
Roman Walch BSc

Design and Implementation of a
Picnic Coprocessor

Master’s thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Dipl.Ing. Daniel Kales BSc
Dipl.Ing. Mario Werner BSc

Univ.-Prof. Dipl-Ing. Dr.techn. Christian Rechberger

Institute for Applied Information Processing and Communications
Faculty of Computer Science and Biomedical Engineering

Graz, May 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master’s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum Unterschrift

ii

Abstract

Digital signatures play an important role in today’s society. We use them to
secure internet connections, in online banking, and even to create legally
binding signatures. However, existing signature schemes face the threat of
quantum computers. Once a sufficiently powerful quantum computer is
developed, we can use Shor’s algorithm for factoring and discrete-logarithm
computations to break most of the digital signature schemes we use to-
day. Therefore, the National Institute of Standards and Technology (NIST)
has started a standardization project to find new signature schemes which
won’t be broken by quantum computers. In January 2019, the second round
candidates of the post-quantum project were announced. At this point in
the project, one of the factors taken into consideration by NIST to evalu-
ate the suitability of a candidate is the availability of efficient hardware
implementations.

One of the advancing designs is Picnic, an algorithm based on transformed
zero-knowledge proofs and symmetric-key primitives. In this thesis, we
present the first FPGA-based hardware implementation of Picnic. We de-
scribe how we are able to efficiently implement LowMC, a block cipher used
as a one-way function in Picnic, in VHDL despite the large number of con-
stants required for computation. We then extend this design to implement
the full Picnic algorithm in VHDL and synthesize it on a Kintex-7 FPGA
board. Furthermore, we explain how we can connect our design to a PC
via the PCIe interface and how we can sign messages and verify signatures
using a C-Library we developed. We also compare our Picnic coprocessor
to implementations of other signature schemes and show how we are able
to speed up signing and verification in comparison to state-of-the-art Picnic

software implementations.

iii

Kurzfassung

Digitale Signaturen spielen eine wichtige Rolle in der heutigen Gesellschaft.
Wir verwenden sie um Internetverbindungen abzusichern, beim Onlinebank-
ing, und in vielen Ländern ist es sogar möglich, gesetzlich bindende Un-
terschriften zu erzeugen. Jedoch sind aktuelle Signaturverfahren durch
Quantencomputer gefährdet. Sollte ein ausreichend starker Quantencom-
puter entwickelt werden, können wir Shor’s Algorithmus zum Faktorisieren
und Lösen von diskreten Logarithmen verwenden, um die meisten heutzu-
tage verwendeten digitalen Signaturverfahren zu brechen. Darum hat das
Nationale Institut für Standards und Technologie (NIST) ein Projekt ges-
tartet, um neue Signaturverfahren zu finden, welche nicht durch einen
Quantencomputer gebrochen werden können. Im Jänner 2019 wurden die
Kandidaten der zweiten Runde des Projekts verkündet. Zu diesem Zeit-
punkt im Projekt berücksichtigt NIST auch, ob sich die Kandidaten effizient
in Hardware implementieren lassen. Picnic, ein Signaturverfahren, welches
auf zero-knowledge Beweisen und symmetrischen Verschlüsselungsver-
fahren aufbaut, ist einer der verbleibenden Zweitrundenkandidaten. In
dieser Arbeit präsentieren wir die erste Hardwareimplementierung von
Picnic. Wir beschreiben, wie wir LowMC, eine in Picnic verwendete Block-
verschlüsselung, effizient in VHDL implementieren können, obwohl diese
eine große Anzahl an Konstanten zur Berechnung benötigt. Wir erweitern
dieses Design, um den vollständigen Picnic Algorithmus zu implemen-
tieren and synthetisieren diesen dann auf ein Kintex-7 FPGA Board. Des
Weiteren erklären wir, wie wir unsere Implementierung mit einem PC über
das PCIe Interface verbinden können und wie wir Signaturen über ein
C-Programm erzeugen und verifizieren können. Wir vergleichen unseren
Coprozessor mit Implementierungen von anderen Signaturverfahren und
zeigen, dass der entwickelte Coprozessor soagar schnellere Laufzeiten für
das Signieren und Verifizieren von Picnic Signaturen hat, als die besten
existierenden Softwareimplementierungen.

iv

Contents

Abstract iii

Kurzfassung iii

1 Introduction 1
1.1 Digital Signatures . 1

1.2 Post-Quantum Signatures . 2

1.3 Goal and Contribution . 3

1.4 Outline . 3

2 The Picnic Signature Scheme 4
2.1 Formal Definition of Digital Signatures 4

2.2 Sigma Protocols . 5

2.3 Fiat-Shamir Transformation . 5

2.3.1 FS Signatures - Schnorr 6

2.4 ZKBoo . 8

2.5 LowMC . 10

2.5.1 Sbox Layer . 10

2.5.2 Linear Layer . 11

2.5.3 Constant Addition . 11

2.5.4 Key Addition . 11

2.5.5 Instances used in Picnic 12

2.6 Keccak . 12

2.7 Picnic Instances and Parameters 14

2.8 Signature Creation . 16

2.8.1 Seed Generation . 16

2.8.2 Circuit Decomposition 16

2.8.3 Challenge Generation (H3) 19

2.8.4 Signature Serialization 20

v

Contents

2.9 Signature Verification . 21

2.9.1 Signature Deserialization 21

2.9.2 Recomputing the Circuit Decomposition 21

2.9.3 Recomputing the Challenge 22

3 Optimizations of LowMC’s Linear Layer 23
3.1 Motivation . 23

3.2 Optimized Key Matrices and Round Constants 24

3.3 Optimized Linear Layer . 26

3.4 Optimized VHDL Implementation of LowMC 28

3.5 Optimized Hardware Utilization 28

4 The Picnic VHDL Design 32
4.1 Submodule Implementation . 32

4.1.1 Keccak . 32

4.1.2 Multi-Party Computation of LowMC 33

4.1.3 Tapes and Commitments 35

4.1.4 Seed Generation . 36

4.1.5 H3 - Challenge Generation 36

4.1.6 BRAM . 38

4.1.7 Serialization and Deserialization of the Signature . . . 39

4.2 High-Level Design . 40

4.3 AXI4-Stream Interface . 41

4.4 Communication Protocol . 45

4.4.1 Instructions, Headers and Status Codes 45

4.4.2 Setting the Keys . 47

4.4.3 Message Signing . 48

4.4.4 Signature Verification 48

5 The Picnic-PCIe Coprocessor 50
5.1 Hardware and Software . 50

5.2 PCIe/DMA Subsystem . 50

5.3 High-Level Coprocessor Design 51

5.4 Software Access to the Coprocessor 52

5.4.1 Driver Setup . 54

5.4.2 C-Library . 54

vi

Contents

6 Practical Evaluation 57
6.1 Hardware Utilization . 57

6.1.1 Picnic Submodules . 57

6.1.2 Picnic Coprocessors . 60

6.2 Benchmarks . 61

6.2.1 Benchmark Platforms 62

6.2.2 Timing Benchmarks . 62

6.3 Comparison to other Signature Schemes 64

7 Conclusion and Future Work 66
7.1 Conclusion . 66

7.2 Future Work . 67

Bibliography 68

vii

List of Figures

2.1 Σ-protocol and FS transformation. 6

2.2 Schnorr signature. 7

2.3 One round of encryption with LowMC. 11

2.4 The sponge structure of Keccak. 13

3.1 One encryption round before and after the splitting of the
roundkey addition. 25

3.2 LowMC implementation without optimizations. 29

3.3 LowMC implementation with optimizations. 30

4.1 Interface of the Keccak core. 33

4.2 High-level design of Picnic signing (left) and verification
(right) with parallel Commits/Tapes. 42

4.3 High-level design of Picnic signing (left) and verification
(right). 43

4.4 Interface of the Picnic VHDL implementation. 44

4.5 Timing of an AXI4-Stream transaction. 45

4.6 Instruction and status format. 46

4.7 Segment header format. 46

4.8 Protocol of setting the public key (left) and private key (right). 47

4.9 Protocol of signing a message. 48

4.10 Protocol of verifying a signature. 49

5.1 High-level design of the Picnic-PCIe coprocessors. 52

5.2 High-level design of the low-frequency Picnic-PCIe copro-
cessors. 53

viii

List of Tables

2.1 LowMC instances used in Picnic. 12

2.2 Parameters of different Picnic instances. 15

2.3 Key and signature sizes of different Picnic instances in bytes. 15

2.4 Picnic-FS signature sizes in bytes. 21

3.1 Reduction of LowMC constants. 28

3.2 LUTs of LowMC with and without optimizations. 31

4.1 Different configurations of the Picnic implementations. . . . 41

4.2 Segment Type Encoding . 47

6.1 Hardware Utilization for different parts of the L1 design. . . . 58

6.2 Hardware Utilization for different parts of the L5 design. . . . 59

6.3 Hardware Utilization for different parts of the coprocessors. . 60

6.4 Hardware Utilization for the complete coprocessors. 61

6.5 Different Benchmark Platforms. 62

6.6 Runtime comparison of the coprocessors on benchmark plat-
form A. 63

6.7 Runtime comparison of optimized software implementations. 63

6.8 Comparison of different FPGA signature scheme implemen-
tations. 65

ix

1 Introduction

In this Chapter, we give an introduction to digital signatures and state the
goal of this thesis. We then report our contribution and lay out the outline
of the present document.

1.1 Digital Signatures

Digital data and online communication increasingly gained importance
over the last decades, and without any protection, malicious parties can
easily impersonate users or modify data in today’s online ecosystem. Digital
signatures protect the correct origin and integrity of data and can, therefore,
be used to detect such malicious behavior.

Digital signatures are the electronic counterpart of the classical, handwritten
signatures, and they are an essential part in securing internet connections
using Transport Layer Security (TLS) and for Public Key Infrastructures
(PKI). In some countries, digital signatures can even be used for authentica-
tion in government services and to create legally binding alternatives to the
handwritten signatures [21].

The signature algorithms used today are mainly based on classical asymmet-
ric cryptography, such as RSA and elliptic-curve based signature schemes.
In these cryptosystems, the signer owns a private key, which he can use to
create a signature of digital data. A verifier can then use the corresponding,
publicly available, public key to verify if the signature was created with the
correct private key and if the signed data has not been altered.

The security of these asymmetric cryptographic signature schemes relies on
two hardness assumptions, the integer factorization problem (IFP) and the

1

1 Introduction

discrete logarithm problem (DLP). We do not know of an efficient algorithm
to solve these problems on classical computers. However, once developed,
quantum computers, new types of computers which use phenomena of
quantum physics to run algorithms, can be used to run already known
quantum algorithms to break both, the IFP and the DLP.

1.2 Post-Quantum Signatures

In 1994, Peter Shor published his quantum algorithm [35] for factoring and
discrete-logarithm computations in polynomial-time. This algorithm would
be capable of breaking most of the asymmetric cryptography schemes
which we use today, once a sufficiently powerful quantum computer is
developed [35]. This also includes the cryptographic schemes we use to
create and verify digital signatures, like DSA, its elliptic curve variant
ECDSA, and RSA.

It is still unclear if or when such sufficiently powerful quantum computers
will be developed. However, it is crucial to find new post-quantum secure
asymmetric cryptographic schemes now to ensure a smooth transition from
classical algorithms to post-quantum schemes before the classical ones be-
come fully broken. As a consequence, the National Institute of Standards
and Technology (NIST) started a project to find, review, and standardize new
algorithms for public key encryption, key exchange protocols, and digital
signatures [27]. In January 2019, NIST announced the second round candi-
dates of the standardization project [1]. Advancing submissions for digital
signatures include schemes based on lattices (qTESLA [3], CRYSTALS-
Dilithium [20], etc.), schemes based on multivariate systems of quadratic
equations (MQDSS [15], etc.), hash-based schemes (SPHINCS [7]), and
schemes based on transformed zero-knowledge proofs and symmetric-key
primitives (Picnic [11]).

According to the tentative timeline of NIST [27], the third round candidates
will be decided until 2021 and the competition will end before 2024.

2

1 Introduction

1.3 Goal and Contribution

In the second round of the NIST project [1], hardware implementation of all
the remaining candidates are required. In this thesis, we aim to implement
Picnic in VHDL and design and implement an FPGA-based coprocessor
which is capable of creating and verifying Picnic signatures via the PCIe
interface. We compare the performance of our developed coprocessor to
state-of-the-art software implementations of Picnic and also compare it to
hardware implementations of other signature schemes.

In this thesis, we first created an area-optimized VHDL design of LowMC
and used it to create VHDL implementations for two specific instances
of Picnic, namely Picnic-L1-FS and Picnic-L5-FS. We then synthesized
the design onto an FPGA-board that can be connected to a PC via the
PCIe interface, and we created a C-Library to sign messages and verify
signatures using our coprocessor. We evaluated the hardware utilization
of our design and compared the performance to software implementations
of Picnic and to other signature schemes, including an implementation of
SPHINCS-256 [5], another post-quantum signature scheme. We show that
using our FPGA implementations, signing takes 0.25 ms for Picnic-L1-FS
and 1.24 ms for Picnic-L5-FS, which is about four times faster than existing,
optimized software implementations.

1.4 Outline

In Chapter 2 of this thesis, we introduce the Picnic signature scheme and its
building blocks. In Chapter 3, we explain some optimizations for LowMC’s
linear layer and how we implement an area-optimized VHDL design of
LowMC. In Chapter 4, we describe our Picnic VHDL implementation. In
Chapter 5, we explain how we extend this implementation to an FPGA-
based PCIe coprocessor and how we can use it from a C-program. In
Chapter 6, we evaluate the hardware utilization and performance of our
coprocessor, before we conclude the thesis and discuss possible future work
in Chapter 7.

3

2 The Picnic Signature Scheme

In this Chapter, we give an introduction to the Picnic signature scheme
and its building blocks. We first describe digital signatures, Σ-protocols
and the Fiat-Shamir transformation, then we present ZKBoo and how
to build a signature scheme based on transformed Σ-protocols. Then we
describe LowMC and Keccak, two cryptographic primitives used in Picnic,
before we explain how signatures are created and verified using the Picnic

algorithm.

2.1 Formal Definition of Digital Signatures

Digital Signatures are cryptographic schemes to authenticate digital infor-
mation. The signer can use a secret key (sk) to sign a message (M); the
verifier can use the corresponding public key (sk) to verify the correctness
of the signature. A valid signature provides the following three security
principles:

• Authenticity
The signature assures that the signer is who he claims to be.
• Integrity

The signature assures that the signed message has not been altered.
• Non-repudiation

The signer can not deny signing the message.

A typical digital signature scheme consist of three algorithms:

• A key generation algorithm that outputs a key pair (sk, pk) given a
security parameter κ:

4

2 The Picnic Signature Scheme

(sk, pk)← KeyGen(1κ) (2.1)

• A signing algorithm that outputs the signature σ of a message M given
the secret key sk:

σ← Sign(M, sk) (2.2)

• A verification algorithm that verifies the signature σ of a message M
given a public key pk and outputs either valid (>) or invalid (⊥):

>/⊥ ← Veri f y(M, σ, pk) (2.3)

2.2 Sigma Protocols

A sigma protocol (Σ-protocol) is a protocol for proof of knowledge of the
secret input x for the public relation φ(x) = y and a public known value y.
The protocol consist of the following three steps:

• The prover makes a commitment r and sends it to the verifier
• The verifier chooses a challenge c and sends it to the prover
• The prover assembles a proof s based on x, r and c and sends it to the

verifier

The verifier then checks if the verification relation φverify(y, r, c, s) = 1 holds
and accepts or rejects the proof accordingly.

2.3 Fiat-Shamir Transformation

With the Fiat-Shamir (FS) transformation, it is possible to build a proof
of knowledge protocol by making a Σ-protocol non-interactive. Instead of
relying on the verifier to choose a challenge, the prover generates it as the

5

2 The Picnic Signature Scheme

result of a cryptographically secure hash algorithm c← H(r) calculated on
the commitment r. This method creates a non-interactive protocol that is
secure in the random oracle model [23].

Figure 2.1 depicts a Σ-protocol and the FS transformation.

Σ-protocol
Prover Verifier

1) generate committment r

2) choose challenge c

3) assemble proof s 4) verify

r

c

s

FS transformed Σ-protocol
Prover Verifier

1) generate committment r

2) choose challenge c
c← H(r)

3) assemble proof s 4) verify
r, s

Figure 2.1: Σ-protocol and FS transformation.

2.3.1 FS Signatures - Schnorr

We can use FS-transformed Σ-protocols to build signature schemes which
are secure in the random oracle model:

• The signer creates a commitment r.
• The signer uses the random oracle to create the challenge c based on

the message m and the commitment r.

c← H(m, r) (2.4)

• The signer assembles the signature s based on the commitment r, the
private key x and the challenge c.

s = proof(r, c, x) (2.5)

• The verifier can recompute the commitment r′ based on the signature
s, the challenge c and the public key y and verify if it creates the
correct challenge using the random oracle.

r′ = verify(s, c, y) (2.6)

c ?
= H(m, r′) (2.7)

6

2 The Picnic Signature Scheme

One example of building a signature based on FS-transformed Σ-protocols
is the Schnorr signature. It is built by applying the FS transformation to the
Schnorr identification scheme [32, 33, 34].

The Schnorr signature is defined as shown in Figure 2.2, where g is a
generator of a cyclic group G with prime order q, and H : {0, 1}∗ ×G→ Zq
is a hash function. The private key of Schnorr’s signature is x ← Zq \ {0},
the public key is y← gx and m ∈ {0, 1}∗ is the message to be signed.

Signer Verifier
0) key generation

x ← Zq \ {0}
y = gx

public key: y

1) generate committment r
a← Zq

r = ga

2) choose challenge c
c← H(m, r)

3) assemble proof s
s = a + cx mod q

4) verify
r′ = gsy−c

c ?
= H(m, r′)

signature: (s, c)

Figure 2.2: Schnorr signature.

The Schnorr signature is quite efficient and straightforward to calculate;
however, it relies on the discrete logarithm problem, which will be broken
by a sufficiently powerful quantum computer.

7

2 The Picnic Signature Scheme

2.4 ZKBoo

The Picnic signature scheme is based on ZKBoo, a zero-knowledge proof
system, and its optimized version ZKB++. ZKBoo builds on a Σ-protocol
that does not rely on mathematical problems, such as the discrete logarithm
problem. Therefore, contrary to Schnorr’s identification scheme, it will
not be broken by a sufficiently powerful quantum computer. Picnic uses
the FS transformation in the random oracle model to make ZKBoo non-
interactive.

ZKBoo improves on the MPC-in-the-head paradigm introduced by Ishai
et al. [24], which describes how to build zero-knowledge proofs based on
multiparty computation protocols (MPC). As an example, we use MPC
to compute the relation y = φ(x), where y is public, and x is a private
key. Every player of the protocol has a share of the key x and the prover
simulates the multiparty computation of all players and commits to the
view of all players consisting of the key share, a communication transcript,
and the output share. The verifier then selects (corrupts) a random subset
of the players for which the input shares get published. The verifier then
can recompute the multiparty computation for the corrupted players and
verify the commitments and therefore gets some assurance that the prover
really knows the secret key x and performed the computation correctly.
Repeating this process for different random key shares gives the verifier a
higher assurance [24].

ZKBoo replaces the MPC computation with circuit decompositions which
relaxes the properties of MPC protocols but still leads to secure and more
efficient proofs. In ZKBoo, the number of players is fixed to three and the
circuit to calculate the relation y = φ(x) is decomposed in the following
way [11]:

• A Share function splits the secret key into three key shares
• An Output function that produces an output share based on a key

share and some randomness
• A Reconstruct function that recomputes the output from the three

output shares

The decomposition of the circuit has to satisfy correctness and 2-privacy [11]:

8

2 The Picnic Signature Scheme

• Correctness
The reconstruction of all output shares yi must always be the result of
the original relation y = φ(x).

∀φ, ∀x : Pr[x0, x1, x2 ← Share(x),
y0, y1, y2 ← Output(x0, x1, x2) :

φ(x) = Reconstruct(y0, y1, y2)] = 1 (2.8)

• 2-Privacy
It should not be possible to reveal information about the private key x
by publishing any information on any two players.

To create a proof, the prover runs φ T times using the circuit decomposition.
For each run, the prover commits to the view of each player consisting of
the input share, a transcript, and the output share. After all T runs, the
prover sends all the output shares and commitments for each run and player
to a random oracle to calculate the challenge based on the Fiat-Shamir
transformation heuristic. The challenge tells the prover which two players
should be corrupted per run and therefore which views should be published.
Since the decomposition satisfies the 2-privacy property, no information is
leaked on the secret key by publishing the views of two players [11].

The verifier then recalculates the two opened views and checks the following
properties:

• The opened views were calculated correctly
• The challenge was computed correctly
• The three output shares of each run can be reconstructed to y

Each run gives some assurance that the prover really knows the secret key x,
therefore increasing the number of runs T decreases the probability that the
prover can cheat without the verifier catching him at least once. Since the
prover can cheat for 2 of the 3 possible challenges per run, we can calculate
the probability for him to cheat without getting caught with formula 2.9,
where S is the security level in bits [11].

2−S =
(2

3

)T
(2.9)

9

2 The Picnic Signature Scheme

In Picnic, we use the relation C =LowMC(p, k) for the circuit decomposi-
tion, where k is a private key and (C, p) a corresponding plain-/ciphertext
pair which is known publicly. For the challenge generation, according to the
FS transformation heuristic, Shake, a cryptographic hash algorithm based
on Keccak, is used to instantiate the random oracle [11].

2.5 LowMC

This Section is based on a description of LowMC by Walch [37].

LowMC is a block cipher designed to reduce the number of AND gates
needed for symmetric encryption. The cipher is based on a substitution-
permutation network (SPN), and the parameters block size (n), key size (k),
number of Sboxes (m) and the number of rounds (r) are parameterizable
according to the LowMC v3 round formula [2]. This formula considers all
recent attacks [30, 18, 17] to calculate the lowest number of rounds necessary
to provide secure encryption for the given parameter set. The script for
determining the number of rounds for a given set of LowMC parameters
can be found in the official Github repository [26].

A LowMC encryption starts with an initial whitening by XORing the first
roundkey to the plaintext, followed by r rounds. As depicted in Figure 2.3,
one round consists of four steps [2]:

• SboxLayer

• LinearLayer

• ConstantAddition

• KeyAddition

2.5.1 Sbox Layer

In the SboxLayer m 3-bit Sboxes are applied to the least significant s = 3 ·m
bits of the state. The remaining bits of the state are not affected by the

10

2 The Picnic Signature Scheme

. . .S S S . . . S

Linear Layer + Constant Addition

ki

Figure 2.3: One round of encryption with LowMC. (Modified from [2].)

SboxLayer. The following equation specifies one Sbox and shows that only
3 AND gates are required [2]:

S(a, b, c) =
(

a⊕ (b ∧ c), a⊕ b⊕ (a ∧ c), a⊕ b⊕ c⊕ (a ∧ b)
)

. (2.10)

2.5.2 Linear Layer

In the LinearLayer the state is multiplied with a pseudorandomly gener-
ated n× n binary matrix Lmatrix[r] in GF(2), where r is the current round.
The matrices are chosen pseudorandomly from the set of invertible n× n
matrices during the instantiation of LowMC [2].

2.5.3 Constant Addition

During the ConstantAddition the vector roundconstant[r] of length n is
XORed to the state, where r describes the current round. The vectors are
chosen pseudorandomly during the instantiation of LowMC [2].

2.5.4 Key Addition

During KeyAddition, the roundkey of the current round is XORed to the
state. All roundkeys are generated as a result of the GF(2) multiplication
of the master key with the n× k binary matrix Kmatrix[r], where r is the

11

2 The Picnic Signature Scheme

current round. The matrices are chosen pseudorandomly from the set of
n× k matrices during the instantiation of LowMC [2].

2.5.5 Instances used in Picnic

Table 2.1 shows the LowMC instances that are used in Picnic.

Table 2.1: LowMC instances used in Picnic.

Sec. blocksize keysize sboxes rounds Data # of ANDs
Lvl. n k m r complexity ANDs per bit

L1 128 128 10 20 21 600 4.69
L3 192 192 10 30 21 900 4.69
L5 256 256 10 38 21 1140 4.45

2.6 Keccak

Keccak is a family of hash functions and the winner of the Secure Hash
Algorithm 3 (SHA-3) competition, for which it got standardized by NIST in
their publication FIPS 202 [28] in August 2015.

The core design of Keccak is a sponge structure which can be seen in
Figure 2.4. Keccak’s internal state consists of b bits which are initialized
with zeros and separated into a bitrate of r bits and a capacity of c bits. The
hash construction is divided into two phases, the absorbing and squeezing
phases [8].

During the absorbing phase, the input is first padded and divided into
blocks of r bits. Then for every input block, the block is XORed to the bitrate
part of the state and the whole state is transformed using the Keccak- f
function [8].

12

2 The Picnic Signature Scheme

Figure 2.4: The sponge structure of Keccak. Picture taken from https://keccak.team/

sponge_duplex.html [9].

In the squeezing phase, the bitrate part of the state is used to construct the
hash. The hash is first initialized as an empty string, before the bitrate part
of the state is appended to the hash. Then the entire state is transformed
using the Keccak- f function and the bitrate part of the state is attached
to the hash. This appending and transforming is repeated until the hash
has the desired length. With this technique, it is possible to construct a key
derivation function which produces a variable number of output bits [8].

The security of Keccak is defined by the capacity c. For a long enough
output, the sponge construction is provably secure against generic attacks
up to a complexity of 2c/2 [8].

Keccak is designed to be very flexible. The state size is fixed to b ∈
{200, 400, 800, 1600} bit for all configurations, but the capacity c, and output
length l can be freely chosen. Picnic uses the following Keccak configura-
tions:

• Shake128: Keccak[r = 1344, c = 256] with variable output length l
• Shake256: Keccak[r = 1088, c = 512] with variable output length l

13

https://keccak.team/sponge_duplex.html
https://keccak.team/sponge_duplex.html

2 The Picnic Signature Scheme

2.7 Picnic Instances and Parameters

In this Section, we give an overview of the different Picnic instances and
their parameter sets. For each of the three security levels S ∈ {128, 192, 256},
there exist two different Picnic algorithms. One algorithm is based on
the Fiat-Shamir transformation (FS) described in Section 2.3; the other is
based on the Unruh (UR) transformation [36], another approach to make Σ-
protocols non-interactive to build a signature scheme. In contrary to the FS
transformation, which makes the resulting non-interactive Σ-protocol secure
in the random oracle model, the UR transformation additionally provably
secures the protocol in the quantum random oracle model (QROM) [10],
where an adversary can query the random oracle in quantum superposition.
By the time Picnic was developed, the security of the FS transformation in
the QROM was not well understood [10]; therefore, the UR transformation
was used to build a post-quantum signature scheme. However, a recent
paper by Don et al. [19] claims that the specific use of the FS transformation
in Picnic is also secure in the quantum random oracle model. Therefore,
we do not need the more costly Picnic variants which are based on the
UR transformation and can rely on the FS transformation to build a post-
quantum signature scheme.

Table 2.2 shows the parameters of all the different Picnic versions. The
expected security of the various instances corresponds to S bits against
classical attacks and S/2 bits against quantum attacks. The parameter T
describes how often the circuit decomposition of ZKBoo is performed to
make it infeasible for the prover to cheat during signature creation [12].

Table 2.3 shows the different key and signature sizes for the Picnic instances.
For the instances based on the FS transformation, the actual signature size
is based on the calculated challenge. Therefore, the expected signature size
will be slightly smaller than the maximum value specified in the table [12].

In this thesis, we focus our implementation on the Picnic instances with
security levels S ∈ {128, 256} based on the FS transformation, namely
Picnic-L1-FS and Picnic-L5-FS.

14

2 The Picnic Signature Scheme

Table 2.2: Parameters of different Picnic instances.

LowMC Hash/KDF
Parameter Set S T n k m r Algorithm l

Picnic-L1-FS 128 219 128 128 10 20 Shake128 256
Picnic-L1-UR 128 219 128 128 10 20 Shake128 256

Picnic-L3-FS 192 329 192 192 10 30 Shake256 384
Picnic-L3-UR 192 329 192 192 10 30 Shake256 384

Picnic-L5-FS 256 438 256 256 10 38 Shake256 512
Picnic-L5-UR 256 438 256 256 10 38 Shake256 512

Table 2.3: Key and signature sizes of different Picnic instances in bytes.

Parameter Set Public Key Private Key Signature

Picnic-L1-FS 32 16 ≤ 34000
Picnic-L1-UR 32 16 53929

Picnic-L3-FS 48 24 ≤ 76740
Picnic-L3-UR 48 24 121813

Picnic-L5-FS 64 32 ≤ 132824
Picnic-L5-UR 64 32 209474

15

2 The Picnic Signature Scheme

2.8 Signature Creation

In this Section, we describe the signature creation algorithm for Picnic.

2.8.1 Seed Generation

The circuit decomposition of ZKBoo requires some randomness to be per-
formed. To make signature creation deterministic, a seed is created for each
of the three players of each of the T runs of the circuit decomposition. The
players then can pseudorandomly generate the required randomness randi
based on these seeds [12].

These seeds are also pseudorandomly generated at the beginning of the algo-
rithm by calling the defined key derivation function (KDF, Shake128/256).
Each seed is S bit long; therefore the KDF produces 3 · T · S bits of out-
put [12].

As equation 2.11 shows, the KDF is fed with the secret key sk, the message
M which should be signed, and the public key pk = (C, p).

Seed(0)(0) || Seed(0)(1) || Seed(0)(2) ||
... || Seed(t)(0) || Seed(t)(1) || Seed(t)(2) || .. || ← KDF(sk||M||pk||S)
Seed(T − 1)(0) || Seed(T − 1)(1) || Seed(T − 1)(2) (2.11)

2.8.2 Circuit Decomposition

The circuit decomposition of Picnic consists of three players and it is
repeated for T runs. During one run, the three players simulate a MPC-
protocol to calculate a LowMC encryption. The secret key of the LowMC
encryption is set to be the Picnic secret key sk, the plaintext p which should
be encrypted is part of the Picnic public key pk. The secret key is split
among the three players using additive secret sharing in GF(2k) [12]:

sk0 ⊕ sk1 ⊕ sk2 = sk (2.12)

16

2 The Picnic Signature Scheme

Each player then calculates his output share Ci = LowMCMPC(p, ski) as
result of the LowMC encryption of the plaintext p and his key share ski
according to the MPC rules:

• XOR gates can be calculated locally without communication between
the players
• An XOR of a state with a constant is only calculated by one of the

players (player 0)
• For every AND gate communication between the players and a random

bit for each player is required. The result of c = a ∧ b is calculated
according to the equation 2.13, where ai and bi are the inputs of player
i, ri is player i’s random input and ci is players i’s output share.

ci = (ai ∧ b(i+1)%3)⊕ (a(i+1)%3 ∧ bi)⊕ (ai ∧ bi)⊕ (ri ∧ r(i+1)%3)

(2.13)

Equation 2.13 ensures that the output bits ci of the players can be com-
bined to the original output bit c of the LowMC encryption without
MPC:

c0 ⊕ c1 ⊕ c2 = c = a ∧ b (2.14)

If the computations were done correctly, the output shares Ci can be com-
bined to the ciphertext part C of Picnic’s public key pk:

C0 ⊕ C1 ⊕ C2 = C (2.15)

During the computation of the circuit decomposition, randomness is re-
quired to calculate the key shares of the players and to calculate the AND
gates during the LowMCMPC encryption. At the beginning of the signing
process, a seed was already generated for each player of each run t. This
seed is hashed first using the defined hash algorithm (Shake128/256) H
and then fed to the KDF (Shake128/256), to produces the key share ski and
randomness randi for each player i. To satisfy equation 2.12, only the KDF
of player 0 and player 1 produce a key share, the remaining share of player
2 is calculated according to equation 2.19. A LowMC encryption consists
of 3 · r · s AND gates with s = 3 ·m, therefore each player requires 3 · r · s
random bits for the encryption. Equations 2.16, 2.17, and 2.18 show the KDF

17

2 The Picnic Signature Scheme

of each player of each run t; the constant 0x02 is prepended to the seed for
domain separation [12].

sk0 || rand0 ← KDF
(

H
(

0x02 || Seed(t)(0)
))

(2.16)

sk1 || rand1 ← KDF
(

H
(

0x02 || Seed(t)(1)
))

(2.17)

rand2 ← KDF
(

H
(

0x02 || Seed(t)(2)
))

(2.18)

sk2 ← sk0 ⊕ sk1 ⊕ sk (2.19)

The result of the circuit decomposition is a View(t)(i) for each player i of
each run t. This view consists of three parts [12]:

• An input share iShare:

View(t)(i).iShare← ski (2.20)

• A transcript for the MPC communication. This transcript consists of
all output bits ci of each of the 3 · r · s AND gates during encryption.
• An output share oShare:

View(t)(i).oShare← Ci (2.21)

The view is part of the Picnic signature, and the size of the transcript
depends on the number of AND gates in the decomposed circuit. Other
relations y = φ(x) (f.e. C = AES(p, k)) can be used as the circuit, however,
using LowMC, a cipher designed to reduce the number of AND gates for
secure encryption, reduces the size of the transcript and therefore also the
size of a Picnic signature [12].

Each player additionally commits to his view by hashing it together with a
hash of the seed used for randomness calculation; the constants 0x00 and
0x04 are again added for domain separation [12]:

Com(t)(i)← H
(

0x00 ||H
(

0x04 || Seed(t)(i)
)
||View(t)(i)

)
(2.22)

18

2 The Picnic Signature Scheme

2.8.3 Challenge Generation (H3)

For the FS transformation of the Σ-protocol, a random oracle (RO) is used
to generate the challenge based on the commitments. In Picnic, the RO is
instantiated using the hash algorithms Shake128/256. The hash function
is fed with the output shares of each player of each run, as well as the
corresponding commitments, the public key pk and the message M which
should be signed. Equation 2.23 shows the hash function used for challenge
generation; the constant 0x01 is added for domain separation [12].

h← H
(

0x01 ||View(0)(0).oShare ||View(0)(1).oShare ||

View(0)(2).oShare ||
... ||
View(T − 1)(0).oShare ||View(T − 1)(1).oShare ||
View(T − 1)(2).oShare ||
... ||
Com(0)(0) ||Com(0)(1) ||Com(0)(2) ||
... ||
Com(T − 1)(0) ||Com(T − 1)(1) ||Com(T − 1)(2) ||

pk ||M
)

(2.23)

The challenge of Picnic tells the signer which two of the three views
of the players of each run should be opened. Therefore, the challenge
should consist of T values ∈ {0, 1, 2}. The output h of the hash function
in equation 2.23 produces a bitstream {0, 1}l which has to be mapped to
{0, 1, 2}T. This is done in the following steps [12]:

• Compute h according to equation 2.23

• Inspect bit-pairs (h0, h1), (h2, h3), ... of the hash h
If the pair is:

– (0, 0), append et = 0 to the challenge e
– (0, 1), append et = 1 to the challenge e

19

2 The Picnic Signature Scheme

– (1, 0), append et = 2 to the challenge e
– (1, 1), discard the pair

Return if e consists of T values
• If h is fully consumed, a new hash h is calculated:

h← H(0x01 || h)
• Repeat bit-pair inspection (step 2) on the new hash h

2.8.4 Signature Serialization

A Picnic signature consists of the challenge as well as all values required
to recompute and verify the two opened players of each round. The com-
mitment of the third player also has to be part of the signature, since it is
required to recompute the challenge during verification. Serialization of the
signature consists of the following steps [12]:

• Pad the challenge e with zeros to the next number of bytes and add
the result to the signature
• For each run t append values depending on the challenge et to the

signature:

– Append the commitment of the closed player:
C(t)(et + 2 mod 3)

– Append the padded transcript of the second opened player:
View(t)(et + 1 mod 3).transcript

– Append the seed of the first opened player:
Seed(t)(et)

– Append the seed of the second opened player:
Seed(t)(et + 1 mod 3)

– If et 6= 0 append the key share of player 2:
view(t)(2).iShare

Since the key share of player 2 is not pseudorandomly generated based
on a seed, it has to be appended to the signature if the view of player 2 is
opened (et 6= 0). As a result, the signature size of Picnic based on the FS
transformation depends on the calculated challenge and is therefore, not
constant. Table 2.4 shows the maximum, average, and standard derivation
of the Picnic signature sizes [12].

20

2 The Picnic Signature Scheme

2.9 Signature Verification

In this Section, we describe the algorithm to verify signatures created by the
FS versions of Picnic.

2.9.1 Signature Deserialization

The signature size of the Picnic algorithms based on the FS transformation
is not constant and depends on the challenge. Therefore, the challenge has
to be read first, and an expected signature length can be calculated based on
the challenge. The signature can already be rejected if the expected signature
size does not match with the size of the given signature [12].

If the lengths match, the rest of the signature is read, and for each run t, the
values of the signature are assigned to the players based on the challenge
et.

If the padding bits of the challenge and each transcript are not all equal to
zero, the signature is rejected as well.

2.9.2 Recomputing the Circuit Decomposition

After the signature is parsed, the circuit decomposition of the two opened
players can be recomputed. Similar to the circuit decomposition during the
signing process described in Section 2.8.2, the key shares and the required
randomness is computed first based on the seeds, then an MPC-protocol of a

Table 2.4: Picnic-FS signature sizes in bytes.

Parameter Set Max Average Std. Dev.

Picnic-L1-FS 34000 32838 107
Picnic-L3-FS 76740 74134 198
Picnic-L5-FS 132824 128176 315

21

2 The Picnic Signature Scheme

LowMC encryption is simulated before the view, and the seed is committed
for each player [12].

The main difference between this recomputation and the circuit decom-
position during the signing process is that we only simulate the LowMC
encryption for the two opened players during the recomputation. According
to equation 2.13, the first opened player only communicates with the sec-
ond opened player during the AND gate calculation; therefore there is no
problem for the recomputation. However, the second opened player would
interact with the still closed player; thus this AND gate calculation cannot
be simulated. For this reason the Picnic algorithm memorizes the results
of the AND gate calculation of each player for each run t in the transcript
of the view and the transcript of the second opened player is added to the
signature [12].

2.9.3 Recomputing the Challenge

After the circuit decomposition, the challenge can be recomputed as de-
scribed in Section 2.8.3. For the recomputation, the output share and the
commitment of all players are required. The shares and commitments of the
opened players have been recomputed and the commitment of the closed
player is part of the signature. The output share of the closed player can be
recomputed by rewriting equation 2.15 [12]:

C(et+2)%3 = Cet ⊕ C(et+1)%3 ⊕ C (2.24)

If the recomputed challenge is equal to the challenge of the given signature
the signature is accepted, otherwise the signature will be rejected.

22

3 Optimizations of LowMC’s
Linear Layer

In this Chapter, we describe how we optimized an existing VHDL LowMC
implementation. We first give a motivation as to why these optimizations are
necessary, then we explain how the optimizations work. Then, we compare
the VHDL designs with and without the optimizations before we analyze
the hardware utilization of both designs.

3.1 Motivation

In a previous project by Walch [37], a LowMC coprocessor was implemented.
However, due to the significant number of constants required by the matrices
of a LowMC encryption, the hardware utilization of the LowMC design
is quite big. In Picnic, we need multiple instances of LowMC within the
design to efficiently compute the MPC simulation of a LowMC encryption
during signing and verification. Without any further improvement of this
LowMC implementation, it would not be possible to fit multiple instances
of LowMC onto the targeted FPGA. Fortunately, Dinur et al. [16] released a
new paper at the start of the project in which they describe how to reduce
the size of the constants required by LowMC and therefore, how to minimize
the significant hardware utilization of the VHDL implementation.

The optimizations of LowMC can be split into two major parts, which we
describe in the following two Sections.

23

3 Optimizations of LowMC’s Linear Layer

3.2 Optimized Key Matrices and Round
Constants

Algorithm 1 describes the basic LowMC encryption procedure, where ki is
the roundkey of round i, Ci the round constant of round i, x0 the plaintext
and xr+1 the ciphertext. x(0) denotes to the non-linear part of x which
is affected by the Sboxes S and x(1) the remaining linear part of x. Li(y)
describes the matrix multiplication of y with the Lmatrix of round i.

Algorithm 1 Basic LowMC encryption [16]
Input: x0
Output: xr+1

1: begin
2: x1 ← x0 ⊕ k0
3: for i ∈ {1, 2, ..., r} do
4: yi ← S(x(0)i)||x(1)i
5: xi+1 ← Li(yi)⊕ ki ⊕ Ci
6: end for
7: return xr+1
8: end

The first optimization aims to reduce the constants required to compute the
roundkeys based on the master key. With a small modification to line 5 of
Algorithm 1 we can calculate k′i = L−1

i · ki and C′i = L−1
i · Ci and therefore

get xi+1 = Li(yi ⊕ k′i ⊕ C′i) [16].

The expression L−1
i · ki can be further split int a non-linear part (L−1

i · ki)
(0)

and a linear part (L−1
i · ki)

(1). The linear part is not affected by the Sbox
and can, therefore, be calculated at the beginning of a round. Figure 3.1
illustrates the splitting of the roundkey addition. Furthermore, the addition
of the linear part of the roundkey can be combined with the addition of the
complete roundkey of round i− 1. Applying this optimization recursively
down to round 0 we get one addition of roundkey k′0 with n bits at the
beginning of the algorithm, all the other roundkeys k′i have a size of s =
3 ·m bits. The same optimizations can be applied to the roundconstants Ci.

24

3 Optimizations of LowMC’s Linear Layer

xi
Si

· Li

Ci

ki
xi+1

xi
(L−1

i · ki)
(1)

Si

(L−1
i · ki)

(0)

· Li

Ci
xi+1

Figure 3.1: One encryption round before (left) and after (right) the splitting of the roundkey
addition. The picture was taken from [16].

As a result, we obtain the modified LowMC encryption algorithm depicted
in Algorithm 2 [16].

Algorithm 2 LowMC encryption with compressed roundkeys and con-
stants [16]
Input: x0
Output: xr+1

1: begin
2: x1 ← x0 ⊕ k′0 ⊕ C′0
3: for i ∈ {1, 2, ..., r} do
4: yi ← (S(x(0)i)⊕ k′i ⊕ C′i)||x

(1)
i

5: xi+1 ← Li(yi)
6: end for
7: return xr+1
8: end

With the improvements described in this section we only have to calculate
a s bit roundkey based on the k bit masterkey. Therefore, we can reduce
the n× k bit roundkey matrices to s× k bit matrices. The new, optimized
matrices PN,i can be calculated from the key matrices Ki according to the
following formula, where L−1

l is the inverse linear leayer matrix Li with the

25

3 Optimizations of LowMC’s Linear Layer

first s rows set to 0 [16]:

PN,i =
r

∑
j=i

(
j

∏
l=i

L−1
l) · Kj (3.1)

The first roundkey k0 still requires a n× k matrix PL to be computed, this
matrix can be calculated according to the following formula [16]:

PL = K0 +
r

∑
j=1

(
j

∏
l=1

L−1
l) · Kj (3.2)

The new roundkeys ki are calculated as the result of the product of the
new matrices with the master key, where (PN, i)0∗ are the first s rows of the
matrix (PN, i) [16]:

k′0 = PL · k (3.3)

k′i = (PN, i)0∗ · k (3.4)

The matrices (PN, i)0∗ and PL can be precomputed for every LowMC in-
stance and they reduce the size of the constants from (r + 1) · (n · k) bits to
(n · k) + r · (n · s) bits. Additionally, the roundconstants are reduced from
(r · n) bits to n + r · s bits [16].

3.3 Optimized Linear Layer

The second optimization aims to reduce the linear layer of LowMC. The
optimized algorithm is described by Algorithm 3. The algorithm to calculate
the matrices L′ and L̂ from the original linear matrices can be found in the
original paper by Dinur et al. [16].

In rounds i ∈ {1, 2, ..., r− 1}, the linear layer can be described by the linear
transformation (

x(0)i+1

x(1)i+1

)
=

[
L′00

i L′01
i

L̂10
i L̂11

i

](
y(0)i

y(1)i

)
. (3.5)

26

3 Optimizations of LowMC’s Linear Layer

Algorithm 3 Fully optimizedLowMC encryption [16]
Input: x0
Output: xr+1

1: begin
2: x1 ← x0 ⊕ k′0 ⊕ C′0
3: for i ∈ {1, 2, ..., r− 1} do
4: yi ← (S(x(0)i)⊕ k′i ⊕ C′i)||x

(1)
i . Round i

5: xi+1 ← L′0∗i (yi)||L̂i(yi)
6: end for
7: yr ← (S(x(0)r)⊕ k′r ⊕ C′r)||x

(1)
r . Round r

8: xr+1 ← L′r(yr)
9: return xr+1

10: end

On first inspection of the optimized LowMC encryption, there are still r
linear transformation of dimension n× n necessary. However, due to the
linear algebra described in [16] the matrices L̂11

i of size (n− s)× (n− s) will
contain the identity matrices. Therefore, the constants required to compute
the linear layer of LowMC are reduced from r · n2 bits to r · n2 − (r− 1) ·
(n− s)2 bits.

Dinur et al. [16] remark, that if the original matrices Li are selected uniformly
at random from all invertible binary matrices of dimensions n × n, the
proposition that L̂11

i consists of the identity matrix is not true in general.
However, they show that the columns of the matrix L̂i only have to be
permuted to make the proposition right. Furthermore, they prove that, on
average, only 3 pairs of columns have to be permuted. Therefore, to compute
the linear transformation L̂i(yi) of Algorithm 3, the state yi simply has to
be permuted and the matrices L̂i can be reduced to n2 − (n − s)2 bits in
general.

27

3 Optimizations of LowMC’s Linear Layer

3.4 Optimized VHDL Implementation of LowMC

Figure 3.2 shows the VHDL design of LowMC without the optimizations;
Figure 3.3 shows the design with the optimizations. Without the optimiza-
tions, there is only one implementation for all the rounds, and the matrix
multiplications affect the entire state. In the optimized implementation,
there are 5 different matrix multiplication modules, each for a matrix with
different dimensions. The Sbox layer, roundkey and constants of the new
implementation only affect the first s bits of the state and, as described in
the previous section, the state has to be permuted before the multiplication
with the matrix L̂i in order reduce the dimension of this matrix. The identity
matrix part of L̂i is simply implemented as one additional XOR per one bit
of the state.

3.5 Optimized Hardware Utilization

Table 3.1 summarizes the size reduction of the LowMC constants due to the
described optimizations. The impact of the optimizations depends on the
LowMC instance, especially on the number of Sboxes. The fewer Sboxes per
round, the more significant the effect of the optimizations. This can also be
seen in Table 3.2 where the required lookup-tables (LUTs) of the LowMC
VHDL implementation on a Xilinx Kintex7 FPGA KC705 Evaluation Kit
(203800 LUTs available) are shown for three different LowMC instances.

Table 3.1: Reduction of LowMC constants.

Part Before Reduction

key matrices (r + 1) · n · k r · n · (k− s)
round constants r · n r · (n− s)− n
linear layer r · n2 (r− 1) · (n− s)2

Instance nr. 1 of Table 3.2, which was the main focus of the previous design,
has 25 Sboxes per round. Therefore, 75 out of the 128 bits of the state are

28

3 Optimizations of LowMC’s Linear Layer

D

Q

clk Reg

Sbox
Cipher

Li
iRound

Ki

Key

iRound

State

Const(Round)

Plain

n

n

k

n

n n n

n

Figure 3.2: LowMC implementation without optimizations.

29

3 Optimizations of LowMC’s Linear Layer

State

D

Q

clk Reg

Sbox

Round

L′i

L̂i

L′r
i i

i

Const(Round)

PN,i
iRound

Key
Cipher

Plain

PL

Key

Const(0)

Perm.

n n n n

k

k

s

s

n - s

n

n

s

n

n - s

n

n

n

Figure 3.3: LowMC implementation with optimizations.

30

3 Optimizations of LowMC’s Linear Layer

affected by the Sboxes, and the optimizations do not have a huge impact. In
instances nr. 2 and 3, which are used in Picnic, the number of bits affected
by the Sboxes is much lower. Therefore, the effect of the optimizations is
much more significant. Instance nr. 2 only requires about a third of the
LUTs required before, instance nr. 3 about a fifth. Without the optimizations,
it would not even be possible to synthesize one LowMC instance of nr. 3,
whereas for the Picnic implementation several of these are required.

Table 3.2: LUTs of LowMC with and without optimizations (203800 available).

LowMC without opt. with opt. Improv.
nr. n k m r LUTs % LUTs LUTs % LUTs %

1 128 128 25 11 22200 10.89 % 18210 8.94 % 17.97 %
2 128 128 10 20 42395 20.80 % 13558 6.65 % 68.02 %
3 256 256 10 38 209348 102.72 % 44431 21.8 % 78.78 %

31

4 The Picnic VHDL Design

In this Chapter, we describe the VHDL design of our Picnic implementa-
tions. We first describe all the implemented submodules before we depict the
high-level design. We then specify the interface to access the Picnic cores
and explain the protocol to set the public and private keys, sign messages,
and verify signatures.

4.1 Submodule Implementation

Our Picnic cores are composed of several different submodules which
implement the different parts of the Picnic algorithm.

4.1.1 Keccak

In Picnic, Keccak is used in several different parts of the design, sometimes
as a hash function and other times as a KDF with different parameters for
the different Picnic instances. Therefore, we wanted to implement a flexible
Keccak design that can be used for all the various applications in Picnic.

The core design of our Keccak implementation consists of a state machine
and a register which contains the inner state. The bitrate r and the output
length l are generic values that can be chosen during instantiation of the
block. The interface of the core is depicted in Figure 4.1. The core has 2
different modes of operation, an absorb mode and a squeeze mode. Both
modes apply the Keccak- f state transformation to the inner state of the
core, with the difference, that during absorb mode the input block is XORed
to the state first. To be as flexible as possible, the handling of the input

32

4 The Picnic VHDL Design

block has to be implemented by other submodules; the Keccak core design
expects an already padded block of r bits. The Init input can be used to
reset the inner state to zeros.

The Keccak- f state transformation is implemented as combinatorial logic,
that is applied 24 times to the state. Therefore, the design requires 24 cycles
for one state transformation to be completed. The Valid signal indicates if
the core is currently applying the state transformation, or if a valid hash
is currently displayed at the Hash output, and can, therefore, be used for
synchronization.

Keccak

Block in

Init
Absorb
Squeeze

r

clk reset

l
Hash

Valid

Figure 4.1: Interface of the Keccak core.

4.1.2 Multi-Party Computation of LowMC

In Picnic’s circuit decomposition, three instances of LowMC do an MPC en-
cryption during signing, two instances do the encryption during verification.
Since LowMC requires a lot of constants for encryption, the hardware uti-
lization of LowMC is very high. Therefore, the MPC encryption of LowMC
will have the highest portion of the hardware utilization of Picnic, even
with the implemented optimizations described in Chapter 3.

As described in Section 2.8.2, the MPC protocol affects the AND gates of
LowMC. LowMC only has AND gates in its Sboxes, therefore, to implement
the MPC protocol only the Sbox layer of the optimized LowMC implementa-
tion had to be modified. A naive approach would be to take three instances

33

4 The Picnic VHDL Design

of the optimized design, let them do the calculations in parallel and modify
the Sbox layer to calculate the AND gates jointly. However, this approach
requires three LowMC instances and the hardware utilization of Picnic

would exceed the available resources of the targeted FPGA.

Section 2.8.2 explains that the MPC protocol of Picnic ensures, that the
output bits of the MPC-AND gates can be combined to the original output
bits of the LowMC encryption without MPC. This fact can be used to reduce
the required LowMC instances for signing to two. In Picnic, each player of
the MPC protocol has to calculate his output share and a communication
transcript based on his input share. The output share of the third player can
always be recomputed by XORing the output share of the other players with
the original ciphertext, which is part of the public key. For the transcript,
we can precompute the original intermediate states of LowMC and use it to
calculate the third input share of the Sboxes during the MPC encryption.

We implemented the MPC signing module to make use of these facts to
only require two instances of LowMC. One instance is used to precompute
the original encryption without MPC, and we store the inputs of the Sboxes
for each round. This initial encryption can be done in parallel to the seed
calculation of Picnic and therefore won’t cost any more clock cycles in
the final design. The Sbox layer is implemented to calculate the MPC
communication for all three players. During the MPC runs, both LowMC
instances perform the encryption based on their share; the third input of
the Sbox layer is calculated by XORing the inputs of the two other players
with the precomputed input share.

The MPC verification module only calculates the MPC of two players; there-
fore no precomputation is required, and still, only two LowMC instances are
used. Another difference to the signing module is that the AND gates are cal-
culated differently for the verification. Therefore, a different implementation
of the Sbox layer is used for the verification module.

We also implemented an MPC module which can be used for both signing
and verification. This module is implemented to have three different modes
of operations: precomputation, signing and verification. The different modes
for signing and verification only differ in using the two different sbox layer
implementations, the rest of the design, like all the matrix multiplications,

34

4 The Picnic VHDL Design

are shared between the modes of operation. Therefore, the overhead of
combining signing and verification into one module is very low.

Remark 1. We tried to reduce the number of LowMC instances required for
MPC to only one by consecutively computing the matrix multiplications on the
three different intermediate states. However, this resulted in too long critical paths
after synthesis, and we had to reduce the clock frequency to less than 60 MHz. In
combination with the increased number of clock cycles per round by consecutively
computing the three shares, this would have resulted in a too great performance
penalty. As part of future work, we could try to optimize this approach to implement
a low-area version of Picnic.

4.1.3 Tapes and Commitments

The Tape module, which calculates the random keys and tapes required
during the MPC encryption of LowMC, as well as the Commit module to
calculate the commitments are both implemented as a wrapper for three
Keccak instances. Both modules first hash the seeds using one Keccak

instance per player according to equation 2.22 and equations 2.16, 2.17

and 2.18, before they reuse the same Keccak instances to calculate either
the finished random bits or final commitments. The modules take care of
feeding the Keccak instances with the correct input values, which includes
padding and handling multiple absorbing and squeezing phases for Picnic-
L5-FS. The modules are activated by asserting a start input signal; a finish
output signal is asserted after the calculations are finished.

Since both modules include three Keccak instances, the calculations of the
three players are done simultaneously. Therefore, the modules for Picnic-
L1-FS take 51 cycles to finish their calculation, 1 cycle to reset the internal
Keccak states and 25 cycles to create each of the two hashes. The Picnic-L5-
FS Tape module requires 75 cycles since one additional squeezing phase is
necessary for the KDF in equations 2.16, 2.17 and 2.18, the Commit module
requires 100 cycles, accounting for two additional absorbing phases during
the second hash calculation of equation 2.22.

Remark 2. Since both, Tape and Commit modules, each use three Keccak instances
on their own, we can calculate the random keys and tapes of Picnic’s following

35

4 The Picnic VHDL Design

MPC run t + 1 in parallel to calculating the commitments of the current run t,
saving T · 51 = 11169 clock cycles for Picnic-L1-FS and T · 75 = 32850 clock
cycles for Picnic-L5-FS in some high level designs. We also implemented a version
in which we reuse the same three Keccak instances for both Tape and Commit
modules, but since one Keccak instance requires very little hardware utilization
in comparison to the MPC module, the reduced utilization was too small to justify
the relatively high performance penalty.

4.1.4 Seed Generation

The Seeds submodule calculates the random seeds at the beginning of
Picnic’s signing process according to equation 2.11. It is implemented as a
wrapper to an instance of the Keccak submodule which first absorbs the
inputs before producing 3 · T · S output bits. Since the seeds are calculated
as an output of a Shake-KDF, the module has to take care of squeezing the
Keccak instance to get all the random seeds. The module is implemented as
a state machine which can be controlled with a start and a next input signal
and a ready output signal. Asserting the start signal activates the absorbing
phase of the input, the ready output indicates that three valid seeds are
asserted at the output of the module. We can request three new seeds by
asserting the next signal.

For Picnic-L1-FS the seed module requires 1732 clock cycles to finish
calculating all seeds, for Picnic-L5-FS 7904 cycles are needed.

Remark 3. Since the instances Picnic-L1-FS and Picnic-L5-FS have a different
S/r relation, we were not able to implement one version of this module, which can
be used for both instances.

4.1.5 H3 - Challenge Generation

The H3 module is responsible for calculating the challenge, as described
in Section 2.8.3. The first part of the challenge generation is producing
a hash of all the output shares and commitments of all three players of
all runs T combined with the public key and the message. Therefore, the

36

4 The Picnic VHDL Design

module includes a Keccak instance, which is fed continuously with blocks
of S bits. The module takes care of correctly concatenating the blocks and
absorbing full inputs of r bits. At the end, the module also takes care to pad
the input.

The module is synchronized with a start, valid, and a ready signal. At the
beginning, the start signal has to be asserted to reset the inner state of the
Keccak instance. The module indicates that it is ready to absorb a new
input block of S bits by asserting the ready signal. The valid signal is used to
indicate that a S bit block is given to the module.

Since the module always absorbs S bit blocks, the output shares and the two
parts of the public key can be absorbed at once; the commitments need to be
split into two parts. As we describe in Remark 7, our overall Picnic design
is limited to only allow 512 bit messages. Therefore, the message needs to
be divided into 4 blocks for Picnic-L1-FS and 2 blocks for Picnic-L5-FS
respectively.

Absorbing all inputs takes 6490 clock cycles for Picnic-L1-FS and 26220
clock cycles for Picnic-L5-FS.

Remark 4. Since the instances Picnic-L1-FS and Picnic-L5-FS have a different
S/r relation, we were not able to implement one version of this module, which can
be used for both instances.

The second part of the challenge generation is to map the {0, 1}l hash to
{0, 1, 2}T, according to Section 2.8.3. The module first stores the generated
hash in a register and already starts to generate a new hash h← H(0x01 || h)
using the same Keccak instance as for absorbing the input. In parallel, the
module starts to look at the two most significant bits of the hash h. If
those bits are not equal to 11, the challenge is shifted left by two and most
significant bits of h get appended to the challenge. Then the hash h is shifted
left by two, and again the two most significant bits are handled. Once
the hash h is entirely handled, the new hash h ← H(0x01 || h) is already
finished, and the process is started from the beginning.

The module finishes, when the challenge consists of 2 · T bits. Since the
signature size depends on the challenge, the module also calculates the size

37

4 The Picnic VHDL Design

of the signature during the challenge generation. As an output, the module
gives the signature size and the finished challenge.

The number of clock cycles required for the second part of the challenge
generation depends on the hash generated during the first part of the
generation and therefore depends on the public key pk, secret key sk and
the message M.

4.1.6 BRAM

Picnic produces a lot of intermediate values. At the beginning of the signing
process 3 · T Seeds of size S bit are generated. During each of the T runs 3
input shares of size S bit, 3 transcripts of size 3 · r ·m bit, 3 output shares
of size S bit and 3 commitments of size 2 · S bit need to be stored. These
intermediate values together have a size of 81468 bit (= 101835 byte) for
Picnic-L1-FS and 3179880 bit (= 397485 byte) for Picnic-L5-FS.

We use block RAMs (BRAMs) to store all these intermediate values. The
targeted FPGA board has true dual-port BRAMs of size 36 kbit each. These
BRAMs have two ports with separate addresses, data inputs, data outputs,
and write-enable input. Both ports can be written to or read from indepen-
dently. Both read and write accesses, are synchronous and require a rising
edge of the clock. Usually the BRAMs have 32 bit data in/outputs; however,
the synthesizer is capable of combining several BRAMs to enable bigger
data widths.

We use separate BRAMs for each player containing T values of either the
seeds, input shares, output shares, transcripts, or commitments to concur-
rently read all the values required to complete one run t of Picnic’s circuit
decomposition.

Remark 5. The true dual-port BRAMs allow to read two Seeds from two differ-
ent addresses concurrently. Together with Remark 2, this enables us to calculate
the random keys and tapes of Picnic’s following MPC run t + 1 in parallel to
calculating the commitments of the current run t, saving T · 51 = 11169 clock
cycles for Picnic-L1-FS and T · 75 = 32850 clock cycles for Picnic-L5-FS in
some high-level designs.

38

4 The Picnic VHDL Design

4.1.7 Serialization and Deserialization of the Signature

We designed the Picnic implementation to be capable of sending and
receiving the signature split into blocks of size 128 bits. As described in Sec-
tion 2.8.4, the signature is build from the challenge, and all the intermediate
values required to recompute and verify the two opened players. Most parts
of the signature have a size which is an integer multiple of 128 bit, however
since the sizes of the challenge and the transcripts cannot be divided by 128
we had to implement an Input-FIFO to assemble the signature from 128 bit
blocks and an Output-FIFO to split the signature.

The Output-FIFO basically has two data inputs, one with a size of 128 bit,
the size of the other input is the remainder of the size of a transcript divided
by 128. During serialization, we split the commitments, seeds, input shares,
and output shares into blocks of 128 bit and give it to the Output-FIFO. For
the transcript we basically do the same; however, we feed the remaining
data into the other input of the FIFO. The Output-FIFO then takes care of
correctly assembling an output block of size 128 bit and memorizing the
unused data for the next block.

The Input-FIFO has an 128 bit data input, an 128 bit data output and an
output with a size equal to the remainder of the size of a transcript divided
by 128. We can either request data from one (or two if possible) of the
two outputs of the FIFO by asserting the correct control signals. The Input-
FIFO then takes care of memorizing the part of the data, that has not
been requested, and assembles correct outputs from the data input and the
memorized data. For receiving the commitments, seeds, input shares, and
output shares, we only have to request data from the 128 bit output of the
FIFO, for the transcript we request data from both outputs.

Both Input-FIFO and Output-FIFO, are implemented to be capable of han-
dling one 128 bit block per clock cycle.

Remark 6. As we describe in Section 4.4.1, we can only send/receive at most
65520 byte of data for the Picnic-L5-FS before a new segment header has to be
transmitted. We implemented the Output-FIFO and Input-FIFO for Picnic-L5-FS
to keep track of the sizes of the already transmitted data and to automatically send
the new header or process the received header respectively.

39

4 The Picnic VHDL Design

4.2 High-Level Design

In this project, we developed several different VHDL designs for Picnic-
L1-FS and Picnic-L5-FS. We implemented a standalone version for only
message signing and signature verification, as well as a version which is
capable of doing both.

Due to the big hardware utilization, especially for the Picnic-L5-FS in-
stances, we implemented different configurations for the different designs.
The designs basically differ in two configurations:

• We implemented the MPC module of LowMC to be capable of calcu-
lating one round of encryption during one clock cycle. However, for
higher clock frequencies, the resulting critical path after synthesis is
too big. Therefore, we also implemented a version of the MPC module
in which we split the round of LowMC to be calculated in two clock
cycles.
• In Remark 2 and Remark 5, we describe that we are capable of cal-

culating the randomness required for run t + 1 of Picnic’s circuit
decomposition in parallel to calculating the commitments of run t
reducing the overall number of clock cycles for signing and verifica-
tion. However, this optimizations increase the critical path and can,
therefore not be used in all designs.

For the Picnic-L5-FS instance, we developed two versions of the three VHDL
designs, a version designed for higher frequencies without the previously
described optimizations, and a low-frequency (lf) version which includes
the optimizations and therefore reduces the overall number of clock cycles.
Table 4.1 shows the different implemented versions of Picnic and which
configurations they use.

The overall design of the implementations is always a nested state machine,
where the high-level design basically connects the inputs and outputs of all
the submodules described in Section 4.1. Figure 4.2 shows a flowchart for the
designs where the randomness for run t + 1 is calculated in parallel to the
commitments of run t, Figure 4.3 shows a diagram of the designs without
this optimization. In both figures, the signing process is shown on the left
side, the verification process on the right. In the designs which are capable

40

4 The Picnic VHDL Design

of doing both signing and verification, both processes are implemented.
Most of the submodules can be reused for both signing and verification,
only the MPC module has to implement two different Sbox calculations,
and the combined design has to include both the Serialize and Deserialize
submodules. Therefore, the difference in hardware utilization between a
sign-only design and a sign/verify design is quite low.

Remark 7. Since Picnic hashes the message twice using Keccak, we limited
our Picnic design only to allow signing messages of size 64 bytes. This constraint
simplifies implementation and also decreases area and runtime of the coprocessor.
As described in the official Picnic specification [12], it is recommended to use
Shake-256 with l = 512 bit, SHA3-512 or SHA-512 to hash messages before they
are signed.

4.3 AXI4-Stream Interface

The interfaces of the implemented Picnic modules can be seen in Figure 4.4.
The designs basically have three AXI4-Stream interfaces, one public data

Table 4.1: Different configurations of the Picnic implementations.

LowMC parallel
Name cycles / round Tapes / Commits sign verify

Picnic-L1-sign 2 X X 5

Picnic-L1-verify 2 X 5 X
Picnic-L1 2 X X X

Picnic-L5-sign 2 5 X 5

Picnic-L5-verify 2 5 5 X
Picnic-L5 2 5 X X

Picnic-L5-sign-lf 1 X X 5

Picnic-L5-verify-lf 1 X 5 X
Picnic-L5-lf 1 X X X

41

4 The Picnic VHDL Design

Seeds

Tapes[0]

MPC[t]

Commit[t] Tapes[t + 1]

t < T yes

H3

no

Serialize

Message

Signature

Deserialize

Tapes[0]

Message, Signature

MPC[t]

Commit[t] Tapes[t + 1]

H3

t < T

ok? yesno

yes

no

Invalid Valid

Figure 4.2: High-level design of Picnic signing (left) and verification (right) with parallel
Commits/Tapes.

42

4 The Picnic VHDL Design

Seeds

Tapes[t]

MPC[t]

Commit[t]

t < T yes

H3

no

Serialize

Message

Signature

Deserialize

Tapes[t]

MPC[t]

Commit[t]

t < T yes

H3

no

Message, Signature

ok? yesno

Invalid Valid

Figure 4.3: High-level design of Picnic signing (left) and verification (right).

43

4 The Picnic VHDL Design

input (pdi), one secret data input (sdi), and one public data output (pdo)
interface. The verification-only designs only have two interfaces, since they
do not require any secret data.

pdi data
pdi valid
pdi ready

sdi data
sdi valid
sdi ready

pdo data
pdo valid

pdo ready
pdo last

status ready

clk rst

Picnic /
Picnic sign

pdi data
pdi valid
pdi ready

pdo data
pdo valid

pdo ready
pdo last

status ready

clk rst

Picnic verify

128

64

128128
128

Figure 4.4: Interface of the Picnic VHDL implementation.

AXI4-Stream is an open standard for on-chip bus connections designed
for high data throughput. It is straightforward to use and allows data
transmission in parallel to the handshake. In its basic form, the interface
has a data line and a valid and ready signal for synchronizing the data.

Figure 4.5 shows the timing of a data transaction over an AXI4-Stream
interface. When the master is ready to send data, it tries to send them over
the data line and also asserts the valid signal. The slave asserts the ready signal
if it is ready to receive the data. If both signals, ready and valid, are asserted
the master, and the slave know that the data transmission was successful.
Some AXI4-Stream slaves also require a last signal which indicates if the
current block is the last one of a packet. Therefore, we implemented the pdo
interface to also assert a last signal when necessary. The advantage of the
AXI4-Stream interface is, that it does not require extra clock cycles for the
handshake and therefore can be used for high data throughput.

As shown in Figure 4.4, our Picnic modules use a data width of 128 bit for
the public data interfaces and a width of 64 bit for the secret data interface.

44

4 The Picnic VHDL Design

Figure 4.5: Timing of an AXI4-Stream transaction. Picture Taken from [37].

4.4 Communication Protocol

At the time of writing, Picnic is a second round candidate for the NIST Post-
Quantum Cryptography Standardization Process [1]. NIST published an API
for hardware implementations [22] in which they define a communication
protocol to interact with the post-quantum cryptosystems.

For post-quantum signature schemes, NIST defines that the hardware core
should have three AXI4-Stream interfaces, one for public data inputs (pdi),
one for secret data inputs (sdi) and a public data output (pdo) interfaces.
They allow a data width up to 128 bit for the public data interfaces, and
a width of up to 64 bit for the secret data interfaces [22]. As described
in Section 4.3 we implemented our Picnic cores to conform with these
definitions.

4.4.1 Instructions, Headers and Status Codes

In the API description, NIST defines special formats for different instruc-
tions, data headers, and status codes. Figure 4.6 shows the 16 bit format of
the instructions and status codes, which gets padded with zeros to the data
width size of the used AXI4-Stream interface [22].

The API defines a segment header which should be sent for every data. The
header format can be seen in Figure 4.7; it includes a field for the segment
type and a 16 bit field for the segment length [22]. The different segment type
encodings can be seen in Table 4.2. Since the field for the segment length is

45

4 The Picnic VHDL Design

Reserved
Opcode

Status
or

MSB LSB

4 12

Opcode

0010 - Sign (SGN)

0011 - Verify (VER)

0110 - Load Private Key (LDPRIVKEY)

Status

1110 - Success

1111 - Failure

Figure 4.6: Instruction and status format.

defined to have a size of 16 bit, the maximum transmitted segment size is
65535 byte. The signature size of Picnic-L5-FS is ≤ 132824 byte. Therefore,
for sending the Signature for signing or verification for the Picnic-L5-FS
instance, we have to split the the signature into multiple segments, each
with its own header.

Info Reserved Segment Length

8 8 16

3 3 1 1

MSB LSB

Segment Type

Reserved

EOI

Last

Figure 4.7: Segment header format.

The EOI (End Of Input) and Last fields of the segment header indicate
whether the current segment is the last segment of a given instruction.
Therefore, in our Picnic implementations, those two bits are 11 for the
message segment during signing and for the last signature segment in the
Picnic-L5-FS implementations. Otherwise, those two bits are always 00.

46

4 The Picnic VHDL Design

4.4.2 Setting the Keys

Figure 4.8 shows the protocol to set the public key and the protocol to set
the private key. For the public key, first, a segment header is transmitted
before the key itself is send via the public data input interface. For the
private key, first, the instruction is transmitted via the public data input
interface, before the segment header and the private key are transmitted via
the secret data input interface.

seg 0: head: Pub Key

seg 0: Pub Key

PDI

Setting the Public Key: Setting the Private Key:

PDI

Inst: LDPRIVKEY

SDI

seg 0: head: Priv Key

seg 0: Priv Key

Figure 4.8: Protocol of setting the public key (left) and private key (right).

Table 4.2: Segment Type Encoding

Encoding Type

001 Message
010 Signature
101 Public Key
110 Private Key

47

4 The Picnic VHDL Design

Our Picnic implementations expect that the keys are transmitted within
only one segment.

4.4.3 Message Signing

Figure 4.9 shows the protocol to sign a message. First, the instruction, the
segment header for the message and the message are transmitted via the
public data interface, then the Picnic cores output the signature including
segment headers via the public data output interface before the status
Success is transmitted.

PDI PDO

Inst: SIGN

seg 0: head: Msg

seg 0: Msg

seg 0: head: Signature

seg 0: Signature

seg i: head: Signature

seg i: Signature

Status

Figure 4.9: Protocol of signing a message.

Our Picnic implementations expect that the message is transmitted within
only one segment. The Picnic-L1-FS cores output the signature within
one segment; the Picnic-L5-FS cores split the signature into segments of
65520 byte and one segment containing the rest.

4.4.4 Signature Verification

Figure 4.10 shows the protocol to verify a signature. First, the instruction, the
message, and the signature are transmitted including segment headers via

48

4 The Picnic VHDL Design

the public data input interface before the Picnic cores transmit the message
and a status via the public data output interface. The status indicates
whether the signature is valid (Status Success) or not (Status Failure).

PDI PDO

Inst: VER

seg 0: head: Msg

seg 0: Msg

seg 0: head: Signature

seg 0: Signature

seg i: head: Signature

seg i: Signature

seg 0: head: Msg

seg 0: Msg

Status

Figure 4.10: Protocol of verifying a signature.

Our Picnic-L1-FS implementations expect that the message and the signa-
ture are both transmitted within only one segment each, our Picnic-L5-FS
implementations allow the signature split into segments with an integer
multiple of 16 byte as size and the last segment containing the rest.

49

5 The Picnic-PCIe Coprocessor

In this Chapter, we describe how we implemented the complete Picnic-PCIe
coprocessor based on our Picnic-VHDL design and how we can access it
using a C-interface. We first describe the hardware and software we use in
this thesis to design the coprocessor before we explain how we are able to
connect our Picnic-VHDL design to the PCIe port of the targeted FPGA
board. Finally, we explain how the coprocessor can be accessed from a PC
and how to sign messages and verify signatures from within a C-program.

5.1 Hardware and Software

In this thesis, we use the Xilinx Kintex7 FPGA KC705 Evaluation Kit as
the hardware for the developed Picnic coprocessor. This Evaluation Kit
includes an XC7K325T-2FFG900C FPGA which has 326080 programmable
logic cells and is also equipped with an 8-lane PCIe connector [39].

We use Xilinx Vivado v2018.2 [41] to design the high-level design of the
coprocessor which connects our VHDL design to the PCIe connector of the
FPGA. We also use Vivado to synthesize, place, and route the design and to
flash the resulting bitstream onto the FPGA.

5.2 PCIe/DMA Subsystem

Vivado [41] already provides several different intellectual properties (IP’s)
to access the PCIe connectors of the used Evaluation Kit. In this thesis, we
use the DMA/Bridge Subsystem for PCI Express (PCIe) IP which acts as a full

50

5 The Picnic-PCIe Coprocessor

DMA system that redirects memory accesses from the host PC to the FPGA
board via the PCIe interface. This DMA can be configured to use several
AXI4-Stream interfaces in master and/or slave mode with frequencies of
either 125 MHz or 250 MHz to communicate with other IP’s on the FPGA.
More information and a usage guide to this DMA Subsystem can be found
in the Xilinx product guide [38].

We configured the PCIe/DMA Subsystem to use three 128 bit AXI4-Stream
interfaces, to conform with the communication protocol proposed by NIST,
which we describe in Section 4.4. The PCIe/DMA is configured to have two
master interfaces to write either public and secret data to the coprocessor
and one slave interface to read the signature or the status of the verification
from the FPGA-board. We drive the DMA with a 125 MHz clock, since our
design is not capable of running with 250 MHz.

5.3 High-Level Coprocessor Design

Figure 5.1 shows the high-level design of the implemented Picnic coproces-
sors. Basically, every AXI4-Stream interface of the PCIe/DMA Subsystem is
connected to an interface of our Picnic core. However, since the DMA is
only capable of being configured to use the same data width for all three
interfaces, we had to add a Key Converter which basically transforms the
128 bit AXI4-Stream interface to a 64 bit interface to access the sdi interface
of our Picnic core.

As described in Section 4.2, we also implemented a low-frequency version
of the Picnic-L5-FS instance, which includes optimizations to reduce the
number of clock cycles for signing and verification. Figure 5.2 shows the
high-level design of our low-frequency Picnic coprocessors. The main dif-
ference to the design of Figure 5.1 is that we drive our Picnic core and the
Key Converter with a different clock for the low-frequency coprocessors. For
this reason, we had to add logic to synchronize the AXI4-Stream interfaces
between the two different clock domains. For asynchronous clock conver-
sions (f1

f 6=
1
N) the additional logic requires a lot of hardware utilization.

Combined with the already significant utilization of our Picnic core, this

51

5 The Picnic-PCIe Coprocessor

Picnic

PDI

SDI

PDO

clk

Key Convert

S AXIS
M AXIS

clk

PCIe/DMA

M AXIS 0

M AXIS 1

AXIS clk

PCIe out

S AXIS

sys clk

PCIe x8

PCIe clk

128

128

128

64

128

Figure 5.1: High-level design of the Picnic-PCIe coprocessors.

additional logic would exceed the provided resources of the targeted FPGA.
Therefore, to reduce the requirements of the clock conversion logic, we had
to use a clock with a frequency of f1 = f

N . In this case, the logic for the
clock conversions is very simple and does not require many resources. We,
therefore, added a Clock Wizard to our design, which reduced the clock
frequency for the Picnic core by half to 62.5 MHz.

In both cases, high and low-frequency designs, the verify-only Picnic

cores do not have a sdi interface. Therefore, the PCIe/DMA Subsystems
for the verify-only coprocessors are configured to have only one AXI4-
Stream master interface. Additionally, the Key Converter is not required as
well. Besides these changes, there are no differences between the high-level
designs of the verify-only coprocessor and the designs shown in Figure 5.1
and Figure 5.2.

5.4 Software Access to the Coprocessor

In this section, we describe how we can communicate with the Picnic-PCIe
coprocessor. In Section 5.4.1, we describe how to install the driver of the
PCIe/DMA Subsystem, and in Section 5.4.2, we explain the developed
C-library for signing and verification using our coprocessor.

52

5 The Picnic-PCIe Coprocessor

Picnic

PDI

SDI

PDO

clk

Key Convert

S AXIS
M AXIS

clk

PCIe/DMA

M AXIS 0

M AXIS 1

AXIS clk

PCIe out

S AXIS

sys clk

CLK Wiz

clk in f clk out f
2

AXIS Clk Convert

S AXIS
M AXIS

S clk M clk

AXIS Clk Convert

S AXIS
M AXIS

S clk M clk

AXIS Clk Convert

S AXIS
M AXIS

S clk M clk

PCIe x8

PCIe clk

128

128

64

128

128

128

128

Figure 5.2: High-level design of the low-frequency Picnic-PCIe coprocessors.

53

5 The Picnic-PCIe Coprocessor

5.4.1 Driver Setup

To access the PCIe/DMA Subsystem of the FPGA, we first have to install
the driver software provided by Xilinx which can be downloaded from their
support page [40]. The driver is available for Linux and Windows systems.

The driver software detects the used AXI4 interfaces used by the PCIe/DMA
Subsystem of the coprocessor and maps them to file descriptors on the
host PC. The driver then redirects all read and write accesses to these file
descriptors to the PCIe coprocessor. On Linux the AXI4-Stream interfaces
used in this thesis are mapped to the following file descriptors:

• /dev/xdma0 h2c 0

Accesses the AXI4-Stream interface that is used as the public data
input (pdi) of the coprocessor.
• /dev/xdma0 h2c 1

Accesses the AXI4-Stream interface that is used as the secret data input
(sdi) of the coprocessor.
• /dev/xdma0 c2h 0

Accesses the AXI4-Stream interface that is used as the public data
output (pdo) of the coprocessor.

The driver software requires all buffers used in the read/write transactions
to be page aligned to redirect all data to the PCIe port properly. This driver
software also requires the last signal of the pdo interface to be asserted
correctly, otherwise read accesses to the corresponding file descriptors
would always fail.

5.4.2 C-Library

We developed a C-Library to easily sign and verify messages using our
Picnic-PCIe coprocessors. The library includes the following functions:

• int init picnic fpga()

This function opens the files /dev/xdma0 h2c 0, /dev/xdma0 h2c 1 and

54

5 The Picnic-PCIe Coprocessor

/dev/xdma0 c2h 0 to communicate either with the developed Pic-
nic sign or Picnic coprocessor. The function returns 0 if no error
occurs.
• int init picnic fpga verify()

This function opens the files /dev/xdma0 h2c 0 and /dev/xdma0 c2h 0

to communicate with the developed Picnic verify coprocessor. The
function returns 0 if no error occurs.
• void release picnic fpga()

This function closes all open file descriptors.
• int picnic fpga set key(unsigned char* key, int version)

This function follows the protocol described in Section 4.4.2 to push
the secret key via the sdi interface to the coprocessor. The parameter
version specifies the security level of the target coprocessor (L1 / L5)
and therefore the size of key. The function returns 0 if writing was
successful.
• int picnic fpga set pub(unsigned char* pub plain,

unsigned char* pub ciph, int version)

This function follows the protocol described in Section 4.4.2 to push
the public key via the pdi interface to the coprocessor. The parameter
version specifies the security level of the target coprocessor (L1 / L5)
and therefore, the size of the two parts of the public key pub plain

and pub ciph. The function returns 0 if writing was successful.
• int picnic fpga sign(unsigned char* msg, unsigned char* sig,

size t* sig length, int version)

This function follows the protocol described in Section 4.4.3 to sign the
message msg of size 64 byte using the PCIe coprocessor. The parameter
version specifies the security level of the target coprocessor (L1 / L5).
The function first writes the message to the pdi interface before it reads
the signature from the pdo interface. As described in Section 4.4.3, the
signature has to be split into multiple parts for the L5 security level;
this function automatically handles the receiving of the separated
parts and assembling of the complete signature. If no error occurs
0 is returned, the signature is written to sig, and the length of the
signature is written to sig length.
• int picnic fpga verify(unsigned char* msg,

unsigned char* sig, size t sig length, int version)

This function follows the protocol described in Section 4.4.4 to verify

55

5 The Picnic-PCIe Coprocessor

the signature sig of length sig length of the message msg of size
64 byte. The parameter version specifies the security level of the target
coprocessor (L1 / L5). The function first writes the message and the
signature to the pdi interface before it reads the message and the status
from the pdo interface. As described in Section 4.4.4, the signature has
to be split into multiple parts for the L5 security level; this function
automatically handles the splitting and sending of the separated parts
of the signature. If no error occurs, the function returns SIG VERIFIED

for a valid signature and SIG FALSE for an invalid one.
• unsigned char* alloc resource(size t size)

This function allocates a page aligned buffer with sizebytes on the
heap using posix memalign(...). We provide this function because
the driver of the PCIe/DMA Subsystem expects all buffers to be page
aligned in order to function properly.

56

6 Practical Evaluation

In this Chapter, we describe the results of this thesis. We first give an
overview of the hardware utilization required by our design, and then we
present some benchmark results for signing and verification and compare
them to state-of-the-art software implementations of Picnic.

6.1 Hardware Utilization

In this Section, we present the hardware utilization of our Picnic implemen-
tations. First, we give an overview of the required utilization of the Picnic

submodule; then we show the utilization of the developed coprocessors.
The used FPGA has 203800 lookup-tables (LUTs), 407600 flip-flops (FF) and
445 BRAMs available.

6.1.1 Picnic Submodules

Table 6.1 compares the hardware Utilization of the different submodules of
our Picnic-L1-FS implementation; Table 6.2 compares them for the Picnic-
L5-FS implementation.

Table 6.1 and Table 6.2 show that the LowMC-MPC modules require by far
the most hardware utilization. As described in Section 4.1.2 the submodule
which is able to do the LowMC-MPC encryption for both signing and verifi-
cation only requires less than one percent more LUTs then the submodule
which can only be used for signing.

57

6 Practical Evaluation

Table 6.1: Hardware Utilization for different parts of the L1 design.

Design Part LUTs % FF %

Keccak 3726 1.83 % 1606 0.39 %

Tapes 8241 4.04 % 5589 1.37 %
(3× Keccak)

Commits 12221 6.00 % 5589 1.37 %
(3× Keccak)

Seeds 5867 2.88 % 1846 0.45 %
(1× Keccak)

H3 6910 3.39 % 3641 0.89 %
(1× Keccak)

Input-FIFO 1962 0.96 % 125 0.03 %
Output-FIFO 2025 0.99 % 125 0.03 %

LowMC-MPC Sign 31837 15.62 % 3060 0.75 %
LowMC-MPC Verify 29756 14.60 % 1126 0.28 %
LowMC-MPC 32224 15.81 % 3061 0.75 %

58

6 Practical Evaluation

Table 6.2: Hardware Utilization for different parts of the L5 design.

Design Part LUTs % FF %

Keccak 3726 1.83 % 1606 0.39 %

Tapes 10465 5.13 % 9621 2.36 %
(3× Keccak)

Commits 14160 6.95 % 6357 1.56 %
(3× Keccak)

Seeds 8974 4.40 % 2640 0.65 %
(1× Keccak)

H3 8463 4.15 % 4085 1.00 %
(1× Keccak)

Input-FIFO 1608 0.79 % 172 0.79 %
Output-FIFO 2317 1.14 % 155 0.04 %

LowMC-MPC Sign 97066 47.63 % 5940 1.46 %
LowMC-MPC Verify 93959 46.10 % 2246 0.55 %
LowMC-MPC 98319 48.24 % 5958 1.46 %

59

6 Practical Evaluation

6.1.2 Picnic Coprocessors

Table 6.3 compares the hardware utilization of the different submodules
of the final coprocessors, including our 9 different completed Picnic cores.
Our Picnic cores require a lot of LUTs on the used FPGA, especially the
Picnic-L5-FS implementations. The PCIe/DMA Subsystem which connects
the Picnic cores the PCIe port of the used FPGA board adds about 11 %
more of the available LUTs to the design.

Table 6.3: Hardware Utilization for different parts of the coprocessors.

Design Part LUTs % FF % BRAM %

Key Convertor 90 0.04 % 3 0.00 % 0 0 %
Clock Convertor 153 0.08 % 299 0.07 % 0 0 %
PCIe/DMA 22216 10.90 % 22692 5.57 % 42.5 9.55 %
PCIe/DMA Verify 18754 9.20 % 20116 4.94 % 41.5 9.33 %

Picnic-L1 84788 41.6 % 22803 5.59 % 52.5 11.80 %
Picnic-L1-sign 74456 36.53 % 20801 5.10 % 52.5 11.80 %
Picnic-L1-verify 64683 31.74 % 16487 4.04 % 33.5 7.53 %

Picnic-L5 160886 78.94 % 32776 8.04 % 98.5 22.13 %
Picnic-L5-sign 147228 72.24 % 30216 7.41 % 98.5 22.13 %
Picnic-L5-verify 131606 64.58 % 23826 5.85 % 62.5 14.04 %

Picnic-L5-lf 165807 81.36 % 33553 8.23 % 117 26.29 %
Picnic-L5-sign-lf 148999 73.11 % 29608 7.26 % 117 26.29 %
Picnic-L5-verify-lf 136862 67.16 % 24300 5.96 % 77.5 17.42 %

Table 6.4 shows the utilization of the completed coprocessors. Basically,
the final coprocessors require as many resources, as the Picnic cores and
the PCIe/DMA Subsystem combined. The Picnic-L5-FS coprocessors need
more than ∼ 4

5 of all available LUTs making it very hard for the synthesizer
to effectively place and route the design onto the FPGA resulting in longer
synthesize times and bad slack times due to congestion.

60

6 Practical Evaluation

Remark 8. The coprocessors Picnic-L5-sign, Picnic-L5-verify and Picnic-
L5 do not meet the timing requirements after synthesis for a clock frequency of
125 MHz. However, reducing the clock to 100 MHz would be enough to meet all
the requirements. Since we were not able to configure the PCIe/DMA Subsystem
to run at this frequency and the timing constraints all are worst-case constraints
we tried to ignore the warnings and just run the coprocessors at 125 MHz. This
is equivalent to overclocking the design, and in our benchmarks, we were able to
produce valid signatures and correct verification without any problems. However,
we also wanted to design coprocessors which meet the timing requirements. This is
the main reason why we also implemented the low-frequency coprocessors, where
we included the optimizations to reduce the clock cycles for signing and verification.
These designs meet the timing requirements and work without overclocking the
coprocessor.

6.2 Benchmarks

In this Section, we compare the runtime of the developed coprocessors to
state-of-the-art software implementations of Picnic.

Table 6.4: Hardware Utilization for the complete coprocessors.

Design Part LUTs % FF % BRAM %

Picnic-L1 104819 51.43 % 43370 10.64 % 85 19.10 %
Picnic-L1-sign 94231 46.24 % 41271 10.13 % 85 19.10 %
Picnic-L1-verify 81228 39.86 % 34484 8.46 % 63 14.16 %

Picnic-L5 180302 88.47 % 53514 13.13 % 131 29.44 %
Picnic-L5-sign 166894 81.89 % 51073 12.53 % 131 29.44 %
Picnic-L5-verify 147943 72.59 % 42126 10.34 % 92 20.67 %

Picnic-L5-lf 185711 91.12 % 54966 13.49 % 149.5 33.6 %
Picnic-L5-sign-lf 169096 82.97 % 51048 12.52 % 149.5 33.6 %
Picnic-L5-verify-lf 153647 75.39 % 42889 10.52 % 107 24.04 %

61

6 Practical Evaluation

6.2.1 Benchmark Platforms

We compare the runtime of our implemented coprocessors to optimized
state-of-the-art Picnic software implementations on different platforms
which can be seen in Table 6.5.

Table 6.5: Different Benchmark Platforms.

Platform CPU RAM OS GCC

A Intel i7-960, 3.2 GHz 16 GB Debian 9 stable 6.3.0
B Intel i7-4790, 3.6 GHz 16 GB Ubuntu 18.04.1 7.3.0
C Intel E31230, 3.2 GHz 8 GB Ubuntu 18.04.2 LTS 7.3.0

We used platform A to test our coprocessors, platforms B and C were used
in the official Picnic design document [14] to test their highly optimized
software implementations.

6.2.2 Timing Benchmarks

Table 6.6 shows the average runtime of the developed coprocessors for
signing and verification. The column FPGA runtime is the calculated time
resulting from the clock frequency and the number of clock cycles (including
1 cycle per 128 bit of data transmission) and therefore is the actual runtime
of the FPGA. The column C-Access runtime is the measured runtime using
our developed C-Library on platform A.

As Table 6.6 shows, the C-Library adds some overhead to the signing and
verification process. For signing the overhead adds about ∼ 0.1 ms to the
runtime, for verification, the overhead is more significant. Especially for the
Picnic-L5-FS the actually measured runtime is much bigger than the raw
verification runtime of the coprocessor. We conclude that the driver for the
PCIe/DMA Subsystem is slower for writing large amounts of data, like the
Picnic-L5-FS signature, from the PC to the FPGA board.

62

6 Practical Evaluation

Table 6.7 compares the runtime of the optimized C-implementation of Picnic

to an optimized version which uses processor-specific compiler intrinsics
on two different benchmark platforms as described in the official Picnic

design document [14].

As Table 6.7 shows, the runtime of Picnic highly depends on the underlying
hardware and if the CPU includes single instruction, multiple data (SIMD)

Table 6.6: Runtime comparison of the coprocessors on benchmark platform A.

clock clock FPGA C-Access
Coprocessor frequency cycles runtime runtime

MHz ms ms

Picnic-L1-sign 125 ∼ 31300 0.250 0.349
Picnic-L1-verify 125 ∼ 29600 0.237 0.395

Picnic-L5-sign 125 ∼ 154500 1.236 1.383
Picnic-L5-verify 125 ∼ 146600 1.173 2.128

Picnic-L5-sign-lf 62.5 ∼ 104200 1.667 1.798
Picnic-L5-verify-lf 62.5 ∼ 96300 1.541 2.423

Table 6.7: Runtime comparison of optimized software implementations [14].

Platform Parameters use SIMD Sign Verify

B Picnic-L1-FS X 1.44 ms 1.15 ms
B Picnic-L5-FS X 5.87 ms 4.92 ms

B Picnic-L1-FS 5 2.82 ms 2.34 ms
B Picnic-L5-FS 5 12.37 ms 10.59 ms

C Picnic-L1-FS X 4.20 ms 3.40 ms
C Picnic-L5-FS X 17.67 ms 14.67 ms

C Picnic-L1-FS 5 4.41 ms 3.56 ms
C Picnic-L5-FS 5 19.52 ms 16.81 ms

63

6 Practical Evaluation

primitives, like SSE2 and AVX2, which would further improve execution
time. However, in any case, our developed coprocessors are faster than the
corresponding software counterparts. For Picnic-L1-FS signing is ∼ 4 times
faster then the fastest software implementation, verification is ∼ 3 times
faster. For Picnic-L5-FS the overclocked high-frequency implementations
are ∼ 4 times faster for signing and ∼ 2.3 times faster for verification, the
low-frequency coprocessors are ∼ 3.2 times faster for signing and ∼ 2 times
faster for verification. For CPUs which do not include the performance
improving SIMD primitives and for C-only implementations the speedup of
our coprocessors is even more significant. As described before, the relatively
bad verification performance of our coprocessors is most likely due to the
driver for the PCIe/DMA Subsystem.

6.3 Comparison to other Signature Schemes

In this Section, we compare our Picnic coprocessors to implementations of
other signature schemes.

Table 6.8 compares several different FPGA implementations of various
signature schemes, the runtime for signing t is calculated from the clock
frequency and the number of clock cycles and therefore does not take the
overhead of any transmission of data via a C-program into account. Thus
this value compares to the column FPGA runtime of Table 6.6.

As Table 6.6 and Table 6.8 show, our Picnic-L5-FS coprocessors, which have
the same security level as a SPHINCS-256 [5] coprocessor, have a similar
runtime for signing on the Kintex-7 (K7) FPGA. The implementations of
the traditional signature schemes RSA [31] and ECDSA [4] on a Virtex-7
(V7) FPGA are way slower than our coprocessors. The implementation of
BLISS-IV [29], another post-quantum signature scheme based on lattices,
on a Spartan-6 (S6) FPGA is very efficient regarding area and runtime
for signing; however, it has a lower security level, and its post-quantum
properties are not well understood [5].

Contrary to the good runtime of our implemented coprocessor, the hardware
utilization is very high in comparison to implementations of the other sig-

64

6 Practical Evaluation

nature schemes. This is due to the fact that our Picnic cores include a high
number of Keccak and LowMC primitives, where especially the LowMC
instances have a high hardware utilization on their own. In comparison, the
coprocessor of SPHINCS-256, a hash-based post-quantum signature scheme,
only consists of one pipelined ChaCha12 [25] instance and one instance of
BLAKE-256 [6] and therefore requires less hardware utilization [5].

Table 6.8: Comparison of different FPGA signature scheme implementations. Table modi-
fied from [5].

Security Area f t
Scheme Classic PQ FPGA LUT/FF/BRAM MHz ms

SPHINCS-256 [5] 256 128 K7 19067/38132/36 525 1.53
ECDSA-256 [4] 128 0 V7 6816/4442/0 225 1.49
ECDSA-521 [4] 256 0 V7 8273/7689/0 161 5.02
RSA-2048 [31] 112 0 V7 3558 slices/0 399 5.68
BLISS-IV [29] 192 ? S6 6438/6198/7 135 0.35

Picnic-L1 128 64 K7 104819/43370/85 125 0.25
Picnic-L5 256 128 K7 180302/53514/131 125 1.24

Picnic-L5-lf 256 128 K7 185711/54966/149.5 62.5 1.67

65

7 Conclusion and Future Work

In this Chapter, we conclude the thesis and discuss some possible future
work.

7.1 Conclusion

To summarize, we were able to implement different coprocessors for Pic-
nic-L1-FS and Picnic-L5-FS, including standalone coprocessors for only
signing and only verification. Our coprocessors create signatures at least
4 times faster and verify signatures at least 2 times faster than a software
implementation. The exact speedup highly depends on the hardware of the
platform running the software implementation of Picnic, for most CPUs
the runtime improvement will be much higher.

Our coprocessors perform signing faster than the FPGA implementation of
traditional signature schemes, like ECDSA, and have a similar performance
to SPHINCS-256, another post-quantum signature scheme.

We also created an area optimized VHDL implementation of LowMC by
considering recently published optimizations to LowMC’s linear layer [16].
This area reduced LowMC implementation enabled us to implement the
Picnic-L5-FS coprocessors in the first place.

However, the hardware utilization of the present Picnic implementation
is very high, which is a direct result of having multiple LowMC instances
in the design, even though these LowMC instances include all known
optimizations to reduce the constants required for a LowMC encryption.

66

7 Conclusion and Future Work

7.2 Future Work

During the development of this project, the Picnic specification was up-
dated. Amongst other minor modifications, the new design includes a salt
when deriving random key shares and tapes at the beginning of a run and
during challenge creation [13]. However, the changes of this update are not
yet implemented in the current design of the Picnic coprocessor. Therefore,
the changes introduced in the specification update should be implemented
in the near future.

An additional variant of Picnic, namely Picnic2 [14], was developed to
reduce the size of the signature. However, this new variant uses a different
proof system, where 64 players perform an MPC-calculation. An efficient
VHDL implementation of Picnic2, therefore, requires at least 63 LowMC
instances which would not fit on any FPGA. As a result, any implementation
of Picnic2 would have to calculate the shares of the 64 players consecutively
increasing the runtime of signing and signature verification drastically. A
future work, therefore, could be to design an efficient Picnic2 coprocessor
which has an acceptable runtime/hardware utilization tradeoff.

Another possible future work would be to try to optimize the design and
therefore, reduce the high hardware utilization. This could also improve the
timing of the synthesized designs and thus, enable the coprocessor to run
with higher frequencies.

The current design also lacks an evaluation of possible side-channel attacks.
One possible future work will be to analyze our coprocessor and to deduce
if it is possible to extract any secret value over a side channel and if the
design requires additional protection.

67

Bibliography

[1] Gorjan Alagic et al. Status Report on the First Round of the NIST Post-
Quantum Cryptography Standardization Process. 2019. doi: 10.6028/
NIST.IR.8240. url: https://doi.org/10.6028/NIST.IR.8240 (cit.
on pp. 2, 3, 45).

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. “Ciphers for MPC and FHE.” In: EURO-
CRYPT (1). Vol. 9056. Lecture Notes in Computer Science. Springer,
2015, pp. 430–454 (cit. on pp. 10–12).

[3] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Patrick Longa, and
Jefferson E. Ricardini. “The Lattice-Based Digital Signature Scheme
qTESLA.” In: IACR Cryptology ePrint Archive 2019 (2019), p. 85 (cit. on
p. 2).

[4] Dorian Amiet, Andreas Curiger, and Paul Zbinden. “Flexible FPGA-
Based Architectures for Curve Point Multiplication over GF(p).” In:
DSD. IEEE Computer Society, 2016, pp. 107–114 (cit. on pp. 64, 65).

[5] Dorian Amiet, Andreas Curiger, and Paul Zbinden. “FPGA-based
Accelerator for Post-Quantum Signature Scheme SPHINCS-256.” In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018.1 (2018), pp. 18–39

(cit. on pp. 3, 64, 65).

[6] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. “BLAKE2: Simpler, Smaller, Fast as MD5.” In:
ACNS. Vol. 7954. Lecture Notes in Computer Science. Springer, 2013,
pp. 119–135 (cit. on p. 65).

[7] Daniel J. Bernstein et al. “SPHINCS: Practical Stateless Hash-Based
Signatures.” In: EUROCRYPT (1). Vol. 9056. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 368–397 (cit. on p. 2).

68

https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240

Bibliography

[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak
reference. Submission to NIST (Round 3). 2011. url: http://keccak.
noekeon.org/Keccak-reference-3.0.pdf (cit. on pp. 12, 13).

[9] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer.
The sponge construction of Keccak. 2008. url: https://keccak.team/
sponge_duplex.html (visited on 09/28/2017) (cit. on p. 13).

[10] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Schaffner, and Mark Zhandry. “Random Oracles in a Quantum
World.” In: ASIACRYPT. Vol. 7073. Lecture Notes in Computer Science.
Springer, 2011, pp. 41–69 (cit. on p. 14).

[11] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. “Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives.” In: ACM Conference on Computer and
Communications Security. ACM, pp. 1825–1842 (cit. on pp. 2, 8–10).

[12] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. The Picnic Signature Algorithm Specification (2017). url:
https://github.com/microsoft/Picnic/blob/master/spec/spec-

v1.0.pdf (cit. on pp. 14, 16, 18–22, 41).

[13] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. The Picnic Signature Algorithm Specification (2018). url:
https://github.com/microsoft/Picnic/blob/master/spec/spec-

v2.0.pdf (cit. on p. 67).

[14] Melissa Chase et al. The Picnic Signature Scheme Design Document (2019).
url: https://github.com/microsoft/Picnic/blob/master/spec/
design-v2.0.pdf (cit. on pp. 62, 63, 67).

[15] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. “From 5-Pass MQ -Based Identification to
MQ -Based Signatures.” In: ASIACRYPT (2). Vol. 10032. Lecture Notes
in Computer Science. 2016, pp. 135–165 (cit. on p. 2).

69

http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
https://keccak.team/sponge_duplex.html
https://keccak.team/sponge_duplex.html
https://github.com/microsoft/Picnic/blob/master/spec/spec-v1.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v1.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v2.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v2.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf

Bibliography

[16] Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and
Christian Rechberger. “Linear Equivalence of Block Ciphers with
Partial Non-Linear Layers: Application to LowMC.” In: EUROCRYPT
(1). Vol. 11476. Lecture Notes in Computer Science. Springer, 2019,
pp. 343–372 (cit. on pp. 23–27, 66).

[17] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. “Optimized
Interpolation Attacks on LowMC.” In: ASIACRYPT (2). Vol. 9453.
Lecture Notes in Computer Science. Springer, 2015, pp. 535–560 (cit.
on p. 10).

[18] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Higher-
Order Cryptanalysis of LowMC.” In: ICISC. Vol. 9558. Lecture Notes
in Computer Science. Springer, 2015, pp. 87–101 (cit. on p. 10).

[19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Security of the Fiat-Shamir Transformation in the Quantum Random-
Oracle Model.” In: CoRR abs/1902.07556 (2019) (cit. on p. 14).

[20] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS-Dilithium:
A Lattice-Based Digital Signature Scheme.” In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018.1 (2018), pp. 238–268 (cit. on p. 2).

[21] EU. Regulation (EU) No 910/2014 of the European Parliament and of
the Council of 23 July 2014 on electronic identification and trust services
for electronic transactions in the internal market and repealing Directive
1999/93/EC. 2014. url: https://eur-lex.europa.eu/eli/reg/2014/
910/oj (visited on 05/29/2019) (cit. on p. 1).

[22] A Ferozpuri, F Farahmand, MU Sharif, JP Kaps, and K Gaj. Hardware
API for Post-Quantum Public Key Cryptosystems. 2016. url: https://
cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf (cit. on p. 45).

[23] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solu-
tions to Identification and Signature Problems.” In: CRYPTO. Vol. 263.
Lecture Notes in Computer Science. Springer, 1986, pp. 186–194 (cit.
on p. 6).

[24] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-
Knowledge Proofs from Secure Multiparty Computation.” In: SIAM J.
Comput. 39.3 (2009), pp. 1121–1152 (cit. on p. 8).

70

https://eur-lex.europa.eu/eli/reg/2014/910/oj
https://eur-lex.europa.eu/eli/reg/2014/910/oj
https://cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf
https://cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf

Bibliography

[25] Daniel J Bernstein. “ChaCha, a variant of Salsa20.” In: (Jan. 2008)
(cit. on p. 65).

[26] LowMC. Official LowMC Github Repository. url: https://github.com/
LowMC/lowmc (visited on 08/27/2018) (cit. on p. 10).

[27] NIST. NIST Post-Quantum Cryptography. 2008. url: https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography (visited on 05/21/2019)
(cit. on p. 2).

[28] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. FIPS Publication 202. National Institute of Standards and
Technology, U.S. Department of Commerce, Aug. 2015. url: http:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf (cit. on
p. 12).

[29] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. “Enhanced
Lattice-Based Signatures on Reconfigurable Hardware.” In: CHES.
Vol. 8731. Lecture Notes in Computer Science. Springer, 2014, pp. 353–
370 (cit. on pp. 64, 65).

[30] Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. “Crypt-
analysis of Low-Data Instances of Full LowMCv2.” In: IACR Trans.
Symmetric Cryptol. 2018.3 (2018), pp. 163–181 (cit. on p. 10).

[31] Ismail San and Nuray At. “Improving the computational efficiency
of modular operations for embedded systems.” In: Journal of Systems
Architecture - Embedded Systems Design 60.5 (2014), pp. 440–451 (cit. on
pp. 64, 65).

[32] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards (Abstract).” In: EUROCRYPT. Vol. 434. Lecture Notes in Com-
puter Science. Springer, 1989, pp. 688–689 (cit. on p. 7).

[33] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards.”
In: J. Cryptology 4.3 (1991), pp. 161–174 (cit. on p. 7).

[34] Yannick Seurin. “On the Exact Security of Schnorr-Type Signatures
in the Random Oracle Model.” In: EUROCRYPT. Vol. 7237. Lecture
Notes in Computer Science. Springer, 2012, pp. 554–571 (cit. on p. 7).

[35] Peter W. Shor. “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring.” In: FOCS. IEEE Computer Society, 1994,
pp. 124–134 (cit. on p. 2).

71

https://github.com/LowMC/lowmc
https://github.com/LowMC/lowmc
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Bibliography

[36] Dominique Unruh. “Quantum Proofs of Knowledge.” In: EURO-
CRYPT. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012,
pp. 135–152 (cit. on p. 14).

[37] Roman Walch. “Design and Implementation of a LowMC coproces-
sor.” Master Project at Graz Univerity of Technology. 2018 (cit. on
pp. 10, 23, 45).

[38] Xilinx. DMA Subsystem for PCI Express v2.0 Product Guide. url: https:
//www.xilinx.com/support/documentation/ip_documentation/

xdma/v2_0/pg195-pcie-dma.pdf (visited on 08/27/2018) (cit. on
p. 51).

[39] Xilinx. Xilinx Kintex-7 FPGA KC705 Evaluation Kit. url: https://
www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html

(visited on 08/17/2018) (cit. on p. 50).

[40] Xilinx. Xilinx PCI Express DMA Driver. url: https://www.xilinx.
com/support/answers/65444.html (visited on 08/27/2018) (cit. on
p. 54).

[41] Xilinx. Xilinx Vivado. url: https://www.xilinx.com/products/

design-tools/vivado.html (visited on 08/17/2018) (cit. on p. 50).

72

https://www.xilinx.com/support/documentation/ip_documentation/xdma/v2_0/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v2_0/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v2_0/pg195-pcie-dma.pdf
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/support/answers/65444.html
https://www.xilinx.com/support/answers/65444.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

