
Buchbauer Benjamin, BSc

Educational Computer Science
Visualizations in Virtual Reality

Master’s Thesis
Master’s degree programme: Softwareengineering and Development

submitted to

Graz University of Technology

Supervisor
Pirker Johanna, Ass.Prof. Dipl.-Ing. Dr.techn. BSc

Co-Supervisor
Gütl Christian, Assoc.Prof. Dipl.-Ing. Dr.techn.

Institute of Interactive Systems and Data Science
Head: Stefanie Lindstaedt, Univ.-Prof. Dipl.-Inf. Dr.

Graz, August 2019

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master‘s thesis.

Date Signature

ii

Abstract

Education in computer science is an ongoing topic of research nowadays and
will continue to be, as adopting computational thinking skills gets more and
more important in today’s world. Therefore, students need to start learning the
fundamentals even earlier. Computer science lectures are structured way better
already with most of them focusing on problem-based approaches and group
tasks. Furthermore, there is a lot of content freely available online, which can
be used by students to learn individually. However, the new generations are
easily distracted and need new and innovative forms of education to achieve the
best possible success when dealing with such complicated topics. This master’s
thesis is about the design, implementation and evaluation of simulations of
various computer science topics to support learning. One simulation has been
implemented in both a web environment and a virtual reality environment. Due
to that, it was possible to directly compare both environments with each other
and get a better understanding of the effectiveness of the promising attributes
of virtual reality regarding education. The evaluation was conducted by letting
the participants test both environments and complete a survey with several
questionnaires afterwards. The comparison of the results showed that the partic-
ipants tend to favour the use of the virtual reality environment clearly, mostly
because of its high engagement, increased motivation, and deep immersion.

iii

Acknowledgments

First, I would like to express my deep gratitude and honest appreciation to my
supervisor Johanna Pirker. She has guided and helped me through the whole
process of writing this thesis due to her truly great support, huge patience
and valuable expertise. Without her assistance, this work would not have been
possible. Therefore, I honestly value her constant efforts to support me.

I would also like to thank Assoc.Prof. Dipl.-Ing. Dr.techn. Aichholzer Oswin for
giving me useful advice and feedback about how to design simulations of algo-
rithms and important features. It was a valuable influence on the development
process of this work.

Finally, I want to thank my family and friends for their continuous support,
encouragement, patience and love throughout my studies and in the process of
this thesis. Special thanks go to my girlfriend Karin, for her enormous support
and understanding. She always managed to encourage me, and without her,
this thesis would not have been possible.

iv

Contents

Abstract iii

Acknowledgments iv

1. Introduction 1
1.1. Goals and Objective . 2

1.2. Methodology and Structure . 2

2. Background and Related Work 5
2.1. Computer Science Education . 5

2.1.1. Traditional Computer Science Education 6

2.1.2. Active Learning . 7

2.1.3. Just-In-Time Teaching . 8

2.2. Digital Learning . 10

2.2.1. Videos and Animations . 10

2.2.2. Computer Simulations and Visualizations 12

2.2.3. Collaborative E-Learning 15

2.2.4. Serious and Game-Based Education 18

2.2.5. Virtual Reality . 20

2.3. Summary . 24

3. Design and Requirements 27
3.1. Requirements and Objectives . 27

3.1.1. Objectives and Target Group 27

3.1.2. Functional Requirements 28

3.1.3. Non-Functional Requirements 30

3.2. Technologies . 31

3.3. Architecture . 32

3.4. Summary . 34

4. Implementation 35
4.1. Environment and Resources . 35

4.2. Sorting . 35

4.2.1. Graphical User Interface . 36

v

Contents

4.2.2. Game Field . 38

4.2.3. Algorithms . 39

4.2.4. Visualization Behaviour . 41

4.2.5. Input Interpreter . 44

4.2.6. Communication . 45

4.3. Pathfinding . 45

4.3.1. Graphical User Interface . 46

4.3.2. Game Field . 48

4.3.3. Algorithms . 49

4.3.4. Visualization Behaviour . 50

4.3.5. Communication . 52

4.4. Binary Search Tree . 52

4.4.1. Graphical User Interface . 52

4.4.2. Game Field . 54

4.4.3. Algorithms . 55

4.4.4. Visualization Behaviour . 57

4.4.5. Communication . 58

4.5. Website . 58

4.6. Sorting in Virtual Reality . 58

4.6.1. Graphical User Interface . 60

4.6.2. Virtual Reality Objects . 61

4.7. Summary . 63

5. Evaluation 65
5.1. Research Methodology and Procedure 65

5.1.1. Pre-Questionnaire . 65

5.1.2. Post-Questionnaire . 66

5.1.3. Post-Post-Questionnaire . 68

5.2. Participants . 68

5.3. Results . 69

5.3.1. Sorting in WebGL . 69

5.3.2. Sorting in Virtual Reality 72

5.3.3. Comparison . 75

5.4. Discussion . 75

6. Lessons Learned 78
6.1. Literature . 78

6.2. Development . 78

6.3. Evaluation . 79

vi

Contents

7. Future Work 81
7.1. Evaluation Results . 81

7.2. Further Scenarios . 81

8. Conclusion and Discussion 83

A. Computer Science Fundamentals 84
A.1. Essential Theoretical Fields of Computer Science 84

A.1.1. Algorithms . 85

A.1.2. Data Structures . 85

A.2. Application of Basic Fields of Computer Science 89

A.2.1. Sorting . 89

A.2.2. Binary Search Trees . 94

A.2.3. Pathfinding . 96

Bibliography 100

vii

List of Figures

1.1. Structure of the thesis . 3

2.1. Active Learning-based Teaching Model 8

2.2. Just-In-Time Teaching - Step by Step 9

2.3. MergeSort with Folk Dance . 11

2.4. How People Learn: Perspectives on Learning Environments . . . 13

2.5. SimSE - Software Engineering Simulation 14

2.6. sorting.at . 15

2.7. Sorting Algorithms in Open Wonderland 17

2.8. CodeMonkey . 19

2.9. Head mounted display in use . 21

2.10. Puzzle game . 22

3.1. Architecture model . 32

3.2. Example use case of a simulation 33

4.1. Sorting: User interface . 36

4.2. Sorting: Provided code functions 38

4.3. Sorting: Algorithm Class Representation 39

4.4. Sorting: SortingVisualItem Class Representation 40

4.5. Sorting: Swapping of two elements 42

4.6. Sorting: Comparison of two elements 42

4.7. Sorting: Group by buckets . 43

4.8. Sorting: Subarrays in MergeSort 43

4.9. Sorting: Single element saved in memory 44

4.10. Sorting: Algorithm in coding window 45

4.11. Pathfinding: User interface . 46

4.12. Pathfinding: Multiple modified maps 48

4.13. Pathfinding: Class Tile . 49

4.14. Pathfinding: Illustration of Executed Algorithms 51

4.15. Pathfinding: Greedy Best First Search Weakness 52

4.16. BST: User interface . 54

4.17. BST: Class Node . 55

4.18. BST: Structure of the BSTVisualItem Class 57

viii

List of Figures

4.19. Website including WebGL builds 59

4.20. VR: Game Field . 60

4.21. VR: Configuration Desk and Algorithm Cubes 61

4.22. VR: Area to Reset Algorithm Cubes 63

5.1. System Usability Scale questionnaire 66

5.2. Results of the Computer Emotion Scale for the Web Environment 69

5.3. Results of the Game Engagement Questionnaire for the Web
Environment . 70

5.4. Results of the Computer Emotion Scale for the Virtual Reality
Environment . 73

5.5. Results of the Game Engagement Questionnaire for the Virtual
Reality Environment . 73

5.6. Comparison of the Computer Emotion Scale between Web and VR 75

5.7. Comparison of the Game Engagement Questionnaire between
Web and VR . 76

A.1. Euclid’s algorithm: Problem description and code implementation 86

A.2. Basic integer array . 87

A.3. Graph Representation of a Tree Structure 89

A.4. Basic Sorting Problem . 90

A.5. Anatomy of a Binary Search Tree 94

A.6. Deletion of a Node with Two Children 95

A.7. Grid Representation of a Map in Starcraft 97

A.8. Greedy Best First Search - Non Optimal Path 99

ix

List of Listings

1. Element colour adjustment . 39

2. SortingVisualType Enum . 40

3. SelectionSort code . 41

4. Swapping of two elements . 44

5. Introducing functions with Jint . 44

6. Vector Cross Product for Cleaner Paths 47

7. Usage of Priority Queue . 50

8. Example Code of the Heuristic Function 50

9. Priority used by A* . 50

10. Coroutine to visualize pathfinding algorithms 53

11. Calculation of node positions . 55

12. Search Node Function . 56

x

List of Tables

2.1. Comparison Between Digital Learning Methods 25

A.1. BubbleSort Complexity . 90

A.2. SelectionSort Complexity . 91

A.3. InsertionSort Complexity . 91

A.4. ShellSort Complexity . 91

A.5. MergeSort Complexity . 92

A.6. QuickSort Complexity . 92

A.7. HeapSort Complexity . 93

A.8. RadixSort Complexity . 93

A.9. GnomeSort Complexity . 93

xi

1. Introduction

In today’s world, it is even more important to acquire computational thinking
skills as early as possible (Horn et al., 2016). Learning computer science topics
like algorithms, data structures or programming is a very challenging task
(Ben-Ari, 1998). Therefore, it is essential for computer science educators to find
ways to maximize students understanding and motivation to improve their
learning success (O’Hara & Kay, 2003). Even older studies already show that
didactic-based teaching methods, where course content is communicated to
all the students, are suboptimal in conjunction with computer science (Jones,
1987). In further consequence, many different models and pedagogic approaches
were introduced to support students in the best possible way. Constructivist
methods and the problem-based construction of courses, where students are
actively involved, show promising results (Hazzan, Lapidot, & Ragonis, 2014).
By applying a strategy called Just-In-Time-Teaching, fewer drop-outs in an
introductory class were reported (Gavrin, X. Watt, Marrs, & E. Blake, 2004).
In more recent years, digital learning has become more popular. Due to the
more extensive use of computers and the internet, the availability of computer
simulations and visualizations increased dramatically. They became more goal-
oriented, and studies show they are more effective than traditional teaching
methods (Kathleen Smetana & Bell, 2012). Online tutorials in the form of videos
are also a widely used form of learning nowadays. It allows individuals to
study a variety of topics, even when underway. Educational games are a more
common occurrence as well in recent years. They enable students to learn about
topics in an enjoyable environment and are a good way to increase motivation
(Kafai, 2001). While there is a decent amount of animations and simulations
about computer science topics available, many lack further interactivity which
lets users modify the content or even execute self-written code. Furthermore,
still very limited resources regarding computer science in virtual reality exist.
They show that interacting in such an environment leads to authentic learning
and greater excitement (Madathil et al., 2017, 3). A comparison between the
same simulation in a web environment and virtual reality can bring new aspects
into the matter if virtual reality is a promising education environment for the
future.

1

1. Introduction

1.1. Goals and Objective

The main objectives in this thesis are the design, implementation and evaluation
of several simulations of computer science topics considering the beforehand
studied research lecture regarding computer science education.

• Design and implementation of a simulation that visualizes and compares
several sorting algorithms
• Design and implementation of a simulation that visualizes and compares

several pathfinding algorithms
• Design and implementation of a simulation that visualizes the standard

functions search,add and delete of binary search trees
• A website that contains basic information and grants access to the afore-

mentioned simulations
• A port of the sorting simulation into virtual reality
• Comparison of the same simulation in two different environments

The purpose of this work is to create a centralized collection of simulations that
assist students, or people that want to get started in this subject area, in learning
computer science. Its goal is to raise motivation and engagement by visually
representing theoretical aspects of computer science which can be controlled at
user-desired pace.

1.2. Methodology and Structure

The remainder of the thesis is organized in four main parts. The first part
discusses the theoretical background and related work of computer science
education (Chapter 2) and computer science fundamentals (Appendix A). The
second part describes the design and requirements (Chapter 3). The third part
focuses on the practical implementation (Chapter 4). The fourth part summarizes
an evaluation of the implemented environments (Chapter 5). An overview of
the structure and procedure of this thesis can be seen in Figure 1.1.

In Chapter 2, different approaches to computer science education are dis-
cussed. On one hand, traditional education methods that evolved to more active
and problem-based approaches, and on the other hand, digital learning methods
like computer simulations and game-based education, are described, compared,
and their pros and cons outlined. Chapter 3 focuses on the practical design of
the work. First, functional and non-functional requirements are pointed out,
and then different components of the simulations and how they work together
are explained. In Chapter 4, details about the implementation of the project are
provided. Every single module of the sorting, pathfinding and binary search

2

1. Introduction

Figure 1.1.: Structure of the thesis: Research on theoretical background as a basis for the
requirements, design and implementation

3

1. Introduction

tree simulation is discussed. Furthermore, it is stated how a website is created,
which contains all the simulations and where people can access the content
at all times. Following that, the port of the sorting simulation into a virtual
reality environment is described. Chapter 5 summarizes the methodology and
procedure of the carried out evaluation. Then further details about the par-
ticipants and results are presented. Chapter 6 outlines the lessons that were
learned during the literature research, development and evaluation process
of this thesis. Chapter 7 gives a short overview about possible improvements
and future work, which has been gathered through the given feedback of the
evaluation and the authors own thoughts. In Chapter 8, a conclusion of this
work is given. Last but not least, in Appendix A, all the theoretical background
about computer science fundamentals is discussed, which has been mandatory
knowledge for the design and implementation of this project.

4

2. Background and Related Work

It is evident that for a lot of students learning computer science is a very difficult
task (Ben-Ari, 1998). Putnam, Sleeman, Baxter, and Kuspa (1986) experienced
that even basic concepts like variables can be hard to understand for them
because they constructed a consistent concept in their mind that happened to be
unsuitable. Passive learning methods like lectures and presentations probably
won’t bring the desired accomplishments because every student’s status of
knowledge of a particular topic is different, and every student constructs new
information in a different way (Ben-Ari, 1998). Nowadays the consensus seems
to be that an active learning-based approach is the right way to go, as Silberman
(1996) asserts “Above all, students need to ‘do it’—figure things out by themselves,
come up with examples, try out skills, and do assignments that depend on the knowledge
they already have or must acquire.” The following sections will focus on giving
background information about computer science education, interactive learning
methods and simulations, visualizations or game-based tools that help to teach
computer science.

2.1. Computer Science Education

Nowadays, we live in a world where having computational thinking skills is
more and more important. Therefore, the computer science education com-
munity has focused on bringing students near these important topics at an
even younger age (Horn et al., 2016). In computer science, educators always
look for new input, methods and technologies to win students interests and
motivate them. It is desirable to maximize their understanding and find in-
centives to promote their independent creative work. However, this process is
quite challenging because of the amount of different pedagogical approaches
and the large scope of computer science (O’Hara & Kay, 2003). Generally, it
is important to focus on the principles and identify long-lasting concepts of
the corresponding field so that students are endowed with fundamental skills
that serve as a solid base for the continuous learning in the rest of their lives
(Ghezzi & Mandrioli, 2006). McGettrick et al. (2005) list seven grand challenges
that computer science education faces:

5

2. Background and Related Work

1. Perception: Computer science needs to be promoted so that it leads to a
positive public image

2. Innovation: Simpler models of the discipline, and therefore higher quality
in courses and broader student interest

3. Competencies: Students need to recognize that the currency and quality
of skills in computer science are very important for their whole career

4. Programming issues: Thorough understanding so that programming
knowledge and skills can be transferred effectively

5. Formalism: Ensure that students realize the importance of mathematical
thinking and vocabulary

6. E-Learning: Establish e-learning as a viable alternative to traditional edu-
cation approaches

7. Pre-university issues: Enable a smooth transition by providing information
and influencing possible computer science students in a positive way

In the following sections, some approaches to computer science education are
discussed as well as practical examples and how they deal with some of its
challenges.

2.1.1. Traditional Computer Science Education

Computer science education has been an ongoing endeavour throughout al-
most all of its history. An increasing effort of teaching students in this broad
field has happened after the first computer science departments have been
introduced (Tucker, 1996). Traditional methods in computer science education
include didactic teaching, like a lecture where information is communicated
to all the attendees. In this case, the content is processed in batches. However,
the broad topic of computer science is process-oriented, which becomes imme-
diately clear to the students after their first encounters with different subjects.
Teaching computer science in a process-oriented way where students are ac-
tively participating and experimenting is a lot more enjoyable and memorable
than the traditional didactic teaching. Methods that include students being
interactively involved help them to gain deeper thinking. They are confronted
with different viewpoints and can express their positions, which gives them
more motivation and makes the topic and the educational process more in-
teresting (Jones, 1987). Research by Carroll, Paine, and Ivancevich (1972) and
W. Newstrom (1980) illustrated that role-playing, games and case studies were
considerably better than didactic methods like lectures or films when it comes
to learning problem-solving skills. Jones (1987) created a list of participatory
teaching methods that could be used in computer science classes which included
brainstorming, directed dialogues, small group discussions, role-playing, games,

6

2. Background and Related Work

panel discussions, debates and Socratic dialogues with the favourable belief that
they increase student motivation and interest, whereas the fact that interactive
methods like that require way more time was a rather disadvantageous side
effect.

2.1.2. Active Learning

Lectures should be constructed as teaching models so that it encourages a
favourable learning experience of students in a supportive teaching environment.
The focus of teaching is on using constructivist methods and active learning
(Hazzan et al., 2014). Constructivism is a learning theory that suggests that
knowledge is actively constructed by students from their experiences instead of
passively acquired from lectures and books. New information is combined with
existing ideas, and new cognitive structures are created. It is a recursive process
to gain knowledge. Mental structures are developed step by step (Ben-Ari,
1998).

Hazzan et al. (2014) introduced an active-learning-based teaching model
consisting of four stages that is shown in Figure 2.1:

1. Trigger: In the beginning, a new topic is presented to the students in
a nonconventional way, some activity they are unfamiliar with, which
enhances reasonable learning and can raise questions and ideas while
following the constructivist approach. Newman, Daniels, and Faulkner
(2003) propose open-ended group projects as an educational tool. Students
are put into a team context and are faced with a problem for which there
is no clear answer.

2. Activity: Students deal with the trigger individually, in pairs or groups.
The duration of this stage can be variable, as it depends on the type of
trigger and educational objectives.

3. Discussion: At this point, the students come together, and all their prod-
ucts, subjects and ideas from the activity stage are presented and dis-
cussed. Due to this, students elaborate on their understanding of concepts,
thoughts and attitudes. Students are incited to respond by expressing their
opinions and offering constructive criticism.

4. Summary: In contrast to the first three phases in this stage, the course
instructor is the main actor. Concepts, ideas and other related subjects that
were discussed in previous phases are summarized in different forms.

Bouchez-Tichadou (2018) describes how he switched the teaching method
of his course from a classical approach to a problem-based approach where
students work in groups and solve algorithmic issues. It resulted in him being

7

2. Background and Related Work

Figure 2.1.: Active Learning-based Teaching Model (Hazzan, Lapidot, & Ragonis, 2014)

more in contact with his students and being able to teach more meaningful
content. They felt more responsible, showed more commitment and valued the
course higher.

2.1.3. Just-In-Time Teaching

Just-In-Time Teaching (JITT) is a strategy that is founded on several principles of
good practice in education (Chickering & Gamson, 1987). The basic idea is that
instructors can make adjustments to the lecture on time. The teaching method is
applicable to any area of study. Just-In-Time Teaching promotes active learning
and ensures that students come well-prepared to class. Furthermore, it helps
academic staff to recognize students strengths and weaknesses as well as their
learning styles (Gavrin, 2006). A step-by-step overview of JITT can be seen in
Figure 2.2. By applying Just-In-Time Teaching Gavrin et al. (2004) reported a 40

per cent decrease in students that received the grade ’D’, ’F’ or dropped out of
an introductory physics class. Marrs, Gavrin, and Novak (2004) stated that it
results in measurable cognitive gains and improves students habits in studying.
Principles of Just-In-Time Teaching contain the following:

• Merger of high-tech and low-tech elements:

– High-tech: Web-based platform to convey curricular materials and
broaden the communication between students and faculty.

– Low-tech: General classroom interaction between students, faculty
and mentors.

• Quiz-like online exercises before class about conceptual material used in
class.
• Making rapid adjustments according to feedback gathered from the web-

based platform and classroom.

8

2. Background and Related Work

Figure 2.2.: Just-In-Time Teaching - Step by Step (Starting Point Project, 2012)

The advantage is that it encourages students to think about ideas themselves,
which they connect to prior knowledge and, in further consequence, apply.
Moreover, there is no need to use class time to administer the online quiz. That
means there is more time in class to focus on topics students had problems with.
Due to their prior examination of the subject, the class is more like a discussion
to refine students understanding, it discourages passive note-taking and is
learner-centred. Although Just-In-Time Teaching has basic IT infrastructure
requirements and needs more time than traditional lectures, it has brought
benefits to students education (Novak, Gavrin, & Wolfgang, 1999; Cashman &
Eschenbach, 2003; Gavrin, 2006).

Elmaleh and Shankararaman (2017) implemented a flipped classroom model
to compare the learning progress of students to a traditional educational model.
In the traditional concept, students came to class unprepared and were taught
programming theory in lectures. They were also given tasks to complete in
class and additionally, homework exercises. Using this approach, many stu-
dents failed to complete the tasks both in class and at home. In the flipped
model students were required to watch video tutorials about the programming
concepts and to undergo corresponding quizzes. In class, the students had to
solve problems associated with the video tutorials and got live feedback from
the instructors. Identically to the traditional approach, they were given addi-
tional homework exercises. The results showed that in the flipped model, more
students were able to finish class exercises and homework, higher competencies
were acquired, and better pass rates in the final exam were achieved. Worth
mentioning is that the flipped education model required the students to spend
more time on pre-class preparations and slightly less time post-class.

As the importance and relevance of basic computer science knowledge in-
creases, a common occurrence in universities is the blending of major and
non-major students in introductory computer science courses. Dawson, Allen,
Campbell, and Valair (2018) state that while their course is effective in gen-
eral, they noticed that non-CS major students had worse results with them
mentioning that the workload was too high and the pace too fast. Due to this,
a new introductory computer science course has been introduced, especially

9

2. Background and Related Work

for non-major students. Overall, learning goals were reduced compared to the
original course, and the aim was to focus on how programming can be utilized
in their corresponding academic subjects. Throughout the course, Just-In-Time
Teaching had been used in lectures with students solving worksheets in groups
most of the time and short discussions that focus on its key problems. In the
end, each student had to design a project where they could freely choose a
topic of interest. The results and evaluation of the new course showed that
for non-CS major students, it improved their outcomes, attitude, interests and
satisfaction compared to the original course. However, the results might have
been overestimated because students who participated in the evaluations may
have been more engaged than the others.

2.2. Digital Learning

One challenge of learning computer science is the effective usage of information
and communication in the 21st century instead of the ineffective and outdated
techniques of the previous century (McGettrick et al., 2005). Nowadays, people
with computers and fast internet connections have quick and easy access to a
vast amount of resources. Digital learning provides big opportunities to study
and do research in various fields autonomously (Warschauer, 2007).

2.2.1. Videos and Animations

Animations are sequencing series of pictures in a fast succession, where each
image is slightly different than the previous one, which results in a sort of
illusion of motion (Wang, 2013). They are usually subject to mainly three types
of changes, which include form, position, and inclusion (Lowe, 2003).
Videos are quite similar to animations as they also rely on the fact that the
human eye is unable to spot differences between the rapid succession of separate
images. Furthermore, video usually includes sound in addition to the pictures
and is one of the major distributors of information (Wang, 2013). Studies also
show that students have greater learning success through videos that include
narrations than without narrations (Wittwer & Renkl, 2008).

Application Scenarios

Due to the longstanding usage of videos and animations, the application scenar-
ios are very wide-ranging. Some examples include chemistry (Russell, Zohdy,
Becker, & Russell, 2000), geology (Sangin, Molinari, Dillenbourg, Rebetez, &
Bétrancourt, 2006), mathematics (Scheiter, Gerjets, & Catrambone, 2006) or

10

2. Background and Related Work

Figure 2.3.: MergeSort with Folk Dance (Katai & Toth, 2010)

animated pedagogical agents in general, which are lifelike characters that create
learning interactions (Johnson, Rickel, & Lester, 2000).

Use Cases in Computer Science Education

An example use case for computer science is algorithms. The current state
of the algorithm gets mapped into an image. Then is animated according to
the operations between this state and the next state, to better illustrate its
behaviour (Kerren & Stasko, 2002). A very creative and entertaining study
by Katai and Toth (2010) investigates how the learning process in computer
programming education is accelerated by including dance, rhythm, music and
theatrical roleplaying into computer science classes. Their work shows how
dance is used as an artistically enhanced multi-sensory learning strategy. Figure
2.3 presents an example of one of their show performances illustrating the
sorting algorithm MergeSort. Further performances are uploaded to their YouTube
channel1 and include computer science topics like InsertionSort, BubbleSort,
SelectionSort, ShellSort, QuickSort, HeapSort, Linear Search, Binary Search and
Backtracking Algorithm.

Benefits

• Research shows that there is an increase in learning performance for
environments where animation and narration are combined (Mayer &
Pilegard, 2014).
• Learning opportunities are seemingly endless nowadays because a huge

amount of tutorials and courses about various topics can be remotely

1AlgoRythmics, 2011.

11

2. Background and Related Work

accessed on platforms like YouTube2 or FreeCodeCamp3 for free.
• Videos and animations lead to more positive learning attitudes and better

capability to apply learned principles (Moreno & Ortegano-Layne, 2008).
• Learners report increased motivation and satisfaction (Ainsworth, 2008).

Drawbacks

• Speed and flow of animations can not be controlled (Clark & Mayer, 2007).
• Might influence the way learners perceive the content but not increase

their learning results (Swisher, 2007).
• Animations may lead to an illusion of understanding, which then conflicts

with successful learning (Ainsworth, 2008).

2.2.2. Computer Simulations and Visualizations

According to Smith (1999), ”simulation is the process of designing a model of a real
or imagined system and conducting experiments with that model. The purpose of simu-
lation experiments is to understand the behavior of the system or evaluate strategies for
the operation of the system. Assumptions are made about this system and mathematical
algorithms and relationships are derived to describe these assumptions - this constitutes
a “model” that can reveal how the system works”. Many simulations additionally
include interactive elements. O’Keefe (1987) asserts that ”a Visual Interactive
Simulation (VIS) is a simulation which produces a dynamic display of the system model,
and allows the user to interact with the running simulation”. Interactivity is the pos-
sibility of the user to influence the outcome of a process or an event. Interactive
simulation is a representation of such a process or event, which outcome can be
influenced by the user (Smith, 2002). In the last decades, their availability has
increased drastically, and they have become more and more powerful. A review
of research literature on computer simulations concluded that they are more
effective in several points than traditional education methods like lecture-based
or textbook-based approaches (Kathleen Smetana & Bell, 2012). Holton (2010)
uses the four lenses of the How People Learn framework by Bransford, Brown,
and Cocking (2000), as shown in Figure 2.4, to review research on the right
moment and right manner to support effective learning by using computer
simulations for pedagogical purposes.

2YouTube, 2005.
3FreeCodeCamp, 2014.

12

2. Background and Related Work

Figure 2.4.: How People Learn: Perspectives on Learning Environments (Bransford, Brown, &
Cocking, 2000)

Application Scenarios

Due to the broadening use of this style of education, instructors can choose
from a wide range of different computer simulations dependent on the specific
subject. They are designed to support understanding and teaching by utilizing
interaction with dynamic models and visualizations (de Jong & van Joolingen,
1998). Some examples of real-world applications include manufacturing and
material handling systems (Rohrer, 2007), automobile industry (Ulgen & Gunal,
2007), logistics and transportation systems (Manivannan, 2007), health care
(McGuire, 2007), and military simulations (Kang & Roland, 2007).

Use Cases in Computer Science Education

Alnoukari (2013) provides details about using simulations in computer science
disciplines like computer networking, computer architecture and software engi-
neering. He describes several tools and their usefulness to help the education
process. For example SWANS, a scalable wireless network simulator (Barr et al.,
2004) or SATSim, a superscalar architecture trace simulator using interactive
animations (Wolff & Wills, 2000). Figure 2.5 shows SimSE, which is an edu-
cational software engineering simulation environment that allows students to
practice a virtual software engineering process (Oh Navarro & van der Hoek,
2004). Sorting attempts to visualize and support to understand how some of the
most famous sorting algorithms work, as shown in Figure 2.6 (Zapponi, 2014).

13

2. Background and Related Work

Figure 2.5.: SimSE - Software Engineering Simulation (Oh Navarro & van der Hoek, 2010)

Xueqiao (2011) has created an online demo that visually shows how pathfinding
algorithms execute in a 2D environment.

Benefits

• Experimental studies show that learning of topics that students consider
to be difficult improves by using integrated computer simulations (Webb,
2005).
• Wenglinsky (1998) finds higher student achievements in classrooms using

computers for simulation and data research activities.
• Sarabando, Cravino, and Soares (2014) show that the use of computer

simulations can help students to learn basic physic principles.
• It is feasible to simulate complex situations that are not possible to ex-

perience in the real world, for example, nuclear explosions (Xiannong,
1998).
• In a real experiment, interesting actions may happen too fast to witness

accurately. In a simulation, such a situation can be replayed over and over
again.
• Through simulations, it is possible to foresee problems and difficulties

but also to make mistakes before introducing the real system (Moorthy,
Vincent, & Darzi, 2005).
• Often flexible and easily modifiable.

14

2. Background and Related Work

Figure 2.6.: sorting.at (Zapponi, 2014)

Drawbacks

• It may be difficult to interpret the results (Xiannong, 1998).
• Simulations can be inaccurate if there is insufficient real-world data avail-

able.
• Creation of simulations can be expensive and time-consuming (Xiannong,

1998).

2.2.3. Collaborative E-Learning

In recent years there has also been a focus on teaching using problem-solving
activities combined with peer collaboration. The advantages of this method
emerge due to the active character of the learning process, where a deep
understanding is required (Dillenbourg, 1999). Pellas (2015) describes it as
follows: ”The collaborative e-learning involves two key aspects of learning: (a) the
situation of a collaborative process in which the learning process takes place by utilizing
various communication forms between students, and (b) the interaction that takes place
between group members, such as negotiation or cooperativeness”. The widespread
and sheer infinite possibilities to access the internet nowadays have offered new
opportunities to support collaborative peer learning. It introduces tools that offer
synchronous interaction and learning among peers (Voyiatzaki, Christakoudis,
Margaritis, & Avouris, 2004). Another factor is the increased availability of open-

15

2. Background and Related Work

source software, which offers enormous benefits. As a result, it was possible
to develop software or continue on existing projects that can be accessed by
an international community. It resembles a world size laboratory and gives
everyone the possibility to gain experience in large-scale software collaboration
(O’Hara & Kay, 2003). Platforms that let students cooperate and speak to
each other while being physically separated also offer big opportunities. A
combination of virtual worlds and instant communication enables students to
receive feedback from tutors immediately. Despite being in different physical
locations, they can feel the presence of their classmates. Moreover, they can
simultaneously view learning materials and take part in group discussions
to actively share ideas and offer constructive criticism (Monahan, McArdle, &
Bertolotto, 2008).

Application Scenarios

Examples of collaborative platforms like virtual worlds that can be used con-
cerning education include Open Wonderland4, Open Simulator5 and Second
Life6. Application scenarios include language learning (Ibáñez et al., 2011), med-
ical and health care (Boulos, Hetherington, & Wheeler, 2007), virtual classrooms,
virtual history tours, virtual archaeological tours, communications scenarios,
virtual facilities, virtual laboratories, technical training and so on (Clifford,
2012).

Use Cases in Computer Science Education

Johanna Pirker (2013) has created a Virtual TEAL World in Open Wonderland,
which is a collaborative and interactive virtual learning environment for stu-
dents, as can be seen in Figure 2.7, an implemented scenario about sorting
algorithms. Other use cases in computer science education include human com-
puter interaction, wireless networking, routing (Miller et al., 2010), computer
science principles and programming (Slator, Hill, & Del Val, 2004).

Benefits

• A feeling of immersion and presence in the virtual world (Christian Gütl,
2011).

4Open Wonderland, 2007.
5Open Simulator, 2007.
6Second Life, 2003.

16

2. Background and Related Work

Figure 2.7.: Sorting Algorithms in Open Wonderland (Johanna Pirker & Gütl, 2015)

• Students with their own laptops are more involved in collaborative work,
participate in more project-based activities and as a result have signifi-
cantly better grades (Cengiz Gulek & Demirtas, 2005).
• Collaborative environments like virtual worlds are innovative tools to

support exploratory learning and encourage student engagement (Miller
et al., 2010).
• Higher social awareness (Christian Gütl, 2011).
• Students can feel the presence of their classmates (Monahan et al., 2008).

Drawbacks

• Good internet connection and a modern computer (C. Gütl & Pirker, 2011).
• Know-how about the interaction within the world which needs to be

acquired through tutorial sessions (C. Gütl & Pirker, 2011).
• General awareness about the purpose of the environment (C. Gütl &

Pirker, 2011).
• Support for the development, support for content creation and affordable

service provision (Miller et al., 2010).

17

2. Background and Related Work

2.2.4. Serious and Game-Based Education

Game-based learning describes the merger of games and learning processes
(Denk, Gabriel, Wernbacher, Pfeiffer, & Mayerhofer, 2018). Such approaches have
become an increasingly popular way to raise interest and participation among
students (Horn et al., 2016). Another sector of game-based learning originated
from the introduction of serious games, which can be described as games with
specific rules whose purposes go beyond pure entertainment. Such games are
used, for example, in cybersecurity and information assurance for educational
objectives (Amorim, Hendrix, Andler, & Gustavsson, 2013). The general views
of students regarding games and fun have significant consequences on the
learning process. Also, teachers play an essential role by influencing these
views (Perry & Ballou, 1997). Computer games have the possibility of being
very positive besides their entertainment value. Furthermore, there have been
remarkable results when games are designed to tackle a specific issue (Griffiths,
2002).

Application Scenarios

Popular application scenarios include military implementations like Cyber-
CIEGE, which has been created by the US Naval Postgraduate School (Irvine,
Thompson, & Allen, 2005). Other games teach mathematics, promote strategical
and anticipatory thinking in urban management, or deal with training personal
behaviour where users are confronted with morally difficult decisions (Denk
et al., 2018).

Use Cases in Computer Science Education

Many different game-based educational tools incorporate computer science
topics, for example, DBSnap++ which is a block-based programming tool that
integrates database queries to encourage the learning of data-driven coding
(N. Silva, Nieuwenhuyse, G. Schenk, & Symons, 2018). A project called Iltis
provides a web-based system that supports teaching logic in an interactive way
where users have to answer questions and immediately get feedback (Geck
et al., 2018). Sortko is a mobile learning application about sorting algorithms.
It lets the users choose an algorithm and generates a random sequence of
numbers. Sorting happens through specific interaction gestures. At the same
time, Sortko informs the user about the current status, which makes it easier
to progress (Boticki, Barisic, Martin, & Drljevic, 2012). CodeMonkey is a fun
and educational game environment that teaches coding in a real programming
language called CoffeeScript (Ashkenas, 2009). Users control a little monkey

18

2. Background and Related Work

Figure 2.8.: CodeMonkey (CodeMonkey Website, 2016)

and help him to catch bananas by writing lines of code while learning basic
concepts of programming like objects, function calls, variables, conditions and
loops (Schor, Schor, & Pinchover, 2014). A visual representation of the game
can be seen in Figure 2.8. Furthermore, game-based tools and serious games
appear in cyber security and information assurance (Amorim et al., 2013).

Benefits

• Studies show evidence that the use of computer games in education
encourages the teaching and learning process (Pange, 2003).
• In many cases game-based learning increases motivation and gives a better

understanding of the subject (Kafai, 2001).
• Interactive simulations and computer games lead to bigger cognitive gains

and higher motivation than traditional lecture-based methods (Vogel et al.,
2006).
• Replayability is a significant part and advantage of successful educational

games, as the players are in a kind of loop where they have to judge situa-
tions, act accordingly, and receive feedback on their action (Peddycord-Liu,
Cody, Michelle Barnes, F. Lynch, & Rutherford, 2017).
• Strengthens personal endurance and patience (Denk et al., 2018).
• Games improve the imagination and the ability to see things from a

different perspective (Denk et al., 2018).
• Positive approach to technology. Educational games are perceived as tools

for fun and relaxation (Denk et al., 2018).

19

2. Background and Related Work

Drawbacks

Despite the obvious benefits of educational games, there are also several chal-
lenges and drawbacks. In this context Klopfer, Osterweil, and Salen (2009) list
several barriers that educational games encounter:

• Barriers to adoption: Curriculum requirements, attitudes towards games,
limited time to access computers, support for teachers, different assess-
ment of these skills, evidence of effectiveness, existing social and cultural
structures slow down the integration of educational games
• Barriers to design and development: Development cost of games, rare

collaboration with learning scientists in the development process, limited
possibilities to test the game, funding
• Barriers to sustainability: Advancement of technology, maintenance and

support of the games
• Barriers to innovation: Limited data, differences in approaches to peda-

gogy, limited research, too small ambitions which lead to no scale
• Formal nature of serious games. Even bigger benefits can be gained if

these games were released in informal contexts (Le Compte, Elizondo, &
Watson, 2015).

2.2.5. Virtual Reality

Virtual reality can be seen as a technology that extends 3D computer graphics
and brings in additional devices that are used for more comprehensive handling.
It is a virtual environment which a user can interact with and get a sense or
feeling of reality (Jayaram, Connacher, & Lyons, 1997). Because the technology
of virtual reality evolves quickly and devices get outdated soon and are replaced
every few years, LaValle (2016) defines its general concept as following: ”Induc-
ing targeted behavior in an organism by using artificial sensory stimulation, while the
organism has little or no awareness of the interference”. Subsequently LaValle (2016)
explains four key components:

1. Targeted behavior: Having an experience like walking, flying, swimming
and socializing.

2. Organism: Could be the users themselves or other life forms like animals
or things.

3. Artificial sensory stimulation: Ordinary input of some senses is replaced
by artificial stimulation.

4. Awareness: Organism is unaware of external noises and feels like being
present and alive in a virtual world.

20

2. Background and Related Work

Figure 2.9.: Head mounted display in use (Huguen, 2018)

Usually nowadays head mounted displays like Oculus Rift7 or HTC Vive8, as
shown in Figure 2.9, are used to give users an immersive feeling of being inside
and interacting with the world themselves (Freina & Ott, 2015). Due to the
characteristics of virtual reality, such as being able to communicate through
far physical locations, being able to collaborate and being able to visualize, it
includes elements that make its usage in education promising (Kumar, 2017).
Even over 20 years ago, it had been asserted that virtual reality has a big
potential to support students in learning complex topics like science (C. Byrne
& Furness, 1994). Fernandez (2017) proposes six steps to adopt virtual reality
in education. It includes the training of teachers of the subject, a conceptual
prototype, the forming of a team, the production, training of the teacher to use
the solution and finally, the implementation and use with students.

Application Scenarios

Several learning environments have been developed that simulate realistic set-
tings and make use of the interactive nature of virtual reality (Curcio, Dipace,
& Norlund, 2016). For example, CLEV-R, which includes education areas like
biology and supports multimedia and instant communication among students
(Monahan et al., 2008). U.S. Army soldiers learn about corrosion prevention

7Oculus Rift, 2016.
8HTC Vive, 2016.

21

2. Background and Related Work

Figure 2.10.: Puzzle game (Webster, 2014)

and control. Figure 2.10 shows a part of it, a puzzle game where users have
to put puzzle pieces to the correct position to reveal a type of corrosion (Web-
ster, 2014). Further examples show the use of virtual reality environments in
medical applications, astronomy, biology, geography, arithmetic (Curcio et al.,
2016), to support the design of architectural spatial experiences (Angulo &
Vásquez de Velasco, 2013), or to identify potential safety risks in manufacturing
environments (Madathil et al., 2017, 3).

Use Cases in Computer Science Education

Virtual reality environments have been created for several computer science
areas like cyber security (Jin, Tu, Kim, Heffron, & White, 2018), programming
(Chandramouli, Zahraee, & Winer, 2014) and robotics (Crespo, Garcı́a, & Quiroz,
2015). Furthermore, Akbulut, Catal, and Yıldız (2018) have developed an inter-
active teaching environment that is enhanced by virtual reality and shows the
functionality of three sorting algorithms. It is a multi-user environment where
they connect via Bluetooth or Wi-Fi.

Benefits

Due to the extensive research on the topic and related work, we can conclude
several benefits from making use of virtual reality in education.

22

2. Background and Related Work

• An opportunity to experience, interact and live in situations which would
not be possible in real life (Freina & Ott, 2015).
• Increase in critical thinking (Curcio et al., 2016).
• Efficient and enjoyable (Webster, 2014).
• Higher motivation and engagement (Freina & Ott, 2015; Curcio et al.,

2016).
• Authentic learning and greater excitement (Madathil et al., 2017, 3).
• Possibility to practice dangerous situations in a secure environment (Freina

& Ott, 2015).
• An immersive virtual learning environment is better in terms of learning

and produces higher knowledge gains (Webster, 2014).
• Interactivity as part of virtual reality is very important (C. M. Byrne, 1996).
• Angulo and Vásquez de Velasco (2013) show positive learning effects.
• Madathil et al. (2017, 3) show that virtual reality improves the learning

experience because of the active engagement of users.
• With further improved technology virtual reality will be effective in teach-

ing (Du & Arya, 2015).
• Better results when used in addition to traditional material (Akbulut et al.,

2018).

Drawbacks

On the other hand, various drawbacks need to be considered in virtual reality.

• Excessive use in an individual environment can lead to personal isolation
(Fernandez, 2017).
• Mobility limited, and thus the whole virtual reality experience, because

devices require cable connections (Abari, 2017).
• Unsatisfying physical comfort (Du & Arya, 2015).
• Requires expensive devices and high processing power (Fernandez, 2017).
• Lack of experience with virtual reality leads to difficulties in maneuvering

and therefore slower learning effects compared to more ordinary methods
(C. M. Byrne, 1996).
• C. M. Byrne (1996) couldn’t show that virtual reality is superior to other

teaching methods.
• It is a requirement for the instructors to be familiar with both the present

virtual reality simulation and corresponding pedagogical considerations
so that positive effects on students learning can be achieved (Vesisenaho
et al., 2019).

23

2. Background and Related Work

2.3. Summary

In this section, background information about various education styles and
possibilities were discussed. Learning computer science is a difficult task that
needs focused and continuous attention to it. Previously discussed literature
has shown that traditional methods to teach computer science, like a didactic
approach, don’t bring the desired learning effects. Teaching in a problem-based
style seems to be more promising, as it encourages students to learn while being
actively involved and show more commitment. Furthermore, active learning,
paired with enhanced technological tools like computer simulations and visu-
alizations, is more effective than traditional teaching methods and can lead to
higher student achievements. Even higher student motivation can be observed
when making use of game-based tools to teach specific topics. However, edu-
cational games require several considerations like meeting exact curriculum
prerequisites and development costs, which means schools or universities can’t
realize it in a short time frame. Collaborative e-learning can raise the participa-
tion of students and in further consequence, their grades. Virtual worlds used
for educational purposes made it possible to learn actively and have discussions
in groups. However, they require certain minimal computer specifications and a
stable internet connection. Ultimately, virtual reality enables new possibilities to
experience simulations and learn inside environments that are close to reality.
It is enjoyable and exciting but requires rather expensive devices and a little bit
of previous knowledge to be able to handle its controls. Table 2.1 shows a final
comparison between all the previously discussed methods for digital learning
in Section 2.2.

24

Ta
bl

e
2

.1
.:

C
om

pa
ri

so
n

Be
tw

ee
n

D
ig

it
al

Le
ar

ni
ng

M
et

ho
ds

V
id

eo
s

Si
m

ul
at

io
ns

C
ol

l.
E-

Le
ar

ni
ng

G
am

es
V

R

D
efi

ni
ti

on
R

ap
id

su
cc

es
si

on
of

se
pa

ra
te

im
ag

es
in

cl
ud

in
g

so
un

d
(W

an
g,

2
0

1
3

)

A
n

ex
ac

t
m

od
el

of
a

re
al

sy
st

em
th

at
is

us
ed

fo
r

ex
pe

ri
m

en
ts

(S
m

it
h,

1
9

9
9

)

U
ti

liz
in

g
va

ri
ou

s
co

m
m

un
ic

at
io

n
fo

rm
s

an
d

in
te

ra
ct

io
n

be
tw

ee
n

st
ud

en
ts

(P
el

la
s,

2
0

1
5

)

M
er

ge
r

of
ga

m
es

an
d

le
ar

ni
ng

pr
oc

es
se

s
(D

en
k,

G
ab

ri
el

,W
er

nb
ac

he
r,

Pf
ei

ff
er

,
&

M
ay

er
ho

fe
r,

2
0

1
8

)

V
ir

tu
al

en
vi

ro
nm

en
t

us
er

s
ca

n
in

te
ra

ct
w

it
h

to
ge

t
a

fe
el

in
g

of
re

al
it

y
(J

ay
ar

am
,

C
on

na
ch

er
,&

Ly
on

s,
1

9
9

7
)

A
pp

li
ca

ti
on

s
C

he
m

is
tr

y,
ge

ol
og

y,
m

at
he

m
at

ic
s,

pe
da

go
gi

ca
l

ag
en

ts
,.

..
(R

us
se

ll,
Z

oh
dy

,
Be

ck
er

,&
R

us
se

ll,
2

0
0

0
;

Sa
ng

in
,M

ol
in

ar
i,

D
ill

en
bo

ur
g,

R
eb

et
ez

,&
Bé

tr
an

co
ur

t,
2

0
0

6
;S

ch
ei

te
r,

G
er

je
ts

,&
C

at
ra

m
bo

ne
,2

0
0

6
;

Jo
hn

so
n,

R
ic

ke
l,

&
Le

st
er

,
2

0
0

0
)

M
an

uf
ac

tu
ri

ng
an

d
m

at
er

ia
l

ha
nd

lin
g

sy
st

em
s,

au
to

m
ob

ile
in

du
st

ry
,l

og
is

tic
s

an
d

tr
an

sp
or

ta
ti

on
sy

st
em

s,
he

al
th

ca
re

,m
ili

ta
ry

(R
oh

re
r,

2
0

0
7

;U
lg

en
&

G
un

al
,2

0
0

7
;

M
an

iv
an

na
n,

2
0

0
7

;M
cG

ui
re

,
2

0
0

7
;K

an
g

&
R

ol
an

d,
2

0
0

7
)

V
ir

tu
al

w
or

ld
s

th
at

in
cl

ud
e

la
ng

ua
ge

le
ar

ni
ng

,m
ed

ic
al

an
d

he
al

th
ca

re
,c

la
ss

ro
om

s,
fa

ci
lit

ie
s,

la
bo

ra
to

ri
es

,.
..

(I
bá

ñe
z

et
al

.,
2

0
1

1
;B

ou
lo

s,
H

et
he

ri
ng

to
n,

&
W

he
el

er
,

2
0

0
7

;C
lif

fo
rd

,2
0

1
2

)

M
ili

ta
ry

,m
at

he
m

at
ic

s,
ur

ba
n

m
an

ag
em

en
t,

ad
ul

t
tr

ai
ni

ng
,

...
(I

rv
in

e,
Th

om
ps

on
,&

A
lle

n,
2

0
0

5
;D

en
k,

G
ab

ri
el

,
W

er
nb

ac
he

r,
Pf

ei
ff

er
,&

M
ay

er
ho

fe
r,

2
0

1
8

)

Bi
ol

og
y,

m
ili

ta
ry

,m
ed

ic
al

ap
pl

ic
at

io
ns

,a
st

ro
no

m
y,

bi
ol

og
y,

ge
og

ra
ph

y,
ar

ch
it

ec
tu

re
,m

an
uf

ac
tu

ri
ng

,
...

(M
on

ah
an

,M
cA

rd
le

,&
Be

rt
ol

ot
to

,2
0

0
8

;W
eb

st
er

,
2

0
1

4
;C

ur
ci

o,
D

ip
ac

e,
&

N
or

lu
nd

,2
0

1
6

;A
ng

ul
o

&
V

ás
qu

ez
de

Ve
la

sc
o,

2
0

1
3

;
M

ad
at

hi
le

t
al

.,
2

0
1

7
,3

)
U

se
C

as
es

C
SE

V
as

t
am

ou
nt

of
V

id
eo

s
an

d
an

im
at

io
ns

of
di

ff
er

en
t

co
m

pu
te

r
sc

ie
nc

e
ar

ea
s

av
ai

la
bl

e
(K

er
re

n
&

St
as

ko
,

2
0

0
2

;K
at

ai
&

To
th

,2
0

1
0

)

C
om

pu
te

r
ne

tw
or

ki
ng

,
ar

ch
it

ec
tu

re
,s

of
tw

ar
e

en
gi

ne
er

in
g,

C
S

pr
in

ci
pl

es
(A

ln
ou

ka
ri

,2
0

1
3

;Z
ap

po
ni

,
2

0
1

4
)

A
lg

or
it

hm
s,

hu
m

an
co

m
pu

te
r

in
te

ra
ct

io
n,

ne
tw

or
ki

ng
,p

ro
gr

am
m

in
g

(J
oh

an
na

Pi
rk

er
,2

0
1

3
;M

ill
er

et
al

.,
2

0
1

0
;S

la
to

r,
H

ill
,&

D
el

V
al

,2
0

0
4

)

Pr
og

ra
m

m
in

g,
lo

gi
c,

al
go

ri
th

m
s,

cy
be

r
se

cu
ri

ty
,

in
fo

rm
at

io
n

as
su

ra
nc

e
(N

.S
ilv

a,
N

ie
uw

en
hu

ys
e,

G
.S

ch
en

k,
&

Sy
m

on
s,

2
0

1
8

;
G

ec
k

et
al

.,
2

0
1

8
;A

m
or

im
,

H
en

dr
ix

,A
nd

le
r,

&
G

us
ta

vs
so

n,
2

0
1

3
)

C
yb

er
se

cu
ri

ty
,

pr
og

ra
m

m
in

g,
al

go
ri

th
m

s
(J

in
,T

u,
K

im
,H

ef
fr

on
,&

W
hi

te
,2

0
1

8
;C

ha
nd

ra
m

ou
li,

Z
ah

ra
ee

,&
W

in
er

,2
0

1
4

;
A

kb
ul

ut
,C

at
al

,&
Y

ıld
ız

,
2

0
1

8
)

B
en

efi
ts

In
cr

ea
se

in
le

ar
ni

ng
pe

rf
or

m
an

ce
an

d
m

ot
iv

at
io

n,
se

em
in

gl
y

en
dl

es
s

fr
ee

on
lin

e
le

ar
ni

ng
op

po
rt

un
it

ie
s

(M
ay

er
&

Pi
le

ga
rd

,2
0

1
4

;
A

in
sw

or
th

,2
0

0
8

)

Le
ar

ni
ng

ca
n

be
im

pr
ov

ed
,

si
m

ul
at

io
n

of
co

m
pl

ex
si

tu
at

io
ns

,c
an

be
re

pl
ay

ed
ov

er
an

d
ov

er
ag

ai
n,

fo
re

se
ea

bl
e

pr
ob

le
m

s
an

d
di

ffi
cu

lt
ie

s
(W

eb
b,

2
0

0
5

;
X

ia
nn

on
g,

1
9

9
8

;M
oo

rt
hy

,
V

in
ce

nt
,&

D
ar

zi
,2

0
0

5
)

Fe
el

in
g

of
im

m
er

si
on

an
d

pr
es

en
ce

,s
up

po
rt

s
ex

pl
or

at
or

y
le

ar
ni

ng
an

d
en

co
ur

ag
es

st
ud

en
t

en
ga

ge
m

en
t,

hi
gh

er
so

ci
al

aw
ar

en
es

s
(C

hr
is

ti
an

G
üt

l,
2

0
1

1
;M

ill
er

et
al

.,
2

0
1

0
)

En
co

ur
ag

es
th

e
le

ar
ni

ng
pr

oc
es

s,
in

cr
ea

se
s

m
ot

iv
at

io
n,

bi
gg

er
co

gn
it

iv
e

ga
in

s,
st

re
ng

th
en

s
en

du
ra

nc
e

an
d

pa
ti

en
ce

(P
an

ge
,2

0
0

3
;K

af
ai

,
2
0
0
1
;V

og
el

et
al

.,
2
0
0
6

;D
en

k,
G

ab
ri

el
,W

er
nb

ac
he

r,
Pf

ei
ff

er
,

&
M

ay
er

ho
fe

r,
2

0
1

8
)

Ex
pe

ri
en

ce
si

tu
at

io
ns

w
hi

ch
w

ou
ld

no
t

be
po

ss
ib

le
in

re
al

lif
e,

ex
ci

te
m

en
t,

hi
gh

er
m

ot
iv

at
io

n
an

d
en

ga
ge

m
en

t,
im

pr
ov

es
le

ar
ni

ng
ex

pe
ri

en
ce

(F
re

in
a

&
O

tt
,2

0
1
5
;M

ad
at

hi
l

et
al

.,
2

0
1

7
,3

;C
ur

ci
o,

D
ip

ac
e,

&
N

or
lu

nd
,2

0
1

6
)

D
ra

w
ba

ck
s

M
ay

on
ly

in
flu

en
ce

pe
rc

ep
ti

on
,i

llu
si

on
of

un
de

rs
ta

nd
in

g,
sp

ee
d

of
an

im
at

io
ns

un
co

nt
ro

lla
bl

e
(C

la
rk

&
M

ay
er

,2
0

0
7

;
Sw

is
he

r,
2

0
0

7
;A

in
sw

or
th

,
2

0
0

8
)

D
iffi

cu
lt

to
in

te
rp

re
t

re
su

lt
s,

C
re

at
io

n
ca

n
be

ex
pe

ns
iv

e
an

d
ti

m
e

co
ns

um
in

g
(X

ia
nn

on
g,

1
9

9
8

)

G
oo

d
co

nn
ec

ti
on

,m
od

er
n

co
m

pu
te

r,
tu

to
ri

al
s,

su
pp

or
t

fo
r

co
nt

en
t

cr
ea

ti
on

,g
en

er
al

aw
ar

en
es

s
ab

ou
t

th
e

pu
rp

os
e

(C
.G

üt
l&

Pi
rk

er
,2

0
1

1
;

M
ill

er
et

al
.,

2
0

1
0

)

Ba
rr

ie
rs

to
ad

op
ti

on
,d

es
ig

n
an

d
de

ve
lo

pm
en

t,
su

st
ai

na
bi

lit
y,

an
d

in
no

va
tio

n
(K

lo
pf

er
,O

st
er

w
ei

l,
&

Sa
le

n,
2

0
0

9
)

Li
m

it
ed

m
ob

ili
ty

,m
od

er
n

co
m

pu
te

r,
in

st
ru

ct
or

s
ne

ed
to

be
w

el
lp

re
pa

re
d

(A
ba

ri
,

2
0

1
7

;F
er

na
nd

ez
,2

0
1

7
;

Ve
si

se
na

ho
et

al
.,

2
0

1
9

)

2. Background and Related Work

Due to the ever-rising demand of trained computer scientists and the fact that
students struggle in learning its fundamental theory, we want to create tools
which let users interactively engage the topics and increase the learning effects
and motivation. Because of that, we focus on an approach to visualize several
computer science topics and furthermore, extend one part to dive into the
increasingly popular area of virtual reality. The next chapter will demonstrate
the design used for this procedure.

26

3. Design and Requirements

In Appendix A, a general overview of fundamentals in computer science -
algorithms and data structures - as well as several specific application areas
- sorting algorithms, pathfinding and binary search trees - are introduced
as a groundwork of this thesis. Furthermore, many different approaches to
education, mostly related to computer science, were discussed in the previous
chapter to get a better understanding of important factors that need to be
considered when designing computer science topics for teaching.

3.1. Requirements and Objectives

In this section, the main objectives of this work as well as different requirements
to meet our intended goals, based on the thorough research of various teaching
approaches, are presented.

3.1.1. Objectives and Target Group

After analyzing the previously discussed education methods in combination to
computer science topics which are relevant to us, and considering the proven
effectiveness of computer simulations from Kathleen Smetana and Bell (2012),
as well as several drawbacks of different approaches stated by Klopfer et al.
(2009), our main objectives can be determined as follows:

• Design of visualizations of several specific computer science topics in
Unity3D1 that support students in learning their underlying concepts
• Utilization of a base user interface so that it’s possible to gain control and

move the simulations at will
• Creation of a web platform that is easily accessible at all times and contains

an overview and explanation of implemented computer science fields and
their simulations
• Port one visualization into a virtual reality environment
• Comparison of the same simulation in two different environments

1Unity3D, 2005.

27

3. Design and Requirements

Our target groups are students in the beginning terms, pupils in upper classes
that have chosen computer science as their main field and also all the people
that want to start learning about CS and programming or want to improve their
computational thinking skills. However, it can also be useful for graduates as
well as teachers to refresh or restore their knowledge in the presented topics
quickly. The visualizations are developed to demonstrate the functionality and
behaviour of its underlying algorithms and concepts. It should be easily possible
to understand the way of execution and to interact with the user interface to
browse through all the available options.

3.1.2. Functional Requirements

Our functional requirements have been designed based on the research of
educational methods in computer science, described in Section 2.1, and hav-
ing considered our main target groups. Therefore, the following functional
requirements can be concluded for the different visualizations:

Overall

• At all times in the visualizations we want the user to be able to have full
control on what happens next:

– The ability to pause and resume the visualization
– The ability to move one step forward or backwards
– The ability to move to the end or to the beginning

• It should be possible to modify the speed of the visualizations so that
users can study at their own pace

Sorting Algorithms

• Spawn a set of random numbered and sized elements in a movable
container
• Option to choose the amount of elements in a set (inside a certain sup-

ported range)
• Assigning sorting algorithms by drag and dropping over an element

container
• Visualization of one or more containers with assigned sorting algorithms

concurrently
• Self organization of element sets at runtime so that different scenarios can

be simulated (e.g. best-case and worst-case scenarios)

28

3. Design and Requirements

• Operation counter on each element container so that it is possible to
compare the performance of different algorithms
• Introduction of commands so that it is possible to interact with and swap

elements
• Interpretation of self-created code that gets executed while the program is

running, so that even basic algorithms can be realized

Pathfinding

• Automatic spawn of a map that contains a start and end point in its initial
state
• It should be possible to customize and edit the map so that different

scenarios and circumstances can be simulated
• Visual representation of the execution of implemented algorithms
• Display of the provisional steps needed at each visited tile
• Ability to spawn multiple maps where the customized content of former

maps is copied
• Concurrent execution and visualization of assigned pathfinding algo-

rithms
• Summary about the resulting path lengths of the executed algorithms
• Ability to toggle between various configuration options to only visual-

ize the resulting path, to calculate the vector cross product, or to allow
diagonal steps
• Possibility to modify movement costs for walkable tile types on the map

Binary Search Tree

• Spawn of a random binary search tree data structure in form of circles
• Perform the basic operations on a binary search tree:

– Add a node by key
– Search for a node by key
– Delete a node by key

• Log window that is filled with messages explaining the ongoing activity
presented in each step

Website

• Overview and short description of the implemented computer science
topics

29

3. Design and Requirements

• Link to WebGL2 builds of the visualizations so that users can run them
directly in their browser

Sorting in Virtual Reality

• Option to choose the number of elements in a supported range
• Option to choose the order in which elements are spawned (random,

nearly sorted, reversed)
• Representation of algorithms in form of cubes that can be grabbed, moved,

and thrown
• If thrown at a specific area, cubes spawn a set of elements above them
• If previously spawned cubes get thrown at another specific area, they

despawn and reset to their original positions
• Panel where the code of sorting algorithms is shown
• Controller to scroll between shown algorithm code
• Possibility to run one or more algorithms at the same time
• Panel where the current number operations of each running algorithm is

shown

3.1.3. Non-Functional Requirements

In addition to functional requirements, which were listed in the previous section,
non-functional requirements also play an important role when developing
software. Some relevant factors to this work are the following:

• Availability: The simulation environment should be permanently avail-
able to users. By having created a website that is accessible without any
real difficulties or technical requirements at all, it is assured that our work
is available almost all the time from almost everywhere by simply having
an internet connection.
• Usability: One of the most important aspects of this work is that our

simulations are easy to use and simple to understand. Combined with a
visually appealing and user-friendly interface, it is the key to avoiding
frustration, raising motivation and supporting the user in learning the
presented topics.
• Scalability: The system needs to be capable to remain stable when in-

creasing the number of objects that are used in the simulations. In our
case the number of containers and elements in the sorting project, the
number of sections of a map in the pathfinding project or the number of
nodes in a binary search tree.

2WebGL, 2011.

30

3. Design and Requirements

• Extensibility: It should be possible to extend our simulations with addi-
tional content like slightly modifying algorithms by changing criteria in
the code or even adding completely new algorithms.
• Reusability: Parts of the system are easily reusable if we decide to

implement another visualization of a different computer science topic.
• Performance: All the visualizations in the environment should run fluidly

so that every single operation can be executed without interruption or lag.
Performance hindering configurations, like, for example, spawning many
maps in the pathfinding project with each having a very big amount of
customizable map parts, are disabled by default.
• Multi-platform: It is desirable to reach out to as many users as possible.

We want to be able to easily deploy the projects to several different
platforms to make them available to almost everyone.

3.2. Technologies

After having determined the main objectives and the requirements of this work,
the next step was to choose a proper framework/engine and programming
language for the implementation. There were several candidates, but in the
end, the decision fell between two of them, which are briefly discussed in this
section.

• HTML5 & JavaScript3: One idea was to create and implement everything
on a website using HTML5 and JavaScript. It offers many different libraries
that are free to use and can be utilized to construct visualizations of all
kind. It is simple, easy to learn and very popular.
• Unity3D4: Unity is a popular game engine that supports developing

games in both 2D and 3D. One of the most practical benefits is its ability
to export projects to many different platforms. It is easy to learn and
provides many features. Unity is free for personal use if the funding does
not exceed 100K dollars per year. However, there are also paid versions
for professionals and studios that offer access to enhanced benefits. Fur-
thermore, everyone can make use of the Unity asset store, where they
offer a large collection of both free and paid assets that can be quickly
integrated into projects. The supported languages of Unity are C# and, in
earlier versions, UnityScript and Boo.

Due to the author’s previous experience in Unity3D and especially C#, as well as
having the aforementioned non-functional requirement multi-platform in mind,

3JavaScript, 1995.
4Unity3D, 2005.

31

3. Design and Requirements

Figure 3.1.: Architecture model of the project show its components

the Unity engine will be used as a primary tool to create computer science
visualizations. The obvious choice for the integrated development environment
is VisualStudio5 as it offers a well-done integration to Unity, which is very
useful for testing and debugging when facing various problems or errors, and
again also due to the author being familiar with it.

3.3. Architecture

Based on the main objectives, as well as the functional and non-functional re-
quirements, an architecture model is created to represent the different modules
this project consists of. All the components are built from scratch and created
in Unity3D. Figure 3.1 shows the concept of architecture containing the differ-
ent modules. The components are implemented in every part of this project
with slight modifications depending on the type and its specific distinctive
requirements.

• Graphical User Interface: This module is responsible for receiving and
delegating user input like spawning or customizing objects in the game
field and executing algorithms. Its design mostly differs between each

5Visual Studio, 1997.

32

3. Design and Requirements

Figure 3.2.: Example use case of a simulation

computer science simulation except for one part that is responsible for
controlling the visualizations.
• Game Field: The game field consists of one or more maps, depending

on the actions of the users. It contains all the necessary information for
further operations.
• Algorithms: This part is responsible for executing chosen algorithms

on the given dataset. The result and relevant data, about its underlying
functionality, is being transported to the Visualization Behaviour module.
• Visualization Behaviour: This module is the core component of the

project as it is responsible for interpreting and visualizing the data given
by the Algorithms module after an algorithm is executed.
• Communication: A key part is being able to have full control over the

simulations. With this component, it is possible to communicate different
game states between the modules to ensure proper behaviour.

Figure 3.2 shows an example use case of the simulations. The game field can
be modified, parts can be added or removed, and algorithms can be chosen.
Following that, the simulation can be started, which triggers the execution
of algorithms on our data structure and visualization. Furthermore, it can be
stopped, moved forward, moved backwards, and resumed.

33

3. Design and Requirements

3.4. Summary

In this chapter, we discussed the objectives and target group of this work, the
derived requirements for all the simulations, as well as the overall architecture
and design of the project. The objectives that we want to realise were decided
after extensively studying related literature about both education methods
in general and specifically related to computer science. The observations by
Kathleen Smetana and Bell (2012) pointed the author into the selected direction.
The functional and non-functional requirements were found after engaging
related computer simulations mentioned in section 2.1 and considering certain
drawbacks stated by Klopfer et al. (2009). With all these important factors
in mind, the overall architecture for this project was created, as shown in
Figure 3.1. It shows the main components which are needed for the successful
implementation. It was decided to use the Unity engine6 for implementing
our goals as it is easy to use and able to deploy our simulations to multiple
platforms. Furthermore, it grants access to the Unity asset store7, which contains
many free assets, some of them useful for our work, making it an obvious choice.

In the course of this work, several computer science topics will be imple-
mented and visualized.

1. Sorting: Visualization of many sorting algorithms. Users have the pos-
sibility of comparing algorithms that run simultaneously. They can also
move elements and run code themselves.

2. Pathfinding: Visualization of many pathfinding algorithms. Users can
customize maps and run different scenarios.

3. Binary Search Tree: Visualization of a binary search tree data structure.
Users can apply basic operations.

Important aspects of this work are its usefulness as a supportive learning
tool, the ability of the user of having full control of the visualization, as well as
the possibility to extend the simulations by further algorithms or options easily.
The next chapter will be about the detailed description of implementing all the
underlying components and the methods used to accomplish our objectives.

6Unity3D, 2005.
7Unity Asset Store, 2010.

34

4. Implementation

In this chapter, the methods to create the simulations are discussed in detail,
screenshots of certain project parts are shown, and code snippets of important
features are listed.

4.1. Environment and Resources

As previously mentioned in section 3.2, the engine used for creating this project
is Unity3D1 with Visual Studio2 as integrated development environment, and
the programming is done in C#. Furthermore, we make use of plugins and
resources obtained from the Unity asset store3. For the movement of game
objects, an asset called LeanTween4 is utilized. It is an efficient animation
engine for Unity that lets you easily move objects to new positions. Due to the
requirement of letting the user actively participate in the simulations, we have
several user interface elements. Instead of the built-in Unity elements, we make
use of the more powerful TextMeshPro5, which was an asset first but has been
included in Unity since version 2018.2, for some parts. Last but not least, we
want to be able to execute code at runtime for the Sorting simulation. To do
that we include a plugin called Unity-Jint6, which is a port of Jint7, a Javascript8

Interpreter for .NET framework, for Unity.

4.2. Sorting

In this section, all the implementation details about the underlying components,
the featured sorting algorithms, and the style of visualization of the Sorting

1Unity3D, 2005.
2Visual Studio, 1997.
3Unity Asset Store, 2010.
4LeanTween, 2016.
5TextMesh Pro, 2017.
6Unity-Jint, 2016.
7Jint, 2014.
8JavaScript, 1995.

35

4. Implementation

Figure 4.1.: User interface

project are discussed. An overview of the user interface of the Sorting simulation
is represented in Figure 4.1.

4.2.1. Graphical User Interface

In this simulation, the user interface is divided into three parts, with each
responsible for a different task.

1. Controller: The controller is the main user interface component of all
our simulations. When visualizing algorithms and other computer science
processes, it is important to give the users full control over the ongoing
events. They must have the ability to stop and resume the visualization at
will and move single steps forward or backwards so that they can learn
and understand the presented concept at their own pace. As shown in
Figure 4.1, sector A, the UI Controller consists of six options to intervene
in the visualization.

a) Pause/Resume: lets the user stop and resume the ongoing visualiza-
tion whenever needed

b) Step to begin: brings the simulation back to the begin game state

36

4. Implementation

c) Step backwards: moves the visualization one step backwards
d) Step forwards: moves the visualization one step forward
e) Step to end: brings the simulation to the end game state
f) Speed: the user is able to control the speed of the visualization

2. Main: This is the main decision point of the user interface in this simula-
tion. The corresponding options of this part are presented in Figure 4.1,
sector B.

• New elements: On top, the user can choose a number in the pre-
defined range from five to twenty. The Add button then spawns a new
box that contains the previously chosen number of elements. If there
is already an existing element container with the same number of
elements in the game field, which will be described in the next section,
then the newly spawned elements will be in the same randomly
arranged order as the other container. On the other hand, if there is
no other element container present or the chosen number of elements
differs from the existing container, then a simple randomize function
is called to determine the attached value of each element.
• Select algorithm: Here the user can choose between several imple-

mented sorting algorithms. By simply drag and dropping an algo-
rithm over an element container, it gets attached to it. Algorithms
can be applied to multiple containers. Pressing the Start button leads
to the beginning of the visualization process of every single element
container, that has an algorithm attached, at the same time. Hitting
the Clear button removes all element containers that do not have a
running visualization.

3. Coding area: In addition to the global architecture, the sorting simulation
implements another module, the Input Interpreter, which will be discussed
in a later subsection. It is responsible for interpreting user-entered code
and getting it executed on an element container. Figure 4.1, sector C, shows
the components of this part of the user interface. Arbitrary code can be
entered into the big input field. Furthermore, some provided functions can
be made use of, as shown in Figure 4.2. The panel that lists the functions
can be displayed to the user by clicking on the blue question mark. By
clicking on the Execute button, the entered code is executed on the selected
element containers, which is recognizable by the differently coloured
border.

After having explained our user interface component in detail and having given
a rough overview of its appearance, we move over to the Game Field module
and discuss it in the next subsection.

37

4. Implementation

Figure 4.2.: Provided code functions

4.2.2. Game Field

The Game Field is the central point of the simulation, especially for the user,
because almost every relevant or important action is taking place there and
is visible to the user. As shown in Figure 4.1, sector D, it is filled by one
or more containers with circular elements inside. A so-called SortingBox is
stored as a Prefab, which is a complete game object with all its components,
property values and child game objects. It is reusable and can be instantiated
inside the simulation whenever needed. The SortingBox prefab consists of
several components, a container, which holds the elements that get sorted,
some text-based objects and scripts. The container is selectable by clicking on it,
which is immediately recognizable by the users as it changes the colour of the
border. Furthermore, containers are targets of drag and drop behaviour. Sorting
algorithms can get attached to it. Their names get then shown in the top right
corner. In the top left corner, the needed number of operations of the executed
algorithm is displayed. The circular elements are spawned in the middle. They
are the main objects of this simulation because they represent the animations of
sorting algorithms. These elements have the following attributes:

• Number: A random number between 1 and 99 is assigned to each newly
spawned element.
• Colour: The default colour of the elements is red. Depending on the

resulting value the colour of the element is adjusted to represent the
differences, as can be seen in Listing 1.
• Size: Similar to the colour attribute, the size of an element changes ac-

cording to the number. There is a predefined value for both the minimum
scale and the maximum scale.

The SortingBox has a script attached that is responsible for handling all the
attribute values. Below the elements, we have text elements with numbers
from zero to nine that represent the corresponding position in an array. That
position is useful when using the Coding Area, which will be discussed in a later
subsection. Last but not least, we have optional text elements on the left side.
There is a BucketScript attached that is called when RadixSort is applied and
started. It is responsible for displaying the different buckets. There, elements
get grouped according to their digits.

38

4. Implementation

float multiplier = (255 - minGBColor) / maxScale;

float color = 1 - ((minGBColor + scale * multiplier) / 255);

...

elementTransform.GetComponent<Renderer> ().material.color =

new Color (1, color, color);

Listing 1: Element colour adjustment

Figure 4.3.: Algorithm Class Representation

4.2.3. Algorithms

In this subsection, the implemented sorting algorithms, and how we transport
the data so that it is possible to visualize them in a way that is understandable
and appealing, is discussed.

As most of the sorting algorithms behave in a similar way, an abstract base
class is created, which can be seen in Figure 4.3. In the derived sorting algorithm
classes, on one hand, the given element array is sorted and on the other hand,
useful information about the way the specific algorithm behaves is saved in
objects of a class called SortingVisualItem, which is presented in Figure 4.4. It
contains all the necessary data to comprehend the processes at a later stage. An
enum is used to differentiate between several types of SortingVisualItems, as can
be seen in Listing 2. It is an enumerated type, with a restricted set of values,
that is utilised to classify objects. All the obtained information at this point is
crucial for visualizing each algorithm.
Due to the different characteristics of sorting algorithms, it is necessary to

divide them into categories which lead to a similar style of visualization:

• In-place comparison based: In-place means that the algorithm does not
need extra memory space in the sorting process. However, for variables,
there is a small constant extra space allowed. Comparison based means

39

4. Implementation

Figure 4.4.: SortingVisualItem Class Representation

enum SortingVisualType { Swap = 0, Comparison = 1, Radix = 2,

MergeArray = 3, MergeMove = 4, MergeComparison = 5,

MoveTo = 6, MoveMemory = 7 }

Listing 2: SortingVisualType Enum

that the algorithm simply compares the values of the elements in the array
to each other. This type of sorting algorithm is featured the most in our
simulation, as the following algorithms belong to this category:

– BubbleSort
– GnomeSort
– HeapSort
– InsertionSort
– QuickSort
– SelectionSort
– ShellSort

This is the most simple form of algorithms to visualize as the elements
are only compared to each other, swapped, or moved to another position.
Listing 3 shows the implementation of SelectionSort, how the algorithm
sorts the elements, and which data we save for the visualization.
• Out-of-place comparison based: In this case, the algorithm also compares

the elements to each other but needs extra memory space in the process.
MergeSort falls into this category. It recursively splits the unsorted array
into new smaller arrays that get sorted one after another. Therefore, we
save information about the sub-arrays to be able to distinguish it from the

40

4. Implementation

void SelectionSort()

{

for (int i = 0; i < elementArray.Length - 1; i++)

{

// Find the min element in the unsorted array

int min_idx = i;

for (int j = i + 1; j < elementArray.Length; j++)

{

visualItems.Add(new SortingVisualItem((int)SortingVisualType.Comparison,

elementArray[j], elementArray[min_idx]));

if (GetElementSize(elementArray[j]) < GetElementSize(elementArray[min_idx]))

min_idx = j;

}

// Swap the found min element with the first element

Swap(min_idx, i);

}

}

Listing 3: SelectionSort code

other elements in the visualization.
• Non-comparison based: These algorithms don’t compare the elements

to each other but use other ways like RadixSort, which categorizes them
according to the digits of the corresponding numbers. It can be imple-
mented on the basis of least significant digit, which means that it starts
from the least digit and moves towards the most significant digit, or the
other way around, as is explained in appendix A.2. The saved information
is a little bit different to the other categories as RadixSort groups elements
into buckets according to their digits. These buckets are the centre of this
visualization process.

In this section, we discussed the implemented sorting algorithms and the
necessary information that is being kept track of and transported to the next
module, which is the Visualization Behaviour.

4.2.4. Visualization Behaviour

After the algorithms have finished sorting the element arrays, the Visualization
Behaviour module is called with relevant data. The saved information in the
Algorithms module is interpreted here and decisive of the following actions.
As mentioned previously, the different type of our SortingVisualItem objects is
responsible for how the rest of the object data is interpreted and the resulting
visualization.

41

4. Implementation

Figure 4.5.: Swapping of two elements

Figure 4.6.: Comparison of two elements

• Swap: Data consists of two elements that swap the place with each other.
Both elements turn green as soon as the animation starts. A rotation
point between them and two checkpoints are calculated to illustrate the
trajectory, which is being kept track of, as good as possible. Figure 4.5
shows a simple swapping procedure.
• Comparison: The items contain this type when two elements are com-

pared to each other. In this case, the elements turn blue to display that at
this point in the algorithm, these two elements are compared, as shown in
Figure 4.6.
• Radix: As the name implies, this type is used for moving elements

in RadixSort. Figure 4.7 shows how the elements are grouped into the
buckets, depending on the digit. After one digit has been handled, the
elements are brought back to the original positions but in the new order.
Then the next digit is processed, and so on. After all the digits have been
handled, the elements are in a sorted and stable state, which means equal
elements preserve their original order.
• MergeArray: As MergeSort is an out-of-place algorithm, it is necessary to

illustrate the extra memory space appropriately. In this case, members of

42

4. Implementation

Figure 4.7.: Group by buckets

Figure 4.8.: Subarrays in MergeSort

extra arrays are coloured together clearly. Figure 4.8 shows two sub-arrays.
Elements of the first sub-array are coloured teal, elements of the second
array are coloured purple.
• MergeMove: After elements in the extra arrays of MergeSort are com-

pared to each other, they move to their consequent position in the original
array. While this animation is running the corresponding elements are
turning green, like in all the movement scenarios.
• MergeComparison: Happens in MergeSort in the state when two extra

arrays are displayed. In the course of this process, two elements are
compared to each other and their colour changed to blue.
• MoveTo: This type is used when an element is moved to a specified

position, colour is green while the element is on its way.
• MoveMemory: Similar to other movement cases but is particularly used

when an algorithm takes an element of the array and saves it in a new local
variable, which is later used to be compared. This behaviour is illustrated
in Figure 4.9.

The previous itemization describes the behaviour and representation of different
types of SortingVisualItems. The movement of elements itself is handled by the

43

4. Implementation

Figure 4.9.: Single element saved in memory

usage of an asset called LeanTween9. Listing 4 shows the simple process of
swapping two elements. Apart from the destination points, it is possible to enter
additional checkpoints to construct a cleaner trajectory.

LeanTween.move(element1,

new Vector3[] { dest2, temp1, temp1, dest1 },swapSpeed);

LeanTween.move(element2,

new Vector3[] { dest1, temp2, temp2, dest2 }, swapSpeed);

Listing 4: Swapping of two elements

4.2.5. Input Interpreter

In the previous subsection, it was explained how the algorithms operate and
how we visualize their behaviour. In this simulation, an additional module is
used to handle user-entered code, the Input Interpreter. Due to the integration of a

JintEngine e = new JintEngine();

e.SetFunction("swap",

new Jint.Delegates.Action<int, int>((a, b) => Swap(a, b)));

...

private void Swap(int a, int b) { ... }

Listing 5: Introducing functions with Jint

plugin called Unity-Jint10, it is possible to interpret JavaScript11 code and execute

9LeanTween, 2016.
10Unity-Jint, 2016.
11JavaScript, 1995.

44

4. Implementation

Figure 4.10.: Algorithm in coding window

it on one or more SortingBoxes. Furthermore, we can introduce new functions
that might be helpful for the users. In Listing 5, we show the introduction of a
swap function, where two elements change their place in the same way as it
does in the visualization for the implemented sorting algorithms. The provided
functions, as previously mentioned in Figure 4.2, are as follows:

• swap(x,y): This function triggers the swapping behaviour where the
elements x and y switch places with each other
• size(x): Returns the size of the element in array index position x
• elementCount(): Returns the number of elements in the corresponding

SortingBox

Aside from the self introduced functions, it is possible to execute loops and
conditions, which offers the opportunity to try and test self-made algorithms.
Figure 4.10 shows a simple adaption of the BubbleSort code to be executed by
the InputInterpreter.

4.2.6. Communication

As we want the user to have full control over the ongoing events, the modules
must communicate. If the pause button is pressed, everything should stop, if
the step-to-end button is pressed, we want the GameField with its SortingBoxes
and the VisualizationBehaviour module to jump to the end, if the visualization
speed is changed, every component should know about it, and so on. Therefore
a script is introduced to transport the relevant information to the other game
object or scripts so that events are synchronized between each other at all times.

4.3. Pathfinding

In the previous section, we discussed the first simulation, Sorting. Now we will
focus on Pathfinding, which is a topic that is a big deal in many different areas,
especially games. Figure 4.11 shows the user interface of this simulation.

45

4. Implementation

Figure 4.11.: User interface

4.3.1. Graphical User Interface

Similar to Sorting, the user interface is divided into several parts in this simula-
tion.

1. Controller: The user interface controller, displayed in Figure 4.11 sector
A, is the same for all our simulations and has been explained in detail in
section 4.2.1.

2. MapControls: This simple part of the user interface is responsible for
organizational actions, as can be seen in Figure 4.11, sector B.

• Start: The Start button commands the execution of each selected
algorithm in each map.
• Clear: Clears the maps after a visualization has been finished so that

the original map state is restored.
• + Map: Adds an additional map up until a total of four maps.
• - Map: Removes a map until there is only one remaining.

3. Draw Tiles: A tile is one small single component of the map. In this part
of the user interface, it is possible to change the type of map tiles so that
users can modify the map to their desired state and test algorithms in

46

4. Implementation

different scenarios. The available tile types, as shown in Figure 4.11 sector
C, are as follows:

• Ground: This is the base tile. Using standard settings moving over a
ground tile costs one step, but it can be changed by the user at will.
• Wall: It is not possible to step over a wall tile so all the algorithms

will have to find paths around.
• Water: Same as the wall tile, it is not possible to move across water

tiles.
• Grass: The grass tile can be passed, but it has increased movement

costs. The level of movement costs can be changed by the user and is
an excellent way of studying different scenarios.

To draw tiles on the map, the images of the different types need to be
selected. After that simply clicking on the desired spots is enough to
change the corresponding tile.

4. Options: Several options influence the behaviour of the simulation and
can be chosen at runtime, see Figure 4.11, sector D.

• Visualize Algorithms: When activated all the tiles that are visited by
the algorithm get visualized. Otherwise, only the final path is drawn.
It is activated by default.
• Vector Cross Product: The vector cross product is an option for

Greedy Best First Search and A* to draw cleaner paths. Due to the
square-based map, it often happens that multiple paths have the
same length. Because the algorithms usually have a fixed order of
visiting the neighbours, it happens that directions are rarely changed.
The vector cross product prevents that and produces more logical
paths. Listing 6 shows the implementation of the vector cross product.

protected float ComputeVectorCrossProduct(GameObject start,

GameObject goal, GameObject current)

{

UIManager ui = GameObject.Find("UIManager").GetComponent<UIManager>();

if (ui == null || !ui.vectorCrossProduct.isOn) return 0.0f;

float dx1 = TileHelper.GetX(current) - TileHelper.GetX(goal);

float dy1 = TileHelper.GetY(current) - TileHelper.GetY(goal);

float dx2 = TileHelper.GetX(start) - TileHelper.GetX(goal);

float dy2 = TileHelper.GetY(start) - TileHelper.GetY(goal);

return System.Math.Abs(dx1 * dy2 - dx2 * dy1) * 0.001f;

}

Listing 6: Vector Cross Product for Cleaner Paths

47

4. Implementation

Figure 4.12.: Multiple modified maps

• Diagonal Step: This option allows our path to take diagonal steps
towards the destination instead of only north, south, east and west.
• Cost Grass: Setting for the movement costs of grass tiles.
• Cost Ground: Setting for the movement costs of default ground tiles.
• Visualization Delay: Handles the speed of the visualization.

5. Summary: This part of the user interface displays the result of algorithms
after a path has been found. The required steps for each algorithm on the
current map can be compared, as shown in Figure 4.11, sector E.

4.3.2. Game Field

The game field in this simulation, as can be seen in Figure 4.11 sector F, contains
one to four maps with an attached dropdown field, where an algorithm for this
map can be selected. In the beginning, the map consists of only ground tiles,
one start point and one endpoint. The position of the start and endpoints can
be changed to anywhere on the map, apart from wall and water tiles, by simply
drag and dropping the tile. The maps can be modified and designed at free will.
When adding more maps, the content of the first map is copied so that the user

48

4. Implementation

Figure 4.13.: Class Tile

does not have to redraw all the modifications. Figure 4.12 shows four modified
maps with selected algorithms.

A map consists of a two-dimensional array of tile game objects. The structure
of the tile class can be seen in Figure 4.13. It has a type attribute that is handled
by an enumeration, similar to the approach in the sorting simulation. The
MapScript, which is attached to each map, is responsible for setting all the
reference to the neighbours of each tile. It is necessary information for all the
pathfinding algorithms, which we discuss in the next subsection.

4.3.3. Algorithms

Similar to the algorithms in the sorting simulation, an abstract base class
is created for the pathfinding algorithms. Again the algorithm classes are
responsible for two things. First, the calculation of a path from the start to
the endpoint and second, the storage of information about the underlying
operations of the specific algorithm. Here we use a class called AlgorithmStep.
An object of this class consists of a tile and a list of its neighbour tiles. That is
enough to handle the visualization of the pathfinding process for all algorithms,
which is explained in the next subsection. As follows are the implementation
details of the provided pathfinding algorithms:

• Breadth First Search: This algorithm begins at the start point and puts
all its neighbours in a queue. Then it visits the first item in the queue and
again adds all the neighbours to the queue. This goes on until everything
on the map is visited. Our implementation contains an early exit scenario
by default, which cancels the algorithm as soon as the endpoint is found.
• Dijkstra’s Algorithm: In contrast to Breadth First Search, this algorithm

keeps track of movement costs for each visited tile. So for this purpose,
we remove the queue and use a PriorityQueue12 instead. This way, the
movement costs can be taken into account when deciding how to evaluate

12PriorityQueue, 2013.

49

4. Implementation

locations. Listing 7 shows the definition of the PriorityQueue and the
enqueuing of a tile with its corresponding priority.

SimplePriorityQueue<GameObject> frontier = new SimplePriorityQueue<GameObject>();

frontier.Enqueue(start, 0);

...

float newCost = costSoFar[currentTile] +

map.GetCostByTileType(TileHelper.GetTileType(nextTile));

frontier.Enqueue(nextTile, priority);

Listing 7: Usage of Priority Queue

• Greedy Best First Search: As the previously mentioned pathfinding algo-
rithms expand in all directions, Greedy Best First Search uses a heuristic
function that calculates how close the current tile is towards the goal. This
actual distance is used for the ordering of the PriorityQueue. Listing 8

shows the pseudocode of the heuristic function.

float Heuristic(Tile a, Tile b)

{

return Math.abs(a.x - b.x) + Math.abs(a.y - b.y);

}

Listing 8: Example Code of the Heuristic Function

• A*: In A* the PriorityQueue is a combination of both the priority that
gets derived from movement costs and the priority that is calculated by
the heuristic function. The appropriate code from our work is shown in
Listing 9.

float newCost = costSoFar[currentTile] +

map.GetCostByTileType(TileHelper.GetTileType(nextTile));

...

priority = newCost + Heuristic(end, nextTile) +

ComputeVectorCrossProduct(start, end, nextTile);

Listing 9: Priority used by A*

4.3.4. Visualization Behaviour

As the algorithms have done their work and stored the necessary information,
the Visualization Behaviour module takes over and interprets the given data to
start with the animation. To do that, the responsible script has to iterate through

50

4. Implementation

Figure 4.14.: Illustration of Executed Algorithms

the collected list of AlgorithmStep objects. For this purpose, a coroutine is used,
which is like a function but can pause execution and return at a later time when
the animation needs to be resumed. As previously mentioned, an AlgorithmStep
object consists of a tile and a list of neighbour tiles. We use three different tile
types for visualizing the algorithm behaviour:

1. PATH CURRENT: This colour represents a tile that is currently or was
visited by the algorithm.

2. PATH NEXT: Tiles are coloured like that if they are about to be visited at
a later time.

3. PATH: Tiles with this colour represent the final path.

Furthermore, a number of needed steps up until this point is displayed on
every visited tile. Figure 4.14 shows the result of executed algorithms and the
difference in their expansion. Due to having the ability to modify the maps
quickly, it is easily possible to play through certain scenarios. It can be used to
highlight the weak points of algorithms. For example, the weakness of Greedy
Best First Search is that it is greedy and only wants to move in the most
promising direction. Figure 4.15 shows such a scenario where Greedy Best First
Search blindly moves into a dead end and as a result has to turn around and

51

4. Implementation

Figure 4.15.: Greedy Best First Search Weakness

take a much longer path than Breadth First Search, which has found the optimal
path but is slower in general.

Due to the UI Controller, the user can decide on the flow of the visualization.
The process of finding the path for the same map can be repeated as often
as wished. The user can stop the visualization and continue in steps to better
understand each algorithm. Listing 10 shows the approach to visualizing the
pathfinding algorithms. A coroutine is used to replicate the corresponding
algorithm step by step.

4.3.5. Communication

Similar to the Communication component in section 4.2.6, the same module in
this simulation is needed so that the user interface, the game field with its maps,
the algorithms and their behaviour work together.

4.4. Binary Search Tree

In this section, the implementation details about the simulation of a binary
search tree data structure are discussed, which contains the user interface, the
underlying algorithms, the game field, and the behaviour for visualization.
Figure 4.16 shows the user interface of this simulation.

4.4.1. Graphical User Interface

The user interface in this simulation is held rather simple and is divided into
three parts, which is enough to satisfy the required usability.

52

4. Implementation

IEnumerator DoVisualizeAlgorithms()

{

for(;_visualizationCounter < _algoSteps.Count; _visualizationCounter++)

{

AlgorithmStep algoStep = _algoSteps[_visualizationCounter];

if (algoStep == null) continue;

// set current tile

if (algoStep.CurrentTile != start && algoStep.CurrentTile != end)

SetTileType(algoStep.CurrentTile, (int)TILE_TYPE.PATH_CURRENT);

foreach (GameObject next in algoStep.NeighbourTiles)

{

if (next != start && next != end)

{

SetTileType(next, (int)TILE_TYPE.PATH_NEXT);

TileHelper.SetTileText(next);

}

}

yield return new WaitForSeconds(GetVisualizationDelay());

while (IsPaused() || _isBusy)

yield return null;

}

_visualizationCounter--;

DrawPath();

}

Listing 10: Coroutine to visualize pathfinding algorithms

1. Controller: As discussed in section 4.2.1, the Controller component of the
user interface, displayed in Figure 4.16 sector A, is responsible to give
the user full control over the simulation. The possibility to move through
the algorithm step by step is an important aspect to fully understand the
operating principle.

2. Main: Figure 4.16, sector B, shows the main part of the user interface in
this simulation and consists of the following functionality:

• Add: This button adds a new node with the entered key to the tree
structure.
• Search: A process is started to search for a specific key in all nodes of

the tree.
• Delete: Tries to delete the node with the entered key.

3. Message Log: This is a kind of event log where a summary of the
performed operations is quoted. It is implemented in a way so that the
latest message is in line with the current state of the visualization. An

53

4. Implementation

Figure 4.16.: User interface

illustration of the Message Log is shown in Figure 4.16, sector C.

4.4.2. Game Field

In this simulation, the game field is represented by the complete tree structure,
as shown in Figure 4.16 sector D, that consists of so-called nodes and edges
that symbolize a parent-child relationship between nodes. Figure 4.17 shows
the structure of the node class. It consists of a level attribute that corresponds
to its depth in the tree, a key that identifies the node and is visible in its centre
and references to its parent, left child and right child nodes. The level attribute
is important for the positioning of each node. As can be seen in Figure 4.16

sector D, the edges starting from the root node are longer and in a different
angle than edges in deeper levels. Listing 11 shows the calculation to position
each node correctly. The positions are calculated based on the nodes parent
position, its level and static values for x and y differences. This principle is used
when nodes are to be moved and change their positions after certain operations,
for example when a node, that is in the middle of the tree and has only one
child, is deleted and all the children need to be repositioned. In the class, which
represents our whole tree structure, it is sufficient to only hold a reference to the

54

4. Implementation

Figure 4.17.: Class Node

root node to perform all implemented operations. The next subsection discusses
the algorithms that are visualized in this simulation.

if (level == 0)

return gameObject.transform.localPosition = NodeManager.ROOT_POSITION;

float x = (isLeftNode) ? parentNode.transform.localPosition.x -

NodeManager.X_DIFF / level : parentNode.transform.localPosition.x +

NodeManager.X_DIFF / level;

Vector3 position = new Vector3(x, parentNode.transform.localPosition.y

- NodeManager.Y_DIFF, 0.0f);

Listing 11: Calculation of node positions

4.4.3. Algorithms

As opposed to the algorithm implementations of previously discussed simu-
lations, we execute all operations in the script of the tree data structure. The
root node is used to initiate every single process and browse through the tree.
Furthermore, information for visualization is stored at every relevant point
of the operation in a class called BSTVisualItem. We have implemented the
following operations on a binary search tree data structure according to our
research in section A.2.2:

• Search: The search function takes the root node and the key, which should
be searched for, as parameters. The key of the current node is compared
to the wanted key. If it is equal, the searched node has been found, if it is
null, then there is no node in the tree with the given key. Otherwise, the
function is recursively called again with either the left child node or the
right child node, depending on if the searched key is bigger or smaller
than the key of the current node. Each step a result is displayed in the

55

4. Implementation

message log. In this process, we save the visited nodes and their edges that
lead to the next node in a new BSTVisualItem object. The used algorithm
and storage of objects for visualization can be seen in Listing 12.
• Insert: Similar to the search function, the tree is browsed through to find

the appropriate location to insert a new node. It also takes a node, starting
with the root node, and key as parameters. In addition to the saved objects
in the search function, it is necessary to save an event for the spawning of
a new node so that it can be visualized properly.
• Delete: First, the node that is to be deleted has to be found. This is done

similarly, as described in the search function. After that, further actions
have to be taken depending on the number of children this node has. If
it is a leaf node, which means there are no children, then it just needs
to be stored that this node is deleted. If the node has one child, then we
additionally need to keep track of the child node because its position has
to be updated after the parent node is removed. Otherwise, if the found
node has two children, we have to find its inorder successor, which is the
smallest node in the right subtree, and recursively call the delete function
again. Therefore, we also save objects for finding the inorder successor,
moving it, and changing the key of the original node.

private GameObject Search(GameObject node, int key)

{

bstVisual.Items.Add(new BSTVisualItem(node, (int)VisualType.Node));

// root null or root has key

if (node == null || node.GetComponent<NodeScript>().Key == key)

{

bstVisual.Items.Add(new BSTVisualItem(node, (int)VisualType.FoundNode));

return node;

}

// key > node key

if (node.GetComponent<NodeScript>().Key < key)

{

bstVisual.Items.Add(new BSTVisualItem(node, (int)VisualType.RightArrow));

return Search(node.GetComponent<NodeScript>().RightNode, key);

}

// key <= node key

bstVisual.Items.Add(new BSTVisualItem(node, (int)VisualType.LeftArrow));

return Search(node.GetComponent<NodeScript>().LeftNode, key);

}

Listing 12: Search Node Function

56

4. Implementation

Figure 4.18.: Structure of the BSTVisualItem Class

4.4.4. Visualization Behaviour

After the operations, which have been explained in the previous subsection,
have finished running and stored the necessary data, then the Visualization
Behaviour module of this simulation is called. It loops through the BSTVisualItem
objects, whose structure can be seen in Figure 4.18, and decides on the resulting
visualization depending on its type. In the following list, the action taken for
different types of objects is briefly explained:

• Node & InorderSuccessor: Occurs when a node is visited. Changes its
colour and logs the corresponding message.
• LeftArrow & RightArrow: Changes the colour of the edge to the left or

right child node.
• SpawnNode: Spawns a new node with the set key as a left or right child

of the given parent node.
• DestroyNode: Deletes a specific node. If the node has a child, then all

nodes further down on this subtree get repositioned.
• SetNodeKey: Changes the key and the colour of the stored node.
• InorderSuccessorMove: This type of BSTVisualItem is saved in the process

of deleting a node with two children. A temporary node is spawned with
the key of the inorder successor and moved to the original node position.
It should display the change of the original node key after the inorder
successor has been found.

57

4. Implementation

• InorderSuccessorFound: Occurs when the inorder successor of a node
has been found. Displays the corresponding message log entry.

Due to the UI Controller, the user can decide on the flow of the visualization,
similar to the other simulations. It can be stopped, and steps can be repeated
and reverted as often as wished. Therefore, coroutines are used to loop through
the visualization objects that break on specific conditions and last as long for
each step as stated in the speed slider option of the user interface.

4.4.5. Communication

Similar to the previous simulations, the modules call and communicate with
each other to keep everything informed about the game state.

4.5. Website

In the previous sections, all the simulations were discussed in detail. Due
to some of our functional and non-functional requirements in section 3.1, a
website was created using the convenient GitHub Pages13. It contains an overview
about the topics, images and links to the uploaded WebGL14 builds of each
simulation, as can be seen in Figure 4.19. Because of that it is possible to access
the simulations from anywhere with any device or browser with that it is
possible to display WebGL content. Furthermore, we can add new content or
simulations in a very simple and quick way.

4.6. Sorting in Virtual Reality

In this section, the port of the Sorting simulation into a virtual reality environ-
ment is discussed. Most of the background code base, like the algorithms and
visualization data, can be kept in its original state but some other parts have to
be replaced to make the simulation look visually appealing for a virtual reality
environment.

Resources

For the virtual reality environment, some further resources were necessary for
being able to develop and run the simulation. The head-mounted-display HTC

13Github Pages, 2008.
14WebGL, 2011.

58

4. Implementation

Figure 4.19.: Website including WebGL builds

59

4. Implementation

Figure 4.20.: VR: Game Field

Vive15 has been used combined with the virtual reality system SteamVR16, which
acts as a software interface. Its system requirements are on the higher side
requiring an Intel i5-4590, AMD FX 8350 equivalent or better as CPU, 4 GB or
more RAM and a Nvidia GeForce GTX 970, AMD Radeon R9 290 equivalent or
better graphics card. Due to that, it is not possible to run on rather old systems.
For development, VRTK17 has been utilized, which is a collection of useful and
reusable solutions to common problems in a virtual reality environment. It
provides many example objects that can be modified and included in existing
projects.

4.6.1. Graphical User Interface

Most of the user interface of the Sorting simulation, which has been discussed
in section 4.2.1, is removed as in a virtual reality environment the user is actively
engaged in the world by moving around and utilizing objects. Because of that, it

15HTC Vive, 2016.
16Steam VR, 2015.
17Extend Reality Ltd, 2018.

60

4. Implementation

Figure 4.21.: VR: Configuration Desk and Algorithm Cubes

would be counterproductive to keep all the user interface elements that are used
by clicking. An exception is the Controller object which is responsible for starting,
pausing, and stepping through the visualization, as well as controlling the speed.
The look of the icons is kept the same, but they are replaced by images that
users can trigger by using the virtual reality controller device. The slider to
change the speed of the visualization is also substituted with a grabbable slider
in VR style, as can be seen in Figure 4.20 sector D. Additionally, there is a panel
that contains four usable images of arrows to handle the currently showed
pseudocode of a sorting algorithm, shown in Figure 4.20 sector E. The left and
right arrows change the displayed algorithm, the top and bottom arrows scroll
the code up and down. In the remainder of the section, all the objects that were
introduced in the span of the virtual reality implementation are described.

4.6.2. Virtual Reality Objects

In the beginning, the users spawn in front of the Controller object and also see
other parts of the simulation in the background, like the game field. The actual
starting point is on the left side to configure several options.

Configuration Desk

This object is located on the left side of the initial spawn point and contains two
different configuration options that take place when new elements are created,
as can be seen in Figure 4.21 sector A.

61

4. Implementation

1. Slider: This slider is used to choose the number of elements that are to
be spawned in the game field. The small black piece in the middle can
be grabbed and moved back and forth. The resulting number of elements
changes according to the position and gets displayed in a text field in front
of the object.

2. Lever: It is responsible for how new elements are spawned. The main
reason it is introduced in this environment is that in contrast to the
original Sorting simulation, it is not possible to quickly change the place
of elements by entering and executing code. It can be used by grabbing
the lever and pushing it back or pulling it forth. The text in front of the
object displays the current option and changes according to the position
of the lever. The system only generates a new numerical order, if currently,
no set of elements is present, or if the configuration has been changed. It
can have the following options:

• Random: With this option a completely random order of elements is
generated.
• Nearly sorted: If this option is selected, an almost sorted list of

elements is spawned. The difference to a sorted state is very small
and only requires few swaps, depending on the number of elements.
• Reversed: In this case, the elements spawn in a reverse sorted state. It

is a worst case scenario for some of the sorting algorithms.

Algorithm Desk

The next object is the algorithm desk, shown in Figure 4.21 sector B. It contains
many cubes, each of them representing a sorting algorithm. Users identify the
type of algorithm by its looks, as the names of the corresponding algorithms
are written on the cubes. They can be grabbed and thrown onto the game field
to spawn a new set of elements.

Game Field

Figure 4.20 shows the Game Field, identified by a small area with a slightly
brighter floor than the rest of the room. It has colliders attached to it so that
an event gets triggered when a cube falls onto it. The simulation then creates
a new set of elements, considering the configured options, above the point
of collision between the cube and the game field (see Figure 4.20, sector C).
Following that, the position of the elements can be changed by grabbing the
cube and moving it to another location. The simulation starts by pressing the
play button on the Controller object and visualizes the algorithms identical to
the standard version, except for RadixSort, where additional cubes are spawned

62

4. Implementation

Figure 4.22.: VR: Area to Reset Algorithm Cubes

to represent the different buckets. Furthermore, behind the game field, there
are two panels on the wall, which can be seen in Figure 4.20 sector A and B,
respectively. The first one displays pseudocode of the implemented algorithms
and is managed by four arrows in the Controller object. The second one shows
the required operations and swaps of the currently executed algorithms. On
the right side of the main game field, there is another small area which has the
purpose to reset the cubes and their corresponding algorithms, as can be seen
in Figure A. The procedure is similar to the spawn of elements, which means
that users grab the cube and let it land on this small area. Consequently, the
set of elements is deleted, and the cube returns to its original position in the
simulation.

4.7. Summary

In this project simulations of three computer science topics - Sorting, Pathfind-
ing and Binary Search Trees - were implemented in Unity3D18 with roughly the
same core components, whereas one of them, the Sorting simulation, was addi-
tionally built in a second environment. Besides all the mentioned requirements,
the focus of development and design was on usability and control. Research and

18Unity3D, 2005.

63

4. Implementation

tests have shown that the user having full control over the simulation regarding
speed is a decisive factor for the usefulness of visualized algorithms. The user
interface was purposely kept simple for all the simulations. Additionally, some
extra configuration options were provided depending on the type of simulation,
like the possibility to enter and execute code in the Sorting simulation or the
different path visualization and movement cost parameters in the Pathfinding
simulation. After having finished development of all the mentioned simulations,
a website was created, which includes WebGL19 builds and a summary of each
part. Due to that, it is possible to access the visualizations with a web browser
from everywhere. Finally, the Sorting simulation has been ported into a virtual
reality environment. Most of the core components could be retained but some,
like for example the user interface, had to be transformed into objects that are
more appropriate for a virtual reality environment. Therefore, small widgets
have been provided that let the user actively engage in the virtual world.

Throughout the design and development process, there have only been
minor issues. One example was a performance-related issue in the Pathfinding
simulation. The execution and visualization of algorithms resulted in small lags
when there were multiple complex maps with an increased amount of tiles.
Because of that, the number of tiles on each map has been limited to a smaller
number. Apart from that, no abnormalities were recognized as every simulation
runs smoothly.

19WebGL, 2011.

64

5. Evaluation

To find out if our simulations have the potential to assist in learning computer
science topics, an evaluation has been conducted and analyzed. This chapter
explains the content and structure of the evaluation, describes its procedure,
gives an overview of personal information about the participants, and finally
shows the results.

5.1. Research Methodology and Procedure

Due to the fact that the sorting simulation has been implemented in two different
environments, it enabled us to directly compare both education methods, in
addition to evaluating each of them. Therefore, the procedure was as follows:
First the participants had to answer a pre-questionnaire which collected some
personal information and background. After that, they were asked to test
the first simulation. One half started with the web version, the other half
with the virtual reality simulation. After testing each simulation, they had to
answer a post-questionnaire, which contained questions about the impression
they got, motivational aspects, the System Usability Scale (Brooke, 1996), the
Computer Emotion Scale (Kay & Loverock, 2008), and the Game Engagement
Questionnaire (Fox & Brockmyer, 2013). In the end, they had to do a final
questionnaire, which focused on the comparison between the two simulation
environments. All questionnaires were created and performed with the tool
LimeSurvey1.

5.1.1. Pre-Questionnaire

The pre-questionnaire acquired some personal information about the partici-
pants like gender, age, education and profession. Furthermore, it questioned
them about their previous experience with computer science, simulations, com-
puter games and virtual reality.

1LimeSurvey, 2003.

65

5. Evaluation

Figure 5.1.: System Usability Scale questionnaire

5.1.2. Post-Questionnaire

The post-questionnaire was carried out by using the System Usability Scale
(Brooke, 1996), the Computer Emotion Scale(Kay & Loverock, 2008), the Game
Engagement Questionnaire (Fox & Brockmyer, 2013), and asking several simula-
tion specific questions.

System Usability Scale

The System Usability Scale (SUS) (Brooke, 1996) is a well-established and easy
to use questionnaire, which is independent of technology and rates the usability
of a system. It contains ten questions based on a Likert-scale:

• 0 (strongly disagree)
• 1 (disagree)
• 2 (undecided)
• 3 (agree)
• 4 (strongly agree)

The total points are added up and multiplied by 2,5. A result of 68 or higher
usually illustrates good usability of the system. The maximum achievable
points are 100 (Brooke, 1996). The SUS has been chosen to ensure that the
implementation of our simulations in the light of usability has been done
satisfyingly so that it is beneficial to the users. An illustration of the SUS can be
seen in Figure 5.1.

Computer Emotion Scale

The Computer Emotion Scale (CES) is a reliable scale to rate emotions while
learning new software on computers. It uses a total of 12 corresponding feelings
out of four emotion constructs:

1. Anger

66

5. Evaluation

• Angry
• Frustrated
• Irritable

2. Anxiety

• Anxious
• Helpless
• Insecure
• Nervous

3. Happiness

• Curious
• Excited
• Satisfied

4. Sadness

• Disheartened
• Dispirited

Participants are asked about their feelings during testing the software. Their
possible answers are based on a Likert-scale:

• 0 (None of the time)
• 1 (Some of the time)
• 2 (Most of the time)
• 3 (All of the time)

The results can be interpreted by calculating the mean score of each user for
each emotion construct (Kay & Loverock, 2008). The purpose of using CES in the
evaluation is to get a better understanding of the emotions of users while using
the simulations. Due to that, it is possible to spot some eventual problematic
parts of the implementation and improve it.

Game Engagement Questionnaire

The goal of the Game Engagement Questionnaire is to measure the psycholog-
ical engagement of users when playing a game. It collects information about
immersion, presence, flow, and absorption. The questionnaire includes 19 ques-
tions, and possible answers range from ’fully agree’ to ’do not agree’ (Fox &
Brockmyer, 2013).

67

5. Evaluation

Simulation Specific Questions

Several simulations specific questions were asked after each simulation has
been tested, to get a better understanding of the impression, motivation, and
experience of the users. The types of possible answers to the questions contained
both free text and Likert scales.

5.1.3. Post-Post-Questionnaire

After both post-questionnaires were answered, another short survey was con-
ducted to compare both simulations to each other. The participants were asked
which type they prefer, for which application they prefer it, and about their
reasoning for that.

5.2. Participants

There were twelve participants aged from 15 to 34 (M = 27, SD = 7.1). Five of
them were female (41.67%), and seven of them were male (58.33%). Only two
of them (16.67%) had a visual impairment, glasses and contact lenses. Their
professions made up as follows: six employed (50.00%), five students (41.67%),
and one self-employed (8.33%). Their job titles compose of many different
fields like a teacher, nurse, assistant professor, project manager, and process
engineer. Related to that, their highest level of education ranged from high
school graduates to PhD. On a scale from 1 to 5, about half of them rated
their ability to use computers and video games above average, however eight
(66.67%) regarded their skills with virtual reality usage as below average (M
= 2.17, SD = 1.27). Their frequency of playing video games is quite balanced
(M = 3.25, SD = 1.76). The majority of participants like role-playing, action,
and adventure games the most. Seven (58.33%) of them have heard about
Google Cardboard or Samsung GearVR environment, whereas all seven have
known Oculus Rift and Samsung GearVR, and only one less HTC Vive. Two
(16.67%) of the participants have experienced cyber sickness before. Most of
them considered their knowledge about computer science as average or lower
(M = 2.5, SD = 1.09), and they rated their knowledge about sorting algorithms
even worse (M = 2.25, SD = 1.26).

68

5. Evaluation

Figure 5.2.: Results of the Computer Emotion Scale for the Web Environment

5.3. Results

In the following sections, the results of the evaluation of each environment, as
well as the comparison between both, are presented.

5.3.1. Sorting in WebGL

System Usability Scale

In the web version of the simulation there was only one person (8.33%) that
thought the system was unnecessarily complex and difficult to use. However
nine (75.00%) agreed that the system was easy to use. There was no one who
found that the functions were badly integrated. One person thought there was
too much inconsistency in the system. Two participants (16.67%) found the
system cumbersome to use, whereas one of them admitted afterwards to having
misunderstood the meaning of the word cumbersome. The overall score of the
SUS is 69.49 with a standard deviation of 17.08. Worth mentioning are two
outlier, which had a score of 35.7 and 43.35 respectively.

69

5. Evaluation

Figure 5.3.: Results of the Game Engagement Questionnaire for the Web Environment

Computer Emotion Scale

Figure 5.2 shows the results of the CES for the web environment. It is grouped by
the four main emotions and displays the average score and standard deviation
of all users per emotion. As explained previously, the scale ranges from 0 (none
of the time) to 3 (all of the time). According to the results, sadness got the lowest
score of 0.21 with a 0.5 standard deviation. There was one participant who felt
disheartened some of the time and two participants who felt dispirited some
of the time. Worth mentioning here is that one user felt dispirited most of the
time. Anger received an average score of 0.28 (SD = 0.69). Here one participant
felt irritable all the time, which is a clear outlier because the rest selected 0

(none of the time), despite one user who selected 1 (some of the time). Anxiety
got a score of 0.31 (SD = 0.74). Nobody felt anxious and only one person felt
nervous some of the time. However, two participants thought to be helpless all
the time while testing the simulation. The highest score achieves the emotion
happiness with an average score of 1.42, which is a bit lower than expected but
has a quite high standard deviation of 0.92. It might have something to do with
many participants not being familiar with computer science at all, and therefore
having problems comprehending the content in the beginning.

70

5. Evaluation

Game Engagement Questionnaire

The GEQ collects information about absorption, flow, presence and immersion.
Figure 5.3 shows the average score of all users combined for all the parameters.
The lowest result occurs in the absorption part (M = 1.72, SD = 1.05), shortly
followed by flow (M = 2.06, SD = 1.15). Presence is experienced by more users
(M = 2.4, SD = 1.08) and immersion scores the highest result with the lowest
standard deviation (M = 2.75, SD = 0.92), which was to be expected, as this item
is the easiest to agree with.

Simulation Specific Questions

In this category, basic questions about their impression and motivation were
asked. Most of the participants liked the simulation overall, with one stating that
”it has a big potential if you know the process behind it”. Some features they liked
are the style of visualization and that it is easy to use, however, some mentioned
they did not like that there is no introduction and further explanation of the
algorithms, and therefore hard to understand for people with no background in
computer science. 75% of them would probably use the simulation for learning.
One of them mentioned that achievements or quests could be added, making
it more engaging and motivating. Most of the participants thought that it
was good for learning, and some said, it would be good with some further
additions. Moreover, they found the interaction in the simulation was quite
good and self-explaining overall. The participants also mentioned some possible
improvements:

• Introduction in the beginning
• Further explanation of the sorting algorithms
• More information on how to add loops or clauses in the coding window

Overall they rated their immersion of the experience above average (M = 6, SD
= 2.04) on a scale from 1 (very little) to 10 (very deep). For the motivational
questions, a scale from 1 (fully disagree) to 7 (fully agree) was used. Some
meaningful results include, for example, answers to the statement that the
sorting web application is a good supplement to regular learning, where 75%
agreed with. Also, 75% agreed that they learned something with the simulation.
Eight participants (66.67%) thought that it makes learning more engaging, while
nine (75%) thought that it makes learning more interesting. Likewise, nine users
agreed that learning with the sorting web application is more motivating than
ordinary exercises and that it makes content more interesting. Furthermore,
eight participants agreed that they would like to learn with the simulation in
the classroom.

71

5. Evaluation

5.3.2. Sorting in Virtual Reality

System Usability Scale

The overall score of the SUS in the virtual reality simulation is 76.08 (SD =
12.04), which classifies it as a usable system according to Bangor, Kortum, and
Miller (2009), where 70 is the minimum required score. Nobody found that the
system is unnecessarily complex or that there was too much inconsistency. Ten
participants (83.33%) thought that it was easy to use, and nine (75%) would
imagine that most people would learn to use the system very quickly. Moreover,
nobody felt unconfident or thought that they would need to learn a lot of things
before they could get going with this system.

Computer Emotion Scale

In the CES, happiness got the highest score (M = 2.0, SD = 1.05) again of all
four main emotions. As part of this emotion, seven participants (58.33%) were
satisfied all the time. Anxiety is the second highest with an average score of
0.25 and a standard deviation of 0.44. One participant reported being helpless
most of the time, whereas the other answers for this and the other emotions
in this sector (anxious, insecure, nervous) only include 0 (none of the time)
and 1 (some of the time). Sadness got a score of 0.125 (SD = 0.44). Nobody felt
disheartened, but one user felt dispirited some of the time, and one most of the
time. Anger got the lowest average score of 0.08 with a standard deviation of
0.28. Here two participants were frustrated some of the time, one was irritable
some of the time, and nobody was angry. An overview of the result can be seen
in Figure 5.4.

Game Engagement Questionnaire

The results of the GEQ for the virtual reality simulation, as shown in Figure
5.5, are as follows: Immersion got the highest score of 3.67 and a 0.89 standard
deviation. Second highest is presence (M = 2.67, SD = 1.26). After that, flow is
the next highest parameter (M = 2.33, SD = 1.26). The lowest score is absorption
(M = 2.22, SD = 1.24). Worth mentioning is that for this GEQ result immersion
scored way higher and with a far lower standard deviation than the other
parameters. It seems like the virtual reality environment was a very immersive
experience for most of the participants.

72

5. Evaluation

Figure 5.4.: Results of the Computer Emotion Scale for the Virtual Reality Environment

Figure 5.5.: Results of the Game Engagement Questionnaire for the Virtual Reality Environment

73

5. Evaluation

Simulation Specific Questions

The feedback in this part of the survey was overwhelmingly positive, as all the
participants noted that they like it. They enjoyed various things, like one user
wrote: ”I think the cubes are a good idea and I like the concept of throwing them in
order to interact and work with them”. Furthermore, they mentioned that they like
the possibility to throws things around, the visualizations of the algorithms
and that you can see the code, that it’s fun to learn with, the ability to teleport
and to be in a virtual world. On the other hand, there are only very few parts
some of them did not like. For example, one participant mentioned that it was
not always clear if a button was pressed or not. The vast majority of them
found the simulation engaging and motivating and would use it for learning.
Furthermore, everyone enjoyed the virtual reality experience and thought it was
good for learning. Some users highlighted the interactivity of the simulation
there. The suggestions for improvements were very constructive and even aimed
into the direction of future work. They mentioned that some sort of tutorial
would be beneficial, as well as further descriptions for the levers and buttons.
And some said they would like to see more rooms of this kind with different
backgrounds implemented. All the twelve participants thought that the controls
were easy to use and rated the immersion, which ranged from 1 (very little)
to 10 (very deep), with an average score of 7.67 (SD = 1.89). The results of the
motivational questions, which go from 1 (fully disagree) to 7 (fully agree), are
also continuously positive. Ten persons agreed that they would like to learn
with Sorting in virtual reality (M = 5.67, SD = 1.03). All but one participant
agreed, that the simulation makes the content more interesting (M = 6.25, SD =
1.16). Furthermore, all twelve users thought that Sorting in virtual reality makes
learning more fun, with an average score of 6.33 (SD = 0.85). For the statement
”the simulation inspired me to learn more about computer science” the results are a bit
more varying, as three (25%) of them disagreed. However, eleven participants
(91.67%) agreed that it makes the content more interesting. More than half of
the users found regular computer science classes boring, which probably has
something to do with the fact that the majority of them are not affiliated with
computer science in any way. However, most of them agreed that the computer
science simulation with the virtual reality head-mounted-display was interesting
and engaging. The desire to use such an application on a smartphone seems
to be rather low (M = 2.83, SD = 1.68). Finally, ten out of twelve participants
(83.33%) agreed, that they would like to learn with the virtual reality simulation
in the classroom (M = 5.17, SD = 1.52).

74

5. Evaluation

Figure 5.6.: Comparison of the Computer Emotion Scale between Web and VR

5.3.3. Comparison

In the end, the participants had to answer five more questions, that aimed
to compare the web and virtual reality environment directly. Eleven users
(91.67%) said that they prefer the virtual reality environment. Their reasoning
was versatile as they mentioned it’s more interactive, cooler, more user-friendly,
more interesting, more fun, more exciting, more engaging and more motivating.
The one participant, that preferred the web environment, based the decision on
suffering from cybersickness. They would generally prefer the virtual reality
version for mechanical engineering, chemistry, physics, medical applications,
and further difficult real-life scenarios. On the other hand, they would use
the web version independently at home for more theoretical content. The final
question was about which device they would rather use for learning computer
science. The answers are quite similar to the first question, as eleven out of
twelve participants would choose the virtual reality environment with the same
reasoning as above.

5.4. Discussion

The feedback of the participants in the study was very interesting and informa-
tive. It is worth mentioning that the majority of the attendees have no computer

75

5. Evaluation

Figure 5.7.: Comparison of the Game Engagement Questionnaire between Web and VR

science background and only minor or no prior knowledge about computer
science, or sorting algorithms specifically. Therefore, it felt that some of them
had some difficulties in getting started, especially in the web version, which
is confirmed by their feedback about possible improvements to add some sort
of tutorial and further description of the algorithms. Some also noted that it
would be beneficial to have quests or tasks and in further consequence, to
obtain achievements. Furthermore, it seemed like a few participants occasion-
ally misunderstood the meaning of some words, which has been confirmed
by at least one person. This circumstance might have influenced the results in
one way or another. However, it was to be expected, as there was not a single
native English speaker participating in the survey. Generally, the majority of
the participants enjoyed both simulations. They liked that the web version was
easy to use and its style of visualization. Most of them agreed that using the
web simulation makes learning more interesting and motivating than ordinary
exercises. In the virtual reality version, they liked the enhanced interactivity, the
virtual world, and that it is fun. Furthermore, they enjoyed the deep immersion,
and that it makes the content more interesting and learning more fun. A bit
unexpected is the rather big difference in rating between the web version and
the virtual reality version. The VR environment achieved a 9.5% higher score
in the SUS rating, the happiness emotion in the CES increased from 1.42 to 2,
and the scores for the absorption, flow, presence, and immersion parameters in
the GEQ are way higher for every single category, as can be seen in Figure 5.6

76

5. Evaluation

and Figure 5.7. While the simulations in both environments are not perfect and
improvements can be made, the participants still had a clear trend in favour of
the virtual reality environment, as they felt it is more engaging and exciting.

77

6. Lessons Learned

In this chapter, the challenges, issues and insights which were encountered in the
course of the different project phases, namely literature research, development
and evaluation, are summarized and discussed.

6.1. Literature

Since the goal of this work was to create a system which assists people in
learning computer science topics, it was necessary to thoroughly study different
approaches to teaching computer science, as well as refresh personal knowledge
about the specific fields that were implemented.

In the beginning, traditional education methods were researched, and it was
quickly obvious why such an approach is subpar nowadays. Lectures were more
and more build in a problem-based way, and students were actively involved.
With the start of the common computer era, many new techniques were intro-
duced like computer visualizations, interactive simulations and educational
games. These approaches have shown to have a big potential in raising students
motivation and engagement. Another promising field was the introduction of
virtual reality. It is still a little bit of a futuristic vision, and users are excited
about themselves being actively involved with their movement in a virtual
world. Therefore, it has been decided to create computer simulations and port
one of them into virtual reality so that it is possible to compare a simulation in
two different environments directly.

Before starting with the development, it was also important to refresh our
understanding of computer science theory and some applications which can
be seen in Appendix A and A.2 respectively. The knowledge achieved due to
that was the base for the implementation of the Sorting, Pathfinding and Binary
Search Tree simulation.

6.2. Development

After studying related simulations and educational games in the previously
mentioned research literature, it was decided to develop simulations of specific

78

6. Lessons Learned

computer science topics in Unity3D1. Unity was used as a development environ-
ment as it is easy to handle and supports multiple platforms. The simulations
were designed by considering publication on a website so that users can have
access from everywhere they want. This was accomplished by making use of
the possibility to create WebGL2 builds in Unity3D.

One major challenge was to visualize and illustrate the algorithms in a way
so that users with no or little knowledge were able to understand the content.
Feedback was crucial to advance the simulations to a useful state and to the point
where they turned into beneficial assistance when learning the corresponding
computer science theory. Another issue was the interpreter to execute code in
the sorting visualization. Some tools were found and implemented successfully
but weren’t working in WebGL builds of the simulation. Due to that, in the
end, Unity-Jint3 was used, which made it possible to execute code in this target
build.

The second part of this study was to port the sorting simulation to a virtual
reality environment and make it possible to directly compare them. This was
done with the help of VRTK4, which contains many example objects and scripts.
To get a better feeling in the virtual reality environment, many user interface
elements had to be replaced by game objects that let users engage in the world
actively. This whole process was an exciting phase of the project because it
was the first time of the author to experience developing in a virtual reality
environment.

6.3. Evaluation

The evaluation consisted of several standardized questionnaires like SUS, CES,
and GEQ for a general assessment of the system, as well as simulation specific
questions about motivation and impression. Due to that, the participants could
freely enter their thoughts and give constructive criticism. In the end, five final
questions were asked, which directly aimed at the comparison between the two
different environments. The results are very interesting and informative as the
author did not expect the participants to be so open towards virtual reality. But it
seems like they enjoyed the enhanced engagement and interactivity in a virtual
reality environment. The testing was conducted at two different locations. On
the one hand, in a room at the Graz University of Technology, and on the other
hand, at the home of the author. In hindsight it might have been better to do

1Unity3D, 2005.
2WebGL, 2011.
3Unity-Jint, 2016.
4Extend Reality Ltd, 2018.

79

6. Lessons Learned

the testing in bigger rooms with a larger movement radius, as the movement by
feet was a bit limited in the virtual reality environment and due to that, teleport
was the primarily used method to cover even short distances. Furthermore,
it might have been a good idea to conduct an additional phase of evaluation
earlier in the development process to get early feedback from participants with a
different background and level of knowledge about computer science. It would
have enabled the early implementation of some of their concerns. However,
the results of the evaluation show that the majority of the participants liked
the simulations, especially in the virtual reality environment. Their extensive
feedback has given valuable information about improvements and future work
scenarios.

80

7. Future Work

This chapter discusses possible future improvements of this work, which consist
of both user feedback received from the survey, and the authors own thoughts.
Generally, future work will more likely focus on the virtual reality environment,
due to the perceived fundamental and overwhelmingly positive attitude towards
it.

7.1. Evaluation Results

One primary suggestion was the integration of an introduction or tutorial to get
a quick overview of the purpose of the simulation and its basic functionality.
This can be achieved by adding panels that include a detailed description, or in
further consequence, by a pedagogical animated agent. It is a lifelike character,
which the users can interact with, to obtain further information, as Johnson et al.
(2000) explain. On another note, the participants stated that a further description
of the interactable objects would be useful. It would mean both to denote objects,
which can be interacted within the virtual reality environment, and add a short
description of the type of interaction that is necessary like pressing or grabbing.
Furthermore, it might be an idea to explain the functionality and idea of the
sorting algorithms verbally besides the source code. Due to that, users with
little or no experience in programming or computer science, in general, can
understand the content easier.

7.2. Further Scenarios

As previously mentioned in the results of chapter 5, some users already pro-
vided feedback that falls into the category of future work. They mentioned
that quests and achievements might be a way to further increase the engage-
ment and motivation of the simulation in the virtual reality environment. This
could also be achieved by lifelike pedagogical agents. Many online role-playing
games have such interactable non-player characters. They signal newly available
quests by having an exclamation mark above their heads and then proceed to
describe the task. This can be combined with adding achievements like points

81

7. Future Work

for completed quests. They also requested to implement more rooms with
computer science simulations in the virtual reality environment. The Binary
Search Tree simulation, which is also published in the web environment, would,
for example, be a suitable candidate to port into the virtual reality environment,
as its underlying style of representation can be kept roughly the same. The
Pathfinding simulation would need some adjustments so that its visualization
of algorithms is more appropriate to a virtual reality environment. Apart from
that, it is also an idea to implement learning scenarios for simple data structures
like arrays, where users have to do quests and solve tasks.

82

8. Conclusion and Discussion

As technology advances, and adopting computational thinking skills and com-
puter science knowledge gets more and more important in today’s world, it is
important for students to start learning the fundamentals at an even younger
age. However, learning computer science is a very challenging task that can
lead to frustration and demotivation. Therefore, it is essential to improve the
learning conditions and environments, to assist people optimally, when deal-
ing with such complex topics. Digital learning includes, for example, videos,
simulations, educational games, virtual worlds, and virtual reality and shows
promising results in many areas to increase the motivation and engagement
of students. This work presented the design and implementation of Sorting,
Pathfinding, and Binary Search Tree simulations in a web version. Furthermore,
the Sorting simulation was also implemented in a virtual reality environment.
The simulations help users to understand these computer science topics by
visualizing their underlying algorithms and displaying further information. By
having developed the same simulation in two different environments, it was
possible to compare the possible learning achievements and user satisfaction.
Therefore, an extensive survey was conducted, where twelve participants tested
both the web version and the virtual reality version. First, they had to fill out
a pre-questionnaire, which gave insight into some personal information and
prior experience to computer science and games. After that, they tested a sim-
ulation, where half of the participants started with the web version, and the
other half started with the virtual reality version. Then they had to fill out a
post-questionnaire directed towards the corresponding environment, which was
followed by testing the simulation in the other environment, including question-
naire. In the end, they were asked to answer five final questions, which aimed to
compare both environments directly with each other to get information about
their preference. The results were quite remarkable and interesting, as almost
all of the participants leaned toward the virtual reality environment because
they thought it was way more motivating, engaging, and interactive. They felt
a quite deep immersion while being in the virtual world with head-mounted
displays on their head. These results show that people are quite open about
virtual reality and that it can be an effective way of learning in many different
applications.

83

Appendix A.

Computer Science Fundamentals

Even up until today, scholars have different views about the definition of
computer science, which means there is no consensus. There are many answers
to the question ”what is computer science?” (Hazzan et al., 2014). According to
Denning (2005) ”computer science is the science of information processes and their
interactions with the world. Computers are tools to implement, study, and predict them.
Computer science is a very diverse area of expertise which contains scientific
and engineering facets. Computational thinking skills are needed to deal with
their underlying problem-solving processes. It is about searching, learning,
planning, scheduling, and using a big amount of data to solve computer science
problems (Wing, 2006).

A.1. Essential Theoretical Fields of Computer
Science

Computer Science is a very broad subject area that consists of abstract topics
like algorithms, data structures, programming et cetera. It is therefore difficult
for students, especially for ones that lack skills in abstract thinking, to learn
basic concepts of computer science in a didactic way without visualizations
(Burbaite, Stuikys, & Marcinkevicius, 2012). Building knowledge of algorithms
and data structures is essential for any computer science disciple of study.
Moreover, it’s not only useful for students but for everyone that uses computers
and wants to solve bigger problems (Sedgewick & Wayne, 2011). For exam-
ple, computer-aided design systems have become a vital part of chip design
processes. They rely on two important factors. Firstly, data structures that are
used to representing appropriate information and switching between functions
need to be compact. Secondly the algorithms, which do the work on the data
structures, need to be efficient (Meinel & Theobald, 1998). The next sections
introduce algorithms and data structures in general and list a few computer
science areas where such concepts are essential to achieve specific goals.

84

Appendix A. Computer Science Fundamentals

A.1.1. Algorithms

According to Sedgewick and Wayne (2011) ”the term algorithm is used in computer
science to describe a finite, deterministic, and effective problem-solving method suitable
for implementation as a computer program. Algorithms are the stuff of computer science:
they are central objects of study in the field”. For instance, a specific algorithmic
problem occurs. Every basic process to solve this problem, regardless of the
discipline, starts with comprehending the requirements and ends with a simple
draft of a sequence of instructions that ideally solves the problem, which is
an algorithm usually coded in a programming language (Hazzan et al., 2014).
Algorithmic thinking is an important type of computational thinking. It involves
the ability to think about problems generally and to abstract common character-
istics, which in further consequence leads to having a group of problems instead
of a single one, and to create a series of actions as a solution (Harteveld, Smith,
Carmichael, Gee, & Stewart-Gardiner, 2014). Euclid’s algorithm is one of the first
examples of algorithms, dating back to the Greek mathematician Euclid who
described it in his work Elements. It is about a problem of finding the greatest
common divisor of two numbers. The principle is that, if we subtract the smaller
number from the bigger number, the greatest common divisor doesn’t change.
So if the smaller number, keeps getting subtracted from the bigger number,
the result is the greatest common divisor. If the bigger number is way higher
than the smaller number, then a lot of subtractions may be needed to reach the
solution. There is a more efficient way to solve this issue by replacing the bigger
number with its remainder when divided by the smaller number (see Figure
A.1).

One aspect of most algorithms is how data that is part of the computation is
organized. It brings us to another essential field of computer science, named
data structures. Algorithms and data structures belong together. It is virtually
impossible to successfully learn one of the two without also understanding
the other (Sedgewick & Wayne, 2011). So the next section is about briefly
introducing the theory of data structures.

A.1.2. Data Structures

Representing information is one of the essential parts of computer science.
Information needs to be stored and retrieved with a significant emphasis laid on
speed. Therefore, it is important to structure information so that efficient pro-
cessing is provided, which is only possible through the study of data structures
and algorithms, the fundamentals of computer science (Shaffer, 2013).

According to Aho, Hopcroft, and Ullman (1983) data structures are ”collections
of variables, possibly of several different data types, connected in various ways”. They

85

Appendix A. Computer Science Fundamentals

Figure A.1.: Euclid’s algorithm: Problem description and code implementation (Sedgewick &
Wayne, 2011)

are any data representation with related operations. The term is used to describe
organizing of data item collections, for example, a sorted list of integer values.
Furthermore data structures have a few requirements:

• Certain amount of space for items
• Certain amount of time for operations
• Certain amount of effort in programming

Computer science problems often have several constraints. Only after a thorough
analysis, it is possible to choose the most suitable data structure for the solution
(Shaffer, 2013).

With the right approach, many more possibilities come to light when tackling
complex tasks where millions of objects are processed, like the potential to
increase performance by huge factors (Sedgewick & Wayne, 2011). Computers
become more and more powerful, which slightly aids when struggling with
efficiency. However, problems nowadays also get larger and more complex,
which is why program efficiency becomes an even bigger necessity. Computer
scientists need to be taught to get an as deep as possible understanding of
principles because using proper data structures can lead to a big difference in
the efficiency of a solution (Shaffer, 2013).

86

Appendix A. Computer Science Fundamentals

Figure A.2.: Basic integer array

Basic Data Structure

One of the most basic and most used data structures is an array. It usually
consists of elements of the same type. All elements are equally quickly accessible
by using their corresponding index and can also be selected randomly (Wirth,
2004). See Figure A.2 for a basic array containing integer values.

Fundamental Data Structures

The selection of a proper data structure is dependent on the magnitude of
information that needs to be stored. If a program only needs to store a few
simple things, without having to worry about any form of search, then the most
effective way would be to put them in a list. Otherwise, if the organization
and searching through a very large dataset is needed, then the use of more
complex data structures becomes a requirement (Shaffer, 2013). In the following
enumeration, a few of those fundamental data structures are briefly explained.

• Lists: A list contains a finite sequence of elements. Each element is at a
specific position and has a certain data type. In simple list implementa-
tions, each element is of the same data type. It grants access to fields like
length, begin and end (Shaffer, 2013). There are two basic types of list
implementations:

– Array-Based List: Elements are stored in neighbouring cells of an
array, which means they are easily enumerated. New elements are
added to the tail. The operations insert and delete require other ele-
ments to be shifted by one place (Aho et al., 1983).

– Linked List: A linked list is a recursive data structure, a sequence
of objects called nodes. Nodes contain a generic item that can have

87

Appendix A. Computer Science Fundamentals

any data type and a reference to another Node, which forms the
linked list (Sedgewick & Wayne, 2011). Below code shows a very
basic implementation for a linked list.

private class Node

{

Node next;

Item item;

}

• Stacks: Stacks are a structure similar to lists, however, elements can only
be added and deleted from one end. That means that stacks are not as
flexible as lists but for applications that only need their simple form of
operations, they are efficient and easy to implement. Therefore in cases like
that, it is preferable to use them over lists. Stacks can also be array-based
and linked, quite similar to lists (Shaffer, 2013).
• Queues: Queues are a particular kind of lists where items are inserted

at the tail and deleted at the front. It works under the principle of FIFO,
which means ”first in first out”. The operations are quite comparable to
stacks. Again, it can be implemented array-based or linked. However,
in this case, the standard array-based implementation is not as efficient
which is why it is realised as a kind of circular array instead (Aho et al.,
1983).
• Dictionaries: Dictionaries perform under the principle of key and value.

It is very frequent in everyday life to store and retrieve information. For
example a demand to look up a specific entry in a database. Usually,
entries are defined as a kind of key-value, often id numbers. It is necessary
for the keys to be comparable so that it’s possible for a search to determine
the entry with the corresponding key (Shaffer, 2013).
• Trees: According to Wirth (2004) ”a tree is either an empty structure or a node

of type T with a finite number of associated disjoint tree structures of base type
T, called subtrees”. It is a hierarchical structure on a collection of elements
that are called nodes. One of them is identified as the root node and is
the starting point for the tree structure and its relations (Aho et al., 1983).
Figure A.3 shows a graph representation of a tree structure with node A
being the root node.

In this section, we explained the essential theoretical fields of computer
science, like algorithms and data structures, which are fundamental for further
engagement in this field of expertise. In the next section, we focus on several
application areas that are relevant to this project.

88

Appendix A. Computer Science Fundamentals

Figure A.3.: Graph Representation of a Tree Structure

A.2. Application of Basic Fields of Computer
Science

Now that algorithms and data structures were briefly introduced, the next
step is to discuss specific topics that make use of the previously mentioned
fundamentals. In this case, we focus on sorting algorithms, binary search trees,
and finding paths between points.

A.2.1. Sorting

Sorting is a prominent task in everyday life, be it card games, documents or
spices. At the same time, it is one of the most commonly executed computing
tasks. Therefore, sorting is an essential part of the world that has been stud-
ied full-scale for a long time (Shaffer, 2013). Research of sorting algorithms is
rather old with analysis of BubbleSort even dating back to Demuth (1956). Still
nowadays, new sorting algorithms get invented mostly because of the com-
plexity to solve problems efficiently. A general definition in computer science
is that sorting algorithms are algorithms that put items of a collection into a
certain order, most of the time in numerical or lexicographical order (Durrani,
Shreelakshmi, & Shetty, 2012). Figure A.4 shows a basic graphical represen-
tation of a numerical sorting problem. A very common practical example is
the usage of sorting techniques in database systems for index creation, query
operations and sorted output requested by the user. In addition to standard
sorting algorithms, such modern systems also employ advanced techniques that
improve the adaptive behaviour or the overall performance, like for example
the simplification and reorder of comparison keys (Graefe, 2006). Below follows
a list with brief descriptions of several popular sorting algorithms which have
been analyzed in detail in Sedgewick and Wayne (2011), Aho et al. (1983), Wirth
(2004), Shaffer (2013), Clément, Hien Nguyen Thi, and Vallée (2013), Hammad

89

Appendix A. Computer Science Fundamentals

Figure A.4.: Basic Sorting Problem

(2015) and Durrani et al. (2012).

• BubbleSort: BubbleSort is one of the oldest and simplest sorting algo-
rithms. It is a double for loop where every item in the list is compared with
the item next to it and swapped if necessary. This process is repeated until
it goes through the whole list without any swaps. It is easy to implement
but very inefficient.

Table A.1.: BubbleSort Complexity
Time complexity
Best case: O(n)
Worst case: O(n2)
Average case: O(n2)
Space complexity O(1)

• SelectionSort: The idea behind SelectionSort is related to human intuition.
It finds the largest element and puts it into its correct spot in the list by
switching places with the element at the end. It continues to do so until
the array is sorted. SelectionSort is a simple in-place comparison sort that
is inefficient on large collections.
• InsertionSort: This algorithm inserts each element into its proper place

in the list. The easiest implementation uses two lists, one is the source

90

Appendix A. Computer Science Fundamentals

Table A.2.: SelectionSort Complexity
Time complexity
Best case: O(n2)
Worst case: O(n2)
Average case: O(n2)
Space complexity O(1)

list with the unsorted elements, and the other is the final sorted list. To
save space, most of the time an implementation is used where the current
element is moved behind the sorted elements and continuously swapped
with its preceding element until it is in the proper place. InsertionSort
performs about twice as well as BubbleSort, but its general complexity is
O(n2).

Table A.3.: InsertionSort Complexity
Time complexity
Best case: O(n)
Worst case: O(n2)
Average case: O(n2)
Space complexity O(1)

• ShellSort: The basic idea is to make the collection almost sorted by break-
ing the collection into sublists, sort them, then combine the sublists again.
It starts by choosing a gap sequence to sort pairs of elements that are far
apart, then goes on by continuously reducing the gap. After that, the task
is finished by InsertionSort because of its good runtime for mostly sorted
lists. It is a good choice for large datasets. ShellSort is difficult to analyze
because it heavily depends on the chosen gap sequence.

Table A.4.: ShellSort Complexity
Time complexity
Best case: O(n ∗ logn)
Worst case (worst known gap sequence): O(n2)
Average case: depends on gap sequence
Space complexity O(1)

• MergeSort: MergeSort is an example of the divide-and-conquer style of
sorting algorithms. It recursively breaks the list in two halves, sorts the

91

Appendix A. Computer Science Fundamentals

sublists and recombines them. It does a lesser number of comparisons
than many other algorithms, but the space complexity is high.

Table A.5.: MergeSort Complexity
Time complexity
Best case: O(n ∗ logn)
Worst case: O(n ∗ logn)
Average case: O(n ∗ logn)
Space complexity O(n)

• QuickSort: QuickSort is also a form of divide-and-conquer but with a
different strategy than MergeSort. It is recursive and efficient but unstable,
which means that the relative order of elements is not preserved. QuickSort
chooses a pivot element from the original list. All elements that are smaller
than the pivot element are put into the left sublist, whereas the bigger
elements are put into the right sublist. The above steps are reapplied
recursively, and the sublists get sorted. QuickSort has good average speed
but poor worst-case performance.

Table A.6.: QuickSort Complexity
Time complexity
Best case: O(n ∗ logn)
Worst case: O(n2)
Average case: O(n ∗ logn)
Space complexity O(logn)

• HeapSort: As the name suggests it uses a heap data structure which is
binary tree-based. It is built so that either the biggest item, in a max
heap, or the smallest item, in a min-heap, can be quickly accessed. In the
beginning, a heap is built out of the unsorted array. Next, the first element
is swapped with the last element and the heap size is reduced by one.
After that, the heap is rebuilt, and the previously mentioned steps are
repeated until the heap size is 1 and there is a sorted array. HeapSort is a
good choice for large data because of it being non-recursive and in-place,
but it works slower than divide-and-conquer algorithms with the same
time complexity.
• RadixSort: RadixSort is a non-comparison-based, stable and out-of-place

sorting algorithm which is based on BucketSort or CountingSort. It is
assumed that the unsorted data only consists of keys with characters of
an ending alphabet. For example, strings with characters from a to z, or

92

Appendix A. Computer Science Fundamentals

Table A.7.: HeapSort Complexity
Time complexity
Best case: O(n ∗ logn)
Worst case: O(n ∗ logn)
Average case: O(n ∗ logn)
Space complexity O(1)

decimal numbers with base 10. It can be implemented based on least
significant digit (LSD), which means that it starts from the least significant
digit and moves towards the most significant digit (MSD), or the other
way around. In the beginning, it takes the LSD of each key, then the keys
are grouped based on that digit, while also taking the original order of
keys into account, which makes RadixSort a stable sort. All the steps are
repeated for each MSD. The grouping process is done by using BucketSort
or CountingSort.

Table A.8.: RadixSort Complexity
Time complexity
Worst case: O(w ∗ n) ... n is size of keys, w is length of keys
Space complexity O(w + n)

• GnomeSort: GnomeSort is a very simple and stable comparison-based
sorting algorithm. It starts at the second element and always compares the
current element with the previous one. If they are in the correct order, it
will move one position ahead. Otherwise, it will swap the elements and
go one step back. After that, the comparison procedure starts again, and
everything gets repeated until the end of the array is reached. GnomeSort
is good if the list is almost sorted but has a bad average and worst-case
performance.

Table A.9.: GnomeSort Complexity
Time complexity
Best case: O(n)
Worst case: O(n2)
Average case: O(n2)
Space complexity O(1)

93

Appendix A. Computer Science Fundamentals

Figure A.5.: Anatomy of a Binary Search Tree (Sedgewick & Wayne, 2011)

A.2.2. Binary Search Trees

Dictionaries can be implemented based on sorted, or unsorted lists, however,
both have their drawbacks. If we want to realize insertion in an unsorted list,
it can be done quickly by simply putting a new element at the end of the list.
But if we want to search a certain element, we have to go through all elements
at worst case. Using sorted lists also brings problems. By having linked lists,
we gain no speed when searching. If we use sorted array-based lists, searching
can be done quickly with the binary search, but the insertion of elements now
requires us to shift many other elements. A binary search tree (BST) provides
an improved solution to it (Shaffer, 2013). The definition of a BST is explained
by Sedgewick and Wayne (2011) as follows:”A binary search tree (BST) is a binary
tree where each node has a Comparable key (and an associated value) and satisfies the
restriction that the key in any node is larger than the keys in all nodes in that node’s
left subtree and smaller than the keys in all nodes in that node’s right subtree”. Figure
A.5 shows the anatomy of a binary search tree. A real-world scenario about
the application of binary search trees occurs in the RFC 791 Internet Protocol. It
requires that each packet sent by a host must contain a 16-bit identification field.
As long as the datagram is active, the identification field needs to be unique
for that source-destination pair (Postel, 1981). The Linux kernel remembers
it by utilizing AVL trees, which are binary trees with an additional property
that the height of the two subtrees of a node differ at most by one (Cormen,
Leiserson, Rivest, & Stein, 2009). They are indexed by IP addresses and used as
a second-level cache (Pfaff, 2004).

The basic operations on binary search trees include search, insertion, and
deletion. Shaffer (2013) explains them as follows:

94

Appendix A. Computer Science Fundamentals

Figure A.6.: Deletion of a Node with Two Children

• Search: To find a node with key-value K, we have to begin at the root
node and compare their keys. If they are equal, we are done. Otherwise,
we have to go further down the tree. The good thing is that we only
need to keep searching in one subtree because of the anatomy of BSTs.
If K is bigger than the root node key, we take the right child node next.
Otherwise, we take the left child node and repeat the above steps. If a leaf
node is reached without encountering K, then no element in the tree exists
with key K.
• Insertion: To insert a node with key-value K, we browse through the tree

on the same principle as searching. As soon as we reach a leaf node, we
can insert the new node, as a left child if the K is smaller and as a right
child if K is bigger than the leaf nodes key.
• Deletion: Deleting a node from a BST is a bit trickier than the other two

operations. First, we search the key in the tree. Then we have to figure out
if this node has two children, only one child or is a leaf because it depends
on which further operations we have to execute when removing the node.

1. Leaf: If our node is a leaf node, we can remove it from the tree
without further action.

2. One Child: Replace the node by its child and delete the node.
3. Two Children: In this case, we have to find the inorder successor of

the node, which is the smallest element of the right subtree. Then
replace the node with the inorder successor and delete it.

In Figure A.6, we can see the removal of a node with two children. Node
with key 35 gets deleted. The fact that it has two children means that we need
to find the inorder successor, which is key 39 in this case. Node with key 35

gets deleted, and Node with key 39 takes its position.

95

Appendix A. Computer Science Fundamentals

A.2.3. Pathfinding

The problem of finding the best path is a comprehensive issue in many areas
be it computer games, artificial intelligence, navigation systems or computer
simulations. A lot of fields have specific algorithms in place for reasons like
performance or edge cases. However, most of the time, standard pathfinding
algorithms can also be used successfully for common purposes. A definition
of pathfinding would be that it is a process of finding a way between a start-
and endpoint in a specific environment. Most of the time, the goal is to find the
best path whereas in this context ”best” can have various criteria like it being
the shortest path, simplest path or cheapest path. (Zarembo & Kodors, 2015).
Many computer games rely on pathfinding and have to face several problems. A
challenging fact is that it needs to be solved in real-time with limited availability
of memory and CPU power (Botea, Müller, & Schaeffer, 2004). A common genre
where pathfinding is an important aspect is real-time strategy games. Most of
the time, they use algorithms like A* because it can find the best possible way
between two points in a reasonable short time frame. However, original A* does
not support dynamic environments that are used for real-time strategy games.
While a unit is travelling upon a previously calculated path, the environment
can change in the meantime, for example, the path may be blocked, and it is
necessary to recalculate the path. (Hagelbäck, 2016).

Figure A.7 shows a map of the game Starcraft as a big grid which is divided
into many little squares. When the move command for a unit is issued (usually
right-click) then the pathfinding algorithm is executed, and the unit walks along
the resulting path one square at the time. At each square, it asks if the next
square is occupied and either, continues to move, or waits for a very short
time to check again. If the current path is still occupied, then a new path is
generated by the algorithm. Now the new path could be a long roundabout way.
Because of this functionality, the best way was to spam click the move command,
so that every time the current best path is generated (Wyatt, 2013). To tackle
problems like that Silver (2010) has presented three new algorithms, Koenig
and Likhachev (2006) explain a way of accelerating A* by updating heuristics
between searches, and Botea et al. (2004) use a hierarchical search to reduce
complexity. Usually, a grid is overlaid over a map or region. Then some graph
search is utilized to calculate the best path. Most of the time the grid consists
of rectangles, called tiles, but it can also be Octa-based or Hexa-based. Most of
the time, some form of A* is used to gain the best results (Yap, 2002). In this
project, we focus on discussing the functionality of basic pathfinding algorithms
on a tile-based grid, described by Sedgewick and Wayne (2011), Skiena (1998),
Graham, McCabe, and Sheridan (2003), and Dijkstra (1959), which are used for
our visualizations.

96

Appendix A. Computer Science Fundamentals

Figure A.7.: Grid Representation of a Map in Starcraft (Striketactics, 2017)

97

Appendix A. Computer Science Fundamentals

• Breadth First Search: Breadth First Search is often used to calculate the
shortest path of unweighted graphs. It starts with the source node and
explores equally in all directions. Every non-visited neighbour is added
to the frontier, which is like an expanding ring, and marked as visited.
BFS visits everything on the map. To be able to find the path, every node
needs to remember its previous node. If information about the whole map
is not needed, an early exit variant makes sure that BFS stops as soon as
the destination point is reached.
• Dijkstra’s Algorithm: Dijkstra’s Algorithm, or also called Uniform Cost

Search, is similar to BFS with the big difference that it tracks movement
costs. Instead of adding a neighbour to the frontier if it has never been
visited, the logic behind Dijkstra’s Algorithm is to add it if the location
is better than the previous best location. Furthermore, a priority queue is
used, which changes the way the frontier expands so that more promising
locations are visited earlier.
• Greedy Best First Search: Often it is the case to find the path to only

one destination. A heuristic function is introduced that computes the
proximity of the starting point to the endpoint, to make sure the frontier
expands towards the destination. While Dijkstra’s Algorithm uses the
actual distance from the starting point to order the priority queue, Greedy
Best First Search uses the estimated distance to the destination. The
frontier moves quickly towards the destination using this method, but it
has problems with complex maps, often not finding the best path, as can
be seen in Figure A.8.
• A*: A* principally combines the positive aspects of Dijkstra’s Algorithm

and Greedy Best First Search and disposes of their inefficient features.
Dijkstra’s Algorithm can find the shortest path but spends time explor-
ing unpromising locations. On the other hand, Greedy Best First Search
quickly explores promising directions, but in further consequence often
doesn’t find the shortest path. So A* both considers the actual distance
from the start, and the estimated distance to the destination point.

98

Appendix A. Computer Science Fundamentals

Figure A.8.: Greedy Best First Search - Non Optimal Path (Patel, 2003)

99

Bibliography

Abari, O. (2017). Enabling high-quality untethered virtual reality. In Proceedings
of the 1st acm workshop on millimeter-wave networks and sensing systems
2017 (pp. 49–49). mmNets ’17. Snowbird, Utah, USA: ACM. doi:10.1145/
3130242.3131494

Aho, A. V., Hopcroft, J. E., & Ullman, J. (1983). Data structures and algorithms
(1st). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Ainsworth, S. (2008). How do animations influence learning?
Akbulut, A., Catal, C., & Yıldız, B. (2018). On the effectiveness of virtual reality in

the education of software engineering. Computer Applications in Engineering
Education. doi:10.1002/cae.21935

AlgoRythmics. (2011). [Online; accessed May 28, 2019]. Retrieved from https:
//www.youtube.com/user/AlgoRythmics

Alnoukari, M. (2013). Simulation for computer sciences education. Communica-
tions of the ACS, 6.

Amorim, J. A., Hendrix, M., Andler, S. F., & Gustavsson, P. M. (2013). Gamified
training for cyber defence: Methods and automated tools for situation and
threat assessment. doi:10.14339/STO-MP-MSG-111

Angulo, A. & Vásquez de Velasco, G. (2013). Immersive simulation of architec-
tural spatial experiences. (pp. 495–499). doi:10.5151/despro-sigradi2013-
0095

Ashkenas, J. (2009). Coffeescript. Retrieved from coffeescript.org
Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual sus

scores mean: Adding an adjective rating scale. J. Usability Studies, 4(3), 114–
123. Retrieved from http://dl.acm.org/citation.cfm?id=2835587.2835589

Barr, R., Haas, Z. J., Van Renesse, R., Tamtoro, K., Viglietta, B. S., Lin, C., . . .
Cheung, E. (2004). Swans scalable wireless ad hoc network simulator.
[Online; accessed April 10, 2019]. Retrieved from http://jist.ece.cornell.
edu/index.html

Ben-Ari, M. (1998). Constructivism in computer science education. SIGCSE Bull.
30(1), 257–261. doi:10.1145/274790.274308

Botea, A., Müller, M., & Schaeffer, J. (2004). Near optimal hierarchical path-
finding. Journal of Game Development, 1, 7–28.

Boticki, I., Barisic, A., Martin, S., & Drljevic, N. (2012). Teaching and learning
computer science sorting algorithms with mobile devices: A case study.

100

https://dx.doi.org/10.1145/3130242.3131494
https://dx.doi.org/10.1145/3130242.3131494
https://dx.doi.org/10.1002/cae.21935
https://www.youtube.com/user/AlgoRythmics
https://www.youtube.com/user/AlgoRythmics
https://dx.doi.org/10.14339/STO-MP-MSG-111
https://dx.doi.org/10.5151/despro-sigradi2013-0095
https://dx.doi.org/10.5151/despro-sigradi2013-0095
coffeescript.org
http://dl.acm.org/citation.cfm?id=2835587.2835589
http://jist.ece.cornell.edu/index.html
http://jist.ece.cornell.edu/index.html
https://dx.doi.org/10.1145/274790.274308

Bibliography

Computer Applications in Engineering Education, 21(S1), E41–E50. Retrieved
from https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.21561

Bouchez-Tichadou, F. (2018). Problem solving to teach advanced algorithms in
heterogeneous groups. In Proceedings of the 23rd annual acm conference on
innovation and technology in computer science education (pp. 200–205). ITiCSE
2018. Larnaca, Cyprus: ACM. doi:10.1145/3197091.3197147

Boulos, M. N. K., Hetherington, L., & Wheeler, S. (2007). Second life: An
overview of the potential of 3-d virtual worlds in medical and health
education. Health Information & Libraries Journal, 24(4), 233–245. doi:10 .
1111/j.1471-1842.2007.00733.x. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/j.1471-1842.2007.00733.x

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain,
mind, experience, and school. Washington DC: National Academy Press.

Brooke, J. (1996). Sus: A quick and dirty usability scale. Usability Evaluation in
Industry, 194, 189–194.

Burbaite, R., Stuikys, V., & Marcinkevicius, R. (2012). The lego nxt robot-based
e-learning environment to teach computer science topics. Elektronika ir
Elektrotechnika, 18(9). Retrieved from http://eejournal.ktu.lt/index.php/
elt/article/view/2825

Byrne, C. & Furness, T. A. (1994). Virtual reality and education. In Proceedings of
the ifip tc3/wg3.5 international working conference on exploring a new partner-
ship: Children, teachers and technology (pp. 181–189). New York, NY, USA:
Elsevier Science Inc. Retrieved from http://dl.acm.org/citation.cfm?id=
647119.717198

Byrne, C. M. (1996). Water on tap: The use of virtual reality as an educational tool
(Doctoral dissertation, Seattle, WA, USA). UMI Order No. GAX96-30063.

Carroll, S. J., Paine, F. T., & Ivancevich, J. J. (1972). The relative effectiveness of
training methods: Expert opinion and research. Personnel Psychology, 25.

Cashman, E. & Eschenbach, E. (2003). Active learning with web technology -
just in time. (Vol. 1, T3F–9). doi:10.1109/FIE.2003.1263352

Cengiz Gulek, J. & Demirtas, H. (2005). Learning with technology: The impact
of laptop use on student achievement. Journal of Technology, Learning, and
Assessment, 3.

Chandramouli, M., Zahraee, M., & Winer, C. (2014). A fun-learning approach
to programming: An adaptive virtual reality (vr) platform to teach pro-
gramming to engineering students. IEEE International Conference on Elec-
tro/Information Technology, 581–586.

Chickering, A. W. & Gamson, Z. F. (1987). Seven principles of good practice in
undergraduate education. AAHE Bulletin, 3–7.

101

https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.21561
https://dx.doi.org/10.1145/3197091.3197147
https://dx.doi.org/10.1111/j.1471-1842.2007.00733.x
https://dx.doi.org/10.1111/j.1471-1842.2007.00733.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1471-1842.2007.00733.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1471-1842.2007.00733.x
http://eejournal.ktu.lt/index.php/elt/article/view/2825
http://eejournal.ktu.lt/index.php/elt/article/view/2825
http://dl.acm.org/citation.cfm?id=647119.717198
http://dl.acm.org/citation.cfm?id=647119.717198
https://dx.doi.org/10.1109/FIE.2003.1263352

Bibliography

Clark, R. C. & Mayer, R. E. (2007). E-learning and the science of instruction: Proven
guidelines for consumers and designers of multimedia learning (2nd). Pfeiffer &
Company.

Clément, J., Hien Nguyen Thi, T., & Vallée, B. (2013). A general framework for
the realistic analysis of sorting and searching algorithms. application to
some popular algorithms. Leibniz International Proceedings in Informatics,
LIPIcs, 20. doi:10.4230/LIPIcs.STACS.2013.598

Clifford, M. (2012). Top 20 uses of virtual worlds in education. [Online; accessed
July 15, 2019]. Retrieved from https://schoolleadership20.com/forum/
topics/top-20-uses-of-virtual-worlds-in-education

CodeMonkey Website. (2016). Codemonkey. [Online; accessed April 12, 2019].
Retrieved from https://www.playcodemonkey.com

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
algorithms, third edition (3rd). The MIT Press.

Crespo, R., Garcı́a, R., & Quiroz, S. (2015). Virtual reality simulator for robotics
learning. In 2015 international conference on interactive collaborative and
blended learning (icbl) (pp. 61–65). doi:10.1109/ICBL.2015.7387635

Curcio, I. D., Dipace, A., & Norlund, A. (2016). Virtual realities and education.
Research on Education and Media, 8. doi:10.1515/rem-2016-0019

Dawson, J. Q., Allen, M., Campbell, A., & Valair, A. (2018). Designing an
introductory programming course to improve non-majors’ experiences. In
Proceedings of the 49th acm technical symposium on computer science education
(pp. 26–31). SIGCSE ’18. Baltimore, Maryland, USA: ACM. doi:10.1145/
3159450.3159548

de Jong, T. & van Joolingen, W. R. (1998). Scientific discovery learning with com-
puter simulations of conceptual domains. Review of Educational Research,
68(2), 179–201.

Demuth. (1956). H. electronic data sorting. Stanford University.
Denk, N., Gabriel, S., Wernbacher, T., Pfeiffer, A., & Mayerhofer, E. (2018).

Game-based learning im unterricht. [Online; accessed July 15, 2019]. Julius
Raab Stiftung. Retrieved from https://www.saferinternet.at/fileadmin/
categorized/Materialien/Vademecum Game Based Learning fuer den
Unterricht.pdf

Denning, P. J. (2005). Is computer science science? Commun. ACM, 48(4), 27–31.
doi:10.1145/1053291.1053309

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Springer-
Verlag. doi:10.1007/BF01386390

Dillenbourg, P. (1999). Collaborative learning: Cognitive and computational
approaches. Computers & Education, 1. doi:10.1016/S0360-1315(00)00011-7

102

https://dx.doi.org/10.4230/LIPIcs.STACS.2013.598
https://schoolleadership20.com/forum/topics/top-20-uses-of-virtual-worlds-in-education
https://schoolleadership20.com/forum/topics/top-20-uses-of-virtual-worlds-in-education
https://www.playcodemonkey.com
https://dx.doi.org/10.1109/ICBL.2015.7387635
https://dx.doi.org/10.1515/rem-2016-0019
https://dx.doi.org/10.1145/3159450.3159548
https://dx.doi.org/10.1145/3159450.3159548
https://www.saferinternet.at/fileadmin/categorized/Materialien/Vademecum_Game_Based_Learning_fuer_den_Unterricht.pdf
https://www.saferinternet.at/fileadmin/categorized/Materialien/Vademecum_Game_Based_Learning_fuer_den_Unterricht.pdf
https://www.saferinternet.at/fileadmin/categorized/Materialien/Vademecum_Game_Based_Learning_fuer_den_Unterricht.pdf
https://dx.doi.org/10.1145/1053291.1053309
https://dx.doi.org/10.1007/BF01386390
https://dx.doi.org/10.1016/S0360-1315(00)00011-7

Bibliography

Du, X. & Arya, A. (2015). Design and evaluation of a learning assistant system
with optical head-mounted display (ohmd). In P. Zaphiris & A. Ioannou
(Eds.), Learning and collaboration technologies (pp. 75–86). Cham: Springer
International Publishing.

Durrani, O. K., Shreelakshmi, V., & Shetty, S. (2012). Analysis and determination
of asymptotic behavior range for popular sorting algorithms.

Elmaleh, J. & Shankararaman, V. (2017). Improving student learning in an
introductory programming course using flipped classroom and compe-
tency framework. In 2017 ieee global engineering education conference (educon)
(pp. 49–55). doi:10.1109/EDUCON.2017.7942823

Extend Reality Ltd. (2018). Vrtk - virtual reality toolkit. Retrieved from https:
//www.vrtk.io/

Fernandez, M. (2017). Augmented-virtual reality: How to improve education
systems. Higher Learning Research Communications, 7, 1. doi:10.18870/hlrc.
v7i1.373

Fox, C. M. & Brockmyer, J. H. (2013). The development of the game engagement
questionnaire: A measure of engagement in video game playing: Response
to reviews. Interacting with Computers, 25(4), 290–293. doi:10.1093/iwc/
iwt003

FreeCodeCamp. (2014). Retrieved from https://www.freecodecamp.org/
Freina, L. & Ott, M. (2015). A literature review on immersive virtual reality in

education: State of the art and perspectives.
Gavrin, A. (2006). Just-in-time teaching. Published in Metropolitan Universities, 17,

9–18.
Gavrin, A., X. Watt, J., Marrs, K., & E. Blake, R. (2004). Just-in-time teaching

(jitt): Using the web to enhance classroom learning. Computers in Education
Journal, 14, 51–59.

Geck, G., Ljulin, A., Peter, S., Schmidt, J., Vehlken, F., & Zeume, T. (2018).
Introduction to iltis: An interactive, web-based system for teaching logic.
doi:10.1145/3197091.3197095

Ghezzi, C. & Mandrioli, D. (2006). The challenges of software engineering
education. In P. Inverardi & M. Jazayeri (Eds.), Software engineering edu-
cation in the modern age (pp. 115–127). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Github Pages. (2008). Retrieved from https://pages.github.com/
Graefe, G. (2006). Implementing sorting in database systems. ACM Comput.

Surv. 38. doi:10.1145/1132960.1132964

Graham, R., McCabe, H., & Sheridan, S. (2003). Pathfinding in computer games.
The ITB Journal, 4. doi:10.21427/D7ZQ9J

103

https://dx.doi.org/10.1109/EDUCON.2017.7942823
https://www.vrtk.io/
https://www.vrtk.io/
https://dx.doi.org/10.18870/hlrc.v7i1.373
https://dx.doi.org/10.18870/hlrc.v7i1.373
https://dx.doi.org/10.1093/iwc/iwt003
https://dx.doi.org/10.1093/iwc/iwt003
https://www.freecodecamp.org/
https://dx.doi.org/10.1145/3197091.3197095
https://pages.github.com/
https://dx.doi.org/10.1145/1132960.1132964
https://dx.doi.org/10.21427/D7ZQ9J

Bibliography

Griffiths, M. (2002). The educational benefits of videogames. Education and
Health, 20, 47–51.

Gütl, C. [C.] & Pirker, J. [J.]. (2011). Implementation and evaluation of a col-
laborative learning, training and networking environment for start-up
entrepreneurs in virtual 3d worlds. In 2011 14th international conference on
interactive collaborative learning (pp. 58–66). doi:10.1109/ICL.2011.6059548

Gütl, C. [Christian]. (2011). The support of virtual 3d worlds for enhancing
collaboration in learning settings. IGI Global 2011, 278–299.

Hagelbäck, J. (2016). Hybrid pathfinding in starcraft. IEEE Transactions on Com-
putational Intelligence and AI in Games, 8, 319–324.

Hammad, J. (2015). A comparative study between various sorting algorithms.
IJCSNS International Journal of Computer Science and Network Security, 153,
11.

Harteveld, C., Smith, G., Carmichael, G., Gee, E., & Stewart-Gardiner, C. (2014).
A design-focused analysis of games teaching computer science.

Hazzan, O., Lapidot, T., & Ragonis, N. (2014). Guide to teaching computer
science: An activity-based approach.

Holton, D. (2010). How people learn with computer simulations. ITLS Faculty
Publications. doi:10.4018/978-1-60566-782-9.ch029

Horn, B., Clark, C., Strom, O., Chao, H., Stahl, A., Harteveld, C., . . . Folajimi, Y.
(2016). Design insights into the creation and evaluation of a computer science
educational game. doi:10.1145/2839509.2844656

HTC Vive. (2016). Retrieved from https://www.vive.com/de/
Huguen, P. (2018). [Online; accessed May 13, 2019]. Retrieved from https :

//www.nbcnews.com/mach/science/what-vr-devices-apps-turn-real-
world-virtual-ncna857001

Ibáñez, M., Garcı́a Rueda, J. J., Galán, S., Maroto, D., Morillo, D., & Delgado-
Kloos, C. (2011). Design and implementation of a 3d multi-user virtual
world for language learning. Educational Technology & Society, 14, 2–10.

Irvine, C. E., Thompson, M. F., & Allen, K. (2005). Cyberciege: Gaming for
information assurance. IEEE Security Privacy, 3(3), 61–64. doi:10.1109/MSP.
2005.64

JavaScript. (1995). A high-level, interpreted programming language. [Online;
accessed April 15, 2019]. Retrieved from https://www.javascript.com/
about

Jayaram, S., Connacher, H. I., & Lyons, K. W. (1997). Virtual assembly using
virtual reality techniques. Computer-Aided Design, 29(8), 575–584. Virtual
Reality. doi:https://doi.org/10.1016/S0010-4485(96)00094-2

Jin, G., Tu, M., Kim, T.-H., Heffron, J., & White, J. (2018). Game based cyber-
security training for high school students. In Proceedings of the 49th acm

104

https://dx.doi.org/10.1109/ICL.2011.6059548
https://dx.doi.org/10.4018/978-1-60566-782-9.ch029
https://dx.doi.org/10.1145/2839509.2844656
https://www.vive.com/de/
https://www.nbcnews.com/mach/science/what-vr-devices-apps-turn-real-world-virtual-ncna857001
https://www.nbcnews.com/mach/science/what-vr-devices-apps-turn-real-world-virtual-ncna857001
https://www.nbcnews.com/mach/science/what-vr-devices-apps-turn-real-world-virtual-ncna857001
https://dx.doi.org/10.1109/MSP.2005.64
https://dx.doi.org/10.1109/MSP.2005.64
https://www.javascript.com/about
https://www.javascript.com/about
https://dx.doi.org/https://doi.org/10.1016/S0010-4485(96)00094-2

Bibliography

technical symposium on computer science education (pp. 68–73). SIGCSE ’18.
Baltimore, Maryland, USA: ACM. doi:10.1145/3159450.3159591

Jint. (2014). [Online; accessed April 15, 2019]. Retrieved from https://github.
com/sebastienros/jint

Johnson, W. L., Rickel, J. W., & Lester, J. C. (2000). Animated pedagogical agents:
Face-to-face interaction in interactive learning environments. International
Journal of Artificial Intelligence in Education, 11, 47–.

Jones, J. S. (1987). Participatory teaching methods in computer science. SIGCSE
Bull. 19(1), 155–160. doi:10.1145/31726.31751

Kafai, Y. (2001). The educational potential of electronic games: From games–to–teach
to games–to–learn.

Kang, K. & Roland, R. J. (2007). Military simulation. In Handbook of simu-
lation (Chap. 19, pp. 645–658). John Wiley & Sons, Ltd. doi:10 . 1002 /
9780470172445.ch19. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/9780470172445.ch19

Katai, Z. & Toth, L. (2010). Technologically and artistically enhanced multi-
sensory computer-programming education. Teaching and Teacher Education,
26, 244–251. doi:10.1016/j.tate.2009.04.012

Kathleen Smetana, L. & Bell, R. (2012). Computer simulations to support science
instruction and learning: A critical review of the literature. International
Journal of Science Education, 34. doi:10.1080/09500693.2011.605182

Kay, R. & Loverock, S. (2008). Assessing emotions related to learning new
software: The computer emotion scale. Computers in Human Behavior, 24,
1605–1623. doi:10.1016/j.chb.2007.06.002

Kerren, A. & Stasko, J. (2002). Algorithm animation. Springer-Verlag.
Klopfer, E., Osterweil, S., & Salen, K. (2009). Moving learning games forward.
Koenig, S. & Likhachev, M. (2006). Real-time adaptive a*. In Proceedings of the

fifth international joint conference on autonomous agents and multiagent systems
(pp. 281–288). AAMAS ’06. Hakodate, Japan: ACM. doi:10.1145/1160633.
1160682

Kumar, C. (2017). A new frontier: How can you profit from augmented and
virtual reality? [Online; accessed May 10, 2019]. Retrieved from https:
//www.business.com/articles/how-can-you-profit-from-augmented-
and-virtual-reality/

LaValle, S. M. (2016). Virtual Reality. Cambridge University Press.
Le Compte, A., Elizondo, D., & Watson, T. (2015). A renewed approach to serious

games for cyber security. In 2015 7th international conference on cyber conflict:
Architectures in cyberspace (pp. 203–216). doi:10.1109/CYCON.2015.7158478

LeanTween. (2016). Leantween, an efficient animation engine for unity. Retrieved
from https://github.com/dentedpixel/LeanTween

105

https://dx.doi.org/10.1145/3159450.3159591
https://github.com/sebastienros/jint
https://github.com/sebastienros/jint
https://dx.doi.org/10.1145/31726.31751
https://dx.doi.org/10.1002/9780470172445.ch19
https://dx.doi.org/10.1002/9780470172445.ch19
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch19
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch19
https://dx.doi.org/10.1016/j.tate.2009.04.012
https://dx.doi.org/10.1080/09500693.2011.605182
https://dx.doi.org/10.1016/j.chb.2007.06.002
https://dx.doi.org/10.1145/1160633.1160682
https://dx.doi.org/10.1145/1160633.1160682
https://www.business.com/articles/how-can-you-profit-from-augmented-and-virtual-reality/
https://www.business.com/articles/how-can-you-profit-from-augmented-and-virtual-reality/
https://www.business.com/articles/how-can-you-profit-from-augmented-and-virtual-reality/
https://dx.doi.org/10.1109/CYCON.2015.7158478
https://github.com/dentedpixel/LeanTween

Bibliography

LimeSurvey. (2003). [Online; accessed July 20, 2019]. Retrieved from https :
//www.limesurvey.org

Lowe, R. (2003). Animation and learning: Selective processing of information in
dynamic graphics. Learning and Instruction, 13, 157–176. doi:10.1016/S0959-
4752(02)00018-X

Madathil, K. C., Frady, K., Hartley, R. S., Bertrand, J. W., Alfred, M., & Gramopad-
hye, A. K. (2017). An empirical study investigating the effectiveness of
integrating virtual reality-based case studies into an online asynchronous
learning environment. Computers in Education, 8.

Manivannan, M. S. (2007). Simulation of logistics and transportation systems.
In Handbook of simulation (Chap. 16, pp. 571–604). John Wiley & Sons, Ltd.
doi:10.1002/9780470172445.ch16. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/9780470172445.ch16

Marrs, K., Gavrin, A., & Novak, G. M. (2004). Just-in-time teaching in biol-
ogy: Creating an active learner classroom using the internet. Cell Biology
Education, 3 1, 49–61.

Mayer, R. & Pilegard, C. (2014). Principles for managing essential processing in
multimedia learning: Segmenting, pre-training, and modality principles.
(pp. 316–344). doi:10.1017/CBO9781139547369.016

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., & Mander, K. (2005).
Grand challenges in computing: Education—a summary. The Computer
Journal, 48(1), 42–48. doi:10.1093/comjnl/bxh064

McGuire, F. (2007). Simulation in healthcare. In Handbook of simulation (Chap. 17,
pp. 605–627). John Wiley & Sons, Ltd. doi:10.1002/9780470172445.ch17.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.
ch17

Meinel, C. & Theobald, T. (1998). Algorithms and data structures in vlsi design (1st).
Berlin, Heidelberg: Springer-Verlag.

Miller, A., Allison, C., Mccaffery, J., Sturgeon, T., Nicoll, R., Getchell, K., . . .
Oliver, I. (2010). Virtual worlds for computer science education. 11 th
Annual Conference of the Subject Centre for Information and Computer Sciences,
239.

Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collab-
orative e-learning. Computers & Education, 50, 1339–1353. doi:10.1016/j.
compedu.2006.12.008

Moorthy, K., Vincent, C., & Darzi, A. (2005). Simulation based training. BMJ,
330(7490), 493–494. doi:10.1136/bmj.330.7490.493. eprint: https://www.
bmj.com/content/330/7490/493.full.pdf

Moreno, R. & Ortegano-Layne, L. (2008). Do classroom exemplars promote the
application of principles in teacher education? a comparison of videos,

106

https://www.limesurvey.org
https://www.limesurvey.org
https://dx.doi.org/10.1016/S0959-4752(02)00018-X
https://dx.doi.org/10.1016/S0959-4752(02)00018-X
https://dx.doi.org/10.1002/9780470172445.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch16
https://dx.doi.org/10.1017/CBO9781139547369.016
https://dx.doi.org/10.1093/comjnl/bxh064
https://dx.doi.org/10.1002/9780470172445.ch17
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch17
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch17
https://dx.doi.org/10.1016/j.compedu.2006.12.008
https://dx.doi.org/10.1016/j.compedu.2006.12.008
https://dx.doi.org/10.1136/bmj.330.7490.493
https://www.bmj.com/content/330/7490/493.full.pdf
https://www.bmj.com/content/330/7490/493.full.pdf

Bibliography

animations, and narratives. Educational Technology Research and Development,
56(4), 449–465. doi:10.1007/s11423-006-9027-0

N. Silva, Y., Nieuwenhuyse, A., G. Schenk, T., & Symons, A. (2018). Dbsnap++:
Creating data-driven programs by snapping blocks. (pp. 170–175). doi:10.
1145/3197091.3197114

Newman, I., Daniels, M., & Faulkner, X. (2003). Open ended group projects
a ’tool’ for more effective teaching. In Proceedings of the fifth australasian
conference on computing education - volume 20 (pp. 95–103). ACE ’03. Ade-
laide, Australia: Australian Computer Society, Inc. Retrieved from http:
//dl.acm.org/citation.cfm?id=858403.858415

Novak, G. M., Gavrin, A., & Wolfgang, C. (1999). Just-in-time teaching: Blending
active learning with web technology (1st). Upper Saddle River, NJ, USA:
Prentice Hall PTR.

Oculus Rift. (2016). Retrieved from https://www.oculus.com/rift/
Oh Navarro, E. & van der Hoek, A. (2004). Simse: An interactive simulation

game for software engineering education. (pp. 12–17).
Oh Navarro, E. & van der Hoek, A. (2010). Simse. [Online; accessed April 10,

2019]. Retrieved from https://www.ics.uci.edu/∼emilyo/SimSE/Assets/
images/screenshotSm.png

O’Hara, K. J. & Kay, J. S. (2003). Open source software and computer science
education. J. Comput. Sci. Coll. 18(3), 1–7. Retrieved from http://dl.acm.
org/citation.cfm?id=771712.771716

O’Keefe, R. M. (1987). What is visual interactive simulation? (and is there a
methodology for doing it right?) In Proceedings of the 19th conference on
winter simulation (pp. 461–464). WSC ’87. Atlanta, Georgia, USA: ACM.
doi:10.1145/318371.318635

Open Simulator. (2007). [Online; accessed July 20, 2019]. Retrieved from http:
//opensimulator.org/wiki/Main Page

Open Wonderland. (2007). [Online; accessed July 20, 2019]. Retrieved from
http://openwonderland.org

Pange, J. P. (2003). Teaching probabilities and statistics to preschool children.
Information Technology in Childhood Education Annual, 1.

Patel, A. (2003). Greedy best first search - non optimal path. [Online; accessed
April 09, 2019]. Retrieved from http://theory.stanford.edu/∼amitp/game-
programming/a-star/best-first-search-trap.png

Peddycord-Liu, Z., Cody, C., Michelle Barnes, T., F. Lynch, C., & Rutherford,
T. (2017). The antecedents of and associations with elective replay in an
educational game: Is replay worth it?

Pellas, N. (2015). Open source virtual worlds for e-learning.

107

https://dx.doi.org/10.1007/s11423-006-9027-0
https://dx.doi.org/10.1145/3197091.3197114
https://dx.doi.org/10.1145/3197091.3197114
http://dl.acm.org/citation.cfm?id=858403.858415
http://dl.acm.org/citation.cfm?id=858403.858415
https://www.oculus.com/rift/
https://www.ics.uci.edu/~emilyo/SimSE/Assets/images/screenshotSm.png
https://www.ics.uci.edu/~emilyo/SimSE/Assets/images/screenshotSm.png
http://dl.acm.org/citation.cfm?id=771712.771716
http://dl.acm.org/citation.cfm?id=771712.771716
https://dx.doi.org/10.1145/318371.318635
http://opensimulator.org/wiki/Main_Page
http://opensimulator.org/wiki/Main_Page
http://openwonderland.org
http://theory.stanford.edu/~amitp/game-programming/a-star/best-first-search-trap.png
http://theory.stanford.edu/~amitp/game-programming/a-star/best-first-search-trap.png

Bibliography

Perry, E. L. & Ballou, D. J. (1997). The role of work, play, and fun in micro-
computer software training. SIGMIS Database, 28(2), 93–112. doi:10.1145/
264701.264708

Pfaff, B. (2004). Performance analysis of bsts in system software. In Proceedings
of the joint international conference on measurement and modeling of computer
systems (pp. 410–411). SIGMETRICS ’04/Performance ’04. New York, NY,
USA: ACM. doi:10.1145/1005686.1005742

Pirker, J. [Johanna]. (2013). The virtual teal world-an interactive and collaborative
virtual world environment for physics education.

Pirker, J. [Johanna] & Gütl, C. [Christian]. (2015). Virtual worlds for 3d visualiza-
tions. Workshop proceedings of the 11th international conference on intelligent
environments, 265–272.

Postel, J. (1981). Rfc 791: Internet protocol.
PriorityQueue. (2013). Retrieved from https://github.com/BlueRaja/High-

Speed-Priority-Queue-for-C-Sharp
Putnam, R. T., Sleeman, D., Baxter, J. A., & Kuspa, L. K. (1986). A summary of

misconceptions of high school basic programmers. Journal of Educational
Computing Research, 2(4), 459–472. doi:10.2190/FGN9-DJ2F-86V8-3FAU.
eprint: https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU

Rohrer, M. W. (2007). Simulation of manufacturing and material handling
systems. In Handbook of simulation (Chap. 14, pp. 517–545). John Wiley &
Sons, Ltd. doi:10.1002/9780470172445.ch14. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470172445.ch14

Russell, R., J.and Kozma, Zohdy, T., M .and Susskind, Becker, D., & Russell, C.
(2000). Smv:chem (simultaneous multiple representations in chemistry).
New York: John Wiley.

Sangin, M., Molinari, G., Dillenbourg, P., Rebetez, C., & Bétrancourt, M. (2006).
Collaborative learning with animated pictures: The role of verbalizations.
In Proceedings of the 7th international conference on learning sciences (pp. 667–
673). ICLS ’06. Bloomington, Indiana: International Society of the Learning
Sciences. Retrieved from http://dl.acm.org/citation.cfm?id=1150034.
1150131

Sarabando, C., Cravino, J., & Soares, A. (2014). Contribution of a computer
simulation to students’ learning of the physics concepts of weight and
mass. Procedia Technology, 13, 112–121. doi:10.1016/j.protcy.2014.02.015

Scheiter, K., Gerjets, P., & Catrambone, R. (2006). Making the abstract concrete:
Visualizing mathematical solution procedures. Comput. Hum. Behav. 22(1),
9–25. doi:10.1016/j.chb.2005.01.009

Schor, J., Schor, I., & Pinchover, Y. (2014). Codemonkey. CodeMonkey Studios
Inc. Retrieved from https://www.playcodemonkey.com/

108

https://dx.doi.org/10.1145/264701.264708
https://dx.doi.org/10.1145/264701.264708
https://dx.doi.org/10.1145/1005686.1005742
https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp
https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp
https://dx.doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://dx.doi.org/10.1002/9780470172445.ch14
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch14
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch14
http://dl.acm.org/citation.cfm?id=1150034.1150131
http://dl.acm.org/citation.cfm?id=1150034.1150131
https://dx.doi.org/10.1016/j.protcy.2014.02.015
https://dx.doi.org/10.1016/j.chb.2005.01.009
https://www.playcodemonkey.com/

Bibliography

Second Life. (2003). [Online; accessed July 20, 2019]. Retrieved from https :
//secondlife.com/

Sedgewick, R. & Wayne, K. (2011). Algorithms, 4th edition. Addison-Wesley.
Shaffer, C. (2013). Data structures and algorithm analysis. edition 3.2 (java version).

Dover Publications.
Silberman, M. (1996). Active learning: 101 strategies to teach any subject. Allyn

and Bacon. Retrieved from https://books.google.at/books?id=9x9T2%
5C WEAM8C

Silver, D. (2010). Cooperative pathfinding. In Proceedings of the first aaai conference
on artificial intelligence and interactive digital entertainment (pp. 117–122).
AIIDE’05. Marina del Rey, California: AAAI Press. Retrieved from http:
//dl.acm.org/citation.cfm?id=3022473.3022494

Skiena, S. S. (1998). The algorithm design manual. Berlin, Heidelberg: Springer-
Verlag.

Slator, B. M., Hill, C., & Del Val, D. (2004). Teaching computer science with
virtual worlds. IEEE Transactions on Education, 47(2), 269–275. doi:10.1109/
TE.2004.825513

Smith, R. D. (1999). Simulation: The engine behind the virtual world.
Smith, R. D. (2002). Interactive simulation. [Online; accessed July 10, 2019]. Re-

trieved from https://www.modelbenders.com/ein5255/01 InteractiveSim.
pdf

Starting Point Project. (2012). Just-in-time teaching - step by step. [Online;
accessed April 12, 2019]. Retrieved from https : / / d32ogoqmya1dw8 .
cloudfront.net/images/introgeo/justintime/jitt step-by-step 650.jpg

Steam VR. (2015). Retrieved from https://www.steamvr.com/en/
Striketactics. (2017). Starcraft brood war pathfinding grid. [Online; accessed

April 07, 2019]. Retrieved from http://striketactics.net/sites/default/
files/starcraft1 grid pathfinding.jpg

Swisher, D. (2007). Does multimedia truly enhance learning? moving beyond
the visual media bandwagon toward instructional effectiveness.

TextMesh Pro. (2017). [Online; accessed April 15, 2019]. Retrieved from https:
//assetstore.unity.com/packages/essentials/beta-projects/textmesh-
pro-84126

Tucker, A. B. (1996). Strategic directions in computer science education. ACM
Comput. Surv. 28(4), 836–845. doi:10.1145/242223.246876

Ulgen, O. & Gunal, A. (2007). Simulation in the automobile industry. In Handbook
of simulation (Chap. 15, pp. 547–570). John Wiley & Sons, Ltd. doi:10.1002/
9780470172445.ch15. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/9780470172445.ch15

109

https://secondlife.com/
https://secondlife.com/
https://books.google.at/books?id=9x9T2%5C_WEAM8C
https://books.google.at/books?id=9x9T2%5C_WEAM8C
http://dl.acm.org/citation.cfm?id=3022473.3022494
http://dl.acm.org/citation.cfm?id=3022473.3022494
https://dx.doi.org/10.1109/TE.2004.825513
https://dx.doi.org/10.1109/TE.2004.825513
https://www.modelbenders.com/ein5255/01_InteractiveSim.pdf
https://www.modelbenders.com/ein5255/01_InteractiveSim.pdf
https://d32ogoqmya1dw8.cloudfront.net/images/introgeo/justintime/jitt_step-by-step_650.jpg
https://d32ogoqmya1dw8.cloudfront.net/images/introgeo/justintime/jitt_step-by-step_650.jpg
https://www.steamvr.com/en/
http://striketactics.net/sites/default/files/starcraft1_grid_pathfinding.jpg
http://striketactics.net/sites/default/files/starcraft1_grid_pathfinding.jpg
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://dx.doi.org/10.1145/242223.246876
https://dx.doi.org/10.1002/9780470172445.ch15
https://dx.doi.org/10.1002/9780470172445.ch15
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch15
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470172445.ch15

Bibliography

Unity Asset Store. (2010). [Online; accessed April 15, 2019]. Retrieved from
https://assetstore.unity.com/

Unity3D. (2005). Cross-platform game engine developed by unity technologies.
[Online; accessed April 15, 2019]. Retrieved from http://unity3d.com

Unity-Jint. (2016). Unity-jint, a port of jint for unity. Retrieved from https :
//github.com/splhack/unity-jint

Vesisenaho, M., Juntunen, M., Häkkinen, P., Pöysä-Tarhonen, J., Fagerlund, J.,
Miakush, I., & Parviainen, T. (2019). Virtual reality in education: Focus on
the role of emotions and physiological reactivity. Journal For Virtual Worlds
Research, 12. doi:10.4101/jvwr.v12i1.7329

Visual Studio. (1997). [Online; accessed April 15, 2019]. Retrieved from https:
//visualstudio.microsoft.com

Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright,
M. (2006). Computer gaming and interactive simulations for learning: A
meta-analysis. Journal of Educational Computing Research, 34(3), 229–243.
doi:10.2190/FLHV-K4WA-WPVQ-H0YM. eprint: https://doi.org/10.
2190/FLHV-K4WA-WPVQ-H0YM

Voyiatzaki, E., Christakoudis, C., Margaritis, M., & Avouris, N. (2004). Teaching
algorithms in secondary education: A collaborative approach.

W. Newstrom, J. (1980). Evaluating the effectiveness of training methods. Per-
sonnel Administrator, 25.

Wang, X. (2013). A comparative analysis of performance and cognition in
multimedia learning between esb and nesb students in higher education.
Swinburne University of Technology.

Warschauer, M. (2007). The paradoxical future of digital learning. Learning
Inquiry, 1(1), 41–49. doi:10.1007/s11519-007-0001-5

Webb, M. (2005). Affordances of ict in science learning: Implications for an
integrated pedagogy. International Journal of Science Education - INT J SCI
EDUC, 27, 705–735. doi:10.1080/09500690500038520

WebGL. (2011). A cross-platform, royalty-free web standard for a low-level
3d graphics api. [Online; accessed April 15, 2019]. Retrieved from https:
//www.khronos.org/webgl/

Webster, R. (2014). Corrosion prevention and control training in an immersive
virtual learning environment. NACE - International Corrosion Conference
Series.

Wenglinsky, H. (1998). Does it compute?: The relationship between educational
technology and student achievement in mathematics. Princeton, NJ : Policy
Information Center, Educational Testing Service.

Wing, J. M. (2006). Computational thinking. Communications of the Acm, 49(3),
33–35.

110

https://assetstore.unity.com/
http://unity3d.com
https://github.com/splhack/unity-jint
https://github.com/splhack/unity-jint
https://dx.doi.org/10.4101/jvwr.v12i1.7329
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://dx.doi.org/10.2190/FLHV-K4WA-WPVQ-H0YM
https://doi.org/10.2190/FLHV-K4WA-WPVQ-H0YM
https://doi.org/10.2190/FLHV-K4WA-WPVQ-H0YM
https://dx.doi.org/10.1007/s11519-007-0001-5
https://dx.doi.org/10.1080/09500690500038520
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/

Bibliography

Wirth, N. (2004). Algorithms and data structures. oberon version. Eidgenössische
Technische Hochschule Zürich.

Wittwer, J. & Renkl, A. (2008). Why instructional explanations often do not
work: A framework for understanding the effectiveness of instructional
explanations. Educational Psychologist - EDUC PSYCHOL, 43, 49–64. doi:10.
1080/00461520701756420

Wolff, M. & Wills, L. (2000). Satsim: A superscalar architecture trace simulator
using interactive animation. doi:10.1145/1275240.1275249

Wyatt, P. (2013). The starcraft path-finding hack. [Online; accessed April 09,
2019]. Retrieved from https://www.codeofhonor.com/blog/the-starcraft-
path-finding-hack

Xiannong, M. (1998). Simulation. [Online; accessed July 15, 2019]. Retrieved from
https://www.eg.bucknell.edu/∼xmeng/Course/CS6337/Note/master/

Xueqiao, X. (2011). Pathfinding visualization. [Online; accessed April 12, 2019].
Retrieved from https://qiao.github.io/PathFinding.js/visual/

Yap, P. (2002). Grid-based path-finding. In R. Cohen & B. Spencer (Eds.), Ad-
vances in artificial intelligence (pp. 44–55). Berlin, Heidelberg: Springer Berlin
Heidelberg.

YouTube. (2005). Retrieved from https://www.youtube.com
Zapponi, C. (2014). Sorting, an attempt to visualize and help to understand how

some of the most famous sorting algorithms work. [Online; accessed April
12, 2019]. Retrieved from http://sorting.at

Zarembo, I. & Kodors, S. (2015). Pathfinding algorithm efficiency analysis in 2d
grid.

111

https://dx.doi.org/10.1080/00461520701756420
https://dx.doi.org/10.1080/00461520701756420
https://dx.doi.org/10.1145/1275240.1275249
https://www.codeofhonor.com/blog/the-starcraft-path-finding-hack
https://www.codeofhonor.com/blog/the-starcraft-path-finding-hack
https://www.eg.bucknell.edu/~xmeng/Course/CS6337/Note/master/
https://qiao.github.io/PathFinding.js/visual/
https://www.youtube.com
http://sorting.at

