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Abstract
This paper presents a series of recent improvements made on the P300 speller paradigm

in the context of the CoAdapt project. The flashing sequence is elicited by a new design
called RIPRAND, in which the flashing rate of elements can be controlled independently of
grid cardinality. Element-based evidence accumulation allows early-stopping of the flashes
as soon as the symbol has been detected with confidence. No calibration session is nec-
essary, thanks to a mixture-of-experts method which makes the initial predictions. When
sufficient data can be buffered, subject-specific spatial and temporal filters are learned,
with which the interface seamlessly makes its predictions, and the classifiers are adapted
online. This paper, which presents results of three online sessions totalling 26 subjects, is
the first to report online performance of a P300 speller with no calibration.

1 Material and Methods

The P300 speller presented in this work was implemented in C++ with OpenViBE [7], and a
dedicated stimulating software controlled the keyboard display. The software is opensource and
part of OpenViBE release 0.18 We used a single Windows laptop to run all software components.
The P300 speller keyboard was displayed on a separate LCD screen. A TMSi Refa8 amplifier,
synchronized via hardware to the laptop, was used to record from 12 actively shielded electrodes.

The visual stimulations consisted of briefly flashing “smiley” pictures. The P300 wave was
detected via 3 channels of an xDAWN spatial filter [8], combined with a Regularized LDA
classifier hereforth called RDA, which incorporates a regularisation of the common covariance
matrix. The output of the classifier at each flashing time t is denoted ỹ(t).

To save time, elements are always flashed in groups. Initial design of P300 speller groups
involved rows and columns of a square matrix [2] or their randomizations [1]. The target element
is then found at the intersection of the groups eliciting a P300 response. But repetitively flashing
the same groups causes elements within the target groups to be wrongly selected, because of
visual attention effects, and because of the contamination of all group elements by classification
errors.

Element-wise evidence accumulation avoids these two effects. A different random per-
mutation can then be performed at each repetition of the flashes, effectively changing elements’
group membership across repetitions. At each flash t, let the binary vector a(t) represent the
set of n flashed elements within the grid of cardinality N . The score α(t) of each element
(initialized to 0 at time 0) is updated with the following scheme, in which both target and
non-target flashes contribute to the accumulation:

α(t) = α(t− 1) + log

[
1

n
a(t)ỹ(t) +

1

N − n
(1 − a(t))(1 − ỹ(t))

]
(1)
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Figure 1: Left: template for a 36-element grid and 1-in-4 flash-rate. Each line represents the
flashing elements a(t). Right: example of accumulation based on the randomized grid on the
left, over 60 flashes, with element 1 as target.

The groups’ definition, encoded in a(t), follows a restricted isometry principle (RIP) [10]. This
principle offers an minimal intersection between groups, while allowing the flash-rate to be
adapted (e.g. 1-in-4, 1-in-6, ...), independently of the number of elements. A random per-
mutation of flashed elements is applied after each repetition (RIPRAND). Figure 1 illustrates
the RIP (left) and RIPRAND (right) flashing strategies. Large display grids had already been
investigated by [11] and [3], but without optimizing the sequences employed for faster search of
the target letter.

Another prominent advantage of element-wise accumulation is that it allows early stopping
of flashes, as soon as the score of one element clearly outperforms the others. This Early
Stopping has been shown to improve user motivation, and in turn, the quality of the P300
signal [6].

RIPRAND with early stopping was first evaluated offline, using simulated data created by
fitting pdfs for P300 detection from a 20-subject database from Inserm Lyon. To test its actual
usage, two online experiments were performed with 10 subjects each, on a 6x6 grid (Exp
1), and on a 9x9 grid (Exp 2).

To remove the need for a calibration session, a transfer learning method has been imple-
mented, which uses a “mixture of experts” (MOE) classifier learned from the 20-subject data
of Experiments 1 and 2. A decision ỹ(t), bounded between 0 and 1, is taken by taking the mean
of all binary decisions of the experts. This subject-independent decision is then accumulated
using (1).

After the P300 speller has been initialized through the above subject-independent approach,
and enough data has been collected, a subject-dependent learning takes place, which exploits
the notion of target relabelling: decisions made after the accumulation provide labels for su-
pervised learning. xDAWN and RDA parameters are thus learned, and the RDA parameters
are subsequently adapted online, by considering a data buffer.

In summary, the MOE classifier, implemented in OpenViBE, thus replaces the classic cali-
bration phase, after which a new individual classifier is calibrated and the experts are ignored.
The individual classifier is updated on the data contained in a buffer (a sliding window, which
for the moment has a fixed size).
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An online experiment (Exp 3) was per-
formed with 6 naive subjects to test the zero-
calibration and online learning. Experiment
3 used the keyboard layout displayed on the
right. The concepts of zero-calibration and
online adaptation have been suggested earlier,
and validated offline [5], but this is the first
time an online study is presented.

2 Results and discussion

Table 1 (simulated data) shows the advantages of RIPRAND over row-column flashing in re-
ducing the number of flashes required for an accurate selection. Accuracy refers to character
selection accuracy (not target detection accuracy). Table 2 presents results from Online Exper-
iments 1 (6x6 grid) and 2 (9x9 grid), with two types of bit-rate: theoretical bit-rate, and actual
bit-rate with a 5 second break between characters. In Experiment 1, one subject was disre-
garded, as he was unable to stay focussed during the session, and his performance degraded,
making comparisons delicate. Finally, Table 3 shows results of the session with no calibration:
the session starts with a Mixture-of-experts prediction, which quite high accuracy (86.7%) but
requires many flashes (88.7 target + non-target per character) to reach a decision. Bit-rate for
this initial period is thus quite low (13.8). In the next part of the session, adaptive learning on
the users’ own data allows the bit-rate to improve to about 30 bits/minute (real bit-rate).

Table 1: Comparison of flashing strategies on simulated data (average over 10000 trials).

Type Accuracy Flashes Theo. Bit-rate
6x6 RIPRAND 1/6 94.5% 34.2 62.8
6x6 Row-Column 93.7% 43.7 47.9

9x9 RIPRAND 1/6 93.9% 42.9 63.8
9x9 Row-Column 87.2% 66.9 37

Table 2:Results of Exp 1 (6x6 grid, averaged over 9 subjects) and Exp 2 (9x9 grid, averaged over 10 subjects).

Character selection accuracy, average number of flashes per character selection before early stopping, bit-rate

accounting for the 5 s pause between characters, and theoretical bit-rate.

Type Accuracy Flashes Bit-rate Theo. Bit-rate
6x6 Row-Column 92.2% 21.6 30.1 71.3

6x6 RIPRAND 1/6 93.3% 21.6 31.2 72.7
9x9 Row-Column 74.5 53.8 18 30.8

9x9 RIPRAND 1/6 88 42.1 26.5 47.9

Table 3: Results of Exp 3 (averaged over 6 subjects). Character selection accuracy, average number of flashes and

bit-rate per minute including a 5s pause between characters.
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Type Accuracy Flashes Bit-rate
Mixture-of-experts 86.7% 88.7 13.8

Adaptive learning, buffer length 10 95.7% 37.7 27.2
Adaptive learning, buffer length 30 94.6% 27.2 30.8

We have thus developped a new P300 speller paradigm which does not need any calibra-
tion session and boosts user motivation thanks to early stopping. A clinical feasibility study is
currently taking place at Nice University Hospital on 20 ALS patients. Further improvements
considered include the use of Natural Language Models to improve the prediction stage [4, 9]
and further improve the bit-rate thanks to word completion.

Acknowledgment: This work was carried out as part of the CoAdapt project, funded
through the French National Research Agency grant ANR-09-EMER-002-01.
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