made questionnaire on the 

“Perceived usefulness of a device for a home-based 

treatment of central neuropathic pain”, a validated 

questionnaires “Brief Pain Inventory” [10] and 

“Neuropathic pain symptoms inventory” [11]. Patients 

were contacted after one week and after one month 

by either phone, SMS, email or Skype, and some visited 

the laboratory. Volunteers who completed the study have 

been asked to finally complete the “Brief 

Pain  Inventory” and a custom-made questionnaire: 

“Neuropathic system users questionnaire”. 

 

Educating patients to use portable BCI: on each 

session, following neurofeedback pre-training with 

usbamp, patients and their caregivers were trained to 

use the EPOC headset and a custom made software. 

Tuition consisted of three parts: training to adequately 

moisten the electrodes and to place the headset on the 

right location of the head, training to use Emotiv 

proprietary software to check the electrode-skin 

impedance and training to use a custom designed BCI 

software. The headset was tilted back compared to the 

recommended use by Emotiv, so that the electrode 

locations F3 and F4 were located approximately at 

locations C3 and C4 (or for smaller heads between C3 

and C1 and between C4 and C2). To find the right 

location, patients were instructed to imagine a vertical 

line coming from their ears and to place the device in 

such a way that one long EEG electrode is placed just to 

the front of that line and the other long electrode just 

to the back, as shown in Fig. 2.  The electrode just behind 

the vertical red line was used for neurofeedback 

training. A photo of a patient wearing the headset 

 was also taken on the patient’s smartphone.  

Following this, patients were taught how to use a GUI to 

check the color-coded electrode impedance (Emotiv 

proprietary software). They were instructed to add saline 

and press the electrodes gently, aiming for the green 

colour to appear on all electrodes. The electrode from 

which neurofeedback training was provided was labeled 

with a sticker so that patients could be sure that it always 

had good contact. In order to assure a good tight contact 

between a headset and the head, in particular, a good 

contact of the reference electrodes, patients were given 

an elastic band to wrap around the head to prevent the 

headset from slipping. EPOC EEG has a sampling 

frequency of 128 samples/s and two references at P3 and 

P4 (in the case of this application they were placed over 

parietal lobes close to ears) for CMS/DRL noise 

cancellation. As the last step, patients and caregivers 

were trained to use the custom-made software. Before 

they got a portable BCI to take home, they had to 

demonstrate to the experimenter that they were capable 

of doing all three steps on their own (placing EEG 

headset, impedance check, neurofeedback training). Two 

manuals were provided to patients: a 

proprietary EPOC headset manual and a custom-made 

manual explaining how to correctly place the headset 
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for the purpose of neurofeedback training and how to 

use the custom-made software. Patients were offered as 

many sessions as needed to learn to use the portable BCI. 

Neurofeedback protocol with portable BCI followed 

the same rules as the one with ‘usbamp‘, previously 

described. They were asked to use BCI for three months, 

at least once a week and were offered to keep it following 

that period. 

 

  
Figure 1. Main screens. Upper: Pain diary; Middle: 

Neurofeedback GUI; Lower: System parameteres 

 

 

 

 

RESULTS 
 

Information about patients is provided in Table. 1, 

while information about training is provided in 

Table. 2. In Table. 2, the first column to the left shows 

the intensity of pain as measured by VNS for each patient 

before and after the first few assessment sessions. 

Column ‘Min pain’ is the minimum intensity of pain 

reported while using BCI at home. Column “Nr AS” 

shows the number of assessment/education 

sessions, column  “Nr SS” shows the number of 

additional support sessions requested by a patient, after 

starting to use BCI at home. These sessions were in 

addition to regular checks-ups after a week and a month. 

Column “Diff” shows the patient’ perceived difficulty of 

using a portable BCI (1=very easy, 10=extremely 

difficult), the average value shown in 

Table. 3. Finally, the last column shows how long 

patients used the system for. The only person who 

considered BCI difficult to use (Diff=7) gave up after 

trying to use it for a month. 

Fig. 3 shows one example of EEG Power Spectrum 

Density (PSD) taken from a home based neurofeedback 

session of one representative patient. The blue colour 

represents PSD during 2 min long EEG baseline 

recording while the red color represents PSD during 

5min long neurofeedback sub-session.  The patient was 

successfully reducing theta and higher beta power and to 

a lesser degree was increasing the power of the alpha 

band. This example shows that patients can successfully 

use the system on their own and that they are capable of 

simultaneously increasing and decreasing EEG power in 

different frequency bands. 
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Patient demographic. Seven patients were paraplegic 

and five were tetraplegic. Three tetraplegic patients had 

an injury that prevented them from using their hands, so 

they required a caregiver to help them with using the 

headset. One of them gave up after the first session, due 

to ill health, one patient and a caregiver were interested 

in using BCI but the patient had no response to 

neurofeedback and one patient had a supportive caregiver 

and a response to neurofeedback.  

Table 1. Information about patients 

 Age/gender/ 

 

Injury 

level 

       ASIA Years 

since injury 

P1.    62 M L3/L4 D 9 

P2.    51 M T6/T7 D 7 

P3.    56 F T5 D 3 

P4.    64 M T4 A 7 

P5.    66 M L3 D 5 

P6     59 M C2 B 5 

P7.    59 M C2 A 7 

P8.    50 M C3/C5 D 3 

P9.    54 F T5 A 7 

P10.  35 M C4 D 15 

P11.  42 M C2 A 1 

P12.  49 M T6 B 1 

 

Table 2. Information about pain level and the number of  

support sessions. Nr AS: the number of assessment and 

training sessions, Nr SS: number of additional support 

sessions. Diff: estimated difficulty of using portable BCI. 

Pain before/ 

after initial 

assessment  

Min 

pain  

Nr  

AS  

Nr  

SS 

 Diff Home use 

(months) 

P1.    10/8 1 2 / 2           10 

P2.    7/5 2 1 / 2 7 

P3.    7/5 5  4 7 1 

P4.    7/5 3 3  3 3 

P5.    5/4 4 3  2 3 

P6     8/8 8 1 - - - 

P7.    5/3 2 2  2 2 

P8.    5/5 5 3 - - - 

P9.    5/5 5 2 - - - 

P10.  5/3 2 2  1 2 

P11.  5/5 5 3 - 2 - 

P12.  8/4 2 3 1 1 1 

 

Only two out of 9 patients who could use their hands 

brought a caregiver to the laboratory, to learn how to use 

BCI so that they could help at home as required, two of 

these patients lived on their own. All patients had at 

least a secondary school education. Four patients were 

employed, three retired and five stopped working 

after injury. All patients lived in areas within an 

hour drive of the hospital. 

Pain descriptors: Central neuropathic pain was 

present in all patients below the level of injury and all 

patients had pain on their feet and below their knees.  The 

pain was described with standard descriptors of CNP i.e. 

extremely hot (burning) or extremely cold (freezing), 

stinging or as a tightrope (in patients who also had pain 

at the level of injury). All patients first started feeling 

tingling, pleasant warmth and reduction of pain in 

feet. The effect of neurofeedback training 

was assessed using the VNS and also the total body 

area affected by pain. Fig. 4 shows an example of body 

maps affected by pain before and after 3 months 

of training, showing that pain was completely reduced 

in the upper body. 

Patients’ expectations: Prior to demonstrating a 

portable BCI, experimenters asked patients about their 

expectation prompting them to describe the preferred 

weight, and size of the device and the expected usage 

pattern. The majority expected a small and robust device 

that could fit into a handbag. The most frequent 

questions to the experimenter were, how long 

should they wear the headset for? Could they do daily 

activities wearing the headset? And should they use the 

device constantly? The last question indicates that lay 

people, in general do not have a good understanding 

of how BCI works, i.e. that it requires some sort of 

feedback and that it is used intermittently.   

BCI usage pattern: Three patients used the device 

almost daily while most patients used it at least once a 

week. Although they were advised to use the device for 

30 min, P2 used it much shorter while still reporting 

benefits. Most patients used the device in the 

evening when they had more time. Similar to our 

previous study [5], 5 patients who used BCI reported that 

they could bring themselves into the ‘traning’ state 

without using the device, by simply imagining 

doing it. For example, a patient who worked in a call 

center wearing headphones said that he imagined that the 

headphones were the EEG headset and that helped him to 

imagine training and experience less pain. 

Communication with patients: most patients preferred 

SMS or the Internet and two used Skype messenger. We 

offered to all patients video Skype support (the tablet 

computer had a camera) but only one patient used it. The 

laboratory in which patients were recruited was situated 

within the Spinal Injuries  Unit, thus four patients 

preferred coming to the laboratory for a check-up or for 

additional assistance with BCI. This indicates that people 

like having personal contact although electronic 

communication is less time-consuming. 

Perceived usefulness of portable BCI: At the end of 

the first demonstration session patients were asked to 

answer a set of questions shown in Tables  3 and 4. Table 

3 shows perceived usefulness and ease of use of BCI. On 

average, all patients believed that they could understand 

the main purpose of the device and that it would not be 

hard for them and their caregivers to use it. They also 

showed a strong belief towards the potential usefulness 

of the device.  

Attitude towards using a novel technology: Table 4 

showed that all participants had a positive attitude 

towards novel technologies. There was no stigma about 

wearing a gadget on the head in front of family and 

friends. Patients were also asked to choose one or 

more of the following attributes of a new product which 

is most important to them when deciding to buy a device: 

price, aesthetics (looks), size, new features, size of letters 
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and symbols, friends and family already having the 

device, it is novel (only a few people have it), easy 

to relate to something they already have, technical 

support. The most  frequently selected answers were 

“price“ and “new features“, followed by “technical 

support“ and “size“. 

Technical issues  with  EEG headset: 

Three  headsets  frames broke  and two patients asked for 

replacement sponges for the EEG electrodes. The 

most frequent issues were loose electrodes falling out 

from their sockets and difficulty achieving good 

electrode-skin contact. Occasionally slipping 

of the headset was reported due to loosening of the frame 

(after prolonged use) or due to long hair. This was 

resolved by wrapping an elastic band around the headset. 

Technical issues with the custom made software: 

Patients mostly complained of the small size of 

a warning message at the end of the baseline EEG 

recording. Some patients initially forgot to complete to 

pain diary to allow them to start training or log out. A 

major problem was that there was no electronic evidence 

of neurofeedback performance, which could be 

compared from one day to another. 

Other issues affecting the study: The main issue 

affecting the use of BCI was a change of daily routine, 

caused by e.g. unrelated health problems, travels, 

pressure sores which required bed rest, moving 

home and a change of caregiver. Due to the headset 

design, it was inevitable that the location of electrode 

varies from one session to another, possibly influencing 

its performance. Another factor influencing the study 

was a negative opinion of a trusted authority such as a 

general practice doctor (“ We do not really know what 

the device is doing”).  

 
 

DISCUSSION 

 

This feasibility study shows that lay people with a 

mixed social background are capable of using BCI 

technology on their own or with the help of their 

caregivers. Although there are published studies on SCI 

patients views of BCI technology, this is the first study 

in which SCI people actually used BCI on their own.  

Kubler et al. [12] suggested a model of user centered 

design with three main parameters: efficiency, 

effectiveness and satisfaction. In the context of this 

study, effectiveness could be expressed as a reduction of 

pain, efficiency as the number of sessions required to 

learn neurofeedback and time to setup the system. 

Although we did not use validated questionnaires for 

patient satisfaction as suggested in [12] we believe that 

custom made questionnaires (Tables 3 and 4) and semi-

structured interviews cover the areas such as usefulness, 

expected functionality, usage pattern and patient‘s 

appearance while using a device.    

Table 3: Perceived usefulness and the ease of use of a 

portable BCI. Question 3 contains two statements, but it 

was assumed that all people who attended the training 

were interested in having a device. 

Questions Range Average 

1.In your opinion, how 

easy is it to understand 

the main purpose of the 

EEG-tablet system? 

1 very easy 

10 very hard 

2.1±0.7 

2. How easy do you feel 

that it is to use this 

device on a daily basis? 

1 very hard 

10 very easy 

8.0±1.7 

3. I would like to have 

this device but I am not 

sure if  my caregiver 

and I would understand 

how to use it 

1 very false 

10 very true 

1.0±0.0 

4. Please rate how 

much you feel 

convinced that the 

device might help 

reducing your pain? 

1 not at all 

10 very much 

convinced 

7.9±0.7 

 

Table 4: Attitude towards using a novel technology. 

Questions Range Average 

1. Please rate how you 

would feel if other 

people would see you 

wearing the device at 

home 

1 very 

embarrassed 

10 very 

amused 

8.7±1.7 

2. Please rate how you 

would feel if other 

people would know that 

you are using the device 

at home 

1 very 

embarrassed 

10 very 

amused 

8.3±2.2 

3. Please rate your 

attitude towards using a 

novel technology (e.g. 

computers, phones, 

other gadgets)  

1 extreme 

avoidance 

10 extreme 

excitement 

8.4±1.0 

From patients‘ perspective,the largest problem was to 

ensure that the training electrode was always close to C4 

location because the headset was not designed to be used 

over the central area. 
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Another problem was that the initial measurement of 

the impedance was the only check of signal quality 

because patients were not familiar with the morphology  

of EEG and could not check the raw EEG signal. A post-

hoc analysis of EEG signals recorded during 

neurofeedback, indicated that most of the time patients 

were getting an EEG signal of a reasonable quality. 

 

While we did not have a control group, from the initial 

set of 12 patients we selected for home based 

BCI study, only people who, based on our previous 

experience,  had additional self-reported sensations 

(tingling, pleasant warmth) accompanying the reduction 

in pain. About two-thirds of patients in this study 

experienced a reduction of pain. Neurofeedback is a 

technique which requires training and some people who 

did not experience a reduction of pain did not learn how 

to control their brainwaves within 4 training 

sessions.  We showed that people who used BCI at home 

achieved a larger reduction in pain with a prolonged use 

[5].  

While for a patient, self-manged therapy is essential to 

have highly motivated participants, it was possible that 

placebo effect to some extent contributed to the reduction 

in pain because of patients’ high expectation of the 

BCI.   However, the main aim of this study was to test if 

an average adult with no previous knowledge of BCI, 

who may possibly need the assistance 

of a caregiver, could use BCI at home. We believe that 

this study provides some useful information for future 

developers of consumer EEG headsets.  

 

 
 

CONCLUSIONS 

 

The study demonstrates the feasibility of home-based 

patient and caregiver managed BCI therapy for CNP. 

The results of this study should encourage other 

researchers to take BCI from labs and hospitals to 

patients’ homes and should inform the developers of  

wearable consumer BCI devices 
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ABSTRACT: Most of event-related potential (ERP)-
based brain-computer interface (BCI) spellers are limited
practical value for paralyzed patients with severe oculo-
motor impairments. Recently, a gaze-independent BCI
speller was proposed that uses rapid serial visual pre-
sentation (RSVP), but it is difficult to recognize targets
because of the rapid presentation of characters. We de-
veloped two ERP-based BCI spellers using RSVP with
motion, and non-motion stimulation. We evaluated the
effect of the two different stimulus conditions on the per-
formance of the speller system with eight participants.
The stimulation methods that employ motion stimula-
tion inside the foveal vision demonstrate not only gaze-
independence but also higher performance than method
that uses non-motion stimulation (73.61±22.57% for
non-motion RSVP, 92.36±11.09% for motion RSVP).
The performance of the different stimulation methods
was susceptible to ERP latency and amplitudes. As a re-
sult, motion-type RSVP stimulation condition (i.e., mo-
tion RSVP) had shorter latency and higher amplitudes
than the non-motion RSVP stimulation condition. It
is expected that the proposed motion RSVP stimulation
method could be used for developing a gaze independent
BCI system with high performance.

INTRODUCTION

A brain-computer interface (BCI) uses brain signals in-
stead of muscles to control external devices such as an
exoskeleton, robot arm, or communication system [1, 2].
Electroencephalography (EEG) signals have a good tem-
poral resolution, can be recorded non-invasively, and en-
able real-time control, and its associated equipment is
portable and inexpensive [3]. One of the most widely
studied BCI systems is EEG-based BCI, which can mon-
itor conscious electrical brain activity and detect distinct
patterns that are generated by the brain. After the EEG
signal is digitized, it can be processed via digital signal
processing algorithms to convert it into a real-time con-
trol signal [5]. Several EEG-based BCIs have been cat-
egorized according to the type of brain activity used for

BCIs, for example, P300, steady-state visual evoked po-
tential, event-related (de)synchronization, and slow corti-
cal potential.
The EEG-based speller is a typical application of BCI
systems, which enables the user to write on a screen
without muscle movements. Many BCI studies have
shown that BCI spelling systems can be implemented
using event-related potentials (ERPs). The ERP based
speller (or P300 speller) devices acquire neural activity
generated by user attention to a target speller. Accord-
ingly, the ERP-based speller recognizes user’s intentions.
ERPs distinguish attention and non-attention (target and
non-target). The conventional ERP-based speller consists
of a 6 × 6 symbol matrix. The row and columns alter-
nately flicker in a random order, where the user concen-
trates on the target symbol. These conventional spellers
can achieve excellent performance.

Figure 1: Experimental environment setup.

Recently, some studies based on ERP based spellers
have considered gaze-independence [4-6]. Gaze-
independence means that there is no involvement of
eye movements for controlling BCIs. Several studies
solve gaze-independence issues with other sensory ac-
tivities, such as auditory and tactile activity. However,
these activities not only generate weaker signals than vi-
sual stimuli but also are constrained to a limited num-
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(a)

(b)

Figure 2: Experimental visual stimuli presentation setup (a) S-RSVP paradigm, (b) M-RSVP paradigm.

ber of targets. Other current visual ERP-based gaze-
independent spellers have been successfully implemented
using visual stimuli paradigms such as the covert atten-
tion paradigm, rapid serial visual presentation (RSVP)
paradigm, and motion-onset visually evoked potentials
(mVEPs) paradigm [4-6]. The RSVP-based speller is im-
plemented using RSVP visual stimuli [6]. In RSVP, tar-
gets (e. g., symbols or pictures) are presented one-by-one
in the same location of a display. The RSVP characteris-
tic not only made it difficult to recognize targets but also
cause visual discomfort.
In the present study, we proposed a gaze-independent
speller with more easily recognized targets and less vi-
sual fatigue than one that uses conventional RSVP speller
(e.g., requirements of low luminance and contrast) [6].
We proposed a novel visual oddball paradigm using
RSVP and shifting (motion) stimuli. We implemented
a gaze-independent speller that utilizes standard RSVP
(S-RSVP) and motion RSVP (M-RSVP). Whenever the
M-RSVP stimulus presentations start, all the symbols
are presented center position with one-by-one [5]. The
motion characters were moved one of the six directions
within the near-central visual field (i.e., the 2, 4, 6, 8,
10, and 12 o’clock directions). The visual stimuli moved
within the near-central visual field and the participants fo-
cused on the central point. Finally, we evaluated the ERP
patterns and the classification performance for different
gaze independent systems (i.e., S-RSVP and M-RSVP).

MATERIALS AND METHODS

A. Subjects: The experiment included 8 participants
(6 males and 2 females; mean = 24.73±5.53 years).
All participants had no history of visual disorders and
corrected-to-normal or normal vision. The experiments
were conducted in accordance with the principles de-
scribed in the Declaration of Helsinki. This study was ap-
proved by the Institutional Review Board of Korea Uni-
versity [1040548-KU-IRB-15-163-A-1].

Figure 3: Characters in each of the color and direction
groups.
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Figure 4: Motion stimulus during one presentation of the
M-RSVP sequence.

B. Experimental stimuli and paradigm: Two differ-
ent RSVP spellers were employed: the S-RSVP without
motion stimulus, the M-RSVP with motion stimulus. We
used 36 character symbols (i. e. the 26 letters of the En-
glish alphabet (A-Z), nine numerals (1-9), and the hyphen
“-” used to separate different words). These characters
were divided into the same six color groups in the spirit
of [6] as follows: Red: A, G, M, S, Y, and 4; Blue: B, H,
N, T, Z, and 5; Green: C, I, O, U, and 6; Orange: D, J, P,
V, 1, and 7; Magenta: E, K, Q, W, 2, and 8; and Black:
F, L, R, X, 3, and 9, as shown in Fig. 3. Thus, the target
stimulus can be detected for the user by only using direc-
tion and color (e.g., the 2 o’clock direction consisted of
the G, H, I, J, K, and L characters with red, blue, green,
orange, magenta, and black, respectively).
The RSVP sequence (consisting of 36 symbols) was ran-
domly shuffled before the presentation. We used a stimu-
lus onset asynchrony (SOA) of 133 ms without an inter-
sequence interval. The screen background was a static
gray color [5]. The participants fixated on a point in the
center of the monitor. The participants were asked to di-
rect their attention toward the target and silently count
whenever they found it. M-RSVP characters were di-
vided into six directions (i.e. 12, 2, 4, 6, 8, and 10
o’clock). The measured visual angle of the disk area of
the M-RSVP speller was 2.89 ◦ for all the subjects. In this
design, the motion stimulation was entirely presented in
foveal regions, as shown in Fig. 4 [6].

C. EEG Acquisition: During the experiments for all
conditions, EEG data was recorded at a 1000 Hz sam-
pling rate and 63 electrodes were attached using the in-
ternational 10-20 system along with BRAINAMP am-
plifiers and an actiCap active electrode (Brain Products,
Germany). The Fp1-2, AF3-4, Fz, F1-10, FCz, FC1-
6, FT7-8, Cz, C1-6, T7-8, CPz, CP1-6, P7-8, Pz, P1-
10, POz, PO3-4, PO7-10, Oz, and O1-2 electrodes were
used. The EOG was recorded under the subject’s left eye

[22]. The reference was located on the ridge of the par-
ticipant’s nose, and the ground was located at AFz. The
impedances of all electrodes were kept under 10 kΩ. The
experiment paradigm was implemented in Psychtoolbox
(http://psychtoolbox.org/). The participants were seated
in a comfortable chair at a distance of about 80 cm from
the screen and asked to fixate on a point at the center of
the monitor. The participants were asked to direct their
attention toward the target and silently count whenever
they found it without movement (e. g. without head or
eye movements). There were two sessions, a training
session and an off-line test session. In the training ses-
sion, participants had to copy-spell the predefined word
“KNY5G2X7CUPF” (12 characters). In the test session,
participants had to spell the predefined word “BSQH-
DRT94WJEM36I1” (18 characters) for off-line classifi-
cation. These predefined words are quite balanced com-
binations of the six color for equitable evaluation. For all
speller conditions, the sequences flashed one-by-one for
36 symbols and the participants focused (and counted)
when the target symbol flashed. A break of 3 s was given
between sequences (i. e. countdown), as shown in Fig.
2. The participants were able to take a rest during that
time. The participants paid attention to 10 sequences of
target symbols, which consisted of one-by-one flashes of
36 symbols. In this study, the data analyzes were con-
ducted off-line and this experiment had no feedback.

D. Data analysis: For pre-processing, all EEG data
was downsampled to 100 Hz and bandpass filtered at
0.5-30 Hz with a Chebyshev filter in off-line analy-
sis. We used the BBCI toolbox (http://bbci.de/toolbox)
for data analysis and classification was performed us-
ing MATLAB (MathWorks, Natick, MA, USA). The
EEG data contained physiological artifacts (e.g., eye and
head movements). We computed an independent com-
ponent analysis for all 63 EEG electrodes using a tem-
poral decorrelation source separation algorithm [5]. We
computed the correlations of the independent compo-
nents with related EOG channels (Fp1, Fp2, F9, F10, and
under left eye) and determined a conservative threshold
(more than two standard deviations) for rejecting ICs as
EOG-contaminated data [4]. We then rejected artifacts
based on a min-max criterion (i. e. a min-max voltage
difference > 75µV ) [5]. For classification, the data was
epoched from -233 to 800 ms based on the stimulus on-
set in all conditions. We selected a pre-stimulus inter-
val (-233 to 0 ms) for baseline correction. For off-line
classification analysis, the most discriminative intervals
were subject-dependent from 100 to 800 ms. The five
selected discriminative intervals were selected using a
well-established heuristic method using signed r-squared
values (sgn − r2) [5]. We obtained five feature in each
channel. So, we can used a feature dimension of 315 (63
electrode channels x 5 time windows). We used a regu-
larized linear discriminant analysis with shrinkage of the
covariance matrix for off-line classification [5]. The per-
formance calculated classification accuracy (chance level
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Figure 5: Grand average ERPs for the targets and non-targets in S-RSVP (first column), M-RSVP (second column). The
light gray and dark gray shadows represent the N200 (S-RSVP: 265-335 ms and M-RSVP: 165-235 ms) and P300

(S-RSVP: 435-535 ms and M-RSVP: 355-455 ms) signals, respectively.

= 1/36 (2.78) %). Finally, user-intended character was
determined by selecting maximum classifier output value
that was averaged across the sequences.

RESULTS

The ERPs of the oddball paradigm (i. e. the target and
non-target tasks) were similar with other results reported
in the literature [4]. The most obvious ERP components
were the N200 and P300 amplitudes from 150-350 ms
and 350-550 ms based on the stimulus onset, respectively
(Fig. 5). The N200 of the target and non-target tasks was
a distinguishable channel located around PO7 [5]. The
P300 of the target and non-target tasks was a distinguish-
able channel located around Cz [5]. In this study, the
ERPs showed N200 and P300 components for each PO7
and Cz (Fig. 5).

We obtained the average ERP response as well as the
sgn − r2 values between target and non-target (Fig. 5).
For all conditions, we used the PO7 and Cz electrode for
the N200 and P300 components, respectively. In the S-
RSVP condition, the ERP response appeared the N200
(amplitude: -2.711 µV and latency: 315 ms) and P300
(amplitude: 3.593 µV and latency: 530 ms). In the M-
RSVP condition, the ERP response appeared the N200
(amplitude: -2.902 µV and latency: 225 ms) and P300
(amplitude: 4.848 µV and latency: 425 ms). Table 1

shows the classification accuracies of each subject and
their mean accuracies for the 1st, 6th, and 10th stimu-
lus sequences. The M-RSVP condition achieved higher
accuracy than the S-RSVP condition on all sequences.
In addition, a Wilcoxon signed-rank test for the classifi-
cation accuracy of M-RSVP conditions was significantly
higher than S-RSVP condition on the 6th, 8th, 9th, and
10th sequences (p < 0.05), but no significant differences
were found between the accuracies of S-RSVP and M-
RSVP on the other sequences (i. e., 1st, 2nd, 3rd, 4th,
5th, and 7th sequence).

DISCUSSION

In this study, we implemented two RSVP BCI speller
to achieve gaze-independence. We obtained (using 10
off-line stimulus sequences) mean classification accura-
cies of 73.61±22.57% and 92.36±11.09% respectively
for the S-RSVP and M-RSVP conditions. We demon-
strated that the M-RSVP speller system achieved easier
target recognition and higher accuracy than the S-RSVP
speller. Fig. 5 shows the differences in amplitude and
latency between the S-RSVP and M-RSVP conditions.
Also, the last line of Fig. 5 shows the sgn − r2 values
in the S-RSVP and M-RSVP. The M-RSVP has higher
sgn − r2 value than the S-RSVP condition. Moreover,
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Table 1: The classification accuracy for each subject.
First sequence Six sequence Last sequence

S-RSVP(%) M-RSVP(%) S-RSVP(%) M-RSVP(%) S-RSVP(%) M-RSVP(%)
Sub. 1 45.00 29.44 95.00 79.44 100 94.44
Sub. 2 25.00 38.89 70.00 86.11 88.89 100.0
Sub. 3 39.44 20.55 76.67 93.33 88.89 100.0
Sub. 4 22.78 11.11 36.11 83.89 38.89 94.44
Sub. 5 29.44 57.22 57.22 87.78 61.11 94.44
Sub. 6 38.89 93.33 93.33 94.44 94.44 100.0
Sub. 7 20.55 57.22 57.22 83.33 66.67 88.89
Sub. 8 11.11 39.44 39.44 45.56 50.00 66.67

Mean±SD 29.03±11.40 33.75±11.17 65.62±22.26 81.74±15.46 73.61±22.57 92.36±11.09

The M-RSVP has shorter latency then the S-RSVP con-
dition. The high sgn−r2 value and short latency have re-
spect to higher target/non-target discrimination. The ERP
latency could be affected by stimulus evaluation and re-
sponse production [4]. And the different cognitive task
conditions could be reflected in the latency and ampli-
tude characteristics of ERPs (i. e., shorter latencies and
larger amplitudes corresponded with the easier task). In
this study, we can see the M-RSVP latency shorter than
the S-RSVP. Therefore, the M-RSVP is easier task than
S-RSVP. As a result, the M-RSVP performance is higher
than that of S-RSVP. In addition, the standard deviations
of classification accuracies over all subjects are shown
to be more stable for M-RSVP than S-RSVP (Table 1).
Further investigations are necessary in order to compare
between the latency distributions across trials in S- and
M-RSVP, as well as on amplitude distributions.
All the gaze-independent visual spellers that present the
stimuli in the near central location were successfully im-
plemented. The M-RSVP uses the main characteristic of
RSVP. This paradigm, which presents all the stimuli in a
nearly central position, is mainly processed by the foveal
region of the retina. However, the motion stimuli could be
affected by slight eye movements in healthy participants.
Unfortunately, we did not directly evaluate saccades an-
alytically using an eye tracker. Therefore, we indirectly
showed that little eye movement was induced during the
experiment using EOGs. In order to further investigate
whether saccade or micro-saccade has influenced the per-
formance, we analyzed the relationship between saccades
and brain signals using gamma-band EEG responses [7-
8]; the spectrogram analysis results verified that no sig-
nificant EOG interferences.
We were only able to successfully improve the accuracy
of the gaze-independent speller using motion RSVP. In
future studies, we will include an attempt to improve BCI
performance with spectral features using non-linear re-
gression techniques.

CONCLUSION

In the present study, a novel BCI paradigm that combines
the RSVP paradigm with motion stimuli was proposed
and compared with the S-RSVP speller. We were able
to successfully design stimulus for the ERP pattern using

M-RSVP. We improved the accuracy of the RSVP-based
gaze-independent speller system using the motion stim-
uli conditions. Thus, this study demonstrates that it is
beneficial for designers to adopt motion stimuli in RSVP-
based BCI spellers for practical applications. Consequen-
tially, we suggest an M-RSVP system for practical gaze-
independent applications.
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ABSTRACT:  

    In this work, the idea of the sensation-induced 

neurophysiological prior was introduced to facilitate 

motor imagery (MI) classification. Covariance matrix of 

MI without Prior, with stimulus-induced 

Neurophysiological Prior, and with regularization, were 

separately constructed to extract spatial filter via 

Common Spatial Pattern (CSP). It has been shown that 

the MI BCI performance was significantly higher in MI 

with Neurophysiological Prior condition than other two 

with p<0.05, while there showed no significant 

difference between MI without Prior and MI with 

regularization. Integration of the externally induced 

neurophysiological prior has the benefit of helping CSP 

spatial filter extraction, and improve the classification 

performance of BCI users. 

 

 

INTRODUCTION 

    Brain-computer Interface (BCI) provides a non-

muscular communication and control channel between 

the user’s thoughts and the external world, providing a 

promising channel for completely locked-in patient to re-

interact interact with society [1]. Through mentally 

performing imagined movement of one’s own limbs 

(e.g., left or right hand), their subjective motor intention 

can be decoded by translating the brain signals induced 

by the motor imagery (MI) [2], [3]. This is done without 

the need for external stimulus, such as visual stimuli in 

P300 and Steady-state visual evoked potential (SSVEP) 

based BCI system [4], [5]. MI based independent BCI has 

received enormous interest [6]–[9], and provided a new 

avenue for stroke neurorehabilitation [10], [11]. 

However, numerous experimental evidence has shown 

that a significant portion of individuals cannot 

successfully use MI-based BCI system. This 

phenomenon has been called “BCI-illiteracy” problem, 

where BCI control does not work for roughly 15%–30% 

of users [12]–[15]. 

There is extensive interest in further improving MI 

performance and reducing the number of BCI-illiterate 

users. Machine learning algorithms on MI detection has 

largely improved through several BCI competition, and 

the Common Spatial Pattern (CSP) is currently most 

widely used in MI detection [7], [8]. However, recent 

studies have reported gains in accuracy of approximately 

5% when using CSP extensions and optimized spatial-

spectrum filtering based on mutual information [9]. 

Some users still fail to reach the acceptable level of 

accuracy, which is often set to 70%, even with the state-

of-the art algorithms [16], [17]. Other techniques shown 

to help subjects achieve greater BCI control include 

training the subject to modulate rhythmic activity [18], 

and coadaptating the subject with the machine [19] have 

all been shown to help more subjects to achieve BCI 

control. Recently, the idea of utilizing tactile stimulation 

for calibration and training subjects has shown to be a 

promising way to facilitate MI decoding [15]. Because of 

the similarity between vibration induced oscillatory 

activation and MI induced brain dynamics, and the fact 

that subjects were able to produce much more consistent 

brain acitivation patterns after receiving real tactile 

stimulation, we hypothesize that the neurophysiological 

prior induced by tactile sensation would help to improve 

MI decoding. In this study, the feasibility of this 

objectively induced neurophysilogical prior will be 

investigated. 

 

MATERIALS AND METHODS 

Subjects 

    Five healthy subjects participated in this experiment 

(two female, all right handed, average age 23.2±1.5 

years). This study was approved by the Ethics Committee 

of the Shanghai Jiao Tong University, Shanghai, China. 

All participants signed an informed consent form before 

participation.  

EEG Recording and Somatosensory Stimulation 

EEG signals were recorded using a SynAmps2 system 

(Neuroscan, U.S.A.). A 64 channel quick-cap was used 

to collect 62 channel EEG signals, and the electrodes 

were placed according to the extended 10/20 system. The 

reference electrode was located on the vertex, and the 

ground electrode was located on the forehead. An analog 

bandwidth filter of 0.5 Hz to 70 Hz and a notch filter of 

50 Hz were applied to the raw signals. Signals were 

digitally sampled at 250 Hz.  

In this experiment, mechanical stimulation was 

applied to the wrist extensor tendons. The vibration 

motor (Pico Vibe 9mm Vibration Motor, Precision 

Microdrives Ltd., typical normalized amplitude 6 G) was 
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used for wrist tendon stimulation. The vibrator was 

enclosed in a rubber case and sewn in an elastic band. 

This was done to isolate it from the skin on the subject’s 

wrist to avoid any injection of leakage current to the 

hand. The vibration frequency was 110 Hz. The 

amplitude of vibration and stimulation positions were 

individually adjusted such that the subject could properly 

sense it.    

Experimental Protocol 

    The experiment comprised of two sections. In the first 

section, the subject performed only left and right hand MI 

tasks, and in the second section vibration stimuli were 

applied to the subject’s left and right wrist tendons and 

the subject’s task was to passively feel the stimulation. In 

the first section, the subject’s task was to perform MI 

according to a given cue. A total of 120 trials were 

performed by the subjects in 3 runs. At the beginning of 

each trial, a fixation ‘+’ appeared in the center of the 

screen. At the 1st second, a vibration burst with the same 

intensity stimulated both hands to alert the user of the 

subsequent task. The vibration pulse lasted 200 ms. Then 

at the 3rd second, a red cue pointing either left (L-MI) or 

right (R-MI) was presented visually on the computer 

monitor. This cue was superimposed on the fixation ‘+’ 

and lasted for 1.5 s. Subjects were instructed to perform 

the mental task after the appearance of the cue arrow. The 

mental task continued until the 8th second when the 

fixation ‘+’ disappeared. Next there was a relaxation time 

period lasting for about 1.5 s, during which subjects 

relaxed and could blink. Finally a random time period of 

about 0 to 2 s was inserted after the relaxation period to 

further avoid subject’s adaptation. In the second session, 

the subject’s task was to feel the vibration sensation 

according to a given cue. A total of 120 trials were also 

performed by the subjects in 3 runs. The timing of the 

trial was the same, except that at 3.6 s, vibrations were 

only applied to the left or right tendon of the wrist until 

the 8th second when the fixation ‘+’ disappeared. 

Algorithm with Neurophysiological Prior 

    Spatial filter technology was adopted for reducing the 

high dimensional feature space and enhancing the feature 

discrimination between different mental tasks. The 

spatial filters were calculated based on the common 

spatial pattern (CSP), which has been extensively 

explored in MI-based BCI literature. Mathematically, it 

is realized by simultaneous diagonalization of the 

covariance matrices for the two classes. The bandpass 

filtered EEG signal is represented as  with dimensions 

M × N, where M is the number of recording electrodes, 

and N is the number of sample points, and k is the trial 

index. The spatial covariance of the EEG can be obtained 

from 

  (1) 

where  denotes the transpose of the matrix , and 

 is the sum of the diagonal elements of the 

matrix . 

   (2) 

   (3) 

   (4) 

   (5) 

where  and  are the two index sets for left and right 

hand MI respectively, and  and  are the two index 

sets for left and right hand vibration stimulation 

respectively.  and  are the estimated covariance of 

left and right MI respectively, and  and  are the 

estimated covariance of the left and right hand vibration 

stimulation respectively. 

  (6) 

  (7) 

  (8) 

  (9) 

The covariance with sensation-induced 

neurophysilogical prior will be   and , for contrast, 

 and  will be regularized covariance,  is the 

parameter for the regulariztion, with the range between 0 

to 1, and selected among {0:0.1:1}. 

Three sets of the spatial filter will be extracted based 

on the following augmented generalized decomposition 

problem: 

               (10) 

        (11) 

      (12) 

The rows of W are called spatial filters; the columns of 

are spatial patterns. For the -th trial, the filtered 

signal  are uncorrelated. In this work, the log 

variance of the first three rows and last three rows of  

(corresponding to the three largest and three smallest 

eigenvalues), are chosen as feature vectors, and linear 

discriminative analysis (LDA) is selected as the 

classifier. The training set of LDA was only based on 

motor imagery dataset. 

We attempted to give a view considering the 

nonstationary property of the data by performing a cross 

validation with a ten-fold chronological split. The 60 

trials of each MI task were temporally sorted, and divided 

into ten partitions, each of which contained temporal 

information similar to actual BCI use. Difference Spatial 

filters were extracted from the above condition in the 

divided training set, i.e. without prior (equation 10), with 

neurophysiological prior (equation 11) and with 

regularization (equation 12). 

RESULTS AND DISCUSSION 

    Fig. 1 compares the MI performance when the CSP 

spatial filters were extracted in different condition. One 

way ANOVA with repeated measure indicated that there 

was a significant difference among the three conditions 

(F(2,8)=14.6, P<0.05), and post-hoc comparison showed 

that the MI with Neurophysiological Prior was 

significant greater than other two conditions, and no 

significance difference was found between MI without 

Prior and MI with Regularization. It can be noted that two 

of the five subjects, the performance were around 60% 

with traditional method but it improved with the 

proposed method and surpassed the 70% accuracy level. 
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The results have shown that the sensation-induced 

neurophysiological prior provides a way to help CSP 

spatial filters extraction, the induced prior has the 

characteristics of easy to induce, stable and less likely to 

be influenced by subject’s internal state, such as 

attention, stress, which affect MI mental effort. 

Through pre-experiment recording session of the real 

vibration sensation, it would also provide a way to 

evaluate the potential BCI performance of subjects [15] 

and provide guidance to subjects in order to better use MI 

based BCI system. 

As the BCI performance is the result of a cumulation 

of BCI-specific and user-specific factors, this current 

offline analysis only focused on the algorithm part of 

CSP with stimulus-induced Neurophysiological Prior. 

This approach provided a potential way to further 

improve MI-based BCI performance. 

CONCLUSION 

    Motor Imagery BCI performance can be further 

improved by integrating the stimulus sensation-induced 

neurophysiological prior. The stimulus-induced 

oscillatory dynamics facilitate the extraction of CSP 

spatial filters, which resulted an improved MI 

performance. This proposed method has the potential to 

further improve BCI performance. 
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ABSTRACT: This paper communicates the research plan 
for a dissertation in the field of Passive Brain-Computer 
Interfaces. The main aim is the detection of a driver’s 
mental state in real time and its use in autonomous 
driving. One example of this is embedded in the context 
of driver taking over control of the automated vehicle. A 
offline experiment in laboratory as well as both an online 
and offline experiment in a driving simulator will be 
conducted. This paper proposes an experiment planning 
as well as materials and methods to be used. The 
conduction of experiments and data analysis are pending. 
The outcome of these studies is expected to contribute to 
the design of the driver-vehicle-interaction in 
autonomous driving by identifying driver’s mental states 
during mode transition.  

 
INTRODUCTION 
 
In recent years, autonomous driving has become one of 
the hot topics in research and engineering, which aims at 
minimizing the workload of drivers and optimizing the 
traffic situation. However, in most countries the human 
drivers are still responsible for anything that happens 
while autonomously driving [1]. Therefore, the 
autonomous driving systems designed by most research 
institutes or technology companies at the moment are not 
fully automated, that is to say, when the system cannot 
handle some situations or when the automated system is 
performing some errors, the driver must be able to take 
over control. For example, driving along a highway could 
be automated, but once an urgent traffic situation occurs, 
the driver is required to take over control. When the car 
drives autonomously, the driver’s attention might 
probably be distracted to secondary tasks other than 
driving, as a result, a signal given by the system for 
takeover might be missed, or might surprise the driver. 
This could be dangerous during driving. Hence, it is of 
great importance to monitor the driver’s mental state 
during autonomous driving.  
Passive Brain-Computer Interfaces (passive BCIs) 
provide a new perspective on the use of BCI technology 
and have proven to be one of the most promising 
approaches for monitoring user’s mental state, utilizing 
real-time brain signal decoding [2]. It could provide 
valuable information about the users' intentions, 

situational awareness and emotional states to the 
technical system. This allows the technical system to 
better adapt to the user and thus enhances the human-
machine interaction performance, leading to 
neuroadaptive technology [3].  
In the context of autonomous driving, passive BCI is 
considered as a promising method to improve the driver-
vehicle interaction. It enables the real-time detection of 
driver’s mental state like fatigue, workload, and degree 
of relaxation [4], which could provide essential 
information regarding drivers’ state to the car. 
Combining with other sensor data, the car could adapt to 
individual aspects of the driver and make decisions 
accordingly. As passive BCIs do not rely on directed or 
even conscious actions of the driver [2, 4], the car could 
gain an additional stream of information about subjective 
situational interpretation of the driver while in 
autonomous driving mode. Furthermore, thanks to the 
improvements on dry electrodes, it is now of great 
convenience to apply a dry electrodes system in BCI 
research and its applicability in the context of a running 
vehicle has also been validated, based on the evaluation 
of BCI classification accuracy, amplitude and temporal 
structures of ERPs as well as features in the frequency 
domain [5]. 
During autonomous driving, knowing the actual state of 
the driver and communicating it to the car is crucial, 
especially in the process of take-over control during 
autonomous driving. Ensuring that the driver is able to 
take over control of the automated system properly is one 
of the major issues in highly automated driving. For 
example, the detection of whether the driver is in a 
relaxed state or mentally stressed before takeover, 
whether the driver fully concentrates on driving or is 
distracted by other driving-unrelated tasks, and whether 
the driver is experiencing drowsiness or is totally awake, 
is relevant information to design a communication from 
the car to the driver informing the need to take over. 
Besides, the detection of whether the transmitted signal 
from the automated system has really been perceived by 
the driver or was ignored, is also an important issue in 
autonomous driving. More abstract, from a human 
factors perspective, it is important that the driver 
possesses situational awareness [6]. It is important that 
the car is “aware” about the drivers’ situation in order to 
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communicate important information in an appropriate 
and secure way. Based on former studies, drivers tend to 
show higher drowsiness and less workload with vehicle 
automation, and more involved with the in-vehicle 
entertainment, affording less visual attention to the road 
ahead [7]. Thus in the presented workplan, mental 
workload, attention, and perception of stimulus will be 
examined, which are influential factors on driver’s 
situational awareness while driving. They are all 
recognizable by EEG and their detections could provide 
helpful information to the vehicle to improve the 
interaction of driver and vehicle. 
Detection of mental workload with EEG has been studied 
by many researchers (e.g. [8-11]) and some EEG features 
have been proven to be relevant to mental workload, like 
ERPs and variation of spectral power in theta and alpha 
band. However, there are few studies on detection of 
mental workload in driving, especially in online analysis. 
Kohlmorgen et al. detected real-time mental workload in 
drivers operating under real traffic conditions using 
EEG-based system [12].  They created a system which is 
able to measure the level of mental workload in real time 
and mitigate the workload induced by the influx of 
information from the car’s electronic systems, ultimately 
to detect and avoid stressful situations for drivers. Lei 
also detected driver’s mental workload by EEG in real 
time and used the result to adapt a secondary task 
allocated to driver [13]. With the information on driver’s 
mental workload, the system can better know about 
driver’s state before take over and can thus adapt the take 
over request to it. 
Distraction is fatal in driving and found to be one of the 
main causes for car accidents. Although there are already 
many physiological methods tracking user’s attention 
(e.g. eye tracking, measuring heart rate), EEG is also an 
important way to investigate attention, as it could reflect 
cognitive processing more directly [4]. Many studies 
(e.g. [14-16]) have found alpha activity as an indicator of 
attention allocation. Wang et al. [17] also proposed a 
model to recognize distracted and concentrated EEG 
epochs with a self-organizing map and found frontal and 
left motor components relevant to distracted driving. 
However, there’s still less application in online study for 
driving so far. 
ERP could also be used to detect missed stimulus [18]. If 
a typical ERP sequence is detected, the participant should 
have responded adequately to the stimulus. If a pending 
response is not accompanied by an ERP, the participant 
might have missed to detect the stimulus. In the context 
of take over control of automated driving, ERP could also 
be used to detect whether a transmitted request to take 
over is perceived or missed by the driver, which could 
provide significant information to the system. 

Hypotheses: Mental states like mental workload, 
attention, and perception of stimulus could be monitored 
in real time by means of passive BCIs, in driving-like 
tasks in laboratory as well as in a simulated take-over 
context in autonomous driving. 
 
 

MATERALS AND METHODS (IN PLAN) 
 
In the whole experiment process, three studies for 
detection of mental workload, attention and perception of 
stimuli will be conducted. In the following parts, I’ll 
present the detailed design for detection of mental 
workload both in laboratory and in a driving simulator. 
The experiments for attention and perception of stimuli 
will soon be developed. The experiment procedure for 
detection of mental workload is illustrated in Figure 1. 
 

 
Figure1: Procedure of two experiments for detection of mental 
workload in laboratory and in driving simulator. 
 
     Experiment 1 
     Laboratory. This experiment will be conducted in a 
well-controlled laboratory with a screen presenting 
corresponding task.  

Experimental Design. 12 participants will perform 
two tasks at the same time. The primary task is to monitor 
an automated system, which might pause at some time 
point and needs to be controlled by the participants, 
similar to the context of take-over control in autonomous 
driving. The Critical Tracking Task [19] will be 
employed as primary task, which requires the participants 
to control a bar by pressing the left and right key to bring 
the bar back to the central line (see Fig. 2). During the 
monitoring phase, the bar stays in the central 
automatically and participants need to take action only 
when a signal for take-over is delivered. Simultaneously, 
the participants will perform a secondary task – an 
auditory n-back task [20] – to induce different mental 
workload levels. A series of numbers will be presented at 
a time with intervals of 3 second in a randomly ordered 
sequence. As each new item being presented, participants 
are required to say out loud the number n items back in 
the current sequence. For high mental workload level, 
numbers are two-digit numbers from 10-99 and each time 
a 3-items-back number should be recalled. For low 
mental workload level, the numbers are digits from 0-9 
and each time one item back. Conductions of different 
mental workload levels are separated in different blocks 
and each will be performed 40 times with a 
counterbalanced sequence (see Fig. 3). Each block lasts 
60s and there’ll be a brief pause after each block and a 
longer break after every 20 blocks.  

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-96

CC BY-NC-ND 518 Published by Verlag der TU Graz 
Graz University of Technology



 

 

 
Figure 2: Appearance of Critical Tracking Task. While monitoring, 
the bar stays always in the central line. From some time point on, it 
will move away from the central line and participants need to bring it 
back by pressing the left/right key. 
 

 
Figure 3: Experiment procedure for two mental workload levels in 
Experiment 1. H – High mental workload, L – Low mental workload. 
The sequence of H/L blocks is counterbalanced. 
 
     Materials. The data will firstly be collected using a 
64 active Ag/AgCl electrodes mounted according to the 
extended 10–20 system to examine which electrode 
positions are relevant to the corresponding mental states 
and to identify the underlying cortical sources. Based on 
these results, the experiment will be successively 
conducted with a BrainVision LiveAmp system of a 
reduced number of dry electrodes.  
     Analysis. In order to discriminate between different 
mental workload levels, we’ll employ following method 
to classify two mental workload levels. There are two 
parts of this analysis method for EEG data: feature 
extraction and classification. The feature extraction 
consists of four steps: removal of artifact, bandpass 
filtering in most discriminative frequency band, spatial 
filtering, and computing the power spectral in the 
selected frequency band. Classifiers will be chosen from 
linear (LDA, rLDA) methods and classification accuracy 
will be estimated by cross-validation. Furthermore, the 
performance of primary task including reaction time and 
deviation of the bar will also be analyzed to investigate 
the influence of mental workload on take-over 
performance. 
 
     Experiment 2 
     Driving Simulator. This experiment is based on a high 
fidelity static driving simulator of the Department of 
Psychology and Ergonomics at Technical University of 
Berlin, which consists of steering wheel, gas/brake 
pedals and other control elements. A driving scenario 
will be projected in front of the participants and they 
could also use the side mirrors as well as the rearview 
mirror. This driving simulator is partly automated with 
Advanced Driver Assistance Systems such as Adaptive 
Cruise Control. 
     Take-over situation. The vehicle is driving automati-
cally on a highway and is going to drive off at the next 
exit. The driver is engaged in different non-driving tasks 

and he/she will then be informed of the need to take over 
control of the vehicle and to drive off the highway. 
     Experimental Design. In this experiment, there are 
two sessions, including training session and application 
session. In both sessions, 12 participants will perform 
two tasks simultaneously. The primary task is to monitor 
the automatically driving vehicle in the simulator, and at 
some time point participants will be informed to take 
over control of it. At the same time, the participants need 
to perform secondary tasks. The secondary tasks used to 
induce different mental workload levels are listening to 
voice recordings from speeches and answering relevant 
questions (high mental workload) and listening to some 
quiet classical music (low mental workload). The 
procedure of tasks in the training session is the same as 
in Experiment 1, while each block lasts longer (2 min) 
and there’re be 20 blocks in total. The recorded EEG data 
in this session will then be trained. In the application 
session, real-time estimation of driver’s mental workload 
level based on classification trained before will enable 
the system adapt to the driver and give corresponding 
information to the driver.  
     Materials. The data collection will be accomplished 
using the BrainVision LiveAmp system with active dry 
electrodes, as stated in Experiment 1.      
     Analysis. The data collected in training session will be 
analyzed as stated in Experiment 1. Classifier for 
distinguishing different mental workload levels will be 
trained. In the following application session, the best 
performing classifier will then be applied and the outputs 
represent estimated level of workload. Corresponding 
adaptation or feedback will thus be given from the system 
back to the driver, in order to make take-over more proper 
and safer. 
 
OUTLOOK 
 
The results obtained from the experiments above will be 
discussed and conclusions will be formulated. Significant 
real-time detections of different levels of mental 
workload, attention as well as perception of stimuli by 
means of passive BCIs are to be expected, thus providing 
important information to the vehicle and ensuring the 
driver-vehicle-interaction more secure and comfortable. 
It should be confirmed that passive BCIs could be applied 
in autonomous driving situations to detect drivers’ real-
time states. 
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