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Abstract

This work presents a simple to set-up system for reconstructing gait cycle patterns
from non-invasive recorded electroencephalographic (EEG) signals. It is based on the
prior finding that low gamma amplitudes are modulated locked to the gait cycle in central
sensorimotor areas. Therefore, we focused on a Laplacian Cz derivation and low gamma
amplitude modulations to reconstruct the gait patterns. Our results show that this method
was successful in reconstructing gait cycle patterns in 8/10 subjects during active walk-
ing and in every subject during passive walking. The median reconstruction error was
0.24±0.13 s for active and 0.26±0.10 s for passive walking. The presented methods and
findings are a further step towards analysing and monitoring ongoing cortical activity dur-
ing human upright walking.

1 Introduction

Reconstructing gait cycle patterns from brain activity could be a useful technique, e.g., first,
to enable neuromonitoring for therapists, and second, to provide neurofeedback for patients
during rehabilitation after brain injury. Using reconstructed gait related brain patterns for
neurofeedback can potentially enhance training in individuals with impaired motor function.
These signals could, e.g. be used for supportive control of functional electric stimulation or
robotic gait orthosis. Recently, some efforts in gait kinematics reconstruction were made [4]
using frequencies in the delta range (0.1-2Hz) for decoding. However, the usage of low frequency
components for decoding movements was discussed controversially [1] and their cortical origin
were doubted [2]. Previous work from our group [5], [6] showed that low gamma (24-40 Hz)
amplitudes are modulated in relation to the gait cycle. These activities were localized in
central sensorimotor regions. In this work, we suggest that these low gamma modulations can
be recognized on single-trial level and thus enables the reconstruction of gait cycle patterns in
real-time.

2 Methods

2.1 Experiment

Ten able-bodied subjects (S1-S10, 5 female, 5 male, 25.6±3.5 years) walked with a robotic gait
orthosis (Lokomat, Hocoma, Switzerland). The experiment involved 4 runs (6 min each) of
active and passive walking as well as 3 runs of upright standing (3 min each), which was used
as a control condition. The walking speed was adjusted for every subject ranging from 1.8 until
2.2 km/h, and a body weight support of less than 30% was provided.
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2.2 Recordings and Preprocessing

EEG was recorded form 120 sites with four 32-channel amplifiers (BrainAmp, Brainproducts,
Munich, Germany). The sampling frequency was 2.5 kHz, filter settings were 0.1 Hz and 1 kHz
for high and low pass respectively. The electrodes were arranged in accordance to the 5%
international 10/20 EEG system (EasyCap, Germany). Left and right mastoids were chosen
to place reference and ground electrodes. Electrode impedances were lower than 10 kΩ. The
interval between two right leg heel ground contacts defined one gait cycle. Foot contact was
measured by mechanical switches. Further details can be found elsewhere [6]. EEG data was
filtered and down sampled to 500 Hz. Channels with a variance greater than 5 times the median
variance were rejected from further analysis. If one channel exceeded a threshold of 200 μV,
the according gait cycle epoch was removed from the EEG recordings. In total 94.1 % of the
data were used for the analysis.

2.3 Reconstruction of the gait cycle

We built a model to reconstruct the gait cycle pattern from EEG recordings, based on physio-
logical evidence; namely that the low gamma amplitudes are modulated with the step frequency
in the sensorimotor feet area. To reconstruct the gait cycle pattern from EEG we consequently
focused on the temporal modulations of low gamma (20-40Hz) amplitudes. To test a system
that is in principle able to work in clinical practice we used five channels (FCz, C1, Cz, C2,
CPz) to calculate Laplacian Cz derivation in this work, since we already know the spatial region
of interest from previous work [5], [6].
The EEG data were split into two subsets. First, one third of randomly drawn EEG trials
(max. 8 min) were used as training set to simulate clinically feasible system training durations.
Second, the unseen two thirds of the data were concatenated and used for evaluating the gait
cycle reconstruction. The training set was used to identify the parameters carrier frequency,
mean step frequency and phase lag between low gamma modulations and actual foot contacts.
Spectral analyses were performed using complex Morlet wavelets [3] (center frequency: 1 Hz,
full width half maximum: 3). Low gamma amplitudes are a result of spectral analysis. To de-
termine the frequency of an amplitude modulation (AM) these amplitudes were again wavelet
transformed (center frequency: 1 Hz, full width half maximum: 6).
The frequencyin the low gamma range which amplitude were maximally modulated by the step
frequency was used as optimal carrier frequency. The phase lag between low gamma AM and
the actual foot contact was determined using the training data. Once we know the optimal
carrier frequency for AM and the phase relation between the AM and the actual foot contacts;
it is straightforward to reconstruct the foot contacts and thus the gait cycle patterns from EEG
recordings.
Data of the evaluation set were analysed on single-trial level to simulate a real-time experiment.
The EEG data were wavelet transformed at the optimal carrier frequency and the resulting am-
plitude were again analysed using a wavelet with the step (modulation) frequency to gain the
phase of ongoing low gamma AM. The phase lag gained form the training set was then used
to estimate the foot triggers. Reconstructed and mechanical measured foot contacts were then
compared and errors were calculated as L1 norm. To test if these errors are significantly smaller
than chance, we performed the same analysis using EEG data from the standing condition to
evaluate the chance level errors. The reconstruction errors for active and passive walking were
then statistically tested to be smaller than these chance level errors using the Wilcoxon rank
sum test.
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3 Results

In 8/10 subjects the reconstruction of the gait cycle patterns during active walking were sig-
nificantly better than chance (p<0.05). In the best subject, the mean error (L1 norm) was
120 ms. The reconstruction was also successful during passive walking in every subject. No
significant difference (p=0.77, Wilcoxon signed rank test) was found between the errors of the
active and passive condition. Detailed error reports are shown in Table 1 with the correspond-
ing carrier frequency(f), p-values and the relative amount of trials in which the error was better
than random (BTR). Note that in 6/10 the BTR percentage was greater than 90%. The error
histograms are illustrated in Fig. 1.

Active Passive

subject f errrecon errchance p BTR f errrecon errchance p BTR
Hz s s % Hz s s %

S1 27 0.12 0.51 <0.001 100 26 0.09 0.51 <0.001 100
S2 34 0.14 0.50 <0.001 96.84 35 0.17 0.50 <0.001 92.91
S3 29 0.24 0.60 <0.001 92.56 29 0.30 0.62 <0.001 88.63
S4 31 0.22 0.59 <0.001 92.33 30 0.28 0.61 <0.001 88.73
S5 30 0.23 0.48 <0.001 91.80 27 0.24 0.53 <0.001 87.56
S6 29 0.21 0.52 <0.001 91.61 27 0.19 0.52 <0.001 93.91
S7 20 0.46 0.57 <0.001 63.79 20 0.39 0.56 <0.001 76.07
S8 27 0.47 0.47 0.54 53.75 34 0.34 0.48 <0.001 84.54
S9 20 0.29 0.54 <0.001 82.49 20 0.40 0.61 <0.001 68.62
S10 20 0.43 0.44 0.16 48.80 35 0.22 0.41 <0.001 88.44

Table 1: Low gamma carrier frequencies, reconstructed and chance level error means with
according p-value and BTR percentage for active (left panel) and passive (right panel) walking.

4 Discussion

In this work we presented a system that is able to reconstruct gait cycle patterns from non-
invasive EEG recordings. We were able to extract the low gamma modulation pattern, the
carrier frequencies, and their phases (time lag relative to the heel strike) using only one third
of the data for training. These values are consistent with previous analysis reported in [5], [6].
These findings suggest that the reconstruction method in this work indeed is based on the
cortical activity not on artefacts.
The proposed method also works for passive walking in every subject while during active walking
it was successful in 8/10. In the analysis we observed that the quality of the reconstruction
is reduced when artefacts are present. Our data suggests that head/neck muscular activity
is lower during passive walking than during active walking. This effect is notable at lateral
and dorsal electrodes. Thus, it is plausible that the lower influence of muscular artefacts
during passive walking is the reason why a good reconstruction is possible in all participants.
However, EEG recordings are contaminated with muscular artefacts in a broad frequency range
during walking [2]. Analysing EEG data on a single-trial level during walking is therefore very
challenging. Further work is needed to evaluate to which extent muscular activities influences
the reconstruction of gait related parameters in comparison to the overall performance. In
this work, the reconstruction performance was found to be driven by physiological meaningful
features. In conclusion, we consider this work as a further step towards analysing and monitoring
cortical activity in real-time during human upright walking.
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Figure 1: Error histograms for active (left) and passive (right) walking in red, for standing
(chance level errors) in blue (S1-S10, top left to bottom right). Error distributions of the walking
(red) conditions are centred around zero with an ideally small standard deviation for successful
reconstructions. Standing condition errors (blue) seem to follow an uniform distribution.
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