
Elias Hajek, BSc

Training recurrent spiking neural
networks with biologically inspired

learning rules

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor
Em.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

Institute for Theoretical Computer Science, Graz University of Technology,
Austria

Head: Assoc. Prof. Dipl.-Ing. Dr. techn. Robert Legenstein

Graz, August 2019

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
master‘s thesis.

. .
date

. .
(signature)

Abstract

Neuromorphic hardware is a promising approach to overcome the von Neu-
mann bottleneck and to run a range of machine learning algorithms on low power
hardware, that can solve problems in fields like robotics, speech processing or
image recognition. There is however still a lack of powerful learning algorithms,
that allow to close the performance gap to machine learning on conventional
hardware such as GPUs and which scale well with increasing network sizes.

In this thesis, a novel learning algorithm, ”e-prop”, is tested, that allows to
efficiently train a network of recurrently connected spiking neural networks in
an online-fashion. With e-prop, it is not required to first simulating a whole
sequence, storing all past network states and inputs and then going ”backwards
in time” through the unfolded network to compute the weight updates like it
would be necessary with state of the art algorithms like backpropagation. Since
e-prop does not have this storage requirement, and also no need for additional
offline processing, it could be implemented on neuromorphic hardware.

It is demonstrated, that this algorithm can solve a range of tasks with a per-
formance that approaches backpropagation through time. Also a modification
of this algorithm is discussed, which mitigates the weight transport problem,
that is, the issue of the biological plausibility of a symmetric feedback path,
that would be necessary for implementing backpropagation.

2

Kurzfassung

Neuromorphe Hardware ist ein vielversprechender Ansatz um den
Von-Neumann-Flaschenhals zu überwinden und eine Reihe von maschinellen
Lernalgorithmen zur Lösung von Problemen in Bereichen wie Robotik, Sprach-
verarbeitung und Bilderkennung auf Hardware mit geringem Stromverbrauch
auszuführen. Es mangelt zurzeit jedoch noch an leistungsstarken Lernalgorith-
men, welche den Leistungsunterschied zu maschinellen Lernalgorithmen auf tra-
ditioneller Hardware, wie etwa Grafikkarten, beseitigen können und welche auch
mit steigender Netzwerkgröße gut skalieren.

In dieser Arbeit wird ein neuer Lernalgorithmus ”e-prop” getestet, welcher es
erlaubt, ein rekurrentes Netzwerk von gepulsten Neuronen online zu trainieren,
also ohne zuerst die komplette Sequenz zu simulieren, den gesamten vergangenen
Zustand sowie die Eingaben zu speichern und danach die Gewichtsänderungen
mittels ”Zurückgehen in der Zeit” durch das aufgefaltete Netzwerk zu berech-
nen, wie es mit dem aktuellen Stand der Technik, dem Fehlerrückführungs-
Algorithmus, notwendig wäre. Da e-prop nicht diese Anforderung an den Spei-
cher hat und auch ohne zusätzliche Offline-Berechnungen auskommt, könnte es
auf neuromorpher Hardware implementiert werden.

Es wird gezeigt, dass dieser Algorithmus eine Reihe von Aufgaben mit ei-
ner Performance lösen kann, welche der Fehlerrückführung durch die Zeit sehr
nahe kommt. Es wird auch eine Abänderung des Algorithmus diskutiert, wel-
che das Gewichtstransportsproblem mildert, die Frage nach der biologischen
Plausibilität eines symmetrischen Rückkopplungspfades, welcher für die Feh-
lerrückführung nötig wäre.

3

Acknowledgements

Prof. Wolfgang Maass for the opportunity of taking me on as his student
and for his guidance and suggestions, without which this thesis would not have
been possible
Prof. Robert Legenstein for his advice and support
Guillaume Bellec, Franz Scherr and Darjan Salaj for the countless things they
were teaching me during the course of this thesis, their patience and of course
all their previous work on which this thesis is based on.
All the great people at IGI, for the interesting discussions, being fun to be with
at the workshops and also providing valuable advice.
My family, my girlfriend and my friends for supporting me and providing en-
couragement and stability during all stressful times.

4

Contents

1 Introduction and preliminaries 7
1.1 Motivation . 7
1.2 Biological neurons . 7
1.3 Artificial neuron models . 8
1.4 Artificial recurrent neural networks 9

1.4.1 Definition . 9
1.5 Training recurrent neural networks 10

1.5.1 Gradient based methods 10
1.5.2 Reinforcement learning 13

1.6 Spiking neuron models . 13
1.6.1 Introduction . 13
1.6.2 Network and neuron equations 14
1.6.3 Output computation . 16

1.7 Learning with spiking neurons . 17
1.7.1 Spike timing dependent plasticity 17
1.7.2 Surrogate gradient method 18

2 Problem statement and goal 19
2.1 Problem statement . 19

2.1.1 Locking problem . 19
2.1.2 Weight transport problem 19

2.2 Goal . 20

3 Related work 21
3.1 Feedback alignment . 21
3.2 Broadcast alignment . 21
3.3 FORCE learning . 21
3.4 Other online learning algorithms 22

3.4.1 Real time recurrent learning (RTRL) 22
3.4.2 Unbiased Online Recurrent Optimization (UORO) 22
3.4.3 Kernel RNN Learning (KeRNL) 23
3.4.4 Random feedback local online learning (RFLO) 23

4 Training algorithms 24
4.1 Eligibility propagation (e-prop) 24

4.1.1 Introduction . 24
4.1.2 Derivation . 25
4.1.3 E-prop for LIF and ALIF neurons 25

5

4.1.4 Computation of update rules 28
4.1.5 E-prop and the weight transport problem 30

5 Experiments 31
5.1 Pattern generation task . 31

5.1.1 Introduction . 31
5.1.2 Task details . 31
5.1.3 Details of network model 32
5.1.4 Details of training procedure 32
5.1.5 Results . 32

5.2 Movie replay task . 33
5.2.1 Introduction . 33
5.2.2 Details of the movie replay task: 34
5.2.3 Details of the network model and of the input scheme: . . 34
5.2.4 Details of the learning procedure 35
5.2.5 Results . 35

5.3 Evidence accumulation task . 36
5.3.1 Introduction . 36
5.3.2 Details of the network model and of the input scheme: . . 37
5.3.3 Details of the learning procedure: 38
5.3.4 Results . 39

6 Analysis of random e-prop 41
6.1 Introduction . 41

6.1.1 Positive definiteness of a matrix 41
6.1.2 Trace . 41
6.1.3 Alignment of angles . 42

6.2 Results . 43
6.2.1 Pattern generation . 43
6.2.2 Store recall . 43
6.2.3 Evidence accumulation task 46
6.2.4 Discussion . 47

7 Conclusion 48
7.1 Discussion . 48
7.2 Further research . 48

6

Chapter 1

Introduction and
preliminaries

1.1 Motivation

Recurrent spiking neural networks form the basis of all information processing in
human and animal brains. It is however still not quite understood, how exactly
these networks learn to execute complex tasks such as motor control, memory,
prediction, navigation or planning. Solving these tasks involves a challenging
temporal credit assignment problem, since there are many time scales involved,
and the firing of any neuron could have an influence on an outcome far in the
future.

A better understanding of learning in recurrent spiking neural networks,
could therefore allow us to implement very powerful algorithms on novel neuro-
morphic hardware such as Loihi (Davies et al. (2018)), Spinnaker (Furber et al.
(2014)) or BrainScaleS (Schemmel et al. (2010)).

1.2 Biological neurons

The information of this section can be found in Bear et al. (2016).

Neurons are the main building blocks of our nervous system. They are nerve
cells, that can communicate with each other using discrete events, the so called
action potentials (APs). These APs are produced via an electrochemical pro-
cess, where different concentrations of ions inside and outside the cell produce
an electric voltage.

There exist many different kinds of neurons that each have certain function-
ality. One type are the sensory neurons, that detect incoming stimuli such as
touch, light, sound or taste and relay this information to other neurons. There
are also neurons that serve as connection between other neurons, the so called
inter neurons. A third group are the motor neurons, which can can execute
motor movement by stimulating muscles to contract.

7

The prototypical neuron consists of the cell body, also called the soma, which
is surrounded by the neuronal membrane which separates it from the outside
of the cell. To transmit information to other neurons, a neuron has a so called
axon, which can range in length from a millimeter to up to over a meter long.
From the soma there also extends a tree-like branch of so called dendrites, which
are connected to other axons and carry information into the neuron.

When a neuron emits an action potential, it travels over the neurons axon
to the presynaptic axon terminal, where it releases chemicals, the so called neu-
rotransmitters. These neurotransmitters then travel through the synaptic cleft
to the postsynaptic dendrite, which is connected to the soma of another neuron.
This causes the membrane voltage of the receiving neuron to be slightly depo-
larized. Once a sufficient amount of these events happen, the neuron emits an
action potential itself, which then again travels over the axon to other neurons.

1.3 Artificial neuron models

A simple way to model this, is the artificial neuron model. In this model, a
neuron with index j computes an activation value hj , which is a weighted sum
of outputs from other neurons. The activation value is then sent into a nonlinear
function to obtain the output. In the perceptron model from Rosenblatt (1958)
this nonlinear function is a simple step function:

hj =
∑
i 6=j

θjizi (1.1)

and

zj =

{
0 hj < 0

1 hj ≥ 0
(1.2)

One could interpret the weights of the input as synaptic strengths and the step
function as the discrete spiking function of a biological neuron. In most of
nowadays neural networks however, this step function is replaced by a continu-
ous function like the logistic sigmoid:

σ(a) =
1

1 + exp(−a)
(1.3)

This is done to avoid the discontinuity of the step function to be able to com-
pute gradients and use gradient descent based methods to optimize the network
parameters.

8

Figure 1.1: Graph of a one layer feedforward artificial neural network.

One then typically groups these neurons into layers, where each layer only
receives input from the previous layer and sends its output to the next layer.
The last layer is then used to compute the output of the network. Since there
are no loops in the graph of these networks, they are also called feedforward
neural networks.

1.4 Artificial recurrent neural networks

1.4.1 Definition

In contrast to regular feed forward artificial neurons, recurrent neural networks
contain feedback connections and therefore form a loop in the network graph.
This introduces a ”time” dependency and enables the network to process tem-
poral sequences (Goodfellow et al. (2016)).

Figure 1.2: Sketch of a simple recurrent neural network.

A general recurrent neural network can be described with the following equa-
tions:

ht = g(xt,ht−1, zt−1) (1.4)

zt = f(ht) (1.5)

yt = σ(zt) (1.6)

9

At every time step t, for each neuron a new hidden state value is calculated
by some function of the hidden states from the previous time step ht−1, the
network input xt and the previous observable state of the network zt−1. The
observable state zt is then computed by some function on the hidden state. It
is called hidden, because it is not accessible to other neurons.

Depending on the problem at hand, the observable sate is then sent into an
output function σ(zt). This could be a softmax function to obtain class prob-
abilities in a classification setup, or the identity function for regression problems.

This network describes a dynamical system which is driven by an external
input xt, updates its internal states ht and emits some observable state (out-
put) zt. The function g() is usually parameterized with some parameter vector
θ.

It is important to note, that the parameter vector θ does not depend on
time and is therefore shared across all time steps. Learning these parameters,
allows the model to generalize across different sequence lengths. Similar to a
convolutional neural network that has an inherent spatial translation invariance,
a recurrent neural network is invariant with regard to the position in time.

1.5 Training recurrent neural networks

In a supervised learning setup, one typically wishes to minimize the discrepancy
between a network’s output and a predefined target. This is formalized with a
function of the parameters that represents this error which is often called a loss
function.

Common loss functions are the mean squared error for regression problems:

E(θ) = ||y(θ)− ytarget||22 (1.7)

or the cross entropy error in a binary sequence classification setup:

E(θ) = −
T∑
t=1

yttarget log(yt(θ)) + (1− yttarget) log(1− yt(θ)) (1.8)

The loss function E(θ) is in general not convex and therefore it is hard to
find a global minimum. Also it is usually not possible to find a closed form so-
lution, so the most common way of optimizing neural networks is with gradient
based methods, which under certain assumptions are guaranteed to find a local
minimum.

1.5.1 Gradient based methods

Introduction

Gradient based methods are optimization methods that utilize the gradient of
the cost function in some way in order to reach a local minimum. They use

10

the fact, that the gradient of a function points in the direction where a func-
tion value is increasing the strongest, while the negative gradient points in the
direction of the strongest function value decrease. Since many cost functions
don’t allow a closed form solution in the parameters, this will be the only way
to obtain a solution.

In general, optimization theory tells us that a sufficiently small step along a
descent direction, (a direction which forms an angle of less than 90 degrees with
the negative gradient) will give a decrease in the function value. More formally:

Theorem 1 if ∇fTd < 0 there exists an interval (0, δ] such that f(x+ αd) <
f(x) for all α ∈ (0, δ].

This can be utilized by an iterative algorithm, that makes small enough steps
along a descent direction until a local minimum is reached. The most com-
mon form is to choose the negative gradient as a descent direction d = −∇f
which is also known as steepest descent. The size of these steps is controlled by a
so called learning rate, which is often decreased over time to ensure convergence.

Gradient for a recurrent neural network

To optimize the loss function, one needs to compute the total derivative of the
loss with respect to the network parameters θ, i.e. dE

dθ . It should be noted,
that it is relevant here to make a distinction between the partial and the total
derivative, as will be illustrated in the case of a simple example.

Suppose we have a function f(z) which is of the following form:

f(z) = x+ z (1.9)

where x = g(z) The partial derivative is simply computed as:

∂f(z)

∂z
= 1 (1.10)

The total derivative now takes into account all variables that depend on z and
gives a measure that relates the change in z to the total change in f(z):

df(z)

dz
=
∂f(z)

∂z
+
∂f(z)

∂x

dx

dz
(1.11)

The loss at time t is usually a function of the current network state, which
itself is a function of the network parameters. We can express this gradient via
the chain rule:

dEt

dθ
=
dEt

dzt
dzt

dht
dht

dθ
(1.12)

The first two parts of this gradient are rather simple to compute, and de-
pend in general on the type of output and loss function that is used. Harder
to compute is the total derivative dh

dθ , since h(t) is a function that depends on
h(t− 1) and θ which itself depends on h(t− 2) and so on.

11

We can write this total derivative as:

dht

dθ
=
∂ht

∂θ
+

∂ht

∂ht−1

dht−1

dθ
(1.13)

The jacobian ∂ht

∂ht−1 = Jh depends on the used network model and does not
change with time, therefore we can write:

t−1∏
t′

∂ht
′+1

∂ht
′ =

t−1∏
t′

Jh = J t−t
′

h =
∂ht

∂ht′
(1.14)

Now the recursive definition of the total derivative can be simplified as:

dht

dθ
=

t∑
t′=1

∂ht

∂ht′
∂ht

′

∂θ
(1.15)

Using the assumption that the overall error E, is the unweighted sum of the
errors Et we can now obtain the desired derivative:

dE

dθ
=

T∑
t=1

∂Et

∂zt
∂zt

∂ht

t∑
t′=1

∂ht

∂ht′
∂ht

′

∂θ
(1.16)

Backpropagation through time

Rumelhart et al. (1986) introduced an effective method called backpropagation
for computing the gradients of a neural network by recursively applying the
chain rule. This algorithm is one of the main contributors that enabled the
recent success of deep neural networks.

Werbos (1990) gives a detailed account of how to apply this very general
algorithm to the training of recurrent neural networks with a method that is
called backpropagation through time.

Contemporary machine learning algorithms use automatic differentiation
software such as Tensorflow (Abadi et al. (2015)) to also very efficiently compute
these gradients on an unrolled computational graph (see figure 1.3).

Figure 1.3: Unrolling of the computational graph for a recurrent neural network.
Figure adapted from Goodfellow et al. (2016)

12

To compute this gradient, first the network is simulated forward in time,
computing the outputs and errors for all time steps. At the next step, the
gradients are computed by propagating these errors backwards in the unrolled
network. This is a very efficient method, but it requires that the inputs and
hidden states of the network are stored for the whole sequence.

1.5.2 Reinforcement learning

Introduction

Reinforcement learning is formalized in (Sutton and Barto (1998), chapter 5) in
the context of finite Markov decision problems. The setup consists of an actor
at time t who is in a certain state St ∈ S and takes actions At ∈ A(s), which
will bring him to the next state St+1 along with a reward Rt+1 ∈ R based on the
taken actions. The goal is to find the action in each state, which will maximize
the expected rewards.

Policy gradient methods

To chose the right actions, the actor will follow a certain policy, which in the
context of this thesis, will be parameterized by a recurrent spiking neural net-
work. The policy π is defined according to the following equation (Sutton and
Barto (1998), chapter 13):

π(a|s,θ) = p(At = a|St = s,θt = θ) (1.17)

A simple policy gradient method will then try to maximize the probability that
a good action was taken, by using the gradient of the policy w.r.t the parameters
θ. The weight update will be of the form:

∆θt = −η(Rt − V t)∇ log(π(At|St,θt)) (1.18)

Here V t is some estimate of the value function which serves as a baseline to
reduce the gradient variance, and in the simplest case could just be a constant
reward baseline.

This learning rule will increase the probability of a certain action, if the
received reward was greater than the chosen reward baseline and decrease it
otherwise.

1.6 Spiking neuron models

1.6.1 Introduction

In this section, a very simple mathematical model for a biological neuron as
described in section 1.2 is introduced. This model is chosen, because it cap-
tures essential features of biological models, while still allowing a mathematical
analysis that does not get out of hand. The model described in the following
sections is introduced in Bellec et al. (2018b).

13

1.6.2 Network and neuron equations

Two spiking neural models are used in this thesis: the leaky integrate and fire
model (LIF) and the adaptive leaky integrate and fire neuron (ALIF). The LIF
neuron is a dynamical system, which has a voltage v, also called the membrane
potential as its hidden state variable h. A neuron with index j integrates incom-
ing action potentials (spikes zi) from other neurons, and emits a spike zj itself,
once a certain threshold is reached. These spikes make up the observable state.
The membrane potential is also decaying exponentially (leaking) over time back
to a defined baseline voltage, as controlled by the decay factor α ∈ (0, 1).

In all further equations, the time is assumed to be discretized, with the step
from t to t + 1 = 1 ms. The equations in discretized time for an LIF neuron
with index j are as follows (Bellec et al. (2019a)):

vt+1
j = αvtj +

∑
i 6=j

θrecji z
t
i +

∑
i

θinji x
t+1
i − ztjvth (1.19)

θrecji are the synaptic weights from network neuron i to network neuron j which

are also called recurrent weights. θinji are the synaptic weights from input neuron
i to network neuron j and are called input weights. The inputs are here assumed
to be discrete spikes xi ∈ {0, 1}.

The observable state is computed as:

ztj = H(vtj − vth) (1.20)

Where H is the heaviside step function defined as:

H(v) =

{
0 v < 0

1 v ≥ 0
(1.21)

Here we again see a discontinuity in the spiking function. One could again
replace this with a logistic sigmoid or any other continuous function, but this
would come with a drawback: The all or nothing nature of a spike allows a very
efficient computation of the network dynamics, since most of the time a neuron
does not spike and therefore no computation is necessary. This temporal spar-
sity is one of the reasons why neuromorphic hardware can be made very energy
efficient.

In this simple neuron model, the baseline voltage is assumed to be zero.
Figure 1.4 shows the time course of the membrane voltage in the case where
the weighted sum of network spikes is replaced by a constant input value. In
the first 300 ms the neuron is integrating the input current and emitting a
spike, every time the membrane voltage reaches the threshold and then resets
back to the baseline voltage of zero. When the input current stops after 300
ms, the voltage decays exponentially back to zero with a time constant of 20 ms.

14

0 100 200 300 400 500

0.0

0.2

0.4

0.6

M
e
m

b
ra

n
e
 v

o
lt

a
g
e

spikes

0 100 200 300 400 500
Time in ms

0.00

0.02

0.04

In
p
u
t

cu
rr

e
n
t

Figure 1.4: Time course of the membrane voltage for 500 ms with a constant
input current of 0.03 for the first 300 seconds. The threshold voltage is set to
vth = 0.5 and the decay constant α is set to exp(− 1

20)
.

To obtain richer dynamics, this neuron model is extended by introducing
another state variable aj , which then controls the spiking threshold (Bellec
et al. (2019a)):

Atj = vth + βatj (1.22)

at+1
j = ρatj + ztj (1.23)

and
ztj = H(vtj −Atj) (1.24)

This state variable now increases every time the neuron emits a spike, and
exponentially decays back to the baseline threshold vth with the multiplicative
factor ρ ∈ (0, 1). In further experiments and text, this kind of neuron will be
referred to as ALIF (adaptive leaky integrate and fire) neuron. It should be
noted, that in the case of β = 0 this model reduces to the basic LIF neuron.

15

Figure 1.5: Time course of the membrane voltage and adaptive threshold for 500
ms with a constant input current of 0.03 for the first 300 seconds. The threshold
voltage is set to vth = 0.5 and the decay constant α is set to exp(− 1

20). The
threshold adaptation strength β is set to 0.2 and the adaptation decay factor ρ
is set to exp (− 1

200)
.

We can see the in figure 1.5 how this new state variable can now give rise to
more complex behavior. When the network emits the first spike, the adaptive
threshold jumps to a higher value. Since the input current is not strong enough
to raise the membrane voltage above this new threshold, the neuron does not
spike until the time when the adaptive threshold is sufficiently decayed back
to the baseline threshold. After this spike, the threshold increases again which
prevents the neuron from spiking for even longer.

This resulting behavior is known as spike-frequency adaptation and is also
observed in biological neurons (see review paper of Ha and Cheong (2017))

To account for a feature that is also seen in biological neurons, we used a so
called refractory period, where after a neurons spikes, it needs a certain time to
recover, before it can spike again. This can be easily implemented by extending
the state of the neuron by a clipped counter r, that is incremented by a certain
number (e.g. rt+1 = rt+ 4) every time the neuron spikes and then decremented
by 1 in every subsequent time step. The counter is clipped to avoid negative
values in the counter. The spike function then has to implement a check if this
counter is greater than 1 and in this case it should not emit a spike. During
this period, the neuron is said to be refractory.

1.6.3 Output computation

As defined in equation 1.6, the output of a recurrent network is some function of
the observable state zt. In the case of spiking neurons, this needs to be adapted
a little bit, since zt can only assume the discrete values {0, 1} since we are

16

usually interested in obtaining a real valued output.

To obtain this, one could for example use the timing of zt with respect to a
reference signal, which is also known as temporal coding. This method is how-
ever very sensitive to noise since it is very hard in a stochastic setup to produce
an exact spike timing for a single neuron.

The method that will be used here is some measure of the spike frequency
of a neuron. This is done by introducing a new variable defined as:

z̄t = κz̄t−1 + zt (1.25)

with κ = exp(− 1
τout

).
This quantity gives a measure of the instantaneous firing frequency of a

neuron j and is a real-valued output which will then be sent into the output
function σ(z̄t).

The output function is usually a weighted sum of these filtered values, that
is then sent into a readout function

yk = σ(

K∑
k=1

N∑
j=1

θoutkj z̄
t
j) = σ(θoutz̄t) (1.26)

One can think of this quantity inside the readout-function σ as the membrane
potential of a so called readout neuron k, which is non-spiking, has a time
constant τout and is connected to the network via a set of output synapses θout.

1.7 Learning with spiking neurons

1.7.1 Spike timing dependent plasticity

Donald Hebb postulated in his book ”The Organization of Behavior” in 1949
that ”when an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased” (Hebb (1949)).

According to Caporale and Dan (2008), there is strong experimental evi-
dence that the causality and spike timing of two neurons can determine the
modification of their synaptic strengths. In spike timing dependent plasticity in
the case of two excitatory neurons, when neuron A fires before neuron B, then
the connection from A to B will be reinforced, and if neuron A fires after neuron
B, this connection will be depressed.

Legenstein et al. (2005) show that under certain assumptions, neurons can
learn any map from input to output spike trains. However STDP does not make
use of the postsynaptic membrane voltage, and does not account for the occur-
rence of spike pairings that don’t come in pairs. STDP is also an unsupervised
and local learning algorithm, which in itself will usually not be sufficiently pow-
erful for the types of problems that will be of interest later in this thesis.

17

1.7.2 Surrogate gradient method

When trying to apply the work horse of deep learning, gradient descent, to the
training of spiking neural networks, one encounters the problem, that because
of the use of a step function as the spiking function, the gradient of the loss
function with respect to the parameters is not defined.

However, Bellec et al. (2018b) showed, that recurrent networks of spiking
neurons can still be trained with backpropagation by using a surrogate gradient
for the spike function H(v). They showed, that networks of spiking neural
networks can achieve a performance on tasks like the sequential MNIST, that is
almost on par with state-of-the-art LSTM (Hochreiter and Schmidhuber (1997))
networks. This almost means that we can eat our cake and have it too, since we
get to keep the desirable sparsity properties of an all-or-nothing spike function,
while being able to use gradient descent methods to optimize the network.

The pseudo-derivative ψ(vt) that will be used in this thesis is defined as
follows:

ψ(vt) = γmax(0, 1− |
vt −Atj
vth

|) (1.27)

0.0 0.2 0.4 0.6 0.8 1.0
v

0.0

0.2

0.4

0.6

0.8

1.0 (v)
(v)

Figure 1.6: Pseudo derivative used to deal with the discontinuity of the spike
function for a threshold voltage of vthr = 0.5 and dampening factor γ = 0.3

.

It should be noted here, that in the case of a refractory period, the pseudo-
derivative will be set to zero while a neuron is refractory, since in this case no
spike can happen.

18

Chapter 2

Problem statement and goal

2.1 Problem statement

2.1.1 Locking problem

In order to compute the gradients with backpropagation through time, the ac-
tivations of each neuron and the network inputs for the whole sequence have
to be stored in memory during the forward evaluation of the network. This
makes it infeasible to learn very long sequences. It also prevents the algorithm
from beeing implemented in neuromorphic hardware due to strict constraints
on memory usage.

There exists algorithms, that would allow to compute BPTT in a recur-
sive and online fashion, however they are computationally very expensive and
therefore not implementable for any large scale problem. This will be discussed
further in the related work section.

Therefore an online algorithm is needed, which allows to compute the gra-
dient in the feedforward pass, without the need of storing the whole input and
activation sequence and that has a computational complexity, that would allow
it to run on neuromorphic hardware.

2.1.2 Weight transport problem

Another problem that is described in Lillicrap et al. (2016), is that the back-
wards flow of errors with backpropagation uses an exact copy of the feedforward
weights, which is argued to be biologically implausible.

They show this in the example of a one layer linear feedforward artificial
neural network that has the following equations:

h = θinx (2.1)

y = θouth (2.2)

19

The gradient of a mean squared loss w.r.t input weights E = eTe, with error
signal (e = ytarget − y) for a given target vector ytarget is then given as:

∇θinE = θToutex
T (2.3)

This means, that the error signal flows back to the input weights through the
transpose of the readout weights θTout. The authors argue in the paper, that
there is no known mechanism in the brain, that would allow such a symmetrical
retrograde transmission of these errors.

2.2 Goal

The first goal of this thesis is to test the performance of e-prop, a learning algo-
rithm that offers a solution to the locking problem of backpropagation through
time. To do so, it will be necessary to find a range of tasks that involve learning
complex patterns and memory.

Lillicrap et al. (2016) give a solution for the weight transport problem in
feedforward neural networks, we are also interested if and how this could be
applied also to a recurrent neural network. The second goal is therefore, to look
at modifications of e-prop that allow avoiding the weight transport problem,
and analyzing why and how these methods work.

20

Chapter 3

Related work

3.1 Feedback alignment

To address the weight transport problem in feedforward networks Lillicrap et al.
(2016) introduced a mechanism that replaces the symmetric feedback weights
used in backpropagation with a backwards path that uses a matrix of random
feedback weights. They show that this approach leads to the same performance
as backpropagation for a linear problem and also approaches the performance
of backpropagation in a more complex non-linear function approximation task.

The authors call this method feedback alignment, since they found, that the
feedback matrices align in their angles with the pseudo-inverse of the forward
weight matrices during the course of training.

3.2 Broadcast alignment

Later Samadi et al. (2017) and Nøkland (2016) discovered, that it is even pos-
sible to directly broadcast the error signal back to each layer of the neural
network, without going through each layer through the random feedback path
like in feedback alignment.

Their experiments show, that this method performs equally good during
training as backpropagation and feedback alignment on the MNIST and CIFAR-
10 data set.

3.3 FORCE learning

Sussillo and F Abbott (2009) introduce a method for training recurrent neural
network to produce complex output patterns that they call FORCE training.

The general setup for this algorithm is a recurrently neural network, whose
neuron activities are combined via a linear readout to obtain the network output:

y(t) = wTz(t) (3.1)

21

The output of the network is then subtracted from a given target function f(t)
to obtain an error signal that is fed back to the network. It is essential for
this algorithm, that the errors that are fed back to the network are sufficiently
small in magnitude. This is ensured by updating the readout weights with the
recursive least squares algorithm. This ensures that the output errors stay small
and also that the changes in the recurrent weights that are needed to keep the
error small will also decrease over time.

The authors evaluate the method on a range of difficult pattern-generation
tasks such as reproducing songbird singing, or short movie-clips and achieve
a very impressive performance. FORCE learning is however not argued to be
biologically plausible, since it only modifies the readout weights, and the cor-
responding learning rule is not local. (see Bellec et al. (2019a)) It is also not
clear, how well this method generalizes to tasks that go beyond the storage and
generation of patterns.

3.4 Other online learning algorithms

3.4.1 Real time recurrent learning (RTRL)

Williams and Zipser (1989) described in 1989 already a method of computing
the gradient of a recurrent network in an online manner, by recursively comput-
ing the gradient by multiplying the Jacobian ∂ht

∂ht−1 of the network state, with

the derivative of the state w.r.t the weights ∂ht−1

∂θ as defined in section 1.5.1.
They call this real time recurrent learning (RTRL).

The main drawback of RTRL is however, that it is of complexity O(N4) for
a network of N recurrent neurons. This will be shown in section 4.1.2, where
the recursive computation of the gradient is outlined. This makes it unfeasible
to train very large networks.

3.4.2 Unbiased Online Recurrent Optimization (UORO)

Tallec and Ollivier (2017) use an approximation on top of RTRL which reduces
its memory requirements to O(N2). The idea of the algorithm is to assume the

existence of an unbiased estimator G̃t for dht

dθ , that can be decomposed as an

outer product h̃t ⊗ θ̃t where h̃t and θ̃t are of the same shape as ht and θ.

Propagating G̃t to the next time step using equation 1.13 will give an unbi-
ased estimator of a higher rank at time t+ 1, which is then approximated and
transformed back to rank-one with the so called rank-one trick. The authors
give an recursive update rule for h̃t and θ̃t which are of the same computational
complexity as simulating the network forward in time.

Their learning rule is unbiased, however the approximation comes at the cost
of injecting noise. The authors only provide experiments with small network
sizes of up to 64 units and therefore it is not clear how this variance affects
the training of larger networks. Their implementation also makes use of non-

22

local operations like vector norms to achieve minimum variance estimates, which
could be argued to be biologically implausible.

3.4.3 Kernel RNN Learning (KeRNL)

Roth et al. (2019) use a rank-2 approximation of the Jacobian Jτh = ∂ht

∂ht−τ that
assumes the form Jτh ≈ βijK(τ, γj). Since the Jacobian gives a measure of how
much the activity of a neuron in the past influences the neuron in the future,
they call this term the sensitivity. They interpret βij as an averaged measure
of how much neuron j affects neuron i and K(τ, γj), which is a temporal ker-
nel with coefficients γj , determines how far back into time this influence reaches.

The values for βij and γj are learned by analyzing how a small perturbation
on the hidden state in the past affects the hidden state in the future. They set
up an objective function where βij and γj are used to predict the perturbed
hidden state in the future and the update rules come from gradient descent on
this cost function. For this it is necessary to carry an additional perturbed copy
h̃t of the hidden state ht forward in time.

In contrast to the learning rule that will be evaluated in this paper, KeRNL
does not make explicit use of the neuron model in the approximation of the
Jacobian. For the estimation of βij and γj it is necessary to include non-local
communication, since every neuron needs to know all perturbations to the hid-
den state of all other neurons in the network.

3.4.4 Random feedback local online learning (RFLO)

Murray (2018) suggests a learning rule that is very similar to the one that will
be outlined further in the next chapter. He is approximating the gradient by
only using the terms that are local to a synapse (i.e. pre- and postsynaptic
activities). To address the weight transport problem, he also uses a random
projection of the error back to the network.

The algorithm is tested on a continuous output task, where the network
learns to produce a one-dimensional periodic output, and it is trained to learn
a sequence of actions by concatenating multiple short sequences.

The paper however restricts itself to leaky sigmoidal neurons and does not
give a theory for how this algorithm could be applied to spiking neurons, or
other neurons with more complex behaviors, such as LSTM or ALIF neurons.
There is also no comparison to BPTT on common benchmarks for RNNs.

23

Chapter 4

Training algorithms

4.1 Eligibility propagation (e-prop)

4.1.1 Introduction

In Bellec et al. (2019a) we introduced an algorithm, that allows to compute an
online approximation of the true gradient of a recurrent spiking or non-spiking
network, with a computational complexity of O(N2) and which can be extended
by a mechanism similar to broadcast alignment, to mitigate the weight trans-
port problem.

The basic idea of this algorithm is to factorize the gradient dEt

dθ into two
parts: a loss dependent learning signal Lj and a synapse specific eligibility
trace eji that carries information about past events forward in time, which is
then used later to inform the weight update.

dE

dθji
=
∑
t

Ltje
t
ji (4.1)

In the case of backpropagation, Ltj corresponds to the total derivative of the

loss, with respect to the networks observable state, i.e. dE
dztj

and the eligibility

trace etji corresponds to the derivative of the observable state, with respect to

a change of the parameters
∂ztj
∂θij

.

It is important to note here, that dE
dztj

is a total derivative, and that the ob-

servable state at time t, might influence the error at a later time step, i.e. the
future. Since we are interested in obtaining an online learning algorithm, future
values of the loss function will not be available at the computation time of the
weight update.

One can however use a different approach and think of Ltj as an instantaneous

learning signal ∂E
∂ztj

and therefore in an ideal implementation of gradient descent,

etji must be equivalent to
dztj
dθij

. This is a measure of how the observable state at

24

time t changes, when the parameters are changed. This is the view that will be

taken on in the e-prop algorithm alongside with a suitable approximation of
dztj
dθij

.

4.1.2 Derivation

We can apply the chain rule to obtain:

dztj
dθij

=
∂ztj
∂htj

dhtj
dθij

(4.2)

Further decomposing
dhj

dθij
yields:

dhtj
dθij

=
∂htj
∂θij

+
∑
t′≤t

∑
k

dht
′

j

dht
′−1
k

dht
′−1
k

dθij
(4.3)

This is problematic, because for each of the N neurons in the network, it is nec-
essary to do N multiplications (one with every other neuron) with the Jacobian
dht
′
j

dht
′−1
k

= J t
′

j,k and
dht
′−1
k

dθij
, (where each multiplication has complexity O(N2))

which results in a total time complexity of O(N4). This is not feasible for any
larger network.

The key assumption of e-prop is now that we can neglect inter-neuron de-

pendencies by only considering the Jacobians
∂ht
′
j

∂ht
′−1
j

. This now reduces thes

time complexity to O(N2) since we are only multiplying with D×D Jacobians
(where D is the dimension of the neuron state, which in the case of LIF or ALIF
neurons is either 1 or 2).

This also results in a neuron specific term which allows us now to obtain a
simple recursive equation for the eligibility trace by introducing a new variable
εtji that makes use of these simplified Jacobians. The variable is the so called
eligibility vector, that can be computed locally in each synapse:

εtji =
∂htj

∂ht−1
j

εt−1
ji +

∂htj
∂θij

(4.4)

and finally the eligibility trace:

etji =
∂ztj
∂htj

εtji (4.5)

As we are now working with an approximation of the true gradient, the

gradient computed with e-prop will be denoted as
d̂ztj
dθij

4.1.3 E-prop for LIF and ALIF neurons

Let us now analyze the computation of Ltj and etji in the case of LIF and ALIF
network models in the framework of regression and classification problems, in

25

which most machine learning tasks can be formulated. It should be noted here,
that the eligibility trace does not depend on the loss function and therefore is
the same for both problems.

To account for the exponential filtering in the output neuron, we will use
a slight modification and compute as the learning signal Ltj the quantity ∂E

∂z̄tj

instead of ∂E
∂ztj

. z̄tj is used here instead of ztj to avoid introducing terms that

depend on future time steps in the equations.

This will allow us, to move the exponential filtering of the readout into the
eligibility trace:

ētji = κēt−1
ji + etji (4.6)

The approximated total derivative is therefore decomposed as:

d̂ztj
dθij

=
∂E

∂z̄tj

dz̄tj
dθji

=
∑
t

Ltj ē
t
ji (4.7)

This can be easily verified by expanding:

d̂z̄tj
dθji

=
∂z̄tj
∂ztj

etji +
∂z̄tj

∂zt−1
j

et−1
ji + ... (4.8)

and using the derivative:
∂z̄tj

∂zt−t
′

j

= κt−t
′

(4.9)

To obtain the equations for the weight updates in case of LIF and ALIF neu-

rons, one needs now to compute the Jacobian
∂htj

∂ht−1
j

, the derivative of the spike

function
∂ztj
∂htj

and the partial derivative of the hidden state, w.r.t the weights

∂ht
′
j

∂θij
.

In the case of LIF neurons, the hidden state only consists of a single variable,
the membrane potential v. From equation 1.19 we obtain the Jacobian:

∂htj

∂ht−1
j

=
∂vtj

∂vt−1
j

= α (4.10)

and as the second multiplier for the case of the input weights:

∂htj
∂θinij

=
∂vtj
∂θinij

= xti (4.11)

The derivative of the spike function is obtained from the definition in 1.27:

∂ztj
∂htj

=
∂ztj
∂vtj

= ψ(vtj) = ψtj (4.12)

26

We can now compute the component of the eligibility vector by solving the
geometric series defined in 4.4:

εji =
∑

t′≤t−1

αt−t
′
xt
′

i = ψtj x̄
t−1
i (4.13)

By combining this we now have the complete eligibility trace:

etji = ψtj x̄
t−1
i (4.14)

In case of ALIF neurons, the state vector htj now also contains the threshold
adaptation variable aj . The eligibility vector therefore contains two components:

εji =

(
εji,v
εji,a

)
(4.15)

We will now also need another derivative:

∂ztj
∂htj

=
(
∂ztj
∂vtj

∂ztj
∂atj

)
=
(
ψtj −βψtj

)
(4.16)

The Jacobian
∂htj

∂ht−1
j

is a 2× 2 matrix with entries:

∂htj

∂ht−1
j

=

 ∂vtj

∂vt−1
j

∂vtj

∂at−1
j

∂atj

∂vt−1
j

∂atj

∂at−1
j

 =

(
α 0
ψtj ρ− βψtj

)
(4.17)

To compute the eligibility vector we now need to know:

∂htj
∂θinij

=
(
∂vtj
∂θinij

∂atj
∂θinij

)T
(4.18)

For the second component of this vector,
∂atj
∂θinij

we can use that

∂atj
∂θinij

= 0 (4.19)

Using 4.4 we now obtain the following equations for the components of the
eligibility vector:

εtji,v =
(
α 0

)(εt−1
ji,v

εt−1
ji,a

)
+ xti = x̄t−1

i (4.20)

and

εtji,a =
(
ψtj ρ− βψtj

)(εt−1
ji,v

εt−1
ji,a

)
+

∂at

∂θinij
= ψtj x̄

t−1
i + (ρ− βψtj)εt−1

ji,a (4.21)

The full eligibility trace can now be computed as:

etji =
∂ztj
∂htj

εtji =
(
ψtj −βψtj

)(x̄t−1
i

εtji,a

)
= ψtj(x̄

t−1
i − βεtji,a) (4.22)

27

4.1.4 Computation of update rules

Since we are using the partial derivative Ltj = ∂E
∂z̄tj

as the learning signal, this is

equivalent to ∂Et

∂z̄tj
i.e. the instantaneous error.

Supervised regression

The output of the spiking neural network in a regression setup with an output
dimension of K, is simply given by the weighted sum of the exponentially filtered
spike trains:

ytk =

K∑
k=1

N∑
j=1

θoutkj z̄
t
j (4.23)

Under an additive Gaussian noise model for the target value and a maximum
likelihood approach, one obtains the mean squared error loss function:

E =

T∑
t=1

Et =
1

2

T∑
t=1

K∑
k=1

(ytarget,tk − ytk)2 (4.24)

The derivative of this loss is readily obtained:

Ltj =
∂Et

∂z̄tj
=

K∑
k=1

(ytarget,tk − ytk)θoutkj (4.25)

Combining this learning signal with the eligibility trace and a learning rate η
yields the following final update rules:

For input and recurrent weights:

∆θ
in/rec
ji = η

∑
t

(
∑
k

θoutkj (ytarget,tk − ytk)ētji (4.26)

The update term for the readout weights is easily obtained as:

∆θoutkj = −η∇θoutj
E = η

∑
t

(ytarget,tk − ytk)z̄tj (4.27)

Supervised classification

When applying a Bayesian framework to the classification problem, one obtains
the functional form of the softmax function for the class probabilities:

p(class = k|time = t) = πtk = softmaxk(yt1, ..., y
t
K) =

exp ytk∑K
k′=1 exp ytk′

(4.28)

ytk =

K∑
k=1

N∑
j=1

θoutkj z̄
t
j (4.29)

28

By using a maximum likelihood approach for a given labeled data set one
obtains the so called cross-entropy loss function:

E =

T∑
t=1

Et = −
T∑
t=1

K∑
k=1

πtarget,tk log πtk (4.30)

The loss-dependent learning signal can then be computed as:

Lj =
∂E

∂z̄tj
=
∑
k

(πtarget,tk − πtk)θoutkj (4.31)

Again we combine the learning signal with the eligibility trace to get the final
update rules:

Input and recurrent weights:

∆θ
in/rec
ji = η

∑
t

(
∑
k

θoutkj (πtarget,tk − πtk))ētji (4.32)

Readout weights:

∆θoutkj = −η∇θoutj
E = η

∑
t

(πtarget,tk − πtk)z̄tj (4.33)

Binary classification with reinforcement learning

It is also possible to apply e-prop in a reinforcement learning setup. The idea
of this is to modify the computation of gradients, like it is done in a standard
policy gradient method, by using e-prop. We consider here a so called actor-
critic method as described in Sutton and Barto (2018). The following update
rules are also described in the supplement of Bellec et al. (2019b).

The loss function in this algorithm consists of two terms: the so called
actor-critic loss, which gives a measure of how good the current policy is, and a
reward-prediction loss, which makes sure the estimate of the reward baseline is
correct. The reward was 1 when the correct class was chosen and 0 otherwise.
In the context of this thesis, this loss is simplified, because the analyzed task
only requires a binary action AT at time step T at the end of the sequence. The
actor then finds itself in state ST and receives a single reward RT ∈ {0, 1} after
taking the action. The actor-critic loss is therefore defined as:

E = −(RT − V T) log(π(AT |ST ,θ)) + Cval(R
T − V T)2 (4.34)

We will treat the two components of the loss separately and use the two
weight update rules additively as defined in Bellec et al. (2019a).

The update rule for the value estimation (critic) is given by:

∆θinji = ηCval(R
T − V T)θout,criticj ēTji (4.35)

The update rule for the policy (actor) is defined as:

∆θ
in/rec
ji = η(RT − V T)

∑
k

θout,actionkj (1k=AT − πTk)ēTji (4.36)

29

where 1k=AT is the indicator function that is 1 if k = AT and 0 otherwise. The
readout weight update for the actor part is given by:

∆θoutkj = η(RT − V T)(1k=AT − πTk)z̄j
T (4.37)

and for the value function:

∆θoutcritic,j = ηCval(R
T − V T)z̄j

T (4.38)

4.1.5 E-prop and the weight transport problem

We consider here three variants of e-prop: Symmetric, random and adaptive
e-prop.

The most straightforward version is the symmetric e-prop, with the update
rule as stated in equation 4.32. This learning rule makes use of the network
readout weights θoutkj to send the error signals back to the synapses. This raises
the issue of a symmetric feedback path, which is argued to be biologically im-
plausible (Lillicrap et al. (2016)).

It is however possible, to replace the feedback weights θoutkj with a matrix
Bkj of randomly sampled values which then stays constant during the course
of the training. We call this method random e-prop. This was inspired by the
idea of broadcast alignment (Nøkland (2016) and Samadi et al. (2017)) where
the modulator signal (error) is sent back to each hidden layer in the feedforward
network via a different random feedback matrix. This works, because the read-
out matrix will align its angle with the transpose of the feedback matrix during
the course of training.

A key difference here is that we are working with a recurrent neural net-
work and therefore the weights of the unrolled network are the same for each
”layer”. We will see later in the experiments, that it is beneficial to use the
same feedback matrix Bkj for each time step, and not vary it over time like it
could be expected from a straightforward application of broadcast alignment to
the unrolled network.

In case the random feedback is not sufficient, there is also an option to
decouple the feedback from the forward path with a modification of the Kolen-
Pollack algorithm, as described in Akrout et al. (2019). In this algorithm, we
initialize a random feedback matrix Bkj like in random e-prop. Now the feedback
matrix is not fixed, but is also changing during the course of training. The same
weight updates that are applied to θoutkj are also applied to Bkj and additionally
both matrices receive a weight decay of the form:

∆θoutkj = −λθoutkj (4.39)

and
∆Bkj = −λBkj (4.40)

with a small factor 0 < λ < 1 This also solves the weight transport problem, but
in its straightforward implementation then raises the issue of how the weight
changes are transported. We call this version adaptive e-prop.

30

Chapter 5

Experiments

5.1 Pattern generation task

5.1.1 Introduction

As a first task, we consider a simple pattern generation task to compare our al-
gorithm to learning rules like the FORCE training Nicola and Clopath (2017).
In this task, the network should reproduce a fixed pattern by only having a
clock-like signal available as input.

5.1.2 Task details

The network was tasked to produce a weighted sum of four sinusoids with dif-
ferent fixed frequencies. The target sequence had a duration of 1000ms and the
four sinusoids had fixed frequencies of 1Hz, 2Hz, 3Hz and 5Hz. The amplitudes
or weights of each sinusoidal component were drawn from a uniform distribution
with values ranging from 0.5 to 2. Each component was also randomly phase-
shifted with a phase that was also sampled uniformly from 0 to 2π. The network
received a clock signal with five steps at the input. The error was defined as
mean of the squared differences between network output and target.

iteration 1 (mse = 1) iteration 100 (mse = 0.18) iteration 500 (mse = 0.01)

1
0
1

output target

0

20

2.5e-4

-2.5e-4
0

output target

output target

o
u
tp

u
ts

1
0
1

1
0
1

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

n
e
tw

o
rk

L j

time in ms

Figure 5.1: Spike raster and network outputs for the pattern generation task
that was trained with e-prop1. (from (Bellec et al., 2019a))

31

5.1.3 Details of network model

The simulation time step was 1ms. 600 recurrently connected LIF neurons were
used for solving this task. These neurons were fully connected to the 20 input
neurons that produced the clock signal and also to a single readout neuron.
The output at each time step was then given by the membrane potential of the
readout neuron.

The input signal was encoded by 20 input neurons, that fired in groups in
5 successive time steps with a length of 200ms each. The membrane time con-
stants were set to τm = 20 ms and the firing threshold was set to vth = 0.41.
The neurons had a refractory period of 3 ms. The readout neuron had a time
constant τout = 20ms.

5.1.4 Details of training procedure

The input, recurrent and output weights of the network were trained for 1000
iterations with a learning rate of 0.003 and the Adam optimizer. After ev-
ery 100 iterations, the learning rate is decayed with a multiplicative factor of
0.7. A dampening factor of γ = 0.3 for the pseudo-derivative of the spiking
function was used. A batch size of a single sequence is used for training and
testing. To avoid an implausible high firing rate, a regularization term is added
to the loss function, that keeps the neurons closer to a target firing rate of 10Hz.

We also tried variations of random e-prop, where we varied the feedback
matrix over time. In the case of a change every 1ms, in every time step, a
different feedback matrix was used. We sampled the matrices once before the
training was started and therefore the feedback matrix for any particular time
step stayed constant during the whole training.

5.1.5 Results

Figure 5.2 shows the networks mean squared error over the course of the train-
ing. After around 700 iterations, all versions of random e-prop converge to a
mean squared error below 0.03. However there is still a small gap remaining to
backpropagation through time, which is able to drive the error down to almost
zero. As a control, we trained a network with BPTT, but disabled its recurrent
connections. This version is not able to solve the task very well.

In figure 5.3 the final training performance for the different algorithms are
shown. An additional control experiment was to replace the random feedback
weight matrix with a matrix of constant values 1√

N
. This would correspond to a

global learning signal. This did not work very well for this task, and performed
even worse than the network with no recurrent connections.

Varying the feedback matrix over time also influences the result: The best
results are achieved when the feedback matrix stays fixed during the whole se-
quence length. However the network is still able to learn the sequence with a

32

Figure 5.2: Averaged mse over training iterations for different variants of ran-
dom e-prop.(from (Bellec et al., 2019a))

Figure 5.3: Bar plot of final performance for the pattern generation task with
different training methods.(from (Bellec et al., 2019a))

feedback matrix that is changing every 20 ms or every 1 ms, although with a
slightly higher final error.

One drawback of this task is, that it is not needed to learn any dependencies
far backwards in time. This is due to the fact, that there is an error signal at
each time-step and almost no information from the past is needed to reproduce
the pattern. This can be seen in the bar with the label ”trunc. e-trace” where
the eligibility trace is cut off to only reach one time step backwards and the
network can still learn to reproduce the pattern with a low error.

5.2 Movie replay task

5.2.1 Introduction

This task is an extension of the movie replay task as described by (Clopath
2017). The task was to reproduce at each time-step the pixel values, that
correspond to a short movie-clip. As an extension, the network had to replay
one out of three possible movie sequences, where the target movie was indicated
by an additional group of input neurons. Similar to the pattern generation task,

33

the network received a clock-like input signal.

Figure 5.4: Spike raster for the movie replay task that was trained with random
e-prop. The bottom two rows show the learning signals for 10 randomly chosen
neurons. After training, the magnitude of the learning signals is very small, an
indication of a low error.

5.2.2 Details of the movie replay task:

The target video signal had a height 28, a width of 66 and 3 color channels for a
total of 5544 dimensions. The target values were normalized to be in the range
from 0 to 1 in each color channel.

We chose three movies from the Hollywood 2 data set (Marsza lek et al.
(2009)). We used the first 5 seconds from the movies with the file names
“sceneclipautoautotrain000[19,61,71].avi”. The movies were then spatially sub-
sampled to the desired resolution of 66× 28. The original movies had 25 frames
per second, which were extended with linear interpolation to 1000 frames per
second to match our simulation time step of 1ms.

5.2.3 Details of the network model and of the input scheme:

The network consisted of 700 LIF and 300 ALIF neurons that were recurrently
connected. Each neuron had a membrane time constant of τm = 20 ms and a
refractory period of 5 ms. The time constant for the threshold adaptation was
500 ms for every ALIF neuron. The firing threshold was set to vth = 0.62. The
network outputs were provided by the weighted sum of the membrane potential
of 5544 readout neurons with a time constant τout = 4 ms.

The network received input from 115 input neurons, divided into 23 groups
of 5 neurons. The first 20 groups indicated the current phase of the target

34

sequence similar to (Nicola and Clopath (2017)). Neurons in group i ∈ {0, 19}
produced 50 Hz regular spike trains during the time interval [250 · i, 250 · i+250)
ms and were silent at other times. The remaining 3 groups encoded the selection
of the movie by having the group that corresponded to a given movie fire with
a poisson spike train of 50 Hz, while the other 2 groups remained silent.

5.2.4 Details of the learning procedure

For learning, we carried out 5 second simulations, where the network produced
a 5544 dimensional output pattern. In each simulation one of the three movies
was uniformly sampled as the target which was then indicated to the network
by a 50 Hz Poisson spike train from the corresponding input group.

We applied synaptic plasticity using random e-prop, where the random feed-
back weights Bkj were sampled from a Gaussian distribution with a mean of 0
and a variance of 1. Weight updates were applied once after every 8 trials and
the gradients were accumulated during those trials additively. The parameter
updates were implemented using Adam (Kingma and Ba (2014)) with a learning
rate of 2 · 10−3 and default hyperparameters. After every 100 weight iterations,
the learning rate was decayed by a factor of 0.95. To avoid an excessively high
firing rate, a regularization term was added to the loss function to achieve a
target firing rate of f target = 10 Hz.

5.2.5 Results

Figure 5.5: Performance curves for different varieties of e-prop and BPTT.

As a measure of similarity between the target movie and the output, we report
the Pearson correlation coefficient averaged over a batch of 8 trials, between the
target and the output. Figure 5.5 shows the correlation over the course of the
training.

35

Correlation
BPTT 0.980
Random e-prop 0.964
Adaptive e-prop 0.966
Symmetric e-prop 0.973

Table 5.1: Final performance comparison after training.

It can be seen, that all three version of e-prop perform very similarly to
backpropagation through time. Table 5.1 summarizes the final performance
after training. All of the tested algorithms managed to solve this task nearly
perfectly with a correlation over 0.96.

5.3 Evidence accumulation task

5.3.1 Introduction

This task was inspired by the evidence-accumulation task done by Morcos and
Harvey (2016). In their task, mice were head-fixed and ran down a T-shaped
maze in a virtual-reality environment. They were presented with 6 visual cues
on fixed locations that appeared on either the right or left wall. At the T-section
the mice had to turn their head in the direction which had more cues.

To simulate this, visual cues on the right and left wall were encoded by two
groups of input neurons (represented as red and blue), that fired when a cue
was active. To allow for an unambiguous target label, 7 instead of 6 cues were
used. After a delay of around 1s another group of input neurons signaled the
time to make the decision with a recall cue.

Figure 5.6: Sketch of the evidence accumulation task. During the evidence
period, the network has to keep track of the number of cues on the left and
right side, remember these values during the delay period and finally make the
right decision.

36

Figure 5.7: Spike raster for the click count task that was trained with random
e-prop. The top row shows the four input channels consisting of 10 neurons
each, which are encoding the two input groups (left and right group), the recall
cue and the background noise. The row below the input is the spike raster
of the network. 50 recurrent and 50 adaptive neurons were used for the task.
The networks output is shown below the spike raster. The output is given as
the softmax over two output neurons. Below this, the learning signals for 10
selected neurons are shown. The second to last row shows the eligibility trace
for 3 selected synapses. The last row shows the slow component of the eligibility
trace εji,a for the same synapses.

5.3.2 Details of the network model and of the input scheme:

We encoded the network input by four groups of 10 neurons each. All groups
emit 40 Hz Poisson spike trains when active, except for the last group that
continuously emits a 10 Hz Poisson spike train, to represent background noise.
The first two groups encode the cues by giving of a 40 Hz Poisson spike train
that lasts for 100 ms when a cue is selected. The cues are separated by 50 ms.
After the 7 cues, there is a delay period of 1050 ms, where only the noise group
is active. This is followed by a 150 ms recall cue, where the third group gives
of a 40 Hz Poisson spike train.

For this task, we used a recurrent LSNN network consisting of 50 standard
LIF neurons and 50 LIF neurons with adaptive thresholds. One network sim-
ulation had a total duration of 2250 ms with a simulation time-step of dt = 1

37

ms. The neurons were connected in an all-to-all fashion. All neurons had a
membrane time constant of τm = 20 ms and a baseline threshold of vth = 0.6.
Adaptive neurons linearly spanned a range of threshold adaptation time con-
stants τa,j between 2000 and 4000 ms. We used a refractory period of 5 ms. The
threshold adaptation strength was calculated for each adaptive neuron with the

formula βj = 1.7
1−exp(−dtτ−1

a,j)

1−exp(−dtτ−1
m)

.

In the supervised setup, the output is computed during the recall period (the
last 150 ms) with the help of two readout neurons with time constant τout = 20
ms that are being sent into a softmax function to obtain normalized output
probabilities. The decision is made at the end of the sequence by averaging all
output probabilities during the recall period. This allows us to use an instan-
taneous loss for the learning signal.

5.3.3 Details of the learning procedure:

Supervised setup

The input, recurrent and output weights of the network were trained with a
learning rate of 0.005 and the Adam algorithm with default hyperparameters
(Kingma and Ba, 2014). Training was stopped when a misclassification rate
below 0.08 was reached. The distribution of the random feedback weights Bkj
was sampled from a normal distribution with mean 0 and variance 1. We used
a batch size of 64 trials, which means the network was shown 64 trials, during
which the weight updates were accumulated additively and then applied at the
end. We also used an additional regularization term to avoid firing rates above
10 Hz.

Reinforcement learning setup

The network setup was the same as in the supervised case, with the only differ-
ence being in the output computation. The output is an action that is sampled
at the last timestep, according to the probability that is given by the softmax
over the readout neurons at the last timestep. To do this, the readout time
constant τout was increased to 150 ms.

The weight update is also computed after the network was shown 64 trials
and the learning rates and used optimizer were the same as in the supervised
setup. We used the actor-critic setup as described in section 4.1.4 where the
loss term corresponding to the value function estimate is weighted with a factor
Cval = 0.1.

38

5.3.4 Results

Figure 5.8: Performance plot for the supervised setup. Random e-prop solved
the task on average after 308 iterations while with BPTT it was 156.

Figure 5.9: Performance plot for the reinforcement setting.

Iterations until task solved
BPTT 156
Random e-prop 308
Adaptive e-prop 331
Symmetric e-prop 309
Random e-prop with rewiring (10% connectivity) 1219
Reinforcement learning with BPTT 3050
Reinforcement learning with random e-prop 8880

Table 5.2: Average number of iterations needed until the task was solved.

As can be seen in figure 5.8, all variants of e-prop manage to solve the task. As
a control, we also tried using a network with 100 LIF neurons that was trained

39

Figure 5.10: Percentage of choices of the network trained with e-prop1 for the
red group as a function of the number of red cues. In the easiest cases where
there is a red:blue split of 0:7, 6:1 or 5:2, the network has an accuracy of almost
100% which drops down to around 70% for the harder cases of a 3:4 split.

with BPTT. It did not manage to achieve an error below the baseline of 50%.
Table 5.2 gives an overview about the average training iterations that are needed
to solve the task for each variant.

The three e-prop variants perform almost the same on this task. When us-
ing rewiring (Bellec et al. (2018a)), the network still manages to solve the task,
although it needs around four times as many training iterations. The task can
also be solved using reinforcement learning. In figure 5.9 we can see that ran-
dom e-prop can solve the task in about three times as many iterations as when
using BPTT.

Figure 5.10 shows the error distribution as a function of the number of left
cues. It can be seen, that the network produces almost all errors in the cases,
where the number of left and right cues follows a 3:4 split. In the cases where
all cues are on one side, or the cues are split 5:2, the network makes almost no
errors. This was also found in the experiments of Morcos and Harvey (2016).

40

Chapter 6

Analysis of random e-prop

6.1 Introduction

To aid the following analysis, a few principles form linear algebra are introduced
in this section.

6.1.1 Positive definiteness of a matrix

A symmetric square matrix A ∈ Rn×n is called positive definite if for all non-
zero vectors z ∈ Rn it holds that zTAz > 0. The matrix is called positive
semi-definite if zTAz ≥ 0,∀z 6= 0. Analogously the matrix is negative definite
if zTAz < 0,∀z 6= 0 and negative semi-definite if zTAz ≤ 0,∀z 6= 0.

This can be checked by looking at the eigenvalues of the matrix. If all eigen-
values are strictly positive, the matrix is positive definite, if all eigenvalues are
strictly negative the matrix is negative definite. Since the matrices of interest
in this analysis, will not always be symmetric we need to extend this defini-

tion. This is done by rewriting the quadratic form as zTAz as zT A
T+A
2 z and

then analyzing this symmetric matrix. The equivalence can be easily verified

by transposing the scalar term (zTATz)T = zTAz. The matrix AT+A
2 corre-

sponds to the symmetric part of the matrix A.

One geometric interpretation of this definition that also holds in the extended
case, would be that every vector z that was transformed with a positive definite
matrix A forms an angle of less than 90◦with the original vector.

6.1.2 Trace

The trace tr(A) of a square matrix A ∈ Rn×n is defined as the sum of its
diagonal elements.

tr(A) =

n∑
i=1

Aii (6.1)

41

with Aij denoting the ith row and j th column of A. The trace of a diagonaliz-
able matrix is equivalent to the sum of its eigenvalues:

tr(A) =

n∑
i=1

λi (6.2)

A square matrix A ∈ Rn×n is diagonalizable iff ∃S,S−1 ∈ Rn×n such that
S−1AS is a diagonal matrix. This allows us to decompose A as

A = SDS−1 (6.3)

where D is a diagonal matrix whose diagonal entries are the eigenvalues λi of
A. We can easily verify equation 6.2 by using the cyclic property of the trace:

tr(A) = tr(SDS−1) = tr(DS−1S) = tr(D) =

n∑
i=1

λi (6.4)

This decomposition requires the dimension of the eigenspace of A to be equal
to n, which in our analysis with random matrices will almost always be the case.

Since the trace can be written as the sum of all eigenvalues it follows, that
a positive definite matrix will always have a positive trace since all eigenvalues
are positive, and therefore a negative trace tells us that the matrix can not be
positive definite.

6.1.3 Alignment of angles

Lillicrap et al. (2016) introduce a so called modulator vector:

δbp = θTe (6.5)

which is a weighted sum of the error signal with the readout weights which is
used in the weight update rule (see section 2.1.2). Since in the case of feedback
alignment, the modulator vector is replaced by δba = Be (see Lillicrap et al.
(2016)) we can look at the inner product between these two vectors which gives a
measure of the angle between them. A positive value will mean that the vectors
are within 90◦ of each other, 0 means the vectors are exactly orthogonal and a
negative value means an angle of more than 90◦.

(θTe)T (Be) = eTθBe (6.6)

This inner product is a quadratic form whose sign will solely be determined by
the matrix θB, independent from the error vector e. As described before in
the definition of positive definiteness of a matrix, this product will only be pos-
itive if all eigenvalues of θB are positive. It is therefore a necessary condition
that the trace of θB is also positive. A positive trace can therefore be an eas-
ily computable indicator that the modulator signals are within 90◦ to each other.

As was explained in section 1.5.1, it is sufficient that the direction of the
weight update is within 90◦ of the negative gradient to improve on the previous
loss and in a convex loss function, with a properly chosen learning rate, even-
tually achieve convergence. Therefore if we observe that the modulator vectors
during the course of training form an angle that is less than 90◦, this would give
an explanation why random e-prop can work.

42

6.2 Results

6.2.1 Pattern generation

Figure 6.1: (left) Alignment of angles between readout and feedback weights.
(right) Loss over the course of training.

Figure 6.1, supports the idea of angle alignment. Before training, the trace
of θB has a value close to 0, which is expected for two randomly initialized
matrices. However during the course of training, the angles align, which is
visible in an ever increasing trace value. Interestingly this alignment of angles
is then also highly correlated with the development of the loss.

6.2.2 Store recall

We also wanted to analyze the dynamics of this weight alignment, by tracking
the development of the readout weights during the training process.

For this analysis, the so called store-recall task is used, which in its basic
setup is very similar to the evidence accumulation task. 10 LIF and 10 ALIF
neurons are used. Figure 6.2 shows the input encoding for the task. The network
receives a random input from two channels, along with a store and a recall com-
mand. The task is to remember which input channel was active during the store
command and then output this value during the recall command. The delay
between the store and recall command is uniformly sampled from 200 ∗ U(1, 6)
ms.

43

Figure 6.2: Input and output of the store recall task.

We will now analyze the mechanism by which the readout weights align with
the feedback. Since the update term for the readout weights does not depend
directly on the feedback weights (see equation 4.33), it helps to look at the firing
activities of the network neurons, which will ultimately determine the readout
weights.

This is done by computing the firing frequency for each neuron during the
time a store command comes and value 0 or value 1 is stored. These frequencies
are denoted as fstore0 and fstore1. The difference between these frequencies will
give a measure of the preference for a neuron to storing either 0 or 1.

In the left panel of figure 6.3 we can see, that the difference of the two feed-
back weights that connect to each neuron, determine the preference of a neuron.
For this figure an ensemble of trained networks was used. Before training, there
is no preference to either input. After training, the neurons exhibit a strong
preference to either input 0 or input 1. In the right panel the readout weights
are then plotted as a function of the preferences. We can see a negative align-
ment, that is caused by the fact, that when an adaptive neuron fires a lot during
a store command, its threshold will get raised and during the recall when the
outputs are read out, it will not fire anymore.

Figure 6.4 shows that the network neurons learn to exhibit a preference to
either input 0 or input 1 during the store command which is shown on the left
panel. In the right panel the development of the readout weights is shown. We
can see, that the readout weights follow the preference of each neuron.

In figure 6.5 we see, that this tuning is produced by a strong input weight to
the store input and an inhibitory connection to the opposite input, which will
make a neuron fire either during store and input 0 or store and input 1. Addi-
tionally most ALIF neurons have a strong positive weight to the recall input,
which will make them fire during the recall period if their threshold was not
increased in the past during the store period.

The assignment of these roles, seems to depend in general mostly on the dif-
ference between the feedback weights Bj,value0 and Bj,value1. The initial tuning
of a neuron does not seem to play a role, since there are many crossings of the
zero line as can be seen in figure 6.4. This will be also confirmed when analyzing

44

the evidence accumulation task.

Figure 6.3: Left panel: firing preferences of neurons during store command
as a function of the feedback weight difference. Right panel: Readout weight
difference as a function of feedback weight difference.

Figure 6.4: Development of readout weights and neuron tuning over the course
of the training.

45

Figure 6.5: Firing rates differences for value 0 and value 1 during the store
command. The network produces the tuning by a strong positive weight on the
store input which is then inhibited by a negative connection to the opposite
value.

6.2.3 Evidence accumulation task

Also in the evidence accumulation task an alignment of features happens dur-
ing the training process. This is shown in figure 6.6. The orange curve plots
the alignment of the feedback weights with the readout weights, while the blue
curve shows the alignment of the neuron tuning with the feedback weights. We
can see that the alignment of the tuning happens first, and then after this the
alignment of the readout weights follows.

In figure 6.7 we can see, that the tuning of an ALIF neuron to either the
right or left channel, correlates very strongly with the difference between the
feedback weights Bj,left and Bj,right .

46

Figure 6.6: Alignment of the features (fleft − fright) and angles of readout and
feedback matrix.

Figure 6.7: This figure shows the preference of the adaptive neurons for either
the left input or the right input, in dependence of the feedback matrix difference.

6.2.4 Discussion

In all of the analyzed tasks, the readout weights were aligning with the feedback
weights during the course of training. This alignment happened, because the
readout weights were adjusting to make best use of the features, which were
first produced with help of the error information coming through the feedback
weights.

This seems to match with the analysis of Lillicrap et al. (2016), where it
was found, that the information from the feedback weight first flows back to the
hidden layer and from there into the readout weights.

47

Chapter 7

Conclusion

7.1 Discussion

In this work we evaluated a novel learning algorithm, e-prop, on the basis of a
simple spiking neuron model, as defined in section 1.6.

We showed that e-prop can perform very similarly to backpropagation through
time, on a range of tasks that demand challenging temporal credit assignment
and memory.

We also showed, that e-prop can be modified in a way such that it uses an
asymmetric feedback path for error signals. We found that similar as in the
experiments of Lillicrap et al. (2016), the readout weights aligned their angle
over time with the randomly chosen feedback weights. The asymmetric error
feedback path and the synapse specific update dynamics could be seen as an
argument in favor of the higher biological plausibility of e-prop as compared to
BPTT.

Since e-prop is an online algorithm, it does not involve storage of network in-
puts and states for the course of the whole sequence. The memory requirements
of e-prop are of the same order as simply simulating the network and there are
no requirements for additional offline processing. This in principle allows the
algorithm to be implemented on neuromorphic hardware.

7.2 Further research

At the moment it is not clear by how much and on which tasks the performance
of e-prop is limited, or might even break down. The experiments done in this
thesis only cover a very small fraction of the space of tasks that a recurrent
spiking neural network could in principle solve.

Therefore, to obtain a better understanding of the power of e-prop, more
experiments and a more diverse set of benchmark tasks are needed. In cases
where e-prop performs worse than BPTT, it might be interesting to see, if and

48

how much this could be improved with the introduction of learning to learn, or
synthetic gradients like it is done in (Bellec et al. (2019a)).

It would also be valuable to have e-prop implemented on neuromorphic hard-
ware, such as Loihi Davies et al. (2018) and be deployed at a task that makes
use of a large enough network, that could not be trained with BPTT anymore.

49

List of Figures

1.1 Graph of a one layer feedforward artificial neural network. 9
1.2 Sketch of a simple recurrent neural network. 9
1.3 Unrolling of the computational graph for a recurrent neural net-

work. Figure adapted from Goodfellow et al. (2016) 12
1.4 Time course of the membrane voltage for 500 ms with a constant

input current of 0.03 for the first 300 seconds. The threshold
voltage is set to vth = 0.5 and the decay constant α is set to
exp(− 1

20) . 15
1.5 Time course of the membrane voltage and adaptive threshold for

500 ms with a constant input current of 0.03 for the first 300
seconds. The threshold voltage is set to vth = 0.5 and the decay
constant α is set to exp(− 1

20). The threshold adaptation strength
β is set to 0.2 and the adaptation decay factor ρ is set to exp (− 1

200) 16
1.6 Pseudo derivative used to deal with the discontinuity of the spike

function for a threshold voltage of vthr = 0.5 and dampening
factor γ = 0.3 . 18

5.1 Spike raster and network outputs for the pattern generation task
that was trained with e-prop1. (from (Bellec et al., 2019a)) . . . 31

5.2 Averaged mse over training iterations for different variants of
random e-prop.(from (Bellec et al., 2019a)) 33

5.3 Bar plot of final performance for the pattern generation task with
different training methods.(from (Bellec et al., 2019a)) 33

5.4 Spike raster for the movie replay task that was trained with ran-
dom e-prop. The bottom two rows show the learning signals for
10 randomly chosen neurons. After training, the magnitude of
the learning signals is very small, an indication of a low error. . 34

5.5 Performance curves for different varieties of e-prop and BPTT. . 35
5.6 Sketch of the evidence accumulation task. During the evidence

period, the network has to keep track of the number of cues on
the left and right side, remember these values during the delay
period and finally make the right decision. 36

50

5.7 Spike raster for the click count task that was trained with random
e-prop. The top row shows the four input channels consisting
of 10 neurons each, which are encoding the two input groups
(left and right group), the recall cue and the background noise.
The row below the input is the spike raster of the network. 50
recurrent and 50 adaptive neurons were used for the task. The
networks output is shown below the spike raster. The output is
given as the softmax over two output neurons. Below this, the
learning signals for 10 selected neurons are shown. The second to
last row shows the eligibility trace for 3 selected synapses. The
last row shows the slow component of the eligibility trace εji,a for
the same synapses. 37

5.8 Performance plot for the supervised setup. Random e-prop solved
the task on average after 308 iterations while with BPTT it was
156. 39

5.9 Performance plot for the reinforcement setting. 39
5.10 Percentage of choices of the network trained with e-prop1 for the

red group as a function of the number of red cues. In the easiest
cases where there is a red:blue split of 0:7, 6:1 or 5:2, the network
has an accuracy of almost 100% which drops down to around 70%
for the harder cases of a 3:4 split. 40

6.1 (left) Alignment of angles between readout and feedback weights.
(right) Loss over the course of training. 43

6.2 Input and output of the store recall task. 44
6.3 Left panel: firing preferences of neurons during store command as

a function of the feedback weight difference. Right panel: Read-
out weight difference as a function of feedback weight difference. 45

6.4 Development of readout weights and neuron tuning over the course
of the training. 45

6.5 Firing rates differences for value 0 and value 1 during the store
command. The network produces the tuning by a strong positive
weight on the store input which is then inhibited by a negative
connection to the opposite value. 46

6.6 Alignment of the features (fleft − fright) and angles of readout
and feedback matrix. 47

6.7 This figure shows the preference of the adaptive neurons for either
the left input or the right input, in dependence of the feedback
matrix difference. 47

51

List of Tables

5.1 Final performance comparison after training. 36
5.2 Average number of iterations needed until the task was solved. . 39

52

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., and
Zheng, X. (2015). Tensorflow : Large-scale machine learning on heterogeneous
distributed systems.

Akrout, M., Wilson, C., Humphreys, P. C., Lillicrap, T., and Tweed, D. (2019).
Deep Learning without Weight Transport. arXiv:1904.05391 [cs, stat]. arXiv:
1904.05391.

Bear, M. F., Conners, B. W., and Paradiso, M. A. (2016). Neuroscience: Ex-
ploring the Brain - Fourth edition. Wolters Kluwer.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. (2018a). Deep rewiring:
Training very sparse deep networks. International Conference for Learning
Representations.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018b).
Long short-term memory and learning-to-learn in networks of spiking neurons.
In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R., editors, Advances in Neural Information Processing Systems
31, pages 787–797. Curran Associates, Inc.

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., and Maass, W.
(2019a). Biologically inspired alternatives to backpropagation through time
for learning in recurrent neural nets. arXiv preprint arXiv:1901.09049.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R.,
and Maass, W. (2019b). A solution to the learning dilemma for recurrent
networks of spiking neurons. bioRxiv.

Caporale, N. and Dan, Y. (2008). Spike timing–dependent plasticity: A hebbian
learning rule. Annual Review of Neuroscience, 31(1):25–46. PMID: 18275283.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H.,
Dimou, G., Joshi, P., Imam, N., Jain, S., et al. (2018). Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker
project. Proceedings of the IEEE, 102(5):652–665.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

53

Ha, G. E. and Cheong, E. (2017). Spike frequency adaptation in neurons of the
central nervous system. Experimental neurobiology, 26(4):179–185.

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological The-
ory. Wiley.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9:1735–80.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Legenstein, R., Naeger, C., and Maass, W. (2005). What can a neuron learn
with spike-timing-dependent plasticity? Neural computation, 17:2337–82.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Ran-
dom synaptic feedback weights support error backpropagation for deep learn-
ing. Nature Communications, 7.

Marsza lek, M., Laptev, I., and Schmid, C. (2009). Actions in context.

Morcos, A. and Harvey, C. (2016). History-dependent variability in population
dynamics during evidence accumulation in cortex. Nature Neuroscience.

Murray, J. M. (2018). Local online learning in recurrent networks with random
feedback. bioRxiv.

Nicola, W. and Clopath, C. (2017). Supervised learning in spiking neural net-
works with force training. Nature Communications, 8(1):2208–2208.

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural
networks. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pages 1045–1053, USA. Curran
Associates Inc.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, pages 65–386.

Roth, C., Kanitscheider, I., and Fiete, I. (2019). Kernel RNN learning (keRNL).
In International Conference on Learning Representations.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536.

Samadi, A., Lillicrap, T. P., and Tweed, D. B. (2017). Deep learning with
dynamic spiking neurons and fixed feedback weights. Neural Computation,
29(3):578–602. PMID: 28095195.

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S.
(2010). A wafer-scale neuromorphic hardware system for large-scale neural
modeling. In Circuits and systems (ISCAS), proceedings of 2010 IEEE inter-
national symposium on, pages 1947–1950. IEEE.

Sussillo, D. and F Abbott, L. (2009). Generating coherent patterns of activity
from chaotic neural networks. Neuron, 63:544–57.

54

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Tallec, C. and Ollivier, Y. (2017). Unbiased online recurrent optimization.
CoRR, abs/1702.05043.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550–1560.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–280.

55

