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Abstract

In many software systems the access to internal components is limited. This limited
access impedes the quality assurance of such black-box software systems. Therefore,
the model learning of black-box systems becomes an increasing topic in software
engineering. With learning we can create behavioral models of such systems which
can be used for system verification.

This thesis presents an active learning approach for timed automata via genetic pro-
gramming. Genetic programming is a machine learning technique that provides the
possibility to automatically develop programs. We use genetic programming to learn
models of real-time systems. For this, we use an active learning approach which re-
quires a conformance check between the timed system and the learned automaton.
The bottleneck of this conformance check is the required number of tests. Especially
for real-valued timed systems the number of tests to cover the entire state space is
infinite. Our approach overcomes this problem by using a conformance testing ap-
proach based on heuristics. This conformance testing approach uses tests which are
generated by random walks through the learned automaton.

Our active learning approach is an extension of the passive learning approach pro-
posed by Tappler et al. that also learns timed automata via genetic programming.
Our goal is to optimize the costs of learning by minimizing the amount of training
data since genetic programming approaches are often time-consuming and therefore
expensive.

Our evaluation shows that we can achieve significant improvements compared to the
passive learning approach of Tappler et al. This evaluation includes 43 different timed
systems and 18 900 learned timed automata. Three examples of the timed systems are
from the industry and the remaining 40 examples are randomly generated systems.
The examples contain up to 20 locations. The results of our evaluation show that
we can correctly learn all timed systems with only 100 tests. Additionally, we can
decrease the runtime of the genetic programming approach. In one example we are
able to decrease the median training set size by a factor of nearly ten and the learning
runtime in another example by a factor of more than 800.

Keywords: active automata learning, passive automata learning, genetic program-
ming, timed automata, conformance testing, test-case generation.
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Kurzfassung

In vielen Software-Systemen ist nur ein eingeschränkter Zugriff auf einzelne Kom-
ponenten vorhanden. Durch den eingeschränkten Zugriff wird die Qualitätssicherung
und Verifikation von solchen Software-Systemen erschwert. Dies ist ein Grund für
das steigende Interesse am Lernen von Modellen eines Black-Box-Systems in vie-
len Bereichen der Softwareentwicklung. Diese gelernten Modelle können in weiterer
Folge für die Verifikation dieser Systeme verwendet werden.

Diese Arbeit stellt einen aktiven Lernansatz für Timed Automata dar, wobei das Ler-
nen über genetische Programmierung erfolgt. Genetische Programmierung kommt
aus dem Bereich des maschinellen Lernens und bietet die Möglichkeit einer automa-
tischen Programmentwicklung. In unserem Ansatz nutzen wir genetische Program-
mierung um Systeme zu lernen, welche durch zeitliche und reellwertige Variablen
eingeschränkt sind. Wir verwenden dazu einen aktiven Lernansatz. Für die Umset-
zung des aktiven Lernansatzes benötigen wir die Möglichkeit das gelernte Modell
und das System miteinander zu vergleichen. Dieser Vergleich basiert auf einer end-
lichen Menge von Tests. Dabei stellt die Anzahl der benötigten Tests für das aktive
Lernen eine Schwachstelle dar. Vor allem für zeitlich angepasste Systeme, die die
Zeitkomponenten in reellen Werten darstellen, ist die Anzahl der mögliche Zustände
unendlich. Unser Ansatz wirkt diesem Problem entgegen, indem unser Testverfahren
auf Heuristiken basiert. Die verwendeten Tests in diesem Verfahren wurden durch
Zufallswege in den gelernten Automaten erstellt.

Unser aktiver Lernansatz ist eine Erweiterung des passiven Lernansatzes, welcher
von Tappler et al. entwickelt wurde. Dieser passive Ansatz lernt mithilfe von gene-
tischer Programmierung Timed Automata. Unser Ziel ist die Optimierung der Lern-
kosten. Diese Optimierung erfolgt durch die Reduktion der Trainingsdaten, da die
Menge der Trainingsdaten im direkten Zusammenhang mit dem Zeitaufwand und
damit auch den Kosten steht.

Unsere Evaluierung zeigt, dass wir im Vergleich zu dem passiven Lernansatz von
Tappler et al. merkliche Verbesserungen erzielen können. Wir evaluierten dabei 43
unterschiedliche, zeitliche gesteuerte Systeme. Die Evaluierung des aktiven Lernan-
satzes für diese Systeme basiert auf 18 900 gelernten Timed Automata. Drei dieser
Systeme stellen Beispiele aus praktischen Anwendungen dar und die restlichen 40
Systeme enthalten willkürlich erstellte Eigenschaften. Dabei können diese Beispiele
bis zu 20 verschiedene Knoten enthalten. Die Ergebnisse unserer Evaluierung zeigen,
dass wir in der Lage sind zeitlich gesteuerte Systeme mit nur 100 Tests zu erlernen.
Zusätzlich können wir die benötigte Laufzeit des Algorithmus verringern. In einem
Beispiel können wir den Median der benötigten Trainingsmenge um den Faktor zehn
reduzieren und für ein anderes Beispiel wird die Laufzeit um einen Faktor größer als
800 reduziert.

Schlagworte: Aktives Automaten-Lernen, Passives Automaten-Lernen, Genetische
Programmierung, Timed Automata, Testgenerierung, Konformitätstestung
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1 Introduction

1.1 Motivation

One of the central challenges in software engineering is to keep up with the tremendously fast devel-
opment of new software systems. Additionally, the number of requirements on the software systems
rise, which in turn leads to increasingly complex software systems. Despite the increase of complex-
ity, software systems should be reliable. Reliability is especially important for critical systems, where
an incorrect behavior has a huge impact on other systems. This increases the need for rigorous quality
assurance in software engineering. However, the quality assurance and maintenance of highly complex
systems is a challenging task. Therefore, we are in need of new sophisticated approaches to ensure
quality of software systems.

In addition to the increasing complexity, Peled et al. [43] stress that the insight to software systems
is often limited. Such limitations are often found when software systems use third party components.
These limited insights in composed software systems are a new challenge in the field of quality assurance.
To overcome this challenge, Peled et al. propose Black-Box Checking which provides a formal method
to check properties of systems where the internal structures are unknown. In their approach, they use
learning techniques to infer a behavioral model of the underlying black-box system.

Especially due to the work of Peled et al. [43] learning of systems has become an active research
area in quality assurance. One promising solution in this research area is the open-source framework
LearnLib [27] which supports several learning algorithms. One of these implemented algorithms is the
L* algorithm by Angluin [9]. Angluin’s L* algorithm was already introduced in the 1980s and is still the
base for many learning approaches.

The main focus of the LearnLib framework is the learning of finite-state automata, e.g. deterministic
finite automata (DFAs) or Mealy Machines. However, there is less literature on the learning of more
feature rich automata. Particularly time is one of the key components of many systems, but interestingly
there is little work on learning of timed models. This includes, e.g., procedures that take a certain
time or outputs that are observable after a certain amount of time. Such aspects of timing can have
a significant impact on the behavior of a system and are therefore crucial factors in the reliability of
real-time systems. Alur and Dill [7] introduced the idea of Timed Automata (TAs) which extend finite-
state automata with clocks. Based on these clocks, timed restrictions on the behaviour can be defined.
Therefore, the modeling of TAs is a powerful method to model and verify real-time systems.

In this thesis, we introduce a learning approach for TAs which uses Genetic Programming (GP). GP
[31] is a machine learning technique which uses the basic idea of evolution and natural selection. In
nature we see that species develop over thousands of years and adapt their behavior and characteristics
over the years to changing environmental conditions. The individuals which adapt best to the changing
conditions survive and further improve the population. The same concept is used in GP where a popula-
tion of programs evolves by mutation and crossover operations. The target is to automatically develop a
program with a desired behavior. In our case we use GP to learn a Timed Automaton (TA) which should
represent a behavioral model of a black-box timed system.

1.2 Research Problem and Goals

The goal is to improve the already existing GP approach for TAs which was proposed by Tappler et
al. [47]. Their work implements a passive learning algorithm. A passive algorithm learns a behavioral
model from a given set of test-cases. They propose that their work can be extended to an active learning
approach.

An active learning approach generates a test set during learning. This test set is iteratively improved

1
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by the active learning approach. The improvement of the test set is done according to the currently
learned model. In the literature, we find different active learning approaches. The base for many active
approaches is Angluin’s L* algorithm which requires an equivalence oracle. However, performing an
equivalence check on black-box timed systems is impossible since the time component introduces an
infinite number of possible states. In literature [29, 20, 21] various approaches that actively learn timed
systems with L* are described. However, these approaches have restrictive assumptions on the learned
timed systems and additionally a high complexity for timed systems with more locations or clocks.

We implement an approximate equivalence oracle via testing, thus following a similar approach as
Walkinshaw et al. [53]. Their approach learns the behavioral model with a set of tests, which is extended
iteratively. The tests are selected based on a predefined conformance relation between the timed system
and the corresponding TA. In this selection process our goal is to find counterexamples that show that
the learned TA is incorrect.

Tappler et al. [47] showed that they can correctly learn timed systems via GP. Moreover, they learn
timed systems which have less restrictive assumptions than other approaches. In this thesis, we compare
the results and performance of our active approach with the passive approach presented by Tappler et
al. This evaluation uses examples from the industry as well as randomly generated timed systems with
several locations and clocks.

1.3 Structure

This thesis is composed of six chapters.

Chapter 2 comprises the preliminaries for this work. First, we discuss the concepts for our active
learning approach. Afterwards, we define the syntax and the semantics of the used TAs. Furthermore,
we introduce conformance testing, which is the basis for our conformance checks. Afterwards, we
discuss the main concept of GP and the used extensions. Finally, this chapter explains the functionality
of the passive learning approach.

Chapter 3 introduces our active learning approach. First, we discuss the required conformance re-
lation for timed systems which defines the criterion for the test selection. Second, we give an overview
of the basic procedure of our algorithm. Then, we discuss different alternatives for the required initial
model of the timed systems. Finally, we introduce the test selection and generation procedure in more
detail.

Chapter 4 introduces the created Java implementation. In this chapter we dicuss the functionality
of the used modules. Afterwards, this chapter comprises a brief manual of the created Graphical User
Interface (GUI).

Chapter 5 discusses the results of the performed evaluation. This evaluation contains results of 18 900
learned TAs. First, we discuss timed systems that are inspired by industrial applications. Second, we
introduce the results of the evaluation with randomly generated timed systems.

Chapter 6 concludes this thesis. In this chapter we first discuss related work. Afterwards, we state
possible extensions for the future work. Finally, we summarize the thesis and provide a conclusion.



2 Preliminaries

This chapter discusses the concepts, which are the base for the remaining chapters of this thesis.

2.1 Set Notation

We define a set as a collection of elements, where every element occurs at most once. Unlike elements
in a set, elements in a multiset can occur more than once [11]. The multiplicity denotes how many times
the element occurs in the multiset. Let S be a multiset, S(x) returns the multiplicity of the element x in
the multiset S. Furthermore, according to the notation proposed by Blizard [11], we denote the union of
two multisets S, T by S ] T .

2.2 Active Automata Learning

In software engineering, the aim of automata learning is usually to reverse engineer an automaton model
of a system. In the literature, this reverse engineering process is denoted as learning. Furthermore, we
refer to the reverse engineered system as System Under Test (SUT). The learning process uses a set of
execution traces to reverse engineer the system. An execution trace is a record of a single execution in
the system. To learn a system, we require a set of execution traces which covers the behavior of the
system. As a result, the reverse engineering of an automaton can only be as good as the underlying
set of execution traces. Therefore, the generation of execution traces is a crucial part of the learning
process. With respect to the generation of execution traces, we distinguish between a passive and an
active learning approach.
In the passive approach, all execution traces are created before the learning process starts. Furthermore,
this creation process is independent from the learning process. Hence, in a passive approach, we learn the
automaton based on a given set of execution traces. The advantage of this approach is that it only requires
an interaction with the SUT prior to the start of the learning process. Therefore, no further access to the
SUT after the trace generation is needed. However, this approach is heavily dependent on the quality of
the trace generator. If the generator is weak, the traces may not contain all relevant information about
the behavior of the system. In addition, according to Walkinshaw et al. [53], to cover every behavioral
aspect of the system, the passive approach requires a large set of execution traces.
An active approach retrieves knowledge on demand by asking questions about the SUT. Instead of
knowing everything in advance we can ask an oracle. We assume that such an oracle can correctly
answer questions about the SUT. Therefore, active approaches require less information about the SUT at
the beginning of the learning process. Furthermore, the active approach creates the possibility to select
only the traces which are required to accurately learn a model. Hence, this technique usually requires
fewer tests, thus overcoming the limitation of the passive approach.

Already in 1987 Angluin [9] introduced the active learning algorithm L*. This algorithm learns the
DFA of a regular language L. The basic principle of Angluin’s approach is that the learning algorithm asks
a so-called teacher questions about the regular language. The teacher is an oracle, which dispenses infor-
mation about the regular language. Angluin introduces a Minimally Adequate Teacher (MAT) framework
which provides answers to two different types of questions. The first type of questions are membership
queries, where the teacher simply answers whether a word composed of a provided alphabet is part of
the language. The teacher answers this question simply with yes or no. The second type of questions
are equivalence queries, which check the equivalence of a hypothesis model and the language. If the
language of the hypothesis is equivalent one possible solution is found. Otherwise the teacher provides a
counterexample which reveals the difference between the learned hypothesis automaton and the language
to be learned.

3
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LTS
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Figure 2.1: General procedure that is used in the iterative refinement approach for LTS proposed
by Walkinshaw et al. [53]

.

Using these queries, L* correctly infers a DFA of the regular language. However, in order to produce
a correct DFA, L* always has to inquire all possible states. This may lead to a vast amount of required
questions to identify a hypothesis model. According to the complexity analysis of Angluin [8] the number
of membership queries to learn a DFA with n states, where n is known, is exponential in n. However,
Angluin [8] highlights that a DFA can be inferred in polynomial time if the set of traces provides a
representative image of the language.

Dupont et al. [17] picked up on the idea of decreasing the number of queries to a size which can
be described by a polynomial function. This approach is based on a state-merging technique to infer
a language. State-merging is a passive automaton learning alternative to the L* algorithm. Lang et
al. [33] describe the basic principle of state-merging techniques, which is to fold up equal nodes of
a tree until no more folding is possible. The tree is an acceptor for a set of strings of the language
that is learned. The completely folded tree represents the final hypothesis model. Dupont et al. [17]
extend this basic state-merging approach by considering membership queries which are answered by
an end-user. In contrast, Walkinshaw et al. [53] hold the view that questioning a human might not be
sufficient, since we cannot assure that humans have a comprehensive knowledge about the SUT. As a
consequence, Walkinshaw et al. [53] proposed a fully automatic iterative refinement approach to learn
a Labeled Transition System (LTS) of the SUT which uses model-based testing to generate execution
traces. The learning of the LTS is done via state-merging.

Figure 2.1 shows the basic process of the Walkinshaw et al. [53] iterative refinement approach. First,
the algorithm starts with the initial inference of a hypothesis based on a provided set of execution traces.
We denote an execution trace in an LTS as test. After the creation of an initial hypothesis, the algorithm
generates a set of tests. These tests are only generated if counterexamples are found that show that the
learned LTS is different from the SUT. If counterexamples exist, the algorithm checks if the current test
fails. A test case fails if the execution trace cannot be reconstructed in the learned LTS, otherwise the
test passes. A failing test leads to a refinement of the LTS. Independent of whether a new LTS is inferred
or not, a new set of tests is generated. The algorithm terminates in the case that no counterexamples are
found and returns the iteratively refined LTS.

The novelty of this approach from Walkinshaw et al. [53] is that they use model-based testing to
refine the hypothesis model. In model-based testing [44], tests are retrieved from a behavioral model
and used to check the behavior of the SUT. However, models are created on a more abstract domain
than the SUT. Therefore, the abstract tests, which are retrieved from the model, have to be translated
to the domain of the SUT. These translated test can then be executed on the SUT. Walkinshaw et al.
use this approach to retrieve tests form the LTS and run these tests against the SUT. In this approach of
Walkinshaw et al. the LTS represents the behavioral model, but the retrieved tests are not used to reveal
a wrong behavior of the SUT. Instead, a failing test shows that the assumed model is wrong and should
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be refined according to the failing test. Consequently, model-based testing, which is based on heuristics,
provides a possibility to generate membership queries similar to Angluin’s L* algorithm.

2.3 Timed Automata

In many systems time is a critical component. Considering time in the model of a system may provide
new opportunities to perform checks based on issues due to wrong timings. To represent time, we require
an approach to model a timed system. One solution for the representation of timed systems is proposed
by Alur and Dill [7]. They introduce Timed Automata (TAs) which are finite state machines equipped
with real-valued variables. The finite state machines consist of locations which are connected with edges.
The edges are labeled with input and output actions, and guards. Guards restrict which edges can be used.
The real-valued variables store time values which represent real-time clocks. When in a location time
elapses all variables increase simultaneously. Clock variables are used to build guards for edges. These
guards provide a possibility to restrict the behavior of a finite state machine by considering the clock
values.

Since this thesis builds upon on the work of Tappler et al. [47], this section uses equal definitions
and assumptions on TAs. Let C be a finite set of clocks where the time domain is a set of non-negative
real numbers R≥0. The set of clock constraints, which are called guards, is denoted as G(C) over C. A
guard g of the set G(C) labels an edge of the TA and shall be written as conjunction

∧
c⊕ k, with c ∈ C,

⊕ ∈ {<,≤,≥, >}, k ∈ N. Note that guard conjunctions may be empty. Therefore, we denote non
existing constraints by >, which means that these guards are always satisfied.

In addition, edges are labeled with actions. We denote Σ as the set of actions. Furthermore, we
distinguish between the set of input actions ΣI and output actions ΣO. Former are equipped with a
questions mark “?” at the end, whereas outputs are suffixed by an exclamation mark “!”. A TA over
(C,Σ) is a triple 〈L, l0, E〉 consisting of a finite set of locations L with l0 as the initial location and a set
of edges denoted by E with E ⊆ L×Σ×G(C)× 2C ×L. Let 2C be the power set of C, i.e., 2C is the set
of all subsets of C. We denote l

g,a,r−−−→ l′ as an edge 〈l, g, a, r, l′〉 ∈ E with g ∈ G(C), a ∈ Σ and r ∈ 2C .
Here, r denotes a set of clock resets to zero.

Example 1 (Syntax of Smart Light Switch TA). Figure 2.2 shows an example of a Smart Light Switch,
which an adaption of the Touch Sensitive Switch presented by Hessel et al. [24]. In Figure 2.2 is repre-
sented as a TA. The light switch can either be pressed or released which offers two possibilities to interact
with the system, i.e., ΣI = {press?, release?}. Depending on how long the switch is pressed three dif-
ferent outputs are observable, i.e., ΣO = {touch!, starthold!, endhold!}. We can model the behavior of
the system with one clock c ∈ C. Since we have only one clock c ∈ C the power set 2C is {{}, {c}}, i.e.
we can either reset no clock or the clock c. The TA has five locations L = {l0, . . . , l4}, where l0 is the

initial location. These locations are connected via seven edges E = {l0
>,press?,{c}−−−−−−−−→ l1, . . . }.

2.3.1 Operational Semantics

We define the semantics of a TA T = 〈L, l0, E〉 over (C,Σ) by a Timed Transition System (TTS). Let
RC≥0 be the set of all clock valuations over C. A clock valuation ν ∈ RC≥0 is a mapping ν : C → R≥0
which assigns a real value to each clock. A TTS JT K = 〈Q, q0,Σ, T 〉 consists of a set of states Q =
L×RC≥0, the initial state q0, and transitions T with T ⊆ Q× (Σ ∪R≥0)×Q. A state q ∈ Q is denoted
as the pair (l, ν) with the location l and the clock valuation ν. We define 0C as the assignment of 0 to
every clock. The initial state q0 is (l0,0C). The evolution of time is denoted by increasing the valuation
ν by a delay d ∈ R≥0. Therefore, we increase the valuation ν for every clock c ∈ C by the delay d which
we denote as (ν+ d)(c) = ν(c) + d. Furthermore, let r be a subset of C, we denote resets by ν[r], where
every c ∈ r, ν[r](c) = 0 and for every c ∈ C \ r, ν[r](c) = ν(c).
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l0

l1 l3

l2

l4

>
press?
{c}

c < 5
release?
{}

c ≥ 5
release?

{}

>
touch!
{}

c ≥ 10
starthold !
{} >

release?
{}

>
endhold !
{}

Figure 2.2: This TA is a representation of the Smart Light Switch, which is an adaption of the
Touch Sensitive Switch presented by Hessel et al. [24].

We shall write ν |= g if the clock valuation ν satisfies the guard g ∈ G(C). A TTS distinguishes
between two types of transitions: timed and discrete transitions. The former, on the one hand, are
transitions where a delay is added but the location l stays unchanged. We denote such a transition by
(l, ν)

d−→ (l, ν+d) with the delay d ∈ R≥0. Discrete transitions, on the other hand, may lead to a location
change and always follow an edge l

g,a,r−−−→ l′. Formally, we denote such a transition as (l, ν)
a−→ (l′, ν[r])

for an edge l
g,a,r−−−→ l′ such that ν |= g.

2.3.2 Timed Traces

We interact with a TA by executing inputs. In timed systems, however, we also have to consider the point
in time when the input was executed. We denote the sequence of inputs that are executed at specific points
in time as test sequence. Formally, let a test sequence ts be an ascendingly ordered sequence of time
stamps tj and inputs ij , i.e., ts = t1 ·i1 · · · tn ·in ∈ (R≥0×ΣI)∗ with ∀j ∈ {1, . . . , n−1} : tj ≤ tj+1. If
ts is applied to a TA, the system may produce outputs. This sequence of inputs and outputs at a specific
time is denoted as timed trace tt ∈ (R≥0 × Σ)∗. Like ts, the timed trace tt = t1 · a1 · · · tn · an, with
tj ∈ R≥0 and aj ∈ Σ, is sorted in ascending order with respect to the timestamp. We can extend a timed
trace tt by adding a time stamp t ∈ R≥0 and the corresponding action a ∈ Σ to the timed trace. We
denote this concatenation of a timed trace tt, a time stamp t ∈ R≥0 and an action a ∈ Σ by tt · t · a.
The size of a timed trace tt = t0 · a0 · · · tn−1 · an−1 is n elements, where one element is a pair of a time
stamp ti ∈ R≥0 and an action ai ∈ Σ, with i ∈ [0, n). We denote the size of a timed trace by |tt| = n.

Aichernig et al. [3] denote a run of a TTS JT K = 〈Q, q0,Σ, T 〉 as a sequence of delay transitions and
discrete transitions in form of

(l0, ν0)
d0−→ (l0, ν0 + d0)

a0−→ (l1, ν1)
d1−→ (l1, ν1 + d1)

a1−→ (l2, ν2)
d2−→ · · ·

.

Here, the sequence of delays di ∈ R≥0 and actions ai ∈ Σ can be transformed to a timed trace
tt = t1 · a1 · · · ti · ai · · · tn · an with all previous delays d1 · · · dj summed up to the time stamp ti ∈ R≥0.

Example 2 (Timed Trace of Smart Light Switch TA). We can informally describe the semantics of
Figure 2.2 in the following way: If we are in the initial location l0 and press the switch, we go to the
location l1. By executing this action we reset the clock c to zero. The switch now offers three different
scenarios. The first scenario is that the switch is released before the time evolves more than five time
units. In this case we return to the initial location l0. The second scenario occurs if we hold the switch for
at least ten time units. After ten time units the system outputs starthold! and immediately after a release
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of the switch an endhold! output is observable and we return to l0. The last scenario only occurs if the
switch is held between five and ten time units. A release in this time frame leads to a touch! output and,
as in every other scenario, we return to the initial location l0. The following sequence shows a possible
run of the TTS:

(l0, {c 7→ 0.0}) 10.8−−→ (l0, {c 7→ 10.8}) press?−−−−→ (l1, {c 7→ 0.0}) 7.6−−→ (l1, {c 7→ 7.6}) release?−−−−−→

(l4, {c 7→ 7.6}) 0.0−−→ (l4, {c 7→ 7.6}) touch!−−−−→ · · ·

2.3.3 Assumptions on Timed Systems

In the previous Section 2.3.2 we describes the application of test sequences to timed systems in order to
generate timed traces. However, to ensure a proper testability of timed systems certain properties must
hold true. Therefore, we make some assumptions on timed systems. The assumptions we make are
based on those originally proposed by Springintveld et al. [46] and similar to those adapted by Hessel et
al. [24] and Tappler et al. [47]. The following properties are based on the semantics of a TA and must
hold ∀q, q′ ∈ Q, ∀a ∈ Σ, ∀i ∈ ΣI , and ∀o, o′ ∈ ΣO:

Determinism. A TA is deterministic iff q a−→ q′, q a−→ q′′ then q′ = q′′.

Input Enabling. A TA is input enabled if it is possible to execute every input action in every state,
formally, iff there ∃q′ : q i−→ q′.

Output Urgency. Output urgency exists if an output action emerges without delay, i.e. iff ∃q′ : q
o−→ q′

and @q′′ : q d−→ q′′ with d ∈ R≥0.

Isolated Outputs. An isolated output exists if an output action is enabled. Then, no other output actions

in the same state are possible. Formally, if ∃ q′, q′′ : q o−→ q′ and q o′−→ q′′ then o = o′.

The aim is to test the conformance of the SUT with the hypothesis. Hessel et al. [24] suggest that
these assumptions improve the testability of the SUT as well as the conformance checking for the gen-
erated hypothesis. For example, according to Tappler et al. [47], input enabledness extends the range of
acceptable test sequences, since in every state q = (l, ν) every input action is possible. To provide a clear
representation of TAs, we do not depict any edges of input-self-loops in figures of TAs. For example,
in Figure 2.2 it is possible to perform an input-self-loop by performing the input release? in location l0.
However, we do not depict such edges, since we want to avoid overloaded figures.

Furthermore, in timed systems, we may observe locations where the length of the stay is limited by
a certain amount of time. Other definitions of TAs, see Section 2.3.4, consider invariants for locations.
These invariants act like guards for locations and can, therefore, limit the sojourn time in a location, e.g.
they may specify that a clock variable must not exceed five time units at a location. Output urgency
can either be modeled by invariants or deadlines. Deadlines define a point in time where an action must
happen, i.e. no further time progress is possible. According to Bornot et al. [12], deadlines provide a
possibility to enable edges of a TA by stopping the progress of time. Like in our work, they use edges
that are labeled with actions, guards and clock resets, but their labels of the edges also contain deadlines.
In this thesis, we assume that output actions are eager. Thus the guard represents the corresponding
deadline. This means that an output is triggered as soon as the guard of an edge is satisfied.

Example 3 (Urgent Outputs). The TA in Figure 2.2 outputs starthold! in location l1 as soon as the clock
variable has evolved by at least ten time units. The output endhold! occurs immediately after entering
the location l3. The same behavior is observable with the output touch! in location l4. In both cases we
immediately enter the location l0 afterwards.
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2.3.4 UPPAAL

The concept of equipping systems with clocks offers new possibilities to test and verify real-time sys-
tems. Larsen et al. developed UPPAAL 1 [35] which is a collection of tools for processing TAs. The
name UPPAAL is a composition of the first three letters of the two involved Universities in Uppsala,
Sweden and Aalborg, Denmark. The toolbox of UPPAAL provides components to model and analyze
real-time systems. One of the major benefits that UPPAAL provides is easy usage, e.g., modeling can
either be done via a textual or graphical interface. The analysis part includes a simulation of traces and a
model-checker. While simulation helps to visualize traces and the behavior of the systems, the provided
model-checking tool examines properties like the reachability in a system. [35]

2.4 Conformance Testing

In conformance testing we assess whether an implementation conforms to a specification. Hence, we
compare two components: the specification and the implementation.

The aim of the specification is to define the expected behavior of a system. Different methods have
been proposed to specify the behavior of a system. According to Alur [6], one promising technique is
the creation of an automaton model. In many systems time is a crucial component and some behavioral
characteristics of the system can be missed if the model does reflect time constraints. Hence, TAs are one
possibility to specify a system. In the remainder of this thesis we assume that we can specify systems by
TAs.

The implementation is the realization of a system. For example, an implementation can be pieces of
hardware or the code of a software. To interact with an implementation we require an interface, where
we can execute inputs and observe outputs. Through this interface we can test the implementation and
check whether the behavior of the implementation conforms to the specification.

One challenge in conformance testing is that the specification is well defined by a modeling language
whereas the form of the implementation rarely has constraints. To compare the implementation and the
specification, we make the assumption that the implementation can be represented by a TA.Tretmans [48]
provides an overview of model-based testing with respect to implementation relations imp ⊆MOD ×
SPEC, where MOD is the set of all implementation models and SPEC the set of valid expressions
in the modeling language. This relation is satisfied if the implementation I ∈ MOD conforms to the
specification S ∈ SPEC, which is then denoted as I imp S.

The crucial question in conformance testing is how to check whether the implementation conforms
to the specification. Intuitively, the conformance relation is satisfied if two systems behave equally. To
check if a behavior is equivalent, we have to execute test sequences on I and S and check whether the
observed timed traces are equal. Let Traces(q) be a function that returns the timed traces of all runs
starting at the state q = (l, ν). For a TTS JT K we denote Traces(JT K) as the set of all timed traces
starting at the initial state q0 of JT K. Using this function we can define conformance as follows:

I imp S ⇐⇒ Traces(JIK) = Traces(JSK)

Using the defined conformance relation we can state when two systems are conforming. In the
literature, we find other conformance relations. Two prominent examples of conformance releations for
timed systems are the tioco [45] and the rtioco [23, 34] conformance relations. Both relations are based
on ioco conformance relation proposed by Tretmans [48]. The ioco relation is fulfilled if the outputs
produced by the implementation are a subset of the produced outputs of the specification. This means
that a conform implementation cannot produce different outputs than the specification. However, in our
approach we use a tighter conformance relation that is based on trace equivalence.

1http://www.uppaal.org/

http://www.uppaal.org/
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Conformance testing is a powerful tool to asses the quality of a software system. However, we have
to consider that this conformance check depends on a set of tests. Testing all possible cases is infeasible
for many timed systems. Consequently, the set of tests is limited and, therefore, the conformance check
is only as good as the used set of tests. The aim of this work is to improve the test generator, which
should in turn also optimize the automaton learning process. In the next section, we will introduce our
methodology of the used learning process.

2.5 Genetic Programming

Genetic Programming (GP) is a method to automatically generate a program. Therefore, GP provides
the opportunity to solve a problem without explicitly programming it. GP is a further development
of Genetic Algorithms (GAs) which were already introduced in the 1960s and 1970s [40]. The book
Adaptation in Natural and Artificial Systems by Holland [25] introduces a general framework to solve
problems with computational evolution [40]. GAs are inspired by nature and the idea of the evolutionary
process. Basically, everything relies on the groundbreaking work On the Origin of Species by Means of
Natural Selection by Charles Darwin [15] describing the evolutionary process in 1859. Darwin illustrates
the evolution of species and observes that individuals which are better suited to environmental conditions
are more likely to survive and reproduce. He introduces the well-known phrase ”Survival of the fittest”
which is the basic principle of natural selection.

Based on Darwin’s views about common descent, GAs attempt to simulate natural selection. To ap-
ply natural selection, we need a pool of individuals from which we can pick the fittest candidates. We
denote this pool of individuals as our population which is composed of candidate solutions. Given some
computational problem, we generate populations of candidate solutions and evolve them over several
generations. The target is to evolve a population until one individual is found which serves as an appro-
priate solution for the given problem. The evolution of a new generation is based on the fitness of each
individual. Like the Darwinian principle of survival and reproduction, GAs favor the fittest individuals
of each generation. The key to success is to enhance fitness by improving the properties of the individ-
uals. To improve the fitness of the whole population, the fittest individuals are selected and different
operations, e.g., reproduction, crossover or mutation are applied to them for the creation of a new set of
individuals.

Koza [31] defines four aspects that must be considered before a Genetic Algorithm (GA) can be ap-
plied. These four aspects are: Representation, Fitness Calculation, Parameters, Termination Criterion.
First, we have to determine the representation scheme for an individual of the population. The represen-
tation of an individual is a specified data structure that defines the individual. This data structure makes
it possible to distinguish the individual from other individuals and saves all relevant characteristics of the
individuals. Second, after the representation of the individuals is specified, we require criteria to rank the
individuals. Given these criteria, we can measure the fitness of an individual and are thus able to rank
them. According to Koza, the third aspect that we have to consider is that GAs comprise many different
parameters and variables, e.g. population size, number of generations, etc. These parameters and vari-
ables affect the behavior of the algorithm and have to be tuned to the currently treated problem. Finally,
we need to define a termination criterion. This criterion defines the point when we stop generating a new
population and output the fittest individual so far.

As mentioned previously, GP is an extension of GAs, where the population consists of programs.
The target of the evolutionary process is to automatically create a program for a specific problem. In
every generation the fitness of each program is determined and according to the principle of natural
selection the fittest programs are selected for further development. However, the determination of an
appropriate fitness function is a challenging task in GP and must be chosen for each investigated problem
individually. The process of creating a new generation involves the following three operations which are
applied to the individuals based on their fitness [40]:
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Figure 2.3: General procedure of GP

• Reproduction. The fittest individuals are selected and copied without modification.

• Crossover. Two individuals exchange parts of their program and create therefore new individuals.

• Mutation. A single individual is picked and some parts of this individual are modified.

Finally, the algorithm terminates if a suitable solution is found or the maximum number of genera-
tions has been reached.

2.5.1 Concepts of Design

The fundamental design of GP is usually based on the general procedure shown in Figure 2.3. Never-
theless, there exist many additional concepts to improve the problem-specific implementation. In this
section, we will discuss two remarkable concepts, namely subpopulation and migration, and elitism.

Subpopulation and Migration

Nowostawski and Poli [41] found that many methods exist to implement parallelism in GP. According
to them, one of the most popular methods is the evolution of multiple populations at the same time. This
design principle allows to develop multiple populations simultaneously. Individual populations may
develop differently which increases the explored search space for the solution. Another possibility of
this idea is to exchange promising individuals within the different populations, i.e. migrate individuals.
Hence, individuals only compete with individuals from their subpopulation and, based on a problem-
specific selection strategy, individuals are copied to another subpopulation.

Elitism

Due to the creation and modification process of GP there exist a certain risk to destroy an already good
solution. According to Mitchell [40] one way to overcome this problem is to adopt the reproduction of
the elite to the next generation. The set of the fittest individuals of the former generation, i.e. the elite, is
then part of the newly created population.
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Figure 2.4: Tappler et al. [47] proposes a GP procedure that learns based on a given set of tests.
The proposed GP procedure uses two different populations.

2.6 Genetic Programming for Timed Automata

The previous chapter showed that GP can be a promising method to automatically find solutions to
computational problems. Using GP, Tappler et al. [47] show that TAs can also be learned automatically
and propose a framework to learn TAs via GP. Figure 2.4 depicts the functioning principle of their
proposed framework, which is in principle equal to the general procedure of GP shown in Figure 2.3.
However, adaptions are made to adjust the general procedure of GP for the inference of TAs. In this
section, we discuss these adaptions.

In Section 2.5 we discussed Koza’s [31] four actions (representation scheme, fitness measurement,
parameters and variables, and termination) which should be considered in the design of an application
for GP. Using these four aspects, we can characterize the GP approach for TAs proposed by Tappler
et al. [47]. The representation scheme of an individual of the population is a TA. The fitness of a TA
is measured according to two different criteria. The first one is based on test results and the second on
characteristics of the TA itself. Intuitively, the fitness increases the more tests are passed. The used tests
are timed traces. A test passes if a test sequence of the timed trace executed on a generated TA produces
the same timed trace on the SUT, i.e., the same outputs are generated at the same time on both systems.
The function sim(G, tt) simulates the timed trace tt on the generated TA G and returns a set of timed
traces tts generated by G. The set tts contains timed traces which are prefixes of tt. The evaluation of
tts is done via a verdict function. If tts contains only one timed trace, a deterministic solution is found.
If this single element of tts is equal to tt the test passes. If tts has more than one element and one of
these elements contains the same outputs at the same time as the SUT, the function judges the test as
non-deterministic. In all other cases the test fails. We stop executing inputs from the timed trace if a
different output is generated by G. Therefore, the timed traces are equal if they have the same length.
Thus, the verdict function is denoted as follows:

VERDICT(tts) =


PASS if |tts| = 1 ∧ tt ∈ tts
NONDET if |tts| > 1 ∧ ∃tt′ ∈ tts : |tt′| = |tt|
FAIL otherwise

However, the calculation of the fitness value involves further characteristics of the generated TA G.
One of the overall goals is to find a simple solution. We denote a solution as simple if the size of G
is small. The size is defined by the number of edges of G. Let SIZE(G) be a function that returns the
number of edges of the TA G. In addition, beside characteristics of the automaton itself also properties of
the generated tts for every tt are considered. Firstly, traces in tts with more outputs are rewarded. Sec-
ondly, traces should be deterministic and therefore every deterministic step is rewarded. However, due
to the random creation of edges non-deterministic automata may be generated. To measure these prop-
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erties, two functions are defined. First, STEPS(tts) returns the number of inputs that can be performed
deterministically while simulating tts. Second, OUT(tts) returns the number of triggered outputs.

As these properties have a distinct importance they are adjusted with weights. We consider the size
of G with the weight wSIZE, the number of outputs with the weight wOUT and the number of deterministic
steps with wSTEPS. In addition we weight the verdict of the trace. Therefore, we consider three different
weights: wPASS, wFAIL and wNONDET.

The fitness value can be described by the fitness function FIT(G). This function calculates the fitness
of an automaton G for a set of timed traces tt ∈ T T , where tts = sim(G, tt). Tappler et al. then defines
the fitness function for G evaluated on set of timed traces T T as follows:

FIT(G) =
∑

tt∈T T
FIT(G, tt)− wSIZE SIZE(G) where (2.1)

FIT(G, tt) = wVERDICT(tts) + wSTEPS STEPS(tts) + wOUT OUT(tts) (2.2)

According to Koza [31] as a third step parameters and variables have to be defined. Parameters influ-
ence the behavior of the algorithm and therefore the output of the GP procedure. For example, normally a
bigger population and more generations lead to better results, but may lead to a bad performance. There-
fore, the used parameters have to be chosen carefully. There exist a number of parameters and variables
which are required to learn a TA via GP. Therefore, we provide an overview of all used parameters in
the Appendix B.

As a last step, the GP approach for TAs requires a termination criterion. There exist two criteria
for stopping a further creation of a new population. Firstly, the algorithm terminates if a suitable TA is
found. This means that a TA passes all simulations of timed traces, i.e., produces the same outputs as
the SUT for all given test sequences. Furthermore, the fitness of a suitable TA must not change over
gchange generations. This condition corresponds to the principle of creating less complicated solutions.
As previously explained, the algorithm penalizes size. As a result a TA is fitter if it passes all test with
a smaller size. Secondly, if the algorithm does not find a suitable solution after gmax generations the
algorithm terminates and outputs the fittest TA evolved so far.

Based on these four steps proposed by Koza [31] we can describe the GP procedure for TAs proposed
by Tappler et al. [47]. Figure 2.4 shows the sequence of events. The algorithm starts with generating
the initial ntest test sequences. The sequence is generated by randomly selecting inputs from ΣI. These
inputs are executed after a certain amount of time has elapsed. The amount of this delay is selected
based on a set of relevant constants of the SUT or a user-selected maximum constant. In the remainder
of this thesis we denote this set of relevant constants as hints. We generate delays either with hints or a
user-selected constant. After the generation of the ntest test sequences, these sequences are executed on
the SUT to generate ntest timed traces. These timed traces will later be compared to the traces produced
by the individuals. We refer to the traces from which we learn as training set.

Example 4. We want to learn the TA of Figure 2.2. Therefore, we randomly generate timed traces by
executing input sequences of the given alphabet after random delays. We use these timed traces as test
cases for learning the TA.

tt1 = (9.08, press?), (15.14, press?), (16.44, release?), (16.44, touch!) (2.3)

tt2 = (0.86, press?), (1.41, press?), (10.86, starthold!) (2.4)

tt3 = (10.94, press?), (11.36, release?), (13.68, press?), (23.68, starthold!) (2.5)

Independent of the test generation process, the initial population is generated. The algorithm uses
the principle of subpopulation and migration. Two populations are evolved simultaneously. On the
one hand, there exists the so-called global population which is evaluated upon all ntest traces. On the



Chapter 2. Preliminaries 13

l0

l1

>
release?

{}

>
touch!
{}

(a) First Individual

l0

l1

c > 4
release?
{}

c ≥ 3 ∧ c < 6
starthold !
{}

(b) Second Individual

l0

l1

>
press?
{c}

>
endhold !
{}

(c) Third Individual

Figure 2.5: Examples of initial population that are created via GP for the learning of the Smart
Light Switch of Example 1.

other hand, there is the local population which evolves on the base of the failing traces Tfail of the fittest
automaton from the global population. The fittest individuals of the local population get migrated to the
global population, which helps to create more diversity within the population.

For simplicity, the initial population only contains automata with two locations. Automata grow
within the process of creating a new generation via mutation and crossover operations. Edges between
the locations are generated randomly. However, the labels of the edges depend on predefined parameters.
The input ΣI and output ΣO actions, the number of clocks nclock and an approximation of the largest
clock constant are provided.

Example 5. Figure 2.5 shows a selection of the initial population. For this example, we select these
three randomly generated TAs of the GP procedure for Smart Light Switch. All initial individuals are
composed of two locations. The edges are generated randomly. The labels of the edges consist of random
guards and clock resets, with the maximum number of clocks given. The actions are randomly chosen
from the known alphabet Σ.

After the generation process, the population gets evaluated. As previously mentioned, the fitness of
a TA is based on the conformance to the initially generated timed traces and different properties of the
learned TA itself. During this evaluation process, every individual of the population is assigned a fitness
value. The higher the fitness value, the better is the learned solution. The individual with the highest
fitness value is assumed to be the best learned solution at this point of the execution and is denoted as
fittest TA. We denote the fittest TA as hypothesisH.

Example 6. We want to evaluate the initial population of Figure 2.5. The basis for the evaluation are
the randomly generated timed traces from the SUT of Example 4. If we execute the timed traces on the
individuals of the initial population we observe their corresponding set of timed traces tts which we pass
to the function VERDICT(tts). The first automaton 2.5a passes the first test in Equation (2.3), but fails
the second test in Equation (2.4) and the output of the third test in Equation (2.5) is non-deterministic.
The second 2.5b and third 2.5c automaton do not pass any of the tests from Example 4. Hence, the first
automaton 2.5a is the fittest individual of this generation and will be copied to the next generation.

After the fitness evaluation, the approach of Tappler et al. [47] checks if one of the termination criteria
is satisfied or if a new generation should be created. The development of a new generation includes the
creation of two new populations: a global and local population. Both are created with akin techniques.
However, there are differences since individuals from the local population are migrated to the global
population. The migration is done via copying and crossover between a global and a local individual.
Additionally, instead of the crossover of two individuals, mutation operations on a single individual can
be applied to change the behavior of a TA. Such behavioral changes can be, e.g., adding or splitting
locations, or splitting edges, or changing guards, or changing clock resets. Furthermore, the concept of
elitism is applied by always keeping track of the fittest TA of the previous generation, i.e., the fittest TA
of the former generation is always part of the new generation.
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The GP procedure terminates either if a solution is found which passes all timed traces and cannot
be further improved, or if the maximum number of generations is reached. In any case, the procedure
outputs the fittest TA.



3 Active Learning via Genetic Programming

In this chapter, we present an active learning algorithm for TAs. We propose a learning algorithm that
uses GP to reverse-engineer a TA from a set of timed traces. The foundation of our active learning
algorithm is the passive learning technique introduced by Tappler et al. [47]. In their work, they propose
that their passive learning technique is open for extensions, like an active refinement of TAs. Based on
this proposal, we developed an algorithm that actively learns a TA via GP. To make the passive approach
of Tappler et al. [47] active, we present a technique that uses the iterative refinement technique presented
by Walkinshaw et al. [53]. For this, our active approach learns a TA from a set of dynamically selected
timed traces.

This chapter is divided into five parts. First, we present the conformance relation. This conformance
relation is the base for our strategy to select tests. Section 3.2 discusses the basic procedure of our active
learning approach. Section 3.3 gives a brief overview of the characteristics of the initial hypothesis model
that we later iteratively update. Since the selection and generation of timed traces are significant parts of
our active approach, we take a closer look on both. In Section 3.4, we introduce the timed traces selection
for learning. Section 3.5 presents then the generation of timed traces, which is used in the timed trace
selection for learning.

3.1 Conformance Relation

Our conformance relation is based on the relation we introduced in Section 2.4. We use this conformance
relation to check whether an implementation conforms to a specification. However, this method of
conformance checking is dependent on the presence of a specification. According to many in the field
[53, 52], a specification does not always exist. For example, Volpato and Tretmans [52] claim that often
there exist no specification due to third party components. Furthermore, according to Walkinshaw [53]
in many cases there is no time to create an appropriate specification due to tight time schedules in the
development process. Nevertheless, we can use the conformance relation to asses whether a learned TA
conforms to the SUT. We denote the learned TA as our hypothesis H and the SUT as implementation
I. Furthermore, we assume that the implementation can be represented as TA. To assess whether H
conforms to I, we define a conformance relation betweenH and I in form of

H imp I ⇐⇒ Traces(JHK) = Traces(JIK) (3.1)

Moreover, according to Fiterau-Brostean et al. [18] this conformance relation also provides the pos-
sibility to assess the quality of the implementation, if we have access to a specification S. Due to the
transitivity of our conformance relation we can say that ifH imp I andH imp S then I imp S.

In more detail, H conforms to I if the sets of timed traces of JHK and JIK are equal. In Section 2.6
we introduced the function sim(G, tt), which returns the timed traces generated by G when we execute
the timed trace tt on G. We can use the function sim(G, tt) to test the equivalence between two systems.
Considering this function we can now rewrite the conformance relation for the set of timed traces T T of
JIK to

H imp I ⇐⇒ ∀tt ∈ T T : sim(H, tt) = sim(I, tt) (3.2)

However, evaluating all possible traces of a TA is impossible, since the number of traces is infinite
due to the real-valued time. Using this conformance relation for learning, we learn H based on a finite
number of timed traces T T ′. If a timed trace tt ∈ T T ′ simulated onH as well as on I produces the same

15
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timed trace on both systems, H passes tt , if the produced timed traces are different then H fails tt .
Considering this notation for testing we denote a timed trace as a test and the set of timed traces T T ′ as
our test suite. Ideally, the following equivalence holds:

H imp I ⇐⇒ ∀tt ∈ T T : H passes tt (3.3)

Nevertheless, the learning of a hypothesis based on the Conformance Relation 3.3 depends on the
quality of the test suite and is, therefore, only as good as the used tests of the test suite. According to
Tretmans [48] the quality of a test suite can be classified based on three different criteria: completeness,
soundness and exhaustiveness. Tretmans [48] denotes a test suite as complete, if it can distinguish in all
cases whether the hypothesis is conforming or non-conforming. However, this is a very strong require-
ment and in many cases impossible to achieve. A criterion that may be easier to achieve is soundness.
The test suite is sound if a correct hypothesis passes all timed traces. A hypothesis that fails at least
one timed trace is definitely incorrect. However, the soundness of the test suite does not exclude that
an incorrect hypothesis may pass all timed traces. Tretmans [48] defines soundness as the left-to-right
implication in the conformance relation 3.3, whereas the right-to-left implication is exhaustiveness. Ex-
haustiveness is given if all incorrect hypotheses are detected. This criteria is basically as difficult to
achieve as completeness. Furthermore, Tretmans [48] stresses that in testing these criteria are used for
error detection. Therefore, soundness is based on the idea to not detect any false error, whereas exhaus-
tiveness and completeness guarantee that all errors are detected.

Our target is to find timed traces that reveal that the learned TA behaves differently than the imple-
mentation. In the case of an incorrect hypothesis the Conformance Relation 3.2 is not satisfied. However,
the set of traces is infinite. As mentioned previously, we have to limit the set of traces to make the relation
applicable. The challenge is to find an appropriate test suite. Considering the properties introduced by
Tretmans [48] the minimal requirement for our test suite is soundness. However, we can also improve the
exhaustiveness of the test suite. The improvement of the test suite is based on finding failing traces that
serve as counterexamples to the correctness of the learned TA. By the generation of counterexamples to
conformance between the hypothesis and the implementation we refine the conformance relation for a
finite set of traces. Based on an improved finite set of timed traces T T ′ ( T T we define a restricted
conformance relation in form of

H impT T ′ I ⇐⇒ ∀tt ∈ T T ′ : sim(H, tt) = sim(I, tt)

The aim of this work is to improve the generation of the test suite T T ′. We want to generate a
set of timed traces that is sound and in addition also supports an efficient active learning via genetic
programming. Therefore, we try to keep the test suite small, but still sound. With a conformance test in
every iteration we want to detect further errors in the learned TA and improve the completeness of the
test suite in every iteration.

3.2 Basic Procedure

The basic procedure of our active automata learning algorithm is to iteratively learn a TA of the SUT
by adding timed traces that reveal a faulty behavior of the current model. This approach is based on the
iterative refinement technique proposed by Walkinshaw et al. [53]. To ensure that we can efficiently learn
a TA via GP, we have to make adaptions to Walkinshaw’s iterative refinement approach. In this section
we first introduce our basic procedure and stress the adaptions to Walkinshaw’s approach. Afterwards,
we introduce our algorithm that iteratively learns TAs.

Figure 3.1 models our active learning approach. The approach starts with a test suite which contains
randomly generated tests. The tests are timed traces which are randomly generated akin to the passive
learning approach proposed by Tappler et al. [47]. Based on this initial test set we learn a first model
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Figure 3.1: In recurring order, we learn a model and extend our test suite by newly generated
counterexamples. We start with a random test suite and stop learning if we find a
model with a good enough conformance.

of the SUT. We define this learned TA as our hypothesis of the SUT. After the learning of our hy-
pothesis, we test whether the hypothesis conforms to the SUT. This conformance evaluation is done
according to the conformance relation defined in Section 3.1. During this conformance test we improve
our test suite by adding generated counterexamples. These counterexamples reveal that our hypothesis
is not yet conforming to the SUT. Based on the improved test suite we learn a new hypothesis. We
continue this process until we find a hypothesis that fulfills our conformance relation, i.e. we cannot find
counterexamples.

We make two adaptions to the refinement approach of Walkinshaw et al. [53], namely restricting
the type of added tests and increasing the number of simultaneously added tests. The first adaption we
make is that we only add failing timed traces to the test suite. Since the evolution of the population is
based on the fitness of each individual, adding passing timed traces might interfere with the development
of new functionality, because the fitness increases without the implementation of new functionalities
of the SUT. We want to achieve that it pays off to implement the failing timed traces and therefore
we keep the number of traces which contain already implemented knowledge low. Additionally, we
support this objective by adding more than one failing timed trace. In genetic programming, where we
rank individuals based on their fitness value, adding a single failing timed trace might have too little
influence, especially, if the set of passing traces is large. We may force the population to improve by
significantly rewarding the implementation of the new timed traces. In this context, we define nfail as the
maximum number of failing timed traces simultaneously added in one iteration.

Algorithm 1 presents the basic procedure of our active learning approach. The procedure requires
an initial hypothesis H, the interface to the SUT I, a set of timed traces T T , the probability pinput and
the parameter reduceInput . T T may contain already generated timed traces, which are derived from
the SUT, or may be empty. We require pinput for the generation of timed traces, where pinput defines
the probability of performing a special type of input that may help to reveal yet undiscovered behavior
of the SUT. Since we assume that the hypothesis improves in every iteration, the demand to reveal
new behavior may decrease. Therefore, in Line 8 we decrease pinput in every iteration by the parameter
reduceInput . We explain pinput in more detail in Section 3.5.

We split the discussion of the algorithm in two different parts: the learning of the hypothesis and the
termination of the algorithm.

Hypothesis learning. The learning of the hypothesis is done over several iterations. In each iteration
we add nfail timed traces, until the overall maximum number of timed traces ntest is reached. We
check if the maximum number of traces has been reached in Line 4. Each trace in the set of added
timed traces reveals that the current hypothesis behaves incorrectly, i.e. the timed trace fails on the
current hypothesis. Our target is to improve the hypothesis with the detected failing timed traces,
so that these traces may not fail in the new hypothesis. In Line 5 we get these traces from the
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function GETCOUNTEREXAMPLE(H, I, pinput), which takes the currently best hypothesis H of
the SUT, the interface to the SUT I and the probability value pinput. The function returns a set
of timed traces T T ′, containing only traces that reveal that H behaves differently than the SUT.
Section 3.4 discusses the selection criteria of T T ′ in more detail. In Line 7 the newly learned
timed traces of T T ′ are then added to the already existing set of timed traces T T . Based on the
new extended set of timed traces T T we genetically program a new hypothesisH in Line 11. The
function run(T T , gmaxactive) uses GP to learn a new TA with at most gmaxactive generations based
on the approach proposed by Tappler et al. [47] with the difference that T T also contains actively
selected timed traces. One advantage of this active learning approach based on GP is that we can
reuse the population that we learned in the previous GP execution, instead of creating a whole new
population in every genetic programming run.

Termination. The procedure terminates when an appropriate representation of the SUT is found. Based
on our conformance relation introduced in Section 3.1 we assume that H models the behavior
of the SUT if we cannot find any counterexample and none of the previously created traces in
T T fails. We determine the failing traces with the function failingTT (H, T T ). This auxiliary
function tests all traces in T T and returns a subset of T T , where each trace in this subset fails on
H. We test if this termination criterion is satisfied in Lines 6 and 10. Nonetheless, the termination
criterion in Line 3 is also satisfied if the maximum number of generations gmax is reached. Let
generations() be a function that returns the number of generations that have been required to
learn a TA in the last GP run. The variable gen stores the sum over all required generations in all
genetic programming executions. In each iteration we increase in Line 12 gen by the number of
required generations until gen is larger than gmax. Regardless of whether we find a hypothesis that
conforms to the SUT or we run out of generations, the procedure returns the best TA learned so
far.

Algorithm 1 Basic Procedure
Input: Initial TAH, SUT I, timed traces T T , float pinput, float reduceInput
Output: Inferred TAH

1: function ACTIVEGENETICPROGRAMMING

2: gen ← 0
3: while gen ≤ gmax do
4: if |T T | < ntest then
5: T T ′ ← GETCOUNTEREXAMPLES(H, I, pinput)
6: if |T T ′| = 0 ∧ |failingTT (H, T T )| = 0 then returnH
7: T T ← T T ∪ T T ′
8: pinput ← pinput − reduceInput
9: else

10: if |failingTT (H, T T )| = 0 then returnH
11: H ← run(T T , gmaxactive)
12: gen ← gen + generations()

13: returnH

3.3 Initial Hypothesis

Our active learning approach requires an initial TA. This initial TA serves as our first hypothesis of
the SUT. Since we improve our hypothesis in later iterations, we can start the active learning with a less
advanced model. However, there exist different strategies to select the initial hypothesis. We have a closer
look at three different approaches: (1) the most minimal setup; (2) an already existing specification; (3)
a genetically programmed TA using the passive learning approach.
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The most minimal setup for the initial hypothesis is a TA with only one location and no edges. Based
on our assumption that a TA is input-enabled, we can generate timed traces by executing inputs. This
approach may perform badly in the first iterations, as the initial hypothesis does not generate outputs.
The reason for the bad performance is that due to the assumed input-enabledness we can only reveal
differences based on observed outputs. Thus, to reveal that the initial hypothesis is false we have to
produce sequences of inputs that trigger an output of the SUT. However, the advantage of this approach
is that this initial TA is applicable as hypothesis for every SUT. Due to our approach for the selection
of timed traces, which we introduce in Section 3.4, new knowledge about the systems is incrementally
added. Therefore, we assume that with the minimal setup, the accuracy of the hypothesis also steadily
increases.

Another possibility is to use a more sophisticated initial hypothesis. According to many in the field
[53], developers might not have time to maintain a specification after every system update due to tight
project schedules. However, we can use an outdated specification as an initial hypothesis and iteratively
improve the specification through our active learning approach. The advantage is that we do not have to
learn the entire model from scratch. However, this approach is only applicable if during the development
process a specification in form of a TA has been created.

The last approach is more specific due to the used framework of our active learning algorithm. For
this approach, we genetically program the first hypothesis akin to the passive approach proposed by
Tappler et al. [47]. Depending on the quality of the randomly generated set of timed trace, a more or less
appropriate hypothesis is learned. Like with an outdated specification, we may also iteratively improve
the passively learned TA. Another advantage is that instead of using a single TA as initial hypothesis we
can reuse the whole population of the genetic programming process. The reuse of the entire population
of the passive approach significantly increases the pool of possible solutions. In addition, we may also
add the passively generated timed traces to the set of timed traces of the active learning approach.

In general, these concepts for the initial hypothesis are not mutually exclusive. We can pick single
properties of the approaches and create a new combined approach. For our case studies, which we
discuss in Chapter 5, we rely on an initial hypothesis that is genetically programmed as explained in
the last approach. However, we keep the initial set of timed traces small so that the hypothesis steadily
grows. This strategy should avoid a complicated and computational expensive inference of the first
hypothesis. Since the inferred TA may be not highly developed, we can improve the TA incrementally in
each iteration as explained in the first approach for that we initialize T T with a set of randomly generated
timed traces. We introduce the setup for our initial hypothesis in more details in Chapter 5.

3.4 Timed Trace Selection for Learning

The objective of the timed trace selection is to choose traces that improve the learning process of the
current hypothesis of the SUT. In Section 3.1 we explained that our target is to enhance the completeness
of the test suite. Therefore, we retrieve counterexamples to the conformance between the SUT and the
hypothesis. Furthermore, we make additional adaptions to the found counterexamples which should
optimize the learning process. This section introduces the criteria for choosing timed traces and then
discusses further optimizations for the chosen traces.

Algorithm 2 presents our approach for the selection of timed traces. This algorithm uses the hypoth-
esis H of the SUT to select timed traces. The algorithm returns a set of timed traces T T ′, where each
trace in T T ′ is a counterexample to the correctness of the hypothesis H. The algorithm collects up to
nfail timed traces by performing nattempt attempts to find a counterexample via testing. In every attempt
we generate a timed trace by randomly walking through H and, afterwards, we check if the same timed
trace is observable in the SUT I. To generate traces, the algorithm requires an hypothesis H, whose
behavior is compared to the SUT I, and the probability pinput, which is used during the trace generation.
In addition, the function requires three global parameters: nfail, nattempts and pstop.
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Algorithm 2 Selection of Timed Traces
Input: TAH, SUT I ,pinput
Output: Set of Timed Traces T T ′

1: function GETCOUNTEREXAMPLES

2: T T ′ ← {}
3: for i ← 0 to nfail do
4: for j ← 0 to nattempts do
5: tth ← RANDOMWALK(H, pinput)
6: tts ← execute(I, tth)
7: length ← compareTraces(tth, tts)
8: if length 6= |tts| then
9: if containsOutput(tts) then

10: ttsub ← sub(tts, length)
11: ttsub ← execute(I, ttsub)
12: if ContainsOutput(ttsub) then
13: tts ← ttsub
14: T T ′ ← T T ′ ∪ {tts}
15: break
16: else
17: tte ← extendT imedTrace(I, tts, pstop)
18: if containsOutput(tte) then
19: T T ′ ← T T ′ ∪ {tte}
20: break

return T T ′

nfail We limit the number of selected timed traces by nfail, i.e. the size of T T ′ is at most nfail. We want to
find a sound set of traces and, with respect to our conformance relation, the set of traces should be
as complete as possible. In addition, the genetic programming of a TA should be efficient. Keeping
the set of traces small achieves efficiency since all traces must be executed in every generation on
each individual of the population. To avoid that the size of T T ′ explodes in one iteration, we set
the limit of added traces to nfail.

nattempts This constant defines how many attempts we have to find a counterexample. Searching the
whole state space of JHK is impossible since the state space is infinite due to the considered time
values. Therefore, our approach is based on heuristics, where we assume that we get an accurate
representation of the behavior of a TA with nattempts timed traces.

pstop We use the probability pstop to stop the extension of timed traces and thus pstop limits the length
of the timed trace.

In Line 2 the algorithm starts with the initialization of T T ′ to an empty set. After the initialization
we start to search for timed traces in Line 3. Since nfail defines the number of the maximal added traces,
the number of iterations in which we search for an individual counterexample is limited by nfail. The
iteration starts in Line 4. In every iteration, we have nattempts to find a trace that reveals a counterexam-
ple. Each attempt first generates a timed trace. The generation of timed traces is done in Line 5 using
the function RANDOMWALK(H, pinput). This function returns a timed trace tth which is generated by
randomly walking through H. Beside H, this function also requires pinput which defines the probability
of performing an unknown input during the random walk. We explain the procedure of this random walk
through a TA in Section 3.5 in more detail. After the generation of tth, we check if tth is also observable
in the SUT. Therefore, we simulate tth on the SUT in Line 6. The simulation of tth on the SUT I
is done via the function execute(I, tth). Since we assume that the SUT is deterministic, the function
returns one corresponding timed trace tts. After the generation of both timed traces, we compare them in



Chapter 3. Active Learning via Genetic Programming 21

Line 7 for which we use the function COMPARETRACES(tt, tt
′
). The aim of this function is to compare

two timed traces. Let tt, tt
′ ∈ (R≥0 × Σ) be the timed traces, where tt = t0 · a0, · · · , tm−1 · am−1 and

tt
′

= t
′
0 · a

′
0, · · · , t

′
n−1 · a

′
n−1. We compare each element of the timed traces until the end of the shorter

trace is reached. One element of the timed trace is a pair 〈ti, ai〉 of a time stamp ti ∈ R≥0 and an action
ai ∈ Σ with 0 < i < min(m,n). The function returns the length of tt

′
if the traces are equal, otherwise

the index i of the first found element where ti or ai is different is returned. We can formalize the function
as follows:

COMPARETRACES(tt, tt′) =

{
min{i | ∃ tiai ∈ tt, t′ia′i ∈ tt′ : ti 6= t′i ∨ ai 6= a′i} if there is such an i
|tt′| if there is no such i

In Line 7 we compare the traces tth and tts with the function COMPARETRACES(tth, tts). If
the traces tth and tts are equal, COMPARETRACES(tth, tts) returns the size of tts. We then com-
pare the return value of the function length with the actual size of tts in Line 8. By the compari-
son in Line 8 we may skip failing timed traces, where |tth| is larger than |tts| due to the definition of
COMPARETRACES(tth, tts). However, long timed traces may cause a bad performance, because we as-
sume that the learning of longer traces is more difficult. Therefore, we skip this kind of counterexamples
and try to find a shorter counterexample in another attempt.

For the case that we find a counterexample, we perform some further operations on the counterex-
ample in the Lines 9 and 20 which aim to optimize the learning of a new automaton. To perform this
optimization, we define three new external functions: containsOutput(tt), sub(tt, Integer) and
extendTimedTrace(I, tt, pstop).

containsOutput(tt) This function returns true if the provided timed trace tt contains an output action,
otherwise false is returned.

sub(tt, len) This function returns a prefix of the timed trace tt with the size of len.

extendTimedTrace(I, tt, pstop) This function extends tt. The extension is done by executing the timed
trace tt on the SUT I and afterwards performing further randomly chosen inputs until an output
is observed or we stop with the probability pstop. The generation of the extension is akin to the
passive trace generation. The function returns the extended timed trace.

First, in Line 9 we check with the function containsOutput(tts) whether tts contains at least one
output action. If an output action in tts is present, we reduce tts to the relevant part of the sequence in
Line 10. We denote the relevant part of a timed trace tts = 〈t0 · a0 · · · tn · an〉 as the shortest prefix
ttsub = 〈t0 · a0 · · · tlength · alength〉 of the trace, where the size of the prefix is the smallest length that
reveals a difference between the traces. The function sub(tts, length) returns the relevant part ttsub of
tts.

If we detect a difference in the compared traces due to a different delay or a different observed action
we discard all following actions after the detected difference. As a result, we may skip actions that
happen immediately, i.e. without a delay, after the found difference. If there are urgent outputs and
we skip them, they might not be represented in our newly learned TA and we have to perform another
conformance check on the new TA to detect the missing implementation of the urgent outputs. As a
result, we have to add another timed trace, that contains these urgent outputs. Afterwards, we have to
learn a new TA based on this timed trace including the urgent outputs. To mitigate these unnecessary
iterations, we add these possible urgent outputs from the beginning. We consider these urgent outputs by
executing the truncated trace ttsub again on the SUT in Line 11.

After the repeated execution, we check once again in Line 12 whether the truncated timed trace ttsub
contains an output. If ttsub it does, we add ttsub in Line 14 to the set of timed traces T T ′, otherwise
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tts without truncation is added. For the case that tts has no output action at the initial execution on the
SUT, we extend tts with the function extendTimedTrace(I, tts, pstop) in Line 17. After the extension
we check whether the extended timed trace tte now contains an output action and if this is the case we
add tte to T T ′ in Line 19.

Considering this selection algorithm it is possible to find a counterexample that is not added to T T ′
because it has no output action in the timed trace. According to the assumption that a TA is input-enabled,
traces without an output action may add less knowledge about the SUT than traces with at least one
output, as traces that trigger no output action are valid in various TA. Therefore, we skip traces without
any output action and start a new attempt. For the case that we find an appropriate counterexample with
an output we stop all further attempts of this iteration.

If we find a counterexample, we reset the number of attempts and start searching for a new timed
trace. In every iteration where we cannot find a counterexample, i.e. all generated timed traces from the
hypothesis show behavior equal to SUT, we do not add any timed trace and reset nattempts for the next
iteration. The algorithm terminates after nfail iterations, with nattempts attempts to find an appropriate
counterexample in each iteration.

After the termination of searching timed traces the algorithm returns the found and processed timed
traces T T ′. If we do not find any counterexamples, we return an empty set, otherwise we return up to
nfail counterexamples.

3.5 Timed Trace Generation

In the timed trace generation we want to create timed traces that represent the behavior of the SUT.
However, due to the consideration of real-valued time variables the number of possibilities to generate a
trace in a Timed Transition System (TTS) is infinite. Hence, covering the whole state space is impossible.
Since a TA has an infinite number of timed traces, our target is to generate timed traces that provide
an appropriate representation of the behavior of the SUT. According to Aichernig and Tappler [5] an
appropriate coverage, though, may also be achieved by a random walk through a hypothesis model.
In a walk through a TA we follow edges and may change locations. This generates a run through the
TA, which corresponds to a timed trace. Figure 3.2 represents our approach to perform a random walk
through the TA, where Figure 3.2a shows the general procedure and Figure 3.2b explains the selection
of actions in more detail.

In this section we will have a closer look at the different steps of the generation of timed traces.
We divide the generation process in for major steps: Initialization, Checking Enabled Outputs, Adding
Actions and Termination. We first discuss the initialization of the required components of the random
walk. Secondly, we introduce our approach to check enabled outputs. Afterwards, we explain how we
find a possible action which can be added to the timed trace. Finally, we discuss the termination criteria
for our timed trace generation approach.

3.5.1 Initialization

As depicted in Figure 3.2a before we start our random walk we initialize the used variables. Let l be
a variable that indicates the current location during the random walk. A random walk through a TA
H = 〈L, l0, E〉 over (C,Σ) always starts at the initial location l0. At the start of a random walk l is
always l0. Besides the current location we always have to keep track about the components that handle
time. To store the values of each clock in C forH, we create a clock valuation ν which is initialized with
0C . We denote the variable t ∈ R≥0 as our time variable, which stores the overall elapsed time during
the random walk. This time variable t is initialized to zero. After the initialization we start our random
walk and keep walking through the TA until our timed trace is long enough. We discuss the criteria that
define whether a timed trace is long enough in Section 3.5.4.
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3.5.2 Checking Enabled Outputs

During a random walk we have to consider that there may be edges whose selection is obligatory. Since
we assume that our TA has urgent outputs, we have to follow all edges that are labeled with an enabled
output immediately. For the case the current location has an outgoing edge with an enabled output
o ∈ ΣO, we add the output o ∈ ΣO with the current time t to our timed trace. Since we follow an edge,
we have to perform all necessary updates, that is, changing the location and performing possible clock
resets. After we performed these updates, we have to check again if we have another enabled output in
the new location. We repeat these checks and updates on enabled outputs until we find no further enabled
outputs.

During this check for enabled outputs we also have to consider that the generation process of TAs via
genetic programming may create non-deterministic TAs. One case of non-determinism that affects our
output check occurs if the TA has a location where we find several outputs that are enabled. In this case
we follow the first found edge that triggers an output and ignore the other edges with enabled outputs.
According to our timed trace selection process described in Section 3.4 this timed trace is detected as a
failing timed trace since the simulation of the timed trace reveals a non-deterministic behavior. Therefore,
we consider the random selection of one enabled output as sufficient to reveal the incorrect behavior of
the TA since we assume that the prefix of the timed trace which leads to non-deterministic behavior is
more important than the chosen output action.

Besides the problem that outputs may be non-deterministic, infinite sequences of outputs can also
cause a problem. We denote a sequence of outputs as infinite, if the occurrence of enabled outputs
does not terminate. We assume that we observe such a behavior, if we always return to a previously
entered location where an already observed output is still enabled. In this case the outputs repeat in an
infinite loop. Such behavior is usually called Zeno behavior [10]. We assume that the SUT does not
implement such behavior, as it would basically require the SUT do stop time while producing infinitely
many outputs. Since we assume that the SUT does not implement such infinite output sequences, we add
traces that reveal that the hypothesis produces prohibited infinite output sequences.

Example 7 (Infinite Output Sequence). Figure 3.3 shows three automata which may be learned based
on the TA introduced in Example 1. Each of these three automata produces a sequence of outputs, which
may not repeat more than once. However, two (Figure 3.3a and Figure 3.3b) out of these three automata
produce infinite sequences of outputs. In Figure 3.3a the output sequence tt = 0.0·touch!·0.0·touch! · · ·
is infinite as the one edge labeled with an output is always enabled. To observe the infinite output
sequence in Figure 3.3b, time has to elapse by at least four time units, but after this amount of time we
observe infinite enabled outputs. For example, one possible trace that leads to an infinite sequence is:
tt = 3.0 · press? · 3.4 · release? · 4.0 · touch! · 4.0 · starthold! · 4.0 · touch! · 4.0 · touch! · · · . The
prohibited behavior in Figure 3.3a and Figure 3.3b should be detected. However, Figure 3.3c also triggers
a sequence of outputs if the time elapses at least three time units in location l0. According to Asarin et
al. [10] this sequence, though, is not infinite since we reset the clock along the execution of outputs. To
repeat this sequence, time has to elapse. Therefore, we may observe a sequence of same outputs, e.g.
tt = 2.0 ·release? ·3.0 · touch! ·3.0 ·starthold! ·3.0 · touch! ·6.0 · touch! ·6.0 ·starthold! · · · , but we do
not define this sequence as infinite since we can perform inputs in the location l0. Therefore, Figure 3.3c
should not be detected as a TA that produces a prohibited infinite sequence of outputs.

Algorithm 3 presents our approach to detect an infinite sequence of outputs in a TA. Since we
perform this check during a random walk through the system, we have to consider the current status of
the TAH = 〈L, l0, E〉 over (C,Σ). Let l ∈ L be a location in the TA, which we reach during our random
walk. The location l is the start of our infinite output check. Furthermore, we have to consider the time
components like the overall elapsed timed t ∈ R≥0 and the valuation of each clock ν.

The algorithm starts in Line 2 and 3 with the initialization of infiniteOutputs and Lurgent. The
Boolean variable infiniteOutputs indicates whether an infinite output sequence is found or not. Lurgent

is an auxiliary multiset that saves all reached locations along a sequence of urgent outputs. In Line 4
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Figure 3.3: Examples of two infinite outputs and one with a clock reset that avoids infinite outputs

we retrieve all edges labeled with output actions EO, from the set of all outgoing edges of the current
location l. We iterate EO and check in each iteration whether any clock variable of the clock valuation
ν satisfies the guard g of the currently considered edge eO. This check is performed in Line 6. If any of
the guards of edges in EO is satisfied, we found an enabled output o.

In the case of a found output we check in Line 7 whether the sequence of outputs is infinite. If l
already exists twice in the multiset Lurgent, we assume that we found an infinite output sequence. Since
Lurgent is a multiset we can check this condition with the multiplicity of the current location l. This
condition for infinite outputs is based on the assumption that we consider a return to a previous location
with an urgent output as a valid output sequence. If the currently explored loop contains resets and
guards on the same clock, then we will not explore the location more than twice, therefore the check
is sound. However, if we have already visited the current location twice, there are no relevant clock
resets or guards along the way to the same location. Therefore, we follow an infinite path if we visit
the location more than twice. In this case we stop adding urgent outputs and set in Line 8 the Boolean
variable infiniteOutputs to >. If we have not found an infinite sequence, we add in Line 10 the urgent
output with the corresponding time t to tth.

While walking through this sequence of outputs, we always have to keep the variables updated, which
we do from Line 11 to Line 14. These updates include (1) resetting the clocks in ν if the edges are labeled
with clock resets, (2) adding the location to the set of already observed locations Lurgent, (3) changing
the current location l and (4) retrieving the new set of output edges EO. Updating EO also implements
the handling of non-determinism, because we may skip further urgent outputs of this location. Since
several urgent outputs in one location indicate non-determinism, we assume that other urgent outputs in
EO can be skipped. If we have not found an infinite sequence we continue adding urgent outputs until
no further urgent output is found.

Example 8 (Infinite vs. Finite Sequences). Figure 3.3c shows a TA that may return during a sequence of
outputs, e.g. tt = 2.0 · release? · 3.0 · touch! · 3.0 · starthold! · 3.0 · touch! · · · , to a previous visited
location with an output. In this case, the visited edges lead to a loop. However, due to the clock resets
and the guards on these edges, the sequence of enabled outputs terminates since the guard c ≥ 3 is not
satisfied anymore. Let l0 be the location where we start our check for urgent outputs. We assume that
all our clocks have the value zero at the beginning of the random walk. If the time elapses at least three
time units and we do not perform the input press? in the meantime, we have to follow the edge which
triggers the output touch!. After the performed updates we now repeat the check for urgent outputs in
location l1. The TA now triggers further enabled outputs. First starthold! in location l1 and then touch!
in l2. However, during the updates which are performed when we follow the edge from l2 to l0, we reset
the clock c. If we repeat this loop we now stop at location l0 as the guard c ≥ 3 is not satisfied anymore.
Therefore, no location is added twice to the set of locations Lurgent and no infinite output sequence is
detected. We may however observe the same sequence of outputs again and pass the same locations
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Algorithm 3 Detection of Infinite Outputs
Input: TAH = 〈L, l0, E〉 over (C,Σ), Current location l, Overall time t, Clock valuation ν

1: function INFINITEOUTPUTDETECTION

2: infiniteOutputs← ⊥
3: Lurgent ← {}
4: EO ← {e|∃l′, g, r : e = l

g,o,r−−−→ l′, o ∈ ΣO}
5: for all (l, g, o, r, l′) ∈ EO do
6: if ν |= g then
7: if Lurgent(l) = 2 then
8: infiniteOutputs← >
9: break

10: tth ← tth · t · o
11: ν ← ν[r]
12: Lurgent ← Lurgent ] {l}
13: l← l′

14: EO ← {e|∃l′, g, r : e = l
g,o,r−−−→ l′, o ∈ ΣO}

15: return infiniteOutputs

several times. For example, the timed trace tt = 2.0 · release? · 3.0 · touch! · 3.0 · starthold! · 3.0 ·
touch! ·6.0 · touch! ·6.0 ·starthold! · · · shows a walk where we perform the same loop of outputs twice.
However, the sequence is not infinite since it is possible to perform inputs in location l0.

3.5.3 Adding Actions

Unless we found an enabled output, we need a strategy to decide which kind of edges we want to follow.
Figure 3.2b depicts the control flow of selecting edges and adding the corresponding actions. Basically,
we distinguish between two different types of edges. First, since our TA is input-enabled we may perform
an implicitly enabled input action and stay in the same location. Second, we can follow an edge with par-
ticular labels, guards, and clock resets by performing the corresponding action of the edge. However, as
we perform a random walk in a TA we also have to consider the elapse of time after we performed an ac-
tion. In this section, we introduce our approach to generate delays and then we explain the methodology
of performing specific actions.

The first step in our edge selection process is to delay the system. Therefore, we have to generate a
delay. For this, we introduce two different random delay generators. The first generator is similar to the
idea proposed by Tappler et al. [47]. They use the delay generator to generate timed traces for the passive
inference of TAs and select delays based on a set of constants of the SUT. We denote this set of constants
as hints. Their random delay generator creates a delay according to two different strategies, where the
applied strategy is selected uniformly at random whenever the generator is used. The first strategy is to
select uniformly at random a delay d ∈ R≥0 from the provided set of hints of the SUT. In addition, they
may modify the selected constant with an offset. This offset is calculated based on the smallest constant
in the collection of constants of the SUT. Their second strategy chooses the delay d ∈ R≥0 from the
range [0, chintmax × 2] uniformly at random, where chintmax is the largest value of the hints.

However, in our active approach, knowledge about the relevant constants of the SUT is not required
since we assume that our approach learns these constants. This is done by using the constants from the
guards of the learned TA. This constant learning approach is explained later in this section in more detail.
In general, we propose a random delay generator which is akin to the second strategy of the generator
from Tappler et al. [47], where our generator chooses a delay d ∈ R between (0, cmax] uniformly at
random, where cmax is defined by the user. In Chapter 5 we explain which random delay generator we
use and how the results of both are different.
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Algorithm 4 Selection of Action
Input: TAH = 〈L, l0, E〉 over (C,Σ), Current location l, Overall time t, Clock valuation ν, Delay d

1: procedure PERFORMACTION

2: edge← Nil
3: if ¬probChoice(pinput) then
4: edge← PERFORMCHANGINGACTION(H, l, t, ν, d)

5: if edge = Nil then
6: PERFORMNONCHANGINGACTION(H, l, t, ν, d)

After selecting a delay, we have to decide whether we want to find an unexplored functionality of
the TA or check an already existing functionality. We denote a non-location-changing action as the
execution of an input that does not change the location l, does not reset any clock of the valuation ν and
is not restricted by a clock guard. We perform such actions to find an unexplored behavior of the TA. If
any of these conditions is violated, we describe the action as location-changing. Algorithm 4 describes
the procedure which decides if we perform a location-changing or a non-location-changing action. pinput
indicates the probability for performing a non-location-changing action. In Line 3 the procedure starts
with the check of the probability pinput. With the probability 1− pinput we perform a location-changing
action in Line 4. Algorithm 5 presents the approach to select such a location-changing action. With the
probability pinput or if we did not find a location-changing action we perform a non-location-changing
action in Line 6, which is described in Algorithm 6.

In Algorithm 5 we try to add a location-changing action. Therefore, we start again with the selection
of a delay d ∈ R≥0 with the probability ptrans. In this case we want to apply a more sophisticated
generation approach for a delay, since we want to trigger an output or satisfy a guard of an edge labeled
with an input. In Line 4 we collect all constants k ∈ Z from the guards g =

∧
c⊕k of all outgoing edges

of the current location l in a multiset K. Let selectRandom(X ) be an auxiliary function that returns an
entry in the collection X chosen uniformly at random orNil if the collection is empty. IfK is not empty,
we use the function selectRandom(K) in Line 6 to randomly choose a new delay d from a multiset of
time constants K. Using this kind of delay chooser creates the opportunity to check the already learned
constants of our hypothesis. By adding timed traces that reveal that the guard is wrong, we learn the
constant of the SUT without providing it in advance. We will discuss this topic again later in Chapter 5.

Independent from whether we generate a delay dwith the random delay generator or select a constant
from the outgoing edges as delay d, we delay all clocks in Line 7 by d. After delaying all clocks, we
check whether we triggered an output or not. Like in Section 3.5.2 we check if any output action of
outgoing edges is enabled. Therefore, we collect in Line 8 all outgoing edges of the current location l
which are labeled with an output o ∈ ΣO. Afterwards we iterate over EO and check if a guard g on an
outgoing edge l

g,o,r−−−→ l′ is satisfied. If the output is enabled, we memorize the edge and stop searching
for further edges. Similar to the handling of non-deterministic outputs in the check for infinite output
sequences, we ignore further enabled outputs since non-deterministic behavior is detected in any case
by simulating this timed trace on the hypothesis. Furthermore, due to the output urgency we have to
adjust the delay d to the minimum of time that is necessary to trigger the output. The computation of the
minimum delay is done in Line 11 by the function minDelay(g, ν), where g is a clock guard and ν the
clock valuation. If no edge with an output is found we continue searching edges labeled with an input
action. This search for an edge with a changing input action is done in the Lines 15 and 20. Since more
than one edge labeled with an input action can be satisfied, we initialize an auxiliary set EIsat , which
stores all enabled edges labeled with inputs. To check which input edges are enabled, we first retrieve
the set of all outgoing edges EI of the current location that are labeled with an input i ∈ ΣI . After
the retrieval, we iterate them and, in Line 19, add all edges with satisfied guards to the set EIsat . After
iterating all edges in EI , we randomly select one edge of EIsat . In Line 20 we again use the function
selectRandom(EIsat) to select uniformly at random an enabled input edge. However, if no edge is
enabled the function returns Nil, i.e. we find no edge. In the case that we find an enabled action, which
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Algorithm 5 Selection of Location-Changing Action
Input: TAH = 〈L, l0, E〉 over (C,Σ), Current location l, Overall time t, Clock valuation ν, Delay d

1: function PERFORMCHANGINGACTION

2: edge← Nil
3: if probChoice(ptrans) then
4: K ← {k | ∃ l′, a, r : l

g,a,r−−−→ l′, g =
∧
c⊕ k}

5: if |K| > 0 then
6: d← selectRandom(K)

7: ν ← ν + d
8: EO ← {e | ∃ l′, g, r : e = l

g,o,r−−−→ l′, o ∈ ΣO}
9: for all (l, g, o, r, l′) ∈ EO do

10: if ν |= g then
11: d← minDelay(g, ν)
12: edge← (l, g, o, r, l′)
13: break
14: if edge = Nil then
15: EI ← {e | ∃ l′, g, r : e = l

g,i,r−−→ l′, i ∈ ΣI}
16: EIsat ← {}
17: for all (l, g, i, r, l′) ∈ EI do
18: if ν |= g then
19: EIsat ← EIsat ∪ {(l, g, i, r, l′)}
20: edge← selectRandom(EIsat)

21: if edge 6= Nil then
22: ν ← ν[r]
23: t← t+ d
24: l← l′

25: tth ← tth · t · a with edge = l
g,a,r−−−→ l′

return edge
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Figure 3.4: Possible hypothesis of TA of Example 1

can be either an input or an output action, we want to execute the edge labeled with this action. To execute
the found edges, we have to update the variables of the system, i.e., resetting the clocks, increasing the
overall time t by the chosen delay d and changing the current location l to the target location of the edge.
These updates are performed from Line 22 – 24. Finally, we add the executed input or observed output
with the corresponding time to the timed trace tth.

Example 9 (Adding Changing Action). Figure 3.4 shows a learned hypothesis of the TA that we intro-
duced in Example 1. We start our random walk at the initial location l0 and want to perform a location-
changing action after a random generated delay. First, we start with the delay selection. For this example
we assume that probChoice(ptrans) is not satisfied. Therefore, we do not choose a constant of the guards,
but select the random delay d = 3.0 with our random delay generator. Since we are at the beginning of
our random walk, the overall time t = 0. As there is only one outgoing edge in the Location l0 we select

the input press? and execute the edge l0
>,press?,{c}−−−−−−−−→ l1. For this, we reset the clock valuation of c,

increase the overall time by 3.0 and change the current location to l1. Finally, we update the timed trace
to tt = 3.0 · press?. In the Location l1 there are two possible outgoing edges. Both of them have guards
with constants. We now want to use these constants {5, 9} as possible delays and choose d = 9 as our

delay. After performing this delay the output edge l1
c≥9,starthold!,{}−−−−−−−−−−→ l2 is enabled. Therefore, we have

to add this output action with the corresponding minimal delay to the timed trace after we update the
variables as previously explained. The updated timed trace is then tt = 3.0 · press? · 12.0 · starthold!.

The procedure to find a location-changing action may not always find an enabled edge. To extend
the timed trace without performing a changing action, we require a second approach to add other actions.
In this approach we add actions that show a non-location-changing behavior. Non-location-changing
actions are inputs that do not cause a location change or a clock reset, and are not restricted by any
guards. Furthermore, we assume that performing non-location-changing actions may reveal that the
learned behavior of the TA is incomplete since these inputs can trigger yet unobserved outputs. We
consider a TA as incomplete if parts of the SUT are not modeled by the TA. To check the completeness
of the inferred TA, we perform non-location-changing actions with the probability pinput.

The Algorithm 6 describes our approach to select this type of actions. We start the actual selection
procedure of a non-location-changing action in Line 2. The procedure to find a non-location-changing
action is done in a loop. We stop searching a non-changing action either in the case that we find a
corresponding input action or with the probability pstop. In Line 3 we delay the systems by the previously
generated delay. This delay is always randomly selected by a random delay generator. Since performing
a delay may cause an output, we have to check if any output is enabled. For this, we initialize in Line 4
the Boolean variable outputSatisfied, which is > if there exists an enabled output. To find an enabled
output, we iterate all outgoing edges, which are labeled with an output action, EO and check if at least
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one guard is satisfied. In the case that we find an enabled output, the chosen delay is not qualified to
perform a non-changing action since we assume that outputs are urgent.

If none of the guards of the edges in EO are satisfied, we have to perform the same check for the
edges labeled with an input action. We start this check for enabled inputs in Line 11 with the assignment
of all possible input actions ΣI to an auxiliary set ΣIapply which stores all inputs that do not cause a
changing action at the end of the check. Since we can decide which input we want to perform, we
remove all inputs that cause a location-changing action from the set ΣIapply . To remove the changing
input actions, we iterate in Line 13 over the set EI which contains all outgoing edges of the current
location l that are labeled with an input action. In the case that the clock valuation ν satisfies a guard g
of an edge that is labeled with an input action, we remove the corresponding input action from the set of
applicable non-location-changing input actions ΣIapply . After removing all enabled edges with an input
action, we check in Line 16 if there are any non-location-changing input actions remaining. We use the
function selectRandom(ΣIapply) to select an input from the set of the remaining input actions ΣIapply

uniformly at random. After increasing the time t by the delay d, we add the current time and the chosen
input to the timed trace tth. If we can add a non-location-changing input action to the timed trace, we
stop searching for further actions. The search for a non-location-changing input action continues either
in the case that we trigger an output or no inputs remain in the set ΣIapply . For these cases, we try to
find another input by selecting a new delay d. For this, we have to revert the previously performed delay.
In Line 21 we restore the clock valuation ν by subtracting the performed delay d. A new delay d is
generated by the function getRandomDelay(), which simply returns a new value from the random delay
generator. However, we might not find an appropriate delay to perform an non-location-changing action.
Therefore, we terminate the search for an input that causes a non-changing action with the probability
pstop.

Algorithm 6 Selection of Non-Location-Changing Action
Input: TAH = 〈L, l0, E〉 over (C,Σ), Current location l, Overall time t, Clock valuation ν, Delay d

1: procedure PERFORMNONCHANGINGACTION

2: do
3: ν ← ν + d
4: outputSatisfied ← ⊥
5: EO ← {e | ∃ l′, g, r : e = l

g,o,r−−−→ l′, o ∈ ΣO}
6: for all (l, g, o, r, l′) ∈ EO do
7: if ν |= g then
8: outputSatisfied ← >
9: break

10: if ¬outputSatisfied then
11: ΣIapply ← ΣI

12: EI ← {e | ∃ l′, g, r : e = l
g,i,r−−→ l′, i ∈ ΣI}

13: for all (l, g, i, r, l′) ∈ EI do
14: if ν |= g then
15: ΣIapply ← ΣIapply \ {i}
16: if |ΣIapply | > 0 then
17: i← selectRandom(ΣIapply)
18: t← t+ d
19: tth ← tth · t · i
20: break
21: ν ← ν − d
22: d← getRandomDelay()
23: while ¬probChoice(pstop)
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Example 10 (Adding Non-Location-Changing Action). We want to perform another random walk in
Figure 3.4. We start the random walk again at the initial Location l0, but this time we want to perform a
non-location-changing action. Since we start a new random walk we assume that the overall time t = 0
and the clock valuation ν = 0C . We assume that the randomly generated delay d = 3.0. After delaying
the clock c by three time units, we check if any output is enabled. Since Location l0 has no outgoing edges
that are labeled with output action, no output is possible. In the next step we continue with the selection of
possible inputs. The set of executable input actions of the TA is ΣI = press?, release?. The Location l0
has one outgoing edge l0

>,press?,{c}−−−−−−−−→ l1 which is labeled with an input action. Since this input is enabled
we remove the input press? from the set of possible non-changing inputs. After removing press? from
ΣIapply , the input release? remains as the only possible input that we can execute to perform a non-
changing action. Therefore, we increase the overall time t by 3.0 and add the updated time t = 3.0 and
the input release? to the timed trace tth. After the update the timed trace is tth = 3.0 · release?.

3.5.4 Termination

The generation of a timed trace terminates when the timed trace tth has the size of nlen, i.e. |tth| = nlen.
However, we may terminate earlier if we detect an infinite sequence of outputs. In this case, it is not
necessary to continue the random walk since we expect that the sequence of outputs repeats continuously.
To reveal that the currently investigated TA has an infinite output sequence, we add an additional input
to tth after the termination of the random walk. This input is randomly chosen from the set of all input
actions ΣI and performed after a random delay d ∈ R≥0. According to our assumptions about a TA,
which we explained in Section 2.3.3, this kind of input is not possible. In Section 3.4 we presented our
timed trace selection algorithm that executes the timed trace generated by the hypothesis on the SUT.
Executing this additionally added input supports the detection of wrong behavior of the hypothesis, as
the hypothesis produces an infinite sequence of outputs. The SUT does not produce such a sequence,
therefore the observed timed trace is different. After this input is added we return the timed trace even
though it is shorter than nlen.

One problem that arises due to the assumption that outputs are urgent is that we may skip enabled
outputs if the timed trace has reached the size of nlen. If a trace reflects a valid behavior and also the SUT
would generate an enabled output, the trace generated by the hypothesis would be classified as a failing
trace in Algorithm 2, because the output is missing. Therefore, we increase nlen if there is an enabled
output and the size of tth is already equal to nlen. However, since long timed traces may be more difficult
to learn, we extend nlen until it is at most nlenmax . As a result, the random walk ends at the latest when
the timed trace has grown to the size nlenmax . In any case the algorithm returns the timed trace tth.



4 Design and Implementation

The aim of this chapter is to give an overview of the design of the GP application and discuss the
functionalities of the Graphical User Interface (GUI). The application is an extension of the framework
of the genetic programmer for TAs presented by Tappler et al. [47]. Their framework only implements
the passive GP approach for TAs. We extended this framework by an implementation of our active GP
approach which we introduced in Chapter 3.

The original framework is based on Java. We continued the implementation of the extension with
the same programming language, which was Java version 1.8.0 151. To automatically build the tool and
manage dependencies, we used Apache Maven version 3.5.21. We developed the GUI with JavaFX 82,
which runs on the Java Runtime Enviroment for the Java version 1.8.

The implementation uses two further external libraries. In the implementation TAs are exported in
the dot format. To visualize the TAs in the GUI, we use Graphviz Java version 0.2.13. We also use the
library Apache Commons Lang version 3.54 which provides auxiliary data types like Pair, which we
use for the representation of timed traces.

This chapter is divided into two parts. First, in Section 4.1 we introduce the four modules of our
implementation. Second, in Section 4.2 we provide a brief manual for the GUI.

4.1 Modules

The implementation is composed of four modules: Util, Test Driver, Genetic Programmer and GUI.
Figure 4.1 shows all four modules, where the arrows indicate the dependencies between the modules.
For example, the Genetic Programmer module depends on two modules, which are the Util and the Test
Driver Module. In the following sections we discuss the functionality of each module.

Util Test Driver

Genetic
Programmer GUI

Figure 4.1: Our implementation of the active learning approach via GP is composed of four mod-
ules. These modules are akin to the implementation of the passive approach.

4.1.1 Util

The name Util is an abbreviation of utility. The Util module contains auxiliary functions and data struc-
tures which we require in other modules. The auxiliary functions include implementations to import and
export TAs. To import a TA our implementation requires a file in XML format. The required structure of
the XML document is chosen to be equal to the format that is generated by UPPAAL. UPPAAL is a tool

1https://maven.apache.org/
2https://openjfx.io/
3https://mvnrepository.com/artifact/guru.nidi/graphviz-java
4https://mvnrepository.com/artifact/org.apache.commons/commons-lang3
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to model and process TAs and was already discussed in Section 2.3.4. Using this import functionality,
we can use GP for timed systems that are modeled with UPPAAL. We implemented this import function-
ality to provide a convenient way to execute experiments that are based on existing TAs. However, we
do not retrieve information directly from the imported TA, but rather use an interface to interact with the
imported TA in order to learn them. Using this approach, we treat the imported TA as black-box timed
system. Beside the import funtionality, the Util module also provides a possibility to export TAs as dot
files.

Beside auxiliary functions to import and export the TAs, this module contains data structures to
represent a TA, e.g., clocks, guards, actions or edges. They are all used in the class TimedAutomaton
which is also included in this module.

4.1.2 Test Driver

The Test Driver comprises the entire functionality to generate tests and also defines the interface to
interact with the SUT. The original Test Driver module of Tappler et al. included only an entirely
random test generator for their passive approach. We extended this driver to generate tests according to
our active approach.

The Test Driver provides the interface for the black-box SUT, which is equal for every experiment.
The interface provides three methods that change the state of SUT and further two methods to retrieve
information about the SUT. We change the state of the SUT by resetting the system, delaying the system
by a time value, or executing an input action on the system. To retrieve information about the system,
we can either query the possible input actions of the SUT or we can retrieve the overall elapsed time of
the SUT.

Additionally, the Test Driver implements the timed trace generation. The implementation of the
active approach is mainly done in the class RandomTestGenerator. This class implements parts
of the timed trace selection proposed in Section 3.4 and the whole timed trace generation which we
described in Section 3.5. This class requires access to an instance of the SUT, the used Random Delay
Generator which we discussed in Section 3.5.3 and a random number generator. Using these variables,
the class implements the following seven methods:

findCounterexamples(int id, TimedAutomaton hypothesis, double pInput)
This method returns a found counterexample which reveals that the hypothesis is incorrect. In the
case that no counterexample is found the function returns NULL. This method has three parameters:
The first parameter id is used to assign a unique identifier to a possibly found counterexample.
The second paramefter hypothesis is required since the method performs a random walk on the
hypothesis. During this random walk we follow unknown inputs with a probability pInput,
which is the third parameter. The first step in this method is to perform a random walk by calling
the method performRandomWalk. This random walk generates a timed trace, which is then
executed on the SUT. After the generation of the trace of the SUT and the trace of the hypothesis,
we compare both traces. If the traces are different, a counterexample is found. In this case, the
method processes the found counterexample as described in Algorithm 2 and returns the processed
counterexample afterwards.

performRandomWalk(TimedAutomaton hypothesis, double pInput)
This method performs a random walk in the hypothesis and returns the thereby generated
timed trace. We discussed the implemented algorithm of this method in Section 3.5. The parameter
pInput states the probability to perform inputs which may find an unexplored behavior. The
maximum length of the random walk is accessible as global parameter in the class. In Section 3.5
we explained that the actual length of timed traces may differ from the maximum length. The trace
can be shorter if we detect an infinite sequence of output actions, since we stop the random walk
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after the detection. Additionally, the trace can be longer if we observe enabled outputs at the end
of the timed trace. In any case, the method returns a timed trace.

executeOnSUT(TimedTrace trace)
This method executes the provided timed trace trace on the SUT and returns the generated timed
trace by the SUT.

compareTraces(TimedTrace trace1, TimedTrace trace2)
This method compares each element of the timed traces trace1 and trace2. We formally
defined this function in Section 3.4. This method returns the length of the timed trace trace2 if
the traces are equal, otherwise the method returns the index of the first element in the timed trace
that is different.

extendTimedTrace(TimedTrace trace)
This method extends the provided timed trace trace by performing further delays and inputs on
the SUT. This either triggers an output or the extension algorithm stops with a probability pstop,
which is an accessible global parameter. This extension is equal to the test-case generation of the
passive inference approach.

getTransitionDelay(List<Edge> edges)
This method returns a list of all constants which are used in the clock guards of all edges from the
provided list edges.

selectRandomInput()
This method returns an input action of the SUT, where the action is selected uniformly at random.

Both the active and the passive approach require a delay generator to generate timed traces. There-
fore, the Test Driver comprises both Random Delay Generators which were introduced in Section 3.5.3.

4.1.3 Genetic Programmer

In the Genetic Programmer module the actual GP procedure for TAs is implemented. The module com-
prises all mutators, the test-case simulation and the fitness calculator. In addition, we find data structures
to store the required parameters for the GP procedure. The class GeneticProgrammer comprises the
entire functionality of the passive approach. We extend this module by the class
ActiveGeneticProgammer which comprises the entire active GP approach as described in Chap-
ter 3.

To execute and store the genetic programming experiments conveniently, we created an evaluation
submodule. In this submodule we can infer models of the same timed system repeatedly with different
training set sizes. To make the evaluation experiments more efficient, experiments with different sizes
are executed in parallel. After finishing an experiment, the result is exported as an XML file.

4.1.4 GUI

The GUI provides convenient usage of the GP implementation for TAs. The advantage of the tool is,
that it is able to visualize the learned timed automata and therefore gives an impression of the iterative
improvement in the evolution of the generations.

We implemented the GUI with JavaFX. Using this library, the elements of the GUI are defined in an
XML file and styled with css. We defined controller classes which manage the interactions of the user
with the interface. The class UiMain defines the main class which launches the application.

The GUI contains a fixed number of examples including predefined parameters. These examples are
defined in the class Experiment. The GUI provides the possibility to switch between these examples
and configure the parameters for the GP approach.



Chapter 4. Design and Implementation 35

Figure 4.2: GUI of the genetic programmer for TAs. This view shows all configurable settings for
the learning process of the TA.

We extended the GUI for the application of the active approach. With our extension, we can select
whether we want to infer the selected example based on the active or passive approach. Additionally, we
can configure the parameters of the active approach. After we started the active GP, we can monitor the
evolution of the hypothesis over the different iterations. The usage of the GUI is described in more detail
in Section 4.2.

4.2 GUI Manual

This manual of the GUI gives a brief overview of the functionalities of the GUI. The GUI is an appli-
cation to perform GP on TAs based on the passive and the active inference approach. Aligned with the
topic of this thesis, this manual will primarily focus on the functionalities of the active approach. How-
ever the interface of the passive approach is very similar, except for the representation of the evolution
of generations.

Figure 4.2 depicts the developed GUI. The selected view shows the interface to configure the settings
for the GP procedure. As previously mentioned the GUI contains a set of predefined examples with the
corresponding suggestions for the configuration of the GP approach. This version of the GUI provides
four examples of timed systems that can be executed. The selected example in Figure 4.2 is the Smart
Light Switch which is similar to the TA in Example 1.

The tool provides the possibility to switch between the passive and the active approach. Since the
active approach has additional parameters the interface enables the configuration of further parameters
for this mode. All configurable parameters are described in the Chapters 2 and 3. A glossary of all
parameters can also be found in Appendix B. To provide a more intuitive and user friendly GUI, we
used more descriptive names for the parameters instead of short variable names. Table 4.1 provides a
translation between the parameter naming of the GUI and the variable names used in this thesis.
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Table 4.1: Translations between the configurable parameter fields in the GUI and the variables
names used in this thesis.

GUI wording Variable
Stop Test (P) pstop

Number of Tests ntest
# Generations gmax

Population Size npop
Selection Size nsel

Stop Mutation (P) pmutinit

Max. Generations Without Improvements gchange
Simplify Frequency gsimp

Init. max. # States |L|
# Clocks nclock

Largest Constant cmax

Pass Fitness wPASS

Non.-Det. Fitness wNONDET

# Output Fitness wOUT

# Steps Fitness wSTEPS

Size Penalty Fitness wSIZE

Refinement Iterations gmax

gmaxactive

Trace Length nlen
Follow Unknown Inputs (P) pinput

Reduce Unknown Input reduceInput
Test Guard Constant ptrans

# Walks nattempts

Set Size nstart



Chapter 4. Design and Implementation 37

We start the GP procedure of the selected approach by pressing the button with the label Start Evolu-
tion. We can stop this started evolution at any time by pressing the Stop Evolution button. After starting
the evolution, we can switch to the evolution view, where we can observe the development of the infer-
ence process. Figure 4.3 shows this evolution view of an experiment with the Smart Light Switch. This
experiment is done with the active approach. On the left we can monitor the individual iterations of the
active learning approach. Each iteration outputs a hypothesis of the SUT. When we click on this hypoth-
esis, we can see all timed traces added so far including the already found counterexamples. In addition,
the GUI provides the possibility to execute timed traces on the selected hypothesis. For this, we find two
buttons in the bottom right corner: Show Path and Execute Test. The Show Path button colors the edges
which are visited during the random walk and the Execute Test button provides the possibility to execute
the selected counterexample step by step. In case of a failing timed trace the tool also shows the reason
for the non-conformance. For example, Figure 4.3 shows the execution path of a selected test case. The
path of this test case in the TA is colored in green. The red colored parts in the test case indicate the
element of the timed trace which contradicts the learned TA.

The table on the right presents a summary of the fitness data of the selected hypothesis. This summary
includes the number of traces that pass, fail or are non-deterministic. Additionally, the applications shows
information about the used set of timed traces, which includes the total number of outputs and the total
number of steps. The last entry in the table contains the fitness value of the currently selected hypothesis,
which is calculated with the fitness function of Section 2.6. Below this table we find further buttons.
Using these buttons we can also perform manual mutations on the selected TA or export the TA as
Scalable Vector Graphic (SVG). To provide an easier navigation through the iterations, the GUI provides
buttons to jump to the TA with the next best fitness value (relative to the currently selected TA) and to
the overall fittest TA. We can also activate an animation feature, where the GUI automatically jumps to
the next best inferred TA.
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Figure 4.3: This evolution view shows the individual iterations of the evolution process. In this
view we can monitor every inferred hypothesis and the found counterexamples. It is
also possible to execute the counterexamples on the TAs.



5 Case Studies

This chapter presents the evaluation of our active learning approach. We performed an evaluation in
seven different case studies. These case studies include three manually as well as four categories of
randomly created timed systems. These categories of the randomly generated systems differ in number
of locations and clocks. Each category contains ten different timed systems. Thus, in total we evaluated
43 different timed systems, where each experiment is repeated ten times. Therefore, these case studies
comprise 18 900 learned TAs. In every case study we compare the evaluation of the active approach with
the corresponding evaluation of the passive approach.

5.1 Experimental Setup

Our comparison between the active and the passive approach is based on four criteria:

Correctness. The correctness of a learned TA is based on our Conformance Relation 3.2 in Section 3.1.
According to this conformance relation we denote a learned TA as conforming to the SUT, if the
learned TA and the SUT behave equally for a set of timed traces. Let T T test be a set of timed
traces, where each trace in T T test is generated in the same way as the traces used in the passive
GP approach. We denote T T test as our test set, which is used to assess the conformance between
the learned TA and the SUT. In the following case studies the size of the test set |T T test| is 2 000.
The lengths of the trace in this test set are geometrically distributed. Shorter traces contain less
information about the system, whereas longer traces provide more data about behavioral aspects
of the SUT. The correctness states the percentage of passing traces of the test set T T test, where
100% indicates that every trace passes.

Needed Training Set Size. The needed training set size states the number of needed timed traces to
learn a TA. For the passive approach this size is predefined and the maximum training set size
is always equal to the size of the needed training set. In contrast, the active approach adds tests
until no more counterexamples are found. Therefore, in the active approach we use only as many
timed traces as required to learn a TA. However, we still define a maximum number of traces ntest,
which the active approach cannot exceed. In our evaluation we compare the needed training set
size with the maximal size. The aim of this evaluation is to assess whether the active approach is
able to correctly learn a TA with fewer traces than the passive approach.

Test Execution Time. For this evaluation criterion we measure the required time to execute all needed
timed traces on the system under test. The execution time of a single trace is the sum over all
delays of the trace. The total test execution time of a training set is the product of the average
execution time of all timed traces in the training set and the needed training set size.

Learning Runtime. This evaluation criterion states the required time to learn a TA. We define the learn-
ing runtime as the time from the start of the respective GP approach until the approach terminates
and outputs a final solution for the learned SUT. This learning time is given in minutes (min).

We evaluated 43 different timed systems. The majority of the evaluated systems are similar to those
used in the case studies of Tappler et al. [47]. We divide the timed systems into two main groups:
The first group are manually created examples of timed systems which we find in industry, whereas
the second group contains randomly generated timed systems. We evaluate three examples of industry
applications while the remaining 40 evaluated systems are randomly generated.

For all evaluated systems we know the representation as TA. We also modeled the three timed system
that we find in industry as TAs. However, we treat the TAs of the SUTs as black boxes for learning and
access them only via the interface presented in Chapter 4. The availability of the representation as TA

39



Chapter 5. Case Studies 40

provides a possibility to assess the correctness of the learned TA, since we can compare the given TA of
a SUT with the learned TA.

Hints. In Section 2.6 we introduced hints for delays of the SUT and introduced the concept of providing
hints to learn a TA via GP. Hints are used to generate more helpful delays. We assume that providing
hints improves the learning process, since the generated timed traces are more likely to have a higher
coverage of the behavior of the SUT. On the contrary, not providing hints can lead to timed traces that
skip behavioral aspects of the SUT, since the required delay to explore this behavioral aspect may not be
generated. To show the impact of hints, we evaluate two of the three industry examples once by providing
hints and once without providing hints. All other timed systems are evaluated with the provision of hints.
In the following case studies we applied two different delay generators: one using hints and one not
using hints. The first generator is the delay selection approach applied by Tappler et al. [47]. The second
one is the random delay generator introduced in Section 3.5.3 which selects delays uniformly at random
in the range (0, cmax]. This was done to evaluate whether we are able to apply GP to learn a TA without
providing hints.

Training sets. Our learning approach is always based on a set of timed traces. In Section 3.1 we
explained that our target is to find a small training set that is sound and as exhaustive as possible. We
want to determine how many timed traces are needed to correctly learn a TA, therefore we learned from
training sets of varying sizes. We learned each timed system with 21 different training set sizes. The used
sizes ntest are 50 and 100 to 2 000 with a step size of 100. According to our active learning approach,
we add timed traces, which reveal a discrepancy between the learned TA and SUT, until the maximum
number of timed traces ntest is reached. Therefore, in the case that no counterexamples are found, the
number of timed traces needed may be smaller than the maximum number of timed traces ntest. The
passive approach, however, learns TAs always based on a previously generated fixed set of timed traces
with the size of ntest.

Number of experiments. In our procedure for the GP of a TA we make decisions where the outcomes
are randomly distributed. Such decisions include, which kind of mutation should be applied or which
delay should be chosen. Hence, the steps in the GP procedure for a TA may differ in each execution,
which may influence the outcome of the learning approach or the required learning time. To mitigate a
biased evaluation, we repeated each experiment ten times.

In summary, we learn 43 different timed systems, where two of these systems are also learned without
using hints. This leads to 45 evaluations. Every evaluation is done for 21 different training set sizes. Each
experiment for one training set size is repeated ten times. Hence, the amount of automata learned using
the passive and the active approach sums up to

45× 21× 10× 2 = 18 900

experiments. Since these case studies consist of such a large number of time consuming experiments
we distributed the experiments over several resources including cloud services. These cloud services use
virtual CPUs and, therefore, the actual computational resources can hardly be determined. Using this
environment for the computation, absolute values of the learning runtime may be different when using
a different setup. However, we assume that the trend of the results is independent from the underlying
setup.

Parameters. To allow a fair comparison between the active and the passive approach, we chose a sim-
ilar configuration of the parameters for both approaches. A detailed description of the used parameters
can be found in Appendix B. For all experiments of the active and passive approach we set npop = 2000,
gmax = 2000, the initial nsel =

npop

10 , gchange = 10, pmutinit = 0.33, and gsimp = 10. In addition, the
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fitness function proposed by Tappler et al. [47] including the weighting of the individual fitness proper-
ties is equal to the one used in their case studies. For this, we set wOUT = 0.25, wSTEPS = wOUT

2 = wSIZE,
wPASS = 4wOUT

ptest
, wNONDET = PASS

2 and wFAIL = 0.

We have to consider that in the proposed configuration of Tappler et al. [47] the whole knowledge
about the SUT is provided from the beginning. This knowledge about the SUT is represented by the set of
timed traces. On the contrary, our active approach extends this knowledge base with each iteration until
the set of timed traces reaches the size ntest. Therefore, the active approach has additional parameters.
In each iteration of the active approach we set the limit of generations gmaxactive = 100. For the whole
active GP procedure we limit the number of generations to gmax = 2000. Using this configuration, the
active approach requires at most the same amount of generations as the passive approach.

Furthermore, in the active approach we incrementally increase the knowledge about the SUT. In
each iteration we add new failing timed traces and try to refine the TA taking into consideration these
newly added timed traces. Therefore, the number of failing timed traces in the active approach may
be lower than the number of failing timed traces in the first few generations of the passive approach.
Consequently, crossover and the development of a subpopulation may not be able to generate the desired
effect in the active approach, since the number of failing test cases may be too small. For this reason,
we set the crossover probability for the passive approach to pcr = 0.25 and for the active approach we
decrease it to pcr = 0.05.

Another difference between the configurations of the active and passive approach is the distribution
of the average timed trace length. In the passive approach the length is geometrically distributed and
can be adjusted with the parameter ptest. Similar to the configuration of Tappler et al. [47] we set
ptest = 0.15 for generating the initial set of traces. In our active approach we generated the timed traces
by a random walk through the inferred TA. Therefore, we define nlen = 40 = nlenmax as the maximum
length of timed traces generated by the random walk. This constant is based on the fact that in our case
studies we target moderately sized systems with approximately 10 to 30 locations. However, the average
size of actively generated timed traces is smaller, since we truncate the timed traces after the first found
difference to the timed trace generated by the SUT.

For all evaluations of the active approach we configure pinput = 0.9, reduceInput = 0.1, nattempts =
2000, and ptrans = 0.5. In each iteration we add nfail failing timed traces to the training set, which is
the base for the active GP approach. The value of nfail defines the maximum timed traces that are se-
lected for the improvement of the hypothesis in each iteration. This maximum number depends on the
maximum size of the training set ntest and the number of iterations. We want to add in each iteration
approximately the same number of timed traces, but all timed traces should be added in the first 90% of
the iterations. This restriction is based on the assumption that if we have many failing timed traces, we
still have iterations left to improve the hypothesis. We define the number of added traces nfail by

nfail =

⌈
ntest

gmax

gmaxactive
× 0.9

⌉
(5.1)

.

In the passive approach the number of needed timed traces always equals ntest, since the training set
is given.

After the configuration of all parameters, we start the setup for the GP procedure. In the passive
approach we create all ntest timed traces and an initial population. The setup for our active approach
is akin to the passive approach. For this, we start with the generation of nstart random test sequences
and execute them on the SUT to generate the corresponding timed traces. In the case studies we set
nstart = 1. We use this single timed trace to learn an initial timed automaton, which is our first hypothesis
H of the SUT. The advantage of this limited initial timed trace set is that the initial TA can be learned
via GP with little effort.
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Figure 5.1: This plot shows the form of representation which is used to represent the evaluation
criteria in the following case studies.

Presentation of data. Previously in this chapter we mentioned that we measure four different criteria.
In our case studies we depict all four criteria by the same representation scheme. Figure 5.1 shows an
example plot of the used representation scheme. Every plot depicts both the evaluation of the passive
and the active approach. These statistics are computed from results of the ten repeated runs of each
experiment. The active results are represented in red and the passive results are represented in blue,
respectively. The solid line indicates the median of the results and the surrounding area in the corre-
sponding color shows the range between the first and third quartile. The x-axis always represents the
maximum training set size ntest of the experiment and the y-axis the currently considered evaluation cri-
terion. The markers in the shape of a triangle indicate the maximum and the dots the minimum value. We
only use the triangle and the dot markers in the plots where we evaluate randomly generated TAs. Plots
that evaluate a single TA show only the median and the range between the first and the third quartile.

Additionally, the case studies of randomly generated timed systems include box plots with a corre-
sponding color scheme. These box plots may also show outliers that are depicted as dots. We denote the
interquartile range as difference between the first and third quartile. A data point is an outlier if the point
is either 1.5 times the interquartile range higher than the third or lower than the first quartile.

Improvement criteria. The goal is to compare the evaluations using our presented active learning ap-
proach with the passive learning approach proposed by Tappler et al. [47]. The results of the active
approach are an improvement over the passive approach if the following criteria are met: for the correct-
ness criterion we denote the results as better if the result is higher and for all other criteria the results are
better the lower the value. We quantify the improvement by the difference between the active and the
passive results normalized by the active result. In this chapter we make statements about the achieved
improvements of our active approach. Unless otherwise specified, the improvement is calculated from
the median of the results of the ten repeated runs of each experiment.

In the following sections case studies involving three manually created TAs, which represent ex-
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amples from the industry, and 40 randomly created TAs are presented. In Section 5.2 we discuss the
evaluation with respect to our Smart Light Switch that we already discussed in the previous chapters. In
Section 5.3, we introduce an industry example of a timed system, that shows that the alarm system of a
vehicle can be learned with GP. In Section 5.4, we discuss a part of a real-world example of a particle
counter. Finally, in Section 5.5 we present the evaluation with respect to 40 randomly generated TAs,
which we divide into four different categories based on the number of locations and number of clocks.

5.2 Smart Light Switch

The Smart Light Switch models a sensor that shows different behavior depending on how long the sensor
is touched. We introduced the Smart Light Switch in Example 1 and Figure 2.2 depicts the corresponding
TA. Since this system has only two inputs ΣI = {press?, release?} and can be modeled with five
locations, we assume that this example is the easiest to learn compared to the other evaluated examples.

We evaluate this example with two different configurations. In the first configuration, we provide
hints and a manually picked largest constant for the generation of delays. In the second configuration,
we provide an upper limit for the selection of delays instead of hints. First, we discuss the evaluation
with hints and then the results without hints.

5.2.1 Evaluation with Hints

For the evaluation of the Smart Light Switch with hints, we provide the hints 5 and 10. In addition, we set
cmax = 20. We provide the medians of all four evaluation criteria and the corresponding improvements
of these criteria for all training set sizes in Appendix C.

Figure 5.2 shows the correctness of the active and the passive approach. The active approach has
a median test set error of zero for every training set size. The passive approach also has a median
correctness of 100% for the two smallest training set sizes, 50 and 100. However, for larger training sets
the median correctness of the passive approach fluctuates between 72.1 % and 100 %. We assume that
the reason for this is that the fitness value of the population reaches a local maximum. A local maximum
is a point in the evolution of the population where the current generation has a higher fitness value than
the previous and the following generation. Performing any small mutations on the generation in a local
maximum would cause a decrease in the fitness value. A possible reason for this is that the learned TA
passes many timed traces of the training set. To pass the other failing traces, larger mutations would
have to be made, leading to a decrease of the fitness value for the next generation and, therefore, do not
pay off. As a result, no further mutations are performed and the learned TAs stay unchanged until the
maximum number of generations is reached. We assume that it is more likely to observe the occurrence
of getting stuck at a local maximum when we use larger training set sizes, since single failing traces have
less weight. The active approach apparently has no problems with local maxima. One possible reason
for this is that we add failing traces in each iteration. Therefore, the failing traces have a higher weight
and it pays off to perform further mutations.

Comparing our evaluation with the results of the Smart Light Switch proposed by Tappler et al.
[47], we assume that the correctness of the passive approach is lower due to the configuration of our
experiment. We set cmax twice as large as Tappler et al. [47] and, therefore, we produce larger delays.
We assume that the training set with a larger cmax provides a range of valid time constraints that is
too large. Thus, the complexity to learn a conforming TA is higher, especially with a large predefined
training set. In contrast, in the active approach we test the guards of our hypothesis and add timed traces
that violate the learned guards if they are wrong. Using these techniques for the active approach, we can
learn the guards of the SUT without providing an accurate largest constant.

The evaluation of the needed training set sizes of the active approach in Figure 5.3 reveals that a
correct TA can be learned with a small training set. For the active approach the median training set size
is between 17.5 and 238.5. Therefore, we can improve the median of the needed training set size by up



Chapter 5. Case Studies 44

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

65

70

75

80

85

90

95

100

Maximum Training Set Size

C
or

re
ct

ne
ss

(%
)

Correctness of the learned TA of the Smart Light Switch

Active
Passive

Figure 5.2: Correctness of the learned TA of the Smart Light Switch using hints

to 895 % with the active approach. In addition, Figure 5.4 shows akin results for the test execution time.
The improvement of the execution time when using the active approach is at least 87.2% and increases
up to 731.6%. According to these numbers the median execution time of the actively generated training
set is up to 8.3 times lower than the execution time of the passive set.

We observed the largest improvement with the active approach when evaluating the learning runtime
as shown in Figure 5.5. However, to get a correct impression of the real improvement, we have to take the
correctness evaluation in Figure 5.2 into account. The passive approach achieves a median correctness
of 100% for the training set sizes 50, 100, 600 and 1 500. We also see a drop in the execution time for the
same training set sizes. The reason for this is that the passive approach terminates after learning a correct
solution, otherwise this approach tries to find a better solution until the maximum number of generations
is reached. For all other training set sizes the passive approach runs out of generations without finding
a solution where every trace of the training set passes. Nevertheless, if we only consider the training
sets where the passive approach is able to learn conforming TAs, the active approach can also achieve
an improvement. The median required runtime to learn a correct TA of the Smart Light Switch with the
active approach is between 0.9 and 9.8 minutes. The median runtimes of the passive approach, where
the approach achieves 100% correctness, show that the passive approach requires at least 10 minutes to
learn a correct TA and can take up to 90.6 minutes.
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Figure 5.3: Needed training set size for the Smart Light Switch using hints
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Figure 5.4: Execution time of training set, which is used to learn the TA of the Smart Light Switch
using hints



Chapter 5. Case Studies 46

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

500

1,000

1,500

2,000

2,500

3,000

Maximum Training Set Size

L
ea

rn
in

g
R

un
tim

e
(m

in
)

Learning Runtime for the Smart Light Switch

Active
Passive

Figure 5.5: Learning runtime for the Smart Light Switch using hints

5.2.2 Evaluation without Hints

We evaluated the Smart Light Switch a second time, but this time we did not provide any hints. Therefore,
the delay generator only selects delays based on a largest constant, which we set to cmax = 30. All other
settings for these experiments remain unchanged compared to the experiments with hints. In Appendix C
we provide the median results of the performed evaluation.

We depict the correctness in Figure 5.6. Like in the evaluation with hints the active approach learns
the Smart Light Switch correctly for any training set size. The correctness of the passive approach, which
first grows and then decreases is more interesting. The drop of the median starts at a training set size
of 100 and stops falling at a training set size of 500. Afterwards, the median correctness of the passive
approach stays at 87.6 %. We assume that this drop is also due to a local maximum of the fitness value as
explained in the evaluation with hints. Furthermore, we observe that this example without hints is more
complex, since the median correctness of the passive approach never reaches 100%. Additionally, we
see again that in the active approach local maxima are not a problem.

Figure 5.7 shows that the active approach requires a relatively small set of timed traces to infer a
correct solution. Like in the evaluation with hints the active approach can improve the set size by up to
895%. These smaller training sets also reduce the time to execute the timed traces on the system, which
is depicted by Figure 5.8. The median execution time can be improved by 475.4% by using the active
approach.

The most significant difference between the active and the passive approach in this evaluation is the
learning runtime as shown in Figure 5.9. The active approach is able to learn a correct TA already within
1.8 minutes, whereas the passive approach requires at least 20.2 minutes. However, the passive approach
never reaches a median correctness of 100%. As explained in the evaluation with hints, the runtime
increases significantly if the GP approach cannot find a solution where all traces pass. Therefore, we
observe this significant difference between the active and the passive approach, where the improvement
of the median runtime for the active approach is at least 369.8% and increases up to 9 386.2%.
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Figure 5.6: Correctness of the learned TAs of the Smart Light Switch without using hints
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Figure 5.7: Needed training set size for the Smart Light Switch without using hints
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Figure 5.8: Execution time of training set for the Smart Light Switch without using hints
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Figure 5.9: Learning runtime of the Smart Light Switch without using hints
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In summary, the evaluations of the Smart Light Switch with hints and without hints show akin results.
In both evaluations we see that the active approach can correctly learn the timed system. Overall, the ac-
tive approach with hints performs slightly better than the active approach without hints. The provision of
hints improves the needed training set size and the test execution time. Additionally, the active approach
with hints can learn a correct TA with a median runtime between 0.9 minutes and 9.8 minutes, whereas
the active approach without hints has a median runtime between 1.8 minutes and 24.2 minutes.

5.3 Car Alarm System

The Car Alarm System (CAS) is a model from the automotive industry, which describes the behavior
of an alarm system of a car. In more detail, this system models when the car alarm should be armed as
well as the behavior in the case of an attempted access to a locked car. In the literature we find various
applications [2, 3] where this example is used for the evaluation of testing approaches.

Figure 5.10 shows the TA model of the CAS, which is modeled with one clock c. The CAS has four
different inputs ΣI = {open?, close?, lock?, unlock?}. At the beginning the car is open and unlocked.
If we close and lock the car it gets armed after two time units. In Location l4 the car is locked, closed and
armed. We can now either disable the alarm by unlocking the car or trigger the alarm by opening the car.
In the case that we unlock the car, we go back to the Location l2 where the car is closed and unlocked.
Opening the car without unlocking disables the armed state and enables the flash and the sound. We can
stop the flash and sound by unlocking the car. According to governmental regulations the sound has to
be stopped after three time units and the flash after additional 27 time units. Like the Smart Light Switch,
we evaluate the CAS according to two different settings: with hints and without hints.

5.3.1 Evaluation with Hints

In this evaluation of the CAS we provide hints and a largest constant cmax. The hints are {2, 3, 27} and
we set cmax = 33. We state the medians of the results for all training set sizes in Appendix C.

Figure 5.11 depicts the correctness of the passive and the active approach. We see that the active
approach can correctly learn the TA of the CAS from a training set containing 50 timed traces, whereas
the passive approach requires at least 200 timed traces. In summary, both approaches can correctly learn
the CAS and we cannot observe issues like getting stuck at a local maximum.

Furthermore, Figure 5.12 shows that the active approach never requires the maximum training set
size. The active approach can improve the training set size by up to 341.8%. Since we reduce the set of
executed tests significantly, the overall execution time of the timed traces also decreases for all evaluated
training set sizes except 50 as shown in Figure 5.13. The active approach can improve the execution time
of the set of timed traces by up to 190%. However, for the maximum training set size of 50 the active
approach has a longer median execution time than the passive approach since the needed training set size
of the active approach is closer to ntest than for other training set sizes.

We see a larger difference between the active and the passive approach in the required time to learn
the automaton. We depict the evaluation of the learning runtime in Figure 5.14. The active approach
requires more time to learn the CAS for the training set sizes 50 and 100. However, if we look at the
respective correctness results in Figure 5.11 of these set sizes, we see that the active approach learns
correctly, whereas the median results of the passive approach are not 100% correct. For all other training
set sizes, the median of the required learning time is below the passive approach, with an improvement
of up to 467.4%.
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Figure 5.10: TA of the CAS
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Figure 5.11: Correctness of the learned TAs of the CAS using hints
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Figure 5.12: Needed training set size for the CAS using hints
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Figure 5.13: Execution time of training set for the CAS using hints
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Figure 5.14: Learning runtime of the CAS using hints
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5.3.2 Evaluation without Hints

As in the evaluation of the Smart Light Switch, we evaluate the CAS also with a random delay generator
that selects delays without the usage of hints. We set the largest constant for the random delay generator
cmax = 33, which is equal to the evaluation with hints. In contrast to the case study of the Smart
Light Switch, the results of this evaluation are more akin to the evaluation of the CAS which uses hints.
We assume that this behavior is observable due to the characteristics of the CAS. All edges which are
restricted by a clock guard are labeled with an output action. Since we assume that outputs are performed
immediately when an output is enabled, the delay in the timed trace is equal to the guard. In the Smart
Light Switch example, we also find guards on the edges which are labeled with inputs, therefore, these
edges may induce various delays in the timed trace. Thus, we assume that guards of inputs are harder to
learn. In Appendix C we show the median values of the evaluation of the CAS.

Regarding the median correctness in Figure 5.15, we see that the active approach learns for all train-
ing set sizes a correct TA of the CAS, whereas the passive approach requires at least a training set size of
400. Furthermore, Figure 5.15 shows that the first quartile of the passive approach is for certain training
set sizes below 100 % correctness.

Figure 5.16 and Figure 5.17 show a similar picture as the evaluation of the CAS which uses hints. Us-
ing the active approach improves the median needed training set size up to 343.2%, which is equal to the
improvement of the evaluation with hints. For the test execution time, which is depicted in Figure 5.17,
we observe an akin behavior. The improvement of the overall time to execute is slightly lower compared
to the evaluation that uses hints. However, we can still improve the execution time up to 174.3%.

Completely different to the evaluation of the Smart Light Switch, we observe that the overall runtime
for learning the CAS decreases for the passive approach on the evaluation when we do not provide hints.
In the evaluation with hints we observe a maximum runtime of 290.2 minutes for the passive approach,
whereas the maximum runtime for the evaluation that uses no hints is at most 156.9 minutes. The runtime
of the active approach does not vary as much compared to the runtime with hints. In Figure 5.18 we can
see for all training set sizes that the gap between the active and the passive approach decreases. Regarding
the median learning runtime, the passive approach outperforms the active approach for the training sets
smaller than 600. However, in Figure 5.15 we observe that the passive approach can only achieve 100 %
correctness starting from a training set size of 400. Even though the gap between the passive and the
active approach decreases, the active approach achieves an improvement of up to 176.4%.
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Figure 5.15: Correctness of the learned TAs of the CAS without using hints
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Figure 5.16: Needed training set size for the CASs without using hints
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Figure 5.17: Execution time of training set for the CASs
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Figure 5.18: Learning runtime of the CASs without using hints
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5.4 Particle Counter

The third manually created example is the Particle Counter. In the literature, Aichernig et al. [1] use
this Particle Counter to evaluate a model-based mutation testing approach that uses a Unified Modeling
Language state machine. This system models parts of a device that counts particles in exhaust gas. The
Particle Counter has three different states: pause, standby and active. We can switch between the states
by performing inputs. The entry to a new state and in some cases also the exit from a state trigger an
output. Furthermore, the active state allows different tasks to be executed which we trigger by performing
different inputs. All tasks in the active state return to the previous state either by themselves after 10 time
units or by an input that enables the pause or the standby state. The initial state is the pause state.

Figure 5.19 shows the TA of the Particle Counter. In Location l0 we start with an enabled output
entering the pause state in Location l1. In Location l1 we can either switch to the standby state by
performing the input SetStandby? or perform SetPurge? which triggers a task of the active state. If
we perform SetPurge? we return to the pause state after 10 time units. In Location l7 we are in the
standby state. The standby state provides the possibility to perform three further tasks of the active state
which can be executed via the inputs {LeakageTest?, SetPurge?, ResponseCheck?}. After 10 time
units these active tasks return to Location l7 after performing the corresponding output actions. However,
in the active state we can always switch to the pause and the standby state before 10 time units pass.

For the Particle Counter we performed only one evaluation. We evaluated the Particle Counter pro-
viding hints and a largest constant cmax = 20. For this case study, only evaluation with hints is appropri-
ate, since only one hint is provided. The provided hint in this example is 10. Furthermore, like the CAS,
the Particle Counter only has clock guards on the edges labeled with outputs. Therefore, we assume that
we may learn the guards easier than for other timed systems since the guard constants are observable in
the timed trace. For this, we assume that the evaluation with hints produces akin results as the evaluation
without hints. An interesting factor is the complex structure of the Particle Counter. We assume that this
example is complex due to the fact that long traces are required to enter every location. Additionally, in
Location l7 we have several possible inputs that lead to different paths in the TA.



Chapter 5. Case Studies 57

l0

l1

l2

l3

l4

l5

l6

l7

l8l9 l10

l11

l12l13 l14

l15

>
SpauState!
{}

>
SetPurge?
{c}

>
SetStandby?
{}

>
StatusBusy!
{}

>
SpulState!
{}

>
SetStandby?
{}

>
StatusBusy!
{}

>
SetPause?
{}

c ≥ 10
SpauState!
{}

>
StbyState!
{}

>
LeakageTest?
{c}

>
SetPurge?
{c}

>
ResponseCheck?
{c}

>
setPause?
{}

>
StatusBusy!
{}

>
StatusBusy!
{}

>
StatusBusy!
{}

>
StatusBusy!
{}

>
SlecState!
{}

>
SpulState!
{}

>
SegaState!
{}

c ≥ 10
StbyState!

{}

>
SetPause?
{}

>
SetStandby?
{}

Figure 5.19: TA that models parts of the Particle Counter

The median results of the evaluation with hints are shown in Appendix C. Figure 5.20 depicts the
correctness evaluation. At a training set size of 50 we see that the active approach achieves a lower
median correctness than the passive approach. However, we also observe in Figure 5.21 that the needed
training set size of the active approach is exactly 50, without achieving correctness, which we assume
is an indicator that we need a larger training set size to correctly learn the TA. Beginning at a training
set size of 100, the median correctness of the active approach is 100%, whereas the passive approach
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Figure 5.20: Correctness of the learned Particle Counter using hints

fluctuates between 88.1% and 100%. At a training set size of 1 200 the median correctness of the passive
approach reaches a low with 88.1%. Furthermore, the values of the first quartiles show that both the
active and the passive approach cannot always learn the correct TA. The active approach has a low in
the first quartile at a training set size of 1 000, where the correctness is 91.2%. The lowest point in the
first quartile of the passive approach is at the training set size of 1 300, where only 47.4% of the test set
traces pass. Additionally, the third quartile of the passive approach for the same training set size is only
88.2%. We assume that these problems occur due to the previously mentioned complexity of the Particle
Counter.

Our assumption that the Particle Counter is harder to learn can be observed in the measurements of
the needed training set size and the test execution time. Compared to the other industry relevant examples
we need larger training sets and, therefore, also the test execution times are higher. The needed training
set sizes are depicted in Figure 5.21 and the execution times in Figure 5.22. Even though the results are
higher than in the first two examples, we still can improve the median needed training set size of the
Particle Counter by up to 122.1% and the execution time by up to 92.0%.

Although the improvements of the needed training set size and the execution time are smaller than
those of the other industry examples, the improvement of the required runtime to learn the particle
counter is as large as in the previous examples. Figure 5.23 depicts the runtime of the passive and
the active approach. The improvement of the runtime is at least 139.8% and increases up to 2001.5%.
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Figure 5.21: Needed training set size of the Particle Counter using hints
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Figure 5.22: Execution time of training set for the Particle Counter using hints
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Figure 5.23: Learning runtime of the Particle Counter without using hints

5.5 Random Timed Automata

This section presents the evaluation based on 40 randomly generated TAs. These randomly generated
TAs are similarly created as the random TAs used in the evaluation of Tappler et al. [47]. We divide these
random TAs into four categories which are based on the number of locations and the number of clocks.
Each category consists of ten different TAs. The results of each category are combined in one evaluation.
The statistics shown in the plots are computed from the median values of the individual TAs.

The configuration of the parameters is equal to the previous examples from the industry. We per-
formed every evaluation with hints and set the largest constant cmax = 20 for every randomly generated
TA.

5.5.1 Random Timed Automata with 10 Locations

In this section we present the evaluation based on random TAs that contain 10 locations and one clock.
We provide the median results for each evaluation criterion and the corresponding improvement for the
ten evaluated automata in Appendix C.

Figure 5.24 shows that the median correctness of the active approach is 100% for all training set
sizes. The passive approach is below 100% median correctness for the training set sizes 50, 100 and 200.
For all other training set sizes the passive approach can learn the TAs correctly.

Assessing the needed training set size in Figure 5.25 we see that the active approach requires at the
maximum the whole training set size. This is an indicator that at least one TA of these ten randomly
generated automata is more complex to learn than the others. This assumption is based on the fact that
the active approach always tries to find counterexamples and thus increases the training set size in each
iteration until the maximum number of training timed traces is reached. The larger the needed training
set is the harder it is to learn a TA. However, for the median and even for the third quartile, the active
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Figure 5.24: Correctness of the random TAs with 10 locations without using hints

approach is clearly below the maximum training set size. We can improve the median training set size
by up to 298.9%.

Since the active approach requires at maximum the entire available training set size and the timed
traces of the active approach are longer than the passive traces, the maximum execution time of the active
approach is also at the maximum higher than the passive approach. Figure 5.26 depicts the execution
times of the active and the passive approach. Except for the maximum value, the execution time of the
active approach is shorter than the passive approach. In addition, for all training set sizes larger than
100 the minimum test execution time of the passive approach is higher than the third quartile of the
active execution time. Comparing the median execution times of both approaches, the active approach
improves the execution time by at least 32.2% and up to 283.1%. To provide a better visualization of the
distribution of the execution times, we depict the time values for four training set sizes as box plots (see
Figure 5.27). In Figure 5.27 we see that the active approach has two outliers, which are always higher
than the third quartile of the passive approach. All other execution times are shorter than the passive
approach. Furthermore, the minimum execution times of the passive approach, which are outliers, are
also higher than most of the execution times of the active approach.

The learning runtime in Figure 5.28 reveals again that the active approach has difficulties with the
inference of at least one TA. Furthermore, the passive approach is faster for the first three training sets.
However, considering all training set sizes, the median runtime can be improved by 378.7% when using
the active approach.
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Figure 5.25: Needed training set size for the random TAs with 10 locations using hints
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Figure 5.26: Execution time of training sets for the random TA with 10 locations using hints
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Figure 5.27: Execution time of training set, which is used to learn the TA of the random TAs with
10 locations using hints
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Figure 5.28: Learning runtime of random TAs with 10 locations using hints
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5.5.2 Random Timed Automata with 15 Locations

Our next category of random TAs has 15 locations and one clock. In this category of random timed
systems we increase the complexity by adding more locations to model the timed systems.

We observe this increase in complexity already in the correctness evaluation depicted in Figure 5.29.
The passive approach never reaches a 100% median correctness. In addition, the passive approach has
a constant minimum at approximately 94% for training set sizes larger than 100. However, the median
correctness of the active approach is only below 100% for the maximum training set size of 50. For all
other training set sizes the median correctness is 100%.

Figure 5.30 depicts the needed training set sizes. As in the evaluation of random TAs with 10 loca-
tions, the active approach requires, in the worst case, for almost all training set sizes the maximum set
size. Learning a correct TA, requires a median training set size of 100. For larger training set sizes we
can decrease the set size up to 179.1% compared to the passive approach.

The evaluation of the test execution time in Figure 5.31 shows that the maximum test execution time
of the active approach fluctuates and for most training set sizes it is higher than the maximum of the
passive approach. Overall, the median execution times of the active and the passive approach are closer
to each other than in the previous examples. Additionally, we observe that the test execution times of the
active approach have a larger variation than before and also have outliers for larger training set sizes (see
Figure 5.32). For smaller training set sizes (50, 100 and 200) the median execution time of the passive
approach is smaller. The median execution time of the active approach is better starting at a training set
size of 300. We can improve the median test execution time by up to 81.2%.

Figure 5.33 shows the learning runtime for the random TAs with 15 locations. In contrast to the
evaluation of the TAs with 10 locations, the maximum runtime of the active approach is not only below
the maximum runtime of the passive approach, but also close to the runtime of the first quartile of the
passive approach for most training set sizes. In addition, the median runtime of the active approach is
below the passive approach for all training set sizes, except 100, where the passive approach is only 1.08
times faster than the active approach. In summary, we can improve the median learning runtime with the
active approach by up to 1119.5%.
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Figure 5.29: Correctness of the random TAs with 15 locations using hints
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Figure 5.30: Needed training set sizes for the random TAs with 15 locations using hints
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Figure 5.31: Execution time of training sets for the random TAs with 15 locations using hints
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Figure 5.32: Execution time of training set for the random TAs with 15 locations using hints
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Figure 5.33: Learning runtime of random TAs with 15 locations using hints

5.5.3 Random Timed Automata with 10 Locations and 2 Clocks

The random TAs in this evaluation have again 10 locations, but this time we add a second clock to the
system. All median results of this case study can be found in Appendix C.

The correctness measurement in Figure 5.34 shows that the minimum correctness of the active ap-
proach is below 100% for certain training set sizes. The median correctness of the active approach is for
the smallest training set size 99.4% and for all other training set sizes 100%. The passive approach again
achieves a lower correctness. The minimum correctness of the passive approach is for most set sizes only
slightly higher than 85%. Furthermore, the passive approach reaches 100% median correctness only four
times.

In Figure 5.35 we observe that the active approach requires for some training set sizes the entire
available training set size. For the maximum training set sizes 50 and 100 the training set size is equal to
the maximal available set size. However, the median needed set size is always below 1 000. Overall we
can improve the needed set size by up to 139.4%.

For the test execution time, which is depicted in Figure 5.36, we see an akin picture as in the evalua-
tion of random TAs with 15 locations. The maximum test execution times of both approaches are nearly
at the same level. The active approach has a higher median test execution time for the first three set
sizes. For all other set sizes the median execution time of the active approach is lower than the median
execution time of the passive approach. We can improve the median execution time by up to 89.9%.
Furthermore, Figure 5.37 depicts that the passive approach has two outliers with a higher execution time
than the other random TAs of this category. The results of the active approach show a larger variation
than in the other examples. The median execution test time of the active approach is indeed lower than
that of the passive approach, but we also see that more examples require a higher execution time.

Figure 5.38 shows the required runtime to learn a random TA with 10 locations and 2 clocks. We
observe that the median learning runtime of the active approach is higher than that of the passive approach
for the training set sizes where we require the maximum training set size. As a result, the median runtimes
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Figure 5.34: Correctness of the learned TAs of the random TAs with 10 locations and 2 clocks
without using hints

for the training set sizes 50 and 100 of the active approach are higher than the runtimes of the passive
approach. For all other training set sizes the median runtime of the active approach is below that of the
passive approach and we can improve the median runtime by up to 691.9%. In addition, we observe that
the maximum runtime of the active approach is, for almost all training set sizes, between the first and
third quartile of the passive approach.
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Figure 5.35: Needed training set sizes for the random TAs with 10 locations and 2 clocks using
hints
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Figure 5.36: Execution time of the training sets for the random TAs with 10 locations and 2 clocks
without using hints
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Figure 5.37: Execution time of training sets, which is used to learn the TA of the random TAs with
10 locations and 2 clocks using hints
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Figure 5.38: Learning runtime of random TAs with 10 locations and 2 clocks using hints
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Figure 5.39: Correctness of the learned TAs of the random TAs with 20 locations using hints

5.5.4 Random Timed Automata with 20 Locations

Our last category of random TAs has 20 locations and one clock. We state all median results of the active
and the passive approach with the corresponding improvement in Appendix C. Figure 5.39 shows that
the active approach can correctly also learn timed systems with 20 locations. Starting from a training
set size of at least 100 the active approach achieves median correctness of 100%. The passive approach
reaches a median correctness of 100% with a training set size of 2 000 only. As a result, we achieve an
improvement of the median correctness of up to 3.3% with the active approach.

Figure 5.40 shows the needed training set sizes. Comparing the needed training set sizes with the
previously discussed case studies, we observe that we need larger training set sizes to learn a TA with
more locations. Regarding the median results, we require for the maximum training set sizes 50 and 100
the entire available number of traces. For larger maximum training set sizes we can improve the median
needed training set size by up to 77.1%.

In Figure 5.41 we observe that also the median test execution times of the active and the passive
approach are closer together than in the previous examples. In addition, we see that the maximum
test execution time of the active approach is significantly higher than the maximum execution time of
the passive approach. However, Figure 5.42 shows that this maximum execution time is an outlier.
Furthermore, the active results in Figure 5.42 have a lower variation than those in the evaluation of the
random TAs with 10 locations and 2 clocks. The median execution time of the active approach is for
all training set sizes below the median execution time of the passive approach. The improvement of the
median test execution time is at least 10.2% and at the maximum at 48.1%.

Figure 5.43 depicts the results of the runtime evaluation. We see that the passive approach has a
significantly higher maximum runtime than the active approach. The maximum runtime of the active
approach is approximately in the range between the first and third quartile of the passive approach. Ad-
ditionally, most of the active maximum runtimes are below the median runtime of the passive approach.
In summary, we can improve the median runtime by at least 73.5% and up to 309.9%.
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Figure 5.40: Needed training set sizes for the random TAs with 20 locations using hints
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Figure 5.41: Execution time of training sets, which are used to learn the TA of the random TAs
with 20 locations using hints
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Figure 5.42: Execution time of training sets, which are used to learn the TA of the random TAs
with 20 locations using hints
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Figure 5.43: Learning runtime of random TAs with 20 locations using hints



6 Concluding Remarks

6.1 Related Work

In learning of software systems, we distinguish between active and passive learning approaches, accord-
ing to De la Higuera [16]. Passive approaches learn automata models based on a given set of data, like
monitored traces in log files. Active approaches, however, actively retrieve the data from the system un-
der learning by asking queries. According to Hsu et al. [26] querying a system is not always possible due
to the complex information that is required for input queries. In addition, they mention that the inquiry of
an oracle, like it is done in Angluins’ L* [9], often performs inefficiently. To overcome these problems,
Hsu et al. [26] prefers a passive approach based on monitored traces to detect security flaws in network
protocols.

According to Aichernig et al. [4] one solution for passive learning are state-merging techniques.
State-merging techniques generate from a given set of traces a prefix tree acceptor. In state-merging, we
iteratively search for compatible nodes in the generated tree, which then are merged. For this procedure
we use a given test set. Depending on the specific state-merging approach, this set of tests can contain
tests that should be accepted by the learned system, but also tests that should be rejected. The tree is
transformed to an automaton via this process of state merging. In their survey Aichernig et al. [4] remark
the RPNI [42] and ALERGIA algorithm [13] as prominent state-merging approaches.

Verwer et al. [50] proposed a passive learning algorithm based on state-merging for timed systems.
Using a given set of timed traces, their algorithm uses state-merging and state-splitting to learn TAs.
Their merging strategy is the red-blue fringe state-merging approach, where they use colored nodes to
mark locations that can be merged. Additionally, they can split transitions by splitting the time frame
where the transition is enabled. All used time values in their framework are natural numbers. For the
representation of their timed systems they use real-time automata. Real-time automata only use one
clock which they reset in every transition. Furthermore, the guards of the transitions always have a lower
and an upper bound. Since they assume that all considered time values are integers and the guards define
a lower and upper bound, the number of possible transition-splitting operations is finite. Furthermore,
the used automata are only labeled with one type of action. Therefore, inputs and outputs are not treated
differently. They evaluate their passive learning approach using randomly generated real-time automata.

Verwer et al. [51] extend their state-merging approach by an approach that learns probabilistic deter-
ministic real-time automata. First, they define probabilistic deterministic real-time automata. Therefore,
they extend deterministic real-time automata with probability distributions. One of these extensions is
that performing an action in a location has a probability. Additionally, observable time values have a
probability distribution. This distribution of observable time intervals is represented by a histogram. To
learn these probabilistic deterministic real-time automata, they propose a state-merging approach with
a likelihood-ratio test. They evaluated their approach with automata consisting of up to eight locations
and four actions, and restrict their time values to an upper bound of 100. Their evaluation shows that
their approach has problems to learn the guards and some transitions of the probabilistic deterministic
real-time automaton correctly. Improvements of this learning algorithm for probabilistic deterministic
real-time automata are proposed by Mediouni et al. [39]. Using these improvements their approach
achieves a higher correctness of the learned timed systems at the expense of learning runtime. Based on
the ALERGIA algorithm [13], Mao et al. [38] developed an approach to learn deterministic probabilistic
automata. Equal to the approach of Verwer et al. [51] they learn timed systems. In their work they learn
labeled Markov decision processes, which contain input and output actions, and also continuous-time
labeled Markov chains, which only contain outputs.

The results of passive learning approaches heavily depend on the given set of traces. Active ap-
proaches overcome this problem by actively retrieving the required information on demand. In Sec-
tion 2.2 we discussed the active learning algorithm L* proposed by Angluin [9]. In the field of learning
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and testing Angluin’s L* was the base for several further works in this area of research.

Based on Angluin’s L*, Grinchtein et al. [20] developed an algorithm to learn deterministic event-
recording automata. Event-recording automata have for every action an own clock, which states the
elapsed time since the corresponding action has been observed. Each time an action is performed the
corresponding clock is reset. The learned automaton is represented by a multi-dimensional region graph,
where the number of dimensions is equal to the number of clocks. This representation can lead to a state
space explosion and the representation may be doubly exponential larger than the minimal automaton.

To overcome the complexity of learning region graphs, Grinchtein et al. [21] proposed a new ap-
proach for the inference of timed systems. In their new approach they use timed decision trees which
are then transformed to event-recording automata. They denote a timed decision tree as a set of traces
that are merged to a tree according to the prefixes of the traces. The leafs of the tree indicate if the path
that leads to the leaf should pass or fail, i.e. be accepted or rejected. However, their proposed algorithm
has high complexity. Nevertheless, they note that their algorithm can be modified to learn timed systems
with one clock with a polynomial number of required queries. In any case, for timed systems with more
than one clock the complexity of the algorithm increases significantly.

Jonsson and Vaandrager [29] also propose an active learning approach to learn timed systems. They
also learn timed systems based on Angluin’s L* approach. However, in contrast to the previously dis-
cussed learning approaches, they represent the learned timed systems with Mealy Machines with timers.
To learn these Mealy Machines with timers, they translate timed sequences to untimed sequences. Fur-
thermore, they define an equivalence relation between timed and untimed systems. They use two MAT
frameworks, which interact with each other based on the equivalence relations between timed and un-
timed systems. They conclude that the required number of queries is polynomial in the number of states
of the learned Mealy Machine with timers. However, regarding the number of timers of the original
Mealy Machine the learned Mealy Machine is exponentially bigger.

Groz et al. [22] propose an active learning approach that learns non-resettable Mealy Machines. The
proposed algorithm only requires the set of possible input actions. Furthermore, Groz et al. [22] stress
that their approach can learn efficiently systems with hundred states.

L* requires an oracle that can check the equivalence between the hypothesis and the learned system.
In practice, the availability of such an oracle is in many cases not achievable. Consequently, Peled et
al. [43] introduced an algorithm to check the conformance between a learned automaton and a black-box
system. To perform this conformance check, they used the conformances testing strategy by Vasilevskii
and Chow [49, 14]. In literature this testing strategy is denoted as W-Method. With the W-Method we can
check if the hypothesis is equal to the learned system if the hypothesis automaton and the system have the
same input alphabet and an upper bound on the number of states of the system is known. Considering the
assumption that the system is a black-box, the maximum number of states cannot always be assumed to
be known. In addition, the complexity of the W-Method is exponential regarding the number of states of
the learned system. Furthermore, Fujiwara et al. [19] suggest an optimized W-Method, which is denoted
as partial W-Method or WP-Method. However, the W-Method as well as the WP-Method have in the
worst case exponential complexity.

Since the W-Method is computationally expensive, active learning approaches use other methods.
Aichernig and Tappler [5] show that they can learn Mealy Machines successfully by using a randomized
test generation combined with mutation and transition coverage. For the testing of real-time systems,
Schmaltz and Tretmans [45] introduced two conformance relations for timed systems based on the ioco
relation proposed by Tretmans [48]. Hessel et al. [24] present an approach to perform conformance
testing for timed systems using UPPAAL. In their appraoch they generate time-optimal tests. Time-
optimal tests take the least possible time to execute. Springintveld et al. [46] adapt the W-method to
generate a test suite for real-time systems.

Different theories exist in the literature regarding meta-heuristic learning approaches. To automati-
cally solve problems, one example for meta-heuristic learning approaches are evolutionary algorithms.
Such evolutionary algorithms include Genetic Algorithms (GAs) and Genetic Programming (GP). Lucas
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and Reynolds [37] compared in their work an evolutionary algorithm with a state-merging approach.
Both approaches learn a deterministic finite automaton (DFA). Their evaluation is based on a given
training set. Additionally, the number of states is fixed by an upper bound.

Lai et al. [32] proposes an active learning approach for deterministic finite automata (DFAs) using
GAs. Their approach iteratively improves the learned automaton. In each iteration a counterexample is
added which reveals that the learned automaton is incorrect. Their algorithm uses the W-Method for the
conformance test between learned automaton and system. To apply their approach, the set of actions and
the number of locations must be known.

Another field of application for learning approaches is software synthesis. According to Lefticaru
et al. [36] the interest on meta-heuristic approaches for model-checking increases. In their work, they
present a model-checking approach based on meta-heuristic approaches to synthesize software. John-
son [28] proposed an approach which uses evolutionary strategies. Evolutionary strategies require a
fitness function to assess the quality of the learned solutions. Johnson’s learning approach uses model
checking to measure the fitness values. this model-checking approach is then used for software synthe-
sis. Based on Johnson’s approach Lefticaru et al. [36] develop a learning approach that uses an improved
fitness function that is also based on model checking. For the application of the learning approach of
Lefticaru et al. [36] the number of states must be known. Katz and Peled [30] suggest a GP approach
to synthesize code from a formal specification. They suggest that their approach cannot only be used to
develop program code, but also to find and correct errors in applications, and for code improvements.

6.2 Summary

In this thesis we presented an active learning algorithm which learns timed systems via GP. Tappler et
al. [47] discuss a passive learning approach which also uses GP to learn timed systems. The aim of this
work was to optimize the passive learning approach by an active learning extension. For this, the set of
tests, which the GP process uses to learn the timed system, is iteratively improved.

Our active learning approach learns timed systems which are represented by a TA. Alur and Dill [7]
present a definition of TAs: TAs are finite state machines that are equipped with real-valued variables,
which store time values. Thus, these real-valued variables represent clocks. To make the learning of TAs
accessible, we use to the assumptions for TAs presented by Hessel et al. [24] and Tappler et al. [47].
Thus, we use TAs that are deterministic, input enabled and have isolated outputs.

In each iteration of the active learning approach we perform a conformance check. Hence, our
active learning approach requires a conformance relation between the SUT and the TA. Based on the
assumption that the SUT can be represented by a TA, we define a conformance relation between the SUT
and the hypothesis TA, based on trace equivalence. Trace equivalence is given if the compared systems
behave equally for all traces. For timed systems we consider timed traces, which are sequences of actions
where each action has a time stamp. However, since the number of possible traces is infinite, we limit
our conformance check to a finite set of timed traces. Tretmans [48] stresses that the goal of model-based
testing is to find a sound and exhaustive test suite. Therefore, we want to find a set of timed traces that is
sound and as exhaustive as possible. Furthermore, to improve the performance of the GP procedure, we
keep the set of required timed traces as small as possible.

The basic procedure of our active algorithm is based on the iterative refinement approach discussed
by Walkinshaw et al. [53]. In their approach they refined the inferred hypothesis until no further coun-
terexamples to the SUT could be found. Based on this idea, our active learning approach starts with
an initial hypothesis. We then select timed traces that reveal that the hypothesis is wrong. Based on
the found counterexamples, we use GP to model a new hypothesis. Afterwards, we check again if the
hypothesis conforms to the SUT. If the conformance relation is satisfied, i.e. we do not find a coun-
terexample, our approach outputs the learned hypothesis, otherwise the refinement of the hypothesis
continues.



Chapter 6. Concluding Remarks 77

For the generation of timed traces we presented a random timed trace generator, that generates traces
by randomly walking through the hypothesis. The aim of the random walk is to reflect the behavior of
the hypothesis. To check certain properties of the hypothesis, we generate traces that invoke behavioral
aspects of the hypothesis. For example, we explore new behavior by performing random inputs or check-
ing constants of the learned guards. After the generation of the trace, our active approach executes the
trace on the SUT and compares the trace of the SUT with the trace of the hypothesis. If the traces are
different, we extend our set of timed traces with the found counterexample.

For our active learning approach we developed a Java application. Additionally, we offer a GUI
which demonstrates the learning process of the active and the passive GP approach. This GUI offers a
convenient way to backtrack the single steps of the active and the passive learning approach.

Finally, we performed seven case studies on our active approach. These case studies comprise alto-
gether 18 900 learned TAs. In these case studies we compare the results of the active approach with those
of the passive approach. For the evaluation, we used three manually created systems which are examples
from the industry. We also evaluated another 40 randomly generated timed systems. We compare the
active and the passive approach based on correctness, needed training set size, test execution time and
learning runtime. The results of the case studies show that active learning of TAs via GP is a promising
technique to automatically learn timed systems correctly and efficiently.

6.3 Conclusion

The research problem of this thesis was to develop an active learning approach for Timed Automata (TAs)
via Genetic Programming (GP). The developed active approach is based on the passive GP approach
presented by Tappler et al. [47]. The main idea of an active approach is to iteratively add tests on
demand. These added tests should improve the learning process. One promising solution to turn the
passive approach into an active approach was the iterative refinement approach proposed by Walkinshaw
et al. [53]. To apply this approach, we required a method to generate tests. The challenge in this work was
to find an appropriate test generation method which leads to a correct result and also performs efficiently.
Timed systems have infinitely many states due to the time variables. Therefore, adding tests that cover
all possible states is impossible. According to Aichernig and Tappler [5] one promising solution is the
generation of tests by randomly walking through the automaton. We adapted this approach for randomly
walking through TAs. Using this method, we showed that randomized approaches are able to generate
an appropriate test set.

The goal of this thesis was to optimize the passive approach of Tappler et al. [47] with an active
learning approach. To assess if we reached this goal with our active approach, we performed an evalua-
tion based on 18 900 learned TAs. The learned TAs include three examples from the industry as well as
40 randomly generated timed systems. Our evaluation is based on timed systems with up to 20 locations
and multiple clock variables. In this evaluation we compare the results of the active approach with the
corresponding results of the passive approach. We quantified the optimization based on following four
criteria: Correctness, Training Set Size, Test Execution Time and Learning Runtime. In all four criteria
we see that the active approach achieves improvements.

We evaluated the correctness of the learned TAs to show that our approach is not only optimized
regarding time, but also learns timed systems correctly. In our case studies we see that the active approach
requires at most a median test set size of 100 to correctly learn an automaton. In contrast, the passive
approach requires more traces and additionally has the problem that too many traces create local maxima.
Local maxima lead to the problem that the learning approach does not perform further mutations, since
the fitness decreases after the application of small mutations. The active approach does not have these
problems since failing tests increase the need to perform further mutations. In addition, we see that the
passive approach has problems to correctly learn the timed system if the user-provided maximum clock
constant is selected imprecisely. The active approach does not depend on a precise largest constant and,
therefore, can correctly learn the timed system with less information.
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The active approach only adds as many tests as required to correctly learn the timed system. One
goal of our approach is to find a test set that is sound and as complete as possible. Furthermore, to make
the GP procedure efficient, we want to keep the test set as small as possible. Our evaluation shows that
we can achieve a maximum improvement of the median test size by at least 77.1% and by up to 895.0%.
This decrease of the test set size shows that the active approach requires fewer tests to learn a correct TA.
Moreover, a smaller test set size also increases the performance of the learning approach.

Due to the fact that we can decrease the training set size, less time to execute the tests on the system
is required. The maximum improvement of the median execution time is at least 48.1% and can be
improved by up to 731.6%.

Our last optimization criterion is the learning runtime. This evaluation criterion achieves the largest
improvements. The maximum improvement of the median learning runtime is at least 176.2% and
increases up to 84953.7%. We observed this huge improvement due to the passive approach not being
able to learn the automaton correctly with the given test set. Additionally, the active approach learns
less complex systems relatively fast, thus showing this vast improvement. For example, we can learn the
discussed Smart Light Switch with a median runtime of 1.8 minutes in the case of the active approach
and require 1505.8 minutes in the case of the passive approach.

All evaluated experiments were performed with the same parameters, with the exception of some
system specific settings like the largest constant and the hints about delays. This shows the success
of our approach does not depend on the configuration of the parameters and is generically applicable.
Furthermore, we evaluated our approach without the provision of hints about the delay and with less
precise largest constants. Again, we were able to correctly learn the timed systems.

The performed evaluations show that our developed active approach achieves huge improvements
compared to the passive approach. However, in some iterations we observed that the passive approach
outperforms the active approach. Especially, the test execution time for smaller training set sizes is often
lower than that of the active approach. We assume that the longer overall execution time is higher due
to the higher execution time of the single tests in the active approach. However, in the case of larger
maximum training set sizes the significant decrease of the necessary training sets leads to a decrease
of the overall test execution time. In addition, in some experiments with smaller training set sizes the
passive approach achieves a lower correctness than the active approach.

In summary, we can say that our proposed active learning approach for TAs via GP is a promising
solution to learn timed systems. Our approach can learn timed system correctly and, compared to the pas-
sive approach proposed by Tappler et al. [47], more efficiently. The learning of systems is an increasing
popular topic in the field of quality assurance. Our approach is open for extensions which may include,
e.g., a more sophisticated test selection or a further improvement of the test execution time. Finally, we
can say that we achieved our research goal by the improvement of the passive approach with an active
approach based on heuristics.

6.4 Future Work

The results in Chapter 5 show that our presented active learning algorithm significantly improves learning
of timed systems compared to a passive learning approach. We evaluated a wide variaty of different
systems. However, further experiments could provide more insights. Evaluating more examples from
the industry could demonstrate the applicability of the algorithm in practice. Additionally, experiments
on systems with more locations or clock values would show the performance of the presented approach
on even more complex systems.

In addition to learning other systems, we can evaluate the approach with different configurations.
In Appendix B we list all possible parameters that can be configured. Since there are various different
parameters, the number of possible configurations is large. In our case studies in Chapter 5 we use the
same configuration for all experiments. This shows the general applicability of the algorithm, since no
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special configuration for each experiment is required to learn the SUT correctly. However, we assume
that we would observe further improvements if the parameters are set individually for each experiment.
Additionally, a further study could implement an approach to automatically learn the optimal parameters.

Besides a more detailed evaluation of the current learning approach, further work could include
adaptions to the algorithm itself. Following adaptions of the algorithm may improve the active learning
process:

Test Execution Time. In Chapter 5 we observe that the improvement of the test execution time is lower
than the improvement of the needed training set size. The reason for this behavior is that an
actively generated timed trace has a longer execution time than the randomly generated traces
in the passive approach. In the active approach we select the delays in the timed traces either
based on the values of the guards or randomly. We may decrease the overall execution time if we
select the delays based on a more sophisticated approach. One possibility would be to generated
time-optimal traces like in the conformance testing approach of Hessel et al. [24].

Timed Trace Selection. In our presented timed traces selection approach we always add the first found
counterexamples to the set of traces. The only selection criterion we use is to check if the coun-
terexample contains an output action. We may achieve a better performance of the algorithm if we
select timed traces using advanced selection criteria. For example, we could select only the short-
est traces from a pool of counterexamples. Shorter traces may be easier to learn, since they do not
contain distracting contents that unnecessarily increase the size of the automaton. Furthermore,
we could only add counterexamples that reveal the same error in the hypothesis. We assume that
adding only traces which reveal the same error in the hypothesis is an especially promising tech-
nique to improve the performance of the learning algorithm. If we add several traces which reveal
the same error, the error has more weight. Therefore, the fitness value increases significantly if an
individual of the population learns to fix the found error.

Timed Trace Generation. The generation of timed traces in our approach is done via a random walk
through a TA. During this random walk, we follow edges of the TA randomly. We may achieve
more informative counterexamples if we cover all the behavioral aspects of the TA. Higher cov-
erage can be achieved, e.g., by visiting every location in the hypothesis or by visiting all edges.
Aichernig and Tappler [5] present a randomized test-case generation which combines random
walks with the coverage of edges. In their approach, they may perform a random walk through
the automaton, before trying to reach certain edges of a Mealy Machine. However, to implement
such an approach for TAs we require a reachability check. Implementing such a reachability check
for TAs is not trivial since the state space is infinite. Furthermore, complex implementations for
coverage or reachability checks may be more expensive regarding run time than a simple random
walk.

Another field of application for our active learning approach could be software synthesis. Katz and
Peled [30] showed that GP can be used to automatically synthesize programs based on a user specifi-
cation. This approach requires an oracle to verify the synthesized program. To verify the synthesized
program, they used model checking. Instead of using model checking based on a meta-heuristic ap-
proach, we cloud extend their framework by our active learning approach for TAs, which would create a
possibility to synthesize timed systems.

Further work could also be done to extend the developed GUI. Currently, the GUI provides a fixed
number of examples. A possibility to use own timed system for experiments would improve the appli-
cability of the GUI. Additionally, an interface to UPPAAL, which exports learned systems in the XML
format would be practical. Such an export functionality would provide the possibility to use learned
timed systems directly in UPPAAL.
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A Random Walk Algorithm

Algorithm 7 Timed Trace Generation

Input: Fittest Timed AutomatonH denoted as triple 〈L, l0, E〉 over (C,Σ), and pinput
Output: Timed Trace tth

1: function RANDOMWALK

2: tth ← {}
3: l← l0
4: t← 0
5: ν ← 0C
6: while |tth| < nlen do
7: edge← Nil
8: infiniteOutputs← ⊥
9: EO ← {e | ∃ l′, g, r : l

g,o,r−−−→ l′, o ∈ ΣO}
10: EI ← {e | ∃ l′, g, r : l

g,i,r−−→ l′, i ∈ ΣI}
11: Lurgent ← {}
12: for all (l, g, o, r, l′) ∈ EO do
13: if ν |= g then
14: if Lurgent(l) = 2 then
15: infiniteOutputs← >
16: break
17: tth ← tth · t · o
18: ν ← ν[r]
19: Lurgent ← Lurgent ] {l}
20: l← l′

21: EO ← {e | ∃ l′, g, r : l
g,o,r−−−→ l′, o ∈ ΣO}

22: EI ← {e | ∃ l′, g, r : l
g,i,r−−→ l′, i ∈ ΣI}

23: delay ← GETRANDOMDELAY()
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24: if (¬probChoice(pinput) then
25: if probChoice(ptrans) then
26: K ← {k | ∃ l′, a, r : l

g,a,r−−−→ l′, g = c⊕ k}
27: if |K| > 0 then
28: d← selectRandom(K)

29: ν ← ν + d
30: for all (l, g, o, r, l′) ∈ EO do
31: if ν |= g then
32: d← minDelay(g, ν)
33: edge← (l, g, o, r, l′)
34: break
35: if edge = Nil then
36: EIsat ← {}
37: for all (l, g, i, r, l′) ∈ EI do
38: if ν |= g then
39: EIsat ← EIsat ∪ {(l, g, i, r, l′)}
40: edge← selectRandom(EIsat)

41: if edge = Nil ∧ ¬infiniteOutput then
42: do
43: outputSatisfied← ⊥
44: ν ← ν + d
45: for all (l, g, o, r, l′) ∈ EO do
46: if ν |= g then
47: outputSatisfied← >
48: break
49: if ¬outputSatisfied then
50: ΣIapply ← ΣI

51: for all (l, g, i, r, l′) ∈ EI do
52: if ν |= g then
53: ΣIapply ← ΣIapply \ {(l, g, i, r, l′)}
54: if |ΣIsat | > 0 then
55: i← selectRandom(ΣIapply)
56: tth ← tth · t · i
57: break
58: ν ← ν − d
59: d← getRandomDelay()
60: while ¬probChoice(pstop)
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61: else
62: ν ← ν[r]
63: t← t+ d
64: tth ← tth · t · a with edge = l

g,a,r−−−→ l′

65: l← l′

66: EO ← {e | ∃ l′, g, r : l
g,o,r−−−→ l′, o ∈ ΣO}

67: isolatedOutput← ⊥
68: for all (l, g, o, r, l′) ∈ EO do
69: if ν |= g then
70: isolatedOutput← >
71: break
72: if |tth| = nlen ∧ nlen < nlenmax ∧ isolatedOutput then
73: nlen ← nlen + 1

74: if infiniteOutputs then
75: d← getDelay()
76: t← t+ d
77: i← selectRandom(ΣI)
78: tth ← tth · t · i
79: return tth
80: return tth



B Parameter Glossary

cmax User defined largest constant in a timed system

gchange Number of generations after which the GP procedure is stopped, since the overall fitness value
does not change

gmax Maximum number of generations

gmaxactive Maximum number of generations per each iteration in the active approach

gsimp Number of generations after which locations that do not have an effect on the semantic of the TA
are removed from the TA

|L| Number of locations of each individual in the initial population

nattempts Number of attempts to perform a random walk, which should reveal a counterexample

nclock Number of clocks in the TA

nfail Number of timed traces that are added in one iteration in the active approach

nlen Number of actions in a timed trace. The number of actions is also denoted as length of a timed trace
|tt|

nlenmax Maximum number of actions in a timed trace

npop Number of individuals in the population

nsel Number of individuals that are selected to perform mutations on it

nstart Number of tests for the generation of the initial hypothesis in the active approach

ntest Number of tests

pinput Probability to perform a non-location-changing input action

pstop Probability to stop a procedure

ptrans Probability to choose a value from the constants used in the guards, which label a set of edges

reduceInput Constant by which pinput is decreased in each iteration of the active approach

wNONDET Weight in the fitness function for the verdict of the execution of a timed trace that is non-
deterministic

wOUT Weight in the fitness function for the number of outputs in a timed trace

wPASS Weight in the fitness function for the verdict of the execution of a timed trace that passes

wSIZE Weight in the fitness function for the number of edges in the TA

wSTEPS Weight in the fitness function for the number of performed non-deterministic steps during the
execution of a timed trace
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