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A B S T R A C T

Physical products for everyday life are usually designed using com-
puter-aided design (CAD) software. To validate physical properties
like structural stability for those digital designs, computer-aided engi-
neering (CAE) software is used to perform different types of analysis
and simulations on the virtual objects. Due to their historic develop-
ment, the tools and methods for design and engineering are based
on different geometrical representations to describe the shape of the
designed objects. Analysis, therefore, requires a time consuming con-
version of the designed geometry.

To overcome this problem, the concept of isogeometric analysis was
proposed, where the same geometry representation is used for both
CAD and CAE. This eliminates the need to convert between different
geometry representations for design and analysis.

This thesis explores the use of isogeometric analysis for typical engi-
neering tasks as well as for the design process itself. To closely link
design and analysis, the isogeometric concept is extended to a subdi-
vision based surface representation that combines the properties re-
quired for reliable engineering design as well as for precise freeform
surface design.

The unified analysis platform developed in this thesis provides seam-
less design and analysis of freeform surfaces, accessible to a wide
range of applications and devices. It is used for structural analysis
and optimizations of designed shapes, and it is also employed to cre-
ate new modeling tools for designers and to enable interactive defor-
mation within virtual worlds.
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Part I

F O U N D AT I O N

“If I have seen further it is by standing on ye
sholders of Giants.”

Sir Isaac Newton





1
I N T R O D U C T I O N

Today, almost all manufactured objects are designed with the sup-
port of computer-aided design (CAD) software. This simplifies the de-
sign process and enables a designer to quickly experiment with dif-
ferent design ideas. However, the physical behavior of the design is
often not fully known until a prototype is built and tested. To avoid
encountering problems in physical behavior, designers often make
overly conservative design decisions.

Independent of the CAD field, mathematical methods and software
systems to simulate and analyse real world phenomenons on a model
of some domain were developed in the field of engineering. Today,
the software tools implementing these methods are commonly called
computer-aided engineering (CAE) applications. Using CAE tools, the
physical behavior of a virtual design can be analysed even before a
prototype is build. A common method used in engineering to solve
a wide range of these problems is known as the finite element method
(FEM), whose use is commonly referred to as finite element analysis
(FEA). FEA is used to analyse many different physical behaviors, in-
cluding, for example, effects of forces on physical structures, transfer
of heat or fluid flow.

The basic idea of FEA is to partition the problem domain and the
solution space into a set of elements defined by nodes and their asso-
ciated basis functions. For FEA, the basis functions are typically linear
or low degree Lagrange basis functions local to each element. All el-
ements together form the finite element mesh, often also called the
simulation mesh, which approximates the original problem domain
given by a smooth manifold. A solution for the problem is formulated
for each element in terms of its nodal degrees of freedom (DOF). The
element solutions are then assembled to define the global solution.

To analyse the physical behavior of a CAD design using CAE soft-
ware, the CAD representation needs to be meshed into a finite ele-
ment mesh. This is a time consuming process which, in some cases,
is estimated to account for about 80% of the overall analysis time [48].
Further, the finite element mesh is only an approximation of the origi-
nal smooth CAD design, leading to errors already in the geometry de-

3
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Figure 1.1: For traditional finite element analysis (FEA), the design-analysis-
cycle is interrupted by manual or semi-automatic steps (orange)
to convert between the different geometry representations used
in CAD and FEA. Using isogeometric analysis (IGA), the same
geometry representation is used for both design and analysis,
enabling a seamless integration.

scription. Another problem is that the finite element mesh is defined
by completely different DOF than the CAD design. This complicates
the use of the analysis results to improve the design, e.g. displace-
ments or stresses computed on nodes of the finite element mesh can-
not simply be transferred onto the CAD design. For the same reason,
an automatic optimization of the CAD design is not easily possible
because the optimization, using FEA, operates on different DOF.

This gap between design and analysis hinders a fast product develop-
ment cycle because it requires repeated conversion of the geometry
representation, as illustrated in Figure 1.1. Ideally, analysis is inte-
grated into the design process so that designed objects can be tested
and analysed already during the early stages of design. In this way,
analysis can guide the design to a result satisfying both aesthetics
and functionality. This is difficult to achieve with traditional methods,
where the required conversion between each design-analysis iteration
is time consuming and often requires manual user interaction.

1.1 isogeometric analysis

To bridge this gap, Hughes et al. [48] proposed the concept of isogeo-
metric analysis (IGA). The observation is that, similar to finite element
meshes, CAD geometry is defined by elements (faces/patches) con-
sisting of nodes (control points) with associated basis functions. For
CAD geometry the basis functions are typically B-spline basis func-
tions or generalizations thereof. The key idea of IGA is to use these
basis functions and the DOF of the CAD geometry also for analysis,
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i.e. to define the problem domain and the solution space. This pro-
vides a number of advantages:

• no meshing is required to define the simulation mesh, so
• the exact surface is used for analysis, and
• the degrees of freedom used to solve the problem correspond

to the degrees of freedom for the CAD design.

The idea of using the same basis functions for design and analysis is
not entirely new, and has already been implemented before the con-
cept of IGA has been proposed by Hughes et al. [48], e.g. by Sabin [75]
using B-splines or Cirak et al. [25] using Loop subdivision surfaces
based on generalized box splines. However, the work by Hughes et al.
[48] sparked further interest in this technique and lead to many appli-
cations of IGA for different methods in various fields of research.

One of the main differences to classical FEM is that the basis functions
of CAD geometry, i.e. typically B-splines, are not local to each face of
the control mesh, i.e. they have support outside of the element. This is
in contrast to the linear and Lagrange functions used in FEM, which
are defined locally for each element. A consequence of this difference
is that elements in IGA typically join in a continuous way, depending
on the basis functions, while adjacent FEM elements only share the
position of their boundary. This is an advantage of IGA for use cases
where higher continuity between elements is required for analysis.

A challenge for IGA is that the DOF and basis functions of the CAD
geometry now also need to meet the requirements for analysis. They
not only define the input geometry, but also need to be suitable to
represent any unknown analysis result with the desired accuracy.

In [48], Non-Uniform Rational B-Spline (NURBS) surfaces were used
to define the concept of IGA. But NURBS can only represent rectan-
gular domains and require manual layout and alignment of multiple
NURBS patches to define more complex geometries. For analysis, this
requires maintaining the required continuity between patches and in
particular to prevent tearing during deformations. Subdivision sur-
faces, as used in [25], overcome this limitation and enable the design
of an arbitrary topology using a single surface. However, standard
subdivision algorithms typically do not provide the precise control
over the shape of the surface as with NURBS. Therefore, state-of-
the-art IGA requires a compromise when choosing the underlying
surface representation: either a continuous freeform surface or mul-
tiple patches with precise control. Patches may rip open leading to
problems in analysis while small imperfections in the shape may also
influence analysis results.
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Independent of the surface representation used, IGA may also have
additional use cases beyond analysis, because it operates directly on
the CAD geometry, using the same DOF. For example, in the context
of design, IGA could be seen as a new tool which operates on the
DOF of the CAD design to change its shape, similar to existing tools
common in design software like a scale tool or a smooth tool.

Open questions in IGA concerning the requirements on the surface
representation as well as its potential beyond analysis are the main
motivation for the research described in this thesis.

1.2 research questions

As discussed in the previous section, the choice of geometry represen-
tation for the CAD design influences the possible use cases for IGA.
So the first question I want to address in this thesis is:

Research question 1: Is it possible to unify design and analysis and at
the same time provide exact control over the surface and the flexibility
of freeform surfaces?

In other words, is there a single surface representation that can be
used for IGA which provides the flexibility of NURBS while also al-
lowing to easily design freeform surfaces? Having a surface represen-
tation combining the advantages of NURBS and subdivision would
be a significant advantage for the unified design and analysis of sur-
faces.

The second question addressed in this thesis, which has already been
briefly motivated in the previous section, is:

Research question 2: With a unified design and analysis platform, can
these analysis methods, usually used in engineering, also be used for
the design process itself?

By using the same DOF for design and analysis, an IGA computation
could also be used as a design tool, i.e. to change the shape of a
design. But there are some open questions in this regard, e.g.:

• What analysis methods could be useful for design?
• What are possible use cases for analysis-based tools?
• How can the designer interact with these tools?
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These questions need to be answered in order to use IGA also for
design, not only for analysis. But if IGA becomes interesting also for
other types of applications, besides engineering analysis, there needs
to be a way to access IGA features from other software, so the next
question is:

Research question 3: How can isogeometric simulation methods be eas-
ily integrated into other applications?

This question addresses both the technical questions of integrating
IGA tools into other software as well as requirements for user inter-
faces to use these tools.

Finally, if it is indeed possible to easily integrate IGA tools into other
software, the application of IGA could be extended to different do-
mains, other than CAD and engineering. For example, because vir-
tual worlds become increasingly important, IGA may be used not
only to analyse how virtual objects behave in the real world, but also
to simulate real world behavior of objects in virtual worlds:

Research question 4: Can isogeometric methods also be used to improve
realism in interactive applications?

The main challenge for this is whether IGA can be adapted for in-
teractive use cases. FEA and IGA are computationally expensive and
were traditionally only used in long running offline computations.
However, for interactive applications, the simulation must complete
within a fraction of a second.

In the remainder of this thesis, these research questions will be suc-
cessively addressed in more detail.

1.3 thesis overview

Following this introduction, Chapter 2 will present the necessary
background on CAD curve and surface representations as well as
the foundations of thin shell analysis. These are then used to discuss
the existing work on subdivision-based IGA. This concludes the first
part of this thesis.

My work, subject of the second part, builds on the foundations layed
out in the first part to create an integrated design and analysis plat-
form using subdivision-based IGA. This platform will be used to an-
swer the research questions stated in the previous section. Chapter 3
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extends state-of-the-art subdivision-based IGA to a geometry repre-
sentation combining the advantages of previous approaches. This im-
plementation, used as the basis for the IGA platform, is then verified
with several benchmark problems. The combination of design and
analysis is then discussed in Chapter 4, where the IGA implementa-
tion is integrated into several design applications and where services
are presented to provide access to the IGA platform for a wide range
of applications and devices. Chapter 5 further explores the integration
of IGA into other software by defining a client-server architecture for
using the IGA implementation in interactive applications.

The following third part completes this thesis with final conclusions
in Chapter 6.



2
B A C K G R O U N D

Parts of this chapter have also been published in the following peer-reviewed
article:

C. Schinko, A. Riffnaller-Schiefer, U. Krispel, E. Eggeling, and T. Ullrich, “State-
of-the-art overview on 3D model representations and transformations in the
context of computer-aided design,” International Journal on Advances in Software,
vol. 10, p. 446, 2017, issn: 1942-2628

This chapter provides an overview of foundations and previous work
on which the rest of this thesis is based. First, the foundations to
describe geometry, i.e. curves and surfaces, in a CAD context are
discussed. Section 2.1 introduces several representations of curves
and Section 2.2 extends these concepts to surfaces. Afterwards, re-
quired concepts of engineering analysis are presented. Section 2.3
gives some background on the Kirchhoff-Love theory of thin shells
and Section 2.4 discusses the discretization of the resulting partial
differential equations with subdivision surfaces for isogeometric anal-
ysis.

2.1 curves

In the 1960s, companies designing airplanes and cars first saw a need
to design and process exact curves on computers. However, to work
with curves in a computational context, a representation of the con-
tinuous nature of a curve as a set of discrete values, usable by a com-
puter, is required. This marked the beginning of the field Computer
Aided Geometric Design (CAGD). Since then, many representations of
curves have been developed in the context of CAGD. This section
summarizes the most important concepts for defining curves as can
be found in text books like e.g. [38] or [79], on which this section is
based.

9
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2.1.1 Mathematical Representations

Mathematically, curves may be defined either in an explicit, implicit
or parametric form.

The explicit definition of a two-dimensional curve can be written as

y = f(x) . (2.1)

This explicitly defines the y location of a curve based on the x coor-
dinate. For example, a line can be defined with y = mx+ b. Another
example is a parabolic curve, defined by y = ax2 + bx+ c. One draw-
back of this representation is that it does not allow the definition of a
vertical line.

The implicit form is written as an equation

f(x,y) = 0 . (2.2)

Here, the curve is defined implicitly by all points satisfying the equa-
tion. A straight line can be implicitly defined by ax + by + c = 0.
Another common example is the implicit definition of a circle with
radius r around the origin, defined by x2 + y2 − r2 = 0. A disadvan-
tage of the implicit form is that it is hard to evaluate a specific point
on the curve, as the points on the curve are generally not known.

A drawback of both the explicit and implicit form is that they depend
on a particular coordinate system in which the curve is defined. This
makes them impractical for design, where complex shapes are often
created by combining multiple curves, or segments thereof, each with
different transformations applied to it.

Therefore, the most common type of curves in CAGD are parametric
curves. A parametric definition of a curve depends on a curve pa-
rameter t. This parameter is independent of a particular coordinate
system and therefore provides more flexibility for defining the curve.
A parametric two-dimensional curve can therefore be defined as

x = f(t) and

y = g(t)
(2.3)

using two functions f and g to define the x and y coordinates, respec-
tively, based on parameter t. Using the parametric form, a vertical
line may be defined for example with f(t) = x0 and g(t) = t for
t ∈ [−∞,∞]. A parametric circle with radius r can be defined with
f(t) = r cos(t) and g(t) = r sin(t) for t ∈ [0, 2π]. Using a parametric
definition, curve segments can be defined by limiting the evaluated
range of parameter t.
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Figure 2.1: Bézier curve of degree 5 and its control polygon.

2.1.2 Bézier curves

One of the first, and still one of the most important, representations
of curves for CAGD was developed in the 1960s independently by
P. de Casteljau at Citroën and P. Bézier at Renault. The work of de
Casteljau was initially not published which is why today these curves
are known as Bézier curves.

The idea of Bézier curves is to represent a parametric curve by a
sequence of control points, called the control polygon. The control
points can be easily manipulated by designers to change the shape of
the curve. Figure 2.1 shows an example of such a curve together with
the control points defining its control polygon.

The actual curve is defined as a linear combination of these control
points weighted by a set of basis functions evaluated at the curve
parameter t ∈ [0, 1]:

c(t) =

n∑
i=0

Bni (t)pi . (2.4)

For Bézier curves, the basis functions Bni are the Bernstein polynomials
of degree n. Therefore, a Bézier curve of degree n requires a control
polygon with n+ 1 control points pi. The Bernstein polynomials for
t ∈ [0, 1] are explicitly defined by

Bni (t) =

(
n

i

)
ti(1− t)n−i . (2.5)

The resulting basis functions are shown in Figure 2.2 for a cubic (de-
gree 3) Bézier curve. These basis functions lead to several noteworthy
properties of Bézier curves. First, the Bernstein polynomials are non-
negative within the parameter domain on which they are defined, in
this case the interval [0, 1]. Additionally, at each parameter value the
sum of all basis functions is always 1.0. This implies that a Bézier
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Figure 2.2: Bernstein basis functions of a degree 3 Bézier curve.

curve is always fully contained within the convex hull of its control
points. It can also be observed that the first and last basis function
have the value 1.0 at the start and at the end of the curve respectively.
Therefore, the start and end control points of the control polygon are
interpolated by the curve, while all other control points are approxi-
mated.

The definition of the Bernstein polynomials can also be written in an
recursive form as

Bni (t) = (1− t)Bn−1i (t) + tBn−1i−1 (t) (2.6)

with B00(t) = 1 and Bnj (t) = 0 for j /∈ {0, . . . ,n}.

Similar to the recursive definition of the Bernstein basis functions,
also the Bézier curve itself can be evaluated with a recursive algo-
rithm. This is the approach taken by de Casteljau, who computed a
point on the curve by linearly interpolating the control points recur-
sively. Given a control polygon with control points pi and a curve
parameter t ∈ [0, 1], de Casteljau’s algorithm recursively creates linear
combinations bri of these points. Let b0i (t) = pi, the recursive defini-
tion is given by

bri(t) = (1− t)br−1i (t) + tbr−1i+1(t) (2.7)

for r = 1, . . . ,n and i = 0, . . . ,n− r. Finally, bn0 (t) defines the point
on the Bézier curve at parameter value t.

Figure 2.3 shows a cubic Bézier curve which is evaluated using de
Casteljau’s algorithm at t = 0.4. In addition to the initial control poly-
gon, also the intermediate points computed from de Casteljau’s al-
gorithm are shown. The intermediate points bri(t) obtained through
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Figure 2.3: Cubic Bézier curve evaluated at parameter value t = 0.4 using
de Casteljau’s algorithm.

linear interpolation can also be represented in a triangular scheme:

b00

b01 b10

b02 b11 b20

b03 b12 b21 b30 .

(2.8)

The leftmost column defines the input control polygon. Each point
in the following columns is computed as a linear combination of two
points from the column to its left. The final value on the right is the
point on the curve. The diagonal values b00,b10,b20,b30 and the bottom
row b03,b12,b21,b30 define two new control polygons for Bézier curves,
which split the original curve at parameter t. The curve represented
by the diagonal elements is the same as the original curve evaluated
on the interval [0, t] and the elements of the bottom row define the
control points for a new curve on the original interval [t, 1]. This can
be used for example to subdivide or clip the curve at a given param-
eter value.

While Bézier curves enable designers to intuitively define the shape
of a curve by manipulating its control polygon, they also have some
drawbacks. To represent complex shapes many control points may
be needed. However, for Bézier curves the number of control points
directly determines the degree of the curve. Therefore, Bézier curves
with many control points are of high degree. This limits their use-
fulness for design as each control point influences every part of the
curve, but the strength of its influence reduces with increasing de-
gree. Therefore, designers do not have local control over the curve.
Changing one control point changes the shape of the whole curve.
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Figure 2.4: A composite Bézier curve of degree 2 consisting of three seg-
ments. The second segment is highlighted with bold lines. The
placement of control points determines the smoothness of the
curve at joins.

One solution to these problems is to model complex curves by com-
bining multiple low-degree Bézier curves into a single composite Bézier
curve. This keeps the advantage of having a single control polygon,
but enables local control of the low-degree piecewise Bézier curve.
Each control point only influences one or two of the low-degree Bézier
segments, all the other parts of the composite Bézier curve are un-
affected. Composite Bézier curves of degree 2 and 3 are commonly
used in graphic design and are, for example, part of the scalable vector
graphics (SVG) standard [33].

To parameterize a composite Bézier curve with L segments, a se-
quence of knot values u0 < · · · < uL is defined, where each parameter
interval [ui,uu+1] defines a curve segment. This sequence of knot val-
ues is called the knot vector. Each global parameter value u between
the minimum and maximum knot value defines a point s(u) on curve
s. The individual Bézier curve segments si can be parameterized by
a local parameter t. For u ∈ [ui,ui+1] the local parameter t for the
Bézier curve defining segment si of the curve is

t =
u− ui
ui+1 − ui

, (2.9)

which is always between 0 and 1. Using this parameterization, a point
on the curve is defined as s(u) = si(t).

Figure 2.4 shows a composite Bézier curve which consists of three
segments of degree two. The second segment in the center of the
curve is highlighted with bold lines. A single control polygon is used
to define a complex curve using multiple low degree segments. The
knot vector defining the parameterization of the curve has the form
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[u0,u1,u2,u3] to define three intervals for the respective curve seg-
ments.

However, as shown, the resulting curve is not necessarily smooth.
While the segments are always connected at their end points, provid-
ing C0 continuity, higher continuities depend on the parameteriza-
tion of the curve, i.e. the knot vector, and the placement of the control
points in the control polygon. To get at least C1 tangent continuity be-
tween two segments the first derivatives of the curve segments need
to be equal at their common point.

The derivative of a Bézier curve can be computed based on the deriva-
tive of its basis functions, the Bernstein polynomials. Following [38],
the derivative of a Bernstein polynomial Bni is

d

dt
Bni (t) =

d

dt

(
n

i

)
ti(1− t)n−i

= n
(
Bn−1i−1 (t) −B

n−1
i (t)

)
.

(2.10)

Inserting this definition into Equation 2.4 results in the first derivative
of a Bézier curve cn of degree n:

d

dt
cn(t) = n

n∑
i=0

(
Bn−1i−1 (t) −B

n−1
i (t)

)
pi . (2.11)

Transforming indices, this can also be written as

d

dt
cn(t) = n

n−1∑
i=0

(pi+1 − pi)B
n−1
i (t) . (2.12)

The derivative at the start and end of a curve, important for the con-
tinuity of composite curves, can be computed by evaluating Equa-
tion 2.12 with t = 0 and t = 1 respectively. In both cases, only one of
the basis functions has support, with a value of 1.0, and all others are
0.0. Therefore, for these cases, Equation 2.12 simplifies to:

d

dt
cn(0) = n(p1 − p0)B

n−1
0 (0)

= n(p1 − p0)
(2.13)

and

d

dt
cn(1) = n(pn − pn−1)B

n−1
n−1(1)

= n(pn − pn−1) .
(2.14)

Therefore, the first derivative and the tangent vector at the start and
at the end of a Bézier curve depend only on the degree of the curve
and two control points. The tangent at the start of the curve depends
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Figure 2.5: Tangent vectors, one of them inverted for clarity, at the join of
two segments of a smooth composite Bézier curve of degree 3.
The length of the tangents not only depends on the control points
but also on the parameterization, i.e. the relative distances in the
knot vector shown at the bottom.

on the first two control points p0 and p1 in the control polygon. The
tangent at the end of the curve is influenced only by the last two
control points pn−1 and pn in the control polygon.

However, in a composite Bézier curve, each curve segments can have
a different parameterization. Therefore, for a composite curve, the
derivatives must take the parameter mapping from Equation 2.9 into
account. For some global parameter u ∈ [ui,ui+1] within the curve
segment si, the derivative of a composite Bézier curve s at u then
becomes

ds(u)

du
=
dsi(t)

dt

dt

du

=
1

ui+1 − ui

dsi(t)

dt

(2.15)

where dsi(t)dt is the derivative of the curve segment si with respect to
its local parameter t, as defined in Equation 2.12.

Figure 2.5 shows a composite Bézier curve of degree 3 with two seg-
ments. Additionally, the tangent vectors for the two curves at the com-
mon point are visualized. One of the tangents is inverted to point in
the opposite direction to make it visible in the visualization. For a
composite Bézier curve the first derivatives, defining the tangent vec-
tors, do not only depend on the placement of control points, but also
on the global parameterization of the composite curve as defined in
Equation 2.15. In this case, the control points and the parameteriza-
tion are chosen to achieve C1 continuity. To get C1 continuity, the con-
trol points around the join must be colinear and satisfy the same rela-
tion as the knot intervals. As the knot intervals u1−u0 and u2−u1 in
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Figure 2.5 have a ratio of 1 : 2, the magnitude of the vectors pi− pi−1
and pi+1 − pi around the common control point pi must satisfy the
same ratio of 1 : 2 for the first derivatives to be equal. Generally,
continuity higher than C0 is not guaranteed and must be manually
ensured by the designer by placing control points and choosing a
correct parameterization.

2.1.3 B-Splines

To solve the continuity problems of composite Bézier curves but still
allow the design of complex shapes using low degree curves and a
single control polygon, spline curves have been developed. In the
context of CAGD, the most common type of spline curves are B-
splines.

B-splines, short for basis spline, are named after wooden splines used
to design and draw curves before the days of CAGD. Curves drawn
with wooden splines traced the shape of the splines as they bent be-
tween weights, called ducks, which held them in place. Similar to how
the bending moment varies continuously across a wooden spline, fol-
lowing the derivation by Saxena and Sahay [79], a spline curve of
degree n is a curve which is Cn−1 continuous within the domain it
is defined in.

The idea of spline curves is to find basis functions with similar prop-
erties as the Bernstein polynomials, i.e. they should be non-negative
and sum up to 1.0, but be restricted to a limited part of the curve.
Therefore, unlike Bernstein polynomials, which are defined globally
on the domain of the curve, spline basis functions should be defined
locally within some parameter interval [ui,uj] and should be zero
outside of this interval.

Similar to composite Bézier curves from Section 2.1.2, a sequence of
non-decreasing knot values ui, called the knot vector, is required to
define the parameterization of the basis functions for B-splines.

For B-splines, the basis functions Nni of degree n can be defined re-
cursively from lower degree basis functions. The base case for n = 0

is

N0i (u) =

1 if u ∈ [ui−1,ui)

0 otherwise .
(2.16)
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Figure 2.6: A uniform B-spline basis function of degree 3 and all lower de-
gree B-spline basis functions required to recursively evaluate it.

Higher degree basis functions are defined by the recursion

Nni (u) =
u− ui−1

ui+n−1 − ui−1
Nn−1i (u) +

ui+n − u

ui+n − ui
Nn−1i+1 (u) . (2.17)

Each B-spline basis is a linear combination of two lower degree B-
spline basis functions. This formula was independently developed by
Cox [31] and de Boor [15] and is therefore known as the Cox-de Boor
recursion formula.

For example, to evaluate a single cubic B-spline basisN30, two quadratic
basis functions N20 and N21 are required, which in turn depend on
three linear B-spline basis functions N10, N11 and N12 as visualized
in Figure 2.6. The linear B-spline basis functions just interpolate be-
tween 0 and 1 over the range of a knot interval, as defined by Equa-
tion 2.16.

A B-spline curve s(u) of degree n is defined over [un−1,uL+n−1]
where L is the number of curve segments defined by the knot vector.
With a control polygon of L+n control points pi, the curve can now
be defined in terms of its basis functions Ni, similar to Equation 2.4
for Bézier curves:

s(u) =

L+n−1∑
i=0

Nni (u)pi . (2.18)

To evaluate the basis functions Ni required for Equation 2.18, a B-
spline curve of degree n with L+n control points in its control poly-
gon requires a knot vector with L+ 2n− 1 knot values.

It should be noted that for a naive implementation of Equation 2.17

two additional knot values u−1 and uL+2n−1 would be required.
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However, they do not influence the basis functions within the inter-
val [un−1,uL+n−1], where the curve is defined, so they can be chosen
arbitrarily. For example, a simple strategy is to just duplicate the first
and last knot values. In some B-spline literature and implementations
these additional knots are explicitly specified, leading to a knot vec-
tor with L+ 2n+ 1 values for a B-spline curve of degree n with L+n
control points. One notable example where this notation is used is
the IGES [49] file format commonly used to exchange CAD data. In
the remainder of this thesis, these additional knots are not specified
explicitly, as they do not influence the resulting curve.

If all knot values are equally spaced, the knot vector is called uni-
form and all basis functions are just shifted copies of each other. In
Figure 2.6 this can be observed for the linear and quadratic basis
functions. A knot vector may also be non-uniform, having unevenly
spaced knot values. If a knot vector contains the same value ui more
than once, ui is called a multiple knot and its multiplicity is defined as
the number of times ui is contained in the knot vector. At this point, it
is worth noting that there are alternative definitions of uniform knot
vectors which also allow multiple knots, as long as all unique knot
values are equally spaced, independent of their multiplicity. This the-
sis uses the definition given above, where all knot values must be
equally spaced for a knot vector to be uniform.

Increasing the multiplicity of a knot has the effect of decreasing the
continuity of the resulting B-spline curve at that parameter value. For
example, while a B-spline curve of degree n without multiple knots
is Cn−1 continuous everywhere, a double knot ui reduces the con-
tinuity to Cn−2 at parameter value ui. If the multiplicity of a knot
ui is greater or equal than the degree of the curve, the continuity re-
duces to C0. In this case, only the basis function Nni will be non-zero
at parameter value ui, as the surrounding knot intervals vanish, and
therefore Nni (ui) = 1.0. As a result, the defined B-spline curve will
interpolate control point pi at parameter value ui. An example curve
with non-uniform knot vector, which interpolates one of its control
points, is shown in Figure 2.7, together with the corresponding basis
functions.

By using a non-uniform knot vector with multiple knots, B-spline
curves can therefore represent the interpolating end points of Bézier
curves. Further, a B-spline curve of degree n with n+ 1 control points
pi and a knot vector where each knot has a multiplicity of n is equiv-
alent to the Bézier curve defined by the control points pi. Similarly,
a B-spline curve with more than n+ 1 control points where all knots
have multiplicity n is equivalent to the composite Bézier curve de-
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Figure 2.7: A non-uniform knot vector provides more control over a B-spline
curve. The degree 3 curve shown on top is defined with the knot
vector [0, 0, 0, 1, 3, 7, 8, 9]. Below, the corresponding basis func-
tions are shown. The first knot value u0 = 0 has a multiplicity
equal to the degree. Therefore, N30(0) = 1.0 and the curve inter-
polates the corresponding control point p0. Different intervals
between knot values change the influence of control points on
the curve, as indicated by the basis functions.

fined by the control points. Therefore, B-spline curves are a superset
of Bézier curves and composite Bézier curves.

One limitation of B-spline curves, as defined above, is, that they can-
not represent conic sections exactly. But conic sections like circles
or circle segments are often required in geometric design. To over-
come this limitation, a rational representation of B-spline curves can
be defined. A rational B-spline curve with control points pi in three-
dimensional Euclidean space E3 is the projection of a B-spline curve
inE4 to the hyperplanew = 1. The coordinates [x,y, z,w]T of the four-
dimensional control points are defined as [wipi,wi]T , where wi are
the weights defined for each control point. A rational B-spline curve
of degree n with L+n control points pi ∈ E3 is therefore defined as

s(u) =

∑L+n−1
i=0 wipiN

n
i (u)∑L+n−1

i=0 wiN
n
i (u)

. (2.19)
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Figure 2.8: An exact circle segment can only be defined using rational B-
splines, where control points have different weights, indicated by
numbers next to them. The blue curve shows the exact circle seg-
ment defined by the rational quadratic B-spline curve, while the
orange dashed curve visualizes the non-rational curve defined
by the same control polygon without weights.

If all weights are equal, this definition simplifies to the non-rational
case from Equation 2.18.

Using Equation 2.19, a quarter circle segment can be defined for
example by a quadratic rational B-spline curve with interpolating
end points and a center vertex with weight 1/

√
2, as shown in Fig-

ure 2.8.

However, while all circle segments, including the full circle with sep-
arate start and end points, can be represented exactly by rational B-
spline curves, there is no periodical definition of a closed circle for
B-splines.

2.1.4 Chaikin’s Algorithm

A different approach to define smooth curves from a coarse control
polygon was developed by Chaikin [23]. He presented a geometric
approach to refine a control polygon consisting of four points, which
converges to a smooth curve in the limit. A variant of his stack-based
algorithm is shown in Listing 2.1.

This algorithm creates a smooth curve based on repeated refinement
of the control polygon. The control polygon is refined until two neigh-
boring points on the curve are closer than a defined epsilon. The
curve segment between these points is then approximated by a line.
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Listing 2.1: Chaikin’s algorithm to draw smooth curves.

def chaikin(p1, p2, p3, p4):

while True:

stack.push((p3, p4))

p4 = (p2 + p3) / 2

while norm(p1 - p4) <= epsilon:

draw(p1, p4)

p1 = p4

if len(stack) == 0:

return

p2, p4 = stack.pop()

p3 = (p2 + p4) / 2

p2 = (p2 + p1) / 2

Figure 2.9: Chaikin’s algorithm subdivides a control polygon of four points
repeatedly into two smaller control polygons until it arrives at
a smooth curve. The initial control points have square markers,
while the new control points for the first refinement, leading to
two subdivided control polygons meeting at the midpoint be-
tween p1 and p2, are indicated by circles.

Figure 2.9 shows a curve generated by this algorithm, and the inter-
mediate control polygons of the first refinement. As the algorithm
geometrically cuts off the corners of the control polygon, it is also
known as Chaikin’s corner cutting algorithm.

Chaikin also extended this algorithm to control polygons with more
than four points, e.g. by pre-pushing the remaining control points on
the stack in reverse order. However, the generated curve segments
only join smoothly if the second control point of the new segment
lies on the line defined by the last two control points of the previous
segment.

Later, Riesenfeld [70] generalized this idea to arbitrary open or closed
control polygons, always creating a smooth curve. Given a control
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Figure 2.10: The generalization of Chaikin’s algorithm by Riesenfeld works
for arbitrary control polygons. From each control point B and
the adjacent edge midpoints A and C a point P on the curve can
be computed. The computation can be continued recursively
on the generated subdivided control polygon to evaluate more
points on the curve.

polygon with control points pi, let B be some control point pi and A
and C be the midpoints of the two lines pi−1pi and pipi+1 meeting
at pi. From these points, a point P on the limit curve is defined as

P = (A+ 2B+C)/4 (2.20)

Point P lies on the line connecting (A+B)/2 and (B+C)/2. These two
points are then used as new control points for a subdivided control
polygon for which A,B and C are defined as

A = A

B = (A+B)/2

C = P

and

A = P

B = (B+C)/2

C = C

allowing the recursive evaluation of more points P on the limit curve.

Figure 2.10 shows the application of this algorithm to create the same
smooth curve as in Figure 2.9. Note that the approach of Riesen-
feld uses a different control polygon to arrive at the same curve
as Chaikin’s original algorithm. The first and last control point of
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Chaikin’s algorithm are the midpoints of the first and last edge in the
control polygon for the generalization by Riesenfeld. Therefore, point
p1 from Figure 2.9 corresponds to point A in Figure 2.10.

In [70], Riesenfeld also proved that the curves generated by this ap-
proach, and by Chaikin’s original algorithm, are in fact quadratic
B-spline curves. This demonstrated that B-splines can also be con-
structed by a geometric refinement operation and later led to the
development of subdivision surfaces, as will be discussed in Sec-
tion 2.2.3.

2.2 surface representations

The curve representations discussed in the previous section provide
the foundation for several representations of surfaces used in CAGD.
Especially, B-splines are the basis for almost all surface representa-
tions commonly used in design.

While there are many other techniques to represent surfaces, like
polygonal meshes or implicit surfaces, this section focuses only on
surface representations commonly used for high quality surface de-
sign, such as B-splines/NURBS, T-splines and subdivision surfaces.
These surface representations can be found in standard CAGD soft-
ware which can therefore be readily used to create an integrated de-
sign and analysis platform.

There are also more recent developments in surfaces, like e.g PHT-
splines [35, 51] or THB-splines [41, 42]. They build on standard sur-
face representations like B-splines or T-splines and add hierarchical
features, which are also important for certain isogeometric analysis
applications. However, they are currently not available in standard
design software and are therefore not widely used in practice. This
limits their use for an integrated design and analysis platform, which
is why they are not discussed in more detail here.

2.2.1 B-Splines/NURBS

As mentioned earlier, one of the foundational representations for
curves and surfaces in CAGD are B-splines. Many other curve and
surface representations are based either directly on B-spline curves
or make use of the B-spline basis functions.
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Figure 2.11: Tensor product surfaces can be evaluated by either first evaluat-
ing the curves defined by the rows (left, black) or the columns
(right, black) of the control grid at a common parameter value
u or v respectively. The evaluated points on these curves define
the control polygon (blue) of a curve on the surface defined by
the control grid. Evaluating this curve at the complementary
parameter value v or u yields a point on the surface (orange).

The definition of a B-spline curve from Equation 2.18 can be extended
to surfaces using the concept of a tensor product surface. Instead
of a sequence of control points, a two-dimensional grid of control
points is defined. Each row and column of this grid defines one B-
spline curve. To define a parametric surface x(u, v), first the B-spline
curves corresponding to each row of control points can be evaluated
at the horizontal position at u. This leads to a column of points, one
for each row. These points can in turn be used as the control points
for a B-spline curve in the vertical direction of the grid. Evaluating
this curve at v defines a point on the surface x(u, v). The order of
evaluation does not matter, so evaluating the curves corresponding to
the columns first, and then evaluating the resulting horizontal curve
leads to the same result, as demonstrated in Figure 2.11.

Using the B-spline basis functions, such a tensor product surface is
defined as

x(u, v) =
∑
j

Nmj (v)
∑
i

Nni (u)pij (2.21)

for a grid of control points pij. For each parameter direction u or v
a single knot vector is defined, which is used across the surface. In u
direction, the resulting surface is of degree n while it is of degree m
in v direction. This definition can be rearranged to the more common
notation as follows:

x(u, v) =
∑
j

∑
i

Nni (u)N
m
j (v)pij . (2.22)

Similar to the B-spline curve case, an extension to a rational surface
is required to be able to represent common surfaces based on conic
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sections, like cylinders or spheres. Again, a weight wij is specified for
each control point pij and the rational B-spline surface is defined as
the projection of a four-dimensional tensor product surface:

x(u, v) =

∑
j

∑
iN

n
i (u)N

m
j (v)pijwij∑

j

∑
iN

n
i (u)N

m
j (v)wij

. (2.23)

This type of surface is commonly called NURBS, for Non-uniform ra-
tional B-spline, and is the de facto standard surface representation in
the CAD industry.

However, due to the tensor product nature, NURBS can only repre-
sent surfaces with a rectangular parameter domain. One approach
to overcome this limitation is to join multiple rectangular surfaces,
called patches, to form a more complex shape. However, this requires
manually aligning control points so that these patches line up and
have the required continuity across the join, similar to joining multi-
ple Bézier curves as described in Section 2.1.2.

Another approach, called trimming, is to cut out parts of the rectan-
gular domain to define more complex shapes. To do so, trimming
curves are defined on the parameter domain to define regions to ex-
clude. During evaluation, parameter values within these regions are
not considered as part of the surface. While this approach works rea-
sonably well for rendering the geometry, it poses difficulties for ana-
lyzing the surface as comprehensively discussed in [63]. Because trim-
ming of NURBS surfaces is standard practice in CAD, such designs
cannot easily be used for analysis purposes without preprocessing
the geometry.

2.2.2 T-Splines

A surface representation to overcome the strict grid structure of ten-
sor product surfaces are T-splines [86, 87]. T-splines are currently
available as a plugin for the CAD software Rhino and are the native
surface representation of the modeling tool Autodesk Fusion 360.

While tensor product surfaces like NURBS require a full grid of con-
trol points, T-splines allow T-junctions in the control mesh, which is
often referred to as the T-mesh. T-junctions enable rows or columns
that start or end at a control point in the interior of the control mesh,
not at its boundary. This enables techniques like local refinement,
where specific regions of the control mesh can be refined to use more
DOF, independent of the rest of the surface, as demonstrated in Fig-
ure 2.12.
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Figure 2.12: The pre-image of a T-mesh in parameter space. T-junctions,
highlighted with filled squares, enable local refinement, which
reduces the required DOF compared to tensor product surfaces.

To map from the control points of the T-mesh to a smooth surface, T-
splines also use the B-spline basis functions. Initially, T-splines were
only defined for cubic B-spline basis functions, but later have also
been extended to arbitrary degree B-splines [9]. To support surfaces
based on conic sections, each control point is assigned a rational
weight, similar to NURBS. The main difference to NURBS is that the
B-spline basis function associated with each control point pi in the
T-mesh is defined with a local knot vector, derived from the neigh-
borhood of the control point in the pre-image of the T-mesh. The
definition of T-spline surfaces of degree n defined by c control points
is therefore similar to that of NURBS:

t(u, v) =
∑c

i=1 B
n
i (u, v)piwi∑c

i=1 B
n
i (u, v)wi

. (2.24)

Here, Bn
i (u, v) is the i-th two-dimensional B-spline basis of bi-degree

n, defined as the product of two B-spline basis functions:Nn
j (u)N

n
k (v).

For a full grid of control points Equation 2.24 is equivalent to Equa-
tion 2.23. T-splines are therefore fully compatible to NURBS.

For geometric modeling, constructing a T-spline surface usually be-
gins with a coarse grid of control points which is then locally re-
fined based on the T-spline rules. There are two different sets of
rules available to create T-splines. While the initial rules proposed in
[86] are simpler, they can lead to many additional unnecessary DOF,
as the local refinement process may insert additional control points
to create a valid T-spline surface. The improved, but more complex,
T-spline rules from [87] offer more flexibility in adding new local
control points and therefore reduce the number of additional control
points inserted in most cases. Also, to guarantee linear independence
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of the basis functions for analysis, there is additional work to define
a subset of T-splines called analysis suitable T-splines (AST) [10, 57].

While T-splines offer the advantages of local refinement to reduce the
number of DOF compared to tensor product NURBS surfaces, the
originally proposed variant of T-splines still only defines a rectan-
gular parameter domain. To support the design of complex shapes
without requiring the designer to manually align patches, as with
NURBS, unstructured T-splines have been developed [100, 101]. They
support unstructured quad meshes for the initial T-mesh, but require
additional control points and T-junctions where the topology deviates
from a regular grid to locally define regular patches. These patches
define a single gap free T-spline surface of degree 3, but join only
with reduced continuity in irregular regions.

T-splines have also been used as the basis for a subdivision scheme
called T-NURCC [86]. Subdivision schemes enable designing smooth,
arbitrary topology surfaces using a coarse control mesh, and will be
discussed in detail in the next section.

2.2.3 Subdivision Surfaces

Unlike tensor product surfaces or T-splines, subdivision surfaces are
not restricted to a rectangular parameter domain.

The main idea of subdivision surfaces to enable this is to define a
smooth surface via geometric refinement of a coarse control mesh.
This control mesh may contain vertices with a valence other than
regular, so called extraordinary vertices (EVs), which enable the de-
sign of arbitrary topology surfaces. For quadrilateral control meshes,
regular vertices have a valency of 4, that is these vertices are con-
nected to 4 edges, defining a grid topology. Regular vertices in trian-
gle meshes have a valence of 6. The idea of subdivision surfaces is
similar to Chaikin’s corner cutting approach for curves, discussed in
Section 2.1.4, but extended to surfaces.

As Chaikin’s corner cutting approach was found to be equivalent to
quadratic B-spline curves, some important generalizations to subdi-
vision surfaces are also based on B-splines in regular regions of the
surface, e.g. Doo-Sabin [36, 37] and Catmull-Clark [22] subdivision
generalize quadratic and cubic B-splines respectively. However, many
different subdivision rules are possible, and today there exist a wide
range of different subdivision schemes.
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Figure 2.13: An initial cube control mesh (left) is refined using Catmull-
Clark subdivision. In the limit, the subdivision process con-
verges to a smooth surface (right).

The most commonly used subdivision scheme today is Catmull-Clark.
It is widely used in the entertainment industry and is available in
most modeling applications. In recent years, the CAD industry also
started adopting Catmull-Clark, e.g. it is used in the CATIA Imagine
and Shape software to support the design of freeform surfaces.

Catmull-Clark generalizes uniform B-splines of degree 3 to arbitrary
topology surfaces. The surface is defined by a coarse control mesh,
which is repeatedly refined to create a smooth surface in the limit, as
demonstrated in Figure 2.13. The refinement operation defines new
control points in the middle of all existing edges in the control mesh,
a new control point in the center of each face and an updated control
point at the position of each existing control point. To compute the
positions of these new control points Catmull-Clark uses the stencils
shown in Figure 2.14: a vertex stencil, an edge stencil and a face sten-
cil. These stencils define the linear combination of existing control
points in a quad mesh to define the new control point positions of
the subdivided mesh.

These stencils are only valid for pure quad meshes. To support ar-
bitrary control meshes, Catmull-Clark subdivision is therefore com-
monly described and implemented using generalized formulas [22]:

• New face points are defined as the average of all existing control
points defining a face.

• New edge points are placed at the average position of the edge
midpoint with the average of the two face points introduced in
the previous step for faces sharing the edge.

• New vertex points are defined by

Q+ 2R+ (n− 3)S

n

where Q is the average of all new face points of faces adjacent
to the vertex, R is the average of the midpoints of all existing
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Figure 2.14: The linear combinations to define new control points for the
Catmull-Clark scheme are described by three stencils. The ver-
tex stencil (left) defines the updated position of existing control
points. Two variants are shown: for regular vertices of valence
4 (top, left) and for EVs (bottom, left). The edge stencil (top,
right) defines the position of a new control point inserted on
each edge. And the face stencil (bottom, right) defines the posi-
tion of a new control point for each face.

edges connected to the vertex, S is the current position of the
vertex and n is the valence of the vertex.

The new face points are then connected to the new edge points to
form new quad faces with the updated vertex points. All faces cre-
ated during subdivision are quadrilaterals. Therefore, after one sub-
division step, the number of EVs in the mesh is constant. Also, irreg-
ular regions around EVs shrink as only regular regions are created
during subdivision.

In addition to the original rules for Catmull-Clark, many extensions
have been developed to add additional features like creases and bound-
aries [13, 34]. These extensions are widely used in the entertainment
industry. However, for usage in CAD, more control over the surface
and compatibility with NURBS is desired.

Most commonly used subdivision schemes, like Doo-Sabin or Catmull-
Clark, only support non-rational surfaces of low degree, i.e. quadratic
or cubic, with an uniform parameterization. This limits their use in
the context of CAD. For example, due to the missing rational repre-
sentation, conic sections like cylinders cannot be represented exactly
by such surfaces. Also, a non-uniform parameterization is often re-
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Figure 2.15: The NURBS compatible subdivision scheme uses two local knot
vectors to define the parameterization of a face (shaded in gray).
The knot vectors are derived from the knot spacings k associ-
ated with each edge of the control mesh. In this example, the
orange and blue arrows indicate the knot vectors of a face to
define a surface of degree 3.

quired, e.g. to define interpolating boundaries, as is commonly done
with NURBS surfaces. And higher degree surfaces provide additional
advantages like higher continuity for smooth surfaces or improved
convergence in the context of analysis.

Ideally, a CAD surface representation provides the precise control
of NURBS without the need for trimming and stitching. To achieve
this, Cashman et al. [18, 19] extended the Catmull-Clark subdivision
scheme to non-uniform, higher degree, and rational surfaces. This
subdivision scheme is compatible with odd degree NURBS in regular
regions, away from extraordinary vertices with a valence other than
four, but generalizes to arbitrary topology control meshes. It therefore
combines the advantages of NURBS and subdivision surfaces in a
single surface representation.

Similar to rational Bézier surfaces or NURBS, each control point of a
NURBS compatible subdivision surface gets an additional weight to
provide a rational representation. To allow for a non-uniform param-
eterization, a knot spacing k is associated with each edge in the odd
degree control mesh, defining the interval between two knot values
in the knot vector. Knot spacings are required to be equal on oppo-
site edges of a quadrilateral face. Therefore, a knot spacing is always
defined for a strip of faces, similar to NURBS. This definition leads to
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each face of the control mesh having two associated local knot vectors
u and v, visualized as two colored arrows in Figure 2.15.

Subdivision is then performed in two stages. During the initial refine
stage, edges and faces are split according to the subdivision rules de-
fined in [18], which depend on the valence of control points and the
local knot vector. The refinement is followed by multiple smoothing
steps, depending on the degree of the surface, in which all control
points are moved to their new, updated position. This results in a
smooth surface that is equivalent to the corresponding NURBS sur-
face for regular regions of the control mesh and is at least C1 contin-
uous in all other regions.

NURBS compatible subdivision surfaces therefore maintain the com-
patibility with NURBS while at the same time they offer the flexibility
of subdivision surfaces.

2.2.4 Comparison of Surface Representations

The different surface representations presented in the previous sec-
tions have different characteristics regarding certain surface proper-
ties.

In the following, some of the properties important for design and
analysis are discussed and compared.

2.2.4.1 Arbitrary Topology

Different surface representations place different constraints on how
the control points of a surface can be connected to define a valid
surface.

B-spline and NURBS surfaces are based on a tensor product of curves.
This requires that all control points are arranged in a regular rectan-
gular grid. This limits the designer to only define rectangular surface
patches, which need to be stitched together manually to create more
complex shapes. Stiching patches manually is time consuming and
error prone, making it hard to guarantee watertight surfaces with
a certain continuity for analysis. Another drawback for analysis is
that the manually aligned surface geometry needs to be maintained
automatically during analysis or the surface may break up under de-
formation.
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The main idea of T-splines is to loosen this strict requirement of a full
rectangular grid of control points. With T-splines, the overall struc-
ture of the control points is still a grid, but rows and columns can be
inserted locally into this grid. However, this still only allows to de-
fine rectangular surfaces. To use T-splines for analysis, the restricted
AST subset is required to ensure linear independence of the basis
functions.

To be able to define more complex shapes, subdivision surfaces can be
used. They allow to create a smooth surface from an arbitrary topol-
ogy control polygon, freeing the designer from splitting a surface
into rectangular patches. This also applies to the T-NURCC scheme,
generalizing T-splines to arbitrary topology. However, the T-NURCC
scheme, being based on Catmull-Clark, is limited to surfaces of de-
gree 3. Similarly, the extension to unstructured T-splines also sup-
ports arbitrary topology surfaces, but requires additional control points
to do so. Unstructured T-splines are also limited to surfaces of degree
3.

The NURBS compatible subdivision scheme supports arbitrary topol-
ogy quad meshes as control meshes and can define, in its current
implementation, surfaces of any odd degree. This enables designers
to create complex shapes with a single surface which can be directly
used for analysis.

2.2.4.2 Continuity

Continuity is both an aesthetic requirement in design as well as a
mathematical requirement for certain types of analysis.

There are two types of continuity, geometric continuity and paramet-
ric continuity. They generally describe how a curve looks and behaves,
especially where multiple curves or surfaces are joined together.

Parametric continuity Ck always implies geometric continuity Gk of
the same order k. However, this does not hold in the opposite direc-
tion.

The first case is that the geometry is not continuous at all (G−1). In
this case, the two parts of the geometry are disjoint and there is no
common parameterization. In other words, there is a gap between
different parts of a surface and thus such a surface is generally not
suitable for analysis purposes.
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Starting at continuity of order 0, the two parts of the geometry are
connected, i.e. the end point of the first curve is exactly the start point
of the second curve (C0/G0). This is also called positional continuity.

For G1 continuity, the curves must also share the same tangent direc-
tion at the join point. Similarly, for C1 continuity, the first derivative
of the two curves at the join point must match. Therefore, in addition
to the tangent direction, C1 continuity also requires the magnitudes
of the tangents to match. This is referred to as tangential continuity.

Continuity of order k = 2 is also commonly used in design. For G2

continuity, both curves must share a common center of curvature at
the point where they meet. Again, C2 continuity is slightly stricter in
that it requires that the first and second derivatives at the common
point match, providing curvature continuity.

Higher orders of parametric continuity Cn require that all derivatives
up to the n-th derivative are equal at the common join point.

Analysis methods have different continuity requirements, e.g. the thin
shell analysis described in the next section requires at least C1 con-
tinuity. The order of continuity ensured by a surface representation
differs between the various types of surfaces.

Within a single NURBS or T-spline surface of degree d, Cd−1 continu-
ity is automatically ensured (unless the parameterization is changed
to lower the continuity, see also Section 2.1.3 and Section 2.2.4.3).

However, due to the restriction to a rectangular parameter domain,
multiple separate NURBS patches have to be joined together to model
complex shapes. This requires the designer to manually ensure proper
continuity at the joined patch boundaries. Further, trimmed NURBS
surfaces, often used to model complex shapes, may not even provide
C0 continuity [88].

With unstructured T-splines, the patches do not need to be joined
manually, but the resulting surface has only a continuity of C0 and
C1 in irregular regions.

In contrast, with subdivision surfaces (and T-splines using the T-
NURCC scheme), a single surface can be used to model geometry
with an arbitrary topology. But for subdivision surfaces the achieved
continuity depends on the subdivision scheme. Using Catmull-Clark,
the surface is C2 continuous in regular regions, which are equivalent
to uniform B-splines of degree 3. For regions near EVs, Peters and
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Reif [68] showed that Catmull-Clark surfaces are at least C1 continu-
ous.

The NURBS compatible subdivision scheme ensures Cd−1 continuity
within the regular regions of a degree d surface, like NURBS, and at
least C1 continuity near EVs, similar to Catmull-Clark, as shown in
[19].

2.2.4.3 Non-Uniform parameterization

The parameterization defines the mapping of a parameter value u
to a point on the curve. For B-spline curves, the parameterization of
the curve is defined by its knot vector. The knot vector specifies the
parameter intervals over which the basis functions are defined.

B-spline curves with a uniform parameterization have a knot vector
where all knot values are equally spaced. Therefore, all basis func-
tions are identical, except that they are shifted across the parametric
range.

In contrast, non-uniform B-spline curves allow any monotonic in-
creasing sequence of values as knot vector. The same knot value can
even occur multiple times, where the number of times a value is in
the knot vector is referred to as the multiplicity of a knot.

The multiplicity of a knot is directly related to the continuity of the
curve. If all knot values have multiplicity one, a curve of degree d has
Cd−1 continuity everywhere, as explained in Section 2.2.4.2. If the
multiplicity of a knot increases by one, the continuity at that parame-
ter value decreases by one, down to C0, if the multiplicity is greater
or equal than the degree of the curve.

boundaries One important aspect of setting the multiplicity of a
knot equal to the degree of the curve is, that in this case, the curve
interpolates the corresponding control point of the control polygon.

This is often used to let the curve start/end exactly at a control point,
and is often referred to as Bézier end conditions or as having a clamped
knot vector.

For surfaces, setting the knot multiplicity equal to the degree along
the boundary lets the surface boundary interpolate the curve defined
by the boundary control points. A clamped knot vector allows de-
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signers to intuitively and exactly position the boundary using just
the boundary control points.

However, as this requires a non-uniform parameterization, this is not
possible using subdivision schemes like Catmull-Clark, which only
provide a uniform parameterization.

For Catmull-Clark, special rules have been designed to emulate the
interpolation offered by non-uniform B-spline surfaces [13, 34]. Us-
ing these rules, the boundary of a Catmull-Clark surface can also be
defined with only the boundary control points. However, as these
rules result in surfaces which differ from B-splines, it requires special
treatment when evaluating positions or derivatives of the surface.

symmetries Many designs exhibit some form of symmetry which
simplifies the design process. For example, often only half of an object
is designed, and just mirrored to the other side.

Symmetries are also exploited in analysis, where they help to reduce
the number of degrees of freedom, to improve performance.

To use symmetries with any surface representation, it is important
to be able to exactly define the surface boundary, as described above.
However, to achieve a certain continuity between symmetric parts
of a design, also the tangents and maybe even the curvature at the
boundary are important.

For B-spline-based surface representations with a non-uniform pa-
rameterization the Bézier end conditions provide a convenient way
to not only control the surface boundary but also to control the tan-
gents at the boundary.

For Bézier curves or non-uniform B-spline curves with Bézier end
conditions, the tangent at the start and end point of a curve are given
by the first and last line segment of the control polygon respectively.
Therefore, the tangent can be exactly controlled with just the inner
control point, next to the boundary control point.

Non-uniform boundary parameterization can be used with NURBS,
T-splines or the NURBS compatible subdivision scheme, but not with
traditional subdivision schemes like Catmull-Clark.
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2.2.4.4 Higher Degrees

Often bi-quadratic (degree 2) or bi-cubic (degree 3) surfaces are used
for design, but higher degree surfaces are required to achieve higher
continuity, which commonly is an aesthetic requirement for high-end
design.

For analysis, higher degree surfaces are known to provide better accu-
racy and faster convergence rates. Therefore, higher degree surfaces
are often desirable for analysis, despite the increase in computation
time.

B-splines can be generalized to arbitrary degree, so NURBS can be
used with any degree. T-splines, being based on B-spline basis func-
tions, have also been generalized to arbitrary degree in [10].

Most commonly used subdivision schemes are restricted to low de-
gree surfaces, i.e. to degree 3 in the case of Catmull-Clark. However,
there are subdivision schemes generalizing higher degree surfaces,
e.g. by Stam [93] or Zorin and Schröder [107], but they do not provide
a non-uniform parameterization or a rational representation. The cur-
rent implementation of the NURBS compatible subdivision scheme
by Cashman [19] generalises to arbitrary odd degree surfaces, allow-
ing to represent all NURBS surfaces (even degree NURBS can be ele-
vated to the next odd degree).

2.2.4.5 Rational Representations

Many common shapes in CAGD, like cylinders, circles or other conic
sections, cannot be represented exactly by standard B-splines. This
leads to aesthetic artifacts as well as to artifacts in analysis results.

In order to exactly define conic sections with B-spline-based surfaces,
a rational representation is needed. While subdivision surfaces like
Catmull-Clark do not provide a rational representation, NURBS, T-
splines and the NURBS compatible subdivision scheme do support it,
and therefore can represent conic sections exactly.

2.2.4.6 Local Refinement

During surface design it is common to add small surface features to
an otherwise smooth surface. This requires adding new control points
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to have the necessary degrees of freedom to represent the surface
feature.

A similar requirement is common during analysis, where more de-
grees of freedom are used to locally increase the quality of analysis
results in regions of interest.

However, for tensor product surfaces like B-splines or NURBS, con-
trol points cannot be inserted locally because the control points must
form a regular grid. This often leads to many unnecessary degrees of
freedom.

With subdivision surfaces supporting arbitrary topology control poly-
gons, the topology can be changed locally to insert the necessary de-
grees of freedom for the surface feature. However, this will introduce
additional extraordinary vertices and can change the original surface
in areas surrounding the surface feature. Both consequences might
not be desirable in certain cases.

The main advantage of T-splines is support for local insertion of ad-
ditional control points, therefore local surface changes can be easily
made.

2.2.4.7 Summary

The most commonly used surface representations in CAGD have dif-
ferent strengths and weaknesses, summarized in Table 2.1. While
NURBS are widely used and offer precise control over the surface,
they are limited to a rectangular domain. T-splines and subdivision
surfaces offer more flexibility via local refinement and arbitrary topol-
ogy control meshes. However, T-splines and extensions thereof are
limited to either a rectangular domain or lower degree surfaces. Sim-
ilarly, the most commonly used subdivision scheme, Catmull-Clark,
is also limited to surfaces of low degree without providing a rational
representation.

A promising alternative surface representation, the NURBS compati-
ble subdivision scheme by Cashman et al. [18], offers the advantages
of both NURBS and subdivision. Its compatibility with NURBS and
Catmull-Clark subdivision allows to use many existing designs while
taking advantage of additional features.
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Table 2.1: Features supported by common surface representations (3: fully
supported, ∼: partially supported, 7: not supported).
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with at least C1 continuity 7 7 ∼ 3 3 3

Non-uniform parameterization 3 3 3 3 7 3

Higher degrees 3 3 7 7 7 3

Rational representation 3 3 3 3 7 3

Local refinement 7 3 3 3 ∼ ∼
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Figure 2.16: Thin shells are structures where the thickness of the material
is small compared to the other dimensions. In both CAD and
analysis, such structures are usually represented by the middle
surface, highlighted in blue, rather than a volumetric represen-
tation. This common representation makes thin shells a good
target for IGA.

2.3 kirchhoff-love thin shells

The surface representations from the previous chapter are used to de-
sign a wide range of different types of objects. For example, surfaces
are often used in CAD to define a boundary representation (B-rep)
of a solid object [95]. In this case, the geometry does not define the
volume of the object directly, but only the border between solid and
non-solid regions.

Another type of object represented by surfaces are thin objects like
plates and shells, where the thickness is small compared to the other
dimensions of the object. For these types of objects, the surface geom-
etry usually defines the middle surface (or midsurface) of the objects
volume, shown in Figure 2.16. The middle surface passes through the
center of the volume, dividing the thickness into two equal halves
[98].

Thin plates, thin flat structures without curvature, are objects where
the slenderness ratio, the ratio between a common length on the sur-
face a and the plate thickness t, fulfills 10 6 a

t 6 100. Thin shells,
thin curved structures, satisfy max( tR) 6

1
20 , for any given radius

of curvature R of the middle surface [98]. Such structures are com-
mon in many areas of engineering, biology or nature. For example,
thin shells are widely used in the automotive and aerospace indus-
tries. In everyday life, they appear in the form of e.g. objects made
of metal sheets or thin plastic materials. Generally, from tiny blood
cells to large structures like concrete domes or the containment of
nuclear power plants, thin shells describe a wide range of different
objects. They are well suited for isogeometric analysis, because they
are represented only by their middle surface, not by a volumetric rep-
resentation. This middle surface directly corresponds to the surfaces
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designed in CAD for such thin walled objects, which therefore can
be used directly. Also, analysis of thin shell structures is sensitive to
geometric errors. Having an exact surface representation for analysis,
by taking advantage of IGA, can lead to more accurate results. This
thesis therefore focuses on the analysis of thin shells, thin structures
where one dimension is small compared to its other dimensions, to
answer the research questions stated in Section 1.2.

For analysis, thin shell structures are covered by the Kirchhoff-Love
shell theory [54, 59]. The Kirchhoff-Love theory assumes that straight
lines which are normal to the middle surface in the undeformed con-
figuration

• remain straight during deformation,
• are always normal to the middle surface, and
• keep their initial length.

These assumptions allow to reduce the elasticity behavior of the three-
dimensional material volume to that of the two-dimensional middle
surface.

In the following, the shell material is always assumed to be homoge-
neous and isotropic. In other words, the elastic behavior of the shell
is the same everywhere throughout its volume and is independent
of direction. The used notation and the derivation of the thin shell
formulation follows previous work on isogeometric analysis of thin
shells based on subdivision [25].

2.3.1 Geometry

Assuming a shell with constant thickness t, any material point r of
the shell can be defined by a parametric function of three curvilinear
coordinates u, v and w as

r(u, v,w) = x(u, v) +wa3(u, v) (2.25)

where u and v define a parameterization of the middle surface x(u, v)
and w defines the position along the shell director a3 for − t2 6 w 6
t
2 .

Two tangent vectors aα, for α ∈ {1, 2}, defining a tangent plane on the
middle surface, are defined by the partial derivatives of x(u, v):

aα = x,α (2.26)
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where the comma in the subscript indicates the derivative of the pa-
rameter with the given index, i.e. x,1 = ∂x

∂u . Due to the Kirchhoff-
Love assumptions, the shell director a3(u, v) always corresponds to
the unit normal of the middle surface at x(u, v) and can therefore also
be defined by the tangents:

a3 =
a1 × a2
|a1 × a2|

. (2.27)

The tangents define the covariant components aαβ of the surface met-
ric tensor

aαβ = aα · aβ . (2.28)

The contravariant components aαβ correspond to the inverse of the
covariant metric tensor[

aαβ
]
=
[
aαβ

]−1 . (2.29)

Using the tangents and normals and Equation 2.25, covariant base
vectors for a material point can be defined as

g1 =
∂r

∂u
= a1 +wa3,1

g2 =
∂r

∂v
= a2 +wa3,2

g3 =
∂r

∂w
= a3 .

(2.30)

Due to the Kirchhoff-Love assumptions, g3 is equal to the normal,
as the length of the normals does not change. These covariant base
vectors are used to define the components gij, for i, j ∈ {1, 2, 3}, of the
shell metric tensor:

gij = gi · gj . (2.31)

The shell metric tensor can be used to measure e.g. lengths, volumes
or angles in the volume of the shell material.

2.3.2 Kinematics

When the shell material undergoes deformation, a material point
r̄(u, v, 0) on the undeformed middle surface x̄ will be moved to a
new position r(u, v, 0) on the deformed middle surface x. Figure 2.17

shows the relationship between the common parameter space and the
initial and deformed surface configurations.
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Figure 2.17: A thin shell can be defined by a parametric representation of
its middle surface. The physical domains are defined by x̄ and
x, mapping from the 2D parameter space to the initial or de-
formed surface. The deformed surface x is defined by a dis-
placement field u applied to the initial middle surface x̄. In the
Kirchhoff-Love theory of shells, the shell director ā3 or a3 is
equivalent to the unit normal of the middle surface.

Any material point of the shell away from the middle surface, i.e. at
x̄(u, v)+wā3(u, v) following Equation 2.25, will be moved to x(u, v)+
wa3(u, v). Therefore, the displacement of the middle surface com-
pletely defines the deformation of the shell. The deformed middle
surface is then defined by a displacement field u(u, v) as

x(u, v) = x̄(u, v) +u(u, v) . (2.32)

This displacement field will be the primary unknown in the analysis
of thin shells for the rest of this thesis.

Deformation of the shell causes strain. As a measure of strain the
Green-Lagrange strain tensor is used, which can be defined using the
metric tensors on the initial and the deformed shell as

Eij =
1

2
(gij − ḡij) . (2.33)

Filling in Equation 2.31 and Equation 2.30, the strain components Eij
can be split into membrane strains αij, for the straining of the shell
middle surface, and bending strains βij, describing the change in
curvature:

Eij = αij +wβij . (2.34)

For indices α,β ∈ {1, 2}, the membrane strains, which are indepen-
dent of the thickness parameter w, are defined as

ααβ =
1

2
(aα · aβ − āα · āβ) . (2.35)
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Due to the Kirchhoff-Love assumptions, the shearing αα3 and stretch-
ing α33 of the normal are zero.

The bending strains contain quadratic terms in w. However, these can
be neglected because w2 ≈ 0. The non-zero components of the linear
approximation of the bending strains are then defined as

βαβ = aα · a3,β − āα · ā3,β (2.36)

which, using the Kirchhoff-Love assumptions, have been algebraically
simplified in [25] to

βαβ = āα,β · ā3 − aα,β · a3 . (2.37)

Using Equation 2.32, the tangents of the deformed middle surface can
be defined using u as

aα = āα +u,α

which leads to components for the membrane strain also defined in
terms of the initial surface and u:

ααβ =
1

2

(
(āα +u,α) · (āβ +u,β) − āα · āβ

)
=
1

2
(āα ·u,β + āβ ·u,α +u,α ·u,β)

(2.38)

In the linear theory of thin shells, which is used here, the non-linear
last term of this definition is not considered. The linearized compo-
nents for the membrane strain are therefore defined as

ααβ =
1

2
(āα ·u,β + āβ ·u,α) . (2.39)

Similarly, linearized components for the bending strain can be de-
fined in terms of the displacement field u as

βαβ = −u,αβ · ā3 +
1√
ā
[u,1 · (āα,β × ā2) +u,2 · (ā1 × āα,β)]

+
ā3 · āα,β√

ā
[u,1 · (ā2 × ā3) +u,2 · (ā3 × ā1)]

(2.40)

where
√
ā = |ā1 × ā2| is the Jacobian determinant of x̄.

2.3.3 Equilibrium

The deformed configuration of a shell is found as the configuration
where internal and external forces are in equilibrium. In general, an



2.4 subdivision-based isogeometric analysis 45

exact solution satisfying this requirement at every point cannot be
computed. The finite element approach simplifies this requirement
so that it needs to be satisfied only for integrals over an area. Follow-
ing the notation of [52] and applying the principle of virtual work,
the sum of the internal and external virtual work done by the respec-
tive forces must be zero for an infinitesmale virtual displacement δu
applied to the surface:

δW = δWint + δWext = 0 . (2.41)

The internal virtual work δWint over a domainΩ is defined by stresses
and strains as

δWint =

∫
Ω

nαβδααβ +mαβδβαβ dΩ (2.42)

where n and m are the membrane and bending stress tensors re-
spectively. The external virtual work depends on the applied surface
forces q per unit area of Ω and the forces N per unit length of the
boundary Γ :

δWext = −

∫
Ω

q · δudΩ−

∫
Γ

N · δudΓ . (2.43)

The stresses required for Equation 2.42 can be derived from strain
measures, as defined in Equation 2.39 and Equation 2.40, using the
fourth order material tensor H and two material parameters describ-
ing an isotropic material: the Young’s modulus E and Poissons’s ratio
ν. For indices α,β,γ, δ ∈ {1, 2}, the membrane and bending stress
tensors are then given by

nαβ =
Et

1− ν2
Hαβγδαγδ

mαβ =
Et3

12(1− ν2)
Hαβγδβγδ .

(2.44)

The material tensor H is also defined by the material parameters E
and ν as

Hαβγδ = νāαβāγδ +
1

2
(1− ν)(āαγāβδ + āαδāβγ) (2.45)

where āαβ are the contravariant components of the undeformed sur-
face metric tensor defined in Equation 2.29.

In the next chapter, Equation 2.42 and Equation 2.43 will be used as
the basis for the finite element approximation of the equilibrium.

2.4 subdivision-based isogeometric analysis

Cirak et al. [25] were the first to describe finite element analysis based
on subdivision surfaces, even before the term isogeometric analysis was
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introduced by Hughes et al. [48]. In [25] Loop subdivision was used
to describe the undeformed shell geometry as well as the smooth
displacement fields of the analysis results.

However, the idea can be generalized to other subdivision schemes
as well, as was demonstrated later by multiple implementations for
Catmull-Clark subdivision surfaces, e.g. [7, 44, 103], and for Catmull-
Clark solids [17].

The Kirchhoff-Love shell theory requires a C1 continuous geometry
description [106], which is hard to guarantee with classical finite el-
ements. In classical FEA, basis functions are local to each element
and therefore require careful alignment of the DOF to provide the
required continuity. Using subdivision-based IGA, C1 continuity is
guaranteed everywhere. Compared to NURBS, this makes subdivi-
sion surfaces better suited for IGA of arbitrary topology surfaces.
For NURBS-based IGA, multiple patches are used to represent com-
plex shapes, leading to difficulties in satisfying the continuity require-
ments. Multi-patch surfaces also require additional treatment to main-
tain the continuity during analysis [53]. With subdivision, any surface
can be modeled as a single, continuous geometry.

To define the subdivision-based finite element discretization, the ap-
proach from [25] is used. To simplify definitions and implementation,
Voigt’s notation is used to map the symmetric second-order strain
and stress tensors into vectors:

n =

n
11

n22

n12

 m =

m
11

m22

m12

 α =

 α11α22

2α12

 β =

 β11β22

2β12

 .

Similarly, the fourth-order material tensor H is mapped into a sym-
metric 3× 3 matrix, which is defined as

H =

(ā11)2 νā11ā22 + (1− ν)(ā12)2 ā11ā12

(ā22)2 ā22ā12

sym. (1−ν)ā11ā22+(1+ν)(ā12)2

2

 .

Using these definitions, the stress-strain relationships from Equation 2.44

are defined as

n =
Et

1− ν2
Hα and m =

Et3

12(1− ν2)
Hβ (2.46)

and can be used to rewrite the definition of the internal virtual work
from Equation 2.42 to use Voigt’s notation:

δWint =

∫
Ω

Et

1− ν2
δαTHα+

Et3

12(1− ν2)
δβTHβ dΩ . (2.47)
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For the finite element approach, the domainΩ is split intom elements
defined by nodes I and corresponding shape functions NI. Each ele-
ment K defines a distinct subdomain ΩK of Ω. The finite element for-
mulation uh of the displacement field u(u, v) can then be expressed
with the nodal displacements uI and the shape functions as

uh(u, v) =
n∑
I=1

NI(u, v)uI (2.48)

where n is the number of nodes in the finite element mesh.

Similarly, Equation 2.35 and Equation 2.36 can be reformulated using
nodal displacements and shape functions as

αh(u, v) =
n∑
I=1

M I(u, v)uI

βh(u, v) =
n∑
I=1

BI(u, v)uI

(2.49)

using matrices M I and BI to define membrane and bending strains.
The exact definitions of these matrices, as given in [25] based on an
orthonormal reference frame with basis vectors (e1, e2, e3), are

M I =


NI,1a1 · e1 NI,1a1 · e2 NI,1a1 · e3
NI,2a2 · e1 NI,2a2 · e2 NI,2a2 · e3

(NI,2a1 +N
I
,1a2) · e1 (NI,2a1 +N

I
,1a2) · e2 (NI,2a1 +N

I
,1a2) · e3


and

BI =

B
I
1 · e1 BI1 · e2 BI1 · e3

BI2 · e1 BI2 · e2 BI2 · e3
BI3 · e1 BI3 · e2 BI3 · e3


with

BI1 = −NI,11a3 +
1√
a
[NI,1a1,1 × a2 +NI,2a1 × a1,1

+ a3 · a1,1(N
I
,1a2 × a3 +NI,2a3 × a3)]

BI2 = −NI,22a3 +
1√
a
[NI,1a2,2 × a2 +NI,2a1 × a2,2

+ a3 · a2,2(N
I
,1a2 × a3 +NI,2a3 × a3)]

BI3 = −NI,12a3 +
1√
a
[NI,1a1,2 × a2 +NI,2a1 × a1,2

+ a3 · a1,2(N
I
,1a2 × a3 +NI,2a3 × a3)]

.
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Now, applying Equations 2.48 and 2.49 to Equation 2.42 and Equa-
tion 2.47 results in the finite element formulation of the internal vir-
tual work based on nodal displacements, the stiffness matrix Kh:

KIJ
h =

m∑
K=1

∫
ΩK

[
Et

1− ν2
(M I)THM J +

Et3

12(1− ν2)
(BI)THBJ

]
dΩ .

(2.50)

Similarly, the finite element formulation of the external virtual work,
the force vector fh, is defined based on Equation 2.43:

fIh =

m∑
K=1

[∫
ΩK

qNIdΩ+

∫
ΓK∩Γ

NNIds

]
. (2.51)

Using these definitions and the equilibrium condition from Equa-
tion 2.41 results in the final system of equations

Khuh = fh (2.52)

for the equilibrium. This enables the computation of the unknown
displacement field uh, which corresponds to the vector of nodal dis-
placements uI here, for given external forces.

This computes a linear approximation to the solution of the partial
differential equations describing the physical deformation. Therefore,
given enough DOF to represent the solution, this results in highly
accurate deformations as long as the overall deformations are small.
Unfortunately, what exactly is considered a small deformation cannot
be easily checked. The linear simulation assumes that the resulting
stress and strain are proportional [90]. This implies that the resulting
stress must be below the yield-strength of the simulated material. But
to check this, one needs to perform a non-linear simulation, e.g. as de-
scribed by Cirak and Ortiz [26]. The remainder of this thesis focuses
on the linear simulation and its use cases.

To split the subdivision domain into a discrete number of elements,
Cirak et al. [25] define each face of the subdivision control mesh to
be one element in the finite element sense. An element not only de-
pends on the vertices of the face, but also on several neighboring ver-
tices, because the support of the basis functions spreads over multiple
faces in the subdivision mesh. For the two most common subdivision
schemes, Loop and Catmull-Clark, the vertices of the face and their
one ring neighborhood are required. This is different from standard
finite elements, where all support nodes are local to the element.
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To evaluate positions and derivatives of the surface defined by an el-
ement, required for numerically integrating Equation 2.50 and Equa-
tion 2.51, two cases need to be considered: regular and irregular ele-
ments. Each element will be parameterized by two local coordinates
u, v ∈ [0, 1].

In the regular setting, where all vertices required for the evaluation
of an element have a valence of six and four for Loop and Catmull-
Clark, respectively, the surface patch can be directly evaluated using
its basis functions. Loop subdivision generalizes quartic box splines
and Catmull-Clark subdivision is based on uniform cubic B-splines. A
regular region of a Catmull-Clark surface can therefore be evaluated
as a tensor product B-spline, i.e. as defined in Equation 2.22.

Irregular regions, containing vertices with other than regular valency,
cannot be directly evaluated, as the basis functions are different around
these extraordinary vertices. A method to evaluate Catmull-Clark and
Loop subdivision surfaces near EVs has been presented by Stam [91,
92]. He built on the observation that subdividing the control mesh
introduces only regular faces, the irregular regions shrink with each
subdivision step. The basic idea is that, after a sufficient number of
subdivision steps, all points away from an EV are eventually located
within a regular face, and can be evaluated directly. To avoid the time
and memory consuming subdivision process, Stam showed how this
can be formulated in terms of eigenanalysis of the subdivision matrix,
leading to a fast algorithm to evaluate arbitrary parameter locations
of a subdivision surface. This technique has been used by Cirak et al.
[25] for their work on IGA based on Loop subdivision and later by
several others for IGA based on Catmull-Clark, e.g. [7, 44, 103].

In both cases, the surface geometry of an element is defined by a
number of control points pI and their associated basis functions NI

as

x(u, v) =
∑
I

NI(u, v)pI . (2.53)

This parameterization is used to describe both the thin shell middle
surface as well as the displacement field u(u, v), as used in Equa-
tion 2.32.

The described isogeometric subdivision formulation of the finite el-
ement method performed well in numerical benchmarks [25]. How-
ever, its application is limited by the subdivision schemes used, as
discussed in Section 2.2.4. For example, Loop and Catmull-Clark sub-
division cannot accurately represent common CAD geometries like
cylinders. Also, advantages of higher degree surfaces for analysis can-
not be utilized by these low degree surface representations. Finally,
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interpolated boundaries require special rules for these subdivision
schemes.

Therefore, to fully exploit the potential of subdivision-based IGA,
a formulation based on a different subdivision scheme is required
which overcomes these short comings.

2.5 summary

The standard CAD representation NURBS does not support arbitrary
topology surfaces, which is a major drawback for the design and anal-
ysis of complex objects. During the design, the designer has to manu-
ally align multiple NURBS patches to get C1 continuity. To maintain
the required continuity during Kirchhoff-Love thin shell analysis, spe-
cial techniques, e.g. as presented by Kiendl et al. [53], are necessary.

Subdivision surfaces support arbitrary topology surfaces and provide
C1 continuity by design. But state-of-the-art subdivision-based IGA
is limited to Loop and Catmull-Clark, both of which do not support
boundary interpolation, higher degree surfaces and do not provide
a rational representation, which are important properties to ensure
a reliable and fast analysis. A comprehensive discussion on this will
follow in Section 3.2.

While T-splines do support higher degree surfaces for analysis, e.g.
[10, 20, 21], the T-spline-based subdivision scheme T-NURCC, based
on Catmull-Clark, and other approaches to support arbitrary topol-
ogy like [83], also only support surfaces of degree 3. For analysis,
only the restricted AST subset can be used, to ensure linear indepen-
dence of the basis functions.

NURBS compatible subdivision surfaces provide the advantages of
both NURBS and subdivision surfaces:

• smooth arbitrary topology surfaces
• rational representation
• support for higher degree surfaces

NURBS compatible subdivision surfaces are well suited for isogeo-
metric analysis of thin shells and are therefore used as the basis for
this work, to combine the advantages offered by NURBS and subdi-
vision surfaces for analysis.
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In the following, the theory of subdivision based IGA is extended to
NURBS compatible subdivision and applications of thin shell IGA for
a combined design and analysis approach are explored.





Part II

I S O G E O M E T R I C A N A LY S I S , D E S I G N A N D
S I M U L AT I O N

“[Design is] not just what it looks like and feels
like. Design is how it works.”

Steve Jobs





3
A N I S O G E O M E T R I C A N A LY S I S P L AT F O R M F O R
A N A LY S I S A N D D E S I G N

This chapter is based on research that has been published in the following
peer-reviewed articles:

A. Riffnaller-Schiefer, U. H. Augsdörfer, and D. W. Fellner, “Isogeometric shell
analysis with NURBS compatible subdivision surfaces,” Applied Mathematics
and Computation, vol. 272, Part 1, pp. 139 –147, 2016, Subdivision, Geometric
and Algebraic Methods, Isogeometric Analysis and Refinability, issn: 0096-
3003

A. Riffnaller-Schiefer, U. H. Augsdörfer, and D. W. Fellner, “Physics-based
deformation of subdivision surfaces for shared virtual worlds,” Computers &
Graphics, vol. 71, pp. 66 –76, 2018, issn: 0097-8493

The previous part described the general idea of isogeometric analy-
sis and the foundations of commonly used geometry representations.
This leads to an isogeometric formulation of thin shells based on sub-
division surfaces.

The isogeometric thin shell formulation, based on work from Cirak
et al. [25], can be used with classical subdivision surfaces like Loop
or Catmull-Clark to perform various analysis tasks. However, these
surface representations miss several features commonly used in CAD,
i.e. higher degree surfaces, a rational representation, and non-uniform
parameterization. These features also hold advantages for analysis.
To take advantage of these common CAD features but also keep the
advantages of a subdivision based formulation, a different geometry
representation is required.

Chapter 1 also indicated that isogeometric analysis might be useful
not only for engineering analysis, but also for the design process itself.
But this area of application is still largely unexplored.

The research questions stated in Section 1.2 define several open ques-
tions and challenges which address these issues. To answer them, this
part of the thesis defines a unified isogeometric analysis platform
based on NURBS compatible subdivision surfaces, combining the ad-
vantages of NURBS and subdivision surfaces for analysis and design.

55
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This platform enables using IGA for traditional engineering analysis
tasks, as well as for new tasks in design and interactive simulation.

To do so, first the state-of-the-art of subdivision-based IGA, described
in the previous part, is advanced to NURBS compatible subdivision in
Section 3.1. This provides users with the precise control over the sur-
face, as with NURBS, but enables the design of freeform surfaces that
are not limited to rectangular patches. The resulting implementation
is then benchmarked with various example problems in Section 3.2
to demonstrate its accuracy and advantages over existing techniques.
Finally, a number of challenges for using a design directly for analy-
sis and some possible artifacts in the analysis results are discussed in
Section 3.3.

Having the necessary foundations, the following chapters build on
this subdivision-based IGA platform. Chapter 4 integrates IGA based
on subdivision surfaces into existing design tools to enable common
engineering analysis tasks as well as to expand the tools available to
designers. In Chapter 5, the presented platform for simulating real-
world physical deformations is then used to improve the realism of
virtual worlds by enhancing them with interactively computed defor-
mations. This is implemented as a service oriented architecture which
makes IGA accessible to a wide range of different applications and
devices.
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3.1 nurbs compatible subdivision for analysis

The NURBS compatible subdivision scheme developed by Cashman
et al. [18] is a superset of Catmull-Clark subdivision. Therefore, all
Catmull-Clark surfaces can also be represented by the NURBS com-
patible subdivision scheme. However, not all research on IGA using
Catmull-Clark is directly applicable to NURBS compatible subdivi-
sion: the definition of an element differs, evaluation of irregular re-
gions needs to be extended to higher degrees, and some areas, like
boundaries, are represented differently. Other features of the NURBS
compatible subdivision scheme, like higher degrees, are not available
in Catmull-Clark, but are important for analysis.

This section extends the previous work on subdivision-based IGA,
as summarized in Section 2.4, to the NURBS compatible subdivision
scheme, providing the first fully NURBS compatible isogeometric
analysis method based on subdivision surfaces. First, Section 3.1.1
discusses how an element, in terms of the finite element method, is
defined using the NURBS compatible subdivision scheme. Then, Sec-
tion 3.1.2 compares different treatments of surface boundaries. After-
wards, Section 3.1.3 discusses evaluation near extraordinary vertices.
Section 3.1.4 covers techniques and improvements for numerical in-
tegration of surface quantities and Section 3.1.5 describes how forces
and constraints are applied to the resulting system of equations.

3.1.1 NURBS compatible Subdivision-based Element

The definition of a subdivision-based element, in terms of FE, as ex-
plained in Section 2.4 is not applicable to the NURBS compatible
subdivision scheme. Therefore, a different definition equivalent to
NURBS-based IGA is chosen.

For uniform subdivision schemes like Loop or Catmull-Clark each
face of the subdivision control mesh is considered an element for
analysis. This is appropriate because each face maps to some surface
area of the resulting subdivision limit surface. But the NURBS com-
patible subdivision scheme also supports non-uniform knot vectors.
Using non-uniform knot vectors with multiple knots, some faces of
the control mesh may not correspond to an area of the limit surface
at all, i.e. they have zero area in the limit. Therefore, a different defi-
nition of an element is required.
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For NURBS compatible subdivision surfaces of odd degree, two knot
intervals, for the parametric u and v direction, are assigned to each
quad in the control mesh, see Section 2.2.3 and Figure 2.15. All faces
in the control mesh where both knot intervals are non-zero can be
considered an element in terms of FE, as they map to some surface
area in the limit. Faces with zero knot intervals are not considered
elements, but only provide knot information and support vertices for
other elements.

Hence, NURBS compatible subdivision-based elements are defined
by non-zero knot spans, like elements for NURBS-based IGA [48].

3.1.2 Boundaries

For open uniform B-spline surfaces, and by extension also subdivi-
sion surfaces like Catmull-Clark, the boundary of the limit surface
does generally not coincide with the boundary of the control poly-
gon. Without any special rules, a Catmull-Clark subdivision surface
shrinks at the boundary with each subdivision step.

To overcome this, and let the limit surface interpolate the boundary
curve defined by the boundary control points, special rules have been
developed for subdivision schemes like Loop [47] and Catmull-Clark
[34].

However, these rules change the underlying representation of the sur-
face, i.e. boundary elements of a Catmull-Clark surface using these
rules cannot be evaluated using B-spline basis functions. While this
is generally not a problem for design, it makes evaluation of the sur-
face more complex for analysis.

Therefore, most previous IGA methods based on subdivision, i.e. [7,
25, 103], use an approach proposed by Schweitzer [82] in which the
boundary of the surface is modeled either explicitly or implicitly us-
ing additional ghost vertices. This allows to define the boundary us-
ing just regular uniform elements, without special rules. Using these
ghost vertices, the tangent/normal of the surface at the boundary can
also be controlled, but as noted by Green [44] this approach unneces-
sarily restricts all derivatives at the boundary to zero. This results in
undesired flat surface regions when using symmetry for design or to
accelerate analysis. Additionally, corners and extraordinary vertices
on the boundary also pose some difficulties using the ghost vertices
approach. Another issue pointed out by Green [44] is that this ap-
proach requires a constraint for each boundary vertex to maintain
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the position of the ghost vertex, even if both translation and rotation
of the vertex are unconstrained.

In contrast to traditional subdivision schemes like Catmull-Clark, the
NURBS compatible subdivision scheme allows for non-uniform knot
vectors, like NURBS. Using non-uniform knots, and in particular mul-
tiple knots for Bézier end conditions, the boundary can be modeled
directly, without any special rules or additional ghost vertices, as ex-
plained in Section 2.2.4.3. Also, corners can be defined exactly by
using multiple knots in both parametric directions of a boundary ele-
ment. Further, the surface normal at the boundary can be intuitively
controlled by just the boundary vertices and their immediate neigh-
bors, simplifying handling of boundary conditions and symmetry
constraints. Using this technique does not restrict higher derivatives
like curvature, unlike the ghost vertices approach for other subdivi-
sion schemes. Also, this approach does not require any constrains for
maintaining the boundary configuration.

However, some restrictions also apply to this technique, as the NURBS
compatible subdivision scheme does not support multiple knots at
extraordinary vertices. Therefore, extraordinary vertices cannot be
placed on boundaries defined using multiple knots, which is usually
not a problem for design.

Also worth pointing out is that boundaries defined using multiple
knots create knot spans with a zero interval. For odd degree surfaces,
where knot spans correspond to edges/faces in the control polygon,
this leads to faces in the control mesh corresponding to a zero knot
interval. However, as the elements for IGA are only non-zero knot
intervals, these faces do not represent an element for analysis. This
is in contrast to IGA based on Catmull-Clark, where all faces of the
control mesh are considered an element for analysis. Therefore, using
the same control polygon, a NURBS compatible subdivision surface
may define fewer elements for analysis than a Catmull-Clark surface,
depending on the knot vectors defined.

3.1.3 Evaluating Irregular Regions

While regular regions of a NURBS compatible subdivision surface,
where all vertices have valence four, can be evaluated as a standard
tensor product B-spline surface, irregular regions near extraordinary
vertices require special treatment.
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In the following, multiple techniques for evaluating the surface and
derivatives within irregular regions are discussed.

3.1.3.1 Patching

One approach to evaluate any point on a subdivision surface is to
convert irregular regions to regular ones. The idea is to, conceptually,
remove irregular regions from the subdivision surface and instead
add regular surface patches which cover the removed surface area. In
the following, a patch is generally defined as a single rectangular B-
spline surface, possibly containing several elements in terms of FE.

Different techniques are available to do so, often using surface patches
of higher degree or with many degrees of freedom to achieve the re-
quired continuity between the patches themselves and the rest of the
subdivision surface. But generally, the regular surface patches can
only approximate the irregular region of the subdivision surface they
replace. An exception to this are flat surface regions, where patches
can exactly represent a given surface.

One particular algorithm called Patching Catmull-Clark Meshes (PCCM)
was presented by Peters [69]. This algorithm enables converting a
Catmull-Clark subdivision surface into a set of smoothly joining bicu-
bic NURBS patches, one for each quad in the Catmull-Clark control
mesh. The resulting regular NURBS patches can then be used to eval-
uate the approximated subdivision surface at any point. This is simi-
lar to a technique known as Bézier extraction in the context of T-spline-
based IGA, where a T-spline surface is converted into a set of NURB-
S/Bézier patches for analysis [84].

For use with NURBS compatible subdivision surfaces of degree 3,
the PCCM algorithm has been adapted to support non-uniform knot
vectors in the initial control mesh and rational weights for the control
points. Both of these features are not supported by Catmull-Clark
subdivision surfaces and are therefore not handled by the original
PCCM algorithm.

The PCCM algorithm works in two stages:

1. Knot Insertion
2. Corner Smoothing

For the knot insertion step, a submesh is defined for each quad in
the Catmull-Clark control mesh. The submesh includes all subquads
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Figure 3.1: A subdivision control mesh with a non-uniform knot vector (left)
is converted to five NURBS patches (right). Edges highlighted in
orange are setup as Bézier-like interpolating boundaries using
multiple knots. Faces marked in blue indicate elements for anal-
ysis, i.e. faces that have non-zero surface area in the limit. The
resulting NURBS patches are derived from the second subdivi-
sion level (center) of the initial control mesh by knot insertion
and corner smoothing.

at subdivision level l of the quad and one ring of direct and diag-
onal neighbor faces around these subquads. For NURBS compatible
subdivision surfaces l > 1 is required for the conversion, unlike with
Catmull-Clark where l > 0 is sufficient in some cases. This is due
to the support for non-uniform knot vectors and an implementation
detail of the NURBS compatible subdivision algorithm, which evens
out large knot intervals during the first subdivision step. Also, faces
which do not define any surface area in the limit, e.g. due to zero knot
intervals, are not converted. Figure 3.1 shows such regions in white
whereas faces with non-zero surface areas are colored blue.

The submesh is then interpreted as the control mesh of a degree 3

NURBS patch. Around extraordinary vertices some control points are
excluded to define a regular control grid, as required for NURBS. For
Catmull-Clark surfaces, Peters [69] assumed uniform knot vectors for
these initial NURBS patches. In contrast, for the NURBS compatible
subdivision scheme the actual knot intervals defined on the underly-
ing subdivision control mesh are assigned to the NURBS patch, as in
the example in Figure 3.1. This way, the existing parameterization of
the subdivision surface, e.g. to define boundaries, is directly used for
the resulting NURBS patches.

The parameterization of the patch is then changed by knot insertion
[14] to have Bézier end conditions. Additional knots are inserted into
the knot vector, new control points are added and existing control
points are updated accordingly. For Catmull-Clark, Peters [69] always
inserts a fixed number of knots to define the desired parameterization.
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Using the NURBS compatible subdivision scheme, the multiplicity of
some knots may already be greater than one, because the parameteri-
zation is taken directly from the subdivision surface. In that case, the
multiplicity is only increased as required for interpolating boundaries
of the patch.

Due to the Bézier boundaries, the resulting surface patch interpolates
the four corner control points exactly. If one of them is an EV, it is
repositioned directly onto the subdivision limit surface. For Catmull-
Clark, an explicit formula for the limit position is given in [45], for
the NURBS compatible subdivision scheme it can be derived by eigen
analysis of the subdivision matrix for the given submesh.

Because all patches generated this way interpolate the shared bound-
ary to all neighbor patches, they all join with at least C0 continuity.
In regular regions, away from EVs, C2 is maintained, as for the subdi-
vision limit surface. To improve the continuity near EVs, the control
points of the generated patches are updated in the next step.

In the corner smoothing step, the position of control points near EVs
are changed to get C1 continuity across the edges of all patches. Here,
the formulas from Peters [69] can be applied unchanged also for the
NURBS compatible subdivision scheme, as they are applied to the
previously generated NURBS patches with Bézier boundaries, which
are now independent of the subdivision representation.

The resulting collection of NURBS patches joins with C1 continuity
near EVs and is C2 everywhere else. And because they provide a
regular tensor product definition of the whole subdivision surface,
these patches can be used to evaluate exact derivatives anywhere on
the subdivision surface.

However, near EVs, the subdivision limit surface is only approxi-
mated by the extracted patches, unless the surface is flat. Therefore,
derivatives can deviate from the real derivatives of the subdivision
limit surface.

The approximation is also visible in the form of surface artifacts near
EVs. To achieve C1 across all patches, the corner smoothing of the
PCCM algorithm creates undesirable flat areas around EVs in some
cases. This change leads to further distortions in the neighborhood of
EVs, which is noticeable especially for EVs with even valence greater
than 4.

Another drawback for analysis is that one element of the initial subdi-
vision control mesh is converted to a NURBS patch with at least 4× 4
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Figure 3.2: Subdividing an initial Catmull-Clark control mesh (left) intro-
duces only regular regions (blue) away from EVs (marked with
•). After the first subdivision step (center), the mesh consists only
of quad faces and the number of EVs is constant. The second sub-
division step (right) and every following step shrink the irregular
regions around EVs.

elements, as demonstrated in Figure 3.1. This increases the number
of elements by a factor of at least 16. As the number of elements is di-
rectly related to computation time, this significantly impacts the time
needed for analysis.

While this approach allows to get exact derivatives anywhere on the
approximated surface, it has some drawbacks that make it less suit-
able for analysis. Drawbacks are that the patching increases the num-
ber of elements and that near EVs, the resulting patches deviate from
an initial curved subdivision surface.

3.1.3.2 Eigen Evaluation

A direct method to evaluate subdivision surfaces at arbitrary param-
eter values was presented by Stam, first for Catmull-Clark [91] and
later also for Loop subdivision [92]. His approach builds on the ob-
servation that the number of EVs, after the first subdivision step, is
constant in a given subdivision surface. With each subdivision step, ir-
regular regions around EVs shrink, while only regular regions are in-
troduced away from EVs. This is illustrated in Figure 3.2 for Catmull-
Clark subdivision. Now, the idea is that, after a sufficient number of
subdivision steps, all EVs are separated by regular regions and any
point away from an EV eventually lies within a regular region. For
Catmull-Clark, regular regions of the surface can be evaluated as uni-
form bi-cubic B-spline patches. Equivalently, for NURBS compatible
subdivision, regular regions are non-uniform B-spline patches of any
odd degree.
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(a) (b)

Figure 3.3: For Catmull-Clark, one subdivision step creates three regular
sectors (gray) which can be evaluated as bi-cubic B-splines. Re-
peated subdivision recursively creates more regular sectors in
the remaining irregular region.

While subdividing until a point of interest is within a regular region
is conceptually simple, it is not practical, as the required subdivi-
sion refinement is computationally expensive and may require large
amounts of memory for complex meshes. Stam [91] showed how to
transform the subdivision operation into its eigenspace, where subdi-
vision is just a scaling operation.

The subdivision refinement operation can be expressed as a matrix
multiplication. Let C0 be k control points surrounding an isolated
EV. For evaluation of Catmull-Clark surfaces Stam introduced two
matrices: The matrix A is the subdivision matrix that creates k new
points from k old control points. Applied to the initial face shown in
Figure 3.3a this results in the unlabeled sector next to the EV in Fig-
ure 3.3b. The extended subdivision matrix Ā additionally introduces
new points defining new regular faces in the region surrounding the
EV. For Catmull-Clark, these new faces correspond to the sectors 1,
2 and 3 in Figure 3.3b. After n = bmin(−log2(u),−log2(v))c subdi-
vision steps, any local parameter location (u, v) ∈ [0, 1]2 away from
the EV is within a regular sector that can be evaluated. Using the
two subdivision matrices A and Ā, the new points C̄n for the n-th
subdivision level are defined by the relation

C̄n = ĀCn−1 = ĀA
n−1C0 n > 1 . (3.1)

A subset of points C̄n are the control points of regular B-spline patches
introduced by the subdivision refinement. For Catmull-Clark, sectors
that can be evaluated as a B-spline are shaded in gray in Figure 3.3. A
picking matrix Pi is used to identify the vertices required for the reg-
ular sector i in the refined mesh, which can then be multiplied with
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B-spline basis functions N(u, v) to evaluate sector si,n at arbitrary pa-
rameter values (u, v):

si,n(u, v) = CT0 (PiĀA
n−1)TN(u, v) . (3.2)

Stam showed that it is possible to avoid explicit subdivision and
rewrite the evaluation from Equation 3.2 using the eigenvalues Λ
and eigenvectors V of the subdivision matrix A and control points
projected into eigenspace Ĉ0 = V−1C0:

si,n(u, v) = ĈT0Λ
n−1(PiĀV)

TN(u, v) . (3.3)

The subdivision matrix only depends on the valence of the EV. There-
fore, the rightmost terms can be precomputed for any sector and de-
sired valence into a set of eigenbasis functions x

x(u, v, i) = (PiĀV)
TN(u, v) (3.4)

which, together with the eigenvalues Λ and inverse eigenvectors V−1

of A form the so called eigenstructure. This precomputed eigenstruc-
ture allows for an efficient evaluation of irregular regions at arbitrary
parameter values:

si,n(u, v) = ĈT0Λ
n−1x(u, v, i) . (3.5)

The general approach described above also applies to the NURBS
compatible subdivision scheme, but the details to implement these
steps differ from Stam [91]. Here, Stam’s evaluation algorithm is ex-
tended to support higher degree subdivision surfaces. In particular,
a different numbering scheme is used which simplifies collecting the
required control vertices for surfaces of different degrees. Also, as
the number of sectors that can be evaluated as regular B-splines in-
creases with degree, a consistent method to enumerate these sectors
is presented. Because the implementation of the NURBS compatible
subdivision scheme is currently limited to odd degrees, only odd de-
gree surfaces are discussed.

Due to the increasing support of higher degree basis functions, at
least (d+ 1)/2 subdivision steps are required to isolate all EVs in a
subdivision surface of degree d. Because of the knot insertion strategy
for NURBS compatible subdivision [18] this also has the effect of cre-
ating regions with only uniform knot values around EVs. Therefore,
only the case of a single EV surrounded by uniform knot intervals is
considered here.

Subdivision matrices A and Ā differ for each valence and for each
degree. The indices of the vertices used for the subdivision matrix
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Figure 3.4: To evaluate a point within an irregular face (gray) near an EV
with valence 5 of a surface of degree 5, three rings of vertices
around the EV, marked with •, are collected and numbered as
shown. Support vertices of the surface patch are indicated by ◦.
Additional vertices marked by � are not required for evaluation,
but are still collected to simplify the implementation.

are defined by collecting r = (d+ 1)/2 rings of vertices around the
EV, starting at the EV. To simplify the collection of vertices for each
degree and valence, the indexing scheme includes vertices not strictly
required for evaluation. Figure 3.4 shows the indices of three rings of
vertices around an EV of valence 5 for a degree 5 subdivision sur-
face.

To extract from all refined vertices those needed for evaluation of the
regular patch region i the picking matrix Pi is employed. Each row
with index j of Pi contains zeros except for column k, which contains
1. The index k corresponds to the index of the j-th support vertex
needed for the regular B-spline patch defining this sector. The size of
the picking matrix depends on the valence of the EV and degree of
the surface. Its number of rows is equal to the number of vertices in a
single B-spline patch of the given degree, i.e. 16 vertices for degree 3,
36 vertices for degree 5. Its number of columns is equal to the number
of collected vertices according to the indexing scheme, e.g. 60 for a
valence 5 EV on a surface of degree 5 as shown in Figure 3.4.

Assuming the EV is located at the top left corner of the initial quad,
sectors are numbered by traversing the subdivided children of that
face in clockwise, depth-first order. The top left child of the first sub-
division level, next to the EV, is not visited. Figure 3.5 shows sector
indices i and which sectors can be evaluated, highlighted in blue, for
three subdivision levels. In contrast to Figure 3.3 evaluating Catmull-
Clark, no sectors can be evaluated as B-spline surfaces after one sub-
division step for the NURBS compatible subdivision scheme. Due to
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(a) (b)

(c) (d)

Figure 3.5: For the NURBS compatible subdivision scheme, the support re-
gion of an EV is larger than for Catmull-Clark. No sector can be
evaluated as a B-spline after one subdivision step (b). Two sub-
division steps (c) are required to define regular sectors (blue) of
degree 3 from an initial face with an EV (a). For higher degree
surfaces, even more subdivision steps are necessary, i.e. three
steps for degree 5 (d).

the size of the support region of an EV in the NURBS compatible sub-
division scheme, where stencil entries have been tuned to guarantee
bounded curvature at and around the EV, sectors shaded in gray in
Figure 3.5b cannot be evaluated. After the second subdivision step,
12 sectors can be evaluated if the surface is of degree 3, as illustrated
in Figure 3.5c. More subdivision steps are required to evaluate subdi-
vision surfaces of higher degree around EVs. With increasing degree,
the number of sectors that can be evaluated as a B-spline surface after
a sufficient number of subdivision steps increases. Figure 3.5d shows
48 sectors that can be evaluated for a degree 5 surface, which only
appear after three subdivision steps.

To create the regular sectors for the picking matrix from the initial
control points, as required by Equation 3.4, the extended subdivision
matrix Ā therefore performs r subdivision steps for the NURBS com-
patible subdivision scheme.
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Like Stam, the presented approach also assumes that the EV is lo-
cated at the origin of the local parameterization of the patch. For
given (u, v) coordinates, the corresponding sector index i and sector-
local (ui, vi) coordinates within this sector can be determined by
virtually following the quad-tree defined by the subdivision levels
from the initial quad to the smallest refinement. The (ui, vi) coordi-
nates are adjusted along the way so that they are always in the range
(ui, vi) ∈ [0, 1]2 for the current sector, as shown in the procedure from
Listing 3.1.

Listing 3.1: Computing the sector index and local parameterization for a
given parameter location.

def sector_from_uv(u, v, degree):

u_i, v_i = u, v

r = (degree + 1) / 2

i = 0

for step in range(r):

LEVELS = r - step - 1

SECTORS_PER_QUAD = pow(pow(2, LEVELS), 2)

if u_i > 0.5 and v_i <= 0.5:

u_i = 2.0 * u_i - 1.0

v_i = 2.0 * v_i

elif u_i > 0.5 and v_i > 0.5:

i += SECTORS_PER_QUAD

u_i = 2.0 * u_i - 1.0

v_i = 2.0 * v_i - 1.0

elif u_i <= 0.5 and v_i > 0.5:

i += 2 * SECTORS_PER_QUAD

u_i = 2.0 * u_i

v_i = 2.0 * v_i - 1.0

else:

i += 3 * SECTORS_PER_QUAD

u_i = 2.0 * u_i

v_i = 2.0 * v_i

return i, (u_i, v_i)

To evaluate an irregular patch at the patch-local parameter location
(u, v) ∈ [0, 1]2, first the number of subdivision steps n needs to be
determined so that the desired parameter location is within a regu-
lar sector. Like for Catmull-Clark, the number of steps is defined as
n = bmin(−log2(u),−log2(v))c. During subdivision, the coordinates
of the parameter location are scaled to (us, vs) = (2n−1u, 2n−1v).
These scaled coordinates are in turn used to find the corresponding
sector index i and sector-local parameters (ui, vi) as defined by List-
ing 3.1.
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Having i, n and (ui, vi), the regular sector can be evaluated, without
explicitly subdividing, by using the precomputed eigenstructure in
the same way as in Equation 3.5:

si,n(ui, vi) = ĈT0Λ
n−1x(ui, vi, i) . (3.6)

This enables fast evaluation of irregular regions of any NURBS com-
patible subdivision surface at arbitrary parameter values.

One drawback of this approach for NURBS compatible subdivision
surfaces is that the precomputed eigenstructure gets very large with
increasing degree. For higher degree surfaces, the support of the ba-
sis functions is larger, requiring more subdivision steps to get regular
sectors. As a result, the number of sectors that can be evaluated per
face increases, as shown in Figure 3.5. As the eigenstructure for each
sector needs to be precomputed for each supported valence and de-
gree, this limits the practical use of this approach. For valences from 3

to 12 the eigenstructure has a size of approximately 1 MB for degree
3. For higher degrees the size increases to 13 MB, 143 MB and 1.29

GB for degrees 5, 7 and 9 respectively. Due to this rapid growth in
size it becomes inefficient to precompute these structures for degrees
higher than 9.

Due to the re-parameterization of the surface during the implicit sub-
division to evaluate the point of interest in a regular sector, deriva-
tives evaluated with this approach need to be scaled back to the ini-
tial parameterization. Stam [91] suggested to scale the p-th derivative
by a factor of 2np, where n is the number of subdivision steps. For
the NURBS compatible subdivision scheme the additional r− 1 sub-
division steps of the extended subdivision matrix must be taken into
account and derivatives need to be scaled by 2(n+r−1)p. As already
pointed out by Stam, this scaling causes derivatives close to an EV,
where many subdivision steps are required to evaluate points and n
becomes large, to diverge.

Despite this issue, this approach is favored for evaluating irregular
surface regions because it always evaluates the exact geometry of the
limit surface, not only an approximation as for the patching method
described in Section 3.1.3.1. The effects of diverging derivatives and
improvements to reduce them for analysis are discussed in the next
section.

For the remainder of this thesis, the presented extension to Stam’s
algorithm is used to evaluate quantities of all surfaces, except when
noted otherwise.
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3.1.4 Numerical Integration

For analysis, a common requirement is to integrate arbitrary func-
tions over a domain, represented by the surface geometry. To do so,
numerical integration techniques like Gaussian quadrature [94] are
used.

Gaussian quadrature allows to integrate functions on a parametric
surface by only evaluating it at certain specific parameter values xi,
the quadrature points, and compute the final result as a weighted
sum of these individual results with weights wi:∫1

−1
f(x)dx ≈

k∑
i=1

wif(xi) (3.7)

A k point Gaussian quadrature rule enables integrating polynomi-
als of degree 2k− 1 exactly. Therefore, for surfaces of bi-degree d, a
d+1
2 ×

d+1
2 Gaussian quadrature rule is used. The integration is ex-

act for regular, uniform, non-rational parts of a subdivision surface,
i.e. where polynomial B-spline basis functions are used. However, the
surface around an EV is not a single B-spline patch and cannot be
exactly represented by a polynomial. As a result, errors in analysis
results are observed in regions near EVs, as will be shown in Sec-
tion 3.2. Similarly, regions with non-uniform knot vectors or rational
basis functions also lead to errors using standard Gaussian quadra-
ture, as shown in Table 3.1.

To improve analysis results, the mesh can be refined (h-refinement),
the degree of the surface can be increased (p-refinement) or the nu-
merical integration can be improved. Numerical integration can be
improved for example by using more quadrature points. Also, for
other subdivision schemes, alternative quadrature rules were pro-
posed to improve numerical integration, e.g. mid edge quadrature
for Loop subdivision [50]. This section focuses on improving Gaus-
sian quadrature for numerically integrating NURBS compatible sub-
division surfaces.

Because using many quadrature points for integration increases com-
putation time for analysis significantly, adaptive quadrature is pro-
posed as a way to efficiently improve analysis results in regions where
standard Gaussian quadrature is not exact.

Based on Gaussian quadrature, I present a simple adaptive quadra-
ture scheme for arbitrary subdivision surfaces which adaptively in-
creases the number of quadrature points in three cases:
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• for elements with non-uniform knot vectors
• for rational elements, and
• for elements within the support of an EV.

The exact number of quadrature points used for each of these cases
requires a trade-off between accuracy and performance. Here, they
were chosen to get a significant improvement in accuracy over stan-
dard quadrature, but still get reasonable performance for common
mesh configurations, as the performance heavily depends on the ac-
tual mesh used.

In the first case, for elements with non-uniform knot vectors, the num-
ber of quadrature points is increased by one in each parametric direc-
tion, e.g. instead of a 2 × 2 Gauss rule, a 3 × 3 quadrature rule is
used for a surface of degree 3. In other words, for elements of degree
d with non-uniform knot vectors d+32 ×

d+3
2 Gaussian quadrature is

used.

Similarly, for rational elements the number of quadrature points is
increased by two, leading to d+5

2 ×
d+5
2 Gaussian quadrature for ra-

tional elements of degree d.

Finally, there are two cases around extraordinary vertices: elements
directly adjacent to an EV and elements which have an EV within
their support. Experiments, comparing the integrated surface area
with varying number of quadrature points to known reference values,
showed that using at least a 4× 4 Gaussian quadrature rule around
EVs improves integration accuracy significantly. This is in accordance
to [105] where a 4× 4 Gaussian quadrature for both regular and ir-
regular elements of Catmull-Clark subdivision surfaces was used to
improve results. For better convergence of analysis results under h-
refinement, the remainder of this thesis uses a 10 × 10 quadrature
rule for elements directly adjacent to an EV, whereas for all other ir-
regular regions a 5× 5 rule is used, unless specified otherwise. For
higher degree surfaces standard d+1

2 ×
d+1
2 Gaussian quadrature is

used if d+12 is larger than the predefined number of adaptive quadra-
ture points.

Table 3.1 lists the absolute errors of standard Gaussian quadrature
and the proposed adaptive integration scheme for integrating the sur-
face area of different subdivision surfaces of degree 3 with a known
area. The grid has a reference surface area of 4.0. Different variations
are tested: with uniform knot vectors, with non-uniform knot vec-
tors with a zero knot interval (shaded in gray), and with multiple
EVs (marked in orange). Additionally, a rational control mesh for a
quarter cylinder with a reference area of 4.71239 is compared. Its con-
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Table 3.1: Comparison of integration errors of standard Gaussian quadra-
ture and adaptive integration for different control meshes.

Mesh Uniform Non-Uniform EV Rational

Gaussian 1.77 · 10−15 2.17 · 10−4 3.15 · 10−2 1.07 · 10−2

Adaptive 1.77 · 10−15 8.88 · 10−16 2.97 · 10−5 1.74 · 10−5

trol mesh has zero knot intervals at the boundary (gray) and control
points with a rational weight of 0.804738 (marked in blue). In all cases,
the adaptive integration scheme significantly reduces the absolute er-
ror of the computed surface area at the cost of increased computation
time.

Improvements of analysis accuracy as a result of using this adaptive
quadrature scheme will be further discussed in Section 3.2.1.

3.1.5 Forces and Constraints

To actually be able to solve the system of equations resulting from in-
tegrating the thin shell equations, boundary conditions in the form of
constraints and forces need to be applied to the equations. The phys-
ical interpretation of this requirement is that without any constraints
the object is free floating in space, and any applied force will move it
infinitely. Therefore, in three dimensions, at least six DOF need to be
constrained to prevent any rigid body translation and rotation. While
constraints are necessary to restrict any rigid body motion of the sur-
face, and to enforce other boundary conditions, forces are used to
simulate different real world environmental influences.

There are different types of forces that can be applied for analysis.
In the simplest case, a force vector f = (fx, fy, fz) is applied directly
to a single control point of the subdivision control mesh. In classi-
cal FEM, these forces are typically called point forces or point loads,
because they are only applied locally to a single node. For IGA, how-
ever, this is generally not true. Here, a force applied to a single sub-
division control point spreads to all other basis functions that have
non-zero support at this control point. To define a real point force,
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acting only on a single subdivision control point, a non-uniform knot
vector with multiple knots, similar to the boundary case, can be used
to define an interpolating control point, which is only influenced by
a single basis function. Point forces can be exactly applied at such
interpolating control points. This is an advantage of the NURBS com-
patible subdivision scheme, which allows non-uniform knot vectors,
over Catmull-Clark or Loop, where point forces cannot be accurately
defined. Note that for thin shell analysis such an interpolating control
point can only be defined at the boundary of the surface, as multiple
knots reduce the continuity of the surface to C0 at the interpolated
point, while Kirchhoff-Love shells require C1.

To apply forces to any location away from the subdivision control
points, evaluating the corresponding basis functions at some param-
eter location (u, v) yields a set of weights that can be used to spread
the force to all relevant basis functions. Similar to above, this also
means that the force is not a point force, acting on a single node, but
is spread over a larger region depending on the basis functions. Ex-
cept at interpolating control points, as described above, exact point
forces cannot be defined with subdivision based IGA.

Another common type of force is pressure or body force. The differ-
ence between them is that while pressure only acts on the surface of
the material, body forces are applied throughout the thickness/vol-
ume of the material. While the forces mentioned previously act only
locally, pressure and body forces are defined per unit area/volume
and are therefore numerically integrated over the region of interest.

To constrain the solution space for IGA, different types of boundary
conditions can be applied. The most common type of boundary condi-
tions are Dirichlet conditions, which prescribe the function value of the
solution, i.e. the displacements for thin shells, at certain locations.

In its simplest form, the displacement of a subdivision control point
is prescribed to a constant vector c = (cx, cy, cz). For thin shells, this
amounts to constraints for the corresponding three unknowns, for
x,y, z displacement, in the system of equations, as shown in Equa-
tion 3.8.

ui = cx ui+1 = cy ui+2 = cz (3.8)

Different methods can be used to enforce the prescribed values of
these unknowns when solving the system of equations, some of them
are explained e.g. in [40] or [39]. One approach is to (conceptually)
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partition the system of equations from Equation 2.52 into equations
corresponding to unknown DOF, in the following indicated by sub-
script u, and equations corresponding to DOF prescribed by Dirichlet
conditions, using subscript d. This leads to a system of equations of
the form:

[
Kdd Kdu

Kud Kuu

][
ud

uu

]
=

[
fd

fu

]
(3.9)

The unknowns in ud are prescribed and thus known, therefore the
equations from the first row of Equation 3.9 can be discarded or re-
placed with trivial equations. The remaining equations can be written
as:

Kudud +Kuuuu = fu (3.10)

Moving the first term, which is also known, to the right-hand side
yields the modified system of equations with the applied constraints:

Kuuuu = fu −Kudud (3.11)

Note that for IGA based on approximating subdivision schemes, like
Catmull-Clark or the NURBS compatible subdivision scheme, the dis-
placement of the limit surface is generally not equal to the displace-
ment of the subdivision control points, which are the degrees of free-
dom for analysis.

To actually constrain the displacement of the limit surface, Lagrange
multipliers can be used, as explained e.g. in [39]. They are added as
additional rows and columns to the stiffness matrix and allow more
general constraints of the form:

α1ui +α2uj + · · ·+αnum = c (3.12)

The coefficients αi for all Lagrange multiplier constraints define a
matrix A. Similarly, the right hand sides of the constraints, i.e. c in
Equation 3.12, are collected into a vector b. Together, an augmented
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Figure 3.6: Displacing the subdivision limit surface using a Lagrange multi-
plier constraint.

system of equations is defined that includes the Lagrange multipliers
λ as additional unknowns:

[
K AT

A 

][
u

λ

]
=

[
f

b

]
(3.13)

These unknowns λ can be interpreted as the constraint forces re-
quired to satisfy the Lagrange multiplier constraints.

By using the values of the subdivision limit stencil for a particular
point on the limit surface as factors αi for the corresponding un-
knowns, the displacement of the limit surface can be prescribed for
analysis. Again, to constrain the x,y, z displacement of a particular
point on the limit surface, three separate constraints are necessary.
Figure 3.6 shows an example for exactly displacing a point on the
limit surface independent of the control points. The control points
are moved automatically by the thin shell simulation to satisfy the
constraint.

Green [44] shows more use cases of this type of constraints. One ex-
ample is to constrain the tangent of the boundary of a subdivision
surface without also constraining all derivatives to zero, as is the case
for other implementations based on Loop or Catmull-Clark discussed
in Section 3.1.2. Using the NURBS compatible subdivision scheme, ad-
ditional Lagrange multiplier constraints are not necessary as bound-
aries are defined with multiple knots. In this case, a simpler type of
constraint can be used to restrict boundary tangents.

To define symmetries or to fix tangents at the boundary, two un-
knowns ui and uj can be linked so that their value is directly related
by some factor β:

ui = βuj (3.14)
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Using β = 1, the two unknowns are constraint to have the same value.
If this is applied to unknowns of a boundary control point and its
immediate neighbor, the orientation of the tangent is fixed at this
point, as described in Section 3.1.2.

On the other hand, for a boundary explicitly modeled using ghost
vertices, β = −1 can be used for the unknowns of the control points
immediately inside and outside of the boundary to maintain the cor-
rect position of the ghost vertices (assuming the boundary control
point itself is fixed).
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3.2 comparison of analysis results

In this section, the isogeometric analysis method based on NURBS
compatible subdivision surfaces, as described in Section 3.1, will be
evaluated regarding correctness and convergence with various nu-
merical example problems commonly used in the literature.

3.2.1 Poisson Equation

The first example does not yet use the subdivision-based Kirchhoff-
Love formulation, but instead demonstrates solving a simpler Poisson
equation. This equation can also be found as an example problem in
other IGA work e.g. [56, 65].

The Poisson equation from Equation 3.15 is solved on the square do-
main Ω = [−1, 1]2 with homogeneous Dirichlet boundary conditions
on the surface boundary ∂Ω. The operator ∇2 in Equation 3.15 is the
Laplace operator on the manifold.

−∇2u = 1 in Ω

u = 0 on ∂Ω
(3.15)

The reference solution for this problem, in form of a series, as pro-
vided by Lee [56], is:

u(x,y) =
1− x2

2
−
16

π3

∞∑
k=1
k odd

sin(kπ(1+ x)/2)
k3 sinh(kπ)

×

(sinh(kπ(1+ y)/2) + sinh(kπ(1− y)/2))

(3.16)

Having a reference solution for the whole surface domain allows a
detailed comparison of the expected and actual analysis results.

Figure 3.7 shows (a) the parameterization of the domain defined by
a regular subdivision surface of degree 3 with (b) the solution of
the Poisson equation from Equation 3.15. Note that the subdivision
control mesh, overlaid with dashed lines in (b), has more faces near
the boundary, compared to the parameterization. The reason is that



78 an isogeometric analysis platform for analysis and design

(a) (b)

Figure 3.7: A regular parameterization of the domain (a) is used to solve
the Poisson equation. The numerical result (b) is overlaid with
the subdivision control mesh used to define the elements of the
parameterization.

the boundary is defined using multiple knots, as explained in Sec-
tion 3.1.2. Faces corresponding to zero knot intervals vanish in the
parameterization and are thus not considered an element for analy-
sis.

Figure 3.8 compares the errors of solutions using (a) standard Gauss
quadrature and (b) the adaptive quadrature presented in Section 3.1.4.
Because all elements of the domain are regular, adaptive quadrature
is only used near boundaries, where knot vectors are non-uniform be-
cause they contain multiple knots. Even for this case, adaptive quadra-
ture significantly reduces the overall error of the solution. The L2 er-
ror of the result in Figure 3.8a, using standard Gauss quadrature, is
0.00265 while for the result in Figure 3.8b, using adaptive quadra-
ture, it reduced to 0.00215. The remaining errors are mainly due to
the coarse control grid, which cannot accurately represent the solu-
tion. A more accurate result can be obtained with h-refinement, i.e. by
subdividing the control mesh and thus reducing the overall element
size.

To test the effect of extraordinary vertices on the result, and to show
improvements of adaptive quadrature, the domain has also been pa-
rameterized using an irregular subdivision surface of degree 3, shown
in Figure 3.9a. This parameterization has slightly more elements com-
pared to the previous regular example and therefore leads to lower
errors in most cases. The effect of adaptive quadrature is shown in
Figure 3.9b, where regions near EVs and near the boundary have
more quadrature points than regular regions, as explained in Sec-
tion 3.1.4.
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(a) (b)

Figure 3.8: Error of the numerical solution of the Poisson equation on the
regular domain using (a) standard Gauss quadrature and (b)
adaptive quadrature.

(a) (b)

Figure 3.9: Irregular parameterization of domain for Poisson equation (a)
and location of quadrature points for adaptive quadrature (b).

The results using standard Gauss quadrature in Figure 3.10a show a
larger error in regions near extraordinary vertices. Using the adaptive
quadrature scheme from Section 3.1.4 the errors in Figure 3.10b are
uniformly small over the whole domain, unaffected by extraordinary
vertices. This improvement is also reflected in the L2 error, which
is 0.00222 with standard Gauss quadrature and only 0.00109 with
adaptive quadrature.

To compare the rate of convergence under h-refinement of the differ-
ent parameterizations and integration methods, multiple subdivision
levels of each variant are computed. Following [7], the measure of

element size h is defined as h =
√
A
m , with A being the surface area

of the domain and m the number of elements. The results are shown
in Figure 3.11. With the adaptive quadrature scheme, the L2 error
decreases for both the regular and the irregular parameterization ap-
proximately with order O(h3) for these degree 3 surfaces, which is
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(a) (b)

Figure 3.10: Error of the numerical solution of the Poisson equation on an
irregular domain using (a) standard Gauss quadrature and (b)
adaptive quadrature.

Figure 3.11: Convergence of solutions using h-refinement when solving
the Poisson equation on different domains and with different
quadrature rules.

optimal according to [65] and matches their results using Catmull-
Clark subdivision. However, they needed to evaluate the subdivision
surface at subdivision levels up to seven to get good accuracy near
EVs. Note that without adaptive quadrature, irregular regions show
slow convergence. Also, the boundaries of the regular mesh, defined
using non-uniform knot vectors, have a slightly negative effect on
convergence if not evaluated using adaptive quadrature. A possible
explanation for this is that these regions are not uniformly refined
during subdivision.

3.2.2 Clamped Plate

For the next example, a clamped plate subject to a uniform load is sim-
ulated using subdivision-based Kirchhoff-Love thin shell elements.
Clamping the plate also constrains the normal at the boundary, in
addition to the displacement of the boundary. As this requires accu-
rate treatment of the boundary, including derivatives, this example
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Figure 3.12: Convergence of solutions for the clamped plate problem using
different representations for the boundary.

is used to compare the boundary representation using non-uniform
knot vectors, explained in Section 3.1.2, to boundaries modeled with
uniform elements, as used for example in [7, 25, 103].

The domain of the square plate with length L = 10 is defined using
regular meshes, similar to the regular input for the Poisson example
in Figure 3.7. The first variant defines the boundary using uniform
elements by mirroring vertices inside the boundary to the outside,
creating additional ghost vertices defining the boundary. The second
variant makes full use of the NURBS compatible subdivision scheme
and defines the boundary using multiple knots, creating Bézier end
conditions, as explained in Section 3.1.2.

The materials are chosen as in [58], where this example problem is
used to compare the convergence of shells with a high slenderness ra-
tio. The Young’s modulus is E = 1.092 · 106, Poisson’s ratio is ν = 0.3
and the thickness is t = 1.0 · 10−5 to define a plate with slenderness
ratio of L/t = 106. The uniform load is defined as p = 1.0.

The reference solution for this example is discussed in [96], where the
maximum displacement u of the square plate is defined as

uref =
0.001265319087pL4

D
with D =

Et3

12(1− ν2)
(3.17)

Figure 3.12 shows the convergence of the relative error |u−urefuref
| for the

two mesh variants under refinement through subdivision. As already
observed by Green [44], the error for the mesh with boundaries de-
fined using uniform elements converges slowly. Green solved this by
using Lagrange multipliers to enforce the clamping at the boundary,
instead of using constraints for the boundary control points and their
immediate neighbors. However, this approach adds new unknowns,
the Lagrange parameters, to the system of equations, increasing the
time needed to solve the system.
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In contrast, using non-uniform knot vectors with multiple knots to
define the boundaries leads to optimal convergence in the order of
O(N2), where N is the number of control points in the mesh, without
any additional unknowns.

3.2.3 Patch Test

The patch test is often used to assess whether finite elements are
convergent and if they are implemented correctly. However, the patch
test is only an indicator and is neither necessary, nor sufficient to
assess the usefulness of a finite element implementation.

The patch test tests various rigid body motions and constant strain
states.

According to Cottrell et al. [30], an important property to pass the
patch test is that the basis functions form a partition of unity. While
this is indeed important, because having a partition of unity is re-
quired for the geometry to be affine invariant, it is not enough.

Most subdivision schemes like Loop, Catmull-Clark or the NURBS
compatible subdivision scheme do form a partition of unity, but fi-
nite elements using these representations do generally not pass the
patch test. The reason is that using Stam’s method for evaluation, as
described in Section 3.1.3.2, derivatives cannot be evaluated exactly
close to extraordinary vertices.

The same is true for T-splines containing extraordinary points (which,
for T-splines, are often called star points). To represent a T-spline
surface with extraordinary points, a subdivision scheme called T-
NURCCS is employed. To pass the patch test using T-splines, a tech-
nique called Bezier extraction is used, which transforms the T-spline
surface into regular NURBS patches around extraordinary vertices.
The same technique can also be used for subdivision surfaces, e.g. as
described by Peters [69] for Catmull-Clark surfaces and discussed in
Section 3.1.3.1 for NURBS compatible subdivision.

This allows to pass the patch test using subdivision-based isogeomet-
ric analysis as demonstrated in the following examples.

The setup for all tests is similar to patch tests by Scott [85]. For all
tests an irregular degree 3 surface, with two EVs, is used to define
the unit square domain Ω = [0, 1]2. The control mesh and parameteri-
zation of this initial mesh are shown in Figure 3.13. The boundary ∂Ω
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(a) (b)

Figure 3.13: Control mesh (a) and parameterization (b) of surface used for
patch tests.

of the surface is constraint differently for each test. In most cases, dis-
placements ux along the x-axis or uy along the y-axis are prescribed
for the whole boundary ∂Ω. For the stretching tests, some constraints
affect only a certain part of the boundary, i.e. bx constrains the x
component of boundary vertices along the y-axis with x = 0 and by
restricts the y component of boundary vertices along the x-axis with
y = 0.

The performed patch tests and their boundary conditions are:

• Non-rigid in plane rotation

ux = 0.1y

uy = −0.1x

• Horizontal shearing

ux = 0.1y

uy = 0.0

• Vertical shearing

ux = 0.0

uy = 0.1x

• Stretching along the x-axis

ux = 0.1x

by = 0.0

• Stretching along the y-axis

bx = 0.0

uy = 0.1y
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(a) (b)

Figure 3.14: Results for the non-rigid rotation test using the PCCM method
showing the expected linear displacement profiles in x-direction
(a) and y-direction (b).

• Rigid translation on the x-axis

ux = 0.1

uy = 0.0

• Rigid translation on the y-axis

ux = 0.0

uy = 0.1

For the simulated material of the shell the Young’s modulus E = 1

and Poisson’s ratio ν = 0.3 are used. The thickness, although not
relevant for these examples, is set to t = 0.1.

Both evaluation methods described in Section 3.1.3 are compared. Ad-
ditionally, for the evaluation based on Stam’s algorithm from Sec-
tion 3.1.3.2 standard Gauss quadrature is compared to the adaptive
quadrature scheme discussed in Section 3.1.4. For the other evalua-
tion method, using the PCCM algorithm to extract NURBS patches,
all elements are evaluated using 3× 3 Gauss quadrature, to account
for the non-uniform parameterization of these extracted patches.

Table 3.2 summarizes the maximum errors for the displacements of
all evaluated patch tests computed using double precision floating-
point numbers. Only the PCCM evaluation method passes all patch
tests with all errors being zero up to machine precision. While the
adaptive quadrature scheme is an improvement over standard Gauss
quadrature, it is still not sufficient to pass all patch tests exactly.

The results for all patch tests using the PCCM method are shown in
Figures 3.14 (rotation), 3.15 (shear), 3.16 (stretch) and 3.17 (transla-
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(a) (b)

Figure 3.15: Results for the horizontal (a) and vertical (b) shearing tests. Us-
ing the PCCM method results in exactly linear displacement
profiles in x-direction (a) and y-direction (b).

(a) (b)

(c) (d)

Figure 3.16: Results for the stretch patch tests in x-direction (a, b) and y-
direction (c, d). In all cases, the PCCM method reproduces ex-
actly linear displacement profiles in both x-direction (a, c) as
well as in y-direction (b, d).
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(a) (b)

Figure 3.17: Results for the translation patch tests in x-direction (a) and y-
direction (b). With the PCCM method, exactly constant displace-
ments are achieved in both cases.

tion), demonstrating exactly linear or constant displacements for all
tests.

Table 3.2: Maximum errors for different patch tests.

Test PCCM Stam Stam (adaptive)

Rotation 2.51E-16 4.13E-16 2.37E-16

Shear Horizontal 2.25E-16 8.37E-05 2.42E-06

Shear Vertical 1.67E-16 8.37E-05 2.42E-06

Stretch X 2.42E-16 2.01E-04 4.59E-06

Stretch Y 3.49E-16 1.98E-04 4.56E-06

Translation X 2.97E-16 3.39E-15 3.29E-15

Translation Y 3.06E-16 3.35E-15 3.30E-15

It has been shown that IGA based on NURBS compatible subdivision
surfaces is able to exactly pass the patch test using a patch extrac-
tion method, similar to how T-splines pass the patch test [85]. To the
author’s knowledge, this has not been shown before for any subdivi-
sion scheme like Catmull-Clark, and was by some considered a weak
point of subdivision surfaces for isogeometric analysis.

However, despite required to pass the patch test, for the rest of this
thesis the patch extraction method is not used for evaluation of the
subdivision surface. The main reasons are that, for practical use, the
evaluation method based on Stam’s approach is faster, with similar
accuracy, and is able to exactly evaluate curved surfaces near EVs,
which are only approximated using the patch extraction approach.
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3.2.4 Internal Pressure

In this example a cylindrical shell subject to internal pressure is simu-
lated. Similar problems are solved for example in [48] and [103]. Note-
worthy about this example is that there exists an analytic reference
solution by Timoshenko and Woinowsky-Krieger [97] for the whole
surface. Therefore, this example is ideally suited for a detailed com-
parison of different surface representations. In the following, the im-
portance of a rational representation and advantages of non-uniform
parameterization and higher degree surfaces are highlighted.

For reference, the analytic solution for the displacement u from [97],
to which all results are compared, is provided in Equation 3.18. For a
cylinder with length L, radius R and shell thickness t the solution is
valid for x ∈

[
−L2 , L2

]
. This solution assumes that the open boundaries

of the cylinder are simply supported, i.e. their position is fixed, but
the tangents are free.

u(x) = −
pL4

64Dα4

(
1 −

2 sinα sinhα
cos 2α+ cosh 2α

sinβx sinhβx

−
2 cosα coshα

cos 2α+ cosh 2α
cosβx coshβx

)
with α =

βL

2
β =

(
Et

4R2D

) 1
4

D =
Et3

12(1− ν3)

(3.18)

For the following examples, a cylinder with length L = 5.0 and radius
R = 1.0 is simulated with an assumed material of thickness t = 0.1
with Young’s modulus E = 105 and Poisson’s ratio ν = 0.0.

Using NURBS compatible subdivision surfaces, a quarter of the cylin-
der can be defined exactly using a single rational patch. The solution
for the whole cylinder is obtained by symmetry which is ensured
by applying symmetry conditions to the corresponding boundaries
of the quarter cylinder. To provide the necessary DOF for deforma-
tions along the length of the cylinder, a surface with three equally
sized elements along the length is used as the initial representation,
as shown in Figure 3.18a. Denser representations of the exact cylinder
are obtained by simply subdividing.

Figure 3.19 shows the deformed results of the first refinement level
of the initial surface for degrees 3, 5 and 7. The color indicates the
absolute distance to the reference solution. There are too few degrees
of freedom in the vertical direction to exactly represent the solution,
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(a) (b)

Figure 3.18: For the internal pressure example, two surface variants are com-
pared: a rational quarter cylinder (a) and a Catmull-Clark ap-
proximation of a full cylinder (b). The rational surface uses
symmetry to define the full cylinder and can be modeled with
surfaces of different degree. Here, the degree 3 control mesh is
shown for the given parameterization.

(a) (b) (c)

Figure 3.19: Errors for simulated internal pressure for the first refinement of
rational surfaces of degree 3 (a), 5 (b) and 7 (c).

resulting in a wavy pattern in the error visualization. These errors
vanish for results using more degrees of freedom along the length.
Higher degree surfaces perform visibly better using the same number
of elements in the surface. The degree 7 result is already close to the
reference solution after the first refinement. Further subdivision, to
provide more DOFs along the length of the cylinder, leads to results
close to the reference solution, as shown in Figure 3.20 for the second
refinement level of the surfaces.

Modeling the exact cylinder surface is not possible with Catmull-
Clark due to lack of a rational representation. To get a good approx-
imation of the cylinder surface, the full cylinder is modeled with-
out symmetries. For the initial coarse surface the cylinder is approx-
imated with eight control points along its circumference, sampled
from an exact circle. Similar to the rational surfaces, three equally
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(a) (b) (c)

Figure 3.20: Errors for simulated internal pressure for the second refinement
of rational surfaces of degree 3 (a), 5 (b) and 7 (c).

sized elements are defined along the length of the cylinder. The ini-
tial control mesh and the corresponding surface parameterization is
shown in Figure 3.18b. Denser representations of the surface are also
obtained via subdivision, as for the rational surfaces. Initial inaccu-
racies due to the non-rational representation will therefore also be
present in the denser version of the geometry.

However, if the control points of the subdivision surface are placed
on a circle of a certain radius r, the actual limit surface will have a
radius smaller than that, because Catmull-Clark is an approximating
subdivision scheme. To make up for this, the control points for the
Catmull-Clark cylinder are placed on a circle with a larger radius to
approximate a circle of radius rtarget in the limit. The radius r depends
on the number of control points n used to define the circle and can
be derived from the limit stencil S = [1, 4, 1]/6 of the corresponding
uniform B-spline curve of degree 3 by solving∥∥∥∥∥

3∑
i=0

cp(r,n)iSi

∥∥∥∥∥ = rtarget (3.19)

for some curve segment of three control points cp from a circle cen-
tered at the origin with radius r which is approximated with n con-
trol points. For a Catmull-Clark cylinder modeled with eight control
points around its circumference, the radius r = 1.10819418755439 re-
sults in a limit surface with a radius of approximately 1.0.

Figure 3.21 shows the results for the second and the third refinement
of the initial cylinder geometry. The Catmull-Clark solution for the
second refinement in Figure 3.21a has a larger error than the first and
second refinements using NURBS compatible subdivision of degree
3 shown in Figure 3.19a and Figure 3.20a respectively. The reason for
the larger errors near the top and the bottom of the cylinder is the
different handling of boundaries. For the same number of elements
along the height, the Catmull-Clark solution has less degrees of free-
dom inside the surface, because some vertices are outside the bound-
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(a) (b)

Figure 3.21: Errors for simulated internal pressure for the second (a) and
third (b) refinement of a Catmull-Clark surface. The vertical
lines of error are due to the inaccurate representation of the
cylindrical geometry.

ary to define the boundary curve. In contrast, using a non-uniform
parameterization to define the boundary for NURBS compatible sub-
division surfaces, all control points are inside the surface. Therefore,
the complex solution near the top and bottom boundaries can be bet-
ter represented.

Also worth noting is that the Catmull-Clark solutions show visible
vertical artifacts, which can be seen in Figure 3.21 and are also clearly
visible in [103]. These artifacts resemble the initial control mesh us-
ing eight vertices along the circumference to define the cylinder and
are also present in all results for the denser, subdivided meshes. The
source of these errors is the initial non-rational control mesh, which is
only an approximation of an exact cylinder. The geometric error intro-
duced in this control mesh is also present in all subdivided meshes be-
cause the limit surface does not change with subdivision. To actually
remove these errors for meshes with more DOFs, the denser meshes
should be again sampled from an exact cylinder, not created by subdi-
vision. However, this is only possible in simples cases like this, where
the geometry is known to be a cylinder. In a larger structure, such
artifacts due to geometric errors in the initial control mesh cannot
be easily removed. This highlights the importance of a rational rep-
resentation to exactly define common surfaces like circles, cylinders,
spheres and other conic sections.

Figure 3.22 summarizes the results for the different geometry repre-
sentations at different refinement levels. For all results, the L2 error
has been computed for only one quarter of the surface, to normal-
ize between the variants using symmetry or not. The Catmull-Clark
results are noticeable worse than the solutions using NURBS com-
patible subdivision surfaces of degree 3. Initially this is due to hav-
ing less degrees of freedom near the boundary. With more degrees
of freedom, like in Figure 3.21b where the solution at the boundary
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Figure 3.22: Convergence of L2 error under mesh refinement for simulating
internal pressure with different surface representations.

can be well represented, there remains an error from the geometric
approximation of the exact cylinder. On the other hand, NURBS com-
patible subdivision surfaces, especially using higher degrees, perform
well.

3.2.5 Shell Obstacle Course

The shell obstacle course consists of several benchmark problems de-
fined in [11] and [60] and is commonly used in the literature to test
the accuracy of (isogeometric) thin shell implementations, e.g. in [9,
25, 44, 48, 52]. While there are reference results given for all of the
examples, they are not computed analytically, but are the result of a
very dense simulation. Therefore, a slight deviation from these results
is expected for different implementations, as is the case e.g. in [25, 52]
and others.

All examples are described by simple cylindrical or spherical surfaces.
While such surfaces can be exactly represented using rational NURBS
compatible subdivision surfaces, they can only be approximated by
other subdivision schemes such as Catmull-Clark.

Another advantage of the NURBS compatible subdivision scheme is
the support for higher degree surfaces, which improve convergence
rates, as will be demonstrated in the following.

These examples also demonstrate the use of symmetries. The main
reason to use symmetries is that exact point forces, as required by
some of the problems, can only be applied to interpolated control
points, i.e. control points which are only supported by a single ba-
sis function. If multiple basis functions have support on a control
point, each force applied to this control point spreads to the neigh-
boring control points, according to the basis functions. Such interpo-
lating control points can be defined using multiple knots, as used on
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the boundary. But without additional constraints they can only be
located on the boundary to not violate the continuity requirements
for Kirchhoff-Love shells. Therefore, symmetries are used to define
surface boundaries and interpolating points at the location where a
point force is required. Further, the use of symmetries allows to only
simulate a part of the whole surface which reduces computation time
significantly.

To compare isogeometric analysis based on NURBS compatible sub-
division surfaces to existing implementations the following results
for the shell obstacle course also include results using Catmull-Clark
subdivision, i.e. only uniform elements of degree 3 with an explicitly
modeled boundary using ghost vertices, as used in e.g. [7, 25, 103].

Because Catmull-Clark surfaces cannot exactly represent conic sec-
tions, like the spherical and cylindrical shapes for these examples, all
control vertices for Catmull-Clark are placed exactly on the analytic
surface to approximate it. One exception to this is near symmetry
boundaries, where the control points need to line up to define the
symmetry conditions. Further, denser meshes cannot be derived by
subdivision as this would keep the approximation error of the coars-
est mesh, as seen in the previous example in Section 3.2.4. There-
fore, each denser control mesh is constructed such that every control
point is sampled directly from the conic. Another point to note is that
Catmull-Clark surfaces do not support true point forces, because in-
terpolating control points cannot be defined without special rules.

3.2.5.1 Scordelis-Lo Roof

The first example of the shell obstacle course is a roof shape defined
by a segment of a cylinder under gravitational load. The initial sur-
face as well as the deformed result are shown in Figure 3.23. The
displacements of the result have been scaled for the deformed sur-
face by a factor of 10 to make the deformation visible. Though not
required for this example, symmetries were used to reduce the time
needed for the simulation by analyzing only one quarter, as indicated
by the area colored in blue.

The cylindrical geometry of the surface has length L = 50 with a
radius of R = 25. The surface of the roof is restricted to a segment of
the cylinder with an opening angle of α = 80◦. The roof is constrained
by two rigid diaphragms at the curved boundaries of the surface. For
the simulated material of the roof a thickness t = 0.25 is assumed
with Young’s modulus E = 4.32 · 108 and Poisson’s ratio ν = 0.0. The
gravitational load on the surface is p = 90.0 per unit area.



3.2 comparison of analysis results 93

Figure 3.23: Setup and deformed result for the Scordelis-Lo Roof problem.

Figure 3.24: Convergence of results for the Scordelis-Lo Roof problem with
different types of surfaces.

To evaluate the convergence of the implementation using NURBS
compatible subdivision surfaces, several meshes with increasing num-
ber of vertices and different degrees are simulated. The coarsest sur-
face for each degree is represented by just a single rational element
which defines the cylinder geometry exactly. Denser meshes are ob-
tained via subdivision of the initial mesh. For the Catmull-Clark re-
sults, the coarsest mesh needs already 9 elements to approximate the
cylinder and to define the boundary.

The simulation results of the different variants are presented in Fig-
ure 3.24. All displacements, measured at the center of the initially
straight edge of the roof, have been normalized by the reference value
of 0.3024 provided in [11]. Note that both axis of the plot are in log
scale to better highlight the differences of the different results. All ra-
tional surface variants using NURBS compatible subdivision quickly
converge to a value close to the reference result. The actual converged
value is slightly lower than the reference, but similar to results by
Kiendl et al. [52]. The results using higher degree surfaces are already
close to the converged value with just a single element.

In contrast, the results for the Catmull-Clark surfaces show a slower
convergence. There are two main reasons for this. First, Catmull-Clark
surfaces cannot represent conic sections, like cylinders, so there is
some geometric error already in the surface representation. And sec-
ond, the boundary handling using ghost vertices is not ideal to en-
force the symmetry conditions, as already observed in the results for
the clamped plate problem in Figure 3.12. The improved boundary
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Figure 3.25: Setup and deformed result for the Pinched Cylinder problem.

constraints by Green [44] could improve convergence for Catmull-
Clark, as well as simulating the full roof, without symmetries. But
the first approach requires adding many additional unknowns to the
system, one for each vertex on the boundary, and simulating the full
roof would require approximately four times the number of degrees
of freedom.

3.2.5.2 Pinched Cylinder

The second problem is a cylinder subject to two opposing point forces
on the middle of its length with rigid diaphragms at the boundaries.
Figure 3.25 shows the initial geometry of the problem and the final
solution, where the displacement has been scaled to make it visible.
To correctly apply the point loads and to speed up analysis, symme-
tries are used and only one eight of the cylinder, the blue region in
Figure 3.25, is simulated.

The cylinder with length L = 600.0 and radius R = 300.0 has an
assumed thickness of t = 3.0. The material is defined with Young’s
modulus E = 3.0 · 106 and Poisson’s ratio ν = 0.3. The applied forces
have a magnitude of F = 1.0.

As for the Scordelis-Lo roof example, the coarsest surface using NURBS
compatible subdivision is defined by a single element and subdivi-
sion is used to generate denser control meshes for the same geome-
try. Also similar to the previous example, each Catmull-Clark control
mesh is sampled from an exact cylinder to approximate the analyt-
ical surface. Again, the coarsest Catmull-Clark surface consists of 9

elements to approximate the cylinder and to define the boundaries.

Figure 3.26 compares the displacement results of the different surface
variants normalized by the reference displacement of 1.8248 · 10−5
at the points where the forces are applied, as given in [11]. These
results also show that higher degree surfaces converge significantly
faster. Degree 7 results are already close to the reference with just one
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Figure 3.26: Convergence of results for the Pinched Cylinder problem with
different types of surfaces.

Figure 3.27: Setup and deformed result for the Hemisphere problem.

element. Again, the Catmull-Clark solution convergences slower than
the comparable non-uniform, rational surfaces of degree 3.

3.2.5.3 Hemisphere

The last problem of the shell obstacle course is a hemispherical shell
subject to four point loads on its edge, as shown in Figure 3.27. Only
one quarter of the hemisphere with added symmetry conditions is
simulated to correctly apply the point loads. The center point on top
of the hemisphere is constraint to prevent rigid body movement.

The radius of the hemisphere is R = 10.0. For the material, a thickness
of t = 0.04 is used with Young’s modulus E = 6.825 · 107 and Pois-
son’s ratio ν = 0.3. All applied loads have a magnitude of F = 2.0.

Similar to the other problems in the obstacle course, the initial NURBS
compatible subdivision surface is defined by a single rational patch
and refined using subdivision to add more degrees of freedom. The
region around the center point on top of the hemisphere is mod-
eled using degenerated quads. Because only one quarter of the hemi-
sphere is modeled, and because extraordinary vertices are not sup-
ported on (symmetry) boundaries with multiple knots, using an ex-
traordinary vertex for the center point is not possible in this case. All
meshes for the Catmull-Clark variant are again sampled from the ex-
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Figure 3.28: Convergence of results for the Hemisphere problem with differ-
ent types of surfaces.

act hemisphere, except for vertices needed to define the symmetry
conditions.

The results of all variants in Figure 3.28 are compared to the reference
displacement of 0.0924 provided in [11]. The displacement is again
measured at the points where the forces are applied. Similar to the
other results in this obstacle course, higher degree surfaces perform
significantly better and NURBS compatible subdivision surfaces of
degree 3 compare favorable to Catmull-Clark.

3.2.6 Arbitrary Geometry

The example problems demonstrated so far all use simple geome-
tries, like planar, cylindrical or spherical shapes. Only for such simple
shapes an analytic reference solution can be computed in some cases.
As a result, all of these shapes can be represented exactly by a single
NURBS surface, without the need for patching.

In contrast, real-world problems can seldom be described by such
simple geometries. Typically, a complex CAD design consists of sev-
eral NURBS patches which need to be manually aligned by the de-
signer to provide the necessary continuity. During simulation, the
joins between these patches also need to maintain their continuity to
prevent sharp bends or seams. For isogeometric analysis of NURBS
surfaces, this can be achieved for example with the techniques de-
scribed in [53] or [24].

Using subdivision surfaces, complex surface topologies can be easily
designed and analysed without manually maintaining patches and
their continuity. For example, the chair model in Figure 3.29b, in-
spired by designs of Zaha Hadid Architects, can be defined by a single
subdivision control mesh, shown in Figure 3.29a.
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(a) (b)

Figure 3.29: Even complex designs like this chair can be modeled with a
single subdivision control mesh (a), which defines a smooth
limit surface (b).

To verify the accuracy of isogeometric analysis on such designs, the
analysis results need to be compared to traditional FEM software,
because there is no reference solution available. In the following, iso-
geometric analysis results for the chair model from Figure 3.29 are
compared to results computed with the commercial FEM software
Abaqus.

In a traditional FEM workflow, typically a NURBS-based CAD model
is loaded into the FE software and meshed into a FE mesh for analy-
sis. This preprocessing step is often a time consuming semi automatic
process which can take up to 80% of the total analysis time [30]. Cre-
ating a good FE mesh requires experience from the analyst as fully
automatic meshing procedures may define inappropriate or bad qual-
ity elements.

For the IGA-based simulation, the designed subdivision surface of de-
gree 3 can be used directly for analysis. However, to provide enough
DOF to represent an accurate solution, the initial control mesh is sub-
divided once for analysis.

To analyse a subdivision surface in Abaqus, it needs to be exported
to a NURBS-based representation, as Abaqus cannot process subdivi-
sion surfaces. The export to NURBS is performed with the adapted
PCCM patching algorithm presented in Section 3.1.3.1. Each face of
the subdivision control mesh is exported to an individual NURBS
patch, maintaining at least C1 continuity between patches. The collec-
tion of NURBS patches can then be loaded into Abaqus, where the
surface can be meshed into a FE mesh.

The exported NURBS-based representation of the chair model con-
sists of 280 individual patches, shown in Figure 3.30a. In Abaqus,
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(a) (b)

Figure 3.30: Individual NURBS patches (a) are meshed into a FE triangle
mesh for use in Abaqus (b).

the resulting surface is meshed into the triangle FE mesh shown in
Figure 3.30b. This triangle mesh is then used for thin shell analy-
sis in Abaqus using the STRI3 element type, which implements the
Kirchhoff-Love theory of thin shells with linear triangular elements.

For both analysis methods, IGA and Abaqus, the same material set-
tings and boundary conditions are applied. The assumed material
of the chair has a thickness of t = 0.005m with Young’s modulus
E = 3 · 109N/m2 and Poisson’s ratio ν = 0.35. The position of three
legs of the chair is fixed on the ground. On the front corner of the
fourth leg, an upwards point force of 200N is applied. Additionally,
a gravitational body force of −10290N/m3 for the self weight of the
material is applied.

In Figure 3.31 the deformed results for both methods are compared.
For visualization, the displacements have been scaled by a factor of 5.
The surfaces are colored based on the magnitude of the deformation.
The result from Abaqus in Figure 3.31a is visually identical to the
IGA result in Figure 3.31b using the designed NURBS compatible
subdivision surface of degree 3 directly. The maximum displacements
of these results are 0.0343m for Abaqus and 0.0358m for IGA.

These results show that the presented IGA approach based on NURBS
compatible subdivision surfaces leads to accurate results which are in
accordance with commercial FEM software. But using IGA, no inter-
mediate export and meshing steps are necessary.
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(a) (b)

Figure 3.31: The deformation, scaled by a factor of 5 for visualization, com-
puted with the commercial software Abaqus (a) is visually iden-
tical to the IGA result using the designed subdivision surface
directly (b), demonstrating the high accuracy of subdivision-
based IGA.

3.3 artifacts

Having design and IGA integrated into a single environment has
many advantages and enables new uses cases, as further discussed in
the next chapters. However, now the CAD representation has to sat-
isfy not only aesthetic requirements for design, but also the require-
ments for analysis. This is an important aspect the designer using
such a system must be aware of.

The CAD representation used for IGA affects analysis much in the
same way the quality of the simulation mesh affects the reliability of
traditional FEA. What has been termed analysis-aware modeling by Co-
hen et al. [28] requires an understanding of how different modeling
choices and features of a CAD representation may influence analy-
sis.

In this section limitations of CAD representations that may lead to ar-
tifacts in the analysis results are discussed. The designer cannot take
into account all sources of artifacts, as this would require knowing
the analysis results upfront. Often it is only experience of what is ex-
pected from analysis which enables the analyst to define the mesh
layout which leads to accurate simulation results. However, keeping
limitations of the CAD representations in mind while creating the
design can improve the accuracy of analysis and possibly avoid mis-
interpretations of analysis results.

In the following, three pitfalls that may be encountered in IGA based
on any B-spline-based surface representation, e.g. NURBS, T-spline
or subdivision surfaces, are briefly discussed.
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3.3.1 Degrees of Freedom

A difference in the requirements for design and for analysis is the
amount and distribution of DOF to describe the geometry. For design,
it is common to only specify the smallest amount of DOF required to
exactly represent the geometry. These DOF are placed adaptively as
required. Large, low-frequency regions only need a few DOF, while
high-frequency details may need many DOF. In contrast, an analysis
result can only be as accurate as the available DOF allow it to be,
i.e. there must be enough DOF to represent an accurate solution. The
result of a simulation may require DOF which are not required to
define the design. For example, a flat plate can be defined with just
a few control points, but a deformed plate, after applying forces to it,
requires more control points to define its new deformed shape.

Therefore, although even the coarsest control mesh can be used for
analysis because it describes the smooth geometry exactly, the CAD
representation has to offer enough DOF to be able to represent high-
frequency components of the analysis result. Using subdivision sur-
faces as a basis for IGA the number of DOF can be increased easily
by subdividing the geometry (h-refinement) to create different levels
of detail.

Having more DOF to define the geometry also enables the designer
to include small geometric details in the surface definition which are
not part of an initial coarse design. These small geometric details will
also influence analysis results.

Figure 3.32 highlights the differences in results and problems that can
arise from different levels of detail and additional geometric details.
The coarse mesh on the left results in a large deformation, because
it has too few DOF to accurately represent the solution for the given
forces and constraints. The subdivided control mesh in the center,
describing exactly the same surface, results in a small, but visible de-
formation. However, the subdivided mesh with added details on the
right, having the same number of DOF, results in almost no displace-
ment at all. This is because the slightly rippled surface is much stiffer
than the perfectly flat surface. While typically the differences are not
as extreme as in this example, it is important to consider the amount
of DOF and the influence of geometric details on the structural stabil-
ity of surfaces.
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Figure 3.32: Simulation of different levels of detail of a subdivision surface
can lead to very different results. The top row shows three
control meshes defining similar surfaces, from left to right: the
initial coarse control mesh, a subdivided control mesh derived
from the coarse control mesh, and a subdivided control mesh
with added details not present in the coarse mesh. The corre-
sponding surfaces are shown in the center row, together with
forces and constraints highlighted in orange. The corners are
fixed in place while a force is applied at the center of each sur-
face. The results in the bottom row, computed using the same
forces and constraints for each surface, are very different. Either
due to different DOF (left, center), where more DOF improve
the accuracy of the result. Or due to different surface geometry
with different stiffness properties (center, right).

3.3.2 Mesh Orientation

An important aspect in modeling free-form surfaces is the careful
alignment of geometric features with the grid lines of the control
mesh. Using B-splines, any feature oriented skew to the grid lines
of the control mesh may exhibit artifacts in form of surface rippling
along the feature [5, 6, 76–78].

When using the CAD geometry for analysis it is important to be
aware that this artifact will be included in the analysis of the surface
and thus lead to flaws in the results of the analysis. The designer’s
choice of how to orient the parameter domain for modeling purposes
may lead to different simulation results, since the underlying geome-
try will have changed.

Figure 3.33 shows the problem definition of a circular plate subject
to uniform force. The orange parts of the plate have been constrained
and cannot respond, while other parts of the surface respond to the
load by bending downward. A vertical feature appears through the
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Figure 3.33: Unaligned features can cause surface artifacts in simulation re-
sults. Half of the control meshes on the left is constraint, the rest
is subject to a uniform force. The deformed results are shown at
an angle in the center. The feature line caused by the deforma-
tion runs along the grid lines at the top, but skew to the grid at
the bottom example. Ripples are observed in the latter case due
to the limitations of the CAD representation, as observed in the
visualization of reflection lines on the deformed surfaces on the
right.

centre of the plate. The problem formulation is the same on top and
bottom, but the representation of the surface is rotated by 45 degrees.
The feature runs along the grid lines of the representation in the
top example, and the analysis result presents a well defined feature.
The resulting feature runs diagonal to the grid lines in the bottom
example and the artifact appears as ripples in the analysis results,
clearly visible when looking at reflection lines corresponding to the
deformed surface.

3.3.3 Rational Expressions

Next to considering the mesh layout, it is also important to choose the
correct surface representation to define the intended design. If a CAD
representation does not support rational expressions conic sections
can only be approximated. The behavior of thin shells in particular is
strongly dependent their geometry.

Figure 3.34 highlights the importance of an accurate description of
the geometry for a problem that has already been discussed in Sec-
tion 3.2.4. Figure 3.34a shows the control mesh and parameterization
of a cylindrical pipe subjected to internal pressure. This pipe is mod-
eled without using a rational representation and thus only approx-
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(a) (b)

Figure 3.34: Not using a rational representation to define conic sections can
lead to artifacts in the analysis results. The non-rational con-
trol mesh and parameterization in (a) approximate a cylindrical
pipe subject to internal pressure. The analysis result in (b), col-
ored by error to the analytical reference solution, shows an arti-
fact corresponding to the initial non-rational control mesh, even
though the mesh has been subdivided three times for analysis.

imates an exact cylinder. Figure 3.34b highlights the error for IGA
using a control mesh based on this geometry that has been subdi-
vided three times to create a dense mesh for which an accurate result
could be expected. However, the result shows an uneven distribution
of the deformation due to the CAD shape not being truly circular.
The frequency at which the lateral artefact varies reflects the number
of control points chosen along the latitude of the initial control mesh.
This is because subdividing the control mesh does not change the
limit surface, so the initial approximation error is kept.

As demonstrated in Section 3.2.4, using a rational representation for
the same problem avoids these artifacts. A workaround for simple
cases using non-rational surfaces is to sample the control points of
denser meshes from the exact surface, as was done in Section 3.2.4,
instead of subdividing a coarse mesh. This allows to define denser
meshes which better approximate the desired geometry, thus reduc-
ing the error. Another workaround is increasing the degree to create
a better approximation of the desired geometry and to improve anal-
ysis results.

3.4 summary

Isogeometric analysis based on the NURBS compatible subdivision
scheme combines the advantages of subdivision-based implementa-
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tions and NURBS based analysis. The NURBS compatible subdivision
scheme is therefore a suitable geometry representation to satisfy the
requirements of Research question 1.

The support for non-uniform knot vectors improves handling of bound-
aries and symmetries compared to implementations based on other
subdivision schemes, and is fully compatible to NURBS-based anal-
ysis. At the same time, the NURBS compatible subdivision scheme
allows to analyse arbitrary topology surfaces, unlike analysis based
on NURBS.

Irregular regions around extraordinary vertices can be evaluated us-
ing multiple techniques presented in this chapter. Depending on the
use case, these methods have different advantages, providing either
exact geometry or exact derivatives.

To improve accuracy, especially in regions near extraordinary vertices,
a simple adaptive numerical integration scheme can be used. This is
also beneficial for rational surfaces and regions with non-uniform
knot vectors. Additionally, for flat surfaces, the patching algorithm
presented in this chapter provides exact derivatives everywhere on
the surface and therefore allows IGA based on the NURBS compatible
subdivision scheme to exactly pass the patch test.

The NURBS compatible subdivision scheme also simplifies the treat-
ment of certain constraints, i.e. at the boundary, while allowing to
define all forces and constraints possible with either subdivision sur-
faces or NURBS. Unlike other subdivision-based IGA methods, NURBS
compatible subdivision surfaces allow to specify exact point forces,
acting only on a single subdivision control point.

NURBS compatible subdivision surfaces have been successfully used
to solve Poisson and thin shell problems with high accuracy and it
has therefore been further confirmed that it is a suitable surface rep-
resentation to answer Research question 1.

The subdivision representation enables the definition of arbitrary topol-
ogy geometry as a single surface. This enables analysis of complex
domains without the special treatment required for patch-based ap-
proaches, e.g. as in [53] or [24]. On the other hand, all advantages of
NURBS-based approaches over traditional subdivision surfaces have
also been demonstrated for this subdivision-based representation:

• a rational representation to exactly define conic sections,
• higher degree surfaces for improved convergence, and
• non-uniform parameterization to represent boundaries.
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However, using IGA with surfaces intended for design poses several
difficulties. A few common pitfalls designers need to be aware of were
discussed. Knowing these helps interpreting unexpected simulation
results and how to avoid common problems.
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Using the same geometry representation for both design and analysis
allows direct analysis of CAD geometries, without meshing surfaces
into a simulation mesh. This already leads to huge timesavings com-
pared to classical FEM. However, in most cases, the analysis function-
ality is separate from the tools used to create the designs. So even
though IGA allows to use the same geometry representation, there
are still two different environments for design and analysis. The next
natural step is to merge design and analysis into a single environ-
ment, providing designers direct access to analysis features.

Having integrated isogeometric thin shell analysis directly in a de-
sign software allows to perform typical analysis tasks like computing
deformations and visualization of stresses directly within the design
environment. Designers can get immediate feedback on the physical
plausibility of the design already during early design phases of prod-
uct design. Without leaving the modeling application the designer
can iterate through different design concepts and use the analysis
feedback to guide the design.

107



108 integrated design and analysis

This chapter explores the integration of isogeometric analysis into a
modeling environment, combining design and analysis. This cannot
only be used for structural analysis within the design environment,
but also provides the user with new instruments for design beyond
shape analysis.

4.1 feedback on geometric properties

Being able to evaluate and integrate arbitrary functions on the de-
signed limit surface simplifies the implementation of many common
surface analysis tasks required in design software.

A common task in CAD is the evaluation of the surface area of the
designed geometry, for example to estimate the amount of material
required for fabrication. This feature is readily available in most para-
metric or NURBS-based CAD and engineering software, but is miss-
ing in most modeling applications based on subdivision surfaces.
Even if the area of freeform surfaces can be evaluated, it is often only
approximated based on the surface area of a subdivided polygonal
mesh.

With isogeometric analysis functionality inside modeling applications,
arbitrary functions may be integrated on the designed limit surface
and e.g. surface areas can be computed without creating a densely
subdivided polygonal mesh.

Similarly, other surface quantities requiring derivative information,
like for example different curvature measures, can also be evaluated
with high accuracy on the designed limit surface. Figure 4.1 shows
the visualization of curvatures, evaluated using the IGA framework,
directly on subdivision surfaces.

Additionally, the designer can assign different material properties to
the designed shape to evaluate physical quantities like the total mass
of a surface with an assumed thickness.

Such quantities are currently not available in general purpose soft-
ware for modeling subdivision surfaces, but can be easily added to
an integrated system based on IGA. Because design for fabrication
increasingly involves freeform surfaces, such measures and tools to
assist the designer also become more important.
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(a) Mean curvature (b) Gaussian curvature

Figure 4.1: Surface properties like curvature can be efficiently computed and
visualized on subdivision surfaces using IGA tools.

4.2 direct analysis

Testing a designed model is an important part of product design. Of-
ten, structural analysis to check the products integrity for various
environmental forces is only performed after the design stage. In
case problems are found, designers need to re-design to fit the re-
quirements, trying to prevent the problems. To safe time and shorten
the design-analysis cycle, designs are therefore often overly conserva-
tive.

To achieve a fast product development cycle, problems must be de-
tected and handled as early as possible [1]. Therefore, to provide
feedback to the designer already during the early prototyping phase,
IGA-based analysis can be directly integrated into the modeling envi-
ronment, enabling immediate feedback for the designer.

To facilitate integrated analysis, the user interface (UI) of the design
application needs to provide several analysis related tools. First, the
user needs to be able to assign physical material properties to the de-
signed surfaces. The material determines the behavior of the surface
in response to environmental impact. For the thin shell simulation,
an isotropic material is defined by three values: the thickness t of the
material, its Young’s modulus E and its Poisson’s ratio ν. For exam-
ple, to simulate a sheet of aluminum with a thickness of 1mm, the
material is defined by

t = 0.001m E = 6.9 · 1010N/m2 ν = 0.32

To simulate its environment in the real world, forces can be applied
to the designed object. There can be various different types of forces,
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(a) (b) (c)

Figure 4.2: Two point forces pulling two control points upward have been
applied to the monkey subdivision surface in (a), constraints on
the back fix it in place. The resulting deformation is applied and
visualized by coloring the surface based on the absolute distance
of the displacement (b). The chair in (c) is constraint at the bot-
tom and loaded with a uniform pressure, which is restricted to
the region within the orange proxy geometry. The deformed sur-
face is shown together with the initial control mesh to highlight
the deformation.

as discussed in Section 3.1.5, which need to be made available in the
UI provided within the modeling software. For example, forces can
be applied directly to a control point of the subdivision surface to
simulate a localized force, as shown in Figure 4.2a. Larger area forces
like pressure can be integrated over some region of the subdivision
surface, which can be defined for example using proxy geometry as
in Figure 4.2c. And global body forces like gravity can be defined for
the whole object.

To actually perform a simulation, the boundary conditions of the
problem need to be specified, i.e. some constraints need to be ap-
plied. In three dimensions, at least six DOF need to be constraint
to restrict translation and rotation on each axis and therefore pre-
vent any rigid body movement. Again, there can be various different
types of constraints, as discussed in more detail in Section 3.1.5. A
common requirement for simulations is to fix some part of the sur-
face in place, so that it does not move. This is achieved by restricting
the displacements at interpolating control points, commonly used at
the boundary, to zero. Figure 4.2c shows an example of constraining
the boundary in this way. Note that using subdivision surfaces, fixing
a single non-interpolating control point does not fix the limit surface
in place. A convenient way to directly restrict the limit surface is to
use Lagrange multiplier constraints, also discussed in Section 3.1.5.
They allow the user to prescribe the displacement of any point on the
limit surface directly.



4.3 shape optimization 111

After the user specified materials, forces and constraints, the thin shell
simulation can be performed. The result of the isogeometric simula-
tion is the displacement field for the subdivision surface, using the
same control points as the initial surface as DOFs.

Different simulation results require different visualization methods.
Some information, like displacement, can be directly applied to the
geometry, while others, like stresses, are best visualized by coloring
the surface. Applying the resulting deformation directly to the con-
trol points of the subdivision surface allows the designer to easily
switch, or even animate, between deformed and undeformed config-
urations. Displacements can also be color coded and visualized on the
initial or deformed surface. This lets the user quickly identify areas of
the surface which deform the most. Both of these visualizations are
combined in Figure 4.2b, while Figure 4.2c shows just the deformed
surface together with the initial control mesh. Stresses, for example
the von Mises stress, are computed from the displacements in a post-
processing step. The von Mises stress is a scalar field which is related
to the yield strength of a material. It is therefore an important indi-
cator for physical durability, allowing the designer to immediately
identify critical regions. The designer can respond by changing the
design to reduce stresses in order to increase the structural stability
of the design.

4.3 shape optimization

Instead of simply providing visual feedback of stresses on the design
the system may offer the designer improved versions of the intended
design.

In classical finite element analysis, the shape optimization result is a
finite element mesh, i.e. a dense triangle or quad mesh, which is un-
suitable for design purposes. Therefore, to introduce the optimized
design back into the product development cycle, the CAD design has
to be recreated from the optimized simulation result. Interfacing mod-
els seriously limits the scope of state-of-the-art approaches in shape
optimization.

Because in IGA the degrees of freedom are the same for design and
analysis, optimization of the CAD geometry can be performed di-
rectly on the control points of a subdivision surface. An IGA-based
optimization can therefore directly use the DOF of a subdivision sur-
face as the design variables which are updated during the optimization
process. It is also possible to specify different design variables for
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Figure 4.3: Minimization of the surface area of a cylinder with fixed bound-
aries. The optimization result is a catenoid like minimal surface.

the optimization, independent of the DOF of the subdivision surface,
which somehow map to the control points of the subdivision surface.
For example, for symmetric surfaces, multiple control points can be
grouped into a single design variable for the optimization, to exploit
symmetry and improve the performance of the optimization. Also,
parameters of parametric models can be used as design variables for
optimization. For example, the radius of a parametric cylinder model
may be used as DOF for the optimization, affecting the position of all
control points in the mesh.

Regardless of how DOF are assigned for optimization, an important
property of isogeometric optimization is that the optimization result
can be directly used for the design again. This allows the designer to
use optimization in his design workflow in exactly the same way as
any other modeling tool.

Possible applications of optimization in product design include struc-
tural optimization or minimization of surface area or volume. Struc-
tural optimization aims to improve stability of an object in response
to a predefined force with certain boundary conditions. Minimiza-
tion of surface area or volume aims to save material for fabrication.
Figure 4.3 shows the minimization of the surface area of a cylinder,
where the DOF for the optimization are the radii of the inner subdivi-
sion control points. The radius at the boundary is fixed. The resulting
surface minimizes the surface area while maintaining the designed
shape at the boundaries.

4.4 modeling modes

The same features used to compute deformations for analysis and
optimization can also be used to create new modeling modes. This
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provides the designer with physics-based modeling tools in addition
to the existing CAD tools.

There are already many existing techniques for physics-based mod-
eling [16, 64] and some of them can also be adapted to work with
isogeometric analysis. In the following, two types of physics-based
design tools are presented for modeling using the isogeometric thin
shell simulation: constraint-based and force-based modeling. These
modeling modes can be used in combination to create physics-based
deformations that are difficult to model manually.

By defining prescribed displacements for certain control points or
certain points on the limit surface, as explained in Section 3.1.5, a
deformed surface can be created. Performing a thin shell simulation
with these constraints in place ensures that the prescribed displace-
ments are applied and additionally deforms the unconstrained re-
gions of the surface according to its material properties. This allows
to create complex deformations with only a few constraints.

In addition to manually defining constraints at certain control points
of the subdivision surface, more intuitive user interfaces to specify
constraints can be provided.

For example, prescribed displacements can be interactively specified
using a drag and drop interface. The user just moves the control
points to be constraint to their desired position, the unconstrained
parts of the surface immediately deform to satisfy the constraints
based on a linear simulation. Figure 4.4 demonstrates the process of
interactively deforming a cactus mesh by just dragging some of the
control points to their new position to which they are constraint.

The same drag and drop interface can also be used directly for the
limit surface. The user picks a point on the subdivision limit surface
and drags it to the desired position. To satisfy this constraint of the
limit surface, a Lagrange multiplier constraint is added to the system
of equations.

Another way to intuitively define constraints are sketch-based tech-
niques, which have already been used in various ways for model-
ing [29, 66]. Here, the designer is able to sketch three-dimensional
curves next to an existing subdivision surface. Control points close
to the sketched curve are then constraint to the curve, while uncon-
strained parts are deformed to satisfy the minimal energy condition.
This leads to a smooth, naturally deformed surface approximating
the sketched curves.
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(a) (b)

Figure 4.4: Interactively changing the overall shape of a cactus model by
moving only four control points. In (a) the control points within
the orange highlighted area are constraint by the designer. Con-
trol points at the bottom are fixed in place while constraints at
the top are defined by dragging the selected control points to
their new desired position. The result in (b) is a deformed mesh
which satisfies these constraints with minimal energy. Small ge-
ometric details on the cactus follow the overall deformation as
intended by the designer.

The creation of constraints for the subdivision control vertices from
the sketches is done in a two step process. First, the sketch curves are
discretized into sequences of points si defining line segments. For
each point si, let the closest control vertex of the subdivision surface
be cj. Each control vertex cj has an associated set Tj of potential con-
straint positions to which si is added in this step. Afterwards, offset
vectors are computed from each control vertex ci to all potential con-
straint positions sj ∈ Ti. The offset vector with the shortest magnitude
is applied as a displacement constraint for each ci.

This two step processes ensures that only one subdivision control
point can snap to any given position on the sketch curves, preventing
unwanted contractions and folds in the surface. Also, control vertices
which are not close to the sketch curves do not get any constraints
assigned.

Instead of adding constraints to any control vertex close to the sketches,
this assignment can also be limited to a selection of control vertices.
This allows the designer to specifically select the parts of the surface
which should snap to the sketch curves. This is achieved by limiting
the search to selected control vertices cj in the first step.
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(a) (b)

(c) (d)

Figure 4.5: Sketch-based posing of figures and a car shape created from a flat
plate. Sketched three-dimensional curves drawn by the user (a,
c) define constraints on nearby control points to create deformed
surfaces (b, d) using the thin shell simulation.

Possible use cases for this technique are for example to quickly sketch
the desired outline for an existing surface, or to pose existing models.
It is also a fast alternative to manual placement of control points for
creating an initial draft of a shape. Details can then be added later us-
ing traditional techniques, maybe after subdividing the control mesh
to add more degrees of freedom. Figure 4.5 shows examples created
using the described sketching technique.

In addition to constraints, forces can be applied to a surface to cre-
ate a deformed shape in the same way as explained for analysis in
Section 4.2 to simulate the environment of a real world object.

The same types of forces which are used for analysis can also be ap-
plied by the designer for modeling purposes, e.g. local forces at con-
trol points or pressure. To allow more flexible force definitions, the
applied forces can also be scripted using custom force functions. Cus-
tom force functions are short scripts which are evaluated during in-
tegration of the subdivision surface and provide a flexible way to de-
fine arbitrary forces. This allows to programmatically setup complex
forcing scenarios. A design software may provide a predefined set
of force definitions or even allow the user to define arbitrary custom
force functions. For example, inflation of an arbitrary closed surface
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(a) (b)

Figure 4.6: A monkey head subdivision surface (a) is inflated by simulating
an internal pressure to give it a balloon like look (b).

can be simulated by defining an internal pressure along the normal
direction as follows:

def inflate(element, shape_funcs, ref_co, cur_co):

# get position of control points for current element

cur_pos = element.get_node_positions(cur_co)

# compute tangents using first derivatives

tan = shape_funcs.df.dot(cur_pos)

# compute surface normal

n = np.cross(tan[0], tan[1])

# return pressure along surface normal

return n / np.linalg.norm(n) * 5e7

This function is evaluated for each quadrature point during numeri-
cal integration and can return an according force for each. The result-
ing force gets automatically distributed to the corresponding DOF
with basis functions having support on this quadrature point. The
result of applying this inflation force function with a non-linear thin
shell simulation, e.g. as presented in [26], to create a balloon like look
for a complex mesh is shown in Figure 4.6. Creating such an inflated
version of the initial surface by manually moving control points is
time consuming and hard to get right.

4.5 interfaces

To test and integrate the presented techniques in a design workflow,
several interfaces have been created to access the isogeometric thin
shell simulation. Plugins to several existing modeling applications
demonstrate the seamless integration of IGA into a modeling environ-
ment to provide different features, ranging from integrated analysis
to interactive sketch-based modeling. A web-based interface allows
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to upload geometry, perform predefined simulations on it, and to
view and compare simulation results from any web browser. Finally,
a HTTP based API provides access to the simulation for any web
enabled device or application.

4.5.1 Blender

The free and open source 3D content creation software Blender, avail-
able at https://www.blender.org, offers many tools for modeling,
animating and rendering, among other things. It is used in many ar-
eas ranging from modeling for games to animating and rendering
complete movies. With the advent of 3D printing it has also become
an increasingly popular tool to design three-dimensional objects for
manufacturing.

However, not being a typical CAD software, Blender has no built-in
support to check the structural integrity of a designed object, or to
interface with external engineering software to do so. To add these
features, several plugins have been developed to integrate isogeomet-
ric thin shell analysis into Blender. As discussed in Section 4.2, this
requires additional user interface elements to be able to define mate-
rials, constraints, forces, and similar settings.

For design, Blender has built-in support for Catmull-Clark subdi-
vision surfaces. However, to take advantage of higher-degree, non-
uniform, rational surfaces in both design and analysis, the NURBS
compatible subdivision scheme has been integrated into Blender via
an additional custom plugin. This allows to take advantage of both
NURBS and subdivision features using a single geometry representa-
tion inside Blender. Additionally, the plugin allows to export NURBS
compatible subdivision surfaces designed in Blender as standard patch-
based NURBS surfaces in the IGES or STEP file formats. This export
functionality is based on the technique described in Section 3.1.3.1,
and enables Blender to interface with other CAD and engineering
software.

Based on the new surface representation, another plugin adds the
isogeometric thin shell simulation to Blender. New user interface ele-
ments, shown in Figure 4.7, are defined in Blenders object properties
panel to let the user assign required material parameters and global
body forces to individual surfaces. The body force can also be re-
stricted to the volume of certain proxy geometries, as previously used
in Figure 4.2c. Additionally, constraints and forces can be assigned to
control points of the surface directly in the 3D viewport, where the

https://www.blender.org
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Figure 4.7: Simulation parameters like the material of surfaces or global
body forces can be specified directly in Blender using a custom
plugin.

surface is designed and visualized. Figure 4.8a shows a subdivision
surface in Blenders 3D viewport where several constraints and forces
have been applied to control points of the surface. The constraints at
the bottom are marked by red squares and forces are indicated by
blue lines, visualizing their direction and their relative magnitudes.
After simulation, the deformed surface, shown in Figure 4.8b, is im-
mediately shown inside Blender and can be used for example to fur-
ther change the design or to create an animation.

Instead of adding constraints manually to individual control points,
they can also be defined through a sketching interface as discussed
in Section 4.4. In Blender, the Grease Pencil tool is used to let the user
quickly draw 3D sketches directly in the viewport. The Grease Pen-
cil tool uses the current view as the drawing plane for the sketched
curves. The depth component of the sketches is defined by the 3D
cursor of Blender or by geometry in the scene. After drawing and
changing the sketches in the viewport, the user can start the surface
deformation by pressing a keyboard shortcut or clicking a menu item.
Figure 4.9 shows the Blender user interface where a few sketches have
been drawn in the viewport to define a simple slide shape. After con-
straints based on the sketches have been applied to the initial flat
surface (left), the deformed surface is computed using isogeometric
analysis. The final smooth subdivision limit surface is shown on the
right.

Using sketches, a first draft of the overall shape of a surface can be
quickly designed, without moving control points manually. Sketched
curves are also easily modified, allowing quick iteration of the de-
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(a) (b)

Figure 4.8: The 3D viewport in Blender is used to design and visualize the
subdivision surface. Constraints and forces can be directly as-
signed to control points of the surface and in (a) they are also
visualized in the viewport as red squares and blue lines respec-
tively. The simulation result (b) is immediately available inside
Blender.

signed shape. The control mesh of the resulting deformed surface
can then be used to further improve the design.

4.5.2 Maya

Similar to the Blender integration, Komposch [55] integrated tools
based on the presented subdivision IGA framework also into Autodesk
Maya. Maya is one of the leading applications in the entertainment
industry, used e.g. to create assets and effects for computer games, tv
series and movies.

To explore this interface, the built in Catmull-Clark subdivision sur-
faces provided in Maya are used as the surface representation for
analysis. Catmull-Clark surfaces are a subset of NURBS compatible
subdivision surfaces of degree 3, so they can be easily used with the
presented IGA platform. The analysis itself is integrated as a set of
plugins using the Python API of Maya to the define the user interface,
provide tools, and render in the viewport. For example, a similar user
interface as in Blender is provided to change the material settings for
a surface, shown in Figure 4.10. Here, also a name can be assigned
to the physical material for later reference in a collection of defined
materials.
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Figure 4.9: Using sketches to apply constraints, a basic slide shape can be
created by drawing only a few curves (orange) in Blender. The
resulting smooth surface on the right is created by constraining
the control mesh of the plate on the left to the sketch lines.

Figure 4.10: Physical material settings of surfaces can be edited within Maya
and saved to a library of materials. © Florian Komposch [55], used
with permission.

The visualization of constraints assigned to individual control points
of the subdivision surface changes based on the nature of the con-
straint. Fixed coordinates of a control point, which are not allowed to
move along that coordinate axes during simulation, are visualized as
colored triangles, according to the coordinate axes in Maya. On the
other hand, constraints prescribing a certain displacement to a con-
trol point are drawn as arrows representing the displacement in the
viewport. Figure 4.11 illustrates these types of constraints.

The specified constraints and forces are then used to compute a de-
formed surface. Figure 4.12 demonstrates how this can be used to
quickly deform complex objects. Moving individual control points
manually would be time consuming and it would be difficult to achieve
a physically plausible deformation.
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(a) (b)

Figure 4.11: Constraints specified for control points of the subdivision sur-
face are directly visualized in Maya’s viewport. Fixed control
points (a), i.e. the displacement along an axis is restricted, are
indicated by colored triangles for each fixed axis. Prescribed dis-
placements (b) are indicated by arrows. © Florian Komposch [55],
used with permission.

(a) (b)

Figure 4.12: IGA tools integrated into Maya can be used to quickly deform
complex meshes. Constraints and forces are defined on the ini-
tial surface (a) and the simulation computes a deformed surface
(b) which is readily available in Maya for further use. © Florian
Komposch [55], used with permission.

4.5.3 Analysis Web Application

Directly integrating the IGA framework into different software works
well and provides a tight integration in the user interface of the re-
spective software. However, it is not practical to write plugins for ev-
ery design software as there are many design applications. To make
IGA available to a wide audience of users, independent of the soft-
ware they use, I investigated the possibility of making it available as
a service.

To explore this approach, a web application has been built that en-
ables users to upload designed geometry to a server. The web appli-
cation offers several pre-defined simulations, which can be run on
the uploaded geometry. The simulation itself is run directly on the
server. This enables using the simulation also on less powerful de-
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(a) (b)

Figure 4.13: A web interface allows to upload and simulate different geome-
tries. Analysis results can be examined (a) and compared (b)
directly in the web browser.

vices. After the simulation finishes, the results can also be examined
directly in the browser. Additionally, the web application offers tools
to compare different analysis results. Figure 4.13 shows a prototype
web interface which can be used to upload and simulate different ge-
ometries and then analyse the results directly within a web browser.
Individual results can be examined in detail and several results can be
interactively grouped and compared, e.g. by plotting error measures
for each result.

This interface has a number of advantages. Long running simulations
can be conveniently started and their progress can be checked on the
go using a mobile device. Also, the analysis results can be inspected
and compared from any web browser. Further, this interface enables
computation intensive analysis also for lower end devices like tablets
by offloading the computation to a server. For example, simple model-
ing interfaces for mobile devices, e.g. based on procedural modeling,
can be used to quickly create shapes. The web-based analysis appli-
cation can then be used to check physical requirements, e.g. before
sending the design to a 3D printer.

However, a browser based interface does not allow to integrate the
analysis service into other applications, it can only be accessed through
a web browser.
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Figure 4.14: Architecture of the isogeometric analysis web service. Using the
HTTP API, many different clients have access to the thin shell
simulation.

4.5.4 HTTP API

To provide the thin shell simulation to different applications running
on different types of devices, an HTTP API to access the simulation
running on a central server is defined. This web-based simulation
service can be accessed from any web enabled client, ranging from
apps running on mobile devices to VR applications running on high
end workstations. This separation of the simulation and the client
allows for flexible use cases. For example, the simulation may run on
a powerful server to be accessed by multiple mobile devices, or, the
simulation can run on the same computer as the client to minimize
latency for high performance VR applications.

Figure 4.14 shows an architectural overview of the isogeometric thin
shell simulation web service. The server itself consists of three main
parts:

• the thin shell simulation,
• an in-memory cache to store results, and
• the web server providing the HTTP API.

Each of these parts can be easily extended or replaced. For exam-
ple, in addition or as a replacement for the thin shell simulation an-
other simulation back-end could be added. Similarly, other APIs can
be added to access the simulation, for example a WebSocket-based
API to allow for bidirectional communication. However, this thesis
focuses only on the HTTP API to access the isogeometric thin shell
simulation.

The thin shell simulation is responsible for computing the simulation
result for a given set of forces and constraints. Analysis results may be
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stored in the simulation cache for efficient access. The API provides
easy access to this for clients, as detailed in the following.

To access the simulation service, an API based on the HTTP proto-
col is provided. The main advantage of the HTTP protocol is that it
is available almost everywhere. This enables using the web service
from any client, ranging from web applications running in a browser,
or mobile applications running on tablets or phones to VR applica-
tions displayed in a CAVE or head mounted display (HMD). Another
advantage is that distributed clients can seamlessly connect to the
web service over the Internet, without requiring special rules, e.g. for
firewalls, because the HTTP protocol is allowed in most cases, which
might not be true for a custom protocol based on UDP or TCP.

The API is kept intentionally simple for ease of use and is split into
two parts: the core API to compute deformations, and optional addi-
tional functionality that is useful in different applications.

4.5.4.1 Core API

A small core API is enough to provide the minimum functionality to
compute deformations. It consists of the following HTTP endpoints:

POST /geometries?namespace= to upload a new geometry resource to
the web service. The request data includes the geometry and material
parameters. This returns a unique geom_id for the geometry, based on
a hash of its optional namespace and the geometry and material data.
This allows multiple clients to share the same geometry. If the clients
work in the same namespace, the geom_id of a particular geometry
is equal for all clients. Therefore, all clients share the same geom-
etry and its deformation results. At the same time, using different
values for the optional namespace enables clients to upload the same
geometry, but treat them as different resources. Once the geometry
is uploaded, the server starts computing the stiffness matrix corre-
sponding to the geometry to setup the system of equations.

POST /geometries/{geom_id}/results to compute a deformation for the
geometry with the given geom_id. All data required to compute the
deformation, like constraints and forces, is sent in the body of the
POST request. This endpoint returns the displacements of the DOF
together with a monotonically increasing res_id value, starting at 1.

If the stiffness matrix for this geometry is not yet available in the
cache, this endpoint waits until the computation finishes and then
computes the deformation.
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The data format used for each of these endpoints can be tailored to
the specific use case, e.g. a compressed binary format to save band-
width, or a JSON encoding for ease of use in a web browser environ-
ment. An example binary format is specified in Appendix A.

4.5.4.2 Additional Functionality

The core API to compute deformations can be extended with addi-
tional functionality on the server, which is required for example to
synchronize deformations across multiple clients and to implement
more complex use cases. In the following, several optional endpoints
are presented that provide additional useful features for the simula-
tion service. Many additional application specific API endpoints are
possible and can be easily added.

GET /geometries and
GET /geometries/{geom_id} to list and download subdivision control
meshes and material data for geometries uploaded by a different
client.

GET /geometries/{geom_id}/results and
GET /geometries/{geom_id}/results/{res_id} to list all computed de-
formation results for the given geometry and to download individual
results. These endpoints can be used, among other things, to imple-
ment undo functionality into clients.

Any client that can send HTTP requests can be used to access the
simulation web service, this includes e.g. desktop applications, web
browsers, mobile applications and most game engines.

4.6 summary

This chapter presented applications of subdivision-based isogeomet-
ric analysis to extend traditional freeform surface modeling techniques.
Not only can IGA be used to query additional information about the
designed surfaces, like surface areas or curvature, it can also be used
as a tool to design and deform surfaces. Therefore, Research ques-
tion 2 can be answered in the affirmative.

Using isogeometric thin shell analysis integrated into a modeling ap-
plication, constraint-based and force-based techniques can be used to
compute deformed shapes. Additionally, the isogeometric framework
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can also be used as part of an optimization process, e.g. to improve
the stability of a designed structure or to minimize its surface area.

Based on constraint-based and force-based deformations, new mod-
eling tools can be provided to designers. An intuitive drag and drop
interface enables designers to quickly change the overall shape of a
design by just moving a few control points. A sketch-based interface
can be used to sketch feature lines of a design, to which the sur-
face automatically adapts. This can also be used to quickly create fig-
ure poses. All of these techniques have been integrated into existing
modeling applications to validate their use cases. While this section
answered questions regarding the user interface, writing a complete
IGA plugin for each application is not ideal and therefore does not
completely satisfy Research question 3.

For making this framework available to a wide audience, two service-
oriented approaches were discussed. First, a web application has been
presented which allows to upload geometry and use it for different
predefined simulations. Analysis results can then be viewed and com-
pared directly in a web browser. Additionally, this section presented
a flexible client-server architecture of a simulation web service. The
defined HTTP API provides this simulation to all web enabled de-
vices, enabling physically accurate deformation also in resource con-
strained environments like mobile devices or web applications. This
flexible solution of integrating IGA completes the requirements to
satisfy Research question 3.
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This chapter is based on research that has been published in the following
peer-reviewed papers:

A. Riffnaller-Schiefer, U. H. Augsdörfer, and D. W. Fellner, “Interactive physics-
based deformation for virtual worlds,” in 2017 International Conference on Cyber-
worlds (CW), 2017, pp. 88–95

A. Riffnaller-Schiefer, U. H. Augsdörfer, and D. W. Fellner, “Physics-based
deformation of subdivision surfaces for shared virtual worlds,” Computers &
Graphics, vol. 71, pp. 66 –76, 2018, issn: 0097-8493

While the previous chapter covered using analysis to design virtual
objects which may eventually be manufactured in the real world, this
chapter uses IGA to bring real world physics into virtual worlds.

To create immersive interactive virtual worlds, it is important to not
only provide plausible visuals, but also to allow the user to inter-
act with the virtual scene in a natural way. While rigid-body physics
simulations are widely used to provide basic interaction, realistic soft-
body deformations of virtual surfaces are challenging and computa-
tionally expensive and therefore typically not offered.

Virtual worlds are commonly accessed by multiple users with vari-
ous different devices ranging from mobile devices to powerful work-
stations, making consistent soft-body deformations even harder to
realize due to differences in computing and rendering capabilities.

To provide realistic deformations to virtual worlds on all kinds of de-
vices, a client-server architecture is proposed. Deformations are com-
puted on a central server and results are available to multiple clients.
By using subdivision surfaces to represent the geometry and to per-
form the simulation computations, bandwidth usage is kept low and
different clients can easily render different levels of detail according
to their capabilities. This enables collaboration of different types of
clients, like web applications, mobile devices or CAD applications,
using the same geometry.

127
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Many existing techniques allow deformation of surfaces. Good sum-
maries can be found in [64] and [16]. The various approaches differ
in physical accuracy and performance. However, many of them are
either

• not based on physical principles, and therefore often require
tweaking of many parameters to achieve the desired results, or

• hard to synchronize, because the data requires a lot of band-
width or because devices with different rendering capabilities
require different meshes, or

• too slow to allow real-time interaction.

5.1 interactive simulation

With all building blocks for the thin shell simulation from Chapter 2

and Section 3.1, a linear static deformation of a subdivision surface
can be computed by constructing the stiffness matrixK and applying
the desired forces and constraints to the system of equations. Unfortu-
nately, this is generally too slow for interactive use of the simulation,
with building the stiffness matrix being the most time consuming
part.

However, as observed in [74], if the goal is to apply different forces
and constraints to the same initial subdivision surface, the stiffness
matrix stays the same and has to be computed only once for the initial
surface. Therefore, to use the isogeometric thin shell simulation inter-
actively, the stiffness matrix is precomputed for the initial geometry
and subsequently used with different sets of forces and constraints to
compute deformed surfaces.

For the use case of interactive deformation in virtual worlds, the lin-
ear simulation provides plausible deformations in many cases, even
where overall deformations are large. One notable exception are large
rotational deformations which can cause artifacts where the surface
area increases unrealistically, as shown in [64].

5.2 server

The server for the interactive simulation is based on the architecture
and API presented in Section 4.5.4.
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After the geometry is uploaded, the thin shell simulation on the
server is responsible for precomputing the stiffness matrix, as de-
scribed in Section 5.1. After this precomputation is performed, de-
formations can be computed quickly. The precomputed matrix and
computed deformation results are stored in the in-memory cache for
fast access.

For the specific use cases of the interactive simulation, the API de-
fined in Section 4.5.4 is extended with the following HTTP end points:

GET /geometries/{geom_id}/latest_result?have= can be used to get the
latest deformation result for the given geometry. The optional param-
eter have can be used by the client to indicate which res_id it already
has. The res_id 0 is special in that it indicates that the client only has
the initial, undeformed geometry. If there is a newer result, with a
higher ID, available, the server returns the deformed geometry and
res_id of the latest result. If the client already has the latest result,
the server can keep the request open and send a response once a new
result is available. This minimizes the number of round trips between
client and server. Alternatively, the server could also return an empty
response to the client if keeping the request connection open is not
desired or not supported by the server.

GET /geometries/{geom_id}/limit_comb?u=&v=&face-index= is used to get
the linear combination of control points defining the limit point for a
certain parameter location (u, v) on the face with index face-index in
the subdivision control mesh. This returns the linear combinations for
the limit position as well as for the tangents at the given location. This
can be used by the client to get linear combinations needed e.g. for
Lagrange multiplier constraints of the limit surface. Using this API,
the client does not need to implement complex evaluations of the
subdivision surface itself.

5.3 client

Any application or device that can send HTTP requests can be used
as a client for the interactive simulation server.

Here, for ease of implementation, Catmull-Clark subdivision surfaces,
the industry standard in the entertainment industry, are used on
the client, which are a subset of the NURBS compatible subdivision
scheme used for IGA on the server.
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For simple use cases the client needs to provide only the geometry
data for a Catmull-Clark control mesh and a set of forces and con-
straints to compute a deformed surface. In some cases, e.g. to apply
constraints to the subdivision limit surface, more information is re-
quired.

5.3.1 Catmull-Clark Parameter Estimation

To provide plausible interaction with an object at arbitrary points
on the surface, Lagrange multiplier constraints on the limit surface
are used. To apply a constraint on the limit surface, the linear com-
bination of control points is needed that defines the limit position,
as discussed in Section 3.1.5. To compute these linear combinations,
either within the client application or with the additional API from
Section 5.2, the (local) parameter location of the desired point on the
corresponding subdivision patch is required. Figure 5.1 summarizes
a simple approach to estimate the parameter values of the limit point
using a slightly extended implementation of Catmull-Clark subdivi-
sion on the client. This method is similar to some pre-tessellation
methods to evaluate Catmull-Clark surfaces for ray tracing [12]. Here,
the tessellation is used to estimate the parameter location of a ray in-
tersecting the surface, e.g. for user interaction or collision detection,
and not to evaluate the limit surface itself.

During each subdivision step producing the dense mesh for render-
ing, the index i of the original root face (Figure 5.1 top left) in the
control mesh, from which each subdivided face originated, is stored
as r. Additionally, for each face in the subdivided mesh the index of
the corresponding corner vertex in its parent face, i.e. 0, 1, 2 or 3 for
quads, is stored. This index is stored for every subdivision level and
defines the path p from the root face to a given face in the quadtree of
subdivided faces (Figure 5.1 top right and bottom left). So, a face at
subdivision level 2 stores two values, e.g. [2, 1] for the right most face
just above the vertical center. For rendering, each quad is split into
two triangles (Figure 5.1 bottom right), each of which refers to the
same information stored for the quad. This information requires one
additional index and 2 bits per subdivision level of additional stor-
age for each subdivided face. For the NURBS compatible subdivision
scheme, which additionally allows just horizontal/vertical splitting
of a face, more bits to cover all cases would be needed.

To find the control face and parameter location of a ray intersecting
the Catmull-Clark surface, the intersection is first computed with the
triangle mesh used for rendering. If there is an intersection, the previ-
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Figure 5.1: Estimating parameter location of an intersection with a tessel-
lated Catmull-Clark subdivision surface.

ously stored information for that triangle/quad is retrieved. From
path p the possible range of parameter values can be derived, i.e.
the face with path [2, 1] contains the (u, v) parameter domain from
(0.75, 0.5) to (1.0, 0.75). The first path item 2 limits the u domain to
[0.5 . . . 1.0] and the v domain also to [0.5 . . . 1.0]. The second item 1

then restricts these domains further, for u to [0.75 . . . 1.0] and for v to
[0.5 . . . 0.75].

An approximation of the final parameter value can be computed as
a linear interpolation of the corresponding range boundaries based
on the barycentric coordinates of the ray intersection with the trian-
gle (Figure 5.1 bottom right). This assumes that there is a mapping
from the triangle index to the quad face of the subdivided surface
storing the necessary values. This is usually the case if all quads are
just split into two triangles for rendering, like in the bottom right im-
age in Figure 5.1. The higher the subdivision level of the mesh used
for intersection testing, the more accurate the approximation of the
parameter values.

The face index in the control mesh used for evaluation is found by
using the stored index r of the selected face. The linear combination
of control points defining the limit position at the approximated pa-
rameter location are derived from the Catmull-Clark basis functions.
Because the simulation service already needs to perform such eval-
uations for the isogeometric thin shell analysis, see Section 3.1.3, it
can also provide functionality to compute these linear combinations,
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as described in Section 5.2. However, the face index and parameter
location always need to be provided by the client.

5.4 level of detail simulation

One advantage of subdivision surfaces is that the level of detail for
the visualization can be easily adapted by rendering a different sub-
division level of the surface. Therefore, objects close to the virtual
camera can be rendered at a high subdivision level, resulting in many
triangles to represent a smooth surface, while objects far away can be
rendered at a low subdivision level or even without subdivision.

Subdivision can also be applied to increase the DOF of the surface
for analysis. Providing surfaces with more DOF to the simulation
leads to more accurate and detailed deformation results. However,
the number of DOF also directly affects the time needed to compute
the deformation, as will be discussed in more detail in Section 5.6.
Therefore, there is always a trade-off between accuracy and computa-
tion time.

To achieve a fast response time but eventually also get an accurate
result, a parallel simulation scheme can be used. The basic idea is
to perform the simulation on multiple subdivision levels of the sur-
face at the same time. The result for the coarse mesh can be computed
quickly and can therefore be presented to the user immediately. Mean-
while, a variant of the same surface with more DOF takes longer to
compute, but provides the user with a more accurate deformation
result, once it is available.

The parallel simulation can be controlled entirely by the client, with-
out modifying or extending the HTTP API from Section 4.5.4. How-
ever, it assumes that the server can handle multiple requests simul-
taneously, to compute several deformations in parallel. To be able to
simulate multiple subdivision levels of a surface, the client uploads
each level as a separate geometry to the server. In other words, in-
stead of just uploading the initial control mesh of an object, the client
uploads the initial control mesh and additionally also subdivides this
control mesh and uploads the resulting subdivided geometry as a
separate object to the server. It is important to note that in this case
both control meshes define the exact same subdivision limit surface,
on which all simulations are based.

While simply subdividing the control mesh for the simulation could
also be performed by the server, often, additional details are added
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to the subdivision surface for visualization on the client, e.g. using
displacement maps. The client can also add these additional visual-
ization details as geometric details to the subdivided control mesh by
displacing the control points. This way, the details in the geometry
are part of the simulation and can therefore lead to a more accurate
deformation result.

However, as discussed in Section 3.3.1, using different levels of de-
tail of a surface and adding small geometric details can significantly
change the simulation result. This needs to be considered when pro-
viding deformation results based on different levels of detail.

Another challenge with this approach is to find corresponding con-
straints and forces for the subdivided control meshes. Often, the client
only has constraints and forces for the initial control mesh, e.g. be-
cause only the coarse initial control polygon is shown in the user inter-
face for manipulation, but a more accurate, higher resolution simula-
tion result of the limit surface should eventually be visualized. In that
case, the client needs to derive constraints and forces for the higher
subdivision level, which has different DOF, from the user interaction
with the initial control points. Having the corresponding constraints
and forces, the client can then separately request deformation results
for each subdivision level from the server.

Simple constraints of single DOF, as mentioned in Section 3.1.5, are
difficult to apply exactly on a subdivided control mesh. The reason
is that the influence of a single DOF of the coarse control mesh on
the surface is spread to multiple DOF in the subdivided mesh. If
the constraint itself is spread in a similar way, multiple neighboring
DOF are constraint, instead of just one. Unfortunately, this not only
results in the desired displacement, defined by the constraint, but
also prevents any rotation of the surface, as all neighboring DOF are
constraint, which is not desired.

Interestingly, in many cases a good approximation of the constraint
on the coarse control mesh is to just apply the same constraint to
the corresponding control point of the subdivided control mesh, as
demonstrated in Figure 5.2. As the thin shell simulation tries to mini-
mize the deformation energy required to satisfy the constraints, con-
trol points nearby constrained DOF are automatically moved similar
to the defined constraint to avoid deforming the surface, if possible.
And due to the Catmull-Clark subdivision rules, moving a control
point and its one-ring neighborhood directly relates to the movement
of the corresponding region on the subdivision limit surface. There-
fore, neglecting the influence of other constraints and forces, a single
displacement constraint causes approximately the same displacement
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Figure 5.2: The same constraint, a displacement of one x-coordinate visual-
ized with an orange arrow, is applied to different subdivision
levels of the same curve (left, center), of which the bottom end
is fixed. Even though the DOF of the curves are different, the
resulting deformation is similar. In the comparison on the right,
the blue result is the constraint applied to the original control
polygon and the orange result is for the subdivided curve. By
minimizing the energy caused by the deformation, the simula-
tion automatically moves nearby control points in a similar way
as the constraint DOF. Therefore, the limit surface moves approx-
imately as specified by the single displacement constraint, inde-
pendent of the number of DOF.

of the limit surface, independent of the subdivision level it is applied
to.

Forces applied at DOF are also valid on the subdivided control mesh,
but the area of influence is reduced because the support of each DOF
on the limit surface shrinks with each subdivision level. However,
the user must be given a consistent analysis feedback and the force
applied needs to be consistent and irrespective of the level of subdi-
vision. To spread the force to the same region as on the initial coarse
control mesh, the force vectors can be subdivided according to the
Catmull-Clark subdivision rules in the same way as the control points
are subdivided. This way, a force applied to a single DOF in the coarse
control mesh is split into multiple forces, applied to the correspond-
ing DOF and its one-ring neighborhood in the subdivided control
mesh. The subdivision rules ensure that the total force applied to the
surface stays constant.

Instead of defining forces and constraints on the control mesh, prob-
lems associated with this approach can be overcome by using La-
grange multipliers as described in Section 3.1.5. Constraints defined
directly for the limit surface are also valid for subdivided control
meshes, because they are defined for a certain position on the subdi-
vision limit surface, independent of the control points. However, the
linear combination of DOF that define the limit constraint need to be
computed separately for each control mesh, as shown in Section 5.3.1.
Limit constraints always ensure that surfaces displace exactly the de-
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sired distance, independent of the control mesh. Therefore, they are
the preferred way to apply constraints from direct user interaction.

5.5 applications

This section presents several applications using the proposed simula-
tion web service in various environments for different use cases.

5.5.1 Multi-Client

A challenge of multi-client VR environments is the correct and effi-
cient synchronization of the different clients. This especially includes
the synchronization of soft-body deformations. If a dense polygon
mesh is used for deformation, transferring the deformed surface can
require a lot of bandwidth. On the other hand, if each client computes
the deformations independently, inconsistencies can appear due to
different timing or computing capabilities of the devices.

Using the central simulation web service based on Catmull-Clark sub-
division surfaces to synchronize deformed surfaces across multiple
devices overcomes these issues. First, only the subdivision control
mesh needs to be synchronized between clients, using less bandwidth.
And second, all clients get the exact same deformation because it is
only computed once by the server for any given geometry. Each client
then performs Catmull-Clark subdivision on the control mesh to de-
rive the smooth limit surface for visualization. This allows each client
to render different levels of detail of surfaces without inconsistencies,
because the limit surface is fully defined by the control mesh and the
subdivision scheme.

Figure 5.3 shows two devices, a workstation and a tablet, running the
same application connected to the central simulation server. Surface
deformations caused by user interaction are immediately synchro-
nized between both devices, using the latest_result API endpoint
described in Section 5.2.

Currently, the applied forces and constraints are not synchronized
between clients, only the deformation results are shared. Therefore,
deformations requested from one device override previous results re-
quested on other devices, as usually only the last deformation result
is shown. The server and the API could be extended to also store and
synchronize the constraints and forces provided by the requesting
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Figure 5.3: Soft-body deformations are synchronized across multiple de-
vices. Both the workstation and the tablet run the same appli-
cation connected to the simulation web service. Deformations
caused by user interaction are immediately synchronized be-
tween both devices.

client together with the deformation result. This would allow mul-
tiple clients to deform an object alternately. A difficulty with this
approach are race conditions due to simultaneous deformation re-
quests by multiple clients. However, synchronizing constraints and
forces is currently not implemented and this application therefore
has a master client for each object who defines the applied constraints
and forces.

One use case for this type of synchronization is rendering multiple
projections of the same scene on multiple devices, as it is usually
done in a CAVE [32] environment or on a large tiled display [46]. This
way, it is ensured that all projections render the exact same soft-body
deformation, controlled by a single master device.

5.5.2 High Performance VR

Current state-of-the-art computer graphics techniques can be used to
create immersive virtual worlds that look almost real, however these
worlds do not feel real because the interaction with objects is limited.
Many real world objects are not rigid and users expect to be able
to deform them. To improve realism, interactive soft-body deforma-
tion of virtual objects can be provided using the simulation web ser-
vice. However, visualizing such virtual worlds using immersive head
mounted displays like the HTC Vive or Occulus Rift requires high
frame rates and low latency processing of user inputs.
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Figure 5.4: Subdivision surfaces can be interactively deformed in an intu-
itive way using hand controllers and a head mounted display.
Users interact directly with the subdivision limit surface and can
define constraints, visualized with small red spheres, by pushing
and pulling the surface. Additionally, users can also pick up and
move rigid body objects, like the white ball in the scene, which
can also cause deformations by colliding with surfaces.

To ensure high performance and low latency of the VR application,
the deformation service can run on the same high end workstation
as the visualization. It does not slow down the rendering loop of
the visualization because it runs in a separate process and network
latency is minimized by running the server and the client on the same
computer.

In a prototype application for the HTC Vive HMD, shown in Fig-
ure 5.4, interactive deformation has been implemented using a sim-
ple push/pull interface using the tracked hand controllers. Users can
simply grab and move a surface directly with the controllers in their
hands, similar to the real world. Grabbing the surface adds a con-
straint on the subdivision limit surface which attaches the surface
to the users hand and which is updated when the user moves the
controller. To compute the point selected by the user on the surface,
a ray based on the position and orientation of the users hand is in-
tersected with the triangulated mesh used to render the subdivision
surface. The face index in the subdivision control mesh and the pa-
rameter location of the intersection is then computed as discussed
in Section 5.3.1. The deformed surface is asynchronously computed
by the simulation web service and, once the result is available, up-
dated in the visualization to interactively reflect the user input. The
grabbed surface point therefore exactly follows the users hand move-
ment, while the rest of the surface deforms according to its material
properties and other constraints which e.g. hold it in place. Applying
the constraint on the limit surface uses the limit_comb API endpoint
described in Section 5.2 and allows the user to not only change the
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position of the surface but also to control the tangent plane at the
grabbed surface point.

However, as explained in Section 3.1.5 multiple DOF of the surface
need to be constrained to prevent any rigid body motion. As a simple
intuitive metaphor to fix virtual objects in place, all parts of an object
touching the floor are automatically constrained to the floor at that
position.

For additional feedback, vibrations of the controller are used to let
the user feel the deformation. The more deformation the interactions
cause, the stronger the vibrations of the controller.

In addition to direct user input also interaction of the soft-body de-
formation with traditional rigid body physics has been implemented.
This lets users deform virtual surfaces by e.g. throwing rigid objects
on them. Once a collision with a rigid body object is detected, the
parameter location of the collision point can be computed similar to
how it is done for the user interaction. But instead of constraints,
forces derived from the colliding objects are applied to the surface.
Each surface will respond to collisions according to its material prop-
erties, improving realism.

5.5.3 Interactive Collaborative Web-based Tools

A big advantage of the HTTP-based API described in Section 4.5.4 is
that it can be accessed from any client that can use the HTTP protocol.
This also includes web browsers, which use HTTP natively to transfer
data from web servers. Together with other features of modern web
browsers like fast JavaScript implementations, WebGL [62] and more
recently WebVR [99], they can be used to create interactive visualiza-
tions of virtual worlds or virtual objects. Users can easily access such
visualizations on the web without installing any special software be-
sides a web browser. Using the presented deformation web service
now also enables users to interactively, and possible collaboratively,
deform objects in a web browser, as shown in Figure 5.5. Providing
simulation tools for web-based applications has many use cases, for
example in games, product customization or engineering.

One possible use case is for example collaborative design and evalu-
ation. To collaboratively evaluate designed objects, plugins for mod-
eling or CAD software can send the subdivision geometry directly
from the modeling application to the simulation server. A web-based
application allows to share access to these models with other users
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Figure 5.5: The simulation server can also be accessed from web applications
running in a browser. On the left, a cactus model is shown in
its initial state. The deformed surface, after applying some con-
straints, is shown on the right. Scripts running in the browser
control the simulation parameters based on user interaction and
efficiently render the surfaces in real time using WebGL.

and to interactively perform simulations. This enables users to dis-
cuss design ideas and to simulate and analyse structural properties.
This use case is equally applicable to designing virtual worlds as it
is to rapid prototyping of objects that are manufactured for the real
world.

Experiments by Graf and Stork [43] have shown that VR techniques
can help with the evaluation of analysis results for CAE. The pre-
sented simulation service can be used to seamlessly connect design
and analysis in VR for such use cases. To do so, different interfaces
can be combined, as the only requirement for collaboration is that
all users access the same simulation server. Therefore, a user can, for
example, control simulation parameters with a web-based interface
on a mobile device, while the simulation results are visualized for
evaluation in a VR environment. Meanwhile, a designer can create
and edit geometry in a CAD application and seamlessly upload new
geometry to the simulation server for other users to simulate.

This type of application makes use of all of the additional APIs de-
fined in Section 4.5.4.2. Depending on the application, also more APIs
can be defined on the server, e.g. to compute stresses in the mate-
rial of a simulated object intended for manufacturing or to compute
an accurate non-linear simulation non-interactively for engineering
analysis. By augmenting the interactive features of the presented API
with engineering tools, the presented simulation service can there-
fore also serve as the basis for analysis-as-a-service, as described in
Section 4.5.3.
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5.6 performance

This section discusses several performance related topics of the pre-
sented simulation web service. All timing measurements were per-
formed on a workstation with an Intel Core i7-3820 CPU running at
3.6 GHz and 12 GB of main memory.

5.6.1 Precomputation

The most time consuming part of computing a thin shell deformation
is the derivation of the stiffness matrix. As noted in Section 5.1, this
has to be done only once per object to compute linear simulation
results and can be cached for subsequent uses of the model.

Table 5.1 lists the time needed to perform this initial precomputation
for various models. Generally, the computation time depends on the
number of faces in the subdivision control mesh, i.e. the number of
elements in terms of FE. However, it also depends on the number of
EVs in the control mesh. Regions of the Catmull-Clark subdivision
surface containing EVs cannot be evaluated as cubic B-splines but
require a more complex evaluation [91]. Usually, the precomputation
takes between a few seconds and a few minutes, depending on the
complexity of the subdivision control mesh.

Table 5.1: Time needed to precompute the stiffness matrix and to solve the
system of equations for various models.

Model Cactus Barrel Car door Horse

Control Vertices 60 210 218 472

thereof EVs 32 8 24 64

Faces 58 208 218 470

Precomputation 14 s 7 s 20 s 82 s

Solving 2 ms 18 ms 18 ms 75 ms

Once the stiffness matrix has been either precomputed or loaded from
a cache, a deformed version of the surface can be computed quickly,
depending on the size of the system of equations, by applying forces
and constraints and solving the resulting system of equations from
Equation 3.11 or Equation 3.13.
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Figure 5.6: Average latency and standard deviation (visualized as black bars)
for deforming various objects: The biggest part, solving the sys-
tem of equations, is performed using a CPU-based sparse matrix
solver for smaller meshes and using a GPU-based solver for the
Horse model. The remaining overhead includes request process-
ing and network latency on a LAN.

5.6.2 Latency

It is important for interactive applications to minimize the time be-
tween user interaction and visualization of the corresponding changes.
This applies especially to VR applications. High latency limits immer-
sion and can cause nausea for users of the VR application [2].

Figure 5.6 shows the total latency, from request until the result is avail-
able at the client, for deforming different objects. The stiffness matrix
for each object was already precomputed before. The values show the
average latency observed during an interactive modeling session cre-
ating approximately 300 deformations for each object using varying
combinations of vertex constraints, Lagrange constraints and forces.
The black error bars visualize the standard deviation of the measured
timings. Most of the time is spent solving the linear system of equa-
tions on the server. This also includes building the deformed result
by adding the computed deformations to the initial control points.
The effect of additional Lagrange constraints, which increase the size
of the system of equations, is small compared to the overall time to
solve the system of equations. The remaining overhead includes pro-
cessing the HTTP requests on the client and server and transferring
the data over a local area network (LAN).

The systems of equations are either solved with a standard CPU-
based sparse matrix solver or using a GPU-based solver based on
the cuSOLVER CUDA library, depending on the number of DOF. Us-
ing the GPU-based solver has higher setup costs and therefore slower
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Figure 5.7: A GPU-based solver based on the cuSOLVER CUDA library im-
proves performance for larger systems of equations, but has a
higher overhead compared to a CPU-based solver. Therefore, the
solver is dynamically chosen based on the DOF of the simulated
mesh.

performance for solving the equations resulting from smaller meshes.
A comparison of the two solvers for random systems of equations
with varying DOF is shown in Figure 5.7. At around 1400 DOF, the
GPU-based solver tends to be as fast as the CPU-based solver in most
cases. For even larger systems of equations the GPU-based solver is
significantly faster. Therefore, for larger meshes with more than ap-
proximately 1400 DOF, like the Horse model, the GPU-based solver
is used, while for smaller meshes the CPU-based solver is the better
choice.

The perceived latency for the user depends on the frame rate of the
visualization. For desktop applications, typically rendering 60 frames
per second (FPS), the deformed result for a moderately sized mesh
will be visualized 1-2 frames after user interaction. This delay of up
to 33 ms is acceptable and usually not noticed by the user. The Horse
mesh has a latency of 5 frames at 60 FPS, or 83 ms, which is already
noticeable but still allows interactive deformation.

5.6.3 Bandwidth

One of the challenges for synchronizing soft-body deformations over
a network is the required bandwidth. In addition to object position,
velocity, etc., which also need to be synchronized in rigid-body physics
common in multiplayer games, soft-body deformations also need to
synchronize each vertex of the mesh.
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Figure 5.8: Size of initial mesh data in kilobytes. The subdivision control
mesh requires significantly less data than the triangulated dense
meshes used for rendering. By taking advantage of isogeomet-
ric analysis, the control mesh can be directly used to compute
deformations.

For rendering, the subdivision control mesh is typically subdivided
at least once or twice before triangulation to get a smooth looking
surface. By taking advantage of IGA based on subdivision surfaces,
only the subdivision control mesh is sent to the server when upload-
ing new geometry. This requires considerably less data compared to
purely mesh based approaches, where the complete mesh that is vi-
sualized is required to compute a deformation result.

As a baseline, Figure 5.8 compares the required data in kilobytes (103

bytes) for transferring the initial control mesh and the triangulations
of the first and second subdivision level of that mesh. This assumes
that vertices are defined using three single precision floating-point
values and n-sided faces are defined by n 32-bit unsigned integer
indices. Using the subdivision control mesh, instead of the denser
meshes used for rendering, saves a significant amount of data.

When transferring the resulting deformed mesh data back to the
client, only the vertices of the subdivision control mesh have to be
transmitted, as the topology does not change. This also results in
similar savings compared to a dense triangulated mesh, as shown in
Figure 5.9 where the required bandwidth for 60 deformation updates
per second is compared for the different representations. Therefore,
the network overhead of transferring the result, included in the tim-
ings in Figure 5.6, is usually low compared to the time needed to
solve the system of equations.

For all mesh-based deformation techniques, including our subdivision-
based approach, many existing methods for 3D mesh compression
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Figure 5.9: The required bandwidth to transfer 60 deformation updates per
second varies significantly between the subdivision control mesh
and the triangulated dense meshes used for rendering. Transfer-
ring just the subdivision control vertices for each deformation
result enables using the simulation web service also over slower
network connections.

could be used to further reduce the required bandwidth, as summa-
rized in [67] and [61].

5.7 summary

This chapter extended the client-server architecture from Section 4.5.4
to provide a simulation web service to interactively compute and
synchronize deformations of moderately complex subdivision sur-
faces.

Users can directly interact with the subdivision limit surface, while
only the control mesh needs to be synchronized. By using subdivision
surfaces, different levels of detail of a surface can be simulated. For
moderately complex surfaces, the IGA simulation is shown to be fast
enough for interactive use, thus satisfying Research question 4. This
was achieved by precomputing and caching the stiffness matrix for
the simulation on the server.

The web service architecture has many different use cases, e.g. real-
istic deformations for interactive virtual worlds, interactive physics-
based product customization or collaborative analysis of designs. Us-
ing the presented architecture, different types of clients, like web ap-
plications, mobile devices or CAD applications, can seamlessly inter-
act with the same geometry. This can also be used to enhance the
design workflow, similar to the tools discussed in Chapter 4, e.g. de-



5.7 summary 145

signers can explore and modify surfaces in VR, or perform analysis
tasks in VR by directly providing forces and constraints.





Part III

D I S C U S S I O N A N D O U T L O O K

“Even though the future seems far away, it is
actually beginning right now.”

Mattie Stepanek





6
C O N C L U S I O N S

The IGA framework presented in this thesis successfully combines the
advantages of NURBS and subdivision surfaces for analysis. Subdivi-
sion surfaces are common in the entertainment industry, but, due to
their advantages over NURBS, are becoming increasingly important
in CAD. Unlike NURBS, using subdivision any shape can be repre-
sented with a single surface. Therefore, the framework presented in
this thesis supports arbitrary topology surfaces without the need of
preprocessing the CAD model to ensure continuity across the surface,
as is required when employing NURBS patches for analysis. This is a
mayor advantage in the isogeometric analysis of freeform surfaces.

6.1 contributions

Throughout this thesis, a number of research questions, stated in
Section 1.2, have been discussed. To answer the research questions,
a number of contributions advancing the state-of-the-art were pre-
sented in this thesis.

Research question 1 asked whether it is possible to combine the
advantages of freeform surfaces and the precise control of NURBS
in an IGA setting. In Section 2.2 the NURBS compatible subdivision
scheme has been identified as an ideal basis to answer this question
positively and in Chapter 3 the isogeometric concept was successfully
extended to this geometric representation.

The first contribution was to extend the evaluation method of Stam
[91] to the NURBS compatible subdivision scheme of Cashman [19] in
Section 3.1.3.2. This enabled the implementation of the presented IGA
framework based on NURBS compatible subdivision surfaces. To the
author’s knowledge, this is the first IGA implementation for subdivi-
sion surfaces with support for watertight, arbitrary topology meshes
with non-uniform, rational and higher degree basis functions.

The problem of diverging derivatives around extraordinary vertices
using the method of Stam [91] was not fully solved. While for many
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practical applications the remaining errors are not relevant, two tech-
niques were presented to improve the evaluation accuracy for subdi-
vision surfaces:

• a patching algorithm adapted from Peters [69] in Section 3.1.3.1,
splitting the surface into regular patches and thus avoiding EVs
entirely, and

• a simple adaptive integration method in Section 3.1.4, improv-
ing accuracy around EVs using Stam’s evaluation approach.

The patch-based evaluation scheme does not suffer from the problem
of diverging derivatives, but only approximates curved geometry. It is
therefore a viable approach for flat surfaces, but is problematic in the
analysis of freeform surfaces, which were the focus of this research.
Nevertheless, using the patching technique, the commonly assumed
drawback of subdivision based IGA not passing the patch test has
been proven wrong. It has been shown in Section 3.2.3 that, using
this technique, subdivision surfaces can pass the patch test exactly
up to machine precision.

Extending the state of the art in IGA to the NURBS compatible sub-
division scheme enables precise control in regular regions of the de-
fined surface and its properties like tangents and boundaries. This
eliminates the need for the various workarounds used in other subdi-
vision based approaches [7, 25, 103] to e.g. set boundary constraints
or handle symmetries. For improved accuracy, a rational represen-
tation can be used to exactly define conic sections without artifacts,
ensuring reliable analysis. The analysis performance in terms of con-
vergence is equivalent to NURBS, which, using higher degrees, can
be significantly better than for low degree subdivision surfaces.

The application of IGA not only for engineering analysis, but also for
the design process itself, as discussed in Research question 2, has
been covered in Chapter 4. It has been shown that IGA can indeed
be useful for the design. One use case is to guide the design towards
a structurally stable or material efficient shape by visualizing differ-
ent analysis results directly on the design or by automatically opti-
mizing the shape. Another use case is to build physics-based design
tools using IGA to extend the means available to a designer in order
to modify the shape. The designer can interact with the simulation
by setting constraints and forces, which can be done with intuitive
drag and drop or sketch-based interfaces. Prototypes for these use
cases have been integrated into the standard 3D modeling applica-
tions Blender and Maya.
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The integration of IGA into other applications, topic of Research

question 3, has been discussed in Chapter 4 and Chapter 5. Writing
a plugin containing the IGA framework for each design software, like
Blender or Maya, is possible, but does not scale to arbitrary software
to reach a wide range of users. A more promising approach is to offer
IGA as a service, which allows to access isogeometric computations
from a wide range of different applications and devices.

In Chapter 5 the service oriented approach developed in Chapter 4

was used to address Research question 4. The analysis web-service
has laid the foundation for a successful integration of IGA into an
interactive VR environment, while traditionally, IGA was only used
for non-interactive offline simulations. Using the web-service, soft-
body deformations are computed in response to user interaction with
objects in the VR environment. To speed up deformation during run-
time some computations were precomputed and cached on the server.
With this approach realistic soft-body deformations of moderately
complex meshes can be computed at interactive rates.

6.2 applications

The unified IGA platform based on NURBS compatible subdivision
surfaces was successfully applied to multiple areas of application:

• thin shell analysis,
• freeform surface design, and
• interactive simulations.

This flexibility allows for many different use cases.

First, the tight integration of design and analysis can be beneficial for
product development. Using IGA in the early design phases, design-
ers can quickly iterate on the design with quick feedback on struc-
tural properties from the analysis. The analysis could also be used to
optimize the design with respect to certain structural criteria.

The IGA framework can also be used as the foundation for several
physics-based modeling tools to create natural deformations of shapes.
This simplifies for example the animation process for complex objects,
where moving control points manually is time consuming. Besides
the time aspect, even creating a naturally looking deformation manu-
ally is challenging in itself. This use case can also be extended to in-
teractive applications, where deformations are computed in real time
to improve realism in virtual worlds. However, the current implemen-
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tation has some limitations regarding the size of meshes for real time
deformations.

Finally, the presented IGA framework can be used to provide an
analysis-as-a-service platform, which can be used for many different
use cases. Providing easy access to IGA enables integration of anal-
ysis features into a wide range of different applications and devices.
For example, interactive multi-user engineering and entertainment
applications can use the service to compute realistic deformations.
Other examples are applications for customized user designs, which
e.g. can use the service to automatically verify the design of a user,
even on mobile devices or within web applications.

6.3 limitations and future work

While the presented IGA framework can already be used for many ap-
plications, as discussed in the previous section, it could be extended
and improved in a number of ways.

One limitation for both surface design and interactive simulations is
that only a linear thin shell simulation can be performed interactively.
The linear simulation results in physically accurate deformations as
long as the overall deformations are small. For larger deformations
this approach also yields plausible results in many cases, but may
lead to distortion artifacts as demonstrated in [64]. An accurate simu-
lation of larger deformations necessitates a non-linear [26] simulation,
which requires repeated updating of the stiffness matrix, which is too
time consuming for interactive use cases. Further, the topology of the
subdivision surface used for deformation cannot change as this also
requires repeated computation of the stiffness matrix.

A possible extension of the IGA framework for design and anima-
tion is to extend the thin shell implementation to perform a dynamic
simulation of the shell behavior, e.g. as used by Clyde et al. [27],
who describe their IGA implementation of thin shell dynamics using
Catmull-Clark surfaces in the supplementary materials of their article.
In contrast to the static simulation presented in this thesis, this would
allow to simulate thin deformable objects in virtual worlds over time.
However, a dynamic simulation is currently too slow for interactive
use as it requires repeated evaluation of the stiffness matrix.

Another limitation is the speed of the computation. For complex sub-
division meshes with many control points the computation is too
slow for interactive deformation. Even neglecting the long precompu-
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tation time to setup the stiffness matrix, solving the system of equa-
tion alone is today still too time consuming on an average computer.
The Horse example from Section 5.6 can still be deformed interac-
tively, as shown in Table 5.1 and Figure 5.6, but solving the system of
equations for meshes larger than this example is too slow. A more effi-
cient approach to solving the equations on the GPU, e.g. as presented
by Weber et al. [104], might enable deformation of larger models at
interactive rates.

Another technique to improve performance is to use a coarse initial
mesh and only refine regions of interest, where a more accurate result
is needed. Therefore, an interesting research direction is to extend the
NURBS compatible subdivision scheme to support local refinement.
For subdivision surfaces, hierarchical subdivision techniques can be
used to enable local refinement for analysis without changing the
mesh topology, e.g. as demonstrated by Wei et al. [105].

For more accurate and more efficient analysis, the numerical inte-
gration could be further improved. Wawrzinek and Polthier [102] re-
cently demonstrated how to exactly evaluate derivatives of Catmull-
Clark surfaces near EVs. Extending this work to the NURBS com-
patible subdivision scheme would allow for a more accurate analy-
sis and faster convergence. To improve performance and accuracy,
Barendrecht et al. [8] presented a technique to reduce the number
of quadrature points required for numerical integration by grouping
several quad faces of the subdivision control mesh for integration.

The existing IGA framework could also be used to optimize the sur-
face topology, similar to the work of Seo et al. [89]. During topology
optimization geometry is removed in the design in a way which does
not compromise e.g. the structural stability of the shape. Topology
optimization is employed, for example, to save material in the man-
ufacturing process of an object, or to make an object lighter. Two
aspects in product design which become increasingly important.

Finally, an extension to volumetric representations would allow the
simulation of more types of objects, not only thin shells. There is al-
ready existing work for IGA using Catmull-Clark solids by Burckhart
et al. [17]. More recently Altenhofen et al. [3] demonstrated how a de-
sign process based on Catmull-Clark can be tightly integrated with
a volumetric simulation by creating the volumetric information for
classical FEM already during the design. It would be interesting to
extend these approaches to IGA based on the hypothetical NURBS
compatible subdivision solids, where the biggest challenge is to define
the rules for this new volumetric subdivision scheme.
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T R A N S F E R R E D D ATA

The exact data sent and received for each API endpoint listed in Sec-
tion 4.5.4 can be considered an implementation detail. Depending on
the use case, different data formats are possible. For example, com-
pressed binary data could be used to save bandwidth, or JSON en-
coded structures for ease of use in web-based applications. In the
following, the binary format used for comparisons in Figure 5.6 and
Figure 5.8 is shown in detail for the relevant core API endpoints from
Section 4.5.4.1. The datatypes are abbreviated as u32 for an unsigned
32 bit integer and f32 for a 32 bit single precision floating-point num-
ber.

Using POST /geometries to upload new geometry, the subdivision con-
trol mesh is transmitted as raw binary data with a small header. The
header contains the number of vertices n, the number of faces m, and
the material parameters Young’s Modulus E, Poisson Ratio ν and
thickness t. Following the header, the control points and quad face
indices are transmitted:

Header u32 n u32 m f32 E f32 ν f32 t

f32 x1 f32 y1 f32 z1

Vertices . . . . . . . . .

f32 xn f32 yn f32 zn

u32 a1 u32 b1 u32 c1 u32 d1

Faces . . . . . . . . . . . .

u32 am u32 bm u32 cm u32 dm

The response from the server is the unique geom_id transmitted as a
sequence of 16 bytes.

Computing a new deformation with POST /geometries/{geom_id}/results

requires the applied forces and constraints. Following the definitions
in Section 3.1.5, clients can send a combination of v vertex displace-
ment constraints, l Lagrange constraints and f force vectors:
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u32 v vertex constraints data

u32 l Lagrange constraints data

u32 f force data

The vertex constraints data consists of a sequence of dxi,dyi,dzi dis-
placement constraint values and a sequence of maski and indexi
values:

f32 dx1 f32 dy1 f32 dz1

Constraints . . . . . . . . .

f32 dxv f32 dyv f32 dzv

u32 mask1 u32 index1
Masks & indices . . . . . .

u32 maskv u32 indexv

Constraint i is applied to control point indexi of the control mesh,
according to maski. The mask can be used to only enforce the con-
straint for certain coordinates, e.g. only for the x and z coordinates of
the control point.

The Lagrange constraints data contains p control point indices ci, 3p
coefficients cxi, cyi, czi for all DOF of these control points, and 3 con-
straint values cvx, cvy, cvz for each of the l Lagrange constraints:

#Coefficients u32 p1

Indices u32 c1,1 . . . u32 c1,p1

f32 cx1,1 f32 cy1,1 f32 cz1,1

Coefficients . . . . . . . . .

f32 cx1,p1 f32 cy1,p1 f32 cz1,p1

Values f32 cvx1 f32 cvy1 f32 cvz1

. . . . . . . . .

#Coefficients u32 pl

Indices u32 cl,1 . . . u32 cl,pl

f32 cxl,1 f32 cyl,1 f32 czl,1

Coefficients . . . . . . . . .

f32 cxl,pl f32 cyl,pl f32 czl,pl

Values f32 cvxl f32 cvyl f32 cvzl
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Each of these Lagrange constraints adds 3 rows and columns to the
system of equations, one for each component x,y, z of the affected
control points, as described in Section 3.1.5.

Finally, force data is a sequence of three floats fxi, fyi, fzi for the forces
and a sequence of control point indices fpi, to which the forces are
applied:

f32 fx1 f32 fy1 f32 fz1

Forces . . . . . . . . .

f32 fxf f32 fyf f32 fzf

Indices u32 fp1 . . . u32 fpf

After the deformation is computed, the server returns a monotoni-
cally increasing res_id and the updated control point positions for
the deformed subdivision surface:

Result ID u32 res_id

f32 x1 f32 y1 f32 z1

Positions . . . . . . . . .

f32 xn f32 yn f32 zn

The client uses the updated control points together with the unchanged
face indices to visualize the deformed subdivision limit surface.
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