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Abstract

Error potential detection systems typically have to be trained on each individual, often
necessitating that users experience sub-optimal active system performance. In this work,
by introducing neurophysiological knowledge to preprocess EEG, we present a training-free
error potential detection system. Results demonstrate that a subset of error potentials may
be discriminated with a high level of precision in previously unseen subjects.

1 Introduction

Passive error potential (ErrP) detectors may be utilised to correct or negate the output of
active BCI systems, providing output verification. Coupling active and passive BCI systems can
increase training requirements. In this analysis we demonstrate an approach which generalises
information across subjects, allowing poor BCI performance by some subjects to aid other users.

The underlying EEG component of ErrP detection systems is feedback related negativity
(FRN). Key features of FRN make it a primary candidate for the reinforcement learning (RL)
theory of error feedback, since it is thought to originate from the anterior cingulate cortex (ACC)
[6], and to be triggered by phasic changes in dopaminergic signals from the basal ganglia [3].
In our method neurophysiological knowledge is used to inform projection filters, which perform
joint dimensionality and noise reduction [1]. In RL theory, error trials will not necessarily
exhibit FRN, therefore we only target a subset of trials using precision based loss functions [4].

2 Method

2.1 Data

Results from two BCI datasets are presented - detailed descriptions are available for both [2, 5].
The development data set, acquired in Marseille, consisted of 64 channel EEG recorded

using a Biosemi Active2. Eleven subjects performed online motor imagery sessions using a Graz
protocol modified to display discrete feedback. Subjects performed four runs of 40 trials. Three
feedback periods were embedded in each trial. Feedback was manipulated to ensure all subjects
experienced minimum error rates of 20%. Data from two subjects was rejected. After artefact
removal the average error rate was 23±2%. We refer to this data as the MI set. A second data
set, acquired in Lyon was recorded with 56 EEG sensors using a VSM-CTF compatible system.
This analysis is based on 32 electrodes. Sixteen subjects used a pseudorandom stimulation
procedure P300-speller. Flash duration and stimulus onset asynchrony parameters were selected
to increase the difficulty of spelling. Each subject performed four 12 minute spelling sessions,
a session consisted of 12 five letter words with feedback for each letter. After artefact rejection
the average error rate was 30±19%. Four subjects with a error rate below 10% after artefact
rejection were not included in this analysis. This data will be referred to as the P300 set.
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2.2 EEG Preprocessing

EEG data was bandpass filtered between 3 and 12 Hz using 4th order Chebyshev filters. Source
time series were obtained using transformation matrices designed for real time use [1]. Applied
to EEG, these matrices output x, y and z current triplet for each of the voxels in the LORETA
head model. Voxels belonging to Brodmann areas 24, 32, 33, 8 or 6 were included in a fixed
region of interest (ROI), encompassing all FRN activation foci described in meta analysis [6].
The radial, z, value of all voxels in the ROI were averaged to create a single virtual channel, of
sample rate equal to surface channels, on which all further analysis / processing was performed.
Using this approach, the virtual channel retains a proxy to polarity observed in central channels.

2.3 Feature Space

Training data was generated for each subject using data from others in the same set. Each
subject’s virtual channel amplitude was normalised by the standard deviation. Subject’s virtual
channel ERPs were aligned to the median FRN latency of the group, the normalised latency,
by circular shifting of trial values and peak alignment. A template error FRN was derived from
the average of the normalised error trials. Three features were then extracted from a window
around the normalised latency. Amplitude measured peak negativity within the window. Jitter
measured the distance between peak negativity and the normalised latency. Similarity measured
correlation between single trial activity and the template error FRN when accounting for Jitter.

2.4 Classifier Calibration

SVMperf, a classification method for multivariate performance measures [4], was trained on the
feature space. A radial basis function kernel and a precision/recall breakeven point loss function
were used. SVM parameters cost, C, and gamma, g, were obtained through grid search. At
each search step nested 2×10 cross validation was performed and an F-score obtained from
rates of precision and sensitivity. The C and g pair which maximised Fβ was selected. For
P300 calibration five of 12 subjects were excluded from training data (the hold-back group)
after visual inspection of virtual channel data suggested they had few discriminable error trials.

2.5 Online Steps

As subject independent classifiers were calibrated on amplitude and latency normalised feature
spaces, online calculations required equivalent distributions. Amplitude normalisation in online
steps was based on estimates of statistical moments, updated on a trial by trial basis, using
parameterless one pass methods described by Terriberry [7]. Temporal normalisation of the
feature space required an estimate be made of each new subject’s FRN latency without use of
class labels. Latency was tracked via estimation of how a temporal window of activity influenced

the Similarity feature. A moving average, ̂Similarity, was maintained on a trial by trial basis:

̂Similarityt = Similarity.UC + ̂Similarityt−1.(1− UC) (1)

The update coefficient, UC, was bounded between 0 and 0.1. The seed, ̂Similarity0, was
set to perfect correlation with mean training error FRN, scaled by a mid-range UC value of
0.05. As Similarity was invariant to magnitude, UC was weighted by trial amplitude data in

order to only update ̂Similarity on trials exhibiting negative polarity in the period of interest:

UC = 0.1/1 + e13(Amp+0.5) (2)
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Figure 1: Error detection rates for MI dataset. Influence of Fβ selection on overall group rates
of precision, sensitivity and specificity. Results calculated from 50 simulation runs for each
subject. Whiskers indicate standard deviation. Plus symbol indicates the mean.

Amp being the mean normalised amplitude in a window around the normalised latency for
the trial. After each trial the estimate of FRN latency, ̂Latency, was set to the trial period
estimated to be most similar to the template error FRN:

̂Latency = t |
max( ̂Similarityt)

(3)

After amplitude normalisation, Amplitude, Jitter and Similarity features were extracted
from a window centred on ̂Latency and trials classified by SVM. An additional step detected
ERP polarity inversion. Polarity inversion may occur due to differences in sulci orientation
and the relative position of dipoles. This step was based on sequential calculation of the third
central moment and the standard error of skewness. If significant positive skew was detected
at ̂Latency, data was deemed inverted and the polarity of all succeeding trials reversed.

3 Results

Figure 1 shows the influence of the F-score β on ErrP detection rates for the MI dataset;
demonstrating that overall precision can be increased at the cost of sensitivity and specificity.
Further results are based on a β value of 0.5, corresponding to the typical F0.5 measure weighting
precision over sensitivity. Post-hoc comparisons were performed on the MI development dataset
to verify contributions of the method. Paired t-tests showed source based preprocessing provided
better sensitivity (M=27.1, SD=11.5) than equivalent use of monopolar (M=19.7, SD=15.0, t=-
3.23, p=0.012); laplacian (M=16.9, SD=16.1, t=-3.75, p=0.006); and surface spline (M=21.9,
SD=15.5, t=-2.47, p=0.039) time series from sensor channel FCz. Use of FRN latency tracking
produced significant (t=-2.78, p=0.024) improvement in sensitivity rates (M=27.3, SD=11.4)
in comparison to use of a fixed value set to the normalised latency (M=23.6, SD=11.2).

Individual ErrP detection rates are detailed for both the MI and P300 datasets in Table 1.
P300 subjects in the hold-back group obtain poor overall results, with mean precision, sensi-
tivity and specificity of 38.6±27.4, 5.6±30 and 96.1±3.6. Mean rates for precision, sensitivity
and specificity for the seven remaining subjects in the P300 dataset were 86.9±15.3, 21.4±17
and 98.2±1.9. Post-hoc analysis of the properties of these two groups showed the hold-back
group had a reduced overall difference in surface EEG amplitude between feedback classes, as
measured by subtracting correct trial average from error trial average at channel Cz, however
this difference was only marginally significant following a one tailed hypothesis test (Welch’s t,
t=-1.8785, p=0.049).
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MI Data P300 Data
Prec. Prec. δ Sens. Spec. Prec. Prec. δ Sens. Spec.

S1 80.0±5.4 +59.3 10.8±1.2 99.3±0.2 9.3±12.3 -28.7 2.2±3.0 89.9±0.8
S2 95.6±1.4 +68.7 42.2±1.8 99.3±0.4 85.1±1.9 +49.4 42.5±3.5 95.9±1.1
S3 83.8±6.2 +61.3 17.6±1.8 99.0±0.3 92.7±3.0 +29.6 10.5±1.1 98.5±0.3
S4 93.2±1.6 +69.1 33.4±2.4 99.2±0.5 99.9±0.8 +44.9 16.7±1.0 100.0±0.3
S5 97.0±2.8 +74.1 32.1±2.2 99.7±0.5 11.5±23.7 -16.3 0.9±1.9 98.5±0.4
S6 77.4±5.1 +55.9 12.3±1.5 99.0±0.3 99.0±6.9 +39.6 0.8±0.7 100.0±0.2
S7 95.9±2.6 +75.5 35.9±3.1 99.6±0.6 57.5±5.7 +33.3 18.5±1.8 95.5±0.4
S8 79.3±6.2 +53.2 23.7±5.9 97.9±1.3 62.3±3.6 +49.4 47.1±3.3 95.8±0.4
S9 77.4±4.7 +57.7 36.8±2.6 97.4±0.5 69.8±6.3 +41.9 14.3±1.6 97.5±0.4
S10 99.5±2.7 +56.8 18.1±3.1 99.9±0.9
S11 44.0±18.3 -2.1 1.7±0.7 98.2±0.3
S12 70.5±5.3 +39.1 9.9±2.0 98.1±0.5
µ 86.6±8.6 +63.9 27.2±11.5 98.9±0.8 66.8±31.9 +28.1 15.3±15.4 97.3±2.8

Table 1: Error-potential detection rates for MI and P300 data sets. Precision δ denotes differ-
ence between precision obtained and equivalent randomisation of true label distributions. Italics
denote members of the hold-back group. Results obtained using β value of 0.5. Simulation runs
were repeated 100 times.

4 Conclusion

Discrimination rates demonstrate that strong neurophysiological a priori, with inverse solution
methods to apply them, can produce viable training free approaches for ErrP detection. Signal
enhancement provided by inverse methods can enable use of simple descriptive interpretable
features.
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