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Welcome Note

From Vision to Reality

We have chosen our this year’s conference title to summarize the current situation of BCI research
in a very brief statement. On the one hand, we see that some of our ideas are still visions, far from
any applications. Basic research is the state of those visions and we still need to lay the foundation
to transform those visions into working systems. On the other hand, we see that first BCI systems
come to patients in clinics and that they are used on regular basis. However, it is important to
discuss the needs in the BCI field to bring more of our ideas, our visions into reality. Is it research
funding? Do we have too few people in the field? Is it too interdisciplinary? Do we need big industry
partners? All these questions are vivid and need to be addressed to achieve progress in the field of
BCI research. This 7th Graz Brain-Computer Interface Conference (GBCIC2017) offers the
opportunity for extensive discussions and exchange of ideas among BCI experts from more than
30 countries. We received more than 100 scientific contributions from roughly 300 authors. The
scientific contributions have been peer-reviewed by at least two reviewers and collected in this
present open access ebook.

For the Conference itself, we have been able to setup a colorful and multifaceted program. We are
very happy that the GBCIC2017 has been officially endorsed by the BCI Society and that we will
have an official Meeting of the BCl Society at the Conference. Further, we are lucky that
outstanding experts in the field, Dr. A Bolu Ajiboye (Case Western Reserve University, & Louis
Stokes Cleveland VA Medical Center, Cleveland, OH, USA), Prof. Benjamin Blankertz (Technische
Universitat Berlin, Germany), Dr. Fabien Lotte (Inria Bordeaux Sud-Ouest, France), and Dr. Natalie
Mrachacz-Kersting (Aalborg University, Denmark), accepted our invitation to present keynote
addresses at the Conference. As a special keynote, we present Prof. Fred D. Davis (Texas Tech
University, Rawls College of Business, USA). He is a senior researcher in the field of user
acceptance of information technology, technology supported decision making, skill acquisition, and
NeurolS. With his talk he will make a link between the BCI field and his research disciplines.
Additionally, we have several Satellite Events prior and after the Conference. New in the program:
the BCI Science Slam, an event where researchers can present their work in an entertaining way.
Finally, we end the GBCIC2017 with a tour to the South Styrian Vineyards, like we did in the past
years.

We hope that this conference contributes towards a strong scientific cooperation among our field,
and we wish all participants an exciting, stimulating and productive Graz BCI Conference 2017!

A

Gernot R. Muller-Putz
Conference Chair
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Editorial Board

Prof. Dr. Gernot R. Miiller-Putz is head of the Institute of Neural Engineering and its associated
Laboratory of Brain-Computer Interfaces. He received his MSc in electrical and biomedical
engineering in 2000, his PhD in electrical engineering in 2004 and his habilitation and “venia
docendi” in medical informatics from Graz University of Technoloy in 2008. Since 2014 he is full
professor for semantic data analysis. He has gained extensive experience in the field of biosignal
analysis, brain-computer interface research, EEG-based neuroprosthesis control, communication
with BCl in patients with disorders of consciousness, hybrid BCI systems, the human
somatosensory system, and BCls in assistive technology over the past 16 years. He has also
managed several national projects (State of Styria) and international projects (Wings for Life, EU
Projects) and is currently coordinator of the EU Horizon 2020 project “MoreGrasp”. Furthermore,
he organized and hosted six international Brain-Computer Interface Conferences over the last 13
years in Graz. He is review editor of Frontiers in Neuroscience, special section neuroprosthetics,
associate editor of IEEE Transactions in Biomedical Engineering and associate editor of the Brain-
Computer Interface Journal. In 2014/15 he was guest editor in chief of a special issue of the
Proceedings if the IEEE “The Plurality of Human Brain-Computer Interfacing”. He has authored
more than 135 peer reviewed publications and more than 100 contributions to conferences which
were cited more than 10000 times (h-index 47). Recently he was awarded with an ERC
Consolidator Grant “Feel your Reach” from the European Research Council. In May 2017 he
received the Ludwig-Guttman Award from the German Medical Spinal Cord Injury Association
(DMGP).

David Steyrl is teaching and research assistant at the Institute of Neural Engineering (BCl-Lab),
Graz University of Technology, Austria. He received his M.Sc. in electrical engineering with focus
on biomedical engineering from Graz University of Technology in 2012. He (co-) authored more
than 20 peer-reviewed journal and conference articles. Among others, he is reviewer for Journal of
Neural Engineering, IEEE-TBME, IEEE-THMS, and Neuroimage. David Steyrl co-organized two
major BCIl conferences in Graz and he is founding member of the Graz BCl Racing Team
MIRAGE91. His research interests include biosignal processing and machine learning for
simultaneous EEG-fMRI and brain-computer interfaces. Currently he is working towards his PhD
degree in computer science.

Selina Christin Wriessnhegger is assistant professor at the Institute of Neural Engineering (BCI-
Lab), Graz University of Technology, Austria. From 2001 to 2005 she was PhD student at the Max-
Planck-Institute for Human Cognitive and Brain Sciences and received her PhD from the Ludwig-
Maximilians University. During that time, she spent one year in Rome as research assistant at
IRCCS (Fondazione Santa Lucia), Laboratory for Human Psychophysiology. From 2005 to 2008
she was university assistant at the Karl-Franzens-University Graz, section neuropsychology. From
2009 until May 2016 she was senior researcher at the Institute of Neural Engineering (BClI-Lab). In
2017 she was visiting professor at SISSA (Scuola Internazionale Superiore di Studi Avanzati),
Trieste. Her research interests are subliminal visual information processing, neural correlates of
motor imagery, novel applications of BCIs for healthy users, passive BCIs and embodiment of
language acquisition.

Reinhold Scherer is associate professor and deputy head of the Institute of Neural Engineering at
the Graz University of Technology, Austria. He is member of the Laboratory for Brain-Computer
Interfaces (BCl-Lab) at Graz University of Technology and of the Institute for Neurological
Rehabilitation and Research at the rehabilitation center Judendorf-Strassengel, Austria. In 2008 he
received his PhD in computer science from Graz University of Technology, where, beginning in
2001, he worked on non-invasive electroencephalogram-based (EEG) brain-computer interfacing
(BCI). He spend the years from 2008 to 2010 as postdoctoral researcher at the Department for
Computer Science & Engineering, University of Washington, Seattle, USA, and was member of the
Neural Systems and the Neurobotics Laboratories at the University of Washington.
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ABSTRACT: Voluntary control of brain activity using
working memory can be used to control a BCI. Here we
present data on an ALS patient with a fully implanted
BCI with ECoG electrodes placed over left dorsolateral
prefrontal cortex. This area is a versatile brain region
involved in cognition. During several runs of a task
where sustained activity in the high frequency band
(HFB) is required to control a cursor in the direction of a
target, the subject initially reached above chance
performance, but in later runs reached performance up to
96%. The subject also performed a task in which a short
rise in HFB (click) had to be generated to select an icon
in a matrix. The subject was able to generate clicks,
although with many false positives. We conclude that
both sustained and short activity can be generated with a
working memory strategy. The improvement on the
cursor control task suggests that the task became more
automated.

INTRODUCTION

It has long been established that one can control a Brain-
Computer Interface (BCI) with activity from the motor
cortex, both with EEG and ECoG signals. The latter
signal has a more precise localization and higher
amplitude. A demonstration of BCI control with activity
from the motor cortex, using ECoG signal, was presented
recently by our group: an ALS patient was implanted
with a fully implantable BCI with ECoG electrodes on
the motor cortex [1]. A rise in high frequency band
(HFB) activity during a short attempted movement was
used to generate a click. This click was translated to a
selection in a spelling program to enable spelling for the
patient.

The motor cortex, however, is not the only cortical area
which can be controlled voluntarily. We have shown
previously that sustained ECoG activity from the
dorsolateral prefrontal cortex (dIPFC), an area active
during working memory tasks, such as mental
calculation, can be used for BCI control [2]. Also, clicks
generated from dIPFC were demonstrated in an ECoG
study [3].

In addition to the electrodes placed over motor cortex,
also electrodes over dIPFC were placed. Two reasons

CC BY-NC-ND

motivated placing electrodes over dIPFC: Primary, it was
not known whether the signal over motor cortex would
deteriorate as a result of the disease and secondary, the
dIPFC is a higher order cortex where training may cause
a quicker automatization of BCI control. We here present
results on using sustained and short signal changes in
dIPFC for BCI control.

MATERALS AND METHODS

BClimplant: The subject is a 60-year-old woman with
late stage ALS in a locked-in state. She was implanted in
October 2015 with four subdural electrode strips (two on
the left motor cortex, two on the left dIPFC; Medtronic
LLC, Minneapolis, MN) on the basis of prelocalisation
with fMRI. Extension cables were tunneled through the
neck and externalized through the abdominal skin. After
an electrode selection procedure, during a second surgery
three days later, the strips with highest correlation with a
screening task (both attempted movement and mental
calculation) were connected to an Activa® PC+S
amplifier/transmitter device (Medtronic), which was
placed infraclavicularly in the thorax. See for more detail
on the procedures [1]. The bandpass filtered signal (HFB,
center frequency 65 Hz) is received by a unit and send to
a computer running custom software, based on the
BCI2000 software package, which is capable of
presenting real-time visual feedback of the brain signal
to the subject.

Tasks: Data was gathered during research sessions
twice a week at the home of the subject. Multiple runs of
a working memory task were performed during a session,
not all sessions contained working memory runs.

Two working memory tasks are presented to the subject:
First, a Cursor Control Task for sustained activity which
provides feedback on the HFB (Fig. 1). The HFB is
translated to velocity in y-direction, in x-direction
velocity is a fixed number. Trials lasts 2-6s. The
instruction was to move the cursor up by counting
backwards in steps of e.g. 7 from a random starting
number, in order to reach the upper target at the right and
move the cursor down with rest to reach the lower target.

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

Initially, both the random starting number and random
step size were displayed at the beginning of each trial.
Accuracy is calculated by the number of targets hit
divided by the total number of targets, chance level is
50%. Second, a Click Task is presented, where a mole is
presented at a random location in a matrix with icons
(Fig. 2). First, the rows were highlighted in a stepwise
manner and the instruction is to make a click to select the
row where the mole icon is. Subsequently, the icons in
that row are highlighted and the subject is instructed to
select the icon with the mole. Feedback to the user is
given with a color change of the highlight with a correct
selection and removal of the mole. The next trial starts
with the mole in a new random position. The clicks are
generated when the power in the HFB exceeds an
empirical threshold for 1.2 s.

| Score feedback (0.5s)
Cursor control (2-6s)
) Cursor appearance
Target appearance (1-2s)
ITI (1s)

Figure 1. The Cursor Control Task provides feedback to
the subject on the dIPFC activity. Note that a random

number is given as a starting point for counting
backwards.

Score in %
.
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Figure 2. Rows of icons were highlighted sequentially at
a fixed pace (red box) during which it could be selected
by a click. Individual icons of the selected row were
subsequently highlighted and could be selected with a
second click. Goal was to select only the mole.

RESULTS

The subject was able to perform the Cursor Control Task
with a working memory strategy.

Initially, accuracy was low (60%), but after a few
sessions of training an accuracy of 90% was reached (Fig.
3). The subject reported in later sessions that display of a
starting number was not needed anymore, thinking of a
number already resulted in a higher dIPFC activity. She
experimented with this in the sessions 31-40, with lower
performance as a result. After returning to the previous
strategy, accuracy increased to a maximum of 96%. After
session 84 the display of the starting number was not
needed anymore. Average accuracy after session 84 was
80.6%.

# of session

Figure 3. The performance of all runs of the Cursor Control Task with this subject. The lower performance in sessions
31-40 (grey background) can be attributed to a change in mental strategy: no starting numbers for counting backward.
After session 84 this strategy without starting numbers (grey background) was used again, but now with high

performance.
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The subject performed 13 runs of the Click Task during
3 sessions. The subject was able to generate a click with
a working memory strategy. Accuracy was 63%, with
chance level of 50%. The low accuracy can be attributed
to the high number of false positives. However, she was
able to generate a short rise in HFB (Fig. 4).

True Positives

Control Signal (Z Score)

-0.5

5 10 15 20 25 30 35 40
Time (Samples)

Figure 4. The mean HFB (£SD) activity over runs (after
normalization) relative to the time the activity was
translated into a true positive click. Samples of HFB are
recorded every 200ms. Note a clear rise in HFB 1200ms
before the click and 4s fall after the click.

DISCUSSION

The data demonstrate that the subject was able to use a
working memory strategy for BCI control. Continuous
control in a Cursor Control task was shown before [2]. In
this study the subject had the opportunity to perform
many more runs than reported before. According to the
subject some automatization takes place over time, which
correlates to the higher scores, even without a starting
number, in later sessions. This is in line with the flexible
nature of the dIPFC. In addition, the subject reports that
her strategy for generating clicks shifted from actual
counting backward to thinking of a number. This may
also cause the irregular timing of the working memory
clicks and false positives during highlight of the icon just
before the mole. Irregular timing in working memory
BCI control was found also in a previous study [3]. The
number of false positives diminished in one run by a
more active rest strategy. With more training we expect
improvement, especially on the timing.

Working memory controlled BCI might be more valuable
as an addition to motor control, than as a replacement.
However, using working memory clicks for spelling
might be feasible at a slower speed than motor clicks.
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CONCLUSION

A subject with an implanted BCI was able to use a
working memory strategy for BCI control, both in a task
with sustained activity and in a task with short clicks.
Feedback of the subject that she could perform the task
without starting numbers suggests that the task becomes
more automated.
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ABSTRACT: In previous studies we have introduced a
brain-computer interface (BCI) system based on
movement related cortical potentials (MRCP). The
performance of this system was shown to be
significantly affected by the users’ attention state. In the
current study, we analyzed MRCP features (low
frequencies) and features extracted at higher frequencies
to determine the effect of variations in user’s attention
on EEG. Attention was modulated by a combination of
auditory and visual stimuli that served as external
distractors from the main task, which was a simple
dorsiflexion. Time and frequency analysis was
performed on EEG signals recorded from twenty-eight
channels. The amplitude of the peak negativity and the
slope of the negative deflection of the MRCP decreased
and pre-movement variability increased with the
distractors. Moreover, spectral analysis revealed an
increment of theta power and alpha power due to
attentional shifts. These results have implications for the
design of real-life BCI systems, potentially allowing an
increased robustness and adaptability with users’
conditions.

INTRODUCTION

BCI systems provide a bi-direction interface with the
human brain and can be used to modulate neural activity
for rehabilitation (1, 2). For this purpose, the user’s
attention has an impact on the system performance. The
effect of attention levels by the user was previously
investigated for synchronous BCIs, where a cue was
used as a source of information for the task execution
(3, 4). However, the performance of asynchronous (self-
paced) BCI in relation to attention variations remains
unclear.

External stimuli can play the role of attention distractors
and therefore drift the attention away from the target
task (5, 6). Different types of attention activate various
locations of the brain. While visual attention influences
the parietal and occipital areas (7), auditory stimuli are
directed to temporal and frontal locations (8).

Attention level modulates electroencephalography

CC BY-NC-ND

(EEG) signals. Event-related cortical potentials, steady—
state evoked potentials and event-related
(de)synchronization have been the most common types
of signal modalities for the investigation of attention in
BCI (9-11). In our previous work, we used features of
the MRCP for detection of attention variations. We
showed that temporal features of the MRCP are
influenced by attention distractors (3).

In this study, temporal and spectral features of EEG
signals were used for detection of attention variations.
The main aim of this analysis is to make BCls more
robust for attention detection. Additionally, we aimed to
identify which brain locations were more influenced by
using each group of features.

MATERALS AND METHODS

Experimental set up

Nine healthy participants (4 females, 5 males) without
hearing or visual impairments took part in the
experiments. The experimental procedures were
approved by the local ethical committee for the region
of Northern Jutland (N-2016006).

EEG signals were recorded from twenty-eight channels
by using an active EEG electrode system
(9.GAMMAcap?, Austria) and two synchronized
g.USBamp amplifier (gTec, GmbH, Austria). EEG
channels corresponded to AF3, AFz, Af4, F3, F1, Fz,
F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4,
CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2 and P4 of the
international 10-20 system. Two electromyography
(EMG) electrodes were placed on the tibialis anterior
(TA) muscle of the dominant foot to get information
about movement execution.

Paradigm and task

Participants were asked to sit on a comfortable chair
placed approximately one meter away from a computer
screen, which showed the visual oddball task. An
auditory oddball was played from a conventional
headphone.

The experiment consisted of two phases.
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Control Level (CL): Participants were asked to perform
60 repetitions of self-paced ankle dorsiflexion divided
into two blocks, each with 30 repetitions. They were
instructed to perform the movement rapidly and
forcefully and to hold the position for approximately 2 s
after which they were asked to rest for 5-10 s.

Diverted Attention Level (DAL): participants had to
focus on the oddball stimuli and count the number of
target sequences while performing the same movements
as in the first phase (dual-tasking).

The oddball used in this experiment was a combination
of visual and auditory oddballs. For the visual oddball,
two Gabor masks with an orientation of 60° and 30°,
each with a probability of 25%, were used. For the
auditory oddball, two auditory tones with frequencies of
1200 and 1900 Hz (middle and high pitch), each with a
probability of 25%, were applied. All stimuli were
randomized with an inter-stimulus interval of 1-2 s.
Participants were asked to count the number of Gabor
30° followed by the middle pitch sound or the number
of high pitch sounds following the Gabor 60° mask.

Signal analysis

The correlation of EMG envelopes in each block was
computed to quantify the consistency of movement
execution. EMG signals were rectified and low-pass
filtered (10 Hz) to extract the envelopes. The correlation
between averaged envelopes was calculated among
trials of each block. In addition, the movement onsets
were computed in each block with using a threshold for
EMG signals to provide information about the timing of
movement execution.

EEG signals were filtered in the bandwidth [0.05 10] Hz
using a 2" order Butterworth filter. MRCPs were
extracted in the time interval [-3 3] s with reference to
the movement onset, as estimated from the EMG
signals.

Ten temporal features were extracted from the MRCPs:
amplitude and timing of the peak negativity (APN and
TPN), first derivatives (slopes) for the time intervals [-2
0] s, [2 -1] s, [-1 0] s, and [0 1]s, and the standard
deviations of the signal amplitude in the same time
intervals. Figure 1 illustrated these features on a
representative case.

Sixteen spectral features were extracted from the
spectrogram of EEG signals in the delta [0 3] Hz, theta
[4 8] Hz, alpha [8 13] Hz and beta [15 31] Hz bands,
and at the four time intervals T1=[-1 -.6] s, T2=[-.8 -
4], T3=[-.6-.2] s, and T4=[-.4 0] s.

Statistics

Three-way ANOVA was applied to compare the
temporal or spectral features among the two attention
levels (CL and DAL) and channel placement. The fixed
factors were ‘attention level’ with two states (CL and
DAL), ‘channel lobe’ with six levels (Anterio-frontal,
Frontal, Centro-frontal, Central, Centro-parietal and
parietal lobes), and ‘channel hemisphere’ with three
levels (Right, midline and left). Wilcoxon matched-pair
sign rank test was used to analyze the differences in
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EMG envelopes between two attention levels.
Significant was set to p<0.05.
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Figure 1: Schematic of temporal features extracted from
single-trial MRCPs. ‘D’ indicates the range of time
domains for slope and variability extraction. D21 shows
[-2 -1] s, D10 represents [-1 0] s, D20 means [-2 0] s
and D01 is for [0 1] s.

RESULTS

EMG Analysis

The EMG envelope and the time interval between
movements were not significantly different between CL
and DAL (p>0.05). The duration between movements
was also greater in the diverted attention level (CL:
9.9s, DAL: 11.5s) but not significantly different.

Temporal Features

APN, slope and variability in the range of [1 0] s (S10
and Varl10) were significantly different between CL and
DAL. Table 1 shows the values for these variables and
the associated significance levels based on the three
independent factors.

APN and S10 were significantly reduced from CL to
DAL (APN F(1’412): 6.4, p=001, S10: F(l,412): 37.3,
p<0.001). Figure 2 illustrates the average MRCP signals
across all subjects and each channel for both conditions.
Both the MRCP amplitude and slopes were reduced
from CL to DAL for most channels.

APN was significantly different between the three
channel hemispheres (Fpa12= 7.9, p<0.001). The
Bonferroni post-hoc test revealed that the midline
locations were significantly different compared to the
right (p= 0.03) and left channel placements (p=0.001).
Varl0 was increased significantly from CL to DAL
(Fa= 125.2, p<0.001) although it did not show
statistical differences with regards to the channel lobe or
channel hemisphere.
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Table 1: Three temporal features of MRCPs as a function of the three independent factors, with corresponding p values.

Attention Level

Hemisphere placement

Lobe Placement

CL DAL P Left Midline Right P AF F FC C CpP P P
APN -201 -17.2 001 -17.8 -21 -19 <001 -19.6 -199 -184 -19.8 -188 -19.2 0.9

\YJ [TAY4 1AY [1\Y 1AY 1AY puv [\Y4 1AY 1AY [\Y
S10 -105 -41 <001 -9.6 -9.2 -7.5 0.2 99 91 98 94 99 95 07

pV/s - pVis puV/s uV/s puV/s pV/s  pV/is  pVis  pVis  pVis  pVis
Varl0 0.013 0.016 <.001 .014 .014 .015 04 015 .014 .015 .014 .014 .014 0.2

——Control Lovel

- - -Diverted Attention Level

Amplitude(pV) T,

20 2
Time(s)

Figure 2. Grand average of the MRCP signals in
different channel locations based on the two attention
levels. CL is shown as a solid black line and DAL as the
dotted black line. Data are the average across all
subjects (n=9).

Spectral Features

The alpha and theta range had more variations in
specific time windows. Alpha power was increased
statistically in T1 ([-1 -.6]) s between the CL and DAL
condition (Fq.412= 4.7, p= 0.03). In addition, channel
lobe had a significant effect on alpha power distribution
in four time intervals (T1[-1 -.6]: F412= 4.6, p<0.001;
T2[-8 -.4]: F(s.412= 3.6, p= 0.03; T3[-.6 -.2]: F5412= 2.8,
p=0.02; T4[-.4 0]: F(5.412= 3.1, p= 0.009). The Post-hoc
test revealed that the Parietal and Anterio-Frontal lobe
channels led to significantly different features compared
to the other lobes.

Theta power was also increased in the time interval [-1 -
.6] for CL versus DAL condition (Fuuz= 32.3, p<
0.001). Similar to the alpha power, the factor ‘lobe’ had
a significant effect on theta power distribution (T1[-1 -
6] F(5,412): 16.8, p<0001, T2[—8 -4] F(5’412)= 15.8, pP=
0.03; T3[-6 -.2]: Fga= 12.4, p= 0.02; T4[-4 O]
F.412= 9.8, p= 0.009). The factor ‘channel hemisphere’
revealed a significant effect in T1[-1 -.6] (F412= 6.8,
p= 0.001) and T2[-.8 -.4] (F2412= 8.3, p< 0.001). The
post-hoc test indicated that channels located on the
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midline led to different features compared to those
located in the other two hemispheres. Figure 3 shows
the topographic plots of the power distribution in T1 [-1
-.6] for one representative subject. Regarding to all
subjects, the signal power increased in the theta and
alpha range, particularly in the channels placed on left
hemisphere, with attention diversion.
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Figure 3: Power distribution in four frequency ranges
for T1 [-1 -.6] with respect to the dorsiflexion onset.
Data are for n=1.

DISCUSSION

We studied time and frequency features of EEG signals
with attention variations. The results suggest that among
ten temporal features, the amplitude of peak negativity
and pre-movement slope in the late negativity phase
before movement onset decrease in DAL by comparison
with CL. Our previous studies support that by dividing
the attention (dual-tasking), the EEG signal associated
to movement preparation is reduced in amplitude and
thus detection of movement intention delayed (3). One
of the possible reasons for this effect is a reduction of
attention to the main task in dual-task conditions in
comparison with the single task. Therefore, the majority
of attention is diverted to the secondary task and causes
a reduced motor cortex excitability for the main
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movement preparation and execution (12). Nonetheless,
the movement execution was not significantly
influenced, as quantified by EMG activity.

Moreover, we observed significant increases in theta
and alpha power with reduced attention. Although theta
power enhancement particularly in the frontal lobe
suggests an increment in the working memory or
focused attention to the target task, in this study it is
presumably due to an increased task demand in the
dual-task conditions (13-15). This supports previous
studies which revealed an inverse relation between
attention demand in multi-tasking and alpha power (16)
and the same relation between task demand and alpha
power in the frontal, central and parietal lobes (17, 18).

CONCLUSION

For designing robust and reliable BCI systems, it is
important to adapt the system to the users’ attention
variations. Here we demonstrate that attention
influences the temporal and spectral features of EEG
signals. These results may have potential application in
the design of systems for detecting the attention level
from EEG features.
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ABSTRACT: Rapid serial visual presentation (RSVP)
can prove useful as a reading technique when text is
presented on small screens. Optimal text presentation
speed for text reading depends on the reader himself,
context and features of the text. Readability is a measure
which estimates the ease with which a reader can
understand a written meaningful text.

The presented study investigated whether a passive
Brain-Computer Interface (pBCIl) can be used to
distinguish between texts of distinct levels of readability
presented at different presentation speeds. A predictive
model was trained on EEG data derived from a cognitive
load paradigm. The model was then applied to data
collected while participants read easy and difficult texts
at a self-adjusted speed and at an increased speed level.
Results suggest that predictions made by the predictive
model could be used as an estimate for categorization and
adaptation of longer text passages, though its robustness
and potential for the use in neuroadaptive reading
applications should be further investigated.

INTRODUCTION

Reading is the written form of a language and serves
communication and information sharing in societies.
Textual information nowadays is distributed as digital
media presentations on electronic displays (e.g.,
monitors, mobile phones, eReaders, etc.) and is
accessible in a broad and fast way through advanced
communication technology. With decrease in size of
mobile devices, smaller screen sizes are a consequence
and constitute challenges for the way text material can be
presented. Scrolling and paging in text presentation can
be bothersome and inconvenient for the reader [1]. Hence
new forms of text presentation for mobile devices
recently have emerged and are developed.

Rapid serial visual presentation (RSVP) is a popular
approach to build a text presentation method appropriate
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for reading on (very) small displays. In this presentation
form, words of a text are presented sequentially one word
at a time at a fixed screen location [2]. It was claimed that
in contrast to traditional left to right text body reading,
texts can be read faster at constant comprehension levels
[3]. It is suggested that a reduction of saccades, small and
rapid eye movements to fixate the next word, due to a
constant fixation point while reading, leads to an increase
of overall reading speed in RSVP reading methods [4].
Over the past years claims like these have been subjected
to several studies examining RSVP reading effects on
text comprehension and reading speed [5, 6]. It emerged
that reading comprehension and efficiency depend on
nuanced features of the textual information to be read,
such as text difficulty, length, and reading speed.
Readability is a measure of the ease with which the
meaning of a text can be comprehended. Readability
ratings traditionally are obtained using readability
formulas such as Flesch-Kincaid Grade Level [7] or the
Flesch Reading Ease [8]. Most readability formulas are
based on a combination of easily countable features such
as word length and sentence length.

Recently commercial speed reading applications were
made available for RSVP reading on electronic devices.
Reading speed in these applications is regulated
manually and stays static if the user does not alter it
throughout the reading process. Here a less intrusive
form of presentation speed regulation would prove
useful, especially if features of the read text material, e.g.,
text readability, differ over time. Then the cognitive load
of the reader might change according to different levels
of text difficulty.

Passive Brain-Computer Interfaces [pBCls, 9] are a
technology which uses neurophysiological signals to
distinguish between different cognitive states [10]. Data
recorded by Electroencephalography (EEG) while
different cognitive states are evoked in a person, can be
used to train a BCI to distinguish between these different
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states and evaluate new data when it is recorded. This
evaluation of a BCI then can be used to generate a signal
to change the state of a system. In the process the user
does not need to actively generate a signal towards the
machine, but her cognitive state is monitored and
interpreted continuously. A reader would not be required
to pay attention and conscious effort to generate a signal
to change e.g. the reading speed appropriate to her
current state. Such an automatic adaptation to a user’s
current cognitive state through the application of a pBCl
would be a realization of neuroadaptive technology [11].
This technology enhances the interaction between user
and machine as it provides knowledge about the
situational user state to the machine. A neuroadaptive
reading application could make the reading process more
pleasant and efficient. Additionally, the generated
information about the user state could be used to generate
an assessment of the user’s individual text difficulty
levels and readability skills. Such a measure detecting the
relation between the user’s current level of cognitive load
and a text of a given level of difficulty could be useful in
learning contexts to generate personalized learning
content. Here, the pBCIl could be utilized to find
appropriate learning material which can be optimized to
fit the learner’s current needs and abilities.

The aim of the presented work was to examine whether a
pBCI can be trained to distinguish between different
levels of text difficulty while reading with a speed
reading application. Moreover, the effects of reading
speed on this measure were investigated. As connections
to other words become more complex with the position
of a word within a sentence, it was also investigated
whether this relationship is reflected in the output from
the pBCI. Moreover, long sentences should be more
difficult to understand than short ones as they are more
complex in structure and relations between words.
Therefore, is was also investigated whether the average
output of the pBCI shows a difference between short and
long sentences. The outcomes were interpreted according
to their applicability in neuroadaptive technologies.

MATERALS AND METHODS

Participants: Eight participants, five female, took part
in the experiment. The mean age was 29 years (SD = 3.2
years). All participants had normal or corrected-to-
normal vision and their native language was German.
Prior to the experiment participants gave their written
informed consent to participate in the study and were
paid thirty euros as expense allowance.

Speed Reading Application: The speed reading
application applied in this study was Spritz. The Spritz
Application programming interface (API) was provided
by Spritz™ (spritzinc.com/) for the use in this study.
Together with Psychophysics Toolbox extensions [12]
the experimental paradigm was computed in MATLAB.

Stimuli: Texts used in the investigation were extracted
from the GEO/GEOIino Corpus [13]. The corpus is a
collection of 1066 German texts taken from the German
magazine GEO, which covers topics related to nature,
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culture and science, and the magazine GEOIlino, which
deals with similar topics, but is targeted at children aged
between 8 and 14 years. The texts from GEO therefore
are generally more complex than those from the GEOlino
magazine. Six texts were chosen from each magazine, all
covering similar topics about animals and their habits.
Overall the average number of words per text was 493
(SD = 34.6 words). GEO texts had an average word count
of 472 words (SD = 23.1 words) and GEOQIino texts of
514 words (SD = 31.7 words). GEO texts had an average
Flesch reading ease index of 45.1 (SD = 2.4), which is
equivalent to difficult texts on college level. The Flesch-
Kincaid grade level of GEO texts was 10.9 (SD = .29).
For GEOlino texts, the average Flesch reading ease index
was 62 (SD = 1.38) which corresponds to a readability
suitable for 13 to 15 years old students. These texts had
an average Flesch-Kincaid grade level of 7.9 (SD = .24).

EEG system and software: During the experiment
brain activity was recorded from 64 active Ag/AgCI
electrodes (ActiCap, Brain Products, Munich, Germany)
applied to an elastic cap according to the extended
international 10/20 positioning system. The ground
electrode was placed at position AFz and the reference at
FCz. All electrodes were connected to a BrainAmp
amplifier (Brain Products GmbH, Munich, Germany),
which was connected to a laptop through a universal
serial bus (USB) 2.0. Electrode impedances were kept
below 5 kQ. Data was recorded using the BrainVision
Recorder, BrainVision RDA (Brain Products GmbH,
Munich, Germany) and LabRecorder [14]. The sampling
rate was set to 500 Hz. The experimental paradigms were
run in SNAP [15] and in MATLAB, using the
Psychophysics Toolbox extensions. Data was analyzed
with the MATLAB embedded EEGLAB toolbox [16].
For classification and BCI model application the open
source toolbox BCILAB [17] was used.

Pre-test: Six participants took part in a pre-test to
examine whether an increase of 40 percent in text
presentation speed would lead to an increase of perceived
workload. The participants’ mean age was 27.2 years (SD
= 3.8 years), five were male, all had normal or corrected-
to-normal vision and their native language was German.
Participants read the twelve texts in blocks of three at a
self-adjusted reading speed with the speed reading
application. Half of the texts from each difficulty class
(easy vs. difficult) were presented at a self-adjusted speed
plus 40 percent. After each block, participants filled out
a Raw-Task Load Index (RTLX) [18], a modified version
of NASA-TLX [19], a standardized questionnaire
assessing perceived workload on a Likert scale along six
dimensions. A two-way repeated measures ANOVA
revealed a significant main effect of presentation speed,
F (1,5) = 6.758, p = .048. Workload of texts presented in
normal speed was rated lower (M =45.7, SD = 16.9) than
for texts represented with 40 percent increase in speed (M
=53.58, SD =17.1). There was no significant main effect
of text difficulty, F (1,5) = 1.371, p = .294. The
interaction of the factors was also not significant, F (1,5)
= 0.255, p = 0.635. From these results, it was concluded
that an increase of individual reading speed by 40 percent
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was sufficient to increase the subjective workload for
participants while reading the texts later used in the main
study.

Experimental procedure: In the main experiment,

participants first completed an experimental paradigm,
which was applied to induce two different levels of
cognitive load [20]. This so-called ‘sparkles’ paradigm
was developed by Team PhyPA (TU Berlin) [21]. In
several experiments the classifier trained on the data
obtained from this paradigm was tested while
participants completed not only arithmetic assignments,
as during data collection, but tasks from other task
domains. It was used, e.g., while the participant verbally
described a complex context or solved anagrams, where
the classifier could reliably distinguish between phases
of high and low workload. Due to its applicability to
multiple domains the classifier can be seen as a form of
task-independent classifier for cognitive load.
During half of the paradigm the participant saw colorful
spots moving around slowly on an otherwise black
screen. In this phase, the participant was supposed to
relax and simply focus on watching the spots flying
around with eyes open. This part of the paradigm was
supposed to induce low workload. To induce higher
workload, from time to time an arithmetic subtraction
assignment appeared at the center of the screen. At its
appearance the participant was supposed to silently
subtract the number standing on the right side (range
between 6 and 20) iteratively from the number on the left
(range between 200 and 1200). After some time, the
arithmetic assignment disappeared again, whereat the
participant stopped subtracting and turned towards
watching the spots again. Overall 40 trials of low or high
induced workload were performed with a length of 10
seconds per trial.

Figure 1: Screenshot of the workload (‘sparkles’)
paradigm. The arithmetic assignment is presented in the
center of the screen. Colorful dots are moving around
the black background at a slow pace.

After completion of the workload paradigm participants
familiarized with the speed-reading application. They
read passages of a German novel and incrementally
adjusted the presentation speed to a level they felt
comfortable reading with.

Then participants read all twelve texts in blocks of three.
All texts of a block were either easy or difficult texts and
presented in the self-adjusted reading speed or with an
increase of 40 percent (as determined in the pre-study).
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After each text, participants answered three questions
regarding literal text comprehension. Under each
question four possible answers were displayed, of which
one was the right choice. If, e.g., the text had read ‘The
warm sun hatches the eggs in the sand’, the question
could have been: “Who hatches the eggs of the turtle?”,
then of the possible answers a) the father, b) a cormorant
c) the sun and d) the mother, ¢) would have been the right
choice. Participants selected their answer by key press.
Each participant answered 3x12 literal comprehension
questions, a total of 36 questions.

After each of the four text blocks participants were
handed a RTLX questionnaire to assess subjective ratings
of perceived workload. Overall each participant
completed the RTLX four times.

Analyses: Individually adjusted presentation rates
were averaged over participants from the pre- and main
study. Ratings collected in the RTLX questionnaire were
converted to workload scores according to NASA-TLX
procedures. The workload scores of all eight participants
were subjected to a two-way repeated measures ANOVA
with the within-subject factors presentation speed
(normal vs. plus 40 percent) and text difficulty (easy vs.
difficult). The numbers of correct answers to literal text
comprehension questions of each participant within each
of the four text blocks were added. These scores per
block then were subjected to a two-way repeated
measures ANOVA  with  within-subject  factors
presentation speed (normal vs. plus 40 percent) and text
difficulty (easy vs. normal).

Due to a recording software problem, only data from
seven of the eight participants was used for classification.
For feature extraction, a filter bank common spatial
patterns (fbCSPs) approach [22] was used. Two
frequency band (4-7, expected increase with increasing
workload and 7-13, expected decrease with increasing
workload) Hz was selected and epochs of 5 seconds
length starting at stimulus were extracted. Linear
discriminant analysis (LDA) regularized by shrinkage
[23] was used as a classifier and a (5x5)-fold cross-
validation was employed.

For each participant, the individual predictive model
trained on data from the workload paradigm was applied
to text reading data. The BCILAB built-in function onl-
simulate was used to apply the predictive model to the
raw data from all twelve texts, resulting in a predictive
value between 0 and 1 for each word of a text. An output
with a value of 0 would indicate low load and a value of
1 high load.

Predicted values from each predictive model were
subjected to permutation tests with 50000 permutations
per test. All predictions from one group of texts
according to text difficulty (easy vs. difficult) and
presentation speed (normal vs. fast) were tested within
and between the two factors. Tests were one-tailed as the
assumptions were that easy texts should result in lower
predictive values than difficult texts. Also within one text
difficulty category, predictions of texts presented at
normal speed were expected be lower than predictions of
texts presented at an increased speed. Easy texts
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presented at normal speed were assumed to have lower
predictive values than difficult text which were presented
fast. Finally, for predictions in easy texts which were
presented fast against predictions from difficult texts
presented at normal speed, no assumption regarding
difficulty was made.

It was further assumed that longer sentences would have
an overall higher difficulty as word relations within a
longer sentence regularly become more complex in
structure than in short sentences. To test if this
assumption was manifested in the predictions made by
the applied predictive models, predictions within each
sentence were averaged. The averaged predictive values
alongside with the word count of the respective sentences
were subjected to linear regression analysis. Regression
analysis was performed once for all sentences of easy
texts presented in normal speed and again for sentences
from difficult texts presented at normal speed. Moreover,
it was performed for all participants together and again
for each individual participant.

Another assumption was that predictive values could
reflect an increase of complexity of relations towards a
word caused by an increase of the word’s position within
a sentence. To test this assumption words and their
predicted values were sorted by their position within
sentences. All predictive values for the occurred sentence
positions were subjected to a linear regression analysis.
Again, the analysis was only performed for easy and
difficult texts presented at normal presentation speed, for
each participant and also for data from all subjects
together.

RESULTS

Individually adjusted presentation rates from the overall
13 participants of the pre-test and the main experiment
ranged between 175 and 600 words per minute (wpm).
The average adjusted reading speed was 308 wpm (SD =
130 wpm).

The two-way repeated measures ANOVA performed on
ratings from the RTLX questionnaire from the eight
participants revealed significance for the main factor text
difficulty, F (1,7) = 8.75, p = .021. Difficult texts (M =
68.4, SD = 26.2) received higher ratings than easy texts
(M = 59.1, SD = 18.4). Results for the main factor
presentation speed were significant as well, F (1,7) =
11.10, p = .012. Texts presented at the normal (M =56.4,
SD = 17.3) self-adjusted reading speed received lower
RTLX ratings than texts presented with a speed increase
of 40 percent (M = 71.1, SD = 25.7). The interaction
effect was not significant, F (1,7) = 1.22, p = .306.

The ANOVA performed on correct answers given to
literal text comprehension questions revealed neither
significant main effects, nor an interaction effect of
significance, all ps > .258. On average participants
answered 6.2 (SD = .48) questions out of nine per text
block correctly. An average of 6.9 (SD = 1.96) correct
answers was given for easy texts and 6.0 (SD = 1.31) for
difficult texts presented at normal speed. For texts blocks
with an increased presentation speed, questions on easy
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texts were answered 5.8 (SD = 1.28) times correctly and
difficult texts 6.25 (SD = 1.67) times.

The average cross validation error rate was 23.7 percent
(SD = 6.7 percent). See Table 1 for individual
classification errors.

Table 1: Classification results of the workload paradigm.

Obtained error rates (ER) in percent and standard

deviations (SD) are reported.
participant

ER (SD)
14.1 (3.2)
285 (14.7)
14.8 (4.9)
14.5 (2.5)
44.3 (7.8)
18.9 (4.1)
8.3 (1.5)
20.5 (5.5)

o o Ul B~ WN B

average

Almost all performed permutation tests were highly
significant (all ps < .0001). Only for the test of
predictions in easy texts which were presented fast
against predictions from difficult texts presented at
normal speed, results were not significant (p = .961). It
must be noted though that absolute values of observed
differences between classes (M =-.077, SD = .032) were
smaller in all tests than variances within classes (M =
.086, SD = .008). Effect sizes therefore were small to
medium (M = .266, SD = .116).

For linear regressions, no significant equations were
found for average word predictions in sentences with
different length. Analysis results were neither significant
for data from all participants taken together (all ps > .632)
nor on subject level (all ps > .072).

No significant regression equation was found when data
of all seven participants was collapsed for analysis
performed on predictions for word positions within a
sentence, all ps > .053. On single subject level, four
regression analyses were significant. Half of the slopes
for significant equations were negative while the other
was positive, ranging between -.003 and .006.

DISCUSSION

Individually adjusted text presentation rates showed a
strong variation and an average of 308 wpm. The strong
individual variation in adjusted speeds might be caused
by differences in preference for the RSVP reading
method, as some participants may have felt unconfident
with the new reading technique, while others felt more
comfortable using it. Such strong variations in preference
with speed reading applications were shown before [24].
The average adjusted speed of 308 wpm lies above the
average speed for traditional reading, which lies between
250 and 300 wpm [25]. This effect of faster reading with
speed reading applications is found in most literature on
speed reading applications. Results from the RTLX
revealed that perceived load was higher for difficult texts
than for easy texts. Cognitive load was also higher for
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texts presented with an increased reading speed than
when presented at an individually adjusted speed. Since
no differences in literal comprehension emerged between
different text difficulties and presentation speeds, it can
be concluded that an increased presentation speed did not
lead to less comprehension. On average two thirds of
questions within one text block were answered correctly.
It could have been possible that too high reading speeds
would lead to an overextension of participants who
become less attentive to understanding the text as a
consequence. However, this was not the case and results
from literal comprehension questions indicate that
participants read all variations of texts attentively at
similar levels of literal comprehension.

pBCI classification for cross validation on data from the
workload paradigm was on average around 20% and
hence acceptable. Permutation tests performed on
predictions made by the predictive model showed that
difficult texts had significantly higher predictive values
than easy texts. Moreover, predictions for texts presented
with an increase of 40 percent in reading speed had
significantly higher values than texts shown at the
individually adjusted speed. However, effect sizes for all
tests were very small, as prediction variances within text
and speed groups were higher than the observed
differences between groups in the permutation tests. The
results obtained from permutation tests of predictive
suggest that that the cognitive load classifier could be
used to distinguish overall difficulty differences between
longer passages of texts. This applies for difficulty
changes induced by presentation speed and text
readability level.

It was assumed that averaged prediction values of words
within a sentence would increase with a rise of sentence
length due to rising structural complexity of word
relations. In regression analysis, no significant equations
were found. The results suggest that classifiers trained on
the cognitive load paradigm are not suitable to reflect
possible effects of higher structural complexity in longer
sentences. Predictions from the predictive models
therefore cannot be used as an estimate of single sentence
difficulty.

Regarding the position of a word within a sentence it was
assumed that words appearing later in a sentence would
receive higher predictive values. Regression analysis of
predictions was only significant on single subject level.
Several significant equations were found, but half of the
slopes were positive while the others were negative.
These ambiguous results indicate that predictions derived
from the predictive models trained in this study are not
suitable as predictors for single word difficulty based on
the complexity of relations the word stands in.
Altogether results showed that the trained BCI models
were not applicable for measuring single word or
sentence difficulty within texts. Only when all
predictions for whole texts are regarded together, the
predicted values can be used to distinguish between
levels of readability and reading speed. RTLX had shown
that perceived workload was higher for difficult texts as
well as for reading at increased presentation rates.
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Results suggest that predictions made for broader text
passages contain and reflect this information. For much
shorter passages, like single sentences or even single
words, immediate changes seem to be absent or are not
detectable by the model employed in this study.

CONCLUSION

Broader changes of activity in frequency bands employed
in the workload classifier were found to correspond to
differences in text readability and presentation speed.
Such changes are detectable when single word
predictions made for larger text passages are examined
together. These results add text readability and
presentation speed in RSVP reading to the domains
where the task-independent workload classifier can
distinguish between levels of cognitive load.

Complex texts also contain many easy words which may
prevent classification on sentence or word level, as long
as linguistic information about word difficulty is not
accessible for integration to the classifier. The results
suggest though that the effects on cognitive load are
highly responsive and that the employed predictive
model is sensitive enough to detect these changes.

For future research the robustness and potential for
application of the classifier to full texts should be
examined further. The predictive model should be
applied to a larger variety of text material of different
readability level and text length. The predictive model
trained in this study could already be used as an estimate
for user modelling in educational practice, e.g., in online
tutoring systems, to choose appropriate texts as learning
material matching the learner’s individual readability
level. In speed reading it could also be used to modify the
presentation speed after a sufficient amount of text has
been read. The presentation speed could then be de- or
increased according to classifier output.

To obtain more fine-tuned information about difficulty
levels of single sentences or texts, other measures than
investigated in this study need to be found. A
neuroadaptive system capable of detecting levels of text
readability in real time on a word by word basis could
perform text simplification [26]. It would be able to
individually adapt to its user to improve reading
comprehension, which could be well applied in future
learning scenarios. Speed reading applications are seen
as especially suitable for reading short texts on mobile
devices with small screens [27]. Oblinger and Oblinger
[28] describe the so-called net generation, who grew up
using mobile devices, are used to instant information
access and not reading large amounts of text. Moreover,
mobile computer-supported collaborative learning is
regarded as a promising approach to support and
facilitate learning interactions between students [29].
Neuroadaptive features on the side of technology and
devices would be a further enrichment to such
approaches to future learning.
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ABSTRACT: Although extensively studied for decades,
attention system remains an interesting challenge in
neuroscience field. The Attention Network Task (ANT)
has been developed to provide a measure of the
efficiency for the three attention components identified
in the Posner’s theoretical model: alerting, orienting and
executive control. Here we propose a study on 15 healthy
subjects who performed the ANT. We combined
advanced methods for connectivity estimation on
electroencephalographic (EEG) signals and graph theory
with the aim to identify neuro-physiological indices
describing the most important features of the three
networks correlated with behavioral performances. Our
results provided a set of band-specific connectivity
indices able to follow the behavioral task performances
among subjects for each attention component as defined
in the ANT paradigm. Extracted EEG-based indices
could be employed in future clinical applications to
support the behavioral assessment or to evaluate the
influence of specific attention deficits on Brain Computer
Interface (BCI) performance and/or the effects of BCI
training in cognitive rehabilitation applications.

INTRODUCTION

Attention is fundamental for human cognitive
processing. As such, it includes a wide class of processes
related with the ability of a subject to interact with the
external environment. According to Posner’s theoretical
model [1], this is possible through a sustained state of
alertness (alerting), the selection of the important
information in a noisy context (orienting) and the ability
to control a situation and solve conflicts (executive
control). When the complex mechanism at the basis of
attention is altered, e.g. following a stroke event,
consequences may affect a wide range of behavioural and
social aspects. Several neuroimaging and
neurophysiological studies have employed the so-called
Attention Network Task (ANT), a behavioural task
which allows to disentangle the three components
(alerting, orienting and executive control) as described
by Fan et al. in [2]. The available evidences indicate that
the three attention components are independent [3],
involve different anatomical areas (functional magnetic
resonance imaging, fMRI, studies) [4] and each of them
has a distinct oscillatory activity and time course (EEG
study) [5].

CC BY-NC-ND

15

In this study, we applied modern methodologies for
effective connectivity estimation and graph theory
approaches with the aim to define stable and reliable
descriptors of the dynamic brain circuits underpinning
the attentional components in terms of directed
relationships between the brain areas and their frequency
content. Currently available brain connectivity studies on
attention are based on structural networks (anatomical
connectivity) [6] or functional networks extracted from
fMRI data [7]. We were interested in extracting markers
of the brain circuits elicited by the ANT performed by
healthy volunteers while recording high density EEG
(hdEEG) and thus, exploiting its high temporal
resolution, low invasiveness and cost-effective. To this
purpose we explore whether connectivity-based indices
would correlate with behavioural data in order to
strengthen their relevance as measure of attention
processing for future applications. [8], [9].

MATERIALS AND METHODS

Experimental Design: Data (60 EEG channels + 4 EOG
channels, reference at linked mastoids and ground at Fpz,
Brain Products) were recorded from 15 healthy
volunteers (10 female, age 27.2 = 2.5) during the
execution of the ANT [5] (Fig.1). They had no history of
neurological or psychiatric disorders. The experimental
protocol was approved by the local Ethical Committee.
Participants were seated in front of a computer screen; a
row of 5 black arrows pointing left or right was presented
in the middle part of the screen. Subjects were asked to
indicate the direction of the central arrow (target
stimulus) as quickly and accurately as possible with the
left arrow keyboard or the right arrow keyboard button
according to the direction of the target, using their right
hand. Trials were defined as Congruent if the 4 lateral
flankers and the central arrow had the same direction,
Incongruent if the flankers pointed at the opposite
direction. In addition there were three cue (an asterisk
sign) conditions: No cue, Center cue (in the center of the
screen for alerting), and Spatial cue (at the target
location, above or below a fixation cross, for alerting plus
orienting) [3]. The timeline of the paradigm is showed in
Fig.1. The contrast between the different experimental
conditions (72 trials each condition) allowed to extract
the three attention components: i) Center cue and No cue
conditions define the alerting, ii) Spatial cue and Center
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cue the orienting, iii) Incongruent and Congruent the
executive control.

CUE type

*
+
+ *
+
*
NO CUE CENTER CUE SPATIAL CUE
Cue

+

: TARGET type

—— —————
+ +

CONGRUENT INCONGRUENT

Figure 1: Timeline of the ANT paradigm. In each trial, a
cue (asterisk) may appear for 200 ms in the center of the
screen (center cue condition) or in the semi-space in which
the target will appear (spatial cue). After a variable
duration (300-1450ms), the target and the flankers
(congruent or incongruent) are presented. The participant
indicate the direction of the central arrow within a time
window of 2000 ms. The target and flankers disappear
after the response is made.

Behavioral Data: As behavioral index for each attention
component we used the efficiency measure introduced in
[2]. Alerting efficiency (Effa), orienting efficiency
(Effor) and executive control efficiency (Effec) are
defined as the difference between the mean reaction
times (RT) in specific experimental conditions:

Eff Al — RTNO - RTCenter (l)
Eﬁ:Or = RTCenter - RTSPaﬁa' @
Eff EC — RTlncong - RTCong (3)

EEG Data Analysis and Connectivity Estimation: EEG
scalp data were band-pass filtered in the range [1-45] Hz
and ocular artifacts were removed through Independent
Component  Analysis (fast-ICA algorithm). EOG
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channels were also included in the ICA decomposition.
Signals were segmented in different time windows
defined as [0 - 500] ms according to the cue onset and [0-
400] ms according to the target onset. Residual artifacts
were removed by means of a semi-automatic procedure
based on a threshold criterion (+80 puV). Connectivity
patterns were estimated through Partial Directed
Coherence (PDC) [10] and averaged in four frequency
bands (Theta, Alpha, Beta and Gamma) defined
according to the Individual Alpha Frequency (IAF) [11].
We obtained a network for each frequency band, each
experimental condition and each subject. A statistical
comparison (unpaired t-test, p<0.05, False Discovery
Rate, FDR, correction) was performed between
appropriate conditions (according to ANT theory) in
order to isolate the networks associated with each of the
three attention components. In particular, we compared:
i) center cue vs no cue for alerting, ii) spatial cue vs
center cue for orienting and iii) congruent vs incongruent
for executive control. Graph theory indices were
extracted from the networks underlying the three
attention components with the aim to synthetize their
main global and local properties. In this study, we
adopted the following indices:

Global Indices to describe the general properties of the

entire network [12]:

o  Clustering: to measure the tendency of the network
to segregate the information in subnetworks;

e Path Length: to measure efficiency of the
communication between the nodes on the basis of
the shortest paths between them.

Local Indices: to quantify the involvement of a specific

sub-network and/or investigating the relation between
different sub-networks. In particular as sub-networks we
considered left (Fpl, AF7, AF3, F7, F5, F3, F1, FT7,

FC5, FC3, FC1, T7, C5, C3, C1, TP7, CP5, CP3, CP1,

P7,P5, P3, P1, PO7, PO3, O1) and right (Fp2, AF4, AF8,

F2, F4, F6, F8, FC2, FC4, FC6, FT8, C2, C4, C6, T8,

CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, 02)

hemispheres, anterior (Fpl, Fp2, AF7, AF3, AFz, AF4,

AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, FT8) and posterior (TP7,
CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3,

P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1,

0z, 02) areas [13]. We computed the following indices:

e Density: to quantify the percentage of existing
connections with respect to the totality of possible
links. It has been adapted as in the following
formula to quantify the percentage of connections
relative to a specific area:

sub — Density = Dsubnet
Nror
Where ng,pne: 1S the number of existing links

connecting only the nodes (electrodes) belonging to
the considered subnetwork and nyqr is the number
of all the existing connection of the entire circuit.

o Divisibility - Modularity: to measure the level of
interaction between subnetworks in terms of inter
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(divisibility) and intra (modularity) connections:
strict interconnection or isolation [14].

o Influence: to measure a prevalence in the direction
of inter-connections linking two spatial regions
[13].

Connectivity indices extracted for each attention

component were then correlated with the relative

behavioral parameters (Effa, Effor, Effec) by means of

Pearson’s correlation (p<0.05). FDR correction was

applied to take into account errors due to multiple

correlations.

RESULTS
Results are reported separately for each component of the
ANT paradigm.

Alerting: as shown in Figure 2, we found significant
negative correlations between the efficiency Effa and i)
the path length index in beta band (Fig. 2, panel a) and ii)
the left/right influence index in theta band (Fig. 2, panel
b). Such correlations pointed out a relation between the
behavioral performances and the speed in the exchange
of information between network nodes in the alerting
phase (low path length) in beta band. Moreover, an
efficient alerting is associated to a communication
between the two hemispheres in theta band with a
prevalence of the information flows directed from right
to left (negative values for left/right influence).

B

R =-0.52 p=0.05

Theta

ok R =-0.51 p=0.05
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»

Path Len,
9
[
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EMT, Eff
Figure 2. Alerting: statistical correlations between the
efficiency Effa (y-axis) and the connectivity indices (x-
axis): path length in beta band (panel a) and left/right
influence in theta band (panel b). As in all figures, dots
correspond to the values obtained for each of the 15
subjects involved in the study. The green line represents the
linear fitting computed on the data. The associated values
of correlation (R) and significance (p) are reported on the
top of the figure.

Orienting: as shown in Figure 3, a positive correlation
was found between the efficiency Effor and i) the right
density (Fig. 3, panel a) and ii) the left/right divisibility
(Fig.3, panel b) in the theta band.
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Figure 3. Orienting: statistical correlations between the
efficiency Effor (y-axis) and the connectivity indices (x-axis)
right density (panel a) and Left/Right Divisibility (panel b) in
theta band, posterior density (panel c) and Anterior/Posterior
Influence (panel d) in gamma band.

In particular, such results pointed out how an efficient
orienting process is associated to a strong segregation of
the information flows within the right hemispheres (high
right density) and a low integration of the two
hemispheres (high left/right divisibility) in theta band.
Furthermore, we found that the parameter Effor
negatively correlated with the posterior density index
(Fig.3, panel c) and the anterior/posterior influence index
(Fig.3, panel d) in the gamma band.

This indicates that an efficient orienting process is
associated to a low involvement of the posterior scalp
regions (low posterior density) and to the establishment
of a communication between anterior and posterior
regions with a prevalent direction from posterior to
anterior.

Executive Control: Figure 4 shows a significant positive
correlation between executive control efficiency Effec
and both the Path Length (Fig.4, panel a) and the
Clustering indices (Fig.4, panel b) in the gamma band.
Significant correlations were also found between
efficiency Effec and left/right divisibility (Fig.4, panel c),
left/right modularity (data not shown; R=0.53, p=0.05)
and left/right influence indices (Fig.4, panel d) in the
alpha band. In particular such results indicated how a
reduction in the time required for solving the conflict
(low Effec) is associated to a high communication speed
between the electrodes (low path length) and to a less
tendency of the network to create clusters (low
clustering). Moreover, an efficient (i.e. correlated with
high behavioural performance) executive control is
explained by a high integration of the two hemispheres
(low left/right divisibility) with information flows
directed from right to left (negative values of left/right
influence).
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Figure 4. Executive control: statistical correlations
between the efficiency Effec (y-axis) and the connectivity
indices (x-axis) -Path Length (panel a) and Clustering
(panel b) in gamma band -Left/Right Divisibility (panel c)
and Left/Right Influence (panel d) in alpha band.

DISCUSSION

In the present study, we used advanced techniques for
EEG signals processing to extract the cortical
connectivity patterns (causal relationship between scalp
areas) associated with the 3 attention components as
elicited by the ANT paradigm (i.e. alerting, orienting and
executive control) performed by healthy subjects. Some
indices, derived from the graph theory, allowed the
quantitative description of the relevant local and global
properties of the 3 different causal connectivity networks
in specific EEG frequency bands as they correlated with
the behavioural performance (i.e. correlated with Effay,
Effor, Effec). According to our findings, the estimated
alerting network was described mainly by a negative
relationship between the behavioral efficiency (Effa)) and
Path Length index in the beta band, (ie, the higher
efficiency the shorter Path Length) and the left/right
Influence index in the theta band (ie, the higher efficiency
the higher interhemispheric connection from right-to-
left; negative values for left-right influence index).

The phasic alerting improves the speed of target response
by changing the internal state of preparation for
perceiving a (visual) stimulus [5]. Our results indicate
that an efficient alerting function (higher speed to target
response) is associated with a global network
organization characterized by a shorter average Path
Length which corresponds to a high efficiency
information transfer [15]. As yet, the entire network
appears to be characterized by a prevalent exchange of
information directed from right to left hemisphere. Such
prevalence might reflect the role of the right hemisphere
to sustain alertness that was already stressed in previous
studies in which lesions of the right frontal and parietal
areas were associated to reduced ability in maintaining
the alert state [16]. The above discussed index
modulation occurred in beta and theta band, respectively.
This finding is in line with previous EEG evidence of a
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relationship between these frequency oscillations and the
alerting function [5].

The efficiency of the orienting function was in our study,
described by a set of network indices which correlated
with behavioral performance (Effor). First, we found that
the higher performance efficiency the higher right
Density and left-right Divisibility in the theta band. In
addition, higher orienting efficiency also correlated to
both lower posterior Density and anterior/posterior
Influence (prevalence for post-to-ant) in the gamma
oscillations. Together, these results indicate a prevalent
role of the right hemisphere versus the left (higher
connectivity density) and poor communication between
hemispheres (higher divisibility). About the frontal and
parietal areas, results indicate a prevalence of
connections from posterior to anterior areas (higher
anterior/posterior influence and lower posterior density).
This is in line with previous evidence of the (right)
parietal and frontal areas involved in orienting function
which enables for the selection of specific information
from a number of sensory inputs [3],[16][4]. The above
discussed index modulation occurred in the theta and
gamma frequency oscillations that may be in line with
the evidence in favour of the contribution of the theta
oscillation to long-range communications for cognitive
processing by phase-locking to high gamma power
(Fries, 2015).

Finally, an efficient conflict resolution (ie, executive
control) was described mainly by a positive relationship
between the behavioral efficiency (Effec) and both the
Clustering and Path Length indices in the gamma band,
(ie, the lower time to solve the conflict (low Effec) the
lower tendency to clustering and shorter Path Length)
and both the left/right Divisibility and Influence indices
in the alpha band (i.e., the higher efficiency the higher
interhemispheric connection with a prevalent right-to-left
direction flow; negative values for left-right influence
index). Altogether these results reflect the highly
integrative nature of the conflict processing which
requires more integration than segregation of information
flow which are originated from several partially
overlapping networks [18].

Future studies conducted at cortical and subcortical level
(i.e. using source localization techniques like sLoreta
[19]) should clarify the effective brain networks
properties and their relationship with the currently
available knowledge on anatomical and functional
connectivity of attention networks. Such further step
mightvalidate the proposed indices as neuro-
physiological correlates of attention components for
future applications.

CONCLUSION

Advanced EEG signals elaboration based on time-
varying connectivity estimation and graph theory were
applied to extract direct and weighted connectivity
patterns elicited by the ANT paradigm at scalp level.
Correlation results pointed out a set of EEG-based
indices able to synthetically describe each of the three
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attention components in the different frequency bands
and to follow the variations in the corresponding
behavioural measures. Such preliminary results could be
used in the near future to: i) support the
neuropsychological assessment in healthy subject and
people with attention impairments; ii) clarify the role of
specific attention components in BCI contexts (P300-
and SMR-based BCI) and eventually improve the design
of BCls targeting attention rehabilitation; iii) increase the
knowledge on attention brain networks elicited by the
ANT paradigm. Altogether, our findings at the scalp
level might have a strong impact on several clinical/non
clinical applications related to the BCI field.

REFERENCES
[1] M.L Posner and S. E. Petersen, “The attention
system of the human brain,” Annu. Rev.
Neurosci., vol. 13, pp. 25-42, 1990.

J. Fan, B. D. McCandliss, T. Sommer, A. Raz,
and M. 1. Posner, “Testing the efficiency and
independence of attentional networks,” J. Cogn.
Neurosci., vol. 14, no. 3, pp. 340-347, Apr. 2002.
J. Fan, B. D. McCandliss, J. Fossella, J. I.
Flombaum, and M. I. Posner, “The activation of
attentional networks,” Neurolmage, vol. 26, no. 2,
pp. 471-479, Jun. 2005.

M. Corbetta and G. L. Shulman, “Control of goal-
directed and stimulus-driven attention in the
brain,” Nat. Rev. Neurosci., vol. 3, no. 3, pp. 201—
215, Mar. 2002.

J. Fan et al., “The Relation of Brain Oscillations
to Attentional Networks,” J. Neurosci., vol. 27,
no. 23, pp. 6197-6206, Jun. 2007.

M. Xiao et al., “Attention Performance Measured
by Attention Network Test Is Correlated with
Global and Regional Efficiency of Structural
Brain Networks,” Front. Behav. Neurosci., vol.
10, Oct. 2016.

S. Markett et al., “Assessing the function of the
fronto-parietal attention network: insights from
resting-state fMRI and the attentional network
test,” Hum. Brain Mapp., vol. 35, no. 4, pp.
1700-1709, Apr. 2014,

M. Rubinov and O. Sporns, “Complex network
measures of brain connectivity: uses and
interpretations,” Neuroimage, vol. 52, no. 3, pp.
1059-1069, Sep. 2010.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

CC BY-NC-ND

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

19

DOI: 10.3217/978-3-85125-533-1-04

L. A. Baccalad and K. Sameshima, “Partial
directed coherence: a new concept in neural
structure determination,” Biol. Cybern., vol. 84,
pp. 463-474, May 2001.

L. A. Baccala and K. Sameshima, “Partial
directed coherence: a new concept in neural
structure determination,” Biol. Cybern., vol. 84,
no. 6, pp. 463-474, Jun. 2001.

P. Sauseng, W. Klimesch, W. Gruber, M.
Doppelmayr, W. Stadler, and M. Schabus, “The
interplay between theta and alpha oscillations in
the human electroencephalogram reflects the
transfer of information between memory
systems,” Neurosci. Lett., vol. 324, no. 2, pp.
121-124, May 2002.

M. Rubinov and O. Sporns, “Complex network
measures of brain connectivity: Uses and
interpretations,” Neurolmage, vol. 52, no. 3, pp.
1059-1069, Sep. 2010.

J. Toppi et al., “Describing relevant indices from
the resting state electrophysiological networks,”
Conf. Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf.,
vol. 2012, pp. 25472550, 2012.

M. E. J. Newman, “Finding community structure
in networks using the eigenvectors of matrices,”
Phys. Rev. E, vol. 74, no. 3, Sep. 2006.

V. Latora and M. Marchiori, “Efficient Behavior
of Small-World Networks,” Phys. Rev. Lett., vol.
87, no. 19, Oct. 2001.

W. Sturm and K. Willmes, “On the functional
neuroanatomy of intrinsic and phasic alertness,”
Neurolmage, vol. 14, no. 1 Pt 2, pp. S76-84, Jul.
2001.

M. Corbetta, “Frontoparietal cortical networks for
directing attention and the eye to visual
locations: Identical, independent, or overlapping
neural systems?,” Proc. Natl. Acad. Sci. U. S. A.,
vol. 95, no. 3, pp. 831-838, Feb. 1998.

J. Fan et al., “Testing the behavioral interaction
and integration of attentional networks,” Brain
Cogn., vol. 70, no. 2, pp. 209-220, Jul. 2009.

R. D. Pascual-Marqui, “Standardized low-
resolution brain electromagnetic tomography
(SLORETA): technical details,” Methods Find.
Exp. Clin. Pharmacol., vol. 24 Suppl D, pp. 5-12,
2002.

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

DOI: 10.3217/978-3-85125-533-1-05

STEADY STATE VISUAL EVOKED POTENTIALS
AT THE BOUNDARIES OF VISUAL PERCEPTION

G. Berumen', T. Tsoneva??

!University of Twente, Enschede, The Netherlands
2Philips Research Europe, Eindhoven, The Netherlands
3Radboud University, Nijmegen, The Netherlands

E-mail: tsvetomira.tsoneva@philips.com

ABSTRACT: Steady-state visual evoked potentials
(SSVEP) are electrical brain responses that oscillate at
the same frequency, or harmonics, of rapid repetitive vi-
sual stimulation (RVS). SSVEP are widely used in prac-
tice, however, the exposure to RVS is associated with dis-
comfort and safety risks. Those negative effects can be
overcome by understanding how properties of the stim-
ulation, such as frequency and modulation depth (MD)
affect the SSVEP.

In order to explore whether SSVEP can be elicited by
barely perceptible RVS and potentially safer stimulation,
we used MDs around the visual perception thresholds
(VPT), the lowest threshold at which people perceive
RVS. SSVEP were detected only for frequencies higher
than 19 Hz with MDs close to the VPT. In addition, an
increase in MD was associated with an increase in the
amplitude of SSVEP. These findings can help designing
a quasi-imperceptible stimulation able to elicit SSVEP,
reducing the discomfort associated to with the RVS.

INTRODUCTION

Steady-state visual evoked potentials (SSVEP) are elec-
trical brain responses associated with the stimulation of
the retina by rapid repetitive visual stimulation (RVS),
also known as flicker [1]. SSVEP are oscillatory re-
sponses at the same frequency, or harmonics, as that of
the driving stimulation [2]. SSVEP have a very stable
amplitude and phase over time and are most prominent
over parieto-occipital cortical areas [3]. SSVEP have a
high signal to noise ratio [4] and are not very susceptible
to artifacts and noise contamination [5, 6].

SSVEP are largely used in research and practical applica-
tions. In cognitive neuroscience, they are used to estimate
the propagation of brain activity during a cognitive task
[7]. In clinical settings, SSVEP are used as a diagnostic
tool to study pathological brain dynamics [8]. However,
the main application of SSVEP is in brain-computer in-
terfaces (BCI). SSVEP are used to establish a direct com-
munication between a brain and a computer without the
need of muscular intervention [9] by identifying the fre-
quency of the RVS [10] in the EEG recorded from a par-
ticipant scalp.

One of the main disadvantages of SSVEP is the discom-
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fort and safety issues associated with the prolonged expo-
sure to RVS. Epileptic seizures [11] and migraines [12]
are examples of side effects associated to continuous ex-
posure to flickering light. Among various characteristics
of the RVS, people are very sensitive to its frequency and
modulation depth (MD). MD is a measure of light con-
trast that quantifies the relation between the spread and
sum of two luminances during periodic oscillations [13].
For a time-varying luminance, MD is an indication of the
ratio between the average light level and the amount of
change in the light. The equation to calculate MD can be
found below:

Lmaz - Lmzn
MD=—————x

100
Lmuw + Lmin

6]

where:

M D = modulation depth
L0 = maximum luminance

L.pin = minimum luminance

The relationship between MD, frequency and visual per-
ception of RVS has been described by the contrast sensi-
tivity curve (CSC) [14]. The curve defines the visual per-
ception thresholds (VPT): the lowest MD for a particular
frequency at which people perceive RVS as discontinu-
ous for at least 50% of the attempts. In recent years an
updated version of the CSC, using the entire visual field
and controlling for adaptation was created [13] (Fig. 1).

Contrary to the vast volume of research on visual per-
ception there is little known about the effect of the fre-
quency and MD of the stimulation on SSVEP. There is
not a CSC describing the lowest MD necessary to elicit
SSVEP at different frequencies. If there is a relationship
between frequency, MD and SSVEP strength as in visual
perception research, the MD of the RVS can be adjusted
at different frequencies to reduce discomfort.
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Figure 1: Contrast sensitivity curve (CSC) [13], and the
experimental conditions in the current study.

To our knowledge, there are only two studies that have
investigated the effect of frequency and MD on SSVEP
[15, 16]. One study used RVS with frequencies from 8
to 48 Hz at MDs relative to the VPT described by the
first version of the CSC [14]. They found SSVEP for
frequencies higher than 24 Hz and MDs below the VPT
[15]. In another study, five frequencies from 6 to 60 Hz at
five absolute MDs from 0.002 to 0.026 were used. They
found SSVEP only for the frequencies 24 and 32 Hz at
MD starting at 0.008 and for 40 Hz at MD starting at
0.002 [16].

In this study, we aim to investigate the effect of frequency
and MD on the SSVEP response and to find the lowest
MDs necessary to elicit SSVEP for frequencies in the
range of the CSC (1 to 70 Hz). For this purpose we em-
ployed the full field CSC described in [13] (see also Fig.
1). Furthermore, to get a better resolution, we expanded
the sampling area around the VPT, compared to the previ-
ous two studies, and included conditions (i.e. frequency-
MD pairs) that were not tested earlier.

MATERIALS AND METHODS

FParticipants: Twenty-four healthy volunteers with
normal or corrected to normal vision were included in
the study: 17 males and 7 females (mean age = 26.4; SD
= 6.0). Participants were recruited among the Philips em-
ployee population at High Tech Campus, Eindhoven. Be-
fore the study, participants signed a written consent let-
ter. The research protocol was approved by the Philips
Research Ethics committee board.

Experimental task: The flicker perception task con-
sisted of 300 trials. A trial started with 3 seconds of
continuous light, followed by a beep, and 3 seconds of
RVS, followed by 2 beeps, and another period of contin-
uous light that continued until the participant provided a
response (Fig. 2). Participants were instructed to look
with their eyes open at a fixation cross in the middle of a
white wall in front of them, where the light was projected
(Fig. 3). They were asked to indicate whether or not they
perceive flicker by pressing a “yes” and “no” button on a
number pad.

The trials were presented randomly in three blocks of
100 trials. Each block lasted approximately 14 minutes
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and was followed by a break of a variable duration (3-10
minutes). A full session had a duration of approximately
one hour and fifteen minutes. The EEG was continuously
recorded while the participants performed the task.

L D)
Continuous light ") RVS ")

———ol U o——

f I I | Time
3 seconds Response Input
(Variable duration)

Continuous light

3 seconds

Figure 2: Structure of a trial in the flicker perception task.
Note. RVS = Repetitive visual stimulation.

Stimuli: The RVS consisted of 30 distinct square
waveforms (6 frequency x 5 MDs) that were repeated 10
times each. These conditions were created from the com-
bination of 6 frequencies - 7, 13, 19, 37, 48 and 60 Hz -
and 5 MDs selected as a proportion of the corresponding
VPT of each frequency - 0.6x, 0.8x, 1.0x, 1.2x, and 1.4x.
The experimental conditions are visualized in Figure 1.
The light stimulation was delivered via two LEDs panels
with a size of 57.5 cm x 57.5 cm suspended at a height
of 2.5 m. The light stimulation was reflected on a white
wall covering and area of approximately 210 cm x 360
cm (vertically x horizontally). Participants were seated at
a distance of 70 cm with a visual angle of 137°. The av-
erage light luminance level was 1000 Lux and the color
temperature was 4000 K.

Data acquisition: EEG data was recorded from 32
scalp sites using an elastic cap and a BioSemi™ Ac-
tiveTwo signal acquisition system. Common Mode Sense
Active and Driven Right Leg passive electrodes were
used as ground and reference electrodes respectively.
Offset values were maintained below 20 k€2, and the
sampling rate was at 2048 Hz. The onset of RVS was
recorded using a photodiode placed at a distance of ap-
proximately 70 cm to the wall. The photodiode recorded
the variations of the light reflected on the wall, and those
variations were used to identify the start and the end of
the trials in the EEG.

Data pre-processing: EEG signals were notch filtered
at power-line frequency (50Hz) and then re-sampled at
256 Hz. Then, the signals were high-pass filtered at 2
Hz and blinks were removed by Independent Component
Analysis [17]. After that, signals were re-referenced to a

Figure 3: The experimental setup. The picture depicts a
participant wearing and EEG cap and the LED panels.
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common average reference excluding T7 and T8 chan-
nels. Finally, the data was separated into non-overlapping
epochs of 3 seconds, starting at stimulus onset (during
stimulation epochs) and 3 seconds before stimulus on-
set (before stimulation epochs, baseline). The procedures
were conducted using EEGLAB [18] and custom-made
MATLAB scripts.

RESULTS

Behavioral responses: We calculated the rates at
which people perceive RVS as discontinuous by averag-
ing across all participants the number of “yes” responses
per condition. We sought the lowest MDs at which partic-
ipants perceive RVS as discontinuous in at least 50 per-
cent of the conditions. The perception rate of 0.5 was
reached in for frequencies 7 Hz and 60 Hz at MD 0.8x
VPT and for frequencies 37 Hz and 48 Hz at MD 0.6x
VPT. The 0.5 perception rate was not reached for fre-
quencies 13 and 19 Hz. All the conditions had an increase
in perception rates with an increase of MD.

SSVEP analysis: Power spectral density (PSD) of the
EEG signal was estimated to measure the strength of the
SSVEP. PSD is a measure of the power of a signal in
the frequency domain and it was obtained by the use of
fast Fourier transform (FFT). The FFT was applied on
segments of the length of 256 samples (1 second) and
an overlap of 128 samples (0.5 seconds) separately for
epochs before and during stimulation (see Fig. 4). Char-
acteristic peaks during stimulation at the frequency of
stimulation were observed at 37, 48 and 60 Hz starting
from MD 0.6x VPT, and were higher for higher MDs.
Furthermore, during stimulation there was a decrease in
power around the alpha frequency band (8-12 Hz) com-
pared with the baseline.

— PSD before stimulation

§ —— PSD during stimulation
8 Stimulation frequency
S
S
3
N
0 10 20 30 40 50 60
Frequency (Hz)

Figure 4: Power spectrum density for a condition (60 Hz
and MD 1.4x VPT) at channel Pz.

To get a more objective estimation of the power change
due to the RVS, PSD during stimulation was compared
with PSD in the absence of flicker, before stimulus on-
set. To do so for each stimulation epoch we calculated
a Zscore by subtracting the log PSD mean over all base-
line epochs and dividing by the baseline log PSD standard
deviation as shown in Equation 2. Positive Zg.o.es are an
indication of higher power during stimulation, and they
were observed for frequencies 37, 48 and 60 Hz for MDs
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even below 1.0x VPT (Fig. 5). Overall, Zscores Were
larger for higher frequencies and for higher MDs.

T =
(o

2

Zscore =

where:
z =log PSD during a stimulation epoch
1 =1log PSD mean baseline

o =log PSD standard deviation baseline

%ZSCOIES
i Stimulation frequency

0 20 3740 60
Frequency (Hz)

Figure 5: Zgcores for a condition (37 Hz and MD 1.2x
VPT) at channel Pz.
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Figure 6: Spatial distribution of Zs.,.s for all the con-
ditions. The color bar located at the left represents the

ZSCOT‘ES .

The spatial representation of the Z...s can be observed
in the topographic maps of the scalp in Fig. 6. The higher
scores were observed in parietal (Pz) and occipital (O1,
Oz, and O2) channels. The scores were higher for the
higher frequencies and MDs. Frontal and temporal sites
did not show significant changes associated with an in-
crease of frequency or MD. Channel Pz displayed very
consistent results across the different conditions and anal-
yses, and we selected it for results visualization.

To better estimate the thresholds at which we can distin-
guish an SSVEP response from the absence of such with
sufficient confidence, we selected the Zs...s defined by
an equal probability of type I and type II errors (equal
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error rate, EER). The EER finds the point at which the
probability of both types error is equal. The lower the
EER the higher the accuracy of the measurement. The
three lower frequencies 7, 13 and 19 Hz have EERs at
chance level. An increase in MD was not associated with
either an increase or decrease in the EER values for all
the frequencies (Fig. 7).

7 Hz 13 Hz 19 Hz 37 Hz 48 Hz 60 Hz
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Figure 7: EER distribution at channel Pz. The box edges
are the 25th and 75th percentiles. Outliers are plotted by
small blue circles. Modulation depths are relative to the
VPT (e.g. 0.6x VPT).

Zscores and EER values were combined into a new metric
ZEER: Zscores at the EER. ZEER measure the strength
of SSVEP, a weak SSVEP response reflected on a low
Zscores can be boosted by the EER in case the distribu-
tion of the samples before and during stimulation has a
small overlap. On the contrary, a strong SSVEP response
based on a high Z,.,,. can be reduced if there is a big
overlap in the distributions before and during stimulation.
The ZEER were computed according to the Eq. 3.

if FEER>05 or Z<0 3)
then ZEER =0
if EFER<05 or Z2>0
then ZEER =7 % (1*EER)

where:

EER = Equal Error Rate
Z =Zscore
ZEER = Zg.ore at the EER

Sensitivity curves estimation for SSVEP: We used two
methods to create estimations of CSC for SSVEP, a curve
containing the lowest MDs necessary to elicit SSVEP.
The absolute modulation depth method (AMD) finds the
lowest MD for which the ZEER is greater than zero in at
least 50% of the trials . ZEER values greater than zero in
at least 50 percent of the trials for a condition are an in-
dication that SSVEP responses were elicited for that con-
dition (see Table 1). These thresholds were found for fre-
quencies 37, 48 and 60 Hz for MDs starting at 0.6x the
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VPT, and for frequency 13 Hz for MD starting at 1.0x
VPT.

Table 1: Percentage (%) of ZEER scores with values
greater than 0 at Pz channel.

Frequency
MD 7 13 19 37 48 60
0.6 37 35 36 42 48 50
0.8 33 33 38 57 52 54
1.0 45 41 37 48 51 54
1.2 37 32 31 56 55 56
1.4 36 40 37 53 53 58

Note. Gray cells indicate the lowest MD at which ZEER scores
were greater than O in at least 50 percent of the trials.

The psychometric method (PM) makes use of a psycho-
metric function. This method models the observed data,
ZEER values, with a non-linear square regression model
to estimate the coefficients of the nonlinear regression
function and with that estimate the exact MD at which
the SSVEP could be elicited in at least 50% of the condi-
tions.

L(I,O&,ﬂ) = %

, “4)
1+e5

where:

definition range: x € (—o0, +00)

parameter set: 0 = («, [3)
with:

a € (—o00,+00): position parameter

B > 0 : spread parameter

AMD and PM curves together with the CSC from litera-
ture [13] can be observed in Fig. 8. Both SSVEP sen-
sitivity curves had a similar shape and MD thresholds
lower than the CSC. The MD thresholds estimated by the
Psychometric method were lower than the AMD method.
Furthermore, contrary to the AMD method, PM allows
us to estimate the MD thresholds even for lower frequen-
cies, e.g. 7 and 13 Hz. Those values appeared way above
the MDs around the CSC. Based on our data, we could
not estimate a threshold for frequency 19 Hz.

DISCUSSION

SSVEP were elicited for the highest frequencies (37, 48,
and 60 Hz) for MDs below the VPT, e.g. 0.8x VPT. Con-
sistent with visual perception research, we found out that
the relationship between frequency and MD involves an
increase in MD with an increase in frequency: higher
MDs are required for SSVEP detection at higher frequen-
cies. For instance, the lowest MD that elicited SSVEP at
60 Hz is more than double the lowest MD that elicited
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SSVEP at 48 Hz. In addition, the estimated contrast sen-
sitivity curve for SSVEP has a similar shape to the CSC.
Both curves show an increase of MD with an increase in
frequency and this increase is particularly large for fre-
quencies greater than 40 Hz.

SSVEP were not found for the three lowest frequencies
at any MD. According to the PM, the MD thresholds for
low frequencies lie much higher than the CSC. For in-
stance, the estimated MD threshold at 7 Hz is around ten
times higher than the VPT. This might be because at these
frequencies the MDs covered by our choice of conditions
were in general very low. This range also falls very close
to the alpha band, which is known to desynchronize dur-
ing visual processing [19].

The behavioral responses in our study were aligned with
with existing research. The MD at which participants
were able to perceive the flicker were around the CSC
[13], and an increase in MD was associated with a higher
perception rate. This suggests that our task was appropri-
ate to evaluate perception of RVS.

_-.0.09  — Contrast Sensitivity Curve [13]
Experimental Conditions
SSVEP AMD
0.07 - SSVEP PM

® Detection rate: 0.5

Modulation depth (%
o
Q

60

48

19 0 37 |
Frequency (Hz)

Figure 8: Contrast sensitivity curve (CSC)[13] and the
SSVEP-AMD and SSVEP-PM sensitivity curves. Black
dots indicate the MD at which SSVEP reaches 50% de-
tection rate.

CONCLUSION

In this paper we studied the effect of stimulation prop-
erties, such as frequency and MD, around human visual
perception thresholds on the SSVEP response. We were
able to elicit SSVEP around the VPT but only for high
frequencies. SSVEP were detected close or below to the
behavioral CSC found in the literature, i.e by a quasi-
imperceptible RVS. We estimated a contrast sensitivity
curve based on SSVEP using two different methods. The
shape of the estimated SSVEP contrast sensitivity curves
is very similar to the behavioral CSC. Such sensitivity
curve will help the development of a more diverse variety
of stimuli, using more frequencies and MDs. This would
increase the conditions that could be used to elicit dis-
tinct SSVEP and decrease the discomfort and the risk of
photo-induced epilepsy caused by the RVS.
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ABSTRACT: Using neural correlates of intentionally
induced human emotions may offer alternative imagery
strategies to control brain-computer interface (BCI)
applications. In this paper, self-induced emotions, i.e.,
emotions induced by participants performing sad or
happy related emotional imagery, are compared to motor
imagery (MI) in a two-class electroencephalogram
(EEG)-based BCI. The BCI setup includes a multistage
signal-processing framework allowing online continuous
feedback presentation in a game involving one-
dimensional control of game character. From seven
participants, the highest online classification accuracies
are 90% for emotion-inducing imagery (EII) and 80% for
MI. Offline and online results analysis showed no
significant differences in MI and EIl performance. The
results suggest that EIl may be suitable for intentional
control in BCI paradigms and offer a viable alternative
for some BCI users.

INTRODUCTION

Brain-computer interfaces (BCls) offer means to
communicate and control computer-based applications
without movement, including entertainment [1], [2] (e.g.
BCI games), rehabilitation [3] and assistive technologies.
BCls are built around decoding the person’s intent by
direct measurement of brain activity [4], usually
measured through electroencephalography (EEG). One
of the challenges in BCI is that there are limited options
for control strategies available to the users: some
strategies, e.g., motor imagery, are challenging for some
users and require training [5], [6], and other strategies
(evoked potentials) often require gaze control and are
dependent on external stimuli. As a non-negligible
portion of subjects have been shown to be unable to learn
how to control a motor imagery (MI) BCI [5], within a
limited duration of training there is a need for
investigation of alternative imagery strategies for such
users.

Emotion is being investigated as a potential BCI control
strategy. The differences observed in brain responses to
different emotional stimuli or recall of emotional events
may enable a multi-class BCI [7]. Positive emotions
(e.g., happy, joy) are associated with less relative alpha
power in left frontal cortical regions than the right,
whereas for negative emotions (e.g., sad, disgust) less
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relative alpha power is observed in the right frontal
cortical area [8], [9], and similar hemispheric asymmetry
activation was reported in functional imaging [10].
Besides the differences in brain activity associated with
different emotions, for emotion to be useful in active
independent BCls, where the user issues a command as
opposed to waiting on a stimulus to evoke a brain
response, the BCI user is required to imagine or recall
emotional situations. Chanel et al. [11] reported an
accuracy of 71.3% in two-class classification of self-
induced emotion, in their study, the participants were
self-paced in the task of self-inducing emotion. In similar
study, Chanel et al [12] achieved an accuracy of 63% in
a three-class (negative emotion, positive emotion, and
neutral) and 80% for two-class classification. In their
study, the participants were asked to recall emotional
events in an 8 s trial. Furthermore, lacoviello et al. [13]
achieved a classification accuracy of 90.2% for imagery
induced by remembering unpleasing odor versus relaxed
state. Sitaram et al. [14], in fMRI-based study, presented
performance feedback to participants who were recalling
sad, happy, and disgust emotions, and achieved an
accuracy of 60% in a three-class classification with
feedback presentation. Only a few of previous work have
applied emotion-inducing imagery with real or pseudo-
real time feedback presentation. In a typical BCI system,
the user should be provided with interaction feedback.

In the preliminary study on EIl [15], participants
controlled a video game character using sad and happy
imageries, and their performance suggested that the use
of emotion-inducing imageries in BCIl should be
investigated. Here, imageries of self-induced emotional
states are investigated as an alternative to MI, using a
standard M1 BCI paradigm and setup with healthy human
participants. Performance results of imageries induced by
sad versus happy events compared to results of left versus
right hand movement imageries during the one-
dimensional control of a video game character are
reported.

MATERIALS AND METHODS

Participants: Seven healthy volunteering participants
(1 female and 6 men, mean age 29, SD = 6) were
recruited at Ulster University. Each participant,
individually participated in one EEG recording session,

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

and after the session the participant was asked, in an
informal interview, what he/she thought about his/her
performance in task execution during the session. Six of
the participants had previously participated in at least one
motor imagery BCI study, and one of these six
participants was known to have a good performance in
MI. The remaining participant was participating in active
BCI paradigm for the first time. All the seven participants
had not previously participated in EIl BCI training prior
to the study.

Experimental Setup: Each EEG recording session
included four runs: two Ell runs and two motor imagery
runs. Each type of imagery consisted of one training run
and one online feedback run as shown in Fig. 1. The order
of runs was randomized between participants i.e., either
Ell or MI was performed in the first two runs. The
recording session utilized a computer game paradigm
called NeuroSensi, in which a light, representing a
neuronal spike, traversed the left or right graphical axon
(see Fig. 2) on the computer screen, cued the participant
to perform one of two imageries i.e., left versus right
hand movement, or sad versus happy emotion-inducing
imagery. In feedback runs, the game objective was to
collect the spike by moving the game character (a
graphical representation of neuron’s cell body and
dendrites as shown in Fig. 2). Points are awarded for
moving the game character in the right direction and
positioning the character as close as possible to the axon
when the spike reached the end of the axon. Additional
points are awarded for collecting more than three spikes
consecutively without failure. These bonus points are
accompanied with background neurons firing and
propagating several spikes for about 1 s (after task
execution). The continuous feedback, i.e., movement of
the game character, was controlled by the BCI. Each run
included 60 trials randomly ordered for two class tasks,
30 trials for each class. Before starting Ell runs, the
participant was instructed to identify two mnemonic or
fictitious emotional events: one event he/she thought
would make him/her happy and another events that
would make him/her sad. To avoid possible emotional
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stress into the participants, they were instructed to refrain
from using extremely sad events. During Ell training
runs, participants were asked to imagine or recall the sad
event when the spike was cued on the left axon, and to
imagine or recall the happy event when the cue appeared
on the right hand side axon. In the case of motor imagery
tasks, the participant was asked to imagine right hand
movement when the cue was on right, and left hand
movement when the cue appeared on the left side.

Motor imagery 5 min
(no-feedback Run) = break

Motor imagery 5 min
(feedback Run) break

Recording
Session

Emotion-inducing .
imagery Slully
(no-feedback Run) Rleak

/\

Trial 1 Trial 2 Trial 3 Trial 60

—

Standby § Imagerytask ~ Rest

Emotion-inducing
imagery
(feedback Run)

5 min
break

2s 1s 3s 15s

Figure 1. The structure of recording session. Each
recording session had 4 runs of imagery tasks, each run
with 60 trials (see details in text).

EEG data were sampled at 125 Hz from 16 channels
(Fpl, Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, P3, Pz, P4,
PO7, PO8, and Oz) setup in 10-20 system. EEG data
were visually inspected for strong artefacts (e.g., eye-
blinks) and then processed through a multistage signal
processing framework which includes neural-time-
series-prediction-preprocessing  (NTSPP),  spectral
filtering (SF) in subject specific frequency bands and
common spatial patterns (CSP) as previously used in [1],
[16]. This signal processing framework is illustrated in
Fig. 3.

Figure 2. The screenshots of the BCI game used in cueing and feedback presentation. The neuron character is fixed in the
middle of the two axons during no-feedback run (screenshot on the left), and it moves horizontally to collect the spike
during the feedback run (screenshot on the right).
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Figure 3. BCI setup used to preprocess EEG, extract and classify EEG features correlating to imageries; in the feedback
session, the classifier’s output is de-biased to adapt the feedback.

Time-Series-Prediction: In the NTSPP framework
different prediction networks are trained to specialize in
predicting future samples of different EEG signals. Due
to network specialization, features extracted from the
predicted signals are more separable and thus easier to
classify. The number of time-series available and the
number of classes governs the number of specialized
predictor networks and the resultant number of predicted
time-series from which to extract features

P=MxC 1)

where P is the number of networks (which is equal to
number of predicted time-series), M is the number of
EEG channels and C is the number of classes. For
prediction,

X(t+7)=f, <xi(t>r---rxi(t‘(A‘1)T> (2)

where t is the current time instant, A is the embedding
dimension and t is the time delay, x is the prediction
horizon, f, is the prediction model trained on the it"
EEG channel, xi, i=1,..,M, for class ¢, c =1,..C, and X is
the predicted time series produced for channel i by the
predictor for class ¢c. NTSPP adapts to each subject
autonomously using self-organizing fuzzy neural
networks (SOFNN) [17].

Spectral Filtering: Prior to the calculation of the
spatial filters, X can be preprocessed with NTSPP and/or
spectrally filtered in specific frequency bands. The bands
are selected autonomously in the offline data processing
stage using a heuristic search and are subsequently used
to band pass filter the data before CSP is applied. The
search space is every possible band size in the 8 - 28Hz
range. The high frequencies are not considered since they
are likely to be contaminated with scalp electromyogram
(EMG) [18], especially in the case of frowning associated
with emotion-inducing tasks. These bands encompass the
alpha, beta bands which are altered during sensorimotor
processing [17], [19], [20] and for emotional state
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detection these bands or sub-bands within these bands are
often used [21], [22].

Common Spatial Patterns (CSP): CSP is used to
maximize the ratio of class-conditional variances of EEG
sources. CSP is applied by pooled estimates of the
covariance matrices, X1 and X, for two classes, as
follows:

XX

2 L XX (cefl,2)) 3
where I¢ is the number of trials for class ¢ and X; is the
MxN matrices containing the i windowed segment of
trial i; N is the window length and M is the number of
EEG channels — when CSP is used in conjunction with
NTSPP, M=P as per (1). The two covariance matrices, X1
and X, are simultaneously diagonalized such that the
Eigenvalues sumto 1. This is achieved by calculating the

generalized eigenvectors W:
Z1 w :(21 +22)WD

=1
C_L

(4)

where the diagonal matrix D contains the Eigenvalue of
¥ and the column vectors of W are the filters for the CSP
projections.  With  this projection matrix the
decomposition mapping of the windowed trials X is given
as

E=WX (5)
Features Extraction and Classification: Features, @ ,
are derived from the log-variance of

preprocessed/surrogate signals within a 2 second sliding
window:

@ =log(var(E)) (6)
The dimensionality of @ depends on the number of
surrogate signals used from E. The common practice is
to use several (between 2 and 6) eigenvectors from both
ends of the eigenvector spectrum, i.e., the columns of W.
Using NTSPP the dimensionality of X can increase
significantly. CSP, can be used to reduce the
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dimensionality therefore combining NTSPP with CSP
leads to increased separability while maintaining a
tractable dimensionality [16]. Linear discriminant
analysis (LDA) is used to classify the features at the rate
of the sampling interval.

An inner-outer cross-validation (CV), with 5 outer folds,
is performed to find the optimal subject-specific
frequency. In the outer fold, NTSPP is trained on up to
10 trials randomly selected from each class (2 seconds of
event related data from each trial). The trained networks
then predict all the data from the training folds to produce
a surrogate set of trials containing only EEG predictions.
The 4 training folds from the outer splits are then split
into 5 folds on which an inner 5-fold cross validation is
performed for best subject specific frequency selection.
After the subject specific frequency band selection,
NTSPP-SF-CSP is then applied on the outer fold training
set, where a feature set is extracted. The LDA classifier
is trained at every time point across the trials and tested
for that point on the outer test folds. The average across
the five-folds is used to identify the optimal number of
CSPs (between 1-3 from each side of W) and the final
time point of maximum separation which are then used
to setup the final classifier using all the training data, to
be deployed online. The Fig. 3 illustrates the BCI setup
used in this study.

In the online processing, the classifier’s output
translation to the game character movement was de-
biased to account for class bias behaviour and improve
feedback stability. This de-biasing was carried out by
continuous removal of the mean from the continuous
classifier output, where the mean was calculated with a
35s window on the most recent classifier output.
Additionally, EEG dynamics throughout tasks execution
were  also  explored  through  event-related
(de)synchronization (ERD/S) analysis. The ERD/S was
computed as power change respective to the baseline
power as in [23] within the subject’s selected frequency
band after applying independent components analysis
and wavelet transform on the data for further artefacts
removal [24].

RESULTS

Offline cross-validation classification accuracy (CA) for
each run, along with online single-trial CA results for
feedback runs, online results, and sample results from
event-related (de)synchronization analysis are reported
in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 respectively. Wilcoxon
signed rank tests showed no significant differences
between Ell and Ml (p > 0.05), although the ElI training
accuracies exceed the MI accuracies for most of the
participants. ERD/S analysis showed EIl tasks
separability in the temporal and frontal channels; this can
be seen in sample topographic maps for subject 2 in
Fig. 7. The online classification results in Fig. 5 show
decrease in accuracies for most of the participants
compared to what was achieved in offline analysis for the
feedback run. However, in each of the considered BCI
strategies, there was one participant who achieved good
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online performance: one experienced participant
achieved 81% in MI and another achieved 90% in Ell
online performance. The performance in the remaining
participants is 64.18 £ 4.75% and 62.09 + 2.03% for Ell
and M1 respectively.

M Ell noFeedback ® Ml noFeedback
Ell-Feedback M MI-Feedback

1 2 3 4 5 6 7

Subject ID

100
90

CA(%)
D ~ (o]
o o o

[V
o

40

Figure 4. The LOOCV classification accuracy for
feedback and no-feedback runs. There were no feedback
runs for subject 1.

H Online EIl m Online Ml
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80

70
R

< 60
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40
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Figure 5. Online task classification accuracies for
emotion inducing imagery and motor imagery during
feedback runs. Note that there were no feedback runs for
subject 1.

C4( i noFeedback ) Right hand MI

Left hand MI

Figure 6. Topographic maps of band power changes
(ERD/S) in [8-13] Hz band during motor imagery task
execution for subject 2, and time-course ERD/S observed
from channel C4.
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Happy imagery

Figure 7. Topographic maps of band power changes in
[8-20] Hz band during emotion inducing tasks execution
for subject 2, and and time-course ERD/S from channel
Fpl.

DISCUSSION

The objective of this pilot study was to investigate the
discriminability of EEG during emotion inducing
imagery, to investigate if emotion-inducing imageries
could be used to control a video game using a BCl and to
compare performances of EIl with the extensively
studied motor imagery based control strategies. The
results suggest that emotions, which normally influence
the way we live [25], may be intentionally modulated and
actively translated in a BCI control paradigm.
Consequently, the study shows some of the first evidence
to support the use of emotion inducing imagery as a
replacement to motor imagery. This study was based on
one off-line training session and online training session
for both Ml and Ell. Although participants were limited
by the amount of training, their classification accuracies
exceed chance level which was 50%. It usually requires
several training sessions to achieve good accuracy in
motor imagery performance, so further validation with
multiple sessions training and on a larger sample of
participants is required to determine if emotion imagery
could be used by BCI users who do not perform well with
motor imagery. Subject 2 who achieved high online
performance in M1 is familiar with motor imagery based
BCI and had achieved good accuracies in the past. The
participant with highest accuracy in online Ell (subject 5)
reported in the post-session interview that meditation
practice was the key technique used in executing tasks
for Ell; meditation has been shown to improve BCI
performance [26], [27]. Subject 2 also reported regular
meditation practice.

Two participants showed acceptable online performance,
whereas for the other participants’ online performance is
diminished with respect to the calibration run (the run
without feedback). Even though a reduction in accuracy
was observed in the online runs, the baseline accuracy (1
s before cue) were significantly lower that the peak
accuracy during the task execution (p < 0.05) for all the
participants indicating that above chance performance
was achieved. In addition, as this is single session and
participants experienced on-screen feedback for the first
time (except subject 2) along with distractors in the
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games (game score updates and bonus firing spikes), this
likely had an impact on participants’ concentration,
cognitive load [28] and maintaining focus and
consistency between the runs. With additional sessions
the BCI and participants’ performance may be more
robust.

CONCLUSION

Emotion induced by imagining fictional events or
recalling mnemonic emotional events with a continuous
feedback in a BCI setup was investigated in this
preliminary study, using a setup normally used for motor
imagery. The comparison between online control of a
game in single session with either motor imagery and
emotion-inducing imagery showed that the performance
difference is insignificant, suggesting that emotion-
inducing imagery may be used as an alternative to motor
imagery. The reported results are from seven
participants, each with one EEG recording session, so
more analysis with a larger sample of participants and
multiple training sessions is currently being carried out
to thoroughly compare motor imagery and emotion
inducing imagery BCI. Besides validating the
comparison, there is a need to assess the effect of
multiple training sessions on Ell performance.
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ABSTRACT: In this article a novel approach to spatial fil-
tering of electroencephalographic (EEG) signals — Adap-
tive Spatial Filtering (ASF) is proposed. The goal of ASF
is to enhance the components of EEG signals that are spe-
cific to the spatial location of analyzed electrode, while
at the same time to reduce the influence of components
originating from distant sources of brain’s bioelectrical
activity. For that purpose an approach is utilized, where
electrodes uncorrelated with analyzed electrode are used
as noise input for the multichannel Adaptive Noise Can-
celling algorithm. Proposed method is evaluated and
compared with most popular approaches to spatial filter-
ing: Common Spatial Patterns and its Filter Bank exten-
sion. Influence of compared algorithms on the classifica-
tion accuracy of motor imagery tasks is tested on the data
from ‘Dataset IVa’ provided for the ‘BCI Competition
III’ and ‘EEG Motor Movement/Imagery Dataset’ pro-
vided by the BCI2000 group. During all performed tests
ASF outperformed reference methods achieving 94%,
84% and 82% mean classification accuracies.

INTRODUCTION

Interpretation of the electroencephalographic (EEG) data
often involves speculation about the possible locations
of the sources inside the brain that are responsible for
the observed activity on the scalp [1]. Since it is diffi-
cult to interpret recorded EEG signals in terms of the site
of the underlying neuronal process, determining the re-
lationship between different signals recorded at various
scalp locations is required. It is desirable to eliminate or
account for the possible linear relation resulting from the
volume conduction [2]. This relation can be represented
in a form of weighted combination of some or all mea-
surement channels inside a defined neighbourhood of the
channel of interest. Such approach is often related to as
spatial filtering. It has gained a great popularity for EEG
processing problems in Brain-Computer Interface (BCI)
applications [3,4]. In theory, use of spatial filters should
either lead to decomposition of the EEG data into com-
ponents containing activity related to specific sources or
elimination of the overlapping signals originating from
sources other than those in the direct neighbourhood of
the measurement electrode. The Common Spatial Pat-
tern (CSP) method represents one of the most popular
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approaches to the spatial filtering. Is is a technique used
for the analysis of multichannel EEG recordings with two
classes of different EEG phenomena present [3]. For that
purpose it provides the set of spatial filters in form of
the transformation matrix. One of the drawbacks of the
CSP is that it’s performance is highly dependent on the
selected frequency bandwidth in which signals are ana-
lyzed. Thus, the theoretical assumption that the analysed
signals have been bandpass filtered to the most discrimi-
native frequency range for both classes [3]. An effective
solution to this problem was presented as the Filter Bank
CSP (FBCSP) [5]. In this method the EEG signals are first
bandpass filtered into few frequency subbands. Then, the
CSP algorithm is applied independently to each subband.
Since its introduction, FBCSP has become a state-of-art
approach for the spatial filtering of EEG signals contain-
ing motor imagery related tasks [5, 6].

In this article use of the Adaptive Noise Cancelling
(ANC) techniques for the elimination of source overlap-
ping effects from EEG recordings presented as a novel
algorithm - the Adaptive Spatial Filtering (ASF) is being
examined. The general idea of the proposed approach
is based on the assumption that signal measured by each
electrode consists not only of component that contains
information specific to the location of that electrode, but
also of unwanted ones that originate from sources closer
to other electrodes available in the experiment. There-
fore, signals recorded by these distant electrodes can be
used as a noise reference for any multichannel algorithm
of adaptive filtering. In theory, signal achieved as a re-
sult of such filtering will be free from the influence of
electrical sources that are distant from the analysed elec-
trode. At the same time, this decoupled recording will be
a reliable representation of the neuronal activity occur-
ring in the close localization of the measurement point.
Use of adaptive filters is a known practice in the process-
ing of EEG signals. Such algorithms are widely used for
the removal and correction of artifacts that, due to their
amplitude and shape, are clearly distinguishable from the
background EEG activity (e.q. eye blinks, muscular arti-
facts, electrode movement) [7]. In these classical applica-
tions some additional reference recording of noise signal
(i.e. electrooculogram) must be provided for the adap-
tation algorithm. Since such signal is not always avail-
able, a focus of researchers have been already drawn to
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the problem of utilizing EEG recordings for that purpose
[7]. However, to the best knowledge of the Author of this
article no research has ever been conducted on the use of
such approach for the problem of elimination of source
overlapping in EEG.

MATERIALS

Dataset IVa: One of two datasets used for the eval-
uation of proposed method was the ’Dataset [Va’ pro-
vided for the "BCI Competition III’ organized by the
Berlin Brain-Computer Interface group which took place
in 2005 [4, 8]. All available signals were recorded using
BrainAmp amplifiers with 118 EEG channels with 1000
Hz sampling frequency and 16 bit accuracy, band-pass fil-
tered to the 0.05 < 200 Hz range and then downsampled
to 100 Hz. The measurement electrodes were positioned
with regard to the extended /0-20 montage system. Data
was recorded from five healthy subjects denoted as aa,
al, av, aw, ay. For each subject 280 trials of either right
hand or foot movement imagination were available. Vi-
sual cues indicated for 3.5 s which of the motor action the
subject should imagine [4]. Detailed information about
used dataset can be found in [8].

EEG Motor Movement/Imagery Dataset: Second
dataset used in this research was ’EEG Motor Move-
ment/Imagery Dataset’” (EEGMMI) provided by the
BCI2000 group [9] and contributed to the PhysioNet plat-
form [10]. Signals were recorded using 64 electrodes
placed accordingly to the /0-10 montage system with
160H z sampling frequency. The EEGMMI consists of
data recorded from 109 subjects. Each of whom was
asked to perform specific tasks organized in the follow-
ing sessions (either 7 or 8 repetitions per task): right vs.
left hand movement, imagination of right vs. left hand
movement, both hands vs. feet movement and imagina-
tion of both hands vs. feet movement. Each session was
repeated 3 times and lasted approximately 2 minutes. As
aresult between 21 and 24 trials per class were obtained.
Duration of one trial was about 4-s long. In this research
only sessions with tasks involving motor imagery were
used. Additionally, since this work is focused on the two
class problems, sessions involving Left vs. Right hand
motor imagery were treated separately from the Hands
vs. Feet sessions. As a result, two different validation ex-
periments could be performed on the EEGMMI dataset.

Validation and parameter tuning: To test the pro-
posed ASF algorithm the following validation procedure
was performed. For ’Dataset IVa’ all trials were divided
into two sets depending on their class membership. Then
trials in each set were sorted chronologically. 70% of
consequent trials from each class were used to create a set
used for the classifier training and parameter tuning pur-
poses. The remaining samples formed a test set, which
was used only once, to evaluate algorithm’s accuracy.
Both sets were designed in way so that both classes were
represented equally. In order to assure that the results
achieved during the experiment are statistically meaning-

CC BY-NC-ND

33

DOI: 10.3217/978-3-85125-533-1-07

ful such validation was repeated 7 times. The new folds
were created by selecting consecutive 70% of trials be-
ginning from a different trial each time. These starting
trials were evenly distributed across all examples, so that
the best data coverage was provided. Consistency of the
data was achieved by implementing the circular buffer
idea in cases where the length of the training window ex-
ceeded the total data length. Organization of sessions in
the EEGMMI dataset allowed to approach the problem of
creating the data folds in a slightly different way. Since
there were 3 repetitions of both Left vs. Right and Hands
vs. Feet sessions (each containing 7 — 8 trials per class)
a more natural division was possible. In this research
one complete session of specific motor imagery tasks was
used as an independent test set, while remaining two ses-
sions containing the same mental actions were used for
training and parameter tuning purposes. That way it was
ensured that both classes will be represented by a similar
amount of examples. Additionally, such way of dividing
data guarantees that trials used for testing were recorded
during the same time window and that both test and train
examples maintain some kind on continuity. Described
validation procedures implemented for both datasets al-
low to take into consideration not only the order of sam-
ples from each trial but also the chronological order of the
trials. Proposed approach resembles a real life case where
training trials for the BCI calibration are recorded conse-
quently during specified time frame. Such examples will
share some common characteristics, that might differ for
trials recorded in later stages (i.e. during the operation of
the system). The resemblance of the proposed procedure
of data partitioning to the real applications is a signifi-
cant advantage over random choice of trials or individ-
ual samples. For most of the spatial filtering approaches
presented in the METHODS section to perform on a sat-
isfactory level, some parameters need to be properly se-
lected. The method of parameter tuning used in this work
requires that the data dedicated for training purposes is
divided accordingly to the procedure described for the
"Dataset IV’ earlier in this section. As a result two sub-
sets of the training set are created, which will be referred
to as subtraining and subtest. Then, the EEG signals are
processed with the different values of the tuned parameter
of specific spatial filtering method, the classifier is trained
on a subtraining dataset and the accuracy on the subtest
set is obtained. This is repeated 7 times and the param-
eter which achieved the highest median accuracy is se-
lected for the specific validation session. It must be noted
that the training data of the current validation session re-
mains uninvolved in the parameter tuning process. Since
Author of this article prioritize the research on the real-
time BCI applications, instead of classifying each trial as
a whole, the classifier output was provided for every sam-
ple tagged as containing imagination of motor movement
and belonging to the assumed region of interest. Due to
the nature of the experiment, the reaction time of the sub-
ject could potentially become a variable in the process
of evaluation of system’s accuracy. Since such influence
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is an uncontrollable factor, it is desirable to diminish or
remove it’s impact on the results. In this research, this
problem was avoided by selecting and classifying only
samples that appear after 0.5 s from the moment tagged
as a start of the trial.

METHODS

Adaptive Spatial Filtering: The idea behind the Adap-
tive Spatial Filtering of EEG signals proposed in this
work stems from the concept of Adaptive Noise Can-
celling [11]. In this methodology an auxiliary (reference)
input from at least one sensor is used in process of the
elimination or attenuation of the noise present in the pri-
mary input s. Let us assume that the analyzed signal s
consists of two additive components dy and ngy. There-
fore, it can be represented as s = dy + ng, where dy
denotes the desired part of the s and ng is a noise that
is not correlated with dy. Additionally, present is an
auxiliary signal n which also is not correlated with dy,
but in some unknown way correlates with the noise ng.
Such signals are often called reference and should be
recorded at noise field locations where the signal of inter-
est dy is weak [11]. Providing more than just one refer-
ence input to the ANC algorithm can improve it’s perfor-
mance in scenarios where one source of noise is present
[11]. Moreover, if there are many sources of noise com-
ing from different locations, increased number of auxil-
iary signals recorded by specific sensors can be very ef-
fective [11]. In such cases n will consist of N signals
recorded by different sensors at varying locations. This
can be noted as n = {ny,na,...,ny}. For applications
where N > 1 the algorithm is often referred to as Mu-
tichannel Adaptive Noise Canceller. If each of the input
reference signal components n; (k = 1,...,N) could
be transformed (filtered) so that the their summed output
Yy = chvzl yr, would resemble the unknown noise com-
ponent ng it could then be subtracted from the analyzed
signal s. Assuming that the signal nj after the transfor-
mation is denoted as a yy,, described operation can be pre-
sented as in Eq. 1. As aresult the estimate of uncorrupted
desired signal e ~ d will be achieved. Signal e can also
be treated as the error of adaptation.

e=do+no—y ey

In an ANC applications said transformation of recorded
noise input n is realized by an adaptive filtering. An adap-
tive filter automatically adjusts its own impulse response
through an algorithm that responds to an error signal e
[11]. If nk(t) € RM is a segment of signal ny a time
index ¢ consisting of M discrete samples with indexed
[t — M +1,...,t — 1,¢], then the output of a adaptive
filter at discrete moment ¢ can be calculated as in Eq. 2.

yi(t) = ng () w (t) 2)

The coefficients wy(t) € RM of the filter are being ad-
justed individually for every input with each new sample.
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The adaptive algorithm used for that in this work is the
Normalized Least Mean Squares (NLMS). If algorithm’s
error at index ¢ is denoted as e(t) € R and calculated ac-
cordingly to the Eq. 1, then the formula for updating the
filter coefficients for ¢ 4+ 1 sample is presented in Eq. 3.
wi(t +1) = wy(t) + p(t)e(t)ni(t) 3)
The NLMS guarantees a better stability than the classical
Least Mean Square algorithm thanks to the normalisation
of the fixed adaptation step po with the power of input
[12]. The purpose of « parameter is to prevent situations
where the denominator of that expression approaches 0.

Ho
v+ 0 (t)n ()

It should be particularly emphasized that the described
Multichannel ANC algorithm satisfies all the causality re-
quirements and therefore is suitable for the real time ap-
plications. The block diagram of the described algorithm
is presented in Fig. 1.

p(t) = @)

n(t) @ yi(t) s(t)
m(t) 4 wt) iy y() —it et)
g [wa(t)| +7
() 1 n(®)
[n(®)]
L NLMS

Figure 1: Block diagram of a Multichannel ANC filter.

The general idea of proposed ASF approach is based on
the assumption that signal recorded by each electrode
consists of desired component which contains informa-
tion specific to the location of that electrode and un-
wanted, noise that originates from sources closer to other
electrodes available in the experiment. Additionally, un-
defined measurement noise and artifacts (i.e. muscular)
are in some way present in all recordings measured by all
electrodes. With simplification it can be assumed that as
the distance of the electrical signal from its bioelectrical
source increases, its amplitude decreases [2]. However, it
must be emphasized that said assumption does not state
that activity originating from the source closest to the
electrode will be the strongest one present in the raw EEG
recording [13]. Nevertheless, the introduced assumption
leads to an observation, that for the electrode labeled ch
signals recorded by electrodes from some subset elec-
trode labels L., = {L \ ch} can be used as a noise refer-
ence for the multichannel ANC algorithm described ear-
lier in this section. In this scenario, L denotes the set of
all electrode labels that are available in the experiment. In
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theory, signal achieved as a result of such adaptive filter-
ing would be free from the influence of electrical activity
of sources that are distant from the analysed electrode ch.
At the same, this decoupled recording will be a reliable
representation of the neuronal activity occurring in the di-
rect localization of the measurement point. To guarantee
a satisfactory performance of the ASF, a proper selection
of the subset of electrodes used as the multichannel noise
reference must be ensured. According to the basic princi-
ples of the ANC algorithms, signals used for that purpose
cannot be correlated with the filtered signal [11]. There-
fore, for the analyzed electrode ch € L adaptation is per-
formed only on the subset of electrodes L.;, for which
the Pearson’s correlation coefficient r(ch, 1) (V;cr) with
signal from ch is lower than some user-defined parameter
T’. To maintain the compatibility with previously intro-
duced symbols, in this scenario, the secondary input to
the Multichannel ANC filter n will be composed of sig-
nals recorded by the electrodes whose labels belong to
the subset L.;,. Therefore, proposed ASF algorithm re-
quires for a few parameters to be specified, such as the
number of filter coefficients M, initial adaptation step
Lo, parameter v and the Pearson’s correlation threshold
used for selecting the reference electrodes 7,.. During the
experiments performed for the purpose of this work, the
following, exemplary parameters were chosen for both
datasets: M = 3, v 0.01, 7, = 0.6. To ensure
the improved stability and effectiveness of the ASF algo-
rithm the py was selected individually form the set of val-
ues po = {0.0001,0.0005,0.001,0.005,0.01} for each
test with respect to the parameter selection approach de-
scribed in the MATERIALS section of this article. Dur-
ing the experiment the ASF algorithm was applied to the
raw EEG data. The subset of electrodes used as the ref-
erence L., was selected individually for each analysed
electrode. The Pearson’s correlation values r(ch, [) were
calculated only on the basis of time segments containing
the interesting brain activity (i.e. during motor imagery
periods) from training sessions. Therefore, L., was not
updated after the training stage. The signal power fea-
tures were extracted directly form the filtered data. All
of them were passed to the classification algorithm (no
feature selection stage was implemented). No artifact
correction or bandpass filtering was applied for the ad-
ditional processing of the EEG signals.

Reference methods: The influence of the proposed
ASF algorithm on the accuracy of classifying various
mental activity tasks was compared with three classical
approaches. First method used as the reference during
the comparison does not involve any spatial filtering and
will be referred to as the basic approach. Here, the raw
data is only bandpass filtered to the frequency range from
8 to 30H z. This specific band was selected as it is often
associated with brain activity related to the planning of
movement [3,14]. The bandpower features are then ex-
tracted directly from the filtered data. No additional steps
like feature/channel selection are used in this approach.
The Common Spatial Pattern method is a technique used
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for the analysis of multichannel EEG recordings with two
classes of different EEG phenomena present [3]. As a
result of CSP the variance of the transformed signals is
maximized for examples from one class, while at the
same it is minimized for the other class. For that pur-
pose it provides the set of optimal spatial filters in form
of the transformation matrix. In general, only a few pairs
of filters from both ends of eigenvalue spectrum carrying
a discriminant information are used [3]. Therefore, a fea-
ture selection step is often required in order to maximize
the effectiveness of CSP decomposition. In this work,
the best number form between 1 and 8 of the consecu-
tive CSP filter pairs were selected for each subject and
each validation session during parameter tuning stage.
Since performance of the CSP method is highly depen-
dent on the selection of frequency bandwidth in which
signals are analyzed, they were bandpass filtered to the
frequency range from 8 to 30 H z befor the applying CSP.
Third method used for the comparison in this research is
the FBSCP [5]. In this method the recorded EEG signal is
first bandpass filtered into B, small and consequent fre-
quency subbands. In this research the same B = 9 sub-
bands as in the original paper of FBCSP were selected:
[4—8] Hz, [8—12] Hz, [12—16] Hz, [16—20] Hz, [20—24]
Hz, [24 — 28] Hz, [28 — 32] Hz, [32 — 36] Hz, [36 —40] Hz
[5]. After filtering, the CSP algorithm is applied indepen-
dently to each frequency band. Then, for each CSP trans-
formation a C' = 3 pairs of filters were selected and band-
power features were calculated for each sample. As a re-
sult Fy = 2x(C'x B = 54 features were extracted for each
time index in the region of interest. To avoid overfitting
of the classifier to the training data, the FBCSP requires
for the feature selection step to be performed. Authors of
this method have validated it with multiple feature selec-
tion algorithms [5]. According to the results of the men-
tioned study, the Mutual Information-based Best Individ-
ual Feature (MIBIF) method works very effectively with
the FBCSP. Based on the MIBIF only F} best features
from the original subset of Fj is chosen for the further
analysis. In this work the number F} was selected in-
dividually for each subject and each validation session
from the subset F} € {1,2,3,4,5} during the parameter
tuning stage. It must be noted that due to the pairing of
the CSP features, the corresponding feature from the pair
had to be additionally included if it was not selected by
the MIBIF algorithm.

All spectral filtering operations in this research were per-
formed with the Finite Impulse Response (FIR) filter of
order 364. Coefficients of the used filters were designed
using the Kaiser window. Linear phase characteristics of
the FIR filters make them ideally suited for the process-
ing of biomedical signals. On the other hand, the delay
introduced by such filtering may significantly influence
the quality of the BCI systems in terms of real-time per-
formance. Since the focus of this research was mostly
placed on the evaluation of the proposed spatial filtering
method it was decided that the filter’s delay should be ne-
glected. Therefore, the zero-phase filtering was applied
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during offline processing. This was achieved by a recur-
sive filtering of the original signal both forward and back-
ward in time [15]. As aresult, a perfect frequency filtering
could be assumed in the performed experiment. This op-
eration was applied to all of the reference methods used
in the experiment. It must be noted that such approach
favours slightly these approaches as in the normal sce-
nario their output would be delayed resulting in worse
classification accuracy and generally decreased perfor-
mance of the BCI system.

Machine learning: The characteristics of the signals
achieved after their processing were described by the log-
arithm of their power in specific frequency ranges. To en-
sure the causality of the feature extraction step only the
analysed time index and those that precede it were taken
into consideration. In this research the 0.5 s-long time
window was used. The features were extracted for ev-
ery sample during each trial and provided as an input to
the Linear Discriminant Analysis (LDA) classifier. This
simple classifier has been successfully used in many BCI
systems and has generally produced a satisfactory results
[16]. One of the main motivations for the choice of LDA
classifier in this experiment was it’s simplicity and trans-
parency in data processing. Thanks to these features, the
participation of the classification algorithm in the feature
engineering process has been restricted. Thanks to that,
the results achieved in this research will not be biased by
the quality of cooperation between spatial filtering algo-
rithm and classifier in extracting features of the data.

RESULTS

In Tab. 1 presented are the mean accuracies obtained af-
ter 7 cross-validations performed for each subject from
the Dataset IVa. For each sessions used in this test the
best set of parameters was selected for each method. This
was achieved with accordance to the parameter tuning ap-
proach described in the METHODS section of this work.

Table 1: Dataset IVa - mean accuracies

Method  Avg aa al av aw ay
ASF 094 093 095 089 096 0.96

FBCSP 081 0.78 092 066 0.86 0.84
CSP 079 0.71 090 0.67 085 0.84
basic 070 0.62 082 057 071 0.76

A more informative summary of the experiment per-
formed on the Dataset IVa can be found in Tab. 2. The
statistics used for the description of the achieved results
were the first quartile 1, mean value, third quartile Q3
and standard deviation ¢ calculated from the accuracies
of all tests performed on all subjects for each method.
Therefore a more complex and profound overview of the
experiment was achieved.
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Table 2 - Dataset I'Va - statistics

Method @1 Mean Q3 o
ASF 0.88  0.94 1.00 0.08

FBCSP 0.74 081 087 0.10
CSP 071 079 0.86 0.09
basic 0.62 070 0.77 0.10

Since the EEGMMI dataset contains a large number of
subjects it was decided to omit the presentation of the av-
erage accuracies achieved for each of them. Instead, in
Tab. 3 the statistics calculated for Hand vs. Foot classifi-
cation task are shown. Likewise, same summary for Left
vs. Right hand discrimination task is presented in Tab. 4.
Values contained in both of these tables were obtained
analogously to those presented in Tab. 2.

Table 3: EEGMMI (Hand vs Foot) - statistics

Method Q1 Mean Qs o
ASF 0.78 0.84 090 0.08

FBCSP 054 0.63 0.69 0.11
CSP 0.58 066 0.74 0.11
basic 0.54 060 0.63 0.09

Table 4: EEGMMI (Left vs Right) - statistics

Method @1 Mean Q3 o
ASF 076  0.82 0.89 0.10
FBCSP 052 057 0.60 0.08
CSP 0.55 062 0.66 0.10
basic 0.51 056 0.60 0.08
DISCUSSION

Proposed in this work ASF algorithm significantly out-
performs classical spatial filtering methods like CSP
and FBCSP during tests performed on two class mo-
tor imagery-based BCI datasets. Statistics calculated for
the distributions of the achieved accuracies presented in
Tab. 2- 4 allow further assessment of the ASF perfor-
mance. It can be observed that for all three datasets the
mean accuracies of ASF are higher than for the reference
methods. Additionally, in all cases first quartile )1 of
ASF is higher than third quartile Q)3 of other methods
tested in this work. Although FBCSP and CSP achieved
expected mean accuracies on the Dataset I'Va their per-
formance on the EEGMMI dataset is unsatisfactory. This
might be explained by a relatively small number of train-
ing trials for each validation session which ranged from
14 to 16 per class. As a result the number of training
examples provided for the CSP and its Filter Bank modi-
fication might be too small for them to achieve their full
potential. Training BCI systems with a limited number
of trials is a known problem which has been discussed in
the literature [4].

The tests to which the ASF and reference methods were
subjected to can be considered to be demanding not only
due to the high number of repetitions performed for each
dataset. The goal of providing the output for each sample
is generally considered to be more a more difficult task

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

than the classification of the whole trial [6]. However,
since ASF was designed for the real-time BCI applica-
tions such approach to testing was necessary.

It must be noted that the due to their nature the adaptive
filters and ANC algorithms (such as ASF) are susceptible
to instabilities [12]. Therefore, selecting the proper adap-
tation step during the parameter tuning stage of the ASF
method was very important. The issue of stability of the
adaptive filtering algorithms used with the ASF method
should be a subject of further research. Due to the pre-
liminary character of this work the tuning of the channel
correlation threshold 7. was omitted in this work. This
shows that tuning of this parameter is not necessary for
the ASF to achieve a high level results. Nevertheless,
some future work must be devoted to the analysis of the
influence of this parameter on the effectiveness of ASF,
as it has the potential to additionally improve its perfor-
mance.

CONCLUSION

In this article a novel approach to spatial filtering of EEG
signals the Adaptive Spatial Filtering is proposed. The
algorithm has proved to significantly outperform the clas-
sic reference methods for two class BCI problems. The
fact that the ASF does not require providing the number
of classes present in the experiment is a great advantage
over CSP-based approaches. As a result it can be eas-
ily used with the multiclass problems without the need
of implementing strategies like One vs. One or One vs.
All. Additionally, adaptive properties of the algorithm
make it insusceptible to the changes of the EEG char-
acteristics which occurs with the passing of the exper-
iment time. Author of this work believes that the intro-
duction of the ASF algorithm can lead to an advancement
in the usable BCI technology capable of operating in the
real time. Future research regarding the ASF algorithm
will focus on its application to multiclass BCI problems.
Additionally, its performance with limited electrode con-
figurations (i.e. International /0-20 Standard) and with
feedback BCI systems will be evaluated.
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ABSTRACT:

A fully implanted Brain-computer Interface was
recently applied in a locked-in patient allowing for a
one-dimensional control of a spelling board on a
computer. The patient attempts to move her hand in
order to generate a ‘click’, which is used to select
letters. The optimal parameters to generate an accurate
click were estimated from a cursor control task where
the control signal was used to control the y-velocity of a
cursor on the screen. However, the set of parameters
used for the cursor control task was not accurate enough
to be used for clicks. In order improve accuracy, three
filters were designed to add features, smooth and z-
transform the signal before conversion to a click, in
order to provide a more reliable communication channel
that has less false positive events.

INTRODUCTION

People with severe paralysis who have lost the ability
to communicate have only limited options to regain this
ability. Since the 1990‘s Brain-Computer Interfacing
(BCI) has been proposed as an assistant technology to
reestablish this lost communication [1]. For optimal
usability in daily life at the homes of the target
population, such a system should be accurate and
intelligent (i.e., it incorporates smart decoding
algorithms that dynamically adjust to e.g. slow signal
changes), fully implantable (i.e., permanently available
and invisible), safe, stable, easy and comfortable to use
[2]. However, even though technology advances fast,
many of these requirements have not been met so far.

Recently, a fully implantable BClI communication
system [3] (Utrecht NeuroProsthesis, UNP, Figure 1)
was implemented, which translates neuronal activity
elicited upon attempted hand movements into a binary
control signal for selection of characters in spelling
software running in ‘switch-scanning mode’, where so-
called ‘brain-clicks’ can be used to select characters, or
groups of characters, that are highlighted automatically
and sequentially by the computer. The UNP system was
implanted in a locked-in patient with late stage
Amyotrophic Lateral Sclerosis, with a four-electrode
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strip covering the hand sensorimotor cortex. The bipolar
pair to use for BCI control was chosen based on the
highest correlation to a motor localizer task, where the
patient alternated between trials of attempted hand
movement and rest. The patient gave informed consent
to this study, which was approved by the ethics
committee at the University Medical Center Utrecht in
accordance with the 2013 provisions of the Declaration
of Helsinki.

Extraction of good parameters

A standard Cursor Control task (CCT, in BCI2000
[4]) was used to estimate the optimal signal processing
parameters for a one-dimensional continuous control
signal. In this task the subject controlled the y-velocity
of a ball on the screen (Figure 2), while the ball moved
at constant speed on the x-direction in attempt to hit one
of two targets displayed on the right hand side of the
screen. The subject attempted to move her hand to move
the ball up and relaxed to move it down.

Across several months the average CCT performance
using high-frequency broadband power (80+2.5 Hz)
was 90.73£6.42 % (N=70 runs), which is significantly
above chance (50%, p<0.01). However, the high
performance with this continuous signal did not predict
performance using the same electrode pair and
frequency band for a binary signal (above or below a
fixed threshold) to generate brain-clicks. The threshold
was initially based on the midpoint between the
averaged high-frequency band power during the active
and during the inactive states. This resulted in a lower
than expected performance during spelling and a need
for frequent calibration. Errors were mainly unintended
clicks (false positives), although misses also occurred.

Hence, we were interested in investigating how the
continuous brain signal could be translated optimally
into brain-clicks that were usable for high accuracy
spelling, with a low false positive rate and without
compromising the sensitivity to intended actions. Two
hypotheses based on the acquired signals were defined:

1) Many false positives (FPs) were caused by the

noisy and spiky morphology of the signal, hence
smoothing of the signals would decrease the FPs;

2) The power signal was not stable over time, hence

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

would

normalization of the signal
performance.

improve

"o WJEEOL

0 NEUROPR@®STHESIS
Figure 1: Utrecht NeuroProthesis (UNP) fully implanted
brain-computer interface system.

Score feedback (0.5s)

Cursor control (2-6s)

Cursor appearance

Target appearance (1-2s)

ITI (Ls)

Figure 2: CCT design as implemented in BCI2000.
The ball moves towards the target at constant speed
while the subject controls the y-velocity of the ball
towards the target.

MATERALS AND METHODS

General description of the system

The UNP system (Figure 1) consists of four 4-electrode
ECoG strips, from which one strip is placed over the
hand region of primary motor cortex. The subcutaneous
amplifier and transmitter device, placed subclavicularly,
transmits power signals to an antenna attached to the
clothing, every 200ms (5 Hz) for one bipolar pair. As a
first step to improve the reliable conversion of
continuous brain activity into a ‘brain-click’ control
signal, instead of only using the high-frequency band,
we used a filter (linear classifier filter) that summed two
frequency bands (Low Frequency Band, LFB,
20+2.5Hz, weight -1; and High Frequency Band, HFB,
80+2.5 Hz, weight +1) of the same bipolar pair (Fyrs -
FLre). For more details about the motivation behind this
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filter see [3]. The resulting control signal was then
thresholded through a threshold filter and converted into
a binary signal, where 1 represents the samples above
the threshold and O otherwise (Figure 3). Finally, this
binary signal was converted into a click signal in the
click translator filter, which defined a click when more
than 5 samples (1 s) exceeded the threshold (Figure 3).
The click was then sent to a spelling program where
rows of characters, or individual characters, could be
selected with a brain-click (Figure 4). Additionally, in
order to address the two hypotheses, we tested and
implemented two additional filters.

control
signal
/\/\/\

0 /A 7N
7

A/

Threshold Filter

binary
signal

1

OJ_|\ IRARL

5 samples

Click translator
Filter

click
signal

o] I

0

Figure 3: The threshold filter converts the control
signal (Fyrs - Frg) into a binary signal, whereas the
click translator filter converts the binary signal in a
click signal.

Figure 4: Spelling program used during online
research runs to spell 5 or 7-letter words. The
computer automatically highlights each row or item
sequently, looping from top to bottom and left to right,
respectively. Each row of characters, or individual
characters, can be selected with a brain-click.

Addressing hypothesis 1: The Smoothing filter

To tackle the problem of noisy and spiky signals
intrinsic to neuronal recordings, a smoothing filter was
designed to smooth each feature signal (F g and Fyeg)
independently (Figure 5). In the design of real-time
feedback BCI systems the use of future samples to
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smooth the signal is not possible. Therefore the
smoothing function here implemented averages each
incoming sample with the previous 5 samples (i.e., 1.2 s
smoothing window).

Smoothing Filter

time

Figure 5: Smoothing filter averages each incoming
sample (red square) with the previous 5 samples (black
circles). The smoothing filter is applied to each feature
signal (F_rg and Fyeg) independently.

Addressing hypothesis 2: The Z-Transform filter
Another property of the signal that is crucial for
accurate performance is the stability of the signal over
long periods of time, i.e., the minimization of slow
amplitude trends of the signal. A constant signal
amplitude allows for the use of constant parameters,
such as the threshold, across sessions. For that,
normalization to a z-score can be used to diminish
signal variability. Furthermore, when adding two
different feature signals, their separate z-transformation
allows for a straightforward combination for the signals
(weights -1 for LFB and +1 for HFB, see [3] for more
details). Hence, a z-transform filter (Figure 6) was
implemented, by subtracting each incoming sample (of
each feature signal F g and Fyeg) With the mean of a 30
s calibration window and dividing it by the standard
deviation of the same window.

Z-transform Filter
Z
0

Z =S-mean
std

Calibration Window

mean & std

Figure 6: The z-transform filter subtracts from each
incoming sample (S) the mean of a 30s calibration
window and divides the resulting value by the standard
deviation (std) of the calibration window.

Hypotheses testing
Click-performance during online copy-spelling runs
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(see Figure 4 for an explanation of the speller
application) was compared before and after the filter
implementation, which also includes the addition of the
LFB feature. An overview of the implemented filters
can be found in Figure 7.

Performance was assessed by means of false positive
(FP) rate and true positive (TP) rate of the online runs.
The patient performed a total of 35 copy-spelling runs
before (words with 7 letters) and 69 after filter
implementation (words with 5 letters). The number of
FP, TP, true negatives and false negatives were
determined automatically from the data recorded during
online runs and visually inspected by two independent
observers. Please note that no offline (post-hoc)
processing was applied to the recorded data.

RESULTS

For comparison of click-performance before and after
the filter implementation the FP rate and true positive
(TP) rate during online runs (where the patient was
asked to spell dictated words) were computed. Notably,
we observed that many events classified as FPs were in
fact intended clicks that were slightly too early or too
late in time. For this reason a FP-rate-corrected was
calculated, which did not include these timing mistakes.
Timing mistakes were identified and marked by visual
inspection of all runs performed by two independent
observers.

Performance before filter implementation

There were on average 2.06 FP/min (N=35 7-letter
words), yielding a FP rate of approximately 9%, a FP
rate-corrected of 6% and a true positive (TP) rate of
84% (Figure 8).

Performance after filter implementation

Regarding the smoothing filter, the optimal smoothing
window (number of samples used to average each
incoming sample) was optimized together with the
threshold via a heat map (see supplementary material in
[3] for more details), where the highest performance
region was mapped in a two-dimensional matrix. For
that the offline classification accuracy of recorded runs
replayed with different smoothing window and
threshold was computed. Within the hotspot, multiple
sets of parameters were chosen and tested by the patient
(compromise between effort and accuracy of the
system) and the optimal ones (1.2s smoothing window
and 0.85 threshold) were used for spelling [3]. This
resulted in a score of 1.02 FP/min (N=69, 5-letter
words), and a significant decrease in FP-rate and FP
rate-corrected to 7% and 2%, respectively (p<0.001).
True positive rate (TPR) also decreased significantly
(p<0.05) to 76% (Figure 8), mainly due to an increase
of False Negatives (FNs, i.e. a miss to click), which the
user prefers over FPs because they do not require
spelling correction (back-space).
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Acquisition Signal processing Translation Application
Recording
g HFB z- Linear Threshold
device Smoothin, " . i
filter 9 _, Transform —> Classifier —> Classifier —— Tr:r:II:I::tor —_— Speller

Power LFB filter filter filter
signals Smoothed Z-scored Weighted ) ,

signals signals sum Binary signal Click

Figure 7: Filter pipeline implemented on the BCI2000 platform. The recording unit (gray block) streams power
signals every 200 ms. Two frequency bands, LFB and HFB, are recorded, smoothed, z-transformed and summed
(linear threshold classifier) with -1 and 1 weights, respectively. The resulting control signal is then thresholded
and converted into a click. The latter was used to select rows or itens on a spelling program. Figure adapted from

[3].
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Figure 8: FP rate and FP rate-corrected before and after
the filter implementation. True positive rate before and
after filter implementation, where mean FN is indicated
as Mey. **p<0.001; *p<0.05.

DISCUSSION AND CONCLUSION

In our previous article [3], we demonstrated for the first
time that a fully implanted BCI (UNP system) could be
used to control a spelling program on a computer by
converting brain activity into a one-dimensional ‘click’.
Here we address in more detail than in our previous
publication, the filter pipeline implemented to convert
the continuous brain signal to binary brain-clicks, for
control of a spelling program on a computer. As a first
approach the settings used to produce a click were
derived from the optimal settings of a standard Cursor
Control task. However, this set of parameters was sub-
optimal for a reliable click production. Besides
implementing a filter that combines two feature signals
with a certain weight (Fyes - Firs), the motivation for
which can be found in [3], we implemented two filters
to overcome the unstable characteristics of the signal: a
smoothing filter and a z-transform filter. Combined,
these three filters allowed for a more stable signal and a
significant improvement of the performance of the
system. The FP rate and FP rate-corrected for timing
mistakes were significantly reduced after filter
implementation. At the same time, the TP rate also
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reduced, mainly because of the increase in FN, which
the patient preferred over FPs, because they do not
require spelling correction.

Finally, one note for the calibration window used for the
z-transform filter. After actual implementation, this
calibration window was recorded for multiple runs and
the mean and standard deviation across runs showed to
be consistent. These values were then used for z-
transformation, without need for repeated calibration
and without a continuous adaption. Due to the
normalization of the signal, the combination of feature
signals with different amplitude ranges (i.e., F g and
Fues) was possible, and allowed for the setting of a
constant threshold (to convert the control signal into a
click) for over 9 months. During this period, user
satisfaction of the UNP system was high or very high on
all items of a modified QUEST2.0 user satisfaction
questionnaire and the user used the system at home for
communication without any technical staff present.
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ABSTRACT: An evaluation of a hybrid Brain-Computer
Interface that combines input modalities of Steady State
Visual Evoked Potential (SSVEP) and eye gaze is
provided. Thirty volunteers participated and all but one
could use the BCI, eye-tracker and hybrid system. The
hybrid BCI was compared with SSVEP alone for
navigating to four domotic tasks issued via a graphical
user interface. Mean performance metrics of Accuracy
(Acc.), Efficiency (Eff.) and Information Transfer Rate
(ITR) all improved (mean Acc. = 93.3% to 99.84%, mean
Eff. = 89.56% to 99.74%, mean ITR = 23.78 to 24.41
bpm). While the absolute improvements are small, better
performance may contribute to user acceptability, as the
eye-gaze component adds minimal additional user effort
to the interaction yet provides control that is more robust.

INTRODUCTION

The electroencephalogram (EEG) provides a recording
of electrical activity within the brain. As complex as this
activity is there are methods to extract meaningful
information from the brain waves. By developing certain
paradigms intentional modulation of brain activity can be
established and used as a mechanism for communication
and control. Known as Brain-Computer Interfaces (BCI),
this technology has been explored extensively for over
two decades as a mechanism to provide an input modality
to a computing system that does not require the
involvement of peripheral nerves and muscles [1].
Recording normally takes place under controlled
laboratory conditions; in more recent years there has
been an objective to extend the technology to users in the
community, placing more emphasis on reliability,
robustness and ease of use. Reliance on EEG features
only is one of the key attributes with BCI systems,
particularly important for users who have lost peripheral
movement including eye gaze. However, BCI is
recognized as a difficult assistive technology to establish
for a user as successful deployment requires substantial
tailoring to the user’s needs and individuality within their
EEG.

In contrast, for potential users with residual eye
movement, eye-gaze technology has been deployed as an
effective assistive technology, albeit with its own
challenges in terms of attaining robust decision making.
In particular, eye trackers have been used to navigate on-
screen commands; when a decision or action needs
confirmed, features such as ‘dwell-time’ may be used to
activate the classification.
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Combining active eye-gaze technology with BCI can
bridge the gap between the two systems [2][3][4],
creating a hybrid BCI (ABCI) system. BCI paradigms
lend themselves to performing this confirmation or
‘switch’ operation [5][6], providing complementary
intentional control for the user. In some cases, the
searching activity, can be employed to items and
locations within the user’s physical environment, and this
information provides a context to the decision to be made
by the BCI system [7]. Meena et al., 2015 [8], proposed
a hBCI combining motor imagery (using the event
related desynchronization component) with eye tracking,
aspiring to increase the number of available command
choices. The eye gaze is used to detect (search for) the
spatially located device, while the BCI (motor imagery)
is used to select.

Additionally, eye tracking has been used to provide the
selection of ‘on-screen’ icons, with a BCI component
confirming a choice. Galway et al., presented eye
tracking selection of directional arrows to gain
navigation through a Graphical User Interface (GUI) for
control of domestic appliances [9]. The arrow icons flash
to initiate Steady State Visual Evoked Potential (SSVEP)
responses and thus perform the switch operation to
activate the desired movement through the GUI or to
activate a command on an external device.

Kalika et al. [10] combined a P300 speller with eye
tracking. Instead of a sequential search and select
protocol, complementary inputs were combined and a
Bayesian classifier enhanced the accuracy of selecting a
character in the speller. Dong ef al. [11] used a similar
approach to combine motor imagery with eye gaze. Evain
et al., [12] combined eye gaze and SSVEP inputs to
enhance classification accuracy and demonstrated a
speed up in operation and performance over existing BCI
systems.

In this paper, we provide an evaluation of an #ABCI, which
combines input modalities of SSVEP and eye gaze, and
uses a similar signal processing approach as [13]. The
aim was to evaluate the performance and usability of
SSVEP for healthy participants and indicate
improvements, that ABCI offers. The SSVEP paradigm
provides a natural and intuitive procedure to collaborate
with an eye-tracking algorithm. Users interacted with an
existing menu system [9], which provided navigation of
a virtual smart home, on a desktop computer. They were
required to observe and fixate on the navigation icon they
wished to select; as the icons were collocated with
frequency-modulated  stimuli, the technique for
interaction does not change from a user perspective.
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MATERALS AND METHODS

Ethical approval was granted by the Ulster University
Research Ethics Committee (UUREC ethics number
REC/16/0053). Thirty healthy volunteers (16 males and
14 females), from staff and students at Ulster University
and members of the public over the age of 18 years
participated. Participant age ranged from 21-73 years,
average 37.6 (SD 14.73). Exclusion criteria prevented
volunteers from participating if they were sensitive to
flickering lights, had substantial problems with left-right
discrimination, and hearing or visual impairments, which
could not be corrected. Prior to beginning, participants
undertook a practice run to familiarize themselves with
the control paradigm and the GUI of the menu system.
The assessment required participants to complete tasks to
initiate domotic control, multimedia playback,
communication, and free control of a smart-home
environment. Participants completed a pre-questionnaire
to indicate expertise and their perceived level of
tiredness/arousal and a post-questionnaire to provide
some qualitative feedback.

Setup time ranged between 4-26 mins, (average 13m:53s,
SD 5m:35s) and total experiment time ranged from 50
mins to 2 hours and 29 mins, dependent on the number
of sessions that the participant completed, (average 1
hour and 25mins, SD 20m:07s). From the 30 participants,
12 had prior experience with eye tracking technology,
nine had prior experience with SSVEP BCI, and 28 were
experienced computer users. Eight participants required
vision correction; six of which removed their glasses for
the duration of the experiment to account for reflections,
which may have adversely affected eye tracking
performance.

The experimental setup comprised dual LCD displays
(refresh rate 60 Hz), an EyeTribe eye tracker, g.USBamp,
g.LADYbird passive electrodes, g. GAMMAcap, and a
Raspberry Pi home-automation server (for interaction
with external devices such as lights). The experiment
was controlled by monitor one and participants were
required to interact with the GUI displayed on monitor
two. Participants were seated approximately 70 cm from
this monitor. The EyeTribe Tracker was utilized to record
gaze at a sampling rate of 60Hz, with a latency of <20
ms. The device was calibrated on 9 points and with an
accuracy in the range 0.5 — 1 degree. On-screen gaze
coordinates were derived from the EyeTribe application
programming interface.

For SSVEP generation, four unique flickering stimuli
(6.67 Hz, 7.5 Hz, 8.57 Hz, 12 Hz) were presented by
modulating pixels on screen (rather than through external
LEDs, which was adopted in previous studies). The four
stimulation areas were set at the default size of 150 x 150
pixels and by focusing attention on flickering stimuli,
users could traverse through the menu structure by
issuing a succession of left, right, up, and down
commands. The down command selected an item or
navigated to a lower level in the hierarchical structure,
and the up command returned to the previous (higher)
level. In addition, spoken feedback was provided after
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each command to reinforce the user experience by
confirming the command. The four stimulators were
surrounded by a 250 x 250-pixel border, representing the
maximum size that each stimulator could increase to
without classification occurring. As an additional method
of feedback, the stimulators were designed to grow
dynamically in relation to the SSVEP amplitude of the
respective frequency. This design was for two reasons: 1)
it provides user feedback allowing participants to know
when they have issued a command; and 2) larger stimuli
produce a greater SSVEP response. In the second case,
real-time SSVEP visualization relating to the power
estimation of the relevant frequency, decreases the time
to select, as the response becomes increasingly more
prominent in the EEG due to the increasing size of the
stimuli; it is a positive feedback loop.

Feature detection and command translation were based
on signal processing methods realized by Volosyak et al.
[13]. The SSVEP signal detection and classification
process utilized the Minimum Energy Combination
(MEC) method to create a spatial filter and enhance the
SSVEP response while reducing ambient signals and
other interference [13]. The system was designed to
automatically determine the best spatial filter for each
participant at each frequency. The manifestation of each
frequency in the EEG was detected by spatial filtering,
power estimation, and a statistical probability method,
which enhanced the quality of signal and separated
channel-specific features. Furthermore, an adaptive
windowing technique was employed in order to
determine a suitable window length based on online
performance. Stimuli induced frequencies and harmonics
were estimated in the recorded EEG. When this
estimation exceeded a predefined threshold, as
determined during calibration, a directional vote (i.e.
SSVEPg, left, right, up, down or no-control state) was
transmitted to the data fusion component of the menu
system, as illustrated in Fig. 1.

’ BCI ‘ ’ Eye Tracker

EEG L L Gaze

’ SSVEPg ‘ ’CoordinatesG

Figure 1: Conjunction-based collaborative decision
making process data flow

Command

In collaboration with the directional vote, coordinates of
the participant’s gaze (Coordinatesg) were used to
ascertain an overall command and concurrently
transmitted to the Data Fusion component. Employing
the conjunction of the estimated location derived from
the participant’s gaze point and the directional vote,
agreement of the intended command would occur if the
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conjunction was found to be true. Figure 2 illustrates the
partitioning scheme utilized by the Data Fusion
component, which partitioned the overall GUI along the
horizontal, vertical and diagonal axes, centered on the
origin of the GUI, such that gaze coordinates were easily
mapped to specific quadrants surrounding the SSVEP
navigation icons.

-y
Figure 2: ABCI user interface partitioning scheme
showing partitioning of screen along x, y and diagonal
axes, placement of SSVEP navigation icon stimuli and
no control state

In addition, a no-control state within a predefined area
centered on the origin of the GUI was used in order to
permit the participants to view the currently active menu
icon, which would appear in the center of the bespoke
menu system. Accordingly, gaze coordinates were not
acquired when the participant’s gaze was within the
bounds of this zone, thus preventing the possibility of
erroneous commands being issued by the Data Fusion
module whenever the participant was regarding the
active menu icon. Directional decisions were calculated
as follows:

F(x,y)

(&@n.if ¢ua-(y—( )<o)v¢3m(y—(%)>o)/\(y+(;)—a>o)
Jeir eann(r-( Y<0)a(y+()-a<0)voina(y+(G)-a>0ny-(3)>0)
RPN $un(y- ’2—‘)<0) v ¢2A(y—(§)<0/\y+(;)—a<0)
2o x

A, if ¢3/\(y—(2 > )/\(y+(;)—m>0)\/¢,/\(y+(§)—ﬂ>0Ay—(z)>0)

X

2
X
2

where F is a function of x and y, o is the horizontal
resolution divided by two, B is the vertical resolution
divided by two, and ¢, ¢2, 03, and ¢4 are quadrants one,
two, three, and four, respectively, and &;, &g, &y, and
&p are the eye tracking vote for left, right, up, and down,
respectively. Upon successful command determination,
the resulting command is transmitted by the Data Fusion
component to the GUI resulting in continued traversal of
the menu structure.

Participants were instructed to complete four tasks,
controlling the GUI-based menu system, to traverse a
hierarchal-menu structure and activate features and
functions of a smart-home environment. The
instructions, issued by trained-research staff, requested
that participants navigate the menu structure executing
four-way control, e.g. left, right, up, and down
commands. The first task required participants to interact
with smart home lighting in the dining room. The second
task asked if they could select a specified video for
playback on the television set and subsequently end
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playback when requested. The third task required users
to navigate to the talk menu and communicate using
predefined iconography and auditory feedback to
indicate hunger (e.g., to a potential companion). The
fourth task required users to freely navigate the interface
to complete a predetermined goal (in this case to go to
the kitchen, find the extractor fan, and turn it off), without
receiving a predefined set of instructed commands and
therefore permitting users to initiate different command
sequences to reach the goal. Fig. 3 gives a representative
example of task one, whereby participants were
instructed to issue a minimum of 13 commands to
traverse the hierarchal-menu structure and control room
lighting. For the particulars of the individual tasks, please
see [9].

‘ Visual Interface Application l
¥

(o

1 2 3 4

Bedroom
Two

Bedroom
One

Back
Garden

Living
Room

Laboratory || Talk |-

Dinning | |
Room

-{ Kitchen

Bathroom r

(starting point)

ol B

'{Rudiaror H Window H Fan H Door H lump|'

Figure 3: The minimum commands to successfully
traverse the hierarchal-menu structure and complete
tasks two.

In the case of an erroneous command (due to user error
or misclassification), participants were instructed to
rectify the mistake by issuing an additional command
when required, which for subsequent analysis was
considered as a ‘correct’ selection. In certain
circumstances, however, rectifying commands were not
required, e.g. when a false-positive ‘up’ command was
issued at the highest level of the hierarchy. Such
commands did not initiate traversal of the menu structure
and therefore did not require rectification. Each task was
associated with a critical path (i.e. the minimum number
of compulsory commands for successful completion).
When completing the tasks, the total time for task
completion, and the number of correct, incorrect, and
rectified commands were recorded. Performance metrics
for accuracy of target detection (4cc.), efficiency of the
interaction (Eff)) and Information Transfer Rate (ITR)
were computed offline.

In some situations, the accuracy value provides a
misimpression of participant performance. Due to the
structure of the tasks, false-positive commands are often
succeeded by a command to rectify the mistake, which is
defined as an additional correct command. The result
from specific participants who issued several false-
positive commands suggests performance is of a higher
level than in reality. For this reason, Efficiency, as
defined by Volosyak et al. [15], is calculated as follows:

C.:
M 100

total

Efficiency =

where Cpin is the minimum number of compulsory
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commands (13 for Task 1 in our interface layout) and
Ciotat s the total number of detected commands. ITR was
calculated as defined by Wolpaw et al. in [1] and
formularized as follows:

1-P 60
ITR = <l0g2M + Plog,P + (1 — P)log, [M — 1]) * (7)

where M is the number of choices, P is the accuracy of
target detections, and T (in seconds/selection) is the
average time for a selection.

RESULTS

The experimental results, summarized in Fig. 4, provide
an analysis of the individual accuracies, efficiencies, and
ITRs as well as the averages across all participants.
Furthermore, these results contrast the performance of
SSVEP alone with #BCI, conveying a mean accuracy
increase from 93.3% to 99.84%, mean -efficiency
improvement of 89.56% to 99.7%, and indeed an ITR
improvement of 23.78 bpm to 24.41 bpm. The latter may
be surprising as the eye tracker may be expected to
somewhat dampen the responsiveness of the interaction
(whether correct or incorrect), and contrast with the
findings of Vilimek et al. in [16]. A paired t-test
indicated that participants performed better using #BCI
than BCI alone in terms of accuracy and efficiency with
a significance of p < .001. This finding indicates that
there is a statistical significant difference between the
two conditions that is not attributable to chance, and
likely due to the independent variable manipulation. A
further paired t-test provided an analysis of the bit rates
contrasting BCI-only and #BCI indicating a significance
of p > 0.10. This finding suggests that there is no
statistical significant difference between these two
metrics, and hence the difference of the means, in this
case, is likely owing to chance.

To compare these results with eye tracking-only please
see the previous study in which the same tasks were
employed to assess the performance of eye tracking alone
on healthy volunteers (N=12), indicating an average
accuracy, efficiency and ITR of 88.88%, 81.20% and
41.16 bpm, respectively.

DISCUSSION

This research indicates that the ABCI outperforms
SSVEP-based BCI alone across all considered metrics,
Acc., Eff- and ITR. Hence we believe that the #BCI is
potentially more robust. This could go some way to
addressing BCI acceptability outside the laboratory and,
therefore, the additional cost and complexity of eye
tracking can be readily justified. Indeed, the hardware
cost in this case (a couple of hundred Euro) is minimal
when compared to the BCI component as high spatial
accuracy is not needed. Eye tracking is limited by false-
positive selections, however, which is often referred to as
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the ‘Midas Touch’ problem [18] (i.e. selecting everything
unintentionally), while SSVEP performance is not robust
enough for critical applications, e.g. false-positive
selections in smart environments are known to produce
intolerable events in the local environment, such as lights
flashing on and off, doors opening and closing, security
alarms triggering etc. Therefore, the integration of both
modalities as an #BCI has been demonstrated to improve
the performance up to a level unobtainable by either
modality on its own.

An analysis of the post-questionnaire responses from the
30 participants, conveyed that five preferred BCI alone,
19 preferred the ABCI, and six had no preference.
Multiple participants stated the ABCI improved
confidence during interaction and one user in particular
stated “the hybrid demonstrates a potential for more
complex tasks”. Other users substantiated this claim by
mentioning that the #ABCI seemingly offered enhanced
robustness. A small subset of the participants
contradicted these findings, however, by suggesting that
SSVEP was superior as a sole input modality. In some
exceptional circumstances, for example, when
participant 28 achieved remarkable performance using
BCI alone (4ce. 100%, Eff. 100%, ITR 36.37 bpm), the
hBCI merely slowed the interaction (Acc. 100%, Eff:
100%, ITR 33.31 bpm). Likewise, participant 6 who also
preferred SSVEP alone, achieved Acc. 95.54%, Eff.
93.88%, and ITR 23.36 bpm utilising BCl-only. Their
qualitative  feedback was somewhat surprising
considering their performance improved for the ABCI
(Acc. 100%, Eff: 100%, ITR 21.91 bpm) for both accuracy
and efficacy, albeit with a slight reduction in ITR. While
such a finding is inherently subjective, this participant
was apparently more tolerant to errors than to an increase
in time per selection, even if it meant 100% accuracy of
target detection. Participant 8, who did not achieve 100%
hBCI accuracy and efficacy, expressed that they found
“the hBCI control restrictive due to the fixed nature of
the hardware”. This participant highlights a known
restriction of eye tracking technology whereby
calibration enforces users to remain stationary; for
example, adjusting the seated positioning is known to
produce erratic screen-based coordinates.

The only volunteer who failed to complete the tasks,
Participant 11, suffered from macular degeneration, a
medical condition affecting the central field of vision,
and would have been screened out if they had informed
research staff prior to running the experiment. The result
was labelled ‘inconclusive’ and excluded from
subsequent numerical calculations. However, it
reinforces that there will always be people that the BCI
will not work with. Our intention is to assess the
performance of people with brain dysfunction in the
future and this will obviously pose additional challenges.
A quantitative analysis comparing SSVEP with ABCI is
represented in Fig. 3 (A) and (B). From 30 participants,
29 completed the tasks successfully. Of those 29, only
three failed to achieve 100% Acc. and Eff. and yet their

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-09

T T . T 99.84%
100 100 -

ol T 93.30% 99.74%
89.56% _ 90

£ -
s 80 . § 0

E 70 'ﬂ_t 70

= 60 = 60

2 =

0‘,' 50 (E\' 50

& £

) a0

= -~

2 &) 2378 £ 30 2441
& ol " bpm ¢ bpm
Qo 20 P o

< a4

0
12345678 9101112131415161718192021222324252627 282930 12345678 9101112131415161718192021222324252627282930
Participants Participants

(A) "‘"Mean ITR; (B)

Figure 4: Data collected from 30 healthy participants. (A) The results from SSVEP-only achieved a mean Acc. 93.3%,
Eff. 89.56%, and ITR 23.78 bpm. (B) The results from the ABCI (SSVEP + Eye Tracking) achieved a mean Acc. 99.84%,
Eff. 99.74%, and ITR 24.41 bpm.

performance still increased significantly in contrast with assistive technology. Allowing decisions from one
SSVEP-only. In some cases, the ITR may have dropped modality to surpass the other, however, prevents the
moderately from SSVEP control to the ABCI. As assessment of individual components from a research
mentioned previously, and contradictory to prior research perspective, e.g. eye tracking decisions that do not
[16], the average bit rate improved for #BCI interaction. interact with BCI cannot be considered as an ABCI
This is likely due to the ITR calculation, which is process, since decisions do not necessarily rely on
satisfied with three variables: 1) accuracy of target activity from the brain.

detection; 2) number of choices; and 3) time per

selection. A system that returns perfect accuracy can ) ; MONNLLS e eEALE ‘ ;

account for an increased time per selection and return a : WWWW

higher bit rate when compared with less accurate systems
that have a decreased time per selection. In an eye-gaze
collaborative BCI this tradeoff is related to the dwell time
of eye tracking decisions. Optimal parameters in the eye
tracking algorithm will ensure interaction speed does not
diminish to a level that reduces bit rate. An offline Patcient 02, SR oy 1200 .y scking it oot slstion i)

analysis of the data for a representative participant %L% ................................. 1
confirms this finding. Fig. 5 provides further
interpretation of ABCI task one for a representative
participant, confirming the eye tracker voted first on 12
of the 13 selections. For the most part, the eye tracker
was not hmltlng perforlfnance, but for one of the Figure 5: BCI, €ye tracking, and collaborative selections for
selections, the up selection, the BCI had to wait for the Participant 2 completing task one using the #BCI.

eye tracker to agree before a selection could be issued,
which increased the total time for task completion. A
common assumption, may suggest this should indicate
the BCI-only version will return a higher ITR, but in
certain cases this is incorrect. The #BCI still manages to
outperform the BCI alone in terms of information
throughput, if it issues slower selections with greater
accuracy. Comparison of the result of BCI alone and
hBCI for Participant 2 when completing task one
confirms this to be the case. From period 45-48 seconds,
it is clear the BCI was confident that the participant was
attempting to issue an up selection but the eye tracker
slowed performance, and yet the #BCI still exceeded the
bit rate of BCI alone. This is particularly interesting as it
suggests that refining the hybrid system may further
improve performance. A softer decision process allowing
selection based on confidence level of singular
modalities would likely improve the system as an

Time —eTvow
X selostion

Moreover, a comparative analysis of BCI and ABCI must
always consider the same number of choices in the ITR
calculations. The BClIs discussed herein have four
choices, the SSVEP stimuli for left (7.5 Hz), right (8.57
Hz), up (12 Hz) and down (6.67 Hz) selections. Each of
these choices is reinforced with eye tracking decisions
but the number of choices in the ITR calculation does not
increase. In a hybrid design, the number of choices could
potentially increase significantly. For example, a single
frequency for SSVEP detection could be employed and
12 choices added to an interface. Each choice would be
selectable via the user gaze and a BCI component. In this
form the hybrid utilizes BCI as a switch, but
unfortunately the ITR cannot consider 12/13 choices.
Doing so would provide a misimpression of performance
and instead the ITR should be calculated using a single
choice.
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CONCLUSION

The SSVEP paradigm provided a natural and intuitive
procedure to collaborate with an eye tracking algorithm.
Users were required to observe and fixate on the icon
they wished to select, and if icons were also collocated
with SSVEP stimuli, then the technique for interaction
would not change at all from a user perspective. For the
hBCI mean performance metrics of Acc., Eff. and ITR all
improved. While the absolute improvements are small,
they may contribute to user acceptability, as the eye gaze
component adds minimal additional user effort to the
interaction. BCI offers enormous hope for assisting
communication/interaction for people with neurological
disease. Further significant advances have been made in
recent years. The hybrid discussed in this paper increased
the performance metrics under study and generally the
perceived robustness by the volunteers. Set up by an
experienced user is still required, particularly regarding
the thresholds to achieve best performance. Analysis of
the eye tracking data and the collaborative decision
process provides insight, showing that metrics can be
further improved. This level of detail can also be used to
quickly screen out people for whom the technology is
inappropriate.
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ABSTRACT: SigViewer is an open source cross-platform
biosignal viewer designed to visualize and annotate
biomedical data streams. It supports a wide variety of
file formats, including BDF, EDF, GDF, CNT, BrainVi-
sion, and BCI2000. Recently, support for loading multi-
stream XDF data has been added. Besides visualizing
raw data, SigViewer supports loading, displaying, cre-
ating, and editing events that can be used to annotate
specific segments within a signal. Other useful tools in-
clude offset removal, computation of event-related po-
tentials, and calculation of power spectral densities. To
our knowledge, SigViewer is the only open source cross-
platform multi-format biosignal viewer currently avail-
able that supports XDF files. Furthermore, SigViewer is
completely free in that it does not depend on any pro-
prietary software such as e.g. MATLAB. SigViewer is
actively maintained and widely used across the globe (as
measured by the monthly downloads). Filtering data in
the frequency domain before visualization to e. g. remove
line noise or excessive drift is one of the next planned fea-
tures for a future release.

INTRODUCTION

Inspecting and visualizing raw biophysiological data
such as EEG (electroencephalography), EOG (elec-
trooculography) or ECG (electrocardiography) remains
one of the first steps in any processing pipeline. Visual-
ization can help in assessing general data quality, which
includes detecting segments contaminated with artifacts,
identifying noisy or completely bad channels, and in-
specting events co-registered with the data.

Most available visualization tools are either tied to spe-
cific hardware, restricted to a small number of file for-
mats, limited to a specific operating system, depend on
proprietary programming environments, do not feature a
fully featured GUI, and/or need to be purchased (i. e. are
neither free nor open source). Relevant open source
tools that focus on EEG/MEG analysis and ship with
a visualization component include the MATLAB-based
toolboxes EEGLAB [1], FieldTrip [2], Brainstorm [3],

! Graphical User Interface

Biosig [4] (does not have a GU, and the Python pack-
age MNE [5] (does not have a GUI). Commercial tools
include the MATLAB-based g.BSanalyzeE] as well as
BrainVision Analyzelﬂ

In contrast, SigViewer [6,7] is free, open source, cross-
platform, supports many different file formats, and is
written in standard-compliant C++ using the GUI toolkit
Qﬂ Development of SigViewer started some 10 years
ago as a software project at Graz University of Technol-
ogy, Austria. A first public version was uploaded to a
dedicated SourceForge.net repositoryE] in May 2010. The
initial design goals of SigViewer can be summarized as
follows (note that they are still valid today for the most
recent release):

1. SigViewer should be cross-platform (i.e. it needs
to run on Windows, Mac OS X, and Linux) with a
native look-and-feel.

2. Visualization and interaction should be fast and re-
sponsive.

3. SigViewer should be completely free and open
source (that is, all components required to build
and run SigViewer should be available as open
source). This specifically excludes MATLAB as a
development environment, which many alternative
viewers are based on.

An important use case for SigViewer is post-hoc man-
ual signal inspection with the aim to identify and mark
continuous artifact segments within the data. In a typi-
cal workflow, once artifact segments have been selected
with SigViewer, they can be exported and thus integrated
in any subsequent data analysis pipeline. Figure 1 illus-
trates this use case with SigViewer’s main window dis-
playing three EEG channels and one ECG channel, to-
gether with different events shown as rectangular areas in
varying colors. Conveniently, these segments can be ex-
ported to a file for reuse in other stages of the processing
pipeline.

Zhttp://www.gtec.at/Products/Software/qg.BSanalyze-Specs-Features
3http://www.brainproducts.com/productdetails.php?id=17

Yhttps://www.qt.io/
dhttp://sigviewer.sourceforge.net/
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FEATURES

SigViewer uses libbiosig from the BioSig projeclﬂ to sup-
port various file formats. Specifically, SigViewer pro-
vides read access for the following file types: BDF
(Biosemi), EDF (European Data Format), GDF (General
Data Format), CNT (Neuroscan), EEG/'VHDR/VMRK
(BrainVision), and DAT (BCI2000). Recently, support
for XDF (Extensible Data Format) has been added. Other
file formats supported by libbiosi may work but are not
fully tested yet; official support for these formats may be
added at a later stage.

: «u~,¢J\k~y\MfMMMM':wmmm)wwwwn,ww"wﬂvmmﬂ.'M\Mv.WMW«W“‘"""
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Figure 1: SigViewer running on Mac OS X.

After an initial search for global minimum and maximum
values on a per-channel basis (required for auto-scaling
the data), SigViewer renders the signal traces and events
contained in the loaded file. Smooth and rapid scrolling
through the file is supported, in contrast to many viewers
which feature only page-wise (and thus relatively slow)
navigation through a file.

In addition to visualizing the signals contained in a file, a
list of events is automatically generated in a separate tab.
Selected events can be deleted from this list.

Events can also be visualized, edited, and created within
the main signal view. Events are marked with colored
areas ranging from event onset to event offset. Multi-
ple events occurring at the same time can be discerned
by either assigning custom colors and/or alpha (trans-
parency) levels. Events with duration zero are drawn as
vertical lines. Events can be selected and edited graphi-
cally, which includes deleting and changing both the on-
set and offset as well as the event type. New events can
be created by dragging the mouse pointer over the desired
time range. Events can also be exported for use in other
applications.

Basic meta information about the data can be displayed
in a dedicated dialog window, which depends on the file

Shttp://biosig.sourceforge.net/
'http://pub.ist.ac.at/~schloegl/biosig/TESTED
Shttps://github.com/cbrnr/sigviewer
dhttps://github.com/sccn/xdf
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type. Possible displayed fields include file type, record-
ing time, patient ID, number of events, sample rate,
channel labels, data types, physical dimensions of the
recorded signals, and so on.

In addition to these visualization features, SigViewer also
supports simple signal processing operations. Currently,
power spectral densities as well as event-related poten-
tials can be computed for selected channels. Both tools
operate on (and thus require) selected event types in order
to compute averages.

RECENT DEVELOPMENTS

The latest stable release is 0.5.2, which has been avail-
able for almost four years. It can be downloaded from the
old SourceForge project website, but the project has since
moved to a new GitHub repository{ﬂ The latest source
code, issues, pull requests, and new releases will only be
available on the new GitHub website. The old Source-
Forge page will remain online until further notice.

Since this version, development has focused on adding
support for XDF files. Other minor changes include
switching to the latest version of the Qt library (from ver-
sion 4 to version 5) and replacing all icons with a more
modern monochromatic icon set.

XDF files are flexible XML-based containers that store
multiple data streams with different sample rates and data
typeﬂ This makes XDF an ideal format for multimodal
data, which combines different modalities such as EEG,
eye tracking, motion capturing, and joystick and mouse
tracking into multiple synchronized data streams. To
import XDF files, SigViewer uses the dedicated library
libxdf, which handles all necessary conversions required
to reshape the data contained in an XDF file to a format
that SigViewer can process. Specifically, libxdf resam-
ples all data streams to a common sample rate, which
can be set by the user (see Figure 2). For this purpose,
SigViewer presents a dialog window when opening an
XDF file, which shows all streams contained in the file
with their sample rates and a suggested common sample
rate. Irregular streams (that is, streams without a con-
stant sample rate) are linearly interpolated for visualiza-
tion. Streams containing strings are treated as events (and
are therefore listed in the event table as well as plotted
over the signals).

Another new feature is detrending of signals, which is of-
ten required for EEG signals that were recorded without
a highpass filter. This works for many recordings, but a
more general solution using highpass frequency filters is
necessary for signals exhibiting a significant amount of
non-constant low-frequency activity.
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[ JoX ] Resampling

This file contains signals of multiple sample rates.
Sigviewer needs to resample all channels to a unified sample rate in order to display them.
Please choose a sample rate below (This won't change the actual file content):

Stream Info

» M Stream 0

» M Stream1

» M Stream 2

v M Stream 3
Name NEDE_FlightParams
Type Position
Sample Rate 75 Hz
Channel Count 8 Channels
Channel Format double64

v M Stream 4

Name BioSemi

Type EEG

Sample Rate 2048 Hz

Channel Count 89 Channels

Channel Format floataz

Stream 5

Stream 6

Name iViewNG_HMD

Type Gaze

Sample Rate 60 Hz

Channel Count 37 Channels

Channel Format double64

» M Stream7

» M Stream 8

av
e

2048 2l Hz

Cancel |

Figure 2: Resampling dialog window for XDF files.

There are two ways to save events for XDF files; events
are either stored in a new XDF file or appended to an ex-
isting XDF file. Another recent change regarding events
is that SigViewer now exports event to plain-text CSV
(comma separated values) files for all supported file for-
mats. Previously, it was only possible to export to bi-
nary EVT files (which are essentially GDF files with-
out signals). Such binary files are not straightforward to
open, whereas CSV files can be opened with any plain-
text editor (or imported and analyzed with more special-
ized software like Microsoft Excel, LibreOffice Calc, R,
and Python/Pandas). Table 1 shows how such an exported
CSV file might look like (note that -1 in the channel col-
umn means that an event is associated with all channels).

Table 1: Exported events example (names abbreviated).

position duration channel type name
767 2048 -1 768  Start
767 2048 -1 786 Cross
1535 0 -1 785 Beep
1535 320 -1 769  classl
1791 768 -1 781 Feedback
BUILDING SIGVIEWER

Building SigViewer is straightforward and completely re-
lies on open source tools. However, the exact steps vary
depending on which operating system is used. SigViewer
runs on Windows, Mac OS X, and Linux. Official builds
are available for Windows 10, Mac OS X (macOS) 10.9—
10.12, and recent Debian/Ubuntu/Arch Linux distribu-
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tions. Older versions of these three platforms may work,
but are neither fully tested nor officially supported.

The source code of SigViewer is cross-platform, that is,
it works on all operating systems mentioned before with-
out further modifications. A prerequisite for building
SigViewer is therefore a folder with the source code,
which can be downloaded from the GitHub project site
(e. g. via downloading a zipped file or cloning the reposi-
tory).

On Windows, Qt 5.8 needs to be downloaded and in-
stalled together with the included MinGW 5.3 toolchain.
External dependencies must be copied to the external
folder within SigViewer’s source folder. At the time of
writing, libbiosig is a required dependency, but building it
on Windows is somewhat involved. Therefore, pre-built
binaries of this library are available on the old Source-
Forge reposito The contents of this zipped file needs
to be extracted into the SigViewer source folder, which
automatically creates the required external folder struc-
ture. Next, SigViewer is ready to be compiled. The eas-
iest way is to open the source tree with Qt Creator (the
file sigviewer.pro needs to be opened). After selecting Ot
5.8 MinGW 5.3 as the toolkit, the project can be built as
a release by selecting Build — Build Project “sigviewer”.
This creates an executable in the bin/release folder.

On macOS, XCode (available from the App Store) and
the Command Line Tools (these can be installed by run-
ning xcode-select —--install in a terminal) are
required. The source of the external dependency libbiosig
can be downloaded from the project website (this requires
at least version 1.8.4b). In the Makefile, the following
lines need to be adapted: lines 199 and 207 need to be
commented out, and 10.7 needs to be changed to 10.9
in lines 148 and 151. Furthermore, the program gawk
is required, which can be installed via Homebrev&E-] or
by downloading a pre-built binary such as the one avail-
ble from RudixEl Then, make libbiosig.a canbe
executed in a terminal. This creates the file libbiosig.a,
which needs to be copied to SigViewer’s source into ex-
ternal/lib. Similarly, the files biosig.h and gdftime.h need
to be copied to external/include. After that, gmake can
be run in a terminal within the SigViewer source tree, fol-
lowed by make. This creates the app in the bin/release
folder.

The procedure on Linux is almost identical to the one
described for macOS. The only difference concerns the
way required dependencies are installed. We recom-
mend to use the native package manager to install a GNU
toolchain with g++, gawk, and Qt 5.

Since details in this process can change rapidly with on-
going development, the most recent instructions on how
to build SigViewer can be found on the project web-
site. Note that we provide pre-built binary packages of
SigViewer for Windows, macOS, and Linux for users
who wish to skip the build process.

Uhttps://sourceforge.net/projects/sigviewer/files/0.5.2/external-0.5.2-win32.zip/download

Thttp://brew.sh/
2http://rudix.org/packages/gawk.html
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DISCUSSION

SigViewer is an actively maintained open source viewer
for biosignals. The number of monthly downloads is
around 250 on average and around 20,000 in total accord-
ing to the download statistics available from SourceForge
(see Figure 3 for the monthly downloads over the past six
and a half years). Given that these downloads are for a
version that was released almost four years ago, we ex-
pect these numbers to increase when the new version with
support for XDF is released.

600

400

200

06/10
12/10
06/11
12/11
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12/13
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12/14
06/15
12/15
06/16
12/16

Figure 3: Monthly downloads from SourceForge. The
total number of downloads since project upload until
2017-01-31 is 20079, and the average number of monthly
downloads is 248.

Planned enhancements for the near future include adding
support for spectral filters (highpass, lowpass, notch) to
improve visualization of signals with known noise char-
acteristics such as large low-frequency drifts or 50/60 Hz
power line noise. Other future efforts will be directed to
refactoring parts of the code base, for example to cre-
ate a more suitable header structure for meta informa-
tion (which facilitates displaying multi-rate streams with-
out the need for resampling), to implement a hierarchical
buffer which stores the signals in different resolutions for
rapid visualization in different zoom levels, and to imple-
ment a more modular file reader interface.
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CONCLUSION

We have added several useful features to SigViewer,
most notably support for visualizing multi-stream XDF
files. Continued development ensures that SigViewer
will remain a valuable tool for inspecting raw biomedical
data, which is an important stage in any signal process-
ing pipeline including brain-computer interface (BCI) re-
search.
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ABSTRACT: Motor Imagery based Brain-Computer
Interfaces (BCI) have shown potential for the
rehabilitation of stroke patients. In order to make BCI
systems available in the clinical environment new
processing stages that increase the number of patients
that can use these systems must be developed. This
work presents a novel processing stage for BCI systems
using the Filter Bank Common Spatial Patterns
algorithm for feature extraction and Particle Swarm
Optimisation for feature selection. The proposed BCI’s
processing stage performance was evaluated with
electroencephalography data of six stroke patients,
which performed motor imagery of their paralysed
hand. Offline tests reached average classification
accuracies of 758 %. For 4 out of 6 patients, the
proposed method showed a statistically significant
higher performance (p<0.05) than the Common Spatial
Pattern method. Therefore, although a higher sample is
needed to confirm the observations, it is possible to
significantly improve hand motor imagery classification
by selecting filter bank common spatial patterns features
with particle swarm optimization.

INTRODUCTION

Stroke is the first cause of disability worldwide [1].
Approximately 400 patients receive neurorehabilitation
therapy for stroke sequelae each year in the National
Institute of Rehabilitation, located in Mexico City. Loss
of motor function (known as hemiparesis) is one of the
most disabling consequences of stroke, which usually
affects both upper and lower limbs from one side of the
body.

Assistive  technologies such as Brain-Computer
Interfaces (BCI) provide an artificial communication
channel between the brain and an external device such
as a robotic orthosis [2, 3]. BCI systems based on motor
imagery (MI) of affected limbs have shown great
potential as a tool for brain plasticity enhancement [4,
5]. Ml is a mental rehearsal of movements of a limb, for
example the hand or foot, without muscle activation [6,
7, 8]. MI elicits distinctive patterns in the electrical
activity of the sensory-motor cortex, mainly in the
frequency bands known as mu (8-13 Hz) and beta (14-
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30 Hz) [6, 9]. A Ml-based BCI system is comprised of
four stages: acquisition, pre-processing, feature
extraction and classification. Most BCI acquire
electroencephalography (EEG) since is a non-invasive
technique, has a good time resolution and is easy to
accept by patients. Linear Discriminant Analysis (LDA)
is the most used classification technique reported in BCI
publications [10, 11]. One of the most effective feature
extraction methods is the Common Spatial Patterns
(CSP) algorithm, which computes a set of spatial filters
that optimally differentiate two classes of MI. To
achieve good classification performances using the CSP
algorithm, the temporal filtering of the EEG signal must
be performed on a specific frequency band, usually this
band is comprised by the mu and beta frequency range.
Two other parameters that need to be set up are the time
interval from which features are going to be extracted,
and the subset of spatial filters involved in the feature
extraction process [12].

The performance of CSP can be enhanced by selecting
subject-specific parameters. Therefore, modifications to
the original CSP method have been proposed to include
this aspect. One of such modifications is known as
Filter Bank Common Spatial Patterns (FBCSP); this
method performs an automatic frequency band selection
for temporal filtering of the EEG [13]. FBCSP
algorithm employs a filter bank that decomposes the
EEG into 9 different frequency bands covering the
range of 4 to 40 Hz. Each of these 9 frequency bands is
spatially filtered using the CSP algorithm; afterwards
the extracted features for each band are selected with
either the Mutual Information-based Best Individual
Feature (MIBIF) or the Mutual Information-based
Rough  Set Reduction (MIRSR) algorithms.
Classification is performed only with the selected
features [13,14]. Feature selection is an important stage
of the FBCSP algorithm, since it lowers the number of
frequency bands needed for Ml classification, and at the
same time increases the classification performance of
the BCI system. Feature selection is in fact an
optimisation  problem, and therefore artificial
intelligence techniques, such as Particle Swarm
Optimisation (PSO), could be used for finding a
solution for it. PSO was originally proposed by Shi and
Eberhart, inspired by the social behaviour of bird flocks
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while searching for food. PSO performs a search in the
space of the problem, with the aid of a population
(called swarm) of individuals (called particles). Each
particle executes a search based on its current position
and velocity in the search space. In each iteration
(called generations), the position and velocity of the
particles are updated according to their best previous
position (local search) and the best position of the
swarm (global search) [15]. To the author’s knowledge,
there are few studies that describe the use of PSO as a
feature selection algorithm for BCI systems [16,17].

In this work, a novel signal processing stage comprised
of FBCSP for feature extraction, PSO for feature
selection and LDA for classification was implemented
as part of a BCI system. The proposed algorithm was
evaluated offline with data of patients with subcortical
stroke diagnosis.

MATERIALS AND METHODS

Participants: The sample for this study comprised 6
patients diagnosed with stroke (Mean = 55.8 + 12
years). In order to be considered for inclusion in the
study, patients had to have a first stroke event of
subcortical localisation, confirmed by a neurologist by
means of neuroimaging studies (Magnetic Resonance or
Computed Tomography); total or partial paresis of one
of their hands; without clinical history of any other
previous neurological or psychiatric diseases; right
handed; with normal or corrected to normal vision and,
with a normal performance in the subscales of digit
detection and visual detection of the neuropsychological
test NEUROPSI (this test has been validated for
Spanish-speaking populations) [18]. The subscales
evaluate the ability to follow instructions and
concentrate in repetitive tasks. Subcortical stroke
patients were selected since their brain damage does not
involve the brain cortex and, therefore, they were less
likely to present significant cognition impairments.
Patients’ data are shown in Tab. 1.

Table 1: Clinical and Demographic data of patients

Patient Age Gender Hemiparesis Evolution
1 50 Male Right 7 months
2 57  Female Right 36 months
3 58 Male Left 2 months
4 79  Female Left 1 month
5 46 Male Left 3 months
6 45 Male Left 3 months

EEG acquisition: A g.USBamp biosignal amplifier
from g.tec was used for EEG acquisition. EEG was
acquired with 24-bits of resolution and sampling rate of
256 Hz. Active EEG electrodes were used for
acquisition, with 11 electrodes placed over the scalp of
the patients, in positions C3, C4, Cz, T3, T4, F3, F4, Fz,
P3, P4 and Pz of the international 10-20 system. Ground
placement was set in the AFz position, and the reference
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electrode was placed in the right earlobe. To verify that
no real movements were elicited during MI,
Electromyography (EMG) was recorded from the deep
flexor and superficial muscles of the fingers of both
hands. For each patient, four recording sessions were
performed in consecutive days, with 120 trials recorded
in total. Recordings were performed in 4 days to avoid
patients’ exhaustion, and all trials recorded per patient
were included in the analysis. Patients were instructed
to sit in a comfortable armchair, with a computer
monitor placed at 150 cm in front of them. Visual cues
shown in the monitor directed the patients to perform
both rest with eyes open and MI from their paralysed
hand. EEG acquisition was performed using a similar
strategy as the one followed by the Graz paradigm [19].
Fig. 1 shows that the rest interval of the trials lasted 3 s
and the Ml interval lasted 5 s.

Implementation of the FBCSP+PSO algorithm: A
one-second length window was extracted from 1.5 s to
2.5 s to obtain the rest information for each trial.
Another window of one-second length was extracted
from the 3.5 to 4.5 s time interval of each trial, to obtain
the MI information of the trials, as observed in Fig. 1.
These time windows were selected based on previous
studies which show that differentiation between MI and
REST classes is higher in these time intervals [20]. The
FBCSP algorithm encompassed the processing stage of
the BCI system, and PSO was used for feature selection
(named FBCSP+PSO). A diagram of the algorithm’s
implementation is shown in Fig. 2.

Class 1 Class 2
1 | 1 1
RIGHT HAND
1 l | 1
1 || MOTORIMAGERY
REST :

. LEFTHAND RANDOM
- MOTORIMAGERY

1
1
1 1 1
I < [t INTERVAL
== =51
I | >
T 1 T 1 T 1 T 1 T T T 1
t=0 1 1 2 1 3 1 4 1 5 [ 7 8s
0 |1s . 1s . |
I 3s I 5s 35s |

Figure 1: Illustration of the experimental paradigm.
Dotted lines show the time windows extracted from
EEG signals.

. | EEG signals EEG signals
Acquisition | ining set (n=216) Test set (n=24)
Temporal | _Selected, | Selected band-pass
Filtering frequency’ filters

- bands

- | |
Spatial | Comput_edl — _ 5 CSPwithselected
Filtering fiters T filters

Feature
Selection

4 I

LDA LDA with computed

Classification4| ~  LDA ———-2"=— coefficients

coefficients

Figure 2: Diagram of FBCSP+PSO implementation
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EEG data were filtered in order to obtain 6 frequency
sub-bands, each 4 Hz broad, and with 1 Hz of
overlapping in order to avoid loss of information.
Encompassing both alpha and beta frequency bands as
follows: 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, 24-28
Hz and 28-32 Hz. A 60 Hz band-stop filter was also
applied to the EEG signals. All filters were FIR filters
of 20th order, selected for their linear phase features.
For the EEG data filtered in each sub-band, spatial
filters were computed with the CSP algorithm. CSP
performs a linear transformation on the EEG data, in
order to obtain features whose variances are optimal for
classification of two classes of MI, in a specific
frequency band. Details of the CSP implementation can
be found in the works of Blankertz et al. [21], and
Ramoser et al. [22]. Spatial filters were computed using
the MATLAB command W =eig (51,51 + S2) as
suggested in the above-mentioned works. W is the
matrix containing the spatial filters, S1 and S2 are the
covariance matrices of MI and rest computed from the
EEG data of each filtered frequency sub-band. In the
implementation of the original CSP, only the first and
last m columns of the W matrix (m is generally 2) are
used to generate the feature vector used for
classification. With the goal of having a greater chance
of finding the optimal sub-band for each patient, in this
work all possible features were extracted with CSP. The
feature vector generated for each trial i is comprised as
follows:

fi= [fl,ivf2,i:f3,irﬁl,irf5,i’f6,i] 1)
Therefore, CSP features computed for the training set
comprised by nt trials are:
Frrain = Uf1; f25 35 fas s fe)s Frrain € R™%66 2
Where 66 are the 6 frequency band features f extracted
for each of the 11 recorded electrodes. For feature
selection, PSO was used for selecting a subset of
features from Fr,.4, in order to decrease both the
classification error and the number of selected features.
PSO was computed by solving two equations:

vEt = w4 an (PBest =)+ 6 g
r, - (GBest} - x[')
xl?l+1 — x + vn+1 4

Where x**1 and v**! are the position and velocity of
the ith particle of the nth generation. For PSO
implementation 50 particles and 50 generations were
used. w is the inertial weight of PSO which linearly
descends from 1 to 0 as generations of PSO are
computed. ¢; and ¢, are positive constants set to 1. r;
and r, have random values between 0 and 1, which
coupled to ¢; and c, set the local and global search
properties of PSO. PBest}* is the best position reached
by the ith particle in the nth generation. GBesty is the
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best position (g) reached by the entire swarm in the nth
generation. The maximum position value that a particle
could reach was 1 and the minimum was 0. Maximum
speed of each particle was set to 1 and minimum speed
to 0. In this work, the search space of PSO was 1xD ,
where D equals 66, and was comprised of the 66
features that can be selected from the FBCSP algorithm.
Each computed solution with PSO is a subset of the
selected features. Solution values are in the range from
0 to 1. If the value of an element of the solution was
higher or equal to 0.5, then the corresponding feature
was selected. The original CSP algorithm states that
selected features must be paired, so complementary
features of the selected ones were also included, in case
they were not originally selected by PSO. Selected
features from the training set were used for designing an
LDA classifier. PSO fitness value was computed with
the following equation:

value = (errx2) + (nselec/66) (5)
Where err is the computed classification error from the
training set. nselec is the number of selected features.
Variables err and nselec/66 have values ranging from
0 to 1. Both parameters err and nselec/66 are
summed, so that PSO can perform a reduction of both
classification error and the number of features used for
classification. The value err is multiplied by 2, so that
the optimization priority of PSO is the reduction of the
classification error over the selection of a lower number
of features. The stop criteria used for PSO was either
achieving 0% of classification error, or 50 generations.

Fig. 3 shows a block diagram depicting the
implemented PSO algorithm.
[ PSO parameters are set J
Farticle’s posmons e Position is translated to
[ velocities are randomly J feature selection vlv
|n|t\a||zed e
Index (1 [ 23] 4])[66])
g Evaluate Fitness Function x o1T07 o108 )[04
- with every particle
¥ V
2 Save the partlcles position 0, x;
c , X < 0.5
2 with the best fitness and f(Xingex) = {1 xfildp" =05
2 each partlcles best fitness » ndex = T
g i
.% Update pnswtlons and Index | 1 | 2 | 3 | 4 |---
@ velocities of each particle
x of1]Jof1]-|o
Save best poswtlon reached
by the swarm

Figure 3: Block diagram describing the implementation
of the PSO algorithm

With the final selected features (x) and the training set,
a LDA classifier was designed, which was later
evaluated with the testing set. Features selected with
PSO in the training stage were the same as the ones
used for the testing stage of the classifiers. LDA
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performance was measured by computing the
percentage of classification accuracy (%CA).

Cross-Validation: A stratified cross-validation of

10x10-Fold was used in order to avoid bias in the
computation of %CA. Classifiers were tested using
totally different datasets than the ones used for training.
For each fold and repetition, the FBCSP+PSO algorithm
was calculated. The 100 values of %CA obtained from
this procedure were used to compute the average %CA
for each patient.
For comparison purposes, the performance of the
FBCSP+PSO method was compared with that of the
original CSP using the same training and test subsets,
and applied to a frequency band of 8 to 32 Hz.

Statistical Analysis: In order to assess the reliability

of the BCI system, both %CA and the practical level of
chance were computed. The practical level of chance for
each experiment was not 50%, since its value needs to
be computed by means of a confidence interval as
explained by Muller-Putz et al. [23]. Practical level of
chance was computed with a binomial distribution using
a 95% confidence interval, with 120 trials
encompassing the data of each class. The computed
%CA were compared with the practical level of chance
in order to assess if a patient could control the BCI
system.
A paired t-test (0=0.05) was performed for comparing
the %CA obtained with the proposed FBCSP+PSO
method, and the original CSP (with a frequency band
ranging from 8-32 Hz).

Computational cost: The averaged execution time of
the proposed algorithm’s training stage for each
patient’s cross validation was used to estimate its
computational cost. All computations were performed in
a PC with a 2.5GHz Core i7 processor and 12GB of
RAM.

RESULTS

Tab. 2 shows the number of selected features by the
FBCSP+PSO algorithm for each patient. This number is
the mode from the 100 values computed from the
10x10-Fold cross-validation with the train set. On
average, for each patient, 10 features were selected by
PSO. The most selected frequency band for all
experiment’s repetitions is also shown: for 5 of the 6
patients it was from 8 to 12 Hz, which comprises the mu
rhythm, while for the other patient the selected
frequency sub-band was 12 to 16 Hz. Tab. 3 shows the
%CA obtained with FBCSP+PSO and the ones obtained
with CSP with a frequency band from 8 to 32 Hz are
shown. These percentages are the offline MI and rest
recognition capabilities of the BCI.

It is important to remember that the number of selected
features with the CSP algorithm was always 4 (2xm).
An asterisk (*) was used to indicate if a statistically
significant difference (p<0.05) was found between both
methods. FBCSP+PSO showed better performance than
CSP for the 6 patients. For 4 of the 6 patients,
differences were statistically significant.
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Table 2: Feature selection performed with PSO. SD
refers to standard deviation.

Patient FBCSP+PSO
Features Frequency Band (Hz)
1 10 8-12
2 8 12-16
3 8 8-12
4 10 8-12
5 10 8-12
6 12 8-12
Mean(SD)  10(2) -

Table 3: Performances of FBCSP+PSO and CSP. An
asterisk (*) means that statistically significant
differences (p<0.05) were found between both methods.
SD refers to standard deviation.

FBCSP+PSO CSP
Patient % Classification % Classification
accuracy (SD) accuracy (SD)
1 83 (2) 82 (1)
2 85 (2) 84 (1)
3 68 (2)* 66 (1)
4 65 (3)* 58 (2)
5 76 (2)* 69 (1)
6 74 (2)* 63 (1)
Mean(SD) 75(8) 70(10)

The average computational cost of FBCSP-PSO training
stage across all patients was 3.6 s (SD=0.04 s).

DISCUSSION

The presented novel processing stage was comprised by
the FBCSP algorithm for feature extraction and PSO for
feature selection. Test results were compared to those
from the original CSP algorithm with a frequency band
from 8 to 32 Hz. The proposed method was designed in
order to increase the BCI’s MI classification
performance of the paralysed hand of stroke patients.
Offline performances of the proposed processing
algorithm achieved better performances than the
original CSP. It is important to mention that for 4 out of
6 patients, these performance differences were
statistically significant. These results are different from
the ones presented by Ang et al., who performed an
offline evaluation of the FBCSP that employed the
MIRSR feature selection algorithm. They performed
their test with a public database comprised of 9 healthy
subjects. In their work, it is shown that FBCSP using
the MIRSR algorithm had better performances for 6 out
of 9 subjects than CSP (using a 7 to 35 Hz band), but
none of the performance differences were statistically
significant [14]. Therefore, the FBCSP+PSO method
seems to be a better option for automatic frequency
band selection of each patient.

The average offline performance computed for each
patient is similar to the one reported by Ang et al. in a
study which analysed the performance of 46 stroke
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patients which achieved an average of 74% of correct
classification. In order to acquire MI from the patients’
paralysed hands, authors recorded 27 EEG channels.
The processing stage comprised the FBCSP using
MIBIF as feature selection algorithm [24]. In the
present work, similar offline performances were
obtained, however only 11 EEG channels were
recorded. PSO is an optimisation method for which
extensive research has been conducted in order to
ensure better convergence and to reduce stagnation of
the search space. The heuristic nature of PSO implies
that the method performance will not be limited by
statistical features of the search space, since the method
does not need to compute inverse matrices or other
computations  which often present restrictions,
especially for high dimensional search spaces.
Consequently, PSO can be easily adapted for feature
selection in Ml-based BCI with setups involving a high
number of EEG electrodes; however, one of the main
disadvantages of PSO optimisation is the high
computational cost required for its training phase. In
this work, computational cost was not an issue since a
relative low number of EEG channels were recorded
and processed. Offline performances of the BCI system
show that PSO implementation for feature selection of
FBCSP allows this method to have better performances
than CSP. This performance is achieved by setting a
multi-objective optimisation for the PSO algorithm,
which is computationally efficient since it only required
computing the LDA performance and the number of
selected features. It is important to mention that, in
order to achieve better performances, higher importance
was given to the LDA’s classification performance than
to the number of selected features in the fitness
function.

One of the limitations of the present study was that
scalp location of the selected features was not analysed.
However, all the recorded electrodes were placed over
the sensorimotor cortex and, therefore, in an online BCI
aimed for neurorehabilitation no maladaptive changes
during neural re-organization would be elicited by the
feedback.

CONCLUSION

This work presents a novel processing stage for BCI
systems. The proposed processing stage comprised of
FBCSP+PSO combined with LDA showed good
performances for classification of MI from the
paralysed hand of stroke patients. PSO as a selection
algorithm for FBCSP features allows reducing the
problem’s dimensionality and achieving better
classification performances, compared to those obtained
if only the original CSP is used. The next developing
stage of the system will be to perform tests involving
direct EEG acquisition from patients. An online
implementation of the proposed algorithm must be
assessed to further confirm its feasibility for stroke
patients’ rehabilitation.
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ABSTRACT: Deep Brain Stimulation (DBS) is a stan-
dard clinical tool for treating refractory stages of Parkin-
son’s Disease (PD). While current chronic DBS systems
apply constant stimulation patterns, improved clinical
effects are expected from adaptive DBS (aDBS) sys-
tems, which stimulate only when required, and for
which single-trial methods developed in the field of
BCI may prove fruitful. The development of aDBS
systems requires (among others) two key ingredients:
neural markers informative about the state of the pa-
tient’s motor system, and algorithmic control strategies
which translate the observed markers into stimulation
patterns. While both start to be investigated in human
patients, animal models of PD may drive aDBS research
forward at substantially higher speed and lower risks. In
this regard, we present a prototype setup of a closed-
loop aDBS system. It enables online recording, signal
analysis and stimulation for a rodent model of PD.
Our preliminary analyses show that the system — in
accordance to the literature — is able to evoke spectral
power changes of cortical and subcortical LFPs, and
thus provides the experimental basis to systematically
investigate informative markers and control strategies.

INTRODUCTION

Deep brain stimulation (DBS) of the subthalamic nu-
cleus (STN) has become a standard therapy for treat-
ing refractory stages of Parkinson’s disease (PD) [1].
Clinical applications of DBS usually rely on open-
loop technology, which means that the stimulation is
uninterruptedly delivered, disregarding the motor state
of the patient or his/her related brain activity signatures,
also called neural markers (NM). This type of DBS is
termed continuous DBS (cDBS). Despite proven clinical
benefits, cDBS systems are energetically inefficient,
leading to a reduced battery life, and are also known
to cause side effects like tolerance to treatment [2], [3],
[4] which may be related to the continuous stimulation.
In recent years, first closed-loop adaptive DBS (aDBS)
systems have been presented in research environments
[51, [6], [3]. They pursue the goal to provide stimulation

*Both authors have contributed equally to this study
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on-demand only, for example, by reducing or stopping
stimulation during periods of inactivity or when the
motor performance of the patient does not require it. The
envisioned effect of aDBS is an improvement of the PD
symptoms which is at least comparable to that of a cDBS
approach, while simultaneously minimizing the energy
input to the brain. Determining when and how to deliver
stimulation in closed-loop aDBS systems could directly
be based upon the observed motor ability of the patient.
For practical reasons, however, current approaches try
to replace the behavioral measurements by NMs which
describe the current motor state of the patient. Such
NMs can be extracted from local field potentials (LFPs)
recorded via electrodes which habe been implanted
in the STN for delivery of the DBS pulses [7], [8].
Although the identification of PD-relevant NMs has been
studied in recent years, the high intersubject variability
of the signal features makes the characterization of such
NMs a difficult task [9], [10], [11]. In addition, the
development of closed-loop control algorithms poses
a great challenge as (a) non-stationarities govern the
dynamics of measured brain activity, (b) artifacts of
biological and non-biological origin are contained in
the data, (c) the amount of labeled data per patient to
learn from is limited. Further studies on investigating the
mechanisms of the DBS [12] and on the optimization
of stimulation parameters [13], are additional examples
of the efforts done in this regard. Along these lines,
several studies on closed loop DBS in both compu-
tational and experimental neuroscience — such as by
[14], [15] and [16] — have been published, where the
development of systems that can record, analyze and
stimulate in an online closed-loop scenario seemed key
to scientific progress. The development of such systems
can be addressed using an experimental setup based
on animal models, as introduced in [17], [18], [19].
The 6-hydroxydopamine (6-OHDA) PD rat model is
an example of a neurotoxic model. It makes use of 6-
OHDA injected into the substantia nigra pars compacta
(SNC), medial forebrain bundle (MFB), or the caudate-
putamen complex CPu [20] to generate Parkisonian-
like biomarkers and behavior. In the present work,
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we introduce our initial work on a novel closed-loop
DBS stimulation system that allows recording, analysis
and stimulation of cortical and subcortical structures in
hemi-Parkinsonian rats, which has not been reported so
far in the literature. We also present preliminary results
on the spectral effects evoked by DBS when applied to
the STN of 6-OHDA PD rats.

METHODS

Animal Preparation

Stereotactic surgery was carried out for high precision
lesioning and electrode implantation. All protocols were
approved by the Animal Care Committee of the Uni-
versity of Freiburg (permit G-15/31). Female Sprague-
Dawley rats (300-320g) received inhalation anaesthesia
with isoflorane. A freshly prepared 6-hydroxydopamine
according to [21], kept in the dark and on ice, was
injected unilaterally into the ventrolateral CPu. The flow
rate of the injection was 0.5 p1/min and the injection was
carried out for 10 min using a micropefusion pump.
Four weeks after the operation, a rotational test was
carried out on each rat. Each animal was habituated to
the test environment for around 30 minutes. Then, the
animal was taken out, subcutaneously administrated with
apomorphine to evaluate the success of the lesioning
operation with drug-induced rotation, as explained in
[21]. The animals were placed back in the experiment
environment and the rotation was measured for 40
minutes. The animals showing drug-induced rotation
(PD rats from now on) were chosen for the electrode
implantation surgery.

The week after, electrodes implantation surgery was
carried out on 6 PD rats. Two electrodes were implanted
in two different regions of the brain. One tetrode in
the subthalamic nucleus (STN) with four contacts (two
stimulation and two recording), made from 50um micro
wires (Science Products GmbH, Germany) and a bitrode
with two recording contacts in the motor cortex with
the same micro wires. Two anchors were placed on the
rat’s skull as reference and ground contacts, respectively.
After a week of recovery the closed loop experiment was
executed.

Signal Acquisition

The stimulation device used in this study was designed
and built in the Neuroelectronic System group (NES
STiM) of the University Medical Center Freiburg, Ger-
many [22],[23]. An Alphalab SnR (Alphaomega Co.,
Israel) recording device was utilized to capture the LFPs
of the rat’s brain during the experiment. The schematic
of the closed loop setup is depicted in Fig. 1. The signals
were recorded at 1395 Hz sampling frequency. For the
offline analysis, a frequency filter with a pass band of
0.7-90 Hz was applied before signals were downsampled
to 250 Hz.
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Figure 1. Schematic of the closed loop utilized in

this study. The signal of local field potentials (LFPs)
is captured using an Alphalab SnR device and streamed
out for visualization and into Matlab. Analysis of the
acquired signals, as well as the stimulation control was
performed online.

Experimental Design

The timeline of one experimental session is depicted
in Figure 2. Each rat was recorded for 10 mins after
being placed in the experimental environment (pre-
stimulation phase), followed by a stimulation phase of
10 min duration. Prior to the subcutaneous injection of
apomorphine and directly after it, the LFP baseline
activity was recorded for 10 s each. During the following
10 minutes, closed loop DBS stimulation was carried
out (stimulation phase). In this stage, the stimulation
onset was triggered when the power of the beta band
(13-25 Hz) activity averaged across channels surpassed a
threshold defined as the median of the power recorded in
the post-injection baseline interval. Once the stimulation
was triggered, it was delivered with constant intensity for
one minute. For later offline analysis of the simulation
effect, two time intervals of LFP signals of 10 s duration
each were extracted from the stimulation-free periods
directly before and after the stimulation. After a washout
period of 60s, the threshold criterion became active
again and the next stimulation block could be delivered.
Within the 10 min stimulation phase, an average of 4.6
stimulation blocks were delivered per animal.

apomorphine

=
o
3
>

60s

———{stim. ock ==2==—{stim. block|——————
&, - &

10s

10s

Figure 2. Schematic of the recording sessions with
a depiction of the segments analyzed: baseline prior
to apomorphine delivery O, baseline following apomor-
phine delivery @, pre-stimulation @, post-stimulation @.
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Segments analyzed: Recorded signals were analyzed
under two different setups.

1) To determine the effects of DBS in the spectra
of the motor cortex and the STN, signals before
and after each stimulation interval were analyzed.
The 10s of data before and after DBS stimulation
were segmented using 2 s rectangular windows with
90% overlap. Pre-stimulation and post-stimulation
spectra were compared using the Wilcoxon rank-
sum test to determine the statistical significance
of observed differences. For reference, the spectra
of two baseline recordings were also computed,
ie., 10s segments immediately before and after
apomorphine delivery, but prior to any DBS stim-
ulation. Refer to Figure 2 for an schematic repre-
sentation.

To analyze potential washout effects of the apo-
morphine, as well as cumulative effects caused by
repeated delivery of DBS periods over 10 minutes,
the 10s segments of data collected before each
DBS stimulation (windowed as described above)
were correlated with the timestamp (time since
apomorphine delivery) of each window using the
Spearman’s rank correlation.

2)

In all scenarios, PSD of the signals was computed using
a multitaper estimate with a multitaper windowing band-
width of 4 Hz. The frequency components around 30 Hz
were disregarded in the analysis due to a hardware-
related artifact in that frequency band.

RESULTS
Effects of DBS onto the spectrum

Figure 3 depicts spectra of all animals, four recording
locations and the four conditions: baseline prior (yellow)
and after (green) apomorphine, and the average of the
spectra prior (blue) and after (red) each DBS stimulation
block, according to the setup shown in Figure 2. It is
observed, that the administration of apomorphine causes
an increment in the signal power particularly in the low
frequency range. This phenomenon can be observed in
all the channels for subjects 2, 3, 4 and 6. DBS effects
are assessed by comparing pre and post segments of
each simulation block (blue vs. red). Various, subject-
specific effects were observed: For subject 1 synchro-
nization of activity in the 5-10 Hz range was observed
(mainly visible in channels m1, m2, and stnl). Subject 2
shows a contrary effect upon stimulation, where power
in the low frequency range decreases, as observed in
m2 and stn2. An even stronger power decrement can
be observed in the beta band (around 15Hz) of this
subject, particularly evident in channels m2, stnl, and
stn2. Subject 3 shows a much more smooth spectrum,
with no specific frequency peaks standing out from
the background in either conditions, except for a low
frequency desynchronization present in stn2 and a beta
band synchronization detected in stnl. Subject 4 shows a
behavior similar to subject 1, presenting power decrease
in the lower part of the frequency spectrum for m2,
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stnl, and stn2. Subject 5 shows the smallest spectral
changes caused by DBS stimulation, with a subtle power
decrement of the alpha-range component in channel m2.
Similarly to subject 3, power spectra of subject 6 do not
show any evident frequency components standing out
from the background, with the effects of the stimulation
decreasing the signal energy of the entire analyzed
spectrum.

Effects of time in PSD

Spearman’s rank correlation between the energy of each
of the frequency bins and the corresponding times-
tamp are provided in Figure 4. Subject 1 shows rather
heterogeneous changes in the spectra of ml and m2,
however both stnl and stn2 show a clear desynchro-
nization (marked in blue) in the lower frequency range.
Subject 3 shows a consistent power decrement in the
lower part of the spectrum for ml and m2, and a
generalized increment of the power (marked in red) in
stn2. Subjects 4 and 5 show a generalized decrease in
the signal energy along time. It is worth pointing out
that for subject 4, alpha band was stable for m1, m2
and stnl, whereas beta was stable only for m1 and m2.
On the other hand, the time-related desychronization for
subject 5 is present in the whole spectrum, although a
stronger desynchronization in stnl beta band can also
be observed. Finally, subject 3 reveals a weak power
decrement in the lower part of the spectrum for m2,
having stnl the contrary effect. Channel stn2 presents
a power decrement, which is homogeneous across the
spectrum.

DISCUSSION

In this contribution, we presented (1) a closed loop
aDBS system allowing acquisition, analysis and stimu-
lation of subcortical and cortical structures of PD animal
models and (2) preliminary results on the individual
effects observed upon DBS on spectral characteristics
of LFP signals.

i Our system provides a suitable platform for acqui-
sition of subcortical and cortical signals in an on-
line scenario. Although, the real-time requirements
of the system have not been defined, its modular
construction allows for a flexible setup, that is easy
to customize. As future work, the exact temporal
characteristics of the system will be assessed.

ii DBS-evoked cortical and subcortical desynchroniza-
tion and synchronization effects in alpha and beta
bands have been observed. As the effects varied be-
tween animals, relevant NMs should be determined
individually for each subject. This finding underlines
the potential benefit of data-driven approaches for
driving aDBS methods forward.

We have shown that the experimental setup divided

in pre-, during, and post-stimulation phases is ap-

propriate to carry out the intended analysis.

Temporal structure of the spectral features confirms

the existence of non-stationary dynamics. While in
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Figure 3. Top: spectra of recorded channels displaying DBS- and apomorphine-evoked changes: baseline prior to
apomorphine O, and baseline following apomorphine @, pre-stimulation block @, post-stimulation block ®. Bottom:
Graded scores of the ranksum test are provided in green to brown colors. They compare pre- @® vs. post-stimulation
@ spectra. In both figures, gray areas mark the spectral band affected by a technical artifact.

our setup, it could not be determined, if this non- ACKNOWLEDGEMENTS
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Figure 4. Correlation of power spectrum with time. Red means that the power of the corresponding frequency bin
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ABSTRACT: Measuring brain activity with non inva-
sive techniques as EEG and MEG allows to detect os-
cillatory sources related to neural processes. Covariance-
based spatial filters determined by linear subspace meth-
ods allow to extract narrow band sources whose band
power correlates with a given target variable in single
trial. Since knowledge about the frequency band of
interest usually is unknown, filterbank strategies are
commonly used. They rely on time domain filtering of
the signals to predefined frequency bands. We suggest
that the implementation can be optimized by computing
the covariance matrices directly in the frequency do-
main, thus rendering the iterative time-domain filtering
unnecessary. Our contribution shows that the imple-
mentation in the frequency domain is computationally
more efficient than the classic approach. We evaluated
the novel approach in the context of source power co-
modulation (SPoC) and give indications, how it can be
extended to other subspace methods such as common
spatial patterns (CSP) [1].

INTRODUCTION

Measuring electrical oscillatory activity of the brain by
using electroencephalography (EEG) provides functional
information about the underlying neural processes [2].
Extraction and analysis techniques of such oscillatory
components have been developed in the context of brain-
computer interfaces (BCI) [3], [4] and neuroscience [5].
As low signal-to-noise ratio (SNR) and volume con-
duction impedes the EEG analysis, spatial de-mixing
approaches are widely used in order to extract oscillatory
subspace components. For this purpose, unsupervised
techniques are widely used, with independent com-
ponent analysis (ICA) [6], [7] being most prominent
in the field. With specific prior knowledge, however,
more specialized methods like spatio-spectral decom-
position (SSD) [8] or slow feature analysis [9] may
prove valuable. If discrete labels are available, however,
then a supervised method like common spatial patterns
(CSP) [1] can improve the subspace representation, as
the spatial decomposition can be guided by the label
information. CSP is applicable when discrete labels are
given (e.g. class labels in a motor imagery task, hits
vs. misses in a perception task). CSP determines the
projecting components based on channel-space covari-
ance matrices, that maximize the contrast of oscillatory
activity between conditions.
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In other paradigms, the additional information is pro-
vided in the form of continuous labels rather than
discrete class labels. A regression approach — like Source
Power Comodulation (SPoC), introduced by Dihne et al.
— is able to exploit these continuous labels in order to
extract spatial components [10], [11]. Both supervised
covariance-based subspace methods, CSP and SPoC,
have been designed to extract oscillatory components
whose band-power is informative. However, while CSP
expects discrete two-class labels and maximizes con-
trast, SPoC requires a continuous target signal and
identifies spatial components, which co-modulate in
their power with this known continuous univariate target
signal. For applications of SPoC on neural signals please
refer to [12], [10], [11], [13].

Choosing a suitable frequency band is a critical hyper-
parameter for these methods, since they require a narrow
band frequency filter to be applied to the data prior
to starting the search for subspace components [14],
[15]. If knowledge about expected informative frequency
bands is not available, a generic filter bank approach can
be used, as proposed by Ang et al. for CSP [16]. It runs
CSP separately on several versions of the data, each one
pre-filtered to a different frequency band. Finally, the
outcomes of the bands are merged, e.g. by a subsequent
feature selection or regression step as proposed by Nove
et al. [17].

Typically, filterbank strategies are implemented by fil-
tering the signals in the time domain. However, since
trial-wise stationarity of the signals is assumed for most
applications, the explicit representation of the temporal
dynamics within a trial may actually not be necessary.
In this regard, we propose the implementation of a
more computationally efficient filter-bank approach for
subspace methods that is based on the calculation of a
stationary frequency domain representation of the data.
We present results of a study carried out in the context
of SPoC for real EEG data.

METHODS

Forward Model of EEG Generation

Let X € RVeXNt be a multivariate signal describing
data of brain activity measured in the EEG sensor
space, where NV, is the number of time samples and N,
the number of sensors. Furthermore, let S € RN«*M:
describe the time course of N, neural sources, where
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N, describes the number of hidden neural sources
considered. We assume a linear generative model, which
maps the source space to the sensor space as follows:

X=AS+E. (1)

In this model, matrix A € RNeXNs describes the pro-
jection of the sources to the sensor space, where the
columns of A, acRNe, are referred to as spatial pat-
terns. Furthermore, the matrix E contains spatially and
temporally uncorrelated noise to model measurement
noise.

An estimation of the time course of a source component
S can be extracted from the measurements by applying a
spatial filter w € R™Ne, which projects the data from sen-
sor space into source space. Thus we have § = w' X.
For many problems, such a spatial filter w is not known
a priori and must be estimated from the data. However,
once a spatial filter (or an entire set thereof, denoted
by W € RNeXNswhere each column w represents a
single spatial filter) has been obtained, an estimate of
the corresponding spatial patterns can be obtained via
A=CW (WTCW)_l, where C € RNe*Ne denotes
the spatial covariance matrix of the data. See [18] for
further details on the relation between spatial filters and
spatial patterns.

Source Power Co-Modulation — SPoC

The multivariate analysis method called source power
co-modulation (SPoC) by Diéhne and colleagues [10]
utilizes a supervised regression approach in order to
estimate a set of spatial filters W. The method assumes
that the recorded data X has been pre-filtered to a
narrow frequency band, which contains the oscillatory
source of interest.

Based on data of multiple epochs e, a filter w is
optimized such that the power of an epoch O,(e) =
var[8](e) of the spatially filtered data $ w' X,
maximally covaries with a known, epoch-wise defined
univariate target variable z(e). For the sake of simplicity
in the notation, § will be noted as s, hereafter.

It can be shown that solving such an optimization prob-
lem is equivalent to solving the generalized eigenvalue
problem [10]

C.W =ACW 2

where C, = (C(e)z(e)) and C = (C(e)). (C(e)) and
(C(e)z(e)) provide the (z-weighted) covariance of X,
averaged across epochs e: C(e) = X (e) X (e)". Matrix
A € RN*Ne contains the corresponding eigenvalues in
the main diagonal.

Given a spatial filter wy,- determined on training data tr,
the true target variable z = [2(1)...2(N,)]" can sub-
sequently be approximated/estimated as Z on a single-
trial basis for unseen test data (te) epochs X;. via
(e) = var[w, X;(e)]. While in most scenarios a small
number of filters is utilized, we limit our analysis for
the reminder of this contribution to the one spatial filter
w which corresponds to the biggest eigenvalue of the
aforementioned decomposition.
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Filterbank SPoC

Until now, we have assumed that the target frequency
band is known. Unfortunately, this is typically not true,
thus exploring the full available spectrum is necessary.
SPoC can then be extended by using the filterbank con-
cept proposed by Ang and colleagues for the filterbank
CSP algorithm [16]. Here, a set of Ny frequency
bands are defined, for which the subspace decomposition
method is applied separately. In the context of SPoC, this
approach shall be termed filterbank SPoC (FB-SPoC)
hereafter. FB-SPoC results in a set of Ny;; different
estimations of 2. We define these intermediate band-
wise estimations Z;. To obtain a final 2, a linear model
combining all the estimations of the target variables can
be applied:

Nyt
2(e) = ) BiZile) (3)
where the weights 3 are determined by solving the
optimization problem:

arg;naxllf—zlléﬂ%llﬁllf,. @)
In Eq. 4, )\ is a positive real-valued regularization
parameter and p defines the type of regularization ap-
plied to the model, with p = 2 corresponding to the
classic Tikhonov regularization and p = 1 a sparseness
promoting prior, termed LASSO.

Computation of Covariance Matrices in the Frequency
Domain

In implementations of filterbanks for different al-
gorithms (as CSP, spatio-spectral decomposition [8],
among others), data initially is bandpass filtered in
the time domain using IIR or FIR filters. Thus, the
computational cost grows linearly with the number of
bands.

However, since the aforementioned methods are based
on the computation of the covariance matrix of the
signal, which is assumed to be stationary in the ana-
lyzed epochs, the actual computation of such covariance
matrices could alternatively be executed directly in the
frequency domain. According to the Plancherel theorem
[19], the dot product of two signals in the time domain
is equal to the inner product of their frequency repre-
sentation. Consequently, the covariance matrix C' may
be computed for a specific frequency band f as

f _ f f
Ci;j=re(< &}, X7 >) @)

where re(-) is the real part of the argument, X; are
the coefficients of the Fourier transform of channel
i in X, and superindex f indexes the frequency bin
corresponding to frequency bands of interest. The in-
tuition behind neglecting the imaginary part of the dot
product is that it provides information about the mean
phase difference between the considered distributions,
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Figure 1. Schematic representation of the filter bank
strategy applied to SPoC, FB-SPoC, compared to the
proposed approach of computing the covariance matrix
directly in the frequency domain (fFB-SPoC).

therefore it does not contribute to the co-varying power
information provided by the covariance matrix.
Computing the covariance matrix in the frequency do-
main requires a single calculation of the fourier trans-
form of X, and this computational effort is independent
of the number of frequency bands included in the
filter bank. Furthermore, a single copy of the signal is
required in memory, whereas for time domain filter bank
approaches, Ny;;¢ versions of it are necessary. Thus,
the frequency domain representation optimizes memory
access operations and allows cheaper caching in hierar-
chical memory architectures. The proposed approach of
computing FB-SPoC using the frequency representation
of data X is termed fFB-SPoC hereafter. Figure 1
shows a schematic representation of the implementation
differences between FB-SPoC and fFB-SPoC

EXPERIMENTAL SETUP

The proposed approaches, FB-SPoC and fFB-SPoC,
were tested using real EEG data. Signals were recorded
from 64 passive Ag/AgCl electrodes (EasyCap /
BrainAmp DC amplifiers) placed according to the 10-
20 system and referenced against the nose. Data were
recorded while performing an auditory oddball exper-
iment with an interstimulus onset of 1s. Information
about the paradigm was not used in the subsequent anal-
ysis. Signals were sampled at 1kHz, then a band-pass
filter with a cut-off frequency of 0.7-90 Hz and a notch
filter at 50 Hz were applied to the data. Afterwards, it
was downsampled to 250 Hz.

A target source s, which would serve as the ground
truth source in a following simulation, was determined
by projecting the preprocessed EEG data onto a single
source. The corresponding filter v for this purpose was
chosen pseudo-randomly. The projected signal was then
filtered to the alpha band (8 — 12Hz) and its envelope
was extracted via the Hilbert transform.

The final dataset for running performance comparisons
was obtained by segmenting the EEG and the ground
truth target source s data into 1s windows with 50 %
overlap. The ground truth target variable z(e) for each
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epoch e was defined as the average of the envelope of
the target source s for that epoch.

Performance Metrics

In order to quantitatively assess the performance of the
considered methods, the following performance metrics
were considered:

Correlation — corr: This metric evaluates the quality
of the final regression model. More precisely, it describes
the correlation between the target variable estimated by
the regression model 2 and the true modulating signal
(target variable) z. A higher absolute value suggests a
better estimation.

Best Band Correlation — corr: This metric evaluates
the quality of estimation for the best performing fre-
quency band. More precisely, it describes the correlation
between the target variable estimated by the best filter
2; and the true modulating signal (target variable) z. A
higher absolute value suggests a better estimation.

Earth Mover’s Distance — emd: This metric can be
used to characterize the most important frequency band.
It measures the dissimilarity between the estimated and
the true spatial pattern a and a within a single frequency
band. The lower the value of emd, the more accurate
the estimation. As fFB-SPoC and FB-SPoC yield one
pattern per frequency band, emd is calculated in the
frequency band achieving the highest corr performance.

Angle Between Patterns — angle: Analogous to emd,
this metric describes the angle between the estimated
and true spatial patterns @ and a. The lower the value of
angle, the more accurate the estimation. Since FB-SPoC
and fFB-SPoC yield patterns corresponding to more than
one frequency band, emd is calculated using the pattern
related to the most relevant frequency band, according
to the corr achieved.

Elapsed Time — et: Computational cost is compared
in terms of walltime required to compute the final
estimation of 2.

Parameter Sensitivity Analysis

The aforementioned metrics are assessed in a parame-
ter sensitivity analysis. For this, a random search was
performed, where the parameter space is defined by (1)
the number of bands in the filter bank, (2) the type of
spacing (grid) between passing bands of the filter bank
and their corresponding width, which can be linearly or
logarithmically spaced, and (3) the regularization type
for the regression model in Eq. 4. Random search of the
parameter space was performed using the random-search
tool provided by the publicly available sequential model-
based algorithm configuration (SMAC) toolbox' [20],
whereas the parameters sensitivity analysis was per-
formed using functional ANOVA (FANOVA)? [21]

Thttp://www.cs.ubc.ca/labs/beta/Projects/SMAC/
Zhttps://github.com/automl/fanova
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Figure 2. Marginalized performance of FB-SPoC and
fFB-SPoC for the considered metrics.

RESULTS

FB-SPoC vs fFB-SPoC: Overall Performance

Figure 2 shows the marginalized performance of FB-
SPoC and fFB-SPoC as computed with FANOVA. As
expected, correlation values achieved and the spatial
accuracy of the spatial patterns (as assessed by emd and
angle), are not significantly different for the considered
methods. On the other hand, marginalized walltime was
significantly lower for fFB-SPoC compared to FB-SPoC.

FB-SPoC vs fFB-SPoC: Parameter Sensitivity Analysis

Figure 3 shows marginalized effects of different config-
urations of the parameter space uppon the performance,
both for FB-SPoC and fFB-SPoC.

The number of frequency bands is the parameter that
had the greatest impact on the correlation achieved. The
grid type used for the definition of the filter bands plays
a less critical role, with the linear model showing a small
advantage over the logarithmic grid. The regularization
method of the regression model did not affect the
performance in terms of the marginalized correlation.
The effects of the parameter configuration upon emd and
angle are very similar. Comparably to the effects upon
the correlation metrics, the number of bands used in the
filter bank is the parameter that has the strongest impact
upon the spatial patterns, where as the grid type and the
regression model do not seem to be critical.

For both, the accuracy of the target variable (corr)
and the spatial pattern estimation, the optimal number
of frequency bands for the considered scenario are
approximately 5 bands. Using more than 5 bands does
not improve the performance, according to any of the
considered measures.

Finally, the bottom row of Figure 3 demonstrates the
computational advantages of fFB-SPoC, where the wall-
time required increases at a much slower rate than for
FB-SPoC. It is worth mentioning that between 1 and 3
bands, the metric et grows with the same rate for both
algorithms.

DISCUSSION

In this contribution, we extended the use of a filterbank
approach to the context of source power co-modulation
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analysis, SPoC. Furthermore, we propose to perform the
covariance matrix calculation in the frequency domain to
speed-up the computation of filterbank-based subspace
techniques.

i A filterbank strategy for SPoC is a suitable approach
to estimate target variables that co-modulate with
the power of hidden neural sources. The proposed
approaches are specially valuable in scenarios where
the frequency band of interest is not known and,
consequently, a full exploration of the available spec-
trum is necessary. Such applications have already
been reported in the literature, for example [13],
[12].

ii Under the realistic scenario considered, the number
of frequency bands is the most important hyperpa-
rameter considering the high final correlation with
the target variable and a good reconstruction of the
true spatial pattern a. This might be explained by
the fact that a coarse segmentation of the frequency
spectrum leads to mixing of informative and noisy
frequency bands into the same filters, thus degrading
the performance. This is also observed in the vari-
ance of the performance itself — a sudden reduction
of the variance is observed once the number of
frequency bands becomes greater than five. It is
important to point out that the optimal number of
frequency bands should be defined individually and
for each application scenario, since the width of
the informative frequency band of the target source
and its location within the spectrum is not known a
priori.
For our data, where no label noise was involved, the
grid type and regression model had little influence.
Similarly to the number of frequency bands, the
grid type is likely to be application-dependent. The
regression model, on the other hand, is likely to be
independent of the frequency characteristics of the
target neural source, but may be sensitive to the level
of noise contained in its labels. In future work, we
will investigate the interaction of label noise noise
with different regression models.

We have also shown that the computation of the

covariance matrix using the frequency representation

of the EEG data is a suitable approach for filter
bank strategies. The computational advantage is not
only caused by the single-time computation of the

FFT compared to the Ny;;;-many (sequential) time-

domain filtering steps. It also affects the calculation

of the covariance matrix itself, which has quadratic
runtime. When computed in the time domain, each
of the entries of the covariance matrix C corre-
sponds to the dot product of two time series, each
with length N. In contrast, when computed in the
frequency domain, each entry of C' corresponds to
the dot product of two vectors containing a subset
of M frequency bins obtained after the Fourier
transform, with typically N >> M. It is important
to point out that the covariance is computed simul-
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Figure 3. Marginalized parameter sensitivity analysis comparing FB-SPoC @ and

considered performance measures.

taneously on the entire subset of M frequency bins

in a single step, and not for each bin individually.
v The main limitation of the frequency-domain fil-
terbank approach is the coarse granularity of the
frequency bands considered. Their resolution is lim-
ited by the number of frequency bins resulting from
the Fourier transformation, while filters in the time
domain can be defined in high precision.
Another limitation of applying SPoC in the fre-
quency domain is the smaller number of SPoC
components which can be derived per frequency
band. Specifically, the rank of the covariance matrix
is limited by the number of frequency bins contained
in the analyzed band. However, this limitation may
not be a relevant one in practice, as a full rank SPoC
decomposition often is not required and usually only
the first-ranked, most informative components are

vi
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reg_model

fFB-SPoC @, in terms of the

used.

vii Finally, the proposed frequency domain approach
for filterbank analysis should easily extend to other
covariance-based subspace methods such as CSP or
SSD.
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ABSTRACT: Patients in completely locked-in state
(CLIS) are unable to communicate with the external
world because of complete paralysis of the motor
system. Brain computer interface (BCI) aims to restore
communication in CLIS patient by bypassing the
dysfunctional motor system. Electroencephalography
(EEG) based BCI has been used successfully in patient
in Locked-in state (LIS), but once the patient transition
in CLIS EEG-BCI fails to provide communication.
Recently we reported the first single case report of
functional near infrared spectroscopy (fNIRS) based
auditory BCI control by an ALS patient in CLIS. Here
we report fNIRS-BCI based communication in four
ALS patients in CLIS, two of them in permanent
completely locked-in state (CLIS) and two entering the
CLIS without reliable means of communication.
Patients learned to answer personal questions with
known answers and open questions all requiring a “yes”
or “no” thinking using fronto-central oxygenation
changes measured with fNIRS. Online fNIRS
classification of personal questions with known answers
and open questions, using linear support vector machine
(SVM), resulted in an above-chance-level correct
response rate over 70%. Electroencephalographic
(EEG) oscillations and electro-oculographic (EOG)
signals did not exceed the chance-level threshold for
correct communication despite occasional differences
between the physiological signals representing a “yes”
or “no” response.

INTRODUCTION

Amyotrophic lateral sclerosis is a progressive motor
disease of unknown etiology resulting eventually in a
complete paralysis of the motor system but affecting
sensory or cognitive functions to a minor degree [1].
There is no treatment available; patients have to decide
to accept artificial respiration and feeding after the
disease destroys respiratory and bulbar functions or to
die of respiratory or related problems. If they opt for life
and accept artificial respiration, the disease progresses
until the patient loses control of the last muscular
response, usually the eye muscles. If rudimentary
voluntary control of at least one muscle is present, the
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syndrome is called locked-in state (LIS) [2]; ultimately
as the disease progresses most of the ALS patients lose
the control of all the muscles, the resulting condition is
called completely locked-in state (CLIS) [2]. Patients in
CLIS are unable to communicate with the external
world because all assistive communication aids are
based on some remaining motor control; hence there is a
vital need for an assistive technology to help patients in
CLIS to communicate their needs and feelings to their
family members/caregivers. Brain computer interface
(BCI) represents a promising strategy to establish
communication with paralyzed ALS patients, as it does
not need muscle control. BCI research includes invasive
(implantable electrodes on or in the neocortex) and
noninvasive means (including electroencephalography
(EEG), magnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI), and near-infrared
spectroscopy (NIRS)) to record brain activity for
conveying the user’s intent to devices such as simple
word-processing programs. Non-invasive methods have
been utilized more frequent than invasive methods for
people with disabilities (such as those with ALS) [3-7].

For these conditions (LIS and CLIS) Brain-Computer-
Interfaces were developed and tested extensively since
the first publication of Birbaumer et al (1999) [8] of two
LIS patients suffering from ALS. Patients select letters
or words after learning self-regulation of the particular
brain signal or by focusing their attention to the desired
letter or a letter-matrix (Farwell & Donchin) [9] and the
attention related brain signals allow the selection of
desired letter. While healthy people and ALS patients
up to the LIS showed successful BCI control and
communication [10], completely paralyzed ALS
patients in CLIS did not learn sufficient BCI control for
brain communication (Kuebler & Birbaumer, 2008)
[11]. A single case report by Gallegos Ayala et al., 2014
[12] suggested that a CLIS patient with ALS could
achieve BCl-control and “yes” - “no” communication to
simple questions with known positive answers or
negative answers and some open questions over an
extensive time period. NIRS was used to measure and
classify cortical oxygenation and deoxygenation
following the questions. The BCI methodology used in
this report departed radically from the previous BCI-
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procedures: a more “reflexive” mode based on learning
principles of classical conditioning to simple questions
was used to train the classifier separating “yes” and
“no” thinking of answers by the patient and instead of
neuroelectric recording (EEG) functional NIRS (fNIRS)
was used.

Hence, an extensive study was performed on four ALS
patients in CLIS to train them to communicate “yes”
and “no”. The fNIRS based BCI was employed
successfully to train patients to regulate their fronto-
central brain regions in response to auditorily presented
questions. After training a classifier separating “yes”
from “no” answer for several days the patients were
given feedback of their affirmative or negative response
to questions with known answers and open questions
over weeks [13].

MATERIAL AND METHOD

The Internal Review Board of the Medical Faculty of
the University of Tubingen approved the experiment
reported in this study and the patients’ legal
representative gave informed consent for the study with
permission to publish the results and show the face of
patients in the publication. The study was in full
compliance with the ethical practice of Medical Faculty
of the University of Tubingen. The clinical trial
registration number is ClinicalTrials.gov Identifier:
NCT02980380.

Patient

Patient F (Female, 68 years old, completely locked-in
state) was diagnosed with bulbar sporadic ALS in May
2007, as locked-in in 2009, and as completely locked-in
May 2010, based on the diagnosis of experienced
neurologists. She has been artificially ventilated since
September 2007, fed through a percutaneous endoscopic
gastrostomy tube since October 2007, and is in home
care. No communication with eye movements, other
muscles, or assistive communication devices was
possible since 2010.

Patient G (Female, 76 years old, CLIS) was diagnosed
with bulbar ALS in 2010. She lost speech and capability
to walk by 2011. She has been fed through a
percutaneous endoscopic gastrostomy tube since
September 2011, artificially ventilated since March
2012, and is in home care. She started using assistive
communication devices employing one finger for
communication in Feb 2013. Later she was diagnosed
with degeneration of vision due to cornea defects in
Sept 2013. After the failure of the finger communication
device an attempt was made to communicate using eye
tracking in early 2014. She stopped communicating
with the eye in Aug. 2014 before the BCl was
introduced and an attempt was made to communicate
with the subtle twitch of eye lid which was not reliable.
The husband and caretaker declared no communication
with her since August 2014.

Patient B (Male, 61 years old, CLIS) was diagnosed
with non-bulbar ALS in May 2011. He has been
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artificially ventilated since August 2011, fed through a
percutaneous endoscopic gastrostomy tube since
October 2011, and is in home care. He started
communicating with a speech device in his throat from
Dec. 2011 which ultimately failed and he started using
MyTobii eye-tracking device in April 2012. He was
able to communicate with MyTobii until Dec 2013 after
which the family members attempted to communicate
by training him to move his eyes to the right to answer
“yes” and left to answer “no”, but the response was
variable. No communications was possible since August
2014,

Patient (Female, 24 years old, locked-in state on the
verge of CLIS) was diagnosed of juvenile ALS in Dec
2012. She was completely paralyzed within half a year
after diagnosis and has been artificially ventilated since
March 2013, fed through a percutaneous endoscopic
gastrostomy tube since April 2013, and is in home care.
She was able to communicate with eye-tracking from
early 2013 to Aug 2014 but was unable to use the eye-
tracking device after the loss of eye control in Aug
2014. After August 2014 family members were able to
communicate with her by training her to move her eyes
right to answer “yes” and left to answer “no” questions
until Dec 2014. In Jan 2015 eye control was completely
lost and she tried to answer yes by twitching the right
corner of her mouth and that too varied considerably.

Instrumentation

A continuous wave (CW) based NIRS system,
NIRSPORT (NIRX), which performs dual-wavelength
(760 nm & 850 nm) CW near-infrared spectroscopic
measurement at a sampling rate of 6.25 Hz, was used.
The NIRS optodes were placed on the fronto central
brain region.

During the BCI sessions the EEG was also recorded
with a multi-channel EEG amplifier (Brain Amp DC,
Brain Products) from ten Ag/AgCl passive electrodes
mounted on the same cap. Six electrodes were used to
acquire EEG signals based on the international 10-10
system and the selected channels were FC5, FC1, FC6,
CP5, CP1 and CP6 while four electrodes were used to
acquire the vertical and horizontal EOG. The signals
were bandpass filtered using an FIR filter with a
passband of 0.5 — 35 Hz. The EOG was filtered with
different filters (3.5 Hz, 10 Hz, and 30 Hz) but none of
the filters led to significant differences of
neurophysiological patterns related either to the ocular
activity or to their SVM-classification accuracies. Each
channel was referenced to an electrode on the right
mastoid and grounded to the electrode placed on the Fz
location of the cap. Electrodes impedances were kept
below 10 kQ and the EEG signal was sampled at 500
Hz. During all BCI sessions the spontaneous EEG was
visually controlled by one of the authors (NB or BX) to
avoid longer periods of slow wave sleep. A BCI session
was initiated only if the EEG was free of high amplitude
slow activity below 3.5Hz.

Experiment Procedures
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An auditory based paradigm was employed to a) train
patients on questions with known answers, b) give
feedback on questions with known answers and c)
answer open questions. Known questions are personal
questions with known “yes” and “no” answer. Patients
were asked to think yes or no and if possible also to use
their previously successful eye movements. Open
questions are general questions related to quality of life
and questions of caretakers whose answer can only be
known by the patient. The BCI study started with
training sessions during which the patients were
instructed to listen to 20 personal questions (with
known answers) consisting of 10 true and 10
semantically equivalent false sentences, presented in
random order. Patients were asked to think “ja, ja, ...”
(German for “yes”) and “nein, nein, ...” (German for
“no”) for 15 seconds, during the inter stimulus interval
(1SI), until they heard the next sentence, as shown in
Figl. After the end of each training session the NIRS
feature necessary to differentiate between “yes” and
“no” answers during ISI was extracted and classified. If
the classification accuracies across at least 3
consecutive training sessions were greater than 65% -
70% the patients were given online feedback after each
question. During the online feedback sessions again the
patients were presented the same sentences as described
above but now at the end of the 15 sec answering period
they were given auditory feedback, whether their
answer was recognized as “yes” or “no”. If the accuracy
of online feedback was greater than 70% we presented
the patient with open questions during which he/she was
always given the auditory feedback of his/her answer.
The validity of answers to open questions can only be
estimated by a) face validity (i.e. questions of pain in
the presence of an open wound), b) stability over time
and c) external validity estimated by family members
and caretakers and d) internal validity between
questions (i.e. the concordance between the answers to
semantically equivalent questions (e.g., “Berlin is the
capital of France” and “Berlin is the capital of
Germany”). Tab. 1 enumerates the total number of
training, feedback and open questions sessions
performed by each patient.

Rest True/False Response time/ Inter Stimulus
Period Sentence Interval (ISI)
Open
uestion J J
1-2sec. D di Y
5 sec. see. Jepending on 15 sec.

the length of sentence

|

In one session 10 true and 10 false sentences or 20 open
questions were presented

Figure 1: The auditory brain computer interface
paradigm used for communication in CLIS patient.

Patient W received no open questions because of low
classification accuracy which we and the parents
attributed to her emotionality distracting her from
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concentrating on the responses due to the short time
period of adaptation to the CLIS.

Table 1: Lists the total number of training, feedback,
open question sessions performed by each patient

Patient / Sessions Training | Feedback Open Questions
Sessions Sessions. Sessions
Patient F 51 7 2
Patient G 51 6 2
Patient B 40 4 2
Patient W 16 4 0

Data Acquisition and Analysis

The schematic depicting the acquisition and analysis of
NIRS and EEG data during the BCI sessions is shown
in Figure 2. The NIRS data acquired online throughout
all the sessions was normalized, filtered using a
bandpass filter of 0.01 Hz — 0.3 Hz and processed using
Modified Beer Lambert’s law, as described in Cope et
al. (1987) [14] and Chaudhary et al. (2011) [15], to
calculate the relative change in concentration of oxy
(O,Hb) and deoxy hemoglobin (RHb). The relative
change in O,Hb, with respect to the baseline, calculated
online during each training session was used to train a
model and check the cross-validation classification
accuracy. The offline classification procedure used the
mean of relative change in O,Hb across each channel as
input feature to train a 5-fold linear support vector
machine (SVM) classifier [16]. The SVM [16] model
interpolates the data corresponding to true and false
sentences’ ISI in a two-dimensional space such that the
two categories are divided by a hyperplane and the gap
between them is as wide as possible.

'“_R_S_ S1gr1_al *Patient’s face revealed A E‘EG .S1g;1:fl
AC.'. uisition System with permission from Acquisition 'yl_stem
rimary caretaker
y ‘,? p 3

NIES Signal for
Yes and No

EEG Signal for
Yes and No

NIRS optodes+EEG
electrodes placed on
the motor region of the
patient

Sleep Monitoring
and offline signal

cla==ification

Feature Extraction
Changesin oxy or de-
oxy hemoglobin for Yes

and No

Patient is presented 20

l personal questions, 10

| o true and 10 true false in

Train the NIRS VM 5 random order in each
classifer session

Patient thinking “jaja”

ALS patient attending and “NeinNein” for

Audio Feedback to auditory stimuli P true a.nq false sen_tence:
- respectively for 13 sec.
Figure 2: The setup and flow diagram of the brain

computer interface for communication in ALS patients.

Firstly a model space was determined and the input
feature, extracted from the recorded and processed
NIRS signal, i.e., the relative change in O,Hb, was
mapped onto the model space to determine the side of
the hyperplane the input feature fell on. For the NIRS
signal the mean of the relative change in O,Hb across
all the channels was used as input feature to map onto
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model space, while for EEG and EOG signals temporal
and power spectral features were used. The relative
change in O,Hb, EEG and EOG data acquired during
BCl sessions from Patient F, G, B and W were
processed off-line separately for each patient to
determine:

1) The statistical difference in the particular
physiological signal (O,Hb, EEG and EOG) during the
ISI of true (yes) and false (no) sentences.

T-tests between the averaged ISI of true and false
sentences were performed to ascertain the significant
difference, if any, between “yes” and “no” thinking. The
t-test analysis was performed across all the channels in a
session and for all the sessions of acquired O,Hb, EEG
and EOG signals. Furthermore t-test was also performed
between the ISI of all the 10 true sentences and all the
10 false sentences across different channels in a session
averaged over many sessions varying slightly between
patients.

2) Classification accuracy, using SVM as described
above, of O,Hb, EEG and EOG signals across each
session between the true and false sentences’ ISI.

The shapes of the relative change in O,Hb and EOG
during ISl corresponding to true and false sentences
from all the sessions were plotted in Figure 3 and Figure
5 respectively, while the power spectrum of the EEG
signal, calculated using Welch’s method [17], during
the same ISls is plotted in Figure 4.

RESULT

The t-test analysis performed using the relative change
in O,Hb showed a significant difference between the
true and false sentences’ ISI across all patients (not
shown here). While, the same analysis performed using
the EEG and EOG data across all the training sessions
showed no significant differences (p > 0.05) between
the true and false sentences’ ISI across each. The
relative change in O,Hb in five channels over the
fronto-central brain region of Patient F, G, B and W
during the true and false sentence ISl is shown in Figure
3. Figure 3 illustrates that the shape of the change in
O,Hb during true sentence ISl is qualitatively different
from false sentence ISI. Figure 3 also illustrates that the
shape of the change in O,Hb during a true or a false
sentence ISI is not consistent between the patients even
though within each patient the shape of the change in
O,Hb is stable. Figures 4 illustrates the power spectrum
density (PSD) of EEG oscillations, in the frequency
band 0 to 10 Hz, during the true and false sentence 1Sl
from patient F, G, B and W respectively. The PSD of
EEG signal shows that there was no significant
difference between the true and false sentences ISI
across all patients. The eye movements (vertical or
horizontal, patients were free to use any direction) of
patient F, G, B and W while they were performing the
“ja (yes)” or “nein (no)” thinking task is shown in
Figure 5. It illustrates that there was no significant
difference in the eye movements between the true and
false sentences ISI for all patients, confirmed by the t-
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test: Figures 6, 7, 8 and 9 depicts the SVM classification
across all the sessions using the change in (a) O,Hb, (b)
EEG and (c) EOG in Patient F, G, B and W;
respectively.

Averaged HbO,; relative change
during YES sentence

Averaged HbO; relative change

Patient
aten during NO sentence
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Figure 3: The averaged relative change in O,Hb across
5 out of 20 channels corresponding to YES and NO
sentence inter-stimulus interval (I1SI) in Patient F, G, B
and W. In each subplot; five different colored trace
corresponds to relative change in HbO, across five
different channels, x-axis is time in seconds and y-axis
is relative change in HbO,,

Power spectrum density (PSD) of electroencephalo graphic
(EEG) signal during YES sentence and NO sentence ISI

Patie
-nt

wr-
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Frequency (Hz)

Figure 4: Power spectrum density (PSD) of
electroencephalographic (EEG) signal corresponding to
YES (red solid trace) and NO (blue dashed trace)
sentence 1Sl acquired from channel FC6 in Patient F, G,
Band W.
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cut off was used to define whether the
below the

A 65%
classification accuracy was above or
acceptable level [18].

Patient The electrooculogram (EOG) signal corresponding to YES (red solid
trace) and NO (blue dashed trace) sentence ISI
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Figure 5. The electrooculogram (EOG) signal

corresponding to YES (red solid trace) and NO (blue
dashed trace) sentence ISl in Patient F, G, B and W. In
each subplot x-axis is time in second and y-axis is EOG
in micro volt (uV).
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Flgure 6 — Patient F: Linear support vector machine
(SVM) classification accuracy across all sessions 1)
Training (bar plot in spotted black), 2) Feedback (bar
plot in solid green) and 3) Open question (bar plot in
solid red) obtained using a) Relative change in HbO,, b)
EEG and c) EOG data. In each histogram plot x-axis is
the number of sessions and y-axis is classification
accuracy. The black horizontal line represents the 65%
classification accuracy.
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The SVM results illustrates that highest classification
accuracy was achieved using the change in O,Hb for
which more than 75% of the sessions yielded greater
than 65% classification accuracy for all the patients
with an average classification accuracy of 70%.
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While the SVM classification accuracy obtained using
EEG and EOG data only few sessions yielded greater
than 65% classification accuracy across all patients.
Classification results using fNIRS for open question in
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patients F, B and G, using the criteria for correctness
described above in paragraph 2.3 ranged between 75-
90% “correct”. Patient W with 24 years of age suffering
from juvenile ALS with an extremely rapid disease
progression (2 years from diagnosis to CLIS) was not
asked open questions at that early stage but continue to
train the BCI at present.

DISCUSSION AND CONCLUSION

All'in all, 4 patients in CLIS communicated with fronto-
cortical oxygenation based BCI with an average correct
response rate of 70% over a period of several weeks.
Correct response rate for open questions as estimated by
relatives exceeded even 75% in 3 of the 4 patients.
Patient W, 24 years with juvenile ALS (completely
locked-in within 2 years after diagnosis) is still in an
emotional labile state which prevented us from asking
her the difficult to validate open questions at the time of
this study. Patient F, G and B answered open questions
containing quality of life estimation with a yes response
indicating a positive attitude towards the present
situation and life in general as found in larger samples of
ALS patients [19]. Correct classification of “yes” and
“no” answers given mentally through fNIRS exceeded
classification of EEG oscillations from 0-10 Hz (EEG
frequencies in advanced ALS rarely show high
frequencies) and vertical and horizontal EOG
classification. However, despite the absence of reliable
eye communication in all patients as the inclusion
criteria in the study, EOG classification often was above
chance despite the inability of the social environment to
perceive them and eye tracker’s failure to use them for
communication [10]. If replicated with ALS patients in
CLIS, these positive results could indicate the first step
towards abolition of complete locked-in states at least
for ALS.
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ABSTRACT:

Brain-computer interfaces (BCI) control is a mentally
tasking activity that requires the user’s concentrated
attentional efforts. We hypothesized that mindfulness-
based exercises, such as a 20-minutes Mindfulness-
Based Stress Reduction training session (MBSR), can
help to improve BCI performance. This pilot experiment
demonstrated a BCI accuracy improvement after four
subjects engaged in a 20-minute MBSR intervention
session. The average BCI performance of the four
subjects before the session was 67.42% and after the
session was 78.94%, resulting in a performance increase
of 11.52%. Three of the four subjects were considered
BCl-illiterate (<70% accuracy) in the pre-MBSR session,
and all three subject’s accuracies were improved to >70%
in the post-MBSR session. Moreover, an enhanced event
related desynchronization in the alpha frequency band
was found in post-MBSR intervention. These results
demonstrate promising potential for using mindfulness-
based exercises to improve BCI accuracy.

INTRODUCTION

Brain-computer interface (BCI) uses brain activity alone
to control external devices or to communicate with the
external world [1]. It provides a non-muscular channel of
communication for severely disabled individuals who are
totally paralyzed or ‘locked in’ by neurological disorders,
such as amyotrophic lateral sclerosis, stroke, or spinal
cord injury [1]. An electroencephalogram (EEG) based
BCI measures brain activity through non-invasive
electrodes at the scalp surface. One of the biggest
challenges in BCI is for users to produce consistent and
reliable EEG patterns, which can be significantly
affected by the user’s mental state [2]. Stress, anxiety,
fatigue, frustration, and loss of concentration may cause
an unstable mental state which may in turn cause
inconsistent EEG patterns to be produced. Even
distraction during the experiment such as feedback
presented by the BCI (i.e. in game control) can modify
the user’s global mental state and hence their EEG,
introducing noise to the system [3].

Researchers have been attempting to apply different
signal processing techniques to improve its signal-to-
noise input signal to increase the accuracy and
classification of EEG-based BCI. Some studies trained
the users through extensive neuro-/biofeedback training
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[4], [5]. Nevertheless, the inconsistencies in EEG due to
mental state changes still remains to be a great challenge
in EEG-based BCIs, whereas 15~30% of the users cannot
usefully control a BCI, which is termed the ‘BCI-
illiteracy phenomenon’ [6].

It is suggested that psychological parameters such as high
attention span, sustained focus and concentration could
yield better BCI performance, as BCI-control requires a
substantial amount of focused attention [7]. In event-
related desynchronization (ERD) based BCI, attention
plays a significant role, with high attention correlating
with to a significantly higher ERD value compared to
lower attention [8]. Mindfulness based interventions
have also been shown to lead to an increased level of
attention, self-reported mindfulness and improvements in
psychological functioning [9]. By providing participants
who do not succeed in BCI control with such intervention
to increase their oscillatory activation (ERD), it may lead
to more accurate and consistent BCI performance and
hence overcome the problematic ‘BCl-illiteracy
phenomenon’ [7]. Previous research on meditation-based
intervention and BCI accuracy demonstrated a 12-week
meditation intervention program to significantly increase
a group of 23 participants’ baseline accuracy from 58%
to 64% [2]. This finding motivated us to investigate
whether a shorter session of mindfulness-based
intervention can lead to a similar effect of increasing BCI
accuracy.

The mindfulness-based intervention we will be
investigating is a 20 minute standard Mindfulness-Based
Stress Reduction (MBSR), which have shown to be able
to increase mindfulness and well-being, while decreasing
stress and improving psychological wellbeing [10], [11].
It has been proposed that the mechanisms responsible for
positive changes following MBSR involve attentional
improvements, the cultivation of a nonjudgmental
attitude, and an intention to be present in the present task.
This current study aims to examine the effect of
mindfulness-based training on the ability to control a
tactile BCI using selective sensation (SS) [12], [13], and
to improve the performance accuracy for poorly
performing BCI subjects.
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MATERALS AND METHODS

Subjects

A total of four healthy subjects participated in this
experiment (all male, all right handed, age 20~25, mean
age 22.75 £2.22 yr). All subjects had no prior experience
with EEG. The study was approved by the Ethics
Committee of the University of Waterloo, in Waterloo
Canada. All subjects signed an informed consent form
prior to participation.

Experiment Paradigm

In order to discriminate the subject’s active attention to
the sensations on respective hands, a vibration
stimulation is provided to the subject’s respective wrist
to help direct their attention. This task of paying attention
to either the left or the right hand is termed tactile
selective sensation (SS); SS-L for left hand and SS-R for
right hand.

Fig. 1 illustrates the experiment paradigm. The subject
was seated on a comfortable armchair 1 meter in front of
the display screen, with their forearms and hands resting
on the armrest. They are instructed to limit all physical
movements (i.e. facial, arm) and limit eye blinks to a
minimum. During the experiment, a randomized series of
one of two visual cues that correspond to the above SS
task were displayed on the screen; a left-pointing red bar
indicates the SS-L task and a right-pointing red bar
indicates the SS-R task. After 3 runs of 40 trials (120
trials total), the subject is asked to complete a 20-minute
guided sitting MBSR session. After the MBSR session,
the subject repeats 3 runs of 40 trials of SS (another 120
trials total).

Vibration
burst

—

] 2 3

Cue

Relaxation  Random

4.5 R 8 9.5 11
Time (s)

Figure 1. An illustration of the experiment protocol.

Fixation cross

MBSR Training Session

During the 20-min MBSR training session, participants
were guided through a ‘body-scan’ by the voice
recording of a trained instructor. The participants were
asked to sit quietly while focusing on the flow of their
breath, with their eyes closed, and to adopt a
nonjudgmental mentality while becoming aware of their
thoughts, senses, and feelings. They were taught to calm
down their mind by remaining focused on their breath, in
performing the ‘body scan’. This brings awareness to the
physical sensations throughout the whole body while
nonjudgmentally allowing discursive thoughts to simply
pass [2]. The link to this 20-min guided sitting meditation
MBSR mp3 audio file can be found here'.

EEG recording and Sensory Stimulation
A 32-channel wireless g.Nautilus EEG system from
g.tech Australia was used to record EEG signals. The
electrodes were placed according to the extended 10/20
system, with the reference and ground placed on the right
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earlobe and forehead, respectively. A hardware notch
filter of 60Hz was applied to the raw signals, which were
digitally stamped at 250Hz. All EEG data were recorded,
stored, and processed offline.

Mechanical stimulation was applied to the wrists. Linear
resonant actuators (10 mm, C10-100, Precision
Microdrives Ltd., typical normalized amplitude 1.4 G)
were used for producing vibrotactile stimulation. The
stimulation device produced a 23-Hz sine wave for the
left wrist, and 27-Hz sine wave for the right wrist. Both
stimuli were modulated with a 175-Hz sine carrier wave.

Algorithms and performance evaluation
The EEG data was manually corrected for artifacts using
EEGLAB toolbox [14]. The trials that were affected by
artifacts such as swallowing and physical movement
(either in baseline or task line interval), were excluded in
the analysis.

A fourth-order Butterworth filter of [8 26] Hz was
applied to the raw EEG signals before the CSP spatial
filtering. A 10x10 fold cross-validation was utilized to
evaluate the BCI performance.

RESULTS AND DISCUSSION

Tactile BCI performance improved with MBSR

The BCI performance before and after the MBSR
intervention is shown in Fig. 2, with a mean performance
accuracy of 67.42% before MBSR and 78.94% after — an
average improvement of 11.52%. This method
demonstrated a clear benefit for poor-performing
subjects (subject 1, 2, and 3 had <70% accuracy before
MBSR). For example, subject 1 had a dramatic
improvement from 55.50% before the 20-minute MBSR
session to 77.5% after the session, a 22% improvement.

This increase in BCI accuracy is consistent with another
BClI study on the effect of a 12-week meditation training

100
95
90
85
80
75 “Pre

i Post
70

Classification Accuracy (%)

65

60 [
dlan i
50

Subject 1 Subject2 Subject3 Subject 4
Figure 2. BCI performance before and after the MBSR
training. The blue bar indicates BCI performance prior to
the MBSR session; and the red bar indicates BCI
performance after the MBSR session.
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Figure 3. Cortical activation distribution across the scalp (ERD within the [8 13] Hz alpha frequency band). (A) ERD
topolot of the SS-L task in Pre-MBSR session. (B) ERD topolot of the SS-L task in Post-MBSR session. (C) ERD
topolot of the SS-R task in Pre-MBSR session. (D) ERD topolot of the SS-R task in Post-MBSR session. The colour

bar indicates the ERD/ERS value.

program that resulted in an accuracy increase from 58%
to 64% — a significant increase of 6% in a group of 23
subjects [2]. This study utilized motor imagery for BCI
control [2].

The ERD cortical distribution before and after the MBSR
intervention with respect to different SS tasks can be seen
from a representative subject (subject 1 in Fig. 3
demonstrate an increased ERD activation between 8 to
13 Hz of the frequency band. This could be one of the
factors underlying the increase in classification
discrimination.

The effect of learning should also be taken into
consideration, as the subjects will become increasingly
familiar with the BCI system controls with practice and
this may lead to an increase in BCI accuracy. Therefore,
a control group should be implemented with future
research.
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CONCLUSION

Focused tactile selective attention was required in tactile
BCls, in which the subjects were instructed to focus their
attention either to the vibration stimulation on either the
left or right hand. The 20 minute MBSR based training
session may have improved attention which in turn
improved the subject’s BCI performance.

In this study, we demonstrated that a 20 minute MBSR
guided sitting meditation program can help improve BCI
performance, accompanied by an enhanced ERD
activation. Further research needs to be done on to
understand the underlying physiological mechanism for
the changes observed and to incorporate MBSR into a
training paradigm to maximize the effect of MBSR in
improving BCI performance and user compliance.
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ABSTRACT: In the past few years, there has been
an increasing interest among the Brain-Computer Inter-
face research community in classification algorithms that
respect the intrinsic geometry of covariance matrices.
These methods are based on concepts of Riemannian ge-
ometry and, despite demonstrating good performances on
several occasions, do not scale well when the number of
electrodes increases. In this paper, we evaluate two meth-
ods for reducing the dimension of the covariance matrices
in a geometry-aware fashion. Our results on three differ-
ent datasets show that it is possible to considerably reduce
the dimension of covariance matrices without losing clas-
sification power.

INTRODUCTION

In recent years a new trend of algorithms using concepts
from Riemannian geometry have demonstrated remark-
able performance on classification of BCI signals, often
superior to the current state of the art. As shown in a
recent literature survey [1], such results gave rise to a
new generation of Brain-Computer Interface (BCI) sys-
tems that is becoming each year more popular among the
research community.

In BCI classification we are given a dataset containing
short-time recordings of EEG, each associated to a condi-
tion (or class). The goal is to train an algorithm on an en-
semble of trials with known labels and use it to correctly
classify a set with unknown labels. The usual approach is
to select certain features describing the trials and use sta-
tistical models to classify them [3]. A useful feature one
may consider when working with EEG signals is their
spatial covariance matrix, since different classes are ex-
pected to have different patterns of correlation between
electrodes. The core idea behind algorithms using Rie-
mannian geometry is to manipulate covariance matrices
in the manifold of symmetric positive-definite (SPD) ma-
trices and use them directly as features in a classifier that
respects their intrinsic geometry.

The computational complexity of algorithms based on
this premise is of concern for high-density EEG data.
This happens because Riemannian algorithms rely on
eigendecompositions, whose number of operations is on
the order of n3, where n is the number of electrodes.
Also, due to very low eigenvalues in the spectrum of
high-dimensional covariance matrices (mainly associated
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to noise), logarithmic maps used by Riemannian algo-
rithms may encounter numerical difficulties. Further-
more, classifiers using high-dimensional covariance ma-
trices as features are prone to overfitting because of the
curse of dimensionality and the limited number of trials
usually available in BCI datasets [3].

Fortunately, the very nature of EEG recordings allows
us to consider only a subspace of the data without los-
ing much information. This is possible because of the
strong statistical correlation between signals recorded
from close positions and the small number of indepen-
dent sources that are active during brain activity. By ex-
ploring this redundancy, we can reduce the dimensions of
spatial covariance matrices and use Riemannian geomet-
ric algorithms more efficiently.

The literature of dimensionality reduction (DR) is very
rich and many methods already exist. Some are general-
purpose algorithms, like principal component analysis
(PCA) and multi-dimensional scaling (MDS), others are
specific to the analysis of EEG signals, such as common
spatial patterns (CSP). However, none of these alterna-
tives take into account the intrinsic geometry of the co-
variance matrices to reduce their dimensions in a princi-
pled manner.

Recently, in the computer vision literature, Ref. [4] pre-
sented two geometry-aware methods for reducing the di-
mensions of SPD matrices, a supervised and an unsuper-
vised approach. Both algorithms are based on the the-
ory of optimization on manifolds [7] and demonstrated
good results on image and video databases. Shortly after,
Ref. [5] applied the unsupervised dimensionality reduc-
tion described in [4] to datasets of Motor Imagery (MI)
BCI and obtained encouraging results.

In this work, we apply both algorithms given in [4] to the
context of BCI signals. We extend the results from [5] by
considering datasets with several subjects and test the al-
gorithms not only on MI but also on the P300 paradigm.
We examine the sensitivity of the classification algo-
rithms to the choice of the reduced dimension and inves-
tigate the conditions in which a DR would be advisable
or not. This paper continues with a section on Materials
and Methods, where we give a brief presentation of con-
cepts of Riemannian geometry and an overview of meth-
ods for geometry-aware dimensionality reduction. We
also present the datasets and the classification pipelines
used for assessing the quality of each dimensionality re-
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duction proposal. We continue with a section of Results
and Discussion and leave final comments to the Conclu-
sions section.

MATERIALS AND METHODS

This section begins with a brief introduction to concepts
of Riemannian geometry on SPD matrices. Then, we cast
dimensionality reduction as an optimization problem and
consider two cost functions encoding different criteria.
Finally, we describe the datasets in which we applied our
classification pipelines.

We denote by X € R"*7 the recording of 7" samples
on n electrodes of the kM trial in an ensemble of K trials
and yy, the class associated to Xj. The spatial covariance
matrix C of X, is an X n matrix estimated using

1
Cr = ﬁXng.

T ey

Riemannian geometry of SPD matrices: Given
enough samples, a covariance matrix estimated with (1)
is symmetric positive definite (SPD), which means that
all of its eigenvalues are strictly positive. Matrices with
such property form a manifold M, a set of points with the
property that the neighborhood of each € M can be
mapped to an Euclidean space, also known as its tangent
space T M. When associated to a metric, M becomes
a Riemannian manifold and fundamental geometric no-
tions are naturally defined, such as geodesics (shortest
curve joining two points), distance between two points
(Iength of the geodesic connecting them), the center of
mass of a set of points, etc.
We denote the manifold of SPD matrices by S;7+ and
endow it with the affine-invariant Riemannian metric.
This metric induces a distance between any two matrices,
as [0]

5(Ci.Cy) = INoe(C 20,07 P)lle, @)

offering a more appropriate distance in the SPD space as
compared to the Euclidean distance. In fact, it is pos-
sible to show that S;"* is a manifold with nonpositive
curvature [6], so concepts from Euclidean geometry do
not necessarily apply. For instance, the sum of angles in
a triangle is different than 180 degrees (see Figure 1).
The center of mass M according to distance (2) of a set
of covariance matrices {C1, ..., Ck} is defined as [1]

K
M = argmin E
MeS;Ht k=1

82(M, Cy). (3)

Note that M is the point in the manifold minimizing the
dispersion (variance) of the set of matrices. Whenn = 1
(Cy, is a strictly positive scalar), M corresponds to the
geometric mean of the Cj;’s.
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Figure 1: The manifold S,/ is portrayed as a surface
with nonpositive curvature. The distance between any
two elements is the length of the geodesic.

This explains why many researchers adopt the term “ge-
ometric mean” to refer to the center of mass of a set of
covariance matrices. The geometric mean of two SPD
matrices is the half-way point of the geodesic that con-
nects them. For K > 2, there is no closed form solution
for M, so one has to resort to iterative algorithms [2].
The above definitions suffice for the intents of this paper.
The interested reader will find a thorough treatment of the
subject in the book of R. Bhatia [6].

Dimensionality reduction: Our approach for dimen-
sionality reduction determines a map that takes a set of
matrices {Cy, } in S;+ to a new set {C}} in S (p <n)
and keeps a maximum amount of information (under
some criterium) from the original matrices. To do so,
we search for a p-dimensional subspace of R™ containing
the most relevant features spanned by the columns of the
original C’s. This subspace is represented by a matrix
W € R™*P whose columns form a basis for the subspace.
We use IV to select linear combinations of electrodes in
X} via

Xj=wTrXxy,

which is the same as calculating

Cl =WTC,W e RP*P. (4)
Without loss of generality, we impose W to be an or-
thonormal matrix. Note that because W is full rank the
dimension-reduced matrices are guaranteed to be positive
definite.
The procedure for choosing W is cast as an optimization
problem,

minimize LW),

&)
subjectto  WTW =1,

where £ is a loss function that encodes the criteria for
reducing the dimension of the covariance matrices. One
possible criterium is that of making sure that the distances
of points Cj, to a given “landmark” L do not change very
much for the dimension-reduced matrices in Sz‘f +. This
can be written formally as

K

Luw)=3" (52(ck, L) — & (WTCw, WTLW)).
k=1

If we choose L to be the geometric mean of the set of ma-

trices C, the loss function £,, is the one proposed in [4].
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Note that £, is based on an unsupervised criterium, since
it does not assume knowledge of the labels y;, of each co-
variance matrix. In the supervised case, W can be cho-
sen to enforce the separability of classes in the reduced-
dimension manifold, as in the function

K K
L (W)= "> A 2 (Wrew,whe;w),

i=1j=1

where the A;;’s encode a measure of affinity between ma-
trices C; and C7, so that

with
s if C; ENw(Cj) or Cj S Nw(ci)

1
9u(Ci, Cj) = { 0,

otherwise

and

1, ifC; € M,(Cj) or Cj S Nb(07)
90(Ci, Cj) = :

0, otherwise

where N, (C;) is the set of n,, nearest neighbours of C;
with the same label as y; and N,(C;) contains the n
nearest neighbours whose labels are different from ;.
With this definition, L, tries to preserve the distances
between each pair of matrices in the dimension-reduced
space while at the same time enhancing the class sepa-
rability: for large positive values of A;; (within class)
the dimension-reduced matrices are encouraged to come
closer to one another, while for small negative values (be-
tween classes) their distances tend to increase. Figure 2
illustrates the two aforementioned criteria.

Unsupervised

Rnxn

Supervised

o %0

RnXn

w RPXP

Figure 2: Illustration of the priorities for each type of di-
mensionality reduction. In the unsupervised case, the dis-
tances to a landmark point are preserved, while for the su-
pervised approach the intra-class distances decrease and
the inter-class distances tend to augment.
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We should mention that the computational cost for calcu-
lating £,, and L, is not comparable. In the unsupervised
case the number of operations increases linearly with K
since all distances are calculated with respect to a single
landmark. In the supervised algorithm the number of op-
erations scales quadratically with K, a rather problematic
aspect when working with large datasets.
Problem (5) has a special structure and can be solved as
an optimization problem on manifolds, a branch of ap-
plied mathematics with a considerable amount of recent
research [7] and excellent computational tools available
online, such as the Python package pymanopt [9] used
in this work. In particular, we use a version of the con-
jugate gradient algorithm adapted for manifold optimiza-
tion and solved (5) considering the W matrices as ele-
ments of a Grassmann manifold. We will not delve into
more the details of these procedures, but the interested
reader will find more information in [4] and [7].
Classification pipeline: We classify each trial X}, via
the minimum distance to mean (MDM) algorithm. It de-
termines the geometric mean of the covariance matrices
in each class of the training set and then assigns to each
matrix in the test set the class to which the distance to the
mean is the smallest [8].
We compare three different pipelines for classification:

MDM: No dimensionality reduction (DR) and
classification using the MDM algorithm.

unsDR + MDM: Unsupervised DR with £,, as cost
function and landmark L fixed to the geometric
mean of the dataset. Classification using MDM.

supDR + MDM: Supervised DR with £, as cost
function, n,, always fixed to the minimum number
of elements in each class and n; chosen via cross-
validation. Classification using MDM.

The performance of each pipeline is assessed via a 10-
fold cross-validation procedure and compared by their
AUC (area under the receiver operating characteristic
curve).

Datasets: We carried out our analysis on three
datasets, two from MI experiments and one using the
P300 paradigm. The first MI database comes from the
BCI Competition III — Dataset IV [10] and contains
recordings from 5 subjects with 118 electrodes. We
applied our classification pipelines on 140 trials corre-
sponding to tasks of left and right imagined hand move-
ments (70 for each class). The second MI database is
available at the Physionet website [11] and comprises
recordings on 64 electrodes from 109 subjects. We only
used the data from tasks of imagined hands and feet
movement, which corresponds to approximately 44 tri-
als per subject (22 for each class). The P300 dataset
comes from experiments performed in our laboratory on
the P300-based game Brain Invaders [12]. We used data
from 32 electrodes on 38 subjects with 720 trials each
(120 target and 600 non-target).
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The data from each BCI paradigm were processed differ-
ently. For MI we filtered the EEG signals in the 8-30 Hz
band and considered each trial as a segment from 0.5 to
2.5s after each trial onset. We estimated the spatial co-
variance matrices using (1). For the P300 data we used
filters from 1 to 20 Hz and considered each epoch with a
duration of one second and starting just after a flash. We
used the approach described in [13] to estimate a special
form of covariance matrices capturing signals of interest
in event-related potentials.

RESULTS AND DISCUSSION

This section describes the analysis on each dataset and
discuss the obtained results.

BCI 11I-1V: We began our investigations on a dataset

where dimensionality reduction is of major concern, be-
cause of its 118 x 118 covariance matrices. We com-
pared the classification pipelines with different values of
p, the dimension of the reduced covariance matrices, and
ny, the number of neighbors considered in N3(C;) for
the supervised DR. The three values of p were chosen in
the following way: obtain the geometric mean M of the
covariances of the dataset (all classes together) and com-
pute its eigenvalue decomposition. Sort the eigenvalues
in decreasing order and select the values of p for which
their cumulative sum equals to at least 80%, 95% and
99% of their total sum. For the BCI III-IV dataset this
corresponds to p =4, 12, and 32, respectively.
The results in Figure 3 show that for p = 32 the AUC
of pipelines with dimensionality reduction were at least
equivalent to those using all 118 available electrodes.
This can be explained by the low-dimensional structure
of the subspace spanned by the columns of the spatial
covariance matrices. Consequently, most of the variance
of these matrices is associated to their first few principal
vectors. In contrast, reducing the dimensions to p = 4 de-
grades the classification performance on most subjects, a
consequence of the loss of discriminatory features in the
reduced matrices. Figure 3 also indicates that the param-
eter ny of supervised DR does not seem to have much
influence over the scores of the pipelines.

Physionet: In this second dataset we tested the per-
formance of classification pipelines on a wide range of
individuals. Having data from so many subjects allows
us to observe certain patterns and make general conclu-
sions that would be difficult otherwise. Figure 4 displays
the results on three subjects for multiple values of n; and
fixed p = 24. For certain choices of n; the score with
supervised DR was higher than the other pipelines, but
in general we did not observe any considerable improve-
ment. In fact, one could include a grid-search step to the
pipeline with supervised DR for choosing the best value
of ny, for each subject. However, this would lead to a con-
siderable increase in processing time, since the quadratic
scaling of supervised DR makes it a quite expensive op-
eration by itself. With this in mind, we fixed n, = 10 in
all of the following analysis, accepting the compromise

CC BY-NC-ND

83

DOI: 10.3217/978-3-85125-533-1-16

that it might not be the optimal value for all subjects.
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unsupervised (6)p=4, nb=5
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1234567 8 910111213 (4)P=32

method

(9)p=12,nb=5
(10) p =12, nb = 10
(11) p=32,nb =2
(12)p=32,nb=5
(13) p =32, nb =10
Figure 3: AUC of the classification pipelines on five sub-
jects from dataset BCI III-IV. We considered pipelines
with p € {4,12,32}. For the supervised DR we fixed

Ny, = 70 and varied n; in {2, 5, 10}.
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Figure 4: AUC of the classification pipelines with super-
vised DR on three subjects from the Physionet database.
We considered multiple values of n;, and fixed n,, = 22
and p = 24. Horizontal lines correspond to AUCs of
pipelines with no dimensionality reduction and unsuper-
vised DR.

Figure 5 compares the performances of the classification
pipelines on all subjects for different values of p and fixed
ny = 10. The curves in each plot correspond to the
AUC of each pipeline in decreasing order. We observe
the same behavior as before: on most subjects, when the
dimension of the reduced matrices (e.g. p = 4) is small,
the AUC of the pipeline with full matrices (64 x 64)
is higher as compared to both dimensionality reduction
methods. The score of all pipelines become close to one
another when p increases. Another important observation
from Figure 5 is that the classification performance of the
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pipelines varies smoothly with the choices of the dimen-
sion p of the reduced covariances. This is of great practi-
cal value because it demonstrates that we do not need to
choose a precise p for attaining good results; there exists
a certain range where all choices are equivalent.

Hm No reduction 11l Unsupervised Supervised

0.9 p=4 \.\ p=38 \ p=12
%) 0.7 A = ‘
TLos > ~.
! \
0.3
0,9[_\ p=16 |} p=20 |\, p=24
0.7 N \ \\
[} Sy \ N
o5 \ \\ :
0.3 )
0.9k p=28 \ p=32 [} p=236
0.7 L\\ N, \
. S N
§ \ :-.\‘\ e ‘\‘\
0.5 \\ \\ .
0.3 \ \
20 60 100 20 60 100 20 60 100
subject subject subject

Figure 5: AUC scores in decreasing order for classifica-
tions on all subjects from the Physionet database. We
fixed n, = 10 and n,, = 22, and considered the values of
p indicated in the figure.

P300: The results for our investigations of the P300

dataset are displayed in Figure 6. We compare once again
the classification performance of a pipeline without di-
mensionality reduction (64 x 64 matrices) to classifiers
using either an unsupervised or a supervised approach.
We did all analysis with fixed n;, = 10 and considered
multiple values of p. We observed the same behavior as
before for the performance of dimensionality reduction
algorithms: when p is too small the pipelines with DR
are clearly inferior, as seen for p = 8, whereas for higher
p the performances are all very similar.
The computing time for supervised DR in the P300
paradigm was excessively high, mainly because of the
large number of trials in the dataset. We tried using a
smaller set of trials, but in this case the classification per-
formance of all pipelines were lower. In fact, usually
P300 BCI systems are expected to improve their perfor-
mance when more trials are available, so having a dimen-
sionality reduction step that does not scale well with their
number is problematic.

Comparing all pipelines: Besides investigating the
conditions in which a dimensionality reduction would be
useful or not, we tested whether any of the methods had a
globally superior performance on the P300 and Physionet
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datasets. In theory, we expect the supervised approach to
have better results because of the extra information it has
concerning the labels of each covariance matrix. To test
this hypothesis, we rearranged the results from Figures 5
and 6 into the plots in Figure 7, where each axis contains
the AUC of a different pair of pipelines.

Em No reduction 11l Unsupervised Supervised
0.9 p=8 p=16
So.7 T\
< )
0.5 - \
0.9[% p=20 ||} p=24||] p=28
N \‘“ N
5 0.7 3 N A
I \ \ \\
0.5 2 \ 5\
0.9 - p=32 . p=36 . p=40
AN ‘N N i
o \}\ ™ N
2 0.7 s Ny N
10 20 10 20 10 20
subject subject subject

Figure 6: AUC values in decreasing order for the three
pipelines applied to all subjects from the P300 database.
We fixed n, = 10 and n,, = 120, and considered the
values of p indicated in the figure.

We estimated regression lines with intercept fixed to the
origin for each plot and used a F-statistic to test if we
could reject the hypothesis of its slope being equal to one.
None of the statistical tests rejected the null hypothesis
with type I error fixed to 5%, meaning that nothing can
be said about one pipeline being consistently better than
the others. This result indicates that the extra informa-
tion used by the supervised DR is not enough for improv-
ing its classification power. It also means that adding a
dimensionality reduction step to a classification pipeline
does not harm its performance, a very useful fact that
alleviates the computational burden of processing high-
dimensional features using Riemannian geometry.

CONCLUSION

In this work, we evaluated two methods for reducing
the dimension of positive-definite matrices and com-
pared their scores in classification tasks on different BCI
datasets. We observed that reducing too much the di-
mension discards important information from the origi-
nal high-dimensional space and degrades the classifica-
tion performance. Also, the choice of p showed a smooth
influence over the scores of the classification pipelines, a
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very useful result in practice.

Our statistical tests did not reject the hypothesis of each
pair of pipelines having equivalent performances, indicat-
ing that it is possible to reduce the dimensions of a spa-
tial covariance matrix without losing classification per-
formance. We should point out that we probably did not
obtain better results for the supervised DR because we
did not use a grid search for choosing the best n; on each
subject. However, if we had included this step the al-
gorithm would have become impractical, because of the
computational power that minimizing the loss function
L demands.

Physionet P300
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Figure 7: Scatter plots with the AUC scores of each pair
of pipelines in the axis. We used only the results for
p = 24 on both datasets. Coefficient m is the slope of
a regression line with intercept fixed at the origin.

In comparison to [5], our investigations on BCI signals
were more thorough. We explored the effects of the
choice for the reduced covariance matrices, used a dataset
containing many more subjects and a BCI paradigm that
had not been considered until now. In future work, we
intend to explore new options for performing supervised
DR. The approach proposed by [4] does not scale well for
large datasets and we believe that there are better alterna-
tives. Also, we would like to explore more deeply the ef-
fects of reducing the dimensions of covariance matrices,
not only in terms of classification power but as a general
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problem in Riemannian geometry. Finally, we should ex-
tend our comparisons to other proposals available in the
literature for reducing the dimension of EEG signals.
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ABSTRACT: We have previously shown that real-time
fMRI, despite the low temporal resolution of the BOLD
signal, can be used for BCI navigation, using motor-
imagery and -execution. Here we leverage the superior
spatial resolution of fMRI to implement a BCI paradigm
going beyond a single brain network for control, while
retaining an intuitive mapping between brain activity and
BCI functionality. The experiments simulate non-trivial
navigation and item selection tasks by a subject teleop-
erating an HRP-4 humanoid-robot. Motor actions are
mapped into simple navigation commands inside a room
and visual attention is mapped to direct the robot’s arm
toward one of three objects placed on a table. When the
correct item has been selected, the subject navigates the
robot toward the experimenter in order to simulate the
delivery of the object. We describe a method based on
two parallel classifiers, with four and three classes (inde-
pendent of the first four), offline and real-time classifica-
tion results from a single-subject pilot, performing sev-
eral times.

INTRODUCTION

This research is part of a thread of studies aimed at dis-
solving the boundary between the human body and a sur-
rogate robotic representation in a physical reality. The
subject is expected to act as if the robotic body is his own
body, and our aim was to provide the subject with an in-
tuitive thought-based control of this surrogate representa-
tion. The subject was located in Israel and the robot was
located in France; this geographic split was only made
due to the availability of the facilities.

Electroencephalogram (EEG)-based brain-computer in-
terface (BCI) for device control, despite much recent
progress, is still mostly based on three paradigms (with
some variants): motor imagery, P300, and steady state
visually evoked potential (SSVEP). Our overarching goal
in this research is to leverage the superior spatial resolu-

Ihttps://github.com/LIRMM-Beziers/visionsystem
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tion of blood-oxygen-dependent-signal (BOLD) in order
to explore novel BCI control paradigms based on multiple
brain systems simultaneously, such that we map different
types of mental patterns to relevant functional goals, ap-
proximating a realistic task. Specifically, in this study we
allow the subject to navigate using three motor classes, to
select one of three objects using the visual system, and a
null class.

There have been several studies including EEG-based
BCI control of avatars [1, 2, 3] and teleoperation of a hu-
manoid robot [4, 5], including studies with spinal cord
injured people [6]. We have demonstrated teleoperat-
ing a humanoid robot using motor imagery and execu-
tion with real-time functional magnetic resonance imag-
ing (fMRI) [7, 8], and others have demonstrated navigat-
ing a robot using covert visuospatial attention [9]. In this
pilot study we aim going beyond these studies, using two
different brain systems simultaneously.

MATERIALS

fMRI scans were performed on a 3T Trio Magnetom
Siemens scanner as described in [7, 10], with a repeti-
tion time (TR) of 2000ms. Our system includes a tool
for whole brain classification of raw data in real-time as
described in [11]. Visual feedback is provided by a mir-
ror, placed 11cm from the eyes of the subject and 97.5cm
from a screen, which results in a total distance of 108.5cm
from the screen to the eyes of the subject.

We used the vision system framework (VSF)! to ac-
quire, transcode and transmit the video stream between
the scanner (in Israel) and the robot (in France) with min-
imum latency.

METHODS

We created a complete software suite for running a wide
range of real-time fMRI studies, which is able to process
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both brain data arriving in real time from the fMRI scan-
ner and pre-recorded fMRI data [11]. It supports various
experimental protocols, includes several analysis meth-
ods, is integrated with the Unity3D game engine for vir-
tual environment feedback, and can interface with other
external devices. Our tool is efficient in terms of process-
ing, can be configured for a wide range of experimental
protocols and was previously tested in several types of
real-time fMRI BCI experiments. It is based on statisti-
cal machine learning classification of subjects’ brain state
in real time, based on whole brain activity.

.= IW”!’EE,

Figure 1: Sample stimuli for testing the visual category
task. From left to right the categories are: faces, tools and
houses.

Training and applying classifiers in real-time requires
that learning be executed faster than is generally done in
the application of machine learning to fMRI. Our sys-
tem is optimized for memory usage, processing speed,
and classification speed using feature reduction, fea-
ture selection, and redundant data reduction. The sys-
tem uses pre-recorded raw brain data for the purpose
of learning a classifier using Platt’s sequential minimal
optimization (SMO) version of the support vector ma-
chine (SVM) learning algorithm [12]. The system culls
empty voxels and the subject’s eyes and corrects non-
linear non-homogeneous drifts. For classification and
feature selection we use Weka, which is a collection of
machine learning algorithms [13]. For feature selec-
tion we use the information gain (IG) measure to se-
lect the most relevant voxels [14]. The filtered dataset
is passed into Weka’s [15] implementation of multi-
class [16] SVM [12], using default parameters. The result
of the training phase is an SVM classifier model that can
classify previously unseen vectors. The system automat-
ically verifies that the model classifies the training data
with perfect accuracy (“test on train” for sanity check)
and displays the selected voxels.

In the real-time classification stage, the subjects perform
a task and the system classifies their intentions in real
time. The system classifies a brain scan every time reso-
lution unit (TR), which in this case is 2 seconds. It uses
the filtering and normalization methods as in the training
stage and select the same voxels based on the IG filter-
ing performed at model training. The data is then passed
into the trained SMO model, and the classification re-
sult is then transmitted to the external application using a
user datagram protocol (UDP). The classification process
takes approximately 50 milliseconds. Before moving to
a free choice task the subject undergoes a cue-based part
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of the study, the task is similar to training but feedback is
provided based on real time classification.
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Figure 2: The HRP-4 humanoid robot’s state-machine
protocol for the visual-motor task.

The subject (female, 31) underwent several training ses-
sions for each classification task: i) motor execution (4
sessions) — moving left fingers, right fingers, toes, and a
null (rest) class; ii) motor imagery (4 sessions) — imag-
ining left hand, right hand, feet, and a null class; and
iii) visual categories (5 sessions) — viewing images of
houses, faces and tools. The motor execution classifier
was trained 3 months prior to this experiment, the motor
imagery classifier was trained 2.5 months prior and the
visual categories classifier was trained 24 days prior.

Each motor training session included 40 events from each
category, i.e., for four training sessions there are 160 la-
belled samples; all details are as in [10]. For visual classi-
fication training is done using a block design — a sequence
of images from the same category is flashed, one per sec-
ond, for 12 seconds, followed by a duration of six sec-
onds during which the category images were painted in
white to allow the signal to return to baseline. The subject
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was trained with 36 image sequences for each category,
i.e., for five training sessions there were 180 samples. In
test sessions each stimulus includes three images from
the three categories simultaneously, and the target cate-
gory is indicated by a fixation dot (Fig. 1). The subject
carried out three such test runs, with 30 stimuli in each
session (10 from each category).

The motivation behind the visual paradigm is to allow the
subject to select one of several objects by visual atten-
tion, even if the multiple objects are seen together. Our
processing pipeline assures that information from the ar-
eas surrounding the eyes is pruned prior to being fed into
the machine learning system [11]. Thus, we expect that
the machine learning system can classify this task by de-
coding, in real time, the activity of the well-known visual
areas in the cortex, corresponding to the visual categories
of faces, tools, and houses. Such decoding in real time
and as part of a BCI task has never been attempted to our
knowledge, and the task is especially challenging given
that the training and testing of the algorithm are not done
in the same conditions — the training is based on a single
image display and the testing is based on three images
shown simultaneously. The goal in this paradigm is to
move towards new naturalistic BCI paradigms, such that
training is done in controlled conditions, and the model
can be applied in real time, in naturalistic conditions,
which may be different than those available for train-
ing. In our case, we expect the classifier to be trained
separately over different object categories, whereas the
free choice task includes multiple object categories at the
same time.

The experiment and the robot’s control were based on a
predefined state machine (Fig. 2). The task included sev-
eral stages, including navigation and object selection (see
Fig. 3 and companion video?®). The robot was placed in
a fixed orientation. First, the subject steered the robot
towards a table, by passing an obstacle chair and by uti-
lizing all four motor commands in order to reach the table
(Fig. 4, 3). The subject was instructed to guide the robot
around the chair and then turn towards the printed sign
as seen in 4(b) (on the right). The subject had to read,
through the eyes of the robot, the instructions from the
sign with the target object to select. After seeing the in-
struction, the subject was expected to navigate towards a
table, eventually stopping in front of it. On top of the ta-
ble we placed three objects: a (toy) doll’s head, a (toy)
house, and a tool (either a hammer or a tea cup). Prior to
the experiment, the subject was instructed that in order to
select an object she had to rotate towards the sign to learn
about the target object, and from that moment she had
to focus her attention to the target physical object on the
table at all times and study it, including while walking
to table, until it is selected. For example, if the experi-
menter revealed the word ”face” then the subject had to
focus attention to the head’s eyes, nose and chin, i.e., pay
attention to the features of the object. If the word tool”

2http://y2u.be/eYSb9Q5PcP8
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is revealed, then the subject had to imagine herself using
that tool.

After walking the path, the subject was expected to stop
within grasping distance from the objects. Once the sub-
ject reached the table the steering was deactivated, the
robot stood still and the robot’s left hand was pointed
toward one of the items on the table. The item was se-
lected by a majority vote from the classification at times
0-16 seconds following the instruction from the experi-
ment (8 TRs). The 16 seconds delay was based on the
optimal classification time as determined in offline eval-
uation. If a majority vote did not take place (i.e., a draw)
the classification continued until there was a decision.

Following the classification, the subject had to indicate
whether she agrees with the selection or not using motor
categories. The subject used either motor execution or
motor imagery (in different runs), as follows: feet — try
again, right hand — activate a grasp motion. If the mo-
tor action was classified as null, then the subject received
feedback indicating her to repeat the motor action. The
subject repeated this step until she was satisfied with the
category that was selected. Immediately after the subject
activated the grasp motion by selecting the category, the
robot takes a few steps backward away from the table.
Only then the system is re-activated the steering and the
subject was allowed to control the robot and navigate it
towards the experimenter.

L Experimenter

Figure 3: A schematic drawing of the intended walking
path inside the room. The red dot indicates the robot’s
fixed position. The path goes around the chair rotating
towards the sign, and then towards the table that has the
three category items placed on top. Following the visual
task, the path continues toward the experimenter.

During the task our system ran two classifiers in paral-
lel: motor (motor execution or motor imagery) and visual
categories, the former with four categories and the latter
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with three. The subject teleoperated the robot using all
seven classes: left, right, forward, null class, house, face
and tool. The longest run was 12 minutes. For each run
the subject was assigned with a different target category
(face, house, or tool). During the navigation part of the
experiment, the flow of high level commands (forward,
left, right, null, face, tool, house) was sent to the robot
through a user UDP connection with a latency of 100-150
milliseconds using the VSF.

RESULTS

Throughout the experiment we used three classifier mod-
els: motor execution, motor imagery, and visual cate-
gories. A combination of motor execution and visual cat-
egories was used on the first day of the experiment, and
a combination of motor imagery and visual categories on
the second day. Estimating accuracy for the free choice
is difficult, so we provide offline evaluation of the classi-
fication models.

Figure 4: The HRP-4 humanoid robot during a visual-
motor task, standing in front of three objects. Top: the
target objects as seen from the robot camera by the sub-
ject, bottom: the robot performing the task, escorted by
an experimenter for robot safety.

Offline analysis of the motor classifier is based on a sin-
gle training session (Fig. 5). As expected, a cue-based
session with real time feedback using the same classifier
yields similar results. More real-time data is required to
assess the difference in accuracy in TR3. The motor exe-
cution classifier was trained and tested three months prior
to this real-time experiment and test. Similarly, single-
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run motor imagery classification accuracy results can be
seen in Fig. 6; we note that the pre-recorded and real-time
tests were done 3 & 2.5 months apart, respectively.

8

® Pre-recorded test
B Real-time test

20

Classification Accuracy

Figure 5: Motor execution cue-base classification accu-
racy comparison between a single pre-recorded and a sin-
gle real-time run.
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Figure 6: Motor imagery cue-base classification accuracy
comparison between a single pre-recorded and a single
real-time run.
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Figure 7: Cue-base classification accuracy, comparing
single and triple frame (best run and average).

Offline analysis of the visual classifier was performed as
follows. A single model was trained on five sessions —
overall 180 stimuli, each including one category. The
model was then tested in two conditions: i) another run of
36 stimuli with one image displayed on screen, and ii) a
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run of 36 stimuli, each comprising of all three categories
displayed on the screen simultaneously. Fig. 7 presents
the results, indicating that while both methods perform
significantly better than chance (33%), testing on a single
image is superior to testing on three parallel images.

A qualitative assessment of the subject’s performance can
be provided for the free choice task. In the motor exe-
cution experiment the subject performed the navigation
part successfully in all four experimental sessions. In the
motor imagery experiments the subject failed to stop the
robot near the table and was only successful in the third
session.

Thus, our subject had five attempts at the visual task: four
in the motor execution conditions and one in the motor
imagery condition. The subject succeeded in all cases,
but only in the second attempt (in all of the motor ex-
ecution sessions) or in the fourth attempt (in the motor
imagery session).

The classification seemed to be skewed towards the face
category. Fig. 8(A) shows several red dots that corre-
spond to a successful classification of the “face” com-
mand in each time point during 8 TRs. However, when
the subject was instructed to focus on one of the two
other categories (house or tool) there was category ri-
valry between the classes. Fig. 8(B) is a rivalry exam-
ple that show a fluctuation between “face” and “house”.
When category rivalry occurs, it prolongs the classi-
fication stage and it is harder to get a majority vote.
In other words, without rivalry there are less classi-
fication attempts and a majority vote occurs quickly.
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Figure 8: Visual categories real-time classification exam-
ples. The subject was instructed to focus on a) face, b)
house.
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DISCUSSION

We have developed a novel paradigm, based on simulta-
neous classification of both motor and visual brain net-
works, and have evaluated it in the context of a complex
navigation and object-selection task, involving teleoper-
ating of a humanoid robot. The pilot study with one
subject serves to demonstrate that our system is fully
operable, and provides a preliminary evaluation of the
paradigm. Our results indicate that the task can be per-
formed, although motor imagery and visual classification
are challenging. Specifically, further work is required to
refine the visual paradigm. Our offline evaluation results
suggest that training subjects on simultaneous images (in
the same fashion as the actual task) may be more appro-
priate.
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ABSTRACT: Introducing BCI technology in supporting
motor imagery (MI) training has revealed the
rehabilitative potential of MI, contributing to
significantly better motor functional outcomes in stroke
patients. To provide the most accurate and personalized
feedback during the treatment, several stages of the
electroencephalographic signal processing have to be
optimized, including spatial filtering.

This study focuses on data-independent approaches to
optimize spatial filtering step.

Specific aims were: i) assessment of spatial filters'
performance in relation to the hand and foot scalp areas;
ii) evaluation of simultaneous use of multiple spatial
filters; iii) minimization of the number of electrodes
needed for training.

Our findings indicate that different spatial filters showed
different performance related to the scalp areas
considered. The simultaneous use of EEG signals
conditioned with different spatial filters could either
improve classification performance or, at same level of
performance could lead to a reduction of the number of
electrodes needed for successive training, thus improving
usability of BCls in clinical rehabilitation context.

INTRODUCTION

Brain-computer interface (BCI) technology allows
people with severe motor disabilities to use their brain
activity (e.g. the electroencephalographic, EEG, signals)
to control external devices, thereby bypassing their
impaired neuromuscular system, or receive a feedback
related with their cognitive processes [1]. One of the
most recent and promising BCI applications regards post-
stroke functional motor rehabilitation [2]. For instance,
the introduction of BCI technology in assisting the motor
imagery (MI) practice has been demonstrated to uncover
the rehabilitative potential of MI, contributing to
significantly better hand motor functional outcomes [3].
In order to facilitate the practice of voluntary covert and
for overt access to the affected hand, patients received a
discrete feedback that should be the faithful
representation of the brain activity (congruent with the
affected hand).

To bridge the gap between research-oriented
methodology in BCI design and the usability of a system
in the clinical realm requires efforts towards BCI signal
processing  procedures  (feature extraction and
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translation) that would optimize the balance between
system accuracy and usability. This study focuses on the
process of feature extraction and more specifically on its
spatial filtering step.

Spatial filters are generally designed to enhance
sensitivity to particular brain sources, improve source
localization and/or suppress artifacts. Most commonly,
spatial filters are a linear combination (i.e. weighted
sums) of channels. There are several approaches for
determining the set of spatial filter weights. These
approaches fall into two major classes: data-independent
and data-dependent spatial filters [4]. According to the
review [5] of signal processing methods used in BCI
studies, the surface Laplacian, the common spatial
pattern, the common average reference and the
independent component analysis are the most employed
filters. For sensorimotor rhythms-based BCls, the
common average reference and Laplacian methods are
superior to the ear reference method because they
enhance the focal activity from the local sources and
reduce the widely distributed activity [6]. Furthermore,
concerning the two variations of the Laplacian filter, i.e.
the large and the small Laplacian, it appears that they are
the best filters in prediction and source identification,
respectively [7].

This study approached the spatial filtering step by
hypothesizing that filtering the EEG data with a different
data-independent spatial filters would return a better
rendering of the scalp areas of interest to allow for a more
suitable physiologically informed feature extraction. As
such, this procedure would best lead to a reinforcement
of individual correct EEG patterns during BCI training
[3] and, thus, maximize target prediction in the
rehabilitation training.

In this view the specific study aims were: (a) to compare
performances of different spatial filters as a function of
the scalp areas relevant for hand or foot executed motor
tasks (i.e. areas of interest), (b) to compare performances
of gold standard filters, e.g. Laplacian filters, versus
those obtained by pooling information (EEG features)
coming from different spatial filters, (e.g. two kinds of
bipolar filters), (c) to evaluate the impact of number of
electrodes needed in those spatial filters which showed
similar classification performance.

Confirming the main hypothesis, we might suggest that
the a priori (defined one time, before starting the
analysis) choice of just one spatial filter at the start of the
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BClI signal processing is not optimal.

Common average reference (CAR), surface Laplacian
(LAP) and bipolar filters, the latter commonly used in the
EEG clinical field but not in sensorimotor rhythms-based
BCI, were explored in this preliminary study on an EEG
data set, acquired at IRCCS Fondazione Santa Lucia, that
does not include stroke patients.

METHODS

Subjects: Forty subjects (seven of them with severe
motor disabilities due to traumatic spinal cord lesion or
progressive neurodegenerative disorders) participated in
the study. Each subject gave written informed consent
prior to inclusion. The study was approved by the
Fondazione Santa Lucia (Rome) ethics committee.

Experimental protocol: The protocol consisted of two
main parts: the screening session and some training
(weekly) sessions. During the initial screening session,
subjects were comfortably seated on a reclining chair (or,
when necessary, on a wheelchair) ina dimly lit room. The
session was divided in 12 runs (30 trials each one). Each
trial began with a target appearing on a side of the screen
(up/down, i.e., vertical, or left/right, i.e., horizontal). The
trial lasted 5.8 seconds, with the inter trial interval of 1.8
seconds. Subjects were instructed to execute (first run)
and imagine (second run) movements of their hands
(opening and closing) or feet (flexion) upon the
appearance on the screen of top or bottom target,
respectively. When the targets appeared on the left or
right side of the screen subjects were invited to move
(third run) or to imagine (forth run) their left or right hand
(opening and closing) upon the appearance of the target
in the correspondent side. This sequence was repeated
three times for a total of 12 runs. Subjects were instructed
to minimize muscular, electrooculographic and blink
activity. In the screening session, subjects were not
provided with any feedback (any representation of their
brain activity).

Experimental setup: Scalp EEG potentials were
collected from 58, 59 or 61 positions assembled on an
electrode cap (according to an extension of the 10-20
International System) and amplified by a commercial
EEG system (BrainAmp, Brain Products GmbH,
Germany) which sampled signals at 200 samples/s (per
channels). Electrical reference has been provided by both
ear lobes. The BCI system was realized using the
BCI2000 [8] software system.

Signal processing and feature extraction: Using
Matlab, EEG signals were band-pass filtered (0.1-70 Hz)
with a forth order Butterworth filter and notch filtered at
50 Hz. The conventional ear reference, the common
average reference (CAR), two different Laplacian
derivations (small and large) [6] and two simple bipolar
methods were considered in the study. In the bipolar
methods (applied via software) each voltage difference
was computed between two channels, longitudinally
subtracting e.g. FCz from Fz and transversely subtracting
e.g. Cz from CL.

EEG data recorded and filtered with each spatial filter
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considered were divided into epochs 1 second long. The
spectral analysis was performed on EEG data epochs
corresponding to task employing the Maximum Entropy
method (16™ order model) with a resolution of 2 Hz and
considering no overlapped epochs. All possible features
in a reasonable range (i.e., 0-36 Hz in 2 Hz bins) were
extracted and analysed. A feature vector (spectral
amplitude at each bin for each channel) was extracted
from each epoch.

Data analysis: Consistently with the aims of the study
two analysis were planned.
For the aim (a) just vertical runs, corresponding to the
movement execution of hands or feet, were analysed.
Hands opening/closing and feet flexion engage separate
areas of the sensorimotor strip, different about
anatomical and functional point of view.
Basing on the sensorimotor rhythms, the analysis was
constrained to features belonging to the sensorimotor
strip (FC, C and CP channels) in the range from 7 Hz to
31 Hz. The hands area was defined as the area containing
derivations coming from FC, C and CP electrodes in all
their even and odd positions (bilateral area); the feet area
was defined as the area containing derivations coming
from electrodes placed on the mid-line, e.g. FCz,
according to the 10-20 International System.
Features belonging to those areas, first separately
considered, i.e., hands area, feet area, and then in the
combined manner, hands and feet areas, were the input
for the stepwise regression which identifies the optimal
subset of predictor variables (i.e. the features in this case)
and assigns weights to them in order to build an effective
regression model to evaluate the relationship between the
predictors and the dependent variable (here equivalent to
subject’s movement intention). The maximum number of
features to be selected by the stepwise regression
algorithm was set, for all feature domain, to 8 because of
results obtained in a preliminary study. The latter aimed
to compute the optimal number of features from which
the mean (among tasks and subjects) classification
performance does not grow in a significant way. We
concluded that increasing the number of features, from
eight to largest values, does not significantly increase the
performance values.
In order to compare performances of the six spatial filters
considered, after the features translation step in which a
linear classifier is used to predict if the epoch examined
belonged to hands movement trials or feet movement
trials, the Area Under Curve (AUC) of Receiver
Operating Characteristic (ROC) curve was assessed
using a 15-fold cross-validation design.
For the aim (b) both vertical and horizontal runs were
analysed, allowing selection algorithm (stepwise) to
choose features from both areas, hands and feet areas in
combined manner for vertical runs and left and right hand
areas in combined manner for horizontal runs. This
analysis included six feature domains each one extracted
from EEG signals pre-processed with one of six filters
earlier defined and a new feature domain containing all
(in sensorimotor strip and frequencies) features
computed from EEG signals pre-processed by
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longitudinal and transversal bipolar filters. The feature
dimensionality reduction (stepwise regression), the
classification (linear classifier) and the computation of
performance index (AUC of ROC curve) followed the
stages as proposed for (a).

For the aim (c) three representative subjects for which
different spatial filters showed (for each subject) in (b)
the same classification performances were identified.
The number of electrodes needed to realize the hardware
montage containing the eight (as earlier defined) optimal
features was computed for each spatial filters.

Statistical analysis: To investigate the performances of
different spatial filters in relation to the scalp areas, AUC
values (in movement execution runs) were analysed by
repeated measures two factors analysis of variance
(ANOVA). The filter factor had six levels (the six filters
earlier listed), the area factor had three levels (hands area,
feet area, hand &feet area).

To the aim (b), for each task (vertical and horizontal task)
AUC values were analysed by repeated measures two
factors ANOVA in which filter factor had seven levels (6
filters listed earlier and the new filter obtained combining
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longitudinal and transversal bipolar filters) and modality
factor two levels, the movement execution and
imagination. Horizontal and vertical runs were studied
separately.

The Tukey HSF post hoc analysis was conducted to
assess pairwise differences. If not indicated otherwise, all
results are presented as mean + SE (standard error). For
all statistical analysis, threshold for statistical
significance was set to p < 0.05.

RESULTS

Spatial filters and scalp areas relation: The repeated
measures two factors ANOVA of the AUC values
revealed a significant effect of both filter (F=28.72, p <
0.01) and area (F=52.43, p < 0.01) factors and a
significant area —filter interaction (F=9.59, p < 0.01).
Figure 1 shows statistical analysis output and post-hoc
tests result. The results are consistent with the findings in
[6]: common average reference and large Laplacian
methods are significantly superior to the ear-reference
method.
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Fig. 1. Classification performance (AUC values of ROC curve) presented as mean + SE (standard error) evaluated in movement execution vertical
runs (hands opening/closing and feet flexion tasks) using features selected (by stepwise regression algorithm) from hands area (in blue), feet area
(in red), both areas (in green) on EEG data no filtered (RAW), filtered with common average reference (CAR), longitudinal bipolar (IoBIP) and
transversal bipolar (trBIP) filters, surface Laplacian in its derivation small (sSLAP) and large (ILAP). The symbol * shows the significant
differences (p<0.05) pointed out by the Tukey HSF post hoc test. The colour of the symbol expresses the area in which this difference is
significant. Although figure does not report the comparison between RAW and others filters, post-hoc tests confirm findings in McFarland et al.,

1997.
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Table 1: List of the eight features selected (by stepwise algorithm) in the features domains obtained from EEG data filtered with small surface
Laplacian (sLAP) and using both longitudinal and transversal bipolar filter feature domains (long + trans BIP, simultaneous use of multiple spatial
filters). No statistical differences for this pair of filters from the previous analysis. Three representative subjects (S01, S02, S03) were considered
for the comparison (results in table from movement execution of vertical runs, hand opening/closing and feet flexion). The AUC values, for each
subject, are the same for both filters (SLAP and long+trans BIP). Channels positions are conformed with 10-20 International System. Each channel
indicated in SLAP is the central electrode of the difference (e.g., C3 is the central electrode: the surface Laplacian involved its neighbours C1, C5,

FC3, CP3).
S01 S02 S03
sLAP long + trans BIP SsLAP long + trans BIP sLAP long + trans BIP
chan — freq (Hz) chan — freq (Hz) chan — freq (Hz) chan — freq (Hz) chan — freq (Hz) chan — freq (Hz)
1 C3 11 FC3-C3 11 CP4 11 FC4-C4 11 Cc4 13 FC3-C3 13
2 Cz 27 Cz-C2 13 CPz 25 CP4-P4 25 CP3 13 C2-C4 13
3 C4 13 Cz-CPz 29 c4 25 CPz-Cz 25 Cz 25 F5-FC5 17
4 C4 21 CPz-Pz 21 C3 13 Cl-Cz 11 C6 11 TP7-CP5 27
5 Cz 21 FC3-C3 17 Cc2 29 CP3-P3 27 FC5 29 FC6-C6 13
6 FC3 31 FCi1-C1 11 FC3 15 CP1-CPz 25 C3 13 Ci1-Cz 25
7 FC2 25 FC4-C4 21 CP4 25 FC4-C4 25 CP3 15 FC4-FC6 31
8 CP6 13 Cl-Cz 11 Cz 27 F5-FC5 19 C6 27 CPz-CP2 29
Number of
electrodes 21 10 22 12 22 15
need to realize this
hardware montage

Simultaneous use of multiple spatial filters: The
repeated measures two factors ANOVA of the AUC
values revealed a significant effect of both filter
(F=22.13, p < 0.01) and modality (F=46.72, p < 0.01)
factors and a significant modality —filter interaction
(F=2.79, p < 0.05). The post-hoc Tukey HSF test
confirms findings in [6] about differences existing
between apply and not apply spatial filters on EEG data.
The tests disclose pairwise differences (p < 0.01)
between the common average reference (mean=0.83) and
the large surface Laplacian (mean=0.87), the longitudinal
bipolar filter (mean=0.83) and the large surface
Laplacian (mean=0.87), the transversal bipolar filter
(mean=0.81) and the small surface Laplacian
(mean=0.85), the transversal bipolar filter (mean=0.81)
and the large surface Laplacian (mean=0.87) and, above
all, between the transversal bipolar filter (mean=0.81)
and the simultaneous use of longitudinal and transversal
bipolar filters (mean=0.87). No significant differences
were seen between performances obtained using features
extracted from the new domain and those from the two
variations (small and large) of the surface Laplacian
filter.

Minimization of number of electrodes: Table 1 shows
the comparison between the features selected from the
new domain (longitudinal and transversal bipolar filters)
and the small surface Laplacian domain for three subjects
for which classification performance is the same for both
domains.

DISCUSSION

Feature extraction and feature selection are crucial steps
to ensure an optimal BCI system performance. When
applying BCI to support clinical rehabilitation it is
mandatory to comply with quality of EEG patterns
reinforced via BCI training to promote post-stroke (good)
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plasticity leading to a better motor outcome. Yet,
deployment of BCI systems with high level of usability
enables the actual transfer of this technology in routine
clinical usage.

In this study the spatial filters commonly used in BCI
control were compared with filters commonly used in
EEG clinical application (e.g., bipolar filters) in order to
allow for a handy feature selection but still taking into
account the physiological requirements specific for this
BClI application.

Here, the relation between performances shown by
several (BClI and clinical gold standard) spatial filters and
sensorimotor strip areas, engaged in different tasks, was
investigated. Considering scalp areas separately (i.e.,
hands area and feet area) highlights interesting
differences (e.g., from longitudinal and transversal
bipolar in the feet area) that do not emerge considering
features in the sensorimotor strip altogether.

Our findings indicate that the comparison between the
transversal bipolar and the small surface Laplacian filters
showed different performances in the three scalp areas of
interest analyzed. In particular, we found better
performance for transversal bipolar filter in the foot area
and for small surface Laplacian in the hand area. The
identification of a best spatial filter is, therefore, related
to the scalp area (its anatomical and functional
properties) of interest and thus, improving performance
can be pursued using specific filters for specific areas.
Further analysis will be oriented to investigate the reason
why transversal bipolar filter shows better performance
in the feet area.

In addition, these findings require a consolidation by
exploring their use with other motor tasks (different from
hand opening/closing and feet flexion, analyzed in this
preliminary study) and/or imagined movements.
Furthermore, the integration of features information as in
this case from longitudinal and transversal bipolar filters,
led to an improvement of performance with respect to
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considering each domain individually. Specifically, no
differences were found between the performance
obtained with the integration approach and those
obtained with the surface Laplacian filters (i.e., the gold
standard when scalp areas were considered all together).
Moreover, comparing the number of electrodes needed to
realize the hardware montage containing just the
appropriate features for the rehabilitation (both in case of
features selected from integrated approach and surface
Laplacian filter), We suggest that the use of a new
integrated approach for feature extraction and selection
might enhance the usability of the BCI technology in the
field of rehabilitation.

The next step to ultimately promote this approach to
rehabilitation applications would be to analyze BCI data
collected from stroke patients.

CONCLUSION

Different spatial filters show different performance in
relation to the scalp areas of interest, suggesting that
potentially useful information for optimal feature
extraction in BCI contexts can be obtained taking into
account neurophysiological aspects. This could be
particularly relevant in the context of rehabilitation
applications. Furthermore, to consider features from
more than one feature domain improves classification
performance and, comparing filters at same performance
level, allows to reduce the number of electrodes,
improving the usability of BCI technology. For these
reasons, we suggest that the a priori choice of one spatial
filter might not be optimal for BCI rehabilitation
applications.
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ABSTRACT: GUIDER is a graphical user interface
developed in MATLAB software environment to identify
electroencephalography (EEG)-based brain computer
interface (BCI) control features for a rehabilitation
application (i.e. post-stroke motor imagery training). In
this context, GUIDER aims to combine physiological
and machine learning approaches. Indeed, GUIDER
allows therapists to set parameters and constraints
according to the rehabilitation principles (e.g. affected
hemisphere, sensorimotor relevant frequencies) and
foresees an automatic method to select the features
among the defined subset. As a proof of concept, we
compared offline performances between manual, just
based on operator’s expertise and experience, and
GUIDER semiautomatic features selection on BCI data
collected from stroke patients during BCI-supported
motor imagery training. Preliminary results suggest that
this semiautomatic approach could be successfully
applied to support the human selection reducing operator
dependent variability in view of future multi-centric
clinical trials.

INTRODUCTION

Brain-computer interfaces (BCls) collect the
neurophysiological correlates of the brain activity (e.g.
the electroencephalogram, EEG) and process them with
the aim of controlling external devices, bypassing the
neuromuscular system, or providing the user with a
feedback of specific processes occurring in the brain [1].
A growing application field of this technology regards
rehabilitation and more specifically the improvement of
motor recovery in stroke patients [2]. In this context
EEG-based BCIs monitor the modulation of brain
activity induced by e.g. the imagination of movement. In
fact, motor imagery (MI) practice elicits event-related
desynchronization that occurs within EEG frequency
bands (alpha and beta) and primarily over the scalp in
sensorimotor cortical regions contralateral to the
imagined part of the body. The introduction of BCI
technology in assisting MI practice has been
demonstrated to uncover the rehabilitative potential of
MI, contributing to significantly better motor functional
outcomes [3]. In order to reinforce a specific pattern,
related to correct MI, appropriate choosing of BCI
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control parameters (EEG features) is needed. In [3], BCI
features, channels and frequencies, were identified
according to a “manual” procedure (following EEG data
analysis from the screening session). Namely,
neurologists and/or therapists identify the features taking
into account neurophysiological evidence and
rehabilitation principles and basing on the visualization
of matrices obtained from the statistical comparison
between two conditions (task and rest). This procedure is
highly dependent on the operator and is not suitable for
the majority of therapists because it requires experience
for visualizing patterns of desynchronization in that
form.

With the aim to reduce the variability of this procedure
in view of a wider employ of the BCl-based rehabilitation
in stroke (e.g. for a multi-centric clinical trial), this study
proposes the application of an algorithm to automatically
choose EEG features.

As reported in [4], the genetic algorithm, the principal
component analysis, the distinctive sensitive learning
vector quantization and the sequential floating forward
selection are the most common features selection
methods used in BCI studies, especially the last one in
sensorimotor rhythms-based BCI. In the same context,
McFarland [5] proposed a stepwise multiple regression
procedure to periodically update the features used to
control cursor movement across training sessions.
According to the stepwise algorithm, the feature that
most reduces the residual variance (i.e., the variance not
accounted for by target location) and does so with p-
value less than 0.01 is added to the model. Additional
features are then added in the same way. After each new
addition, a backward stepwise regression removes any
variables for which p-value is greater than 0.01. This
process continues until no further features satisfy the
addition/removal criteria.

As previously mentioned, the identification of
“appropriate” control features, consistent with
rehabilitation principles in terms of frequencies and
areas, is a milestone in rehabilitation protocols supported
by BCI technology. For this reason, this study proposes
the application of the method in [5], as automatic method,
suggesting an essential improvement for the
rehabilitative field: the inclusion of the operator,
neurologist and/or therapist and his neurophysiological
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knowledge, in the features selection procedure. With this
in mind and in view of a wider employ of the BCl-based
rehabilitation in stroke, a user-friendly graphical
interface was developed to guide the operator in the
feature selection procedure and give him the possibility
to define some constraints in which the automatic method
has to run. In the overview [6] of publicly available
software platforms for BCls, the presented tool might
match needs of rehabilitation BCI researchers orientated
to a translational approach, from machine learning to
physiology and vice-versa.

METHODS

Description and operating procedure: GUIDER is a
graphical user interface (GUI) for semiautomatic and
physiologically driven EEG features selection. It was
designed and developed in MATLAB R2015a (The
MathWorks, Inc., Natick, Massachusetts, USA) and runs
until MATLAB R2011a. GUIDER allows users to
interact with BCI data through a graphic interface
without needing to use MATLAB syntax. Calling
GUIDER in the MATLAB command window launches
the first screen (Fig. 1) of the tool.

=

Load DATA

Figure 1: MATLAB main window and typical screen shot of
GUIDER (right side).

The buttons “Load DATA” and “Load MONTAGE”
allow importing BCI data (GUIDER supports several file
formats) and montage files, respectively. More than one
data file could be processed: files are concatenated.
The “START ANALYSIS” button launches
following modules,

(a) data conditioning module which applies spatial and
frequency filtering,

(b) feature extraction module which employs methods to
estimate the signal spectrum,

(c) statistical analysis module in which comparison tests
of two conditions, i.e., two tasks, task vs rest, are
implemented,

(d) visualization module that gives output a matrix,
channels and bins, where the statistical comparison index
value of any feature is shown in a colour tint. A colour
bar shows the colour range.

the
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At the end of these analyses, the user visualizes pattern
of desynchronization in the form of statistical index
matrices, each one obtained using a different spatial
filtering [7], e.g., common average reference (CAR),
bipolar filters, surface Laplacian filters (other filtering
options can be implemented). The pop-up menu in the
bottom part of GUIDER main window allows the choice
of filtering option (how many and which filters). At this
point, the operator is required to define topographical and
spectral constraints taking into account
neurophysiological ~ evidence and  rehabilitation
principles. This step may be guided by GUIDER or
manual (Fig. 2). According to the first modality, the
operator checks which hemisphere and channels to
include in the analysis. In the manual modality, instead,
operator selects rectangular areas in the statistical matrix
after inserting the number of areas of interest in the edit-
text box in GUIDER. The “OK” button closes all figures
and opens the figures of statistical matrices, according to
the number and the type of filtering earlier chosen,
allowing the user to select rectangular areas accordingly
(Fig. 3).

The values of features belonging to the areas selected
manually or by the guided modality, are the inputs for the
features selection algorithm: the stepwise regression
(SW). This algorithm identifies an optimal subset of
predictor variables (i.e. the features) and assigns weights
to them in order to build an effective regression model to
evaluate the relationship between the predictors and the
dependent variable (here equivalent to subject’s
intention). During each iteration, the algorithm adds or
removes a feature from the classification model in order
to obtain a combination of features ensuring a good
classification performance. GUIDER implements it
using the MATLAB ® function stepwisefit.m.

The optimal features and their weights are saved both as
text file and external parameter file.

Proof-of-Concept: EEG dataset from three patients
(subacute stroke patients with right-sided lesions,
involved in previous studies at IRCCS Fondazione Santa
Lucia, [3] for an extended description) were used to
compare semiautomatic and manual procedure in terms
of both features selection (channels and frequencies) and
classification performance. Screening session’s data of
each patient were analysed to identify the control
features. Patients were instructed by the therapist to
perform the movement (grasping and finger extension)
imagination of their affected hand. During the initial
screening session EEG signals were collected from 61
electrodes according to an extension of the 10-20
International System with 200 Hz as sampling frequency;
scalp signals were referenced to the linked-ear signal.
Each run consisted of 15 trials related to motor imagery
task (grasping and finger extension) and 15 trials of
baseline rest (9s each). Trials were randomly presented
within a run. For each trial, we analysed the 4 epochs
corresponding to the 4 seconds during which the patients
performed the MI task. In the screening session, the
subjects were not provided with any feedback of their
brain activity.
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To compare the procedures, the number of features
automatically identified (in the constraints imposed by
operator using GUIDER) is coherent with the number of
features manually selected just by observing the
statistical index matrix. These two control features drive
the visual feedback to therapist and patient during the
training sessions. In the training session the patients sat
in a chair/wheelchair and their hands were covered by a
white sheet on which a dedicated software projected a
realistic visual representation of the patient’s hands. The
therapist instructed the patients to imagine the movement
(grasping and finger extension) of the affected hand and
they received a feedback when the trial was successful.
The feedback consisted in the replication of the imagined
movement by the virtual hand.

Data Analysis: The spectral analysis was performed
on EEG data epochs (1s long) corresponding to Ml task.
The Maximum Entropy Method (16™ order model) was
employed to estimate amplitude spectrum with a
resolution of 2 Hz and considering not overlapped
epochs. All possible features in a reasonable range (i.e.,
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0-36 Hz in 2 Hz bins) were extracted and analysed. A
feature vector, spectral amplitude at each bin for each
channel, was extracted from each epoch. For each feature
a contrast was performed to assess statistically significant
modulation induced on a specific feature. To this aim, the
coefficient of determination R-square, i.e., the proportion
of the total variance on the feature samples accounted for
by target position, was computed for each feature
(dependent variable).

Validation: In order to compare the classification
performance achieved with both human and
semiautomatic selection, Area Under Curve (AUC) of
Receiver Operating Characteristic (ROC) curve was
assessed in auto-validation and cross-validation
condition: screening data (previously exploited to obtain
the control features and weights) and training data were
used as testing dataset, respectively. Separately, outputs
of the stepwise regression and the weights assigned by
neurologists and/or therapists (conventionally, each one
of -0.5) were the input of a linear classifier for the
computation of the score used to calculate AUC values.

Number of areas

:ho>

Manual

Number of ateas

Figure 2: Screen shot of the window for the definition of topographical and spectral constraints. In the left side, guided procedure: the operator just
checks the hemisphere and channels (in the sensorimotor area) to include in the analysis. In the right side, manual procedure: the operator just
writes in the box the number of rectangular areas he would to select in the statistical matrix that it will following open.
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Figure 3: R-square matrix (channels and frequency intervals) obtained from EEG data analysis collected during the screening session and filtered
using the filter chosen in GUIDER pop-up menu (e.g. CAR). The red rectangular areas (e.g. three areas as those written in Figure 2 right panel) are
those selected by the operator (according neurophysiological evidence and rehabilitation principles) for the features selection using the GUIDER

manual procedure.
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RESULTS

Figure 4 shows the graphic output of the GUIDER
operating procedure until topographical and spectral
constraints definition. It displays for Subject 1 (S01) the
R-square values of all features (61 channels and 18
frequency bins) after the filtering selection (in this case,
CAR). The relevant control features selected, just based
on R-square matrix visualization, by an expert
neurophysiologist are reported in Table 1 for all three
patients. The same operator, using the areas selection
procedure in GUIDER, selected some rectangular areas:
three for S01, from FCz to FC6, from Cz to C6, from CPz
to CP6, all ranged from the forth and to the seventh bin
in the R-square matrix. Two optimal, coherent with the
number of features selected just based on R-square
matrix visualization, features identified by the stepwise
algorithm in those areas are in Table 1.

The classification performance (AUC) in both auto-
validation and cross-validation condition using the
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Table 1: Control features identified during BCI tasks at the
screening session (for three subjects with right-sided lesions) by an

expert neurophysiologist (manual procedure) and by the

semiautomatic procedure implemented by GUIDER. For each
feature EEG channel and frequency are reported (for each
procedure) in the left and right columns, respectively.

Subject Control Manual procedure GUIDER procedure
feature

so1 1 CP4 9 Hz CP2 9 Hz
2 Cc4 9 Hz c4 11 Hz

s02 1 C2 21 Hz C2 21 Hz
2 CP2 23 Hz Cz 25 Hz

s03 1 Cc4 19 Hz C4 19 Hz
2 CP4 19 Hz CPz 21 Hz

Table 2: AUC values computed in auto-validation condition
(namely, on data previously exploited to obtain the control features
and weights) and in cross-validation condition (data from a
rehabilitation training session used as testing dataset) for manual
and semiautomatic procedure.

features identified in manual and semiautomatic Subject Validation Manual GUIDER
(GUIDER) procedure are summarized in Table 2. (V) procedure procedure
o1 Auto-V 0.91 0.94
Cross-V 0.88 0.88
S02 Auto-V 0.76 0.79
Cross-V 0.74 0.74
503 Auto-V 0.75 0.82
Cross-V 0.70 0.65
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Figure 4: R-square matrix (channels and frequency intervals) obtained from EEG data analysis collected during the screening session from a
subacute stroke patient with right-sided lesions (S01). The red (channels CP4 and C4 at 9 Hz) and yellow rectangles (channels CP2 and C4 at 9 Hz
and 11 Hz, respectively) are features selected (for the rehabilitation training phase) by an expert neurologist and by GUIDER, respectively.
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DISCUSSION

Identifying the optimal control features is a milestone in
rehabilitation protocols supported by BCI technology. In
contrast to other fields of application where optimal
cursor control is pursued, in a rehabilitation context the
aim is also to reinforce the appropriate sensorimotor
activation in terms of both topographic and spectral
characteristics. Therefore, the feature selection procedure
requires knowledge coming of neurophysiology and
rehabilitation principles as well as expertise in
visualizing pattern of desynchronization in the form of
statistical index matrices. The manual procedure is
highly dependent on the operator and is currently
restricted to researchers with experience in the BCI field.
Therefore, the aim of GUIDER is twofold: first, to reduce
the intra- and inter- operator variability of feature
selection supporting the procedure with a semiautomatic
method but without giving up to neurophysiological
principles that characterize the rehabilitation; second, to
facilitate this procedure for therapists without experience
with BCls.

GUIDER could be a (user-friendly) tool to support even
non-expert operators in the reproducible identification of
control ~ features, since it considers  both
neurophysiological and machine learning approaches.
However, in view of a wider employ of GUIDER, several
limitations must be addressed in the near future. First,
although involved operators anecdotally considered
GUIDER a user-friendly tool, the needs of the target
group in terms of usability haven’t been evaluated yet
according to the user centered design approach. Second,
the implementation in MATLAB environment, which is
subjected to licensing issue, will be considered and
overtaken as a next step.

The preliminary results suggest that the features
identified by GUIDER are close to those chosen by
experienced operators (manual procedure): e.g., CP4 vs
CP2 at the same frequency and the same channel (C4) at
neighboring bins (9 Hz and 11 Hz) for Subject 01.
Furthermore, both procedure’s outputs are congruent
with the physiological evidences. Also in terms of
classification performance, the procedures give indices
(values of AUC) comparable in cross-validation
condition and higher in the GUIDER application that in
manual procedure in auto-validation. Hence, the choices
of neurologists could be reproducible by a semiautomatic
method that includes the operator and his
neurophysiological knowledge in the procedure.

CONCLUSION

The introduction of GUIDER and its application in a BCI
rehabilitation context suggest that it is feasible to support
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the operators during the procedure of features selection
with a user-friendly tool. GUIDER employs a
semiautomatic method and takes into account
neurophysiological ~ evidence and  rehabilitation
principles. Performances are as good as manual selection,
and GUIDER allows reproducibility of the procedure.
The latter is a prerequisite for planning large multi-
centric clinical trials, including a larger number of
patients with several different operators, ensuring the
comparability of BCI results among centers and thus
increasing the generalizability of the results.
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ABSTRACT: Chronic stress is a significant contributor
to emotional distress and a myriad of health issues.
Some coping mechanisms for stress and anxiety often
have significant barriers preventing people from seeking
a remedy. A new home-based treatment method using a
brain-computer interface provides people with visual
feedback of their affective state. This study compared
EEG and Sham Neurofeedback to find if short-term use
of a brain-computer interface had any effect on stress.
We found EEG Neurofeedback, in the short-term, does
not significantly reduce an individual’s physiological or
psychological stress response to an event-based stressor.
One explanation is the participant’s self-reported
feelings of control of the on-screen object showed no
significant differences between groups, which may
potentially highlight a design issue in neurofeedback
games. Next steps will be to reconfigure the immediate
feedback loop to enhance the responsiveness of the
application to better match the reported relaxation score
from the headset.

INTRODUCTION

Chronic exposure to stress has significant psychological
and physiological effects on human beings. Long-term
exposure to stress impairs people’s cognitive abilities
for simple tasks like memorizing a list of words [1],
inhibits academic performance in undergraduate
students [2], increases the likelihood to engage in
procrastination behaviours [3], and can even effect a
person’s overall health [4]. While stress falls on
continuum between positive and negative, the primary
focus of this study is the human response to an event
that creates a negative or distress response in the brain
[5]. Negative stressors are generally unpleasant events
and can exceed an individual’s coping abilities,
resulting in anxiety. For most people, stress is a
temporary state that can be easily overcome, but regular
exposure to lower-level stress events over time
increases the risk of mental and physical health issues
[6], largely because the stress response doesn’t dissipate
immediately following the stressful event. The stressful
response can persist in the body and the mind long after
the event is over [7], especially if there is no recovery
period between events [8]. Without proper intervention,
many people experiencing repeated short-term stress
events may be subjected to the ill effects of chronic
stress and significantly limit their career opportunities
due to the typical avoidance strategies enacted by
people who suffer from anxiety [9].

Stress and Coping Mechanisms: When faced with a
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stressful event that exceeds a person’s coping ability,
some people attend in-person therapy sessions to reduce
anxiety [5], [9], [10]. In-person therapy is designed to
increase an individual’s ability to self-regulate or
control their response to stressful emotions [5], [9],
[11]. These studies are based on self-reported claims
and exclude physiological health markers, thus can only
make claims regarding the individual’s perception of
health versus triangulating the data with physiological
health markers, making it difficult to ascertain long-
term health benefits. The therapies used in these studies
require the active presence of a therapist, which reduces
the immediacy of the response and requires active
scheduling on behalf of the client. The therapies also
don’t address new technologies and behaviours that
engage individuals, like video games [12]. The negative
effects of stress motivate research into developing
effective coping strategies through interdisciplinary
inquiry. Revised coping mechanisms can borrow from
neuroscience, psychology, and technology to establish
more immediate mechanisms for reducing the response
to predictable stress events (e.g., a public speech, an
exam, etc.), incorporate a continuous biometric measure
to determine whether or not the treatment is working
and implement the motivational elements of game play.
If a method can be found to mitigate the effects of
predictable stress events and people are motivated to
prepare in advance of a difficult conversation, an exam,
or a public speech could mean a shift in the approach to
therapeutic practices.

Brain-Computer Interfaces: Brain-computer
interfaces may be a potential solution to reducing a
person’s response to stress in the short-term. Several
studies have already determined certain brainwaves
(EEG) are an effective measure of stress [13], and
today, consumer grade EEG devices are becoming
increasingly popular. But consumer grade EEG devices
in the health and psychology domain is not yet validated
and still needs exploration [14].

Amongst today’s growing number of brain-computer
interfaces, we reviewed two systems that currently
address stress and anxiety in a scholarly way: Mindlight
and Brainball. Both Mindlight and Brainball use an
EEG headset as the main input device to an application.
Mindlight is a PC-based game that uses an individual’s
attentional (beta waves) and relaxation (alpha waves)
EEG scores as a means to interact with elements in a
game-like environment (e.g., increased attention will
turn on a light) [15]. Brainball is a real-world game that
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dynamically moves a physical ball across a table based
on the user’s neural activity [16]. Mindlight and
Brainball depend on a single game to address multiple
concerns (attention and stress) and are dependent on a
PC-based windows platform or physical objects
respectively, limiting its deployment potential. The
Mind-full application, on the other hand, is an Android-
based system with three 2D games that address different
concerns: (1)a warm-up game using a pinwheel, (2) a
meditation game using a paraglider visual, and (3) an
attention game using stones with an inuksuk visual (i.e.,
digital representation of a human-made stone
landmark). Each game animates an on-screen object
(pinwheel, paraglider, or stone) based on the EEG
scores of the user and changes the action of the on-
screen object based on whether the individual’s EEG
scores are above or below a predefined threshold of 40.
The visualization of neurofeedback in Mind-Full is
intended for users to (a) better understand their current
affective state by relating the position of the on-screen
object to their relaxation levels and (b) over time, learn
to self-regulate their stress-related emotions. The hope
is with continued use of the device people will develop
the ability to self-induce a state of relaxation without the
support of any devices. To date both Mindlight and
Mind-Full have demonstrated a reduction in anxiety
with consistent long-term use [15], [17] but in neither
case has a study been completed regarding the effects of
short-term use. Brainball did demonstrate a reduction in
stress in the short-term, but used a galvanic skin
response to measure stress instead of the EEG device
and had a limited number of participants [16]. No
literature has been found that approaches any type of
therapeutic practice from a short-term perspective,
which is likely due to the embedded concepts
established in psychology regarding habit development
and reinforced learning [18]. By incorporating new
elements into the therapeutic approach to stress
reduction, like gameplay and neurofeedback,
researchers have an opportunity to explore all potential
uses of EEG Neurofeedback as a therapeutic tool.

The goal of this study was to further explore the
potential uses for consumer grade EEG devices and the
practical applications for positively altering a person’s
response to stress in the short-term. Should short-term
use