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Abstract

Recent developments in brain-machine interfaces (BMIs) have proposed the use of error-
related potentials as cognitive signal that can provide feedback to control devices or to teach
them how to solve a task. Due to the nature of these signals, all the proposed error-based
BMIs use discrete tasks to classify a signal as correct or incorrect under the assumption that
the response is time-locked to a known event. However, during the continuous operation of
a robotic device, the occurrence of an error is not known a priori and thus it is required to
be constantly classifying. Here, we present an experimental protocol that allows to train
a decoder and detect errors in single trial using a sliding window.

1 Introduction

EEG-measured error-related potentials (ErrPs) are one class of event-related potential (ERP)
elicited in the user brain when the outcome of an event differs from the user expected one.
These potentials have been observed, in particular, when a user observes a machine committing
incorrect actions or operations. Recent works have proposed the incorporation of these signals
into brain-machine interfaces (BMI) to correct the classifier or as rewards to control or to teach
devices [5]. As with all event-related potentials, the neural response associated to ErrPs is
triggered in response to an exogenous event. Consequently, most of the developed works try to
distinguish whether an action is correct or erroneous based on the knowledge of the time of its
occurrence[l, 4]. On the other hand, real applications (such as executing a trajectory with a
robotic arm or a mobile robot) imply the use of continuous actions where the classifier has to
asynchronously differentiate between erroneous events and the background EEG.

This works presents a method to detect error potentials during the continuous operation of
a device. Showing that using events introduced as abrupt changes of direction, it is possible
to train a classifier to later on asynchronously classify among a complete trajectory achieving
detection rates comparable to those obtained in discrete tasks.

2 Methods

2.1 Experimental Protocol

Two healthy subjects (mean age 28 years) participated in the study. The experimental setup
consisted of a virtual cursor that had to reach a target position by moving at a fixed speed
towards it. The initial cursor and target positions of each trial were randomly generated. One
trial consisted of a trajectory performed by the device and lasted between 3 and 5 seconds.
Trajectories were correct in 70% of the trials, which consisted in a straight line between the
start and goal locations, Figure 1a. The remaining 30% of the trials were erroneous trajectories
that started as the correct ones but executed an abrupt change of direction in a random instant
between the 20% and 80% of the path, Figure 1b. Six rounds composed of 40 trials each were
recorded, obtaining around 70 erroneous and 170 correct trials per participant.
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Figure 1: (a-b) Designed experimental setup. Starting (S) and goal (G) positions of the
device are marked in blue and red respectively. Correct and wrong directions of movements
are shadowed in green and red respectively. (c¢) Neurophysiology Analysis: grand averages
in temporal (bottom,left) and frequency (bottom,right) domain, topographical representation
(top,left) and source localization(top,right).

EEG and EOG activity were recorded at 256 Hz using a gTec system with 32 electrodes
according to the 10/20 international system (including 8 fronto-central channels), with the
ground on FPz and the reference on the left earlobe; for the EOG, 6 monopolar electrodes
were recorded [3], with the ground on FPz and the reference on the left mastoid. Recorded
data were power-line notch filtered, and band-pass filtered at [1,10] Hz. The EEG was also
common-average-reference (CAR) filtered. Additionally, EOG was removed from the EEG
using a regression algorithm, and those trajectories where EOG magnitude higher than 40 4V
was detected, were rejected.

2.2 Single-trial continuous classification

Temporal domain features have been widely used to detect ErrPs under discrete tasks. However,
for continuous detection, temporal features result in a large number of false positives as EEG
oscillations resemble ErrP patterns. On the other hand, it has been shown that frequency
features can be more robust under specific changes in the ErrP signals [7]. In this work, we
propose the combination of temporal and frequency features extracted from the most relevant
common spatial patterns associated (CSPs) for the continuous detection of ErrPs. To train
a classifier, the onset of the erroneous events was selected at the instant in which the device
performed the abrupt change of direction. On the other hand, onsets of correct trials were
selected at random instants of time within the execution of a correct trajectory. Training data
from error and correct conditions was used to extract the CSPs, and the two first CSPs were
retained. For each retained CSP, the temporal features were the EEG voltages within a time
window of [0,1000] ms downsampled to 64 Hz, forming a vector of 128 features. The power
spectral density (PSD) was computed taking a window interval from 0 to 1000 ms as it gave
the best trade-off between frequency resolution and capturing the signal of interest. Frequency
features were selected as the power values of each channel from the theta band (4, 8] Hz) £ 1
Hz [2] leading to a vector of 14 features. Finally, both set of features were concatenated and
normalized within the range [0, 1].
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Figure 2: Representative example of the sliding window results. The error events are plotted
as red spikes indicating a change in direction, while the probability of detecting an error (p.)
for each of the 2 subjects is plotted in blue. Black dots over the probability values indicate the
time instant when the classifier detected an error (p. > 0.8).

After balancing the error and correct datasets, a RBF-SVM was trained using the previous
features [6]. During classification, we retained the classifier output for each window evaluation
as the probability estimate that the current EEG was an error, p.. For the asynchronous
classification we performed a 6-fold cross-validation where each fold was composed by a complete
recorded round. We continuously classified every 62.50ms over the testing set using a sliding
window of one-second width. To ensure a low false positive rate, the detection of error events
was only considered when p. > 0.8, value selected through cross-validation. For the sliding
window, all inter-trial data was removed. Classification performance was computed as follows:
the erroneous trials where the classifier detected an error, in a one second window after the
direction change, were considered as true positives. When an error was not detected the trial
was a false negative. True negatives were those correct trials where no error was detected. And,
when an error was detected on correct trials, they were considered false positives.

3 Results

Figure 1(c) shows the error, correct and difference
grand averages for channel FCz averaged for the
two subjects in temporal and frequency domain,
next to topographic interpolation of 4 representa-
tive peaks and the source localization for the most
prominent negative deflection. Regarding to the
results of applying the sliding window, Figure 2 36.00% 1091%
displays the detection level obtained for both sub-
jects in a representative round of the experimental Figure 3: Trajectories of false positives
condition. Here, the 40 trials that compose the and false negatives reprojected to have the
round are concatenated removing the inter-trial goal at center of the image (red dot). The
resting periods. It can be seen that most of the starting position is marked in blue.
trials are properly classified. Also notice that the
correctly detected ErrPs are delayed with respect the onset of the event. This delay was on aver-
age 867.13 +99.33 ms after the onset of the erroneous action, corresponding to the time needed
for the appearance of the most relevant peaks and the maximum spectral power activation used
as features.

The performance rates achieved for the entire test set reached an 89.09% of true negative and
64% of true positives. At the same time, the number of false positives and false negatives hovered
the 11% and 36% respectively. On average, these values were around 10% less performance
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than those obtained with standard ErrP protocols that only classify in the window of the
event [1]. This decay is reasonable considering that classifying with a sliding window conveys
a higher chance of detecting a false positive during non event intervals. Trajectories executed
by the device according to their classification as false positives or false negatives are depicted in
Figure 3. Furthermore, it can be seen that correct trials are mostly well detected independently
of the direction and distance covered by the device, and only few of them are detected as
erroneous. However, the number of erroneous trials not detected was higher, since it was
preferable to miss the detection of an error than detect errors where was not intended. Also,
notice that most of the true negatives ended up very close to the goal. Indeed, 40% of them
ended less than 50 pixels from it, which lead us to think that the subjects may have not
interpreted them as erroneous.

4 Conclusions and future work

This paper studies the on-line asynchronous detection of error potentials during continuous
trajectories. The results obtained for the proposed experimental protocol show that the error
potentials appear when the user monitors a continuous target reaching task and that they
can be detected in single trial using a sliding window, obtaining results comparable to those
achieved in discrete tasks. These promising results are a first step towards the use of this type of
cognitive information to control or teach robotic devices in realistic and complex tasks. There
exist several opportunities for future work. Currently, we are extending the study to more users
and more types of trajectories containing errors. Also we are testing the usage of this kind of
events on real devices obtaining promising results.
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