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Abstract

When a Brain-Computer Interface (BCI) delivers erroneous feedback, an error-related
potential (ErrP) can be measured as response of the user recognizing that error. Classi-
fication of ErrPs has been previously used in BCIs with time-discrete feedback to correct
errors or to improve adaptation of the classifier for more robust BCI feedback. In this
study we investigated if ErrPs can be measured in electroencephalography (EEG) record-
ings during continuous feedback and if ErrPs can be classified. We recorded EEG data
from 10 subjects during a video game task and investigated two different types of error
(execution error, due to inaccurate feedback; outcome error, due to not achieving the goal
of an action). ErrPs could be measured in the EEG for both types of errors and we were
able to classify both types of errors using a Support Vector Machine (SVM).

1 Introduction

If a subject makes or perceives an error, an error-related potential (ErrP) can be detected
in the EEG due to the subject recognizing the error [1]. That an ErrP can also be detected
when a Brain-Computer Interface (BCI) delivers erroneous feedback has been shown in several
publications and it has further been shown that the detection of ErrPs can be utilized to correct
errors [2, 3] or improve adaptation of the BCI [4, 5]. For the analysis of ErrPs it is necessary
to have stimulus-locked data and therefore the previous studies have only investigated time-
discrete feedback, in which feedback is given once at the end of a trial.

Kreilinger et al. [6] studied ErrPs during continuous arm movement and tried to classify
ErrPs by mapping the continuous feedback to time-discrete feedback and additionally display-
ing the discrete feedback. That a discretisation of the feedback is not needed was shown by
Milekovic et al. [7] in a study using Electrocorticography (ECoG) instead of EEG. They could
show that an error-related response during continuous feedback can be observed in the ECoG
signal and also classified [8]. For this paper we evaluated if ErrPs can also be measured in the
EEG during only continuous feedback and if two different types of errors can be discriminated.

2 Methods

2.1 Task description

The experimental task was similar to the one described by Milekovic et al. [7] in which the
subject had to play a simple video game. The subject used the thumbstick of a gamepad to
control the angle in which the cursor on the screen moved. The task was to avoid collisions of
the cursor with blocks dropping from the top of the screen with a constant speed. The speed of
the falling blocks was set to a level that the game was challenging and the player collided with a
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block from time to time. In case of a collision, the game resumed for 1 second and then stopped.
The delay of 1 second was introduced to make sure that the reaction measured in the EEG
originates from the subject recognizing the collision (outcome error) and not from the game
stopping or restarting. To study the execution error, which is happening when the interface
delivers erroneous feedback, the angle of the cursor movement was modified for the duration of
2 seconds. The degree of modification was randomized (45 ◦, 90 ◦, 180 ◦ to either the left or
the right side). The time between two execution errors was randomized to be between 5 and 8
seconds.

2.2 Experimental setup

10 healthy subjects (mean age: 24.1 ±1.1 years) were recruited for this study. EEG was mea-
sured with two g.tec g.USBamp amplifiers and a Brainproducts Acticap System. 29 electrodes
were placed on the scalp of the subject to measure EEG, while 3 electrodes where placed below
the outer canthi of the eye and above the nasion for electrooculogram (EOG) recordings. The
data was recorded with a sampling rate of 512 Hz and a 50 Hz notch filter was applied to
filter out power line noise, as well as an additional bandpass filter between 0.5 Hz and 60 Hz.
The position of the thumbstick as well as information about outcome or execution errors was
transmitted to the recording software using the parallel port of the computer.

2.3 Signal processing and classification

The data was segmented into different trials with a length of 1 second: execution errors, time-
locked to the start of an angle modification; outcome errors, time-locked to the collision event;
and noError trials, where neither a collision nor an angle modification has happened during the
trial or in the 1 second before or after the trial. For each subject about 1 hour of EEG was
recorded resulting on average in 597 ±22 execution errors, 86 ±30 outcome errors and 475 ±39
noError trials.

An EOG-based regression method was used to reduce the effect of eye artifacts. To estimate
classification accuracies we used a 10-fold cross-validation. For classification we used a Support
Vector Machine (SVM) with a linear kernel. For all channels the samples in the time range 0.2 s
to 0.9 s were used for classifiation and the signal was rereferenced to the common average. To
investigate how well the error can be classified, outcome error and execution error, respectively,
were classified against noError trials. To see if the two types of errors can be discriminated, we
also classified execution errors against outcome errors. Since the number of trials were different
for each class, the dataset was balanced to obtain an even amount of trials for each class.

To test if the subject’s movements (due to gamepad control) or eye movements influence
classification, classification was also done on the EOG data and on the recorded position of the
thumbstick.

3 Results

Averaged over all subjects, execution errors and noError trials could be classified with an aver-
age accuracy of 65.0 % based on EEG, 50.9 % based on EOG and 52.5 % based on the thumbstick
position. For outcome error against noError trials, average accuracies of 73.9 % (EEG), 54.9 %
(EOG) and 56.0 % (thumbstick) could be reached. For the classification of the two error types,
execution error and outcome error, we obtained average accuracies of 75.3 % (EEG), 56.4 %
(EOG) and 55.3 % (thumbstick). Detailed results of the classification on the EEG data is shown
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in table 1. For the classification results of the EEG data we performed a permutation test (1200
permutations) to test for significance and all EEG results were found to be significantly above
chance level.

Table 1: Classification accuracies based on EEG data obtained by 10-fold cross-validation.
Classes were balanced and therefore the chance level is at 50 %. All results are significantly
above chance level.

subject Execution vs. Outcome Outcome vs. noError Execution vs. noError
S01 77.9 % 74.4 % 69.7 %
S02 76.3 % 78.5 % 65.4 %
S03 69.6 % 68.2 % 59.9 %
S04 72.1 % 75.0 % 60.1 %
S05 70.2 % 60.3 % 64.3 %
S06 67.7 % 76.5 % 63.4 %
S07 73.6 % 76.3 % 62.8 %
S08 85.0 % 80.4 % 68.6 %
S09 78.1 % 71.3 % 64.5 %
S10 82.1 % 78.0 % 71.2 %

mean 75.3 % 73.9 % 65.0 %

Figure 1 shows the average waveform of the execution error at electrode Cz for all subjects
as well as the topographic distribution of the potential. Although the waveform of the two error
potentials differed strongly, the topographic distribution was very similar for both errors and
all subjects with the maximum around electrode FCz and Cz.

Figure 1: Execution error-related potential at electrode Cz. The colored lines depict the ErrP for
the different subjects, while the bold black line is the average over all subjects. The topographic
distribution of the potential averaged over all subjects at 285 ms and 360 ms is shown at the
top. For display of the ErrPs, the difference between the error trials and noError trials was
calculated.

Since the angle of the movement was randomly modified with different degrees, we also
tested if execution errors with a different degree can be classified, e.g. 45 ◦ against 180 ◦, but
did not achieve significant results.

Proceedings of the 6th International Brain-Computer Interface Conference 2014 DOI:10.3217/978-3-85125-378-8-6

Published by Graz University of Technology Publishing House Article ID 006-3



4 Discussion and Conclusion

In this study we could show that ErrPs can be measured in the EEG, due to an erroneous
response during continuous feedback. While we have further shown that two different types of
errors can be discriminated in EEG (outcome error vs. execution error), we could not detect the
severity of an execution error (e.g. 45 ◦ or 180 ◦). When looking at the shape and topographic
distribution of the execution error, it is similar to the results of earlier studies [2, 6], thereby
showing that classification is based on an electrophysiological response and not on artifacts.
This is supported by the lower classification accuracies obtained on EOG and gamepad data,
which are not significantly above chance level for most subjects.

Although we were able to classify both types of error, the classification accuracy needs to
be improved to be useable for adaptation or error correction in a BCI application. Therefore it
needs to be tested if the power spectrum of the EEG yields additional information to classify
those ErrPs. While we could show that ErrPs are elicited during continuous feedback and we
are able to classify them based on the EEG, the classification itself is still event-locked and it
needs to be tested in a further study how well classification works if it is done continuous [8].

Acknowledgements

The authors would like to thank Johannes Anufrienko for programming the experimental task.
This study was funded by by the German Federal Ministry of Education and Research (BMBF,
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