
Tobit Flatscher

Lattice-Boltzmann Method for

Multi-component Flows in Porous Media

Master’s Thesis

to achieve the university degree of

Diplomingenieur (Master of Science)

Master’s degree programme: Mechanical Engineering

submitted to

Graz University of Technology

Supervisor

Dipl-Ing. Dr.techn. René Prieler

Institute of Thermal Engineering
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Christoph Hochenauer

Graz, December 2018

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

The main topic of this thesis is the Lattice-Boltzmann methods (LBM), an emerging
variety of methods that can be applied to computational fluid dynamics (CFD) and can
be seen as stylised versions of the Boltzmann equation. The resulting simple molecular
dynamics algorithms underlie a complex theoretical and mathematical framework
offering at the same time unforeseeable possibilities. Therefore this field is highly
researched at the moment with thousands of papers being published every year.
In this thesis first a single component 2D and 3D model for incompressible fluid flow with
D2Q9 and D3Q19 discretisation and BGK- as well as TRT-collision operator is created
using C++ and later extended to multi-component flow using an advection-diffusion
model based on Fick’s law. Finally in order to boost the stability of the method a
Smagorinsky turbulence model is included. All models are verified using standard bench-
mark scenarios for single component and binary flow and are eventually applied
to laminar flow in realistic porous media obtained by tomography scans in order to
demonstrate the main advantages of these models over traditional methods. Particular
effort is put into parallelising the code on a multi-core processor using OpenMP in
order to boost the computational speed.
The results for the advection-diffusion simulation in a porous bed made of random
spheres show excellent agreeance with an Ansys Fluent simulation while the sim-
ulation of the realistic porous medium yields plausible results and will be further
investigated in future work. The resulting model is shown to have significant advan-
tages regarding speed and modelled phenomena over traditional methods in particular
for transient flows in complex geometries and is even able to compete in terms of
computational speed and parallel scaling with LBM-based open-source implementa-
tions such as Palabos. On a twelve-core processor the implemented algorithm is able
to update 295 million cells per second for the D2Q9 lattice and 100 million cells for
the D3Q19 lattice.

Acknowledgement:
This work was supported by the Werner Hochegger Stiftung.

iii

Contents

Abstract iii

List of acronyms and nomenclature xiii
1. Acronyms . xiii
2. Nomenclature . xiv

2.1. Greek symbols and special characters xiv
2.2. Roman symbols . xvi

3. Figures and diagrams . xxi
3.1. Curves and diagrams . xxi
3.2. Discrete distribution functions . xxi

Preface xxv

1. A brief introduction to computational fluid dynamics 2
1.1. Fluid mechanics . 2

1.1.1. Conservation equations for compressible flow 2

1.1.2. Speed of sound and Mach number 5

1.1.3. Conservation equations for incompressible flow 7

1.1.4. Turbulent flow and Kolmogorov microscales 8

1.2. Computational fluid dynamics . 10

1.2.1. Boundary conditions . 11

1.2.2. Turbulence modelling . 12

1.2.3. Insufficiencies of conventional methods 13

2. The Lattice-Boltzmann Method 15
2.1. The theory behind Lattice-Boltzmann . 15

2.1.1. Kinetic theory of gases . 15

2.1.2. Lattice gas automata . 16

2.1.3. Statistical mechanics . 18

2.1.4. Maxwell-Boltzmann distribution 19

2.1.5. Boltzmann equation . 19

2.2. Incompressible LBM . 22

2.2.1. Derivation of incompressible Lattice-Boltzmann 23

2.2.2. Non-dimensionalisation . 27

2.2.3. The algorithm . 28

2.2.4. Discretisations . 30

2.2.5. Macroscopic quantities . 32

2.2.6. Errors and accuracy . 32

2.2.7. Stability . 34

2.2.8. Initial conditions . 35

2.2.9. Boundary conditions . 35

2.2.10. Forces on structures . 42

2.2.11. Turbulence models . 43

v

Contents

2.2.12. Advantages over conventional CFD 44

3. Multi-component flows 45
3.1. Multi-component and multi-phase flows 45

3.2. Diffusion . 46

3.2.1. Fick’s laws . 46

3.3. Advection and diffusion . 47

3.3.1. Schmidt and Péclet number . 47

4. LBM for multi-component flows 49
4.1. Advection-diffusion model . 49

4.1.1. Accuracy, errors and correction terms 50

4.1.2. Stability and TRT collision operator 51

4.1.3. Conversion to physical units . 51

4.1.4. Reduced lattices . 51

4.1.5. Boundary conditions . 52

4.1.6. Advantages of LBM for advection-diffusion 54

5. Porous media 55
5.1. Pore size, porosity and tortuosity . 55

5.2. Particle Reynolds number . 55

5.3. Pressure drop in packed beds . 56

5.3.1. Carman-Kozeny equation . 56

5.3.2. Ergun equation . 56

5.4. Diffusion mechanisms in porous media 57

5.4.1. Effective diffusion coefficient . 57

5.5. Residence time . 57

5.5.1. Residence time distribution . 58

5.5.2. Cumulative residence time distribution 59

5.5.3. Experimental measurement . 59

5.6. Porous LBM: Sparse domain optimisation 60

6. Implementation 61
6.1. Single component flow . 61

6.1.1. Test case 1: Lid-driven cavity . 61

6.1.2. Stability of collision operators . 63

6.1.3. Test case 2: Flow around a cylinder 64

6.1.4. Multi-component flow . 70

6.2. Performance . 71

6.2.1. Benchmark system . 72

6.2.2. Matlab . 72

6.2.3. C++ . 73

6.3. Porous bed - comparison to Ansys Fluent 82

6.3.1. Geometry generation and simulation setup 82

6.3.2. LBM: mesh generation and settings 82

6.3.3. Fluent: mesh generation and simulation setup 83

6.3.4. Porosity and tortuosity . 84

6.3.5. Pressure drop . 84

6.3.6. Cumulative residence time distribution 85

6.3.7. Simulation runtime . 86

vi

Contents

7. Application: Real porous media 88
7.1. Computational domain . 88

7.2. Simulation setup . 89

7.3. Results . 89

7.3.1. Porosity, tortuosity and diffusion coefficient 89

7.3.2. Pressure drop . 90

7.3.3. Residence time distribution . 91

8. Conclusion and Outlook 93
8.1. Conclusion . 93

8.2. Physical outlook: reactive multi-component flow 94

8.3. Computational outlook: GPGPU and MPI 95

A. Thermodynamics 97
A.1. State and process variables . 97

A.2. Internal energy . 97

A.3. The first law of thermodynamics for a closed system 98

A.4. Ideal gas . 98

A.4.1. Perfect gas . 98

A.5. Enthalpy and heat capacities . 99

A.6. Entropy . 100

B. Fluid dynamics 101
B.1. Vorticity and vortex detection . 101

B.1.1. Vortex detection . 101

B.2. Conservation equations in integral notation 102

B.3. Conservative and non-conservative form 102

B.3.1. Non-conservative momentum equation 102

B.3.2. Non-conservative energy equation 103

B.4. Other important dimensionless numbers 103

B.5. Euler and Lagrange specification . 103

B.6. Incompressible flow . 103

B.6.1. Divergence free velocity field . 103

B.6.2. Derivation of the Poisson’s equation for pressure 104

B.7. Relations of density, pressure and temperature and Mach number . . . 104

B.7.1. Flow regimes . 105

B.8. Inviscid flow: Euler equations . 105

B.9. Bernoulli equation . 106

B.10. Fluid structure interactions . 106

B.10.1. Pressure coefficient . 106

B.10.2. Drag coefficient . 107

B.10.3. Lift coefficient . 108

B.11. Strouhal number . 108

C. Kinetic theory of gases 109
C.1. Basic measures of kinetic theory . 109

C.2. A simplified kinetic model . 109

C.2.1. Pressure . 110

C.2.2. Thermal energy . 110

C.3. Particle distributions . 111

C.3.1. Equilibrium . 111

vii

Contents

C.3.2. Derivation of the Maxwell-Boltzmann equilibrium distribution . 111

C.3.3. Moments of particle distributions 112

C.3.4. Collision integral: Stoßzahlansatz 113

C.3.5. Dimensionless Boltzmann equation 113

D. Multi-component flow 115
D.1. Basic definitions for mixtures . 115

D.1.1. Scale of separation and homogeneous mixtures 115

D.2. Mole, mass and volume fractions . 115

D.2.1. Mole fractions . 116

D.2.2. Mass fractions . 116

D.2.3. Molar concentration, partial volume and volume fractions 116

D.2.4. Mixture averages . 116

D.3. Total, convective and diffusive flux . 117

D.4. Fick’s laws . 118

D.4.1. Derivation of Fick’s first law . 118

D.4.2. Derivation of Fick’s second law . 118

D.4.3. Correction velocity . 119

D.5. Lewis number . 119

D.6. Non-binary multi-component flow . 119

D.7. Maxwell-Stefan system . 120

D.7.1. Derivation of the Maxwell-Stefan system for binary flow 120

D.7.2. Derivation of Fick’s first law from the Maxwell-Stefan system . . 121

E. Lattice-Boltzmann 122
E.1. Derivation of Lattice-Boltzmann . 122

E.1.1. Discrete Lattice-Boltzmann . 122

E.1.2. Chapman-Enskog expansion . 127

E.2. Force terms . 131

E.3. Energy equation . 132

F. LBM beyond incompressible flow 133
F.1. Derivation of Lattice-Boltzmann algorithms 133

F.1.1. Finite-difference discretisations . 134

F.1.2. Finite-volume discretisations . 134

F.2. Applications . 134

F.3. Generic advantages . 135

G. Computer architecture and programming 136
G.1. Basics of computer architecture . 136

G.1.1. Virtual memory: Stack and heap 136

G.1.2. Processor architecture and word size 137

G.1.3. Processor clock rate and Intel turbo boost 137

G.1.4. Memory architecture . 137

G.1.5. Multi-tasking and multi-threading 139

G.2. Interpreted and compiled implementations 139

G.3. Matlab . 140

G.4. C++ . 140

G.4.1. Compilation in C++ and compiler settings 140

G.4.2. Object-oriented programming . 141

G.4.3. Passing by value and by reference 141

viii

Contents

G.4.4. Choice of containers . 142

G.4.5. Inline functions . 142

G.4.6. Other optimisations . 142

G.4.7. Parallelisation and multi-threading 143

G.4.8. Amdahl’s law . 145

G.4.9. OpenMP . 145

G.4.10. A note on platform dependencies and portability 145

H. Benchmarks 147
H.1. Lid driven cavity: Pressure and vorticity 147

H.2. Multi-component flow: Effects of wrong simulation parameters 148

I. Mathematical appendix 150
I.1. Mathematical notations . 150

I.1.1. Scalars . 150

I.1.2. Vectors . 150

I.1.3. Matrices . 151

I.1.4. Differentials . 151

I.1.5. Einstein notation . 151

I.1.6. Kronecker delta . 152

I.2. Probability . 152

I.2.1. Gaussian distribution function . 152

I.3. Integrals and derivatives . 152

I.3.1. Material derivative . 152

I.3.2. Gauss’s divergence theorem . 152

I.3.3. Important integrals . 153

I.3.4. Orthogonal functions . 153

I.3.5. Gaussian quadrature . 153

I.4. Series expansions . 154

I.4.1. Taylor series . 155

I.4.2. Laurent series . 155

I.4.3. Fourier Series . 155

J. Perturbation theory 158
J.1. Examples . 158

J.1.1. Example 1: Transcendental equations 159

J.1.2. Example 2: Differential equations 159

J.2. Two timing multiple scale method . 161

J.2.1. Derivatives of multiple-scale perturbation series 162

Bibliography 163

ix

List of Figures

1. Pre- and post-collision populations . xxi
2. Solid and fluid nodes . xxii

1.1. Possible deformations of a continuum element 4

1.2. Speed of sound . 5

1.3. Mach number . 6

1.4. Density ratio over Mach number . 8

1.5. Laminar and turbulent flow . 9

1.6. Equation systems in CFD . 10

1.7. Grids in CFD . 10

1.8. Wall function . 11

1.9. Reynolds averaging . 12

1.10. Classification of CFD methods . 14

2.1. Knudsen number . 16

2.2. LGA algorithm . 16

2.3. Non-deterministic collision rules in LGA 17

2.4. Lattice gas automata: HPP and FHP . 17

2.5. Maxwell-Boltzmann distribution . 19

2.6. Scales of fluid flow . 23

2.7. Schematic Lattice-Boltzmann derivation 26

2.8. Shock waves in LBM . 26

2.9. LBM lattices: D2Q9 and D3Q19 . 28

2.10. LBM algorithm . 29

2.11. Schematic LBM algorithm . 30

2.12. Possible orientations of D2Q9 . 31

2.13. Possible orientations of D3Q19 . 31

2.14. Error sources in LBM . 33

2.15. LBM initialisation . 35

2.16. Stair-cased boundaries . 35

2.17. Link-wise and wet-node boundary conditions 36

2.18. Periodic boundaries . 37

2.19. No-slip wall: full-way bounce-back . 38

2.20. No-slip wall: half-way bounce-back . 38

2.21. Free-slip wall . 39

2.22. Corners in 2D . 42

2.23. Corners and edges in 3D . 42

2.24. Momentum exchange algorithm . 42

3.1. Multi-component and multi-phase flow 45

3.2. Advection-diffusion . 47

4.1. Reduced lattices: D2Q5 and D3Q7 . 51

x

List of Figures

4.2. Anti-bounce back Dirichlet boundary . 52

5.1. Residence time distribution . 58

5.2. Experimental RTD . 59

6.1. Lid-driven cavity . 61

6.2. Deep LDC: streamlines . 62

6.3. LDC 3D: velocity cross-section . 62

6.4. Square LDC: streamlines . 63

6.5. Square LDC: velocity cross sections . 63

6.6. Stability of collision operators . 64

6.7. Flow around a cylinder . 64

6.8. Flow regimes around a cylinder . 65

6.9. Strouhal number for circular cylinders . 66

6.10. Blockage ratio and Strouhal number . 66

6.11. Cylinder: pressure distribution . 67

6.12. Cylinder: vorticity . 67

6.13. Cylinder: pressure . 68

6.14. Benchmark: Strouhal number . 68

6.15. Cylinder: pressure coefficient . 69

6.16. Cylinder: drag and lift coefficient . 69

6.17. Vorticity around 3D cylinder . 69

6.18. Gaussian hill . 70

6.19. Gaussian hill diffusion . 71

6.20. Gaussian hill advection . 71

6.21. Memory layout . 73

6.22. Simple parallel loops . 73

6.23. Schematic memory allocation . 74

6.24. Simple loops: scalability . 76

6.25. Simple loops: speed-up . 76

6.26. The two looping mechanism . 77

6.27. Domain decomposition into blocks . 77

6.28. Looping in blocks . 78

6.29. System 3: Performance for different implementations 78

6.30. System 4: Performance for different implementations 79

6.31. Palabos: single core performance . 80

6.32. Palabos: memory consumption . 81

6.33. Palabos: multi-core performance . 81

6.34. Random spheres domain . 82

6.35. Random spheres: residence time distribution 85

6.36. Random spheres: mass concentration . 86

6.37. Random spheres: Simulation runtime per time step 87

7.1. Realistic porous medium: CT scan . 88

7.2. Realistic porous medium: domain creation 88

7.3. Realistic porous medium: simulation domain 89

7.4. Streamlines in realistic porous medium 90

7.5. Realistic porous media: residence time distribution 91

7.6. Realistic porous medium: mass fraction 91

8.1. Realistic porous medium . 94

xi

A.1. First law of thermodynamics . 98

B.1. Flow regimes . 105

B.2. Pressure distribution around an airfoil . 107

B.3. Drag and lift force . 107

F.1. Possible LBM Lattices . 133

F.2. Mesh refinement in LBM . 134

G.1. Memory organisation . 136

G.2. Multi-level cache . 138

G.3. Compilation process in C++ . 140

G.4. Scalability in parallel computing . 144

G.5. Nested parallelism . 145

H.1. Square LDC: pressure . 147

H.2. Square LDC: vorticity . 148

H.3. Failed simulation: residence time distribution 148

I.1. Gaussian quadrature for rectangular elements 154

I.2. FFT analysis . 156

J.1. Harmonic oscillator . 159

xii

List of acronyms and nomenclature

1. Acronyms

AD Advection-diffusion

API Application programming interface

ASCII American standard code for information interchange

BB Bounce-back

BR Blockage ratio

BGK Bhatnagar-Gross-Krook

CFD Computational fluid dynamics

CPU Central processing unit

CUDA Compute unified device architecture

DdQq d-dimensional set of q velocities

DNS Direct numerical simulation

DPD Dissipative particle dynamics

DSMC Direct simulation Monte-Carlo

FANS Favre-averaged Navier-Stokes equations

FDM Finite difference method

FEM Finite element method

FHP Frisch-Hasslacher-Pomeau

FVM Finite volume method

GCC GNU compiler collection

GPGPU General purpose computation on graphics processing unit

GPU Graphics processing unit

HPP Hardy-Pomeau-Pazzis

LBM Lattice-Boltzmann method

LDC Lid driven cavity

LES Large eddy simulation

LGA Lattice gas automata

xiii

MD Molecular dynamics

MEA Momentum exchange algorithm

micro-CT Micro–computed tomography

Mlups Million lattice updates per second

MPC Multi-particle collision

MPI Message-passing interface

MRT Multiple relaxation time

OpenMP Open multi-processing

OpenMPI Open message passing interface

NS Navier-Stokes

OS Operating system

RAM Random access memory

RANS Reynolds-averaged Navier-Stokes equations

RTD Residence time distribution

SDK Software development kit

SPH Smoothed-particle hydrodynamics

TRT Two relaxation time

2. Nomenclature

2.1. Greek symbols and special characters

(in) Incoming flux
(out) Outgoing flux

α Discrete lattice direction [−]
ᾱ Reflected population [−]
δij Kronecker delta [−]
δt Continuous time step [s]

δx Control volume dimension [m]

δy Control volume dimension [m]

∆ρ Density fluctuations
[

kg
m3

]

∆p Change of momentum
[

kg m
s

]

Pressure loss
[
−
]

∆~pα Change of momentum in lattice direction
[
−
]

xiv

∆t Discrete lattice time step [−]
∆x Lattice size [−]
∆~P Change of momentum

[
kg m

s

]

ε Deviation, small parameter [−]
ε Dissipation rate

[
m2

s3

]

Θα Discrete angle
[
rad]

κ Ratio of specific heats [−]
λ Continuous relaxation time [s]

Dilatational viscosity
[

Pl = Pa
s = kg

m s

]

λm Mean free path [m]

Λ Magic parameter for TRT model [−]
µ Overall dynamic viscosity

[
Pl = Pa

s = kg
m s

]

µT Turbulent dynamic viscosity
[

Pl = Pa
s = kg

m s

]

ν Overall kinematic viscosity
[

m2

s

]

ν0 Laminar kinematic viscosity
[

m2

s

]

νd Dimensioned kinematic viscosity
[

m2

s

]

νlb LBM kinematic viscosity [−]
νT Turbulent kinematic viscosity

[
m2

s

]

~ξ, ξα Microscopic velocities
[

m
s

]

π Mathematical constant Pi 3.14

Hydrostatic stress
[

Pa = N
m2 = kg

m s2

]

ρ Density
[

kg
m3

]

ρ∞ Upstream density
[

kg
m3

]

σij Stress tensor
[

Pa = N
m2 = kg

m s2

]

τ Overall relaxation time [−]
Tortuosity [−]
Turnover time [s]

τµ Time in between collisions [s]

τ0 Laminar relaxation time [−]
τcol Duration of a collision [s]

τi Relaxation time of component i [−]
τT Turbulent relaxation time [−]
τ, T Slow times [s]

xv

τij Viscous stresses
[

Pa = N
m2 = kg

m s2

]

Υi Mass fraction [−]
φ Volume fraction, porosity [−]
χi Mole fraction [−]
ψ Arbitrary function [−]
ω Collision frequency of BGK model [−]
ω+, ω− Collision frequencies of TRT model [−]
ω̇ Chemical production rate

Ω Collision operator
[

kg s3

m6

]

DT
i Thermal diffusion coefficient

[
m2

s K

]

Dij Binary diffusion coefficient
[

m2

s

]

H Quantity H, heat [−]

2.2. Roman symbols

a Thermal diffusivity
[

m2

s

]

A Area [m2]

Numerical constant [−]
b Width of LDC or channel [−]
bc Horizontal position of cylinder [−]
B Numerical constant [−]
c Lattice speed [−]

Molar concentration
[

mol
m3

]

cν Conversion factor for viscosity
[

s
m2

]

ci Molar concentration of component
[

mol
m3

]

cs Speed of sound
[

m
s

]

cL Conversion factor for length
[

1
m

]

cU Conversion factor for velocity
[

s
m

]

C Numerical constant [−]
CD Drag coefficient [−]
CL Lift coefficient [−]
CS Smagorinsky constant 0.1− 0.2

Cijkl Elasticity tensor

xvi

d Diameter of cylinder or sphere [−]
dt′ Differential time step [−]
dx, dy Differential space element [−]
dA Differential area element [−]
dV Differential volume element [−]
D∗e f f Corrected Fickian diffusion coefficient

[
m2

s

]

Di Fickian diffusion coefficient
[

m2

s

]

D∗i Dimensionless Fickian diffusion coefficient [−]
e Specific energy

[
m2

s2

]

Euler’s number 2.72

~eα Discrete directions vector
[
−
]

ei Specific internal energy
[

m2

s2

]

E Efficiency [−]
Error [−]

E(t) Residence time distribution [s]

Ea External energy
[

J = kg m2

s2

]

Ei Internal energy
[

J = kg m2

s2

]

E∆x Error in space [−]
E∆t Error in time [−]
EMa Compressibility error [−]
f Distribution function

[
kg s3

m6

]

Frequency
[

1
s

]

fα Discrete distribution function [−]
f t
α Temporary discrete distribution after collision [−]

f (eq) Equilibrium distribution
[

kg s3

m6

]

f (eq)
α Discrete equilibrium distribution [−]

f (eq)
1D 1D equilibrium distribution

[
kg s3

m6

]

f+α , f (eq)+
α Symmetric distribution function [−]

f−α , f (eq)−
α Antisymmetric distribution function [−]

F,~F Force
[

N = kg m
s2

]

F(t) Cumulative residence time distribution [−]
FD Drag force

[
N = kg m

s2

]

FL Lift force
[

N = kg m
s2

]

xvii

g Difference in momentum
[

kg m
s

]

gravitational constant 9.81 m
s2

gα, gα,i Discrete distribution for AD [−]
g(eq)

α , g(eq)
α,i Discrete equilibrium distribution for AD [−]

gi Specific force
[

m
s2

]

h Height of LDC, channel or packeted bed [−]
H Hermite polynomials [−]
hc Vertical position of cylinder [−]
i, j, k, l Cartesian indices1 [−]
I Integral [−]
~j Diffusive mass flux

[
kg
m3

]

J,~J Diffusive molar flux
[

mol
m3

]

k Thermal conductivity
[

W
m K = kg m

s3

]

kB Boltzmann constant 1.38 · 10−23 J
K

Kn Knudsen number [−]
L Characteristic length [m], [−]
Ld Dimensioned characteristic length [m]

lk Kolmogorov length scale [m]

Llb LBM characteristic length [−]
lm Prandtl mixing length [m]

m Mass [kg]

Counter [−]
mP Particle mass [kg]

M Molar mass
[

kg
mol

]

Mi Molar mass of component i
[

kg
mol

]

Ma Mach number [−]
n Amount of substance [mol]

Counter [−]
index normal to boundary [−]

~n Normal vector [−]
Total mass flux

[
kg
m3

]

ni Amount of component i [mol]

1In case of a single summation the index i leads to a new equation whereas j is the corresponding
summation index.

xviii

N Number of cells [−]
Number of molecules [−]

~N Total molar flux
[

mol
m3

]

p Pressure
[

Pa = kg
m s2

]

Number of processors [−]
P Normalised pressure

[
m2

s2

]

p0 Static pressure
[

Pa = kg
m s2

]

p∗ Dimensionless pressure [−]
pa, pb Momenta of particles

[
kg m

s

]

pd Dynamic pressure
[

Pa = kg
m s2

]

ps Stagnation pressure
[

Pa = kg
m s2

]

pt Total pressure
[

Pa = kg
m s2

]

p∞ Upstream pressure
[

Pa = kg
m s2

]

Pe Péclet number
[
−
]

q Specific heat
[

m2

s2

]

Q Heat
[

J = kg m2

s2

]

|Q| Filtered momentum flux
[

kg m
s

]

R Gas constant 8.314 J
mol K

Rm Specific gas constant
[

J
mol K = kg m2

s2 mol K

]

Re Reynolds number [−]
Rep Particle Reynolds number [−]
S Speed-up [−]

Entropy
[

J
K = kg m2

s2 K

]

Reference Area [m2]

Sij Strain rate tensor
[

1
s

]

|S| Overall strain
[

1
s

]

Sc Schmidt number [−]
St Strouhal number [−]
t Time [s]

t Average residence time [s]

t∗ Dimensionless time [−]
tcon Convective time scale [s]

xix

tdi f Diffusive time scale [s]

thyd Hydrodynamic time scale [s]

tk Kolmogorov time scale [s]

T Temperature [K]

Runtime [s]

Characteristic time [s]

Arbitrary tensor

~u, ui Macroscopic velocity
[

m
s

]

~u∗ Dimensionless velocity [−]
U Magnitude of characteristic velocity

[
m
s

]

Ud Dimensioned characteristic velocity
[

m
s

]

uk Kolmogorov velocity scale
[

m
s

]

~uΥ Mass averaged velocity
[

m
s

]

~uχ Molar averaged velocity
[

m
s

]

~uφ Volume averaged velocity
[

m
s

]

Ulb LBM characteristic velocity [−]
U∞ Up-stream velocity

[
m
s

]

~v, vi Relative velocity
[

m
s

]

v Specific volume
[

m3

kg

]

~vp Most probable velocity
[

m
s

]

VT Total volume [m3]

VV Void volume [m3]

V̇ Volume flux
[

m3

s

]

~wc Correction velocity
[

m
s

]

~wi Diffusion velocity
[

m
s

]

W Work
[

J = kg m2

s2

]

Wα, wα Discrete weights [−]
WV Volume work

[
J = kg m2

s2

]

~x, x, xi Parameter for position [m]

xw
i Boundary link coordinates [−]

~x∗ Dimensionless parameter for position [−]
y, z Parameter for position [m]

xx

3. Figures and diagrams

In the context of this thesis, for the sake of clarity, also a certain consistent visual
language is chosen. The following sections explains how the corresponding illustrations
should be interpreted. The basic vector images were all created in LATEX using TikZ
and PGFPlots while the 3D renderings were created with Paraview, some applied
Laplacian smoothing, exported to Blender as *.x3d-files and rendered with the render
engine Cycles.

3.1. Curves and diagrams

Curves not created using the self-written C++ code are always coloured grey in order
to emphasise that they are only mentioned for reference. This applies to data taken
from other publications but also to different LBM implementations such as Palabos.
The corresponding marker for discrete data points is in any case a solid circle.
Curves derived using the C++ code on the other hand are always coloured black. For
performance benchmarks where two data sets are present for the same markers the
lower one always corresponds to results obtained with a single core and the upper
one corresponds to the full usage of an entire processor with six cores. The Matlab
code is completely vectorised and therefore Matlab will try to use all cores wherever
possible. The data markers are consistent throughout the thesis and are chosen as
follows: Matlab BGK , C++ BGK , C++ TRT ×, C++ BGK-LES � and C++ TRT-LES
+ where LES (large-eddy simulation) denotes the corresponding collision operators
with a Smagorinsky turbulence models.

3.2. Discrete distribution functions

c3

c7c4c8

c1

c5 c2 c6

c1

c5c2c6

c3

c7 c4 c8

pre-collision post-collision

Figure 1.: Graphic representation of pre-collision (left) and post-collision populations (right)

Lattice-Boltzmann can be seen as clusters of particles streaming and colliding on a discrete
grid, the lattice. This view is also supported visually: Populations before the collision
step point towards the rest node, represented by the centre dot, while populations
after the collision step point away from it (figure 1). Note that the populations do
not change direction due to collisions - they are only rescaled: A population will not
change its direction but will change in amount. For the sake of simplicity populations
will be pictured always filling a cell entirely but should be imagined as arrows with
different length that reflect the amount of the distribution function and therefore are a
measure for the macroscopic state. For a real lattice the rest node would be the biggest
population and the diagonal populations would be comparably small. In order to
distinguish bulk fluid from boundary nodes additionally two different colours for
solid and fluid nodes are adopted (figure 2). Finally populations not relevant for an

xxi

explanation are coloured in light gray whereas the relevant populations are coloured
in black.

solid node fluid node

Figure 2.: Graphic representation of solid (left) and fluid nodes (right)

xxii

”Ars longa,
vita brevis,
occasio praeceps,
experimentum periculosum,
iudicium difficile.”

Dedicated to my beloved sister Ruth.

Preface

Even though I tried to put the focus of my master programme on fluid dynamics, I
can’t remember hearing about the alternative kinetic models of Lattice-Boltzmann. All
the more was I impressed not only by the simplicity and computational speed of such
methods but even more by the theory behind it. I think it perfectly illustrates that every
model, every physical description, in the end is just an abstraction, an approximation of
an intangible, complex nature, but nevertheless - even though just a rudimentary attempt
to predict the future, to find rules in all the chaos - no less fascinating.
As the topic touches several different areas of study I spent most time reading books
and publications. To somebody new to the field I would advise to not bother so much
about scientific papers and rather getting familiar with the basics of fluid dynamics
and molecular gas dynamics first: The German-language book ”Molekulare Gasdynamik”
written by D. Hänel offers an excellent introduction into the kinetic theory of gases as
well as a small insight into the Lattice-Boltzmann methods. In order to get an extensive
overview of all the basics in Lattice-Boltzmann I can recommend ”The Lattice-Boltzmann
Method: Principles and Practice” by Krüger et al.: It covers the entire framework from
theory to practice and includes coding samples that can also be accessed on-line. If
somebody is further interested in the detailed derivation of the discrete algorithm
I would pick up the original papers written by He et al.. Finally, for the section on
multi-component flow, I suggest ”Diffusion: Mass Transfer in Fluid Systems” by E.L.
Cussler as it gets along without rigorous mathematical formulations.
As getting familiar with the topic soon amounts to a lot of literature research in a lot
of different fields I tried to summarise the most important concepts in this thesis and
included a lot of basics and interesting connections I came across in the appendix that
should make this thesis also readable for somebody from another field with a basic
understanding of maths. While I tried to work as scientifically as possible in the thesis
itself, the appendix does not raise the requirement to be complete and is therefore less
underpinned with citations: It is a loose collections of ideas with a smooth transition
between things I have picked up over the years and my own ideas.
Finally I would like to sincerely thank my supervisor Renè for his constant support and
patience, that allowed me to work at my pace, and to Markus for several interesting
talks and for supplying me with an excellent Fluent simulation to validate against.
Last but not least I would like to say thank you to my parents, Tobias and Erika,
that have always supported me - not merely financially - throughout my studies.
It is only now that I realise that most of my skill set is nothing more than a mere
product of my dad’s discipline, his strictness and mathematical precision and my
mum’s idealism, her inexhaustible patience, her passionate dedication and her eye for
the detail. Furthermore I am also very grateful for my two brothers, Jonas and Elias,
both with manifold interests, that constantly encourage me to learn new things. In
particular I would like to dedicate this thesis to my sister Ruth that sadly is no longer
with us: With her the world has not only lost a brilliant young scientist but even more
a sensitive and genuinely loving human being.

xxv

”Modern kinetic theory offers a unifying theoretical framework within which
a great variety of seemingly unrelated physical systems that exhibit complex
dynamical behaviour can be explored in a coherent manner.”

- John Karkheck

Motivation

Over the last couple of years, with the rise of powerful computers, the field of compu-
tational physics has progressively gained importance and partially replaced expensive
and time consuming experiments. This is especially true for the sector of fluid dynamics
as the non-linear coupled partial differential equations describing fluid flow can only be
solved analytically for a few simplified cases. The science of obtaining corresponding
approximate computer-based solutions is called computational fluid dynamics (CFD).
The field of computational fluid dynamics is dominated by the finite volume method
(FVM) that is based on the direct discretisation of the conservation equations of fluid
dynamics on structured or unstructured meshes. Meshing and simulating highly
complex geometries poses though several challenges in terms of resolution and com-
putational speed and therefore the simulation of intricate porous media is still subject
of ongoing research.
In order to lift those restrictions different particle based methods have emerged. One
family of methods, namely the Lattice-Boltzmann methods (LBM), is based on a kinetic
approach and shows significant advantages in particular for incompressible flow in
intricate geometries with high temporal and spatial resolution. In this thesis a corre-
sponding high performance C++ code, running in parallel on all cores of a single processor,
is implemented, benchmarked in terms of computational speed against another novel
implementation and physically verified using standard benchmark scenarios and an
Ansys Fluent simulation. The stability of two common collision operators, BGK, a
simple collision operator with one relaxation time, and TRT, a relaxation operator with
an additional, second, freely tunable relaxation time, is investigated, the effective range
regarding the Reynolds number then extended using a large-eddy turbulence model and
a second lattice, accounting for the advection and diffusion of a species, is included. Finally
this model is applied to flow in complex porous media.
The first chapter outlines the basics of computational fluid dynamics, the governing
equations, traditional methods and their drawbacks. The second chapter introduces
the Lattice-Boltzmann methods from a standpoint of the kinetic theory of gases and
explains the basics of this algorithm, the accuracy, stability, initial and boundary condi-
tions. In the third chapter the physics of multi-component flows are explained while in
the fourth it is demonstrated how this model can be included into a Lattice-Boltzmann
simulation. The next chapter describes the characteristics of flows in porous media. In
the sixth chapter the particular implementation is discussed and benchmarked against
standard benchmark scenarios for single and binary multi-component flow and in the
final seventh chapter this verified model is applied to binary flow in realistic complex
porous media obtained by a tomography scan.

1

1. A brief introduction to
computational fluid dynamics

The following chapter gives a short introduction into the basics of fluid mechanics and
computational fluid dynamics (CFD) including the governing equations, traditional
methods and their drawbacks. The concepts presented can be found in every good
reference book for fluid dynamics.

1.1. Fluid mechanics

In fluid mechanics the macroscopic properties of a fluid are of interest and hence the
fluid is approximated by a continuum: The mechanical behaviour is modelled through
continuous blobs of mass that completely fill space rather than individual particles.2 The
smallest brick of this model, a single fluid element, is small with respect to the system
size but large compared to the size of the molecules and the distance between them.
This means the corresponding limit values for density, stresses and specific forces

ρ := lim
∆V→0

∆m
∆V σij := lim

∆Ai→0

∆Fj
∆Ai

gi := lim
∆m→0

∆Gi
∆m

must exist.3

1.1.1. Conservation equations for compressible flow

In continuum based fluid dynamics there are three different governing coupled
differential equations that describe the conservation of mass, momentum and energy on
the macroscopic level and have to be solved in computational fluid dynamics. They
can be derived by looking at a fluid parcel and analysing the changes that arise from
flow over the surface or sources inside it. The resulting equations can be formulated
either in differential (table 1.1) or integral notation (table B.1 in appendix B) and can be
transformed into each other using Gauss’s divergence theorem (appendix I.3.2).

2The science analysing systems described by these so called continua is called continuum mechanics
and is widely used throughout physics mainly in solid and fluid mechanics. For a consistent description
of such a system vectors should be distinguished regarding their transformation behaviour into co- and
contravariant vectors. As the deformations in this context can be assumed small this may be neglected.

3The number of molecules must be large enough to compensate every stochastic fluctuation in the flow
field. For most applications in fluid dynamics this is a sufficient approximation but it breaks down for the
extremes of dilute gases as well as on microscopic level and other approaches like the kinetic theory of
gases (section 2.1.1) must be applied.

2

1.1. Fluid mechanics

∂ρ
∂t +

∂(ρuj)

∂xj
= 0

Continuity equation
conservation of mass

∂(ρui)
∂t +

∂(ρuiuj)

∂xj
=

∂σij
∂xj

+ ρgi

Momentum equation
(Navier-Stokes equation)
conservation of momentum

∂(ρe)
∂t +

∂(ρuje)
∂xj

=
∂qj
∂xj

+
∂(σjiui)

∂xj
+ ρujgj

Energy equation
conservation of energy

Table 1.1.: The conservation equations of fluid mechanics in differential notation

Where the specific total energy e is the sum of internal and macroscopic energy4

e = ei +
ukuk

2
and the local heat flux density is given by Fourier’s law of heat conduction5

qj = −k
∂T
∂xj

.

1.1.1.1. Deformations and stress tensor: Stokes’ law

In theory of linear elasticity it is assumed that the stress tensor σij can be calculated
using the elasticity tensor Cijkl

6 and the rate-of-strain tensor Skl according to

σij = σ
(0)
ij + CijklSkl .

where σ
(0)
ij is the stress distribution in the resting state of the continuum of interest.

Latter corresponds to the hydrostatic pressure p0 in a resting and to the thermodynamic
pressure p in a moving fluid7

σij = −pδij + τij.

For an isotropic material where there is no preferred direction and further assuming a
symmetric Cauchy stress tensor τij = τji, the elasticity tensor degenerates to

Cijkl = λδijkl + µ(δikδjl + δilδjk),

leaving us with only two independent coefficients µ (shear viscosity) and λ (dilatational
viscosity). The corresponding viscous stresses τij can be calculated assuming a linearly
proportionality to the rate of change of the fluid’s velocity, the shear rate, (Newtonian
fluid) to8

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
+ λ

∂uk
∂xk

δij.

4A small introduction to thermodynamics can be found in appendix A.
5Transport laws assume the proportionality of the gradient and a corresponding transport coefficient.

Although found empirically, they can be derived using the later mentioned kinetic theory of gases.[1]
6A fourth rank tensor with 34 = 81 coefficients in its most general form.
7Here we apply Pascal’s law: Pressure acts equally on all directions of a particular point in space. The

stresses in a fluid at rest are isotropic and no shear stresses are present.
8For non-Newtonian fluids, where the flow properties are different from the aforementioned Newtonian

fluid (e.g. the viscosity is a function of the shear-rate), other approaches have to be used. Even though
almost all fluids show more or less non-Newtonian behaviour, most, like water and air, can be approximated
as Newtonian.

3

1. A brief introduction to computational fluid dynamics

Introducing the mean mechanical pressure p,9

p := −1
3
(σ11 + σ22 + σ33) = p−

(
λ +

2
3

µ

)
∂uk
∂xk

leads to a surprising result: Unless either the divergence of the velocity or the term
λ + 2

3 µ, often referred to as bulk viscosity, are zero, the mechanical pressure is not
equivalent to the thermodynamic pressure.10 [2]
Stokes simply assumed a vanishing bulk viscosity (Stokes’ hypothesis) 11 which left
him with a stress tensor according to

σij = −pδij −
2
3

µSkkδij + 2µSij

where

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
.

Three possible basic deformations of a continuum element can be identified: angular
and linear deformation as well as volumetric dilatation (figure 1.1). While the latter
is caused by the first two terms in the stress tensor the last term results in angular
deformation for i 6= j and linear deformation for i = j.

angular deformation linear deformation volumetric dilatation

Figure 1.1.: Possible deformations of a continuum element

1.1.1.2. Equation of state

Finally in order to close the set of equations an equation of state p = p(ρ, ei) has to be
considered. For an ideal gas this is given by the ideal gas law

pV = nRT.

Else other approaches have to be taken like the van der Waals equation and the virial
expansion for real gases or the Tait equation for liquids.

9Analogously to the hydrostatic stress in linear elasticity theory π = σkk
3 .

10The bulk viscosity introduces additional dissipation during a change of volume, where shear forces
are not present.

11Buresti [3] suggests this should be seen as p ≈ p. Even though this assumption is widely used
throughout fluid dynamics it seems as if it would only hold for mono-atomic gases, while in the case
of poly-atomic gases molecular interactions are probably responsible for a thermodynamic pressure that
deviates from the mechanical pressure.

4

1.1. Fluid mechanics

1.1.2. Speed of sound and Mach number

Looking closer at the integral conservation equations12 one can identify several possible
discontinuities with abrupt changes of the flow field, given by the Rankine-Hugoniot
jump conditions, that satisfy the conservation equations. One of them is a normal shock
where velocity, density and pressure change. We can investigate this particular solution
further by looking at a simplified one dimensional stationary flow with constant area
using the stream filament theory. In the limit of small perturbations, that can be assumed
isentropic, one can neglect terms of higher order leaving us with a model like shown
in figure 1.2. The propagation of this small perturbation is then characterised by the
equations in table 1.2.

cs

du

p+ dp

ρ+ dρ

u = 0

p

ρ

Figure 1.2.: Propagation of a small perturbation with changes in velocity, pressure and density

ρdu = csdρ Continuity equation

dp− 2 ρ cs du + c2
s dρ = 0 Momentum equation

Table 1.2.: Conservation equations for the propagation of a small perturbation

Combining the continuity and the momentum equation leads to13

c2
s =

(
∂p
∂ρ

)

S=const
.

This characteristic velocity, referred to as the speed of sound, is the speed of propagation of
small perturbations for the case of compressible fluids.
In case of an ideal gas for isentropic changes of state further p

ρκ = const holds
(appendix A.6), which leads to a speed of sound that is given by

cs =
√

κ Rm T

where Rm = R/M.
In fluid dynamics generally dimensionless numbers are introduced to compare the
behaviour of different similar flows14: Fluid flows sharing the same relevant dimen-
sionless numbers exhibit the same physical behaviour.15

12These discontinuities are not present in the differential notation as we have to assume continuously
differentiable variables for the derivation.

13Similarly to this adiabatic speed of sound for isothermal flow one might introduce the isothermal

speed of sound cs =

√(
∂p
∂ρ

)
T

which for an ideal gas yields cs =
√

Rm T.
14For example similar problems of different scales
15Law of similarity: For different flows though all dimensionless numbers can never be identical.

5

1. A brief introduction to computational fluid dynamics

Stationary
Ma = 0

•

Subsonic
0 < Ma < 1

••••

Sonic
Ma = 1

••••

Supersonic
Ma > 1

••••

Figure 1.3.: Flow velocity and the speed of sound at different Mach numbers

One of the most important, the Mach number, represents the ratio of the flow velocity
past an object U and the local speed of sound cs.

Ma =
U
cs

ordered kinetic energy
random kinetic energy

When an object is moving through a fluid, it pushes fluid particles in front of it away,
creating pressure disturbances in form of waves spreading at the speed of sound,
so called Mach waves. As can be seen in figure 1.3 this leads to a completely different
propagation information depending on the Mach number: With increasing velocity of
the travelling object information spreads progressively non-uniform in space.

1.1.2.1. Non-dimensional conservation equations

Additional dimensionless numbers can be found by non-dimensionalising the govern-
ing differential equations, introducing the characteristic measures

x∗i = xi
L u∗i = ui

U ρ∗ = ρ
ρ0

T∗ = ∆T
∆T0

g∗i = gi
g t∗ = t

L
U

p∗ = p
ρ0U2

Under the assumption of a perfect gas (appendix A.4)16 this leads to

∂ρ∗
∂t∗ +

∂(ρ∗u∗i)
∂x∗i

= 0

∂(ρ∗u∗i)
∂t∗ +

∂(ρ∗u∗j u∗i)
∂x∗j

= − ∂p∗
∂x∗i

+ 1
Re

∂τ∗ij
∂x∗j

+ 1
Fr2 g∗i

ρ∗ ∂T∗
∂t∗ + ρ∗u∗j

∂T∗
∂x∗j

= Ec
(

∂p∗
∂t∗ + u∗j

∂p∗
∂x∗j

)
+ 1

PrRe
∂

∂x∗j
(∂T∗

∂x∗j
) + Ec

Re
∂

∂x∗j
(τ∗iju

∗
i)

Table 1.3.: The non-dimensional conservation equations in differential notation

where the relevant dimensionless numbers are given by

16The energy equation is written in non-conservative notation (appendix B.3).

6

1.1. Fluid mechanics

Re := UL
ν

inertial forces
viscous forces Reynolds number

Ec := U2

cP∆T0

heat dissipation potential
advective transport Eckert number

As can be seen from the non-dimensional energy equation17 the temperature is
decoupled from the equation system if the Eckert number can be assumed comparably
small which is the case for small Mach numbers as the relation

Ec =
U2

cP∆T0

c2
s

c2
s
= Ma2(κ − 1)

T0

∆T0
.

holds.

1.1.3. Conservation equations for incompressible flow

For special cases the conservation equations can be further simplified.18 If the density
within a fluid parcel can be assumed constant along its streamline (incompressible flow),
∇ · ~u = 019 holds, leading to a favourable yet relevant form (table 1.4).

∂uj
∂xj

= 0 Divergence free condition

∂ρ
∂t + uj

∂ρ
∂xj

= 0 Density equation

∂ui
∂t + uj

∂ui
∂xj

= − 1
ρ

∂p
∂xi

+ 1
ρ

∂
∂xj

(
µ
(

∂ui
∂xj

+
∂uj
∂xi

))
Momentum equation

Table 1.4.: The conservation equations for incompressible flow

If further the density of the initial configuration is assumed constant (incompressible
fluid), ∇ · ρ = 0 holds and the density equation simplifies to ∂ρ

∂t = 0.20 Generally also
the shear viscosity µ is assumed constant leading to the equation system in table 1.5.

∂uj
∂xj

= 0 Continuity equation

∂ui
∂t + uj

∂ui
∂xj

= − 1
ρ

∂p
∂xi

+ ∂
∂xj

(
ν ∂ui

∂xj

)
Momentum equation

Table 1.5.: The conservation equations for incompressible fluids with constant material values

There is no equation of state anymore: The energy equation is decoupled from the equation
system. This means continuity and momentum equation can be solved independently
and the temperature can then be calculated from the resulting velocity and density

17The definition of the other two dimensionless variables can be found in appendix B.4.
18In this section also mass forces are neglected.
19This is equivalent to a vanishing volumetric dilatation (appendix B.6.1).
20This is equivalent to a constant density throughout the flow field

7

1. A brief introduction to computational fluid dynamics

fields after each time step if necessary. From the conservation equation one is able
to recover the pressure gradients but in order to get its absolute value a trick has to
be used to couple velocity and density again, resulting in the Poisson’s equation for
pressure21

1
ρ

∂

∂xi

(
∂p
∂xi

)
= −∂uj

∂xi

∂ui
∂xj

.

1.1.3.1. Low Mach number approximation

0 0.2 0.4 0.6 0.8 1
1.0

1.1

1.2

1.3

1.4

5% error

Mach number

d
en

si
ty

ra
ti
o

ρ
0 ρ

Methane at 1273K
Air at 273K
Helium

Figure 1.4.: Density ratio over Mach number for different gases

For compressible perfect gases the density ratio (figure 1.4)22 can be calculated to

ρ0

ρ
=

(
1 +

κ − 1
2

Ma2
) 1

κ−1
.

As can be seen every flow is somewhat compressible but if the Mach number is less
than 0.3 the density changes due to pressure are less than 5% and the flow can be
approximated with good accuracy as incompressible. [4] A truly incompressible fluid
has an indefinitely large speed of sound:23 It instantly knows about small changes in the
flow field.24

1.1.4. Turbulent flow and Kolmogorov microscales

Flows with low Reynolds number are characterised by only slowly varying velocity
fields in which flow happens in layers that float on top of each other without creating
cross currents and are therefore referred to as laminar flows. The fluid viscosity is
high enough to dampen instabilities. As the Reynold number increases the flow
departs from smooth flow. This so called turbulent flow is characterized by chaotic,
nearly random fluctuations in velocity and pressure: The vorticity is non-zero and is

21For the derivation see appendix B.6.2.
22The derivation can be found in appendix B.7.
23Due to Ma = U

cs
� 1 one can assume that c2

s =
(

∂p
∂ρ

)
S
→ ∞ and therefore

(
∂ρ
∂p

)
S
→ 0. For this reason

in the literature often ρ 6= ρ(p) is found as a definition of incompressibility.
24The differential equations are now elliptic instead of hyperbolic.

8

1.1. Fluid mechanics

distributed among vortices of different sizes (figure 1.5).25 According to Kolmogorov’s
hypothesis energy is supplied at a macroscopic level leading to unstable eddies that
break up and gradually pass on the energy ε to smaller eddies until on the smallest
scale, the so called Kolmogorov scale lk, the energy is dissipated by viscosity.26 While
the large eddies still contain information about the geometry this information gets
lost along this energy cascade and the small scale eddies might be assumed universal,
homogeneous and isotropic.

laminar turbulent

Figure 1.5.: Schematic laminar (left) and turbulent flow (right)

The energy supplied to the fluid on macroscopic scale can be estimated under these as-
sumptions by dimension analysis using the kinetic energy ∝ U2 and the corresponding
time scale ∝ L/U to

ε ∼ U3

L
.

Whereas the smallest length can be calculated using the dissipation rate ε and the
viscosity ν

lk ∼
(

ν3

ε

) 1
4

.

This can be used to evaluate the ratio between the largest and smallest scale involved
in turbulent fluid flow using the aforementioned Reynolds number

L
lk
∼
(

U L
ν

) 3
4
= Re

3
4 .

Same thing can be applied to the corresponding time and velocity scales leading to27

T
tk

=
√

Re,
U
uk

= Re
1
4 .

1.1.4.1. Boussinesq hypothesis and Prandtl mixing-length

Several efforts were made in order to predict the effects of turbulence. One popular
way is to filter the governing equations and focus on the large-scale turbulence while

25Turbulent flow is always three-dimensional and transient.
26While dissipation during this turbulent energy cascade on scales l > lk can be neglected.
27This means for higher Reynolds numbers these turbulent fluctuations become more fine scale and

accordingly the discretisation needed to capture these phenomena in CFD. As can be seen the number of

cells scales with O(Re
9
4) for three-dimensional turbulent flow.

9

1. A brief introduction to computational fluid dynamics

only modelling the small scale uniform turbulence. The first such models, introduced
by Boussinesq, proposes an additional turbulent viscosity caused by turbulent stresses.
Prandtl further assumed that Newton’s law for viscous fluids still holds but an ad-
ditional turbulent viscosity µT has to be considered. Unlike its counterpart µ this
viscosity is not constant in space, it is a property of the flow rather than of the fluid
itself. The corresponding kinematic viscosity νT is modelled again as a function of the
velocity shear and a corresponding mixing length lm that accounts for a different eddy
viscosity depending on the local distance from the wall

νT =
µT
ρ

= l2
m

∣∣∣∣
du
dz

∣∣∣∣.

1.2. Computational fluid dynamics




b1 c1 0
a2 b2 c2

a3 b3 ·
· · cn−1

0 an bn







x1

x2

·
·
xn




=




d1
d2
·
·
dn




Figure 1.6.: In CFD equation systems involving sparse, diagonally dominant matrices, preferably of tri-
diagonal form like above, have to be solved in order to obtain a solution. Generally this is done
iteratively using the Gauss-Seidel method.

An exact analytical solution to the governing conservation equations can only be
found for very few special simplified cases. In order to gain at least an approximate
solution in conventional CFD the relevant differential equations are discretised. This
requires also the computational domain to be represented by a finite set of points or cells
leading to an approximated and simplified geometry of the real system. For every cell
the differential equation can be rewritten as a balance of fluxes from neighbouring
cells and every boundary where information is known about the state of the fluid
has to be replaced with equations resembling these boundary conditions: Instead of
the differential equations being solved analytically a linear equation system has to be
solved numerically and iteratively (figure 1.6).

(i, j−1)

(i, j)(i−1, j) (i+1, j)

(i, j+1)

∆x

∆ y

Figure 1.7.: Typical grids for finite difference (left) and finite volume method (right)

10

1.2. Computational fluid dynamics

In the finite difference method (FDM) this is done by expanding the differential notation
of the conservation equations in a Taylor series approximating differentials by differ-
ences between nodes. This leads to a comparably fast algorithm while though losing
conservativity and limiting the use mainly to regular grids. In the finite volume method
(FVM) the integral notation is discretised and the domain is approximated by cells.
The center point of each cell represents the average measures of that particular cell that
change due to fluxes from neighbouring cells leading to algebraic equations (figure
1.7). FVM are generally slower but more accurate and can be used with unstructured
meshes making up for the slightly slower performance. Therefore modern commercial
fluid solvers are generally finite volume based.
Furthermore there are two different kind of approaches for solving the governing
differential equations, a pressure-based, historically used for incompressible flow, and a
density-based one, initially designed for compressible flow. In both cases the velocity is
obtained from the momentum equation but in the density-based approach the density
field is determined from the continuity equation and the pressure is then calculated
using the equation of state. As seen before for incompressible flow density and pres-
sure are not directly coupled by an equation of state any more: Generally using the
values from the last iteration uncorrected fluxes have to be calculated. Then a pressure
correction equation, resulting from a smart combination of continuity and momentum
equation, has to be solved and the velocity field has to be adjusted accordingly.
Approximating the differential equations leads to the so called truncation error. It is
estimated after every step by asymptotic analysis, scaled and outputted as a relative
measure for convergence (residuals). It should get smaller as a finer mesh is chosen
(grid convergence) and with similar reasonable meshes the results should also have
comparable results (grid independence). These two characteristics have to be proven for
every simulated system in order to guarantee a correct simulation.

1.2.1. Boundary conditions

wall function

Figure 1.8.: Near wall grid without (left) and with wall function (right)

Boundary conditions are crucial for numeric accuracy: A single incorrect boundary
may be streamed into the flow field and affect the whole domain.28 Additionally the
user has to pay attention to not under- or over-specify a particular problem.29

Solid walls slow down the fluid locally: The velocity steadily decreases and takes the

28Generally speaking large gradients near an in- or outlet are a sign for incorrect problem specification.
29In an underspecified problem there are too little boundary conditions and the problem is incompletely

specified. In an over-specified problem on the other hand there are more boundary conditions given than
can be realised.

11

1. A brief introduction to computational fluid dynamics

value zero at the wall leading to large gradients that have to be resolved. The near wall
sub layer where the viscous effects play an important role has to be resolved adequately
with a relatively fine mesh leading to a longer simulation runtime or be modelled by
a wall function taking into account the effects of the boundary layer empirically but
reducing accuracy (figure 1.8).

1.2.2. Turbulence modelling

u

u

u′

t

u

Figure 1.9.: RANS: Turbulent flow with velocity u is modelled as superimposed streaming with velocity u
and a fluctuating motion with u′.

Most flows for relevant technical applications are highly turbulent (Re > 105): The
flow includes eddies on a smaller scale and a finer mesh as well as very small time
steps would be needed in order to resolve the flow down to the Kolmogorov length
scale and model the phenomena correctly. This is computationally very expensive but
still done in the so called direct numerical simulation (DNS) which is mainly used for
the low Reynolds number regime and for research purposes.
As this is generally not viable, significant effort has been put into developing models
that are less computationally heavy but still maintain accuracy. This is achieved by
either statistical or spatial averaging. Large Eddy Simulations (LES) apply spatial filtering:
Large turbulence that depends on the geometry of the system is resolved while
uniform small scale turbulence is modelled. This means one should know beforehand
which scales have to be resolved and which should be modelled. Even though less
computationally heavy than DNS it is still mostly limited to supercomputers.
Generally another approach is taken by employing stochastic tools and decomposing
velocity and pressure into two parts, a time-averaged (defined by the root mean square)
and a fluctuating turbulent part (figure 1.9), leading to the Reynolds-averaged Navier-
Stokes equations (RANS, generally used for incompressible fluids) or Favre-averaged
Navier-Stokes equations (generally used for compressible fluids) depending on whether
an average or density weighted average is used. Due to the non-linearity30 this leads
to an additional term, the so called Reynolds stress term τ′ij = ρu′iu

′
j (table 1.6), that

has to be modelled: There are several so called turbulence models available that try to

30Precisely due to uiuj = ui uj + u′iu
′
j

12

1.2. Computational fluid dynamics

close the equation system by introducing constraints ranging from simple algebraic
equations to several additional differential equations describing the transport of those
stresses.31

p = p + p′, ui = ui + u′i Reynolds decomposition

∂ui
∂xi

= 0 Continuity equation

∂ui
∂t + uj

∂ui
∂xj

= − 1
ρ

∂p
∂xi

+ 1
ρ

∂
∂xj

(τij − ρu′iu
′
j) Momentum equation

Table 1.6.: Reynolds-averaged Navier-Stokes equations for incompressible fluids

1.2.2.1. Smagorinsky-Lilly turbulence model

In order to not resolve every scale down to the Kolgomorov length LES introduces
spatial filtering of smaller scales (generally smaller than the grid resolution) and
describing the effects on those unresolved scales with sub-grid turbulence models.
A common approach is to link turbulence on this microscopical level to an increase
in viscosity acting like a low-pass filter, damping short-wavelength oscillations. This
turbulent viscosity has to be modelled adequately.
Smagorinsky was the first to propose a formula for CFD, based on an eddy viscosity
in 1963. In 2D and 3D problems the velocity shear is an entire tensor given by the local
rate-of-strain tensor Sij. The overall strain is then given by its norm

|S| =
√

2SijSij

and replaces the velocity shear in Prandtl’s mixing-length concept such that

νT = l2
m|S|.

The mixing length is replaced by a product of a constant, the so called Smagorinsky
constant32 CS = 0.1− 0.2 and the filter width ∆, which is generally the grid size,

νT = (CS ∆)2 |S|.

1.2.3. Insufficiencies of conventional methods

Although CFD has become a standard, complex flow simulations are still challenging
and error prone mainly depending on the user’s expertise. Generically traditional CFD
methods based on a direct discretisation of the Navier-Stokes equations have a couple
of limitations: With their macroscopic nature modelling microscopic phenomena such as
reactive, multicomponent as well as multiphase flows can be challenging. Normally this

31Setting the relevant turbulence model parameters is though very challenging and their influence on
the simulation is hard to predict.

32In order to take into account the near wall effects more complex models with a dynamic Smagorinsky
constant or applying additional a-priori knowledge of the boundary layer, like the van-Driest dampening
function, have emerged.

13

1. A brief introduction to computational fluid dynamics

involves including additional differential equations that have to be solved making it
computationally expensive. Modelling free surfaces where the solution region changes
as the surfaces moves and in turn the motion of the surface is determined by the
solution may pose difficulties. In the case of rarefied gases the underlying continuum
approach loses its validity and Navier-Stokes based methods are not valid any more.
Additionally, in particular for complex geometries, most time is spent generating ade-
quate meshes33 for simulations rather than simulating. Probably the biggest drawback
though stems from the nature of the differential equations being solved rendering an
efficient parallel implementation challenging.

CFD

conventional particle-based

finite difference
(FDM)

finite volume
(FVM)

finite element
(FEM)

spectral element
(SEM)

boundary element
(BEM)

Lattice-Boltzmann
(LBM)

lattice gas
automata (LGA)

molecular dynamics
(MD)

dissipative particle
dynamics (DPD)

multi-particle collision
dynamics (MPC)

direct simulation
Monte-Carlo (DSMC)

smoothed-particle
hydrodynamics (SPH)

Figure 1.10.: One possible classification of CFD methods as proposed by Krüger et al. [5]

Over the years multiple particle-based methods have emerged in order to lift at least
some of those limitations. In this case the fluid is represented by discrete particles
in the form of single atoms, molecules or artificial clusters of molecules instead of
a continuum that interact on a short range with each other. The one that probably
got the most attention due to its flexibility are the Lattice-Boltzmann methods that will
be investigated further in this thesis. One possible classification of CFD methods is
depicted in figure 1.10.34

There is no such thing as the perfect method that outperforms all the others in all
scenarios but rather one method is more suitable than the other in a certain scenario.
Generally speaking the conventional methods are more suited for macroscopic flow
while the particle-based methods are mainly used for microscopic flow but mostly
struggle with dense fluids. Additionally the latter are often tailored to a particular
problem and used for research rather than being all-purpose built.

33Meshes that reflect the real geometry well enough and have good numerical properties, such as low
asymmetry (skewness), and a corresponding numbering that leads to a linear equation system of diagonally
dominant form.

34The methods that are not further discussed in this thesis are greyed out.

14

2. The Lattice-Boltzmann Method

Opposite to the traditional CFD methods, the aforementioned particle-based methods
are not directly based on the continuum derived laws of conservation. One of the most
popular due to its versatility are the Lattice Boltzmann methods (LBM), which have
their roots in the kinetic gas theory and can be seen as the discretisation of the Boltzmann
equation. The following chapter first presents in short the roots of the method in kinetic
theory before explaining the basic algorithm for incompressible flow, its accuracy and
stability as well as the implemented boundary conditions.

2.1. The theory behind Lattice-Boltzmann

The following section will give a short basic introduction into the kinetic theory of
gases, the Boltzmann equation as well as the predecessors of Lattice-Boltzmann, the
lattice gas automata. For further information on the subject refer to [1] and [6].

2.1.1. Kinetic theory of gases

Rather than using the continuum approach one might try to describe the underlying
microscopic level: The kinetic theory of gases describes a dilute gas as a large number of
microscopic particles in constant motion interacting with each other leading to processes
that are characterized by randomness. Generally these models ignore the internal
structure of the molecules and model the involved particles as structureless spheres
that interact with each other and their environment only in elastic collisions.35 Yet
such simple models allow quantitative statements about the interactions in real gases:
Macroscopic properties on a continuum level like pressure and temperature are derived
statistically from the motion of those particles as well as transport laws and analytical
solutions to the corresponding transport coefficients. The pressure for example is equal
to the force exerted by the moving particles hitting an obstacle (see appendix C.2.1).

2.1.1.1. Knudsen number

The arguably most important number in the kinetic theory is the Knudsen number.
The continuum description fails in micro-scale environments where the mean free path
of a molecule between collision impacts λm is comparable to the length scale of the

35More sophisticated models also use far field interactions for a more realistic behaviour and non-elastic
collision for modelling chemical reactions.

15

2. The Lattice-Boltzmann Method

Continuum flow
Kn < 0.01

Knudsen flow
0.01 ≤ Kn < 10

Molecular flow
Kn ≥ 10

Figure 2.1.: Schematic flow for different Knudsen numbers

problem L36 and statistical methods on microscale (e.g. kinetic theory of gases) must
be employed. Hence the Knudsen number Kn is introduced as

Kn =
λm

L
.

Generally Knudsen numbers lower than Kn ≤ 0.01 are considered continuum based
flows, flows between 0.01 ≤ Kn ≤ 10 are referred as transitional (rarefied gases) and
for Kn ≥ 10 collisions between particles can be neglected (molecular flow, figure 2.1).
In the low transitional slip-flow regime (approx. Kn ≤ 0.1) continuum mechanics
methods may still be used with adequate boundary conditions that allow a certain
slip at the wall while for larger Knudsen numbers the continuum derived methods
fail. At all Knudsen numbers the walls are surrounded by a thin evaporation layer, the
so called Knudsen layer, that might have to be modelled. [7]
The Knudsen number is closely connected to the Mach and the Reynolds number,
given by the so called Kármán relation [8] and inversely proportional to density and
characteristic length scale of the problem [1]

Kn ∝ Ma
Re , Kn ∝ 1

L ρ .

2.1.2. Lattice gas automata

C
ol
li
si
on

S
tr
ea
m
in
g

Figure 2.2.: The LGA algorithm: Collision and streaming of particles on a sparsely populated grid

36This can also be the case for super-sonic shock waves at Ma > 1.5

16

2.1. The theory behind Lattice-Boltzmann

Already simple analytical kinetic gas models lead to accurate predictions in a real
dilute gas. Analogously very simple numerical models can be used for simulating gas
flow. One of them, the Lattice gas automata (LGA), a type of cellular automata,37 can be
seen as the direct predecessors of LBM. They were used to simulate rarefied gas flow
back in the 1980s due to their simplicity and numerical efficiency.38

Figure 2.3.: An example for one of the non-deterministic collision rules in LGA: The collision on the left
randomly leads to one of the distributions on the right.

The models consist of a sparse set of particles moving on a discrete grid, the so called
lattice (figure 2.2). The particles are all streamed to the neighbouring cells in a time
step according to their orientation on the grid.39 According to some non-deterministic
collision rules (the same input situation might yield multiple possible outcome states
but only one is picked randomly, figure 2.3) [9] that ensure mass and momentum
conservation the particles collide in each node, redistribute and the cycle starts again.
The macroscopic quantities are determined using the particles’ moments: The density
is the sum of all particles at each node and the momentum is equal to the sum of the
particles multiplied by the unit velocity. However those quantities are subject to a lot
of noise due to the non-deterministic collision rules and have to be averaged over a
large region to obtain reasonable results.

HPP FHP

Figure 2.4.: The predecessor of LBM, the lattice gas automata: HPP (left) and FHP (right), both named after
the acronyms of their authors

The first 2D model with a square lattice, the so called HPP model [10] lacked rotational
invariance and was later replaced by the hexagonal grid FHP model. [11], [12] This
improved version (figure 2.4) was less prone to Galilean invariance and anisotropy and
could even simulate fluid flow in the continuum limit although restricted to very low

37A discrete model consisting of a grid of cells that can take discrete values and update values according
to their neighbouring cells

38A single binary digit (boolean 0 or 1) per site and direction is sufficient to store the current state, in the
case of the common FHP model this amounts to 6 bits per node.

39Particles only exist on the nodes of the grid and can inter-penetrate without collision while moving on
the sides of the lattices.

17

2. The Lattice-Boltzmann Method

Reynolds numbers. Nonetheless there have been issues porting the model to 3D: The
square cube lacked invariance just like its two-dimensional counterpart and regular
polytopes with a sufficiently large symmetry would lead to an dramatic increase in
dimensions rendering the model inefficient40 and overall limited.
In LBM therefore the effort was made to generalize the above algorithm by eliminating
the non-deterministic rules using a statistical approach. The detailed chronological
development from LGA to LBM can be found in [6].

2.1.3. Statistical mechanics

Describing all particles present in a dilute gas - let alone in a dense fluid - is not viable
as the density of air under standard conditions is about 2.69× 1019 molecules/cm3.41

Our scale of interest is in general though a lot bigger: Concepts like density, pressure
and temperature don’t even exist on the single particle level, they are the result
of a huge number of particles interacting with each other. Thus one might try to
describe an ensemble of particles using a stochastic approach. The basis of the Lattice
Boltzmann methods and therefore the advantage over the Lattice gas automata is
the elimination of the non-deterministic rules using statistical mechanics, the use of
probability theory in theoretical physics to derive the average behaviour of a mechanical
system. In the classical mechanics only a single state is considered while statistical
mechanics introduces a statistical ensemble of states using probability distributions over
the phase space (~x,~ξ).42

2.1.3.1. Particle distributions

The basis of kinetic theory is the introduction of a particle distribution function
f (~x,~ξ, t) = dN

d~x d~ξ
, where N denotes the number of molecules, which can be seen as

a generalisation of the density ρ, which is only a function of time and space ρ(~x, t).
Particle distributions can be seen as ’densities’ in time43 and space as well as in a
three-dimensional velocity space: The value of f equals to the density of particles at
position ~x at the time t with the absolute velocity ~ξ = (ξx, ξy, ξz). [5]
Now all relevant macroscopic variables can be determined as moments of the distribu-
tion function through integration over the velocity space.44 The zeroth moment equals
to the density

ρ(~x, t) = mP

∫
f (~x,~ξ, t)d~ξ,

the first moment to the momentum density

ρ(~x, t)~u(~x, t) = mP

∫
~ξ f (~x,~ξ, t)d~ξ,

40All collision rules had to be saved in look-up tables and every single node had to be checked for the
correct collision rule for the current configuration.

41One mole of any ideal gas contains 6× 1026 molecules (Avogadro number) while occupying 22.4 litres
at standard conditions.

42And herein lays the advantage that Lattice Boltzmann method has over solving the macroscopic
Navier-Stokes equation regarding flow on microscopic scale.

43Implicitly through space and velocity
44In general any average value of a function ψ can be obtained by 〈ψ〉 = mP

ρ

∫
ψ f d~ξ.

18

2.1. The theory behind Lattice-Boltzmann

where ~u is the mean macroscopic velocity. The second moment delivers the total
energy density

ρ(~x, t)e(~x, t) =
mP
2

∫
~ξ2 f (~x,~ξ, t)d~ξ.

which can be split up into energy due to bulk motion of the fluid 1
2 ρ~u2 and the internal

energy due to thermal motion, the internal energy density

ρ(~x, t)ei(~x, t) =
mP
2

∫
|~ξ − ~u|2 f (~x,~ξ, t)d~ξ

where the relative velocity ~ξ − ~u is often termed ~v.

2.1.4. Maxwell-Boltzmann distribution

−3,000−2,000−1,000 0 1,000 2,000 3,000
0.0000

0.0005

0.0010

0.0015

v in m/s

P
D
F

H2

He
O2

−3,000−2,000−1,000 0 1,000 2,000 3,000
0.0000

0.0005

0.0010

0.0015

v in m/s

100K
300K
1000K

Figure 2.5.: One-dimensional Maxwell-Boltzmann distribution for different gases at room temperature (left)
and helium at different temperatures (right) calculated using the formula below

It is only possible to construct such a distribution analytically for thermodynamic
equilibrium (appendix C.3): Assuming symmetries in space and enforcing momentum
conservation the so called Maxwell-Boltzmann distribution function can be found. The
particle speed probability distribution indicates, which speeds are more and less likely
in equilibrium depending on the temperature of the system and the particle mass
(figure 2.5). First derived by Maxwell in 1860 and later elaborated extensively by
Boltzmann in the 1870s, it is considered the basis of the kinetic theory of gases:

f (eq)(~x, |~v|, t) = n
1

(2πRmT)
D
2

e−
|~v|2

2RmT .

D corresponds to the degrees of freedom which in the case of mono-atomic gases in
three-dimensions are three. A simple derivation for this equilibrium distribution can
be found in appendix C.3.2.

2.1.5. Boltzmann equation

For non-equilibrium, which is the general case, there is no analytical description
available. But yet a transport equation that describes the evolution of a probability
distribution for position and momentum of a typical particle can be formulated. Changes of
different physical quantities transported by a rarefied fluid can be determined by this

19

2. The Lattice-Boltzmann Method

so called Boltzmann equation, devised by the Austrian physicist Ludwig Boltzmann
in 1872. This makes it more general than continuum mechanic based approaches,
applicable to flow of all Knudsen numbers. The following derivation of the Boltzmann
equation is based on [13].
In a real system an ensemble contains theoretically information about its state at any
time but due to the enormous number of interactions over time this is converted
into subtle correlations that appear chaotic and almost random. Boltzmann therefore
assumed that the particles are un-correlated before collisions (one-sided molecular
chaos). In dilute gasses it can be further assumed that the particles (i = 1, . . . , N)
spend most of their lifespan on free trajectories apart from collisions involving only
two particles45 at a time for which in the case of mono-atomic gas46 classical Newtonian
physics can be assumed

dxi
dt = pi

m , dpi
dt = Fi.

where p stands for the transferred momentum. In such a model the particle distribution
would follow a simple transport equation, the Boltzmann transport equation. The total
derivative of a distribution function f given by

D f
Dt

∣∣∣∣
transport

=
∂ f
∂t

+
∂ f
∂xi

∂xi
∂t

+
∂ f
∂ξi

∂ξi
∂t

.

must be equal to the changes caused by the collision.
This can be rewritten using ∂xi/∂t = ξi and ∂ξi/∂t = Fi/ρ as well as introducing the
notation Ω(f) = D f /Dt for the not yet defined collision integral to

∂ f
∂t

+~ξ ·∇ f +
~F
ρ
·∇~ξ f = Ω(f)

This non-linear integro-differential equation47 for the probability density function in
six-dimensional space can’t yet be solved unless the collision term is appropriately
modelled. The exact collision operator proposed by Boltzmann (appendix C.3.4) is
quite cumbersome but generally not all its properties have to be fulfilled: For hy-
drodynamic simulations only the first few momenta must be preserved during the
collision. This allows for an enormous simplification of the collision operator as will
be discussed later.

2.1.5.1. Derivation of the conservation equations and Chapman-Enskog expansion

The Boltzmann equation operates on a level of distribution functions. What happens
on a continuum level with mass, momentum and energy is not directly accessible. Eval-
uating the first three moments of the conserved quantities it is possible to derive the
conservation laws that emerge from the Boltzmann equation. This requires the following

45Collisions involving multiple particles are so rare they can be neglected.
46In contrast molecules consisting of several atoms can exhibit inner degrees of freedom and while

the energy during collisions is always conserved it might be converted to rotational or vibrational energy
leading to inelastic or super-elastic collisions. [5]

47’Integro’ as the original collision operator proposed by Boltzmann involves a collision integral (see
appendix C.3.4).

20

2.1. The theory behind Lattice-Boltzmann

integrals to be solved

mP

∫
f d~ξ = ρ,

mP

∫
ξi f d~ξ = ρui,

∫
∂ f
∂ξi

d~ξ = 0,

mP

∫
ξ j

∂ f
∂ξi

d~ξ = −
∫ ∂ξ j

∂ξi
f d~ξ = −ρδij,

mP

∫
ξ jξ j

∂ f
∂ξi

d~ξ = −
∫ ∂(ξ jξ j)

∂ξi
f d~ξ = −2ρui,

mP

∫
ξiξ j f d~ξ = ρuiuj +

∫
vivj f d~ξ,

where ~ξ = ~u +~v.
Regardless of the precise form of the collision integral it has to be orthogonal to any
collision invariant.48 ∫

ξkΩd~ξ = 0

Therefore we yield the corresponding continuity equation

∂ρ

∂t
+

∂ρuj

∂xj
= 0,

the momentum equation

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
=

∂σij

∂xj
+ gi

as well as the energy equation

∂(ρe)
∂t

+
∂(ρuje)

∂xj
= σij

∂uj

∂xi
− ∂qj

∂xj
,

where the viscosity stress tensor σij and the heat flux vector qj are given by

σij = −
∫

vivj f d~ξ,

qj = −
1
2

∫
vivivj f d~ξ.

As we can see the stress tensor and the heat flux vector still depend on f and the cor-
responding integrals can’t be evaluated if f is not known: The system is not closed.49

For thermodynamic equilibrium f = f (eq) the integrals containing f vanish and the
equation system results in the Euler equations (appendix B.8). [7],[14]
The interesting part the Boltzmann equation is though describing non-equilibrium pro-
cesses where f differs from f (eq). Close to the local equilibrium, at the continuum level,

48This reflects the conservation laws of mass, momentum and energy. A collision must not change the
corresponding moment.

49We have no idea yet what the precise transport laws look like.

21

2. The Lattice-Boltzmann Method

one might assume f as a perturbed series (appendix J) of the equilibrium distribution
where the expansion parameter corresponds to the Knudsen number. This leads to a
hierarchy of approximations with an increasing deviation of the distribution function f from
the thermodynamic equilibrium. Recombining moments, taking into consideration their
order of magnitude one can evaluate the corresponding integrals and is able to recover
the full Navier-Stokes equation in the limit of small Knudsen numbers. A discrete
version of this complex asymptotic method, called the Chapman-Enskog expansion, can
be found in the appendix E.1.[15]

2.1.5.2. H-Theorem

At the bottom of physics all laws are reversible according to Liouville’s Theorem
in classical mechanics and even the Boltzmann equation appears to be. This though
seems to contradict our perception of the world. As a natural consequence Boltzmann
tried to link the Boltzmann equation to a quantity that reflects the irreversibility of a
process, the entropy S of a system by defining a quantity H50

−S = H :=
∫∫

f ln(f) d~ξd~x.

This quantity H is not conserved, instead it decreases until the particle distribution f
reaches equilibrium.51 [17], [18]

dH
dt
≤ 0.

2.2. Incompressible LBM

As the Navier-Stokes equations emerge quite naturally from an asymptotic analysis of
the continuous Boltzmann equation in the Chapman-Enskog expansion it seems obvi-
ous to discretise the Boltzmann equation and apply the same procedure. Historically
this was mainly motivated by the aforementioned Lattice Gas Automata in addition to
increasing computational power in the early 1990s.
Using low order discretisations and truncating the Maxwell-Boltzmann equilibrium
distribution function for low Mach numbers it is possible to recover the continuity and
momentum but not the energy equation with reasonable discretisations. Additionally,
the momentum equation only leads to an error term instead of the correct dilatation.
Therefore, this most common LBM algorithm is generally used for simulating incom-
pressible isothermal flow [19] and the resulting error in the Mach number is kept small
raising the viscosity in order to keep the Reynolds number constant. This effectively
renders this particular Lattice Boltzmann algorithm a weakly compressible fluid solver: It
solves the incompressible Navier-Stokes equations by allowing compressibility.52

Space and time are discretised just like in LGA but the method operates on the level
of representative clusters of particles instead of individual particles, therefore, allowing
much larger time steps than what an actual microscopic simulation would require. To
reflect the almost random nature of the particles stochastic knowledge is included in

50This is equal to the common notation S = kB log(W).[16]
51This reflects the irreversable loss of information (appendix A.6)
52There do exist though a variety of similar numerical schemes that can even be applied to highly

compressible flow (appendix F). So far though those schemes lack significant advantage over traditional
CFD methods.

22

2.2. Incompressible LBM

form of the collision operator rather than using non-deterministic collision rules. This
kind of description that lies somewhere in between micro- and macroscale is called
mesoscopic (figure 2.6). [20]

T, p,~v

T, p,~v

T, p,~v

T, p,~v

T, p,~v

T, p,~v

T, p,~v

T, p,~v

T, p,~v

Micro Meso Macro

Figure 2.6.: The three different scales of fluid modeling: Micro-, meso- and macroscopic: Macroscopic
models directly simulate collisions of particles while macroscopic models operate on basis of
macroscopic parameters such as density, pressure, velocity and temperature.

Paradoxically this leads to a relatively simple algorithm which describes the advection
of distribution functions and can be interpreted as streaming and colliding of particle
clusters across a finite number of nodes. Due to its simplicity it is distinctly faster than tradi-
tional CFD, requires fewer resources and has huge advantages dealing with complex
boundary conditions, implementing microscopic interactions and parallelisation.
The limiting factor is mainly the chosen collision operator. Due to its simplicity the
Bhatnagar-Gross-Krook (BGK) collision model [21] is most commonly used but
struggles in particular with high Reynolds number flow due to its highly viscosity-
dependent stability. This led to a variety of more complex collision operators that relax
hydrodynamic moments individually and turbulence models making this method even
suitable for high Reynolds flow without triggering instabilities.
Regardless of the chosen fluid and despite the more complicated interactions between
particles in a real fluid one is able to recover desired macroscopic equations (top-down
approach) or approximate the microscopic level (bottom-up approach). This duality enables
a broad usage of LBM in a lot of sectors. [20] As the method is still in development
with thousands of papers published every year it is still not possible to set boundaries
to its possibilities. Various successful applications have been reported over the years
including turbulent flows [22]–[24], free-surface flows [25], non-Newtonian fluids [26],
[27], multi-component [28] and multi-phase flows [29], fluid flow in porous media
[30], micro-particles in fluid [31], blood flow [32], electrochemical systems [33], ion
transport in nano-channels [34], reactive flow in fuel cells [35], fluid simulation in the
non-hydrodynamic regime [36], [37] and many others.

2.2.1. Derivation of incompressible Lattice-Boltzmann

The incompressible Lattice-Boltzmann algorithm can be derived in multiple ways.
Generally the asymptotic derivation is done using the Chapman-Enskog expansion as
presented here or Grad’s Hermite expansion series is applied [38]. In any case a particular
collision operator has to be chosen for the derivation. The most common ones found
in the literature are described below.

23

2. The Lattice-Boltzmann Method

2.2.1.1. Collision operators

The biggest challenge in solving the Boltzmann equation consists in simplifying the
collision term. The idea behind all common collision terms is modelling the effect of
the collision rather than the collision itself : Every collision of a non-equilibrium system
has the scope to relax it back to a local equilibrium which is assumed linearly. This
approach is able to preserve the leading moments of the distribution that are needed
to recover the macroscopic conservation equations.

Bhatanagar-Groos-Krook (BGK)
The best known model, the so called BGK-model, was introduced by Bhatnagar, Gross
and Krook in 1954.[21] It is the classic LBM collision operator and due to its simplicity
probably the main reason for the success of LBM. Up to now no other model is so
flexible and can be used so universally but aöö this comes at the cost of reduced stability.
The model is relaxed linearly towards a discretized Maxwell-Boltzmann distribution
using a single relaxation time τ and is therefore also referred to as Single-Relaxation-
Time (SRT) model. Instead of τ often its inverse, the collision frequency ω, is used.

Ω =
1
τ
(f (eq)

α − fα)

Normally the relaxation time is kept constant throughout the domain but more sophis-
ticated versions introduce local tuning of the relaxation time. It should be emphasised
that in any case even though the resulting equation might look linear it absolutely
isn’t as the local equilibrium term itself implicitly depends on the flow field.

Entropic collision operators (eLBM)
One problem with the BGK operator is that the second law of thermodynamics is not
explicitly enforced: A system with BGK operator might lead to an increase in entropy
locally and thus violate it. Entropic models, similarly to BGK, use a simple relaxation
towards equilibrium but enforce the H-theorem rendering the scheme unconditionally
stable but at a huge computational cost as generally an implicit equation for every
node has to be solved. [39], [40], [41]

Multiple-Relaxation-Time (MRT)
The basic idea of Multiple-Relaxation-Time (MRT) models is transferring the collision
to the momentum space using a transformation matrix and therefore relaxing moments
rather than populations.53 A general collision matrix with multiple relaxation times
replaces the single relaxation time used in BGK and allows the moments’ relaxation to
be adjusted individually. Some of those are physically meaningful while others, called
ghost modes, are not and can be used to enhance the model and get rid of numerical
anomalies. Most commonly used is the model by D’Humières [42] where relaxation
parameters of ghost modes are obtained from a linear stability analysis.54

53One can choose as many moments as discrete velocities. Generally the density and the momentum in
every direction are chosen and additional moments for example for the stresses are introduced.

54The MRT collision operator degenerates to BGK if the diagonal values are all chosen identically and
the off-diagonal ones are set to zero and reduces to TRT when the even and odd eigenvalues take specific
values respectively. [43]

24

2.2. Incompressible LBM

Two-Relaxation-Time (TRT)
Two-Relaxation-Time (TRT) models [44] can be seen as a special case of the MRT
collision operators. Even- and odd-order moments in velocity are relaxed with two dif-
ferent relaxation rates ω+ and ω−. This can be achieved without a transformation to
momentum space and therefore it combines the simplicity and efficiency of BGK with
the accuracy and stability of MRT.
Populations can be decomposed into symmetric and antisymmetric parts according to

f+α =
fα + fᾱ

2
, f−α =

fα − fᾱ

2
,

f (eq)+
α =

f (eq)
α + f (eq)

ᾱ

2
, f (eq)−

α =
f (eq)
α − f (eq)

ᾱ

2
,

where the overlined indices α indicate the opposite direction of α. The rest population
f0 is attributed to f+ while f−0 and f (eq)−

0 are zero respectively. The individual popu-
lations can be reconstructed by

fα = f+α + f−α , fᾱ = f+α − f−α ,

f (eq)
α = f (eq)+

α + f (eq)−
α , f (eq)

ᾱ = f (eq)+
α + f (eq)−

α .

resulting in discrete equation very similar to the BGK-Lattice-Boltzmann equation

fα(~x +~ci∆t, t + ∆t) = fα(~x, t) + ω+(f (eq)+
α − f+α) + ω−(f (eq)−

α − f−α)

In this case only ω+ is connected to the shear viscosity by

ν = c2
s

(1
ω+
− 1

2

)

whereas ω− is left as a free parameter.
Instead of adjusting ω− generally the so called magic parameter Λ

Λ =
(1

ω+
− 1

2

)(1
ω−
− 1

2

)

is altered as it has been linked to stability and accuracy. For the most stable simulation
Λ = 1

4 should be chosen whereas Λ = 3
16 was shown to result in a wall location exactly

in the middle between the walls and the fluid nodes for the case of Poiseuille flow.
Keeping Λ fixed in between simulations furthermore eliminates the relaxation time
dependent errors typical for BGK.

Central moments collision operators
This category of collision operators can be seen as an extension of the MRT collision
operator: The collision step is also performed in the momentum space but in a reference
frame moving with the particle velocity (referred to as central moments). In particular
the cumulant collision operator proposed by Geier employs 9 discrete velocities in 2D
and 27 in 3D in order to reduce the Galilean invariance exhibited by the traditional
LBM models. [45], [46] Similar collision operators are reported to be used in the most
common commercial LBM solver, Dassault System’s XFlow. [47]

25

2. The Lattice-Boltzmann Method

2.2.1.2. Chapman-Enskog expansion

Boltzmann equation

Lattice-Boltzmann
equation

Navier-Stokes simulation
with Lattice-Boltzmann

Hermite expansion and
method of characteristics

Chapman-Enskog
expansion

time discretisation
error

space discretisation
error

compressibility
error

Figure 2.7.: The steps in the incompressible Lattice-Boltzmann derivation

The derivation of the Lattice-Boltzmann method can be done in multiple ways which
are all quite cumbersome. The traditional derivation applying the Chapman-Enskog
analysis using a D2Q9 lattice is therefore only given in appendix E.1. The basic
idea behind it consists in applying a multi-scale expansion in a small parameter ε
which is generally seen as the Knudsen number as it appears in the non-dimensional
Boltzmann equation (appendix C.3.5). Using a perturbed series to the equilibrium
distribution function and combining conserved momenta one is able to yield equations
resembling the continuity and momentum conservation with numerical artefacts of
order O(Ma2) but lacking the energy equation (figure 2.7).

Figure 2.8.: Velocity magnitude around a solid sphere: A wave of constant velocity running into the obstable
causes compressibility artefacts

This is no issue for the case of isothermal incompressible flow where the energy equation
is decoupled. Therefore LBM is generally used for simulations in the limit of small
Mach numbers where the additional error source apart from the obvious discretisation
errors in space and time, the compressibility error, as well as the thermal decoupling does
not matter. This renders LBM a quasi-compressible solver: It simulates incompressible
flow by allowing compressibility but at the same time permits higher lattice velocities
to be used and therefore a more coarse temporal resolution making the simulation

26

2.2. Incompressible LBM

particularly fast.55 Therefore, LBM is plagued by compressibility artefacts like shock
waves as can be seen in figure 2.8.

2.2.1.3. Energy equation

The problem with the basic D2Q9 lattice as well as with all other common lattices
is that they lack particle speeds in order to be able to conserve the energy equation
as well. One has to turn to more complicated multi-speed models [48], include local
non-linear correction terms [49] or introduce another set of distribution functions for
advection-diffusion reflecting the energy equation (chapter E.3) and possibly coupling
the two lattices. This effectively doubles our number of distribution functions but is
computational quite ineffective although relatively easy to implement. It should be
noted that this requires a different Chapman-Enskog expansion for advection-diffusion
and different boundary conditions, that can be found in [13].

2.2.2. Non-dimensionalisation

Generally in LBM special lattice units are chosen as simulation parameters: The side of
a single lattice ∆x as well as the simulation time step ∆t are chosen to one for the sake
of simplicity and the other parameters for the simulation are scaled accordingly. The
correlation between the simulation and a particular physical system is made through
dimensionless, scale-independent numbers. In case of the incompressible Navier-Stokes
equations the only characteristic number of relevance is the Reynolds number: Other
relevant numbers like the Mach and the Knudsen number are assumed small and
their influence on the calculation can be neglected.
This leads to three layers of parameters : Dimensioned physical parameters must be
converted into a dimensionless system by choosing appropriate characteristic measures
(index d) and finally to a discrete simulation (lattice units, index lb) by choosing a
discrete space and time step. [50], [51]
For the characteristic measures one may introduce the primary conversion factors for
space cL and velocity cU according to

Ld = cL Llb, Ud = cU Ulb, ρd = cρ ρlb.

Dividing the two equations the corresponding conversion factor for time cT can be
found to

Td =
cL
cU

Tlb = cT Tlb.

Through dimension analysis also other conversion factors like for the viscosity

νd = cU cL νlb = cν νlb

and the pressure

pd =
cρ c2

L
c2

t
plb = cρ c2

U plb = cp plb

can be established.

55In my opinion one should think of LBM as a fictitious dilute model gas with good numerical properties
that correlates with real system due to the laws of similarity.

27

2. The Lattice-Boltzmann Method

2.2.3. The algorithm

c0
c1

c5c2c6

c3

c7 c4 c8

D2Q9

c0
c1

c2
c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

c18

D3Q19

Figure 2.9.: The most commonly used LBM lattices: D2Q9 (left) and D3Q19 (right)

Using the Chapman-Enskog expansion one yields in case of the BGK operator a simple
evolution equation that preserves the Navier-Stokes equations on a macroscopic level: The
Lattice-Boltzmann equation56

fα(~x +~eα∆t, t + ∆t) = fα(~x, t) +
1
τ
(f (eq)

α (~x, t)− fα(~x, t))

where f (eq)
α is the discrete Maxwell-Boltzmann distribution function given by

f (eq)
α (~x, t) = wαρ

[
1 +

(~eα · ~u)
c2

s
+

(~eα · ~u)2

2c4
s
− ~u2

2c2
s

]

where the weights wα depend on the chosen discretisation (common discretisations
are presented in the next section).
The equation of state

p = c2
s ρ

links density and pressure for this model where the lattice speed of sound57 is given for
all common models by

cs =
c√
3

,

where
c =

∆x
∆t

,

is the velocity emerging from the discretisation with ∆x and ∆t, which are usually
chosen to 1 and the viscosity degenerates to a model constant that has to be tuned to
match the physical Reynolds number

νlb =
(2τ − 1)

6
∆x2

∆t
.

Examples for common lattices are the D2Q9 and the D3Q19-lattice58 (figure 2.9) that
will be also subject to this thesis.

56This is one equation for every discrete direction α with a corresponding equilibrium distribution.
57Thermodynamically it has the significance of an isothermal speed of sound c2

s =
(

dp
dρ

)
T
= RT.

58Both models involve a rest node for particles currently at rest.

28

2.2. Incompressible LBM

This algorithm can further be split up into two steps:59

The collision step

f t
α(~x, t + ∆t) = fα(~x, t) +

1
τ
(f (eq)

α − fα)

in which the system is relaxed linearly towards a Maxwell equilibrium distribution
and the streaming step

fα(~x +~eα∆t, t + ∆t) = f t
α(~x, t + ∆t)

where the distribution functions are streamed to the neighbouring cells (figure 2.10).

C
ol
li
si
on

S
tr
ea
m
in
g

Figure 2.10.: The basic steps of the LBM algorithm: Collision and streaming

This lets us define the algorithm as follows (figure 2.11)60:

1. Initialisation (section 2.2.8) of the macroscopic values density ρ and velocity ~u and
conversion to the mesoscopic distribution functions fα (normally by assuming
fα = f (eq)

α).
2. Calculate macroscopic density ρ and velocity ~u from the mesoscopic values of fα

using its moments
3. Compute the local equilibrium distribution function f (eq)

α of a node
4. Collision step using the equilibrium distribution
5. Streaming step with the post-collision populations
6. Special treatment for boundary conditions (section 2.2.9)
7. Repeat steps 2 to 6

The simulation time step can’t be adjusted independently but is rather set by the combination
of characteristic velocity and characteristic length. This means short time steps are
connected to smaller compressibility errors while larger time steps introduce larger
compressibility errors. One should try to keep the local Mach number, defined by the
local speed of sound, comparably small throughout the domain

Ma =
Ulb
cs
� 1

59For an efficient implementation it is though common practice to use only one loop and do both steps
at once

60Of course this algorithm can be modified to accommodate additional steps. In the case of no-slip
boundaries using half-way bounce-back the algorithm can be changed to a single step that handles collision
and streaming altogether and then the corresponding boundary cells are corrected by streaming backwards.

29

2. The Lattice-Boltzmann Method

initialisation
ρ, ~u→ fα

moment update
fα → ρ, ~u

equilibrium

ρ, ~u→ f
(eq)
α

collision
fα, f

(eq)
α → f tα

streaming
f tα → fα

boundary
conditions

new time step
t = t+ ∆t

output
t+∆ t

force
computation

full-way
bounce-back

half-way
bounce-back

Figure 2.11.: Schematic LBM algorithm

with enough overhead for acceleration due to small channels such as in porous media.61

The domain resolution is adjusted arbitrarily and enforcing Reynolds similitude with

Re =
UlbLlb

νlb

one yields the simulation viscosity νlb.

2.2.4. Discretisations

Generally the Boltzmann equation is discretised introducing what could be seen as a
explicit finite-difference discretisation on a regular cubic grid. The corresponding discrete
lattices are denoted in the DdQq notation where d corresponds to the number of di-
mensions in the problem and q is the number of symmetric finite velocities. Depending
on the problem solved a rest particle with velocity 0 might be required leading to odd
velocity sets.

2.2.4.1. D2Q9

The D2Q9 model is arguably the most common 2D model for incompressible flow.
The lattice and the corresponding possible orientations of boundary conditions can be

61I personally try to keep the maximal over-speed in the resulting domain |~u| due to contractions at
around 0.1.

30

2.2. Incompressible LBM

seen in figure 2.12.
The collision frequency is given by

ω =
1

3ν + 1
2

and the lattice velocities can be calculated to
[

eαx
eαy

]
= c

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]

with the corresponding weights

wα =
[4

9
1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

]
.

c0
c1

c5c2c6

c3

c7 c4 c8 x

y

north

south

east west

Figure 2.12.: The D2Q9 model and all possible boundary node locations for 2D

2.2.4.2. D3Q19

The D3Q19 model is one of the most common models for simulation of 3D incom-
pressible flow as it is about a third less computational heavy then the D3Q27 model
while delivering similar accuracy. The lattice as well as all possible boundary node
locations are depicted in figure 2.13.

c0
c1

c2
c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

c18

x

y

z

bottom

back
left

x

y

z

top

front right

Figure 2.13.: The D3Q19 model and all possible boundary node locations

The collision frequency is given just like for the D2Q9-model by

ω =
1

3ν + 1
2

31

2. The Lattice-Boltzmann Method

and the lattice velocities can be calculated to



eαx
eαy
eαz


 = c




0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1




with the corresponding weights

wα =
[1

3
1

18
1

18
1

18
1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

]
.

2.2.5. Macroscopic quantities

The scheme operates on the level of the mesoscopic distribution functions. The relevant
macroscopic quantities can be determined as moments of those distribution function,
similarly to kinetic theory (appendix C.3.3), according to table 2.1.

Moment Macroscopic property

ρ = ∑
α

fα = ∑
α

f (eq)
α Density

ρvi = ∑
α

eαi fα = ∑
α

eαi f (eq)
α Velocity

τij = ∑
α

eαieαj(f (eq)
α − fα) Viscous tress tensor

p = ∑
α

fαc2
s = ρc2

s Pressure

Table 2.1.: Relation between the mesoscopic moments and the macroscopic properties in Lattice-Boltzmann

2.2.6. Errors and accuracy

In traditional CFD methods it is generally possible to analyse the truncation error in
the descretised equations directly and derive a formal order of accuracy. This is closely
connected to the convergence of the numerical solution. In Lattice-Boltzmann though
this cannot be done so easily as it is no direct discretisation of the Navier-Stokes
equation.
Simulating incompressible flow with LBM one can identify numerical and modelling
errors as the two main error sources (figure 2.14). The numerical errors emerge due to
discretisation of the Boltzmann equation similarly to traditional methods and can be
split up into three parts: [5]

• The round-off error emerges due to the fact that every computer is restricted
to finite precision. It can be neglected if more significant digits (e.g. double
precision with around 16 decimal digits) are used.62

• The iterative error is introduced due to the explicit time-marching.

62Some programs use large integer numbers instead as integer arithmetic on computers has certain
computational advantages.

32

2.2. Incompressible LBM

• The discretisation error emerges from the approximation of a continuous partial
differential equation by a system of algebraic equations with a finite number of
nodes.

As LBM is an artificial algorithm tuned in order to fulfil the incompressible Navier-
Stokes equations another kind of error term emerges: the modelling error. It describes
the deviation of our derived algorithm from the Navier-Stokes equations and originates
in the low Mach number expansion of the equilibrium distribution function. This grid
independent error limits LBM to the simulation of weakly compressible fluids and
gets bigger as the Mach number increases. Thus, it is also referred to as compressibility
error.

errors in LBM

modelling error EMa

numerical
errors

round-off error

iterative error E∆t

discretisation error E∆x

Figure 2.14.: The different types of error sources in LBM: The numerical errors are found in every discrete
numerical simulation of a continuous system while the modelling error emerges from the low
Mach number expansion.

As the round-off error can generally be neglected this leaves us with three main
sources of error [50]: A discretisation error in space E∆x as well as in time E∆t and
finally a compressibility error EMa linking the former two. While formally the governing
equation looks like a first order explicit discretisation of the Boltzmann equation it can
be shown through re-parametrisation to be actually equivalent to the second order
discretisation,[5] meaning the discretisation errors scale with O(∆x2) and O(∆t2)
respectively. This leaves us with an overall error according to

E = E∆x + E∆t + EMa = O(∆x2) +O(∆t2) +O
(

∆x2

∆t2

)
.

This means the space and time step can’t be adjusted independently: In order to achieve
optimal results one should adjust them so the overall error is minimum. Refining the
grid one would wish for a higher accuracy, so that the compressibility error won’t take
over. This implies that both errors, for space and compressibility, should be kept at the
same order E∆x ∼ EMa leading to:

∆t ∼ ∆x2

The above stated relation reduces LBM though to an effectively only first-order accurate
scheme in time. The discretisation even though being of second order accuracy can only
replicate the incompressible Navier-Stokes equations with a first order time accuracy. [5],
[50]

33

2. The Lattice-Boltzmann Method

2.2.7. Stability

It might happen that a combination of certain input parameters and boundary con-
ditions lead to a drift: Exponentially growing errors of populations and, therefore, also
densities or velocities causing NaN (’Not a number’) values of the relevant quantities.
This is referred to as instabilities and in conventional CFD it is strictly linked to the
Courant number. In LBM however the Courant number is always equal to unity and
stability analysis is significantly more complicated: There is at least another degree of
freedom available resulting from its kinetic nature; in case of the BGK operator the
relaxation time τ. The inherently time-dependent Boltzmann equation can be seen more
as an evolution equation that does not know, where it is heading.
Therefore, it is hard to predict the precise stability limits analytically but the major
factor for instabilities stems from under-resolution: Inadequately resolved grids might
cause divergent and unstable solutions especially for complex turbulent flow. In the
case of single-relaxation models this can be attributed to over-relaxation of higher
moments and can be partially avoided by turning to more complex collision oper-
ators. A main threat to the stability are negative populations that might occur with
the basic collision operators: Theoretically only positive populations are valid but
negative populations might appear with certain parameter combinations in nodes
with high velocity gradients. Single negative populations may be cancelled out in the
next collision step but multiple negative populations within a single cell can lead to
a negative mass, and, therefore to a failure of the whole scheme. Equally too high
velocities or pressure waves caused by incorrect initial or boundary conditions can cause
an increasing compressibility error, leading the model to break down. Additionally
most models’ insufficient Galilean invariance is considered another important factor for
divergent solutions. [52]
One distinguishes between sufficient and necessary stability conditions: Necessary sta-
bility conditions must be fulfilled in order to achieve stability but themselves do
not guarantee a stable simulation: Other necessary stability conditions might have
not been met. Sufficient stability conditions on the other hand guarantee a stable
simulation. The least restrictive combination of necessary conditions is referred to as
optimal conditions. [5]
One necessary stability condition in LBM is the non-negativity of the viscosity and hence
for the BGK operator

τ

∆t
≥ 1

2
has to be fulfilled. This is an important restriction: For the simple BGK operator
stability and viscosity are linked. Choosing a more advanced model, like the two
relaxation time (TRT), they can be decoupled. [53] Though the closer a particular
relaxation time is to the stability limit the more likely is the simulation to crash due to
emerging negative populations.63

For a system without any boundary conditions the non-negativity of all equilibrium pop-
ulations is considered a sufficient stability condition and an optimal stability condition
is found assuming non-negativity of the rest equilibrium population considering the
range τ/∆t ≥ 1 leading to [54]

|~u| <
√

2
3

∆x
∆t

.

63For low velocities the lattice is rest node heavy: The rest node is the major population while the other
populations are comparably small. Any small instability is dampened by the relatively large rest node
population. For higher velocities this shifts and the algorithm becomes increasingly unstable.

34

2.2. Incompressible LBM

2.2.8. Initial conditions

Generally the initial conditions are simply chosen as the equilibrium distribution. For
unsteady, time-dependent problems in particular for time-dependent boundaries this
might not be sufficient and it might be necessary to also initialise the non-equilibrium
distributions correctly. This can be done using the initialisation algorithm according to
Mei (figure 2.15). [55]

initialise fi
with u0(x)

calculate
local density
ρ(x) =

∑
i

fi(x)

collision step
feqi (ρ(x), u(x))

streaming step convergence? stop

no

yes

Figure 2.15.: Schematic initialisation algorithm according to Mei

2.2.9. Boundary conditions

A crucial step for every numerical simulation is finding suiting boundary conditions.
As boundary conditions select solutions that are compatible with the external constraints, a
single inappropriate boundary may lead to errors and completely wrong results.

Figure 2.16.: A complex boundary (left) and the corresponding stair-cased simple boundary (right)

Unlike in conventional CFD methods the boundary conditions in Lattice-Boltzmann
work rather counter-intuitively: Rather than working with macroscopic quantities like
density and velocity one has to impose rules for the intangible mesoscopic distribution
functions. Most of the time the arising equation system is under-determined: There is
too little information given to reconstruct the distribution functions completely and
hence certain symmetries for the unknown populations have to be assumed, meaning
the boundary conditions have to be derived separately for every different lattice.
Additionally boundary conditions in LBM are not unique: There exist a variety of
methods for the same type of boundary condition. Due to the extremely fast algorithm
one would wish for simple and local boundary conditions that do not significantly affect
the computational speed.
Boundaries not aligning with the grid cutting mesh cells have to be taken into account
either by simply stair-casing the boundary (figure 2.16) or using more sophisticated
methods like extrapolation. [56] We will assume in the context of this thesis that every
boundary can be stair-cased and modelled as a simple boundary. This is totally viable
if the domain resolution is chosen fine enough to resolve the geometry adequately but

35

2. The Lattice-Boltzmann Method

it has to be reconsidered whenever accuracy is crucial.

physical boundary physical boundary

computational boundary

computational boundary =

link-wise wet-node

Figure 2.17.: The two main types of boundary conditions: link-wise and wet-node

Generally the boundary conditions are modelled as a special sort of collision between
fluid particles and solid boundaries. There are two distinct approaches for boundary
conditions. Either simple reflection rules for the populations are prescribed (link-wise
methods) or populations are calculated from a system of equations (wet-node approach).
Link-wise methods are algorithmically easy and naturally extend to different lattices
but at the same time result in a shift of the actually boundary approximately half-way
between solid and boundary nodes (figure 2.17). For wet-node boundaries the compu-
tational domain corresponds exactly to the physical domain but at the same time it is
computationally more complicated and the set of equations must be derived for every
single lattice individually. Additionally mass conservation is not exactly guaranteed in
the case of wet-node techniques but is still consistent with the overall accuracy of the
scheme. [5]

2.2.9.1. Transformation tables

The boundary conditions presented in the following section may be transformed to
any lattice orientation with a simple transformation. This can be easily done using
transformation tables that describe which index of the current orientation corresponds
to which index in a given orientation. For the D2Q9 lattice the indices transform
according to table 2.2 while the D3Q19 lattice transforms according to table 2.3.

location lattice velocities velocities

south [0, 1, 2, 3, 4, 5, 6, 7, 8] [ux, uy]

north [0, 3, 4, 1, 2, 7, 8, 5, 6] [−ux,−uy]

east [0, 2, 3, 4, 1, 6, 7, 8, 5] [uy,−ux]

west [0, 4, 1, 2, 3, 8, 5, 6, 7] [−uy, ux]

Table 2.2.: Transformation table for the D2Q9 lattice (reference configuration south)

36

2.2. Incompressible LBM

location lattice velocities velocities

bottom [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] [ux, uy, uz]

top [0, 2, 1, 3, 4, 6, 5, 11, 12, 14, 13, 7, 8, 10, 9, 16, 15, 18, 17] [−ux, uy,−uz]

back [0, 1, 2, 5, 6, 4, 3, 9, 10, 8, 7, 13, 14, 12, 11, 17, 15, 18, 16] [ux, uz,−uy]

front [0, 1, 2, 6, 5, 3, 4, 10, 9, 7, 8, 14, 13, 11, 12, 16, 18, 15, 17] [ux,−uz, uy]

left [0, 6, 5, 3, 4, 1, 2, 16, 18, 10, 14, 15, 17, 9, 13, 7, 11, 8, 12] [−uz, uy, ux]

right [0, 5, 6, 3, 4, 2, 1, 15, 17, 13, 9, 16, 18, 14, 10, 11, 7, 12, 8] [uz, uy,−ux]

Table 2.3.: Transformation table for the D3Q19 lattice (reference orientation bottom)

2.2.9.2. Periodic boundaries

Periodic boundary conditions (figure 2.18) mean that distribution functions leaving
the domain in one direction are re-entering from the opposite side. This is extremely
useful in porous media where just a representative volume element is modelled and
the rest of the domain is mirrored using periodic boundary conditions. Normally every
Lattice-Boltzmann algorithm has implemented this method generically: The distribution
functions are shifted circularly to the neighbouring cells and hence every cell at the
border of a domain that isn’t restricted by a boundary condition is automatically
handled as a periodic boundary.

Figure 2.18.: Periodic boundary conditions: Populations before (left) and after streaming (right)

2.2.9.3. No-slip walls

In dense viscous fluids one can assume that the fluid has zero velocity at any solid
boundary: The adhesion forces between the first layer of fluid particles and the wall
will be larger than the cohesion forces between the particles.64 This is referred to
as no-slip wall and leads to the development of a boundary layer. In LBM no-slip
walls are generally modelled by the so called bounce-back scheme due to its simplicity.
It is simply assumed that incoming particles are reflected back into the domain.
Algorithmically two possible ways can be realised: Either the streaming or the collision
step are replaced by the bounce-back algorithm.

64The huge number of particles will lead to diffuse reflection.

37

2. The Lattice-Boltzmann Method

Figure 2.19.: No-slip wall modelled with full-way bounce-back method

In case of full-way bounce-back (on-grid bounce-back) populations travelling towards
the wall leave the fluid domain and in the next time step the collision step for the first
layer of boundary cells is replaced by a reflection of all populations (figure 2.19). Even
though algorithmically easier this delay spanning two time steps degrades full-way
bounce-back time accuracy to first-order. Alternatively in the case of half-way bounce-
back populations travelling towards the wall are reflected in the same time step: The
streaming step is replaced for the boundary cells by an inversion only of the relevant
populations (figure 2.20).65

Figure 2.20.: No-slip wall modelled with half-way bounce-back method

Both approaches belong to the family of link-wise methods: By Chapman-Enskog
analysis it can be proven that the boundary is located in between solid and boundary
nodes. The exact position is varying depending on the viscosity if used with the single
relaxation time BGK collision operator. [5] This can be interpreted as a small tangential
velocity if the boundary is assumed half-way between the nodes which is a major
drawback: In order for results to be comparable one has to ensure the same viscosity
by varying the other parameters or by choosing another collision operator.
In case of full-way bounce-back the populations in the boundary change indices accord-
ing to

ᾱ(α) = [0, 3, 4, 1, 2, 7, 8, 5, 6]

for D2Q9 and

ᾱ(α) = [0, 2, 1, 4, 3, 6, 5, 12, 11, 14, 13, 8, 7, 10, 9, 18, 17, 16, 15]

for D3Q19.

65I personally simply reverse the streaming step for the boundary cells after the combined collision-
streaming step to achieve this behaviour.

38

2.2. Incompressible LBM

2.2.9.4. Free-slip walls

For low Knudsen numbers as it is the case for very low pressure in rarefied gases the
above mentioned principle of no-slip walls can’t be applied. Instead it can be assumed
that no momentum is exchanged with the wall along the tangential component:
There is no friction between boundary and fluid, the tangential momentum remains
unchanged and a simple elastic collision can be assumed (figure 2.21).

Figure 2.21.: No-slip (left) and free-slip boundary conditions (right)

2.2.9.5. Velocity and pressure boundaries

Both velocity and pressure boundary conditions can act either as in- or outlets de-
pending on their orientation in the flow field. They pose no explicit restriction for the
mass flow: Outflow can also happen on pressure inlet and backflow at pressure outlet
boundaries.
As the LBM approach is only valid for incompressible fluids this links pressure to
density rendering a pressure boundary condition basically a density boundary condition.
Even though over the last couple of years other approaches have been suggested in lit-
erature for velocity and pressure boundaries [57] the most common ones for the D2Q9
and D3Q15-models are still the Zou/He boundary conditions introduced by Qisu Zou
and Xiaoyi He in 1995 [58]. The emerging system of equations is under-determined and
the bounce-back of the non-equilibrium part of the distribution population f (neq)

i = fi − f (eq)
i

normal to the boundary has to be assumed. In 2008 Martin Hecht and Jens Harting
expanded this approach to the D3Q19 lattice [59]. As the resulting equation system
is over-determined two additional variables, the so called transversal momentum
corrections, Nz

x and Nz
y have to be introduced. Both of the above mentioned boundary

conditions are reported to be second order accurate but if walls do not coincide with the
lattice nodes the accuracy reduces to first order.
Here only the equations for the main orientations (south for 2D and bottom in the
case of 3D) are given but, using the transformation tables presented in the previous
section, boundaries with arbitrarily oriented boundaries can be generated.

D2Q9: Zou/He
For a boundary oriented at the bottom (orientation south), with f4, f7 and f8 pointing
into the wall, after streaming f0, f1, f3, f4, f7 and f8 are known and f2, f5, f6 and the
density ρ or the velocity uy have to be determined. The equations available are the
zeroth ρ = ∑α fα and first momenta ρ~u = ∑α~eα fα of the distribution functions:

ρ =
8

∑
α=0

fα = f0 + f1 + f3 + f4 + f2 + f5 + f6 + f7 + f8,

39

2. The Lattice-Boltzmann Method

ρux = f1 + f5 + f8 − (f3 + f6 + f7),

ρuy = f2 + f5 + f6 − (f4 + f7 + f8)

where ux = 0 in case of a pressure boundary.
As this system is under-determined an additional equation has to be introduced. This
is done by assuming that the bounce-back rule still holds for the non-equilibrium part of
the particle distribution normal to the boundary

f2 − f (eq)
2 = f4 − f (eq)

4 .

This yields in the case of a velocity boundary

ρ =
1

1− uy
[f0 + f1 + f3 + 2(f4 + f7 + f8)]

and for a pressure boundary

uy = 1− 1
ρ0

[f0 + f1 + f3 + 2(f4 + f7 + f8)]

with
f2 = f4 +

2
3

ρuy,

f5 = f7 −
1
2
(f1 − f3) +

1
2

ρux +
1
6

ρuy,

f6 = f8 +
1
2
(f1 − f3)−

1
2

ρux +
1
6

ρuy,

where ux = 0 and ρ = ρ0 in case of a pressure and ux = uy = 0 for a no-slip
boundary.

D3Q19: Hecht/Harting
Martin Hecht and Jens Harting expanded this approach to 3D leading to the equation
system:

ρ =
18

∑
α=0

fα,

ρvx = f1 + f7 + f8 + f9 + f10 − (f2 + f11 + f12 + f13 + f14),

ρvy = f3 + f7 + f11 + f15 + f16 − (f4 + f8 + f12 + f17 + f18),

ρvz = f5 + f9 + f13 + f15 + f17 − (f6 + f10 + f14 + f16 + f18),

Now again bounce-back of the non-equilibrium part perpendicular to the boundary is
assumed

f5 − f (eq)
5 = f6 − f (eq)

6 .

This equation system is now over-determined so another two variables, the transversal
momentum corrections Nz

x and Nz
y , are introduced:

Nz
x =

1
2
[f1 + f7 + f8 − (f2 + f11 + f12)]−

1
3

ρvx

Nz
y =

1
2
[f3 + f7 + f11 − (f4 + f8 + f12)]−

1
3

ρvy

40

2.2. Incompressible LBM

In case of a pressure boundary this yields

vz = 1− 1
ρ0

[f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19 + 2(f6 + f10 + f14 + f16 + f18)]

and in the case of a velocity boundary this results in

ρ =
1

1− vz
[f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19 + 2(f6 + f10 + f14 + f16 + f18)].

And the unknown populations are then determined by

f5 = f6 +
1
3

ρvz,

f9 = f14 +
ρ

6
(vz + vx)− Nz

x ,

f13 = f10 +
ρ

6
(vz − vx) + Nz

x ,

f15 = f18 +
ρ

6
(vz + vy)− Nz

y ,

f17 = f16 +
ρ

6
(vz − vy) + Nz

y .

Again these equations can be transformed to arbitrary orientations using the transfor-
mation table presented in the previous section.

2.2.9.6. Pressure waves and non-reflecting boundaries

As Lattice Boltzmann is in fact a compressible fluid solver, sound waves might appear
due to initial conditions as well as in unsteady and oscillating flow. Populations
get reflected by walls and boundary conditions and spread wave-like until they
are dampened out. Every boundary that enforces either constant density or constant
pressure reflects pressure waves, and therefore affects accuracy negatively. In order to
reduce the issue of reflected pressure waves there exist two different approaches:
Several nodes thick absorbing layers absorb the pressure waves while characteristic
boundary conditions are implemented around the proper boundary conditions and
impose macroscopic values in such a way that no waves are reflected. [6], [13]

2.2.9.7. Corner treatment of boundary conditions

Particular care must be given to corners and edges of wet-node boundaries as they might
degrade the overall quality of the simulation. In 2D (figure 2.22) for concave corners the
problem is under-determined and additional constraints have to be introduced. Convex
corners are over-determined, generally a simple bounce-back for the single unknown
population is assumed. In 3D there are even more possible cases with edges and
corners (figure 2.23). For the D3Q19 lattice an approach is provided by Hecht and
Harting. [59]

41

2. The Lattice-Boltzmann Method

convex

concave

Figure 2.22.: Possibilities for corners in a 2D simulation

Figure 2.23.: 3D involves a lot more possible corner and edge orientations than its 2D counterpart

2.2.10. Forces on structures

Generally forces on structures are calculated using the stress tensor of the neighbouring
cells. For half-way bounce-back a more straight forward approach might be used based
on the transfer of momentum across the boundary, namely the momentum exchange
algorithm.

2.2.10.1. Momentum exchange algorithm

The momentum exchange algorithm, short MEA, is based on calculating the change
of momentum due to populations hitting the wall and bouncing back. Before every
simulation the links between boundary and solid nodes have to be identified and
at each time step the incoming f (in)α and outgoing populations f (out)

α have to be
determined (2.24).

Figure 2.24.: Relevant incoming f (in)α (left) and outgoing populations f (out)
α (right) for the momentum

exchange algorithm

The change of momentum of a single direction can be calculated to

∆~pα = ~p(in)α − ~p(out)
ᾱ = f (in)α ~eα − f (out)

ᾱ ~eᾱ.

42

2.2. Incompressible LBM

For a stationary wall modelled with half-way bounce-back obviously the incoming and
outgoing populations are identical f (out)

ᾱ = f (in)α and with ~eᾱ = −~eα the change of
impulse simplifies to

∆~pα = 2 f (in)α ~eα.

The total change of momentum ∆P can be found by summing up all the contributions
by every relevant direction α of every boundary link xw

i :

∆~P = ∆x3 ∑
xw

i

(f (in)α + f (out)
ᾱ)~eα.

The corresponding force can then be calculated to

~F =
∆~P
∆t

.

This approach can be easily implemented into the standard LBM algorithm without
slowing it down significantly delivering overall second order accurate results.

2.2.11. Turbulence models

Turbulence models in Lattice-Boltzmann play two important roles: They allow simula-
tions of higher Reynolds number flow and they increase the viscosity and thereby the
stability in particular by decreasing the effects of pressure waves.66

2.2.11.1. Smagorinsky turbulence model

Eddy viscosity models like the aforementioned Smagorinsky turbulence model can be
implemented quite easily into LBM simulations.67 Instead of the normal distribution
functions a filtered particle distribution (just like the spatially filtered equations in LES)
is introduced that is relaxed with a locally tuned relaxation time,68 adjusted using the
turbulent viscosity, to the local filtered equilibrium.
The overall viscosity

ν = ν0 + νT = ν0 + (C∆)2 |S|
can be modelled introducing an additional local turbulent relaxation time

τ = τ0 + τT

since the viscosity can be decomposed as follows

ν =
(2τ − 1)

6
∆x2

∆t
=

(2τ0 − 1)
6

∆x2

∆t
+

τT
3

∆x2

∆t
.

The filtered strain rate can be calculated to

|S| = |Q|
2ρc2

s τ∆t
66Theoretically this renders the numerical scheme limitlessly stable but pressure waves triggered by

certain boundary conditions may still make a simulation crash.
67There are several different formulas that can be found online. Some are only valid for a density equal

to unity and others define the Smagorinsky constant differently.
68In a similar way also non-Newtonian fluids can be modelled.

43

2. The Lattice-Boltzmann Method

using the filtered momentum flux from the previous time step in good approxima-
tion

|Q| =
√

∑
i

∑
j

τijτij

where the non-equilibrium stress tensor τij is given by

τij = ∑
α

eα,ieα,j

(
fα − f (eq)

α

)
.

This results in the same algorithm as the standard incompressible LBM with an
additional local turbulent relaxation time [60]–[62]

τT =
1
2



√

τ2
0 +

2
√

2(C∆)2

ρc4
s ∆t

|Q| − τ0




2.2.12. Advantages over conventional CFD

As seen in the previous chapter incompressible LBM boils down to a pretty simple
algorithm that is distinctly faster than traditional incompressible CFD methods as it
is fully explicit and local. The demanding non-linear collision step, can be performed
locally, while the linear streaming step requires communication between neighbouring
cells. This leads to excellent scalability and makes the algorithm ideal for massive
parallel architectures such as graphic cards. On the other hand this renders LBM also
very memory-intensive: Most of the time is spent copying values from the memory
to the CPU’s cache and a carefully chosen memory layout as well as proper data
containers are required to make use of the computational efficiency.
Due to the equidistant grid unlike in traditional CFD methods no meshing process
is needed, instead the domain is pixelised similarly to an image. This may lead to
massive over-resolution in some parts of the domain but may be overcome using mesh
refinement techniques (appendix F).
The kinetic background allows for simple local boundary conditions even in com-
plex geometries and interactions on microscopic level, where kinetic effects can’t be
neglected. [63] The algorithm’s roots in the kinetic theory are at the same time also
its biggest drawback: LBM is inherently time-dependent and therefore not particularly
well suited for steady flow simulations. This makes incompressible LBM perfect for
transient simulations in porous media where this accurate spatial resolution is needed
and meshing using traditional CFD may be difficult.

44

3. Multi-component flows

Most of them time rather than the sole hydrodynamic simulation transport processes are
of interest. One important transport process is the diffusion of a species within another
fluid. The following section explains the difference between multi-component and
multi-phase flows first before going into the basics of these so called multi-component
flows.

3.1. Multi-component and multi-phase flows

multi-component

miscible multi-component

immiscible multi-component

multi-phase

different states of matter

Figure 3.1.: Classification of multi-component and multi-phase flow

Flows of different chemical species that are mixed on the molecular level sharing the same
velocity and pressure are referred to as miscible multi-component flow while flows
involving immiscible components and/or different states of matter are generally
termed multi-phase69 flow. In the context of this thesis multi-component flows always
refers to miscible multi-component flows while in the literature this might be used
ambiguously (figure 3.1).
In multi-phase flow every phase has its own velocity field and momentum equation,
and thus one needs to solve several momentum equations that interact with momentum
exchange terms. In contrast in multi-component flow the momentum of a single species is
not conserved. Instead the momentum between species is transferred in such a way that
the total mixture momentum is preserved. [64]
In this thesis we will only focus on multi-component flow where only one fluid field is
solved and the rate of transport of the species, given by their mass fractions (appendix
D.2.2), is derived from the flow field using a passive scalar.

69A phase in this context refers to a region throughout which the physical properties of the material are
uniform (appendix D).

45

3. Multi-component flows

3.2. Diffusion

One process common for systems involving inhomogeneity is diffusion where substance
moves from areas of high concentration to areas of low concentration (appendix D.2.3)due to
random molecular motion. Depending on the aggregate state, the number of species
involved and the geometry this might involve a lot of different diffusion mechanisms
and different models accounting for these phenomena might be deployed. Generally
due to its simplicity some form of Fick’s law is applied.70

3.2.1. Fick’s laws

One way of describing diffusion are the empirically derived Fick’s laws (appendix D.4).
They assume that in steady state a flux establishes isotropically from sections with
high concentration to areas with lower one, driven by the corresponding concentration
gradient due to the random Brownian motion of particles. The diffusion mass flux ~J
(appendix D.3) is assumed as proportional to the gradient of the mass fraction of an
individual component

Υi =
mi
m

according to71

~J = −ρDi∇Υi.

Strictly Fick’s laws are only valid for dilute binary gaseous mixtures that are not addition-
ally driven by forces but they may be used for more complex flows with reasonable
results. As for multi-component flows this approximation does not exactly conserve the
mass, additional measures have to be taken. Commonly all inconsistencies are absorbed
into a major component by solving the transport equations for all components but one
and evaluating the mass fraction of this major component such that the conservation
of mass is not violated72

∑
i

Υi = 1.

3.2.1.1. Diffusion coefficients

The Fickian diffusion coefficients are a material property but as well a function of the
concentration, temperature and pressure. Generally they increase with increasing tem-
peratures and decrease with increasing density. Diffusion coefficients have generally
to be found through experiments as there does not exist a single theory that is able to
predict them accurately enough.
For gasses their magnitude is about 0.1− 1 cm2

s , approximately inversely proportional to
pressure and varies with the temperature to the power of 1.5− 1.8. Formulas derived
from kinetic theory may predict the gaseous diffusion coefficients with an accuracy
of about 8%. For liquids the values are significantly smaller with about 10−5 cm2

s and
may be predicted with an accuracy of about 20% by the Stokes-Einstein equation. In

70A short digression about the more general Maxwell-Stefan system can be found in appendix E.3.
71The derivation can be found in appendix D.4. Whenever this assumption fails to deliver accurate

results, which might also be the case for porous media, the diffusion process is termed non-Fickian.
72More rigorous approaches include correction velocities to diminish this effect (appendix D.4.3).

46

3.3. Advection and diffusion

the case of solids the diffusion coefficients are very small (10−30 cm2

s) so that gaps and
flaws like grain boundaries mainly account for diffusion effects. [65], [66]

3.3. Advection and diffusion

Most practical problems do not only involve diffusion but also advection either due to
external agitation or caused by the diffusive motion.73 In any scenario involving both
mechanisms generally advection is assumed to be superimposed by diffusion: Diffusion
is defined relative to the average velocity (figure 3.2).

diffusion advection advection-diffusion

Figure 3.2.: Advection-diffusion can be seen as superimposed diffusion and advection

The conservation equations for the mixture with the corresponding mixture density,
mass-averaged velocity, mixture-averaged kinematic viscosity and pressure remain
unchanged (appendix D.2) while additionally the mass conservation for each individual
component

∂(ρΥi)

∂t
+∇ · (ρΥi~u) +∇ · (ρΥi~ui) = ω̇i.

must hold: The mass fraction of an individual component can be transported due to fluid
flow with velocity ~u, diffused with the molecular diffusion velocity ~ui and changed due
to chemical reactions with the production rate ω̇i within the system.
The sum of all species equations has to fulfil the mixture-averaged continuity equation.
As atoms can’t be generated due to the chemical reactions, this leads to the condition

∑
i
∇ · (ρΥi~ui) = 0.

This equation system is not closed: The mass diffusion flux must be expressed as a
function of the single species concentrations (single-fluid approach) or additional
equations must be provided (multi-fluid approach). One possible way of closing the
equation system are the aforementioned Fick’s law.

3.3.1. Schmidt and Péclet number

With the Fick approximation and neglecting chemical reactions one might rewrite the
advection-diffusion equation of a particular species to

∂(ρΥi)

∂t
+∇ · (ρΥi~u) = ∇ · (ρDi∇Υi).

73In dilute solutions this self-induced convection may be neglected while for concentrated solution it has
to be considered.

47

3. Multi-component flows

Assuming incompressible flow with constant material values throughout the flow field
and introducing again the dimensionless variables one yields

∂Υi
∂t∗

+ ~u∗ · ∇∗Υi =
Di

U L
∇∗2Υi =

1
Re Sc

∇∗2Υi =
1

Pe
∇∗2Υi.

with the new dimensionless Schmidt number74

Sc :=
ν

Di

viscous diffusion
molecular diffusion

which is related to another dimensionless number, the Péclet number for species
transport by75

Pe := Re Sc =
L U
Di

advective transport rate
diffusive transport rate

.

As can be seen in particular from the exact solution of the Gaussian hill advection (sec-
tion 6.1.4.1) diffusion scales with square root of time

√
t whereas advection is a linear process

∝ u t. Which of the two effects is predominant mainly depends on the spatial scale:
Problems with a large Péclet number are advection dominated while for vanishing
Péclet numbers diffusion prevails.

74For turbulent flow one must additionally consider a turbulent Schmidt number (Sct = 0.7− 1) that
accounts for turbulent diffusion due to the chaotic turbulent velocity fluctuations.

75The Péclet number is a dimensionless number relevant for any kind of transported quantities and
may also be defined for other transport phenomena such as heat transfer as Pe := Re Pr. Additionally for
thermal multi-component flow also another relevant characteristic number, the Lewis number Le, can be
found (appendix D.5).

48

4. LBM for multi-component flows

For simulating miscible multi-component flows in LBM generally a second set of
distribution functions preserving an advection-diffusion equation for the corresponding
mass-fractions on a macroscopic level is introduced. This second lattice is purely passive:
It does not have any effects on the Navier-Stokes equation and theoretically could be
calculated after the simulation.76

4.1. Advection-diffusion model

Analogously to the energy equation (appendix E.3) one might use an advection-
diffusion model to simulate species transport [67]

gα,i(~x +~eα∆t, t + ∆t) = gα,i(~x, t) +
1
τi

(
g(eq)

α,i (~x, t)− gα,i(~x, t)
)

where each relaxation coefficient is linked to the corresponding diffusion coefficient
by [68]

τi =
D∗i

c2
s ∆t

+
1
2

.

The equilibrium distribution similarly to the incompressible algorithm is a truncated
expansion of the Boltzmann equilibrium distribution which in this case can be trun-
cated at first77

g(eq)
α,i (~x, t) = Υiwα

(
1 +

(~eα · ~u)
c2

s

)
.

or second order

g(eq)
α,i (~x, t) = Υiwα

[
1 +

(~eα · ~u)
c2

s
+

(~eα · ~u)2

2c4
s
− ~u2

2c2
s

]

and the transported quantity is the mass fraction

Υi = ∑
α

gα,i

whereas the velocity field is imposed externally by the hydrodynamic lattice fα.

76This basically is implied by the dilute species assumption.
77This is possible as fewer moments have to be preserved for recovering the corresponding macroscopic

behaviour. Furthermore neglecting the linear velocity term leads to a simple diffusion model.

49

4. LBM for multi-component flows

4.1.1. Accuracy, errors and correction terms

On a microscopic level this approach preserves the transport equation

∂Υi
∂t

+∇ · (Υi~u) = D∗i ∇2Υi +
D∗i
c2

s

∂∇ · (~u Υi)

∂t
+

D∗i
c2

s

∂

∂xj

(
∂(Υiujuk)

∂xk

)

where the last two terms correspond to error terms and the last term is only present for
a non-linear equilibrium distribution.

4.1.1.1. Linear equilibrium distribution

In case of a linear equilibrium distribution this error may be rewritten as

−D∗i
~u2

c2
s
∇2Υi.

The model suffers from an error that scales with O(Ma2) reducing the scheme to first
order. For a second-order approximation the inclusion of a forcing term was proposed
that artificially cancels out the error term [67]

Fα =
wα

c2
s

(
1− 1

2τi

)
~eα ·

∂(~uΥi)

∂t

where the derivative can be estimated by backward difference using the values from the
previous and current time step to

∂(~uΥi)

∂t
≈ ~u(t)Υi(t)− ~u(t− ∆t)Υi(t− ∆t).

4.1.1.2. Non-linear equilibrium distribution

In case of the non-linear distribution function the error term may be rewritten as

−D∗i
c2

s

∂

∂xj

(
Υi
ρ

∂p
∂xj

)

leading to a velocity independent error. A corresponding correction term is given by
[67]

Fα =
wα

c2
s

(
1− 1

2τi

)
Υi
ρ
~eα · ∇p.

Chopard et al. [67] recommend the non-linear distribution function for fluid flow
but the corresponding correction term above relies on a spatial extrapolation which
is very unhandy for the final application in complex porous media.78 Thus we will
simply use the non-linear equilibrium distribution without any correction terms
like recommended by Krüger [5] as the error unlike in the linear case is velocity
independent.

78More complex models such as [68] introduce additional more complicated correction terms but
increase the computational burden significantly. I think this diminishes the computational advantages of
LBM drastically and therefore should be avoided.

50

4.1. Advection-diffusion model

4.1.2. Stability and TRT collision operator

In particular for very large and small Péclet numbers, similarly to very large Reynolds
numbers, the BGK operator may suffer from instabilities. This might again be avoided
by switching to the TRT collision operator. In this case the magic parameter should be
chosen as Λ = 1

6 for pure diffusion and as Λ = 1
12 for advection. [5], [54] Unlike in

the hydrodynamic case in the advection-diffusion model the anti-symmetric collision
frequency ω− is linked to the diffusion coefficient and the symmetric collision frequency
ω+ has to be calculated using the magic parameter Λ.79

4.1.3. Conversion to physical units

One correlates the Lattice-Boltzmann advection-diffusion to the physical system by
additionally enforcing the identical Schmidt number. This is done by ensuring the same
dimensionless group appearing in the advection-diffusion equation and thus by setting
the LBM diffusion coefficient to

Di = U L D∗i =
U L
Pe

=
U L

Re Sc
.

This means one simply converts the dimensionless diffusion coefficient using the
characteristic velocity and length of the LBM simulation to LBM units and adjusts the
relaxation time accordingly.

4.1.4. Reduced lattices

c0
c1

c2

c3

c4

D2Q5

c0
c1

c2
c3

c4

c5

c6

D3Q7

Figure 4.1.: The most commonly used reduced lattices: D2Q5 (left) and D3Q7 (right)

Commonly for advection-diffusion equations lower order discretisations, so called re-
duced lattices (figure 4.1), like the D2Q5 for 2D and the D3Q7 lattice for 3D are
used with success as the fourth-order isotropic lattice tensors are not required for
an adequate velocity set.[43], [69] They are able to successfully preserve the neces-
sary moments even though communicating only with their nearest neighbours while
cutting the computational cost in half and allowing for significantly easier boundary
conditions as only one velocity points into each Cartesian spatial direction. In this thesis
though they will not be used as the application will be complex porous media, where

79Thanks to Maximilian Gaedtke, MSc, admin at OpenLB, for pointing this out.

51

4. LBM for multi-component flows

a consistent approach for diffusion and fluid flow is crucial.80 For other applications
in less complex geometries and for low Reynolds numbers it is recommended to use
these lower order discretisations.

4.1.5. Boundary conditions

In the context of this thesis three different boundary conditions for the advection-
diffusion equation are needed: An inlet, an outlet as well as the interaction with solid
walls. As our final application will be porous media it is not viable to implement
boundary conditions involving complex extrapolation approaches or boundaries that
require the knowledge of the boundary normal. Therefore only purely local boundary
conditions are discussed in this section.

4.1.5.1. Robin boundary condition

A Robin boundary condition is a boundary condition that imposes a linear relation
between a value of a function and its derivative. This may also be the case at an inlet where
the inlet flux of a particular component may be given by

~J ·~n = unΥi − Di
∂ci
∂xn

where the index n denotes the direction normal to the boundary. A corresponding
approach may be found in [70], [71].

4.1.5.2. Dirichlet boundary condition: Anti-bounce back

b w f

gtα(~xf , t)

b w f

gα(~xf , t + ∆t)

g
(eq)
α (~xw, t + ∆t)

Figure 4.2.: Schematic Dirichlet boundary condition based on anti-bounce-back

The inlet diffusion flux depends itself on the concentration gradient which can’t be
determined beforehand. For a fixed mass flow rate it must be disabled resulting in a
condition that enforces only a certain value of the solution at this particular boundary,
a so called Dirichlet boundary condition. In LBM a Dirichlet boundary condition is

80Imagine two 2D cells just barely touching each other with one corner and assume a fluid discretisation
with a D2Q9 and an advection-diffusion discretisation with a D2Q5 lattice. The fluid discretisation would
be able to interact across this gap while there could happen no diffusion due to the missing diagonal
velocities.

52

4.1. Advection-diffusion model

generally implemented through anti-bounce-back algorithms.
The anti-bounce-back algorithm (figure 4.2) is almost as easy to implement as regular
bounce-back boundaries. The reflected populations of neighbouring fluid cell for the
next time step are calculated using the post-collision values that face towards the
boundary and the corresponding symmetric equilibrium distribution in the boundary
according to

gα(~x f , t + ∆t) = −gt
α(~x

f , t) + 2g(eq)+
α (~xw, t + ∆t)

where for ~xw corresponds to the values at the wall that can be determined by simple
linear interpolation between the boundary and the neighbouring fluid node

Yw =
Yb + Y f

2
, uw

i =
ub

i + u f
i

2
.

For a stationary wall with the wall concentration Υw
i the velocity terms in the equilib-

rium distribution vanish and the equation simplifies to

gα(~x f , t + ∆t) = −gt
α(~x

f , t) + 2wαΥw
i .

4.1.5.3. Neumann boundary condition

A Neumann boundary condition imposes a value for the derivative (flux) at a given
point. In LBM this may be done by implementing a Dirichlet boundary condition that em-
bodies the Neumann boundary condition by determining the cell value that the boundary
cell must take in order to lead to the correct derivative through extrapolation.
The corresponding equation system is given by two Taylor series

Υi(~x0 + ∆~x) = Υi(~x0) + ∆|~x|Υ′i(~x0) +
∆|~x|2

2
Υ′′i (~x0) +O(∆|~x|3)

Υi(~x0 + 2∆~x) = Υi(~x0) + 2∆|~x|Υ′i(~x0) +
(2∆|~x|)2

2
Υ′′i (~x0) +O(∆|~x|3)

and the given derivative at the boundary cell

Υ′i(~x0) = Υw
i
′.

From this equation system the value to be imposed by a Dirichlet boundary condition
can be determined to

Υi(~x0) =
4Υi(~x0 + ∆~x)− Υi(~x0 + 2∆~x)− 2∆~xΥw

i
′

3
.

For outflow often a zero gradient is assumed meaning the concentration remains
constant through the outlet.81 This leads to

Υi(~x0) =
4Υi(~x0 + ∆~x)− Υi(~x0 + 2∆~x)

3
.

A vanishing diffusion flux can also be mimicked by a concentration of the neigh-
bouring fluid node equal to the boundary node Υ f

i = Υb
i and thus by evaluating the

concentration before the outlet and imposing it on the outflow boundary. One might
as well copy the post-collision populations to the outlet plane before propagation.

81For this condition to be valid the outlet has to be moved far enough away though.

53

4. LBM for multi-component flows

4.1.5.4. Walls: Zero flux boundary condition

Walls impose a zero flux condition in normal direction but still allow a diffusion flux in
the tangential direction: The tangential value may change along the boundary as a
consequence of the concentration gradient. Even though criticised by some authors
[72] this can be achieved by applying a simple bounce-back rule. [69] Krüger argues
[5] this approach is correct as bounce-back rules only enforce a vanishing tangential
velocity in between two nodes and thus this is no contradiction.

4.1.6. Advantages of LBM for advection-diffusion

For advection-diffusion problems most commonly finite difference and finite volume
schemes are used. As pointed out by Wolf-Gladrow [73] LBM-based solvers addition-
ally to higher computational speed can also achieve higher diffusion coefficients than
explicit finite-difference schemes as LBM allows larger time steps than finite-difference
solvers with the same spatial resolution. [5]

54

5. Porous media

Hydrodynamic flow and diffusion mechanisms in porous media are highly affected by
size and structure of the pores. It is therefore useful to introduce different quantities
for classifying porous media as explained in the following section.

5.1. Pore size, porosity and tortuosity

Porous media consist of cavities on micro or macro-scale in a solid matrix. One might
classify them using their average pore width as well as their ratio between void volume
to total volume.
Pore sizes below 2nm are generally considered micro-pores while the term macro-pores
is used for pores greater than 50nm. Everything in between is generally regarded as
meso-pores. The ratio between void-space VV and the total material volume VT

φ =
VV
VT

is termed the porosity and is used in order to categorise the composition of a particular
material. To describe how intricate the structure of a porous medium is, the tortuosity
τ is introduced. In 2D it is generally defined as the ration between the length of a
curve L to the distance between the ends

τ =
L
D

.

In 3D there is no such clear definition available and generally reasonable estimates
τ = 1.5− 6 or empirically derived formulas are taken. [65], [74]

5.2. Particle Reynolds number

For objects moving in a fluid or particle beds a particular kind of Reynolds number,
the particle Reynolds number Rep has to be used: For beds of spherical particles in a
fluid the characteristic velocity is chosen as the unperturbed velocity in some distance
of the sphere and the characteristic length as the diameter of the sphere. Under these
conditions strictly laminar flow only exists for Rep ≤ 10. Non-spherical particles are
generally either approximated by ellipsoids or the sieve diameter82 is considered.
Additionally there exist other definitions of corrected particle Reynolds numbers that
for example take into account the porosity of the medium. Other definitions might
use the effective superficial velocity.83

82This is determined by a sieve analysis: The material is passed through sieves of progressively smaller
mesh size and the average material stopped by a particular sieve is weighted.

83An average velocity defined as the ratio between volume flow rate and cross-sectional area.

55

5. Porous media

5.3. Pressure drop in packed beds

For the horizontal flow through a bed of loose particles at low Reynolds numbers one
might assume that the particles are not moved by the fluid flow: The gravitation force
is bigger than the forces of the fluid flow. Due to the presence of media in the channel,
blocking the domain and accelerating the flow, a pressure drop between the inlet and the
outlet

∆p = p(in) − p(out)

is introduced. As for intricate geometries a simulation might not be feasible, a lot of
calculations of porous beds still rely on approximate empirically derived formulas
such as the Carman-Kozeny equation for laminar flow and the Ergun equation for
turbulent flows presented in the following section.

5.3.1. Carman-Kozeny equation

Already Darcy observed in 1896 that the pressure drop for laminar flow of water
through a sand bed of height h could be assumed proportional to the velocity

∆p
h

∝ U.

For randomly packed beds of randomised spheres Carman and Kozeny found in 1937

the correlation for laminar flow

∆p
h

= C1
(1− φ)2

φ3
µU
L2 Rep ≤ 1

where the characteristic length L corresponds to the diameter of a single sphere and
the constant C1 is generally chosen as 180.

5.3.2. Ergun equation

Ergun extended this equation in 1952 to turbulent flow by adding an additional term
proportional to the square of the velocity

∆p
h

= C1
(1− φ)2

φ3
µU
L2 + C2

(1− φ)

φ3
ρU2

L
, 3 ≤ Rep ≤ 104.

In this case the constants are generally given by C1 = 150 and C2 = 1.75. Even though
initially derived for spheres this can be extended to arbitrary particles by introducing
a surface-volume mean diameter.84

84The diameter of a sphere with the same surface area to volume ratio.

56

5.4. Diffusion mechanisms in porous media

5.4. Diffusion mechanisms in porous media

Similarly to continuum based flows also the traditional Fickian diffusion is based on
the continuum assumption and may break down for dilute gas mixtures. This may
also be the case in fine pore porous media. Depending on the mean free path of a
molecule one distinguishes following diffusion mechanisms:

• Molecular diffusion happens for large macro-pores due to the thermal motion of
the gas and can be described by a macroscopic Fick’s laws.

• For meso-pores (such as for low pressure and small pore diameter) the mean
free path is comparable to the scale of the system: A particle collides significantly
more often with the wall than with another particle. In this so called Knudsen
diffusion regime the diffusion coefficient is a function of the geometry.

• For micro-pores completely different mechanism come into play: For example
an adatom85 may hop around between adjacent adsorption sites on the surface
depending on a variety of factors such as the bond between the adparticle and
the surface (surface diffusion). A solvent might condense in pores and move
around as a liquid and other solvents might dissolve in this liquid bubble and
diffuse (diffusion solubility).[65]

In this thesis we will deal with macro-scale pores: Meso- and micro-scale phenom-
ena will be neglected and only the molecular diffusion due to viscous flow will be
considered.

5.4.1. Effective diffusion coefficient

Big parts of a porous medium are impermeable solid: The diffusion only occures in
pores which themselves are not straight. In traditional CFD simulations the porous
domain is often not resolved but instead just taken into account defining an effective
diffusion coefficient such as

Deff =
φ

τ
D

where φ and τ are the corresponding porosity and tortuosity of the sample. The
diffusion takes place over a longer distance and a across a smaller cross-section.

5.5. Residence time

In particular for reactive flows in reactors the time matter spends inside, the so called
residence time, and, thus the time for participating in reactions with other substances, is
of uttermost importance. This section will elaborate which different quantities may be
considered, how they can be determined experimentally and how they are connected
to each other. For our scope the flow is assumed as incompressible and the only
mechanism at the in- and outlet is advection and therefore the diffusive flux at these
extremities of the domain is neglected.

57

5. Porous media

0

F (t)

t

E
(t
)

0

1

t

t

F
(t
)

Figure 5.1.: Schematic residence time distribution (left) and its cumulative counterpart (right)

5.5.1. Residence time distribution

The main quantity defining the behaviour of chemical reactions in a reactor is the
residence time, the time it takes for a fluid particle to move through the domain.
A single particle has a single residence time while for more complex system this
leads to a distribution: The real path of an arbitrary fluid particle might deviate
drastically due to the formation of dead waters where the only transport possible is due
to diffusion and short circuits where material passes through the domain significantly
faster. Additionally backmixing might occur, where material flows backwards locally.
For this reason a residence time distribution E(t), short RTD (figure 5.1), is introduced
using the flux of the amount of substance at the outlet and the amount of substance at
the inlet according to

E(t) =
ṅ(out)

i (t)

n(in)
i

where E(t)dt characterises the probability of finding a particle that enters the domain
at a time t and exits the domain within a time t + dt. Thus E(t) is equivalent to the
fraction of particles with a residence time between t and t + dt and is sometimes
referred to as exit age distribution. This leads to a very important property: All
particles are expected to exit the domain for t→ ∞ and therefore

∞∫

t=0

E(t) dt = 1

has to be fulfilled.
The average residence time can be determined as the first moment of the residence time
distribution

t =
∞∫

t=0

t E(t) dt

Another important mean time is the turnover time τ (hydrodynamic residence time for
liquids) simply defined by the volume flow rate V̇(in) and the reactor volume V

τ =
V

V̇(in)
.

85A foreign atom trapped on a surface of a rigid body.

58

5.5. Residence time

A mean residence time t significantly faster than the turnover time τ is a sign of
stagnant fluid.

5.5.2. Cumulative residence time distribution

Experimentally another distribution, the cumulative residence time distribution F(t), that
is connected to the RTD by

F(t) =
∫

E(t)dt

is easier determined. Through numerical differentiation of the resulting distribution
the RTD is recovered according to

E(t) =
dF(t)

dt
.

Therefore as a fundamental property this function must fulfil F(t = 0) = 0 and
limt→∞ F(t) = 1.

5.5.3. Experimental measurement

0

1

t

c(
in

)

0

1

t

c(
o
u
t)

Input signal

Measuring
volume

Output Signal

c(
in

)

c(
o
u
t)

t t

Figure 5.2.: Experimental measurement of the cumulative residence distribution: At the inlet the mass
fraction is controlled to fulfil a Heaviside step function (left), the measuring volume distorts this
signal, which is determined by measuring the outlet concentration over time (right).

For an ideal system all fluid elements leave the reactor in the same order they entered
without mixing with particles in front of them and behind. The time it takes the
fluid to leave the domain is characterised by a single residence time: If the system
is fed with a certain concentration of a particular component at the inlet the same
concentration will be measured at an arbitrary outlet after the turnover time. In a
real system diffusion, a non-uniform velocity profile and turbulence might lead to a
dispersion and a corresponding residence time distribution. In order to experimentally
determine the residence time distribution E(t) directly a Dirac delta function must
be generated. For a limited time window, that must be significantly slower than the
mean residence time, the domain must be flooded with a particular marker substance
and the concentration at the outlet must be measured. This may be quite challenging
and therefore instead the cumulative RTD is determined. For this purpose the tracer is
let in rapidly but continuously (Heaviside step function) and the the concentration at the
outlet is tracked. In such a case the cumulative RTD can be determined by

F(t) =
n(out)

i (t)

n(in)
i

.

59

5. Porous media

5.6. Porous LBM: Sparse domain optimisation

For few boundary cells within a domain it does not pay off to create a logical mask
and perform collision and streaming only for the relevant cells but instead it reduces
performance.86 But in a porous medium most nodes are not active parts of the
algorithm and would therefore slow down the performance significantly. Therefore,
the algorithm is modified so that cells that do not contribute to the simulation, such as
solid cells not interacting with the fluid, are excluded from the simulation algorithm.
In order to not keep track of the neighbours, the cells still take up storage and might
be even pre-cached but are not going to be explicitly used in the algorithm. In this
particular case87 this boosts the algorithm to almost double the speed compared to the
standard approach.

86As the populations in the wall still collide in the basic algorithm this might lead to very high velocity
values though, in particular when using a turbulence model, which could possibly lead to confusion in
post-processing.

87The porous domains in this thesis consists of up to 60% boundary cells of which only a fraction is
needed.

60

6. Implementation

In the following sections two- and three-dimensional simulations obtained by LBM
with the BGK and TRT collision operators as well as their corresponding counterparts
with a Smagorinsky turbulence model are compared to various benchmark scenarios
found in the literature for steady and transient flow. The model is then extended
to binary multi-component flows using a second lattice for advection-diffusion with
BGK and TRT collision operator. Furthermore the computational performance and the
parallel scalability of the presented code is examined in detail and compared to the
open source LBM solver Palabos. At the end of the chapter this verified model is used
to simulate the binary multi-component flow through a porous bed and the results
are compared to an Ansys Fluent simulation.

6.1. Single component flow

For single-component flow the standard benchmark scenarios of a lid-driven cavity
flow as well as the flow around a cylinder at different Reynolds numbers in 2D as
well as in 3D are considered as results are widely available in the literature and
in publications. In the following section pressure and velocity boundary conditions
are modelled with the Zou/He boundary conditions for 2D and the Hecht/Harting
boundaries for 3D whereas the solid walls are modelled using half-way bounce-back.

6.1.1. Test case 1: Lid-driven cavity

U

b

h

L = min(b, h)

Figure 6.1.: Relevant dimensions for a lid-driven cavity

The lid-driven cavity is due to its simplicity a popular benchmark scenario for steady
fluid flow. It consists of a cavity constrained by no-slip walls and a lid moving with a
constant tangential velocity (figure 6.1). The characteristic length is generally given by

61

6. Implementation

the smaller dimension of the cavity min(b,h) and the ratio between b
h is referred to

as the aspect ratio. Due to the external force the liquid is pushed against the solid wall
leading to different eddies depending on the Reynolds number and the aspect ratio.
In the literature CFD-based values for velocity, pressure and vorticity can be found for
a wide range of Reynolds numbers.

Figure 6.2.: Streamlines for a lid-driven cavity with an aspect ratio of 1.5 at Re 3200 calculated by a TRT-LBM
simulation

The two-dimensional flow is simulated with a fluid initially at rest and compared
to the corresponding literature for the case of a rectangular cavity [75] as well as a
cavity with aspect ration 1.5 (figure 6.2) [76]. For all rectangular cavities a grid of 800

by 800 pixels was chosen and a comparably large characteristic velocity of U = 0.1.
Only the results for the corresponding TRT collision operator are depicted in the
following figures as the BGK collision operator would yield indistinguishable results.
Overall the results are virtually identical with the data provided for all the Reynolds
numbers considered (compare to figures 6.4 and 6.5) apart from Re 7500 where the
solver remains stable but only a transient and no steady-state solution is found. The
corresponding pressure and vorticity can be found in appendix H.1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Ux

U0

U
y

U
0

Re 100

−1 −0.5 0 0.5 1
Ux

U0

Re 400

−1 −0.5 0 0.5 1
Ux

U0

Ding (2006)
TRT

Re 1000

Figure 6.3.: Velocity cross-sections through the geometric center of three-dimensional cubic lid-driven
cavities at different Reynolds numbers

The same is done for the case of a cubic three-dimensional lid-driven cavity where
the velocity distribution deviates slightly from its two-dimensional counter-part. The
results match those in [77] and are identical with [78] (figure 6.3).

62

6.1. Single component flow

Re 100 Re 400 Re 1000

Re 3200 Re 5000

Figure 6.4.: Streamlines for two-dimensional square lid-driven cavities at different Reynolds numbers

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Ux

U0

U
y

U
0

Re 100

−1 −0.5 0 0.5 1
Ux

U0

Re 400

−1 −0.5 0 0.5 1
Ux

U0

Ghia (1982)
TRT

Re 1000

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Ux

U0

U
y

U
0

Re 3200

−1 −0.5 0 0.5 1
Ux

U0

Re 5000

Figure 6.5.: Velocity cross-sections through the geometric centre of square lid-driven cavities at different
Reynolds numbers

6.1.2. Stability of collision operators

The stability of the two collision operators, BGK and TRT, is also examined using
a two-dimensional lid driven cavity: Simulations for the same domain, with two

63

6. Implementation

0.0125 0.025 0.05 0.1 0.2
0

2,000

4,000

6,000

8,000

10,000

BGK 4002

BGK 8002

TRT 4002

TRT 8002

lattice velocity

R
ey
n
ol
d
s
n
u
m
b
er

Stability: square lid-driven cavity

Figure 6.6.: Stability of BGK and TRT collision operators using a simple lid-driven cavity

different resolutions, 400 and 800 nodes for each spatial direction respectively, are
run for different Reynolds numbers. If the simulation does not crash within 20000/U
time steps, it is considered stable. The Reynolds number is varied for a constant
characteristic velocity in steps of 50 and the highest stable Reynolds numbers for
different characteristic velocities on the same grid are connected (figure 6.6). While
two collision operators yield practically identical results at a similar computational
cost if resolved adequately, the TRT collision operator is significantly more stable than
the much simpler BGK operator: For the same grid BGK allows only smaller Reynolds
numbers to be simulated as the stability is highly viscosity dependent. A turbulence
model on the other hand increases the simulation significantly: For the case of the
lid-driven cavity no instable parameter combination could be found.

6.1.3. Test case 2: Flow around a cylinder

U pd = L

bc

b

hc

h

Figure 6.7.: Relevant dimensions for the flow around a cylinder

For unsteady flow a simple flow around a single cylinder is probably the most popular
benchmark scenario. Additional to a variety of experimental results there exist CFD
based results with a variety of different boundary conditions. In this thesis the inlet is
chosen as a velocity boundary condition whereas at the outlet a constant pressure is

64

6.1. Single component flow

enforced, which in LBM is equal to a density boundary condition (figure 6.7).

No separation

Re . 5

Steady separation bubble

5 . Re . 40

Laminar vortex street

40 . Re . 150

Turbulent vortex street

Re & 300

Figure 6.8.: Different flow regimes for the flow around a cylinder

While for very small Reynolds numbers (Re ≤ 5, often referred to as Stokes flow), the
streamlines are completely symmetrical and no separation occurs, higher Reynolds
numbers (5 ≤ Re ≤ 40) lead to the formation of steady separation bubbles down-stream
behind the cylinder. For Reynolds numbers higher than 40 the separation becomes
unsteady, resulting in vortices with alternating rotational direction, also referred to as
Kármán vortex street with an oscillating velocity and pressure distribution (figure 6.8).88

The frequency of this oscillating flow can be determined by analysing the lift CL or
drag coefficient CD (which has double the frequency of the former, appendix B.10)
using an FFT analysis (appendix I.4.3.1). The characteristic number for oscillating flow
is the Strouhal number (appendix B.11)

St :=
f L
U

.

Through experiments the relation between Reynolds and Strouhal number as given by
figure 6.9 can be found for circular cylinders. As can be seen vortex shedding does not
happen at a single frequency but rather over a narrow range of frequencies leading to
two limiting curves depending on the roughness of the cylinder. [79], [80]
Choosing an adequate simulation domain is though not as trivial as it might seem.
If the cylinder is placed too close to the inlet or outlet, this would not lead to a
proper vortex shedding. Periodic boundary conditions on the top and bottom would
affect the vortex shedding frequency the least but for larger Reynolds numbers the
vortex shedding overlays with the LBM pressure waves: At the pressure outlet not
all populations are able to exit the domain but are reflected backwards instead. The
whole domain starts acting like a huge spring and the drag coefficient fluctuates
around the correct mean value but super-imposes with those pressure waves leading

88Generally the turbulent domain is further split up but this is not needed for the sake of this thesis.

65

6. Implementation

102 103 104 105 106 107
0

0.1

0.2

0.3

0.4

0.5

40

Reynolds number

S
tr
ou

h
a
ln

u
m
be
r

Figure 6.9.: Relation between Reynolds and Strouhal number for circular cylinders [79], [80]

to unrealistically high amplitudes and harmonic multiples of the drag force frequency,
distorting the signal. Therefore for the calculation of the vortex shedding frequency and
further the Strouhal number the lift coefficient is chosen instead of the drag coefficient,
which would be more likely to be influenced by the pressure waves due to its small
magnitude.

50 100 150 200

0.1

0.15

0.2

0.25

Reynolds number

S
tr
o
u
h
al

n
u
m
b
er

no-slip boundaries

Roshko (1954)

BR 20%

BR 10%

BR 7.5%

BR 5%

50 100 150 200

0.1

0.15

0.2

0.25

Reynolds number

periodic boundaries

Roshko (1954)

BR 20%

BR 10%

BR 7.5%

BR 5%

Figure 6.10.: Influence of blockage ratio on Strouhal number for simulation domains with periodic boundary
conditions and restricting walls

This can be avoided by replacing the periodic boundaries with walls, although if
located too close to the cylinder the ground effect leads to unrealistically high Strouhal
numbers (figure 6.10) while inducing an increased pressure loss and therefore a
slightly higher drag coefficient. This correlation is closely connected to the blockage
ratio BR = L

h and was studied further in [81]. The wall with its boundary layer can
act as a dampener and reduce the effects slightly. Else one might use lower Reynolds
numbers and velocities for a particular domain resolution or try to implement non-
reflective boundary conditions. Simulation domains with periodic boundary conditions
need significantly longer to stir vortex shedding but one may trigger it using small
asymmetries or additional perturbations of the velocity field.
Similarly also the pressure around the cylinder (compare to figure 6.13) exhibits
oscillating behaviour (figure 6.11). Therefore the pressure coefficient for every single
cell has to be averaged over several time steps: As this results in a symmetrical curve
generally only the left side is given in the literature.

66

6.1. Single component flow

0 90 180 270 360
−2

−1

0

1

θ [°]

C
P

Figure 6.11.: Pressure distribution around a cylinder at Re 100 for two different time steps (dashed and
dotted) and the average value (solid line)

The flow around a cylinder (figure 6.12) is simulated at different Reynolds numbers
without and with the Smagorinsky turbulence model (CS = 0.15). The characteristic
number for oscillating flow, the Strouhal number, is compared to the literature as well
as the pressure distribution (figure 6.15) and the drag and lift coefficient (figure 6.16).
For all simulations a comparably small characteristic velocity of U = 0.05 is chosen
whereas the domain is simulated with 4002 or 8002 cells with a blockage ratio of 7.5%
and the inlet is chosen as 1/3 of the domain width.

Figure 6.12.: Vorticity contours for the flow around a cylinder at Re 100

St CD ∆CD ∆CL
Re 100 0.1840 1.58 0.05 0.37

Table 6.1.: Strouhal number St, mean drag coefficient CD and amplitude of drag (∆CD) and lift coefficient
(∆CL) for the three-dimensional flow around a cylinder

The values for the mean drag coefficient CD and the the corresponding amplitudes
of drag ∆CD and lift coefficient ∆CL can be found for 2D in table 6.2 and for 3D in
table 6.1. Figure 6.17 shows the vorticity of a three-dimensional simulation of the flow
around a cylinder using the TRT collision operator combined with a Smagorinsky
large-eddy turbulence model.89

89In this case only the magnitude of vorticity is used which is no good criterion for vortex detection as

67

6. Implementation

St CD ∆CD ∆CL
Re 100 0.1820 1.60 0.04 0.38
Re 1000 0.2420 1.70 0.27 1.56

Table 6.2.: Strouhal number St, mean drag coefficient CD and amplitude of drag (∆CD) and lift coefficient
(∆CL) for the two-dimensional flow around a cylinder

Figure 6.13.: Pressure contours around a cylinder at Re 100

The Strouhal numbers obtained in CFD are generally higher than the values found in
experiments [82] which is also the case for our simulation (figure 6.14). Additionally it
should be considered that the resolution of the FFT is limited by the lowest frequency
that can be detected, the Nyquist frequency (appendix I.4.3.1) given by 1

N . This leads to
a resolution limit of the Strouhal number in LBM units for a given number of samples
N according to

St =
f L
U

(
± L

NU

)
.

0 200 400 600 800 1,000 1,200

0.1

0.15

0.2

0.25

Reynolds number

S
tr
ou

h
al

n
u
m
b
er

Roshko (1954)

Grucelski (2013)
BGK
TRT
BGK-LES
TRT-LES

Figure 6.14.: Strouhal number for different Reynolds numbers obtained by 2D LBM simulation with and
without turbulence model compared to the experimental results of Roshko [82] and the results
obtained by another LBM simulation [83]

A few hundred thousand time steps might sound like a lot but depending on the
characteristic length and the characteristic velocity chosen in LBM this might lead
to huge uncertainties. In all the simulations in this thesis the uncertainty due to the
signal resolution is kept at ±2% of the measuring interval.

described in appendix B.1. This picture should rather only schematically illustrate the presence of vortices
in the flow.

68

6.1. Single component flow

Overall the results correspond well with the literature. [83]–[86] Only the pressure
distribution around the sphere (figure 6.15) shows a noteworthy deviation from the
benchmark solutions.

0 45 90 135 180
−2.0

−1.0

0.0

1.0

θ [°]

C
P

Pressure coefficient (Re 100)

TRT

Homann (1936)

Qu (2013)

Figure 6.15.: Pressure coefficient for Reynolds 100 obtained by a 2D simulation compared to experimental
values [84] and results from a finite volume code [86]

450 460 470 480 490 500
0.0

0.5

1.0

1.5

tU0

L0

C
D

Drag and lift coefficient (Re 100)

−0.5

0.0

0.5

1.0

C
L

CD

CL

Figure 6.16.: Drag and lift coefficient for Reynolds 100 over dimensionless time

Figure 6.17.: Magnitude of vorticity around a 3D cylinder for Re 400 obtained with a TRT-LES simulation

69

6. Implementation

6.1.4. Multi-component flow

A second lattice for advection-diffusion of a scalar quantity, in this case the mass-
fraction, is introduced and a Gaussian hill advection in 2D and 3D is simulated. The
results for advection and diffusion dominated flow are compared to the analytical
solution. The Dirichlet and Neumann boundary conditions are implemented using
anti-bounce-back while solid walls are modelled by half-way bounce-back. From now
on only collision operators without turbulence model are considered.

6.1.4.1. Test case 3: Gaussian hill

Gaussian distribution

Iso-concentration lines

Figure 6.18.: Schematic domain of a Gaussian hill advection in 2D: The surface varies in height with the
concentration while the circles underneath are corresponding iso-lines of concentration

In a Gaussian hill advection a domain is initialised with a Gaussian distribution (figure
6.18) of a given mass-fraction Υ0 as90

Υ(~x, t = 0) =
Υ0

(2 π σ2
0)

d
2

e
− (~x−~x0)

2

2σ2
0

that evens out due to diffusion with the diffusion coefficient D and is advected with
a certain velocity ~u. The analytical solution for an indefinitely large domain can be
found to

Υ(~x, t) =
1

σ2
0 + 2 D t

Υ0

(2 π)
d
2

e
− (~x−~x0−~ut)2

2(σ2
0+2 D t) .

For a simulation the boundaries have to be set to periodic boundary conditions while
the domain has to be chosen large enough so the boundaries do not have an impact
on the solution itself. For validation purposes then the iso-concentration lines are
compared to the analytical solution after a particular time step.
The precise benchmark scenarios are chosen as proposed by Krüger [5]: First only
diffusion is simulated and later an advection dominated scenario by setting the Péclet
number accordingly. The three-dimensional model is verified using cross-sections of a
symmetric Gaussian hill which is omitted here as it is virtually indistinguishable from
its two-dimensional counterpart.

90The mass fraction of the second component at any point in time may be calculated by 1− Υ.

70

6.2. Performance

0.13

0.11

0.08

0.05

150 200 250
150

200

250

x

y

analytical
BGK
TRT

100 150 200 250 300
0

0.05

0.1

0.15

x

C C
0

analytical
BGK
TRT

Figure 6.19.: Gaussian Hill diffusion benchmark scenario after 200 dimensionless time steps with D = 1.5
and ~U = (0, 0): Iso-lines of concentration (left) and the distribution (right)

For the pure diffusion benchmark a very large dimensionless diffusion coefficient
D∗ = 1.5 is chosen whereas the advection velocity is set to 0. A comparably large
domain of 5122 nodes is then simulated with a BGK and a TRT (Λ = 1/6 for lowest
diffusivity error) collision operator, both with non-linear equilibrium distribution, and
compared to the analytical result after 200 LBM time steps (figure 6.19). Similarly in the
second scenario the diffusion is kept to a minimum with a comparably small diffusion
coefficient of D∗ = 0.0043 but now the advection velocity is chosen as ~U = (0.1, 0.1).
Again the simulation is performed with both collision operators but in this case Λ
is set to 1/12 for the smallest possible advection error (figure 6.20). Both results are
virtually identical with those in [5]. Even though both collision operators lead to
excellent results in all further simulations TRT will be used due to its better stability
properties.

0.8

0.6

0.4

0.2

200 220 240
200

220

240

x

y

analytical
BGK
TRT

180 200 220 240 260
0

0.25

0.5

0.75

1

x

C C
0

analytical
BGK
TRT

Figure 6.20.: Gaussian Hill advection benchmark scenario after 200 dimensionless time steps with D =

0.0043 and ~U = (0.1, 0.1): Iso-lines of concentration (left) and the distribution (right)

6.2. Performance

As one of the main advantage of LBM over conventional CFD lies in the computational
efficiency, proper attention has to be paid to an efficient implementation. The algorithm
itself is ideal for parallelisation as it only relies on local information but reaching
an acceptable parallel scaling on a system with limited bandwidth poses several

71

6. Implementation

challenges. The following section outlines some of the issues encountered in the course
of the thesis and will describe the proposed solutions.91

6.2.1. Benchmark system

The programming was performed on my private system with an LGA2011 socket
Intel i7-4820K and dual channel memory which was later replaced by a i7-4930K
six-core processor of quad channel memory with higher bandwidth. Most benchmarks
were performed on a high-performance single-CPU system with the same i7-4930K
processor but a smaller bandwidth. Finally a few test were run on a significantly more
powerful system with a LGA2066 twelve-core Intel i9-7920X and high performance
DDR4 memory in order to further investigate the parallel scaling. Table 6.3 shows
the precise simulation systems, all running either Windows 7 or 8. If not mentioned
otherwise the results correspond to benchmark system number three.
As also suggested by other LBM solvers like OpenLB, it is highly recommended to
turn hyper-threading (appendix G.1.5.1) off for optimal performance else this might lead
to very inconsistent results.

Processor Memory
Model Cores (Threads) Speed (Turbo) L3 Cache Size Speed Channels
i7-4820K 4 (8) 3.7 (3.9) GHz 10 MB 16 GB 2133 MHz 2 (4)
i7-4930K 6 (12) 3.4 (3.9) GHz 12 MB 32 GB 2400 MHz 4 (4)
i7-4930K 6 (12) 3.4 (3.9) GHz 12 MB 64 GB 1333 MHz 4 (4)
i9-7920X 12 (24) 2.9 (4.3) GHz 16.5 MB 64 GB 3000 MHz 4 (4)

Table 6.3.: A list of all tested benchmark systems: Hyper-threading was disabled for all benchmark simula-
tions.

6.2.2. Matlab

As a first prototype a basic D2Q9 and D3Q19 Matlab model with BGK and TRT collision
operators is implemented. The computational domain can be imported using the Matlab
image toolbox: Pictures that fulfil a certain form are rescaled and split up according to
the RGB channels92 in order to identify the different boundary conditions and their
corresponding orientation. The aforementioned Zou/He pressure and velocity boundaries
are implemented as well as full- and half-way bounce-back no-slip walls.
The code is completely vectorised, making use of optimised internal functions like
circshift for streaming and avoiding loops wherever possible. This allows Matlab
to use its own optimised multi-threaded operations: The code is running on six
different threads but yet, due to the interpreted implementation (appendix G.2), the
performance is comparably slow with a maximum of 4.1 million lattice updates per
second in 2D and as the matrix operations get increasingly more difficult with larger
domains also performance drops significantly to a bit more than 1 million nodes per
second (figure 6.29).

91An extensive programming guide for C++ and OpenMP is given in the appendix G.
92I recommend using uncompressed *.tiff-images as else the native image compression might render the

pictures useless.

72

6.2. Performance

6.2.3. C++

In the next step a C++ version is programmed in order to speed-up the calculations.
At first an object-oriented approach (appendix G.4.2) is taken, supposed to increase
flexibility, but as the performance of the first prototype turns out to be rather dis-
appointing, reaching not more than 7 Mlups with the D2Q9 model on a single core,
the code is rewritten using functions and optimised for multi-threading using OpenMP
(appendix G.4.9). The following section describes the programming-technical aspects
of the simulation and further investigates the parallel scalability.

6.2.3.1. Containers and memory layout

· · · · · ·
(x, y) (x+1, y)

linear index

Figure 6.21.: The memory layout used for this thesis: Populations of a particular node are saved contiguous
in memory

In the standard LBM algorithm the collision step is fully explicit and easy to calculate.
The performance mainly depends on how fast values can be read from and written
to the main memory (RAM). This means values have to be organised properly in the
RAM in order to make full use of pre-fetching (appendix G.1.4): The values should be
arranged in memory in such a fashion that each cache line loads only values into the
cache that will be used in the next calculation step. A bad memory layout alone may
lead to a performance 30 times worse than a good one. [5]

#include <omp.h>

#pragma omp parallel for default(none) shared(...) schedule(static)
for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

... //do something
}

}

Figure 6.22.: The corresponding simple parallel loops: Each core handles a single cell at one time

In a linear storage like the RAM every array (appendix G.4.4) has to be laid out linearly:
Every multidimensional array in C++ is laid out such that elements belonging to the
same row are contiguous in memory (row-major). Similarly values in our simulation
are stored in linear arrays in such a way that populations belonging to the same node
are contiguous in memory and populations of cells sharing the same x-coordinate lay
next to each other (figure 6.21). This requires a looping mechanism according to figure
6.22.93

In this implementation two separate containers for a single population are chosen: Collision
and streaming is handled by a single loop and populations collide and stream from one

93This means in this particular implementation the main direction of the domain should coincide with
the y-axis in order to yield the best possible performance. This loop is already parallelised using OpenMP.

73

6. Implementation

array into the other. This way both, pre- and post-collision populations, can be accessed
separately, which allows boundary conditions to be handled independently after the
combined collision and streaming step. As the rest node does not require a streaming
step it will be further isolated in an own container. Due to their enormous but yet
constant size all populations are manually allocated in the heap (appendix G.1.1)
using arrays while the indices of boundary cells are stored in vectors (figure 6.23).94 In
order to avoid a potential integer overflow every index as well as the corresponding
loop counters for linear population indexing have to be chosen as size t (defined in
<stdlib.h>), an unsigned integer type that depending on the implementation can
be anything between a unsigned char and an unsigned long long.

#include <stdlib.h>
#include <vector>

double *f0 = (double*) malloc(mem_size_scalar);
double *f1 = (double*) malloc(mem_size_speeds);
double *f2 = (double*) malloc(mem_size_speeds);

std::vector<size_t> wall, inlet, outlet;
wall.reserve(NX*NY*NZ);
inlet.reserve(NX*NY*NZ);
outlet.reserve(NX*NY*NZ);

... //calculations

free(f0);
free(f1);
free(f2);

Figure 6.23.: Schematic memory allocation of the populations (f0 for rest node and the two populations f1
and f2 for the other directions) as fixed-size double-precision arrays whereas the boundary
conditions (wall, inlet and outlet) are variable-sized vectors

6.2.3.2. Collision and streaming

The visual approach of splitting up the algorithm into a collision

f t
α(~x, t + ∆t) = fα(~x, t) +

1
τ
(f (eq)

α − fα)

and a streaming step

fα(~x +~eα∆t, t + ∆t) = f t
α(~x, t + ∆t).

may aid understanding of the algorithm but requires two loops. Performance improves
drastically (almost by a factor of two) if the collision and streaming step can be combined
in a single loop instead of being performed separately.

fα(~x +~eα∆t, t + ∆t) = fα(~x, t) +
1
τ
(f (eq)

α (~x, t)− fα(~x, t))

At the end of the combined collision and streaming step the two population pointers
pointing to the heap are swapped and boundary conditions can be applied. Half-way
bounce-back can be implemented quite easily afterwards by reversing the populations

94They might change in size over time.

74

6.2. Performance

in the boundary cells and streaming them back to the cells they came from.
Additionally the equation should be rewritten as

fα(~x +~eα∆t, t + ∆t) =
(

1− 1
τ

)
fα(~x, t) +

1
τ

f (eq)
α (~x, t)

introducing two constants C1 = 1− 1
τ and C2 = 1

τ which can be calculated once at the
start of the simulation and re-used for the case of constant relaxation times.

6.2.3.3. Large domains

The virtual address space (appendix G.1.2) of 32bit applications is limited to 4 GB,
practically even lower. This means that for large domains the simulation application
has to be compiled for 64bit. Under Windows this requires a 64bit GCC distribution
(for example the compiler suite TDM-GCC) or equivalent. 95

6.2.3.4. Boundary conditions

Boundary conditions are applied after the combined collision and streaming step using
the two pre- and post-collision populations. In order to yield maximum performance
the boundary conditions are hard coded for every possible direction instead of using
look-up tables.

6.2.3.5. Force calculation

While in general it is more efficient to hard-code everything instead of creating look-up
tables for the force calculation in 2D and especially in 3D there are too many possible
boundary node orientations to hard code them separately. Instead an algorithm
should identify the solid cells that are in contact with the fluid and the corresponding
populations coming from those fluid cells, assigning them bool true and false values.
Then the force on a structure can be calculated using the populations after streaming
and the boolean values.

6.2.3.6. Single-core performance and simple parallelisation

The following performance tests are performed using lid-driven cavities of aspect
ratio one in 2D as well as in 3D. The values mentioned for multi-core performance
correspond to a full processor with six cores (benchmark system three).
The single core performance of the obtained code is already significantly higher than
the Matlab code running on all cores as can be seen in figure 6.24, where the lower
data sets correspond to the single core performance. The D3Q19 simulation with more
than double the speeds and thus double the calculation steps is about half as fast. No
matter the lattice the performance of TRT is about 20% slower than BGK whereas the

95After installation the compiler has to be set up properly in Code::Blocks: Under compiler settings a
new compiler has to be configured, the compiler flags added and the linker settings (include OpenMP static
library) as well as the toolchain executables have to be adjusted accordingly. Finally the compiler has to
be set for the particular project individually. Do not forget to activate the option ’append settings...’ in the
Code:Blocks project options else the compiler flags might not be applied.

75

6. Implementation

collision operators with turbulence models are again 40% slower: The computation
of the local strain tensor at every time step makes this algorithm significantly more
computationally heavy. Compared to traditional RANS-based CFD this is though a
comparably small loss in performance.

0 500 1000 1500 2000
0

50

100

150

200

single-
core

multi-
core

characteristic length [nodes]

sp
ee
d
[M

lu
p
s]

Square LDC - D2Q9 - Simple parallel looping

0 100 200 300 400 500
0

10

20

30

40

50

60

single-
core

multi-
core

characteristic length [nodes]

sp
ee
d
[M

lu
p
s]

Cubic LDC - D3Q19 - Simple parallel looping

BGK
TRT
BGK-LES
TRT-LES
Matlab

Figure 6.24.: Scalability of performance across the domain size (left: 2D, right: 3D) for the case of simple
parallel loops. Matlab is natively parallelised on all six cores while for the C++ implementations
the lower data set corresponds to a single core and the upper one corresponds to a full processor.

1 2 3 4 5 6
0

50

100

150

number of threads

sp
ee
d
[M

lu
p
s]

Square LDC - D2Q9 - Simple parallel looping

BGK
TRT
BGK-LES
TRT-LES

1 2 3 4 5 6
0

20

40

60

number of threads

sp
ee
d
[M

lu
p
s]

Cubic LDC - D3Q19 - Simple parallel looping

BGK
TRT
BGK-LES
TRT-LES

Figure 6.25.: Speed-up across the number of threads for the simple parallel loops for different collision
operators and a domain of 2562 (left) and 2563 nodes (right) respectively. The bandwidth seems
to limit the scalability as too many values have to be loaded again from memory.

When parallelising the code, using the simple parallel looping as depicted in figure
6.22, for very small 2D domains the overhead introduced by OpenMP is significant and
the scaling over the number of threads is quite poor, larger two-dimensional domains
scale almost linearly underlining LBMs parallel potential (figure 6.25). Compared to
Matlab the multi-threaded 2D implementation is up to 100 times faster depending on the
domain size (figure 6.24). Parallelising the 3D code by simply creating more threads
that handle a single cell leads though to a severe issue: Not all cores can be used to
their full potential. After creating four threads in 2D and two in 3D, additional threads
do not lead to a performance increase. This is probably due to bandwidth limitations
as another benchmark on my private system seems to show. As for low domain size

76

6.2. Performance

the required values are still likely already loaded into the cache due to the comparably
small number of cells for larger domains the performance quickly falls off. In 3D,
where there are significantly more cells this is more visible whereas in 2D this barely
has an effect. This can also be seen in figure 6.25: All collision operators are limited by
a certain constant number of loaded values. Therefore for optimal parallelisation it
has to be avoided at all cost to reload values to cache multiple times, instead all values
loaded to the cache should be re-used as often as possible (cache locality).

6.2.3.7. Increasing cache locality in loops

Thread 1 Thread 2

Thread 1 Thread 2

Figure 6.26.: Simple parallel looping (left) compared to parallel looping in blocks (right): For the simple
parallel loop neighbouring nodes are handled by separate threads (dark gray) that require
information from their next neighbours (light gray) which most are not available in memory
and have to be loaded. In the case of looping in blocks each thread is assigned multiple nodes
and therefore the ratio between nodes that are loaded in memory already and nodes that have
to be loaded again is significantly better.

While the combination of memory layout and loops leads to an almost linear parallel
scalability for 2D simulations it suffers from scaling-issues in 3D as the wrong val-
ues are pre-fetched with increasing domain size and the bandwidth is too small to
load them again (figure 6.26). In order to increase locality the 3D domain is further
decomposed into cubes of a fixed size that are handled by a single thread (figure 6.27).96

This requires a structure of nested loop running over the different blocks and the
corresponding x, y and z coordinates (figure 6.28). For the used processor the sweet
spot was found to a cube size of 32.

CoreCore1

CoreCore1

Thread 1

Thread 2

Figure 6.27.: Domain decomposition into blocks that are handled by a single thread

96All credits for this technique go to StackOverflow user Dominique LaSalle, PhD.

77

6. Implementation

#include <omp.h>
#include <cmath>
#include <algorithm>

const unsigned int BLOCK_SIZE = 32;
const unsigned int numBlocksZ = std::ceil(static_cast<double>(NZ) / BLOCK_SIZE);
const unsigned int numBlocksY = std::ceil(static_cast<double>(NY) / BLOCK_SIZE);
const unsigned int numBlocksX = std::ceil(static_cast<double>(NX) / BLOCK_SIZE);
const unsigned int numBlocks = numBlocksX*numBlocksY*numBlocksZ;

#pragma omp parallel for default(none) shared(...) schedule(static)
for(unsigned int block = 0; block < numBlocks; ++block)
{
unsigned int startZ = BLOCK_SIZE * (block / (numBlocksX*numBlocksY));
unsigned int endZ = std::min(startZ + BLOCK_SIZE, NZ);
for(unsigned int z = startZ; z < endZ; ++z)
{
unsigned int startY = BLOCK_SIZE*((block % (numBlocksX*numBlocksY)) / numBlocksX);
unsigned int endY = std::min(startY + BLOCK_SIZE, NY);
for(unsigned int y = startY; y < endY; ++y)
{

unsigned int startX = BLOCK_SIZE*(block % numBlocksX);
unsigned int endX = std::min(startX + BLOCK_SIZE, NX);
for(unsigned int x = startX; x < endX; ++x)
{
... //do something

}
}

}
}

Figure 6.28.: Required parallel looping structure for a domain decomposed into blocks

0 100 200 300 400 500
0

10

20

30

40

50

60

single-
core

multi-
core

characteristic length [nodes]

sp
ee
d
[M

lu
p
s]

Cubic LDC - D3Q19 - Looping in blocks

1 2 3 4 5 6
0

20

40

60

number of threads

sp
ee
d
[M

lu
p
s]

Cubic LDC - D3Q19 - Looping in blocks

BGK
TRT
BGK-LES
TRT-LES

Figure 6.29.: Performance and speed-up for a three-dimensional lid driven cavity where each parallel loop
handles an entire block of the domain instead of a single node

Even though this implementation scales significantly better with this technique, it
starts to deviate from linear scalability for more than four cores. Again the bottleneck
seems to be the memory bandwidth: Due to usage of two different arrays for the pre- and
post-collion values populations twice as many values have to be loaded.97 Arranging
the cubes additionally in another cube structure using a look-up table boosts the
performance slightly for large domains but leads to way more complicated addressing
and looping. In order to reduce this bottle-neck one might try to additionally arrange
the values in memory conformingly in cubes or choose a memory layout where the two
populations co-exist in the same array and each pre-collision population is followed

97As we will see in the next section other implementations seem to use a different approach.

78

6.2. Performance

by its post-collision population. The results suggest though that for modern 2666MHz
DDR4 modules the code could maintain almost linear scaling for up to 8 cores for
BGK and TRT collision operators and for more than 12 cores in the case of the models
with Smagorinsky turbulence model.

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

350

number of threads

sp
ee
d
[M

lu
p
s]

Square LDC - D2Q9 - system 4

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

number of threads

sp
ee
d
[M

lu
p
s]

Cubic LDC - D3Q19 - system 4

BGK
TRT
BGK-LES
TRT-LES

Figure 6.30.: Speed-up for a two- and three-dimensional lid driven cavity for the benchmark system 4 with
twelve cores: Again the bandwidth limits the maximum number of lattice updates per second

Therefore the code is run on a powerful twelve-core machine with a large bandwidth
(benchmark system 4). Again for the primitive collision operators and more than eight
cores the code suffers from the same issue as with the six-core benchmark systems
(figure 6.30): The corresponding cores do not lead to an increase in performance. The
collision operators with turbulence model on the other hand scale almost linearly.
Interestingly the slope of the three-dimensional speed-up curve changes with the
numer of cores. It can be shown to precisely correlate with a feature present on Intel
processors, the turbo boost technology (appendix G.1.3): When more cores are active
the clock count of all cores is reduced. According to Wikichip[87] this happens for this
particular processor with three, five and nine cores.

6.2.3.8. Boundary conditions

Boundary conditions generally act locally on populations and can be calculated quite
fastly. Therefore they are highly inefficient to parallelise: The overhead introduced
by parallelisation outweighs its benefits by far in particular in 2D. Therefore the 2D
simulation is significantly slower due to this sequential step. The performance can
be improved though by loop unrolling (section G.4.6) or forcing a thread to calculate
multiple adjacent boundary cells by setting the parallel for schedule to (static,
n) where n is the number of cells one thread should calculate. While in 2D in my
simulations this lead to a slight performance decrease, for 3D it gives an enormous
performance boost. The speed of the 2D simulation is significantly impacted by this
sequential task slowing down the scaling. The corresponding impact can be estimated
using Amdahl’s law (appendix G.4.8).

79

6. Implementation

6.2.3.9. Comparison to Palabos: Single-core performance and memory
consumption

In order to emphasise the efficiency of the presented implementation, the code is
compared to the open source implementation Palabos in terms of single-core perfor-
mance. Palabos is an open source implementation of the Lattice-Boltzmann method,
developed by FlowKit Ltd. in close cooperation with the University of Geneva, that
may be used on single computers or even entire clusters using OpenMPI.
Figure 6.31 shows that our optimised code is even slightly better in terms of single
core performance than Palabos.98

0 500 1,000 1,500 2,000
0

10

20

30

40

50

characteristic length [nodes]

sp
ee
d
[M

lu
p
s]

Square LDC - D2Q9 - BGK - Single core

BGK
BGK Palabos

0 100 200 300 400 500 600 700
0

5

10

15

20

characteristic length [nodes]

sp
ee
d
[M

lu
p
s]

Cubic LDC - D3Q19 - BGK - Single core

BGK
BGK Palabos

Figure 6.31.: The proposed code compared to Palabos in terms of single core performance

As can be seen from the memory consumption (figure 6.32) Palabos takes though a
different approach. Only one population is used and therefore almost only half the
hard drive space is required. An efficient implementation becomes though significantly
more difficult: The collision and streaming is handled using a single population but
in order to not overwrite values that are needed later on, additional buffers have to
be introduced. The main advantages of this approach are obvious: Less bandwidth is
needed and domains with double as much memory consumption and hence double
as many nodes may be simulated on a system with limited memory.

6.2.3.10. Comparison to Palabos: Multi-core performance and scalability

Sadly Palabos is based on OpenMPI which is no longer officially released for Windows
systems and therefore a direct comparison is not accessible for our particular Windows
setup. For this reason we will take the results officially released by Palabos that were
obtained on multi-processor server systems running Linux with lower clock speeds
and scale the performance according to the ratio of clock rate. This should give us quite
an accurate clue of how the MPI code would perform on our system. The official
benchmarks furthermore show not only the accuracy of this simple scaling approach
but also suggest that this slightly overestimates the real world performance.99

98Palabos is compiled using the supplied benchmark scenarios with the -O3 compiler flag.
99The relevant setups are based on various Xeon processors X5570 (2.93GHz), X5550 (2.66GHz) and

E5500 (2.26GHz) that all support triple channel memory and up to 1333MHz bandwidth. The clock count

80

6.2. Performance

0 100 200 300 400 500 600 700 800

8

16

32

64

characteristic length [nodes]

m
em

or
y
[G

B
]

Cubic LDC - Memory consumption - D3Q19

C++
Palabos

Figure 6.32.: Memory consumption of the proposed implementation compared to Palabos: The memory
consumption of the proposed implementation is almost twice as high for the same amount of
nodes due to the two used populations

1 2 3 4
0

20

40

60

number of threads

sp
ee
d
[M

lu
p
s]

Cubic LDC - Parallel scalability - D3Q19

C++ i7-4930K
Palabos Xeon X5570

Palabos i7-4930K*

Figure 6.33.: Parallel scaling of our implementation compared to the data provided by Palabos for a different
processor of slower clock count (gray dotted) and an optimistic estimate for the used processor
for our benchmarks (gray solid). The two lines correspond to two different domain sizes: 1013

(lower) and 4013 nodes (upper).

In figure 6.33 the official results given by Palabos for the best multi-processor system, a
Xeon X5570 with 2.93GHz, with a BGK collision operator and a D3Q19 lattice for two
domain sizes of 101 (lower dotted curve) and 401 (upper dotted curve) are rescaled
with the clock rate ration 3.9/2.93 = 1.33 and plotted against the results obtained by
our simulation. As can be seen the performance obtained with Palabos is estimated to
be significantly inferior for small domain sizes and slightly inferior for large domains.
The parallel efficiency (appendix G.4.7) of the BGK operator implemented in Palabos
is around 83% which is slightly slower than the 86% obtained with this code. The
collision operators with turbulence model scale even stronger with a parallel scalability
of up to 95% (figure 6.29).

ratios of the slower two to the one with the highest frequency are given by 0.91 and 0.77 whereas the
corresponding performance ratios are given by 0.89− 1.05 and 0.73− 0.87.

81

6. Implementation

6.3. Porous bed - comparison to Ansys Fluent

Figure 6.34.: Bed made of random spheres

In the next step additional boundaries for the mass-factions are included and a coupled
fluid flow and advection-diffusion transport simulation is compared to standard CFD
for the case of a flow through a porous bed made of random spheres.

6.3.1. Geometry generation and simulation setup

An artificial cylindrical domain with a diameter of 15mm is filled with 105 spheres,
with a diameter of 4mm each, using the Packed Bed Generator PBG V.2 for Blender
by B. Partopour and A.G. Dixon in order to obtain a realistic porous bed.100 The
coordinates of the centre of the spheres can be exported to a text file and directly
imported into the LBM simulation while the Fluent mesh generation is significantly
more complicated.
We evaluate the obtained 3D model with a step tracer experiment: A non-disturbed
flow of a single species (Υ = 0) is suddenly rinsed with another species (Υ = 1).
For the mass-fractions at the inlet a Dirichlet boundary condition with a given mass
fraction is imposed, the walls are assumed impermeable and the outlet is modelled by
a zero-flux condition. For the fluid flow we stick to a velocity inlet and at pressure
outlet just like for the previous simulations and the in- and outlet is chosen to one
third of the porous bed height.

6.3.2. LBM: mesh generation and settings

In order to evaluate the required simulation time a couple of 2D cross-sections are
simulated and the corresponding cumulative residence time distribution is tracked.
The 2D cross-sections exhibit enormous domain contractions and dead waters and
therefore give rather a pessimistic view of the real three-dimensional domain.101 The
simulation run-time until a stationary flow field can be assumed is estimated to two

100The corresponding domain was created by a former graduand, Markus Pieber, in the course of his
closely related master thesis. Thanks a lot!

101I suggest this approach should be taken in general when doing more time consuming three-dimensional
simulations. It is a really good way of getting a pessimistic estimate.

82

6.3. Porous bed - comparison to Ansys Fluent

thirds of a second while the cumulative RTD should be close enough to unity already
after 3.5 seconds. In particular it must be noted that the tested 2D cross-sections due
to the enormous contraction have huge overspeeds and the characteristic velocity has
to be adjusted accordingly to deliver accurate results that are not plagued by huge
compressibility errors.
For the real three-dimensional simulation we first calculate the transient flow field
until a stationary flow can be assumed. Then the step experiment is started and the hy-
drodynamic and species transport equations are solved at the same time. In traditional
CFD it is common practice for stationary systems with a passively transported scalar
with one-way coupling to calculate the stationary velocity field and then only solve
the scalar transport equation, which is referred to as frozen flow field. We take a similar
approach in a second simulation: We iterate the velocity field with LBM until there
is no visible macroscopic change and we then only run the mass-fraction transport
equation. This effectively cuts the simulation time for the advection-diffusion step in
half as the algorithm has only to be executed for the advection-diffusion population
and not for the hydrodynamic population as well.
The precise simulation settings can be seen in table 6.4. This is equal to a simulation
with a Schmidt number of Sc = 1 and a characteristic particle Reynolds number
of Rep = 10 or an inlet Reynolds number in terms of the diameter of the tube of
Re = 37.5.

Physical units LBM units
Density ρ 1.138 kg/m3 1
Characteristic length L 0.015 m 146
Characteristic velocity U 0.036533 m/s 0.005
Kinematic viscosity ν 1.46132 · 10−5 m2/s 0.01947
Diffusivity D 1.46132 · 10−5 m2/s 0.01947
Hydrodynamic runtime 1.05 s 75 000
Advection-diffusion runtime 3.52 s 250 000

Table 6.4.: Porous bed: Physical and simulation parameters

When setting up the simulation proper attention has to be paid to specifying the
simulation correctly: Small changes in simulation parameters might lead to hugely
different results as described in appendix H.2.

6.3.3. Fluent: mesh generation and simulation setup

The following mesh generation and Fluent simulation was done by Markus Pieber
in terms of his closely related master thesis about multi-component flow in complex
geometries with Ansys Fluent.
In order to use the generated geometry for a Fluent simulation it has to be further
modified creating bridges between adjacent spheres and walls using a corresponding
Python script in Blender. The resulting Java script code must be run in the Ansys design
modeller, creating the corresponding geometry. The final domain is then obtained by
generating a tube and applying a Boolean subtraction of the tube and the spheres.
Two thirds of inlet and outlet are meshed using the sweep method whereas the rest is
meshed using tetrahedral elements with prisms in the two inflation layers assigned
to the walls. The resulting mesh with 23 772 604 cells and a maximum skewness of
0.86 is imported into Fluent, smoothed in order to improve cell quality before being

83

6. Implementation

converted to polyhedra followed by another smoothing step. The final mesh consists
of 7 555 102 cells.
The steady state is initialised using 1000 iterations while the pressure at the inlet, mass
flow at the outlet and the velocities at two monitor points in front and behind the bed
are tracked. With this resulting steady-state flow field the transient transport equation
for a user-defined scalar is solved using the PISO algorithm with a temporal resolution
of 0.001s (overall 4000 time steps) while the flow field is treated as frozen.

6.3.4. Porosity and tortuosity

The porosity of the domain is in this particular case not easily defined: The top of
the domain is not completely packed: The bottom is pretty dense with a φ = 0.45
while the top is pretty loose and therefore depending on the chosen domain this
leads to porosities of φ = 0.45− 0.51. The tortuosity is estimated using the single-
component LBM flow simulation and averaging the ratio between streamlines and
porous domain length using 150 samples. The corresponding results show good
agreeance with common values found in the literature (figure 6.5): The slightly shorter
streamlines and therefore the slightly lower tortuosity are probably caused by the
confining walls.

Method Author Formula Tortuosity

LBM CFD 1.20

Spheres
Bear and Bachmat φ = 0.48 [88] τ =

√
2φ

3(1−1.209(1−φ)
2
3)

1.21

Bear and Bachmat φ = 0.45 [88] τ =
√

2φ

3(1−1.209(1−φ)
2
3)

1.27

Table 6.5.: Estimation of the tortuosity: Our results compared to suggestions found in the literature for
random regular spheres

6.3.5. Pressure drop

The presence of the porous medium in the channel introduces a pressure drop that in
this particular simulation would be too small to be determined experimentally but
it can be compared to the Ansys Fluent CFD simulation and the empirically derived
formulas presented in chapter 5. When comparing the results to Ansys (table 6.6) we
can again see that LBM slightly overestimates the tiny pressure drop. The experimentally
derived formulas lead to even lower values for φ = 0.48 but to values closer to Fluent
if a lower porosity of φ = 0.45 is chosen. When calculating the pressure drop by taking
into account that the domain is made up by 90% of the dense φ = 0.45 packaging and
only 10% is packed loosely this leads to a pressure drop of around 0.9Pa.102

102The pressure drop in the tube itself, given by the law of Hagen-Poiseuille λ = 64
Re and the law of

Darcy-Weisbach ∆p = ρU2

2 λ l
d , is more than an order of magnitude smaller and can be neglected.

84

6.3. Porous bed - comparison to Ansys Fluent

Method Pressure drop ∆p
[

Pa = N
m2

]

LBM 1.08
Ansys Fluent 0.98
Kozeny-Carman equation φ = 0.48 0.67
Ergun equation φ = 0.48 0.68
Kozeny-Carman equation φ = 0.45 0.91
Ergun equation φ = 0.45 0.92

Table 6.6.: The pressure drop obtained by LBM compared to Ansys Fluent and the two empirical formulas

6.3.6. Cumulative residence time distribution

We calculate the cumulative residence time assuming that the mass-fractions of the
pseudo-incompressible LBM simulation correspond to a comparable incompressible
simulation. Therefore the density and thus also the volumetric flow rate at in- and
outlet can be assumed to be equal (ρ = ρ(in) = ρ(out) and V̇ = V̇(in) = V̇(out)) and the
cumulated residence time distribution can be calculated from the discrete cells at the
in- and outlet according to

F =
c(out)

i

c(in)i

=

ṅ(out)
i

V̇(out)

ṅ(in)
i

V̇(in)

=
ṁ(out)

i

ṁ(in)
i

=
∑ Y(out)

i ρ(out)u(out)
n

∑ Y(in)
i ρ(in)u(in)

n

=
∑ Y(out)

i u(out)
n

∑ Y(in)
i u(in)

n

where un is the velocity normal to the outlet. To be precise only the mass fractions
entering the domain at the inlet and leaving it at the outlet should be considered but
we will simply assume that any back-flow will lead to a corresponding forward flow
due to the incompressibility assumption and the difference in concentration may be
neglected.
The resulting residence time distribution is in excellent agreeance with the Ansys
simulation (figure 6.35): The deviation between the two curves is barely visible. The
corresponding temporal evolution of the iso-surface Υ = 0.6 obtained by LBM can be
seen in figure 6.36.

0 0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0 tτ

t

F
(t
)

LBM
Fluent

0 0.5 1 1.5 2 2.5 3 3.5
0.0

0.5

1.0

1.5

tτ

t

E
(t
)

LBM
Fluent

Figure 6.35.: Residence time distribution (left) and its cumulative counterpart (right) obtained by LBM and
Ansys Fluent

85

6. Implementation

The average residence time can be estimated by numerical integration to

t =
∞∫

t=0

t E(t) dt ≈∑
i

ti E(ti) = 1.2473s

whereas the Fluent simulation using far less discrete time steps for the integral
approximation yields 1.2454s. The hydrodynamic dwell time for this particular case is
given by

τ =
V

V̇(in)
=

φ d2π
4 H

d2π
4 U

=
φH
U

=
7740877

7740877 + 3427635
· 600

0.005
= 83171.80 = 1.1695s.

The difference between the hydrodynamic dwell time and average residence time is
most likely caused by dead waters that lead to an additional contraction of the effective
flow path.

t = 0.30s t = 0.51s

t = 0.72s t = 0.93s

Figure 6.36.: Iso-surface of the mass-fraction Υ = 0.6 at different time steps obtained by the LBM simulation

The distribution fulfils its fundamental property

3.75∫

t=0

E(t)dt = F(t = 3.75) = 1.0002

which furthermore undermines the correctness of the proposed simulation.

6.3.7. Simulation runtime

Table 6.7 gives a short overview of the settings and runtime of the three simulations
on comparable six-core systems (similar to benchmark system number 3).

86

6.3. Porous bed - comparison to Ansys Fluent

LBM transient LBM frozen flow Fluent frozen flow
Total number of cells 15.01 M 15.01 M 7.55 M
Number of relevant cells 8.74 M 8.74 M 7.55 M
Mesh generation less than 20 s less than 20 s several hours
Hydrodynamic flow runtime 3.87 h 3.87 h 2.45 h
Hydrodynamic time steps 75 000 75 000 1 000
Advection-Diffusion runtime 28.80 h 14.45 h 9.70 h
AD time steps 250 000 250 000 4 000

Table 6.7.: Comparison of the runtime of LBM (transient and frozen flow field) and Ansys

It must be mentioned that the corresponding simulation runtimes may only act as
guidelines. In Fluent it might be possible to resolve the domain with less cells, apply
a greater time step and a less strict convergence criterion. At the same time also
in LBM higher characteristic velocities (the results suggest that the simulation time
could be cut in half by doubling the characteristic velocity without breaching the
incompressibility assumption) for a more coarse temporal resolution but increasing
the compressibility error and a more coarse spatial resolution could be chosen.
For stationary flow with a frozen flow field Ansys Fluent beats the LBM simulation:
LBM has to transiently iterate the flow field until no change on macroscopic level is
visible. Furthermore it is restricted to a very small time step due to the highly intricate
geometry.

0 5 10 15 20

Fluent FF

LBM FF

LBM

t[sec]

Computation time per time step

flow field advection-diffusion

Figure 6.37.: Comparison of the simulation runtime per time step of the different methods: LBM is roughly
60 times faster per time step for both the stationary flow field as well as the advection-diffusion
equation.

On the other hand LBM is virtually meshless: There is a regular grid but the corre-
sponding geometry can be generated in significantly less than a minute even for huge
three-dimensional domains taking up several dozens gigabytes of hard drive space
as compared to the difficult and time-consuming mesh generation in Fluent taking
at least several hours. Additionally it must kept in mind that uses 62.5 as many time
steps with a significantly higher temporal resolution (figure 6.37). Last but not least for
a transient simulation Fluent would take significantly longer than Lattice-Boltzmann:
LBM has apply a simple algorithm for two populations, the hydrodynamic population
f and the advection-diffusion population g, whereas in traditional CFD the continuity
equation as well as the momentum equation for all three spatial directions have to be
explicitly satisfied. A completely transient simulation of the entire domain with Ansys
would most likely take about a week.

87

7. Application: Real porous media

Figure 7.1.: Micro-CT scan and enhanced computational domain: Raw scan (left) and processed image
(right)

In the final step the validated model is applied to a binary multi-component flow in
realistic porous media in order to underline the advantages of LBM over traditional
methods in complex geometries. Meshing such a highly intricate domain in traditional
CFD is almost impossible.

7.1. Computational domain

Figure 7.2.: Grid for a porous medium (right) created from X-Ray Micro-CT (left)

Using X-Ray Micro-CT, cross-sections of a porous absorber is obtained. Meshing the
resulting geometry for traditional CFD is not viable but using the corresponding
domain in a Lattice-Boltzmann simulation by stair-casing the boundary is feasible.
The cross-sections are imported into Matlab, the contrast is enhanced turning the
picture into a binary image and finally the domain is rescaled with a basic nearest-
neighbour interpolation. In order to avoid non-sense pixels due to the present grain a
small-scale Gaussian blur is applied (figures 7.1 and 7.2). This logical domain can be
stored and imported into the C++ simulation (figure 7.3). The high resolution of the

88

7.2. Simulation setup

first hydrodynamic simulation with 90 million cells comes though at a cost of memory
space: The hydrodynamic simulation takes up almost 30GB of memory.

Figure 7.3.: Computational grid created from CT cross-sections

7.2. Simulation setup

The simulation parameters are chosen somewhat arbitrarily. In the future this simulation
will be benchmarked against experiments but for now only arbitrary yet realistic
values are used in order to illustrate the potential of the method without being able to
discuss its accuracy or even verify its validity.
The Reynolds number at the inlet is chosen identical to the simulation of the bed
with spheres, Re = 37.5. Similarly also the Schmidt number is set to unity and the
LBM characteristic velocity U = 0.005 remains unchanged. The domain is though
resolved significantly more accurate: For the first hydrodynamic simulation a highly
accurate domain of 90 million nodes is used but for the simulation involving the step
experiment a significantly lower resolution of 34 million nodes is chosen. This delivers
optimal performance without taking up too much memory: The simulation could be
easily performed on a 32 GB system.

7.3. Results

The simulation runtime for 1.7 s of hydrodynamic flow amounts to 30 h of simulation
time and the following 2.5 s of advection-diffusion take around 40 h on benchmark
system three. The obtained results are discussed in the following section.

7.3.1. Porosity, tortuosity and diffusion coefficient

The porosity is calculated counting the corresponding fluid cells and dividing them
by the overall volume of the sample. This leads to a value of φ = 0.41.

89

7. Application: Real porous media

A simple single-component simulation for low Reynolds number flow is carried out
and using 150 streamlines (figure 7.4) the tortuosity is estimated by the ratio of total
streamline length to length of the computational domain. The value is compared to
values found in the literature for random porous media and regular spheres. As can be
seen in table 7.1 the tortuosity found due to the LBM simulation is significantly lower
than the ones given in the literature for random porous media and is even slightly
lower than values found for random spheres. This is attributed to the huge channels
present in this particular porous medium and the confining walls that only slightly
redirect the flow.

Method Author Formula Tortuosity

LBM CFD 1.18

Spheres
Bear and Bachmat [88] τ =

√
2φ

3(1−1.209(1−φ)
2
3)

1.35

Zalc et al. [89] CFD 1.44

Porous

Koponen et al. [90] τ = 1 + 0.8(1− φ) 1.47

Comiti and Renaud [91] τ = 1 + 0.63 ln(1
φ) 1.56

Yu and Li [92]
τ = 1

2

(
1 + 1

2 C + C

√
(1

C−1)
2
+ 1

4
1−C

)

1.66
with C =

√
1− φ

Table 7.1.: Estimation of the tortuosity: Our results compared to suggestions found in the literature for
random regular spheres and random porous media for φ = 0.41

7.3.2. Pressure drop

Pressure

0

3.11

6.22 Pa

Figure 7.4.: Streamlines of the single-component simulation in porous media coloured according to the
pressure drop

The overall pressure drop is determined to 6.22Pa which is significantly higher than
suggested by the empiric formulas that propose values just slightly under 2Pa re-

90

7.3. Results

spectively. Streamlines for the corresponding simulation coloured according to the
pressure drop are depicted in figure 7.4.

7.3.3. Residence time distribution

0 0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0 t τ

t

F
(t
)

0 0.5 1 1.5 2
0.0

1.0

2.0

3.0

t τ

t

E
(t
)

Figure 7.5.: Residence time distribution (left) and its cumulative counterpart (right) for the real porous
medium: The deformation of the distribution function is a result of the bypass visible in figure
7.6

Similarly to the porous bed of spherical particles a residence time distribution is
obtained by a stationary frozen field advection-diffusion simulation (figure 7.5).

t = 28000 t = 44000

t = 60000 t = 76000

Figure 7.6.: Iso-surface of the mass-fraction Υ = 0.6 at different time steps obtained by the LBM simulation

The mean residence time is calculated to

t =
∞∫

t=0

t E(t) dt ≈∑
i

ti E(ti) = 0.6542s

91

7. Application: Real porous media

and the hydrodynamic dwell time is given by

τ =
V

V̇(in)
=

φ d2π
4 H

d2π
4 U

=
φH
U

=
18096022

18096022 + 5748811
· 545

0.005
= 82720.90 = 0.7196s.

In this case a bypass within the domain (figure 7.6) is visible that leads to a slightly
deformed residence time and a hydrodynamic dwell time that is longer than the mean
residence time.

92

8. Conclusion and Outlook

8.1. Conclusion

In this thesis an efficient Lattice-Boltzmann algorithm, that is able to handle fluid flow
as well as the transport of a scalar through advection and diffusion, was implemented
on a multi-core system using C++ and OpenMP. For this purpose two different arrays
for each population are allocated in the heap: The population of one array collides and
streams into the second array and after each iteration their two pointers are swapped.
This eliminates the usage of buffers and allows for an easy implementation of boundary
conditions as pre- and post-collision populations can be accessed separately. Within
the array the populations are saved as row major such that populations of a particular
cell are contingent in memory in order to make effective use of pre-caching. In order to
increase cache locality a special looping system is introduced: Each core is given a block
of the three-dimensional domain instead of a single cell. While this is not consistent
with the memory layout it still effectively boosts the parallel performance as it reduces
cache misses: Less values have to be loaded from the memory again.
In context of this thesis four different collision operators were implemented: The simple
BGK operator with one relaxation time, the more complex TRT collision operator
offering an additional freely tunable relaxation time and corresponding versions with
a Smagorinsky large-eddy turbulence model. Implementing a TRT collision operator
instead of the simple BGK model leads to a drastic increase of stability at an only
20% slower performance while turbulence models reduce the performance further by
around 40%. The parallel scaling of all collision operators is excellent, reaching 86% for
the more bandwidth-heavy base algorithms and almost 95% for the algorithms with
turbulence models. Due to the usage of two different populations the memory require-
ment is though almost twice as high as similar implementations and therefore also
the required bandwidth to be almost twice as large. Empirically a necessary bandwidth
of around 1333MHz per core running at around 4GHz was found. If the required
bandwidth is not met additional cores won’t lead to a computational speed up. This
means that for current high performance systems with quad channel 2666MHz DDR4

memory this particular implementation is only able to make use of around 8 cores effi-
ciently. Though if a single CPU system meets these requirements this implementation
is slightly faster than the novel implementation Palabos and offers more consistent
performance for different domain sizes. For a twelve-core processor system was shown
to achieve 295 million lattice updates per second with the D2Q9 lattice and 100 million
with the D3Q19 lattice.
The efficient model is then validated against standard benchmark scenarios for single
component and binary multi-component flow with excellent agreeance and excep-
tional computational performance. Only the pressure was found to be slightly higher in
some instances which is attributed to the compressible nature of Lattice-Boltzmann:
As the solver is only pseudo-incompressible numerical errors might be absorbed into
the density and might lead to slightly different pressure as the latter is connected to
the density by the speed of sound. Due to the resulting pressure waves in particular

93

8. Conclusion and Outlook

for highly turbulent flow, characterised by high Reynolds numbers, a LES turbulence
model may be used successfully. In this case though special boundary conditions, less
prone to reflection of pressure waves, should be implemented.
Including additional physical phenomena such as multi-component flow is straight
forward using another lattice accounting for advection-diffusion of mass fractions.
When compared to Ansys Fluent for a steady-state, advection-dominated species-
transport simulation in a porous bed made of spheres, LBM was able to calculate the
transient flow on an identical system ina similar time frame Ansys takes for a frozen
flow field approach for roughly the same number of nodes. As LBM is inherently
time dependent if used for steady state flow the algorithm has to be iterated until
no visible change on macroscopic level is visible and due to the intricate geometry
the temporal resolution of LBM has to be chosen very fine: If Fluent would have to
the same temporal resolution it can be estimated to take 42 times longer, let alone a
transient simulation. This perfectly underlines the potential of LBM for transient flow
in complex porous media.

Figure 8.1.: Realistic porous medium: iso-surface of the mass fraction Υ = 0.6 after 60000 timesteps

Finally, from cross-sections obtained by a computed tomography a LBM simulation domain
is created and simulated. While we were not able to mesh the same domain with
Ansys Fluent the grid generation with Lattice-Boltzmann can be completely automated
and can be done in a matter of seconds. The results seem plausible but a comparison
with extensive experimental results is needed. Further it should still be investigated if
the results are also comparable for diffusion dominated flow. For this sake it might
be necessary to adjust boundary conditions to account for a diffusive flux at the inlet.
Further the current model may be extended in the future to account for additional,
more complicated interactions or may be ported to clusters as described below.

8.2. Physical outlook: reactive multi-component flow

It seems obvious to extend the current multi-component model to account for chemical
reactions of multiple species and include an additional lattice for the energy equation.

94

8.3. Computational outlook: GPGPU and MPI

LBM also seems to be a promising tool to solve the radiative transfer equation, as it
can be derived, similarly to hydrodynamics, from a viewpoint of collisions of light
particles, so called photons. As a natural consequence one could try to couple radiation
and fluid dynamics in a consistent LBM multi-physics scheme.

8.3. Computational outlook: GPGPU and MPI

As outlined in section 6.2.3.7 for the proposed code around 1300MHz bandwidth are
needed in order to supply a single core with data. For modern quad-channel systems
with a maximum bandwidth of slightly over 3200MHz per module the maximum
number of cores on a shared memory setup with OpenMP are probably limited to 12,
the rest of the cores will sit there idling, waiting for data. Moreover even Intel’s recently
announced high-end server platform Cascade Lake, featuring 48 core processors and
twelve-channel RAM, will struggle to keep all cores busy. At the huge price-tag such
a setup would come with, chances are it would be most likely still be outperformed
by a single high-performance GPU implementation at a significantly lower hardware
costs. This means a code parallelised on only a single processor will be somewhat
unlikely to deliver significant performance boosts over the next couple of years. If
more performance is needed the existing code should be either coupled with OpenMPI
(traditional cluster) or more economically be ported to graphics cards. In that case the
chosen code structure should be reconsidered. Probably in order to make better use of
the bandwidth a more complex algorithm involving only one array for each population
and a buffer should be chosen.

95

Appendix A.

Thermodynamics

The science dedicated to the relation between temperature, heat and energy is referred to
as thermodynamics. It is governed by four basic principles, the four laws of thermody-
namics.

A.1. State and process variables

In thermodynamics one distinguishes between two main types of quantities: State
variables depend only on the current equilibrium state of a system and do not depend
on the path it has taken to reach the corresponding condition whereas process variables
are an adequate measure for the path taken to reach the corresponding state. In order
to differentiate these two types of quantities the latter is generally denoted by small
Greek delta δ instead of exact differentials d.
This means for a state variables f (u, v) the order of derivatives does not matter, the
symmetry of second derivatives, the Schwarz’s theorem

∂uv f = ∂vu f ,

must hold.
State variables can be further classified: Extensive variables such as energy E or volume
V depend on the size of the system whereas intensive variables such as pressure p or
temperature T do not. Dividing an extensive variable by the mass of the corresponding
system yields so called specific variables. In the case of the volume this leads to the
specific volume v which is the reciprocal of the density ρ

v =
V
m

=
1
ρ

.

A.2. Internal energy

One main measure of the state of a thermodynamic system is the so called internal
energy, an abstraction for a variety of different forms of energy such as kinetic and
rotational energy of the corresponding molecules that reflect the internal state (section
A.1) of a fluid regardless of the macroscopic fluid flow. The change of the internal
energy can be described using temperature and volume as

dEi =

(
∂Ei
∂T

)

V
dT +

(
∂Ei
∂V

)

T
dV.

97

Appendix A. Thermodynamics

A.3. The first law of thermodynamics for a closed system

The change of the internal energy may be described using a basic conservation of energy
given by the first law of thermodynamics (figure A.1). A closed system is able to store
energy either in macroscopic external energy Ea such as potential or kinetic energy of
the fluid flow or the aforementioned internal energy Ei (section A.2). These quantities
are state variables (section A.1) and are therefore denoted with exact differentials.
For a closed system (no mass transport) the energy can only be changed by the work
W and heat Q transferred to the system, which generally depend on the exact process
path and therefore are denoted by partial differentials. The most common type of
work is the expansion of the corresponding control volume against the surrounding
pressure p that can be calculated to δWV = −p dV. Therefore for a closed system the
following energy budget must hold:

δQ + δW = dEi + dEa

dEiδQ

δW

Figure A.1.: First law of thermodynamics for a stationary closed system

A.4. Ideal gas

So far no assumption regarding the material was made. However, the equations are
simplified significantly when assuming gases characterized by simple interactions.
One such simplified model is the ideal gas, an idealised model of a real gas where
particles of infinitesimal size interact with each other only in elastic collisions. This allows for
a simple description including a very simple equation of state given by

pV = RmT.

Additionally it can be found experimentally (Joule expansion) that the internal energy
(section A.2) of such an ideal gas is no function of the volume the gas occupies but
rather only a function of the temperature .

A.4.1. Perfect gas

An even more basic behaviour can be achieved by neglecting the intermolecular forces
resulting in constant heat capacities (section A.5). Such a model gas is referred to as a
calorically perfect gas.

98

A.5. Enthalpy and heat capacities

A.5. Enthalpy and heat capacities

Combining the first law of thermodynamics for a close system (section A.3) with
the differential of the internal energy, neglecting changes due to the external energy,
yields

δQ− p dV =

(
∂Ei
∂T

)

V
dT +

(
∂Ei
∂V

)

T
dV.

Considering an isochor system, meaning the terms including dV vanish, and dividing
the equation by the mass, results in an equation of the specific heat

∂q =

(
∂ei
∂T

)

v
dT

where the term

cv :=
(

∂ei
∂T

)

v

is referred to as the heat capacity at constant volume.
Analogously the enthalpy H is introduced as

H := Ei + pV

which takes the place of the internal energy for isobar processes and leads to the heat
capacity at constant pressure

cp :=
(

∂h
∂T

)

p
.

One can find a correlation between the two heat capacities using

de = cvdT +

(
∂ei
∂v

)

T
dv

which can be rewritten using the first law of thermodynamics to

∂q− cvdT =

[(
∂ei
∂v

)

T
+ p

]
dv

This is equivalent to

(
δq
dT

)

p
− cv =

[(
∂ei
∂v

)

T
+ p

] (
∂v
∂T

)

p
= cp − cv.

As for ideal gases (section A.4) the internal energy is only a function of temperature
but not of the specific volume this leads to

cp − cv = Rm.

Additionally the heat capacity ratio is defined as the ratio between the two specific
heats

κ :=
cp

cv
.

99

Appendix A. Thermodynamics

A.6. Entropy

Using the findings from the section above we are able to formulate the specific heat in
the case of a reversible process as (section A.3)

δqrev := dei + pdv̂ = cVdT + pdv̂.

If the heat was a state variable it would have to fulfil the symmetry of second order
derivatives (section A.1). This is though not the case due to

(
∂cv

∂v̂

)

T
6= −




∂
(

RmT
v̂

)

∂T




v̂

= −
(

∂p
∂T

)

v̂
.

As cv (section A.5) is by definition independent of the specific volume the left side
is equal to zero whereas the right side in the case of an ideal gas yields − Rm

v̂ . If the
temperature on the right side would not appear, the Schwartz’s theorem (section A.1)
would be fulfilled and we would have found a state variable. This can be achieved
introducing the entropy s, using the integrating factor 1

T , which yields

ds :=
δqrev

T
=

cv

T
dT +

p
T

dv̂.

For reversible processes this entity vanishes whereas for every irreversible process,
which is the norm for common processes found in nature, it steadily increases (second
law of thermodynamics). Entropy is responsible for the asymmetry of physical laws in
time, it gives processes direction: Differences in temperature drive every process and
are the source of this irreversibility.103 Integrating the differential definition assuming
a perfect gas (section A.4) yields

p
p1

=

(
v̂1

v̂

)κ

e
s−s1

cv =

(
ρ

ρ1

)κ

e
s−s1

cv =

(
T
T1

) κ
κ−1

e−
s−s1
Rm .

Which can be rewritten assuming isentropy s− s1 = 0 to

p
ρκ

= const.

103According to Boltzmann, entropy is hidden information contained in a collection of degrees of freedom
which are too small to be seen and too numerous to keep track of. It is proportional to the number of states
in an ensemble that satisfies a certain criterion (S ∝ log(N)). The system will evolve towards more likely
states, meaning that the entropy will tend to the maximum and will then rattle around between similar
states.

100

Appendix B.

Fluid dynamics

B.1. Vorticity and vortex detection

The vorticity of a fluid field is defined as the curl of the velocity vector ~u

~ω = ∇× ~u

and is a measure for the local spin observed by a point travelling with the flow.

B.1.1. Vortex detection

There is no mathematical definition of a vortex. Generally it is used to describe the rotation
of coherent structures in turbulent flow around a particular point.
While for the case of 2D flow the vorticity degenerates to a scalar value which may be
used for vortex detection in three dimensions this yields an entire vector. Therefore
one might use different and more complex criteria to detect vortices.104 The following
section describes some widely used measures and methods.

B.1.1.1. Vorticity magnitude

The absolute value of the vorticity

|~ω| = |∇× ~u|
might seem like a good measure for vorticity but it leads to unrealistic high values
near to the walls. Similarly also the helicity magnitude

(∇× ~u) · ~u
might not detect vortices properly.

B.1.1.2. Negative pressure threshold

As centripetal forces lead to high velocities and therefore to low pressure in vortices one
might simply visualise iso-surfaces of high negative pressure. While this is easy to
implement and is purely local, it is also somewhat arbitrary and pressure may vary
significantly along a vortex.

104Apart from the here mentioned local criteria there exist several more complicated methods (Banks-
Singer, Sujudi-Haimes) for identifying the corresponding vortex core lines

101

Appendix B. Fluid dynamics

B.1.1.3. Advanced criteria

There are several more advanced criteria available that allow for better vortex detection.
Most commonly either the Q-, Delta- or Lambda2-criterion are used. All of them use
some sorts of invariants of the strain rate tensor, generally by decomposing it into a
symmetric and antisymmetric part. For accurate vortex detection one should turn to
these criteria but should be at the same time be aware that they might lead to very
different results.

B.2. Conservation equations in integral notation

The differential conservation equations are only valid if the velocity and density fields
contain no abrupt changes. The conservation equations in integral form B.1 are more
general also containing the solutions were this can’t be assumed.105

∂
∂t

∫
ρ dV = −

∫
ρ~u ·~n dA Continuity equation

∂
∂t

∫
ρ~u dV = −

∫
(ρ~u(~u ·~n) + p~n) dA +

∫
ρ~gdV Momentum equation

∂
∂t

∫
ρe dV = −

∫
(ρe(~u ·~n) + p~u ·~n) dA Energy equation

Table B.1.: The conservation equations in integral notation

B.3. Conservative and non-conservative form

Traditionally the conservation equation are written as a balance of fluxes, the variables
of interest do not appear as coefficients, which is referred to as the conservative form.
The equations can though be rewritten by applying the chain rule and eliminating cor-
responding terms using the other conservation equations. While this is mathematically
equivalent this changes when discretising the two different forms.

B.3.1. Non-conservative momentum equation

Applying the chain rule to the left hand side of the momentum equation with the use
of the continuity equation yields the non-conservative form

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+
1
ρ

∂τij

∂xj
.

105The corresponding discontinuities are given by the Rankine-Hugoniot relations. Therefore sometimes
the integral notation is also referred to as global and the differential one as local form.

102

B.4. Other important dimensionless numbers

B.3.2. Non-conservative energy equation

Analogously the energy equation can be rewritten to

ρ
∂e
∂t

+ ρuj
∂e
∂xj

=
∂

∂xj
(k

∂T
∂xj

) +
∂

∂xj
(τijui)

And by rewriting it introducing the specific enthalpy h = ei +
p
ρ with

ρ
Dh
Dt

= ρ
Dei
Dt

+
Dp
Dt
− p

ρ

Dρ

Dt

where the last term is equivalent to zero due to the continuity equation and combining
the resulting pressure terms with the right hand side we yield

ρ
∂h
∂t

+ ρuj
∂h
∂xj

=
∂

∂xj
(k

∂T
∂xj

) +
∂

∂xj
(τijui).

B.4. Other important dimensionless numbers

The other two dimensionless numbers that can be found in table 1.3 but are not further
relevant in this thesis are

Fr := U√
g L

flow inertia
gravity Froude number

Pr := µcP
k = ν

a
viscious diffusion rate
thermal diffusion rate Prandtl number

B.5. Euler and Lagrange specification

Generally the conservation equations are formulated in a still frame (Eulerian specifi-
cation). It is also possible to specify the equations following an individual fluid parcel
(Lagrangian specification).106

B.6. Incompressible flow

B.6.1. Divergence free velocity field

Strictly speaking incompressible flow only means that a fluid parcel is not compressed
along its way on a stream line (Lagrangian specification, section B.5). This is not equiv-
alent to a constant density throughout the flow field but instead only requires the
Lagrangian derivative of the density to vanish

Dρ

Dt
=

∂ρ

∂t
+ ui

∂ρ

∂xi
= 0.

106Even though theoretically both descriptions could be used, normally the one or the other is more
suiting for a particular problem.

103

Appendix B. Fluid dynamics

Applying the chain rule to the continuity equation and inserting it into the equation
above yields

Dρ

Dt
= −ρ

∂ui
∂xi

= 0

meaning that incompressible flow is equivalent to a divergence free velocity field.

B.6.2. Derivation of the Poisson’s equation for pressure

Calculating the gradient of the momentum equation yields

∂

∂xi

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂

∂xi

{
−1

ρ

∂p
∂xi

+
1
ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]}

which can be split up into

∂

∂xi

(
∂ui
∂t

)
+

∂

∂xi

(
uj

∂ui
∂xj

)
=

∂

∂xi

(
−1

ρ

∂p
∂xi

)
+

∂

∂xi

{
1
ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]}

and simplified using the chain rule and the divergence free condition

∂

∂xi

(
1
ρ

∂p
∂xi

)
= −∂uj

∂xi

∂ui
∂xj

+
∂

∂xi

{
1
ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]}
.

Assuming a constant shear viscosity107 and density this can be further simplified to

1
ρ

∂

∂xi

(
∂p
∂xi

)
= −∂uj

∂xi

∂ui
∂xj

+ ν
∂

∂xi

[
∂

∂xj

(
∂ui
∂xj

)]

which finally leads to the Poisson’s equation for pressure

1
ρ

∂

∂xi

(
∂p
∂xi

)
= −∂uj

∂xi

∂ui
∂xj

.

B.7. Relations of density, pressure and temperature and
Mach number

Introducing the Mach number into the equation of the stagnation enthalpy hs = h + u2

2
and assuming an perfect gas (cP = const, chapter A.4) one yields

cpTs = cpT +
c2 Ma2

2
= cpT +

κ RM T Ma2

2

which can be rewritten to
Ts

T
= 1 +

κ − 1
2

Ma2.

107The shear viscosity µ can be found to be approximately proportional to
√

T using kinetic theory.
Therefore this is equivalent to assuming a nearly constant temperature across the flow field.

104

B.8. Inviscid flow: Euler equations

Assuming isentropy (section A.6) of the flow field one yields

ps

p
=

(
Ts

T

) κ
κ−1

=

(
1 +

κ − 1
2

Ma2
) κ

κ−1

and
ρs

ρ
=

(
Ts

T

) 1
κ−1

=

(
1 +

κ − 1
2

Ma2
) 1

κ−1
.

B.7.1. Flow regimes

We can use the arguably two most important dimensionless numbers of fluid flow,
the Mach and the Reynolds number to give an overview of different flow regimes as
shown in figure B.1.108

100 101 102 103 104 105 106 107 108 109
0.01

0.1

1

10

100

1000

dust

in
se
ct
s

m
od
el
s

birds

ai
rs
hi
ps

compressible

ai
rp
la
ne
s

Reynolds number

ve
lo
ci
ty

in
m
/
s

0.01

0.1

0.3

1
2

M
ac
h
n
u
m
b
er

Figure B.1.: Typical dimensionless numbers for different objects moving in air 108

Flow in most technical applications is highly turbulent with Reynolds numbers of 106

or higher. Only flows in porous media or flows involving particles such as dust are
often strictly laminar.

B.8. Inviscid flow: Euler equations

One can prove that the work stemming from simple compression due to an external
pressure is recoverable while the terms in the stress tensor proportional to the viscosity
µ correspond to dissipative losses. Assuming no energy losses (adiabatic inviscid flow)
one can simplify the governing conservation equations neglecting the viscous stresses
as well as the heat flux leading to the so called Euler equations given by table B.2.109

108This should by no means be an accurate representation but rather illustrate the approximate magnitude
and correlation of the corresponding non-dimensional numbers: The speed of sound is not constant in the
atmosphere but varies with altitude and temperature and hence the two vertical axis, velocity and Mach
number, are not connected through a constant factor. This variation accounts though only for roughly 10%
and can be neglected on a logarithmic plot.

109An inviscid fluid (perfect fluid) only resists compression (normal pressure) but does not resist fluid
flow.

105

Appendix B. Fluid dynamics

These simplified equations may be used to describe highly turbulent flow where the
inertial forces prevail over the viscous forces.

∂ρ
∂t +

∂(ρuj)

∂xj
= 0

Continuity equation
conservation of mass

∂(ρui)
∂t +

∂(ρuiuj)

∂xj
= − ∂p

∂xj
+ ρgi

Momentum equation
(Navier-Stokes equation)
conservation of momentum

∂(ρe)
∂t +

∂(ρuje)
∂xj

= − ∂(puj)

∂xj
+ ρujgj

Energy equation
conservation of energy

Table B.2.: The conservation equations of fluid mechanics in differential notation for an adiabatic inviscid
fluid (Euler equations)

B.9. Bernoulli equation

In the case of steady flow of a fluid with constant density, without losses due to
friction, one can follow a single fluid particle along its streamline and identify three
different types of energies that must be in balance: Pressure, kinetic and potential energy.
In this case the energy along a streamline must be constant according to the so called
Bernoulli equation

pi +
ρ~u2

i
2

+ ρghi = const.

When neglecting the potential energy term this results in an even simpler equation

pi +
ρ~u2

i
2

= pi + qi = ps

where the kinetic energy term q is often also referred to as dynamic pressure. For
an incompressible flow the maximum pressure is limited: If we bring the fluid to
rest isentropically (adiabatic and reversible) the entire kinetic energy is converted to
pressure resulting in the so called stagnation pressure ps.

B.10. Fluid structure interactions

Flow past a body introduces local changes in velocity: Kinetic energy is converted to
pressure and vice versa. This exerts a force on the body (figure B.2).

B.10.1. Pressure coefficient

The pressure coefficient is a dimensionless number describing the relative pressure
throughout a flow field: For every point a pressure coefficient can be calculated using
the local pressure according to

CP :=
p− p∞
1
2 ρ∞U2

∞
.

106

B.10. Fluid structure interactions

–©

+©

Figure B.2.: Schematic pressure distribution around an airfoil

Incompressible flow

For potential flows the Bernoulli equation (section B.9) holds and the pressure coeffi-
cient can be see as the ratio between kinetic energy in the free stream and the local
dynamic pressure. Meaning the pressure coefficient in a stagnation point reaches its
maximum, a value of one.

Compressible flow

In the case of compressible flow the dynamic pressure is no longer a good representa-
tion of the difference between stagnation and static pressure: The pressure coefficient
might take values greater than one.

Pseudo-incompressible flow

In pseudo-incompressible solvers such as LBM in subsonic simulations one generally
specifies the flow velocity at the inlet and the pressure at the outlet. The domain
in between generally introduces losses in form of a pressure drop meaning that the
pressure at the inlet and the velocity at the inlet have to be chosen as ρ∞ and u∞
respectively else the pressure coefficient might be greater than one which would be
un-physical.

B.10.2. Drag coefficient

angle of attack

flow direction

resultant force

drag force

lift force

Figure B.3.: Drag and lift forces as a consequence of fluid flow around an airfoil

The force exerted by the pressure distribution around a body may be split up into
two components: The component in flow direction opposing the motion is referred

107

Appendix B. Fluid dynamics

to as drag force and can be broken down into two contributions: Pressure drag (form
drag) depends on the shape of the object whereas skin friction is related to the friction
between the moving object and the fluid. The other component perpendicular to the
flow direction is called the lift force (figure B.3).
In order to quantify these two forces for different flows two additional dimensionless
numbers are introduced: the drag and the lift coefficient.
The drag coefficient is defined by

CD :=
2 FD

ρ∞U2
∞ AD

where FD is the drag force acting on the structure and AD is the reference area, usually
the projected area in flow direction. CD is not a constant but varies depending on
several parameters like the orientation of flow, the Reynolds number and in the case
of compressible flow also the Mach number. A lower drag coefficient means less
resistance and a CD = 1 corresponds to fluid being brought to rest with a uniform
stagnation pressure across the reference area.

B.10.3. Lift coefficient

Analogously to the drag coefficient

CL :=
2 FL

ρ∞U2
∞ AL

defines the lift coefficient where FL is the lift force and AL the reference area.

B.11. Strouhal number

Some flows exhibit oscillating flow patterns depending on the Reynolds number of the
flow. A simple flow around a cylinder for example leads to alternating vortex shedding
down-stream on top and bottom of the cylinder. This behaviour can be described by
another characteristic number, the Strouhal number, defined as

St :=
f L
U

where f is the predominant vortex shedding frequency which can be determined by
an FFT-analysis (appendix I.4.3.1) of an appropriate quantity like the lift coefficient.

108

Appendix C.

Kinetic theory of gases

Kinetic theory generally describes a dilute gas as a large number of interacting particles.
The employed tools range from very simply one-dimensional models with single
particles speeds to models based on distribution functions and complex far-field
interactions. [1] Remarkably such simplified models already allow qualitative or even
quantitative statements about processes in a real gas and continuum properties can be
constructed as a borderline case in thermodynamic equilibrium. This makes kinetic theory
a more general theory than continuum mechanics but yet requires simplifications or
heavy numerical simulations to solve the complex equations involved.

C.1. Basic measures of kinetic theory

Instead of the density ρ for dilute gases generally the particle density n

n :=
N
V

,

where N are the number of particles in a certain volume V, is used. The corresponding
density can be calculated using the mass of an individual particle mP according to

ρ = n mP =
N
V

mP =
m
V

.

C.2. A simplified kinetic model

A very simplified kinetic gas model consisting of molecules that travel into each
direction of a Cartesian coordinate system without collisions between the particles 110

can lead to viable approximate results for various physical quantities. Such a model is
used in the following section to derive some basic relationships in kinetic theory.

110Note that such a system is theoretically instable and unphysical: Even if it was possible to create such
a configuration it would homogenise due to collisions after a short time.

109

Appendix C. Kinetic theory of gases

C.2.1. Pressure

Taking into consideration a cuboid container with the side length L we can derive the
pressure from the change of momentum as follows. The collisions of particles with the
walls of the container are assumed perpendicularly and elastic. The resulting change
of momentum for a single particle is given in this case by

∆p = pin − pout = 2pin = 2mPvx.

The particle will continue moving and collide with the opposite wall and hit the first
wall again after

∆t =
2L
vx

.

The force due to this particular particle can be calculated to

FP =
∆p
∆t

=
mPv2

x
L

and the total force of N particles on the wall can be obtained by introducing a mean
velocity vx

F =
∆p
∆t

=
NmPvx

2

L
.

Now since the motion is assumed randomly the mean square velocities in all three
spatial directions have to be equal given a large number of particles: vx

2 = vy
2 = vz

2

and hence
v2 = vx

2 + vy
2 + vz

2 ≈ 3vx
2

Therefore the pressure can be written as force by area

p =
F
A

=
NmPv2

3L3 =
NmPv2

3V
=

ρv2

3
=

2
3

n
mP
2

v2.

C.2.2. Thermal energy

The thermal energy does not explicitly appear in the kinetic theory. Instead it emerges
from the movement of particles, meaning the mean kinetic energy of a mono-atomic
gas111 must be equivalent to the thermal energy112

Ekin =
mPv2

2
=

3
2

kBT = Etherm.

And therefore the mean velocity can be calculated to

v =

√
3

kB
mp

T =
√

3RmT.

111Monoatmic gases have only three degrees of freedom resulting from the linear motion while gases
made of more complex molecules have additional ’internal’ degrees of freedoms such as rotation and
vibration.

112This energy is distributed equally among the three degrees of freedom.

110

C.3. Particle distributions

C.3. Particle distributions

More complex models in kinetic theory involve particle distributions that describe
the probability of finding a certain gas molecule in space with a certain velocity. The
following section is supposed to extend the basics elaborated in the core of the thesis.

C.3.1. Equilibrium

A thermodynamical system can either be in equilibrium or non-equilibrium. In an
equilibrium state no change is visible on a macroscopic level which can happen in
two different cases, global and local equilibrium. In a global equilibrium the system is
uniform throughout the whole domain (no gradients). Even if boundary conditions
might prevent a system from returning to a global equilibrium, the relevant thermody-
namic variables might only changing slowly in space and time and thus any small
macroscopic region can be described accurately by an equilibrium distribution in some
neighbourhood. This condition is referred to as local equilibrium.
Any other situation where either of the above conditions are not met is called non-
equilibrium. The special case of a time independent non-equilibrium system is referred
to as steady state. [93], [94]
If a system in non-equilibrium is isolated from its environment and every cause of
inhomogeneity (like heat sources) is eliminated it will first return to a local and then
in the long run to global equilibrium.113

C.3.2. Derivation of the Maxwell-Boltzmann equilibrium distribution

Just arguing with symmetries and conservation of moments one is able to predict a
possible distribution function in a state of equilibrium, the so called Maxwell-Boltzmann
distribution for mono-atomic gases.
In a system without boundary conditions with a certain initial perturbation it seems
reasonable to assume that after some time the perturbation will even out across the
domain and the system will reach an equilibrium distribution that is isotropic in
velocity space. This means it should be possible to write an equilibrium distribution
for velocity as the product of three one-dimensional distribution functions114 in
terms of the deviation of the microscopic velocities from the macroscopic velocity
~v = ~ξ − ~u.115

f (eq)(~v2) = f (eq)(v2
x + v2

y + v2
z) = f (eq)

1D (v2
x) f (eq)

1D (v2
y) f (eq)

1D (v2
z)

If the magnitude of velocity ~v2 is held constant also f (eq)(~v2) must be a constant and
therefore

ln(f (eq)(~v2)) = ln(f (eq)
1D (v2

x)) + ln(f (eq)
1D (v2

y)) + ln(f (eq)
1D (v2

z)) = const

113Hence one might think of a non-equilibrium system near equilibrium as a small perturbation of the
equilibrium system and describe the system mathematically using the later discussed perturbation theory.

114This corresponds to a joint probability.
115Deviation from the mean value

111

Appendix C. Kinetic theory of gases

holds. The easiest non-trivial distribution function fulfilling this criterion is given by
f (eq)
1D (v2

x) = A− Bv2
x due to

ln(f (eq)
1D (v2

x)) + ln(f (eq)
1D (v2

y)) + ln(f (eq)
1D (v2

y)) = 3A + B(v2
x + v2

y + v2
z) = 3A− B|~v|2.

Therefore one possible equilibrium distribution function takes the form of

f (eq)(|~v|) = e3Ae−B|~v|2 = Ce−B|~v|2 .

The zeroth moment of any particle distribution must be equal to the particle density
n.116 The resulting integral converges only for negative exponents −B < 0. Again we
assume that the integral can be split up into one-dimensional solutions (appendix
I.3.3) according to

∫∫∫ (B
π

) 3
2

e−B~x2
d~x =

(∫ √ B
π

e−Bx2
dx

)(∫ √ B
π

e−By2
dy

)(∫ √ B
π

e−Bz2
dz

)

Integration (section I.3.3) and enforcing the zero-th momentum leads to

C = n
(

B
π

) 3
2

meaning this equilibrium distribution must take the form

f (eq)(|~v|) = n
(

B
π

) 3
2

e−B|~v|2 .

Enforcing the second order momentum

ρe =
n kB T

2
=

mP
2

∫∫∫
~v2 f (eq)(|~v|).

yields117

B =
mP

2 n kB T
=

1
2 Rm T

.

This means the so called Maxwell-Boltzmann distribution in three-dimensional space
takes the form of a Gaussian distribution (appendix I.2.1)

f (eq)(~x, |~v|, t) = n
1

(2πRmT)
3
2

e−
|~v|2

2RmT .

C.3.3. Moments of particle distributions

The moments of the particle distribution can be used to calculate the corresponding
macroscopic properties in continuum mechanics. The following moments are inte-
grated over the absolute velocities of the particles but would take the same form for
the relative velocity ~v = ~ξ − ~u due to d~v = d~ξ.

116 N =
∫∫

f d~xd~ξ leads to n = lim∆V→0 = ∆N
∆V

∫
f dξ if f can be assumed as spatially constant

117 kB
mP

= R
M = Rm

112

C.3. Particle distributions

Moment Macroscopic property

mP
∫

f d~ξ = n mP = ρ Density

mP
∫
(ξi − ui) f d~ξ = 0 Mean molecular velocity

mP
∫

ξi f d~ξ = ρui Momentum per volume
mP
2

∫ ∣∣∣~ξ − ~u)
∣∣∣
2

f d~ξ = ρe = ρ 3
2 RT Internal energy

mP
∫ ∣∣∣~ξ

∣∣∣
2

f d~ξ = ρ(e + |~v|2
2) Total energy

mP
∫
(ξi − ui)(ξ j − uj) f d~ξ = σij Stress tensor

m
3

∫ ∣∣∣~ξ − ~u
∣∣∣
2

f d~ξ = −p Pressure

mP
∫

ξiξ j f d~ξ = ρuiuj − pδij + τij Momentum flux and stress tensor
mP
2

∫ ∣∣∣~ξ − ~u
∣∣∣
2
(ξi − ui) f d~ξ = qi Heat flux

mP
2

∫ ∣∣∣~ξ
∣∣∣
2
ξi f d~ξ = ρui(e +

|~u|2
2) + vj pij − qi Energy flux

Table C.1.: Relation between the microscopic moments and the macroscopic properties of a mono-atomic
ideal gas[1]

C.3.4. Collision integral: Stoßzahlansatz

Boltzmann introduced a general collision operator for collisions of two particles,
assuming collisions of multiple particles are very rare. A fixed volume in phase space
might lose and gain particles from adjacent domains due to collisions. This gain and
loss can be expressed using an equivalent collision area Ac and the relative velocity
g =

∣∣∣~ξ1 −~ξ
∣∣∣ as well as assuming the reversibility of single collisions to

Ω =
∫

Ac

∫

~ξ1

(
f ′ f ′1 − f f1

)
gd~ξ1dAc

where indexes with apostrophe reflect the scattered quantities.118

C.3.5. Dimensionless Boltzmann equation

One can also introduce dimensionless variables into the Boltzmann equation

f ∗ = f (3RT)
3
2

n x∗i = xi
L ξ∗i = ξi√

3RT

t∗ = t
√

3RT
L g∗ = g√

3RT
dAc = A∗c n λ

118Note: The multiplication of the two distribution functions in the collision operator corresponds to the
joint distribution of two uncorrelated distributions. This reflects the molecular chaos hypothesis.

113

Appendix C. Kinetic theory of gases

finding the Knudsen Kn number as dimensionless parameter

∂ f ∗

∂t∗
+ ξ∗i

∂ f ∗

∂x∗i
=

1
Kn

∫

A∗c

∫

~ξ∗1

(
f ∗′ f ∗1

′ − f ∗ f ∗1
)

g∗d~ξ∗1 dA∗c .

In the continuum limit in thermodynamic equilibrium, for Knudsen numbers tending
to zero, the collision term becomes dominant. This is equal to a vanishing integrand

f ∗′ f ∗1
′ − f ∗ f ∗1 = 0.

The number of particles entering the domain must be equal to the number of particles leaving
it. The Maxwell-Boltzmann distribution exactly fulfils this condition: As the system is
ruled by the H-theorem this means that all non-equilibrium distributions tend over
time to a Maxwell-Boltzmann distribution.

114

Appendix D.

Multi-component flow

D.1. Basic definitions for mixtures

A species is an ensemble of chemically identical molecular entities that can explore
the same set of molecular energy levels on the time scale of the experiment whereas
a particular phase is a chemically and physically uniform quantity of matter that
can be separated mechanically and may consist of a single substance or of different
substances. A system constituted by either different species and/or different phases is
termed a multi-species or multi-phase mixture.[95]

D.1.1. Scale of separation and homogeneous mixtures

One might use the interface between the generic phase and the other phases to define
a characteristic scale of separation. In disperse flow this length scale will be significantly
smaller than the characteristic length scale of the problem L while for separated flows it
will be of the same order or larger leading to completed separated or film flow.
If the characteristic scale of separation is even smaller than the smallest length scale
modelled in the chosen description (such as the lattice size) each control volume
contains representative samples of each phase and the mixture is termed homogeneous
mixture. The following description is based on such a homogeneous mixture.[95]
Generally one species’ concentration in a homogeneous mixture is predominant
with the other components and is therefore referred to as solvent whereas the other
components are comparably small and are therefore referred to as dilute.

D.2. Mole, mass and volume fractions

For describing multi-component mixtures one may express the ratio of constituents
in different ways. Most commonly either mole or mass fractions are deployed. The
corresponding sum of all fractions obviously must be equal to unity. Molar averaging
is mainly used for chemistry whereas mass averages are generally used for liquids.

115

Appendix D. Multi-component flow

D.2.1. Mole fractions

In chemistry generally the mole fractions defined by the ratio of amount of an individual
constituent ni to the amount of all constituents n

χi :=
ni
n

is used.

D.2.2. Mass fractions

More commonly in CFD simulations the mass fractions are adopted instead. The relation
to the corresponding mole fractions can be established through the molar mass of the
individual component Mi and the molar mass of the mixture M according to

Υi :=
mi
m

= χi
Mi
M

.

D.2.3. Molar concentration, partial volume and volume fractions

The molar concentration of an individual component ci is defined as the amount of
constituent ni per volume of the mixture V and can be linked through the mole
fractions to the molar concentration of the mixture c by

ci :=
ni
V

= χic.

The ratio between the volume of a single component Vi
119 to the total volume of the

mixture V is termed volume fraction φi

φi :=
Vi
V

= ciVi.

For an ideal gas the volume fractions can be found to be equal to the mole fractions
due to the equation of state

φi =
Vi
V

=
ni
n

= χi.

D.2.4. Mixture averages

This leaves us with several options of obtaining mixture averages. For some quantities
it is obvious which way of averaging must be used, while in other cases different
possibilities may be found in literature which might be confusing at first. The following
section should help clarify this.

D.2.4.1. Molar mass

The molar mass obviously is averaged using the mole fractions χi according to

M = ∑
i

χi Mi.

119Partial volume in the case of an ideal gas

116

D.3. Total, convective and diffusive flux

D.2.4.2. Mixture density

The density of the component i can be calculated to

ρi =
mi
V

and therefore the mixture density ρ is given by

ρ =
m
V

= ∑
i

mi
V

= ∑
i

ρi.

D.2.4.3. Molar-, mass- and volume-averaged velocity

It is not obvious which average should be used for the velocity and therefore several
annotations exist in the literature. One common way of calculating the mixture average
velocity is given by the mass-averaged (barycentric) velocity

~uΥ := ∑
i

Υi~ui

another by the molar-averaged velocity

~uχ := ∑
i

χi~ui

and sometimes the volume-averaged velocity

~uφ := ∑
i

φi~ui

is taken.

D.3. Total, convective and diffusive flux

One thinks of the overall (total) flux N as a superimposition of a convective and a diffusive
flux J. The fluxes might be denoted as mass (lower case letters) or molar fluxes (capital
letters) with their corresponding mass and molar averaged velocities.
In the case of mass fluxes this leads to

~ni = Υiρ~ui = ρi~ui =~ji + ρ~uΥ

with the total mass flux
~n = ∑

i
~ni = ∑

i
ρi~ui = ρ~uΥ

and similarly for molar fluxes

~Ni = χic~ui = ci~ui = ~Ji + ci~uφ

with the total molar flux
~N = ∑

i

~Ni = ∑
i

ci~ui = c~uφ.

117

Appendix D. Multi-component flow

D.4. Fick’s laws

D.4.1. Derivation of Fick’s first law

In a one dimensional steady-state diffusion process, where particles at one point
diffuse equally into both directions, the number of particles moving in the positive x
direction for a discrete system is given by

−1
2
(ni(x + ∆x, t)− ni(x, t))

and the corresponding flux per area element A and time step ∆t is given by

Ji = −
1

2 A ∆t
(ni(x + ∆x, t)− ni(x, t))

This can be rewritten to

Ji = −
∆x2

2 ∆t

(
ni(x + ∆x, t)− ni(x, t)

A ∆x2

)

and introducing the molar concentration ci as well as the diffusion constant Di

Di =
∆x2

2∆t

this yields

Ji = −Di

(
ci(x + ∆x, t)− ci(x, t)

∆x

)

which for the case of ∆x → 0 leads to

Ji = −Di
∂ci
∂x

.

For a three dimensional system the gradient replaces the partial derivative

~Ji = −Di∇ci = −c Di∇χi.

D.4.1.1. Alternative notations

Fick’s law might also be denoted in terms of the mass fractions Υ

~ji = −ρDi∇Υi.

D.4.2. Derivation of Fick’s second law

Assuming again a one-dimensional system where now concentration changes over
time as well as due to diffusion

∂ci
∂t

+
∂Ji
∂x

= 0

118

D.5. Lewis number

one yields with Fick’s first law

∂ci
∂t
− ∂

∂x

(
Di

∂ci
∂x

)
= 0

which assuming a constant diffusion coefficient D finally yields Fick’s second law

∂ci
∂t

= Di∇2ci.

D.4.3. Correction velocity

If the Fick’s law is modified to account for multi-component flow it does not guarantee
mass conservation. This property can be improved by introducing an additional
correction velocity as

~uc = −∑
i

Υi~ui

leading to the effective diffusion term

Υi~u∗i = Υi~ui + Υi~uc = −Di∇Υi + ∑
j

Dj∇Υj.

D.5. Lewis number

For thermal multi-component system another dimensionless number, the Lewis num-
ber

Le :=
a

Di

thermal diffusion
molecular diffusion

which is related to the Schmidt and Prandtl numbers by

Le =
Sc
Pr

can be found in the literature.

D.6. Non-binary multi-component flow

When dealing with true non-binary multi-component flow the Fick model loses its
validity but my still be used with sufficient accuracy leading to a non-symmetric
collision matrix. Other common approaches such as the effective gas diffusion model
try to reduce multi-component flow to a binary mixture introducing a composite gas.
More advanced diffusion models such as the Maxwell-Stefan model (appendix D.7)
unlike Fick’s laws are still adequate for flow of multiple components but fail in porous
media where the particles collide often with the walls. In this case so the so called
dusty gas model may still be used. [96]
For dilute systems, which is the rule rather than the exception, the multi-component
effects are though minor. Often the Fick’s equation is generalised using non-symmetric
multi-component diffusion coefficients Dij. The resulting equation can be rewritten in
a matrix form where the diagonal (main) terms are similar to the binary values and
the diagonal (cross) terms are significantly smaller (10% or less of the main terms).

119

Appendix D. Multi-component flow

D.7. Maxwell-Stefan system

A more general model than the Fick’s law is provided by a special species momentum
conservation equation derived on the basis of a dilute gas model, the so called Maxwell-
Stefan system

∇χi = ∑
j

χiχj

Dij
(~uj − ~ui) + (Υi − χi)

∇p
p

+
ρ

p ∑
j

ΥiΥj(~gi −~gj) + ∑
j

χiχj

Dij

(
DT

j

Υj
− DT

i
Υi

)

where χi is the mole fraction of a particular component and D are the corresponding
diffusion coefficients.120

There are four different diffusion mechanism: diffusion in between species, diffusion
due to pressure, body forces and thermal diffusion (thermophoresis often also termed
Soret-effect). Neglecting all the secondary diffusion effects leads to

∇χi = ∑
j

χiχj

Dij
(~uj − ~ui).

As can be seen this approach avoids average velocities although somewhat obscuring
the insight. It is very challenging to determine the particular diffusion coefficients es-
pecially for mixtures of multiple components which in general are different from those
in Fick’s law. The equation can be rewritten to a matrix form and be solved analytically
where the main advantage over Fick’s law is the symmetry of the coefficients involved
Dij = Dji. A difficulty arises though from coupling the Maxwell-Stefan system with
the mass fractions. This is probably the reason this model is not yet extensively used.

D.7.1. Derivation of the Maxwell-Stefan system for binary flow

For the derivation we assume the collision of two elastic particles that conserves
momentum

m1(~u1 − ~u′1) + m2(~u2 − ~u′2) = 0

as well as energy
m1

2
(~u2

1 − ~u′21) +
m2

2
(~u2

2 − ~u′22) = 0.

The momentum exchanged through the collision can then be calculated to

m1(~u1 − ~u′1) =
2m1m2(~u1 − ~u2)

m1 + m2
.

This means some sort of proportionality of the form

χ1 ∝ χ1χ2(~u1 − ~u2)

must hold. Integrating the above equation over a particular surface S and applying
Gauss’s divergence theorem leads to

−
∫

S

χ1~ndS = −
∫

V

∇χ1dV.

120Due to momentum conservation the binary diffusion coefficients have the symmetry Dij = Dji but
depend themselves on temperature, pressure and the characteristics of the two species involved.

120

D.7. Maxwell-Stefan system

Introducing the binary diffusion coefficient D12 as a proportionality constant this
yields the Maxwell-Stefan law for binary mixtures

∇χ1 = −χ1χ2

D12
(~u2 − ~u1).

D.7.2. Derivation of Fick’s first law from the Maxwell-Stefan system

For binary flow the Maxwell-Stefan system can be shown to be equivalent to Fick’s
first law due to

~uV = c1V1~u1 + c2V2~u2 = V1~N1 + V2~N2

which can be written as

~N2 =
~uV −V1~N1

V2

Inserting this into the Maxwell-Stefan equation leads to

∇χ1 = −χ1χ2

D12
(~u2 − ~u1) = −

χ2~N1 − χ1~N2

c D12
= −

~N1 − c1~uV

D12 c2 V2
= −

~J1

D12 c2 V2
.

and further to
~J1 = −D12 c2 V2∇χ1.

For an ideal gas the partial molar volume is equal to the reciprocal of the total molar
concentration and thus c V2 equals unity. This results in Fick’s first law

~J1 = −D12 c∇χ1.

The two diffusion coefficients, the Fickian diffusivity D1 and the Maxwell-Stefan
coefficients D12 are identical for the special case of binary ideal gas flow.

121

Appendix E.

Lattice-Boltzmann

The following appendix contains various extensive derivations in the context of the
Lattice-Boltzmann methods that were omitted in thesis due to their complexity and
extent.

E.1. Derivation of Lattice-Boltzmann

There are multiple ways of deriving the macroscopic equations of conservation from
the mesoscopic Boltzmann equation through discretisation and asymptotic analysis.
The one presented in this chapter takes the form of a multiple scale perturbation
analysis, namely the Chapman-Enskog expansion.
The following derivation using the common D2Q9 lattice and the basic BGK collision
operator is based on [97]–[100] with the addition of multiple intermediate steps and is
supported by a chapter covering the maths behind it in detail, such as quadratures
and perturbation theory (appendix J).

E.1.1. Discrete Lattice-Boltzmann

In the second chapter it was shown that the continuous Boltzmann equation preserves
the familiar conservation equations but the system of equations is not yet closed.
Assuming that the distributions are nothing but a perturbation of the equilibrium
distribution one is able to retrieve the Navier-Stokes equations. In order to be used
as a numerical method for simulating fluid flow, the Boltzmann equation has to be
discretised in time as well as in space and then the same procedure has to be applied.
Generally cubic meshes, classified by the DnQm notation where n is the number of
dimension of a lattice and m are the symmetric velocities of a single lattice, are
chosen. In this section it will be shown how a suiting discrete model can be derived
using the widely used D2Q9 model as an example. For the sake of simplicity and
clearness but without losing generality we will stick to the Bhatnagar-Gross-Krook
(BGK) collision operator. More complicated models like the D3Q19 or the D3Q27 with
various collision operators can be derived in a similar fashion.

122

E.1. Derivation of Lattice-Boltzmann

E.1.1.1. Discretisation in time

The continuous Boltzmann equation can be written as

∂ f
∂t

+~ξ ·∇ f +
~F
ρ
·∇~ξ f =

1
λ
(f (eq) − f).

We neglect the force term for the complete derivation but it may be added afterwards
independently with a more basic approach that does not require the entire derivation
to be adjusted (section E.2). This leaves us with the very basic equation

∂ f
∂t

+~ξ ·∇ f =
1
λ
(f (eq) − f)

that, combining the remaining terms on the left hand side to the material derivative
(appendix I.3.1), may be rewritten to

D f
Dt

=
1
λ
(f (eq) − f).

Bringing the terms including f on the left hand side and using a trick by multiplying
the equation with e

t
λ it is possible to combine the left hand side to a single term

D
Dt

e
t
λ f = e

t
λ

D f
Dt

+ e
t
λ

1
λ

f = e
t
λ

1
λ

f (eq)

By integrating this equation over a time interval ∆t we get:

[
e

t
λ f
]∆t

0
= e

∆t
λ f (~x + ∆t~ξ,~ξ, t + ∆t)− f (~x,~ξ, t) =

1
λ

∫ ∆t

0
e

t′
λ f (eq)(~x + t′ ~ξ,~ξ, t + t′)dt′.

Now we assume that the function f (eq) is constant during the time step ∆t as it will be
comparably small and hence the right hand side of the equation above simplifies to

f (eq) 1
λ

∫ ∆t

0
e

t′
λ dt′ = f (eq)

[
e

t
λ

]∆t

0
= f (eq)

[
e

∆t
λ − 1

]

This leads to

f (~x + ∆t~ξ,~ξ, t + ∆t) = f (eq)
[
1− e−

∆t
λ

]
+ e−

∆t
λ f (~x,~ξ, t)

By subtracting f (~x,~ξ, t) on both sides of the equation and introducing a new parameter,
the relaxation time, τ = 1/

(
1− e−

∆t
λ

)
we yield

f (~x + ∆t~ξ,~ξ, t + ∆t)− f (~x,~ξ, t) =
1
τ

[
f (eq)(~x,~ξ, t)− f (~x,~ξ, t)

]

If τ is expanded in a Laurent series (appendix I.4.2) neglecting the terms O(∆t2) or
smaller it can be see that 1

τ ≈ ∆t
λ which is often mentioned in the literature.

This so-called Lattice-Boltzmann equation can be seen as a first order discretisation
of the Boltzmann equation but through re-parametrisation it can be shown to be
equivalent to the second order discretisation.[5]

123

Appendix E. Lattice-Boltzmann

E.1.1.2. Low Mach number expansion

Now we expand the equilibrium distribution function in a small Mach number expansion
assuming that the fluid of interest is approximately incompressible: The density fluctua-
tions ∆ρ are assumed to be of order O(Ma2) or smaller. Therefore we decompose the
Maxwell-Boltzmann distribution, which in the case of LBM is formulated in terms of
the density ρ instead of the particle number n like in kinetic theory (chapter C.1)121,

f (eq) =
ρ

(2πRmT)
D
2

e−
(~ξ−~u)2
2RmT =

ρ

(2πRmT)
D
2

e−
~ξ

2RmT e−
~u2−2~u~ξ
2RmT

and then expand it using a second order Taylor series (section I.4.1) Ae−Bx2+2Cx =
A(1 + 2Cx + x2(2C2 − B) + . . .)

f (eq) =
ρ

(2πRmT)
D
2

e−
~ξ2

2RmT
[
1 +

~ξ~u
RmT

+
(~ξ~u)2

2(RmT)2 −
~u2

2RmT
+ · · ·

]
.

This equation is still continuous in space but we will try to find a discrete version of it
that preserves the required momenta.

E.1.1.3. Discretisation of momentum space

In order to prove that on macroscopical level the discrete Boltzmann equation behaves
like the Navier Stokes equations the hydrodynamic moments have to be evaluated.
While in order to derive the isothermal Navier-Stokes equation only the first four
moments are necessary, for thermal LBM the first five moments are required.122 Taking
into consideration higher moments one is able to derive even more complex models
like the Burnett-equations. [101] The hydrodynamic moments take the following
form ∫

~ξm f (eq)d~ξ.

The resulting integrals can be approximated through multidimensional quadrature rules,
weighted sums of function values (appendix I.3.5). The velocity space has to be
discretised with velocities pointing into certain directions ξα with their corresponding
weights Wα. The form of the resulting integrals involving e−x2

f (x)dx due to the term
in the pseudo-incompressible equilibrium is typically approximated using a Gauss-
Hermite quadrature (appendix I.3.5.1). Common quadratures have though too little
velocities to also preserve the energy equation, meaning that the model basically
reduces to an athermal model, temperature bears no meaning. [102]
The moments contain integrals of following form

∫
e−

~ξ2
2RmT ψ(~ξ)d~ξ = ∑

α

Wαψ(~ξα)

where ψ is a polynomial of degree m and

f (eq)
α (~x, t) = Wα f (eq)(~x,~ξ, t).

121One might think of this as a fictitious model gas with a particle mass of mP = 1.
122This requires higher order tensors to be preserved and therefore also lattices with more discrete

velocities.

124

E.1. Derivation of Lattice-Boltzmann

is the discrete equilibrium distribution. From now on we assume a two dimensional
D2Q9 model and hence with a two-dimensional quadrature ψ(~ξ) = ξm

x ξn
y the integral

above can be decomposed into the integration of two integrals Im and In
123 where the

leading term (
√

2RmT)(m+n+2) emerges from the substitution of the variables ξi by
ζi:

I =
∫

e−
ξ2

x+ξ2
y

2RmT ξm
x ξn

y d~ξ = (
√

2RmT)(m+n+2) Im In

with
Ii =

∫ ∞

−∞
e−ζ2

ζ idζ

where ζ = ξx/
√

2RmT or ξy/
√

2RmT.
For a 9 velocity discretisation we used 3 integration points in each direction using the
third-order Hermite formula (appendix I.3.5.1)

Ii =
3

∑
j=1

ωjζ
i
j

with the corresponding abscesses ζ j and weights ωj:

ζ1 = −
√

3
2 ζ2 = 0 ζ3 =

√
3
2

ω1 =
√

π
6 ω2 = 2

√
π

3 ω3 =
√

π
6

The complete integral I can be calculated using all resulting nine (three for every
direction) quadrature points (using the symmetry of the weights ω1 and ω3):

I = 2RmT
[
ω2

2ψ(~0) +
4

∑
α=1

ω1ω2ψ(~ξα) +
8

∑
α=5

ω2
1ψ(~ξα)

]

where the corresponding ~ξα-values can be found due to variable transformation of
the quadrature points (hence the pre-factor c =

√
3RmT). In order to emphasise their

discrete nature with a meaning similar to a unit vector and to differentiate them from
the microscopic velocities ~ξ we denote them with ~e instead of ~ξ.

~e0 = (0, 0),
~e1 = c(1, 0), ~e2 = c(0, 1), ~e3 = c(−1, 0), ~e4 = c(0,−1),
~e5 = c(1, 1), ~e6 = c(−1, 1), ~e7 = c(−1,−1), ~e8 = c(1,−1)

E.1.1.4. Discretisation of configuration space

The configuration space is discretised accordingly, meaning

c =
∆x
∆t

=
∆y
∆t

=
√

3RmT

123Note for other discretisations that can not be obtained by Gauss’s product rules other approaches
might be needed.

125

Appendix E. Lattice-Boltzmann

has to be fulfilled.124

As the temperature in our isothermal equation of state

p = ρRmT,

bears no meaning any more we choose the grid spacing ∆x as the fundamental variable
instead. The lattice speed of sound which links pressure and denisity can be found to

c2
s =

(
∂p
∂ρ

)

s
= Rm T =

c2

3

and the equation of state can be rewritten to

p = c2
s ρ.

We combine the rather clumsy leading part of the discrete pseudo-incompressible
Lattice-Boltzmann equilibrium distribution and the weights Wα to new weights

wα =
Wα

2πRmT
e−

~ξ2
2RmT

that can be found by comparing the two equations to

wα =





4/9, α = 0
1/9, α = 1, 2, 3, 4
1/36, α = 5, 6, 7, 8

The equilibrium distribution function can be rewritten, using the new weights as well as
the lattice speed of sound, to

f (eq)
α (~x,~eα, t) = Wα f (eq)(~x,~eα, t) = wαρ

[
1 +

3(~eα · ~u)
c2 +

9(~eα · ~u)2

2c4 − 3~u2

2c2

]

where the discrete directions

~eα =





(0, 0), α = 0
(cosθα, sinθα)c, α = 1, 2, 3, 4√

2(cosθα, sinθα)c, α = 5, 6, 7, 8

can also be denoted using their angles

θα =

{
(α−1)π

2 , α = 1, 2, 3, 4
(α−5)π

2 + π
4 , α = 5, 6, 7, 8

One could think about the above mentioned weights as factors compensating for the
different lengths of the velocity vectors by choosing different masses for the particles
moving along the different directions.

124

√
3RT is the mean thermal velocity in the kinetic theory of gases (section C.2.2).

126

E.1. Derivation of Lattice-Boltzmann

E.1.2. Chapman-Enskog expansion

Apart from different length scales molecular dynamics problems involve multiple time
scales as well: [103], [104]

• Particles interact in collisions with a duration τcol of order τcol ∼ s/v.
• The time in between collisions is characterised by the mean flight time τµ ∼ λ/v.
• On a macroscale, given by the minimum hydrodynamic time scale (convection,

diffusion) thyd ∼ min[tcon = L/U, tdi f = L2/ν] where Re = tdi f /tcon, this leads
to hydrodynamic flow.

All time steps up to a single collision (0 < t ≤ τint) are assumed instantly by the
Boltzmann equation. Processes happening on a time scale τint < t ≤ τµ describe
the relaxation to a local Maxwellian equilibrium distribution with a space and time
dependent flow speed and the regime τµ < t ≤ τh describes the macroscopic transport
across the system on the hydrodynamic time scale that normally is of interest. In
order to recover this macroscopic behaviour on a significantly larger time scale an
asymptotic analysis has to be performed. The following derivation of the macroscopic
equations from the Boltzmann equation outside equilibrium, using a multiple-scale
perturbation technique, is referred to as Chapman-Enskog expansion. [15]
One could see the hydrodynamic scale as a mean field representation emerging
from the perturbation of the underlying kinetic equations with different time scales using
perturbation theory, a method generally applied in celestial mechanics. The expansion
parameter ε is generally seen as the Knudsen number Kn, defining the departure from
continuum-based mechanics.125

The sequential time step can be expanded in a Taylor series assuming ∆t ≈ ε to

fα(~x + ∆t~eα,~eα, t + ∆t) =
∞

∑
m=0

εm

m!
Dm

t fα(~x,~eα, t)

where Dt = (∂t +~eα · ∇) is the material derivative and the populations can be rewritten
using a perturbation series of the equilibrium distribution (appendix J) to

fα =
∞

∑
n=0

εn f (n)α .

All distribution functions are assumed to be functions of multiple time scales f (t0, t1, t2)
with t1 = εt0 and t2 = ε2t0 and therefore the derivative with respect to t can be rewrit-
ten applying the chain rule to126

∂t =
∞

∑
n=0

εn∂tn .

This ansatz can be inserted into the Lattice-Boltzmann equation

fα(~x + ∆t~eα,~eα, t + ∆t)− fα(~x,~eα, t) =
1
τ

[
f (eq)
α (~x,~eα, t)− fα(~x,~eα, t)

]

125This can be reasoned due to the Knudsen number in the dimensionless Boltzmann equation (appendix
C.3.5).

126One might evaluate the corresponding order of magnitude of other terms due to a corresponding
analysis commonly found in fluid dynamics.

127

Appendix E. Lattice-Boltzmann

leading to the following equation

∞

∑
m=0

(εm

m!
Dm

t

∞

∑
n=0

εn f (n)α

)
+
(1

τ
− 1
) ∞

∑
n=0

εn f (n)α − 1
τ

f (eq)
α = 0

which can be rewritten to
(

1 + εD1
t +

ε2

2
D2

t + · · ·
)
(f (0)α + ε f (1)α + ε2 f (2)α + · · ·)−

−(f (0)α + ε f (1)α + ε2 f (2)α + · · ·) + 1
τ
(f (0)α + ε f (1)α + ε2 f (2)α + · · ·)− 1

τ
f (eq)
α = 0

and further inserting the formula of the material derivative to

[
ε
(

∂t0 + ε∂t1 + · · ·+~eα · ∇
)
+

ε2

2

(
∂t0 + · · ·+~eα · ∇

)2
+ · · ·

]
(f (0)α +

+ε f (1)α + ε2 f (2)α + · · ·) + 1
τ
(f (0)α + ε f (1)α + ε2 f (2)α + · · ·)− 1

τ
f (eq)
α = 0.

Now the terms of each order of ε have to vanish according to the fundamental theorem
of perturbation theory127 leading to the following set of equations.

ε0 : f (0)α = f (eq)
α

ε1 : Dt0 f (0)α = (∂t0 +~eα · ∇) f (0)α = − 1
τ f (1)α

ε2 : ∂t1 f (0)α + (∂t0 +~eα · ∇) f (1)α + 1
2 (∂t0 +~eα · ∇)2 f (0)α + 1

τ f (2)α = 0

where the equation for ε2 can be rewritten using the one for ε1 to

∂t1 f (0)α +
2τ − 1

2τ
Dt0 f (1)α = − 1

τ
f (2)α .

The constrains regarding the hydrodynamic moments must be fulfilled by the terms
of order zero whereas the higher order terms (n ≥ 1) must be equivalent to zero:

∑
α

f (0)α

[
1
~eα

]
=

[
ρ

ρ~u

]
∑
α

f (n)α

[
1
~eα

]
=~0

For evaluating the following discrete moments it is useful to examine the properties
of the tensor E(n) describing the projection of a discrete velocity onto the axes of a
coordinate system multiplied by the weight of the corresponding direction (therefore
the odd terms are equal to the zero vector E(2n+1) =~0),128 which are terms that can
also be found in the moments above

E(n) = ∑
α 6=0

wαeαi1 eαi2 · · · eαin

where eαi is the projection of the direction ~eα and the unity vector of the i-axis.
In the D2Q9 model |eαi| is either c or 0 for α = 1..4 or c2 for α = 5..8 and due to the
orthogonality of the projections on different axes only the diagonal elements of the
following terms are different from zero

127This can also be argued by dividing the equation by ε, ε2, . . . and letting ε tend to zero.
128This requirement actually stems from kinetic theory. [1]

128

E.1. Derivation of Lattice-Boltzmann

4

∑
α=1

eαieαj = 2c2δij

8

∑
α=5

eαieαj = 4c2δij

4

∑
α=1

eαieαjeαkeαl = 2c4δijkl

8

∑
α=5

eαieαjeαkeαl = 4c4∆ijkl − 8c2δijkl

with the non-diagonal elements

∆ijkl = δijδkl + δikδjl + δilδjk

due to pairwise orthogonal projections.
This leads to the family of tensors129

E(0) = ∑
α

wα = 1

E(2) = ∑
α 6=0

wαeαieαj =

(
2
9
+

4
36

)
c2δij =

c2

3
δij

E(4) = ∑
α 6=0

wαeαieαjeαkeαl =

(
2
9
− 8

36

)
c2δij +

4
36

c4∆ijkl =
c4

9
∆ijkl

With these properties of the tensors E(n) we can calculate the moments of the discrete
equilibrium distribution function to:

∑
α

f (0)α = ρ,

∑
α

eα f (0)α = ρ~u,

∑
α

eαieαj f (0)α =
c2ρδij

3
+ ρuiuj = σ

(0)
ij ,

∑
α

eαieαjeαk f (0)α =
c2ρ

3
(δijuk + δkiuj + δjkui).

The first two moments of the equation of order ε1 lead to the Euler equations

∂t0 ρ +∇ · (ρ~u) = 0,

∂t0(ρ~u) +∇ · σ
(0)
ij = 0.

The moments of the equation of order ε2 lead to equations

∂t1 ρ = 0

∂t1(ρ~u) +
(2τ − 1)

2τ
∇ · σ(1)

ij = 0

129Lattice discretisations have to fulfil these symmetries in order to reconstruct the Navier-Stokes equations
on the continuum level.

129

Appendix E. Lattice-Boltzmann

where the term σ
(1)
ij is given by

σ
(1)
ij = ∑

α

eαieαj f (1)α = −τ ∑
α

eαieαjDt0 f (0)α = −τ[∂t0 σ
(0)
ij + ∂xk ∑

α

eαieαjeαk f (0)α =

= −τ[
−c2

3
δij∂xk (ρuk) + ∂t0(ρuiuj) + ∂xk ∑

α

eαieαjeαk f (0)α].

With

∂t0(ρuiuj) = ui∂t0(ρuj) + uj∂t0(ρui)− uiuj∂t0 ρ =

= −ui∂xk (
c2

3
ρδjk + ρujuk)− uj∂xk (

c2

3
ρδik + ρuiuk) + uiuj∂xk (ρuk) =

= −ui
c2

3
∂xj ρ− uj

c2

3
∂xi ρ− ui∂xk (ρujuk)− uj∂xk (ρuiuk) + uiuj∂xk (ρuk) =

= −ui
c2

3
∂xj ρ− uj

c2

3
∂xi ρ− ∂xk (ρuiujuk)

and

∂xk ∑
α

eαieαjeαk f (0)α = ∂xk [
c2

3
ρ(δijuk + δikuj + δjkui)] =

=
c2

3
δij∂xk (ρuk) +

c2

3
∂xi uj +

c2

3
ρ∂xi uj +

c2

3
ui∂xj ρ +

c2

3
ρ∂xj ui

we get

∑
α

eαieαj f (1)α = −τ[
c2

3
ρ(∂xi uj + ∂xj ui)− ∂xk (ρuiujuk)].

Now combining the corresponding momenta according to their order of magnitude
using ∂t = ∂t0 + ε∂t1 and including the equation above we yield

∂ρ

∂t
+

∂(ρuj)

∂xj
= 0

and

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂

∂xi

(
c2ρ

3

)
+

∂

∂xj

[(
τ − 1

2

)(
c2

3
ρ

(
∂uj

∂xi
+

∂ui
∂xj

)
− ∂

∂xk

(
ρuiujuk

)
)]

This resembles the familiar continuity and momentum equations if the viscosity is
chosen as

ν =
c2

3

(
τ − 1

2

)
= c2

s

(
τ − 1

2

)

where due to

− ∂

∂xi

(
c2ρ

3

)
= − ∂p

∂xi

pressure is linked to density via the aforementioned equation of state

p = c2
s ρ

and
− ∂

∂xk

(
ρuiujuk

)

130

E.2. Force terms

is an error term emerging from the discretisation that is though of order O(Ma3) and
hence can be neglected for small local Mach numbers, if ~u is comparably small to the
local speed of sound cs.
This means the LBM model fulfils the isothermal Navier-Stokes equations for incom-
pressible flow on the macro-scale if we choose the model parameters wisely and
combine numerical and physical viscosity in a smart way but has left us at the same time
with a couple of restrictions: We can only simulate weakly compressible fluids in the
limit of small Mach and Knudsen numbers.130 Additionally the kinematic viscosity has
become a lattice constant and can’t be adjusted independently any more. This may be
problematic when the viscosity depends on external factors.
Due to these restrictions, the set of equations is generally used to simulate incom-
pressible flows by choosing small local Mach numbers: In this case we are actually not
solving the incompressible conservation equations directly but rather a compressible,
low Mach number approximation with its own lattice speed of sound that allows for very
large time steps and therefore high numerical efficiency. With this particular algorithm
we are stuck with uniform meshes and therefore a proper resolution of the boundary
layer will lead to a massive over-resolution everywhere else and thus to longer compu-
tation times.131

On the other hand the regular grid (therefore often referred to as ”mesh-less”) elim-
inates the biggest drawback in traditional Navier-Stokes based CFD, the meshing
process. Furthermore the numerical scheme is fully explicit and as put by Sauro Succi
”non-linearity is local, non-locality is linear”, meaning the most demanding step, the
collision step is completely local making it perfectly suitable for parallelisation using
large clusters leading to computational times unrivalled by traditional CFD method.

E.2. Force terms

External forces do not pose particular requirements for the conserved momenta and
therefore might be modelled through an additionally artificial forcing term on the
right hand side

− Fi
m

(eαi − vi)

c2
s

f (eq)
α

that does not contribute to the conservation of mass due to

− Fi
m c2

s
∑
α

(eαi − vi) f (eq)
α = 0

but leads to a corresponding term in the momentum equation

− Fα

m c2
s

∑
α

(eαieαj − vieαj) f (eq)
α = −ρ

Fi
m

δij.

130This means no true incompressibility: Density changes are linked to pressure. This is a special case of
the incompressible flow assumption.

131Advanced strategies like adaptive mesh refinement do exist though (appendix F).

131

Appendix E. Lattice-Boltzmann

E.3. Energy equation

For low Mach number flow the energy equation decouples from the other conservation
equations and assuming an ideal gas with h = cPT one yields

∂T
∂t

+ uj
∂T
∂xj

=
1

ρcP

∂

∂xj
(k

∂T
∂xj

).

Similarly to the Chapman-Enskog analysis for incompressible flow one may also derive
a general algorithm for this type of advection-diffusion132 equations

∂(ρψ)

∂t
+

∂(ρujψ)

∂xj
=

∂

∂xj
(k

∂ψ

∂xj
) + q̇(ψ).

leading in case of the BGK collision operator to

gα(~x + ∆t~eα, t + ∆t) = gα(~x, t) + ωg

[
g(eq)

α (~x, t)− gα(~x, t)
]
+ wα q̇

with an equilibrium distribution

g(eq)
α (~x, t) = wαψ

[
1 +

(~eα · ~u)
c2

s
+

(~eα · ~u)2

2c4
s
− ~u2

2c2
s

]
.

and a collision frequency

ωg =
c2

s ∆t

k + ∆t c2
s

2

.

If a feedback is desired this is often modelled as a temperature-density coupling such
as the Boussinesq approximation where the temperature-dependent fluid density is
modelled as a buoyancy force instead of changing the simulation density.[5] Fully
consistent thermal models that treat the total energy as a higher moment require
higher order lattices such as multi-speed lattices which involves significantly more
complex algorithms and in particular boundary conditions.

132Often convection and advection are used as synonyms but I think in this context advection is more
suiting.

132

Appendix F.

LBM beyond incompressible flow

F.1. Derivation of Lattice-Boltzmann algorithms

The Lattice Boltzmann methods (LBM) could more generally be seen as molecular dy-
namics algorithms that can be arbitrarily designed in such a way to fulfil certain transport
equations on a macroscopical level. First the Boltzmann equation has to be discretised in
time and space gaining a discrete Lattice Boltzmann equation acting on a finite set of
velocity directions called the lattice. Then the behaviour on macroscopic level can be
recovered using some sort of asymptotic analysis. The chosen discretisation is though
strictly linked to the preserved differential equations: Some might not be suitable for
modelling certain phenomena.
As the traditional collision operator is unhandy it is replaced by collision operators
modelling the effects of the collisions, which is the relaxation to a equilibrium distribution,
rather than modelling the collision itself. In order to recover arbitrary differential
equations hence one might employ a combination of different equilibrium functions,
collision operators and forcing terms. It is even common to couple several different lattices
solving distinct differential equations and linking them with adequate forcing terms.
Generally a set of lattice units is introduced that is convenient for the corresponding
simulation leading to a simulation space ∆x and time step ∆t equal to 1. The link to
any particular simulation has to be made using the law of similarity and the relevant
dimensionless numbers.
Finally also the behaviour of boundary conditions has to be modelled on the level of dis-
tribution functions. As for the equation itself there exist several different implementations
that all have certain advantages and drawbacks regarding locality, computing time
and order of accuracy.

Figure F.1.: The popular D2Q9 lattice (left) and a rather exotic multi-speed lattice (right)

133

Appendix F. LBM beyond incompressible flow

F.1.1. Finite-difference discretisations

Generally the Boltzmann equation is discretised with what could be seen as a finite-
difference discretisation using lattices denoted by the common DdQq notation but
there even exist exotics, called multi-speed lattices [48], that do not only interact with
their direct neighbours but also with nodes one lattice apart (figure F.1).
In order to lift the restrictions of a uniform mesh a couple of mesh refinement
techniques have been developed (figure F.2) [105] as well as techniques involving
dynamically adapting mesh refinement [106], [107] introducing filtering as well as
interpolation steps.

Figure F.2.: Schematic working principle of block structured meshes

F.1.2. Finite-volume discretisations

Even though still relatively rare it should not be neglected that even a few finite-volume
discretisations exist that can be applied to unstructured grids. [108], [109]

F.2. Applications

Traditionally LBM is used in computational fluid dynamics, more particularly for in-
compressible fluid flow. Due to a low Mach number approximation of the Maxwell-
Boltzmann distribution being employed this particular model introduces significant
error for larger Mach numbers. But there have been made efforts for solving also
thermal [48], compressible133 or even supersonic [110], [111] as well as multi-phase and
multi-component flow [112]. Additionally it has been tried to use similar algorithms
in order to simulate other physical phenomena like radiation [113], [114] and the
Schrödinger equation in Quantum mechanics. [115] This renders LBM a useful tool
throughout computational physics in particular for stiff problems involving drastically
different time scales and system where macroscopic equations do not exist. [63]

133Due to offering no real computational advantage and due to stability reasons these methods still lack
significant advantage over traditional methods[1]

134

F.3. Generic advantages

F.3. Generic advantages

As the operating level of any Lattice-Boltzmann algorithm is a level deeper than
traditional differential equation solvers, one could argue a more fundamental level,
namely on the level of distribution functions, it may be easier to implement certain
microscopic phenomena. The main advantage though is the computational performance.
Most popular schemes take a very favourable form: They are fully explicit, require only
local information and therefore are ideal for parallel implementations. This is though at
the same time also their biggest drawback. As the evolution equations are inherently
time dependent they tend to be not particularly suited for steady state simulations.

135

Appendix G.

Computer architecture and
programming

Writing a working LBM algorithm is quite straight forward but writing an efficient
one is quite challenging. The fully explicit scheme in Lattice-Boltzmann, unlike in
most other scientific computing methods, involves only light computational tasks like
simple addition and multiplication but as the amount of grid cells is quite immense
most of the time is spent copying values from the memory to the processor’s cache.
Therefore the main problem for a fast implementation is finding fast containers and a
proper memory layout that makes use of the computer architecture. This appendix will
address some basics of programming and computer architecture in general to further
explain the reasoning behind the chosen implementation.

G.1. Basics of computer architecture

G.1.1. Virtual memory: Stack and heap

code

static data

heap

thread 1 stack

thread 2 stack

Figure G.1.: Memory organisation of a typical program

Generally the operating system manages the physical memory of a system and makes
it accessible to applications by assigning them virtual memory. The application itself
has no clue where the memory it is addressing is physically located, it only knows

136

G.1. Basics of computer architecture

the virtual memory address that is translated by the operating system to a physical
memory address.134

At start-up each thread of a program gets assigned a certain limited small portion of
main memory that can be managed very efficiently, called the stack. Additionally a
larger portion of memory, the heap, can be addressed (figure G.1). Contrary to the
stack it can dynamically grow within certain limits (see the next paragraph) but has
to be managed manually: If memory that is not needed any more is not freed, this
portion of memory can’t be re-allocated during the runtime of the process (memory
leak).

G.1.2. Processor architecture and word size

In computing a word is a fixed-size piece of data that is handled as a unit by the
processor and widely affects the computer’s operation. It is characterised by the
number of bits it contains, which in modern computers is either 32 or 64.135 As the
format of the memory addresses between the two are different, 64-bit software is not
compatible with a 32-bit architecture while forward compatibility is guaranteed.
The virtual address size is limited by the word: In 32-bit systems the address is a 32-bit
value whereas in 64-bit systems it is a 64-bit value. This limits the amount of memory
that can be allocated by a single 32-bit application to 4 GB. Depending on the operating
system, part of it may be used for the kernel, further reducing to 3 GB (Linux) or
2 GB (Windows) (compare to figure G.1). Therefore in order to lift this restriction the
application has to be compiled as 64-bit.136

G.1.3. Processor clock rate and Intel turbo boost

One of the main indicator for performance is the frequency a particular processor
core is running at, the clock rate generally given in gigahertz GHz. Modern Intel
processors offer a dynamic over-clocking feature named turbo boost that allows the
processor frequency to be automatically raised when demanding tasks are run. When
the workload rises the processor’s clock is increased in increments137 until it reaches
its limit given by temperatures, power and current. Therefore the maximum clock
frequency is a function of the number of cores currently in use.

G.1.4. Memory architecture

Within the last years processor performance has increased significantly while the
speed of memory modules has only increased slowly: Without additional measures
modern processors would idle most of their cycles waiting for new data to be loaded
from the memory. The two characteristic numbers are the latency, which indicates the

134This also allows secondary storage to be accessed in a similar fashion in order to exceed the size of
available physical memory (paging).

135Software specifically designed for such a hardware is referred to as 32- or 64-bit software.
136This may require an own compiler flag. For Windows even an own 64-bit compiler like TDM-GCC is

required.
137Therefore for benchmarks a meaningful time frame has to be chosen: The processor will take some

time to reach its turbo speed.

137

Appendix G. Computer architecture and programming

time between a data request and its completion, and the rate of information transfer,
the bandwidth.138

G.1.4.1. Memory latency and multi-level cache

Core Core

L1 L1

L2 L2

L3 Cache

CPU RAM

memory bus

Figure G.2.: Schematic CPU cache hierarchy

Every time the CPU accesses the main memory (RAM)139 a certain delay is introduced,
which is referred to as memory latency. In order to hide this latency, small buffers, so
called caches, are located on the CPU, which store previously used data. The smallest
data unit that a cache can handle is the so called cache line140. When the access to a
certain value in memory is requested a full cache line is loaded from main memory,
meaning also nearby values are fetched into the cache in the hope that those will be
used next.141 Before requesting the next chunk of data from the memory the caches are
searched, possibly boosting performance. If the required data can’t be found (cache
miss) the processor is forced to issue a main memory access with a much higher
latency.
In modern computers there are different layers of cache that differ in size and speed
(multi-level cache). While the first two layers, first- (L1) and second-level cache (L2),
serve only a single core, the third-level cache (L3) is generally shared among all cores
of a single processor (figure G.2). The cache higher up in the hierarchy tends to be
faster while the cache on the lower end is generally by magnitudes larger.

G.1.4.2. Multi-channel hardware architecture

In order to boost the transfer rate between the memory and the processor142 a multi-
channel memory architecture employs multiple busses between them. This allows
different memory controllers to access the modules in parallel theoretically multiplying
the transfer rate by the number of channels but requires identical modules and a
compatible architecture. While consumer grade platforms generally only support
dual-channel memory143 high-end processor micro-architectures use four memory
channels (quad-channel).

138One would wish for vanishing latency and high bandwidth in order to yield optimal performance.
139This so called Von Neumann architecture has proven far from ideal but is historically grown.
140The corresponding cache line size varies with the architecture.
141Future computers might turn to smart AI pre-aching in order to boost performance.
142Precisely between the RAM and the corresponding memory controller
143This must be distinguished from dual data-rate memory (DDR) where data exchange happens twice

per memory clock.

138

G.2. Interpreted and compiled implementations

G.1.4.3. Data bandwidth

The data bandwidth of a system is equal to the product of

• the product of base frequency and the number of data transfers per cycle144, which is
generally indicated on the modules

• the bus width, which is 64 bits for all common modules
• the number of channels

If the memory is significantly slower than the processor, the latter has to wait and the
processor time is wasted. In order to keep a processor constantly busy one should
therefore try to keep the speed of the memory close to the processor clock speed and
use the data stored in the caches.145

G.1.5. Multi-tasking and multi-threading

Traditional single-core processors can only run one instruction at a time. In order
to allow multi-tasking, meaning multiple processes to be ran on a single core, each
process has to divided into smaller subsets of instructions, so called threads, and then
the different subsets have to be processed by the CPU consecutively according to a
specified schedule (time-slicing). Systems with multiple processors or multiple cores
on the other hand can handle different threads simultaneously distributing the load
among the different cores (multi-threading).

G.1.5.1. Hardware multi-threading: Simultaneous multi-threading

A lot of high-end processors offer the ability of using hardware multi-threading: Each
processor has two virtual processor cores146 that can be addressed by the operating
system. Another thread might use resources which are currently not used, doubling
the simultaneous threads and theoretically also the performance. This is referred to
as simultaneous multi-threading (SMT) while for Intel processors it is labelled hyper-
threading and is reported to lead to a performance increase of up to 30%.147

G.2. Interpreted and compiled implementations

In order to be executed, a program has to be converted into machine language. This can
be done in two main ways: Compiled implementations translate the whole source code
into machine code beforehand while interpreted implementations execute the program
directly line by line at run time, translating each command into subroutines that are
already pre-compiled in machine code. While latter minimises platform dependency
it tends to be significantly slower.

144The number of data transfers is two for the common case of DDR modules.
145LBM is generally bandwidth limited. Apart from re-using values stored in the caches one should

favour multi-core set-ups with large caches and high-speed memory modules that allow for quad-channel
usage. Else the cores might not get the data required leading to a weak parallel scaling.

146This requires an adequate processor architecture: Certain structures in a single core must duplicated.
147While for certain unoptimised processes it might even lead to reduced performance.

139

Appendix G. Computer architecture and programming

G.3. Matlab

Matlab is a numerical computing environment vastly used in engineering that employs
a relatively easy proprietary programming language including features like graphic
interfaces that allow for fast software prototyping. Partially based on LAPACK, a
library for numerical linear algebra, it is optimised for matrix and vector operations.
This requires a code to be fully vectorised in order to achieve optimal performance
but leaves little options for the user to optimise their code by themselves. Even though
Matlab can also be compiled using the Matlab Compiler SDK (requires the free library
Matlab Runtime) code is generally interpreted and optimisation algorithms as well as
external libraries calls introduce additional overhead. As a rule of thumb a well-written
C or Fortran program can outperform Matlab code by a factor of 10-100x.

G.4. C++

C++ is a general-purpose programming language, developed from its ancestor C with
performance in mind. It introduces several advanced features like object-orientation in
the form of classes, inheritance, polymorphism and function overloading, while yet
retaining the simplicity and efficiency of C code.
Being a low level programming language it leaves a lot of optimisation to the user.
Some hints on writing efficient code are given in the paragraphs below: Some apply to
C++ only while others may be applied to other programming languages like Fortran
as well. First though we will have to take a look at what happens internally when
compiling a C++ program in order to outline at which point we can influence the
process.

G.4.1. Compilation in C++ and compiler settings

Editor / IDE

Preprocessor

Compiler

Linker

Loader

source files (.cpp) and headers (.h)

modified source files

object codes (.o)

executable file (.exe)

application

static libraries (.lib)

dynamic libraries (.dll)

Figure G.3.: The compilation process in C++ on a Windows system

While simple code is generally written into a single source file, larger project are split
up into several files. This aids understanding of isolated parts of the code and due to

140

G.4. C++

a small change the whole project has not to be recompiled again but instead only the
corresponding file.
If different source files interact with each other they have to be aware of the declaration
of functions in other files they might access. Copying and pasting the corresponding
definitions would be error prone and is therefore avoided by separating the definition
from the implementation. This gives birth to so called header files that contain the
function declaration and are included with a hint (preprocessor directives) to a special
structure in the compilation process, the pre-processor. The pre-processor literally
replaces the corresponding lines marked with an #include with the content of the
header files or the corresponding libraries. In order to avoid multiple declarations
each header file is generally assigned a header guard, a conditional that guarantees that
a header is included only once - in the case its guard word hasn’t been defined yet.
During the following compilation process (figure G.3) each source file is first compiled
to relocatable machine instructions, a so called object file, and then those are linked
together and combined with static libraries to a single executable. There are multiple
compilers available involving additional optimisation algorithms where the GNU
compiler collection (GCC) and the performance-optimised Intel C++ compiler (ICC) are
probably the most common. While the first was initially written for GNU systems it
has also been ported to other operating systems including Windows (MinGW and
MinGW-w64). The compilation process itself can be influenced by supplying compiler
flags.148

G.4.2. Object-oriented programming

C++ offers the possibility to add blueprints for custom data types, so called classes, that
may include several variables or even functions. Other classes may inherit or even
redefine parts of them (virtual functions).
Although this is very easy to understand and enables somebody to write very well
structured code, it may introduce overhead as well as aggravate optimisation.149 For
this reason in this thesis a non-object orientated approach was taken as the first
object-oriented prototype turned out to be significantly slower than expected.

G.4.3. Passing by value and by reference

Several programming languages including C++ offer the concept of pointers. A pointer
is an object that simply refers to another value stored in the memory using its memory
address. If a parameter is passed by value between two functions each function has its
own independent local copy of the variable but if a parameter is passed by reference
using a pointer both functions simply share the same address, meaning a variable can
also be overwritten in a sub-function. For large arrays an intelligent use of this concept
can significantly increase performance and memory consumption. In this thesis all
arrays such as the populations and the indices of the boundary conditions are passed
by reference using pointers.

148In this thesis the two flags -O2 for code optimisation for speed as well as -M64 for a compilation of
64-bit applications are used.

149And as LBM involves a huge number of steps per second a small overhead per step may lead to a
significantly slower performance.

141

Appendix G. Computer architecture and programming

G.4.4. Choice of containers

In C++ there are two main containers that are used in scientific computing. An array
is a fixed-size series of elements of the same data type placed in contiguous memory
locations. If the array turns out too big to be fitted into the stack it has to be manually
allocated in the heap using malloc (returns a pointer, pointing at the memory location
of the first element in the heap, or a null pointer if the memory could not be allocated).
This requires the user though to keep track of the array as well as its size manually
(use free for de-allocation).150 Else random locations of memory containing random
data may be accessed.
Vectors (require the corresponding vector library to be included) do the same job as
arrays but can be changed in size dynamically offering several functions that allow to
reserve space and shrink it again as well as appending elements. Storage is handled
automatically by the container itself introducing a small overhead.
Where performance is crucial and the size of the object foreseeable, an array should be
used, for objects that change in size during their life-time a vector is able to deliver
an inferior yet reasonable performance. In this thesis therefore the populations are
allocated in the heap as arrays whereas for the boundary conditions indices that might
change in size vectors are used.

G.4.5. Inline functions

If a function is called, the memory address of the corresponding instructions has to be
saved, parameters have to be copied to the stack, the function code has to executed,
return values have to be stored and the control has to be returned to the calling
function. This introduces a small overhead that is irrelevant for computationally heavy
functions but introduces massive overhead for small but frequently used functions
where this switching time is relevant.151

In C++ it is possible to reduce this overhead by declaring functions as inline functions.
If reasonable the compiler substitutes the function call with the corresponding function
possibly increasing performance. This can be handy for repetitive tasks such as finding
linear indices from two or three dimensional coordinates in our LBM simulation.152

G.4.6. Other optimisations

• The most basic but generally most effective way of optimising written code is
choosing more appropriate algorithms: Different terms may be rephrased leading
to mathematically easier expressions while repeating terms might be calculated
only once, stored in a corresponding variable and should be reused as soon as
possible.

• Where performance is crucial avoid fetching data from data structures and
instead hard-code it.153

• Variables that do not change during a simulation should be marked as constant
at declaration allowing for further compiler optimisation.

150One might use the C++ syntax new and delete instead but should not mix those two concepts.
151Therefore rather place loops inside functions than functions inside loops.
152If the same inline function should be used in external files it must be completely declared in the header

file.
153Like index changes for boundary conditions.

142

G.4. C++

• The prefix operator ++i should be preferred over the postfix operator i++ as for
the latter a temporary copy has to be made.

• Every loop introduces some sort of overhead due to the required control in-
structions such as the pointer arithmetic and the ”end of loop” tests after each
iteration. This can be partially avoided by unrolling the corresponding loops: The
loops are rewritten as a sequence of similar independent statements and the loop
counter is adjusted accordingly. Like this, in case of a cache miss, out-of-order
CPUs are able to continue calculations, potentially hiding the memory latency.

• For file export it might be a good idea to write to binary files, as writing in ASCII
requires a format conversion, slowing down the export significantly.

G.4.7. Parallelisation and multi-threading

In the last years there has been a shift in consumer electronic systems away from
single processor peak performance to the use of multiple cores: Instead of one strong
processor core handling all of the tasks sequentially, a bunch of slower cores carrying
out processes simultaneously has proved to be more economic.154 This requires a
task to be divided into smaller elementary operations that can be handled by single
processors independently at the same time.
In order to compare the performance of sequential and parallel processes we define
the speed-up S(p) as the ratio between sequential runtime T(1) to parallel runtime
T(p) where p is the number of processors:

S(p) =
T(1)
T(p)

.

Ideally one would wish for performance to scale linearly with the number of processors
being used. In reality this isn’t the case due to overhead and tasks that can only be
executed sequentially and one additionally defines the efficiency E(p) as the ratio
between the reached and the ideal linear speed-up to

E(p) =
S(p)

p
.

The efficiency of a specific problem highly depends on the problem being solved: A
high efficiency can be considered as a low communication to computation ratio: Calcula-
tions can be done locally and independently without having to rely on information
from distant processing units. State of art algorithms reach an efficiency of over 80%
(figure G.4).

Most common programming languages were released way before this trend of parallel
computing could have been predicted: They work sequentially and have natively
none or only very limited parallel capabilities. These features have to be unlocked by
including additional application programming interfaces (API).
For systems where processors share the same memory (shared memory) usually OpenMP,
an add-on to the compiler, is chosen. A single process is launched that can call a num-
ber of subsets, threads, which can be run by different processor cores (multi-threading).
Parallelising a code using OpenMP is pretty straight forward, in relevant parts simply

154Supercomputers are based on the same strategy but on a more sophisticated level: Processors are
combined to huge clusters (the currently most powerful supercomputer, IBM Sequoia, covers almost 300m2)
splitting up the calculations between them.

143

Appendix G. Computer architecture and programming

1 10 100 1000 10000
1

10

100

1000

10000

superlinear

sublinear

lin
ea
r

number of processing units

p
a
ra
ll
el

sp
ee
d
-u
p

Figure G.4.: Ideal (dotted), high (solid) and low parallel efficiency (dashed)

additional comments to the pre-processor are added. The process should though be
designed in such a way to ease the use of multiple threads such as maintaining data
locality.
For distributed systems where a number of independent computer nodes interact with
each other, a different approach has to be taken: Every parallel process works in
isolation with its own memory and variables must be kept in sync with each other
using message-passing interfaces, short MPI. This makes it a lot more complicated to
program than in the case of a single shared memory.
Additionally graphics cards (GPUs) have proved to be very efficient as they are massive
parallel structures by themselves already with thousands of small cores155 that can
handle instructions independently and connected by fast buses but come at a lower
price tag and have a lower power consumption. Initially computational problems
had to be reformulated in terms of graphic primitives but the increasing interest
finally led to general purpose programming languages (GPGPU), including graphic
card developer nVidia’s proprietary Compute Unified Device Architecture (CUDA),
a programming language based on C, first released in 2007, that allows GPUs to be
abused for heavy calculations. This has caused an increasing interest of universities
and companies in building their own ’low budget’ clusters in order to speed up their
calculations.156

155nVidia latest high end model Titan V has over 5000 cores.
156GPU programming might though be significantly harder than traditional shared (such as OpenMP)

or distributed memory systems (OpenMPI): Possible optimisations depend significantly on the particular
architecture and therefore requires specific knowledge about the individual GPU architecture. Parallelising
large domains may though be challenging as graphics cards have a strictly limited memory size. In 2014 for
this reason the concept of a single memory space, the so called Unified Memory was introduced. The overall
performance of the algorithm is therefore mainly limited by the slow communication between different
graphics cards in a setup.

144

G.4. C++

G.4.8. Amdahl’s law

For an process consisting of several functions the overall speed-up due to the speed-up
s of a single function with the portion of computing time p can be calculated according
to Amdahl’s law to

speedup =
runtimeold
runtimenew

=
1

(1− p) + p
s

.

This is particularly useful in parallel computing for determining the possible speed-up
if some functions only work sequentially.

G.4.9. OpenMP

#include <omp.h>

omp_set_nested(1);
unsigned int thread_max = omp_get_max_threads();
omp_set_num_threads(thread_max);

#pragma omp parallel sections
{
#pragma omp section
{
... //task 1

}
#pragma omp section
{
... //task 2

}
}

Figure G.5.: Schematic code of nested parallelism in OpenMP: The two tasks, task 1 and task 2, are handled
at the same time. Due to the nested parallelism flag both tasks might involve parallelism
themselves.

Natively C++ code is only sequential which is a huge drawback in times of massively
parallel CPUs. One possible way of parallelising sequential code is by creating multiple
small synchronised sequences that can be handled by a processor, called threads (multi-
threading). In C++ this is generally done through the Open Multi-Processing API
(OpenMP).
The implementation is pretty straight forward: The corresponding libraries have
to be included (#include <omp.h>), the compiler has to be notified with the
compiler flag -fopenmp and the linker has to be supplied with the corresponding
library (libgomp-1.dll for 32bit or libgomp 64-1.dll for 64bit). Then the syntax,
basically consisting of pre-compiler directives (#pragma omp ...) that handle thread
creation as well as race conditions can be used. By default nested parallelism is not
enabled but it might come in handy in some cases. Figure G.5 shows an OpenMP
example with nested parallelism activated.

G.4.10. A note on platform dependencies and portability

C++ is per se platform independent but must be compiled individually for a particular
target platform. When including external (platform dependent) libraries this might

145

Appendix G. Computer architecture and programming

change though, restricting the code to a specific operating system. Particular care
must be taken when implementing graphic interfaces as most current APIs (Win32, Qt,
WxWidgets, GTK+, ...) are only compatible with a single or few different operating
system.

146

Appendix H.

Benchmarks

The following chapter is a collection of benchmarks that were not considered suitable
or important enough to be mentioned in the main part of the thesis.

H.1. Lid driven cavity: Pressure and vorticity

The following two curves were moved into the appendix as I have no benchmark
data to compare them against. They show good visual agreeance and no artificial
artefacts but I lack data to compare them against: Most visualisations do not mention
the corresponding values of the iso-lines.

Re 100 Re 400 Re 1000

Re 3200 Re 5000

Figure H.1.: Pressure contours for a square LDC at different Reynolds numbers

147

Appendix H. Benchmarks

Re 100 Re 400 Re 1000

Re 3200 Re 5000

Figure H.2.: Vorticity contours for the case of a square LDC at different Reynolds numbers

H.2. Multi-component flow: Effects of wrong simulation
parameters

The following example should illustrate what a huge effect the setting of wrong pa-
rameters might have. The characteristic length was wrongfully set to L = 150 rather
than the correct length 146 and the inlet and outlet length were chosen to around
27% of the porous bed height rather than 1/3 as in the final simulation. Due to the
small deviation the reader might think the results should be similar but this does
not only lead to a shorter overall domain but also to a higher Reynolds number
Re = 150/146 · 37.5 = 38.53 and therefore also to a higher Peclét number. Thus the
flow is significantly more advection dominated and additionally runs over a shorter domain
length.

0 0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

t

F
(t
)

Re=38.52
Re=37.5

0 0.5 1 1.5 2 2.5 3 3.5
0.0

0.5

1.0

1.5

t

E
(t
)

Re=38.52
Re=37.5

Figure H.3.: Residence time distribution (left) and its cumulative counterpart (right) for the faulty (black)
and correct simulation (gray) as well as their mean residence times (dotted)

148

H.2. Multi-component flow: Effects of wrong simulation parameters

The hydrodynamic dwell time

τ =
V

V̇(in)
=

6881827
6881827 + 3427635

· 600
0.005

= 1.001s.

as well as the average residence time

t =
∞∫

t=0

t E(t) dt ≈∑
i

ti E(ti) = 0.9901

are significantly lower due to the smaller domain and stronger advection and the
resident time distribution shows less dispersion (figure H.3).

149

Appendix I.

Mathematical appendix

This chapter tries to roughly outline the mathematical basics immediately needed in
order to understand this thesis as well as to clarify the chosen notations. I tried to
outline in particular quadrature rules as well as perturbation theory as I’d consider
both hidden gems, rarely seen in engineering literature. The content is by no means
complete and everybody who wants to know more about the particular topic should
pick up the corresponding specialised literature.

I.1. Mathematical notations

I.1.1. Scalars

|x| Absolute value

{
x, if x ≥ 0
−x, if x ≤ 0

x Mean value x1+···+xn
n

〈x〉 Weighted average w1 x1+···+wn xn
w1+···+wn

f (n) n-th term of perturbation analysis

n! Factorial
n
∏
i=1

i = 1 · 2 · 3 · · · (n− 1) · n

I.1.2. Vectors

~x Column vector xi =




x1

· · ·

xn




xi i-th component of the vector x

~x ·~y Dot product 〈x, y〉 = xjyj = x1y1 + · · ·+ xnyn

|~x| Norm of the vector x
√

x2
1 + · · ·+ x2

n

150

I.1. Mathematical notations

~x2 Square norm of the vector x x2
1 + · · ·+ x2

n

∇ Gradient




∂
∂x1

· · ·
∂

∂xn




∇~v Gradient of ~v ∇ ·~v

∇2 Laplace operator
n
∑

j=1

∂2

∂x2
j

I.1.3. Matrices

X, Xij Matrix Xmn =




x11 · · · x1n

· · · · · · · · ·

xm1 · · · xmn




Xij Matrix element

X′ Transposed matrix Xnm =




x11 · · · x1m

· · · · · · · · ·

xn1 · · · xnm




I.1.4. Differentials

Dt Material derivative D
Dt

∂t Local partial derivative ∂
∂t

I.1.5. Einstein notation

The Einstein summation convention is a mathematical notation according to which an
index that appears twice in a single term is the short notation for a summation over
this index. So the following two notations are equal:

ajbj ∑
j

ajbj

151

Appendix I. Mathematical appendix

I.1.6. Kronecker delta

The Kronecker delta is a function of two non-negative variables i and j. If the two
variables are equal the function is 1, else it is 0.

δij =

{
1, for i = j
0, for i 6= j

I.2. Probability

I.2.1. Gaussian distribution function

For a large number of possible events a continuous distribution function, the so called
Gaussian distribution function, can be used to predict the outcome.

f (x) =
1√

2πσ2
e−

(x−a)2

2σ2

The values are arranged symmetrically around the mean value a with a standard
deviation σ.

I.3. Integrals and derivatives

The following section outlines the basics of integral calculus, including important
integrals used within the thesis and approximation methods, in particular Gaussian
quadratures.

I.3.1. Material derivative

The rate of change of a continuum system f (~x(t), t) that varies in space and time can
be expressed, applying the chain rule

d f
dt

=
∂ f
∂t

+
∂ f
∂xj

∂xj

∂t
=

∂ f
∂t

+ uj
∂ f
∂xj

=
∂ f
∂t

+ ~u · ∇ f .

I.3.2. Gauss’s divergence theorem

The Gauss’s divergence theorem describes the relation between the flux through a
closed surface and the changes inside the volume enclosed by the surface.

∫

V

∇ · TdV =
∮

S

T′ ·~ndA
∫

V

∂Tij

∂xi
dV =

∮

S

TjinidA

152

I.3. Integrals and derivatives

I.3.3. Important integrals

The following integral is necessary for evaluating the moments of distribution func-
tions:

∫ ∞

x=−∞

√
C
π

e−Cx2
dx =

[
1
2

erf (
√

Cx)
]∞

x=−∞
= 1

I.3.4. Orthogonal functions

Similarly to the dot product of two vectors, two functions f (x) and g(x) are considered
orthogonal over an interval a ≤ x ≤ b with a weighting function w(x) if

〈 f , g〉 =
∫ b

a
f (x)g(x)w(x)dx = 0

holds. A common example for orthogonal functions are sin(x) and cos(x) on the
interval −π ≤ x ≤ π.

I.3.5. Gaussian quadrature

While most regular integrals may be evaluated numerically it might be necessary
for computations of complex functions to approximate an integral numerically. A
quadrature rule in numerical analysis is a method for approximating a definite integral
of a function normally expressed as a weighted sum (weights wi) of function values of
particular points within the domain f (xi).
A polynomial of degree n− 1 can be interpolated by n points and hence be integrated
exactly with common quadrature rules. The Gaussian quadrature rule is a particular
quadrature rule introduced by Carl Friedrich Gauss that yields an exact result with n
points for polynomials of degree 2n− 1 or less by introducing the weights and the
interpolating point locations (hence overall 2n measures compared to the n in basic
quadrature rules) as unknowns:

∫ 1

−1
f (x)dx ≈

n

∑
i=1

wi f (xi).

The weights wi and abscisses xi can be determined by different approaches (Gauss-
Legrendre, Chebyshev-Gauss, Gauss-Hermite) but in either case they must be positive
(wi > 0) and possess following symmetries

xi = −xn−i, wi = wn−i, i = 1, 2, · · · , n

Integrals on other finite intervals [a, b] can be converted to integrals over [−1, 1] by

∫ b

a
f (t)dt =

b− a
2

∫ 1

−1
f
(

a + b + x(b− a)
2

)
dx

and hence also estimated by Gaussian quadrature.

153

Appendix I. Mathematical appendix

I.3.5.1. Gauss-Hermite quadrature

The Gauss-Hermite quadrature is a special form of the Gaussian quadrature for
approximating the type of integral

∫ +∞

−∞
e−x2

f (x)dx ≈
n

∑
i=1

wi f (xi)

where the abscissas xi and weights wi for small n can be computed analytically to

n x1 x2 x3 w1 w1 w3

2 − 1√
2

1√
2

√
π

2

√
π

2

3 −
√

3
2 0

√
3
2

√
π

6
2
√

π
3

√
π

6

· · ·

I.3.5.2. Two-dimensional Gauss product rules

The simplest form of bi-dimensional Gaussian quadrature rules, called product rules,
deploy uni-dimensional quadrature rules along each natural coordinate.

∫ 1

−1

∫ 1

−1
f (x, y) dx dy ≈

n

∑
i=1

m

∑
j=1

wi wj f (xi, yj) =
n

∑
i=1

m

∑
j=1

wij f (xi, yj)

Generally the same number of integration points per direction n = m is used. In the
case of a quadrature with m = n = 3 one yields the 9-point model depicted in figure
I.1.

x

y

Figure I.1.: 9-point Gauss quadrature for rectangular elements

I.4. Series expansions

For complex functions it might be necessary to approximate a signal using a series
expansion, a sum of powers of one of its variables or other elementary functions. Depending
on the particular signal there are different series available, some of which will be
described in the following section.

154

I.4. Series expansions

I.4.1. Taylor series

A Taylor series is a representation of a function by an infinite sum of terms calculated using
the derivatives of a function evaluated in a certain point x0. If this point is chosen to 0
the series is also referred to as Maclaurin series.

f (x) =
∞

∑
n=0

f (n)(x0)

n!
(x− x0)

n

Generally just the n-th partial sum

Tn(x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

is used to approximate a function locally.

I.4.2. Laurent series

A Laurent series expansion is a power series expansion that may be used to represent
complex functions where a Taylor series expansion can’t be applied such as for poles.
In the case of ex it is given by

ex =
∞

∑
n=0

zn

n!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · · for −∞ < x < ∞

which can be rewritten for the case of e−
1
x to

e−
1
x =

∞

∑
n=0

1
n! (−z)n = 1− 1

x
+

1
2 x2 −

1
6 x3 +

1
24 x4 + · · · for −∞ < x < ∞

I.4.3. Fourier Series

In case of a periodic functions instead of approximating it locally with the use of a
Taylor series one might try to approximate it using periodic functions obtaining a
periodic result.
A Fourier series makes use of the orthogonality of sine and cosine functions and
approximates a function as the infinite sum of sines and cosines157

f (x) =
1
2

a0 +
∞

∑
n=1

ancos(nx) +
∞

∑
n=1

bnsin(nx)

where the coefficients are given by

a0 =
1
π

π∫

−π

f (x)dx,

an =
1
π

π∫

−π

f (x)cos(nx)dx,

157Near discontinuities this might lead to overshooting, often termed Gibbs phenomena.

155

Appendix I. Mathematical appendix

bn =
1
π

π∫

−π

f (x)sin(nx)dx.

One might combine sine and cosine terms using Euler’s formula eix = cos(x)+ i sin(x),
where i is the imaginary number, to

f (x) =
∞

∑
−∞

Aneinx

where

An =
1

2 π

π∫

−π

f (x)e−inxdx.

These integrals can be easily transformed to an arbitrary interval of length L with
control variable x1 using

x =
πx1

L
.

Generally a Fourier series is not used to generate an approximate result of a given
function but instead to generate an interpolation function to a given discrete signal. In
this case sums replace the above integrals. Often only the amplitudes for certain
frequencies are of interest as this reflects the frequency response of a system.

I.4.3.1. Fast Fourier transform

time

frequency

Figure I.2.: Schematic working principle of an FFT analysis: A signal over time is broken down into its
frequency components

A fast Fourier transform (FFT) is an algorithm based on the Fourier series (section I.4.3)
that decomposes a signal over a period of time into its frequency components, sinusoidal
oscillations at different frequencies each with its own amplitude and phase (figure I.2).
A few things should be kept in mind when working with FFT algorithms:

• A FFT is an algorithm for periodic signals, generally this means that the measuring
interval is simply assumed to repeat itself. If the beginning and end of the signal
do not match in phase this might introduce a phase change, if additionally the

156

I.4. Series expansions

two amplitudes are not equal this basically introduces a Heaviside step function
into the signal theoretically triggering indefinite158 artificial higher frequencies.
Using so called window functions the signal can be artificially forced to low
values on each end of the signal similarly to a beat.
• Most numerical algorithms use a complex Fourier series that also includes the

negative solutions which generally are of no physical importance. The resulting
spectrum is therefore symmetric with regard to zero.

• One has to define a sample rate fs which also dictates the highest frequency
that can be detected by a FFT, the Nyquist frequency given by 0.5 fs, as well as the
resolution of the analysis. For a finite time interval also nearby frequencies that
are not present in the signal might be detected (spectral leakage).

• While it is generally known that a highest detectable frequency does exist, a lot
of people are unaware that for a finite duration time window with N samples
also a lowest frequency that can be detected exists, the so called Rayleigh frequency
1
N , which corresponds to an oscillation with a wavelength spanning the entire
sample interval.

158Theoretically indefinite but practically these artificial frequencies underlie the same limits as the signal
itself and therefore the highest frequency is limited by the Nyquist frequency.

157

Appendix J.

Perturbation theory

Perturbation theory is a mathematical method for finding approximate solutions to a
variety of problems including transcendental and differential equations. Starting with
the exact solution of a simple unperturbed problem we expand it using a power series
in a small parameter ε that quantifies the deviation from the exactly solvable problem
x0.

x = x0 + εx1 + ε2x2 + · · ·

Normally an approximate perturbation solution is obtained by truncating the series and
usually keeping the first term only:

x ≈ x0 + εx1

Now this can be applied to approximate a system where the exact solution to the
unperturbed problem x0 is known using the fundamental theorem of perturbation theory:

If

x0 + εx1 + ε2x2 + · · ·+ εnxn +O(εn+1) = 0

for ε→ 0 and x0, x1, · · · independent of ε, then

x0 = x1 = x2 = · · · = xn = 0

For systems where this regular perturbation approach leads to secular terms, terms that
can’t be cancelled by choosing parameters accordingly and hence the solution grows
without bound, there exist more sophisticated approaches like the Poincaré-Linstedt
method (PLM) for periodic solutions and multiple scale methods.

J.1. Examples

As I think this topic is highly under-represented in the formation of any mechanical
engineer this topic is supported by several examples starting with finding solutions to
simple transcendental equations as well as examples for differential equations.

158

J.1. Examples

J.1.1. Example 1: Transcendental equations

Let’s assume we want to find the solution to the transcendental equation

x− 2 = ε cosh(x)

For ε 6= 0 the equation above can’t be solved in closed form. Yet for the unperturbed
system (ε = 0) the solution x0 = 2 can be found.
Now we assume that for a small deviation ε we can write x as a power series x =
x0 + ε1x1 + ε2x2 + · · · .
We insert this ansatz into the equation yielding

x0 + εx1 + ε2x2 + · · · − 2 = ε cosh(x0 + εx1 + ε2x2 + · · ·)

The terms of each order εn must vanish independently according to the fundamental
theorem of perturbation theory. Taking into consideration the powerseries cosh(x) =
∑ x2n

(2n)! = 1 + x2

2 + · · · and therefore

εcosh(x0 + εx1) = ε
[
1 +

(x0 + εx1)
2

2
+ · · ·

]
= ε

[
1 +

x2
0 + 2εx0x1 + ε2x2

1)
2

2
+ · · ·

]

the terms of order ε yield the equation

x1 = cosh(x0)

Hence we can approximate

x ≈ x0 + εx1 = 2 + ε cosh(2)

J.1.2. Example 2: Differential equations

m

k

d

x

Figure J.1.: Mechanical model of an harmonic oscillator

Now we could use the same approach to solve differential equations e.g. the Van der
Pol equation given by

ẍ + ε(x2 − 1)ẋ + x = 0 with ẋ(0) = 0

This is a non-linear second order differential equation describing the so called Van der
Pol oscillator, a non-conservative oscillator with non-linear dampening. It can be seen
as a small pertubation of the linear simple harmonic oscillator (figure J.1). As it is a
non-linear equation an exact solution can’t be found as matters stand but we may still

159

Appendix J. Perturbation theory

attempt to find an approximate solution using perturbation theory.
The unperturbed system (ε = 0) has the solution x0(t) = A0sin(t) + B0cos(t) which
simplifies due to the initial condition ẋ(0) = 0 to x0(t) = B0cos(t).
We assume that the full system will always remain pretty close to the linearized system
but due to the non-linear terms periodicity is destroyed: The velocity of the oscillator
and the shape of its orbit will be affected by the non-linearity.
We insert our ansatz up to order two into the differential equation yielding

(ẍ0 + εẍ1 + ε2 ẍ2) + ε[(x0 + εx1 + ε2x2)
2 − 1](ẋ0 + εẋ1 + ε2 ẋ2)+

+(x0 + εx1 + ε2x2) +O(ε3) = 0

This can be rewritten to

ẍ0 + x0 + ε[ẍ1 + x1 + ẋ0(x2
0 − 1)] + ε2[ẍ2 + x2 + ẋ1(x2

0 − 1) + 2x0 ẋ0x1] +O(ε3) = 0

As all xi must be independent from ε the fundamental theorem of perturbation theory
leads to

ε0 : ẍ0 + x0 = 0
ε1 : ẍ1 + x1 = ẋ0(1− x2

0)
ε2 : ẍ2 + x2 = ẋ1(1− x2

0)− 2x0 ẋ0x1

Now the ansatz is inserted in the equation of order ε1 and rewritten using trigonomet-
ric identities to

ẍ1 + x1 =

(
B3

0
4
− B0

)
sin(t) +

B3
0

4
sin(3t)

The solution of this differential equation can be found to

x1(t) = −
(

B3
0

4
− B0

)
t
2

cos(t)− B3
0

32
sin(3t) + A1sin(t) + B1cos(t)

The first term in this equation is a secular term caused by the resonating forcing term of
the differential equation159. It is unbounded for t→ ∞ and would clearly prevent a
periodic solution. Therefore it has to be corrected manually to zero in order to force a
periodic approximation by choosing B0 accordingly. In this case that is the case for

B0 = 2

Now we can insert this approximation in the equation of order ε2 yielding

ẍ2 + x2 =
1
4

cos(t) + 2B1sin(t)− 3
2

cos(3t) + 3B1sin(3t) +
5
4

cos(5t)

This differential equation can be solved to

x2(t) = −
3
8

B1sin(3t)− B1tcos(t)+ A2sin(t)+ B2cos(t)+
1
8

tsin(t)+
3

16
cos(3t)− 5

96
cos(5t)

Now again this involves the secular term 1
8 tsin(t) that can’t be prevented as we have

no free parameter left. We would need more free parameters for higher order approxi-
mations and therefore more sophisticated multiple scale methods have to be chosen.

159Terms with the same angular velocity as the solution of the homogeneous differential equation, in this
case sin(t) in the differential equation above

160

J.2. Two timing multiple scale method

J.2. Two timing multiple scale method

The approximation of first order we derived so far breaks down if t ≥ O(ε−1). Due
to accumulation of small effecs the amplitude of the oscillation is changed on a time
scale ε−1 . We recognize there is actually two processes happening on two different
time scales: We have the basic oscillation on a time scale of 1 and the slow drift in
amplitude on a time scale ε−1.
If a problem is characterized by multiple physical processes each with their own scale acting
on a system at the same time it, makes sense to introduce different time scales. [116] Each
variable is O(1) at its own relevant scale. In this case we introduce now a second time
τ that accounts for the slow shift from the periodic solution. This so called ’slow time’
τ can be defined in very different ways depending on the particular problem and thus
the rate at which the non-linearity causes a drift in the orbit.
In our case we will define τ as

τ = ε t

With the ansatz from the regular perturbation theory now in two variables

x = x0(t, τ) + εx1(t, τ) + ε2x2(t, τ) + · · ·

we can now write the Van der Pol equation

d2x(t, τ)

dt2 + ε[x2(t, τ)− 1]
dx(t, τ)

dt
+ x(t, τ) = 0

using

d x(t,τ)
d t = ẋ + ε xτ and d2 x(t,τ)

d t2 = ẍ + 2ε ẋτ + ε2xττ

to
ẍ + 2ε ẋτ + ε2 xττ + ε[x2 − 1]ẋ + ε2[x2 − 1]xτ + x = 0

Again we substitute the ansatz into the equation above and collect equal powers of
ε:

ε0 : ẍ0 + x0 = 0
ε1 : ẍ1 + x1 = ẋ0(1− x2

0)− 2ẋ0τ

This time we neglect the terms of O(ε2) as it gets quite complicated mathematically
and the first approximation should be enough to illustrate the basic principle of this
method.
Now we can obtain the general solution by integrating with respect to t, treating τ as
an independent variable held constant and find the general solution

x0 = C0(τ)cos[t + θ0(τ)]

The functions C0 and θ0 are allowed to change at rates of the slow scale τ.
We assume now that the terms of order ε0 fulfil the initial conditions and the other
terms for each order are equivalent to zero respectively. It holds that

x
d t

= ẋ0(t, τ) + ε [x0τ(t, τ) + ẋ1(t, τ)] + ε2[x1τ(t, τ) + ẋ2(t, τ)] + · · ·

161

Appendix J. Perturbation theory

Due to the initial condition ẋ0(0) = 0 we get θ0(0) = 0.
Inserting the solution for x0 into the equation of order ε1 yields

ẍ1 + x1 = 2C0θ0τcos[t + θ0] + (2C0τ +
1
4

C3
0 − C0)sin(t + θ0) +

1
4

C3
0sin[3(t + θ0)]

Now again we can integrate this equation and eliminate the response induced by the
resonating forcing terms making use of the additional freedom due to the parameters
R(τ) and θ0(τ). The resonating forcing terms sin(t) and cos(t) in the equation above
have to be eliminated. This leads to the so called solubility condition of Poincaré:

2C0θ0τ = 0 and 2C0τ +
1
4 C3

0 − C0 = 0

With the initial conditions for the two variables C0 and θ0 that we obtained by looking
at the terms of order ε0 we can solve the differential equations above and get the two
functions

θ0 = 0 and C0 = 2e
τ
2√

1+eτ

Now we can solve the differential equation for x1:

x1 = − 1
32

C3
0(τ)sin(3t) + C1(τ)sin[t + θ1(τ)]

Taking into consideration the conditions for order ε1 we can now calculate the con-
stants and looking at the terms of order ε2 we can calculate the functions C1 and θ1
and continue like this for terms of higher order.
At higher orders the resonant forcing is unavoidable just like in the simple perturbation
method as there can be insufficient freedom even with this ansatz. This problem can
be overcome by introducing an even slower time scale T = ε2t.

J.2.1. Derivatives of multiple-scale perturbation series

For a function that can be written as a perturbation series and depends on multiple
scales xn

f (x) = f (x0, x1, x2, · · ·) = f0 + ε f1 + ε2 f2 + · · ·
where xn is given by

xn = εnx0

the total derivative can be calculated according to the chain rule to

d f
dx

=
d f
dx0

+ ε
d f
dx1

+ ε2 d f
dx2

+ · · · = ∑
n

εn d f
dxn

.

162

Bibliography

[1] D. Hänel, Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase
und Lattice-Boltzmann-Methoden, en. Berlin Heidelberg: Springer-Verlag, 2004,
isbn: 978-3-540-44247-9 (cit. on pp. 3, 15, 16, 109, 113, 128, 134).

[2] M. Gad-el-Hak, “Questions in Fluid Mechanics: Stokes’ Hypothesis for a New-
tonian, Isotropic Fluid”, Journal of Fluids Engineering, vol. 117, no. 1, pp. 3–5,
Mar. 1995, issn: 0098-2202. doi: 10.1115/1.2816816 (cit. on p. 4).

[3] G. Buresti, “A note on Stokes’ hypothesis”, Acta Mechanica, vol. 226, Oct. 2015.
doi: 10.1007/s00707-015-1380-9 (cit. on p. 4).

[4] S. R. Turns, Thermodynamics: Concepts and Applications, en. Cambridge University
Press, Mar. 2006, Google-Books-ID: fy5hs04OeMQC, isbn: 978-0-521-85042-1
(cit. on p. 8).

[5] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen,
The Lattice Boltzmann Method - Principles and Practice. Oct. 2016, isbn: 978-3-319-
44647-9. doi: 10.1007/978-3-319-44649-3 (cit. on pp. 14, 18, 20, 32–34,
36, 38, 50, 51, 54, 70, 71, 73, 123, 132).

[6] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, English, 1

edition. Oxford : New York: Clarendon Press, Aug. 2001, isbn: 978-0-19-850398-9
(cit. on pp. 15, 18, 41).

[7] T. G. Elizarova, Quasi-Gas Dynamic Equations, en, ser. Computational Fluid
and Solid Mechanics. Berlin Heidelberg: Springer-Verlag, 2009, isbn: 978-3-642-
00291-5 (cit. on pp. 16, 21).

[8] G. Karniadakis, A. Beskok, and A. NR, MicroFlows and Nanoflows - Fundamentals
and Simulation. Jan. 2005 (cit. on p. 16).

[9] S. A. Orszag and V. Yakhot, “Reynolds number scaling of cellular automaton
hydrodynamics”, eng, Physical Review Letters, vol. 56, no. 16, pp. 1691–1693,
Apr. 1986, issn: 1079-7114. doi: 10.1103/PhysRevLett.56.1691 (cit. on
p. 17).

[10] J. Hardy, O. de Pazzis, and Y. Pomeau, “Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions”, Phys. Rev. A,
vol. 13, May 1976. doi: 10.1103/PhysRevA.13.1949 (cit. on p. 17).

[11] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-
Stokes equation”, eng, Physical Review Letters, vol. 56, no. 14, pp. 1505–1508,
Apr. 1986, issn: 1079-7114. doi: 10.1103/PhysRevLett.56.1505 (cit. on
p. 17).

[12] U. Frisch, D. Dhumieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet,
“Lattice Gas Hydrodynamics in Two and Three Dimensions”, Complex Systems,
vol. 1, Jan. 1987 (cit. on p. 17).

163

https://doi.org/10.1115/1.2816816
https://doi.org/10.1007/s00707-015-1380-9
https://doi.org/10.1007/978-3-319-44649-3
https://doi.org/10.1103/PhysRevLett.56.1691
https://doi.org/10.1103/PhysRevA.13.1949
https://doi.org/10.1103/PhysRevLett.56.1505

Bibliography

[13] A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applica-
tions with Computer Codes, English, 2011 edition. London ; New York: Springer,
Apr. 2011, isbn: 978-0-85729-454-8 (cit. on pp. 20, 27, 41).

[14] A. Wagner, “A Practical Introduction to the Lattice Boltzmann Method”, (cit. on
p. 21).

[15] S. Chapman, T. G. Cowling, and C. Cercignani, The Mathematical Theory of Non-
uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction
and Diffusion in Gases, English, 3 edition. Cambridge ; New York: Cambridge
University Press, Jan. 1991, isbn: 978-0-521-40844-8 (cit. on pp. 22, 127).

[16] C. Villani, Entropy and H theorem: The mathematical legacy of Ludwig Boltzmann
(cit. on p. 22).

[17] E. G. D. Cohen, “Boltzmann and Statistical Mechanics”, arXiv:cond-mat/9608054,
Aug. 1996, arXiv: cond-mat/9608054 (cit. on p. 22).

[18] D. Tong, “University of Cambridge Graduate Course”, en, p. 106, (cit. on p. 22).
[19] Q. Zou, S. Hou, S. Chen, and G. D. Doolen, “A improved incompressible

lattice Boltzmann model for time-independent flows”, en, Journal of Statistical
Physics, vol. 81, no. 1-2, pp. 35–48, Oct. 1995, issn: 0022-4715, 1572-9613. doi:
10.1007/BF02179966 (cit. on p. 22).

[20] P. Asinari, “Multi Scale Analysis of Heat and Mass Transfer in Mini/Micro
Structures”, PhD thesis, Politecnico di Torino, Turin, Feb. 2005 (cit. on p. 23).

[21] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A Model for Collision Processes in
Gases. I. Small Amplitude Processes in Charged and Neutral One-Component
Systems”, Physical Review, vol. 94, pp. 511–525, May 1954, issn: 1536-6065. doi:
10.1103/PhysRev.94.511 (cit. on pp. 23, 24).

[22] H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, and V. Yakhot, “Extended
Boltzmann Kinetic Equation for Turbulent Flows”, en, Science, vol. 301, no. 5633,
pp. 633–636, Aug. 2003, issn: 0036-8075, 1095-9203. doi: 10.1126/science.
1085048 (cit. on p. 23).

[23] Y. Kuwata and K. Suga, “Lattice Boltzmann direct numerical simulation of
interface turbulence over porous and rough walls”, International Journal of Heat
and Fluid Flow, SI\:TSFP9 special issue, vol. 61, no. Part A, pp. 145–157, Oct.
2016, issn: 0142-727X. doi: 10.1016/j.ijheatfluidflow.2016.03.006
(cit. on p. 23).

[24] N. Pellerin, S. Leclaire, and M. Reggio, “An implementation of the Spalart–Allmaras
turbulence model in a multi-domain lattice Boltzmann method for solving tur-
bulent airfoil flows”, Computers & Mathematics with Applications, vol. 70, no. 12,
pp. 3001–3018, Dec. 2015, issn: 0898-1221. doi: 10.1016/j.camwa.2015.10.
006 (cit. on p. 23).

[25] M. Schreiber, P. Neumann, S. Zimmer, and H.-J. Bungartz, “Free-Surface Lattice-
Boltzmann Simulation on Many-Core Architectures”, Procedia Computer Science,
Proceedings of the International Conference on Computational Science, ICCS
2011, vol. 4, no. Supplement C, pp. 984–993, Jan. 2011, issn: 1877-0509. doi:
10.1016/j.procs.2011.04.104 (cit. on p. 23).

[26] M. Ashrafizaadeh and H. Bakhshaei, “A comparison of non-Newtonian models
for lattice Boltzmann blood flow simulations”, Computers & Mathematics with
Applications, Mesoscopic Methods in Engineering and Science, vol. 58, no. 5,
pp. 1045–1054, Sep. 2009, issn: 0898-1221. doi: 10.1016/j.camwa.2009.02.
021 (cit. on p. 23).

164

https://doi.org/10.1007/BF02179966
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1126/science.1085048
https://doi.org/10.1126/science.1085048
https://doi.org/10.1016/j.ijheatfluidflow.2016.03.006
https://doi.org/10.1016/j.camwa.2015.10.006
https://doi.org/10.1016/j.camwa.2015.10.006
https://doi.org/10.1016/j.procs.2011.04.104
https://doi.org/10.1016/j.camwa.2009.02.021
https://doi.org/10.1016/j.camwa.2009.02.021

Bibliography

[27] J. Boyd, J. Buick, and S. Green, “A Second-Order Accurate Lattice Boltzmann
Non-Newtonian Flow Model”, J. Phys. A: Math. Gen, vol. 3950, Nov. 2006. doi:
10.1088/0305-4470/39/46/001 (cit. on p. 23).

[28] J. Zudrop, K. Masilamani, S. Roller, and P. Asinari, “A robust lattice Boltzmann
method for parallel simulations of multicomponent flows in complex geome-
tries”, Computers & Fluids, vol. 153, no. Supplement C, pp. 20–33, Aug. 2017,
issn: 0045-7930. doi: 10.1016/j.compfluid.2017.04.021 (cit. on p. 23).

[29] N. Takada, M. Misawa, and A. Tomiyama, “A phase-field method for interface-
tracking simulation of two-phase flows”, Mathematics and Computers in Sim-
ulation (MATCOM), vol. 72, no. 2, pp. 220–226, 2006, issn: 0378-4754 (cit. on
p. 23).

[30] E. Fattahi, C. Waluga, B. Wohlmuth, U. Rüde, M. Manhart, and R. Helmig,
“Lattice Boltzmann methods in porous media simulations: From laminar to
turbulent flow”, Computers & Fluids, vol. 140, no. Supplement C, pp. 247–259,
Nov. 2016, issn: 0045-7930. doi: 10.1016/j.compfluid.2016.10.007
(cit. on p. 23).

[31] A. Masselot and B. Chopard, “A lattice Boltzmann model for particle transport
and deposition”, en, EPL (Europhysics Letters), vol. 42, no. 3, p. 259, May 1998,
issn: 0295-5075. doi: 10.1209/epl/i1998-00239-3 (cit. on p. 23).

[32] X. Descovich, G. Pontrelli, S. Succi, S. Melchionna, and M. Bammer, “Modeling
Elastic Walls in Lattice Boltzmann Simulations of Arterial Blood Flow”, IFAC
Proceedings Volumes, vol. 45, pp. 936–941, 2012. doi: https://doi.org/10.
3182/20120215-3-AT-3016.00165 (cit. on p. 23).

[33] X. He and N. Li, “Lattice Boltzmann simulation of electrochemical systems”,
Computer Physics Communications, vol. 129, no. 1, pp. 158–166, Jul. 2000, issn:
0010-4655. doi: 10.1016/S0010-4655(00)00103-X (cit. on p. 23).

[34] S. Melchionna and S. Succi, “Lattice Boltzmann–Poisson method for elec-
trorheological nanoflows in ion channels”, Computer Physics Communications,
Proceedings of the Europhysics Conference on Computational Physics 2004,
vol. 169, no. 1, pp. 203–206, Jul. 2005, issn: 0010-4655. doi: 10.1016/j.cpc.
2005.03.045 (cit. on p. 23).

[35] H. Xu and Z. Dang, “Lattice Boltzmann modeling of carbon deposition in
porous anode of a solid oxide fuel cell with internal reforming”, Applied Energy,
vol. 178, pp. 294–307, Sep. 2016, issn: 0306-2619. doi: 10.1016/j.apenergy.
2016.06.007 (cit. on p. 23).

[36] M. Sbragaglia and S. Succi, “A note on the lattice Boltzmann method beyond
the Chapman-Enskog limits”, en, EPL (Europhysics Letters), vol. 73, no. 3, p. 370,
Dec. 2005, issn: 0295-5075. doi: 10.1209/epl/i2005-10404-8 (cit. on
p. 23).

[37] F. Toschi and S. Succi, “Lattice Boltzmann method at finite Knudsen numbers”,
en, EPL (Europhysics Letters), vol. 69, no. 4, p. 549, Jan. 2005, issn: 0295-5075.
doi: 10.1209/epl/i2004-10393-0 (cit. on p. 23).

[38] H. Grad, “Principles of the Kinetic Theory of Gases”, en, in Thermodynamik der
Gase / Thermodynamics of Gases, ser. Handbuch der Physik / Encyclopedia of
Physics, Springer, Berlin, Heidelberg, 1958, pp. 205–294, isbn: 978-3-642-45894-1
978-3-642-45892-7. doi: 10.1007/978-3-642-45892-7_3 (cit. on p. 23).

165

https://doi.org/10.1088/0305-4470/39/46/001
https://doi.org/10.1016/j.compfluid.2017.04.021
https://doi.org/10.1016/j.compfluid.2016.10.007
https://doi.org/10.1209/epl/i1998-00239-3
https://doi.org/https://doi.org/10.3182/20120215-3-AT-3016.00165
https://doi.org/https://doi.org/10.3182/20120215-3-AT-3016.00165
https://doi.org/10.1016/S0010-4655(00)00103-X
https://doi.org/10.1016/j.cpc.2005.03.045
https://doi.org/10.1016/j.cpc.2005.03.045
https://doi.org/10.1016/j.apenergy.2016.06.007
https://doi.org/10.1016/j.apenergy.2016.06.007
https://doi.org/10.1209/epl/i2005-10404-8
https://doi.org/10.1209/epl/i2004-10393-0
https://doi.org/10.1007/978-3-642-45892-7_3

Bibliography

[39] S. Ansumali and I. Karlin, “Single relaxation time model for entropic lattice
Boltzmann methods”, Physical review. E, Statistical, nonlinear, and soft matter
physics, vol. 65, p. 056 312, Jun. 2002. doi: 10.1103/PhysRevE.65.056312
(cit. on p. 24).

[40] S. Chikatamarla, S. Ansumali, and I. Karlin, “Entropic Lattice Boltzmann
Models for Hydrodynamics in Three Dimensions”, Physical review letters, vol. 97,
p. 010 201, Aug. 2006. doi: 10.1103/PhysRevLett.97.010201 (cit. on
p. 24).

[41] S. Chikatamarla and I. Karlin, “Entropic lattice Boltzmann method for turbulent
flow simulations: Boundary conditions”, Physica A: Statistical Mechanics and
its Applications, vol. 392, pp. 1925–1930, May 2013. doi: 10.1016/j.physa.
2012.12.034 (cit. on p. 24).

[42] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo, “Multiple-
Relaxation-Time Lattice Boltzmann Models in Three Dimensions”, Philosophical
Transactions: Mathematical, Physical and Engineering Sciences, vol. 360, no. 1792,
pp. 437–451, 2002, issn: 1364-503X (cit. on p. 24).

[43] L. Li, R. Mei, and J. F. Klausner, “Lattice Boltzmann models for the convection-
diffusion equation: D2q5 vs D2q9”, International Journal of Heat and Mass
Transfer, vol. 108, pp. 41–62, May 2017, issn: 0017-9310. doi: 10.1016/j.
ijheatmasstransfer.2016.11.092 (cit. on pp. 24, 51).

[44] I. Ginzburg, “Two-relaxation-time Lattice Boltzmann scheme: About parametriza-
tion, velocity, pressure and mixed boundary conditions”, Communications in
Computational Physics, vol. 3, pp. 427–478, Jan. 2008 (cit. on p. 25).

[45] M. Geier, A. Greiner, and J. Korvink, “Cascaded digital lattice Boltzmann au-
tomata for high Reynolds number flow”, Physical review. E, Statistical, nonlinear,
and soft matter physics, vol. 73, p. 066 705, Jul. 2006. doi: 10.1103/PhysRevE.
73.066705 (cit. on p. 25).

[46] M. Geier, M. Schönherr, A. Pasquali, and M. Krafczyk, “The cumulant lattice
Boltzmann equation in three dimensions: Theory and validation”, Computers
& Mathematics with Applications, vol. 70, no. 4, pp. 507–547, Aug. 2015, issn:
0898-1221. doi: 10.1016/j.camwa.2015.05.001 (cit. on p. 25).

[47] D. Holman, R. Brionnaud, and Z. Abiza, “Solution to industry benchmark
problems with the Lattice-Boltzmann code XFlow”, ECCOMAS 2012 - European
Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full
Papers, pp. 6809–6824, Jan. 2012 (cit. on p. 25).

[48] N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, “Multispeed entropic lattice
Boltzmann model for thermal flows”, Physical Review E, vol. 90, no. 4, p. 043 306,
Oct. 2014. doi: 10.1103/PhysRevE.90.043306 (cit. on pp. 27, 134).

[49] P. C. Philippi, L. A. Hegele Jr., L. O. E. d. Santos, and R. Surmas, “Deriving
thermal lattice-Boltzmann models from the continuous Boltzmann equation:
Theoretical aspects”, arXiv:physics/0506064, Jun. 2005, arXiv: physics/0506064

(cit. on p. 27).

[50] J. Latt, “Hydrodynamic limit of lattice Boltzmann equations”, eng, PhD thesis,
University of Geneva, 2007 (cit. on pp. 27, 33).

[51] J. Latt, Choice of units in lattice Boltzmann simulations, Apr. 2008 (cit. on p. 27).

166

https://doi.org/10.1103/PhysRevE.65.056312
https://doi.org/10.1103/PhysRevLett.97.010201
https://doi.org/10.1016/j.physa.2012.12.034
https://doi.org/10.1016/j.physa.2012.12.034
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092
https://doi.org/10.1103/PhysRevE.73.066705
https://doi.org/10.1103/PhysRevE.73.066705
https://doi.org/10.1016/j.camwa.2015.05.001
https://doi.org/10.1103/PhysRevE.90.043306

Bibliography

[52] H. Safari, M. Krafczyk, and M. Geier, “A Lattice Boltzmann model for thermal
compressible flows at low Mach numbers beyond the Boussinesq approxi-
mation”, Computers & Fluids, May 2018, issn: 0045-7930. doi: 10.1016/j.
compfluid.2018.04.016 (cit. on p. 34).

[53] S. Khirevich, I. Ginzburg, and U. Tallarek, “Coarse- and fine-grid numerical
behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere
packings”, Journal of Computational Physics, vol. 281, no. Supplement C, pp. 708–
742, Jan. 2015, issn: 0021-9991. doi: 10.1016/j.jcp.2014.10.038 (cit. on
p. 34).

[54] I. Ginzburg, D. Dhumieres, and A. Kuzmin, “Optimal Stability of Advection-
Diffusion Lattice Boltzmann Models with Two Relaxation Times for Posi-
tive/Negative Equilibrium”, Journal of Statistical Physics, vol. 139, pp. 1090–1143,
Jun. 2010. doi: 10.1007/s10955-010-9969-9 (cit. on pp. 34, 51).

[55] R. Mei, L.-S. Luo, P. Lallemand, and D. d’Humières, “Consistent initial con-
ditions for lattice Boltzmann simulations”, Computers & Fluids, Proceedings
of the First International Conference for Mesoscopic Methods in Engineer-
ing and Science, vol. 35, no. 8, pp. 855–862, Sep. 2006, issn: 0045-7930. doi:
10.1016/j.compfluid.2005.08.008 (cit. on p. 35).

[56] S. Chen, D. Martı́nez, and R. Mei, “On boundary conditions in lattice Boltzmann
methods”, Physics of Fluids, vol. 8, no. 9, pp. 2527–2536, Sep. 1996, issn: 1070-
6631. doi: 10.1063/1.869035 (cit. on p. 35).

[57] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for
lattice Boltzmann simulations”, Physics of Fluids, vol. 7, no. 12, pp. 2928–2930,
Dec. 1995, issn: 1070-6631. doi: 10.1063/1.868766 (cit. on p. 39).

[58] Q. Zou and X. He, “On pressure and velocity flow boundary conditions and
bounceback for the lattice Boltzmann BGK model”, Physics of Fluids, vol. 9, no. 6,
pp. 1591–1598, Jun. 1997, arXiv: comp-gas/9611001, issn: 1070-6631, 1089-7666.
doi: 10.1063/1.869307 (cit. on p. 39).

[59] M. Hecht and J. Harting, “Implementation of on-site velocity boundary condi-
tions for D3q19 lattice Boltzmann”, Journal of Statistical Mechanics: Theory and
Experiment, vol. 2010, no. 01, P01018, Jan. 2010, arXiv: 0811.4593, issn: 1742-5468.
doi: 10.1088/1742-5468/2010/01/P01018 (cit. on pp. 39, 41).

[60] S. Hou, J. Sterling, S. Chen, and G. D. Doolen, “A Lattice Boltzmann Subgrid
Model for High Reynolds Number Flows”, arXiv:comp-gas/9401004, Jan. 1994,
arXiv: comp-gas/9401004 (cit. on p. 44).

[61] H. Yu, S. S. Girimaji, and L.-S. Luo, “DNS and LES of decaying isotropic
turbulence with and without frame rotation using lattice Boltzmann method”,
Journal of Computational Physics, vol. 209, no. 2, pp. 599–616, Nov. 2005, issn:
0021-9991. doi: 10.1016/j.jcp.2005.03.022 (cit. on p. 44).

[62] M. Krafczyk, J. Tolke, and L.-S. Luo, “Large eddy simulation with a multiple-
relaxation-time LBE model”, INTERNATIONAL JOURNAL OF MODERN PHYSICS
B, vol. 17, pp. 33–39, Jan. 2003. doi: 10.1142/S0217979203017059 (cit. on
p. 44).

[63] L.-S. Luo, “The Future of Lattice-Gas and Lattice Boltzmann Methods”, en, in
Computational Aerosciences in the 21st Century, ser. ICASE LaRC Interdisciplinary
Series in Science and Engineering, Springer, Dordrecht, 2000, pp. 165–187, isbn:
978-94-010-3807-2 978-94-010-0948-5. doi: 10.1007/978-94-010-0948-5_9
(cit. on pp. 44, 134).

167

https://doi.org/10.1016/j.compfluid.2018.04.016
https://doi.org/10.1016/j.compfluid.2018.04.016
https://doi.org/10.1016/j.jcp.2014.10.038
https://doi.org/10.1007/s10955-010-9969-9
https://doi.org/10.1016/j.compfluid.2005.08.008
https://doi.org/10.1063/1.869035
https://doi.org/10.1063/1.868766
https://doi.org/10.1063/1.869307
https://doi.org/10.1088/1742-5468/2010/01/P01018
https://doi.org/10.1016/j.jcp.2005.03.022
https://doi.org/10.1142/S0217979203017059
https://doi.org/10.1007/978-94-010-0948-5_9

Bibliography

[64] V. Giovangigli, “Multicomponent Flow”, en, Scholarpedia, vol. 9, no. 4, p. 11 930,
Apr. 2014, issn: 1941-6016. doi: 10.4249/scholarpedia.11930 (cit. on
p. 45).

[65] E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, en. Cambridge University
Press, Jan. 2009, Google-Books-ID: dq6LdJyN8ScC, isbn: 978-0-521-87121-1 (cit.
on pp. 47, 55, 57).

[66] I. L. Mostinsky, “DIFFUSION COEFFICIENT”, in, Begellhouse. doi: 10.1615/
AtoZ.d.diffusion_coefficient (cit. on p. 47).

[67] B. Chopard, J. L. Falcone, and J. Latt, “The lattice Boltzmann advection-diffusion
model revisited”, European Physical Journal Special Topics, vol. 171, pp. 245–249,
Apr. 2009, issn: 1951-6355. doi: 10.1140/epjst/e2009-01035-5 (cit. on
pp. 49, 50).

[68] S. A. Hosseini, N. Darabiha, and D. Thévenin, “Mass-conserving advection-
diffusion Lattice Boltzmann model for multi-species reacting flows”, Physica
A: Statistical Mechanics and its Applications, vol. 499C, pp. 40–57, Jan. 2018. doi:
10.1016/j.physa.2018.01.034 (cit. on pp. 49, 50).

[69] H.-B. Huang, X.-Y. Lu, and M. C. Sukop, “Numerical study of lattice Boltzmann
methods for a convection–diffusion equation coupled with Navier–Stokes
equations”, en, Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 5,
p. 055 001, 2011, issn: 1751-8121. doi: 10.1088/1751-8113/44/5/055001
(cit. on pp. 51, 54).

[70] T. Zhang, B. Shi, Z. Guo, Z. Chai, and J. Lu, “General bounce-back scheme for
concentration boundary condition in the lattice-Boltzmann method”, Physical
Review E, vol. 85, no. 1, p. 016 701, Jan. 2012. doi: 10.1103/PhysRevE.85.
016701 (cit. on p. 52).

[71] L. Zhang, S. Yang, Z. Zeng, and J. W. Chew, “Consistent second-order boundary
implementations for convection-diffusion lattice Boltzmann method”, Physical
Review E, vol. 97, no. 2, p. 023 302, Feb. 2018. doi: 10.1103/PhysRevE.97.
023302 (cit. on p. 52).

[72] T. Gebäck and A. Geynts, “A Lattice Boltzmann Method for the Advection-
Diffusion Equation with Neumann Boundary Conditions”, en, Communications
in Computational Physics, vol. 15, no. 2, pp. 487–505, 2014, issn: 1815-2406. doi:
10.4208/cicp.161112.230713a (cit. on p. 54).

[73] D. Wolf-Gladrow, “A lattice Boltzmann equation for diffusion”, en, Journal of
Statistical Physics, vol. 79, no. 5, pp. 1023–1032, Jun. 1995, issn: 1572-9613. doi:
10.1007/BF02181215 (cit. on p. 54).

[74] T. Xiao-Wu, S. Zu-Feng, and C. Guan-Chu, “Simulation of the relationship
between porosity and tortuosity in porous media with cubic particles”, en,
Chinese Physics B, vol. 21, no. 10, p. 100 201, 2012, issn: 1674-1056. doi: 10.
1088/1674-1056/21/10/100201 (cit. on p. 55).

[75] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method”, Journal of
Computational Physics, vol. 48, no. 3, pp. 387–411, Dec. 1982, issn: 0021-9991.
doi: 10.1016/0021-9991(82)90058-4 (cit. on p. 62).

168

https://doi.org/10.4249/scholarpedia.11930
https://doi.org/10.1615/AtoZ.d.diffusion_coefficient
https://doi.org/10.1615/AtoZ.d.diffusion_coefficient
https://doi.org/10.1140/epjst/e2009-01035-5
https://doi.org/10.1016/j.physa.2018.01.034
https://doi.org/10.1088/1751-8113/44/5/055001
https://doi.org/10.1103/PhysRevE.85.016701
https://doi.org/10.1103/PhysRevE.85.016701
https://doi.org/10.1103/PhysRevE.97.023302
https://doi.org/10.1103/PhysRevE.97.023302
https://doi.org/10.4208/cicp.161112.230713a
https://doi.org/10.1007/BF02181215
https://doi.org/10.1088/1674-1056/21/10/100201
https://doi.org/10.1088/1674-1056/21/10/100201
https://doi.org/10.1016/0021-9991(82)90058-4

Bibliography

[76] L.-S. Lin, Y.-C. Chen, and C.-A. Lin, “Multi relaxation time lattice Boltzmann
simulations of deep lid driven cavity flows at different aspect ratios”, Comput-
ers & Fluids, 22nd International Conference on Parallel Computational Fluid
Dynamics (ParCFD 2010), vol. 45, no. 1, pp. 233–240, Jun. 2011, issn: 0045-7930.
doi: 10.1016/j.compfluid.2010.12.012 (cit. on p. 62).

[77] H. Ding, C. Shu, K. Yeo, and D. Xu, “Numerical computation of three-dimensional
incompressible viscous flows in the primitive variable form by local multi-
quadric differential quadrature method”, Computer Methods in Applied Mechanics
and Engineering, vol. 195, pp. 516–533, Jan. 2006. doi: 10.1016/j.cma.2005.
02.006 (cit. on p. 62).

[78] Z. Žunič, M. Hriberšek, L. Škerget, and J. Ravnik, “3d lid driven cavity flow by
mixed boundary and finite element method”, Jan. 2006 (cit. on p. 62).

[79] J. H. Lienhard, Synopsis of lift, drag, and vortex frequency data for rigid circular
cylinders, ser. Bulletin ;300. Pullman: Technical Extension Service, Washington
State University, 1966 (cit. on pp. 65, 66).

[80] E. Achenbach and E. Heinecke, “ON VORTEX SHEDDING FROM SMOOTH
AND ROUGH CYLINDERS IN THE RANGE OF REYNOLDS NUMBERS
6 multiplied by 10**3 TO 5 multiplied by 10**6.”, Journal of Fluid Mechanics,
vol. 109, pp. 239–251, Aug. 1981 (cit. on pp. 65, 66).

[81] D. Hamane, O. Guerri, and S. Larbi, “A Comparative Study of Flow around a
Circular Cylinder using Lattice Boltzmann Method”, Jun. 2015. doi: 10.2514/
6.2015-3429 (cit. on p. 66).

[82] A. Roshko, On the Development of Turbulent Wakes from Vortex Streets, Report or
Paper, 1954 (cit. on p. 68).

[83] A. Grucelski and J. Pozorski, “Lattice Boltzmann simulations of flow past a
circular cylinder and in simple porous media”, Computers & Fluids, vol. 71,
pp. 406–416, Jan. 2013, issn: 0045-7930. doi: 10.1016/j.compfluid.2012.
11.006 (cit. on pp. 68, 69).

[84] F. Homann, “Einfluß großer Zähigkeit bei Strömung um Zylinder”, de, Forschung
auf dem Gebiet des Ingenieurwesens A, vol. 7, no. 1, pp. 1–10, Jan. 1936, issn: 0015-
7899, 1434-0860. doi: 10.1007/BF02578758 (cit. on p. 69).

[85] A. Thom, “The flow past circular cylinders at low speeds”, en, Proc. R. Soc.
Lond. A, vol. 141, no. 845, pp. 651–669, Sep. 1933, issn: 0950-1207, 2053-9150.
doi: 10.1098/rspa.1933.0146 (cit. on p. 69).

[86] L. Qu, C. Norberg, L. Davidson, S.-H. Peng, and F. Wang, “Quantitative numer-
ical analysis of flow past a circular cylinder at Reynolds number between 50

and 200”, Journal of Fluids and Structures, vol. 39, pp. 347–370, May 2013. doi:
10.1016/j.jfluidstructs.2013.02.007 (cit. on p. 69).

[87] Wikichip, Intel Core i9-7920x - WikiChip, en (cit. on p. 79).

[88] J. Bear and Y. Bachmat, “Introduction to modeling of transport phenomena in
porous media”, English, Jan. 1990 (cit. on pp. 84, 90).

[89] J. M. Zalc, S. C. Reyes, and E. Iglesia, “The effects of diffusion mechanism
and void structure on transport rates and tortuosity factors in complex porous
structures”, Chemical Engineering Science, vol. 59, no. 14, pp. 2947–2960, Jul. 2004,
issn: 0009-2509. doi: 10.1016/j.ces.2004.04.028 (cit. on p. 90).

169

https://doi.org/10.1016/j.compfluid.2010.12.012
https://doi.org/10.1016/j.cma.2005.02.006
https://doi.org/10.1016/j.cma.2005.02.006
https://doi.org/10.2514/6.2015-3429
https://doi.org/10.2514/6.2015-3429
https://doi.org/10.1016/j.compfluid.2012.11.006
https://doi.org/10.1016/j.compfluid.2012.11.006
https://doi.org/10.1007/BF02578758
https://doi.org/10.1098/rspa.1933.0146
https://doi.org/10.1016/j.jfluidstructs.2013.02.007
https://doi.org/10.1016/j.ces.2004.04.028

Bibliography

[90] A. Koponen, M. Kataja, and J. Timonen, “Tortuous flow in porous media”, Phys-
ical Review E, vol. 54, no. 1, pp. 406–410, Jul. 1996. doi: 10.1103/PhysRevE.
54.406 (cit. on p. 90).

[91] J. Comiti and M. Renaud, “A new model for determining mean structure
parameters of fixed beds from pressure drop measurements: Application to
beds packed with parallelepipedal particles”, Chemical Engineering Science,
vol. 44, no. 7, pp. 1539–1545, Jan. 1989, issn: 0009-2509. doi: 10.1016/0009-
2509(89)80031-4 (cit. on p. 90).

[92] Y. Bo-Ming and L. Jian-Hua, “A Geometry Model for Tortuosity of Flow Path
in Porous Media”, en, Chinese Physics Letters, vol. 21, no. 8, p. 1569, 2004, issn:
0256-307X. doi: 10.1088/0256-307X/21/8/044 (cit. on p. 90).

[93] C. M. P. Caltech, Ed., Equilibrium Versus Nonequilibrium (cit. on p. 111).

[94] N. Borghini, Equilibrium distributions (cit. on p. 111).

[95] P. Asinari, “Multi-species Lattice Boltzmann Models and Practical Examples”,
(cit. on p. 115).

[96] W. He, W. Lv, and J. H. Dickerson, “Gas Diffusion Mechanisms and Models”,
en, in Gas Transport in Solid Oxide Fuel Cells, ser. SpringerBriefs in Energy, W. He,
W. Lv, and J. Dickerson, Eds., Cham: Springer International Publishing, 2014,
pp. 9–17, isbn: 978-3-319-09737-4. doi: 10.1007/978-3-319-09737-4_2
(cit. on p. 119).

[97] X. He and L.-S. Luo, “Lattice Boltzmann Model for the Incompressible Navier–Stokes
Equation”, en, Journal of Statistical Physics, vol. 88, no. 3-4, pp. 927–944, Aug.
1997, issn: 0022-4715, 1572-9613. doi: 10.1023/B:JOSS.0000015179.
12689.e4 (cit. on p. 122).

[98] X. He and L.-S. Luo, “A priori derivation of the lattice Boltzmann equa-
tion”, PHYSICAL REVIEW E, vol. 55, R6333–R6336, Jun. 1997. doi: 10.1103/
PhysRevE.55.R6333 (cit. on p. 122).

[99] J. Li, “Appendix: Chapman-Enskog Expansion in the Lattice Boltzmann Method”,
arXiv:1512.02599 [physics], Dec. 2015, arXiv: 1512.02599 (cit. on p. 122).

[100] L.-S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models
for nonideal gases”, Physical Review E, vol. 62, no. 4, pp. 4982–4996, Oct. 2000.
doi: 10.1103/PhysRevE.62.4982 (cit. on p. 122).

[101] L. S. Garcı́a-Colı́n, R. M. Velasco, and F. J. Uribe, “Beyond the Navier–Stokes
equations: Burnett hydrodynamics”, Physics Reports, vol. 465, no. 4, pp. 149–189,
Aug. 2008, issn: 0370-1573. doi: 10.1016/j.physrep.2008.04.010 (cit. on
p. 124).

[102] n. Lallemand and n. Luo, “Theory of the lattice boltzmann method: Dispersion,
dissipation, isotropy, galilean invariance, and stability”, eng, Physical Review.
E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 61,
no. 6 Pt A, pp. 6546–6562, Jun. 2000, issn: 1063-651X (cit. on p. 124).

[103] N. N. Bogoljubov, Problems of a Dynamical Theory in Statistical Physics: N.N.
Bogoliubov [Nikolaj Nikolaevič Bogoljubov]. Transl. from the Russian by E.K. Gora,
en. Geophysics Research Directorate, AF Cambridge Research Laboratories,
Air Force Research Division, United States Air Force, 1960, Google-Books-ID:
I5U8HAAACAAJ (cit. on p. 127).

170

https://doi.org/10.1103/PhysRevE.54.406
https://doi.org/10.1103/PhysRevE.54.406
https://doi.org/10.1016/0009-2509(89)80031-4
https://doi.org/10.1016/0009-2509(89)80031-4
https://doi.org/10.1088/0256-307X/21/8/044
https://doi.org/10.1007/978-3-319-09737-4_2
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1103/PhysRevE.55.R6333
https://doi.org/10.1103/PhysRevE.55.R6333
https://doi.org/10.1103/PhysRevE.62.4982
https://doi.org/10.1016/j.physrep.2008.04.010

Bibliography

[104] R. L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions,
English, 3rd edition. New York: Springer, Sep. 2003, isbn: 978-0-387-95551-3
(cit. on p. 127).

[105] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, “Advances in multi-domain
lattice Boltzmann grid refinement”, Journal of Computational Physics, vol. 231,
no. 14, pp. 4808–4822, May 2012, issn: 0021-9991. doi: 10.1016/j.jcp.2012.
03.015 (cit. on p. 134).

[106] A. Fakhari and T. Lee, “Finite-difference lattice Boltzmann method with a block-
structured adaptive-mesh-refinement technique”, Physical review. E, Statistical,
nonlinear, and soft matter physics, vol. 89, p. 033 310, Mar. 2014. doi: 10.1103/
PhysRevE.89.033310 (cit. on p. 134).

[107] A. Fakhari and T. Lee, “Numerics of the lattice boltzmann method on nonuni-
form grids: Standard LBM and finite-difference LBM”, Computers & Fluids,
vol. 107, pp. 205–213, Jan. 2015, issn: 0045-7930. doi: 10.1016/j.compfluid.
2014.11.013 (cit. on p. 134).

[108] H. Xi, G. Peng, and S.-H. Chou, “Finite-volume lattice Boltzmann method”,
Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary
topics, vol. 59, pp. 6202–5, Jun. 1999. doi: 10.1103/PhysRevE.59.6202
(cit. on p. 134).

[109] D. V. Patil, “Chapman–Enskog analysis for finite-volume formulation of lattice
Boltzmann equation”, Physica A: Statistical Mechanics and its Applications, vol. 392,
no. 12, pp. 2701–2712, Jun. 2013, issn: 0378-4371. doi: 10.1016/j.physa.
2013.02.016 (cit. on p. 134).

[110] Y. Feng, P. Sagaut, and W.-Q. Tao, “A compressible lattice Boltzmann finite
volume model for high subsonic and transonic flows on regular lattices”,
Computers & Fluids, vol. 131, pp. 45–55, Jun. 2016, issn: 0045-7930. doi: 10.
1016/j.compfluid.2016.03.009 (cit. on p. 134).

[111] G. Trapani, D. M. Holman, R. Brionnaud, and O. Sosa, “A Supersonic Lattice-
Boltzmann Method: Validation and Applications”, in 35th AIAA Applied Aerody-
namics Conference, ser. AIAA AVIATION Forum, American Institute of Aero-
nautics and Astronautics, Jun. 2017. doi: 10.2514/6.2017-4460 (cit. on
p. 134).

[112] L.-S. Luo, “Unified Theory of Lattice Boltzmann Models for Nonideal Gases”,
Physical Review Letters, vol. 81, no. 8, pp. 1618–1621, Aug. 1998. doi: 10.1103/
PhysRevLett.81.1618 (cit. on p. 134).

[113] P. Asinari and R. Borchiellini, “A Lattice Boltzmann Formulation for the Analy-
sis of Radiative Heat Transfer Problems in a Participating Medium”, NUMERI-
CAL HEAT TRANSFER PART B-FUNDAMENTALS, vol. 57, pp. 1–21, Mar. 2010.
doi: 10.1080/10407791003613769 (cit. on p. 134).

[114] A. Gairola and H. Bindra, “Lattice Boltzmann method for solving non-equilibrium
radiative transport problems”, Annals of Nuclear Energy, vol. 99, pp. 151–156,
Jan. 2017, issn: 0306-4549. doi: 10.1016/j.anucene.2016.08.011 (cit. on
p. 134).

[115] S. Succi and R. Benzi, “Lattice Boltzmann equation for quantum mechanics”,
Physica D: Nonlinear Phenomena, vol. 69, no. 3, pp. 327–332, Dec. 1993, issn:
0167-2789. doi: 10.1016/0167-2789(93)90096-J (cit. on p. 134).

[116] E. J. Hinch, Perturbation Methods, English. Cambridge ; New York: Cambridge
University Press, Oct. 1991, isbn: 978-0-521-37897-0 (cit. on p. 161).

171

https://doi.org/10.1016/j.jcp.2012.03.015
https://doi.org/10.1016/j.jcp.2012.03.015
https://doi.org/10.1103/PhysRevE.89.033310
https://doi.org/10.1103/PhysRevE.89.033310
https://doi.org/10.1016/j.compfluid.2014.11.013
https://doi.org/10.1016/j.compfluid.2014.11.013
https://doi.org/10.1103/PhysRevE.59.6202
https://doi.org/10.1016/j.physa.2013.02.016
https://doi.org/10.1016/j.physa.2013.02.016
https://doi.org/10.1016/j.compfluid.2016.03.009
https://doi.org/10.1016/j.compfluid.2016.03.009
https://doi.org/10.2514/6.2017-4460
https://doi.org/10.1103/PhysRevLett.81.1618
https://doi.org/10.1103/PhysRevLett.81.1618
https://doi.org/10.1080/10407791003613769
https://doi.org/10.1016/j.anucene.2016.08.011
https://doi.org/10.1016/0167-2789(93)90096-J

	Abstract
	List of acronyms and nomenclature
	Acronyms
	Nomenclature
	Greek symbols and special characters
	Roman symbols

	Figures and diagrams
	Curves and diagrams
	Discrete distribution functions

	Preface
	A brief introduction to computational fluid dynamics
	Fluid mechanics
	Conservation equations for compressible flow
	Speed of sound and Mach number
	Conservation equations for incompressible flow
	Turbulent flow and Kolmogorov microscales

	Computational fluid dynamics
	Boundary conditions
	Turbulence modelling
	Insufficiencies of conventional methods

	The Lattice-Boltzmann Method
	The theory behind Lattice-Boltzmann
	Kinetic theory of gases
	Lattice gas automata
	Statistical mechanics
	Maxwell-Boltzmann distribution
	Boltzmann equation

	Incompressible LBM
	Derivation of incompressible Lattice-Boltzmann
	Non-dimensionalisation
	The algorithm
	Discretisations
	Macroscopic quantities
	Errors and accuracy
	Stability
	Initial conditions
	Boundary conditions
	Forces on structures
	Turbulence models
	Advantages over conventional CFD

	Multi-component flows
	Multi-component and multi-phase flows
	Diffusion
	Fick's laws

	Advection and diffusion
	Schmidt and Péclet number

	LBM for multi-component flows
	Advection-diffusion model
	Accuracy, errors and correction terms
	Stability and TRT collision operator
	Conversion to physical units
	Reduced lattices
	Boundary conditions
	Advantages of LBM for advection-diffusion

	Porous media
	Pore size, porosity and tortuosity
	Particle Reynolds number
	Pressure drop in packed beds
	Carman-Kozeny equation
	Ergun equation

	Diffusion mechanisms in porous media
	Effective diffusion coefficient

	Residence time
	Residence time distribution
	Cumulative residence time distribution
	Experimental measurement

	Porous LBM: Sparse domain optimisation

	Implementation
	Single component flow
	Test case 1: Lid-driven cavity
	Stability of collision operators
	Test case 2: Flow around a cylinder
	Multi-component flow

	Performance
	Benchmark system
	Matlab
	C++

	Porous bed - comparison to Ansys Fluent
	Geometry generation and simulation setup
	LBM: mesh generation and settings
	Fluent: mesh generation and simulation setup
	Porosity and tortuosity
	Pressure drop
	Cumulative residence time distribution
	Simulation runtime

	Application: Real porous media
	Computational domain
	Simulation setup
	Results
	Porosity, tortuosity and diffusion coefficient
	Pressure drop
	Residence time distribution

	Conclusion and Outlook
	Conclusion
	Physical outlook: reactive multi-component flow
	Computational outlook: GPGPU and MPI

	Thermodynamics
	State and process variables
	Internal energy
	The first law of thermodynamics for a closed system
	Ideal gas
	Perfect gas

	Enthalpy and heat capacities
	Entropy

	Fluid dynamics
	Vorticity and vortex detection
	Vortex detection

	Conservation equations in integral notation
	Conservative and non-conservative form
	Non-conservative momentum equation
	Non-conservative energy equation

	Other important dimensionless numbers
	Euler and Lagrange specification
	Incompressible flow
	Divergence free velocity field
	Derivation of the Poisson's equation for pressure

	Relations of density, pressure and temperature and Mach number
	Flow regimes

	Inviscid flow: Euler equations
	Bernoulli equation
	Fluid structure interactions
	Pressure coefficient
	Drag coefficient
	Lift coefficient

	Strouhal number

	Kinetic theory of gases
	Basic measures of kinetic theory
	A simplified kinetic model
	Pressure
	Thermal energy

	Particle distributions
	Equilibrium
	Derivation of the Maxwell-Boltzmann equilibrium distribution
	Moments of particle distributions
	Collision integral: Stoßzahlansatz
	Dimensionless Boltzmann equation

	Multi-component flow
	Basic definitions for mixtures
	Scale of separation and homogeneous mixtures

	Mole, mass and volume fractions
	Mole fractions
	Mass fractions
	Molar concentration, partial volume and volume fractions
	Mixture averages

	Total, convective and diffusive flux
	Fick's laws
	Derivation of Fick's first law
	Derivation of Fick's second law
	Correction velocity

	Lewis number
	Non-binary multi-component flow
	Maxwell-Stefan system
	Derivation of the Maxwell-Stefan system for binary flow
	Derivation of Fick's first law from the Maxwell-Stefan system

	Lattice-Boltzmann
	Derivation of Lattice-Boltzmann
	Discrete Lattice-Boltzmann
	Chapman-Enskog expansion

	Force terms
	Energy equation

	LBM beyond incompressible flow
	Derivation of Lattice-Boltzmann algorithms
	Finite-difference discretisations
	Finite-volume discretisations

	Applications
	Generic advantages

	Computer architecture and programming
	Basics of computer architecture
	Virtual memory: Stack and heap
	Processor architecture and word size
	Processor clock rate and Intel turbo boost
	Memory architecture
	Multi-tasking and multi-threading

	Interpreted and compiled implementations
	Matlab
	C++
	Compilation in C++ and compiler settings
	Object-oriented programming
	Passing by value and by reference
	Choice of containers
	Inline functions
	Other optimisations
	Parallelisation and multi-threading
	Amdahl's law
	OpenMP
	A note on platform dependencies and portability

	Benchmarks
	Lid driven cavity: Pressure and vorticity
	Multi-component flow: Effects of wrong simulation parameters

	Mathematical appendix
	Mathematical notations
	Scalars
	Vectors
	Matrices
	Differentials
	Einstein notation
	Kronecker delta

	Probability
	Gaussian distribution function

	Integrals and derivatives
	Material derivative
	Gauss's divergence theorem
	Important integrals
	Orthogonal functions
	Gaussian quadrature

	Series expansions
	Taylor series
	Laurent series
	Fourier Series

	Perturbation theory
	Examples
	Example 1: Transcendental equations
	Example 2: Differential equations

	Two timing multiple scale method
	Derivatives of multiple-scale perturbation series

	Bibliography

