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Abstract

Developing an electroencephalogram (EEG) based workload (WL) prediction could be
utilized in learning environments to adapt instructional material to the students individ-
ual WL and thereby support the learning process successfully. In an adaptive learning
environment it is not feasible to use data from the same subject and the same task for
classifier training and testing. Therefore, the present study examined cross-subject WL
prediction, in which one subject’s individual WL is predicted based on data from other
subjects. EEG-data was recorded from 10 subjects who had to solve math problems with
increasing level of difficulty. By applying linear regression within- and cross-subject a pre-
cise WL prediction could be reached. For the within-subject WL prediction an average
correlation coefficient (CC) of CC = 0.88 was achieved. However the cross-subject WL
prediction leads to CC = 0.84 on average. Since both prediction methods achieved good
WL prediction results the cross-subject method is a feasible approach that can be used in
an online adaptive system.

1 Introduction

In accordance with Cognitive Load Theory (CLT) [5] the type and amount of workload (WL)
during learning is crucial for successful learning and should be held in the individual optimal WL
range for each learner. Thus it seems advisable to provide technological support for learners,
which adapts instructional materials and tasks to their level of expertise and WL capacity.

As it is not feasible to use data from the same subject and the same task for classifier training
and testing in an adaptive learning environment, one can either use data from the same subject
but different tasks (cross-task) or from the same task, but different subjects (cross-subject) to
calibrate the classifier.

In a previous study [7] we used cross-task classification, where a SVM was trained on elec-
troencephalogram (EEG)-data, recorded while participants had to solve working memory tasks.
Subsequently the SVM was tested on EEG-data recorded while solving complex mathematical
tasks. This approach lead to classifier accuracies around chance level. Thus we introduced a
cross-subject WL prediction in the present study based on linear regression, for a group of 10
subjects. As most of the EEG-based WL classifications are subject-specific, apart from a few
exceptions [8], this work is a step towards the development of EEG-based WL classifiers as it
would enable training a classifier once that could handle multiple subjects.

2 Materials and Methods

2.1 Participants and Task Design

A total of 10 subjects (17 - 32 years) voluntarily participated in the EEG experiment. The
experiment had a within-subject design and comprised two tasks, a WL as well as a vigilance
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task. In this article we will merely report the results of the WL task. The subjects had to
solve 240 math problems with an increasing level of difficulty, by typing the solution in a given
time. The presented problems varied in difficulty as measured by the information content (Q)
according to Thomas [6], with a Q value ranging from 0.6 (easy) to 7.2 (difficult). As postulated
from Kantowitz [2] increasing task difficulty (=̂ increasing Q-value) always increases WL, since
by definition, an increase of task difficulty demands additional capacity. Further, an increase of
WL is characterized in EEG-data by changes in the theta-, alpha- and beta-frequency bands [3].
To avoid the classifier of being based on perceptual-motor confounds the time windows used for
analyzing EEG-data should not contain motor events. Therefore, each trial was divided into
two phases: First, the calculation phase occurred (= phase for analyzing the EEG-data), where
the problem to be solved was shown for 5 sec. Subsequently subjects had 3.5 sec to type in
their result, followed by an inter-trial interval of 1.5 sec.

2.2 EEG Recording

A set of 29 active electrodes (actiCap, BrainProducts GmbH), attached to the scalp placed
according to the extended International Electrode 10 - 20 Placement System, was used to record
EEG-signals. Three additional electrodes were used to record an electrooculogram (EOG); two
placed horizontally at the outer canthus of the left and right eye to measure horizontal eye
movements and one placed in the middle of the forehead between the eyes to measure vertical
eye movements. EOG- and EEG-signals were amplified by two 16-channel biosignal amplifier
systems (g.USBamp, g.tec). The sampling rate was 512 Hz. EEG-data was high-pass filtered
at 0.1 Hz and low-pass filtered at 100 Hz during the recording. Furthermore a notch-filter was
applied between 48 - 52 Hz to filter power line noise.

2.3 Data Processing and Analysis

For further analysis we reduced the number of channels to 17 (FPz, AFz, F3, Fz, F4, FC3,
FCz, FC4, C3, Cz, C4, CPz, P3, Pz, P4, Oz, POz), to lower the influence of possible artifacts,
which are most prominent on the outer channels. As frequency bands were not consistent and
varied between subjects, we used a wide frequency range of 4 - 30 Hz [3].

The power spectra were calculated for each 5 sec window (= calculation phase) by using
autoregressive models based on Burgs maximum entropy method [1], using a model order of
32. In addition, the data was z-score normalized along the channels, meaning for each trial
the mean of each frequency bin equals zero. The feature selection was conducted during the
10-fold or leave-one-subject-out cross-validation only on the training data. Each feature was
correlated with the Information Content (Q) and the 125 features with the highest r2-values
were selected for the regression analysis. For WL prediction we used a linear ridge regression
with the regularization parameter set to a fixed value of λ = 0.001.

As criterion for performance evaluation of the presented prediction method we used the
correlation coefficient (CC) to observe the statistical relationship between the actual and the
predicted Q-values, as well as the root-mean-squared error (RMSE) to examine the difference
between the actual and the predicted Q-values.

Since single-trial prediction is not necessary in a learning environment, the regression output
was additionally smoothed to improve prediction accuracy at the expense of increased delay of
the system. We used a window-size of 6 trials, which still guaranteed a response time ≤ 1 min
of the system, which is feasible for the detection of WL.
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Figure 1: Distribution of actual and predicted WL for subject 1. The continuous red line repre-
sents the actual WL and the smoothed dashed blue line the predicted WL for each trial. Left:
Within-subject - Using a 10-fold cross-validation; Right: Cross-subject - Regression trained on
data of nine subjects and tested with data of the remaining subject 1.

3 Results

The performance for the within-subject WL prediction was calculated by using a 10-fold cross-
validation on 240 trials (see Table 1). For the evaluation of the cross-subject WL prediction the
regression was trained on data of nine subjects (= 240 · 9 trials) and tested with the complete
data-set of the remaining subject (see Table 2). The within-subject WL prediction reached on
average a correlation coefficient of CC = 0.66 and a RMSE = 1.70. Using the smoothed
regression output for within-subject WL prediction leads to more robust and even better results
with an average over all subjects of CC = 0.88 and RMSE = 1.02 (see Table 1).

As stated in Table 2 the average results over all 10 subjects for cross-subject WL predic-
tion slightly decreased. Applying linear regression to unsmoothed data leads on average to a
CC = 0.58 and a RMSE = 1.95. Using the smoothed data for cross-subject WL prediction
improved the CC by 0.26 and the RMSE by 0.37.

The distributions of actual and predicted WL for within- and cross-subjects are exemplary
shown for subject 1 in Fig. 1. In both cases the increasing WL was successfully predicted by
using the linear regression method. It can be noticed that during the first 90 trials (Q ≤ 0.9)
and the last 30 trials (Q ≥ 6.0) the actual and predicted WL deviate strongest from each
other. This may be due to subjects being unchallenged or overburdened while solving these
tasks.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 mean
CC 0.43 0.69 0.68 0.58 0.84 0.58 0.60 0.72 0.65 0.78 0.66
CC (smooth) 0.69 0.93 0.93 0.89 0.94 0.87 0.76 0.91 0.93 0.93 0.88
RMSE 2.20 1.61 1.71 2.09 1.11 1.95 1.63 1.60 1.82 1.30 1.70
RMSE (smooth) 1.39 0.86 0.99 1.21 0.68 1.15 1.04 1.04 1.08 0.73 1.02

Table 1: Performance results of the within-subject WL prediction using 10-fold cross-validation.

4 Discussion

The results show that the amount of WL can be predicted using a cross-subject regression
method. Compared to earlier studies, where cross-task classification [7] leads to classification
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 mean
CC 0.67 0.50 0.65 0.63 0.63 0.59 0.39 0.62 0.52 0.57 0.58
CC (smooth) 0.89 0.91 0.88 0.91 0.89 0.86 0.74 0.84 0.71 0.79 0.84
RMSE 1.68 2.56 1.69 1.73 1.72 1.77 2.65 1.87 2.04 1.81 1.95
RMSE (smooth) 1.13 2.00 1.25 1.39 1.60 1.44 2.11 1.58 1.57 1.68 1.58

Table 2: Performance results of the cross-subject WL prediction. Regression was trained on
data of nine subjects and tested with data from the remaining subject.

accuracies merely around chance level, cross-subject prediction seems to be more robust and
recommendable. As the math problems were presented in a fixed order, at advancing levels of
difficulty, EEG-signals might change due to non-stationarity (e.g. caused by fatigue) over time.
Actually non-stationarity within a session should not have a great influence on the EEG-data
while using cross-subject methods, since non-stationaries between subjects are assumed to be
larger than within a session. Since we used a very simple method for normalization and thereby
alleviated non-stationaries, we expect to further improve the results by using more advanced
methods for reduction of non-stationaries [4]. In an upcoming study, these results will be used
in an online learning environment to predict the user’s WL and adapt the presented exercises
accordingly, to support students successfully in their learning process.
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