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Kurzfassung 

Titel: CFD Simulation der Hydrodynamik in Wirbelschichten 
Autor: Mario Blehrmühlhuber 
 
1. Stichwort: Wirbelschicht 
2. Stichwort: Mehrphasenströmung 
3. Stichwort: Kaltsimulation 
 
Eine sauberere und effizientere Möglichkeit Biomasse zu verwerten, ist die Verbrennung 
oder Vergasung in Wirbelschichten. Um diesen Prozess zu optimieren, können CFD-
Modelle eingesetzt werden. In dieser Arbeit werden Mehrphasenmodelle untersucht, um 
Erfahrungen und Richtlinien für ein zukünftiges CFD-Modell zu sammeln. Ziel ist es, die 
individuellen Stärken und Schwächen jedes Modells zu ermitteln. Darüber hinaus sollen 
Empfehlungen zur Modellierung von Wirbelschichten gegeben werden. Kaltsimulationen 
wurden durchgeführt, um die Hydrodynamik von Wirbelschichten zu verstehen und die 
verschiedenen kommerziell verfügbaren Mehrphasenmodelle bewerten zu können. 
Die in ANSYS® Fluent verfügbaren Modelle Euler Granular Model und das Dense 
Discrete Phase Model (DDPM) wurden getestet. DDPM verwendet einen Eulerischen 
Ansatz und einen Lagrangian Ansatz für die diskrete Phase (Hybrid Modell aus Discrete 
Phase Model und Euler Granular). Der Fokus lag auf den DDPM Modellen. Wichtige 
Teilmodelle wurden ebenfalls untersucht. Speziell die in ANSYS® Fluent implementierten 
Drag-Laws, sowie die Möglichkeiten zur Modellierung von Partikelgrößenverteilung 
(PSD) wurden betrachtet. Des Weiteren sind die Partikel-Partikel Interaktionsmodelle 
„Kinetic Theory of Granular Flow“ (KTGF) und die Discrete Elements Methods (DEM) 
evaluiert worden. Das KTGF approximiert die vorkommenden Partikelkollisionen. Im 
Gegensatz dazu berechnet das DEM jede einzelne Kollision. Die Kalibrierung und 
Einstellung der zahlreichen Modellparameter erfolgte durch experimentelle Daten. Für 
die Bewertung der verschiedenen Modellansätze sind öffentlich zugängliche Daten 
verwendet worden (bereitgestellt vom National Energy Technology Laboratory – NETL). 
Gestartet wurde mit der NETL I Challenge, einer kleinen stationären Wirbelschicht mit 
einheitlicher Partikelgröße. Anschließend wurden die NETL III Challenges untersucht, die 
industriell relevante Probleme darstellen (hohe Anzahl von Partikeln mit PSD). 
Es konnte gezeigt werden, dass das DDPM-DEM Modell am flexibelsten und genauesten 
ist. Die detaillierte Auflösung der Partikelwechselwirkungen ist jedoch für industrielle 
Anwendungen zu aufwändig. Das rechnerisch weniger anspruchsvolle DDPM-KTGF 
Modell ist hingegen sehr empfindlich gegenüber seinen Parametern. Für die Genauigkeit 
ausschlaggebend sind vor allem der Volumenanteil der granularen Phase, die 
rechnerische Auflösung der Partikelkollisionen und die gewählten Randbedingungen an 
den Wänden. Unter der minimalen Fluidisierungsgeschwindigkeit 𝑈௠௙ versagten die 
DDPM-KTGF Modelle, daher sind sie für Festbetten nicht geeignet. Mit sorgfältig 
gewählten Einstellungen waren die KTGF Modelle jedoch in der Lage, gute Ergebnisse 
für die gemittelten Partikelgeschwindigkeiten zu liefern (Gasgeschwindigkeiten über 
𝑈௠௙). Das zuverlässigste Drag-Law war jenes von Gidaspow (Gasgeschwindigkeiten  
> 𝑈௠௙). Die Vorhersage der Bettausdehnung und des Druckabfalls mit den Standard 
Drag-Laws wurde aber in beinahe allen Fällen überschätzt. 
Basierend auf den Erkenntnissen dieser Arbeit, wird zukünftig eine alternative Drag-Law 
getestet. Darauf aufbauend wird ein CFD-Modell für einen gesamten 
Biomassevergasungsprozess in einer Wirbelschicht erstellt. 



 

 

Abstract 

Title: CFD simulation of hydrodynamics in fluidized beds  
Author: Mario Blehrmühlhuber  
 
1st keyword: Fluidized bed 
2nd keyword: Multiphase flow 
3rd keyword: Cold Flow-simulation 
 
In the search for cleaner biomass conversion routes, one approach is the gasification of 
solid fuels in fluidized beds. To gain a better insight in the underlying processes, as well 
as for developing and improving occurring processes inside fluidized beds, CFD is 
commonly used. In this work, multiphase models for fluidized beds are studied in order to 
gain experience and to create guidelines for a future comprehensive CFD model for 
fluidized beds. The primary objective is to determine the individual strengths and 
weaknesses of each model approach. Furthermore, recommendations for modeling 
fluidized beds should be given. On that account, cold flow simulations were performed to 
understand the hydrodynamics of fluidized beds as well as to rate different commercially 
available multiphase models. 
The in ANSYS® Fluent implemented Euler Granular model and the Dense Discrete 
Phase Model (DDPM) were tested. DDPM is using an Eulerian approach and additionally 
a Lagrangian approach for the solid phase (hybrid model of Discrete Phase Model and 
Euler Granular model). This work focused on the DDPM approach. Besides the 
multiphase models, important sub-models were studied. Variations of the ANSYS® 
Fluent built-in drag laws as well as of the particle size distribution (PSD) were done. The 
particle interaction models “Kinetic Theory of Granular Flow” (KTGF) and the Discrete 
Elements Methods (DEM) were tested. The KTGF model is approximating the particle 
collisions. The DEM is directly resolving all particle collisions. Due to the variety of model 
settings, experimental data was used to calibrate and adjust the parameters. Data 
provided by the National Energy Technology Laboratory (NETL) was used to assess the 
different model approaches. First, the NETL I challenge (small-scale and steady fluidized 
bed with a uniform particle size) was calculated. Afterwards, the NETL III challenges, 
which are representing industrial relevant problems, were calculated (high number of 
particles with a PSD). 
It was shown that the DDPM-DEM model was the best and most flexible approach. 
However, the detailed resolution of the inter-particle interactions is still too costly for 
industrial applications. Whereas the numerically less demanding DDPM-KTGF is 
sensitive to its parameters. Crucial for the calculations are, in particular, the particle 
volume fraction, the resolution of the collisions and the boundary conditions at the walls. 
DDPM-KTGF models in combination with standard drag laws were failing below the 
minimum fluidization velocity 𝑈௠௙. Therefore, DDPM KTGF cannot be used for packed 
beds. Nevertheless, DDPM-KTGF models with carefully selected settings were yielding 
competitive results for the averaged particle velocities (gas velocity higher than 𝑈௠௙). 
Best drag law was Gidaspow drag law (for velocities significantly higher than 𝑈௠௙). 
However, especially the bed expansion and the pressure drop were over-predicted for 
nearly every case. 
Based on the findings of this work, an alternative drag model will be tested in the future. 
Furthermore, a comprehensive CFD model for biomass gasification processes in fluidized 
beds will be prepared. 
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1 Introduction 

1.1 Motivation 

In the search for more efficient biomass conversion technologies with higher valuable 
products, one approach is the gasification of solid fuels. The obtained product gas can 
be used for combustion in gas engines or turbines, for fuel cells or as synthesis gas for 
the production of fuels and chemicals. The use of gasified biomass allows a better control 
of the processes as well as a better emission behavior. For this biomass conversion route, 
fluidized beds can be used [1]. To get a better insight, as well as for developing and 
improving occurring processes inside fluidized beds, CFD modeling is a commonly used 
tool in the bioenergy sector. CFD can observe all bed parts at every operation point for 
any parameter. Weaknesses or improvement potentials can be identified more easily. 
Improvements can lead to better efficiency and lower emissions. Therefore, a 
comprehensive CFD model of the biomass conversion in fluidized beds is desired by 
industry and research institutes. The Institute of Thermal Engineering at the University of 
Technology Graz is currently developing a detailed model for fluidized bed reactors, which 
is a part of the European Horizon 2020 BRISK2 (Biofuel Research Infrastructure for 
Sharing Knowledge) project. In this thesis, the hydrodynamics of fluidized beds are 
studied in order to gain experience and to create guidelines for the future development of 
the comprehensive CFD-model. 

1.2 Objectives 

The in ANSYS® Fluent built-in multiphase models and sub-models (drag laws, particle 
interactions and particle size distribution models) were tested. The work focused on the 
DDPM model, since it is in advantage when considering different particle types and size 
classes (compared to Euler Granular model), including chemical reactions. The particle 
interaction approaches KTGF and DEM were compared for DDPM. Furthermore, Euler 
Granular models were set up to compare KTGF for different multiphase models. Due to 
a large number of model parameters, experimental data (provided by the National Energy 
Technology Laboratory) was used to validate and adapt these parameters. After literature 
research, the following research questions were defined, investigated and discussed 
within this work: 
 

Q1 Which multiphase models available in the commercial CFD code ANSYS® Fluent 
are suitable to simulate biomass fluidized beds? 

Q2 How important are particle interactions and how can these interactions be modeled? 
Q3 How can the influence of the particle size distributions (PSD) be included in the 

models? 
Q4 Are the drag laws available in ANSYS® Fluent able to predict the fluidized bed 

behavior? 
Q5 For which bed regimes, bed types and bed sizes are these models suitable? 
 

Chapter 2 is introducing the fundamentals of fluidized beds. In chapter 3, multiphase 
models are discussed (Q1, Q2, Q4). Chapter 4 deals with the modeling of a lab-scaled 
fluidized bed (Q1, Q2, Q4). In chapter 5, the handling of industrial-scale bubbling and 
circulating fluidized beds are investigated (Q2-Q5). Finally, in chapter 6, the results will 
be summarized, and the research questions will be discussed.  
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2 Fundamentals of fluidized beds 

2.1 Fluidized bed regimes 

A gas stream of low velocity through an agglomeration of a granular phase (the bed) will 
slowly flow through the void spaces between the particles [1]. The solid phase is unmoved 
(fixed bed), as shown in Figure 2-1 (a). With increasing gas velocity, the granular material 
starts to move. Since the movement prevents densest particle packing, the bed is 
expanding. The pressure drop through any section of the bed is proportional increasing 
with the gas velocity. When the gas velocity is further increased, a point will be reached 
in which the particles are losing the direct contact with each other. At this 
so-called minimum fluidization velocity 𝑈௠௙, the frictional force between gas and particles 
is equal to the bed weight [1]. The granular matter is transformed into a fluid-like state 
through suspension in the gas phase. In this state, the bed is called a fluidized bed (FB). 
An example for a fluidized bed can be seen in Figure 2-1 (b). A characteristic of fluidized 
beds is that the pressure drop through any section of the bed is about the same as the 
weight of the gas and the solid phase in this section. At a still higher gas velocity, the bed 
is continuously expanding. For certain gas-particle combinations (see chapter 2.4) the 
suspension can form a bubbling behavior. The flow is determined by bubble forming, 
bubble coalescence and bubble break-ups. A typical example for a bubbling fluidized bed 
is presented in Figure 2-1 (c). A further increase of the gas velocity (exceeding of the 
particle terminal velocity 𝑈௧ for smallest particles) is leading to turbulent fluidization – 
shown in Figure 2-1 (d). Beginning with the turbulent fluidization no distinctive upper bed 
surface is recognizable anymore. Finally, when the gas velocity is higher than 𝑈௧ (for all 
particles), the bed is operating in the pneumatic transport regime (also called pneumatic 
conveying regime) – see Figure 2-1 (e) [1]. Without recirculation or newly fed particles, 
all bed material will be entrained over time. Circulating fluidized beds (CFB) are operating 
in the pneumatic transport region – also see chapter 2.6 [1–3]. 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
Figure 2-1: Stages of fluidization [1]. 
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2.2 Advantages and disadvantages of fluidized beds 

The fluidized suspension allows continuous and relatively easy controllable processes 
[1]. Further advantages of fluidized beds are the high gas-particle contact surface and the 
excellent mixing. For chemical processes, the equally distributed and the relatively 
constant temperature, as well as the high particle surface, are advantageous. The 
isothermal behavior originates in the excellent mixing and the amount of thermal energy 
stored in the bed material. The temperature in a fluidized bed is rather constant and 
resists rapid temperature changes. That and the advantage of the high heat and mass 
transfer rates made fluidized beds to an often used process in the thermal engineering 
sector [1,2,4]. 
Although fluidized beds have excellent mixing behavior, the residence time is not 
necessarily the same for all particles [1]. That is particularly true for CFB’s, where particles 
can stay in the bed region for a while or may directly be entrained to the recirculation 
facilities. For chemical processes at high-temperature, undesired sinter effects between 
the particles can occur. The change of particle size and shape can significantly influence 
the bed behavior. The handling of fine particles is difficult since this particle class is often 
resulting in an erratic plug flow (chapter 2.4). Furthermore, crumble solids can be 
pulverized. The smallest particles are then entrained with the gas, which may require 
filtering of the product gas. A problem, which is shared by all fluidized beds, is the 
abrasion due to particle friction and particle collisions. Erosion of pipes and the bed walls 
shortens the operating lifetime of the plant. Another disadvantage is the power 
consumption because of the provision of the continuous gas stream. The gas stream has 
to overcome the pressure drop in fluidized beds. For deep beds, power consumption can 
be as high that the FB cannot be operated economically [1]. 
Since the advantages outweigh the disadvantages, fluidized beds were developed for 
various industrial processes. The first field of application was the coal gasification, which 
was used to obtain syngas for chemical processes. Nowadays fluidized beds are used 
for a broad range of applications. They are used for biomass gasification and combustion 
(e.g., inside dual fluidized beds, see Kraft [3] and chapter 2.6) as well as for waste 
incineration. In chemical process engineering, FB’s are mainly used for fluid catalytic 
cracking (FCC) and synthesis reactions (e.g., Fischer-Tropsch synthesis and Sohio 
process). In the metallurgic and plastic industry, FB’s are used for drying, coating, and 
solidification of granular materials [1,3]. 

2.3 Pressure drop diagram 

The pressure drop over the bed ∆𝑝௕௘ௗ is used to distinguish between the fixed bed, the 
fluidized bed, and the pneumatic transport regime [1]. The pressure drop is measured for 
increasing superficial gas velocity 𝑈଴. The pressure drop versus superficial gas velocity 
diagram is also called fluidization curve. The fluidization curve presented in Figure 2-2 is 
an idealized one. Because of the unsteady nature of fluidized beds, the values are 
strongly fluctuating over time. However, if the values are averaged over a sufficient long 
period, statistically constant values are obtained (also compare with chapter 4.4.1) [1,2]. 
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Figure 2-2: Pressure drop across bed – fluidization curve [3]. 

 
In the fixed bed regime, the pressure drop is proportional to the gas velocity. The pressure 
drop is increasing until the minimum fluidization velocity 𝑈௠௙ is reached [1]. Beginning 
with 𝑈௠௙ the pressure drop is (statistically) constant across the bed. The bed is called 
fluidized. After reaching the terminal particle velocity 𝑈௧ the pressure drop is increasing 
again. The bed is now operating in the pneumatic conveying region. The width of the 
fluidized bed range as well as the transition region around 𝑈௠௙ can vary, depending on 
the used particle class. A fluidization curve for a real fluidized bed is shown in 
Figure 5-4 (chapter 5.1.2) [1,2]. 

2.4 Particle classification 

For classifying the different fluidization types, Geldart [5] performed detailed 
investigations. One of his key findings was that the fluidization behavior is mainly 
determined by the particle diameter and the density difference between gas and particles. 
Geldart is classifying the particles into four groups. The Geldart classification is shown in 
Figure 2-3 [1,5]. 
 

 
Figure 2-3: Particle classification according to Geldart [6]. 
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The first group, the Geldart A particles consist of small-sized and/or light weighted 
(𝜚௦ < 1.4 g/cm3) particles [5]. Group A particles are characterized by a homogeneous bed 
expansion before the bed is transforming into a bubbling bed at higher velocities. Usually, 
the bubbles are relatively small. Beds of this class are used for circulating fluidized beds 
as well as for pneumatic transport. Especially for fluid catalytic cracking (FCC) 
applications, Geldart A particles are often used. Particles in the mean size range 
(40 µm < 𝑑௦ < 500 µm) and in the mean density range (1.4 g/cm3 < 𝜚௦ < 4 g/cm3) are in 
group B. Group B particles are forming bubbles right after reaching the minimum 
fluidization velocity. The bed is barely expanding. The early and extensive formation of 
bubbles ensures excellent mixing. Because of these reasons Geldart B particles are the 
most commonly used particle class in fluidization engineering. Geldart’s group C particles 
are representing cohesive particles or very fine powders. The fluidization of group C 
particles is difficult because of the high inter-particle forces. Beds with group C particles 
are preferable forming channeling flows. Because of these reasons, group C particles 
have just a minor role in industrial applications. The particles in Geldart group D are big 
and/or very dense. Geldart D particles can show spouting, bubbling or channeling 
behavior. A usual field of application is the food industry (e.g., coffee beans). A schematic 
overview of the particle influence on the bed behavior is given in Figure 2-4 [1,2,5]. 
 

 
Figure 2-4: Schematics of the bed behavior [1]. 
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2.5 Characteristic values 

2.5.1 Volume fraction 

One of the most important parameters for fluidized beds is the volume fraction 𝛼௦ – see 
Equation (2.1). The volume fraction determines the porosity of the bed. Furthermore, it 
determines if the suspension is mainly influenced by particle friction or by particle 
collisions (compare chapter 3.4.3 and chapter 3.6) [2]. 
 

𝛼௦ =  
𝑉௦

𝑉
 (2.1) 

2.5.2 Minimum fluidization velocity 

Kunii and Levenspiel [1] are using the pressure drop over the bed as a determination 
criterion for the minimum fluidization velocity 𝑈௠௙. The minimum fluidization velocity is 
reached as soon as the pressure drop over a certain bed section equals the particle 
weight in that section divided by the cross-sectional area of the bed. They proposed an 
estimation for 𝑈௠௙ – Equation (2.2). The left side of the equation is the non-dimensional 
Archimedes number 𝐴𝑟. The particle volume fraction at fluidization 𝛼௠௙ is estimated or 
obtained by experiments. The sphericity 𝜙௦ accounts for non-spherical particles [1,6]. 
 

𝑑௦
ଷ 𝜚௚൫𝜚௦ − 𝜚௚൯𝑔

𝜇ଶ
=  

1.75

𝛼௠௙
ଷ 𝜙௦

ቆ
𝑑௦𝑈௠௙ 𝜚௚

𝜇
ቇ

ଶ

+
150൫1 − 𝛼௠௙൯

𝛼௠௙
ଷ 𝜙௦

ଶ
ቆ

𝑑௦𝑈௠௙ 𝜚௚

𝜇
ቇ (2.2) 

2.5.3 Terminal velocity 

The terminal velocity 𝑈௧ is the final free-fall velocity of a particle. 𝑈௧ is representing the 
upper limit for fluidized beds. In beds with gas velocities higher than 𝑈௧ bed material is 
entrained. Terminal velocity is reached when buoyancy and drag force (chapter 3.6) are 
equal to the particle weight. Kunii and Levenspiel [1] provided an estimation for the 
terminal velocity of a single particle – shown in Equation (2.3). The expression 𝐶஽ is the 
empirically determined drag coefficient (compare with chapter 3.6) [1,2,6]. 
 

𝑈௧ = ඨ
4

3
 
𝑑௦ ൫𝜚௦ − 𝜚௚൯𝑔

𝜚௚ 𝐶஽
 (2.3) 

2.5.4 Sauter mean diameter 

A fluidized bed usually contains particles of various sizes. The particle size distribution 
(PSD) can be represented by the Sauter mean diameter 𝑑ଷଶ – Equation (2.4). It relates 
the total particle volume to the total particle surface. The term 𝑛௜ represents the particle 
number in size class 𝑖. The Sauter mean diameter takes smaller particles more into 
account than bigger ones, because it is most sensitive to the presence of small particles 
[7]. This behavior is advantageous since the smaller particles have a significantly higher 
influence on the fluidization [2]. 
 

𝑑ଷଶ =  
∑ 𝑛௜ 𝑑௦௜

ଷ  

∑ 𝑛௜ 𝑑௦௜
ଶ  

 (2.4) 
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2.6 Fluidized bed layouts for biomass gasification 

For biomass gasification, the feedstock is mixed with the bed material. In contrast to a 
fixed bed reactor, no distinctive temperature and reaction zones can be recognized [1]. 
For an ideal fluidized bed, all gasification reactions are happening at the same time in the 
whole bed region. The constant temperature, as well as the easy controllable processes, 
are the advantages of fluidized beds. A drawback is that a lot of pulverized char and ash 
can be entrained, which is lessening the product gas quality. In Figure 2-5 the most 
commonly used fluidized bed types for biomass gasification are presented [4]. 
Figure 2-5 (a) shows the conventional fluidized bed which is operating below the terminal 
velocity. Therefore, no bed material is entrained. However, since the pyrolysis products 
(char and ash) are friable, fines are carried in the product gas [4]. In Figure 2-5 (b) a 
circulating fluidized bed (CFB) is shown. A CFB is operating with gas velocities higher 
than the terminal velocity. The entrained solids are recirculated by cyclones and fed back 
to the bed. The suspension in a CFB is more dilute and expanded over the whole facility. 
If necessary, the product gas quality can be improved by using multiple serial connected 
cyclones for separating the fine ash and char particles from the gas [1,4]. 
One big disadvantage of conventional gasification is the fluidizing gas. If air is used, the 
product gas is diluted with nitrogen, which is decreasing the calorific value. A possibility 
would be to use pure oxygen or an oxygen-steam mixture as fluidization agent [3]. 
However, to provide the facility with enough oxygen is expensive. As an alternative, the 
dual fluidized bed (DFB) was developed. Figure 2-5 (c) shows a DFB in the style of the 
Güssing reactor [8]. In the Güssing reactor, the heat generation and the gasification of 
the biomass are separated. The bed material is heated up in the combustion zone by char 
burn-out. In the combustor, air is used as a fluidization agent. In a cyclone, the flue gas 
is separated from the bed material. The circulating hot bed material is heating the 
gasification zone. In the gasifier, steam is used as a fluidization agent to produce a 
nitrogen-free product gas [1,3,4]. 
 
(a) (b) (c) 

Figure 2-5: Layouts for fluidized beds used in biomass gasification [4], 
 (a) fluidized bed gasifier, (b) circulating fluidized bed gasifier,  

(c) dual fluidized bed gasifier – type Güssing.  
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3 Modeling of fluidized beds 

For modeling particle-gas flows, two basic strategies for the handling of the solid phase 
are possible. The granular phase can either be considered as an additional continuous 
phase, which is mixed with the actual continuous gas phase. Treating the solid phases 
as fluid is called the Eulerian-Eulerian approach, or also called the Two-Fluid Model 
(TFM) [9]. The other possibility is the decoupling of the solid phase from the conventional 
Eulerian approach. The continuous phase is treated and calculated for each cell using 
the Eulerian approach and the granular phase is tracked by using a Lagrangian approach. 
The particle paths are tracked through the flow field over several cells. This is called the 
Euler-Lagrangian approach. Both approaches are shown in Figure 3-1 [9–12]. 
 

(a) 

 

(b) 

 
Figure 3-1: Approaches for multiphase flows [11], 
(a) Eulerian approach, (b) Lagrangian approach. 

 
Independent of the used multiphase-model, interactions between the phases can be 
included. Interactions between granular and continuous phases are defined by drag laws. 
Details about the drag laws are provided in chapter 3.6 [9–12]. 
Collisions between particles of the same (or different) phase can be modeled by using 
particle interaction models [10]. The used particle interaction models are introduced in 
chapter 3.4 and chapter 3.5. The available granular multiphase-models in ANSYS® 
Fluent are shown in Figure 3-2 [13]. The choice of the multiphase-model, the used drag 
law, and the particle interaction approach is influenced by the solid volume fraction, the 
particle shape, the particle size distribution, the particle amount and by the superficial gas 
velocity [9,10,12]. 
 

 
Figure 3-2: Multiphase models for FB’s in ANSYS® Fluent [12]. 

 
In the following equations, variables for the continuous phases (or primary phase) are 
subscripted with g (gas), and the granular phase variables are subscripted with 
s (solid).Variables with the subscripts p and q can either refer to a fluid or a solid phase. 

Used Models for simulation

Euler Granular

Kinetic Theory for 
Granular Flow 

(KTGF)

Dense Discrete Phase Model

(DDPM)

Kinetic Theory for 
Granular Flow (KTGF)

Discrete Element 
Method (DEM)
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3.1 Euler Granular 

The Euler Granular model is a Two-Fluid model (Euler-Euler approach) [9]. Occurring 
phases are considered as each other interpenetrating continua. These phases are mixed, 
and there is no difference in handling the discrete phase and the continuous phase. The 
most commonly used approach was derived by Ishii and Hibiki [14]. For each phase, the 
governing averaged equations are set up including the regarding volume fraction of the 
phase (𝛼௜). In addition, the Euler-Euler formulation is assuming that a single pressure is 
shared by all phases. Equation (3.1) shows the continuity equation for phase q [10,14,15]. 
 

𝜕

𝜕𝑡
(𝛼௤𝜚௤) + 𝛻൫𝛼௤𝜚௤�⃗�௤൯ = 0 (3.1) 

 
Equation (3.2) shows the momentum equation for a solid phase respectively. The solids 
stress tensor 𝜏௦̿ is including the particle interactions and is derived by the Kinetic Theory 
for Granular Flow (compare chapter 3.4). The term 𝛻𝑝௦ represents the solids pressure 
(chapter 3.4.3). For considering interactions between continuous and granular phases, 
the momentum exchange coefficient 𝐾௤௦ is included in the conservative equations. The 
set of equations is closed by drag laws to obtain the exchange coefficient (more details 
in chapter 3.6). In �⃗�௢௧௛௘௥ additional models can be included (e.g., lift forces, virtual mass 
forces) [9,10,12,15]. 
 

𝜕

𝜕𝑡
(𝛼௦𝜚௦�⃗�௦) + 𝛻(𝛼௦𝜚௦�⃗�௦�⃗�௦) = 

−𝛼௦𝛻𝑝 − 𝛻𝑝௦ + 𝛻𝜏௦̿ + 𝛼௦𝜚௦�⃗� + ෍ 𝐾௤௦ ൫�⃗�௤ − �⃗�௦൯ + �⃗�௢௧௛௘௥ 
(3.2) 

 
The transport equations have to be solved for all phases. Different particle sizes are 
considered as different phases even when the granular substance is the same. Every 
additional included particle size class is adding four new conservative equations  
(3 x momentum, 1 x volume fraction). Reactive systems require even more equations per 
size class due to species transport (for each scalar). Since the bed material in fluidized 
beds is seldom uniform in size, including a realistic particle size distribution for an Euler-
Granular model is resulting in demanding calculations. However, the advantage of the 
Euler Granular model is that it can handle very complex flows for uniform particle 
diameters (e.g., by using the Sauter mean diameter), since no additional equations are 
required in that case [9,10,15]. 

3.2 Discrete Phase Model 

The Discrete Phase Model (DPM) was developed to overcome the primary disadvantage 
of the TFM – the inefficient handling of polydisperse systems. The DPM is an Euler-
Lagrangian model, which is directly assigning a diameter for each particle. That allows 
defining several particle diameters for the same granular phase without adding any 
conservative equations. The calculation of polydisperse systems with DPM is far more 
efficient. A drawback of DPM is that particle interactions are not included. For dilute flows, 
these interactions are often neglected (one-way coupling). In literature, different 
definitions for dilute flows exist. The limit varies between 𝛼௦ < 0.0001 and 𝛼௦ < 0.1 [15]. 
Therefore, DPM cannot be used in fluidized beds. Hence, the Dense Discrete Phase 
model (DDPM) was developed [10,12,15]. 
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3.3 Dense Discrete Phase Model 

The standard DPM is designed for solid volume fractions below 𝛼௦ < 0.1. For applications 
with higher volume fractions, the DPM is not suitable (e.g., for fluidized beds) [15]. The 
main reason for this limitation is the neglecting of the inter-particle forces. For very dense 
flows, these interactions are having a significant influence on the flow behavior. Modified 
equations were introduced to account for these interactions [15]. To be able to handle 
higher particle loadings, the volume fraction of the solids are included. The modified DPM 
model is called Dense Discrete Phase Model (DDPM). The DDPM is using an Euler-
Lagrangian approach for solving the gas-particle flow. For each phase (primary and 
secondary), the conservative equations are set-up in the Eulerian framework. 
Additionally, Newton’s 2nd law of motion is applied for the solid phases in the Lagrangian 
framework [15]. Therefore, the DDPM is called a hybrid model, which is combining the 
advantages of the Euler Granular (including of particle interactions) and the DPM (easy 
including of different particle size classes) approach [16]. Equation (3.3) and Equation 
(3.4) are showing the continuity equation and the momentum equation (standard form) 
for the continuous phase respectively. 𝐾௦௚ in Equation (3.4) is the momentum exchange 
coefficient between the phases due to the drag force [10,15]. In the case that the influence 
of the dispersed phase on the primary phase cannot be neglected (common for DDPM), 
an additional source term 𝑆௠௢௠ can be included on the right side of the equation to 
account for these effects (two-way coupling) [10,13,15,17–19]. 
 

𝜕(𝛼௚𝜚௚)

𝜕𝑡
+  ∇ ൫𝛼௚𝜚௚�⃗�௚൯ = 0 (3.3) 

 
𝜕

𝜕𝑡
൫𝛼௚𝜚௚�⃗�௚൯ +  ∇ ൫𝛼௚𝜚௚�⃗�௚�⃗�௚൯ = 

−𝛼௚∇p +  ∇ ൫𝛼௚𝜏̿൯ +  𝛼௚𝜚௚�⃗� +  𝛼௚ 𝜚௚  ෍ �⃗�   
௢௧௛௘௥ + ෍ 𝐾௦௚൫�⃗�௦ − �⃗�௚൯ +  𝑆௠௢௠ 

(3.4) 

 
The equation of motion for the particles is defined in the Lagrangian approach, see 
Equation (3.5). The particle trajectories are obtained by stepwise integration of Equation 
(3.5). The particle velocity is already obtained by Newton’s 2nd law for each trajectory 
point – Equation (3.6). In addition, the solution for the solid volume fraction is directly 
taken from the Lagrangian approach [10]. Thus, only the conservative equations for the 
non-discrete phases have to be calculated. The values obtained from the Lagrangian 
approach have to be averaged for each cell before they can be used in the Eulerian 
framework (all particles inside the cells are used for averaging). If the particles are large 
in relation to cell size, one particle could span over multiple cells, making it difficult to 
associate the particles to a particular cell. Furthermore, the averaging becomes more 
reliable with a higher particle number in the actual cell. For these reasons, it is important 
that the cells are big enough for a sufficient number of particles. ANSYS® recommends 
that the minimum cell volume should be at least equal to the volume of 5-10 packed 
particles [10,12,13,15]. 
 

𝑑�⃗�௦

𝑑𝑡
=  𝐹ௗ௥௔௚ ൫𝑣௚ሬሬሬሬ⃗ −  𝑣௦ሬሬሬ⃗ ൯ +

�⃗� ൫𝜚௦ − 𝜚௚൯

𝜚௦
+ 𝑓௖௢௟௟ + 𝑓௦,௢௧௛௘௥ (3.5) 
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𝑑�⃗�

𝑑𝑡
=  �⃗�௦ (3.6) 

 
𝐹ௗ௥௔௚ is the coefficient of proportionality which accounts for the interphase momentum 

exchange (also see chapter 3.6) [15]. The term 𝑓௖௢௟௟  is considering the previous 
mentioned particle interactions. These interactions can be considered either by the 
Kinetic Theory of Granular Flow (KTGF) or by direct resolving of the interaction with the 
Discrete Element Method (DEM). When particle-particle interactions are included in the 
calculation, the flow is called four-way coupled [10]. These approaches will be explained 
in the following chapters. In 𝑓௦,௢௧௛௘௥ additional acceleration forces can be included. 
Examples for additional models are the Saffman lift force [20], the virtual mass force [21] 
or the Brownian force [22]. The advantage of the DDPM model is the better representation 
of the particle behavior. In addition, particle size distributions can easily be included. 
Furthermore, the direct calculation of the particle velocities and the volume fractions in 
the Lagrangian framework requires fewer conservative equations for multiple particle 
diameter sizes than the Euler Granular model [10,15,17]. 

3.4 Kinetic Theory of Granular Flow 

The particle-particle interactions considered in 𝑓௖௢௟௟  are highly dissipative [9]. The non-
conservative behavior is caused by the inelastic deformation and the friction between 
individual particles. The particle movements are determined by the kinetic transport 
between collisions and the energy transport during collisions [23]. With increasing particle 
loading and higher particle velocities, collisions are more likely (indicated in Figure 3-3). 
The dissipation is increasing due to more particle interactions. These particle interactions 
are approximated by the Kinetic Theory of Granular Flow (KTGF) [10]. 
 

 
Figure 3-3: Transport mechanism for fluid-particle systems [24]. 

 
The main idea of the KTGF is, to model the mechanical energy of the granular phase as 
velocity fluctuations around a mean particle velocity [10]. That kinetic energy is then 
dissipated. Therefore, instead of resolving all particle collisions, the interactions are 
averaged for the particle gas flow. The particle forces are obtained by the solids stress 
tensor 𝜏௦̿ as defined in Equation (3.7) [10,15,23,25,26]. 
 

𝑓௖௢௟௟ = −
1

𝜚௦
𝛻𝜏௦̿ (3.7) 
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Multiphase models using the KTGF approach are relatively fast due to the approximated 
interactions [27]. An issue of KTGF is the changing correlation between solid stress tensor 
and the dimensionless shear rate 𝛾° for different particle volume fractions – shown in 
Figure 3-4 [9]. Therefore, KTGF has problems when simulating applications with strongly 
different and/or changing solid volume fractions (Compare with chapter 3.4.1). Especially 
for applications with long frictional particle contacts in combination with high particle 
loadings, the KTGF model is not the best choice [27]. 
 

 
Figure 3-4: Regime map of the rheology of granular materials [27]. 

 
For very dilute regimes, the KTGF approach as suggested by Lun et al. [28] is working 
well. For the transition zone between dilute and dense flow and near-wall regions, the 
model by Johnson and Jackson [29] can be included to improve predictions. The Johnson 
and Jackson [29] approach is introduced in chapter 3.7. In their model, a slip-wall 
boundary condition for the solid phase is added. For very dense flows the frictional effects 
are dominating, an additional model, e.g., by Schaeffer [30] can improve the results. The 
transition zones between the regimes are not clearly defined. In Pannala et al. [27] an 
overview of the different regimes and models can be found [27]. 

3.4.1 Granular temperature 

The granular temperature 𝛩௦ is a measurement for the random particle fluctuations and 
is a representation of the kinetic particle energy [23]. It is assumed that the fluctuations 
are the same in all directions. In Equation (3.8), the formal definition of the granular 
temperature is shown. The expression 𝑣௦′ specifies the random velocity fluctuations of 
the particles [23]. 
 

𝛩௦ =
 𝑣௦′ 𝑣௦′

3
 (3.8) 

 
In Equation (3.9) the basic form of the transport equation for the granular temperature, as 
derived by Ding and Gidaspow [23], is shown. The term 𝜏௦̿: ∇�⃗�௦ represents the energy 
production by the solid stress tensor 𝜏௦̿, which consists of the deformation work and the 
energy transfer of the particles. The energy dissipation is considered by the term 𝑘஀∇Θ௦. 
Inelastic collisions are considered by 𝛾஀ೞ

. The term 𝛷௦௚ is considering the transfer of the 
fluctuating energy between the phases [31,32]. 
 

3

2
൤

𝜕

𝜕𝑡
(𝛼௦𝜚௦Θ௦) + ∇(𝛼௦𝜚௦�⃗�௦Θ௦)൨ = 𝜏௦̿: ∇�⃗�௦ + ∇(𝑘஀∇Θ௦) − 𝛾஀ೞ

+ 𝛷௦௚ (3.9) 
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Based on the granular temperature transport equation, different approaches for 
calculating the granular temperature are available. The first possibility is to solve the 
partial differential equation of the granular temperature transport. Another approach is the 
DPM-averaged granular temperature, which is only available for DDPM models [10]. 
Furthermore, for very dense packed beds, where the random fluctuations are small, a 
constant value for the granular temperature can be set [10]. For the calculations in this 
work, the algebraic approach for the granular temperature was used. The advantage is 
that no additional transport equation is needed since the convective and the diffusive 
terms in Equation (3.9) are neglected. That simplification can be done since the 
production and the dissipation of the granular energy are in equilibrium for fluidized beds 
[10]. The resulting algebraic formulation is shown in Equation (3.10). The transfer of the 
fluctuating energy 𝛷௦௚ is calculated by the granular temperature and the momentum 
interphase exchange coefficient 𝐾௦௚, as shown in Equation (3.11) [31,32]. 
 

0 = 𝜏௦̿: ∇�⃗�௦ − 𝛾஀ೞ
+ 𝛷௚௦ (3.10) 

 
𝛷௦௚ = −3𝐾௦௚Θ௦ (3.11) 

3.4.2 Solids stress tensor 

The solid stress tensor 𝜏௦̿ consists of a collisional part and a kinetic part of the particle 
interactions – see Equation (3.12) [23,25]. The kinetic stress 𝜏௞ is due to the kinetic 
transport between collisions. The collisional stress 𝜏௖ is caused by particle collisions [10]. 
 

𝜏௦̿ = 𝜏௞ + 𝜏௖ (3.12) 
 
Instead of calculating these stresses, the solid stress tensor is defined by the granular 
viscosity 𝜇௦ and the bulk viscosity 𝜆௦ [25]. These terms will be explained in the next 
chapters. The relation is shown in Equation (3.13) and depends on the granular viscosity 
𝜇௦, the bulk viscosity 𝜆௦ and the volume fraction of the solids phase 𝛼௦. These parameters 
will be explained in more detail in the following chapters. The unit tensor 𝐼 ̿is necessary 
to obtain a tensor from the scalars in the second term [15,23,25]. 
 

𝜏௦̿ = 𝛼௦𝜇௦ ൫∇�⃗�௦ + ∇�⃗�௦
்

൯ + 𝛼௦  ൬𝜆௦ −
2

3
 𝜇௦൰ ∇�⃗�௦𝐼 ̿ (3.13) 

3.4.3 Granular viscosity 

The granular viscosity is the shear viscosity of the suspension due to the kinetic motion 
(𝜇௦,௞௜௡) and the particle interactions (𝜇௦,௖௢௟௟, 𝜇௦,௙௥) – see Equation (3.14) [12]. The particle 
interactions are separated into a collisional part 𝜇௦,௖௢௟௟ and a frictional part 𝜇௦,௙௥ [10]. 
The granular viscosity is equivalent to the molecular viscosity of a fluid. It is used to get 
the viscosity for the whole suspension including the solids. For calculating the granular 
viscosity, the granular temperature Θୱ is necessary. The granular temperature is a 
measurement for the random particle fluctuations and is a representation of the kinetic 
particle energy. The definition of the granular temperature can be found in Equation (3.9) 
(chapter 3.4.1) [23,25]. 
 

𝜇௦ = 𝜇௦,௖௢௟௟ + 𝜇௦,௞௜௡ + 𝜇௦,௙௥ (3.14) 
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Collisional viscosity 

The collisional viscosity 𝜇௦,௖௢௟௟ describes the shear viscosity due to the particle collisions. 
It is representing the energy transport by particle collisions [25]. Inside ANSYS® Fluent 
the approach by Gidaspow [25] is used. For obtaining 𝜇௦,௖௢௟௟ the particle interactions are 
modeled according to Equation (3.15). The fluctuating energy is represented by the 
granular temperature Θୱ (definition in chapter 3.4.1). Collisions between particles are 
included by using the coefficient of restitution ηୱୱ. To account for dense particle-gas flows, 
a radial distribution function g଴,ୱୱ (chapter 3.4.5) is included in the equation [23,25,28,32]. 
 

μୱ,ୡ୭୪୪ =
4

5
 αୱϱୱdୱg଴,ୱୱ (1 + ηୱୱ) ൬

Θୱ

π
൰

ଵ
ଶൗ

 (3.15) 

Kinetic viscosity 

The kinetic viscosity is representing the energy of the free particle movement (also see 
Figure 3-3). ANSYS® Fluent provides two models for the kinetic contribution of the 
granular viscosity. Models derived by Syamlal and O’Brien [32] and by Gidaspow [25] are 
available. Both approaches have a similar structure. For the calculation, the granular 
temperature Θୱ, the radial distribution function g଴,ୱୱ (see chapter 3.4.5) and the particle-
particle restitution coefficient ηୱୱ is needed. In Equation (3.16) the approach by Gidaspow 
[25] is shown respectively [12,13]. 
 

μୱ,୩୧୬ =
10dୱϱୱඥΘୱπ

96 αୱ(1 + ηୱୱ) g଴,ୱୱ
 ൤1 +

4

5
g଴,ୱୱ αୱ(1 + ηୱୱ)൨

ଶ

αୱ (3.16) 

Frictional viscosity 

The frictional viscosity μs,fr contribution of the granular viscosity is important when the 
packing limit is reached [10]. In that case, the particles are not colliding anymore, and the 
particle interactions are reduced to frictional contacts. Frictional models are deactivated 
by default in ANSYS® Fluent. In Equation (3.17) the expression by Schaeffer [30] is 
shown. Solids pressure 𝑝௦ and the internal friction angle 𝜑 are needed for the calculation. 
The expression 𝐼ଶ஽ is the second invariant of the deviatoric stress tensor [10]. 
 

𝜇௦,௙௥ =
𝑝௦ sin 𝜑

2 ඥ𝐼ଶ஽

 (3.17) 

3.4.4 Solids pressure 

The solids pressure 𝑝௦ is an additional term in the momentum Equation (3.2) to account 
for particle volume fractions below the packing limit [10]. Similarly to the granular 
viscosity, the solids pressure is parted into a kinetic and a collisional part [10]. The kinetic 
contribution is calculated by the granular temperature and the particle fraction. The 
collisional contribution is proportional to the repulsive particle contact force [23]. For all 
calculations in this work, the approach by Lun et al. [28] was used for the solids pressure 
[10,12]. 
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3.4.5 Radial distribution function 

The radial distribution function g଴,ୱୱ acts as a correction factor for increasing particle 
volume fractions. It is modifying the probability of collisions between particles in denser 
regions [28]. It can be seen as a non-dimensional distance between particles. The general 
form of the radial distribution function is shown in Equation (3.18). In the equation, 𝑠 is 
the distance between particles and 𝑑௦ is the particle diameter. Therefore, the radial 
distribution describes the transition between compressible flow (particle volume fraction 
below the packing limit) to incompressible flow (particle volume fraction near or equal the 
packing limit) [10,28]. For all calculations in this work, the approach by Lun et al. [28] was 
used for the radial distribution function [10,12]. 
 

𝑔଴,௦௦ =
𝑠 + 𝑑௦

𝑠
 (3.18) 

 

3.4.6 Bulk viscosity 

The bulk viscosity describes the resistance of the particle agglomeration against 
expansion and compression inside the suspension [28]. By default, the bulk viscosity is 
set to zero. The bulk viscosity model by Lun et al. [28] – shown in Equation (3.19) – was 
used in this work [10]. 
 

𝜆௦ =
4

3
𝛼௦

ଶ𝜚௦𝑑௦𝑔଴,௦௦ (1 + ηୱୱ) ൬
𝛩௦

𝜋
൰

ଵ
ଶൗ

 (3.19) 

3.5 Discrete Element Method 

Another possibility to account for the particle-particle interactions in 𝑓௖௢௟௟ is the Discrete 
Element Method (DEM), which was first introduced by Cundall and Strack [33]. The DEM 
approach is calculating all inter-particle collisions [10]. The particles are tracked with a 
very small time step in order to dissolve all collisions (contact time between particles is 
very short). In case of a collision, an overlap of the colliding particles is allowed  
(soft-sphere approach – see Figure 3-5). That overlap 𝛿 is considered as a deformation. 
Different models exist to obtain the contact force from the particle deformation [10,33]. 
 

 
Figure 3-5: DEM - soft sphere approach [10]. 
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One commonly used model is the spring-dashpot law based on the work by Cundall and 
Strack [33] and by Tsuji et al. [34]. The spring dash-pot law defines a linear relationship 
between the deformation and the contact force. The calculation of the force acting from 
particle 𝑗 on particle 𝑖 is presented in Equation (3.20). For calculations, the spring-dashpot 
constant 𝐾 and the coefficient of restitution ηୱୱ are required. Furthermore a damping 
coefficient 𝛾 and a unit vector 𝑒௜௝ (vector between particles 𝑖 and 𝑗) are necessary [33,35]. 
 

�⃗�௜ = ቀ𝐾𝛿 + 𝛾൫�⃗�௜௝ ∙ 𝑒௜௝൯ቁ 𝑒௜௝ (3.20) 

 
The governing equations behind the DEM models are far simpler than the ones for the 
KTGF approach. However, because of the small time steps and the need to resolve all 
particle contacts, the DEM approach is far more numerically demanding than the KTGF 
approach [12]. Ergo, the DEM approach is rarely used for industrial scaled applications, 
which can include billions of particles. The advantage is the potentially much better 
prediction of the solid-gas flow [9,36]. 
In the ANSYS® Theory Guide [10] and ANSYS® User´s Guide [13], equations for the 
estimation of the particle time step are given. These set of equations – shown in 
Equations (3.21) to (3.24) – are requiring the coefficient of restitution η௦௦ and the spring-
dashpot coefficient K. First a reduced mass mଵଶ is calculated to account for the mass 
ratio between the colliding particles (mଵ, mଶ are the masses of the collision partners). 
Using the coefficient of restitution, the loss factor f௟௢௦௦ is calculated, which accounts for 
the energy loss due to non-ideal elastic collisions [10,12]. 
 

mଵଶ =
mଵ mଶ

mଵ +  mଶ
 (3.21) 

 

f௟௢௦௦ = ඥ𝜋ଶ + 𝑙𝑛(η௦௦)ଶ (3.22) 
 
These values are used to calculate the collision timescale t௖௢௟௟. Finally, for ensuring a 
sufficient resolution of the collisions, the particle time step Δt௣ (ANSYS® specifies a valid 
range for Δt௣) is calculated according to Equation (3.24) [10,12]. 
 

t௖௢௟௟ = f௟௢௦௦ට
mଵଶ

𝐾
 (3.23) 

 

Δt௣ =
t௖௢௟௟

50ൗ       𝑜𝑟 𝑢𝑝 𝑡𝑜      Δt௣ =
t௖௢௟௟

5ൗ  (3.24) 

3.6 Drag laws 

The drag law couples the equations of the continuous phase and the dispersed phase 
with each other. For coupling the conservative Equations (3.2) and (3.4), the momentum 
interphase exchange coefficient 𝐾௦௚ is used [23]. For the force balance in the Lagrangian 
formulation (chapter 3.3) the coefficient of proportionality 𝐹ௗ௥௔௚ is used [15]. The relation 
between 𝐾௦௚ and 𝐹ௗ௥௔௚ is shown in Equation (3.25) [10,15]. 
 

𝐹ௗ௥௔௚ =  
𝐾௦௚

𝜚௦𝛼௦
 (3.25) 
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The choice of the drag law is significantly influencing the accuracy of the results [9]. To 
obtain the drag force, a drag coefficient 𝐶஽ is used. Since the drag coefficient is dependent 
on the relative particle Reynolds number Re௦ (or Re௣) and the particle volume fraction 𝛼௦, 
many different approaches were developed, mainly based on experiments with uniform 
sized spheres [9]. The relation between drag coefficient and Re௦ is not constant (see 
Figure 3-6). The picture shows how the relation of the drag coefficient is changing with 
Re (for a single sphere) [37]. 
 

 
Figure 3-6: Drag coefficient as a function of the particle Reynolds number (single sphere) [37]. 

 
For low Re௦ the viscous effects are dominating (Stokes law region, linear function) [9]. 
However, for increasing Re௦, inertial effects are getting more important and the relation is 
getting non-linear (transition region) – also compare with Sommerfeld et al. [9]. Hence, 
the particle Reynolds number Re௦ is used as a determiner for the drag law. The definition 
of Re௦ can be found in Equation (3.26) [9,10]. 
 

𝑅𝑒௦ =  
𝜚௚ 𝑑௦ ห𝜈௦ሬሬሬ⃑ − 𝜈௚ሬሬሬ⃑ ห

𝜇௚
 (3.26) 

 
Furthermore, neighboring particles are disturbing the ideal flow stream passing a particle 
[9]. Consequently, an increasing particle volume fraction is resulting in a higher drag 
force. Therefore, 𝛼௦ is included in the drag law. For non-spherical particles, a correction 
term 𝜙 (sphericity) can be included. However, this drag law modification is just reliable 
for nearly spherical particles. For particles with other shapes, specific drag laws have to 
be used (also the effect of the particle rotation may have a significant influence) [9,10]. 
Generally, the momentum exchange coefficient 𝐾௦௚ is calculated by a drag function 𝑐 
which is dependent on the drag coefficient 𝐶஽. The basic form is shown in Equation (3.27) 
[15]. The correlation between 𝑐 and 𝐶஽, is defined by the drag law [12,15,23]. 
 

𝐾௦௚ =
18𝛼௦µ௚𝑐(𝐶஽)

𝑑௦
ଶ

 (3.27) 

 
For simulations of dense fluidized beds, commonly used drag laws are the approaches 
by Gidaspow et al. [25,38,39], Wen and Yu [39] and by Syamlal and O’Brien [26]. Besides 
the particle Reynolds number, these models are also accounting for the dense particle 
volume fraction in fluidized beds. Furthermore, these models are recommended by 
ANSYS® and are implemented in ANSYS® Fluent [10]. 
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3.6.1 Drag law by Wen and Yu 

The drag model derived by Wen and Yu [39] is an extension of the basic drag law for the 
flow past a sphere. It adds a correction term to account for the effects of surrounding 
particles [36]. It is based on experiments with homogenous particle structures. Hence, it 
is optimized for more dilute flows (solid phase volume fraction is significantly lower than 
of the fluid phase – e.g., for conveying transport regime, also see chapter 2.1) [13]. 
Consequently, the Wen-Yu drag law is not the best choice for very dense fluidized beds 
close to packing limit [10]. The correlation for the momentum exchange coefficient is 
shown in Equation (3.28). In Equation (3.29) the expression of the drag coefficient  𝐶஽ is 
given. For the drag law, the relative particle Reynolds number 𝑅𝑒௦ is required, its definition 
is shown in Equation (3.26) [10,36]. 
 

𝐾௦௚ =
3

4
 𝐶஽

𝛼௦ 𝛼௚ 𝜚௚ ห𝜈௚ሬሬሬ⃑ − 𝜈௦ሬሬሬ⃑ ห

𝑑௦
 𝛼௚

ିଶ.଺ହ (3.28) 

 

 𝐶஽ =
24

𝑅𝑒௦
൫1 +  0.15 𝑅𝑒௦

଴.଺଼଻൯ (3.29) 

 

3.6.2 Drag law by Gidaspow 

The drag law derived by Gidaspow et al. [25] is a combination of the Wen-Yu [39] model 
and the Ergun [38] equation. Depending on the actual particle volume fraction, the model 
is using either the Wen-Yu or the Ergun approach. With the combination of the models, 
the Wen-Yu restriction to dilute flows is bypassed. For dilute flows (𝛼௚ > 0.8), the Wen-
Yu model is used. The correlation is shown in Equation (3.30) and is the same as shown 
in Equation (3.28). In denser regions (𝛼௚ ≤ 0.8), the approach by Ergun is applied. The 
Ergun equation is shown in Equation (3.31). The definition of the drag coefficient  𝐶஽ is 
determined by the relative particle Reynolds number 𝑅𝑒௦. The relations for  𝐶஽ are given 
in Equation (3.32). For fluidized beds, ANSYS® recommends the Gidaspow drag law 
[10,12,36]. 
 

𝛼௚  > 0.8    𝐾௦௚ =
ଷ

ସ
 𝐶஽

ఈೞ ఈ೒ ద೒ หఔೞሬሬሬሬ⃑ ି ఔ೒ሬሬሬሬሬ⃑ ห

ௗೞ
 𝛼௚

ିଶ.଺ହ (3.30) 

 

𝛼௚ ≤ 0.8     𝐾௦௚ = 150 
ఈೞ

మ ఓ೒

ఈ೒ ௗೞ
మ + 1.75 

ఈೞ ద೒ หఔೞሬሬሬሬ⃑ ି ఔ೒ሬሬሬሬሬ⃑ ห

ௗೞ
 (3.31) 

 

𝐶஽ = ቐ

24

𝑅𝑒௦
൫1 +  0.15 𝑅𝑒௦

଴.଺଼଻൯, 𝑅𝑒௦ < 1,000 

                 0.44                   , 𝑅𝑒௦ ≥ 1,000

 (3.32) 

 
Since the Gidaspow is offering a specific set of equations for dilute and dense regions, 
as well as it is considering the particle volume fraction and the particle Reynolds number 
it is the preferred drag law for fluidized beds [10,13]. 
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3.6.3 Drag law by Syamlal and O’Brien 

The approach by Syamlal and O’Brien [26] is based on the terminal particle velocity 𝑈௧. 
The drag function is based on the formulation derived by DallaValle [40]. The calculation 
of the momentum exchange coefficient 𝐾௦௚ is presented in Equation (3.33). Depending 
on the particle volume fraction, two different formulations of the terminal velocity are 
provided. As shown in Equation (3.35), 𝛼௚ is influencing the non-dimensional coefficients 
𝐴 and 𝐵 [10,26]. 
 

𝐾௦௚ =
3

4
 𝐶஽

𝛼௦ 𝛼௚ 𝜚௚ ห𝜈௦ሬሬሬ⃑ −  𝜈௚ሬሬሬ⃑ ห

𝑑௦𝑈௧
ଶ  (3.33) 

 

𝐶஽ =

⎝

⎛0.63 +  
4.8

ට𝑅𝑒௦
𝑈௧

ൗ
⎠

⎞

ଶ

 (3.34) 

 

𝑈௧ =
1

2
 ቀ𝐴 − 0.06 𝑅𝑒௦ +  ඥ(0.06 𝑅𝑒௦)ଶ + 0.12 𝑅𝑒௦ (2 𝐵 − 𝐴) + 𝐴ଶቁ

𝐴 =  𝛼௚
ସ.ଵସ, 𝐵 =  ቊ

0.8 𝛼௚
ଵ.ଶ଼, 𝛼௚  ≤ 0.85 

   𝛼௚
ଶ.଺ହ  ,  𝛼௚  > 0.85

 (3.35) 

3.7 Johnson and Jackson wall boundary condition 

Johnson and Jackson [29] developed a wall boundary condition (BC) for the solid phase. 
The Johnson and Jackson approach can improve the prediction of the particle behavior 
next to the wall for DDPM-KTGF calculations. Johnson and Jackson are adding heuristic 
friction by adding a boundary at which some particles collide and the rest slide [41]. The 
most important parameter is the specularity coefficient 𝜑. It is the average fraction of the 
relative tangential momentum transfer due to particle-wall collisions [42]. The sliding 
particles are considered with Coulomb friction [41]. The specularity coefficient is ranging 
from 𝜑 = 0 (free-slip BC) for a perfect specular collision, to 𝜑 = 1 (no-slip wall BC) for a 
perfect diffusive collision [43]. When using values between 𝜑 = 0 and 𝜑 = 1 the BC is 
called to be a partial-slip BC. For a perfect specular particle collision, the angle of 
incidence is the same as the angle of reflection. In contrast to that, a perfect diffusive 
collision is reflecting the particle in random directions. The reasons for diffusive collisions 
are the roughness of wall and particle surface. Therefore, the specularity coefficient is not 
the same as the wall/particle coefficient of restitution η௪௦. The coefficient of restitution is 
representing the ratio between incidence velocity and reflection velocity (η௪௦ = 0 
represents a perfectly inelastic collision, and η௪௦ = 1 is representing a perfect elastic 
collision) [29,43]. In ANSYS® Fluent, the specularity coefficient is included in the shear 
force 𝜏௦ for the solid phase wall BC (for the granular temperature), see Equation (3.36) 
[10]. 𝑈ሬሬ⃗ ௦ is the particle velocity parallel to the wall and 𝛼௦,௠௔௫ the maximum packing for the 
particles [10]. The Johnson and Jackson approach is not necessary for DDPM-DEM 
calculations since sliding is defined in the DEM panel with friction coefficients [10]. 
 

𝜏௦ = − 
𝜋

6
√3𝜑

𝛼௦

𝛼௦,௠௔௫
𝜚௦𝑔଴ඥ𝛩௦𝑈ሬሬ⃗ ௦ (3.36) 
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4 Simulation of NETL SSCP challenge I 

In CFD, the validation against experimental data is essential. Furthermore, CFD 
challenges were introduced to benchmark state-of-the-art multiphase models and to 
establish the predictive capability of simulations [44,45]. The reason behind blind tests is 
to get to know how sensitive models are, and how reliable the prediction is when no 
experimental data is available from the very beginning [45]. 
In a CFD challenge, a problem is stated which should be solved [44]. Usually, after a 
given due date, the simulation results are collected, and the experimental data will be 
published [46]. The chosen challenges (Table 4-1) were published by the Departments of 
Energy’s (DOE) National Energy Technology Laboratory (NETL). The problem 
description, as well as the released experimental data, can be found on the NETL 
homepage [47]. 
 

Table 4-1: Simulated challenges [46]. 

Challenge  Type of problem 
   
NETL challenge I  non-reacting, bubbling fluidized bed with uniform particles 
NETL challenge III  non-reacting, bubbling and circulating fluidized beds with 

particle size distribution 
 

4.1 Problem description 

A laboratory-sized fluidized bed was simulated to get experience in multiphase modeling. 
This challenge was chosen because of the small dimensions and the uniform size of the 
particles [45]. Under this frame conditions, all multiphase models have acceptable 
calculation times [47]. 

4.1.1 Geometry 

The NETL challenge SSCP I (released in 2013) describes a rectangular and non-reacting 
bubbling fluidized bed. The dimensions of the bed are shown in Table 4-2. Because of 
the relatively small depth of 0.075 m, the challenge providers were calling NETL I a 
pseudo-2-dimensional bed [45]. The bed height ensures that the pressure drop between 
outlet and atmosphere can be neglected [45]. In Figure 4-1, the geometry used for 
simulations and the experimental facility can be seen. The squares are indicating the 
measurement volumes (also see chapter 4.2) [45]. 
 

Table 4-2: Dimensions for the rectangular fluidized bed [45]. 

Dimension   
Height (H) (m) 1.22 
Width (W) (m) 0.23 
Depth (D) (m) 0.075 
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(a) 

 

(b) 

 
Figure 4-1: Schematics of the SSCP challenge. 

(a) geometry used for simulations, (b) experimental facility [47]. 
 
For the experiment, a plenum chamber was used. The air entered the bed through a plate 
with circular holes. For simulations, the plenum chamber and the distributor plate were 
neglected. For calculations without the plenum chamber, NETL provides the pressure 
drop across the distributor (measured without particles) [45,47]. 
The experimental data is provided for three different superficial gas velocities which are 
representing 2, 3 and 4-times the minimum fluidization velocity (𝑈௠௙ = 1.05 m/s). With 
these velocities, the bed is operating in the fluidized regime [45–47]. The initial particle 
inventory was constant for all cases. Case I was investigated in detail. Afterwards, only 
selected settings for case II and case III were tested [45]. 
 

Table 4-3: NETL I variations [47]. 

Case Total bed weight Superficial gas 
velocity 

Pressure drop 
across distributor 

 (kg) (m/s) (kPa) 
    
Case I 1.8998 2.19 1.86 
Case II 1.8998 3.28 4.21 
Case III 1.8998 4.38 7.52 

 

4.1.2 Particle properties 

The particles are uniform sized nylon beads. The sphericity is high so that they can be 
considered as spheres. The diameter of the nylon beads is about 𝑑௦ ~ 3 mm, and the 
particle density is 𝜚௦ = 1,131 kg/m3. Following Geldart´s [5] classification, the particles are 
Geldart D particles (see chapter 2.4). This particle class represents large and/or very 
dense particles. Depending on the type of gas distributor, the bed can show spouting or 
bubbling behavior. During the experiment, nearly no particles were lost [2,5]. The particle 
amount was low enough to allow application of a DDPM-DEM approach with acceptable 
calculation times [47], and the total initial particle load was 𝑚௦ = 1.8998 kg. The specific 
particle properties are listed in Table 4-4 [45,47]. The initial particle amount was 
calculated to 93,285 particles, which represents the full resolution of the particle number 
in the DDPM models [45]. 
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Table 4-4: Particle properties of the nylon beads [45]. 

 dimension value uncertainty 
(± %) 

Minimum fluidization velocity (m/s) 1.05  
Void fraction (fluffed) (-) 0.420 5 
Void fraction (packed) (-) 0.4 5 
Bulk density (fluffed) (kg/m3) 635.8 1 
Bulk density (packed) (kg/m3) 667 1 
Particle density (kg/m3) 1,131 3.5 
Particle size (Sauter mean) (µm) 3,256  
Sphericity (-) 0.94  
Particle-wall coefficient of restitution (normal) (-) 0.92  
Particle-wall velocity ratio (tangential) (-) 0.65  
Particle-particle coefficient of restitution (normal) (-) 0.84  
Particle-wall coefficient of friction (rolling) (-) 0.037  
Particle-wall coefficient of friction (sliding) (-) 0.35  

 

4.2 Provided data 

For validation of the multiphase models, four measured variables were used: Mean 
pressure drop across the bed, mean vertical particle velocity, mean horizontal particle 
velocity and the mean granular temperature [47]. 

4.2.1 Mean pressure drop across the bed 

The pressure drop was measured between several sections. The first section includes 
the distributor and the plenum chamber [47]. These parts were not included in the model, 
to keep calculation time low. Therefore no values for the pressure drop in that section 
were obtained. The second section is inside the bed region between 𝑧 = 0.0413 m and  
𝑧 = 0.3048 m [45,47]. The area-weighted-average of static pressure was used for the 
evaluation of the simulation results. These values were then again averaged throughout 
10 seconds [47]. 

4.2.2 Particle velocity 

For the particle velocity measurements, a High-speed Particle Image Velocimetry (HsPIV) 
was used [48,49]. The particle velocity is available for five points at the same height  
(𝑧 = 0.0762 m) in the bed [45]. The velocity was separately analyzed for vertical and 
horizontal velocity components (see Figure 4-1). Velocity components in the bed depth 
direction are neglected. These velocities are the average of the five subsections shown 
in Figure 4-1 and Figure 4-2. The observed volumes are equal in size (0.0457 x 0.0457 
x 0.003 m3) and are reaching over the full bed width [45]. Because of the restrictions of 
the used measurement method, just particles right next to the wall were tracked [45]. 
Therefore, the measurement depth was just about one particle diameter (𝑑௦ ~ 3 mm). The 
measurement sections will be referred to as volume 1 to volume 5 from left to right [45]. 
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To support modelers, NETL was averaging the velocity in two different manners [45]. The 
data is available for Eulerian as well as for the Lagrangian approach. For the Eulerian 
particle statistics, the velocities of all particles inside the measurement volume are 
averaged [45]. These values were again averaged over time. For obtaining the averaged 
Lagrangian particle velocities, the velocities of all particles moving through the observed 
volumes were summed up and were used to create a velocity distribution over a specified 
period. Then the distribution was averaged [45,47]. The challenge providers (Gopalan et 
al. [45]) are stating: “The calculated Lagrangian particle velocity was not in true sense a 
“Lagrangian” i.e., statistics obtained by following a single particle for a long period of time.” 
The denotation was just used by the authors to prevent confusion with the first 
measurement method [45]. 
 

 
Figure 4-2: Measurement volumes. 

 
The simulation results of Euler-Granular models were validated against the Eulerian 
particle velocity. A mass-averaged volume integral was used for velocity averaging. 
Simulations using DDPM were compared with the Lagrangian velocity statistics [45,47]. 
Velocities were averaged for at least ten seconds. 

4.2.3 Granular temperature 

Since the granular temperature is dependent on the instantaneous velocity components 
of the particles (compare chapter 3.4), the values for the granular temperature were 
collected for the same sections as for the particle velocity [45]. 
According to Gopalan and Shaffer [48], deriving of the granular temperature from 
experimental data should be done carefully. In their opinion, most measurement devices 
are not able to capture the individual particle velocities with the necessary precision, and 
the granular temperature is often derived from fluctuations of averaged particle velocities. 
However, by definition, the granular temperature describes the relative motion of particles 
at an averaged velocity [48,50,51]. Therefore, for comparing the granular temperature, it 
should be checked which velocities were used in the experiments and which in the 
calculations [47,52]. 
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4.3 Models and settings 

The goal was to find the strengths and weaknesses of each multiphase model. 
Furthermore, evaluations of associated sub-models were done. Since the NETL 
challenge I is a small-scale problem, all in chapter 2 introduced models were able to 
calculate the problem in an acceptable time [47]. 
The same mesh, the same initial particle mass and the same initial parcel amount (the 
parcel concept will be explained in chapter 4.3.1) were used for the different multiphase 
models. Common settings for all calculations, as well as the recommended settings, are 
introduced in chapter 4.3.1. The model variations are described in chapter 4.3.2. 

4.3.1 Basic settings 

Calculations were done in 2D and 3D. 2D models were used for first evaluations. Gravity 
was considered for all calculations. Each multiphase model was first set-up with 
recommended settings [12]. The realizable k-ε model with enhanced wall treatment was 
used as turbulence model. Because of the discrete character of the particles, the 
dispersed turbulence multiphase model was chosen. The influence of the used turbulence 
model is discussed in chapter 4.4.4. 

Transient settings 

In fluidized beds, the particle velocities and the pressure drop are statistically constant 
[1,2]. Instantaneous values can be strongly fluctuating from the mean value. The 
averaging should be long enough to overcome the influence of these oscillations 
(compare with chapter 4.4.1). Because of these reasons, all calculations were done in 
transient mode. Calculations lasted long enough to ensure stable fluidization (after about 
2.5 seconds). Afterwards, the averaging of the values of interest was started and 
conducted for at least ten seconds [53]. 
For the particle tracking within the Lagrangian frame, very small time steps are needed 
[12,13,17]. For calculations, a time step of Δ𝑡 = 0.001 s was chosen to ensure a low CFL 
number (according to Courant et al. [54]) for all cases. The CFL number is 0.438 for case 
III. For comparison, the simulations using the Euler Granular approach were executed 
with the same time step size. A DDPM-DEM calculation requires a still lower particle time 
step to resolve the particle collisions (details see chapter 3.5). The coefficient of restitution 
for the used particles was measured by Gopalan et al. [45] and is given as η = 0.84, and 
the spring-dashpot coefficient was estimated to K = 100 N/m using ANSYS® Fluent 
guidelines (compare with equations given in chapter 3.5). Following the guidance, the 
particle time step should be between Δ𝑡௣ ௠௜௡ = 0.00002 s and Δ𝑡௣ ௠௔௫ = 0.0002 s. The 
bigger step size Δ𝑡௣ ௠௔௫ was chosen to keep the computational effort low. In Chapter 4.4.5 
a variation of K, which leads to a smaller time step, is investigated [10,12,13]. 

Initial particle loading 

The multiphase model set-up was done by using ANSYS® [10,12,13,17] 
recommendations. DDPM particles are clustered to parcels to reduce computational 
effort. These particle agglomerations are representing the properties of all the containing 
particles. ANSYS® recommends that the cell size should be sufficiently big enough for  
5-10 parcels (considered with packing limit) when using DDPM calculations. Therefore, 
the choice of parcel diameter and amount is directly influencing the minimal cell size of 
the mesh (see chapter 4.3.2).  
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Inside Fluent, different definitions are available for the parcel calculation (standard 
parcels, parcels with const. diameter, parcels with const. mass). With these options, it 
can be ensured that the parcel size is small enough (compare with chapter 3.3).  
The particle size of ds ~ 3 mm is already quite big. Hence, the parcel diameter was set to 
the particle diameter. In other words, every parcel is representing a single particle [10,13]. 
For inserting parcels, a tool called injection must be defined in Fluent. This tool feeds the 
flow field with a continuous parcel stream or with an initial number of parcels. In case of 
a fluidized bed, the best options are the volume injection and the file injection [13]. 
The volume injection option is a beta-feature (in ANSYS® Fluent Releases 17, 18.2, 19), 
which is filling a defined fluid zone with particles. The problem is that the particles are 
randomly inserted into the flow field. In areas near the wall or in denser regions particles 
can overlap – see Figure 4-3 (c). This overlapping can lead to a non-negligible mass 
defect. The error of the total initial solid inventory varied between 5-12 %. It was not 
possible to reproduce a flow field initialization with the same properties when using 
volume injection. When testing volume injections with different loads, the influence of 
initial mass defect was much higher than the influence of the used drag law. Therefore, 
the volume injection is not suitable for comparing drag laws with each other [12,13]. 
 

(a) 

 

(b) 

  

(c) 

 
 

Figure 4-3: Initial particle loading for different injection methods (DDPM). 
(a) file injection 2D, (b) file injection 3D and (c) volume injection 3D. 

 
Because of these reasons, the file injection was used for the following simulations.  
File injection uses a predefined file which contains all information about all parcels [13]. 
A script was developed which can create such an injection-file. It generates an injection-
file for a predefined cuboid bed, with a defined packing limit for uniform sized spherical 
particles.   
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With this method, it was possible to create a reproducible initial particle loading. In Figure 
4-3, the initial state of the static bed for different injection methods is shown. For 2D 
simulations, Fluent uses a virtual thickness of the flow field. The virtual thickness was set 
to one particle diameter. The corresponding number of parcels in that 2D slice is 4,060. 
For the Euler Granular model, no individual particle tracking exists. To set up the initial 
conditions of the particles, the volume fraction (α௜) of the solid phase is directly patched 
into the bed zone. Patching has to be done manually after flow field initialization, and 
before the start of the calculation Figure 4-4 shows the initial particle loading for an Euler 
Granular model. A summary of the initial particle loads can be found in Table 4-6 [12,13]. 
 

 
 

Figure 4-4: Initial particle volume fraction (-) for Euler 
Granular models. 

Material properties 

The fluidizing media used for the experiments was air. Standard air with the following 
modified values was used to conduct the simulations. The air density was calculated with 
the ideal gas law to ϱ௔௜௥ = 1.204 kg/m3, the dynamic viscosity was calculated by 
Sutherland´s law: μ௔௜௥ = 1.821E-05 kg/(ms) [55]. For each case, the volumetric gas flow 
in standard liter per minutes (SLPM) was given. In ANSYS® Fluent, a mass-flow inlet 
boundary was used. The converted values can be found in Table 4-3 [52]. Data of single 
particles were provided by NETL. The particles are uniform in size and shape. The 
properties were already described in chapter 4.1. According to the ANSYS® guidelines, 
the particle time step was calculated to Δt௣ = 0.0002 s (compare with chapter 4.3.1 and 
chapter 3.5) [12]. 
 

Table 4-5: Gas flow rates [47]. 

Case Superficial gas velocity Volumetric gas flow Mass flow rate 
 (m/s) (SLPM) (kg/s) 
    
Case I 2.19 2,286.1 0.45458 
Case II 3.28 3,429.1 0.06819 
Case III 4.38 4,572.2 0.09092 

 

  

Freeboard, αs = 0 
  
  
  
  
  
  
  
  
Static bed, αs = 0.58 
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4.3.2 Mesh and numerical settings 

Discrete multiphase models have some specific requirements on the mesh. In contrast to 
a single-phase fluid simulation, a minimum cell size is necessary. According to ANSYṠ® 
recommendations, one cell should be large enough for 5-10 packed parcels [12]. In 
addition, it would be beneficial if the cells are similar in size and shape. The parcel 
diameter was set equal to the particle diameter [47]. 
Using the initial bed mass, the particle density, the packing limit (α௦ ௣௔௖௞௘ௗ = 0.63) and the 
guideline to have at least five parcels in a cell, the minimal necessary cell volume was 
calculated to V௖௘௟௟,௠௜௡ = 1.43E-07 m3. Therewith, the minimal cell size length was 
estimated. The calculated minimal cell size would be about 0.005 m when using cubic 
mesh cells. To avoid being too close to this minimum requirement, the minimum cell 
length was set to 0.01 m. To ensure to have cells with about the same size and shape a 
hexahedron mesh was created. For this simple and rectangular shape, a mesh with 
23x8x121 (WxDxH) cells was obtained (22,264 cells in total). Figure 4-5 shows a detail 
of the bed bottom [12,47,52]. 
 

 
Figure 4-5: Hexahedron mesh used for simulation. 

 
For the pressure-velocity coupling, the Phase Coupled SIMPLE option was set. As spatial 
discretization Green-Gauss Node Based is used for the gradient option. The momentum 
was solved with second-order upwind schemes. The transient formulation was a second 
order implicit discretization. Other values were solved with first order upwind discretization 
schemes to enhance convergence behavior [10,12,13,17]. 

4.3.3 Variations 

The main task for the NETL I challenge was to compare the different available multiphase 
models in ANSYS® Fluent. For DDPM, both approaches for particle interaction 
treatments were used. Using the same basic settings (mesh, time steps), an Euler 
Granular model was set up. 
Essential sub-models (drag law, granular viscosity) were varied for case I and validated 
with the experimental data. The most reliable settings were used to calculate cases II and 
III, to validate the results with each other. Afterwards, different investigations were 
executed. First, investigations on the turbulence model (see chapter 4.4.4) were done. 
For DEM, the most important parameters (restitution coefficient and spring-dashpot 
coefficient) were assessed (chapter 4.4.5). Moreover, studies for calculation 
accelerations were done (chapter 4.4.9). Besides these quantitative validations, the 
bubble formation behavior and preferred particle paths were qualitatively compared and 
classified by guidelines found in literature (chapter 4.4.2 and chapter 4.4.3). 
Figure 4-6 shows an overview of all calculated variations. The columns are indicating the 
actual case and the multiphase model. The lines are categorizing the main settings and 
sub-models. In total, more than 73 simulations in about 55 variants were executed. 
Because of the high number of variations, just selected model combinations will be 
presented in the next chapters. 
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Figure 4-6: Overview of all calculated NETL-I variations.  

DEM DEM

2D 
Euler

2D 
DDPM

3D Euler
2D 

Euler
2D 

DDPM
3D 

Euler
3D 

DDPM
3D 

DDPM
2D 

Euler
2D 

DDPM
3D 

Euler
3D 

DDPM
3D 

DDPM

W
en

 
Y

u

0.0002 s
0.0001 s

Realizable k-ε model
Laminar model

serial

parallel metis

parallel RZ

W
en

 
Y

u

Lun et al. / Lun et al.

 Syamlal O'Brien / 
Syamlal O'Brien

Enabled
Dennis et al.

Dennis et al. & 
Rubinow Keller
Laminar model

Standard k-ε model
Realizable k-ε model

serial serial
parallel metis parallel metis
parallel RZ-

CO
parallel RZ-CO

1st order upwind
2nd order upwind

QUICK
LSQ & 2nd order 
bounded implict

calculated

KTGF KTGF

3D DDPM

Parallelization

3D DDPM

Turbulence 
model

G
ra

nu
la

r 
vi

sc
os

ity
G

id
as

po
w

D
ra

g 
la

w

G
id

as
po

w

S
ya

m
la

l O
'B

rie
n

D
ra

g
 la

w

CASE
Case I Case II Case III

KTGF DEM

S
ya

m
la

l 
O

'B
rie

n Particle time 
step

Particle rotation  

Parallelization

Solution method

Turbulence model

Setting not 
available

Calculated, no granular viscosity option 
available

S
ya

m
la

l 
O

'B
rie

n

Solids pressure / 
radial distribution

G
id

as
p

ow



Simulation of NETL SSCP challenge I  36 

 

4.4 Results 

Table 4-6 shows a summary of the key parameters of spatial and temporal discretization, 
as well as the initial particle loading. Since the Euler Granular model offers no individual 
particle properties, the equivalent particle mass for the initial solid mass is given. The 
calculation times are also listed. On the bottom of the table, the calculation time per cell, 
per particle, per simulated time, as well as the calculation time for all of these values, can 
be found. These values are the average for all calculated cases. The calculation time is 
the total time including the time needed for creating reports, saving and plotting of the 
results. In chapter 4.4.9 more detailed investigations were done for a test case. As 
expected, the DDPM-DEM method is the most demanding one. Since all particle 
interactions are resolved with a low particle time step, the calculation takes significantly 
longer. DDPM-DEM was in average 4.4 times slower than DDPM-KTGF. That indicates 
that DEM is still too costly for industrial scale fluidized bed calculations (also see chapter 
3.5 and chapter 4.4.9). 
 

Table 4-6: Bed initialization and calculation times. 

Dimension  2D 3D 

Model 
 

Euler 
Granular 

DDPM 
Euler 

Granular 
DDPM DDPM 

 KTGF DEM 
       
Cell size (m) 0.01 0.01 0.01 0.01 0.01 
Cell amount (-) 2,806 2,806 22,264 22,264 22,264 
Particle number (-) - 4,060 - 93,285 93,285 
Particle mass (kg) 0.0827 0.0827 1.9 1.9 1.9 
Fluid time step (s) 0.001 0.001 0.001 0.001 0.001 
Particle time step (s) - - - - 0.0002 
Simulated time (s) 12.5 12.5 12.5 12.5 12.5 
Calculation time (h) 3-5 7-11 4-6 6-8 17-45 
       
Calc. time/cell (s) 5.13 11.55 0.81 1.13 5.01 
Calc. time/parcel (s) 3.55 7.98 0.19 0.27 1.2 
Calc. time/real time (min/s) 19.2 43.2 24 33.6 148.8 
Calc. time/(cell, 
particle, real time) 

(ms/s) 0.1 0.23 0.00097 0.00097 0.0043 
 

 
3D simulations done with the Euler Granular model were about 1.4 times faster than the 
ones using the DDPM-KTGF models. The reason is the uniform particle size, which 
requires only one set of conservative equations for the solid phase. Although a DDPM-
KTGF is not solving any conservative equation for the solid phase, it is calculating all 
particle tracks, which is slowing down the calculation, using the same grid and time step 
size. Therefore, the advantage of the DDPM does not come into effect for uniform 
particles (see chapter 3.3). However, for models, which should include a particle size 
distribution, the DDPM is the better choice (compare with chapter 5.1.3). In the following 
charts, the used multiphase model and the drag law were varied. If no further information 
of the used granular viscosity model is given, the granular viscosity model by Syamlal 
O’Brien was used (reference model). 
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4.4.1 Transient behavior 

One possibility to define the minimum fluidization velocity is the pressure drop. If the 
fluidization velocity is increased until a constant pressure drop is obtained, the fluidized 
regime is reached (also see chapter 2.1 and chapter 2.3). As shown in Figure 4-7 the 
values are only statistically constant. A constant pressure drop (dashed red line) is only 
obtained when averaging over time. The instantaneous pressure drop over the bed is 
strongly fluctuating from the mean value, because of the highly transient mechanisms 
caused by bubble formation and turbulence. To obtain reliable results, first the 
calculations must run for a sufficient long time-span until full fluidization is reached and 
well established. Afterwards, averaging until the mean pressure drop is converged, is 
necessary [1,2]. Cloete et al. [53] suggest to simulate 20-times the period the gas needs 
to pass through the bed at superficial gas velocity, to ensure a pseudo-steady state and 
a meaningful time-averaging. For the NETL I challenge between 5.6 s (Case III) to  
11.14 s (Case I) real time would be necessary (simulated real time in this work: 12.5 s). 
 

 
Figure 4-7: Pressure drop across the bed, DDPM-KTGF case I.  

4.4.2 Gas and particle motion 

The overall particle motion in the fluidized bed is not random. Depending on the diameter, 
density, size distribution, and shape of the particles different bubble and particle paths 
can arise. In addition, the superficial gas velocity and the expanded bed height to bed 
diameter/width ratio (also called bed aspect ratio) influences the bed behavior [1,2,56]. 
The characteristic particle flow for a circular bubbling fluidized bed with a porous plate 
distributor and Geldart B or D particles is presented in Figure 4-8 (a). In Figure 4-8 (b), 
the results from a DDPM-DEM simulation (case I) can be seen. The vector plot shows 
the average particle velocity magnitude (color and length of the vectors) in the symmetry 
plane. In the middle of the bed, the particles are moving upwards. During the uprising 
movement, the particles are turning towards the walls. Deflected there, the particle down-
flow is then concentrated along the walls. Because of the particle circulation and the 
dense situation at the walls, 2D models are just hardly able to predict good quantitative 
results. Koralkar and Bose [36] are stating that, although the individual quantitative results 
are poor for 2D models, 2D is able generate reliable initial results. Since the computation 
time for 3D DDPM is much higher than for 2D models, it is worth first to estimate results 
with a 2D model. 
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(a) 

 

(b) 

 
Figure 4-8: Solids movement in bubbling beds  

(a) particle circulation for a bed with aspect ratio ~1 and high gas velocity [1], 
(b) vector plot of average particle velocity magnitude (m/s) - DDPM-DEM case I. 

 
The gas phase has a preferred ascending behavior. Figure 4-9 (a) shows the bubble and 
particle paths in a shallow circular bed as described by Kunii and Levenspiel [1]. Figure 
4-9 (b) shows a contour plot of the averaged particle volume fraction in the bed (DDPM-
DEM case I). Verdugo [56] investigated the preferential bubble paths and came to the 
following conclusions: gas bubbles at the bottom of the bed, where they are originating, 
are relatively evenly distributed over the full bed width. Therefore, the average volume 
fraction right above the distributor plate is relatively constant – green ellipse in 
Figure 4-9 (b). Above that, two symmetrical preferential bubble paths are formed. For 
wide and shallow beds, more parallel bubble paths can arise. The bubbles are moving to 
the bed center with increasing bed height. This area with high average gas volume 
fraction is indicated with blue arrows – see Figure 4-9 (b). The highest average gas phase 
concentration is at the meeting point of these two bubble paths, right below the upper bed 
surface. Bubbles of both paths are colliding there, and bigger bubbles develop through 
coalescence [1,2,56]. These pictures show that the gas and particle motion of circular 
fluidized beds is similar to the behavior of rectangular pseudo-2D-beds (better optical 
investigable). 
 

(a) 

 

(b) 

 
Figure 4-9: Bubbling bed behavior 

(a) preferential particle and bubble paths [1], 
(b) averaged particle volume fraction (-) DDPM-DEM case I. 
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4.4.3 Bubble formation 

Since the NETL I is using Geldart D particles, bubbling behavior can be expected in the 
bed [1,5,47]. With increasing superficial gas velocity, the bubbling bed turns into a slug 
flow. At the bed bottom, small bubbles are formed [56]. During ascending, the bubbles 
are growing because of coalescence effects, so fewer but bigger bubbles can be found 
with increasing bed height. At the upper bed surface, the bubbles are released into the 
freeboard [2,56]. 
Bubbling forming behavior was investigated in detail by Agrawal et al. [57]. Using a DEM 
model and using different drag laws, they were calculating two different bubbling beds. 
Their research led to the conclusion that the prediction of the bubble formation is primarily 
influenced by the drag law. When using the drag laws by Syamlal O’Brien or Gidaspow 
for 1.25 times the minimum fluidization velocity 𝑈௠௙, no bubbles were formed. 
With increasing velocity (at around two times 𝑈௠௙), these drag laws were qualitatively 
reproducing the bubble behavior. In the NETL I challenge the lowest gas velocity is about 
two times 𝑈௠௙. According to Agrawal’s [57] work, the predictions should be adequate 
enough for a qualitative analysis [57]. 
The DDPM-DEM model is able to predict the real bubble behavior. The series of contour 
plots in Figure 4-10 shows the current gas volume fraction in the bed for case I (about 
two times the minimum fluidization velocity). The bed is already recognizably expanded, 
and the upper bed surface has a continuous, well-defined border to the free flow field. 
 

(a) 

 
 

(b) 

  
t = 12.85 s 

  
t = 12.88 s 

  
t = 12.94 s 

   
t = 12.97 s 

  
t = 13.01 s 

  
t = 13.04 s 

 

Figure 4-10: Bubble forming case I, 
(a) bubbling fluidization [1], (b) DDPM-DEM contour plots of gas volume fraction (-) in 

symmetry plane for different time steps 
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With increasing superficial gas velocity (case II), the bubbles are getting significantly 
bigger at the top of the bed (see Figure 4-11). In literature, this behavior is called slug 
flow or slugging. Bubbles near to the top are reaching over the full bed width. The fluidized 
bed is expanded largely. Due to the slug break up which throws solids into the freeboard, 
the upper bed surface is not smooth anymore [1,2]. Lungu et al. [58]) are classifying case 
II already into a transition region between slugging and turbulent fluidization (compare 
with FB classifications in Figure 2-1). The obtained bed expansion is, qualitative 
compared, very similar to the results of the DEM modelers Elghannay and Tafti [59]. 
 

(a) 

 

(b) 

 
t = 13.04 s 

 
t = 13.12 s 

 
t = 13.16 s 

  
t = 13.21 s 

 
t = 13.24 s 

 
t = 13.27 s 

 

Figure 4-11: Bubble forming case II, 
(a) slug flow [1], (b) DDPM-DEM contour plots of gas volume fraction (-) in 

symmetry plane for different time steps 
 
With a further increase of the gas velocity (case III), some gas bubbles are reaching over 
the full bed height. The fourth contour plot in Figure 4-12 shows a temporary gas stream 
reaching from the bottom of the bed up to the top. This stream should not be confused 
with a standing jet, which can occur when using single orifices gas distributors. The 
bubbling flow cannot be clearly defined; its bubble appearance is a mix of slug flow, wall 
slugs, and flat slugs. The big bursting slugs are entraining many particles to the freeboard, 
so the fluffed bed height is strongly fluctuating. Therefore, no clearly defined upper bed 
surface exists [1]. The slugging behavior is caused by stretching of bubbles due the high 
gas velocity is similarly described by Ayeni et al. [60]. 
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(a) 

 

(b) 

 
t = 12.77 s 

 
t = 12.82 s 

 
t = 12.87 s 

  
t = 12.92 s 

 
t = 12.97 

 
t = 13.06 s 

 

Figure 4-12: Bubble forming case III,  
(a) slug flow [1], (b) DDPM-DEM contour plots of gas volume fraction (-) in  

symmetry plane for different time steps 

4.4.4 Turbulence model 

The Reynolds number is for every case in the turbulent region. Consequently, the need 
for a turbulence model was assumed. The Reynolds numbers for the whole bed (cross-
sectional area of the bed and the superficial gas velocity) as well as for a single particle 
are summed up in Table 4-7. For the simulations, the Realizable k-ε model was used. 
The enhanced wall treatment was used for the near wall region. The dispersed multiphase 
model was chosen to account for the discrete phase [10,13]. 
 

Table 4-7: Reynolds number for full bed section. 

 Reynolds number for the whole bed 
(-) 

Reynolds number for a 
single particle 

(-) 
   

Case I 16,650 480 
Case II 25,000 720 
Case III 33,300 960 

 

 
There were several reasons for determining the influence of the turbulence. First, it is 
necessary to evaluate if there is a significant influence of turbulence on the particles, or if 
the particle motion and behavior is primarily defined by the collisional interactions and the 
drag. Another reason is to find the effects on the continuous phase itself. For future 
projects, which include also chemical reactions (see chapter 1.2), the fluid behavior is of 
big interest. NETL provided no data about the continuous phase. Therefore, just the 
simulation results were compared, without validation to experimental results [47]. 

Axial-   wall-    flat- 
slugs   slugs    slugs 
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In literature, different opinions about turbulence modeling in fluidized beds exist. Some 
authors claim that the turbulence influence is low compared to the influence of particle 
collisions (for DDPM models of FB’s). For example, Li and Dietiker [61] state that, if the 
primary concern is about the particle motion, the turbulence model can be neglected. 
Lungu et al. [58] asserted that for the NETL I challenge the turbulence model is not 
affecting the results very much. On that account, they were using a laminar model to 
speed up calculations. Other modelers used an LES (Kraft [3] and Panday et al. [44]) 
approach, the Standard k-ε model and the RNG k-ε model (Panday et al. [44]). 
In the following, a Realizable k-ε model is compared with a laminar approach. For 
comparison case III (highest superficial gas velocity and therefore highest Reynolds 
number) were chosen. A DDPM-DEM model was used for comparison [62,63].  
As shown in Figure 4-13 and Figure 4-14, the effect of the turbulence model on the mean 
particle velocities is just marginal. Both approaches are yielding very similar results inside 
the bed. Next to the wall, the deviation between the models is slightly higher but still 
acceptable. 
 

 
Figure 4-13: Averaged vertical particle velocity, case III.  
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Figure 4-14: Averaged horizontal particle velocity, case III.  

 
When analyzing the fluid flow in the primary flow direction, no significant deviations 
between the models were recognizable (Figure 4-15). The laminar model is predicting 
higher values for the vertical fluid velocity. This can be explained with the different 
handling of the near wall region (for the realizable k-ε model an enhanced wall treatment 
was used) [64]. However, the qualitative trend is the same for both approaches. 
 

 
Figure 4-15: Averaged vertical fluid velocity, case III.  
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The deviation for the horizontal fluid velocity component is higher (Figure 4-16). Since a 
laminar approach is not considering the turbulent eddies, it is not surprising that the 
horizontal velocity profile of the fluid is less distinctive for the laminar calculation. Because 
less of the fluid is transported in the horizontal direction without the turbulent eddies. The 
realizable k-ε model is considering the swirls in the continuous phase. Therefore, higher 
horizontal fluid velocities are observed. 
 

 
Figure 4-16: Averaged horizontal fluid velocity, case III.  

 
As stated by Li and Dietiker [61] and Lungu and Wang [58], the influence of the turbulence 
model on the discrete phase can be neglected for small-scale problems. Or in other 
words, the particle behavior was not influenced by the turbulence model. However, for 
the fluid flow pattern itself, the choice of the turbulence model can indeed affect the results 
in a significant way (Figure 4-16). Especially the reaction rate is strongly influenced by 
gas velocity, gas residence time, turbulent mixing and the eddy dissipation. Furthermore, 
some reaction models require a turbulence model. For example the EDC model (eddy 
dissipation concept model) needs 𝑘 and ε [10]. Therefore, a turbulence model is 
mandatory for reactive fluidized bed simulations. 

4.4.5 DEM settings 

For the DEM approach, the particle interaction force is calculated by the particle 
deformation (also compare with chapter 3.5 and chapter 4.3.1). To be able to obtain the 
deformation, a small time step is needed. This so-called particle time step is significantly 
influencing the necessary calculation time. For estimating the particle time step, ANSYS® 
provides recommendations. The calculation of the necessary particle time step size is 
explained in chapter 3.5. Simulations were calculated using a particle time step of  
Δt௣ = 0.0002 s. The fluid time step was Δt = 0.001 s. Using a spring-dashpot coefficient 
of K = 100 N/m, the ANSYS® recommendation for the particle time step is between 
Δt௣ ௠௜௡ = 0.00002 s and Δt௣ ௠௔௫ = 0.0002 s. Therefore, the chosen particle time step was 
already the maximum recommended one.   
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The influence of the time step was investigated for determining the potential of result 
improvements. The spring-dashpot coefficient was tripled to K = 300 N/m (valid range for 
K is 100 – 1000 N/m [12]). This resulted in a recommended particle time step range of 
Δt௣ ௠௜௡ = 0.00001 s to Δt௣ ௠௔௫ = 0.00012 s. A step size of Δt௣ = 0.0001 s was chosen. 
Since the calculations took already a long time, the time step was not reduced any further 
[12,13]. 
In Figure 4-17, the results with a time step of Δt௣ = 0.0001 s are confronted with a time 
step of Δt௣ = 0.0002 s. The halving of the particle time step resulted in a nearly doubled 
calculation time. Calculation with Δt௣ = 0.0002 s needed about 18 h for simulating 12.5 s. 
With Δt௣ = 0.0001 s the calculation lasted already for 34 h. Hence the accuracy of the 
particle velocity is not changing much, it is not necessary for the NETL I challenge to use 
a lower time step. 
 

(a) 

 
(b) 

 
Figure 4-17: Influence of DEM settings, 
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(a) average vertical fluid velocity, (b) average horizontal fluid velocity. 

4.4.6 Granular temperature 

For Euler Granular KTGF and DDPM-KTGF simulations, the granular temperature is one 
of the most important variables. It is required for the calculation of the kinetic and 
collisional stress (see chapter 3.4). The granular temperature is dependent on the 
accuracy of the particle velocity components. As mentioned in chapter 4.2, there are often 
confusions in obtaining and comparing the granular temperature with experiments. The 
granular temperatures presented in the following charts are the values calculated in 
ANSYS ® Fluent (including all particle velocity components).  
NETL just measured the horizontal (x-direction) and the vertical (y-direction) particle 
velocity and also used these components for calculation of the granular temperature. The 
particle velocity component in y-direction was not included in their considerations. 
Therefore, the calculation basis of the compared values is not the same. The calculation 
results were not transformed because the necessary relative motion of the particles was 
not captured during the simulation [45]. Because of these reasons, the influence of the 
third velocity component was ignored, and the in ANSYS® Fluent calculated value was 
directly taken for comparison [10,48,50,51].  
Figure 4-18 shows the granular temperature for case I. The qualitative trend of the 
granular temperature is not well captured. The Euler Granular model shows under-
prediction for every measurement volume. 
 

 
Figure 4-18: Averaged granular temperature, case I.  

  

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

-0.091 -0.046 0 0.046 0.091

A
ve

ra
g

e 
gr

a
n

ul
ar

 t
e

m
pe

ra
tu

re
 

(m
2 /

s2
)

Position in x (m)

Experiment

Euler Granular - Drag law:
Gidaspow

DDPM KTGF - Drag law:
Syamlal O'Brien

DDPM KTGF - Drag law:
Gidaspow

DDPM KTGF - Drag law:
Gidaspow (Granular
viscosity: Gidaspow)



Simulation of NETL SSCP challenge I  47 

 

In Figure 4-19 and Figure 4-20, which are representing case II and case III, similar 
behavior is shown. The deviations to the experimental results are fluctuating between 
1 – 55 %. For the higher superficial gas velocities (especially for case II), no significant 
differences between the KTGF models exist. All results are yielding similar trends and 
values. There are several reasons for the discrepancy to the experiments. If the accuracy 
for the particle velocity components is low, also the accuracy of the granular temperature 
is going down. Another issue is that the granular temperature was just calculated by using 
an algebraic approach. Another possibility (for the DDPM calculations) is the DPM 
averaged granular temperature model. Alternatively, also an own transport equation 
could be solved (compare with chapter 3.4.1) [10,13,65]. Just a few authors published 
results for granular temperature. Lungu et al. [58], were providing data for case I. Their 
results are around in the same magnitude as the ones obtained in this work. Agrawal et 
al. [57] were providing detailed data for every case with different drag laws. However, 
most of their results were over-predicting the granular temperature by orders of 
magnitude. They are reporting a scattering of the results between 1 – 517 %. The reasons 
are unknown, however, it is to say that they were solely using DEM, which is not requiring 
the granular temperature concept [57,58]. 
 

 
Figure 4-19: Averaged granular temperature, case II. 
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Figure 4-20: Averaged granular temperature, case III. 

4.4.7 Particle velocity 

In chapter 4.2, the measurement methods for the particle velocity and the handling of the 
experimental data are explained. The measurement volumes 2, 3 and 4 will be referred 
to as inner bed region. The measurement volumes 1 and 5 will be called near wall regions. 

Case I 

In Figure 4-21, the vertical particle velocity is shown for the different model variations. 
The DEM models were yielding the best results. Furthermore, the DEM models were the 
only ones able to represent the qualitative trend of the vertical particle velocity over the 
full bed width. 
KTGF models were not able to reproduce the trend of the vertical particle velocity profile 
(Figure 4-21). Especially in the denser regions (center of the bed and wall regions – also 
compare chapter 4.4.2), the deviation is quite high. In contrast to that, in areas without 
preferred particle paths (measurement volumes 2 and 4, also see chapter 4.4.2) the 
predictions are well fitting. Furthermore, the different multiphase and drag model 
combinations were yielding similar results for these measurement volumes. A direct 
comparison between the Euler Granular KTGF and the DDPM-KTGF approach shows no 
significant differences. 
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Figure 4-21: Averaged vertical particle velocity, case I.  

 
Regarding the horizontal particle velocity, most models were not able to qualitatively 
reproduce the experimental data for case I (Figure 4-22). The chart shows a preferred 
direction for the horizontal velocity component in the measurement volumes next to the 
wall. 
 

 
Figure 4-22: Averaged horizontal particle velocity, case I.  

 
  

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-0.091 -0.046 0 0.046 0.091

A
ve

ra
g

e 
ve

rt
ic

al
 v

el
oc

ity
 (m

/s
)

Position in x (m)

Experiment

Euler Granular - Drag law:
Gidaspow

DDPM KTGF - Drag law:
Gidaspow

DDPM DEM - Drag law:
Wen Yu

DDPM DEM - Drag law:
Gidaspow

-0.04

-0.02

0

0.02

0.04

0.06

-0.091 -0.046 0 0.046 0.091

A
ve

ra
ge

 h
o

riz
on

ta
l v

el
oc

ity
 (m

/s
)

Position in x (m)

Experiment

Euler Granular - Drag
law: Gidaspow

DDPM KTGF - Drag law:
Gidaspow

DDPM DEM - Drag law:
Gidaspow

DDPM DEM - Drag law:
Wen Yu



Simulation of NETL SSCP challenge I  50 

 

Case II 

For increasing superficial gas velocities, the predictions of the vertical velocity with the 
KTGF models improved but were still unsatisfying (Figure 4-23). However, results for the 
horizontal particle velocity were not improving (Figure 4-23Figure 4-24). The best model 
is again the DEM approach in combination with the drag law derived by Gidaspow.  
 

 
Figure 4-23: Averaged vertical particle velocity, case II.  

 

 
Figure 4-24: Averaged horizontal particle velocity, case II.  
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Case III 

The best model for case III was DDPM-DEM in combination with Gidaspow drag law 
(Figure 4-25). The predictions for the horizontal particle velocity were significantly better 
for case III (Figure 4-26). 
 

 
Figure 4-25: Averaged vertical particle velocity, case III.  

 

 
Figure 4-26: Averaged horizontal particle velocity, case III.  
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The DEM models were yielding the best results. KTGF models were not able to reproduce 
the trend of the vertical particle velocity profile. Especially in the denser regions (center 
of the bed and wall regions), the deviation is quite high. A direct comparison between the 
Euler Granular KTGF and the DDPM-KTGF approach showed no significant differences 
in the velocity profile. Regarding the horizontal particle velocity, no model was 
reproducing the trend of the experimental data for case I and case II. However, for case 
III the results improved significantly. 
In areas with denser particle packing more particle collisions can be expected, which were 
not correctly resolved by the KTGF approximation. Another reason is the observed 
measurement volume itself. Because of the restrictions of the HsPIV measurement, the 
averaged velocity data is just provided for a depth of about one particle diameter from the 
wall. However, for the DDPM models, a cell size of 0.01 m was chosen, which is about 
three times the particle diameter. Since the KTGF is averaging the interactions for the 
cell, the error for one single cell can be quite high. Smoothing algorithms are suggested 
in literature [66] (e.g., by considering the neighbor cells), to overcome this issue. 
Furthermore, a simple mesh without inflation layers was used. According to Ozarkar et 
al. [67], inflation layers are improving the accuracy of the particle down-flow next to the 
wall. 
The vertical velocity profiles obtained by the Euler Granular modelers Tandon and Karnik 
[65] as well as by Lungu et al. [58] were in good agreement with the experiments. They 
were using the solid phase wall boundary condition derived by Johnson and Jackson (see 
chapter 3.7) [29]. In the Johnson and Jackson [29] approach a specularity coefficient φ 
is describing the momentum transfer between wall and particles during collisions. They 
were also investigating the influence of the specularity coefficient. Lungu et al. are 
recommending a specularity coefficient of φ = 0.5 for low superficial gas velocity (case I) 
and a φ = 0.05 for higher superficial gas velocities (case II and case III). The discrepancy 
of the results obtained in this work can be explained with the lack of a model, which is 
modeling the particle wall interactions (collisions, slip and friction) [29,58,65]. 
Other modelers (Ayeni et al. [60], Koralkar and Bose [36]) were also reporting good 
qualitative results with DEM. Agrawal et al. [57] were using Syamlal O’Brien and 
Gidaspow among other drag laws in combination with a DEM approach. They are also 
reporting deviations in around the same magnitude. Other DEM modelers (Koralkar and 
Bose [36]) experienced a wide scattering of results, especially for the horizontal velocity. 

4.4.8 Pressure drop 

One of the most important parameters of fluidized beds is the pressure drop across the 
bed. Figure 4-27 shows the average pressure drop for selected model settings. The 
pressure drop was reported between the bed heights z = 0.0413 m and z = 0.3461 m. 
Tested drag laws were: Wen-Yu, Gidaspow, and Syamlal O’Brien. Noticeable is that the 
pressure drop for every multiphase model, drag law and granular viscosity model is  
over-predicted. The DDPM-DEM models yielded the best results (deviation 17 - 20%). 
Especially the results obtained with the drag laws by Syamlal O’Brien and Gidaspow are 
in good agreement with the measurements. In addition, the DEM prediction got better 
with higher gas velocity (except for the Wen-Yu drag law). The KTGF models predicted 
the qualitative trend of the pressure drop well. However, for case III the absolute deviation 
was high (about 60% for the Euler Granular model and 55% DDPM-KTGF). Multiphase 
models with Gidaspow’s drag law were the best variant for pressure drop calculation. 
However, the best result had still an over-prediction of about 16%. 
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Figure 4-27: Pressure drop across bed between z = 0.04 m and z = 0.34 m.  

 
The over-predictions are also reported in the literature. Koralkar and Bose [36], who were 
doing DEM simulations with different drag laws, are reporting pressure drop deviations of 
about 17% (case I) to 20% (case II), and up to 55% for case III (using same drag laws). 
The pressure drop deviations, obtained by Tandon and Karnik [65] (Euler Granular model) 
as well as by Ayeni et al. [60] (DEM) and Elghannay and Tafti [59] (DEM) are in the same 
magnitude. 
The traditional drag laws are yielding over-predicted drag forces due to the coarse grid. 
The primary reason is that the influence of the microscale structures on the macroscale 
structures cannot be determined on coarse grids [68]. Igci and Sundaresan [69] were 
introducing filtered drag coefficients which are modeling the microscale structures and 
resolving the macroscale ones. That approach is an affordable alternative to a highly 
resolved mesh. Ozarkar et al. [68] are reporting better results with approaches based on 
filtered drag laws. ANSYS® Fluent provides the possibility to write user-defined functions 
(UDF’s) for personalized drag laws [13]. In the literature, many alternative drag laws can 
be found. For example, Koralkar and Bose [36] were additionally testing drag laws by  
Hill et al. [70,71], Beestra et al. [72] and Rong et al. [73]. These approaches yielded better 
results than the traditional drag laws. In addition, calculations using drag approaches by 
Arastoopour et al. [74] and Ayeni et al. [60] and Milioli [75] (based on filtered drag 
coefficient) can be found in the literature [60,65]. 
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4.4.9 Parallelization 

Multiphase models are numerically very demanding, particularly the DDPM-DEM models. 
In addition, Euler Granular models, which are using different discrete phases or a particle 
size distribution, can result in demanding calculations (compare chapter 3.1). To keep the 
overall simulation time low, possibilities for calculation acceleration were investigated. 
The standard method is, to parallelize the calculation on different CPU cores by 
separating the mesh in different partitions [10]. Every CPU core is calculating another 
part of the flow field (partition). This splitting is very effective for single-phase fluid flows 
with a high cell amount. However, all calculated multiphase models were using a relatively 
low number of cells (chapter 4.3.2). A problem for DDPM fluidized bed models is the 
uneven distribution of the particles inside the mesh. The particles are tracked through the 
flow field. Every time a particle is moving from partition A to partition B the information 
about the particles is transferred from CPU A to CPU B. This information transfer is 
slowing down the calculations. Therefore, particles should change the partition as 
seldom, as possible to avoid unnecessary data transfers Hence, the interfaces between 
different partition regions should be as small as possible [13,17]. 
One possibility is to use one partition for the whole packed or fluffed bed of particles – 
shown in Figure 4-28 (a) and (c). Each color is representing one partition. The particles 
will rarely change their partition so that the data transfer rate between the CPU cores is 
low (ANSYS® Fluent default setting, called metis-method [13]). It will balance the mesh 
into around equal partitions with small data transmission interfaces. The problem with the 
standard setting is now that the particle load is differently distributed on the cores. 
Because the mesh is just split by the mesh size and shape, one partition may include all 
particles, and the others are just handling the continuous phase. Figure 4-28 (a) is an 
example of this. All injected particles are inside the red partition. With a low superficial 
gas velocity, most of the particles will remain in this partition. 
The idea was to separate the partitions along the main flow direction – see  
Figure 4-28 (b) and (d), that every partition contains a similar number of particles. This 
option is called “Cartesian RZ-coordinates” (captioned as “cart-RZ-coo” in the following 
charts) [10]. It avoids the uneven distribution of particles on different cores. A 
disadvantage of this method is the much bigger interface between the partitions, which 
leads to a high data transmission rate [13,17]. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4-28: Partition options in ANSYS® Fluent 

(a) metis - 4 cores, (b) Cartesian-RZ coordinate - 4 cores 
(c) metis - 6 cores, (d) Cartesian-RZ coordinate - 6 cores 

 
Because it was unclear which approach will have more effect on the calculation time, 
different multiphase models were calculated with different CPU settings. Calculations 
were done with an Euler Granular model, a DDPM-KTGF model, and a DDPM-DEM 
model. For comparison, all calculations (for case I) were done on a single processor. 
Afterwards, 4 cores and 6 cores were used to calculate the same case. For comparison, 
the same machine was used (ANSYS® Fluent v17, 6-cores, 3.2 GHz and 32 GB RAM). 
An exception is the DEM model, which was not calculated on a single core for the 
extended test run. The calculation in serial mode would have needed too much time. For 
evaluating the results, the wall clock time, as well as the total calculation time was 
recorded. The wall clock time is the net-calculation time of the CPU, not considering any 
plotting or reporting operations during the calculation. In the total calculation time, 
everything is accounted. The total calculation time includes the creation of plots and 
reports as well as the time needed for auto-saving the data files [10,13]. 
First, short tests for 300 time steps (0.3 s of real time) were performed. Then longer lasting 
calculations were evaluated (in total 20 s real time). The long runs were paused after  
12.5 s simulated time for exporting the results (fully fluidized after 12.5 s). Then the 
calculations were continued for 7.5 s to evaluate the difference in calculation time for an 
established fluidized bed. The extended tests were executed in serial mode and in parallel 
mode with six cores. 
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Short test runs 

Figure 4-29 shows the comparison for all models. Generally, the calculation time is getting 
lower with a higher amount of parallel processes. However, this effect was not directly 
proportional. Switching to four cores yielded a 2.88-times accelerated calculation 
(compared to serial mode). With six cores the time-advantage was about 3.5 times for 
the best case. The reason is the increasing number of boundaries between the partitions. 
Every additional partition also needs additional effort for information transfer between the 
cores. For the short test runs, the partition option with evenly distributed particle load was 
the faster variant for the DDPM calculations. That finding agrees with the assumption that 
the particle tracking is significantly influencing the calculation time. Since no individual 
particle tracking exists in the TFM, also no time advantage should be observed with 
Cartesian RZ -coordinates. Figure 4-29 (a) is proving that. Just balancing the cell amount 
between the partitions is the best option in this case. 
 
(a) 

 

(b) 

 
(c) 

 

 

Figure 4-29: Calculation time - short run for 0.3 s 
(a) Euler Granular, (b) DDPM-KTGF (c) DDPM-DEM. 
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Long test runs 

For the long test runs, the calculation acceleration was low. Running on six cores was 
just between 1.3 – 2.3 times faster than running in serial mode. In contrast to the short 
tests, the default partition method Metis was always the fastest choice. Therefore, no 
benefit was achieved by using the alternative partition method. The advantage for the 
short run was due to the particle movement at the start of the fluidization. In the beginning, 
all particles are nearly vertically rising. In that case, few particles are changing their 
partition. When the bed is fluidized, and the preferred particle paths are developed 
(compare chapter 4.4.2), the particles are changing quite often through the partitions. 
The particle tracks have a significant influence on the calculation time. However, because 
of the preferred motion inside the bed, no advantage is achieved by using the Cartesian-
coordinates-RZ method. Instead of using conventional partition methods for 
parallelization, it might be more advantageous to accelerate the information exchange 
between the individual cores. For example, using GPU’s additionally to CPU’s could 
improve the calculation time, if the graphics memory is sufficiently large enough for the 
used model [13,76,77]. 
 
(a) 

 

(b) 

 
(c) 

 

 

Figure 4-30: Calculation time - long run for 12.5 + 7.5 s  
(a) Euler Granular, (b) DDPM-KTGF (c) DDPM-DEM.  
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Model comparison 

A direct comparison of the calculation time between the multiphase models can be found 
in Figure 4-31. The DEM model needs more than 2.5 times longer for calculation than the 
DDPM-KTGF model. Therefore, DEM-Models are still not widely used for industrial scale 
problems. A cold flow model, just considering the hydrodynamics in a small fluidized bed 
takes for 20 s simulated real time already needed more than one day of calculation time 
(in average the DEM calculations needed even more than 30 h for 12.5 s real time, 
compare with Table 4-6). 
All calculations done with the Euler Granular model were faster than the ones using the 
DDPM-KTGF models. The reason is the uniform particle size, which requires only one 
set of conservative equations for the solid phase. Although a DDPM-KTGF is not solving 
any conservative equation for the solid phase, it is calculating all particle tracks, which is 
slowing down the calculation (compare with chapter 3.3 and chapter 4.4). The Euler 
Granular model is between 1.3 - 2.7 times faster than the DDPM-KTGF model. 
 

 
Figure 4-31: Calculation time – comparison of multiphase models. 
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4.5 Discussion NETL I 

The DDPM-DEM model predicted the best results (chapter 4.4). It was the only model, 
which predicted the particle velocity near the wall without the need for additional models 
(e.g., Johnson and Jackson [29]). However, the drawback of the model is the high 
numerical demand. Since the NETL I challenge is a small-scale problem with a very low 
particle number, the calculation time was still acceptable. However, for most industrial 
beds, the DDPM-DEM approach is still too costly. The DDPM-DEM models needed more 
than 2.5 times longer for calculation than the DDPM-KTGF models. 
DDPM-KTGF is a faster model, which is approximating the particle interactions with the 
granular temperature concept (see chapter 3.4). However, the accuracy is especially for 
the denser regions and nearby to the walls less reliable than for the DDPM-DEM models. 
According to other NETL challenge modelers (Tandon and Karnik [65], Lungu et al. [58]), 
an additional wall boundary condition for the granular phase (e.g., Johnson and Jackson 
[29]) can significantly improve the results (careful choice of the specularity coefficient 
necessary, compare with chapter 3.7 and chapter 5.2.4). Another possibility to improve 
the results to include inflation layers in the mesh [13]. Ozarkar et al. [67] stated that the 
inflation layers are essential for the prediction of the particle down-flow next to the wall. 
For the NETL III Task 3, the Johnson and Jackson [29] model and inflation layers were 
included (compare with chapter 5.2.4). The Euler Granular model in combination with the 
KTGF approach is yielding similar results as the 1.3 - 2.7 times slower DDPM-KTGF 
model. However, the complexity of the model is restricting it to a few particle diameter 
sizes (more details in chapter 5.1.3). 
Generally, the results were improving with higher superficial gas velocity (case II and  
case III). Calculations nearby to the minimum fluidization velocity should be avoided and 
are not common in industrial plants [1]. Regarding the granular viscosity model, the model 
by Syamlal O’Brien was yielding the best results. Since every drag law had strengths and 
weaknesses, no general recommendation for the drag model can be given. However, the 
Gidaspow approach was the most reliable drag law for higher superficial gas velocities. 
The pressure drop was over-predicted in every case (Figure 4-27 in chapter 4.4.8). This 
effect is also observed by many other authors (Koralkar and Bose [36], Tandon and 
Karnik [65], Ayeni et al. [60], Elghannay and Tafti [59]). For improving pressure drop 
predictions, the use of alternative drag laws might be necessary. For example, Ozarkar 
et al. [68] were testing the drag law derived by Milioli et al. [75], which was yielding 
significantly better results. 
Turbulence models are not essential for small-scale cold-flow problems like the NETL I. 
Calculations using the default laminar model are yielding competitive results. For the used 
Geldart D particles, the influences of the particle/wall and particle/particle interactions 
were much higher than the influence of the turbulence model. However, for reactive 
fluidized beds, a turbulence model is mandatory, since the reaction rate is significantly 
influenced by turbulent mixing and eddy dissipation [58,61]. Moreover, for calculations, 
the plenum chamber and the distributor plate were neglected or simplified. Including these 
parts could improve the quality of the results. Furthermore, there is potential for improved 
results by reducing the cell size and the time step. As explained in chapter 4.3.2, a 
minimum cell size is required, which limit was not exploited. In addition, for a better 
DDPM-KTGF particle tracking the time step can be further reduced. 
Investigations on calculation accelerations using partition settings were not successful. 
The default settings were the fastest choice when considering the whole simulation time. 
Furthermore, parallelization is not proportionally speeding up the calculations. Parallel 
calculations on 6 cores were just about 2.5 times faster than calculations in serial mode 
(single core).   
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5 Simulation of NETL challenge III 

After gaining experience with small-scale beds, a more industry relevant challenge was 
investigated. Again, a challenge published in 2010 by NETL in cooperation with the 
Particulate Solid Research Inc. (PSRI) was chosen [78]. Challenge III is primarily handling 
with industrial-scale fluidized beds. In contrast to the NETL challenge I, challenge III is 
using a broad particle size distribution [78]. The investigations on particle size distribution 
modeling were also one of the main tasks for this challenge. Another important question 
was which drag laws are suitable for modeling of circulating fluidized beds. In the bed, 
the volume fraction of the granular phase is always relatively high, however, for the 
particle transport (e.g., in recirculation pipes in CFB’s) the solid-gas mixture can be very 
dilute. Therefore, another point of interest is the behavior of the applied multiphase 
models when areas with very dense regions and very dilute regions are occurring. The 
NETL III challenge is divided in three different tasks. The tasks are listed in Table 5-1 
[78–81]. 
 

Table 5-1: NETL challenge III tasks [78].  

 Name Abbreviation 
   

Task 1 Fluidization challenge FB 
Task 2 Bubbling fluidized bed challenge BFB 
Task 3 Riser, circulating fluidized bed challenge CFB 

 

 
First, the fluidization curve (compare chapter 2.1) for a small fluidized bed should be 
reproduced for two different kinds of bed material (see chapter 5.1). The model set-up 
should be optimized to obtain a good representation of the fluidization curve. This task 
will be referred to as “Fluidization challenge” (FB) or as Task 1 [82]. 
The bubbling fluidized bed (BFB or Task 2) was not evaluated within this thesis. Task 3 
is a circulating fluidized bed (CFB). The superficial gas velocity is high enough to entrain 
the bed material. Experimental data for different recirculation rates and particle size 
distributions are provided by NETL. The particle size distribution is not the same as in 
Task 1 and 2. Investigations on the riser are presented in chapter 5.2. In Figure 5-1, the 
different experimental set-ups are shown. The pictures are showing the actual simulated 
parts of each task [78,83]. 
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(a) 

 

(b) 

 
Figure 5-1: NETL challenge III  
(a) Task 1 [82], (b) Task 3 [83]. 

5.1 Task 1: Fluidization challenge 

For Task 1 the fluidization curve should be reproduced. Experimental results for two 
different particle size distributions are given [80]. The parameters of the multiphase 
models, the missing particle properties (details in chapter 5.1.1) and the numerical 
settings should be adjusted to reach a good agreement between measurement data and 
simulation results [80]. 

5.1.1 Problem description 

Geometry 

Task 1 is a lab-scale fluidized bed. The bed section is circular, and the bed dimensions 
are relatively small (Table 5-2). The experimental set-up is shown in  
Figure 5-2. The fluidizing gas is air. The air is evenly distributed by a porous plate [82]. 
The air density was calculated with the ideal gas law as 𝜚௔௜௥ = 1.2041 kg/m3. The dynamic 
viscosity was calculated by Sutherland´s law: 𝜇௔௜௥ = 1.82E-05 kg/(ms) [55]. The air had a 
temperature of tair = 20°C and an ambient pressure of 𝑝௔௜௥ = 101,325 Pa [78,82]. 
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Table 5-2: Dimensions for Task 1 [82]. 

Dimension   
Height (m) 1.625 
Outside diameter (m) 0.178 
Inside diameter (m) 0.152 
Length of measurement 
sections  

(m) 0.1524 

 

 

 
Figure 5-2: NETL III Task 1: Experimental set-up [82]. 

 

Particle properties 

Experiments were executed with two different kinds of bed material. The particle size 
distribution (PSD) was labeled by the mass fraction content of fine particles [80]. Fine 
particles are solids with a diameter smaller than 𝑑 = 44 µm. Particle size distribution A 
consists of 3% fine particles. Distribution B has 12% fines. The given particle properties 
are listed in Table 5-3. Not all necessary information was provided. For example, the data 
for the restitution coefficients as well as information about the initial bed (bed height and 
volume fraction) is missing. These missing values should be used as a parameter for the 
calculation. Challenge participants are asked to vary the parameters in order to obtain 
the real fluidization curve [78,81,82]. 
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Table 5-3: Particle properties for Task 1 [82]. 

  PSD A PSD B 
    
Mass fraction of fine particles 
(𝑑 < 44 μm) 

(%) 3 12 

Particle type  Geldart A [5] Geldart A [5] 
Density (kg/m3) 1,489.86 1,489.86 
Sphericity - 0.98 0.98 
Minimal diameter (μm) 5 5 
Maximum diameter (μm) 290 165 
Sauter mean diameter (μm) 78.7 68.1 
Initial particle weight (kg) 7 6.832 

 

 
The provided particle size distributions are presented in Figure 5-3. Since the mass 
fractions of the smallest, and the biggest particles are close to zero, the graphs are not 
showing the full distribution (maximum and minimum diameter are listed in Table 5-3) 
[82]. 
 
(a) 

 

(b) 

 
Figure 5-3: NETL III Task 1: Particle size distributions [82], 

(a) particle size distribution A (3% fines), (b) particle size distribution B (12% fines). 

5.1.2 Provided data 

The observed measurement section DP2 reaches from bed height 𝑧 = 0.235 m to  
𝑧 = 0.3874 m (see Figure 5-2). The pressure drop was measured for several superficial 
gas velocities. The range of air velocity was between zero and 𝑈௠௔௫ = 0.0144 m/s. In 
Figure 5-4, the experimental results are presented. The obtained fluidization curve is 
typical for the used particle type and distribution [1,5,82]. 
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Figure 5-4: NETL III Task 1: Fluidization curve across DP2 [82]. 

 
Experimental data was provided for about 50 different superficial gas velocities. The 
fluidized regime can clearly be distinguished from the packed bed regime. Below the 
minimum fluidization velocity, a nearly linear increase of the pressure drop can be 
observed. Around the minimum fluidization velocity, a small, non-linear transition area is 
recognizable (more distinct for PSD A). For velocities higher than 𝑈௠௙ the pressure drop 
is statistically constant. The bed is fluidized (also compare with chapter 2.1 and chapter 
2.3). The minimum fluidization velocity for particle size distribution A is about  
𝑈௠௙஺ = 0.0023 m/s and for PSD B about 𝑈௠௙஻ = 0.0025 m/s [78,82]. 

5.1.3 Models and settings 

Multiphase models 

The focus of this work was on DDPM-KTGF models and primarily they were used for 
modeling NETL challenge III, since the Euler Granular model, as well as the DDPM-DEM 
models, are getting numerically too demanding for fluidized beds with a high particle 
number, especially when using a PSD (compare chapters 3.5 and 4.4.5). 
The Euler Granular model would require an own set of conservative equations for each 
size class (every size is considered as an own phase). In addition, a drag relation between 
each phase is necessary. An Euler granular model with one granular type with ten 
different diameter size classes and one continuous phase is resulting in 11 different 
phases. Therefore, the Euler Granular model already has to solve 44 conservative 
equations (1 x continuity, 3 x gas momentum, 30 x particle velocity, 10 x volume fraction), 
when not considering any turbulence model. Additionally, 11 drag laws have to be defined 
(more drag laws possible since a drag between two solid phases can be defined in the 
TFM approach). Solving of all these equations is already numerically very demanding.  
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The DDPM-model, which only needs one solid phase for all modeled size classes, is in 
advantage. DDPM is only solving four conservative equations (1 x continuity, 3 x gas 
momentum). Calculations for the solid phase are only executed in the Lagrangian frame 
(Compare with chapter 3.1 and chapter 3.2) [10,12]. 
For simulating the minimum fluidization challenge, the most promising settings found in 
the NETL I challenge were used. For the granular viscosity, the approach by Syamlal 
O’Brien was used. For the drag law, the formulation derived by Gidaspow was chosen. 
Since the superficial gas velocities are low and a dense bed can be expected, a frictional 
viscosity model was included. In Table 5-4, the applied models and sub-models are 
summarized. The small mass defect due volume injection (see chapter 4.3.1) was 
neglected since no detailed investigations of sub-models were done, which would require 
an exact reproducibility of the initial mass. The values of the listed specularity coefficient 
and the coefficient of restitution were first estimated with the experience obtained from 
NETL challenge I and then adjusted (listed ones in Table 5-4) by the help of literature to 
obtain a good agreement to the experiments [68,84]. 
 

Table 5-4: NETL III Task 1: Used DDPM model. 

Multiphase model DDPM 
Particle interactions KTGF 
Particle seeding Volume injection 
Drag law Gidaspow [25] 
Granular viscosity Syamlal O’Brien [26] 
Granular temperature Algebraic 
Frictional viscosity Schaeffer [30] 
Frictional pressure Based-KTGF 
Granular bulk viscosity Lun et al. [28] 
Solids pressure Lun et al. [28] 
Radial distribution Lun et al. [28] 
Solid wall boundary condition Johnson and Jackson [29] 
Specularity coefficient 0.3 
Restitution coefficient solid-solid 0.84 

 

 
Additionally, an Euler Granular – packed bed model was set up for comparison. It was 
used for the non-fluidized regime below 𝑈௠௙ (see chapter 5.1.4). The packed bed option 
is freezing the velocity field for the solid phases [13]. Details about the model can be 
found in the ANSYS® Fluent Theory Guide [10] and the User’s Guide [13]. 
 

Table 5-5: NETL III Task 1: Used Euler Granular models. 

Multiphase model Euler Granular – packed bed 
Particle interactions KTGF 
Particle seeding Volume injection 
Drag law Gidaspow [25] 
Granular viscosity Gidaspow [25] 
Granular temperature Algebraic 
Frictional viscosity None 
Granular bulk viscosity Lun et al. [28] 
Solids pressure Lun et al. [28] 
Radial distribution Lun et al. [28] 
Solid wall boundary condition Johnson and Jackson [29] 
Specularity coefficient 0.3 
Restitution coefficient solid-solid 0.9 
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Calculated cases  

Not all 50 superficial gas velocities were calculated, to keep the overall calculation time 
low. About ten velocities were chosen for evaluation. Inside the fluidized regime, the 
points were divided into broader ranges. Around and below the minimum fluidization 
velocity more cases were calculated. Since the minimum fluidization velocities are very 
low, also the Reynolds numbers are very low. For the lowest superficial gas velocity  
(𝑈௠௜௡ = 0.0005 m/s) the Reynolds number is about 𝑅𝑒 ~ 5. The Reynolds number for the 
highest superficial gas velocity (𝑈௠௔௫ = 0.014 m/s) is 𝑅𝑒 ~ 145. Because of the low 
Reynolds number, the influence of the turbulence was neglected, and the default laminar 
model was used [82]. As mentioned before (chapter 5.1.1), not all necessary information 
about the initial particle inventory was provided. Just the initial mass of the bed was 
provided for each particle size distribution. Therefore, the initial bed height and the void 
fraction had to be estimated. Jang and Arastoopour [84] were initializing the calculation 
with a solids volume fraction of 𝛼௦ = 0.54. Ozarkar et al. [68] were using a particle fraction 
of 𝛼௦ = 0.6. For calculations in this work an initial solids volume fraction of 𝛼௦ = 0.55 was 
chosen. No information for the particle restitution coefficients and the specularity 
coefficients were given [29]. The restitution coefficient between particles was set to  
𝜂௦௦ = 0.84, the coefficient between wall and particles is set to 𝜂௦௪ = 0.92. These values 
were taken from the NETL challenge I. Jang and Arastoopour [84] were using a particle-
particle restitution coefficient of 𝜂௦௦ = 0.9. For the particle-wall coefficient, they set  
𝜂௦௪ = 0.3. Ozarkar et al. [68] also were using 𝜂௦௦ = 0.9, however, they provided no 
information about their used particle-wall restitution coefficient. A specularity coefficient 
of 𝜑 = 0.3, was set for the solid phase wall boundary condition (Johnson and Jackson 
[29] – compare with chapter 3.7) [84]. 
In general, convergence was harder to achieve than in NETL Challenge I. With smaller 
time steps, convergence was getting better. For the first time steps (including the injection 
time step), very low values were needed. A time step size of Δ𝑡 = 1E-05 s was used for 
these first iterations. After reaching good convergence and low residuals, the step size 
was slowly increased between Δ𝑡 = 5E-05 and 7.5E-04 s, depending on the particular 
case. 

Description of the particle size distribution 

The provided particle size distributions (PSD) are reaching over a broad range  
(PSD A: 46 size classes, PSD B: 42 size classes, see Figure 5-3) [82]. The PSD was 
modeled to keep calculation times low. Three PSD models were investigated. First, the 
ANSYS® Fluent built-in Rosin Rammler fit has been tested. The Rosin Rammler fit is 
classifying the whole particle size distribution into diameter ranges. For each of this 
diameter classes, the inversed cumulative particle mass fraction is calculated (𝑌ௗ). The 
mean diameter for the Rosin Rammler distribution is, where 𝑌ௗ = e-1. A spread parameter 
is calculated using this mean diameter. Besides these values, the minimal and maximum 
diameters, as well as the number of wished diameters have to be defined. More details 
about the calculation of the PSD can be found in the ANSYS® Fluent Users Guide [13]. 
In addition, an own representation of the particle size distribution was created. A Sauter 
mean diameter (compare with chapter 2.5.4) was calculated for each size class. That 
variant will be called piecewise Sauter mean diameter. The advantage is that the size 
classes are manually defined. Therefore, size classes which are important for the 
fluidization (smaller particles) can be weighted more. A comparison of both approaches 
for five particle classes is given in Figure 5-5. The charts show, that the smallest and 
biggest particles in the Rosin Rammler fit are less good represented than the particles in 
the medium size spectrum.  
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However, especially the smaller particles have a significant influence on the fluidization 
[1,2]. The piecewise Sauter mean model allows a better representation of the whole PSD 
with the same number of particle size classes. For very regular PSD’s (as in PSD A in 
Figure 5-5), the Rosin Rammler fit is well representing the PSD. However, especially for 
more irregular PSD’s (as PSD B in Figure 5-5 or in Figure 5-7), the Rosin Rammler is not 
a good representation. For example, the second peak of PSD B (for 𝑑௦ = 90 µm) is not 
considered at all. An own PSD model can be set to represent such local peaks. Therefore, 
the Rosin Rammler fit was used for first calculations (with five particle size classes). 
Afterwards, for obtaining a better agreement with the experiments, the more detailed PSD 
model piecewise Sauter mean diameter was used with a doubled number of particle size 
classes (only done for PSD B). The PSD model is shown in Figure 5-7 (b). 
 
(a) 

 

(b) 

 
Figure 5-5: NETL III Task 1: PSD models, 5 size classes [82], 

(a) PSD A, (b) PSD B. 
 
Another possible representation of the distribution is an overall Sauter mean diameter. 
With this approach, all particles are set to a uniform size. Details about the Sauter mean 
diameter can be found in chapter 2.5.4. An issue when handling with Sauter mean 
diameters is that smaller particles are weighted more than bigger ones (because it is more 
sensitive to the presence of small particles in the PSD) [2,7]. In the case of fluidized beds, 
the weighting is not a real disadvantage since the smaller particles have the biggest 
influence on the fluidization. According to Hofbauer [2], the Sauter mean diameter should 
not be used for very broad size distributions or size distributions like a bimodal 
distribution. Considering the whole particle size range, the Sauter mean diameter for PSD 
A is 𝑑ଷଶ ஺ = 78.7 µm and the one for distribution B is 𝑑ଷଶ ஻ = 68.1 µm [2]. 
The different PSD models, as well as the real distribution used in the experiments, are 
shown in Figure 5-6. The value 𝑌ௗ, which is used in the charts is the reversed cumulative 
mass fraction, or in other words, 𝑌ௗ is the mass fraction of all particles greater than the 
presently observed diameter [13]. 
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 (a) 

 

(b) 

 
Figure 5-6: NETL III Task 1 & 2: Particle size distribution models [82], 

(a) PSD A, (b) PSD B 
 
When using the Rosin Rammler distribution, the necessary parameters can directly be 
set in the injection panel. ANSYS® Fluent is automatically creating the distribution. 
Especially for diameters near the Sauter mean diameter, the deviations to the real 
distribution are quite high. Input parameters for the injection panel (volume injection) with 
Rosin Rammler fit are summed up in Table 5-6 [10,12,13]. 
 

Table 5-6: Rosin Rammler injection parameters. 

  PSD A PSD B 
    
Minimal diameter (µm) 20 20 
Maximal diameter (µm) 200 135 
Mean diameter (µm) 90.71 86.52 
Spread parameter - 2.889 2.594 
Number of diameters - 5 5 
Total parcel amount - 125,510 128,595 
Total particle amount - 1.34E+11 1.29E+11 

 

 
For the piecewise Sauter mean diameter calculations, an own volume injection for each 
size class was created. Each of these injections is handling one uniform particle size. The 
initial particle load is injected at calculation start. The injection panel settings are summed 
up in Table 5-7. The chosen diameters (ten particle size classes) are shown in Figure 
5-7. The PSD’s are already well represented with ten size classes [2,12,13]. 
 

Table 5-7: Piecewise Sauter mean injection parameters. 

  PSD B 
   
Minimal diameter (µm) 13.46 
Maximal diameter (µm) 140 
Number of diameters - 10 
Total parcel amount - 128,595 
Particle amount - 6.556E+10 
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(a) 

 

(b) 

 
Figure 5-7: NETL III Task 1: Particle size distribution, 10 size classes [82], 

(a) PSD A, (b) PSD B. 
 
For the calculations with an overall Sauter mean diameter, a single volume injection with 
a uniform particle size was used. 

Mesh 

The geometry was meshed with the same strategy as the first challenge. The mesh is 
relatively coarse with a cell size of 0.01 m (ANSYS® recommendation for DDPM models, 
also see chapter 4.3.2). Because of the relatively low superficial gas velocities and the 
very low Reynolds number, no boundary layers were used. The missing boundary layer, 
the minimum cell size restriction (5 packed parcels per cell), and the small over-all size 
results in a cell amount of 29,318 cells (Figure 5-8). The bed has a circular shape, which 
results in minimal distorted hexahedron elements [12,13]. 
 

 
Figure 5-8: NETL III Task 1: Mesh.  

5.1.4 Results 

The calculations always started from an injected fixed bed. Then the velocity was slowly 
increased until the desired superficial gas velocity was reached. Afterwards, the static 
pressure values were averaged over a sufficiently long period to overcome the 
instantaneous pressure fluctuations (also compare chapter 4.4.1). Since the velocities of 
the calculated cases were reaching over several magnitudes, also the period until a 
statistically steady state was reached was different. Therefore, the calculation time for the 
different velocities was changing. 
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The fastest calculations (Rosin-Rammler fit with 5 particle size classes and high gas 
velocity) took about 15 hours and the slowest calculations (piecewise Sauter mean 
diameters with 10 particle size classes and low gas velocity) took about 30 hours. 
Calculation needed up to 8.42E-05 ms per cell, parcel and real time. The results were in 
good agreement with the experiments (for velocities higher than the minimum fluidization 
velocity). However, below 𝑈௠௙ the model is failing and cannot describe the linear increase 
of pressure drop with increasing superficial gas velocity. 

Bed expansion 

In Figure 5-9, the bed expansion for PSD B is shown. The graph shows the pressure 
curve obtained by the NETL experiments. Calculations were done with a DDPM-KTGF 
model and a piecewise Sauter mean PSD model. For a superficial gas velocity close to 
the minimum fluidization velocity of 𝑈௠௙ ஻ = 0.0025 m/s, the solid phase volume fraction 
is nearly constant over the full bed (𝑈௙ = 0.0034 m/s). The bed is expanded just to a very 
small extent compared to the static bed height. The bed volume is around 4.67% bigger 
than in the packed bed regime. No bubbles are formed yet. With doubled gas velocity  
(𝑈௙ = 0.0068 m/s), first bubbles can be observed. The fluffed bed volume is 9.44% bigger 
than the static bed. With still increasing velocity (𝑈௙ = 0.0122 m/s), bubbles are getting 
bigger and more numerous. The bed volume is already expanded by 12.73%. 
 

Figure 5-9: NETL III Task 1: Bed expansion of particle size distribution B, 
solid volume fraction (-) contour plot. 

Pressure drop 

As in the NETL challenge I (chapter 4.4.8) the pressure drop is over-predicted for most 
cases (see Figure 5-10). For higher superficial gas velocities, the agreement to the 
experiments is getting better. The slightly decreasing pressure drop between the 
minimum fluidization velocity (about 0.0023 m/s) and a value of about 0.005 m/s is not 
reproduced by the model. A reason might be the relatively coarse representation of the 
PSD with only five particle size classes. 
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The error in the fluidized regime is between 1.6 % – 13.4%. However, for low velocities 
(below the minimum fluidization velocity), the DDPM is failing. It was not able to reproduce 
the linear dependency of the pressure drop, the predicted pressure drop kept nearly 
constant. To determine the reason for that, PSD B was calculated with the same approach 
(Figure 5-11). In the fluidized regime, the calculation results for PSD B were better than 
the ones for PSD A. In addition, the curve trend is well recreated. The error in the fluidized 
regime is between 2.1% – 12.5%. Therefore, the Rosin Rammler results for distribution 
A and B are yielding similar accuracy. However, the pressure drop in the packed bed 
region was still not captured. 
 

 
Figure 5-10: NETL III Task 1: Fluidization curve for PSD A across DP2 [82]. 

 
Therefore, a more detailed model for PSD B was tested to overcome this issue (see  
Figure 5-11). For determining the most promising PSD model approach, a single point 
(𝑈௙ = 0.0122 m/s, blue cross in Figure 5-11) was calculated respectively for a Rosin 
Rammler and a piecewise Sauter mean PSD model (both with 5 particle size classes). 
As shown in Figure 5-11, the piecewise Sauter mean diameter PSD model yielded slightly 
better results (about 6% deviation to the experiments) compared to the Rosin Rammler 
fit (about 7.5% deviation to the experiments). Therefore, the piecewise Sauter mean 
diameter (compare with chapter 5.1.3) approach was applied for the more detailed 
calculations. PSD B was chosen because of the less uniform particle distribution (see 
Figure 5-7) since it was assumed to be the more complex configuration. With the more 
detailed representation, the results were significantly improving. The error to the 
experiments ranged from 0.5% – 7.8%. The qualitative trend of the curve trend improved. 
However, below 𝑈௠௙ the model is still failing and cannot describe the linear increase of 
pressure drop with increasing superficial gas velocity.  
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Consequently, the reason for the failing DDPM was not an insufficient description of the 
PSD. Rather, the DDPM model itself was not able to calculate fixed beds (see summary 
on page 73). 
Therefore, other models were tested for the non-fluidized regime. The goal was to obtain 
the linear dependency in the fixed bed regime. A KTGF Euler Granular model with the 
packed bed sub model was set up (inside secondary phase settings panel) – also see 
chapter 5.1.3 [10,13]. First, calculations were done with an overall Sauter mean diameter. 
The chart shows that the linear increase in the pressure drop was indeed reproduced. 
However, the gradient is not well represented. Furthermore, it was shown that a more 
detailed PSD model (piecewise Sauter mean diameters) improved the results. 
 

 
Figure 5-11: NETL III Task 1: Fluidization curve for PSD B across DP2 [82]. 

 
  

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0.000 0.002 0.003 0.005 0.006 0.008 0.009 0.011 0.012 0.014 0.015

P
re

ss
u

re
 d

ro
p

 (
P

a
)

Superficial gas velocity (m/s)

Experiment Minimum fluidization velocity

DDPM - piecewise Sauter (5 sizes) DDPM - piecewise Sauter (10 sizes)

Euler Granular - overall Sauter (1 size) Euler Granular - piecewise Sauter (10 sizes)

DDPM - Rosin Rammler (5 sizes)



Simulation of NETL challenge III  73 

 

Summary 

One reason for the failure of the DDPM-KTGF model for superficial gas velocities 𝑈௙ 
below the minimum fluidization velocity 𝑈௠௙ could be the wrong prediction of the particle-
particle interactions in the packed bed. When investigating calculations with very low 
superficial gas velocities, where no particle movement or bed expansion is expected, it 
was found, that the bed was already expanded. For example, for a superficial gas velocity 
of 𝑈௙ = 0.0008214 m/s (𝑈௠௙஻ = 0.0025 m/s), the bed was already expanded for more than 
2.5% [1]. Therefore, the DDPM already interprets the bed as fluidized, which would 
explain the predicted constant pressure drop in the packed bed region. The Euler 
Granular packed bed model, which is freezing the particle velocity (and is therefore 
preventing an unphysical bed expansion below 𝑈௠௙) is predicting the linear dependency 
of the pressure drop. However, since fluidized beds are usually operating well above the 
minimum fluidization velocity, DDPM-KTGF is still a good choice. For beds operating 
close to 𝑈௠௙ or below in the packed bed regime, DDPM-KTGF is not recommended and 
a more detailed description of particle-particle interactions would be needed (e.g., with 
the DEM). 
For modeling the PSD, two important factors exist. First, the shape of the PSD is 
important. Smooth and regular shaped distributions are easier to model (see chapter 
5.1.3). Non-regular size distributions (e.g., bimodal distributions) are requiring models, 
which are not simply averaging the PSD. For example, the Rosin Rammler distribution is 
smoothing local peaks in the PSD. As shown in Figure 5-5 and Figure 5-7, the piecewise 
Sauter mean diameter PSD model is a better representation for local peaks, since a 
particle class can manually be set into the peak. Therefore, the piecewise Sauter mean 
diameter yielded better results (about 6% deviation to the experiments) than the Rosin 
Rammler distribution (about 7.5% deviation to the experiments) for the pressure drop. 
The second factor is the number of chosen particle size classes. An increasing number 
of size classes resulted in a much better representation of the PSD and therefore to better 
results (for piecewise Sauter mean diameters). A doubling of the particle class number 
(5 to 10 classes) was lowering the average pressure drop deviation to the experiments 
from 7.3% to 4.15%. Furthermore, the calculation time doubled as well (15h to 30h). 
For NETL challenge III Task 1, the variants Rosin Rammler fit, and piecewise Sauter 
mean diameter were used. Task 1 still had a relatively low particle number in the bed 
(compared to Task 3). Therefore, the PSD models can be applied with reasonable 
calculation times (up to 30 hours). No detailed PSD models were used for the NETL III 
Task 3 (parcel number too high – compare with chapter 5.2.3). For Task 3, the overall 
Sauter mean diameter was used, which was sufficient for the recreation of the particle 
velocity profiles (more details can be found in chapter 5.2.3 and chapter 5.2.4). Task 3 is 
operating far above the minimum fluidization velocity. Therefore, the DDPM-KTGF can 
be used.  
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5.2 Task 3: Circulating fluidized bed challenge 

5.2.1 Problem description 

Task 3 of NETL challenge III is a circulating fluidized bed (CFB). The bed is operating in 
the pneumatic transport regime (compare with chapter 2.1 and chapter 2.3), so the 
particles are being entrained during the operation. Without recirculation of the particles, 
the bed will be evacuated [1,78,83,85]. 

Geometry 

In Figure 5-12, the experimental set-up for the CFB challenge is shown. Inside the riser 
(left part) the particles are carried up. After leaving the riser, particles are separated from 
the air in the cyclones. The separated particles are transported back through the 
standpipe and the L-valve sparger [78,83]. The main dimensions of Task 3 are listed in 
Table 5-8. A common strategy for simulating CFB’s is only to calculate the riser. Other 
parts were neglected or considered with boundary conditions. The reason for this is the 
necessary simplification of the model. A full-loop CFB calculation would require a high 
cell number [61]. Furthermore, the particles are very inhomogeneous distributed in the 
different CFB parts. The particle volume fraction in the riser is very low, whereas the 
particle volume fraction in the L-valve sparger and at the bottom of the standpipe is very 
high. Therefore, a complex model would be needed that can model the dense and dilute 
regions, as well as the transition regions. All of this would result in an unacceptable high 
calculation time. Therefore, just the riser was simulated (indicated with blue rectangle). 
Nearly all challenge participants were only simulating the riser [61,85–87]. An exception 
is a paper by Li and Dietiker [61], who were also calculating a full-loop case [85]. 
 

 
Figure 5-12: NETL III Task 3: Experimental set-up [83]. 
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Table 5-8: Dimensions for Task 3 [85]. 

Dimension   
Riser height (m) 16.79 
Riser diameter (m) 0.305 
Exit diameter to cyclones (m) 0.203 
Diameter from L-valve-sparger  (m) 0.23 

 

Particles 

NETL was providing detailed particle properties and the full PSD for two different bed 
materials. Group A material consisted of glass beads with a Sauter mean diameter of  
𝑑ଷଶ = 58.9 µm [44]. Group B particles were beads made of polyethylene with a Sauter 
mean diameter of 𝑑ଷଶ = 802 µm [44,85]. 
 

Table 5-9: Particle properties for Task 3 [85]. 

  Group A particles Group B particles 
    
Minimum fluidization velocity (m/s) 0.0079 0.13 
Particle type - Geldart A [5] Geldart B [5] 
Density (kg/m3) 2,425.1 863.3 
Sphericity - 0.98 0.95 
Sauter mean diameter (µm) 58.9 802 

 

5.2.2 Provided data 

Data was provided for five different cases. Besides the PSD, the recirculation rate and 
the superficial gas velocity at the bottom of the bed were varied. The case variations are 
summed up in Table 5-10. For this work, the cases 3, 4 and 5 were calculated. That was 
done because less data and variations were provided for PSD A. For PSD B much more 
information was available. Besides the influence of the recirculation rate, also the 
influence of the superficial gas velocity can be investigated for PSD B. According to the 
challenge providers, case 3 is near to the fast-fluidized bed transition. Case 4 is a core-
annular flow, and case 5 is operating in the dense suspension up-flow. The pressure at 
the riser outlet was provided by NETL as well as the different superficial gas velocities at 
riser bottom and L-valve sparger [78,83,85]. 
 

Table 5-10: Cases for Task 3 [85]. 

Case PSD Superficial gas 
velocity (bed bottom) 

Solids 
circulation rate 

Gas velocity 
from L-valve 

Riser outlet 
pressure 

  (m/s) (kg/s) (m/s) (kPa) 
      
Case 1 A 5.14 1.44 0.023 182 
Case 2 A 5.14 9.26 0.036 167 
Case 3 B 5.71 5.54 0.604 100 
Case 4 B 7.58 7.03 0.573 102 
Case 5 B 7.58 14 0.688 105 
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For validation of the simulations, the average pressure gradient and the radial profiles of 
the averaged vertical particle velocity were used. The pressure gradient was measured 
along the axial direction between 20 measurement sections. The vertical particle velocity 
profiles were measured along the bed height in different azimuthal directions. The 
azimuthal directions are defined according to cardinal points (see Figure 5-13) [83,85]. 
 

 
Figure 5-13: NETL III Task 3: Azimuthal directions of velocity measurements [83]. 

5.2.3 Model and settings 

Multiphase model 

The model was set-up with the experience gained in the previous challenges. The settings 
for the multiphase model are summarized in Table 5-11. The DDPM-KTGF can be used 
since the fluidization velocity is well above 𝑈௠௙ (compare with chapter 5.1.4). The 
frictional effects between particles were neglected, since the granular flow in the riser is 
very dilute). The riser is very tall and slim, therefore the wall influence was considered 
with a specularity coefficient of 𝜑 = 0.005 [86]. Since the lowest Reynolds number was 
about 𝑅𝑒 = 110,000, a turbulence model was included in the model. A time step of  
Δ𝑡 = 0.0008 s was chosen [10,12,83,86]. 
 

Table 5-11: NETL III Task 3: Used models and settings. 

Multiphase model DDPM 
Particle interactions KTGF 
Particle seeding Volume injection 
Drag law Gidaspow [25] 
Granular viscosity Gidaspow [25] 
Granular temperature Algebraic 
Granular bulk viscosity Lun et al. [28] 
Solids pressure Lun et al. [28] 
Radial distribution Lun et al. [28] 
Turbulence model Realizable k-ε 
Wall treatment Enhanced 
Turbulence multiphase model Dispersed 
Solid wall boundary condition Johnson and Jackson [29] 
Specularity coefficient 0.005 
Restitution coefficient solid-solid 0.8 
Restitution coefficient wall-solid 0.7 
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Handling of particle size distribution 

Because the standpipe, the L-valve, and the cyclones were not included in the model, the 
particle mass loss on the riser top, as well as the recirculation of the particles at the riser 
bottom had to be modeled. The exit to the first cyclone was defined as a pressure outlet 
condition, and the DPM behavior was set to escape. The pressure at the top of the riser 
was provided by NETL. The air inlet from the L-valve was modeled by an additional 
velocity inlet boundary condition. For the particle recirculation, an additional injection was 
set up. The surface injection was chosen for seeding a continuous particle stream from a 
bounded plane (standard parcel method). The total mass rate was set to the recirculation 
rate of the L-valve [13,83]. 
The initial particle volume fraction was set to 𝛼௦ = 0.1 (injected with volume injection, 
standard parcel method). Since no information about the actual or initial mass inside the 
riser was provided, calculations were executed until a statistically constant riser mass 
inventory was reached. The particle inventory data, after reaching a pseudo-steady state, 
is listed in Table 5-12. The particle to parcel ratio is not the same for the different cases, 
since the standard parcel method was chosen (ANSYS® Fluent calculates the particle 
per parcel amount for each case, depending on the regarding mass flow rate [13]). 
Calculations in Task 1 took up to 8.42E-05 ms per cell, parcel and real second. An 
upscaling of this value for Task 3 would mean a calculation duration of more than 10 days 
(because of the much higher parcel and cell number). Although, Task 1 and Task 3 are 
not directly comparable, that should be a sufficient first rough estimation. Therefore, the 
particle size distribution was just modeled by a single diameter (overall Sauter mean 
diameter – compare with chapter 2.5.4), in order to lower the overall calculation time. 
 

Table 5-12: NETL III Task 3: Initial injection – volume injection. 

  Case 3 Case 4 Case 5 
     
Sauter mean diameter (µm) 802 802 802 
Total parcel amount - 7,738,470 7,308,608 6,193,884 
Total particle amount - 3.7E+08 2.82E+08 4.53E+08 
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Mesh 

Ozarkar et al. [67] were doing detailed studies on the grid topologies for the NETL III riser. 
Their findings were used as a guideline for the mesh creation. One of their key findings 
was that the presence of a boundary layer is essential for the particle down-flow prediction 
near the wall. According to them, boundary layers were included in Task 3. Nine inflation 
layers were used to improve predictions nearby to the wall. This layers reached over  
one-third of the riser radius [12,13,67]. 
 
(a) 

 
 (b) 

 
Figure 5-14: NETL III Task 3: Mesh of the riser  

(a) full mesh, (b) detail of riser top.  
 
Another key finding of Ozarkar et al. [67] was that the used grid topology has just a minor 
influence on the results. Therefore, a cut-cell method was used to ensure equally sized 
cells. Furthermore, with the cut-cell method, it is easier to adjust the recommended 
minimum cell volume for the DDPM model. A cell amount of 228,145 was used for 
calculations. In Figure 5-14, the cut-cell mesh including the inflation layers can be seen. 
The view shows the top of the riser with the exit to the cyclones [12,13,67]. 
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5.2.4 Results 

In the following chapters, the calculation results are presented. The overall calculation 
time (including auto-save, and time for creating reports and plots) was about one week 
for each case. The calculation time per cell, parcel and real time was about 0.188 ms. 

Solid volume fraction 

In Figure 5-15, the gas volume fraction is shown for different time steps. The view shows 
the riser bottom from 𝑧 = 0 m to about a bed height of 𝑧 = 2.4 m. For the qualitative 
analysis, case 3 was chosen. The pictures are showing the xy-symmetry plane. The left 
side of the picture is the azimuthal direction West. The overall observed time is about  
0.5 seconds. Noticeable is the agglomeration of particles near the wall. These particle 
clusters are sliding down on the riser wall (indicated with blue arrow). The gas volume 
fraction in the symmetrical axis of the riser is very high. The particle volume fraction is 
less than 10%, so also a DPM model would be suitable (compare with chapter 3.2). 
At the lower part of the riser, ascending particle clusters are recognizable. During the 
upward movement, the dense clusters are breaking up, and the particles are diluted in 
the riser (indicated with blue circles). 
 

         
t = 

3.43 s 
t = 

3.47 s 
t = 

3.53 s 
t = 

3.59 s 
t = 

3.65 s 
t = 

3.68 s 
t = 

3.75 s 
t = 

3.81 s 
 

Figure 5-15: NETL III Task 3, case 3: Contour plots of the gas volume fraction (-) 
at the riser bottom (z = 0 m – z = 2.4 m).  
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Pressure gradient 

In the following charts, the experimental pressure gradient is compared to the 
corresponding simulation results. The depicted experimental data points were already 
averaged by NETL from the actual measured data points considering the confidence 
interval. The pressure gradient for case 3 is shown in Figure 5-16. The deviation to the 
experiments is quite high. Especially in the lower part of the riser, the real pressure 
gradient was not reproduced, and the simulation results show a fluctuating behavior. For 
the upper part, the qualitative trend of the constant pressure gradient is well recreated. 
However, the prediction of the pressure gradient is far too low. In addition, the increase 
at the riser top was not reproduced. 
 

 
Figure 5-16: NETL III Task 3, case 3: Pressure gradient [83]. 

 
In Figure 5-17, the pressure gradient for case 4 is presented. The accuracy of the model 
was improving with increasing superficial gas velocity. Extreme fluctuations as in case 3 
were not observed. However, the increase of the pressure gradient at the riser top cannot 
be reproduced. The pressure gradient between riser height 𝑧 = 4 m and 𝑧 = 9 m is over-
predicted. 
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Figure 5-17: NETL III Task 3, case 4: Pressure gradient [83]. 

 
For case 5 (Figure 5-18), the increasing pressure gradient at the particle exit is captured. 
However, for case 3, unphysical pressure gradient predictions are occurring at the lower 
riser part. The pressure gradient results for case 5 were the best ones. As observed 
before, the pressure gradient prediction for higher gas velocity is getting better. Li et al. 
[61,87] also reported better predictions for PSD B and higher superficial gas velocity. This 
again indicates better performance of the KTGF model for superficial gas velocities much 
higher than the minimum fluidization velocity. 
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Figure 5-18: NETL III Task 3, case 5: Pressure gradient [83]. 

 
The pressure gradient prediction is not well captured for low superficial gas velocities. On 
the one hand, that is because of the simplified PSD. Instead of using a representation of 
all particle diameters, only the Sauter mean diameter was used for all particles. The 
investigations in chapter 5.1 showed that a more detailed resolution of the PSD can lead 
to better results. On the other hand, the boundary conditions to the adjacent CFB parts 
were set as constant values (outlet to cyclones and inlet at L-valve sparger). However, 
as presented in chapter 4.4.1, the characteristic values in fluidized beds are just 
statistically constant. 

Vertical particle velocity 

The following charts show the vertical particle velocity profile averaged over time. 
Measurements were done for three different bed heights (𝑧 = 6.23 m, 𝑧 = 8.88 m and  
𝑧 = 13.33 m). The definitions of the azimuthal directions are explained in Figure 5-13. 
Noticeable is the trend of a left-shift of the velocity profile. Nearly all curves are shifted in 
East-direction. Therefore, the particle velocity is overpredicted for the region near the riser 
wall, which is opposite the standpipe. The velocities near the wall, on the standpipe side, 
are under-predicted. Li et al. [61,86,87] were not observing a shift of the velocity profile 
for case 3. However, for case 5 they also experienced a small displacement of the particle 
velocity profile. Their maximum particle velocity in the center of the bed was significantly 
over-predicted. A reason for the displacement of the velocity profile obtained in this work 
might be the simplification of CFB geometry. Instead of a full-loop model, just the riser 
itself was modeled. Therefore, the recirculation of the particles was only considered with 
a steady BC and a short inflow region. A more detailed modeling of the inlet and outlet 
configuration or a full model of the CFB might improve the predictions. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 5-19: NETL III Task 3, case 3: Vertical particle velocity profile [83]. 
(a) height: 13.33 m, Azimuthal: E-W, (b) height: 13.33 m, Azimuthal: N-S,  

(c) height: 8.88 m, Azimuthal: E-W, (d) height: 8.88 m, Azimuthal: N-S,  
(e) height: 6.23 m, Azimuthal: SE-NW, (f) height: 6.23 m, Azimuthal: NE-SW. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 5-20: NETL III Task 3, case 4: Vertical particle velocity profile [83]. 
(a) height: 13.33 m, Azimuthal: E-W, (b) height: 13.33 m, Azimuthal: N-S,  

(c) height: 8.88 m, Azimuthal: E-W, (d) height: 8.88 m, Azimuthal: N-S,  
(e) height: 6.23 m, Azimuthal: SE-NW, (f) height: 6.23 m, Azimuthal: NE-SW. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 5-21: NETL III Task 3, case 5: Vertical particle velocity profile [83]. 
(a) height: 13.33 m, Azimuthal: E-W, (b) height: 13.33 m, Azimuthal: N-S,  

(c) height: 8.88 m, Azimuthal: E-W, (d) height: 8.88 m, Azimuthal: N-S,  
(e) height: 6.23 m, Azimuthal: SE-NW, (f) height: 6.23 m, Azimuthal: NE-SW. 
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As stated in chapter 4.2.2, the particle down-flow near the wall was not reproduced for 
the NETL I challenge (DDPM-KTGF). For NETL III Task 3 the particle flow at the near 
wall region is captured well for the most cases. A reason for that is the higher superficial 
gas velocity, which leads to a more dilute bed. As discussed in the previous chapters, the 
KTGF model works better for higher velocities. Additionally, two model modifications were 
done. On the one hand, a granular phase boundary condition at the wall (the ANSYS® 
Fluent built-in boundary condition by Johnson and Jackson [29] – see chapter 3.7) as 
recommended in chapter 4.5, was used. On the other hand, the use of inflation layers 
improved the capturing of the particle down-flow (applied as suggested by Ozarkar et al. 
[67]). According to Li et al. [61,86], the most important parameters for the CFB riser are 
the wall boundary conditions and the inflow boundary conditions. Especially careful 
choices of the specularity coefficient and a better resolution of the inlet and outlet 
configuration have the potential for further improvements. 
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5.3 Discussion NETL III 

The calculation time is drastically increased, when simulating industrial-size fluidized 
beds in combination with a PSD. Calculations for the NETL I challenge lasted for several 
hours, whereas the NETL III challenges took a day or more. The high particle amount is 
the reason behind that. The DDPM-KTGF model is tracking the path of these particles. 
For lowering the time for the particle tracking, clusters of particles (parcels) are tracked 
instead of individual particles. In addition, it is a common strategy to model just parts of 
industrial size fluidized beds, in order to lower the total particle number. 
Different approaches of the PSD models were tested. The simplest method is to assign 
a uniform particle diameter for all particles (Sauter mean diameter). ANSYS® Fluent also 
provides the possibility to define a Rosin-Rammler fit. Finally, a PSD model based on 
piecewise Sauter mean diameters was created (chapter 5.1.2). A disadvantage of the 
Rosin Rammler distribution is that it is smoothing non-regular PSD’s (e.g., local peaks). 
As shown in Figure 5-5, the piecewise Sauter mean diameter PSD model is a better 
representation for local peaks, since a particle class can manually set into the peak. 
Therefore, the piecewise Sauter mean diameter yielded slightly better results (about 6% 
deviation to the experiments) than the Rosin Rammler distribution (about 7.5% deviation 
to the experiments) for the pressure drop. Simulations with a more detailed PSD (higher 
number of particle size classes) were yielding better pressure drop results (the average 
deviation was lowered from 7.3% to 4.15% for doubled number of particle size classes). 
However, the computational effort was increasing (about doubled calculation time). 
Simulations of NETL III Task 1 (chapter 5.1) showed that the DDPM-KTGF model was 
not able to reproduce the fluidization curve for the packed bed regime. However, above 
the minimum fluidization velocity, the pressure drop results fit well with the experimental 
data. Therefore, DDPM-KTGF should only be used for fluidization velocities well above 
𝑈௠௙. The more detailed PSD models were improving the results. However, the pressure 
drop was still over-predicted because the standard drag laws were yielding unphysical 
bed expansion behavior [68]. Additionally, an Euler Granular packed bed model, which is 
freezing the particle motion and therefore is not over-predicting the bed expansion, was 
tested. Hence, the proportional pressure drop increase in the fixed bed region was well 
reproduced. 
For the NETL III challenges, a more detailed wall boundary condition for the granular 
phase was included (Johnson and Jackson [29]), in order to improve the particle velocity 
predictions near to the wall [84] (compared to the NETL I challenge). In addition, a finer 
mesh near the wall was created (by using inflation layers) for a better resolution of the 
particle flow next to the wall. These modifications were improving the particle flow 
prediction near the wall compared to the NETL I challenge. Also the prediction of the 
particle velocity profile was good. 
However, the prediction of the bed expansion behavior (pressure drop) was not 
satisfactorily for all the investigated cases. In order to obtain better results with the DDPM-
KTGF approach, alternative drag laws could be used or a more detailed PSD model. In 
literature, many alternative drag laws are suggested. For example, according to Ozarkar 
et al. [74], the drag law obtained by Milioli et al. [55] is better suitable for predicting the 
bed expansion in fluidized beds. Furthermore, the resolution of the PSD model can be 
increased in order to get a better representation of the PSD used in the experiments. 
Other reasons are the simplified inlet and outlet configurations. Therefore, a more careful 
choice of the boundaries (e.g., longer inlet and outlet pipes, finer mesh), or the use of a 
full-loop model could improve the results in these regions [61,68,86].   
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6 Conclusions and future work 

In this thesis, the hydrodynamics of cold flow fluidized beds were investigated. Existing 
multiphase models and sub-models available in the commercial CFD code ANSYS® 
Fluent were validated and evaluated. For adjusting the model parameters  
(e.g., specularity coefficient, coefficient of restitution, injection settings) as well as for 
validating the models (pressure drop, particle velocity), experimental data provided by 
National Energy Technology Laboratory (NETL) was used. Simulations of the NETL 
challenge I and III were done to gain experience and to create guidelines for further 
projects on CFD modelling of fluidized beds. The research questions defined in chapter 
1 are repeated and answered here: 
 

Q1 Which multiphase models available in the commercial CFD code ANSYS® Fluent 
are suitable to simulate biomass fluidized beds? 

Q2 How important are particle interactions and how can these interactions be modeled? 
Q3 How can the influence of the particle size distributions (PSD) be included in the 

models? 
Q4 Are the drag laws available in ANSYS® Fluent able to predict the fluidized bed 

behavior? 
Q5 For which bed regimes, bed types and bed sizes are these models suitable? 
 

Research questions Q1 and Q2: Usually, in fluidized beds the interactions between 
particles cannot be neglected, because the particle volume fraction is too high (𝛼௦ > 0.1). 
In ANSYS® Fluent two basic modeling approaches for fluidized beds are available, which 
are considering particle interactions. First, one is the Euler Granular model. Occurring 
phases are considered as each other interpenetrating continua (Two-Fluid model). 
Therefore, the equations of motion as well as the continuity equation are defined for each 
phase separately. Interactions between particles (collisions) can be considered with the 
Kinetic Theory of Granular Flow (KTGF). The main idea of KTGF is to model the 
mechanical energy of the granular phase as velocity fluctuations around a mean particle 
velocity (averaging of particle collisions). The second possibility is the Dense Discrete 
Phase Model (DDPM), which is using an Euler-Lagrange approach. The primary phase 
(gas phase) is defined in an Eulerian framework (conservative equations for each cell). 
The particles are defined in an Eulerian framework and additionally are tracked in a 
Lagrangian framework (hybrid model) over several cells (Newton’s 2nd law of motion). 
The particle velocity is obtained from the Lagrangian framework. Therefore, it is not 
necessary to calculate the conservative equations in the Eulerian framework for the solid 
phases. Interactions between particles are considered with KTGF or the Discrete Element 
Method (DEM). The DEM is a far more detailed approach, since it is resolving all 
individual particle collisions. Consequently, the DEM was superior to the other model 
combinations in predicting the particle velocities [23,32]. DDPM-DEM is also the 
numerically most demanding one. For complex flows, where the assumption of few 
different particle diameter sizes or a uniform particle diameter is adequate, the Euler 
Granular model is a competitive model. Calculations with Euler Granular-KTGF models 
took about 7.5h for NETL challenge I, which was about 1.4 times faster than the DDPM-
KTGF approach (10.5h). For calculations of beds with a detailed particle size distribution 
(PSD), the DDPM constitutes an advantage. An additional particle diameter class is not 
requiring additional conservative equations. However, the DDPM-KTGF is sensitive to its 
parameters.   
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The best results were achieved with by the DDPM-DEM calculations. However, since the 
model is numerically too demanding, it is still rarely used for industrial-size fluidized beds. 
The DDPM-DEM calculation for a small-size FB needed already more than 2.5 times 
longer (26.5h) than the DDPM-KTGF approach. Therefore, the DDPM-KTGF model is the 
best compromise for industrial-size fluidized beds. 
Research question Q3: The PSD has a significant influence on the simulation results. In 
this work, three PSD model approaches were tested (also see chapter 5.1.3). The most 
common assumption is an overall Sauter mean diameter. All particles are set to a uniform 
size. Another possibility to represent the PSD, is the Rosin Rammler fit. The Rosin 
Rammler fit is classifying the whole particle size distribution into equal diameter ranges. 
Because of its direct implementation into ANSYS® Fluent, the Rosin Rammler fit is fast 
and easy to set up. In addition, an approach with piecewise Sauter mean diameters for 
specific defined particle size classes was tested. The advantage is that the size classes 
are manually defined. Therefore, important size classes can be better taken into account 
[10]. A disadvantage of the Rosin Rammler distribution is that it is smoothing non-regular 
PSD’s. The piecewise Sauter mean diameter PSD model is a better representation for 
local peaks. Therefore, the piecewise Sauter mean diameter yielded better results (about 
6% deviation to the experiments) than the Rosin Rammler distribution (about 7.5% 
deviation to the experiments) for the pressure drop. Simulations with a more detailed PSD 
(10 instead of 5 size classes) were yielding better results for the pressure drop (the 
average deviation was lowered from 7.3% to 4.15%). However, the computational effort 
was increasing (about doubled calculation time). Summarized, the Rosin Rammler fit is 
an efficient approach for smooth and regular PSD. It is the best compromise between 
computation time and results. However, for irregular PSD’s the piecewise Sauter mean 
diameter approach is the better choice. For industrial-size applications, the calculations 
should first be done with a uniform particle size, to keep the calculation time low. If needed 
(e.g., pressure drop deviation to experiments too high), a more detailed PSD model with 
several diameter size classes can be added afterwards. 
Research question Q4: The drag laws derived by Wen-Yu [39], Gidaspow [25] and 
Syamlal O’Brien [26] have been tested. More details about the used drag laws are given 
in chapter 3.6. The overall best results were given by the drag law derived by Gidaspow 
(see chapter 4.5). The DEM calculation was best reproducing the bed behavior (including 
the bubble forming) – see chapter 4.4.3. However, the pressure drop was over-predicted 
for most cases. The main reason for this was the unphysical prediction of the bed 
expansion (especially for KTGF calculations in combination with a PSD – see chapter 
5.3). Therefore, when using the KTGF model, it is important to validate the bed expansion. 
If necessary, a better particle interaction model (e.g., including of Johnson and Jackson 
boundary condition and alternative drag laws) and/or a more detailed resolution of the 
PSD improves the results. Other authors [36,57,68,88] were also reporting problems with 
the prediction of the bed expansion. For that reason, Ozarkar et al. [88] were testing 
alternative drag laws and were reporting excellent predictions of the bed expansion 
behavior with the drag law suggested by Milioli et al. [75]. 
Since the particle-gas flow behavior can be very different (dense or dilute flow, frictional 
or collisional dominated flow, particle type, PSD), no general recommendation can be 
given for research question Q5. For small-scale problems, where the particle amount is 
low, the DDPM-DEM approach is the best choice (chapter 4.4). DEM yields superior 
results due to the detailed resolving of all particle interactions. However, DEM is 
numerically very demanding, so DEM models are rarely used for large-scale applications 
or only with high-performance computing systems. DEM is mainly used in fundamental 
research, where it is also used as a benchmark model for the simpler approaches.  
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Industrial scale applications are best resolved with the DDPM-KTGF model, since PSD 
models are easy to include. Furthermore, the Lagrangian approach used in the DDPM 
provides many opportunities for future model extensions (e.g., single particle models for 
heat transfer and gasification). The Euler Granular model is inefficient for multiple 
diameters, because it needs an own set of conservative equation for each size class. 
Furthermore, reacting systems would require additional equations for the species 
transport for each particle size class. The DDPM model is the better choice for a detailed 
PSD (also see chapters 3.1, 3.3 and 5) – no additional conservative equations are 
needed. However, for FB’s which operate with different particle volume fractions  
(e.g., CFB: dilute areas in riser and standpipe, dense areas at bed bottom and in the  
L-valve), the KTGF model is not easy to set up, because the relation between solids 
stress tensor and volume fraction is changing. Therefore, a KTGF model works well for a 
specific problem. However, it is not a very flexible approach (in the standard formulation). 
Furthermore, the KTGF approach had problems with the prediction of the particle flow 
next to the wall (chapter 4.2.2). However, an additional wall boundary condition for the 
solid phase (Johnson and Jackson [29], see chapter 3.7) is improving the prediction. The 
Johnson and Jackson approach is adding a heuristic friction by adding a boundary at 
which some particles collide and others slide [41]. In addition, the inclusion of inflation 
layers (for a better mesh resolution next to the wall) was significantly improving the 
particle flow prediction near the wall. Furthermore, DDPM-KTGF is failing for packed 
beds, the proportional increase of the pressure drop with increasing superficial gas 
velocity was not reproducible (see chapter 5.1). The KTGF model already predicted an 
expanded bed (more than 2.5%) for superficial gas velocities below 𝑈௠௙, hence a 
constant pressure drop was predicted for the packed bed region. Therefore, DDPM-KTGF 
should only be used for fluidization velocities well above 𝑈௠௙ (which is usually the case 
for fluidized beds). In general, the results were improving with higher superficial gas 
velocities (more than two times the minimum fluidization velocity). 
It was shown that the DDPM-DEM model was the best and most flexible approach (for 
models with parcel number equal to particle number). Results were already well fitting 
with the experiments after a rough estimation of its model parameters. However, the 
detailed resolution of the inter-particle interactions is still too costly for industrial 
applications (high particle number, non-spherical particles). The numerical less 
demanding DDPM-KTGF is highly sensitive to its model parameters. Crucial for the 
calculations are, in particular, the particle volume fraction, the resolution of the collisions 
and the boundary conditions at the walls. Therefore, validation of obtained KTGF results 
is mandatory. Nevertheless, DDPM-KTGF models with carefully selected settings were 
yielding competitive results for gas velocities higher than 𝑈௠௙. The Euler Granular KTGF 
model is competitive when the assumption of few different particle size classes is 
sufficient for the calculation. 
Based on the findings in this thesis, alternative drag models will be tested. Especially the 
promising drag law derived by Milioli et al. [75] will be investigated in more detail. 
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Notation 

𝛼 Volume fraction 
𝛾 Damping coefficient 
𝛾஀ೞ

 Collisional dissipation of energy 
𝛾° Dimensionless shear rate 
𝛿 Overlap 
𝜀 Turbulent dissipation 
𝜂 Restitution coefficient 
Θ Granular temperature 
𝜆௦ Bulk viscosity 
𝜇 Viscosity 
𝜚 Density 
𝜏̿ Solid stress tensor 
𝜏௦ Relaxation time 
𝜙௦ Sphericity 
𝜑 Specularity coefficient 
𝜑 Angle of internal friction 
𝐴 Area 
𝐴𝑟 Archimedes number 
𝐶஽ Drag coefficient 
𝑐 Drag function 
𝑑ଷଶ Sauter mean diameter 
𝑑 Diameter 
𝑒௜௝ Unit direction vector 

�⃗� Force 
𝐹ௗ௥௔௚ Coefficient of proportionality  

𝑓 Acceleration 

𝑔 Gravitational acceleration 
𝑔଴,௦௦ Radial distribution function 

𝐼 ̿ Unit tensor 
𝐾 Spring-dashpot coefficient 
𝐾௦௚ Momentum exchange coefficient 
𝑘 Turbulent kinetic energy 
𝑚 Mass 
𝑝 Pressure 
𝑝௦ Solids pressure 
𝑅𝑒 Reynolds number 
𝑆௠௢௠ Source term for two-way coupling 
𝑡 Temperature 
Δ𝑡 Time step size 
𝑈௠௙ Minimum fluidization velocity 
𝑈௧ Terminal velocity 
𝑉 Volume 
𝑣 Velocity 
𝑣௦′ Velocity fluctuations 
𝑌ௗ Reversed cumulative mass fraction 



Abbreviations  92 

 

Abbreviations 

 
BC Boundary condition 
BFB Bubbling fluidized bed 
BRISK2 Biofuel Research Infrastructure for Sharing Knowledge 
calc. Calculation 
CFB Circulating fluidized bed 
CFD Computational Fluid Dynamics 
CFL Courant-Friedrichs-Lewy condition 
const. constant 
CPU Central processing unit 
D Bed depth 
DDPM Dense Discrete Phase Model 
DEM Discrete Element Method 
DOE Department of Energy 
DP Difference pressure, pressure drop 
DPM Discrete Phase Model 
DFB Dual fluidized bed 
E East 
EMMS Energy minimization multi-scale 
EDC Eddy dissipation concept model 
FB Fluidized bed 
FCC Fluid catalytic cracking 
GT Granular temperature 
GPU Graphics processing unit 
H Bed height 
HsPIV High-speed Particle Image Velocimetry 
IWT Institute of Thermal Engineering 
KTGF Kinetic Theory of Granular Flow 
LES Large eddy simulation 
MP-PIC Multiphase particle-in-cell method 
N North 
NETL National Energy Technology Laboratory 
PSD Particle size distribution 
PSRI Particulate Solids Research Inc. 
Q Research question 
RNG Re-Normalization Group 
S South 
SI International System of Units 
sim. Simulation 
SLPM Standard liter per minute 
SSCP Small-scale problem 
TFM Two-Fluid Model 
UDF User-defined function 
W Bed width 
W West 
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