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Abstract

Severely impaired persons could greatly benefit from assistive devices controlled by
brain activity. However, the low information transfer rate of noninvasive neuroimaging
techniques complicates complex and asynchronous control of robotic devices enormously.
In this paper we present an asynchronous brain–machine interface (BMI) relying on au-
tonomous grasp planning. The system enables a user to grasp and manipulate objects with
a minimal set of commands. We successfully tested the system in a virtual environment
with eight subjects. Our results suggest that the system represents a promising approach
for real-world application of brain–controlled intelligent robotic devices.

1 Introduction

One of the most convenient applications of brain-machine interfaces is the control of prosthetic
devices. Many approaches have been developed so far, including non-invasive [1] and invasive
[2] control of an artificial upper limb. However, for continuous control, the commonly performed
decoding of motor sensory rhythms, originated in motor imagery, has two drawbacks: due to
only a few distinguishable classes the degrees of freedom to control the effector are limited and
the training phase for users is long. An alternative control signal is the steady state visual
evoked potential (SSVEP) which provides a robust signal for detection and an easy usage. In a
previous study [3] we showed that the magnetic fields induced by SSVEPs (steady state visual
evoked field, SSVEF) can be reliably decoded to select virtual reality objects. The control of
a robotic hand with SSVEP detection was presented by [4] but still the degrees of freedom
which can be controlled are very limited. Here we present an SSVEF based prototype system,
aimed at autonomously grasping and manipulating objects, which is controlled asynchronously
via visual overt attention. The decoding scheme we applied is designed to minimize erroneous
actions of the manipulator which facilitates successful and secure grasping when combined with
an intelligent actuator.

2 Methods

2.1 Robotic Grasping System

We developed a virtual reality scenario designed to simulate the control of a robotic device.
Virtual objects, placed in the working area of the robot, can be grasped autonomously by the
robot [5, 6]. In the current setup we placed four spherical objects on the table serving as
potential grasp targets. Furthermore, we placed a green start button and a red stop button
on the table to send control commands to the robot. All objects were tagged with stimulation
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Figure 1: Robotic gripper in the states start (A), grasped (B) and presenting (C) and the
state diagram (D) of the system which is controllable by only three commands (start, stop and
object#).

surfaces flickering at different frequencies (object 1–4: 6.818 Hz, 7.5 Hz, 8.333 Hz, 9.375 Hz; start
button: 10.714 Hz; stop button: 12.5 Hz). Whenever only the selection of a command button
was reasonable, e.g. during a running grasping process, the stimulation of objects 1–4 was
stopped. Thus, selection of a new object to grasp was only possible when the gripper was in the
states retract, break and start. This reduces the probability of unwanted selections during the
grasping and manipulation process. As a representative manipulation the object could be picked
up and presented. For resting periods, a non-flickering area, e.g. the fixation cross must have
been focused. For the selection of the object to be grasped next, the corresponding flickering
surface has to be attended. The selection of the start button initiates a grasp to the lastly
selected object, the presentation of the object and the resuming of a stopped grasp movement.
In contrast, a selection of the stop button causes the reverse operations. Figure 1 (D) visualizes
the state transitions of the robot dependent on activation of the start button (green transitions)
and the stop button (red transitions). States marked in grey indicate stimulation of start and
stop button only, states marked in blue indicate stimulation of all six surfaces.

2.2 Decoding Algorithm

We decoded the SSVEF by means of canonical correlation analysis (CCA) [7]. This method
finds the optimal weighting Wx,f and Wy,f of input channels X (here the signals of 59 occipital
MEG sensors) and model channels Yf (sine and cosine waves of the stimulation frequency f
and optionally harmonics) to maximize the correlation ρCCA(f) between linear combinations
xf = XTWx,f and yf = Y T

f Wy,f . The CCA was applied to MEG data asynchronously every
1000 ms from the preceding 2000 ms interval. To distinguish resting intervals from selection
intervals, we determined a confidence threshold thf for each frequency f from the empirical
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distribution of coefficients ρCCA which we revealed in calibration runs. Finally, the classifica-
tion was determined according to the frequency fmax = argmax(ρCCA(f)) that revealed the
maximum correlation coefficient and exceeded the threshold thf .

Feedback of the instantaneous target detection of the decoder was presented at each decoding
step by coloured rings around the decoded target. Only after three successive predictions of
the same target it was finally selected. The stage of prediction was indicated by stepwise colour
changes from light blue to green for the final selection. After a selection, the next decoding
was performed three seconds after feedback presentation. The detection of a resting period
was displayed at the fixation cross identical to the selectable targets and did not affect the
prediction stage of targets.

2.3 Experimental Setup

Eight healthy subjects (age 21–34 years) participated in this study. MEG data were acquired
with a 248 magnetometer 4DNeuroimaging system, at a sampling rate of 678.17 Hz.

The task of the subjects was to control the autonomously grasping robot depicted in Fig-
ure 1 (A–C) by overtly attending the flickering surfaces. The experiment started with calibration
runs in which one of six targets or the fixation cross was cued by a black ring during each trial.
If the final selection was different from the cued target a red ring indicated the erroneous de-
coding. A trial was counted as false after 30 s of selection failure. The subjects performed 3–4
calibration runs to obtain a reliable performance estimate of the proposed decoding scheme.
Additional 3–4 runs were performed to control the robot. In these runs, a high amount of
resting periods was required due to the slow movement of the robot. Consequently, relatively
few selection trials were performed. Subjects were instructed to grasp, pick up and replace the
objects in a predefined order, which was announced by the experimenter directly before the
run. In case of an unwanted selection due to erroneous SSVEF detection, the subject had to
perform the consequential selection to continue the desired workflow. The sequence of control
commands was as follows: Select the object to be grasped, select the start button to grasp
the object, select the start button to present the object, select the stop button to replace the
object, select the stop button to retract the gripper. In intervals of robot movement, subjects
had to prevent selections.

3 Results

Although feedback was provided from the first run the decoding of resting intervals started
with the second run, when initial calibration data were available. On average, 74% of target
trials (Tcorr/trials) and 73% of resting trials (Rcorr/trials) were decoded correctly while the
guessing level was 14%. Average selection time tselect was 11.7 s while fastest possible selec-
tion was 5 s. In robot control runs, the speed of a complete grasp sequence (Gcompl/time)
was 0.52 min−1 on average. In order to safely perform gripper control, the movement of the
robot was relatively slow (grasping: 28 s, picking up: 8 s) such that an optimal complete grasp
sequence, without complete retracting but including selections, was possible in at least 69 s
(maximum Gcompl/time = 0.87min−1). As an important result, in our setup false object selec-
tions (Serr) occured reasonably (26%) but accidently initiated robot commands (Cerr) occurred
rarely (4.7%) although long intervals of preventing erroneous selections were required. Table 1
summarizes the results. The number of trials performed depends on the latency of a final se-
lection and on the number of unwanted selections. One of the subjects was able to perfectly
control the system without any erroneous selection.
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Calibration Robot control
Subject Tcorr Rcorr tselect Gcompl Cerr Serr

# /trials /trials [s] /time /trials /trials
1 56 / 75 18 / 25 12.1 8.2 / 18’04” 3 / 38 3 / 14
2 11 / 27 4 / 10 16.5 7.4 / 24’04” 8 / 44 2 / 13
3 62 / 62 23 / 23 10.9 16.6 / 24’06” 0 / 67 0 / 20
4 40 / 63 15 / 23 10.7 10.2 / 24’23” 2 / 44 6 / 26
5 46 / 64 21 / 23 10.5 12.4 / 24’22” 1 / 50 13 / 33
6 46 / 54 17 / 21 12.8 12.6 / 24’48” 1 / 60 4 / 24
7 60 / 69 16 / 25 9.7 15.0 / 21’39” 1 / 61 14 / 35
8 45 / 67 16 / 23 10.3 10.3 / 23’39” 1 / 53 21 / 38

Table 1: Subject performance

4 Conclusions

As an alternative modality to EEG we probed the MEG for detecting SSVEFs. Provided that
the EEG allows for comparable detection success, our results indicate that an intelligent actua-
tor in combination with noninvasive detection of SSVEPs could help severely paralyzed patients
to initiate complex grasp movements asynchronously. The presented system allows for volun-
tary robot control with a low error rate even in subjects with moderate selection performance,
indicating that noninvasive BMIs may be suitable for grasping despite its low information trans-
fer rate. It is important to note that the transfer of the system into an EEG-driven real-world
setting requires further development towards more elaborated stimulus presentation techniques
and intelligent prostheses. In addition, a combination with other modalities, for instance track-
ing of eye movements, could serve to make the system even more robust.
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