
Josef Edgar Sabongui, BSc

Usable Attribute-Based Encryption For
Industrial Cloud Systems

Master's Thesis

to achieve the university degree of

Diplom-Ingenieur

Master's degree programme: Computer Science

submitted to

Graz University of Technology

Supervisors

Dipl.-Ing Herbert Leitold and Dipl.-Ing. Dominik Ziegler, BSc

Evaluator

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Institute of Applied Information Processing and Communications

Head: O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Graz, May 2019

A�davit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Attribute-Based Encryption allows for encryption of data according to a
policy, which has to be satisfied successfully to decrypt a ciphertext. Based
on bilinear pairings, these cryptosystems are a relatively novel field of
research. While providing new ways to design cryptographic schemes,
inherent challenges like key escrow or computational performance issues
have to be addressed when adopting these systems.

We examine the requirements that an Attribute-Based Encryption system
would need to fulfill in the scenario of the Industrial Internet of Things.
This environment is comprised of a heterogeneous group of components,
ranging from computationally potent cloud services to severely constrained
sensors. Furthermore, data confidentiality is a pivotal aspect to consider
when information is shared throughout such a vast environment.

We present a system that is built around data access control and tries to
adapt to the strength and weaknesses of the involved actors. Our system
mitigates key escrow through keys that are split among services and end-
points. To relieve potentially resource limited endpoints from performing
computationally expensive pairing operations, partial decryption is provi-
ded by a dedicated service. We give a detailed mathematical description
of the architecture and present a prototype that implements all roles in
the system. This thesis shows that adopting Attribute-Based Encryption in
the Industrial Internet of Things is feasible in regards to performance and
provides data access control on a cryptographic level.

iii

Kurzfassung

Attribute-Based Encryption ermöglicht die Verschlüsselung von Daten an-
hand von Regeln die erfüllt werden müssen um einen Chiffretext erfolgreich
entschlüsseln zu können. Diese Kryptosysteme, basierend auf bilinearen
Paarung, sind ein relativ junges Forschungsgebiet. Während sich damit neu-
artige kryptographische Schemata entwerfen lassen, müssen unmittelbar
verbundene Herausforderungen wie Key Escrow oder Berechnungsges-
chwindigkeit bei einem Systemeinsatz bedacht werden.

Wir untersuchen anhand des Industrial Internet of Things Szenarios welche
Anforderungen ein Attribute-Based Encryption System erfüllen muss. Diese
Umgebung besteht aus einer heterogenen Gruppe von Komponenten, begin-
nend bei leistungsstarken Cloud Diensten bis hin zu stark eingeschränkten
Sensoren. Desweiteren is die Vertraulichkeit von Daten ein entscheidender
Aspekt wenn Informationen in einer derartig weitläufigen Umgebung geteilt
werden.

Wir präsentieren ein System, das Vertraulichkeit von Daten zum Kern hat
und versucht, die Stärken und Schwächen aller involvierten Akteure zu
berücksichtigen. Unser System entschärft Key Escrow indem Schlüssel auf
mehrere Services und Endpunkte aufgeteilt werden. Ressourcenmäßig ein-
geschränkten Endpunkten werden aufwändige Berechnungen von Paarun-
gen erspart, da eine partielle Enschlüsselung durch ein dediziertes Service
erfolgt. Wir stellen eine detaillierte mathematische Beschreibung der Archi-
tektur zur Verfügung und präsentieren einen Prototypen der alle Rollen im
System implementiert. Wir zeigen, dass Attribute-Based Encryption im In-
dustrial Internet of Things performant umsetzbar ist und Zugriffskontrolle
auf kryptographischer Ebene gewährleistet.

v

Contents

1. Introduction 1

1.1. Contribution . 3

1.2. Structure . 3

2. Background 5

2.1. Bilinear Pairings . 5

2.1.1. General . 6

2.1.2. Elliptic Curves . 6

2.1.3. Pairings . 7

2.1.4. Pairing Types . 8

2.2. Access Structures . 8

2.2.1. Access Trees . 9

2.2.2. Linear Secret Sharing Schemes and Monotone Span
Programs . 9

2.3. Multi-Party Computation . 10

2.3.1. SPDZ . 11

3. Related Work 13

4. Architecture 17

4.1. Actors . 18

4.1.1. Key Authority . 18

4.1.2. Re-Encryption Server 19

4.1.3. Storage Server . 19

4.1.4. Decryption Server . 19

4.1.5. Data Owner . 20

4.1.6. Client . 20

4.2. ABE System . 20

4.2.1. System Definitions . 21

vii

Contents

4.2.2. System Setup . 22

4.2.3. Key Creation and Update 23

4.2.4. Encryption . 27

4.2.5. Re-Encryption . 27

4.2.6. Decryption . 29

4.2.7. Attribute Management 33

5. Prototype 37

5.1. External Dependencies . 37

5.1.1. Cryptographic Libraries 39

5.1.2. Multi-Party Computation 39

5.1.3. Web Frameworks . 40

5.2. Libraries . 40

5.2.1. abe-core . 40

5.2.2. abe-common . 43

5.2.3. abe-common-keyprotocols 44

5.2.4. abe-server-common . 45

5.3. Servers . 46

5.3.1. abe-server-keyauthority 46

5.3.2. abe-server-storage . 46

5.3.3. abe-server-decryption 47

5.4. Endpoints . 47

5.4.1. abe-example-information 47

5.4.2. abe-example-producer 47

5.4.3. abe-example-client-java 48

6. Evaluation 49

6.1. Ciphertext Overhead . 49

6.2. Computational Performance . 52

7. Conclusion 65

7.1. Future Work . 66

7.2. Outlook . 67

A. Algorithms and Examples 69

A.1. Building a Polynomial from its Roots 69

viii

Contents

A.2. Creating a MSP and recovery of factors through solving linear
equations . 71

B. REST APIs 77

B.1. abe-server-keyauthority . 77

B.2. abe-server-storage . 81

B.3. abe-server-decryption . 86

Listings 89

Glossary 93

Bibliography 95

ix

1. Introduction

The so called Industry 4.0 [35] is an idea that has its roots in an initiative from
the German government. The vision behind it being, that traditional pro-
duction processes would greatly benefit from being enhanced with modern
information technology. But information driven production and optimiza-
tion requires massive amounts of data throughout entire production lines.
Due to the ever increasing complexity of these systems and factories as a
whole, data needs to be gathered and analyzed in every step of a production
process. Shrouf, Ordieres, and Miragliotta [53] argue that energy efficiency
of factories could be optimized by smart meters installed throughout fac-
tories. Zhou, Liu, and Zhou [64] recommend to utilize big data analysis to
optimize manufacturing processes and reduce costs. Therefore, it is desired
to equip all types of machinery with sensors and actuators. This includes
stationary equipment, autonomously moving robots as well as equipment
of factory workers. These devices represent nodes in an interconnected
environment. This is a industry focused variant of Internet of Things (IoT),
the so called Industrial Internet of Things (IIoT).

Aside from production lines, the entire manufacturing facility can be seen
as a pool of information. Be it information about its warehouse, tempera-
ture and humidity throughout the production plant, energy metrics up to
heating and air condition systems. All this data can be used to improve
production efficiency. The value of this information is not limited to the fa-
cility operators. Analyzing this data can also benefit other departments of a
production company, their customers or external partners like maintenance
contractors.

Due to the heterogeneous nature of this environment, the IIoT represents
an approach to collect data throughout all these systems. This plethora of
information needs to be collected, stored, distributed and analyzed. Some

1

1. Introduction

devices are limited in storage capacity and computational power, therefore
offloading storage and analysis tasks to more potent systems seems like a
reasonable strategy, as Samie, Bauer, and Henkel [50] discuss in the context
of IoT in the healthcare sector. Cloud based solutions appear to fulfill the
requirements of a scenario where a significant set of participating devices
operates with limited resources. They offer high availability as well as
massive computing power and storage capabilities. There already exist
cloud based IIoT services like Siemens MindSphere [54], Predix[45] and IIoT
by Honeywell [32].

Such an ecosystem inherently faces challenges regarding security and con-
fidentiality. It is undesirable to unconditionally share this wealth of infor-
mation with other entities. Confidentiality of data is a crucial requirement
for the IoT in an enterprise setting, as Sadeghi, Wachsmann, and Waidner
[48] point out. Therefore, fine-grained data access control is indispensable
in an environment like this. In the setting of cloud systems, Cloud Service
Providers (CSPs) have control over all data hosted in and processed with
their services. This lack of authority can constitute an obstacle for companies
when it comes to adopting said systems.

Traditionally, data has been secured by encrypting it and exchanging the
accompanying key. Symmetric algorithms like Advanced Encryption Stan-
dard (AES) [13] allow for very efficient and fast encryption and decryption
of data. Public-Key cryptosystems like Rivest–Shamir–Adleman (RSA) [47]
are built around key pairs, where a public key is used to encrypt data that
can only be decrypted by an accompanying secret key. In both scenarios, an
encryption is tied to a specific key or key-pair.

Attribute-Based Encryption (ABE) moves away from this paradigm and
specifies access policies that need to be fulfilled in order to decrypt a
ciphertext. Based on the chosen approach, such a policy is either attached
to keys or ciphertexts, called Key-Policy Attribute-Based Encryption (KP-
ABE) [24] and Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [6]
respectively. In a CP-ABE setting, a Data Owner (DO) encrypts data under
a given access policy. This resulting ciphertext can only be decrypted by
keys which are defined by attributes that satisfy the policy. This allows for
cryptographically ensured Attribute-Based Access Control (ABAC) [28]. The

2

1.1. Contribution

promise that data access is enforced on this level, can be a step towards
improving trust in the confidentiality of data in IIoT systems.

But ABE is subject to several challenges. Bilinear pairings build the founda-
tion in ABE designs. Depending on the architecture of the cryptosystem and
the chosen pairings, computational requirements can exceed capabilities of
more resource constrained devices typically found in IIoT environments.
Private keys are always created by some sort of Key Authority (KA), which
raises concerns regarding privacy of keys and confidentiality of data. Anot-
her important aspect is the implementation of key revocation, which is a
requirement for all systems that implement access control.

1.1. Contribution

The aim of this thesis is to demonstrate that ABE can be a suitable tool for
ensuring fine-grained access control and thus providing data confidentiality
in IIoT environments. We build upon the work of Lin, Hong, and Sun [38],
which addresses various problems an ABE system would face in an IIoT
environment. Their architecture was defined in the Type I setting of bilinear
pairings. These symmetric pairings are prone to security issues and bad
performance. Therefore, we adapt the architecture to work in the more
efficient and secure Type III setting. We provide a prototype of the adapted
system and evaluate it with regards to ciphertext overhead and execution
time of operations.

1.2. Structure

We will present the fundamental building blocks of our chosen ABE system
in Chapter 2. As ABE is usually built on Pairing-Based Cryptography (PBC),
we will discuss bilinear pairings and access structures. Furthermore, we
will give an overview to Multi-Party Computation (MPC) as it is essential to
the architecture of our prototype. In Chapter 3 we will discuss the history
of ABE, problems inherent to it, as well as approaches to mitigate those
challenges. Chapter 4 presents the mathematical foundation of our ABE

3

1. Introduction

system. The implemented prototype and component descriptions will be
provided in Chapter 5. At last, we will discuss the results from evaluating
our implementation in Chapter 6.

4

2. Background

The term ABE is used to describe a cryptosystem in which users are able to
decrypt ciphertext if a defined policy is fulfilled. These systems are usually
built upon bilinear pairings. Furthermore, they rely on access structures
to model the policy under which data is secured. ABE systems usually
come in two variants. KP-ABE assigns policies to keys and attributes to
ciphertexts, while CP-ABE does the opposite. More detailed information on
different ABE approaches will be discussed in Chapter 3. As will be shown
in Chapter 4, the proposed system also relies on the secure computation of
certain values through MPC.

This chapter explores the most significant techniques that were required to
implement the thesis’ system prototype.

2.1. Bilinear Pairings

Bilinear pairings first rose to prominence in cryptography, when they were
used to improve attacks on the Elliptic Curve Discrete Logarithm Problem
(ECDLP) by Menezes, Okamoto, and Vanstone [40]. They demonstrated how
to reduce the problem of ECDLP of supersingular curves to the Discrete
Logarithm Problem (DLP) of finite fields, for which subexponential attacks
were already known at the time. They employed the Weil Pairing to map
points from the elliptic curves to an extension of the underlying finite field,
where they then calculated the discrete logarithm using index-calculus
methods. This method is usually abbreviated MOV. The first utilization of
bilinear pairings for constructive use was presented by Joux [34], where
he demonstrated a Diffie-Hellman (DH)-like protocol in which 3 users can
calculate a common secret in only one round.

5

2. Background

2.1.1. General

A pairing e maps points in two abelian groups G1, G2 of the same order p
to a target group GT. As pairings are usually based on Elliptic Curves (ECs)
we use the notion of additive groups for G1 and G2, while GT is presented
as a multiplicative group.

e : G1 ×G2 → GT (2.1)

With group generators P1, P2, bilinear pairings require linearity in both
arguments:

e (aP1, bP2) = e (P1, P2)
ab (2.2)

Pairings also have to be non-degenerate, which means that the generators
must not map to the identity element of GT:

e (P1, P2) 6= 1 (2.3)

And lastly, pairings have to be efficiently computable. Such a polynomial
time algorithm was first described by Miller [41].

2.1.2. Elliptic Curves

In practice, pairings are implemented using ECs, which are defined over
some finite fields Fq . For detailed mathematical descriptions of ECs, we refer
to the book on EC arithmetic by Silverman [55]. Among other specific curve
properties, he describes the two main groups in which ECs are categorized,
namely supersingular and ordinary curves. An additional important aspect
of ECs to consider is their embedding degree k. The ECDLP can be reduced
to the DLP of a field extension Fqk , by employing the previously mentioned
MOV algorithm.

6

2.1. Bilinear Pairings

Supersingular Curves For supersingular curves, it was shown by Menezes,
Okamoto, and Vanstone [40] that the embedding degree is k ≤ 6. Due to
improving attacks on curves with small embedding degrees, these curves
should be avoided when implementing PBC systems. Examples of breaking
these curves in practice were demonstrated by Granger, Kleinjung, and
Zumbrägel [26] as well as Adj, Menezes, and Oliveira [1].

Ordinary Curves Miyaji, Nakabayashi, and Takano [42] gave the parame-
ters to construct curves with prime order and embedding degrees up to
k = 4, which are referred to as MNT curves. Page, Smart, and Vercauteren
[44] compared several MNT and supersingular curves regarding security
and efficiency. They showed that MNT variants required smaller ECs to
achieve comparable security, while the efficiency depended on the scheme
to be implemented. In 2006, Barreto and Naehrig [2] presented a way to
construct pairing friendly prime order curves with an embedding degree
k = 12. These so-called Barreto-Naehrig (BN) curves exhibit a strong se-
curity level, even when choosing relatively small ECs. They also showed
how to heavily compress the representation of points and pairings for these
curves, resulting in lower bandwidth requirements.

2.1.3. Pairings

Beside the Weil method, which was used in early PBC systems, there exist
other approaches to create bilinear pairings. The Tate pairing was initially
used in a cryptographic context to tackle the ECDLP by Frey and Ruck [20]
and furthermore showed to be more efficient than the Weil pairing, as was
demonstrated by Galbraith, Harrison, and Soldera [21]. In 2005 Barreto et al.
[3] first presented their Eta pairing, a Tate variant that exhibited improved
efficiency on supersingular curves. The Eta pairing was then modified into
the so called Ate pairing by Hess, Smart, and Vercauteren [27] to work
in the setting of ordinary curves, with additional speedup of the pairing
operation. In 2010 Vercauteren [59] presented a method to calculate optimal
Ate pairings for several families of pairing friendly ECs.

7

2. Background

2.1.4. Pairing Types

Bilinear pairings can be categorized into 4 main types, each with distinct
properties. One defining property is the existence of an efficiently computa-
ble group isomorphism ψ between the paired groups G1 and G2. Some ABE
systems require this isomorphism for either the constructions or security
proofs. A detailed analysis of the use of ψ in ABE protocols was given by
Chatterjee and Menezes [9], where they also argue that ψ is not necessarily
required for the functionality or security of most protocols but instead more
likely an artifact from the initial research of PBC systems. The following
classes have been identified so far:

• Type I: This type is unique in that G1 = G2, with the groups being
supersingular curves. This leads to a clear isomorphism ψ : G2 → G1
for these pairings. Such pairings are called symmetric pairings. Due
to the previously mentioned characteristics of supersingular curves,
these pairings are regarded as insecure or at least inefficient, as is
discussed by Uzunkol and Kiraz [58].
• Type II: Contrary to Type I, these pairings are based on ordinary

curves with G1 6= G2. They also provide an efficiently computable iso-
morphism ψ : G2 → G1. Due to the group inequivalence, the pairings
are called asymmetric pairings.
• Type III: These are similar to Type II pairings, except for the absence

of an efficiently computable group isomorphism. They do offer bet-
ter performance than their Type II counterparts, as was shown by
Galbraith, Paterson, and Smart [22].
• Type IV: Pairings of this type have a G2 with a different order than

G1. But they do provide an efficiently computable homomorphism
ψ : G2 → G1. The first to classify this type were Chen, Cheng, and
Smart [10] who based the definition on the thesis of Shacham [51].

2.2. Access Structures

ABE systems require some type of access structure to be able to enforce
a policy on its ciphertexts and keys. As ABE systems can differ greatly

8

2.2. Access Structures

in their construction, the methods to encrypt and decrypt ciphertexts are
intertwined with the choice of the access structure used.

2.2.1. Access Trees

When Goyal et al. [24] first presented their KP-ABE system, they opted for a
tree access structure to define the policy associated with private keys. They
employed a recursive algorithm for the decryption process, which traverses
a given access tree to recover a plaintext. Similar approaches can be seen in
proposals by Bethencourt, Sahai, and Waters [6], Ibraimi et al. [31] or Hur
[29].

2.2.2. Linear Secret Sharing Schemes and Monotone

Span Programs

Even though Goyal et al. [24] used a recursive decryption function, they
showed that a construction utilizing Linear Secret Sharing Schemes (LSSSs)
was possible. In a LSSS, a secret is distributed among multiple participants
according to an access structure. Only sets of participants that fulfill the
access structure are able to reconstruct the original secret with a linear com-
bination of their pieces. Beimel [5] demonstrated that LSSSs are equivalent
to Monotone Span Programs (MSPs), which were introduced by Karchmer
and Wigderson [36]. A MSP is a matrixM, where each row is labeled with a
literal. In the setting of LSSS the labels would correspond to the participants
of the scheme, while the rows correspond to the respective pieces. A MSP
only accepts a subset of rows if they are a linear combination of a fixed
nonzero vector. This is equivalent to fulfilling the access structure of a LSSS.
A simple method to convert a boolean formula into an LSSS matrix was
provided by Lewko and Waters [37]. A more advanced method that also
supports threshold gates was presented by Liu and Cao [39].

Sharing With LSSS, one can distribute a secret s ∈ Zp
∗ to n participants.

To do this, a fixed non-zero vector has to be used for creating the share

9

2. Background

matrix. Usually, this is either (1, 1, . . . 1) or (1, 0, . . . 0). Using one of the
previously mentioned approaches, one ends up with a share matrixM with
n rows. Each row is labeled, indicating to which participant it corresponds.
This labeling is denoted as ρ. Subsequently, a vector v = (s, x1, x2, . . . xn)
is created. To mask the secret value s in the next steps, all other values
are chosen randomly. The final shares are generated through the following
multiplication :

vs =M· vT =

λ1
λ2
...

λn

 (2.4)

According to the labeling ofM, the resulting row entries of vs are distributed
to their respective participants according to ρ .

Recovery To successfully recover a secret s shared by an LSSS, one has
to combine a set of authorized shares using factors that enable the recon-
struction of s.

s = ∑
t|ρ(t)∈S

ωt · λρ(t) (2.5)

These factors can only be recovered, if the set of participants S fulfills
the access policy. The recovery can be achieved by solving a system of
linear equations, based on a submatrix of M according to the set of par-
ticipants S . Examples for sharing and recovery of factors can be found in
Appendix A.2.

2.3. Multi-Party Computation

The task to compute a result based on mutually secret inputs between two or
more actors is called Multi-Party Computation (MPC). It is essential that no

10

2.3. Multi-Party Computation

party learns any other secret than its own while performing the computation.
A prominent example of such a computation in the setting of two players
is the so called Millionaires’ Problem, where two parties want to determine
who is richer without revealing their wealth to each other. Yao [62] gave
possible solutions to this problem using one-way functions. In 1986, Yao
[61] presented a general way to achieve Two-Party Computation (2PC). This
would later become known as Yao’s Garbled Circuits. Here, a boolean circuit
that represents the desired computation function is obfuscated or ’garbled’
by one of the two players. The second player then evaluates the garbled
circuit using their own input and the encrypted inputs of the first player.
After evaluation, both players gain knowledge of the result without ever
learning the other player’s secret input. A similar approach for the MPC
setting has been presented by Goldreich, Micali, and Wigderson [23].

2.3.1. SPDZ

Damgård et al. [11] proposed a rather efficient MPC scheme using Somewhat
Homomorphic Encryption, which was later named SPDZ based on the authors’
names. The protocol is split into two main parts, an offline (or preprocessing)
and an online phase. Independent of the actual inputs and function to be
evaluated, the preprocessing stage prepares information that can be used
in the second phase. This leads to much faster evaluation by the players
during the online phase. Aside from its performance, the protocol stays
secure against n-1 corrupt parties (with n being the total amount of players).
The authors adapted the protocol[12] by moving more operations to the
offline phase and providing improvements on an implementation level of
the protocol.

11

3. Related Work

Research in the area of ABE has become increasingly popular in the past few
years. While nearly all proposals share the foundation of bilinear pairings,
different approaches to the subject have resulted in a variety of systems.
This section outlines the history of ABE as well as inherent problems and
proposed solutions.

Identity-Based Encryption In 1985 Shamir [52] first introduced the con-
cept for a signature scheme that did not rely on generating random public/-
private key pairs, but instead derived them from information about a user.
In this scheme the public key is essentially the combination of information
that uniquely identifies a user, while the secret key is then derived from
this identity through trusted key generation centers. While the initial imple-
mentation only examined signatures in this identity-based system, Shamir
assumed that identity-based cryptosystems would exist as well.

Boneh and Franklin [7] were the first to propose a fully functional Identity-
Based Encryption (IBE) system based on the Weil pairing of ECs. Although
they used the Weil pairing, the authors mentioned that their system could
be used with any pairing, such as the Tate pairing for performance reasons,
as long as certain DH assumptions hold. They furthermore showed how to
equip this system with key escrow capabilities. A feature explicitly avoided
in this thesis, as the key generating entity could maliciously recreate keys.

It was not until Sahai and Waters [49] published their Fuzzy Identity-Based
Encryption (Fuzzy IBE) system, that research shifted towards systems that
enabled users to decrypt ciphertexts if their private key was defined by more
than just an exact identity match. The Fuzzy IBE system allowed decryption
if an identity was considered ’close’ to a target identity. This property was
achieved through defining attributes and a tolerance factor determining

13

3. Related Work

the allowed distance from the target identity. The main application of this
IBE variant was seen in biometrics-based IBE systems due to the provided
error-tolerance. However, they also first coined the term Attribute-Based
Encryption and the potential application of it. While their approach worked
well in the given context of biometric identities, the expressibility of access
policies was limited by the simple threshold approach.

Attribute-Based Encryption Goyal et al. [24] created a cryptosystem they
named KP-ABE in 2006. Their system equipped private keys with policies,
which defined what ciphertexts users were able to decrypt. Here, the access
structure was incorporated in the key while ciphertexts were labeled with
attributes. This allowed for far more expressive access policies than the
previously mentioned Fuzzy IBE system, like complex boolean formulas
represented through access trees. However, a user that encrypts data can
only equip the ciphertext with attributes and therefore has limited control
over who is able to decrypt it, since the policies are assigned to keys by a
key generating authority.

In 2007 Bethencourt, Sahai, and Waters [6] presented a system where policies
would be attached to ciphertexts instead of keys, as previously shown by
Goyal et al. They named this system CP-ABE. Here, the userkeys would be
defined by attributes. Using this approach, data owners would be empowe-
red to attach a detailed specification of a decryption key’s attributes to the
ciphertext. Compared to KP-ABE, the proposed system was more closely
related to the principle of Role-Based Access Control (RBAC) [17] which is
commonly employed throughout general access control systems.

Revocation In any system that assigns permissions to its users, it is neces-
sary to have a strategy in place for revocation of aforementioned permissions.
Early works in the field of ABE (and IBE) relied on periodically issuing keys
to users in a system, as can be seen in Boneh and Franklin [7]. Expanding
on that principle idea, Bethencourt, Sahai, and Waters [6] suggested that
instead of just using a calender year as an attribute for the key’s validity, a
system could equip keys with concrete expiration dates by extending their
attributes checks to support integer comparisons.

14

In a scenario based on health records, such revocation approaches seemed
impractical to Ibraimi et al. [31]. They proposed a system they named
Mediated Ciphertext-Policy Attribute-Based Encryption (mCP-ABE), that
allowed for immediate revocation through the use of an additional authority
in the system called a ’mediator’. In this environment a user is never in
possession of the entire private key. Instead, the mediator always holds a
part of a user’s key and generates a message specific user token that is
necessary to decrypt a ciphertext. If a user loses an attribute, the mediator is
informed about the changed set of attributes and rejects any request where
the access policy would require said attribute.

Hur [29] presented an ABE setup, where ciphertexts are re-encrypted by
a storage server using re-encryption keys corresponding to attributes and
users associated with them, so called attribute groups. If a user loses an
attribute and drops out of an attribute group, the storage server creates a
new re-encryption key for that particular attribute so that the ciphertext can
only be decrypted by users satisfying the attribute requirements.

Key Escrow Mitigation Most of the previously discussed ABE systems
are built around a single Key Authority that issues private keys derived
from a masterkey. Therefore, KAs are generally capable of freely recreating
every distributed key. Subsequently, a KA can decrypt every ciphertext
created in a system. While this feature may be desired by some actors like
state authorities, it also makes a KA the single point of failure in an ABE
system.

Chase and Chow [8] developed a multi-authority ABE scheme where the
masterkey is split among several attribute authorities, each managing a
different set of attributes. In this system, users request decryption keys
from the numerous authorities corresponding to the attributes they are
entitled to. To decrypt a ciphertext they would have to be in possession
of decryption keys from all responsible authorities managing the access
policy’s attributes.

Lewko and Waters [37] proposed to completely decentralize ABE, by letting
every user in a system act as an ABE authority and issue keys for other
users.

15

3. Related Work

Hur [29] splits the responsibility of key generation to a key generation center
and a storage server using secure 2PC. These two authorities craft a user’s
key using their respective secret keys, thus effectively preventing them from
(re-)creating private keys on their own.

Wang et al. [60] presented a so called Accountable Authority Attribute-Based
Encryption (A-ABE) system, where keys can be categorized into so called
’families’. Users are involved in the generation of keys, whose input determi-
nes the family their keys belong to. The key family is however unbeknownst
to the key generation authority during generation. An authority can not
definitively recreate a user’s key in the same family. Therefore, detection of
a key recreated by the authority alone is possible.

E�ciency In environments with restricted computational power, like the
IoT, it is necessary to develop protocols that can be implemented in these
settings. The calculation of pairings constitutes the most expensive part of
ABE schemes. This is why both [24] and [6] already provided optimizations
to their system’s decryption process by reducing the amount of relevant
attribute nodes of an access structure, for which pairings would actually
have to be computed.

While most developed schemes try to reduce the use of pairings, there
exist approaches to eliminate pairings all together. Yao, Chen, and Tian [63]
created a system free of pairings especially targeted towards IoT devices, by
solely constructing their scheme using EC primitives.

Another approach is to offload expensive parts of the computation from
users and devices to dedicated servers, as can be seen in the work of Lin,
Hong, and Sun [38]. Their system is based on Hur’s architecture [29] but
add another actor, a so called Decryption Server (DS) that partially decrypts
ciphertexts for users. The users then only have to do one non-pairing
based decryption step with their private key to gain access to the plaintext,
therefore being spared of most of the expensive calculations in the system.

16

4. Architecture

We gave an overview to the requirements of IIoT in Chapter 1. We also
discussed various problems inherent to Attribute-Based Encryption in Chap-
ter 3. One of the main requirements we focused on, is the separation of
power when using a cloud based system. A production oriented company
has a vital interest in having control over who gets access to data generated
at their facilities, while also profiting from the advantages cloud based
services offer. The other major requirement is a result of the computational
limitations IIoT devices may be subjected to. It is therefore essential, that
the computational burden of adopting ABE in these environments is not
overwhelming.

The work of Lin, Hong, and Sun [38] addressed several of these challenges
and was therefore chosen to serve as the foundation of the proposed system,
with respect to the ABE framework. A Client’s private key is split three-
ways, where Key Authority, Re-Encryption Server and the Client each
hold their key-part. To fully decrypt ciphertexts, all these parts have to
be used. Since the majority of decryption calculations are performed by
the Decryption Server, no expensive bilinear pairings have to be done on
the client’s side. Furthermore, the servers’ key-parts have to be retrieved
on each decryption request. This ensures that key revocation is enforced
instantaneously through the KA, by simply invalidating and updating user
key-parts based on the change in their associated attributes. The split private
keys also prevent key escrow, since no actor has knowledge of all three
key-parts throughout the entire decryption process.

17

4. Architecture

Figure 4.1.: Overview of ABE system actors

4.1. Actors

The architecture of this ABE system identifies several actors (see Figure 4.1),
as outlined throughout this section. Each actor plays a significant role in the
environment of this ABE system.

4.1.1. Key Authority

The Key Authority (KA) is in charge of key management in the system. It
creates and updates client key-parts in conjunction with the Re-Encryption
Server (RS). However, it remains the sole authority to grant or revoke
attributes from aforementioned key-parts. Any modifications to the system
parameters, such as additional attributes over the course of the systems
lifetime, are exclusively performed by the KA. The KA is responsible to

18

4.1. Actors

notify other actors, such as the RS and DS, of any such system relevant
changes.

4.1.2. Re-Encryption Server

The main responsibility of the Re-Encryption Server (RS) is re-encryption
of initial ciphertexts, which are created and uploaded by data owners. The
re-encryption process incorporates the attribute groups of a system into
the ciphertext. Therefore, a subsequent partial decryption attempt by a DS
only succeeds with user key-parts that satisfy the ciphertext’s access policy.
The RS is furthermore involved in the generation of the system parameters.
It is also responsible for the key-part generation- and update-processes in
partnership with the KA.

4.1.3. Storage Server

While not technically involved in any cryptographic operations in the ABE
system, the Storage Server (StS) is mentioned in this section because data
storage is an integral part of the proposed system. The prototype incorpora-
tes the StS inside the RS for simplicity. But there are no requirements that
demand such a consolidation of these two servers, as long as the ciphertext
upload is done via the RS.

4.1.4. Decryption Server

The Decryption Server (DS) is capable of partially decrypting ciphertexts
obtained from a StS. For this operation, the DS requires the key-parts from
KA and RS. This partial decryption performs all expensive bilinear pairing
operations, while leaving a simple ElGamal [15] encrypted ciphertext for
the Client (CL) to decrypt. Since it never gains access to a CL’s key-part,
the DS is not able to fully decrypt a ciphertext and thus can’t acquire any
information about the associated plaintext.

19

4. Architecture

4.1.5. Data Owner

A Data Owner (DO) produces and encrypts information using a random
secret and an access policy based on the ABE system’s attributes. The
random secret is split into several shares by using a LSSS, based on the
access policy. These shares are applied to the initial ciphertext and can only
be correctly recovered, if the attributes of a CL’s private keys fulfill the
access policy. This initial ciphertext is subsequently uploaded to the StS via
the RS.

4.1.6. Client

A Client (CL) is an endpoint, that wants to access encrypted data generated
in the ABE system. It is therefore necessary for the CL to participate in the
update process of key-parts. If the key-parts associated with a CL fulfill the
access policy of a ciphertext, it is possible to obtain the plaintext with help
of the DS. For now, the CL does not provide input to the update protocol,
as this would require a major redesign of the protocol and therefore be out
of scope of this thesis. Input and modification steps during the process on
the client side would be interesting to explore, as the key update would not
exclusively rely on inputs from KA and RS.

4.2. ABE System

This section describes the ABE system generation and the protocols for
ciphertext encryption/decryption. Furthermore we discuss generation and
update of private key-parts. While based on the protocols of Lin, Hong, and
Sun [38], there are some significant differences in the descriptions provided
throughout this section. Lin et. al. based their protocols on bilinear pairings
of Type I, as can be seen seen in several systems discussed in Chapter 3.
For efficiency reasons, we chose a Type III pairing for implementing this
system, specifically the Ate Pairing over Barreto-Naehrig curves. For more
information we refer to Section 2.1. The pairing choice resulted in several
changes throughout the descriptions and formulas the system is based on.

20

4.2. ABE System

To better illustrate how we used the ECs of the chosen pairing in the actual
implemented system, we will be using the notion of additive groups instead
of multiplicative groups for the two paired groups G1 and G2. The target
group remains a multiplicative group. Variable names in definitions are
adopted from [38], for the most part.

4.2.1. System De�nitions

Given two additive cyclic groups G1, G2 with generators P1, P2 respectively
and a multiplicative group GT. Let the pairing map be:

e : G1 ×G2 → GT (4.1)

The prime order of G1 is p ∈ P. The hash functions of this system are
defined as:

H0 : {0, 1}∗ → G1 (4.2a)
H1 : G1 → Zp

∗ (4.2b)
HT : GT → Zp

∗ (4.2c)

The system defines attributes, that may be used to build ciphertext policies.
This is denoted by the set Â. All authorized system CLs are contained in
the set U . Each attribute is associated with an attribute group G, consisting
of system CLs that hold this attribute. The set of all attribute groups is
specified as G.

U = {u1, u2, . . . , un} (4.3a)

Â = {â1, â2, . . . , âm} (4.3b)

G =
{

Gi | ∀âi ∈ Â, Gi ⊆ U
}

(4.3c)

21

4. Architecture

4.2.2. System Setup

The setup of an ABE system consists of three algorithms, that have to be
executed to generate the system parameters params which are required to
be publicly available to all system actors.

BaseSetup
(
λ, Â

)
The initial setup algorithm for generating base system

parameters takes a security parameter λ and the initial system attributes
Â. It then selects suitable groups for the system pairing based on λ and
generates for every system attribute a corresponding element A ∈ G1. This
is done by choosing a random element a ∈ Zp

∗ and applying it to P1:

Ai = aiP1 (4.4a)

A =
{

Ai | ∀âi ∈ Â
}

(4.4b)

Finally, the algorithm defines the generators of the pairing groups and
outputs the base system parameters paramsbase:

paramsbase = {P1, P2, A, H0, H1, HT} (4.5)

KeyAuthoritySetup(paramsbase) After the generation of paramsbase, the
KA selects a random element q ∈ Zp

∗ as its secret parameter and calculates
a public parameter to complete its parameters paramsKA:

paramsKA = {secretKA = q, publicKA = qP1} (4.6)

22

4.2. ABE System

ReEncryptionSetup(paramsbase) After receiving paramsbase, the RS selects
a random element α ∈ Zp

∗ as its secret parameter and calculates a public
parameter to complete its parameters paramsRE.:

paramsRE =
{

secretRE = α, publicRE = e (P1, P2)
α} (4.7)

After the RS registers its public parameter with the KA, the final system
parameters are created and distributed to all actors in the system:

params = {paramsbase, publicKA, publicRE} (4.8)

4.2.3. Key Creation and Update

In this system, the private key of a client is split 3-ways, where KA, RS and
the CL each possess a part of the key. The process for generating these key
parts is based on two separate protocols. The first protocol only involves KA
and RS, where both generate initial keys that are used in the second protocol
to actually generate functioning private key-parts. The initial keys are kept
for update purposes when CLs request new keys or the KA revokes attribute
group memberships from CLs. In case a CL obtains a new attribute, both
protocols have to be run again because the random ephemeral values used
in the protocols are not persisted on the server side. Therefore, the key-parts
can not be extended with matching attribute information. When revoking
an attribute, the KA only needs to delete the attribute from its key-part and
notify the RS to invalidate its key and rerun the second protocol.

4.2.3.1. Initial Key Protocol

Whenever it is required to build a CL’s key from scratch, the KA will trigger
the initial key protocol. The KA will generate a random value τ ∈ Zp

∗.
This, along with its secret parameter q, will be its input to the protocol. The
RS’s input to the protocol will be its secret parameter α. The beginning of
the protocol requires the computation of a value x ∈ Zp

∗. To achieve this
without revealing the servers’ secret parameters, MPC comes into play.

23

4. Architecture

x = (α/q + τ) /q =
α

q2 +
τ

q
(4.9)

After both servers obtained x, the RS chooses a random ephemeral value
σ ∈ Zp

∗ and calculates the first intermediate element V:

V =
x
σ

P1 (4.10)

V is sent to the KA, which in turn computes the intermediate element W:

W = q2V = q2 x
σ

P1 (4.11)

The KA sends W to the RS, which obtains its initial key IKRS through
following computation:

IKRS = σW = σq2 x
σ

P1 = q2xP1

= q2
(

α

q2 +
τ

q

)
P1 = (α + qτ) P1

(4.12)

The intial key IKKA is obtained by the KA based on the CL’s set of attributes
S ⊆ Â and the ephemeral value τ:

IKKA = {τP2, ∀â ∈ S : τAâ} (4.13)

4.2.3.2. Update Key Protocol

When a CL requests a new key, for example when signing in to the system
or after the servers invalidated their key-parts, the protocol for key updating
is executed. Here, all 3 actors are involved in the MPC computation. The RS
selects random values r1, π1 ∈ Zp

∗ while the KA selects its random values
r2, π2 ∈ Zp

∗. The CL does not provide input to the protocol, but directly
receives its private key-part from it.

24

4.2. ABE System

y = (r1 + r2)π1π2 (4.14)

While the servers receive the result y ∈ Zp
∗, the CL obtains a different result

PKCL and uses that as its key-part for following decryption attempts.

PKCL =
(r1 + r2)

π1π2
(4.15)

After this step, the protocol continues with just the servers. The first key that
will be computed belongs to the RS. The RS starts by selecting a random
ephemeral ξ ∈ Zp

∗ and applying it to its initial key IKRS:

X1 =
y
ξ

IKRS =
y
ξ
(α + qτ) P1 (4.16)

The intermediate element X1 is then sent to the KA which computes the
intermediate value Y1:

Y1 =
1

π2
2

X1 (4.17)

After receiving Y1, the RS applies the following computation on the inter-
mediate value to obtain its private key PKRS:

PKRS =
ξ

π2
1

Y1 =
ξ

π2
1

1
π2

2

(r1 + r2)π1π2

ξ
(α + qτ) P1

=
r1 + r2

π1π2
(α + qτ) P1

(4.18)

The private key of the KA consists of multiple parts, just like its initial
key. The KA starts by selecting a random ephemeral value ς ∈ Zp

∗ and
computes the first intermediate elements based on its initial key IKKA:

25

4. Architecture

X2 =
y
ς

τP2 (4.19a)

∀â ∈ S : Xâ =
y
ς

τAâ (4.19b)

These elements are sent to the RS, which in turn computes the next interme-
diate elements:

Y2 =
1

π2
1

X2 (4.20a)

∀â ∈ S : Yâ =
1

π2
1

Xâ (4.20b)

After receiving these elements, the KA computes the elements that will form
PKKA:

Z =
ς

π2
2

Y2 =
ς

π2
2

1
π2

1

(r1 + r2)π1π2

ς
τP2

=
(r1 + r2) τ

π1π2
P2

(4.21a)

∀â ∈ S : Zâ =
ς

π2
2

Yâ

=
ς

π2
2

1
π2

1

(r1 + r2)π1π2

ς
τAâ

=
(r1 + r2) τ

π1π2
Aâ

(4.21b)

This leads to the KA’s final key PKKA:

PKKA = {Z, ∀â ∈ S : Zâ}

=

{
(r1 + r2) τ

π1π2
P2, ∀â ∈ S :

(r1 + r2) τ

π1π2
Aâ

}
(4.22)

26

4.2. ABE System

4.2.4. Encryption

To encrypt data in the ABE system, a DO requires the system parameters
params, an access structure A describing the access policy for the ciphertext,
a secret s ∈ Zp

∗ which will also be split into shares for encrypting the
attributes and an elementM ∈ GT.M is normally defined as the plaintext
in ABE systems. However, generic data cannot freely be translated back and
forth into the group GT. Therefore,M will act as the input from which an
AES key is derived. This key will then be used to produce a symmetrically
encrypted payload PL that will be added to the ABE ciphertexts.

To create the payload key kPL, a random elementM and a random initializa-
tion vector IV are chosen as input for the hashing algorithm. The resulting
hash will then be used as the key for a symmetric 256-bit AES encryption E
of the plaintext data m.

kPL = HSHA256
(

IV, fbytes (M)
)

(4.23a)

PL =
{

IV, EkPL (m)
}

(4.23b)

An initial ciphertext CTinit consists of the payload PL, a share matrix Mshare
with labeled rows according to the LSSS from the access structure A and
the elementM encrypted using the public parameter publicRE. It further-
more includes the chosen ciphertext secret s, an element based on s and
the encrypted attributes. These attributes are encrypted using the public
parameter publicKA, s and the secret shares λt (entries from the share vector
vs, see Equation (A.3)) generated by the LSSS.

CTinit =
{

PL, Mshare, C =M· e (P1, P2)
αs ,

C⊥ = sP2, ∀ât ∈ A : C∗t = λtqP1 + (−s) At}
(4.24)

4.2.5. Re-Encryption

After DOs create their CTinit, they send it to the RS where it will be modified
to build the full ciphertext CT. This new ciphertext incorporates CTinit
and re-encrypts the attribute parts with so-called attribute group keys. To

27

4. Architecture

recover these attribute group keys later on, the RS builds a ciphertext header.
This allows the DS to solve equations based on the header’s entries. On
attempting to decrypt a ciphertext, the recovery succeeds for authorized
CLs and fails for unauthorized CLs.

The RS generates two random values µ, γ ∈ Zp
∗ which are used to construct

the header message Hdr. It also generates random attribute group keys
kt ∈ Zp

∗ for each encrypted attribute ciphertext part C∗t . This is done by
selecting a random zt ∈ Zp

∗, calculating Rt and hashing it with HT:

Rt = ztP1 (4.25a)
kt = H1 (Rt) (4.25b)

To recover a key kt, we have to create polynoms describing the authorized
CLs of the corresponding attribute group Gt. In order to do so, we first need
for all CLs uk in the ciphertext’s set of attribute groups G a corresponding
element xk ∈ Zp

∗, based on a CL’s unique identifying bitstring IDk ∈
{0, 1}∗.

∀uk ∈ G : Qk = H0 (IDk) (4.26a)
xk = HT (e (µQk, γP2)) (4.26b)

Now the polynomial for each attribute group Gt ∈ G can be constructed
through the roots of the polynomial, which are represented by the client
elements xk ∈ Zp

∗ of all CLs uk ∈ Gt. For the algorithm to calculate the
polynomial, see Listing A.1. The mathematical definition of the polynomial
function ft (x), with v being the number of CLs in Gt:

ft (x) =
v

∏
i=1

(x− xi)

=
v

∑
i=0

aixi
(4.27)

28

4.2. ABE System

With the polynomial’s factors ai, we can construct an attribute group’s
polynomial tuple. This tuple will be blinded by a random factor b ∈ Zp

∗ to
build the header Hdrt corresponding to the specific attribute ciphertext part
C∗t :

{T0, T1, . . . , Tv} = {a0P1, a1P1, . . . , avP1} (4.28a)
Hdrt = {Rt + bT0, bT1, . . . , bTv} (4.28b)

In the decryption process, the DS will be able to evaluate the polynomial
using the requesting CL’s element xk, to retrieve the re-encryption element
Rt for each attribute ciphertext part C∗t . From this element, the DS will
subsequently derive the attribute group key kt, required for a successful
decryption of C∗t .

The entire header part will be constructed as follows:

Hdr = {µP2, γ, ∀Gt ∈ G : Hdrt} (4.29)

This header will be incorporated into the full ciphertext and the attribute
ciphertext parts will be re-encrypted with their respective keys kt:

CT = {Hdr, PL, Mshare,
C =M· e (P1, P2)

αs , C⊥ = sP2,
∀ât ∈ A : C∗t = kt (λtqP1 + (−s) At)}

(4.30)

4.2.6. Decryption

When a DS receives a decryption request from a CL, it immediately retrieves
the key-parts PKKA and PKRS from the other servers. The CL’s authorized
attributes S can be extracted from PKKA. The CL attaches CT to the decryp-
tion request. Using the header Hdr, the DS attempts to recover the attribute
group keys kt | ât ∈ S . Since S ⊆ A only has to fulfill the ciphertext policy,
the DS tries to decrypt the relevant ciphertext parts C∗t | ât ∈ S and ignores

29

4. Architecture

all other ciphertext parts. The DS starts by computing the client element
x ∈ Zp

∗ based on its unique identity string ID using the information
contained in Hdr:

Q = H0 (ID) (4.31a)
x = HT (e (γQ, µP2)) (4.31b)

The element x of CL u is then applied to the polynomials in the relevant
ciphertext parts Hdrt | ∀C∗t :

(Rt + bT0) +
v

∑
i=1

xibTi = Rt + ba0P1 +
v

∑
i=1

xibaiP1

= Rt +

b
v

∑
i=0

xiai︸ ︷︷ ︸
=0|u∈Gt

 P1

= Rt | u ∈ Gt

(4.32)

The reencryption element Rt can only be recovered for an authorized CL
u ∈ Gt, otherwise the computation results in a wrong element in G1. After
successful recovery of Rt, we can calculate the attribute group key kt (cf.
Equation (4.25b)).

After obtaining the group keys kt, the DS tries to recover the factors ωt
which are needed to restore the ciphertext secret s by solving a system of
linear equations given the CL’s authorized attributes S . Recall the definition
of the recover function in LSSS (see Equation (2.5)):

s = ∑
t|ρ(t)∈S

ωt · λρ(t) (4.33)

For an example of this recovery, we refer to Appendix A.2. If S fulfills
the policy described by A, then the recovered factors will allow the DS to

30

4.2. ABE System

perform its first decryption step using the information contained in key-part
PKKA = {Z, ∀â ∈ S : Zâ}:

∏
ρ(t)∈S

(
e
(

1
kt

C∗t , Z
)
· e
(

Zρ(t), C⊥
))ωt

= ∏
ρ(t)∈S

(
e
(

1
kt

kt (λtqP1 + (−s) At) ,
(r1 + r2) τ

π1π2
P2

)

·e
(
(r1 + r2) τ

π1π2
At, sP2

))ωt

= ∏
ρ(t)∈S

(
e
(
(λtq− sat) P1,

(r1 + r2) τ

π1π2
P2

)
· e
(
(r1 + r2) τat

π1π2
P1, sP2

))ωt

= ∏
ρ(t)∈S

e (P1, P2)

(
λtqτ(r1+r2)

π1π2
− satτ(r1+r2)

π1π2
+

satτ(r1+r2)
π1π2

)ωt

= ∏
ρ(t)∈S

e (P1, P2)

(
λtqτ(r1+r2)

π1π2

)ωt

= ∏
ρ(t)∈S

e (P1, P2)
ωtλtqτ(r1+r2)

π1π2

= e (P1, P2)
sqτ(r1+r2)

π1π2 = F0
(4.34)

The resulting element F0 represents an intermediate partial decryption of
M that is now independent of the attribute related ciphertext parts. To
obtain the final partially decrypted element F1, the DS has to do one final
computation using the RS’s key-part PKRS:

31

4. Architecture

e (PKRS, C⊥)
F0

=
e
(

r1+r2
π1π2

(α + qτ) P1, sP2

)
e (P1, P2)

sqτ(r1+r2)
π1π2

=
e (P1, P2)

sα(r1+r2)
π1π2

+
sqτ(r1+r2)

π1π2

e (P1, P2)
sqτ(r1+r2)

π1π2

= e (P1, P2)
sα(r1+r2)

π1π2
+

sqτ(r1+r2)
π1π2

− sqτ(r1+r2)
π1π2

= e (P1, P2)
sα(r1+r2)

π1π2 = F1

(4.35)

The final resulting element F1 is then incorporated into the partially decryp-
ted ciphertext CTPD which is returned to the CL that made the decryption
request:

CTPD = {PL, F1, C} (4.36)

After receiving CTPD, the CL performs the last computation to obtain the
original elementM, which is needed to decrypt the payload PL:

C

F
1

PKCL
1

=
C

F
π1π2
r1+r2

1

=
M· e (P1, P2)

αs(
e (P1, P2)

sα(r1+r2)
π1π2

) π1π2
r1+r2

=
M· e (P1, P2)

αs

e (P1, P2)
sα(r1+r2)

π1π2

π1π2
r1+r2

=
M· e (P1, P2)

αs

e (P1, P2)
sα

=M· e (P1, P2)
αs · e (P1, P2)

−αs

=M

(4.37)

At last, the CL can compute the payload key kPL usingM and IV (see Equa-
tion (4.23a)). With this key, the CL can decrypt the original AES encrypted
plaintext m.

32

4.2. ABE System

4.2.7. Attribute Management

Whenever a CL obtains or has an attribute âi revoked, the corresponding
attribute group Gi has to be modified to reflect the current set of authorized
CLs. This updated group will be denoted Gi’. Since attribute group keys of
ciphertexts depend on the clients u ∈ Gi, ciphertexts have to be updated
accordingly. Due to the structure of a final ciphertext CT and its header
Hdr, the update process only has to alter the parts affected by said attribute
group. A new attribute group key ki’ has to be applied to the corresponding
ciphertext part C∗i and a new attribute header Hdri is created based on the
current clients in Gi’.

We will now present the methods required to handle changes in users’
attributes.

4.2.7.1. Key Update

The servers’ key-parts have to be updated after client attributes are revoked
or issued. In case of revocation, the KA removes the revoked attribute âr
from the CL’s authorized attribute set S :

S ′ = S \ {âr} (4.38)

It then drops the attribute âr from its initial key IKKA:

IK′KA =
{

τP2, ∀â ∈ S ′ : τAâ
}

(4.39)

The KA subsequently instructs the RS to rerun protocol Section 4.2.3.2,
where both servers provide new input values, namely r′1, π′1, r′2, π′2 ∈ Zp

∗.

33

4. Architecture

This leads to new key-parts for all involved actors:

PK′CL =
(r′1 + r′2)

π′1π′2
(4.40a)

PK′RS =
r′1 + r′2
π′1π′2

(α + qτ) P1 (4.40b)

PK′KA =

{
(r′1 + r′2) τ

π′1π′2
P2, ∀â ∈ S ′ : (

r′1 + r′2) τ

π′1π′2
Aâ

}
(4.40c)

In case a CL obtains an attribute âg, the keys have to be created anew, as
the value of τ is not retained after the protocols are finished. Therefore, the
initial key protocol Section 4.2.3.1 has to be executed first. Initially, the KA
updates the user’s attribute set:

S ′ = S ∪
{

âg
}

(4.41)

Subsequently, the KA chooses a new value τ′ ∈ Zp
∗ and triggers protocol

Section 4.2.3.1, which leaves both servers with new initial keys:

IK′RS =
(
α + qτ′

)
P1 (4.42a)

IK′KA =
{

τ′P2, ∀â ∈ S ′ : τ′Aâ
}

(4.42b)

Executing protocol Section 4.2.3.2 results in the following updated key-parts
for the participating actors:

PK′CL =
(r′1 + r′2)

π′1π′2
(4.43a)

PK′RS =
r′1 + r′2
π′1π′2

(
α + qτ′

)
P1 (4.43b)

PK′KA =

{
(r′1 + r′2) τ′

π′1π′2
P2, ∀â ∈ S ′ : (

r′1 + r′2) τ′

π′1π′2
Aâ

}
(4.43c)

34

4.2. ABE System

4.2.7.2. Ciphertext Update

When attribute groups change
(
Gl → G′l

)
, ciphertexts containing said groups

have to be updated in response. Group keys kl should only be recoverable
during requests of authorized CLs ux ∈ Gl. Therefore, new group keys kl’
are chosen to re-encrypt the corresponding ciphertext parts. These keys are
protected by generating new ciphertext headers Hdrl’. In order to do so, the
RS has to retrieve the original ciphertext part C∗l from CTinit, re-encrypt it
with kl’ and replace it in CT.

First, a new element Rl and a subsequent re-encryption key have to be
calculated:

R′l = z′lP1 (4.44a)

k′l = H1
(

R′l
)

(4.44b)

Then, a new header for the changed group Gl’ has to be built, by creating a
polynomial based on the group’s updated set of contained client elements
xk:

fl (x) =
v′

∏
i=1

(x− xi)

=
v′

∑
i=0

a′ix
i

(4.45)

With a new random blinding factor b’, the header Hdrl’ is constructed:

{
T′0, T′1, . . . , T′v′

}
=
{

a′0P1, a′1P1, . . . , a′v′P1
}

(4.46a)

Hdr′l =
{

R′l + b′T′0, b′T′1, . . . , b′T′v′
}

(4.46b)

This leads to a new header Hdr’:

35

4. Architecture

Hdr′ =
{

µP2, γ, Hdr′l, ∀Gt ∈ G \ {âl} : Hdrt
}

(4.47)

This header is then incorporated into the updated ciphertext CT’ along the
newly re-encrypted ciphertext part C∗l ’:

CT′ =
{

Hdr′, PL, Mshare,
C =M· e (P1, P2)

αs , C⊥ = sP2,

C∗l
′ = kl

′ (λlqP1 + (−s) Al) ,
∀ât ∈ A \ {âl} : C∗t = kt (λtqP1 + (−s) At)}

(4.48)

This chapter gave the mathematical definitions for the ABE system presented
in this thesis. The following chapter will go into details on how this system
was implemented.

36

5. Prototype

While the previous chapter detailed the mathematical operations required
for the presented ABE system, it does not describe how such a system
would be realized in practice. The prototype provides this functionality by
implementing all relevant actors.

This chapter will get into technical details of the prototype systems. Used
environments, tools and libraries.

Due to the chosen architecture, the prototype consists of several components.
It’s organized with Gradle Build Tool [25]. Each component is a Gradle pro-
ject in itself, with some interdependencies between them. Communication
throughout the system happens among various lines as Figure 5.1 shows.
All actors incorporate those ABE libraries necessary for their operations. The
server components store data in their respective MongoDB databases. Com-
munication with servers is done via their exposed Representational State
Transfer (REST) Application Programming Interfaces (APIs). To securely
generate and update keys, separate sockets have to be used for handling
MPC with FRESCO. The server components are managed via a web inter-
face, while the producer and client implementations are Command Line
Interface (CLI) applications.

5.1. External Dependencies

The prototype components depend on certain external tools that were
necessary to implement the desired ABE functionality. These dependencies
are described in the following sections.

37

5. Prototype

Figure 5.1.: Overview of the entire prototype

38

5.1. External Dependencies

5.1.1. Cryptographic Libraries

The implementation of pairings was provided by the ECCelerateTM [14]
library from the Institute of Applied Information Processing and Com-
munications (IAIK) of the Graz University of Technology (TU Graz). The
library provides an implementation for the Ate pairing over BN curves in
the asymmetric Type II and Type III setting. As our architecture does not
require an isomorphism, only pairings of the Type III variant were used.

The hashing function H0 is supplied by the library ECCelerateTM [14] with
description of the implementation in the master’s thesis of Ramacher [46].
The underlying algorithm to securely and efficiently hash onto Barreto-
Naehrig curves is based upon work from Fouque and Tibouchi [18]. The hash
functions H1 and HT were chosen to be a 256 bit Secure Hash Algorithm
(SHA) digest of the unique byte representation of elements from the groups
G1 and GT reduced by p, for simplicity’s sake. This means, that the hashes
are tied to the implementation’s use of the ECCelerateTM framework and its
current choice of internal representation of elements.

x1 ∈ G1 : H1 (x1) ≡ HSHA256
(

fbytes (x1)
)
(mod p) (5.1a)

xT ∈ GT : HT (xT) ≡ HSHA256
(

fbytes (xT)
)
(mod p) (5.1b)

AES and SHA-256 implementations were also provided by IAIK through
their JCE library [30]. These cryptographic tools were required for the
generation of ciphertext payloads and hashing of group elements into the
Zp
∗ domain.

5.1.2. Multi-Party Computation

The prototype realizes the generation and update of private keys via MPC
provided by the FRESCO [19] library. It implements various MPC protocols
in the boolean and arithmetic setting. Since the private keys in the pro-
totype are dependent on computations in Zp

∗, the SPDZ [11] protocol was
employed in the prototype.

39

5. Prototype

5.1.3. Web Frameworks

Spring Boot [56] is an extension to Spring, a popular framework for building
web applications in Java. It allows for automated configuration of Spring
components and easy deployment through built-in containers.

MongoDB [43] is a so called NoSQL database system. Contrary to traditional
relational database systems, MongoDB stores data in documents with a
flexible JavaScript Object Notation (JSON)-like format.

Thymeleaf [57] is a template engine for rendering web pages server-side. It
allows for front-end development with pure Hypertext Markup Language
(HTML) templates and integrates well with the Spring MVC framework.

5.2. Libraries

This section lists all libraries that we developed to realize the thesis’ pro-
totype. They represent the core functionality of the ABE system and are
incorporated in the actors’ implementations.

5.2.1. abe-core

The project abe-core stands at the center of the prototype and implements
the cryptographic high-level operations needed for the chosen ABE system.
It furthermore provides the required classes like parameters, keys and access
structures. LSSS matrix generation is implemented according to the method
presented by Lewko and Waters [37]. Solving systems of linear equations
needed for LSSS factor recovery was achieved with the use of Gauss-Jordan
elimination (see Appendix A.2).

40

5.2. Libraries

System Initialization To initialize an ABE system in the prototype, an
object containing the global system parameters is required. The system
settings are created by the KA and RS (see Section 4.2.2). Listing 5.1 shows
a minimal example of initializing an ABE system with our prototype. The
variable security refers to the bit size of the ECs that will be used to create
a pairing. HashType refers to the method of hashing elements int Zp

∗ (see
Equation (5.1)). In combination with the set of attributes in the ABE system,
we can create the BaseSystemParameters, representing an implementation
of Equation (4.5). The following lines of code show how to instatiate KA and
RS parameters according to Equation (4.6) and Equation (4.7). Subsequently,
we get an object that holds all public system parameters described in
Equation (4.8). The last line of this listing represents an object providing all
methods that the system actors require.

Listing 5.1: Initialization of an ABE system

1 // defining the basic system parameters

2 int security = 160;

3 Set<String> systemAttributes = Stream.of("management", "quality", "

purchasing", "operations", "factory").collect(Collectors.toSet());

4 HashTypes hashType = HashTypes.SIMPLE_SHA256;

5

6 // Basic system initialization

7 BaseSystemParameters baseSystemParameters = new BaseSystemParameters(

security, systemAttributes, hashType);

8

9 // Key Authority parameter initialization

10 KeyAuthorityParameters keyAuthorityParameters = new

KeyAuthorityParameters(baseSystemParameters.getSystemPairing().

getGroup1());

11

12 // Reencryption parameter initialization

13 ReencryptionParameters reencryptionParameters = new

ReencryptionParameters(baseSystemParameters.getSystemPairing());

14

15 // Creating the system parameters and ABE object

16 SystemParameters systemParameters = new SystemParameters(

baseSystemParameters, keyAuthorityParameters.getPublicParameter(),

41

5. Prototype

reencryptionParameters.getPublicParameter());

17 AttributeBasedEncryption abe = new AttributeBasedEncryption(

systemParameters);

Encryption A DO can encrypt data using a chosen policy. Here, the only
prerequisite is an initialized ABE object. The policy has to be provided in
the form of an object describing an access structure. The access structure is
a tree-like object that has to be initialized with a string in postfix notation.
Listing 5.2 shows the creation of an access policy from a policy string and
the subsequent encryption of data according to Section 4.2.4.

Listing 5.2: Encryption of a ciphertext

1 String plaintext = "This is a standard test plaintext.";

2 String policy = "(management, (((operations, quality, AND), (

purchasing, factory, AND), OR), ((operations, quality, OR), (

purchasing, factory, OR), AND), OR), AND)";

3 AccessStructure accessStructure = AccessStructure.

createPolicyFromString(policy);

4

5 BasicCiphertext basicCiphertext = abe.encrypt(plaintext,

accessStructure, StandardCharsets.UTF_8);

6

The encryption method takes in a parameter indicating the encoding to be
used for the conversion of the plaintext string into a byte array. A method
accepting the plaintext in the form of a byte-array is also available.

Re-Encryption The basic ciphertext from a DO can not be decrypted
directly. It first has to be re-encrypted by the RS (see Section 4.2.5). For that,
the attribute groups (see Equation (4.3)) have to be passed to the method
by the RS, as is shown in Listing 5.3. The resulting ciphertext can then be
stored and retrieved for decryption.

42

5.2. Libraries

Listing 5.3: Re-Encryption of a ciphertext

1 Ciphertext ciphertext = abe.reencryptBasicCiphertext(basicCiphertext,

attributeGroups);

Partial Decryption After a CL initiates a decryption request, the DS has
to collect the corresponding private key-parts from KA and RS. Listing 5.4
shows how the DS uses the private key-parts as well as the user ID to
perform a partial decryption of the ciphertext (see Section 4.2.6), which is
then returned to the CL.

Listing 5.4: Partial decryption of a ciphertext

1 PartiallyDecryptedCiphertext partiallyDecryptedCiphertext = abe.

decryptPartially(ciphertext, cpk1, cpk2, userID);

Decryption After obtaining a partially decrypted ciphertext from the DS,
Listing 5.5 shows how a client makes the final decryption step (see Equa-
tion (4.37)) using its own private key-part.

Listing 5.5: Decryption of a ciphertext

1 String recoveredPlaintext = abe.decrypt(partiallyDecryptedCiphertext,

StandardCharsets.UTF_8, cpk3);

5.2.2. abe-common

The abe-common library provides classes that are shared among all other
prototype components. This includes general configuration and constants
for the entire system. The main functionality it provides to other components
revolves around serialization of ABE objects in a web-based environment.

43

5. Prototype

The prototype implements object representations - so called models - in
JSON format. All members of an object are serialized into JSON elements
using the Jackson [33] mapper. One special case is the handling of binary
data like byte arrays, which are converted into a Base64 [4] format.

Depending on the members of ABE objects, the conversion of objects to
models requires information about the system pairing. This requirement
is based in how ECCelerateTM represents points on ECs and field elements.
These objects can be encoded into byte arrays. But they have to be decoded
by the same ECs or fields of the system pairing. Therefore, the system
pairing has to be present, before any affected ABE object can be recovered
from its JSON form. Listing 5.6 demonstrates, that the SystemPairing object
itself can be recovered directly. However, instances of certain private key
objects need the system pairing to successfully deserialize its corresponding
JSON model.

Listing 5.6: Conversions of JSON models to core classes

1 // a conversion that does not depend on already set−up system

parameters

2 SystemParameters systemParameters = systemParameterModel.toCoreObject()

3

4 // a conversion that depends on the system pairing (or groups thereof),

due to − for example − ECPoint members

5 PrivateKey privateKey = privateKeyModel.toCoreObject(systemParameters.

getBaseSystemParameters().getSystemPairing());

All models can furthermore be equipped with some form of integrity data,
with currently having salted SHA-256 hashes available in the implementa-
tion (see Listing B.2).

5.2.3. abe-common-keyprotocols

The abe-common-keyprotocols library contains the implementation for the
creation and update of keys in the ABE prototype.

44

5.2. Libraries

MPC Our implementation relies on the FRESCO [19] library to mutually
agree on initial values required to create and update private key-parts, as
was shown in Equation (4.9) and Equation (4.14). To arithmetically calculate
these initial values during key creation and update, the SPDZ [11] protocol
suite was chosen. A computation with FRESCO is called an application.
The MPC players have to create objects from the same application class,
instantiated with their individual inputs. The class itself describes the
computation process and defines which intermediate or end results are
opened to which player. If a player were to manipulate the computation
or communication channel, FRESCO is able to detect this behavior and
abort the computation. The same would hold, if someone were to alter
their application object to try to open a value that is not intended for
them. FRESCO works with Java sockets to communicate between players.
The abe-common-keyprotocols library provides a class that manages all
things related to the setup of communication between players, the so called
MPCPlayerSocketHandler.

Key Protocols Key creation and update are built upon the computation
of initial values, as was described in Section 4.2.3. The protocols incorporate
the previously mentioned MPC applications and use these values to calcu-
late the resulting keys. Since FRESCO requires complete control over the
sockets used during MPC operations, the protocol classes need to establish a
second connection to continue the remaining key manipulation steps. These
additional connections are always limited to the KA and RS, since CLs only
require results from the MPC portion of a key update.

5.2.4. abe-server-common

The abe-server-common library contains classes that are shared among all
server components. Since servers have to establish trusted connections to
one another, this library provides implementations for setting up said server
relations for ABE systems. They also provide classes that handle the storage
of these relations in MongoDB databases.

45

5. Prototype

5.3. Servers

The servers are self-contained Spring Boot applications. They expose their
ABE functionality through REST APIs (see Appendix B) and provide Graphi-
cal User Interfaces (GUIs) for management tasks. The involved servers can
be defined on a system-by-system basis. This means, that a DS can provide
its decryption service for ABE systems managed by different KAs. The
same holds for the other servers as well. It should be mentioned, that the
prototype combines the functionality of RS and StS into one server project.

5.3.1. abe-server-keyauthority

The abe-server-keyauthority component manages users, ABE systems
and defines the associated StS and DS. Most of its functionality is exposed
on REST endpoints. All systems are identified by their Universally Unique
Identifier (UUID), which has to be passed as a parameter on each request to
the KA’s API. A list of exposed endpoints can be found in Appendix B.1.
This component persists data in MongoDB. Examples of stored data are ABE
systems, users, private keys and the corresponding initial private keys as
well as a list of known trusted servers.

5.3.2. abe-server-storage

The abe-server-storage prototype component combines both RS and StS,
as the re-encryption of ciphertexts and it’s storage are so closely related.
Similar to the KA, it provides a REST API (see Appendix B.2) for handling
ciphertexts in the system. When a ciphertext is uploaded, the component
performs the necessary re-encryption steps (see Section 4.2.5) before storing
it permanently. Persistent data is handled via MongoDB, similar to the KA
component. The major difference is the additional storage of ciphertexts
that are linked to storage paths. The RS queries the KA for information on
users and groups or gets notifications via it’s dedicated REST endpoints.

46

5.4. Endpoints

5.3.3. abe-server-decryption

The DS component exposes one REST endpoint (see Appendix B.3), where
CLs can submit ciphertexts for partial decryption. The DS then queries the
KA and RS servers components for their private key-parts corresponding to
the CL to perform the partial decryption of the submitted ciphertext. The
component only permanently stores which other severs are associated to
each ABE system.

5.4. Endpoints

The endpoint components implement basic functionality of how the ABE
system would be used in practice.

5.4.1. abe-example-information

As the ABE system is agnostic to the actual data that will be encrypted
and transferred, the abe-example-information component implements a
common JSON data structure that is used by the DO and CL components.

5.4.2. abe-example-producer

abe-example-producer represents what an example DO would have to
implement for interacting with a ABE system. The component regularly
generates JSON data in the form of the common data structure from the
previous section. These data structures are then encrypted according to the
system’s public parameters and submitted to the RS component under a
specified data path. The required system parameters are retrieved via REST
calls to the KA’s API.

47

5. Prototype

5.4.3. abe-example-client-java

The abe-example-client-java component is configured to retrieve data
under given data paths from the RS in regular intervalls. On startup, it
requests a new private key from the KA which will then trigger a MPC
computation. When new data under a specific storage path can be retrieved,
this data is submitted to the DS. The result is then used to decipher the
original plaintext using the CL’s private key according to Equation (4.37).

This concludes the prototype chapter. It gave an overview of all the imple-
mented components and showed code examples to demonstrate how to
achieve the functionality described in Chapter 4. The following chapter will
present performance data generated by the prototype components and give
an idea regarding its applicability in an IoT environment.

48

6. Evaluation

To determine if our system can be adopted in an IIoT environment, we
performed an evaluation of key aspects of our prototype. In Section 6.1 we
take a look at the inherent overhead our ABE architecture adds to otherwise
symmetrically encrypted data. A thorough computational performance
evaluation of the core cryptographic operations on hardware representing
IIoT devices was conducted by Ziegler, Sabongui, and Palfinger [65]. We will
point to these findings for high level ABE operations throughout Section 6.2.
Furthermore, we examine execution times of several important building
blocks of these operations.

6.1. Ciphertext Overhead

The output of CP-ABE can be seen as a symmetrically encrypted cipher-
text, that has been enriched with information about its respective decryp-
tion policy. First, recall the definition of an initial ciphertext CTinit from
Equation (4.24). As the size of the payload PL only depends on a 256-bit
encryption with AES, we will not further consider it in the subsequent
evaluation. The reason behind it being, that the ABE related portions of the
full ciphertext are completely independent of the actual payload data, since
its purpose is to protect the AES key of the payload.

We define the notation for the size of basic elements in bytes that consti-
tute our ciphertext as |Zp

∗|, |G1|, |G2| and |GT|. The size of elements in
our prototype is tied to the chosen security parameter λ. This parameter
indicates the security strength of our system in bits. As p is the order of the
resulting groups G1 and G2, we see that |Zp

∗| = |p| = λ
8 . The size of the

49

6. Evaluation

λ |G1| |G2| |GT|
160 168 328 1 920
192 200 392 2 304
224 232 456 2 688
256 264 520 3 072
384 392 776 4 608
512 520 1 032 6 144

Table 6.1.: Bitsize of elements in ECCelerateTM according to security parameter λ.

other elements is defined by their internal representation in ECCelerateTM.
Table 6.1 gives an overview of the sizes in bits at different security levels.

If we recall the definition of the initial ciphertext CTinit from Equation (4.24),
we see that there are two parts that grow in size based on the number of
attributes in an access structure A. We will denote this quantity as |A|. To
generate the matrix, we use the method from Lewko and Waters [37]. For
an example of this matrix generation, see Appendix A.2. Here, a sharing
matrix Mshare will always have |A| rows, while the columns depend on the
concrete access policy. Each time an AND gate is encountered, the matrix
will gain an additional column. An upper bound would be |A| in case
the policy consists only of AND gates. However, the resulting matrices are
always sparse, as a lot of the access tree labeling involves padding of vectors
with zeroes. In general, we can say that there are two entries per row on
average. Since the size of a zero value is always 4 bytes (due to it being a
1-element internal integer array of a BigInteger), we will approximate the
size of the matrix with 2 · |A| · |Zp

∗|+ |A|2 · 4. One last thing to consider
is the size of the attribute labeling ρ for Mshare and the list of C∗t . As the
implementation allows for any character string to be an attribute identifier,
this can become a significant factor with increasing complexity of the access
policy. Equation (6.1) shows the size we can expect from CTinit (excluding
the payload PL):

|CTinit| = 2 · |A| · |Zp
∗|+ |A|2 · 4 + |GT|+ |G2|+ |A| · |G1|+ 2 · |ρ| (6.1)

We can assume, that the size of the basic ciphertext will be dominated

50

6.1. Ciphertext Overhead

by its access structure A, and increasing complexity thereof. Even though
zero values in the resulting matrix Mshare need significantly less space than
other elements, the (worst case) square nature of Mshare can add respectable
overhead with an increasing amount of attributes in A.

A re-encrypted ciphertext adds Hdr to generate a complete ciphertext, see
Equation (4.29). Since each Hdrt protecting an attribute re-encryption key
depends on the concrete number of CLs in an attribute group Gt, it is hard
to give a general estimation. We will define the the total number of elements
in ∀Hdrt ∈ Hdr as c. So our size approximation for a full ciphertext CT
becomes:

|Hdr| = |G2|+ |Zp
∗|+ c · |G1|+ |ρ|

|CT| = |CTinit|+ |Hdr|
(6.2)

While this gives us an approximation to the ciphertext overhead with the
library abe-core, the transfer in our prototype happens in a JSON format.
The size of this ciphertext cannot be completely defined in a general form,
as the data conversion to JSON adds additional information, for example
variable names, for better human readability. On the other hand, it brings
certain values into a more compact form, like zeroes in our matrix which
only require one byte to represent the character ’0’ compared to four bytes
in a BigInteger.

Therefore, we will now turn to the outcome of the tests presented by
Ziegler, Sabongui, and Palfinger [65]. They give concrete results for sizes of
ciphertexts in their form targeted for JSON serialization, provided by the
model classes of abe-common. The growth of ciphertext sizes can be seen
in Figure 6.1. They evaluated for common EC security parameters (λ in
our system respectively) and access policies with up to 100 attributes. The
amount of CLs in each attribute group Gt was uniformly set to 5. Their
results validate the previous assertion that ciphertext size is dominated by
its access structure complexity, with the secondary factor being the increased
element sizes with growing security parameter λ.

51

6. Evaluation

0 20 40 60 80 10
0

0

20

40

60

Attributes

C
ip

he
rt

ex
t

Si
ze

[k
B
]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.1.: Ciphertext size of ABE with prime order 160-bit to 512-bit. Tests were executed
on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz. From “Fine-Grained Access
Control in Industrial Internet of Things: Evaluating Outsourced Attribute-Based
Encryption” [65]

6.2. Computational Performance

For their evaluation of the high-level ABE operations, [65] used an Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20GHz to represent cloud services and a Rasp-
berry Pi 3 Model B+ Central Processing Unit (CPU) to simulate a resource
constrained IIoT device. We provide additional measurements of certain
building blocks computed on the same CPU. If not stated otherwise, data
points in figures represent the median execution time over 100 iterations.

The system architecture was chosen to accommodate for the range of com-
putational power levels in the IIoT setting. Our goal was to unburden
decrypting endpoints from performing bilinear pairings altogether. This
results in a final decryption step with constant time duration, as this step
always only requires one exponentiation and division each in GT. The eva-
luation in [65] showed, that a resource limited device can perform this
computation at a security level of 256 bits in around 150ms. A cloud com-
ponent with a potent processor requires only 5ms for the same operation

52

6.2. Computational Performance

0 20 40 60 80 10
0

0

1

2

3

Attributes

Ex
ec

ut
io

n
Ti

m
e
[m

s]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.2.: Secret sharing setup duration of ABE with prime order 160-bit to 512-bit. Tests
were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

and 30ms at a 512 bit security level. As this operation is independent of
access structure complexity, we turn to the interesting computations that
are encryption, re-encryption and partial decryption.

Basic Encryption Recall Equation (4.24) and examine the needed operati-
ons to create a basic ciphertext. First, we have to create Mshare and the vector
vs containing the secret shares, based on the complexity of the access struc-
ture A. However, Figure 6.2 shows that our CPU, the execution time always
stays below 3 ms. Due to the low execution times, we can see a few outliers
that we assume to be the result of concurrently occurring computations
unrelated to our test parameters.

We see, that the setup of our secret sharing components is negligible com-
pared to the calculations in G1, G2 and GT. Here, we have to perform one
exponentiation and multiplication in GT, one multiplication in G2, as well
as two multiplications with one addition in G1 per attribute in A. The
evaluation of the initial encryption operation in [65] was conducted on both
a powerful cloud service and a resource constrained IoT device. Due to the

53

6. Evaluation

0 20 40 60 80 10
0

10

100

1 000

Attributes

Ex
ec

ut
io

n
Ti

m
e
[m

s]

Raspberry
Xeon

Figure 6.3.: Execution times of ABE encryption with prime order 256-bit on a logarithmic
scale. Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
and Raspberry Pi 3 Model B+ respectively. From “Fine-Grained Access Con-
trol in Industrial Internet of Things: Evaluating Outsourced Attribute-Based
Encryption” [65]

IoT device’s computational restrictions, they targeted a security parameter
λ = 256, see Figure 6.3 for a comparison of execution times at this security
level.

We see that the IoT device is quickly reaching its limit at this security level,
with execution times surpassing one second at around 20 attributes and
taking up to 4 seconds at 100 attributes. On the other hand, a device with
a more advanced processor can compute the ciphertexts in around 700 ms
even on the highest of the evaluated security levels, as Figure 6.4 shows. We
can conclude, that devices with limited computational capabilities are not
suited to encrypt data with high frequency. Since the ciphertext payload is
independent of ABE with respect to execution time, we suggest that such a
device should collect data over a period of time before encrypting it using
ABE.

54

6.2. Computational Performance

0 20 40 60 80 10
0

0

200

400

600

Attributes

Ex
ec

ut
io

n
Ti

m
e
[m

s]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.4.: Execution times of ABE encryption with prime order 160-bit to 512-bit. Tests
were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz. From “Fine-
Grained Access Control in Industrial Internet of Things: Evaluating Outsourced
Attribute-Based Encryption” [65]

Re-Encryption When the RS receives a basic ciphertext, re-encryption
based on attribute groups in G has to be performed. Equation (4.30) defines
that each encrypted attribute Ct has to be re-encrypted by multiplying it
with an attribute group key kt. The computation involves a SHA-256 hashing
and reduction in Zp

∗ before multiplying each Ct with the corresponding
kt in G1. Creating all Hdrt is therefore the main computational aspect of
re-encryption. The RS generates two random values γ and µ once per
re-encryption, which are needed to calculate all client elements xk in the
set of attribute groups G. These are required for subsequent creation of
the polynoms and resulting tuples protecting each kt. The calculation of a
client element xk (see Equation (4.26) involves the application of H0, HT, a
multiplication in each G1 and G2 as well as a bilinear pairing. The median
execution time for calculating a xk can be seen in Figure 6.5. Note that our
prototype only calculates each xk once, even if it is appearing in different
groups. With high security levels this can become a significant factor, if there
is a high amount of distinct clients associated with the affected attribute
groups. The median execution time for determining polynomial factors

55

6. Evaluation

16
0

19
2

22
4

25
6

38
4

51
2

10

20

30

40

Security Level [bits]

Ex
ec

ut
io

n
Ti

m
e
[m

s]

Figure 6.5.: Execution times for creation of client elements with prime order 160-bit to
512-bit. Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

from their roots is depicted in Figure 6.6.

These polynomial factors then have to be used to create the tuple, that
is Hdrt. Depending on the number of CLs in Gt, we have to perform
2 · (|Gt|+ 1) multiplications and one addition in G1, see Equation (4.28). The
evaluation’s [65] measurements on cloud-grade hardware for re-encryption
in Figure 6.7 featured five clients per attribute group. We can see that high
security parameters cause re-encryption to take seconds with increasing
number of attributes. Full re-encryption only has to be performed on the
initial upload of a basic ciphertext. However, updates in attribute groups
have to be reflected in ciphertexts. In general, we showed in Section 4.2.7.2
that our chosen architecture only requires the affected Hdrt to be rebuilt in
such a case. Nevertheless, these changes affect all ciphertexts in a system
that contain changed attribute groups. An option would be to lazily re-
encrypt these ciphertext parts, the next time said ciphertext is requested by
a CL. Anyhow, a fitting strategy needs to be devised based on the actual
frequency of group membership changes. We leave this as an open question
in this thesis.

56

6.2. Computational Performance

0 20 40 60 80 10
0

0

2

4

6

roots

Ex
ec

ut
io

n
Ti

m
e
[m

s]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.6.: Execution times for determining polynomial factors of an attribute group by its
roots with prime order 160-bit to 512-bit, median of 100 iterations. Tests were
executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

Partial Decryption We stated, that a dedicated service called DS has to
perform partial decryption tasks. This service is invoked every time a client
wants to recover plaintext in our system. The first step is the recovery of
the attribute group encryption keys kt. This involves the determination
of the requesting CL’s x and the calculation of a function based on the
tuples Hdrt, see Equation (4.32). If the CL is a member of that attribute
group, the terms will cancel out and reveal kt. This operation involves some
exponentiations in Zp

∗ and |Gt| multiplications and additions respectively.
Equation (4.33) shows, that the this step involves the recovery of the LSSS
factors, see Appendix A.2 for an example. We can see in Figure 6.8 how
the execution times develop with rising attribute count at different security
levels.

However, the bulk of computational duties follows from Equation (4.34). We
see, that for every ciphertext part Ct, we have to compute one multiplication
in G1, two pairings as well as one multiplication and exponentiation in GT.
The evaluation of the partial decryption performance in [65] showed, that it
is indeed the most expensive operation in our ABE system. We can see in

57

6. Evaluation

0 20 40 60 80 10
0

0

1 000

2 000

3 000

4 000

Attributes

Ex
ec

ut
io

n
Ti

m
e
[m

s]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.7.: Execution times of ABE re-encryption with prime order 160-bit to 512-bit. Tests
were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz. From “Fine-
Grained Access Control in Industrial Internet of Things: Evaluating Outsourced
Attribute-Based Encryption” [65]

Figure 6.9, that at the highest security level with 100 attributes, our system
needs around 6 seconds to partially decrypt a ciphertext.

Key Protocols Key creation and update operations depend on MPC. Equa-
tion (4.9) and Equation (4.14) are the common values KA and RS require to
perform subsequent key calculations. The execution times to compute these
initial values using FRESCO [19] can be seen in Figure 6.10. It shows, that
the execution time is practically constant between 295 and 365 ms for the
initial and update protocol respectively.

We defined the key protocols in Section 4.2.3.1 Section 4.2.3.2. As the private
key-part of a KA incorporates the authorized attributes of the respective CL,
its computation is dependent on the amount of attributes. Figure 6.11 shows
the increased duration of the protocols with rising security parameters
and increasing attribute count. The time it takes to update a KA key-part
can reach multiple seconds on our testing system. We also see, that the
timing for key-parts of the RS stay more or less constant, due to them being

58

6.2. Computational Performance

0 20 40 60 80 10
0

0

20

40

60

80

100

Attributes

Ex
ec

ut
io

n
Ti

m
e
[m

s]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.8.: Secret sharing recovery duration of ABE with prime order 160-bit to 512-bit.
Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.

independent of attribute count. Since key creation and update should not
occur frequently, the increased time it takes to compute the keys does not
constitute a serious problem in an ABE system.

Serialization We examined the execution times of the core operations of
our implementation in the previous paragraphs. Since our prototype’s server
components expose REST endpoints for communication, all interactions
between actors in our ABE system requires data to be serialized to JSON.
Therefore, we measured this computational overhead for conversion to
and from JSON. We chose to examine basic ciphertexts and a KA’s private
keys, as they grow in size based on their associated attributes. We can see
in Figure 6.12 that serialization to JSON is hardly measurable even with
growing security parameter and large attribute sets. Deserialization on the
other hand can take up to 80 ms in higher settings, because the group
elements have to be explicitly decoded by ECCelerateTM.

59

6. Evaluation

0 20 40 60 80 10
0

0

2 000

4 000

6 000

Attributes

Ex
ec

ut
io

n
Ti

m
e
[m

s]

ABE-160

ABE-192

ABE-224

ABE-256

ABE-384

ABE-512

Figure 6.9.: Execution times of ABE partial decryption with prime order 160-bit to 512-
bit. Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.
From “Fine-Grained Access Control in Industrial Internet of Things: Evaluating
Outsourced Attribute-Based Encryption” [65]

Concluding Remarks We see, that execution times of high-level ABE ope-
rations grow in a linear fashion, based on the amount of attributes involved.
The secret sharing recovery uses Gauss-Jordan elimination, which was
shown to have polynomial complexity by Farebrother [16]. The MPC execu-
tion time for initial values in key protocols, is only determined by how long it
takes to setup and evaluate an MPC application with FRESCO. Interestingly,
deserialization does take considerably longer compared to serialization, as
serialized data has to be explicitly decoded with ECCelerateTM.

60

6.2. Computational Performance

16
0

19
2

22
4

25
6

38
4

51
2

300

320

340

360

Security Level [bits]

Ex
ec

ut
io

n
Ti

m
e
[m

s]

x
y

Figure 6.10.: Execution times for computing initial MPC values with prime order 160-bit
to 512-bit. Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @
2.20GHz

61

6. Evaluation

0 50 100
0

200

400

600

Initial Key KA

0 50 100
0

5

10

15

20

Initial Key RS

0 50 100
0

1 000

2 000

3 000

Update Key KA

0 50 100

10

20

30

Update Key RS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Attributes

ABE-160 ABE-192 ABE-224

ABE-256 ABE-384 ABE-512

Figure 6.11.: Execution times of ABE key protocols with prime order 160-bit to 512-bit.
Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.

62

6.2. Computational Performance

0 50 100
0

0.5

1

1.5

Ciphertext serialization

0 50 100
0

20

40

60

80

Ciphertext deserialization

0 50 100
0

5 · 10−2

0.1

Private key serialization

0 50 100
0

20

40

60

80

Private key deserialization

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Attributes

ABE-160 ABE-192 ABE-224

ABE-256 ABE-384 ABE-512

Figure 6.12.: Execution times of ABE serializations and deserializations with prime order
160-bit to 512-bit. Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4

@ 2.20GHz.

63

7. Conclusion

The goal of this thesis was to demonstrate that Attribute-Based Encryption
(ABE) can be a suitable mechanism to provide data access control on a
cryptographic level. Our system targeted the Industrial Internet of Things
(IIoT), a heterogeneous environment of devices with different computational
resources. The mathematical foundation of our system is based on the work
of Lin, Hong, and Sun [38]. We adapted their architecture to work with
bilinear pairings in the asymmetric Type III setting. Using the Ate pairing
over Barreto-Naehrig (BN) curves, we achieve better performance and hig-
her security compared to symmetric bilinear pairings over supersingular
curves.

Our implementation was evaluated with regards to ciphertext size and
execution performance. We extend results from the evaluation by Ziegler,
Sabongui, and Palfinger [65], by providing measurements for the building
blocks for our cryptographic functionality. With security parameters ranging
from 160 to 512 bit, we analyzed how our system performs with respect
to near-, mid- and long-term security. We see that the amount of attributes
in access structures directly influences execution time and data overhead.
The most expensive operations in our system are re-encryption and partial
decryption, which are targeted to be performed by cloud services with
considerable computing power. These operations only take fractions of a
second for security parameters of 256 bit and below. When targeting both
long term security and a high numbers of attributes, these procedures can
take as long as 5-6 seconds. Other operations with comparable execution
times are the key creation and update protocols. However, in these cases
the long duration isn’t critical as they happen infrequently. Basic encryption
with 100 attributes can be performed in about 100ms for up to 256 bit
security and taking about 700 ms on the highest of our tested security
levels. As this operation would also be targeted towards IIoT endpoints,

65

7. Conclusion

we additionally evaluated it on a low performance device. We saw that a
Raspberry Pi 3 could perform encryption using 256 bit security with up to
20 attributes in about one second. We conclude, that such devices should not
perform this operation with high frequency or at long-term security levels.
Buffering data before encryption is always recommended, as ABE adds
considerable overhead to ciphertexts. Another option for computationally
restricted equipment would be to send data to an intermediate and more
powerful device for subsequent encryption with ABE. The final decryption
step is independent of attributes and always has constant execution time.
A Raspberry is able to perform decryption in about 150 ms with 256-bit
security. More potent endpoints only require 5-30 ms on different security
levels.

7.1. Future Work

While we presented a prototype that can achieve reasonable performance
on various devices, we also identified several areas that would benefit from
additional improvements.

Linear Algebra When we started to work on the implementation of our
system, no suitable linear algebra library existed for our operations in
Zp
∗. Therefore, we created our own matrix (including attribute labels) and

Gauss-Jordan elimination implementations. Even though we showed that
these operations only constitute for a fraction of the overall computational
efforts, it would be interesting to see if more mature linear algebra libraries
providing this functionality would improve performance. Especially in the
context of secret sharing factor recovery.

Ciphertext Size As we lined out in the previous chapters, our ciphertexts
include the full share matrix Mshare which does contribute significantly to
the ciphertext size. Using our current approach, a Decryption Server (DS)
will always be able to correctly recover Linear Secret Sharing Scheme (LSSS)
factors for authorized Clients (CLs). A possible performance improvement

66

7.2. Outlook

could be to send the policy string instead, as it requires far less representative
data. Subsequently, a DS would have to build the matrix on every decryption
request. However, the computational overhead stays in a lower single digit
millisecond range, as we showed in Figure 6.2. In this case, we would have
to ensure that updated secret sharing implementations produce identical
matrices. Otherwise, old ciphertexts would not be decryptable. Additionally,
alternative ways to create LSSSs and Monotone Span Programs (MSPs) could
also be considered. Liu and Cao [39] presented a way to create policies based
on threshold gates that reduces the amount of rows in a resulting matrix.

Computational Performance Chapter 6 showed, that our implementa-
tion’s most expensive operations can take as long as several seconds with
large security parameters and high attribute count. A possible speedup
of pairing operations can be achieved, through simultaneously evaluating
multiple pairings that have a fixed element in G2, as Ramacher [46] points
out. This is actually the case for pairings in our re-encryption and partial
decryption process, as can be seen in Equation (4.26b), Equation (4.31b)
and Equation (4.34). So an adaption of our implementation in this regard is
definitely possible.

7.2. Outlook

We showed that ABE is a viable option for enforcing data access control
in an environment like IIoT. Deployment on computationally restricted
devices remains a challenge with regards to encryption, as they start to
struggle in ABE systems with high security parameters. Possible solutions
to explore are intermediary systems for encryption or endpoints equipped
with hardware that can efficiently compute bilinear pairings. Strategies for
updating ciphertexts due to attribute group changes should be investigated,
as naive approaches are not effective in systems with large amounts of stored
ciphertexts. Going forward, alternative ways to compute and distribute
private key-parts are also worth exploring.

67

Appendix A.

Algorithms and Examples

A.1. Building a Polynomial from its Roots

The ABE system builds polynomials to determine if a CL belongs to an
attribute group. In this case, the CLs’ associated elements xk ∈ Zp

∗ | uk ∈ Gt
are the roots of the desired polynomial. This means that whenever the
polynomial is evaluated for an authorized xk, the result is 0. This property
is necessary for the DS to successfully recover an attribute group key (see
Equation (4.32)). The polynomial’s definition (see Equation (4.27)) states,
that all terms in the form of (x− xi) have to be multiplied. For an example
set of roots (1,−2, 3) this would mean:

ft (x) =
v

∏
i=1

(x− xi) = (x− 1) (x + 2) (x− 3)

=
(

x2 + x− 2
)
(x− 3)

= x3 − 2x2 − 5x + 6

(A.1)

To programmaticaly calculate this, this post 1 presented a pseudocode. The
actual implementation in the prototype slightly adapted the computation to
account for indices starting at 0 and all calculations happening in Zp

∗ (for
example p = 17):

1https://stackoverflow.com/a/32932482

69

https://stackoverflow.com/a/32932482

Appendix A. Algorithms and Examples

Listing A.1: Calculating a polynomial from its roots

1 ZpPolynomial resultPolynomial = new ZpPolynomial(roots.length, p);

2

3 BigInteger[] result = new BigInteger[roots.length+1];

4 result[0] = BigInteger.ONE;

5 Log.debug("Creating polynomials from roots {} (mod {})", roots, p);

6 Log.debug("Result array at start: {}", (Object[])result);

7

8 for (int n = 0; n < roots.length; n++) {

9

10 BigInteger value = roots[n].multiply(result[n]);

11 value = BigInteger.valueOf(−1).multiply(value);
12 result[n+1] = value.mod(p);

13 Log.debug("Intermediate result (n={}): {}", n, result);

14

15 for (int k = n; k >= 1; k−−) {

16 BigInteger update = result[k].subtract(roots[n].multiply(result[k

−1]));
17 result[k] = update.mod(p);

18 Log.debug("Intermediate result (n={}, k={}): {}", n, k, result);

19 }

20

21 Log.debug("Result (n={}): {}", n, result);

22 }

23

24 int degree = resultPolynomial.getDegree();

25 for (int i = 0; i <= degree; i++) {

26 resultPolynomial.setCoefficient(degree−i, result[i]);

27 }

28

29 Log.debug("Created polynomial from roots {}: {}", roots,

resultPolynomial);

30

31 return resultPolynomial;

The final loop for actually filling the ZpPolynomial object is necessary, as the
indexing works different than in the BigInteger array. While the coefficient

70

A.2. Creating a MSP and recovery of factors through solving linear equations

of the highest power is found at index 0 in the array, it would be retrieved
via the getCoefficient(int power) method of the ZpPolynomial object.
The resulting output of this code snippet would be the following:

Listing A.2: Output of the calculation of a polynomial

Result array at start: 1

Intermediate result (n=0): [1, 16, null, null]

Result (n=0): [1, 16, null, null]

Intermediate result (n=1): [1, 16, 15, null]

Intermediate result (n=1, k=1): [1, 1, 15, null]

Result (n=1): [1, 1, 15, null]

Intermediate result (n=2): [1, 1, 15, 6]

Intermediate result (n=2, k=2): [1, 1, 12, 6]

Intermediate result (n=2, k=1): [1, 15, 12, 6]

Result (n=2): [1, 15, 12, 6]

Created polynomial from roots [1, -2, 3]: 1*x^3 + 15*x^2 + 12*x

^1 + 6*x^0 (mod 17)

A.2. Creating a MSP and recovery of factors

through solving linear equations

Take the example policy in Figure A.1, in the notation used in the pro-
totype:

Listing A.3: Policy string in postfix notation

1 (E, ((A, B, OR), (C, D, OR), AND), AND)

When creating a MSP, one has to decide what the sharing vector will be.
Using the method presented in [37], the sharing vector will be (1, 0, · · · , 0).
Operating in Zp

∗ with p = 17, the resulting sharing matrix M for this
policy is:

71

Appendix A. Algorithms and Examples

Figure A.1.: Graph of an access policy example

M =

(E) 1 1 0
(A) 0 16 1
(B) 0 16 1
(C) 0 0 16
(D) 0 0 16

 (A.2)

Using Equation (2.4), we get the vector containing the shares. They corre-
spond to participants, as is shown in the labeling of Figure A.1. Take s = 3
as a secret and use it as the first element of an otherwise random vector
v = (3, 2, 6). When multiplying it with the sharing matrix M, we get the
resulting vector vs.

vs =M· vT =

(E) 5
(A) 4
(B) 4
(C) 11
(D) 11

 (A.3)

72

A.2. Creating a MSP and recovery of factors through solving linear equations

The shares would be distributed to participants according to their labeling.
When a set of participants wants to recover the secret using only their shares,
we have to recover the according factors (see Equation (2.5)).

Recovery is possible by solving a system of linear equations, based on the
sharing matrix. First, we only take those rows ofM with labels correspon-
ding to the recovering set of participants. With {A, C, E} as an example set
of participants, we obtain the submatrix M’ and a vector containing the
relevant shares:

M′ =

(E) 1 1 0
(A) 0 16 1
(C) 0 0 16

, v′s =

(E) 5
(A) 4
(C) 11

 (A.4)

A set of participants fulfills the underlying access policy iff their matrix
rows are a linear combination of the sharing vector. Therefore, the next step
would be to transpose and augment the matrixM’ (without labels) with
the previously defined sharing vector. In our example this would result in
the following augmented matrix:

M′
aug =

 1 0 0 1
1 16 0 0
0 1 16 0

 (A.5)

We want to recover the factors that let us combine the participant rows to
build the sharing vector. The augmented matrix now represents a set of
linear equations that we want to solve. If there exists a solution, we can
bring the augmented matrix into the so called Reduced Row-Echelon Form
(RREF). If it is possible to achieve this, the values to the right of the vertical
separator are the factors that we need to apply to the participant vectors to
get the linear combination of the sharing vector.

The RREF of the matrix can be obtained through Gauss-Jordan elimina-
tion2. The augmented matrix of our example would be solved through the
following steps:

2http://www.math.jhu.edu/~bernstein/math201/RREF.pdf

73

http://www.math.jhu.edu/~bernstein/math201/RREF.pdf

Appendix A. Algorithms and Examples

M′
aug =

 1 0 0 1
1 16 0 0
0 1 16 0

→
 1 0 0 1

0 16 0 16
0 1 16 0

→

 1 0 0 1
0 1 0 1
0 1 16 0

→
 1 0 0 1

0 1 0 1
0 0 16 16

→

 1 0 0 1
0 1 0 1
0 0 1 1

(A.6)

We can see, that this easy example is solvable. The sharing vector is a linear
combination of the participant vectors, with all factors being 1. At last, we
will multiply a vector containing the recovered factors vr with vs’:

vr · v′s =
(
1 1 1

)
·

 5
4

11

 = 3 (A.7)

Now we show an example set of participants that don’t fulfill the access
policy, {A, B, E}. We begin by definingM’ and vs’:

M′ =

(E) 1 1 0
(A) 0 16 1
(B) 0 16 1

, v′s =

(E) 5
(A) 4
(B) 4

 (A.8)

We then try to solve the system of linear equations:

M′
aug =

 1 0 0 1
1 16 16 0
0 1 1 0

→
 1 0 0 1

0 16 16 16
0 1 16 0

→

 1 0 0 1
0 1 1 1
0 1 1 0

→
 1 0 0 1

0 1 1 1
0 0 0 16

 (A.9)

74

A.2. Creating a MSP and recovery of factors through solving linear equations

We see in the last row, that we cannot solve this system. This is the result of
the participant rows inM’ not being a linear combination of the sharing
vector.

75

Appendix B.

REST APIs

The following sections list all exposed Representational State Transfer (REST)
endpoints for the server components of the ABE prototype.

B.1. abe-server-keyauthority

/rest/parameters/base
Actor StS
Method GET
Parameters System-UUID
Body
Summary Retrieves the initially generated system parameters.
Response see Listing B.1

Listing B.1: Example of a base system parameter result

{
"dataIntegrityInformation" : {
"mode" : "SHA256",
"value" : "9CYVGx2QYoCYfGlpjkCd0dDVkysUvyMN5g+aynlaNy8=",
"salt" : "pAKVXbuGyFnhB6w+zywp9tXHC5QA8SanCMxVk0f0niQ="

},
"security" : 160,
"hashType" : "SIMPLE_SHA256",
"systemAttributes" : {
"factory" : "AiZbgqkSyptCemlamsc9g2YUMQL2",

77

Appendix B. REST APIs

"operations" : "Ayucp3ZH6/5oa5s0y9vUwAWI8CNN",
"management" : "A5n2rmcqyiuN0cKrY5I6QJgXWn+c",
"purchasing" : "AiND3N2tntzfBWCxJ1NY334FnC+C",
"quality" : "Ay8SBarPCVtKEMdLEw9xMhp8pFlh"

}
}

/rest/parameters/system
Actor StS, DS, CL, DO
Method GET
Parameters System-UUID
Body
Summary Retrieves the full system parameters.
Response see Listing B.2

Listing B.2: Example of a system parameter result

{
"dataIntegrityInformation" : {
"mode" : "SHA256",
"value" : "zAcJNUxTCDS3KR8nNptegKP70uKQYZDCQNWN0KQyqWY=",
"salt" : "Za2nbGVVs/aokFSyEFNrpfHNm6sOWLPj6ia0afLSAcQ="

},
"keyAuthorityPublicParameter" : "AzRA3KwNZTs4qNEj037F1BK2IUvZ",
"reencryptionPublicParameter" : "J0mstBXT07kRLYdDI3gRwbJFiiyjobV3p1lILCLjjyJ
O8V0p45FjUYHS2qc1hnRT7GLYIVVPxmssdjWlQ1+ZPytfQ3Pd0Mb72cxLo+gW7dBt2cVivVQup
/zQrgwPIQn2+NP1eycvKaTf7/+VpyYgn6giRx/7OlOgSjY5U4ASQbW27DI2s7J3CcFogHsntZk
NgdmwjhHLAXLSOqCPptWSBYPr3WuKxJ/uFfF4n7nctL9EXRS4pySP8mgAYygk0Pg90ndau39aF
/JnsByZIKFhMx5Vk2OyhNvGSeMpUKL9t925EOUL5vYoab6IVLmy81Q2",

"baseSystemParameters" : {
"security" : 160,
"hashType" : "SIMPLE_SHA256",
"systemAttributes" : {
"factory" : "AiZbgqkSyptCemlamsc9g2YUMQL2",
"operations" : "Ayucp3ZH6/5oa5s0y9vUwAWI8CNN",
"management" : "A5n2rmcqyiuN0cKrY5I6QJgXWn+c",
"purchasing" : "AiND3N2tntzfBWCxJ1NY334FnC+C",
"quality" : "Ay8SBarPCVtKEMdLEw9xMhp8pFlh"

}
}

}

78

B.1. abe-server-keyauthority

/rest/parameters/system/register
Actor StS
Method POST
Parameters System-UUID
Body Public re-rencryption parameters, see Listing B.3
Summary Registers the re-rencryption parameters at the KA

to finish the system setup and returns the finalized
ABE system parameters

Response see Listing B.2

Listing B.3: Example body of a POST request for registering the public reencryption para-
meter.

{
"dataIntegrityInformation" : {
"mode" : "SHA256",
"value" : "XcOVKUVsxK6u6nTuS4ScpwolOWvyaQ0PiBDI5hqFu9Q=",
"salt" : "mVV/WHio95czE9rQx1X0eghmBwNfxpNmkhMIxC9DDj8="

},
"publicParameter" : "kz5rmxYAZoYqStEE6dTHyyi+xKbKL4KLVI7lYTxoZBQ56gWVv1n64HZ
A1dtatU3+CVjX7F+zfeXjunvdJRPgk3Ya5wO8OVNjGtH3hhRZamkzVPwmIlI7hbJSnOx52TRm4
JKBdyjMrW0o5ITZ4kh0Smue2CpxiCBRmPdHF/FSLE/KkKZ7OT1l3i6syftnTCabKAwz45oLRJk
V4WysVSkn1mRCt7UT2EH1RSgiU7vpHnWlu8Djwq1jjarZMRxUCdWcz+VRYbmLRqaDoIv7uCVWp
Ub2Uvc3lHXzL87zHI2fEGVGmYN153R9RU0wR9bYVKag"

}

/rest/parameters/groups/all
Actor StS, DS
Method GET
Parameters System-UUID
Body
Summary Retrieves the entire set of attribute groups from the

system.
Response see Listing B.4

Listing B.4: Example of an attribute group result

[{
"attribute" : "factory",

79

Appendix B. REST APIs

"clients" : ["Francis Overwood", "Fitzgerald Edmund", "Frida"]
}, {
"attribute" : "management",
"clients" : ["Margaret CFO", "Michael CTO", "Mark CEO", "Superuser"]

}, {
"attribute" : "operations",
"clients" : ["Olga Kurolinko", "Oliver Stane", "Orbun Viktor", "Superuser"
]

}, {
"attribute" : "quality",
"clients" : ["Quincy Jonas", "Quinn Dr.", "Quentin Tarantula", "Superuser"
]

}, {
"attribute" : "purchasing",
"clients" : ["Penultimo Tropico", "Patrick Daffey", "Pamela Andersdottir"]

}]

/rest/parameters/groups/relevant
Actor StS, DS
Method GET
Parameters System-UUID
Body A set of system attributes
Summary Retrieves the attribute groups associated with the

provided system attributes.
Response Returns a subset of Listing B.4

/rest/client/key/new
Actor CL
Method GET
Parameters System-UUID, User-ID
Body
Summary Initiates a key update for a user. Returns a UUID

associated with the MPC computation.
Response UUID of an MPC associated with this request

80

B.2. abe-server-storage

/rest/decryption/key
Actor DS
Method GET
Parameters System-UUID, User-ID
Body Private key-part
Summary Retrieves the KA’s private key-part for a user.
Response see Listing B.5

Listing B.5: Example of a KA’s private key part for a given user

{
"dataIntegrityInformation" : {
"mode" : "SHA256",
"value" : "89+JfnSpNOgXUZxZMfyDMHG2ztv8qyqdvedGJA2p4VA=",
"salt" : "HCNO6FDJdx3hDmmY0U67gXN2YI+JYhHon1+1jyEsDQA="

},
"privatePart" : "A0jdiuSdUQrbo6zUS+got9TW/1EuemmKXR92Ybs97XGXqzwSPIc5eOo=",
"attributes" : {
"test2" : "A1ZpCsLDkGWPTUhgHLG777NxUZX6",
"test3" : "AxcKOhMTAazHBhkmqAW8ToMLFlmO",
"test1" : "AiAaJdeNu0vGqSjTX8ihcL+jykzl"

}
}

B.2. abe-server-storage

/rest/key/init
Actor KA
Method GET
Parameters System-UUID, User-ID, MPC-Calc-ID
Body
Summary Notification from the KA that a new key should be

created for a user with the given MPC UUID.
Response Returns an HTTP error code on an unsuccessful call

81

Appendix B. REST APIs

/rest/key/invalidate
Actor KA
Method GET
Parameters System-UUID, User-ID, MPC-Calc-ID
Body
Summary Notification from the KA that a user’s key should

be immediately invalidated.
Response Returns an HTTP error code on an unsuccessful call

/rest/key/update
Actor KA
Method GET
Parameters System-UUID, User-ID, MPC-Calc-ID
Body
Summary Notification from the KA that a user’s key should

be updated with the given MPC UUID.
Response Returns an HTTP error code on an unsuccessful call

/rest/decryption/key
Actor DS
Method GET
Parameters System-UUID, User-ID, MPC-Calc-ID
Body
Summary Retrieves the StS’s private key-part for a user.
Response see Listing B.6

Listing B.6: Example of a Re-Encryption Server (RS)’s private key part for a given user

{
"privatePart" : "A5/By2K82dAffUZCmi61L7ovntaC"

}

82

B.2. abe-server-storage

/rest/ciphertext/upload
Actor DO
Method POST
Parameters System-UUID, Ciphertext-Path
Body A basic ciphertext to be re-encrypted, see Listing B.7
Summary Uploads a new basic ciphertext and returns the uni-

que UUID.
Response The UUID of the uploaded ciphertext

Listing B.7: Example of a basic ciphertext to be uploaded.

{
"shareMatrix" : "[1, 1, 0, 0](management)\n[0, 12373609143016083102572060425
54653821169514836108, 1, 0](operations)\n[0, 0, 12373609143016083102572060
42554653821169514836108, 0](quality)\n[0, 12373609143016083102572060425546
53821169514836108, 0, 1](purchasing)\n[0, 0, 0, 12373609143016083102572060
42554653821169514836108](factory)\n(mod 1237360914301608310257206042554653
821169514836109)",

"encryptedElement" : "hXFMq4V/zkKhqgmiW0zrz553vayW3uekyEw1Awxv0I/8oYfvkNlR2m
cQihnLVdSjFPzM2LraODzC/Tb7toPsnlRlaeXsajEExm6/SJq78zJ7krEwCEI0S7mUgHVExe0y
u5Blw0DlrqRrZLeYByyKToSMXVMl/AQ/CR0kdaVwVBe39XXBlfL1PH6QpLyLorauq9aUNao//6
W0zffgDYn+L1z9vpDNFdNnqJ7tkdTBlJHexyRBybWoqwHlqGJHQ8tYGltApELlzi+yljBdY7Pk
3Lyu215OwF/BrwxXDdSnzzbGRlIE82tFCCthZgcO0vZa",

"staticPart" : "A4zVI2s44TeWWSVf3ca0LXh0VwgkngASnMtp0EVkYEO8VuuNew8G9os=",
"encryptedAttributes" : [{
"label" : "management",
"point" : "AlLXiepn3hPBpfp86BTIYxSxS6Ec"

}, {
"label" : "operations",
"point" : "A4AjfJlQ6uqT4GMchy6dAbRy8FKZ"

}, {
"label" : "quality",
"point" : "An45WYX7SgOguFs5JtNM0SM6RF1A"

}, {
"label" : "purchasing",
"point" : "AlMTUxkvBM1EXXcvxC4171Rn7iDF"

}, {
"label" : "factory",
"point" : "ApWHmas3+7Q6++jPfFCQ6Xsm9GA5"

}],
"encryptedPayload" : {
"iv" : "FAqunIIHSjtbtxMzFJXACQ==",

83

Appendix B. REST APIs

"payload" : "p9bYVaM9AqCaunbu0CubJwfnUhZKz2SDmhfwsxcJG8KEmSjAiNAmRA2QV6r88
1EzMhgm6jraOZIgivdvvwsaNOnZ0QFlTbVW/fPy3xwkC3VuCNIvHJCh3bVfhDn7spPV0m92CSX
X++93N+6wjM8jxw=="

}
}

/rest/ciphertext/retrieve
Actor CL
Method GET
Parameters Ciphertext-UUID
Body
Summary Retrieves a ciphertext with the given UUID
Response see Listing B.8

Listing B.8: Example of a full ciphertext

{
"header" : {
"part1" : "A5/NrXFOlUpvDB9J+vIqsH1LDtoFPQ1Dvm6+VuyjsuQgNKgejbueoNc=",
"part2" : "EPkfhe0lT2VykEhm2frfZBsZOw4=",
"groupHeaders" : [{
"groupName" : "management",
"groupTuple" : ["AjcuRGso0R0mx+YsUTcFeRYx01/4", "AgUmYLMfWaeqhk7CTxN2eZ

slF6LJ", "AhlG2f3Vaz/w9lQFde4c0WkmGbZz", "A5bmekHYMaAaGXoybg9AVHxmYRHg", "
Ay1wKhCg/7rp0DlVxfIf6SkpwDhP"]
}, {
"groupName" : "operations",
"groupTuple" : ["As+iYVsNp66Wo5fkpuCZkIddiBas", "A9P2A8rf/95OsZf/CHNtXo

Ifu1HT", "A4C8J82vtfLC/xOKUh6NuLo7JE5B", "A8wizgGDk/P8M4CXW/lRqb948KsC"]
}, {
"groupName" : "quality",
"groupTuple" : ["AireZIwfeSq8advMpdGH9i6ibaHc", "AnyP01USTyX1MxA3ftI0F6

jQS3L4", "Aq8KnAVEtZToRGc+ORVpSYJR8nHL", "A80TJuhdqV2zxKl80PQTq7m7khC0", "
AnvxU5/qnzNA22IIEYY4wrqE/Zyn"]
}, {
"groupName" : "purchasing",
"groupTuple" : ["AoBy9iSQ6yjuPqpdnaJwR3vINXki", "A4zuBG3BNHtF660lmAAorT

S437jO", "AoxGcMQ/jAib52H7sswAOz1/bhyt", "Ah+JhNJyXxhG1ObNKFOhOi6uSBuD"]
}, {
"groupName" : "factory",

84

B.2. abe-server-storage

"groupTuple" : ["AnKC44HTMHORatlaPZDBFLBQrs+k", "Ah/4waqkLQ/OYUs7IgOUJ7
BcBQg2", "A3UqDoWPth3cvOjTxe2GTHhmoEHU", "AoLWOflE4dqnO12Gx6/wE8qvxfZ5"]
}]

},
"basicCiphertext" : {
"shareMatrix" : "[1, 1, 0, 0](management)\n[0, 123736091430160831025720604
2554653821169514836108, 1, 0](operations)\n[0, 0, 123736091430160831025720
6042554653821169514836108, 0](quality)\n[0, 123736091430160831025720604255
4653821169514836108, 0, 1](purchasing)\n[0, 0, 0, 123736091430160831025720
6042554653821169514836108](factory)\n(mod 12373609143016083102572060425546
53821169514836109)",
"encryptedElement" : "hXFMq4V/zkKhqgmiW0zrz553vayW3uekyEw1Awxv0I/8oYfvkNlR
2mcQihnLVdSjFPzM2LraODzC/Tb7toPsnlRlaeXsajEExm6/SJq78zJ7krEwCEI0S7mUgHVExe
0yu5Blw0DlrqRrZLeYByyKToSMXVMl/AQ/CR0kdaVwVBe39XXBlfL1PH6QpLyLorauq9aUNao
//6W0zffgDYn+L1z9vpDNFdNnqJ7tkdTBlJHexyRBybWoqwHlqGJHQ8tYGltApELlzi+yljBdY
7Pk3Lyu215OwF/BrwxXDdSnzzbGRlIE82tFCCthZgcO0vZa",
"staticPart" : "A4zVI2s44TeWWSVf3ca0LXh0VwgkngASnMtp0EVkYEO8VuuNew8G9os=",
"encryptedAttributes" : [{
"label" : "management",
"point" : "A9DVLmOugsOdh0VHfKJ841yYh4la"

}, {
"label" : "operations",
"point" : "AjkbBajCoL5l/OG4bmxXSyOZFvfU"

}, {
"label" : "quality",
"point" : "AzM+JG24dX4VL3r7SfTGSAOu0JiG"

}, {
"label" : "purchasing",
"point" : "Ars2zZBEp6Pw2hTOIhLCXBeVTsTb"

}, {
"label" : "factory",
"point" : "Ahok5pUcrq9bxA+rk5fqgaBknVB5"

}],
"encryptedPayload" : {
"iv" : "FAqunIIHSjtbtxMzFJXACQ==",
"payload" : "p9bYVaM9AqCaunbu0CubJwfnUhZKz2SDmhfwsxcJG8KEmSjAiNAmRA2QV6r

881EzMhgm6jraOZIgivdvvwsaNOnZ0QFlTbVW/fPy3xwkC3VuCNIvHJCh3bVfhDn7spPV0m92C
SXX++93N+6wjM8jxw=="
}

}
}

85

Appendix B. REST APIs

/rest/ciphertext/list
Actor CL
Method GET
Parameters System-UUID, Ciphertext-Path, Ciphertext-

UUID(optional)
Body
Summary Retrieves a list of ciphertexts that were associated

with a given path. If Ciphertext-UUID is supplied,
only ciphertexts that were stored after that point in
time will be returned.

Response A list of ciphertexts

/rest/ciphertext/path/newest
Actor CL
Method GET
Parameters System-UUID, Ciphertext-Path
Body
Summary Returns the last ciphertext UUID that was associated

with the given path.
Response Returns the most recently generated UUID for a

given ciphertext path

B.3. abe-server-decryption

/rest/decrypt
Actor CL
Method GET
Parameters System-UUID, User-ID
Body A re-encrypted ciphertext
Summary Partially decrypt a given ciphertext for a given user.
Response see Listing B.9

Listing B.9: Example of a partially decrypted ciphertext.

{

86

B.3. abe-server-decryption

"encryptedElement" : "JndONgLF5oEWAL9yUpqU805Z2iNiwgyzfdZjIbqkZJO0qWM5iq5d+Y
8Smst3koQ+ZLaBs9qCA6BUOR9oDKfW5hdPhw4FRl42sW3eFLBjZ1Y/AONGO1ajiFCuzqsoUjBk
8kiXXgE6mZIpx/jUUUTjmzP0Tca/4+oBF3G78rCrC62K/frlgKjVtLsIVNM5/85MfW7/BYeVC4
t/jE33tEUQvSoIa4WUu8VB/RjeGJFFm7dy27cEOuvc1vSea+n3uAMx4dxg2BiMJSB01y9eTvgj
8mnUcHLi37V+v9Jv4A63cE8/Jh2faMKSH0H4sOr+m93x",

"partiallyDecryptedElement" : "pFmbp2/B6BVCMnL3tMDd0XhWQlcR2AF1CoHnn7IaFFeg5
VpV57IuQD32VKG7yyak/CYm93xe1UCIFwxwFrX+rq2P5MdVPDpIsK6KpsE3y1h4hHfdF07+uk+
WmImZ1poRUJFbqthIkDyQShGq3e3tOTa0xfelgRcZABJMm9lrjByJl+42UCRYGkTZ8M9dH47BP
oUDBWK34UKdEeirtSNhmKfIxdl60PmXedfOxfl4kqeI3OSWQpl/fIC4PuxkK1ID0fdnfji0tUm
5L3HC0deXFlQOrmtbFB9kG6gEy1mZCCyT81QZssgRaCVpSX7DGBaY",

"encryptedPayload" : {
"iv" : "dw2F2AVLDuOHzTAyonNcBg==",
"payload" : "EHmAqzNGfYFH6xqkNLTP56UKFQMx8DotvDyzAFHbPHDYejIBbrqufh7Hg2F3G
aDGbbnbgB7oAXXUdPHIDEgccpJEZ+6ewX184o7X4MdJBeZbS8bKcwdcoxCLt6fwa/V+YpLdu0o
30SIFDKAv/hfL5A=="

}
}

87

Listings

5.1. Initialization of an ABE system 41

5.2. Encryption of a ciphertext . 42

5.3. Re-Encryption of a ciphertext 43

5.4. Partial decryption of a ciphertext 43

5.5. Decryption of a ciphertext . 43

5.6. Conversions of JSON models to core classes 44

A.1. Calculating a polynomial from its roots 70

A.2. Output of the calculation of a polynomial 71

A.3. Policy string in postfix notation 71

B.1. Example of a base system parameter result 77

B.2. Example of a system parameter result 78

B.3. Example body of a POST request for registering the public
reencryption parameter. 79

B.4. Example of an attribute group result 79

B.5. Example of a KA’s private key part for a given user 81

B.6. Example of a RS’s private key part for a given user 82

B.7. Example of a basic ciphertext to be uploaded. 83

B.8. Example of a full ciphertext . 84

B.9. Example of a partially decrypted ciphertext. 86

89

List of Figures

4.1. Overview of ABE system actors 18

5.1. Overview of the entire prototype 38

6.1. Ciphertext size of ABE with prime order 160-bit to 512-bit. . . 52

6.2. Secret sharing setup duration of ABE with prime order 160-bit
to 512-bit. 53

6.3. Execution times of ABE encryption with prime order 256-bit
on different devices. 54

6.4. Execution times of ABE encryption with prime order 160-bit
to 512-bit. 55

6.5. Execution times for creation of client elements with prime
order 160-bit to 512-bit. 56

6.6. Execution times for determining polynomial factors of an
attribute group by its roots with prime order 160-bit to 512-bit. 57

6.7. Execution times of ABE re-encryption with prime order 160-
bit to 512-bit. 58

6.8. Secret sharing recovery duration of ABE with prime order
160-bit to 512-bit. 59

6.9. Execution times of ABE partial decryption with prime order
160-bit to 512-bit. 60

6.10. Execution times for computing initial MPC values with prime
order 160-bit to 512-bit. 61

6.11. Execution times of ABE key protocols with prime order 160-
bit to 512-bit. 62

6.12. Execution times of ABE serializations and deserializations
with prime order 160-bit to 512-bit. 63

A.1. Graph of an access policy example 72

91

Glossary

2PC Two-Party Computation.

A-ABE Accountable Authority Attribute-Based Encryption.
ABAC Attribute-Based Access Control.
ABE Attribute-Based Encryption.
AES Advanced Encryption Standard.
API Application Programming Interface.

BN Barreto-Naehrig.

CL Client.
CLI Command Line Interface.
CP-ABE Ciphertext-Policy Attribute-Based Encryption.
CPU Central Processing Unit.
CSP Cloud Service Provider.

DH Diffie-Hellman.
DLP Discrete Logarithm Problem.
DO Data Owner.
DS Decryption Server.

EC Elliptic Curve.
ECDLP Elliptic Curve Discrete Logarithm Problem.

Fuzzy IBE Fuzzy Identity-Based Encryption.

GUI Graphical User Interface.

HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

IAIK Institute of Applied Information Processing and Communications.

93

Glossary

IBE Identity-Based Encryption.
IIoT Industrial Internet of Things.
IoT Internet of Things.

JSON JavaScript Object Notation.

KA Key Authority.
KP-ABE Key-Policy Attribute-Based Encryption.

LSSS Linear Secret Sharing Scheme.

mCP-ABE Mediated Ciphertext-Policy Attribute-Based Encryption.
MPC Multi-Party Computation.
MSP Monotone Span Program.

PBC Pairing-Based Cryptography.

RBAC Role-Based Access Control.
REST Representational State Transfer.
RREF Reduced Row-Echelon Form.
RS Re-Encryption Server.
RSA Rivest–Shamir–Adleman.

SHA Secure Hash Algorithm.
StS Storage Server.

TU Graz Graz University of Technology.

UUID Universally Unique Identifier.

94

Bibliography

[1] Gora Adj, Alfred J. Menezes, and Thomaz Oliveira. “Computing
Discrete Logarithms in F33·137 and F33·163 Using Magma.” In: Arithmetic
of Finite Fields. Vol. 9061. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015, pp. 3–22. isbn: 978-3-319-
16276-8. doi: 10.1007/978-3-319-16277-5 (cit. on p. 7).

[2] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic
Curves of Prime Order.” In: (2006), pp. 319–331. doi: 10.1007/116933
83_22 (cit. on p. 7).

[3] Paulo S. L. M. Barreto et al. “Efficient pairing computation on super-
singular Abelian varieties.” In: Designs, Codes and Cryptography 42.3
(2007), pp. 239–271. issn: 0925-1022. doi: 10.1007/s10623-006-9033-
6 (cit. on p. 7).

[4] Base64. url: https://tools.ietf.org/html/rfc4648 (visited on
05/09/2019) (cit. on p. 44).

[5] Amos Beimel. “Secret Secure Schemes for Sharing and Key Distribu-
tion.” PhD thesis. Israel Institute of Technology, 1996, p. 115 (cit. on
p. 9).

[6] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-policy
attribute-based encryption.” In: Proceedings - IEEE Symposium on Secu-
rity and Privacy (2007), pp. 321–334. issn: 10816011. doi: 10.1109/SP.
2007.11 (cit. on pp. 2, 9, 14, 16).

[7] Dan Boneh and Matthew Franklin. “Identity-Based Encryption from
the Weil Pairing.” In: Advances in Cryptology — CRYPTO 2001 (2001),
pp. 213–229. issn: 0097-5397. doi: 10.1137/S0097539701398521 (cit.
on pp. 13, 14).

95

https://doi.org/10.1007/978-3-319-16277-5
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/s10623-006-9033-6
https://doi.org/10.1007/s10623-006-9033-6
https://tools.ietf.org/html/rfc4648
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1137/S0097539701398521

Bibliography

[8] Melissa Chase and Sherman S.M. Chow. “Improving privacy and
security in multi-authority attribute-based encryption.” In: Proceedings
of the 16th ACM conference on Computer and communications security -
CCS ’09 (2009), p. 121. issn: 15437221. doi: 10.1145/1653662.1653678
(cit. on p. 15).

[9] Sanjit Chatterjee and Alfred J. Menezes. “On cryptographic protocols
employing asymmetric pairings the role of Ψ revisited.” In: Discrete
Applied Mathematics 159.13 (2011), pp. 1311–1322. issn: 0166218X. doi:
10.1016/j.dam.2011.04.021 (cit. on p. 8).

[10] L Chen, Z Cheng, and Nigel P. Smart. “Identity-based key agreement
protocols from pairings.” In: International Journal of Information Security
6.4 (2007), pp. 213–241. issn: 1615-5262. doi: 10.1007/s10207-006-
0011-9 (cit. on p. 8).

[11] Ivan Damgård et al. “Multiparty Computation from Somewhat Ho-
momorphic Encryption.” In: CRYPTO 2012. Vol. 7417 LNCS. 2012,
pp. 643–662. isbn: 9783642320088. doi: 10.1007/978-3-642-32009-
5_38 (cit. on pp. 11, 39, 45).

[12] Ivan Damgård et al. “Practical Covertly Secure MPC for Dishonest
Majority – Or: Breaking the SPDZ Limits.” In: IACR Cryptology . . .
2013, pp. 1–18. doi: 10.1007/978-3-642-40203-6_1 (cit. on p. 11).

[13] Morris J. Dworkin et al. Advanced encryption standard (AES). Tech. rep.
Gaithersburg, MD: National Institute of Standards and Technology,
2001. doi: 10.6028/NIST.FIPS.197 (cit. on p. 2).

[14] ECCelerateTM. url: https://jce.iaik.tugraz.at/sic/Products/
Core_Crypto_Toolkits/ECCelerate (cit. on pp. 39, 44, 50, 59, 60).

[15] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms.” In: Advances in Cryptology. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1985, pp. 10–18. isbn: 9783540156581.
doi: 10.1007/3-540-39568-7_2 (cit. on p. 19).

[16] Richard William Farebrother. Linear Least Squares Computations. New
York, NY, USA: Marcel Dekker, Inc., 1988. isbn: 0-82-477661-5 (cit. on
p. 60).

96

https://doi.org/10.1145/1653662.1653678
https://doi.org/10.1016/j.dam.2011.04.021
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.6028/NIST.FIPS.197
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate
https://doi.org/10.1007/3-540-39568-7_2

[17] David Ferraiolo and Richard Kuhn. “Role-Based Access Control.” In:
15th NIST-NCSC National Computer Security Conference. 1992, pp. 554–
563 (cit. on p. 14).

[18] Pierre-alain Fouque and Mehdi Tibouchi. “Indifferentiable Hashing to
Barreto–Naehrig Curves.” In: Progress in Cryptology – LATINCRYPT
2012. 2012, pp. 1–17. doi: 10.1007/978-3-642-33481-8_1 (cit. on
p. 39).

[19] FRESCO. url: https://github.com/aicis/fresco (cit. on pp. 37, 39,
45, 58, 60).

[20] Gerhard Frey and Hans-Georg Ruck. “A Remark Concerning m-
Divisibility and the Discrete Logarithm in the Divisor Class Group
of Curves.” In: Mathematics of Computation 62.206 (1994), p. 865. issn:
00255718. doi: 10.2307/2153546 (cit. on p. 7).

[21] Steven D. Galbraith, Keith Harrison, and David Soldera. “Imple-
menting the Tate Pairing.” In: Lecture Notes in Computer Science (inclu-
ding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2002, pp. 324–337. isbn: 3540438637. doi: 10.1007/3-
540-45455-1_26 (cit. on p. 7).

[22] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pai-
rings for cryptographers.” In: Discrete Applied Mathematics 156.16

(2008), pp. 3113–3121. issn: 0166218X. doi: 10.1016/j.dam.2007.
12.010 (cit. on p. 8).

[23] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play ANY
mental game.” In: Proceedings of the nineteenth annual ACM conference
on Theory of computing - STOC ’87. January 1987. New York, New
York, USA: ACM Press, 1987, pp. 218–229. isbn: 0897912217. doi:
10.1145/28395.28420. url: http://portal.acm.org/citation.cfm?
doid=28395.28420 (cit. on p. 11).

[24] Vipul Goyal et al. “Attribute-based encryption for fine-grained access
control of encrypted data.” In: Proceedings of the 13th ACM conference
on Computer and communications security - CCS ’06 (2006), p. 89. issn:
15437221. doi: 10.1145/1180405.1180418 (cit. on pp. 2, 9, 14, 16).

[25] Gradle Build Tool. url: https://gradle.org/ (cit. on p. 37).

97

https://doi.org/10.1007/978-3-642-33481-8_1
https://github.com/aicis/fresco
https://doi.org/10.2307/2153546
https://doi.org/10.1007/3-540-45455-1_26
https://doi.org/10.1007/3-540-45455-1_26
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1145/28395.28420
http://portal.acm.org/citation.cfm?doid=28395.28420
http://portal.acm.org/citation.cfm?doid=28395.28420
https://doi.org/10.1145/1180405.1180418
https://gradle.org/

Bibliography

[26] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. “Breaking
‘128-bit Secure’ Supersingular Binary Curves.” In: Advances in Crypto-
logy – CRYPTO 2014. Vol. 8617. 2014, pp. 126–145. doi: 10.1007/978-
3-662-44381-1_8 (cit. on p. 7).

[27] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. “The Eta
pairing revisited.” In: IEEE Transactions on Information Theory 52.10

(2006), pp. 4595–4602. issn: 00189448. doi: 10.1109/TIT.2006.881709
(cit. on p. 7).

[28] Vincent C. Hu et al. “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations.” In: (2014). doi: 10.6028/NIST.SP.
800-162 (cit. on p. 2).

[29] Junbeom Hur. “Improving security and efficiency in attribute-based
data sharing.” In: IEEE Transactions on Knowledge and Data Engineering
25.10 (2013), pp. 2271–2282. issn: 10414347. doi: 10.1109/TKDE.2011.
78 (cit. on pp. 9, 15, 16).

[30] IAIK-JCE. url: https://jce.iaik.tugraz.at/sic/Products/Core_
Crypto_Toolkits/JCA_JCE (cit. on p. 39).

[31] Luan Ibraimi et al. “Mediated Ciphertext-Policy Attribute-Based En-
cryption and Its Application.” In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Vol. 5932 LNCS. 2009, pp. 309–323. isbn: 3642108377.
doi: 10.1007/978-3-642-10838-9_23 (cit. on pp. 9, 15).

[32] IIoT by Honeywell. url: https://www.honeywellprocess.com/en-
US/online_campaigns/IIOT/Pages/index1.html (cit. on p. 2).

[33] Jackson. url: https://github.com/FasterXML/jackson (cit. on p. 44).

[34] Antoine Joux. “A One Round Protocol for Tripartite Diffie–Hellman.”
In: Algorithmic Number Theory. Vol. 1838. 3. 2000, pp. 385–393. isbn:
978-3-540-67695-9. doi: 10.1007/10722028_23 (cit. on p. 5).

[35] Henning Kagermann, Wolfgang Wahlster, and Johannes Helbig. Um-
setzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Tech. rep.
2013. url: https://www.bmbf.de/files/Umsetzungsempfehlungen_
Industrie4_0.pdf (cit. on p. 1).

98

https://doi.org/10.1007/978-3-662-44381-1_8
https://doi.org/10.1007/978-3-662-44381-1_8
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1109/TKDE.2011.78
https://doi.org/10.1109/TKDE.2011.78
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
https://doi.org/10.1007/978-3-642-10838-9_23
https://www.honeywellprocess.com/en-US/online_campaigns/IIOT/Pages/index1.html
https://www.honeywellprocess.com/en-US/online_campaigns/IIOT/Pages/index1.html
https://github.com/FasterXML/jackson
https://doi.org/10.1007/10722028_23
https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf
https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf

[36] M Karchmer and Avi Wigderson. “On span programs.” In: [1993]
Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
IEEE Comput. Soc. Press, 1993, pp. 102–111. isbn: 0-8186-4070-7. doi:
10.1109/SCT.1993.336536 (cit. on p. 9).

[37] Allison Lewko and Brent Waters. “Decentralizing Attribute-Based
Encryption.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 6632 LNCS. 2011, pp. 568–588. isbn: 9783642204647. doi: 10.1007/
978-3-642-20465-4_31 (cit. on pp. 9, 15, 40, 50, 71).

[38] Guofeng Lin, Hanshu Hong, and Zhixin Sun. “A Collaborative Key
Management Protocol in Ciphertext Policy Attribute-Based Encryption
for Cloud Data Sharing.” In: IEEE Access 5 (2017), pp. 9464–9475. issn:
21693536. doi: 10.1109/ACCESS.2017.2707126 (cit. on pp. 3, 16, 17,
20, 21, 65).

[39] Zhen Liu and Zhenfu Cao. “On Efficiently Transferring the Linear
Secret-Sharing Scheme Matrix in Ciphertext-Policy Attribute-Based
Encryption.” In: IACR Cryptology ePrint Archive 2010 (2010), p. 374.
url: http://eprint.iacr.org/2010/374 (cit. on pp. 9, 67).

[40] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. “Re-
ducing Elliptic Curve Logarithms to Logarithms in a Finite Field.”
In: IEEE Transactions on Information Theory 39.5 (1993), pp. 1639–1646.
issn: 15579654. doi: 10.1109/18.259647 (cit. on pp. 5, 7).

[41] Victor S. Miller. “Short Programs for functions on Curves.” In: Unpu-
blished (1986) (cit. on p. 6).

[42] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. “New
explicit conditions of elliptic curve traces for FR-reduction.” In: IEICE
Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences E84-A.5 (2001), pp. 1234–1243. issn: 09168508. doi:
10.1017/CBO9781107415324.004 (cit. on p. 7).

[43] MongoDB. url: https://www.mongodb.com/ (cit. on pp. 37, 40, 45, 46).

[44] D. Page, Nigel P. Smart, and Frederik Vercauteren. “A comparison
of MNT curves and supersingular curves.” In: Applicable Algebra in
Engineering, Communications and Computing 17.5 (2006), pp. 379–392.
issn: 09381279. doi: 10.1007/s00200-006-0017-6 (cit. on p. 7).

99

https://doi.org/10.1109/SCT.1993.336536
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1109/ACCESS.2017.2707126
http://eprint.iacr.org/2010/374
https://doi.org/10.1109/18.259647
https://doi.org/10.1017/CBO9781107415324.004
https://www.mongodb.com/
https://doi.org/10.1007/s00200-006-0017-6

Bibliography

[45] Predix. url: https://www.ge.com/digital/iiot-platform (cit. on
p. 2).

[46] Sebastian Ramacher. “Bilinear pairings on elliptic curves.” MSc thesis.
Graz University of Technology, 2015 (cit. on pp. 39, 67).

[47] R L Rivest, A Shamir, and L Adleman. “A method for obtaining digital
signatures and public-key cryptosystems.” In: Communications of the
ACM 21.2 (1978), pp. 120–126. issn: 00010782. doi: 10.1145/359340.
359342 (cit. on p. 2).

[48] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner.
“Security and privacy challenges in industrial internet of things.”
In: Proceedings of the 52nd Annual Design Automation Conference on -
DAC ’15. New York, New York, USA: ACM Press, 2015, pp. 1–6. isbn:
9781450335201. doi: 10.1145/2744769.2747942 (cit. on p. 2).

[49] Amit Sahai and Brent Waters. “Fuzzy Identity-Based Encryption.” In:
Advances in Cryptology – EUROCRYPT 2005. 2005, pp. 457–473. isbn:
978-3-540-32055-5. doi: 10.1007/11426639_27 (cit. on p. 13).

[50] Farzad Samie, Lars Bauer, and Jörg Henkel. “IoT technologies for
embedded computing.” In: Proceedings of the Eleventh IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System
Synthesis - CODES ’16. New York, New York, USA: ACM Press, 2016,
pp. 1–10. isbn: 9781450344838. doi: 10.1145/2968456.2974004 (cit. on
p. 2).

[51] Hovav Shacham. “New Paradigms in Signature Schemes.” PhD thesis.
Stanford University, 2005 (cit. on p. 8).

[52] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes.”
In: Proceedings of CRYPTO 84 on Advances in cryptology. 1985, pp. 47–53.
isbn: 9783540156581. doi: 10.1007/3-540-39568-7_5 (cit. on p. 13).

[53] F. Shrouf, J. Ordieres, and G. Miragliotta. “Smart factories in Industry
4.0: A review of the concept and of energy management approached
in production based on the Internet of Things paradigm.” In: 2014
IEEE International Conference on Industrial Engineering and Engineering
Management. IEEE, 2014, pp. 697–701. isbn: 978-1-4799-6410-9. doi:
10.1109/IEEM.2014.7058728 (cit. on p. 1).

100

https://www.ge.com/digital/iiot-platform
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1007/11426639_27
https://doi.org/10.1145/2968456.2974004
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1109/IEEM.2014.7058728

[54] Siemens MindSphere. url: https://siemens.mindsphere.io/en (cit.
on p. 2).

[55] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Vol. 106. Gradu-
ate Texts in Mathematics. New York, NY: Springer New York, 2009.
isbn: 978-0-387-09493-9. doi: 10.1007/978-0-387-09494-6 (cit. on
p. 6).

[56] Spring Boot. url: https://spring.io/projects/spring-boot (cit. on
pp. 40, 46).

[57] Thymeleaf. url: https://www.thymeleaf.org/ (cit. on p. 40).

[58] Osmanbey Uzunkol and Mehmet Sabır Kiraz. “Still wrong use of
pairings in cryptography.” In: Applied Mathematics and Computation 333

(2018), pp. 467–479. issn: 00963003. doi: 10.1016/j.amc.2018.03.062.
arXiv: 1603.02826 (cit. on p. 8).

[59] Frederik Vercauteren. “Optimal Pairings.” In: IEEE Transactions on
Information Theory 56.1 (2010), pp. 455–461. issn: 0018-9448. doi: 10.
1109/TIT.2009.2034881 (cit. on p. 7).

[60] Yongtao Wang et al. “Mitigating key escrow in attribute-based encryp-
tion.” In: International Journal of Network Security 17.1 (2015), pp. 94–
102. issn: 18163548. doi: 10.6633/IJNS.201501.17(1).13 (cit. on
p. 16).

[61] Andrew Chi-Chih Yao. “How to generate and exchange secrets.” In:
27th Annual Symposium on Foundations of Computer Science (sfcs 1986).
1. IEEE, 1986, pp. 162–167. isbn: 0-8186-0740-8. doi: 10.1109/SFCS.
1986.25 (cit. on p. 11).

[62] Andrew Chi-Chih Yao. “Protocols for secure computations.” In: 23rd
Annual Symposium on Foundations of Computer Science (sfcs 1982). IEEE,
1982, pp. 160–164. doi: 10.1109/SFCS.1982.38 (cit. on p. 11).

[63] Xuanxia Yao, Zhi Chen, and Ye Tian. “A lightweight attribute-based
encryption scheme for the Internet of Things.” In: Future Generation
Computer Systems 49 (2015), pp. 104–112. issn: 0167739X. doi: 10.1016/
j.future.2014.10.010 (cit. on p. 16).

101

https://siemens.mindsphere.io/en
https://doi.org/10.1007/978-0-387-09494-6
https://spring.io/projects/spring-boot
https://www.thymeleaf.org/
https://doi.org/10.1016/j.amc.2018.03.062
https://arxiv.org/abs/1603.02826
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.6633/IJNS.201501.17(1).13
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1016/j.future.2014.10.010

Bibliography

[64] Keliang Zhou, Taigang Liu, and Lifeng Zhou. “Industry 4.0: Towards
future industrial opportunities and challenges.” In: 2015 12th Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015
(2016), pp. 2147–2152. doi: 10.1109/FSKD.2015.7382284 (cit. on p. 1).

[65] Dominik Ziegler, Josef Sabongui, and Gerald Palfinger. “Fine-Grained
Access Control in Industrial Internet of Things: Evaluating Outsourced
Attribute-Based Encryption.” In: Proceedings of the 34th International
Conference on ICT Systems Security and Privacy Protection - IFIP SEC
2019. 2019 (cit. on pp. 49, 51–58, 60, 65).

102

https://doi.org/10.1109/FSKD.2015.7382284

	Introduction
	Contribution
	Structure

	Background
	Bilinear Pairings
	General
	Elliptic Curves
	Pairings
	Pairing Types

	Access Structures
	Access Trees
	Linear Secret Sharing Schemes and Monotone Span Programs

	Multi-Party Computation
	SPDZ

	Related Work
	Architecture
	Actors
	Key Authority
	Re-Encryption Server
	Storage Server
	Decryption Server
	Data Owner
	Client

	ABE System
	System Definitions
	System Setup
	Key Creation and Update
	Encryption
	Re-Encryption
	Decryption
	Attribute Management

	Prototype
	External Dependencies
	Cryptographic Libraries
	Multi-Party Computation
	Web Frameworks

	Libraries
	abe-core
	abe-common
	abe-common-keyprotocols
	abe-server-common

	Servers
	abe-server-keyauthority
	abe-server-storage
	abe-server-decryption

	Endpoints
	abe-example-information
	abe-example-producer
	abe-example-client-java

	Evaluation
	Ciphertext Overhead
	Computational Performance

	Conclusion
	Future Work
	Outlook

	Algorithms and Examples
	Building a Polynomial from its Roots
	Creating a MSP and recovery of factors through solving linear equations

	REST APIs
	abe-server-keyauthority
	abe-server-storage
	abe-server-decryption

	Listings
	Glossary
	Bibliography

