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Abstract

The trend of increasing processing power in combination with the reduction of the component’s
size in electronics requires the miniaturization of the individual electronic devices. This ongoing
trend will eventually reach its limit when devices are downscaled to sizes at which quantum
effects become dominating. Being small functional units, single molecules are considered as
molecular electronic devices to further reduce this size limitation. Molecular electronics takes
advantage of quantum effects yielding devices displaying certain desired properties.

The aim of this work is to study destructive quantum interference (DQI) which is a quantum
effect that may be used in future electronic devices. We study DQI using benzenedithiolate
(BDT) in two different configurations: benzene-1,3-dithiolate (meta-BDT) and benzene-1,4-
dithiolate (para-BDT). For molecular electronics the electrodes play a crucial role. The impact
of the electrodes on the transport properties is analyzed by considering two sets of electrodes:
planar electrodes and pointed ones. Additionally, we drive these systems out of equilibrium by
introducing bias voltage.

In the first step, we study DQI at the example of a Hückel model with parameters taken from
literature to get an idea of how DQI affects the model system. Afterwards, we calculate transport
properties of the different transport systems, e.g. the transmission, in and out of equilibrium
by means of first-principles calculations using a density functional theory and non-equilibrium
Green’s function (DFT+NEGF) approach. In a further step, we map the Hamiltonian matrices
generated in the DFT+NEGF approach onto simple models to gain a deeper understanding of
DQI in BDT contacted with realistic electrodes in and out of equilibrium.

While DQI is observed in the Hückel model, different effects of the more realistic systems mask
DQI. We find that additional transport channels not displaying DQI contribute to the electron
transport. Also the electrode coupling is important for observing DQI. Our calculations also
show that a bias voltage up to 3 V does not destroy DQI.
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Kurzfassung

Der Trend zunehmender Prozessorleistung in Kombination mit der Reduktion der Komponen-
tengröße in der Elektronik erfordert das Miniaturisieren der einzelnen elektronischen Bauteile.
Dieser Trend wird letztendlich seine Grenzen erreichen, sobald Bauteile Größen erreicht haben,
bei welchen quantenmechanische Effekte dominant werden. Einzelne Moleküle, welche kleine
funktionale Einheiten darstellen, werden als elektronische Bauteile in Betracht gezogen, um diese
Größenlimitation weiter zu reduzieren. Molekularelektronik nutzt das Auftreten solcher quan-
tenmechanischer Effekte aus, um elektronische Komponenten mit bestimmten Eigenschaften zu
erhalten.

Ziel dieser Arbeit ist es, destruktive Quanteninterferenz (DQI) zu untersuchen, welche ein Bei-
spiel eines solchen quantenmechanischen Effektes darstellt, welcher in zukünftigen elektronischen
Geräten Anwendung finden könnte. Wir untersuchen DQI anhand von Benzoldithiolat (BDT)
in unterschiedlichen Konfigurationen: Benzol-1,3-dithiolat (meta-BDT) und Benzol-1,4-dithiolat
(para-BDT). In der Molekularelektronik spielen die Elektroden eine entscheidende Rolle. Der
Einfluss der Elektroden auf die Transporteigenschaften wird untersucht, indem zwei Elektroden-
formen betrachtet werden: flache und spitze Elektroden. Zusätzlich bringen wir diese Systeme
durch Anlegen einer Biasspannung ins Nichtgleichgewicht.

Zunächst untersuchen wir DQI am Beispiel eines Hückel Modells mit Parametern aus der Li-
teratur, um eine Vorstellung der Auswirkungen von DQI auf das Modellsystem zu bekommen.
Danach berechnen wir Transporteigenschaften der verschiedenen Transportsysteme wie z.B. die
Transmission mithilfe von first-principles Berechnungen unter Verwendung von Dichtefunktio-
naltheorie und Greenscher Funktionen (DFT+NEGF) im Gleichgewicht und Nichtgleichgewicht.
In einem weiteren Schritt projizieren wir die mit der DFT+NEGF Methode gewonnenen Ha-
miltonmatrizen auf Modellsysteme, welche wir studieren, um ein tieferes Verständnis von DQI
in BDT kontaktiert an realistische Elektroden im Gleichgewicht und Nichtgleichgewicht zu er-
halten.

Während DQI in einem Hückel-Modell beobachtet wird, überlagern verschiedene Effekte eines
realistischen Systems DQI. Wir finden, dass zusätzliche Transportkanäle, welche keine DQI auf-
weisen, zum Elektronentransport beitragen. Außerdem ist die Kopplung der Elektroden wichtig
für die Beobachtung von DQI. Unsere Berechnungen zeigen außerdem, dass eine Biasspannung
bis zu 3 V die DQI nicht zerstört.
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Chapter 1

Introduction

Theoretical studies show that various molecules can in principle display properties of a wide
variety of electronic components like switches, diodes or transistors [1]. As an impressive ex-
ample, Stadler et al. [2] showed that, by taking advantage of destructive quantum interference
(DQI), XOR gates, AND gates and even half-adders could be created out of a single dinitroben-
zene molecule. The 1,3-dinitrobenzene shown in Fig. 1.1 results in a XOR gate if electrodes
are contacted to the carbon atoms at positions 2 and 4. The inputs 0/1 correspond to the
nitro groups (NO2) being either in-plane with the benzene ring or perpendicular to this plane,
respectively. If either both or none of the two NO2 groups are in-plane with the benzene ring
the system will display DQI. In the case of DQI there will be a lower current flow (output 0 ) and
in the case of no DQI there will be a larger current flow (output 1 ). A half-adder is realized by
contacting a third electrode at position 5 and an AND gate by using two electrodes contacted
to 1,2-dinitrobenzene at sites 4 and 5.

Fig. 1.1. 1,3-dinitrobenzene.
The molecule is drawn with Avogadro [3].
Color code: carbon (gray), hydrogen (white), nitrogen (blue), oxygen (red).

An example of an even simpler molecule displaying DQI is benzene, where the observation of DQI
is determined by the sites the electrodes are contacted to. Unfortunately, benzene is unsuited
in molecular electronic devices for several reasons, e.g. the Fermi energy lying in the middle of
the large HOMO-LUMO gap. Due to benzene being unsuited in molecular electronic devices its
derivatives, like benzenedithiolate, are considered instead. Using 1,4-benzenedithiolate (BDT), a
molecular transport system has been realized in 1997 [4]. Meanwhile, BDT has been investigated
extensively experimentally and theoretically.
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2 CHAPTER 1. INTRODUCTION

To deduce whether a given molecule, like dinitrobenzene or BDT, has the properties necessary
to serve as a replacement of a specific electronic component quantum mechanical calculations
can be done. For solving the underlying equation, the time-independent Schrödinger equation,
in a reasonable amount of CPU time, approximations are unavoidable. State-of-the-art methods
like density functional theory combined with non-equilibrium Green’s functions (DFT+NEGF)
can be used to predict tendencies of physically relevant properties quite well, e.g. Ref. [5]. In
general these methods are computationally expensive and do not always allow for simple physical
interpretations.

To reduce the computational cost one can resort to models that describe the relevant physics
reliably. By limiting oneself to the Hückel model, a graphical scheme can be derived [6] allowing
the prediction of DQI through visual assessment of a molecule’s conjugated π orbitals: In the
first step one draws a graphical representation of the molecule’s conjugated π orbitals. Then
two electrodes are contacted at a single site each. For predicting DQI one needs, for all possible
combinations, to connect the two sites of the molecule contacted to the electrodes by a continuous
path and group nearest-neighboring sites not part of this path into loops or pairs, where each
site can be part of a single loop or pair. If none of the possible paths allows the grouping of all
sites in this manner, DQI occurs. Fig. 1.2 shows the application of this scheme.

Fig. 1.2. Two diagrams resulting from the application of the graphical scheme discussed in the main
text to a benzene molecule. The stars indicate the sites contacted to the electrodes.

Although this graphical scheme holds only in the case of the Hückel model, it has been applied
also for molecules not describable by the Hückel model, in many cases predicting the occurrence
of DQI correctly. Using this scheme, one can show that the logical circuits mentioned above and
proposed by Stadler et al. [2] display the desired properties. When the NO2 groups are in-plane
with the carbon ring, they are conjugated to the π orbitals of the benzene ring and have to be
paired together with the carbon atoms according to above scheme. By rotating one nitro group
by 90◦ about the CN-bond, the nitrogen of this functional group is no longer conjugated and
therefore must not be paired with the carbon atoms. Also DQI in the case of benzene can be
determined using this graphical scheme (see Fig.1.2).

Model parameters depend strongly on the environment of a system and the geometric details
of the molecule, which leads to limiting transferability. Therefore, in this thesis, we study the
transmission of the four systems shown in Fig. 1.3 separately and for different bias voltages using
the DFT+NEGF code TRANSIESTA [7,8] and its post-processing tool TBTRANS [8]. We use the
parameters gained from these calculations to obtain models containing different approximations,
e.g. Hückel model or tight-binding model, and examine the impact of approximations on the
DQI. We compare the results obtained from the different models to each other as well as to the
results from the first-principles calculations.

This thesis is structured as follows: Chapter 2 addresses the theory required for the different
calculations. In chapter 3, we discuss the codes used for the first-principles calculations and
the approximations in the models. In Chapter 4, we present the results gained from the DFT
calculations and the different models.
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Fig. 1.3. Central regions of the studied transport systems:
(a) benzene-1,3-dithiolate contacted to planar electrodes
(b) benzene-1,3-dithiolate contacted to pointed electrodes
(c) benzene-1,4-dithiolate contacted to planar electrodes
(d) benzene-1,4-dithiolate contacted to pointed electrodes
The BDT is contacted to Au(111). In the case of planar electrodes the sulfur is positioned on the fcc
hollow site as indicated by the dotted circles in (a). The tips of the pointed electrodes lie on a line parallel
to the transport direction. The systems were built with Avogadro [3] and drawn with Jmol [9].
Color code : Carbon (gray), Hydrogen (cyan), sulfur (yellow), gold (gold).
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Chapter 2

Theory

In this chapter we address the theoretical concepts required to simulate transport systems.
Sec. 2.1 describes how systems are calculated using DFT. We introduce the Hamiltonian in
second quantization in Sec. 2.2 and discuss several approximations. In Sec. 2.3 we introduce
the concept of Green’s functions and derive their connection to the Hamiltonian. We discuss
in Sec. 2.4 a formalism allowing the treatment of infinitely extended systems. In Sec. 2.5 we
explain how transport systems are driven out of equilibrium. Additionally, Sec. 2.6 will treat
the derivation of the graphical scheme and show how using this scheme DQI can be predicted
through visual assessment.

2.1 Density Functional Theory

On the scale of molecular transport systems classical physics breaks down and is no longer
applicable. For a correct description of these systems the Schrödinger equation has to be solved.
Time-independent non-relativistic systems are described by the time-independent Schrödinger
equation

ĤΨ(r1, ..., rN,R1, ...,RM) = EΨ(r1, ..., rN,R1, ...,RM) , (2.1)

where Ψ(r1, ..., rN,R1, ...,RM) is a many-body wavefunction and the ri and Rj are the position
vectors of the electrons and nuclei, respectively. The many-body Hamiltonian has the form

Ĥ =−
∑
i

~2

2me
∆i +

∑
i,j
i<j

Ve-e (|ri − rj |)−
∑
i,A

Ve-n (|ri −RA|)

−
∑
A

~2

2mA
∆A +

∑
A,B
A<B

Vn-n (|RA −RB|) . (2.2)

e denotes the electrons, while n denotes the nuclei. The first two terms describe the kinetic energy
and the Coulomb repulsion of the electrons, while the fourth and the fifth term describe the
kinetic energy and the Coulomb repulsion of the nuclei. The third term describes the Coulomb
attraction between nuclei and electrons. Due to the large difference in mass, the nuclei move

5



6 CHAPTER 2. THEORY

slowly compared to the electrons and the fourth and last term in Eq. (2.2) can be neglected
in the calculations of the electronic part of the many-body wavefunction. This is the so-called
Born-Oppenheimer approximation.

The dimension of the Hilbert space of a many-body system grows exponentially. Therefore,
solving directly Eq. (2.1) is computationally very demanding. To allow for the treatment of
”larger” systems, one can consider the electron density of a system instead of its many-body
wavefunction. Hohenberg and Kohn [10] showed that the ground state electron density of an
arbitrary number of electrons, which interact with each other through Coulomb repulsion and
move influenced by an external potential, determines this potential uniquely. The first term
on the right-hand side of Eq. (2.2) describes the motion of the electrons, the second one the
Coulomb repulsion between them and the third term can be interpreted as the external potential
assumed in Ref. [10]. Now the ground state energy can be calculated from this electron density

E[n] =
〈
Ψ[n]

∣∣
−∑

i

~2

2me
∆i −

∑
i,A

Ve-n (|ri −RA|) +
∑
i,j
i<j

Ve-e (|ri − rj |)

∣∣Ψ[n]
〉

= G[n] +

∫
vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ , (2.3)

where the functional G[n] contains the kinetic and exchange-correlation energy of the electrons
and is treated in more detail later on. The second term describes the influence of the external
potential, i.e. the potential created by the nuclei, on the electrons. The last term describes the
classical Coulomb energy of the electrons. As Ref. [10] shows, the minimization of the energy in
Eq. (2.3) with respect to the electron density leads to the correct ground state electron density.

The formalism derived up to now simplifies the problem of finding a wavefunction of 3N variables
for solving the Schrödinger equation to finding an electron density of only 3 variables minimizing
the energy functional. Using this formalism, Kohn and Sham [11] developed a way to calculate
the ground state electron density of a system. In the first step, the functional G[n] is split into a
term containing the kinetic energy of non-interacting electrons TS[n] and an exchange-correlation
term Exc[n] resulting in the following expression for the energy functional

E[n] = TS[n] + Exc[n] +

∫
vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ . (2.4)

To solve this equation we require suitable expressions for the kinetic energy of the non-interacting
electrons TS[n] and the exchange-correlation term Exc[n]. A wide variety of functionals exists
for the exchange-correlation term Exc[n] following different philosophies and approaches. The
choice of the exchange-correlation functional depends on the system and the properties one
wants to study. At this point, we refer the reader to the literature for more information on
exchange-correlation functionals. It will be easier to give an expression for the kinetic energy
term TS[n] at a later point. Therefore we continue at this point without an explicit expression
for the functional TS[n]. Due to the interest in the ground state electron density the functional
derivative of the energy with respect to the electron density has to vanish

δE[n]

δn

!
= 0 . (2.5)
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Using this condition Eq. (2.4) becomes

δTS[n]

δn
+
δExc[n]

δn︸ ︷︷ ︸
=:vxc

+vext(r) +

∫
n(r′)

|r− r′|
dr′︸ ︷︷ ︸

=:vH

=
δTS[n]

δn
+ ṽeff(r) = 0 , (2.6)

where the so-called exchange-correlation potential vxc, the external potential vext and the so-
called Hartree potential vH are combined into an effective potential ṽeff(r). We see from this
equation, that the initial problem can be mapped onto a fictive system of non-interacting elec-
trons moving within an effective potential ṽeff(r). The functional derivative of TS[n] in terms of
this system of non-interacting electrons has the form

δTS[n]

δn
=
∑
i

∫
dr ψ∗i (r)

(
− ~

2me
∆

)
ψi(r) (2.7)

with ψi(r) being the wavefunctions of these non-interacting electrons. The ψi(r) and the electron
density of the initial system are related by

n(r) =
∑
i

|ψi(r)|2 . (2.8)

Now the Kohn-Sham equations of this system of non-interacting electrons have to be solved

ĤKSψi(r) =

{
− ~

2me
∆ + ṽeff(r)

}
ψi(r) = εKS

i ψi(r) , (2.9)

where ĤKS is the Kohn-Sham Hamiltonian. The ψi(r) are called Kohn-Sham wavefunctions and
the εKS

i are the corresponding eigenenergies.

2.2 Tight-binding model

By introducing a suitable basis, we can write the Kohn-Sham Hamiltonian in second quantiza-
tion, which in the case of a localized basis allows the usage of the tight-binding (TB) model. For
more information on second quantization we refer the reader to the literature, e.g. Ref. [12]. A
detailed treatment of the tight-binding model is found in Ref. [13].

We write now the Kohn-Sham Hamiltonian in second quantization and get

ĤKS =
∑
i,j

tij â
†
i âj =

∑
i,j
i 6=j

tij â
†
i âj +

∑
i

tii︸︷︷︸
εi

â†i âi︸︷︷︸
n̂i

(2.10)
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with the parameters

tij =

∫
dr ψ∗i (r)

[
− ~

2me
∆ + ṽeff(r)

]
ψj(r) . (2.11)

The ψi(r) and ψ∗j (r) are the Kohn-Sham wavefunctions and the â†i and âj are fermionic creation
and annihilation operators, respectively, and fulfill the anticommutator relations

{âi, â†j} = δij

{âi, âj} = 0 (2.12)

{â†i , â
†
j} = 0 .

In the second step in Eq. (2.10) we rearranged the Hamiltonian into a more common form. The
first term on the right-hand side describes the hopping of electrons between different orbitals.
The second term describes the onsite energy of the electrons in the corresponding orbital with
â†i âi = n̂i being the particle number operator.

In TB the electrons are assumed to be tightly bound to atoms and thus the tij are in general very
small if the sites i and j are locally well separated. Therefore only up to the n-nearest neighbors
are relevant, while the remaining terms in Eq. (2.10) are negligible. The TB Hamiltonian has
the form

ĤTB =
∑〈
i,j
〉
n

tij â
†
i âj +

∑
i

εin̂i , (2.13)

with
〈
i, j
〉
n

denoting the summation over the nearest to n-nearest neighbors.

In the case of hydrocarbons with delocalized π bonds we can further simplify Eq. (2.13) using
the Hückel model. More details on the Hückel model are found in e.g. Ref [14]. The Hückel
model considers only electrons within π orbitals (π electrons) explicitly and treats electrons
within σ orbitals as an additional contribution to the potential the π electrons feel.

For the Hückel model to be reasonable the π-electron approximation [15] has to be justified.
According to Ref. [15] the π-electron approximation is an especially good approximation for
planar hydrocarbons, like benzene, limiting the Hückel model to planar or nearly planar systems.
Furthermore, the Hückel model considers only nearest-neighbor hopping and assumes a single
hopping parameter t and a single onsite energy ε and the Hamiltonian simplifies to

ĤHückel = t
∑〈
i,j
〉
1

â†i âj + ε
∑
i

n̂i . (2.14)

2.2.1 Basis functions

To write the Hamiltonian in second quantization we have to introduce a suitable basis. Atomic
or molecular orbitals are a natural choice. Molecular orbitals can be approximated using a linear
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combination of atomic orbitals (LCAO)

χr(r) =
∑
i

criφi(r) , (2.15)

where χr(r) are molecular orbitals and the φi(r) are atomic orbitals. Similarly, it is possible
to approximate the atomic orbitals by a linear combination of basis functions, which allow an
easier evaluation of the parameters tij in Eq. (2.10). By introducing such a basis the problem
shifts from finding the eigenfunctions of the Hamiltonian to finding the coefficients of the basis
functions. In the case of non-interacting electrons the eigenvalue problem can be written as a
matrix equation of the form

H~c = ES~c (2.16)

with the entries of the Hamiltonian matrix H being the parameters tij. S and ~c are the overlap
matrix and coefficient vector of the introduced basis functions, respectively.

In general the overlap matrix will not be the identity matrix (non-orthogonal TB). The gener-
alized eigenvalue problem (2.16) can be reduced to a standard one by transforming the basis,
and in further consequence the Hamiltonian matrix accordingly,

OL
SSOR

S = I . (2.17)

The transformation matrices OL
S and OR

S depend on the chosen orthogonalization scheme. An
example of such a scheme is the Löwdin orthogonalization [16], where

OL
S = OR

S = S−
1
2 . (2.18)

Such orthogonalization also has its drawbacks. Due to the mixing of orbitals belonging to
different atoms the new orbitals are less localized. This generally requires the consideration
of hopping processes towards additional neighbors. Moreover, the transformation matrices OL

S

and OR
S depend on the details of the system’s geometry, like interatomic distances, limiting the

transferability between different systems.

2.3 Green’s functions

Green’s functions are a convenient tool for our purposes. Once the Green’s function is obtained
properties like correlations, particle currents, transmissions and densities of states can be ac-
cessed easily. Due to their importance we will give a short introduction to Green’s functions in
this section. The following concepts and Green’s functions in general are treated in more details
in Ref. [12].
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Due to the presence of operators within different quantum mechanical pictures we will give a
short overview of these pictures:

• Schrödinger picture: The time evolution occurs in the states. The operators are either
constant in time or depend explicitly on time. Operators and states within the Schrödinger
picture are denoted with a subscript S.

• Heisenberg picture: The time evolution occurs in the operators. The states are constant
in time. Operators and states are generally denoted with a subscript H, but for a shorter
notation we will leave out the subscript in the following if not necessary.

We also introduce the following notation for the commutator and anticommutator

{A,B} = AB +BA

[A,B] = AB −BA .

The retarded and advanced Green’s functions of two operators Â and B̂ in the case of fermions
are defined as

GR
AB(t, t′) := −iΘ(t− t′)

〈{
Â(t), B̂(t′)

}〉
(2.19)

GA
AB(t, t′) := +iΘ(t′ − t)

〈{
Â(t), B̂(t′)

}〉
. (2.20)

The angle brackets appearing on the right-hand side of Eqs. (2.19) and (2.20) denote the ex-
pectation value of the anticommutator of the operators Â and B̂. Θ(t − t′) is the Heaviside
function, which is defined in the following way

Θ(t− t′) =

 1 if t > t′

0 if t′ > t
. (2.21)

The operators Â and B̂ are depicted in the Heisenberg picture and are defined as

Â(t) = Û−1
S (t, t0)ÂS(t)ÛS(t, t0) . (2.22)

ÛS(t, t0) is the time-evolution operator, which fulfills the relations

ÛS(t0, t) = Û †S(t, t0) = Û−1
S (t, t0)

ÛS(t0, t0) = Î (2.23)

ÛS(t, t0) = ÛS(t, t′)ÛS(t′, t0) .
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By using the time-ordering operator T̂

T̂ Â(t)B̂(t′) =

 Â(t)B̂(t′) if t > t′

B̂(t′)Â(t) if t′ > t
(2.24)

the time-evolution operator can be written as

ÛS(t, t0) = T̂ e
− i

~
∫ t
t0
dt′Ĥ(t′)

. (2.25)

2.3.1 Matrix Green’s functions

We use the definitions (2.19) and (2.20) and show in this section, that we can calculate the
one-particle Green’s functions of non-interacting electrons from the Hamiltonian matrix and
overlap matrix of the system by

GR/A(E) =
[
(E ± i0+)S−H

]−1
(2.26)

with 0+ being a positive infinitesimal. The positive sign is chosen for retarded Green’s functions
and the negative sign for advanced Green’s functions.

From here on we will use atomic units, in which ~ = me = e = 1.

For simplicity we consider an orthonormal basis and generalize the results at the end to a non-
orthonormal basis. In the case of an effective one-particle Hamiltonian, it is enough to study
one-particle Green’s functions, i.e. Green’s functions of the operators

Â(t) = âj(t) and B̂(t) = â†l (t) , (2.27)

where âj and â†l are annihilation and creation operators at sites j and l, respectively.

In this work we will study only steady states, which are described by time-independent Hamil-
tonians. This allows us to write the Green’s functions (2.19) and (2.20) in terms of a time
difference instead of two distinct times and simplifies the following derivations.

In the case of a time-independent Hamiltonian the time-evolution operator (2.25) becomes

ÛS(t, t0) = e−iĤ(t−t0) . (2.28)

We also introduce the identity operator

Î =
∑
m

∣∣m〉〈m∣∣ , (2.29)

which is valid for any complete, orthonormal basis.



12 CHAPTER 2. THEORY

We use now Eqs. (2.28) and (2.29) and take advantage of the operators having no explicit time-
dependency to write the expectation value of Eqs. (2.19) and (2.20) in terms of a time difference.
We consider the first term of the anticommutator and get

〈
Â(t)B̂(t′)

〉
=

1

Z

∑
n,m

〈
n|e−βĤeiĤtÂSe

−iĤteiĤt
′
B̂S|m

〉〈
m|e−iĤt′ |n

〉
=

1

Z

∑
n,m

〈
m|e−iĤt′ |n

〉〈
n|e−βĤeiĤtÂSe

−iĤteiĤt
′
B̂S|m

〉
=

1

Z

∑
m

〈
m|e−βĤe−iĤt′eiĤtÂSe

−iĤteiĤt
′
B̂S|m

〉
=
〈
Â(t− t′)B̂

〉
, (2.30)

where β = 1
kBT

with kB being the Boltzmann constant and T the temperature. We used the third

relation from Eq. (2.23) and that the density operator e−βĤ

Z and the time-evolution operator
commute. This calculation can be repeated for the second term of the anticommutator.

Using the result from Eq. (2.30) we write Eqs. (2.19) and (2.20) as functions of time differences

GR
AB(t, t′) = GR

AB(t− t′) = −iΘ(t− t′)
〈{
Â(t− t′), B̂

}〉
(2.31)

GA
AB(t, t′) = GA

AB(t− t′) = +iΘ(t′ − t)
〈{
Â(t− t′), B̂

}〉
. (2.32)

Without loss of generality we set t′ = 0.

We are interested in the energy-dependent Green’s function, which can be calculated from the
time-dependent one by performing a Fourier transformation:

G
R/A
AB (E) =

∫ +∞

−∞
dt G

R/A
AB (t)eiEt . (2.33)

From now on, we limit ourselves to the retarded Green’s function for the moment and consider
the advanced Green’s function later on.

The retarded and advanced Green’s functions can be obtained in different ways. One way is the
equation of motion method (EOM method). We differentiate Eq. (2.31) with respect to time
and multiply it by i

i
d

dt
GR
AB(t) =

dΘ(t)

dt

〈{
Â(t), B̂

}〉
+ Θ(t)

〈{
dÂ(t)

dt
, B̂

}〉
= δ(t)

〈{
Â(t), B̂

}〉
− iΘ(t)

〈{[
Â(t), Ĥ

]
, B̂
}〉

= δ(t)
〈{
Â(t), B̂

}〉
+GR

[A,H]B(t) , (2.34)
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where we used Heisenberg’s equation of motion for operators

i
dÂH(t)

dt
= [ÂH(t), ĤH] + i

(
∂ÂS

∂t

)
H

(2.35)

to describe the derivative of the operator Â(t). In our case ÂS = âj is time-independent and
therefore its derivative with respect to time vanishes.

In the first step, we calculate the Fourier transformation of the term on the left-hand side of
Eq. (2.34). To ensure convergence at the upper integration limit a positive infinitesimal δ has
to be introduced, which we will send to zero at the end of the calculation. Now we integrate the
left-hand side of Eq. (2.34) by parts and get

lim
δ→0+

∫ +∞

−∞
dt i

d

dt
GR
AB(t)ei(E+iδ)t

= lim
δ→0+

[
iGR

AB(t)eiEte−δt

∣∣∣∣∣
+∞

−∞

+(E + iδ)

∫ +∞

−∞
dt GR

AB(t)ei(E+iδ)t

]
=
(
E + i0+

)︸ ︷︷ ︸
E+

GR
AB(E+) , (2.36)

where the first term in the second line vanishes at the upper limit due to the introduced in-
finitesimal and at the lower one due to the Heaviside function. The Fourier transformation of
the first term on the right-hand side of Eq. (2.34) gives

∫ +∞

−∞
dt δ(t)

〈{
Â(t), B̂

}〉
eiEt =

〈{
Â(t), B̂

}〉
eiEt

∣∣∣∣
t=0

=
〈{

Â, B̂
}〉

. (2.37)

The Fourier transformation of the last term on the right-hand side of Eq. (2.34) is per definition
the Green’s function in dependence of the energy. Nevertheless, we simplify this term before
Fourier transforming it by limiting the operators to one-particle ones. We choose the operators
Â and B̂ according to Eq. (2.27). Additionally, we will shorten the notation by denoting the
one-particle Green’s functions in the following way

GR
aia
†
j

(t) = GR
ij(t) . (2.38)

Before evaluating the second term on the right-hand side of Eq. (2.34) we calculate the commu-
tator of the annihilation operator and the Hamiltonian, in our case the Kohn-Sham Hamiltonian.
We do so by using Eqs. (2.10) and (2.12)[

âi, ĤKS

]
=
∑
jk

tjk

(
âiâ
†
j âk − â

†
j âkâi

)

=
∑
jk

tjk

((
δij − â†j âi

)
âk − â†j âkâi

)

=
∑
jk

tjk

(
δij âk + â†j âkâi − â

†
j âkâi

)
=
∑
k

tikâk . (2.39)



14 CHAPTER 2. THEORY

We use this result to simplify the Green’s function on the right-hand side of Eq. (2.34) and get

GR
[ai,HKS]a†j

(t) = GR∑
k tikaka

†
j

(t)

= −iΘ(t)

〈{∑
k

tikâk(t), â
†
j

}〉
=
∑
k

tik

(
− iΘ(t)

〈{
âk(t), â

†
j

}〉)
=
∑
k

tikG
R
kj(t) . (2.40)

Now we calculate the Fourier transformation of Eq. (2.40) and get

GR
[ai,HKS]a†j

(E+) =
∑
k

tikG
R
kj(E

+) , (2.41)

where we once again introduced a convergence-ensuring infinitesimal.

Now we use the results from Eqs. (2.36), (2.37) and (2.41) to calculate the Fourier transformation
of Eq. (2.34) and get

E+GR
ij(E

+) = δij +
∑
k

tikG
R
kj(E

+) , (2.42)

where we simplified the anticommutator in Eq. (2.37) using the anticommutator relations (2.12).
We identify the last term on the right-hand side of Eq. (2.42) as a product of a Hamilton matrix
with the matrix elements tik and a matrix Green’s function with the matrix elements GR

kj(E
+).

We will distinguish the Hamilton matrix and matrix Green’s functions in the orthonormal basis
from the ones in the non-orthonormal basis by adding a tilde to the former ones. We write
Eq. (2.42) in terms of matrices and solve it for the matrix Green’s function. We get

G̃R(E+) =
[
E+I− H̃

]−1
. (2.43)

We generalize Eq. (2.43) to a non-orthonormal basis by applying the inverse transformation of
Eq. (2.17) and we get

GR(E+) =
[
E+S−H

]−1
, (2.44)

with

H =
(
OL

S

)−1
H̃
(
OR

S

)−1
(2.45)

G(E+) = OR
S G̃(E+)OL

S , (2.46)
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where S is once again the overlap matrix. The advanced matrix Green’s function can be derived
in the same way. The only difference in the derivation of the advanced and retarded matrix
Green’s function is that we have to ensure convergence at the lower integration limit and therefore
we require the introduction of a negative infinitesimal (−δ). By doing so we get

GA(E−) =
[
E−S−H

]−1
(2.47)

with E− = E − i0+. While we introduced the positive and negative infinitesimal for mathe-
matical reasons, we can give them also physical meaning. The positive infinitesimal describes
the propagation forward in time, while the negative one describes the propagation backward in
time. The superscripts A and R make clear, whether the Green’s function is a function of E+

or E−. Therefore we will write the Green’s functions in the following as functions of E only. By
comparing Eqs. (2.44) and (2.47) and taking advantage of the hermiticity of the overlap matrix
and the Hamiltonian matrix (S = S†, H = H†) we get following relation for the advanced and
retarded matrix Green’s function

GA(E) =
(
GR(E)

)†
. (2.48)

2.4 Transport systems

DFT allows the treatment of finite or periodic systems but does not allow the calculation of
transport systems containing semi-infinite electrodes. Thus other approaches have to be chosen
for this kind of problems. In the case of localized orbitals one possibility is the DFT+NEGF
approach as described in Ref. [7].

Within the DFT+NEGF approach the system is split into three parts as depicted in Fig. 2.1: the
left electrode (L), the central region (C), also called extended molecule, and the right electrode
(R). The central region has to contain all the electrode parts influenced by the molecule (darker
in color), while the electrode parts not contained in the central region must show bulk behavior
(lighter in color).

Fig. 2.1. Transport system. Within the DFT+NEGF approach the transport system is split into: left
electrode (L), central region (C) and right electrode (R). The central region has to contain all electrode
parts influenced by the molecule in the central region (darker in color), while the left and right electrode
must show only bulk behaviour.
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Per construction the left and right electrodes do not interact with each other and the system
can be described by the Hamiltonian matrix

Hsystem =


HL VLC 0

VCL HC VCR

0 VRC HR

 . (2.49)

HL, HC and HR are the Hamiltonian matrices describing the left electrode, the central region
and the right electrode, respectively. The Vij describe the coupling of the central region to the
corresponding electrode, where i, j ∈ {L,C,R} and i 6= j.

We show in Sec. 2.4.1 how to treat the central region and in Sec. 2.4.2 we deal with the Hamil-
tonian matrices HL and HR, which are in fact Hamiltonian matrices of infinite size.

2.4.1 Matrix Green’s function of the central region

We will leave out the superscripts R and A and also the energy-dependency of the Green’s
functions to shorten the notation in the following. We will denote the advanced Green’s functions
by a dagger and leave out the dagger for the retarded Green’s functions.

The following derivation is based on Ref. [17]. Using Eq. (2.44) and splitting up the system into
L, C and R, we calculate the matrix Green’s function of the system fromE+


SL SLC 0

SCL SC SCR

0 SRC SR

−


HL VLC 0

VCL HC VCR

0 VRC HR





GL GLC 0

GCL GC GCR

0 GRC GR

 = I . (2.50)

In this section, we are interested in the matrix Green’s function GC of the central region. We
consider the second column of the matrix Green’s function of the transport system and the
identity matrix in Eq. 2.50, which produces the equations

I : 0 =
(
E+SL −HL

)
GLC +

(
E+SLC −VLC

)
GC

II : I =
(
E+SCL −VCL

)
GLC +

(
E+SC −HC

)
GC +

(
E+SCR −VCR

)
GRC (2.51)

III : 0 =
(
E+SRC −VRC

)
GC +

(
E+SR −HR

)
GRC .

We solve Eqs. I and III to determine GLC and GRC,

GLC = −
(
E+SL −HL

)−1 (
E+SLC −VLC

)
GC

GRC = −
(
E+SR −HR

)−1 (
E+SRC −VRC

)
GC , (2.52)

and insert into Eq. II to obtain

GC =
[
E+SC −HC −ΣL −ΣR

]−1
. (2.53)

Here, we introduced the so-called hybridization matrices

ΣL =
(
E+SCL −VCL

) (
E+SL −HL

)−1 (
E+SLC −VLC

)
(2.54)

ΣR =
(
E+SCR −VCR

) (
E+SR −HR

)−1 (
E+SRC −VRC

)
. (2.55)



2.4. TRANSPORT SYSTEMS 17

By using Eq. (2.44) the hybridization matrices become

ΣL =
(
E+SCL −VCL

)
GL

(
E+SLC −VLC

)
(2.56)

ΣR =
(
E+SCR −VCR

)
GR

(
E+SRC −VRC

)
. (2.57)

2.4.2 Surface Green’s functions

Eq. (2.53) provides a way to evaluate the matrix Green’s function of a finite subsystem, the
central region, including the influence of the leads L and R in terms of the hybridization matrix.
The hybridization matrices appearing in that equation still require the evaluation of the semi-
infinite electrodes. This can be avoided using the concept of surface Green’s functions (SGF).
SGFs are treated in more detail in e.g. Ref [17].

We take advantage of the periodicity of the electrodes and split them up into identical clusters.
The clusters clL and clR in Fig. 2.2 build up the left and right electrode, respectively.

Fig. 2.2. Partitioning of the electrodes into clusters. For treating a transport system containing semi-
infinite electrodes within the SGF approach we split the left electrode into identical clusters clL and the
right electrode into identical clusters clR.

Using localized orbitals we can split up the electrodes into clusters, which couple only to nearest-
neighboring clusters. By doing so, the Hamiltonian matrix in Eq. (2.49) becomes

Hsystem =



. .

. . VclL 0
(VclL)† HclL VclL

(VclL)† HclL VclLC

VCclL HC VCclR

VclRC HclR VclR

(VclR)† HclR VclR

0 (VclR)† . .

. .



, (2.58)

where the Hcli are the Hamiltonian matrices of the electrode clusters and the matrices Vcli

describe the coupling of neighboring electrode clusters with i ∈ {L,R}. We split the overlap
matrix in the same way. Scli contains the overlap of orbitals centered around atoms of the
same cluster and scli contains the overlap of orbitals centered around atoms part of neighboring
clusters.
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We calculate GC in the same way as in Sec. 2.4.1 using the Hamiltonian matrix (2.58). We get
a similar result as in Eq. (2.53) with the hybridization matrices being

Σi =
(
E+sCcli −VCcli

)
GSGF

cli

(
E+scliC −VcliC

)
. (2.59)

The matrix Green’s functions GSGF
cli

are the matrix Green’s functions of the clusters at the
electrode surfaces. In contrast to Eq. (2.53) only the matrix Green’s functions of the surface
clusters, the surface Green’s functions, enter in the hybridization matrices.

Next, we discuss an iterative procedure to calculate GSGF
cli

. We distinguish the matrix Green’s
functions of the coupled and isolated electrode clusters by the following notation

gcli(E) =
[
E+Scli −Hcli

]−1
(2.60)

Gcli(E) =
[
E+Scli −Hcli −Σcli

]−1
, (2.61)

where Σcli describes the influence of the nearest-neighbor clusters. We build the semi-infinite
electrodes now by successively coupling clusters. We start from a single cluster of the left
electrode and couple a second one towards it. We calculate the SGF of this two-cluster electrode
similarly to Eq. (2.53) and get

GSGF
clL(1) =

E+SclL −HclL −
(
E+sclL −VclL

)†
gclL

(
E+sclL −VclL

)︸ ︷︷ ︸
ΣclL(1)


−1

, (2.62)

where the subscript (1) denotes the first iteration step. In the next step, we couple a third cluster
to the two-cluster electrode. Like in Eq. (2.59), only the SGF of the two-cluster electrode enters
the hybridization matrix

GSGF
clL(2) =

E+SclL −HclL −
(
E+sclL −VclL

)†
GSGF

clL(1)

(
E+sclL −VclL

)︸ ︷︷ ︸
ΣclL(2)


−1

. (2.63)

We see from this equation that the SGF of an n-cluster electrode is calculated by

GSGF
clL(n−1) =

E+SclL −HclL −
(
E+sclL −VclL

)†
GSGF

clL(n−2)

(
E+sclL −VclL

)︸ ︷︷ ︸
ΣclL(n−1)


−1

. (2.64)

The coupling of additional electrode clusters has to be repeated until GSGF
clL(n) is sufficiently well

converged. The SGF GSGF
clR(n) of the right electrode is calculated in the same way, where the

hybridization matrix has the form

ΣclR(n−1) =
(
E+sclR −VclR

)
GSGF

clR(n−2)

(
E+sclR −VclR

)†
. (2.65)
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Fig. 2.3. Iteration scheme using the concept of surface Green’s functions. One starts by a single cluster
and couples in each iteration step an additional cluster (gray) until the SGF is sufficiently well converged.
The semicircles indicate the coupling of the clusters (squares) towards one another.

2.4.2.1 Sancho-Rubio method

The iteration scheme discussed above requires generally many iteration steps until convergence
is reached. The Sancho-Rubio method [18] is an improved iteration scheme. We derive the
Sancho-Rubio method according to Ref. [18].

For deriving the Sancho-Rubio method, we use a different formalism to couple the electrode
clusters. The derivation of this formalism occurs according to Ref. [19]. We start by splitting
up the Hamiltonian matrix of the semi-infinite electrode and its overlap matrix into

Hi = Hcl
i + Vcl

i (2.66)

Si = Scl
i + scl

i , (2.67)

where Hcl
i contains all Hamiltonian matrices of the electrode clusters and Vcl

i all coupling matrix
elements between these clusters. Likewise, Scl

i contains all overlaps of orbitals within the same
cluster and scl

i all overlaps between orbitals within different clusters.

In Sec. 2.3.1 we have seen that the Hamiltonian matrices of one-particle Hamiltonians fulfill
Eq. (2.44). Due to Hi and Hcl

i being Hamiltonian matrices of one-particle Hamiltonians we get

[
E+Scl

i −Hcl
i

]
gcl

i = I (2.68)[
E+Si −Hi

]
Gi = I , (2.69)

where gcl
i is a block-diagonal matrix containing the matrix Green’s functions of the clusters (2.60)

and Gi is the full electrode Green’s function. We rewrite Eq. (2.69) using Eqs. (2.66) and (2.67)

[
E+Si −Hi

]
Gi =

[
E+Scl

i −Hcl
i

]
︸ ︷︷ ︸

(gcl
i )
−1

Gi +
(
E+scl

i −Vcl
i

)
︸ ︷︷ ︸

V′

Gi = I (2.70)

and multiply it from the left by gcl
i . To shorten the notation we will omit the subscripts i and

superscripts cl in the following. After rearranging the resulting equation we get

G = g− gV′G . (2.71)
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Using Eq. (2.71) we calculate the surface Green’s functions and get

GSGF = G11 = g11 −
∑
γ,δ

g1γV′γδGδ1 = g11 − g11V′12G21 . (2.72)

The remaining terms in Eq. (2.72) vanish due to g1γ = 0 for γ 6= 1 and V′γδ = 0 for γ 6= δ ± 1.

We calculate the matrix Green’s function G21 using Eq. (2.71)

G21 = −g22V′21G11 − g22V′23G31 = −t0G
11 − t†0G

31 , (2.73)

where we introduced the matrices

t0 = g22V′21 (2.74)

t†0 = g22V′23 (2.75)

to simplify the notation in the following derivation. We take in the following derivation advantage
of the electrode clusters being identical and therefore gii = gjj and V′i,i+1 = V′j,j+1. Due to
the hermiticity of the overlap matrix and Hamiltonian matrix we have additionally V′i,i+1 =(
V′i,i−1

)†
. Now we are able to derive the Sancho-Rubio method.

1st iteration step

Starting point of the Sancho-Rubio method is Eq. (2.73). We calculate the matrix Green’s
function G31 appearing in Eq. (2.73) in the same way as G21 and get

G31 = −t0G
21 − t†0G

41 . (2.76)

Now we write G21 and G41 in Eq. (2.76) in the same way as G31 itself

G31 = −t0

(
−t0G

11 − t†0G
31
)
− t†0

(
−t0G

31 − t†0G
51
)

. (2.77)

In the next step we group all terms containing the matrix Green’s function G31 together

(
I− t0t

†
0 − t†0t0

)
G31 = t0t0G

11 + t†0t
†
0G

51 . (2.78)

We multiply this equation by
(
I− t0t

†
0 − t†0t0

)−1
and get

G31 = t1G
11 + t†1G

51 , (2.79)
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with

t1 =
(
I− t0t

†
0 − t†0t0

)−1
t0t0 (2.80)

t†1 =
(
I− t0t

†
0 − t†0t0

)−1
t†0t
†
0 . (2.81)

The newly appearing matrices t1 and t†1 can be interpreted as an effective coupling towards
next-nearest-neighbor clusters. Now we insert Eq. (2.79) into Eq. (2.73) and get

G21
(1) = −

(
t0 + t†0t1

)
G11 − t†0t

†
1G

51 , (2.82)

2.4.2.2 2nd iteration step

We rewrite the matrix Green’s function G51 using Eq. (2.79) and get

G51 = t1G
31 + t†1G

71 . (2.83)

Now we apply Eq. (2.79) to the matrix Green’s functions G31 and G71 and get

G51 = t1

(
t1G

11 + t†1G
51
)

+ t†1

(
t1G

51 + t†1G
91
)

, (2.84)

which can be treated in the same way as Eq. (2.77)

G51 = t2G
11 + t†2G

91 (2.85)

with

t2 =
(
I− t1t

†
1 − t†1t1

)−1
t1t1 (2.86)

t†2 =
(
I− t1t

†
1 − t†1t1

)−1
t†1t
†
1 . (2.87)

We insert this result into Eq. (2.82) and get

G21
(2) = −

(
t0 + t†0t1 + t†0t

†
1t2

)
G11 − t†0t

†
1t
†
2G

91 , (2.88)

nth iteration step

We see that we can generalize the above procedure and calculate the matrix Green’s function
G2n+1,1 with n = 1, 2, 3, ... by

G2n+1,1 = tn−1G
2n−2n−1+1,1 + t†n−1G

2n+2n−1+1,1

= tn−1

(
tn−1G

11 + t†n−1G
2n+1,1

)
+ t†n−1

(
tn−1G

2n+1,1 + t†n−1G
2n+1+1,1

)
. (2.89)
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This equation can be treated in the same way as Eqs. (2.77) and (2.84) and we get

G2n+1,1 = tnG
11 + t†nG

2n+1+1,1 , (2.90)

where

tn =
(
I− tn−1t

†
n−1 − t†n−1tn−1

)−1
tn−1tn−1 (2.91)

t†n =
(
I− tn−1t

†
n−1 − t†n−1tn−1

)−1
t†n−1t

†
n−1 . (2.92)

After n iterations we get

G21
(n) = −

(
t†0 + t†0t1 + t†0t

†
1t2 + ...+ t†0t

†
1t
†
2...t

†
n−1tn

)
︸ ︷︷ ︸

=:T(n)

G11 − t†0t
†
1t
†
2...t

†
n−1t

†
nG

2n+1+1,1 , (2.93)

where we introduced the transfer matrix T. The matrix Green’s function G21
(n) has to be iterated

until the last term of Eq. (2.93) is negligible

G21
(n) ≈ −T(n)G

11 . (2.94)

We insert Eq. (2.94) into Eq. (2.72)

G11
(n) = g11 + g11V′12T(n)G

11 . (2.95)

We group all terms containing G11 and multiply this equation by g11 from the left

((
g11
)−1 −V′12T(n)

)
G11

(n) = I . (2.96)

We multiple now the inverse of the expression within brackets from the left and express the
inverse of g11 using Eq. (2.60). We get

G11
(n) =

(
E+Scli −Hcli −V′12T(n)

)−1
, (2.97)

where i ∈ {L,R}.
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Fig. 2.4. Scheme of the Sancho-Rubio method.
Initial iteration step: The contribution of the surface Green’s function (solid black semicircle) to the
matrix Green’s function G21 is considered, while the contribution from the left neighboring cluster (red
semicircle) is neglected.
1st iteration step: We couple the 3rd cluster to the 1st and 5th cluster using the matrix t1. We neglect
the contributions from the 5th cluster and consider the remaining contribution to the matrix Green’s
function G21 trough the transfer matrix T(1)

2nd iteration step: We repeat the previous step. We couple the 5th cluster to the 1st and 9th cluster using
the matrix t2. We neglect the coupling towards the 9th cluster and consider the remaining contribution
to the matrix Green’s function G21 trough the transfer matrix T(2).
This procedure is repeated until G21 is sufficiently well converged.
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2.4.3 Current and transmission

Using the Hamiltonian matrix (2.49) formulas for calculating the transmission and current of
the transport system can be derived [17,20,21]. The idea is to treat incoming wavefunctions as
a perturbation and to view the reflected part of this wavefunction and the wavefunctions in the
remaining subsystems as a response to this perturbation.

For the moment, we will consider only an incoming wavefunction at the left electrode, which is
an eigenfunction of the Hamiltonian matrix HL, and generalize the results at the end to any
incoming wavefunction from any of the electrodes. The ansatz for the wavefunction

∣∣ΨL

〉
is

∣∣ΨL

〉
=
∣∣ψL

〉
+
∣∣ψr
〉

, (2.98)

where
∣∣ψL

〉
is an eigenfunction of HL and

∣∣ψr
〉

is the left electrode’s response to the incoming
wavefunction. We have to solve the eigenvalue problem


HL VLC 0

VCL HC VCR

0 VRC HR



∣∣ΨL

〉∣∣ΨC

〉∣∣ΨR

〉
 = E


SL SLC 0

SCL SC SCR

0 SRC SR



∣∣ΨL

〉∣∣ΨC

〉∣∣ΨR

〉
 . (2.99)

Thus the following three equations have to be solved

I : HL

∣∣ΨL

〉
+ VLC

∣∣ΨC

〉
= ESL

∣∣ΨL

〉
+ ESLC

∣∣ΨC

〉
II : VCL

∣∣ΨL

〉
+ HC

∣∣ΨC

〉
+ VCR

∣∣ΨR

〉
= ESCL

∣∣ΨL

〉
+ ESC

∣∣ΨC

〉
+ ESCR

∣∣ΨR

〉
(2.100)

III : VRC

∣∣ΨC

〉
+ HR

∣∣ΨR

〉
= ESRC

∣∣ΨC

〉
+ ESR

∣∣ΨR

〉
.

We rearrange them and get

I : (VLC − ESLC)
∣∣ΨC

〉
= [ESL −HL]

∣∣ΨL

〉
II : (VCL − ESCL)

∣∣ΨL

〉
+ (VCR − ESCR)

∣∣ΨR

〉
= [ESC −HC]

∣∣ΨC

〉
(2.101)

III : (VRC − ESRC)
∣∣ΨC

〉
= [ESR −HR]

∣∣ΨR

〉
.

For the sake of readability we introduce

(Vij − ESij)→ Vij , (2.102)

where i 6= j and i,j ∈ {L,C,R}. The terms in square brackets are again the inverse of the matrix
Green’s functions of the subsystems. The second term on the left-hand side in Eq. II describes
the central region’s response to an incoming wavefunction at the right electrode. We have no
incoming wavefunction at the right electrode and therefore this term vanishes.
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We get

I : GLVLC

∣∣ΨC

〉
= I
∣∣ΨL

〉
II : GCVCL

∣∣ΨL

〉
= I
∣∣ΨC

〉
(2.103)

III : GRVRC

∣∣ΨC

〉
= I
∣∣ΨR

〉
,

where we multiplied Eqs. I, II and III by GL, GC and GR, respectively.

Eq. II responds to the incoming wavefunction
∣∣ψL

〉
and therefore we get

GCVCL

∣∣ψL

〉
= I
∣∣ΨC

〉
. (2.104)

Inserting the result from Eq. II into Eq. III yields

GRVRCGCVCL

∣∣ψL

〉
= I
∣∣ΨR

〉
. (2.105)

Now we have to deal with the response
∣∣ψr
〉
. We express

∣∣ψr
〉

in terms of the wavefunction
∣∣ΨC

〉
by inserting Eq. (2.98) into Eq. I from Eqs. (2.101)

VLC

∣∣ΨC

〉
= [ESL −HL]

(∣∣ψL

〉
+
∣∣ψr
〉)

= [ESL −HL]
∣∣ψL

〉︸ ︷︷ ︸
0

+ [ESL −HL]
∣∣ψr
〉

. (2.106)

We identify the expression in brackets once again as the inverse of the matrix Green’s function
of the left electrode. Multiplying the matrix Green’s function from the left and inserting the
resulting equation into Eq. (2.98) we get

∣∣ΨL

〉
=
∣∣ψL

〉
+ GLVLC

∣∣ΨC

〉
. (2.107)

We combine the results from Eqs. (2.104), (2.105) and (2.107) and write the wavefunctions
∣∣ΨL

〉
,∣∣ΨC

〉
and

∣∣ΨR

〉
in terms of the eigenfunction of the left electrode

I : I
∣∣ΨL

〉
= (I + GLVLCGCVCL)

∣∣ψL

〉
II : I

∣∣ΨC

〉
= GCVCL

∣∣ψL

〉
(2.108)

III : I
∣∣ΨR

〉
= GRVRCGCVCL

∣∣ψL

〉
.

Using these results we calculate the current across the central region. In the case that the central
region contains no electron source or drain, the total current has to fulfill the condition

0 = jL + jR , (2.109)
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with
jl = i

[〈
ΨC

∣∣VCl

∣∣Ψl

〉
−
〈
Ψl

∣∣V†Cl

∣∣ΨC

〉]
, (2.110)

where l ∈ {L,R}. The first term in Eq. (2.110) describes the probability of an electron being
initially in the state

∣∣Ψl

〉
and ”hopping” into the state

∣∣ΨC

〉
, while the second term describes

the probability of an electron being initially in the state
∣∣ΨC

〉
and ”hopping” into the state

∣∣Ψl

〉
.

Therefore Eq. (2.110) describes the probability of an electron flowing from the electrode into
the central region reduced by the probability of an electron flowing from the central region into
the electrode.

Using Eqs. (2.108) we calculate jL and jR from the eigenfunction
∣∣ψL

〉
only. In the former case

we have to consider also the reflected part of the wavefunction
∣∣ΨL

〉
. Therefore we calculate the

current from jR. We get

jR = −jL = i
[〈

ΨC

∣∣VCR

∣∣ΨR

〉
−
〈
ΨR

∣∣V†CR

∣∣ΨC

〉]
. (2.111)

By using Eqs. (2.108) we express
∣∣ΨC

〉
and

∣∣ΨR

〉
in terms of the left electrode’s eigenfunction

jR = i
[〈
ψL

∣∣V†CLG†CVCRGRVRCGCVCL

∣∣ψL

〉
−
〈
ψL

∣∣V†CLG†CV†RCG†RV†CRGCVCL

∣∣ψL

〉]
= i
[〈
ψL

∣∣V†CLG†C

(
VCRGRVRC −V†RCG†RV†CR

)
GCVCL

∣∣ψL

〉]
=
[〈
ψL

∣∣V†CLG†CΓRGCVCL

∣∣ψL

〉]
, (2.112)

where we introduced the so-called level-width function ΓR

ΓR = i
(
VCRGRVRC −V†RCG†RV†CR

)
= i
(
VCRGRVRC −

(
VCRGRVRC

)†)
= i
(
ΣR −Σ†R

)
. (2.113)

Now we allow the incoming electron to originate from any eigenfunction of the left electrode.
Therefore we have to calculate jR for each eigenfunction of the left electrode and sum all con-
tributions. At this point we reintroduce the electron charge and the reduced Planck constant ~.
We calculate the total current by

IR =
e

~
∑
λ

jRλfL(Eλ, µL, TL) , (2.114)

where λ denotes the summation over the eigenfunctions of the left electrode. The Fermi-Dirac
distribution

f(E,µ, T ) =
1

1 + eβ(E−µ)
with β =

1

kBT
(2.115)

takes into account the population of the eigenfunctions of the left electrode.
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Alternatively, the electrical current into the central region can be calculated from the Landauer
formula

IR =
e

2π~

∫ +∞

−∞
T (E)fL(E,µL, TL)dE . (2.116)

We use these two expressions for the current to find a relation between the matrix Green’s
functions and the transmission. The two expressions have to yield the same current and therefore

T (E) = 2π
∑
λ

δ(E − Eλ)
〈
ψλ
∣∣V†CLG†CΓRGCVCL

∣∣ψλ〉 . (2.117)

We insert the identity (2.29) of the left electrode subspace in the eigenbasis of the left electrode
into Eq. (2.117) and get

T (E) = 2π
∑
λ

δ(E − Eλ)
〈
ψλ
∣∣V†CL

(∑
γ

∣∣ψγ〉〈ψγ∣∣)G†CΓRGCVCL

∣∣ψλ〉
= 2π

∑
γ,λ

δ(E − Eλ)
〈
ψγ
∣∣G†CΓRGCVCL

∣∣ψλ〉〈ψλ∣∣V†CL

∣∣ψγ〉
=
∑
γ

〈
ψγ
∣∣G†CΓRGCVCL

(
2π
∑
λ

δ(E − Eλ)
∣∣ψλ〉〈ψλ∣∣

)
V†CL

∣∣ψγ〉 . (2.118)

The expression in brackets is another notation for the difference i
(
GL −G†L

)
in the eigenbasis

of HL, as we will see in the following section. We use this expression and write

T (E) = i
〈
ψγ
∣∣G†CΓRGCVCL

(
GL −G†L

)
V†CL

∣∣ψγ〉 = Tr
(
G†CΓRGCΓL

)
. (2.119)

We get formally equivalent results for an incoming wavefunction at the right electrode. We get
the total current IT by subtracting the currents IL and IR

IT = IR − IL =
e

2π~

∫ +∞

−∞
T (E)

[
fL(E,µL, TL)− fR(E,µR, TR)

]
dE . (2.120)

2.4.4 Spectral function and Density Of States

Using the retarded and advanced matrix Green’s function other helpful functions can be calcu-
lated. One of them being the spectral function

A(E) =
i

2π
Tr
(
SG(E)−G†(E)S†

)
= − 1

π
Tr

(
Im
(
SG(E)

))
= − 1

π
Im

(
Tr
(
SG(E)

))
.

(2.121)
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We show now that the spectral function (2.121) is equivalent to the density of states (DOS) of
the system. We start by transforming Eq. (2.43) to the eigenbasis of the Hamiltonian matrix

[E+I−HD]GD(E) = I (2.122)

with
GD(E) = U−1

H G̃(E)UH (2.123)

and HD being a diagonal matrix with the matrix elements (HD)ii = εH
i , where the εH

i are the
eigenenergies of the Hamiltonian matrix of the system. UH is an unitary transformation matrix
diagonalizing H̃. The individual equations in Eq. (2.122) have the form

[E+ − εH
i ]
(
GD

)
ii

= 1 . (2.124)

Using Eq. (2.124) the spectral function becomes

A(E) = − 1

π

∑
i

Im

((
GD

)
ii

)

= − 1

π

∑
i

Im

(
1

E − εH
i + i0+

)

= − 1

π

∑
i

Im

(
E − εH

i − i0+

(E − εH
i )2 + (0+)2

)

=
1

π

∑
i

0+

(E − εH
i )2 + (0+)2

=
∑
i

δ(E − εH
i ) = DOS(E) . (2.125)

We identify the sum over the delta distribution as the partition function of the system in the
microcanonical ensemble. The spectral function in the eigenbasis of the Hamiltonian matrix is
therefore the DOS. We take advantage of the orthonormality of the eigenfunctions (S = I) and
calculate the spectral function in the eigenbasis of the Hamiltonian matrix using the expression
within brackets in the last line of Eq. (2.118). By doing so we get the same result as in Eq. (2.125)
showing that it is indeed an alternative notation for the difference of the retarded and advanced
matrix Green’s function. We calculate now the DOS of a non-orthonormal basis. Using the
invariance of the trace under cyclic permutations we get

DOS(E) = − 1

π
Im

(
Tr (GD(E))

)

= − 1

π
Im

(
Tr
(
U−1

H

(
OR

S

)−1
G(E)

(
OL

S

)−1
UH

))

= − 1

π
Im

Tr

((
OL

S

)−1 (
OR

S

)−1︸ ︷︷ ︸
S

G(E)

) = − 1

π
Im

(
Tr
(
SG(E)

))
. (2.126)

We see that the matrix Green’s function has to be multiplied by the overlap matrix to get the
DOS in the case of a non-orthonormal basis.
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2.4.4.1 Spectral function in transport systems

The spectral function of the central region is decomposed in the left spectral function, the right
spectral function and a contribution from the bound states [22]

AC = AL +AR +
bound∑
n

αnδ(E − εn) . (2.127)

with αn =
〈
φn
∣∣SC

∣∣φn〉, where the
∣∣φn〉 are the eigenfunctions of the system. The left and right

spectral function are defined as

Aj =
i

2π
Tr
(
GC

(
Σj −Σ†j

)
G†C

)
=

1

2π
Tr
(
GCΓjG

†
C

)
(2.128)

with j ∈ {L,R}. We show the equality of Eqs. (2.121) and (2.127) according to Ref. [22]

AC − (AL +AR) =
i

2π
Tr
(
GC −G†C

)
− i

2π
Tr
(
GC

(
ΣL + ΣR −

(
Σ†L + Σ†R

))
G†C

)
=

i

2π
Tr
(
GC −G†C

)
− i

2π
Tr

(
GC

(
E+SC −HC − (GC)−1 −

(
E−SC −HC −

(
G†C

)−1
))

G†C

)

=
i

2π
Tr
(
GC −G†C

)
− i

2π
Tr

(E+ − E−)︸ ︷︷ ︸
2i0+

GCSCG†C + GC −G†C


=

0+

π
Tr
(
GCSCG†C

)
, (2.129)

where we substituted the hybridization matrices solving Eq. (2.53) and its complex conjugated
for the hybridization matrices. We described the spectral function AC using Eq. (2.121). Now
we calculate the trace in the eigenbasis of the system. We insert the identity I twice and get

0+

π

∑
n

〈
φn
∣∣GCSCG†C

∣∣φn〉 =
0+

π

∑
n,m,m′

〈
φn
∣∣

|φm〉
(E+i0+)−εm︷ ︸︸ ︷
GC

∣∣φm〉 〈φm∣∣SC

∣∣φm′〉〈φm′∣∣
|φn〉

(E−i0+)−εn︷ ︸︸ ︷
G†C
∣∣φn〉

=
0+

π

∑
n,m,m′

δm,n
(E + i0+)− εm

〈
φm
∣∣SC

∣∣φm′〉 δn,m′

(E − i0+)− εn

=
0+

π

∑
n

〈
φn
∣∣SC

∣∣φn〉 1

(E − εn)2 + (0+)2
=

bound∑
n

αnδ(E − εn) ,

(2.130)

where we took advantage of the orthonormality of the eigenfunctions. The αn on the right-hand
side of Eq. (2.130) contains only the parts of the eigenfunctions

∣∣φn〉 within the central region.
Only an infinitesimal part of scattering states is within the central region. Therefore scattering
states provide only an infinitesimal contribution.
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2.5 Transport systems out of equilibrium

In thermodynamical equilibrium, both electrodes have the same temperature and chemical po-
tential and according to Eq. (2.120) the current is zero due to

fL(E,µL, TL) = fR(E,µR, TR) = f(E,µ, T ) , (2.131)

where fL and fR are the Fermi-Dirac distributions (2.115) of the left and right electrode, re-
spectively. Fig. 2.5a shows a system in thermodynamical equilibrium at zero temperature. The
energy bands of the left and right electrode are occupied up to the chemical potential µ. Simi-
larly, in the central region, only the molecular energy levels lower than µ are filled.

We have two possibilities of driving a system out of equilibrium: the first being a difference in
the temperature of the electrodes and the second being a bias voltage. In the former case more
electrodes of the hotter electrode are occupying energetically higher states than in the colder
electrode resulting in a non-equilibrium. Fig. 2.5b shows a thermal non-equilibrium, where the
left electrode has finite temperature, while the right electrode has zero temperature. We discuss
the latter case in the following in more detail.

A bias voltage UB gives rise to an additional contribution to the potential of the system. Within
a simple model this additional electrical potential can be taken into account by shifting the
onsite energy accordingly [21]

ĤNEQ =
∑
i,j
i 6=j

tij â
†
i âj +

∑
i

(
εi + eϕi

)
n̂i , (2.132)

where e is the electron charge and ϕi is the electrical potential of the orbital i. Using this model
Hamiltonian we calculate now the DOS of a system subject to a bias voltage. For simplicity we
assume the contributions of the bias voltage to the potential of the electrodes to be constant
along the transport direction, meaning the bias voltage drops entirely in the central region.
We also assume the coupling of the electrodes to the central region to be zero. Using this
assumptions we calculate the electrode DOS from

DOSelec(E) = − 1

π
Im

(
Tr

([
EI− H̃NEQ

elec

]−1
))

= − 1

π
Im

(
Tr

([
(E − eϕi) I− H̃elec

]−1
))

.

(2.133)

We see from this calculation that the bias voltage shifts the electrode DOS and in further
consequence the chemical potential. Fig. 2.5c shows a system influenced by a bias voltage.

(a) Equilibrium at T = 0 K (b) Thermal non-equilibrium (c) Chemical non-equilibrium

Fig. 2.5. Transport system in and out of equilibrium, where the electrodes are assumed to be semi-infinite
1D chains. The semicircles represent the electrode DOS and the gray areas mark the filled states.
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2.6 Destructive quantum interference

Destructive quantum interference is an inherent quantum mechanical effect arising from the
geometry of a molecule and its symmetry. By limiting oneself to hydrocarbon molecules and a
treatment of these hydrocarbon molecules within the Hückel approximation a set of rules can
be derived, which allow a visual assessment of whether destructive quantum interference (DQI)
will be observed or not, using the graphical atomic orbital scheme (GAOS).

For the GAOS to be applicable, the molecule in question has to

1. couple only through one orbital at side l and one at side r to the electrodes.

2. be described sufficiently well by a Hückel model.

We derive the GAOS in Sec. 2.6.1 and explain it and its limitations in Sec. 2.6.2 by applying it
to benzene, which we contact once at sites 1 and 3 and once at sites 1 and 4. In Sec. 2.6.3 we
discuss the generalization of the GAOS.

2.6.1 Derivation of the GAOS

Using the concepts introduced up to now, we derive the GAOS according to Ref. [6]. We use
Eq. (2.102) to shorten the notation in the following. The left electrode couples only at site l
and the right electrode only at site r. Therefore the matrix elements of the matrices VCL and
VCR, which couple the electrodes and the molecule, are zero except for the lth and rth row,
respectively. Likewise, the columns of the matrices VLC and VRC are zero except for the lth
and rth column. We get for the matrix elements of the matrices VLC and VCL, and similarly
for the matrices VRC and VCR,

(VCL)ij ∝ δil , (2.134)

where δ is the Kronecker-Delta. We calculate now the hybridization matrices according to
Eqs. (2.56) and (2.57). We find for the elements of the hybridization matrices

(ΣL)ij ∝ δilδjl (2.135)

(ΣR)ij ∝ δirδjr . (2.136)

The only non-zero elements in the hybridization matrices are (ΣL)ll and (ΣR)rr and in conse-
quence the matrix elements (ΓL)ll and (ΓR)rr are the only non-zero elements of the level-width
functions. We use this result and Eq. (2.119) to calculate the transmission

T (E) =
∑
i,j,k,m

(
G†C

)
ij

(ΓR)jk (GC)km (ΓL)mi

= (ΓL)ll (ΓR)rr

(
G†C

)
lr

(GC)rl

= (ΓL)ll (ΓR)rr
∣∣ (GC)rl

∣∣2 . (2.137)
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For the transmission to vanish, either the Γi, with i ∈ {L,R}, or the Green’s function must
vanish. We are interested in the case where the transmission vanishes due to quantum mechanical
effects arising from the properties of the molecule in the central region. Therefore the Green’s
function has to vanish and we get the requirement

(GC)rl
!

= 0 for DQI . (2.138)

We observe that Eq. (2.53) has to be fulfilled column-wise

[
E+S−H−ΣL −ΣR

] #»

Gi =
#»

I i , (2.139)

where
#»

Gi and
#»

I i are the ith column of the matrix Green’s function and the identity matrix,
respectively. Cramer’s rule provides a way for solving equations of the form

A #»x = #»y (2.140)

for the unknown vector #»x . According to Cramer’s rule the elements of #»x are calculated by

xi =
det (Ai)

det(A)
, (2.141)

where Ai is the matrix, which results from replacing the ith column of A by #»y . Now we calculate
the Green’s function (GC)rl from Eq. (2.139) using Cramer’s rule. We replace the rth column
of the matrix (E+S−H−ΣL −ΣR) by the lth column of the identity matrix and get the new
matrix (E+S−H−ΣL −ΣR)l→r. Now we have to evaluate

(GC)rl =
det
(

(E+S−H−ΣL −ΣR)l→r

)
det (E+S−H−ΣL −ΣR)

. (2.142)

We simplify the numerator of Eq. (2.142) using the Laplace expansion

det(A) =

n∑
j=1

(−1)i+jaijAij , (2.143)

where the aij are the matrix elements of the n × n matrix A and the minors Aij are the
determinants of the matrices, which result from removing the ith row and jth column of the
matrix A. We expand the numerator in Eq. (2.142) along the rth column and get

det
( (
E+S−H−ΣL −ΣR

)
l→r

)
=

n∑
i=1

(−1)i+rδil Mir = (−1)l+rMlr , (2.144)

where the Kronecker delta arises from the column substitution done due to Cramer’s rule. The
Mir are the minors of (E+S−H−ΣL −ΣR)l→r. By removing the lth row and rth column in
Eq. (2.144) we also removed the elements (ΣL)ll and (ΣR)rr from the minors and therefore the
numerator of Eq. (2.142) no longer depends on the electrodes.
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We calculate the minor Mlr by using the Levi-Civita-symbol εi1i2...in

Mlr = εi1i2...int
′
1i1t
′
2i2 ...t

′
nin , (2.145)

where the ij are atomic sites and t′jk = (E+S−H)jk . The t′jk can be interpreted as paths from
site k to site j. Now we limit ourselves to a Hückel model and an orthonormal basis. Due to the
Levi-Civita-symbol being zero if two indices are equal, we get only contributions if each site has
exactly one incoming and one outgoing path, except for sites l and r. By expanding along the
rth column tr−1,r, tr+1,r, tl,l−1 and tl,l+1 have been removed. As a result site l has no incoming
and site r no outgoing path. The minor contains one open path and possibly one or more closed
loops. Knowing this we write the minor as

Mlr = εi1i2...in lopenl1l2...lnl , (2.146)

where lopen is a path connecting the carbon atoms contacted to the electrode and the lj are
closed loops with nl being the number of closed loops. In the Hückel model each path segment
contributes a factor of t and, except for the sign, we get

lopen ∝ t′li1t
′
i1i2 ....t

′
inopen−1

= (t′)nopen (2.147)

lj ∝ t′j1j2t
′
j2j3 ...t

′
jnljj1

= (t′)
nlj , (2.148)

where nopen and nlj are the number of path segments contained in the open path and in the
jth loop, respectively. In the case of an unpaired carbon atom the corresponding closed loop
provides a factor of t′jj = E+ − ε, where ε is the onsite energy of the carbon atoms. The
infinitesimal we introduced in Eq. (2.36) is close to zero and therefore we write t′jj ≈ E − ε. We
see that all permutations containing unpaired carbon atoms vanish at E = ε. We see that only
terms of the minor containing no unpaired carbon atoms can contribute to the transmission.

Using the results up to now a simple set of rules can be formulated allowing a first assessment
whether DQI occurs:

1. Connect the two carbon atoms coupled to the electrodes by a continuous path.

2. Combine nearest-neighboring carbon atoms not part of this path into pairs of two or
into closed loops. Each carbon atom can be part of a single loop or pair.

3. Repeat step 1 and 2 for each possible path connecting the sites coupled to the electrodes.
If there is no path allowing the grouping of all carbon atoms in this manner, then DQI
occurs for E = ε.

2.6.2 Application and breakdown of the original GAOS

In Fig. 2.6a all carbon atoms are either part of the path drawn between the contacted carbon
atoms (red) or paired (green). Therefore no DQI should occur and the transmission will be
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finite at E = ε. In Fig. 2.6b it is not possible to pair the remaining carbon atom. Also the path
(1 → 2 → 3) will leave three carbon atoms, which can neither be paired nor combined into a
closed loop. Therefore DQI will occur and the transmission at E = ε will be zero.

(a) No DQI predicted (b) DQI predicted

Fig. 2.6. Application of the original GAOS. The stars indicate the carbon sites contacted to the
electrodes. We connect the sites contacted to the electrodes by a continuous path (red). Nearest-
neighboring carbon atoms not part of this path have to be grouped into loops or pairs. By contacting
the electrodes at sites 1 and 3 no continuous path allows the grouping of all remaining carbon atoms and
the GAOS predicts DQI. Contacting the electrodes at sites 1 and 4 allows the grouping of all remaining
carbon atoms and according to the GAOS no DQI should be observed.

While these original rules represent an easy way to determine when DQI occurs, they do not
allow to determine if the molecular junction has a finite transmission at E = ε. This set of
rules considers each term in Eq. (2.146) individually and therefore does not take into account a
possible cancellation of different terms in Eq. (2.146).

Ref. [23] deals with molecules, in which this set of rules breaks down due to the cancellation of
different terms in Eq. (2.146). One of the molecules treated in Ref. [23] is benzocyclobutadiene
(BCB), which we will discuss in more detail. Fig. 2.7 shows a diagram of BCB, where all carbon
atoms are either part of the path connecting the carbon atoms coupled to the electrodes or can
be paired. Nevertheless, the transmission of this molecule within the Hückel model does vanish
at E = ε.

Fig. 2.7. Breakdown of the original GAOS. All remaining carbon atoms can be grouped according to
the original GAOS (left) but the transmission within the Hückel model (right) still vanishes. For the
calculation of the transmission we assumed an orthonormal basis and used:
ε = 0
t′ = −2
0+ = 2.5 · 10−5

(ΣL)ll = (ΣR)rr = −0.5i
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2.6.3 Generalization of the GAOS

While the original GAOS in Sec. 2.6.1 allows a first assessment whether DQI occurs, it does so
by observing that all diagrams of the minor vanish individually. By generalizing the GAOS like
in Ref. [23] one can calculate the minor from the different diagrams instead. In this generalized
GAOS the sign of the diagrams is taken into account. Additionally, the different sites of hy-
drocarbon molecules are no longer restricted to having the same onsite energy. This allows to
calculate the minor (2.146) from the different diagrams in the following way:

1. Connect the two carbon atoms coupled to the electrodes by a continuous path. Nearest-
neighboring carbon atoms not part of this path can be either paired or grouped in closed
loops, with each carbon atom being part of a single loop or pair.

2. Draw all possible diagrams using:

• Unpaired carbon atoms provide a factor of E − εi
• Each bond contained in the continuous path provides a factor of t

• Pairs of two carbon atoms provide a factor of t2

• Closed loops containing n carbon atoms (with n ≥ 3) provide a factor 2tn, where
the factor 2 takes account for the orientation (clockwise or anticlockwise loop)

3. The sign of each diagram is (−1)P , where P is the number of closed loops, including
pairs of carbon atoms.

4. Add the individual contributions of all diagrams together to get the characteristic poly-
nomial and determine its zeros.

It should be stated that there are different conventions regarding the signs of each contribution
and therefore P may contain additionally the number of unpaired atoms. We have chosen the
sign convention according to Ref. [23]. Fig. 2.8 demonstrates the application of these rules.

(a) All possible diagrams for benzene contacted in para position

(b) All possible diagrams for benzene contacted in meta position

Fig. 2.8. Application of the generalized GAOS to benzene. We draw all possible diagrams and sum up
their contribution to get the characteristic polynomial of the minor. We calculate the contribution of
each diagram to the characteristic polynomial by using the generalized GAOS.
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Applying the rules as defined above, the minors of the two molecules give following characteristic
polynomials

M14 = (−1)0t3(E − ε)2 + (−1)1t5 + (−1)0t3(E − ε)2 + (−1)1t5 = 2t3(E − ε)2 − 2t5 (2.149)

M13 = (−1)0t4(E − ε) + (−1)0t2(E − ε)3 + (−1)1t4(E − ε) + (−1)1t4(E − ε)
= t2(E − ε)3 − t4(E − ε) . (2.150)

It is obvious that for E = ε the minor M13 vanishes, while the minor M14 is finite. We see that
both minors vanish at E − ε = ±t.

Using the generalized rules from this section we calculate the full minor of BCB. For simplicity
we consider only diagrams explicitly, in which all carbon atoms are paired. Fig. 2.9 shows all
possibilities of grouping the remaining carbon atoms into pairs or closed loops.

Fig. 2.9. The different diagrams of BCB grouping all carbon atoms not part of the continuous path. By
calculating the characteristic polynomial from these diagrams we see that these diagrams cancel leaving
only diagrams containing unpaired carbon atoms.

We calculate the minor using the rules described above and get

MBCB = (−1)1t7 + (−1)2t7 + (−1)2t7 + (−1)2t7 + (−1)12t7 + remaining terms . (2.151)

Note that the factor 2 in the fifth term on the right-hand side of Eq. (2.151) results from the
closed loop being once clockwise oriented and once anticlockwise. The terms we have written
down explicitly cancel leaving only the ”remaining terms”, which are proportional to (E − ε).
This result solves the apparent contradiction in Fig. 2.7.

The generalizations in this section can be further extended, also allowing different hopping
parameters, which will increase the mathematical cost. Also the limitation to nearest-neighbor
hopping can be lifted, which will further increase the mathematical cost.

We want to point out that the GAOS does not consider the full Green’s function but only the
minor Mlr, while it leaves out the denominator in Eq. (2.142). Therefore the GAOS should be
considered only for first assessment of whether DQI occurs and not as an equivalent replacement
of actual calculations.
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Computational Methods

Fig. 3.1 shows the scheme of the procedure we follow in this work. We use for the first-principles
calculations the DFT code SIESTA [24], its DFT+NEGF code TRANSIESTA [7, 8] and the
post-processing tool TBTRANS [8]. Using SIESTA, we relax the structures of the systems and
calculate the electron density self-consistently, once for the central region and once for the
electrodes. Using TRANSIESTA, we calculate the electron density of the transport system from
the results of the SIESTA calculations. Using TBTRANS, we calculate the transport properties
of the systems from the results of the TRANSIESTA calculations. Additionally, we reduce
the Hamiltonian matrices gained from the TRANSIESTA calculations to model Hamiltonian
matrices, from which we calculate transport properties allowing further insight.

Fig. 3.1. Structure chart of the transport calculations within this thesis.

In Sec. 3.1 we discuss the DFT code SIESTA, the DFT based NEGF code TRANSIESTA and
the parameters we consider in the calculations. In Sec. 3.2 we will explain the details of the
transport calculations using TBTRANS and of the model calculations.

37
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3.1 DFT

In Sec. 3.1.1 we discuss the DFT code SIESTA. We explain in Sec. 3.1.2 how the DFT+NEGF
code TRANSIESTA calculates transport systems from the SIESTA results. Sec. 3.1.3 deals with
the parameters we consider in the SIESTA and TRANSIESTA calculations.

3.1.1 SIESTA

SIESTA [24] is an open-source code using atomic orbitals. Due to the localization of the atomic
orbitals, many entries of the Hamiltonian matrix and the overlap matrix are zero or close to
zero. This sparsity of the Hamiltonian matrix and overlap matrix allows the implementation of
order-N algorithms and functionals. Moreover the usage of atomic orbitals allows for directly
calculating the transport systems being neither periodic nor finite systems. In contrast plane-
wave-based codes require the systems to be periodic structures due to the periodicity of the
plane waves.

Basis set

By using spherical coordinates an atomic Hamiltonian can be split up into a radial and an angular
part allowing a product ansatz for the wavefunction of the form Ψ(r,Θ, φ) = R(r)Ylm(Θ, φ). The
angular part of the solution can be described by spherical harmonics. The radial part is more
difficult to calculate and is generally approximated. Two frequently used approximations are
Slater type orbitals (STOs) and Gaussian type orbitals (GTOs). STOs are a good approximation
for atomic orbitals but the evaluation of the appearing integrals is computationally demanding.
The integrals involved using GTOs can be calculated analytically and therefore are easily dealt
with, but GTOs describe atomic orbitals worse than STOs. The solution is to approximate
STOs by a linear combination of several GTOs (see Sec. 2.2.1).

STOs and GTOs, per se, do not allow the treatment of some effects, like e.g. polarization effects.
Further improvements can be reached by including additional orbitals to describe such effects.
In SIESTA this is done by including orbitals of higher orbital angular momentum. In this case
the basis set of hydrogen includes p orbitals and the basis set of carbon d orbitals and so on.

Pseudopotentials

In general, the contribution of the core electrons to chemical bonds and to transport proper-
ties is small. Therefore SIESTA treats the core electrons and their nucleus by the use of a
pseudopotential. We use norm-conserving pseudopotential. A wavefunction resulting from such
pseudopotentials is equal to the “real” all-electron wavefunction outside a given core radius and,
in consequence, the norm of both wavefunctions is equal inside this core radius.

Cutoff radius

The sparsity of the Hamiltonian matrix results from either neglecting small matrix elements or
introducing a cutoff radius above which the wavefunctions are strictly zero. In SIESTA the latter
approach is implemented. The eigenenergies of wavefunctions confined to a finite volume are
higher than in the unconfined case. This energy shift is specified in SIESTA and the cutoff radii
of the orbitals are calculated from it resulting in different cutoff radii for the different orbitals.
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Two-center integrals / grid integrals

Depending on the integrals that have to be evaluated, they are calculated either in Fourier space
or in real space. Two-center integrals are calculated in Fourier space, while integrals involving
potentials are calculated in real space. Therefore not only the grid in Fourier space has to be
converged but also the fineness of the real space grid.

3.1.2 TRANSIESTA

Using SIESTA only systems of finite size or periodic systems can be calculated. Therefore,
SIESTA does not allow the treatment of typical transport systems being infinite and non-
periodic. We calculate transport systems in and out of equilibrium using TRANSIESTA [7,8].

Electrodes and Central region

The transport system is split into three parts: the two electrodes and the central region, as we
have discussed in Sec. 2.4. The semi-infinite electrodes are further split into identical clusters
and treated using the concept of surface Green’s functions presented in Sec. 2.4.2, where the
surface Green’s functions are calculated using the Sancho-Rubio method from Sec. 2.4.2.1. We
want to note here, that according to Sec. 2.4.2 the electrode clusters are allowed to couple only
to nearest-neighboring ones. Therefore the cluster size in transport direction and the cutoff
radius of the electrode wavefunctions cannot be chosen independently from one another.

The partitioning of the system into electrodes and central region in TRANSIESTA differs slightly
from the partitioning discussed in Sec. 2.4. Except for the molecule and the electrode parts
influenced by this molecule, the supercell of the central region must contain also at least one
electrode cluster of each electrode.

The Hamiltonian matrices and overlap matrices of the electrode clusters and of the central region
required to deal with the transport system using the DFT+NEGF approach (see Sec. 2.4) are
gained from SIESTA calculations.

3.1.2.1 Non-equilibrium

TRANSIESTA allows to drive the system out of equilibrium by the two possibilities discussed in
Sec. 2.5, namely a bias voltage and a difference of the electrode temperatures, but does so in a
more advanced way. For more details we refer the reader to Refs. [7,8,25]. We drive the systems
out of equilibrium by a bias voltage and therefore we discuss this possibility in more detail. In
TRANSIESTA a system in non-equilibrium is calculated using a non-equilibrium potential in the
Kohn-Sham Hamiltonian. This potential is determined by solving the Poisson equation. The
bias voltage determines the boundary conditions of the Poisson equation.

From SIESTA to TRANSIESTA

TRANSIESTA requires the calculations of the electrode clusters within a SIESTA run before-
hand. After the electrode clusters have been calculated, TRANSIESTA starts by converging
the density matrix and Hamiltonian matrix of the central region within a SIESTA calculation
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(creates a xyz.DM file) before starting the actual TRANSIESTA run (creates a xyz.TSDE file,
TRANSIESTA equivalent of the xyz.DM file). By starting with the density matrix (xyz.TSDE
file) of an already existing TRANSIESTA calculation, the SIESTA calculation of the central
region will be skipped and the TRANSIESTA calculations will start directly. The computa-
tion time can be further reduced by using the density matrix (TSDE file) of non-equilibrium
situations closest to the current non-equilibrium situation, which we take advantage of in this
work.

3.1.3 Parameters considered in the SIESTA and TRANSIESTA calculations

SIESTA and TRANSIESTA allow a variety of options and parameters to be set. Due to the vast
amount of these parameters we discuss only the most important ones.

k-points and MeshCutoff

The k-points determine the fineness of the grid on the unit cell or supercell specified by the
user (e.g. the central regions from Fig. 1.3) in k-space (Fourier space). Different numbers of
k-points also result in different k-points used for calculations. Thus for a non-converged grid
no reliable results can be obtained neither can these results be used for interpolation. The
parameter MeshCutoff defines the fineness of the grid in real space. The same considerations as
for the grid in k-space are valid.

BasisSize, EnergyShift and SplitNorm

A too small basis will restrict calculations, e.g. geometry relaxation, to much and will result in
a bad description of the system. Therefore the basis size has to be converged. The basis size can
be specified by SZ, DZ, SZP or DZP. SZ and DZ specify the usage of one basis function (single
zeta) or two basis functions (double zeta) per orbital, respectively, where the basis functions are
not limited to being linear combinations of Gaussians (see SIESTA manual). The basis sizes
SZP (SZ + polarization) and DZP (DZ + polarization) consider additional polarization orbitals.

The parameter EnergyShift determines the cutoff radii. Forces are only present up to the cutoff
radius. A too short cutoff radius can therefore yield to wrong results due to the absence of
long-range forces. Also the transmission can be wrong due to too many entries in the overlap
matrix and in the Hamiltonian matrix being zero.

The parameter SplitNorm determines how much of the norm of the Slater type orbital goes into
the second-zeta function. A too low or too high value will result in the atom orbitals being
described mainly by one of the two basis functions.

MD.MaxForceTol

MD.MaxForceTol defines the maximum force below which the geometry of the system is con-
sidered to be relaxed during structure optimization. A too large force tolerance will cause the
geometry optimization to finish before the structure is sufficiently relaxed. A too small force
tolerance increases the computation time.
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Contour

TRANSIESTA calculates the equilibrium density matrix from the Green’s function using a com-
plex contour integral. The Green’s function is smoother in the complex plane, which allows
an accurate evaluation with less sampling points and also the implementation of numerically
efficient methods. In the complex plane one can also take advantage of the residue theorem. For
more information we refer the reader to Ref. [7, 8].

Different contours can be chosen for the calculations and depending on the choice different values
have to be converged. The contour we use consists of two parts: a circle from EMin to Emax and
a tail from Emax to +∞. To yield correct results it is important that EMin is energetically lower
than the lowest eigenvalue of the Hamiltonian. For numerical reasons, the number of points the
two contour parts, namely the circle and tail part, are defined on has to be converged.

3.2 Transport calculations

In this section, we discuss some details of the transport calculations. In Sec. 3.2.1 we deal with
the transport calculations using TBTRANS, while we explain the details of the model calculations
in Sec. 3.2.2.

3.2.1 TBTRANS

TBTRANS [8] is a post-processing code allowing the analysis of TB Hamiltonian matrices. We
will use it to analyze the results gained from the TRANSIESTA calculations. We will calcu-
late a variety of properties using TBTRANS: the transmission, which is calculated according
to Eq. (2.119), the current, which is calculated according to Eq. (2.120) and the DOS of the
central region. TBTRANS allows the calculation of the DOS of the central region either by the
spectral function from Eq. (2.121) or by the spectral functions of the left and right electrode
from Eq. (2.127), where the latter approach is more suited for transport systems, especially in
non-equilibrium. Therefore we choose the second approach.

3.2.2 Model calculations

The results from the first-principles calculations contain a large number of parameters, namely
the matrix elements of the Hamiltonian matrix and the overlap matrix in the basis of all orbitals
used in the calculations. Therefore we map the results onto simple models consisting of a rea-
sonable amount of parameters but still containing the relevant physics. In Sec. 3.2.2.1 we reduce
the central region of the model system to include only the parts relevant for the calculations.
We describe the modeling of the electrodes in Sec. 3.2.2.2, the procedure by which we gain the
parameters of the reduced central region from the TRANSIESTA calculations in Sec. 3.2.2.3 and
the approximations of the models in Sec. 3.2.2.4.

3.2.2.1 Reduction of the central region

As we have seen in Sec. 2.6, DQI is a quantum effect resulting from the properties of the benzene
ring. Therefore we start by splitting up the central regions of the systems from Fig. 1.3 into



42 CHAPTER 3. COMPUTATIONAL METHODS

three clusters as shown in Fig. 3.2: one contains all gold atoms to the left of the BDT (CL), one
contains the BDT and one contains all gold atoms to the right of the BDT (CR).

Fig. 3.2. Partitioning of the central region. We are interested in the DQI, which arises from the BDT
molecule. Therefore we split the central region into the clusters CL, BDT and CR. For the color code
see Fig. 1.3.

The Hamiltonian matrix and overlap matrix of the central regions are now of the form

HC =


HCL

VCL,BDT 0

VBDT,CL
HBDT VBDT,CR

0 VCR,BDT HCR

 (3.1)

SC =


SCL

sCL,BDT 0

sBDT,CL
SBDT sBDT,CR

0 sCR,BDT SCR

 , (3.2)

where HCL
, HBDT and HCR

are the Hamiltonian matrices of the three clusters and VBDT,Cj

and VCj,BDT are the coupling matrices of the clusters BDT and Cj with j ∈ {L,R}. Similarly,
SCL

, SBDT and SCR
are the overlap matrices of orbitals in the same cluster, while the sCj,BDT

and sBDT,Cj are the overlap matrices of orbitals within neighboring clusters.

Per construction the left electrode couples only to the cluster CL and the right electrode couples
only to the cluster CR. The clusters CL and CR do not couple with one another. Therefore, we
are able to treat the electrodes by use of the SGF of CL and CR. We couple the clusters CL and
CR to the semi-infinite electrodes in the same way as we have done in Sec. 2.4.2. We calculate
the SGF of the semi-infinite electrodes using the Sancho-Rubio method and couple the resulting
SGFs to the clusters CL and CR using Eq. (2.64). The SGF of this system is now

GCj =
(
E+SCj −HCj −VCj,jG

SGF
j Vj,Cj

)−1
, (3.3)

where GSGF
j is the SGF of the semi-infinite electrode j calculated by the Sancho-Rubio method.

VCj,j and Vj,Cj are the coupling matrices of the cluster Cj and the surface cluster of the electrode
j. We calculate now the matrix Green’s function of the BDT from

GBDT(E) =
[
E+SBDT −HBDT −ΣCL

−ΣCR

]−1
, (3.4)
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with the hybridization matrices

ΣCj = VBDT,CjGCjVCj,BDT . (3.5)

3.2.2.2 Electrodes

We keep the modeling of the electrodes as simple as possible and consider only details of the
electrodes which are necessary to yield qualitatively correct results. For simplicity we treat
each electrode as an effective single site. We neglect the hopping processes between the s and
d orbitals. Additionally, we describe the d orbitals by a single, effective orbital. Thus the
Hamiltonian matrix of the electrode has the form

Helectrode =

 εs 0

0 εeff
d

 , (3.6)

where εs is the onsite energy of the s orbital and εeff
d is the onsite energy of the effective d orbital

of the model electrode. The matrix Green’s function resulting from this Hamiltonian matrix has
the form

GR
electrode(E) =

 GR
s (E) 0

0 GR
d (E)

 , (3.7)

where GR
s (E) and GR

d (E) are the Green’s functions of the s orbital and the effective d orbital,
respectively. We describe the Green’s function of the s orbital by [26]

GR
s (E) = GR

wb(E) = − 1

2D
ln

(
E + i0+ −D
E + i0+ +D

)
, (3.8)

where 2D is the bandwidth. It is more adequate to describe the Green’s function of the d orbitals
by the Green’s function of a 1D chain. Therefore we describe the d orbital by [27]

GR
d (E) = GR

1D(E) =
E + iη − ε0

2|t1D|2

[
1−

√
1− 4|t1D|2

(E + iη − ε0)2

]
, (3.9)

where t1D is the hopping parameter between nearest-neighbor atoms of the 1D chain. ε0 is the
onsite energy of the d orbital and η is the artificial broadening. Figs. 3.3a and 3.3b show the
real and imaginary part of the Green’s functions GR

wb(E) and GR
1D(E), respectively.

We couple each electrode to a single site of the central region and calculate the hybridization
matrices

Σjj(E) =
∣∣tSjsj

∣∣2GR
s (E) +

∣∣tSjdj

∣∣2GR
d (E) (3.10)

with j ∈ {l, r}, where l and r denote the sites contacted to the left and right electrode, re-
spectively. tSjsj and tSjdj

are the coupling strengths of the pz orbital of sulfur, denoted by the
subscript Sj, to the s and d orbital of the corresponding electrode, denoted by the superscripts
sj and dj, respectively.
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(a) We used:
D = 25

0+ = 10−5

(b) We used:
ε0 = 0
t1D = 1

η = 2.5 · 10−3

Fig. 3.3. Real and imaginary part of the Green’s functions we use to model the s orbitals (left) and the
d orbitals (right) of the electrodes.

3.2.2.3 BDT

The Hamiltonian of the first-principles calculations contains several orbitals at each site. We
reduce the number of orbitals per site to one. The procedure by which we gain the model
Hamiltonian from the first-principles calculations can be summarized into following three steps:

1. Keep the orbitals of interest and remove the remaining orbitals

2. Reduce the basis of the orbitals of interest to contain a single orbital per site

3. Orthogonalize the resulting basis

We describe these steps in more detail in the following section. Although the model contains
only one orbital per site, we are keeping the following description general.

1. In the first step we extract the Hamiltonian matrix and overlap matrix from the first-
principles calculations and keep only the orbitals of interest

Xsub = P†XP, (3.11)

where X ∈ {H,S} is a nFP×nFP matrix with nFP being the total number of basis functions
describing the atomic orbitals in the central region of the first-principles calculations. The
matrix P is a nFP × nsub matrix, where nsub is the number of basis functions in the
subspace, e.g. only containing the pz orbitals. The elements of the matrix P are

Pikj =

 δij if jth basis function is within the subspace

0 otherwise
(3.12)

with kj ∈ {1, 2, ..., nsub} being the index of the jth basis function within the subspace.
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The basis functions in the SIESTA and TRANSIESTA calculations are ordered according
to the indices of the atoms they belong to. Therefore the Hamiltonian matrix, and also
the overlap matrix, have the form

Hsub =



Hs1 Vs1s2 . . Vs1sn

Vs2s1 Hs2 Vs2s3 .

. . .

. . .

Vsns1 . . Vsnsn−1 Hsn


, (3.13)

where Hsi is the Hamiltonian matrix of site i and the Vsisj are matrices describing the
hopping between sites i and j.

2. Now we transform the orbitals of the subspace such that hopping occurs only between
neighboring sites but not between different orbitals at one site. We do this by finding
unitary transformations that diagonalize the Hsi and transform the Vsisj accordingly. We
have to solve the eigenvalue problem

Hsi
#»c si = ESsi

#»c si , (3.14)

where the entries of the eigenvectors #»c si are the coefficients of the basis functions at site i.

Before solving this eigenvalue problem we reduce it to a standard one. We use S
− 1

2
si S

1
2
si = I

and S
1
2
siS

1
2
si = Ssi

HsiS
− 1

2
si S

1
2
si

#»c si = ES
1
2
si S

1
2
si

#»c si︸ ︷︷ ︸
=: #»c ′si

. (3.15)

Now we multiply Eq. (3.15) from the left by S
− 1

2
si

H̃si
#»c ′si = E #»c ′si , (3.16)

where

H̃si = S
− 1

2
si HsiS

− 1
2

si . (3.17)

By solving the eigenvalue problem (3.16) we get the transformation matrices Usi diago-
nalizing the submatrices Hsi

Usi =

(
S
− 1

2
si

#»c ′1si ,S
− 1

2
si

#»c ′2si , ...,S
− 1

2
si

#»c
′nsi
si

)
=
(

#»c 1
si ,

#»c 2
si , ...,

#»c
nsi
si

)
, (3.18)

where nsi is the number of orbitals at site i. The #»c ksi and #»c ′ksi with k = 1, 2, ..., nsi are the
normalized eigenvectors of Eqs. (3.15) and (3.16), respectively.
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We define a single transformation matrix U, which diagonalizes the Hsi and transforms
the Vsisj

U =



Us1

Us2 0

.

0 .

Usn


(3.19)

and transform the matrices Xsub

X̃ = U†XsubU, (3.20)

where the submatrices X̃sisi are diagonal and the submatrices X̃sisj are of the form

X̃sisj = U†siXsisjUsj . (3.21)

We keep only the subspace of these new orbitals containing the energetically relevant
orbitals. In our case the energetically relevant orbitals are the ones with an energy close
to the Fermi level. This is done by a nsub × nrel matrix P̃, where nrel is the number of
relevant orbitals. Similarly to the matrix P, the only non-zero elements are

P̃ik′j
=

 δikj if the kjth orbital is energetically relevant

0 otherwise
, (3.22)

where k′j is the index of the new orbitals in the subspace of the energetically relevant
orbitals. The transformations up to now can be summarized by

X′ = Q†XQ , (3.23)

where

Q = PUP̃ . (3.24)

3. In general the orbitals resulting from this transformation won’t be orthonormal and there-
fore have to be treated properly. We will do so by transforming the Hamiltonian matrix
and overlap matrix using the Löwdin orthogonalization (2.18)

S′−
1
2 H′S′−

1
2

#»c = E #»c . (3.25)

3.2.2.4 Approximations of the various models

We will examine models with different degrees of approximations. We give here an overview of
the different models. We give more details on how we calculate the matrix Green’s function of
the central region and the transmission within these models in appendix A.
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Tight Coupling (TC)

In this model the electrode Green’s functions are treated at the same footing as in the first-
principles calculations, but we couple each electrode to a single site. We do so by setting matrix
elements of the matrices VBDT,Cj and VCj,BDT in Eq. (3.1) to zero, which do not correspond to
hopping between the electrodes and the sulfur atoms. We do the same for the overlap matrices
sBDT,Cj and sCj,BDT.

Tight Coupling + π-electron approximation (TCπ)

Additionally to the approximations from the TC model, we split the transport system into two
channels: the p-channel contains all the basis functions from the first-principles calculations
describing the pz orbitals of the carbon and sulfur atoms, while the r -channel contains all the
basis functions describing the remaining orbitals of the carbon, sulfur and hydrogen atoms. We
decouple the p-channel and r -channel by setting the matrix elements of the Hamiltonian matrix
HBDT, and also of the overlap matrix SBDT, corresponding to hopping processes between the
two channels to zero. From this point on, we consider only the p-channel.

Tight Coupling + π-electron approximation + effective single orbital (TCSO
π )

From here on we model the electrodes as described in Sec. 3.2.2.2. Furthermore, we reduce
the Hamiltonian matrices from the first-principles calculations to model Hamiltonian matrices
according to Sec. 3.2.2.3. The subspace contains only the basis functions describing the pz

orbitals of the carbon and sulfur atoms. The subspace of the new orbitals contains at each site
only the orbital closest to the Fermi energy. By doing so we get the model Hamiltonian matrix
H̃TCSO

π
.

Tight-binding (TB)

We reduce the TCSO
π model to a tight-binding one by setting all hopping elements of H̃TCSO

π
to

zero, which correspond to hopping processes other than to nearest-neighboring sites.

Hückel

We do not describe the BDT by a Hückel model but only the benzene ring. The model will
therefore contain four parameters instead of two: the average of the onsite energies of the sulfur
atoms εS, the average of the onsite energies of the carbon atoms εC, the average of the hopping
parameters describing hopping between nearest-neighboring carbon atoms tC and the average
of the hopping parameters describing hopping between nearest-neighboring carbon and sulfur
atoms tSC.
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Chapter 4

Application and Results

In this chapter we apply the theoretical and computational methods discussed in chapters 2
and 3 to analyze DQI in benzene and benzenedithiolate (BDT) in and out of equilibrium. We
label the carbon sites in this chapter according to Fig. 2.6 and the sulfur sites in the following
way: The sulfur at site 0 is the nearest-neighbor of the carbon at site 1, while the sulfur at site
7 is the nearest-neighbor of the carbon at site 3 in the case of benzene-1,3-dithiolate or site 4 in
the case of benzene-1,4-dithiolate. We label different configurations of BDT as follows: meta-
BDT in the case of benzene-1,3-dithiolate and para-BDT in the case of benzene-1,4-dithiolate.
Consequently, we label benzene coupled at sites 1 and 3 meta-benzene and benzene coupled at
sites 1 and 4 para-benzene. In the case of contacting the molecule to electrodes, we add the
suffix +planar for planar electrodes and +pointed for pointed electrodes. Thus, we write the
four systems in Fig. 1.3 as: meta-BDT+planar, meta-BDT+pointed, para-BDT+planar and
para-BDT+pointed.

We discuss model systems parametrized from literature in Sec. 4.1. In Sec. 4.2 we apply DFT
for relaxing the geometry of meta-BDT+planar, meta-BDT+pointed, para-BDT+planar and
para-BDT+pointed and calculate the transmission and PDOS of these systems in equilibrium.
We map the results obtained from the first-principles calculations onto models with different
levels of approximation in Sec. 4.3. The systems are driven out of equilibrium by a bias voltage
in Sec. 4.4. In Sec. 4.5 we map the results of the DFT calculations in non-equilibrium onto the
same models as in equilibrium and we discuss the influence of the bias voltage on the DQI.

4.1 Hückel model parametrized from literature

In this section, we study benzene and BDT within the Hückel approximation using parame-
ters from literature. While in Sec. 4.1.1 we consider the pristine benzene and BDT molecule,
Sec. 4.1.2 discusses transport properties including the electrodes.

The Hückel Hamiltonian (2.14) considers a single onsite energy and a single hopping parameter.
While the assumption of a single onsite energy and a single hopping parameter is reasonable
for hydrocarbons like benzene, it is less so for derivatives of hydrocarbons like BDT. Neither
the hopping parameters nor the onsite energies of the different atom sorts will have the same
value. Additionally, we expect the sulfur atoms to influence the nearest-neighboring carbon
atoms. Nevertheless, we will treat the benzene ring in the following calculations within a Hückel
approach, allowing some insight in the underlying physics. The influence of the sulfur atoms on
the benzene ring will be considered later on.

49
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We describe the Hamiltonian of BDT by the matrix

HBDT,pm
Hückel =



εS tSC 0 0 0 0 0 0

tSC εC tC 0 0 0 tC 0

0 tC εC tC 0 0 0 0

0 0 tC εC tC 0 0 tSC · pm

0 0 0 tC εC tC 0 tSC · (1− pm)

0 0 0 0 tC εC tC 0

0 tC 0 0 0 tC εC 0

0 0 0 tSC · pm tSC · (1− pm) 0 0 εS



(4.1)

with

pm =

 1 if meta-BDT

0 if para-BDT
, (4.2)

where the gray-marked submatrix is the Hamiltonian matrix HB
Hückel describing the benzene

ring. The parameters εC and εS are the onsite energies of the carbon and sulfur atoms, while
the tC and tSC are the hopping parameters between neighboring carbon atoms and between
carbon and sulfur atoms, respectively. We use the following parameters from literature (see
appendix B)

εC = 0 eV

εS = −1.30 eV

tC = −2.60 eV

tSC = −0.87 eV . (4.3)

4.1.1 Pristine molecules

We start by examining pristine benzene. In the Hückel approximation the orbitals are assumed
to be orthonormal and the eigenvalue problem becomes

HB
Hückel

#»c B = EB #»c B , (4.4)

where #»c B is the eigenvector containing the coefficients of the basis functions and EB is the
corresponding eigenenergy. We calculate the matrix Green’s functions from

gB(E) =
[
E+I−HB

Hückel

]−1
. (4.5)

Solving Eq. (4.4) we get the following eigenenergies for the benzene ring

EB = {−5.2,−2.6,−2.6,+2.6,+2.6,+5.2} . (4.6)
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According to Eq. (2.137) the transmission is proportional to the square of the absolute value of
the Green’s function gB

lr(E), with l = 1 and r = 4 − pm in the case of benzene and l = 0 and
r = 7 in the case of BDT. We set 0+ = 0.25 in the Green’s function, to see how a non-negligible
imaginary part, e.g. due to the molecule lying on a substrate, influences the DQI. We calculate
the matrix Green’s function using Eq. (4.5) and plot the results in Fig. 4.1.

Fig. 4.1. Square of the absolute value of the Green’s functions gB
13(E) (meta) and gB

14(E) (para).
Peak broadening is due to 0+ = 0.25. While the meta configuration shows DQI at E = εC, the para
configuration has a finite transmission. The GAOS predicts DQI for meta-benzene and para-benzene at
E = εC ± tC, which does not occur.

Strictly speaking, Fig. 4.1 shows that
∣∣gB

13(E)
∣∣2 is several orders of magnitude smaller than∣∣gB

14(E)
∣∣2 around the energy E = εC but in the case of a non-negligible 0+ exact DQI is no

longer observed.

We know from Sec. 2.6.3, that the GAOS predicts DQI at E = {εC − tC, εC, εC + tC} in the
case of meta-benzene and at E = {εC − tC, εC + tC} in the case of para-benzene. We observe in
Fig. 4.1 DQI at E = εC in the case of meta-benzene, but we observe neither for meta-benzene
nor for para-benzene DQI at E = εC ± tC. Therefore, we calculate the Green’s functions of
the benzene from Eq. (2.142). We have calculated the numerator of Eq. (2.142) in the case of
meta-benzene and para-benzene in Eqs. (2.149) and (2.150). For the denominator we get

det
(
(E + i0+)I−HB

Hückel

)
= (E− εC + i0+)6− 6(E− εC + i0+)4t2C + 9(E− εC + i0+)2t4C− 4t6C .

(4.7)

Now we set 0+ → 0 and calculate gB
13(εC±tC) and gB

14(εC±tC). By doing so we get indeterminate
expressions, which we have to evaluate using L’Hospital’s rule

gB
13(εC ± tC) = lim

E→εC±tC

t2C(E − εC)3 − t4C(E − εC)

(E − εC)6 − 6(E − εC)4t2C + 9(E − εC)2t4C − 4t6C
=

2t4C
0

(4.8)

gB
14(εC ± tC) = lim

E→εC±tC

2t3C(E − εC)2 − 2t5C
(E − εC)6 − 6(E − εC)4t2C + 9(E − εC)2t4C − 4t6C

=
4t4C
0

. (4.9)

We see that the Green’s functions gB
13(E) and gB

14(E) diverge at E − εC = ±tC. The reason we
do neither observe the divergence of the Green’s functions at E = εC ± tC nor exact DQI at
E = εC in Fig. 4.1 is the peak broadening due to 0+.
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Now we study pristine BDT. We take the Hamiltonian matrix HBDT,pm
Hückel and solve the equations

HBDT,pm
Hückel

#»c BDT = EBDT
pm

#»c BDT (4.10)

gBDT,pm(E) =
[
E+I−HBDT,pm

Hückel

]−1
. (4.11)

We solve Eq. (4.10) once for meta-BDT and once for para-BDT and get the eigenenergies

EBDT
Meta = {−5.3,−2.9,−2.7,−1.2,−1.1,+2.6,+2.7,+5.2} (4.12)

EBDT
Para = {−5.3,−2.9,−2.6,−1.4,−1.0,+2.6,+2.7,+5.2} . (4.13)

Now we calculate
∣∣gBDT,pm

07 (E)
∣∣2 for meta-BDT and for para-BDT. Fig. 4.2 shows the results.

We see that only two eigenstates are close to 0 and therefore contribute to the transmission.
The contribution from the remaining eigenstates to the transmission is negligible.

Fig. 4.2. Square of the absolute value of the Green’s function gBDT,pm
07 (E) of meta-BDT and para-BDT.

Peak broadening is due to 0+ = 0.25. We see that only the eigenstates close to 0 contribute to the
transmission, while the contribution of the remaining eigenstates to the transmission is negligible. We
also see that due to 0+ the transmission minimum is shifted towards higher energies.

Like in the case of the benzene molecule, Fig. 4.2 shows that
∣∣gBDT,pm

07 (E)
∣∣2 is several orders

of magnitude smaller around the energy E = εC in the case of meta-BDT than in the case of
para-BDT, but no exact DQI is observed for meta-BDT. Additionally, we observe that in the
case of meta-BDT the minimum of

∣∣gBDT,pm
07 (E)

∣∣2 shifts towards higher energies (see inset).

4.1.2 Transport systems

In this section we include the electrodes. We model the electrodes within the wide band limit
and we assume that each electrode couples to a single site (see Sec. 2.6.1). The matrix elements
of the hybridization matrix are zero except for (Σpm

L )ll and (Σpm
R )rr, which we set to be

(Σpm
L )ll = (Σpm

R )rr = −0.5i . (4.14)
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We calculate the level-width functions according to Eq. (2.113). By doing so, Eq. (2.137) becomes

T (E) =
∣∣Glr(E)

∣∣2 . (4.15)

Additionally, we reduce the artificial broadening to 0+ = 2.5 ·10−3 for the following calculations.

Like in the case of the pristine molecules, we start with the benzene molecule. We calculate the
Green’s functions GB

13(E) and GB
14(E) from

GB,pm(E) =
[
E+I−HB

Hückel −Σpm
L −Σpm

R

]−1
. (4.16)

We calculate the transmission once from GB,pm
13 (E) and once from GB,pm

14 (E) and plot the results
in Fig. 4.3. In the case of meta-benzene DQI occurs now also at E = εC ± tC, while in the case
of para-BDT it does not.

Fig. 4.3. Transmission of meta-benzene and para-benzene including electrodes. We see that by coupling
electrodes in meta-position DQI occurs now at E = εC and E = εC ± tC, while in the case of coupling
electrodes in para-position no DQI occurs.

We calculate the denominator of Eq. (2.142) once more for the meta-benzene and once for the
para-benzene. We set again 0+ → 0 and write (E − εC) = E′. We get

det
(
EI−HB

Hückel −Σ1
L −Σ1

R

)
= E′6 + iE′5 − 6E′4t2C −

E′4

4
− 4iE′3t2C + 9E′2t4C +

E′2t2C
2

+ 3iE′t4C − 4t6C (4.17)

det
(
EI−HB

Hückel −Σ0
L −Σ0

R

)
= E′6 + iE′5 − 6E′4t2C −

E′4

4
− 4iE′3t2C + 9E′2t4C +

E′2t2C
2

+ 3iE′t4C − 4t6C −
t4C
4

, (4.18)

where we described the matrix elements of the hybridization matrices using Eq. (4.14). Eq. (4.17)
does not vanish for E = εC ± tC and, in further consequence, we observe in the case of meta-
benzene DQI also at E = εC ± tC. Eq. (4.18) vanishes at E = εC ± tC and we have to
evaluate the Green’s function of the para-benzene using L’Hospital’s rule. By doing so we get
GB,0

14 (εC ± tC) = ∓i. Calculating the transmission from this result gives a transmission of 1 at
E = εC± tC, while the transmission in Fig. 4.3 is slightly lower than 1. This discrepancy results
from Eqs. (4.17) and (4.18) not including the infinitesimal 0+.
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Now we calculate the PDOS of meta-benzene and para-benzene using Eq. (2.127). We are
interested only in the DOS of the scattering states and therefore

DOSscat(E) = AL(E) +AR(E) . (4.19)

We are also interested in the PDOSscat(E, j) of each individual carbon atom. We calculate

PDOSscat(E, j) =
i

2π

(
GC

(
ΣL −Σ†L

)
G†C

)
jj

+
i

2π

(
GC

(
ΣR −Σ†R

)
G†C

)
jj

(4.20)

with

DOSscat(E) =
∑
j

PDOSscat(E, j) , (4.21)

where j labels the site of the carbon atom. We calculate PDOSscat(E, j) for each carbon atom
and plot the results in Fig 4.4. We take advantage of the symmetry of benzene and plot only the
PDOSscat of topologically different sites. We see from Fig. 2.6 that in the case of para-benzene
the sites 1 and 4 are identical. Also sites 2, 3, 5 and 6 are identical. For meta-benzene sites 1
and 3 are identical and also sites 4 and 6.

Fig. 4.4. Scattering PDOS of the benzene molecule at the different carbon sites in the case of meta-
benzene (left) and para-benzene (right). We calculated the scattering PDOS from Eq. (4.20). The
numbers in the curved brackets label the sites of the carbon atoms according to Fig. 2.6. We see that in
the case of meta-benzene the sites contacted to the electrodes have no states at the Fermi energy.

Fig. 4.4 shows that in the case of meta-benzene the number of scattering states vanishes at sites
1, 3 and 5 for an energy of E = εC, while para-benzene has states at each carbon site.

For our purpose it is more advantageous to consider the PDOS not just energy-resolved, like we
do in Fig. 4.4, but to consider also the number of states within an energy interval. Therefore
we calculate

(
Integrated PDOS

)
j

=

∫ Emax

Emin

PDOSscat(E, j)dE . (4.22)

Fig. 4.5 shows the integrated PDOS of the benzene ring with Emin = −0.5 eV and Emax = 0.5 eV.
Meta-benzene has almost no scattering states in the energy range −0.5 eV to 0.5 eV at the sites
contacted to the electrodes, while para-benzene has states at these sites.
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Fig. 4.5. Integrated PDOS of benzene. We integrate the scattering PDOS of the individual carbon
atoms numerically over the interval

[
− 0.5,+0.5

]
eV with an energy resolution of 0.005 eV using the

trapezoidal rule. The sites are labeled according to Fig. 2.6. Meta-benzene has almost no states at the
sites contacted to the electrodes, while para-benzene has states at the sites contacted to the electrodes.

We consider now meta-BDT and para-BDT. We calculate the matrix Green’s function from

GBDT,pm(E) =
[
E+I−HBDT,pm

Hückel −Σpm
L −Σpm

R

]−1
, (4.23)

We calculate GBDT,pm
07 (E) and the transmission once for meta-BDT and once for para-BDT.

Fig. 4.6 shows the resulting transmission.

Fig. 4.6. Transmission of meta-BDT and para-BDT including electrodes. Like in the case of meta-
benzene and para-benzene, meta-BDT displays DQI at E = εC ± tC, while para-BDT does not. In
contrast to the pristine BDT, all eigenstates contribute to the transmission.

We see in Fig. 4.6 that, similarly to meta-benzene and para-benzene, meta-BDT displays DQI at
E = εC±tC, while para-BDT does not. Additionally, we observe that unlike in the case of pristine
BDT not only the eigenstates close to 0 but all eigenstates contribute to the transmission. In
contrast to pristine BDT, the eigenstates close to 0 are additionally broadened by the electrodes,
while the remaining eigenstates are not. In consequence, the eigenstates closer to 0 are stronger
broadened than the remaining ones. This results in the amplitude of the transmission peaks of
all eigenstates being of about the same order.
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Now we calculate PDOSscat(E, j) for BDT. Fig. 4.7 shows the resulting curves. Like in the case
of benzene the carbon atoms at sites 1, 3 and 5 have a small number of states around the energy
E − εC = 0. By comparing Figs. 4.6 and 4.7 we see that DQI occurs at energies at which either
the sulfur atoms or the carbon atoms at sites 1 and 3 have no states.

Fig. 4.7. Scattering PDOS of BDT at the different sites in the case of meta-BDT (left) and para-BDT
(right). We calculated the scattering PDOS from Eq. (4.20). The numbers 1− 6 in the curved brackets
label the sites of the carbon atoms according to Fig. 2.6. The sulfur at site 0 is the nearest-neighbor of
the carbon at site 1 and the sulfur at site 7 is the nearest-neighbor of the carbon at site 3 or 4 depending
on whether meta- or para-BDT is considered. By comparing the scattering PDOS to Fig. 4.6 we see that
for transmission the carbon atoms at sites 1 and 3 and the sulfur atoms have to provide states.

4.2 DFT calculations in equilibrium

4.2.1 Settings for the DFT calculations and geometry relaxation

We construct the systems (see Fig. 1.3) based on the results from Ref. [28], where the authors
calculated the transmission of systems similar to the para-BDT+planar system. We choose the
electrodes to be Au(111) with a lattice constant of 4.175 Å. We set the distance between the
surfaces of the two electrodes of the para-BDT+planar system to be 9.680 Å. TRANSIESTA
calculations require periodicity perpendicular to the transport direction. Therefore we increase
the size of the electrodes in these directions to prevent BDT-BDT interactions. According to
the results from Ref. [28], the transmission of an Au(111)-BDT-Au(111) system containing 5×5
gold atoms in the electrode layers perpendicular to the transport direction can be considered
converged, and in consequence the BDT-BDT interactions are negligible. To keep the coupling
of the BDT towards the electrodes as constant as possible, we relax the geometry of the para-
BDT+planar system and set the distance between the sulfur atoms and the electrodes of the four
systems to be about equally large. The resulting electrode-electrode distances of the systems are
summarized in Tab. 4.1. Afterwards we relax the geometry of the remaining three systems. We
fix the position of the gold atoms in the four systems and relax only the geometry of the BDT
molecules. It shows that the reduction of the number of k-points within the supercell to 1×1×1
(the first two being the number of k-points in the direction perpendicular and the last one in the
direction parallel to the transport direction) during geometry optimization does influence the
results only marginally and therefore we relax the BDT molecules by Γ-point-only calculations
to reduce the computational cost. We choose the exchange-correlation functional to be a PBE
functional during all the DFT calculations. The pseudopotentials used in these calculations are
the ones from Ref. [29]. The pseudopotentials for the carbon, hydrogen and sulfur atoms are
non-relativistic ones, while the one used for gold is a relativistic one. A complete list of the used
options and parameters is found in appendix C.
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Tab. 4.1. Distances between the electrodes in the four different systems in units of Angstrom.
In the case of pointed electrodes the tip-tip distance is given.

Electrode / Configuration Para Meta

Planar 9.680 9.280

Pointed 10.807 10.313

4.2.2 Transmission and DOS

Now we increase the number of k-points within the supercell from 1 × 1 × 1 to 4 × 4 × 1
and calculate the Hamiltonian matrices and overlap matrices of the transport systems using
TRANSIESTA (see Sec. 3.1.2). In the end we calculate the transmission and the PDOS of the
transport systems using TBTRANS (see Sec. 3.2.1). We choose the limits of the energy grid for
the TBTRANS calculations to be −6 eV to 6 eV and the resolution to be 0.05 eV. Fig. 4.8 shows
the resulting transmissions and PDOS.

(a) meta-BDT+planar

(b) meta-BDT+pointed

(c) para-BDT+planar

(d) para-BDT+pointed

Fig. 4.8. Transmission and PDOS of the left (dotted) and right (dashed) spectral function of the
different transport systems in equilibrium. For better comparability the PDOS of each element is divided
by the number of atoms of the corresponding element. We see that the meta-BDT systems have a lower
transmission around the Fermi energy than the para-BDT systems.

We see in Fig. 4.8 that around the Fermi energy the transmission of the meta-BDT systems is
lower than the transmission of the para-BDT systems. The transmission minima around the
Fermi energy are summarized in Tab. 4.2. We see from the numerical values that neither the
transmission of the meta-BDT+planar system nor of the meta-BDT+pointed system vanishes
beyond 0+: so there is no exact DQI. We also observe that neither of both systems containing
meta-BDT display the transmission minimum at the Fermi energy but about 0.2 eV to 0.4 eV
above it.
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Tab. 4.2. Transmission minima around the Fermi energy. Neither does the transmission of the meta-
BDT systems vanish nor do the transmission minima occur at the Fermi energy.

E − EF / eV T
(
E − EF

)
meta-BDT+pointed 0.225 6.3 · 10−3

meta-BDT+planar 0.375 30.8 · 10−3

para-BDT+pointed 0.275 107.5 · 10−3

para-BDT+planar 0.775 139.1 · 10−3

4.2.2.1 Contributions of the different transport channels to the transmission

We split the transport system into a p-channel and an r -channel as described in Sec. 3.2.2.4.
We give the mathematical details of how we split up the transmission into these contributions
in appendix D. We get for the transmission of the DFT calculations

TDFT(E) = Tp(E) + Tr(E) + Tint(E) , (4.24)

where Tp(E) and Tr(E) are the transmissions of the p-channel and r -channel, respectively.
Tint(E) is the interference term describing the interaction of the two channels with one another.
Fig. 4.9 shows the different contributions from Eq. (4.24) and the total transmission of the
BDT+planar systems, while Fig. 4.10 shows the different contributions from Eq. (4.24) and the
total transmission of the BDT+pointed systems.

Fig. 4.9 shows that in the case of para-BDT+planar the p-channel makes a major contribu-
tion to the total transmission around the Fermi energy, while the r -channel contributes only
marginally to the total transmission. The transmission Tp(E) through the p-channel of the
meta-BDT+planar system is very small around the Fermi energy. In contrast to the model
calculations from Sec. 4.1.2 the transmission Tp(E) of the meta-BDT+planar system does not
vanish. Unlike in the case of para-BDT+planar the transmission through the r -channel of the
meta-BDT+planar system is quite low but the r -channel makes major contributions to the to-
tal transmission of meta-BDT+planar around the Fermi energy. We see in Fig. 4.9 that the
interference term is small throughout most parts of the energy range.

Fig. 4.9. Contributions of the different transport channels to the transmission of meta-BDT+planar
(left) and para-BDT+planar (right). The transmission around the Fermi energy of para-BDT+planar
is dominated by the p-channel, while the transmission around the Fermi energy of meta-BDT+planar is
dominated by the r -channel. Additionally, the p-channel of meta-BDT+planar shows no exact DQI.
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Fig. 4.10 shows that, except for the transmission peak right below the Fermi energy, not the
p-channel but the r -channel of both the BDT+pointed systems makes major contributions to
the transmission around the Fermi energy. This result is in qualitative agreement to the results
in Fig. 4.9 in the case of meta-BDT but not so in the case of para-BDT. While the BDT
molecules in the remaining systems lie quite well in the xy-plane, the tilt of the BDT in the
para-BDT+pointed system with respect to the xy-plane is considerable. We assume therefore
that the p-channel of the para-BDT+pointed system does not describe sufficiently well the
actual pz orbitals of the BDT, i.e. the orbitals orthonormal to the benzene ring, and a basis
transformation is unavoidable for a sufficiently good description of this system.

Fig. 4.10. Contributions of the different transport channels to the transmission of meta-BDT+pointed
(left) and para-BDT+pointed (right). The transmission around the Fermi energy of both systems is
dominated by the r -channel, which is in good agreement with the results from Fig. 4.9 in the case of
meta-BDT but not in the case of para-BDT. We assume in the case of para-BDT+pointed that the pz

orbitals of the p-channel do not describe sufficiently well the pz orbitals of the BDT, requiring a basis
transformation (see main text).

4.3 Model calculations in equilibrium

The Hückel calculations in Sec. 4.1.2 show DQI in the case of meta-benzene and meta-BDT,
while the first-principles calculations of the meta-BDT+planar system show a small but finite
transmission through the p-channel. The difference between the first-principles calculations and
the Hückel calculations from Sec. 4.1.2 are the following assumptions:

• Each electrode couples solely to one sulfur atom

• Only pz orbitals of sulfur and carbon are considered. The remaining orbitals are neglected.

• Hopping processes are limited to nearest neighboring atoms

• The BDT is described only by four parameters: εC, εS, tC and tSC

We examine the impact of these assumptions on the first-principles results in more detail. We do
so by taking the Hamiltonian matrices and overlap matrices from the first-principles calculations
and applying the approximations discussed Sec. 3.2.2.4.
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4.3.1 Electrodes

In the first step we analyze the PDOS of the electrodes. Due to the localization of the atomic
orbitals the coupling of gold atoms spatially closer to the sulfur atom is more important than
the coupling of gold atoms spatially further away. Therefore we examine the PDOS of the
nearest-neighbor gold atoms in more detail. The PDOS of the nearest-neighbor gold atoms in
the case of planar and pointed electrodes are plotted in Fig. 4.11. We see that the PDOS of the
tips of the pointed electrodes have too much structure and cannot be approximated by a simple
analytic function. The PDOS for the nearest-neighboring gold atoms of the sulfur atoms in the
case of BDT+planar can be approximated very well by the analytic expressions from Eqs. (3.8)
and (3.9). Therefore we analyze only the BDT+planar systems within the models.

Fig. 4.11. PDOS of the gold atom at the tip of the left pointed electrode (left) and one of the nearest-
neighbor gold atoms (see Fig. 1.3) of the left planar electrode (right) of the para-BDT systems. The
Green’s functions (3.8) and (3.9) model the planar electrodes quite well, while the pointed electrodes
have to much structure for being modeled by simple analytic functions. We discuss the scaling factors
nwb and n1D and the Green’s functions in more detail in the main text.

We want the model electrodes to have the same DOS as in the first-principles calculations. We
know from Sec. 2.4.4 that we can calculate the DOS from the Green’s function. Therefore we
want the electrode Green’s functions (3.8) and (3.9) to fulfill the condition

PDOSiAu(E) = − 1

π
Im
(
niG

R
i (E)

)
(4.25)

with i ∈ {1D,wb}, where ni takes care of the correct normalization of the Green’s functions. ni
and PDOSwb

Au are constants with ni,PDOSwb
Au ∈ R. We determine PDOSwb

Au by fitting a constant
to the PDOS of the nearest-neighboring gold atoms and choose nwb such that Eq. (4.25) is ful-
filled. We find PDOSwb

Au ≈ 0.7. Therefore we choose the bandwidth of the Green’s function (3.8)
to be 24 eV and rescale it to have an imaginary part of −0.7π 1

eV . In Fig. 4.11 we have chosen
the scaling factor n1D to be 14 and the remaining parameters are

ε0 = −4.00

η = 0.25 (4.26)

t = −1.25 .
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While these parameters fit GR
1D well to the mean value of the PDOS of the d orbitals, a smaller

value for η leads to better results regarding the transmission and PDOS in the TCSO
π , TB and

Hückel model. Therefore we use η = 2.5 ·10−3 and take the remaining parameters of the Green’s
function G1D to be the same as the parameters (4.26) in the model calculations.

We model the electrodes according to Sec. 3.2.2.2. Therefore we will not calculate the coupling of
the BDT towards the electrodes from the results of the first-principles calculations. We estimate
the coupling tSjsj of the pz orbitals of the sulfur atoms towards the s orbitals of the electrodes,
with j ∈ {l, r} being the site the electrodes couple to and Sj and sj denoting the pz orbital of
the sulfur atoms and the s orbitals of the electrodes, respectively, in the following way: We take
the coupling of the pz orbitals of the sulfur atoms and the s orbitals of the electrodes, transform
them to match the new orbitals in the model system and project the resulting couplings on the
basis function energetically closer to the Fermi energy. Finally, we take into account the Löwdin
orthogonalization by normalizing the coupling. This procedure is described by the equation

tSjsj =
(
S′−

1
2

)
oo

[1, 0] U†Sj

 tζ1Sjsj

tζ2Sjsj

 . (4.27)

tζ1Sjsj
and tζ2Sjsj

are the couplings of the first and second basis function describing the pz orbital of
the sulfur atoms towards the basis function describing the s orbital of the nearest-neighboring
gold atom. U†Sj

is the unitary transformation matrix diagonalizing the Hamiltonian matrix of

the sulfur (see Sec. 3.2.2.3). The weighting
(
S′−

1
2

)
oo

results from the Löwdin orthogonalization

of the orbitals of the model with S′ being the overlap matrix of the model system.

We estimate the coupling of the sulfur atoms and the nearest-neighboring gold atoms according
to Eq. (4.27) and average the resulting coupling strengths, where it shows to be convenient to
include only the orbitals having a positive overlap. Therefore we neglect the gold orbitals having
a negative overlap with the effective orbital of the sulfur atoms. Although this procedure is very
heuristic it serves our purpose. We calculate the overlap of the model electrodes in the exact
same way. The model parameters resulting from this procedure are summarized in Tab. 4.3.

Tab. 4.3. Coupling strength t and overlap S of the pz orbitals of the sulfur atoms and the s orbitals of
the electrodes entering the model. Sj and sj denote the pz orbital of the sulfur atoms and the s orbitals
of the electrodes, respectively. We estimated the coupling strengths using Eq. (4.27) and the procedure
described in the main text. We estimated the overlaps in the same way as the coupling strengths.

Configuration tSlsl / eV tSrsr/ eV SSlsl SSrsr

Meta -0.67 -0.68 0.08 0.08

Para -0.81 -0.83 0.10 0.10

Due to the strong angular dependence of the d orbitals, the coupling strength of the d orbitals
depends strongly on the exact position of the sulfur atoms relative to the electrodes. Therefore
we do not estimate the coupling of the d orbitals, but choose it to be tCd = −0.5 for both
electrodes. We also assume that the modeled d orbitals of the electrodes and the orbitals of the
BDT are orthonormal (SSjdj

= 0).
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4.3.2 TC model and TCπ model

Now we calculate the transmissions of the different channels within the TC approximation. We
see in Fig. 4.12 that the transmission of the p-channel is greatly reduced at the Fermi energy for
meta-BDT+planar compared to the transmission of the p-channel in Fig. 4.9. The transmission
of the meta-BDT+planar system within the TC model has a reduced transmission also around
−2 eV and at 2.825 eV, which is in qualitative agreement with the transmission from Fig. 4.6.
For DQI one has to consider only the p-channel and enforce tight coupling.

Fig. 4.12. Transmission of meta-BDT+planar (left) and para-BDT+planar (right) in the TC model.
DQI occurs in the case that tight-coupling is enforced and only the p-channel is considered. In the case
of meta-BDT+planar the p-channel has also a very small transmission at about −2 eV and at 2.825 eV,
which is in qualitative agreement with the results of the Hückel model from Sec. 4.1.2.

The Hückel model considers only the pz orbitals of hydrocarbons explicitly and treats the re-
maining orbitals as an additional contribution to the potential the electrons of the pz orbitals
feel (see Sec. 2.2). For this approach the π-electron approximation has to be reasonable. To see
how the π-electron approximation influences the transmission, we rearrange the Hamiltonian
matrix, the overlap matrix and hybridization matrices of the BDT molecule and weight the
coupling of the two channels

E+SBDT −HBDT −ΣTC
CL
−ΣTC

CR
= HBDT(E) =

 Hp εHpr

εHrp Hr

 (4.28)

with ε ∈ [0, 1]. Hp and Hr are the Hamiltonian matrices of the two channels. Hpr and Hrp

describe the coupling of the two channels to one another. ΣTC
CL

and ΣTC
CR

are the hybridization
matrices within the TC model. Using the Hamiltonian matrix (4.28) we calculate the transmis-
sion for various values of ε, where ε = 1 results in the TC model and ε = 0 in the TCπ model.
Fig. 4.13 shows the results.

Fig. 4.13 shows that the π-electron approximation is a quite good approximation for the para-
BDT+planar system, while it seems to be less so for the meta-BDT+planar system. By taking a
closer look at the transmission of the meta-BDT+planar system, we see that the reduction of the
coupling of the p-channel and r -channel shifts the energy, at which DQI occurs, towards lower
energies. The seemingly bad agreement of the transmission peaks at about −3 eV and 3 eV in
Fig. 4.13 arises from shifting the DQI towards lower energies. Due to the shifting towards lower
energies the DQI ”cuts” these two transmission peaks at different energies. In consequence, the
transmission changes more drastically in the case of meta-BDT+planar.
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While the transmission of the meta-BDT+planar changes considerably, we see in Fig. 4.13 that
also the transmission of the para-BDT+planar system changes at higher energies, which we as-
sume to result from the first-principles calculations containing orbitals which are not considered
in the π-electron approximation. The π-electron approximation considers hydrocarbons having
only π orbitals and σ orbitals. The basis of the BDT within the first-principles calculations,
being a DZP basis, contains also d orbitals, and in consequence δ orbitals. These d orbitals are
several eV higher in energy than the remaining orbitals of carbon and sulfur and therefore they
make greater contributions to the transmission of the p-channel at higher energies.

Fig. 4.13. Impact of the π-electron approximation on the transmission of the p-channel of the tightly
coupled meta-BDT+planar (left) and para-BDT+planar (right). ε = 1 corresponds to the TC model,
while ε = 0 corresponds to the TCπ model. The π-electron approximation is reasonable for the para-BDT,
while the transmission of the meta-BDT changes considerably due to the DQI being shifted.

4.3.3 TCSO
π model, TB model and Hückel model

Using the procedure from Sec. 3.2.2.3, we reduce the Hamiltonian matrices of the first-principles
calculations to obtain the Hamiltonian matrices of the TCSO

π model. We further reduce the
Hamiltonian matrices of the TCSO

π model to Hamiltonian matrices of the TB model and in one
further step to Hamiltonian matrices of the Hückel model. We calculate the transmission for
all three of the models and plot the results in Fig. 4.14. By comparing Figs. 4.13 and 4.14 we
see that the TB and Hückel model compensate the shift of the transmission peaks, which was
introduced by decoupling the p-channel and r -channel within the π-electron approximation.

Fig. 4.14. Comparison of the TCSO
π model, TB model and Hückel model of meta-BDT+planar (left)

and para-BDT+planar (right). The TB model and Hückel model correct the shift introduced by the
π-electron approximation to some extent.
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We compare now the parameters of the Hückel model taken from literature and taken from the
first-principles calculations. The parameters are summarized in Tab. 4.4.

Tab. 4.4. Comparison of the Hückel parameters from literature to the ones from the first-principles
calculations. As we see the parameters of the Hückel model taken from literature and the parameters we
obtained from the first-principles calculations differ considerably.

first-principles / [eV] Literature/ [eV]

Meta Para

εS − εC -2.31 -2.99 -1.30

tC -2.48 -2.65 -2.60

tSC -1.58 -1.80 -0.87

As we see in Tab. 4.4, the hopping parameters tSC and the difference of the onsite energies
εS − εC gained from the first-principles calculations and from literature differ considerably. For
examining the hopping parameters we compare the bond lengths of the BDT molecules of the
DFT systems to the system considered in Sec. 4.1. The electrodes in the first-principles calcula-
tions exhibit forces on the BDT, resulting in the sulfur atoms being pressed closer to the carbon
ring. Therefore the carbon-sulfur bond length from literature and from the DFT calculations
differ (by about 35 %) and in consequence also tSC. The carbon ring is more stable and the
carbon-carbon bond length is about the same as the one from literature. The onsite energies of
the atoms depend considerably on the effective potential of the Kohn-Sham Hamiltonian.

We compare the results from the first-principles calculations to the results from the Hückel model
parametrized from the first-principles calculations in Fig. 4.15. We see in Figs. 4.15d and 4.15f
that the sharp peaks at about −3 eV and 3 eV present in the PDOS from the first-principles
calculations of the para-BDT+planar system are not present in the Hückel model. We also
see in Fig. 4.15e that the PDOS of the carbon atoms at site 1 and 3 of the meta-BDT vanish
around the Fermi energy in the Hückel model but not in the first-principles calculations. By
calculating the total PDOS of the model system, from e.g. Eq. (2.121), instead of calculating
only the scattering PDOS according to Eq. (4.20), the sharp peaks at about −3 eV and 3 eV
in the case of the para-BDT appear also in the Hückel model and the PDOS of the carbon
atoms at site 1 and 3 in the case of the meta-BDT are finite at the Fermi energy. We see that
in the first-principles calculations the p-channel contains contributions, which the hybridization
matrices within the Hückel model do not support, namely contributions from the direct coupling
of the carbon atoms to the electrodes. This result is in good agreement with the fact that DQI
is only observed after we turn off the additional coupling in the TC model.

We see in Fig. 4.15a that the transmission of the Hückel model does not occur at the Fermi
energy but at an energy of (0.075± 0.05) eV. This shift of the DQI results from the onsite
energy of the carbon atoms within the Hückel model being 0.09 eV higher in energy than the
Fermi energy and therefore according to Sec. 2.6.3 also the DQI. We recalculate the transmission
of the meta-BDT+planar system within the Hückel model with an energy resolution of 0.001 eV.
We find the transmission minimum now at (0.091± 0.001) eV.
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(a) Transmission (b) Transmission

(c) PDOS of the different atom sorts (d) PDOS of the different atom sorts

(e) PDOS of carbon at different sites (f) PDOS of carbon at different sites

Fig. 4.15. Comparison of the p-channel of the DFT calculations to the Hückel model parametrized
from the first-principles calculations of meta-BDT+planar (left) and para-BDT+planar (right). We
calculated the transport properties with the same energy resolution as the first-principles calculation, i.e.
∆E =0.05 eV. Note: We compare the PDOS of both basis functions describing the pz orbitals in the
first-principles calculations to the PDOS of the effective orbitals in the model.
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4.4 DFT calculations out of equilibrium

We drive the transport systems out of equilibrium by a bias voltage UB. According to Sec. 2.5 this
results in the chemical potential being shifted. We consider this shift within the TRANSIESTA
calculations in the following way: The chemical potential of the left electrode is increased by
|eUB|

2 and the chemical potential of the right electrode reduced by the same amount.

In Sec. 4.4.1 we study how the transmission and PDOS of the transport systems change in non-
equilibrium. Sec. 4.4.2 deals with the influence of the bias voltage on the system Hamiltonians,
while Sec. 4.4.3 focuses on the onsite energies. In Sec. 4.4.4 the focus lies on the benzene rings
and their PDOS. Sec. 4.4.5 takes a look at the currents across the transport systems.

4.4.1 Transmission and DOS

We calculate the transmission and PDOS of the different transport systems in non-equilibrium.
The PDOS of gold is several times larger than the PDOS of the remaining atom species due
to the large difference in the atomic numbers. To allow for better comparability, we divide the
PDOS of each atom species by the number of atoms of that species. Additionally, we split the
PDOS of the pointed electrodes into contributions from the electrode tips and contributions from
the gold atoms not part of the tips. We plot the PDOS and the transmission of the BDT+planar
systems in Fig. 4.16 and of the BDT+pointed systems in Fig. 4.17.

(a) Transmission of meta-BDT+planar

(b) PDOS of meta-BDT+planar for
UB = 0 V (above) and UB = 3 V
(below)

(c) Transmission of para-BDT+planar

(d) PDOS of para-BDT+planar for
UB = 0 V (above) and UB = 3 V
(below)

Fig. 4.16. Transmission and PDOS from the left (dotted) and right (dashed) spectral function of the
BDT+planar systems. For better comparability, the PDOS of each element is divided by the number
of atoms of the corresponding element. The transmission peaks right below the Fermi energy and the
transmission in the energy range of the d-orbitals change considerably with respect to the bias voltage.
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By comparing Figs. 4.16 and 4.17 we see that the bias voltage changes the transmission of
the BDT+planar system considerably below the Fermi energy, while the transmission of the
BDT+pointed systems change across the whole energy range with respect to the bias voltage.
We know from Fig. 4.11 that the PDOS of the d orbitals of the planar electrodes and the s and d
orbitals of the pointed electrodes have an energy-dependent structure. By applying bias voltage
the PDOS of the electrodes changes and in further consequence the transmission.

(a) Transmission of meta-BDT+pointed

(b) PDOS of meta-BDT+pointed for
UB = 0 V (above) and UB = 3 V
(below)

(c) Transmission of para-BDT+pointed

(d) PDOS of para-BDT+pointed for
UB = 0 V (above) and UB = 3 V
(below)

Fig. 4.17. Transmission and PDOS from the left (dotted) and right (dashed) spectral function of the
BDT+pointed systems. For better comparability the PDOS of each element is divided by the number
of atoms of the corresponding element. Unlike in the case of the BDT+planar systems the transmission
changes considerably throughout the whole energy range.

We observe in Figs. 4.16 and 4.17 that the PDOS of the carbon atoms are less shifted by UB

than the PDOS of the sulfur atoms. The sulfur atoms couple stronger to the electrodes than
the carbon atoms and therefore the influence of the bias voltage on the sulfur atoms is stronger
than on the carbon atoms.

We also observe the shift of the PDOS of the sulfur atoms in some of the systems, e.g. Fig. 4.16b,
to be smaller than the applied bias voltage. The PDOS of the carbon atoms of all four of the
systems is even less shifted. In the case of pointed electrodes the bias voltage also shifts the
PDOS of the sulfur contacted to the left electrode less than the sulfur contacted to the right
electrode as we see in Figs. 4.17b and 4.17d. To understand why the carbon and sulfur peaks
show this behavior, we study the influence of the bias voltage on the system Hamiltonian in
Sec. 4.4.2 and take a closer look at the energy shift of these Hamiltonians due to the bias
voltage in Sec. 4.4.3.
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4.4.2 Influence of the bias voltage on the system Hamiltonian

We determine the influence of the bias voltage on the matrix elements of the Hamiltonians by
calculating the difference of the Hamiltonian matrices resulting from the first-principles calcu-
lations in equilibrium and in non-equilibrium

∆H = HNEQ
TS −HEQ

TS , (4.29)

where HEQ
TS and HNEQ

TS are the Hamiltonian matrices from the TRANSIESTA calculations in

equilibrium and non-equilibrium, respectively. We take HNEQ
TS to be the Hamiltonian matrices

from the calculations with UB = 3 V. Fig. 4.18 shows ∆H of the Hamiltonian matrices at the
Γ-point. The influence of the bias voltage on the hopping parameters is small in comparison to
the influence on the onsite energies.

(a) meta-BDT+planar

(b) meta-BDT+pointed

(c) para-BDT+planar

(d) para-BDT+pointed

Fig. 4.18. Influence of the bias voltage on the Hamiltonian matrices of the transport systems. The
horizontal and vertical lines mark the center of the central region along the transport direction. The plots
show only the influence on the atoms, which are part of the central region but not of the electrode clusters
within the central region. The bias voltage influences the onsite energy, while the hopping parameters are
less affected. We observe that the bias voltage influences the onsite energy of the BDT+pointed systems
asymmetrically. We study this asymmetry in more detail in the next section.
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4.4.3 Voltage drop across the transport system

We know from Sec. 4.4.2 that a bias voltage shifts the onsite energies of the Hamiltonians. We
determine this energy shift by calculating the difference of the onsite energies in equilibrium and
non-equilibrium for the various voltages. Fig. 4.19 shows the shift of the onsite energies at the
sites along the transport direction.

We observe that only a small part of the voltage drop occurs in the planar electrodes and in
the parts of the pointed electrodes not part of the tips, while the voltage drop in the tips of the
pointed electrodes is larger. We understand this behavior in terms of the states, each electrode
layer provides. Within the tips the number of gold atoms, and therefore the number of states
supporting electron transport, decreases. In consequence, the conductivity of the electrodes
decreases within the tips resulting in a larger voltage drop.

The benzene ring is only little influenced by the bias voltages as we see in Fig. 4.19. We also
observe that on average the BDT molecule is shifted towards lower energies. This shift has to
arise from an asymmetry within the transport systems. We also observe that the BDT+pointed
systems display a larger shift of the onsite energies than the BDT+planar systems. Therefore
we discuss this asymmetry at the example of the meta-BDT+pointed system in more detail.
We take a closer look at the distances involved. The left electrode and the left sulfur are 2.51 Å
apart, while the right electrode and the right sulfur are 2.49 Å apart. In the next step, we
compare the overlap of the BDT orbitals with the orbitals of the electrodes. Tab. 4.5 shows
the overlap of the s orbitals of the gold atoms at the electrode tips and the pz orbitals of the
neighboring sulfur atoms.

Tab. 4.5. Overlap of the s orbital of the electrode tip and the pz orbital of the nearest-neighboring
sulfur atom of the meta-BDT+pointed system. We calculated the overlap of the orbitals by summing the
four overlaps of the two basis functions describing the s orbital and the two basis functions describing the
pz orbital. We see that the asymmetry of the BDT position results in the orbitals of the left and right
electrodes having different overlaps with the BDT molecule, causing the asymmetrical energy shift.

Left side Right side

0.03 0.07

While the difference in the distances of the sulfur atoms towards the corresponding electrodes
is small, Tab. 4.5 shows that the resulting overlaps differ considerably. In consequence, also the
coupling of the left and right electrode towards the BDT differ. The smaller energy shift of
the BDT+planar systems results from a smaller difference of the coupling of the BDT molecule
towards the electrodes as the couplings from Tab. 4.3 indicate, where we estimated the param-
eters of Tab. 4.3 from the DFT calculations. We see that small deviations in the BDT position
relative to the electrodes impact the results considerably. Therefore the coupling of the BDT,
especially the coupling of the sulfur atom, towards the electrodes is of major importance.
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(a) meta-BDT+planar

(b) meta-BDT+pointed

(c) para-BDT+planar

(d) para-BDT+pointed

Fig. 4.19. The energy shift ∆ε introduced by the bias voltage UB. We calculated ∆ε by averaging the
energy shift of all orbitals of the same atom. In the case of gold atoms we further averaged the energy
shift of the gold atoms of the same electrode layer. In the case of the meta-BDT systems we distinguish
the shorter (dashed) and longer (solid) path of the benzene rings. The golden background marks the
electrode parts of the systems, while the white background marks the BDT molecule. We do not plot the
energy shift of the hydrogen atoms here. We see that part of the voltage drop occurs at the electrodes,
where a large part of the voltage drop occurs at the tips of the pointed electrodes. We also observe that
the benzene rings of the BDT molecules are effectively shifted towards lower energies.
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4.4.4 Integrated PDOS of the benzene ring

In this section we study how the bias voltage influences the PDOS of the benzene rings. Similarly
to Sec. 4.1.2, we calculate the integrated PDOS of the benzene ring

(
Integrated PDOS

)
i

=

∫ +0.5

−0.5

[(
PDOSL(E)

)
i
+
(

PDOSR(E)
)
i

]
dE , (4.30)

where PDOSL and PDOSR are the PDOS calculated by TBTRANS from the left and right
spectral function. Fig. 4.20 shows the integrated PDOS of the systems at different bias voltages.

By comparing Figs. 4.5 and 4.20 we see that the integrated PDOS from the Hückel model
parametrized with values taken from literature and the first-principles calculations of the meta-
BDT+planar, meta-BDT+pointed and para-BDT+planar are in good agreement. The para-
BDT+pointed system however, does not agree with the Hückel model. As we discussed in
Sec. 4.2.2.1, we assume this discrepancy to result from the TRANSIESTA orbitals not coincid-
ing with the orbitals of the benzene ring. In the case of the meta-BDT+pointed system we
observe the integrated PDOS to decrease considerably with respect to UB. As we have seen in
Sec. 4.4.1, the bias voltage shifts the prominent sulfur peak out of the considered interval. In
consequence, also the number of states, the sulfur atoms induce at the benzene ring, decreases
in non-equilibrium.

(a) meta-BDT+planar

(b) meta-BDT+pointed

(c) para-BDT+planar

(d) para-BDT+pointed

Fig. 4.20. PDOS of the pz orbitals of the TRANSIESTA calculations integrated over the interval [-0.5
0.5] eV. We calculated the integrated PDOS from the TBTRANS results using the trapezoidal rule. The
atom indices are chosen according to Fig. 2.6. Like the benzene ring of the model calculations from
Sec. 4.1.2, the benzene ring of the meta-BDT systems has considerably less states at odd sites. At higher
bias voltages the para-BDT+planar system displays a zigzag characteristic like the meta-BDT systems.
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We observe in Fig. 4.20c that in the case of the para-BDT+planar system the number of states
at even sites increases and decreases at odd sites. By examining Fig. 4.16 we are able to explain
this behavior of the para-BDT+planar system. In equilibrium both sulfur atoms induce about
an equal number of states at the different carbon sites. By applying a bias voltage the right
sulfur atom is energetically shifted out of the considered energy interval and therefore also the
states that are induced by it, resulting in a reduction of the number of states at odd sites in
the process. The left sulfur atom, and therefore the states induced by it, is energetically shifted
into the considered interval, resulting in an increase of the number of states at even sites in the
process.

4.4.5 I-U-characteristics

Being another important property of the transport systems, we study the current through the
molecules in this section. Fig. 4.21 shows the I-U-characteristics and the current ratio of the
different systems resulting from the first-principles calculations. The currents of the meta-BDT
systems are lower than the currents of the para-BDT systems. Additionally, we see that the
current in the case of the meta-BDT+pointed system is lower than in the case of the meta-
BDT+planar system providing a better meta-to-para-current ratio.

We see in Fig. 4.21 that the meta-BDT+pointed system displays a negative differential conduc-
tivity. The current for a bias voltage of 0.5 V is higher than the current for a bias voltage of 1.0 V.
We understand this negative differential conductivity by considering Fig. 4.17 and Eq. (2.120).
The current depends on the transmission as well as on the Fermi window

[
fL(E,µL)−fR(E,µR)

]
as

we see in Eq. (2.120). The sulfur atoms of the meta-BDT+pointed system provide a high PDOS
across a small energy range right next to the Fermi energy. As we see in Fig. 4.17 the bias
voltage shifts this PDOS of the sulfur atoms, reducing the PDOS supporting the transmission
of the meta-BDT+pointed system. By doing so the bias voltage reduces the transmission of the
meta-BDT+pointed system, while the bias voltage also increases the Fermi window. The neg-
ative differential conductivity of the meta-BDT+pointed system results from the transmission
decreasing faster than the Fermi window increases.

Fig. 4.21. I-U-characteristics (left) and current ratio IMeta

IPara
(right) for the different systems. The current

through the para-BDT systems is higher than through the meta-BDT systems. The current through the
meta-BDT+planar system is higher than through the meta-BDT+pointed system resulting in a better
current ratio IMeta

IPara
for the BDT+pointed systems.
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4.5 Model calculations out of equilibrium

In this section we model the systems in non-equilibrium. We limit the model calculations to
the simple models, namely the TCSO

π model and the Hückel model. In Sec. 4.5.1 we study
the influence of the bias voltage on the Hamiltonian matrices of the TCSO

π model. Using the
results from Sec. 4.5.1, we apply in Sec. 4.5.2 the GAOS to meta-benzene in non-equilibrium.
In Sec. 4.5.3 we calculate the transmission of the BDT+planar systems within the TCSO

π model
and study how the non-equilibrium influences the DQI.

4.5.1 Influence of the bias voltage on the model parameters

We reduce the TRANSIESTA Hamiltonian matrices of the BDT+planar systems in equilibrium
and in non-equilibrium to TCSO

π Hamiltonian matrices using the procedure from Sec. 3.2.2.3. To
determine the influence of the bias voltage on the model parameters we calculate the difference
of the model Hamiltonian matrices. The difference of the model Hamiltonian matrices of the
meta-BDT+planar system with a bias voltage of 3 eV and in equilibrium gives

∆HMeta=HNEQ
Meta−HEQ

Meta=



1.11 0.01 0.00 0.00 −0.00 0.00 0.00 0.00

0.01 0.30 0.00 −0.00 −0.00 −0.01 −0.01 −0.00

0.00 0.00 −0.15 −0.00 0.01 0.00 −0.01 −0.00

0.00 −0.00 −0.00 −0.59 0.00 0.00 0.00 −0.01

−0.00 −0.00 0.01 0.00 −0.40 0.00 −0.00 −0.00

0.00 −0.01 0.00 0.00 0.00 −0.15 −0.01 −0.00

0.00 −0.01 −0.01 0.00 −0.00 −0.01 0.11 0.00

0.00 −0.00 −0.00 −0.01 −0.00 −0.00 0.00 −1.37



.

(4.31)

Eq. (4.31) shows that the bias voltage influences the onsite energy considerably, while the in-
fluence of the bias voltage on the hopping parameters is small in comparison. By calculating
the influence of the bias voltage on the model parameters of the para-BDT+planar system we
get the same result: the onsite energies are strongly influenced by the bias voltage, while the
influence on the hopping parameters is small in comparison.

4.5.2 GAOS

By taking advantage of the results from Sec. 4.5.1 we are able to use the GAOS also in non-
equilibrium. We restrict ourselves once again to a Hückel model and a benzene molecule. We
consider the bias voltage in the Hückel Hamiltonian by shifting the onsite energies of the benzene
ring according to Eq. (2.132), where we take the shift of the onsite energies from Eq. (4.31).
Before applying the GAOS to the systems in non-equilibrium we rewrite the onsite energy and
the energy shift to serve our purpose better. We know from Sec. 4.4.3 that the onsite energies
are shifted effectively towards lower energies. We split the energy shifts of the carbon atoms into
a contribution containing the effective shift and a contribution containing the remaining shift
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εUB
j = εUB=0V

j + ∆εj = εUB=0V
j −∆εshift︸ ︷︷ ︸

ε′j

+∆ε′j , (4.32)

where εUB
j is the non-equilibrium onsite energy of the carbon atom at site j. εUB=0

j and ∆εj are
the onsite energy in equilibrium and the energy shift due to the bias voltage of the carbon atom
at site j. ∆εShift and ∆ε′j are the effective shift resulting from the asymmetry of the system and
the energy shift arising from the bias voltage reduced by the effective shift, respectively.

Using the GAOS we analyze the occurrence of DQI in meta-benzene in non-equilibrium. We
take the energy shift ∆εj of each carbon atom of meta-benzene for a bias voltage of 3 V to be
the ones from Eq. (4.31) and set ∆εshift = 0.15. Tab. 4.6 contains the resulting energy shifts
∆ε′j. Fig. 4.22 shows the labeling of the carbon sites we use in Tab. 4.6.

Tab. 4.6. Energy shift of the carbon atoms of
the meta-BDT+planar system (UB = 3 V). The
effective energy shift of the benzene ring has
been subtracted (see main text). The carbon
sites are labeled according to Fig. 4.22

j ∆ε′j / eV

1 0.45

2 0.00

3 -0.44

4 -0.25

5 0.00

6 0.26

Fig. 4.22. Labeling of the carbon atoms in
Tab. 4.6. The stars indicate the sites coupled
to the electrodes

Due to the symmetry of the benzene molecule the energy shifts are given as ∆ε′1 ≈ −∆ε′3 and
∆ε′4 ≈ −∆ε′6 as we see in Tab. 4.6. To simplify the calculation we assume equality of these
pairs. Now we assume a Hückel model and we set the onsite energy to be ε′j = εC − 0.15. By
doing so we can use Eq. (2.150), which becomes

M13(E) = (−1)0t2C(E − εC + 0.15)(E − εC + 0.15 + ∆ε)(E − εC + 0.15−∆ε)

+ (−1)1t4C(E − εC + 0.15 + ∆ε) + (−1)1t4C(E − εC + 0.15−∆ε) (4.33)

+ (−1)0t4C(E − εC + 0.15) ,

where ∆ε = ∆ε4 = −∆ε6. This equation becomes zero for E = εC − 0.15

M13(εC − 0.15) = (−1)1t4∆ε+ (−1)1t4 (−∆ε) = 0 . (4.34)

We see that within a Hückel model, where the bias voltage is considered by shifting the onsite
energy accordingly, the GAOS predicts DQI also in non-equilibrium. We also see that the
effective energy shift discussed in Sec. 4.4.3 results in DQI being shifted towards lower energies
within the GAOS.
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4.5.3 TCSO
π model

Now we calculate the transmission of the model systems taking advantage of the knowledge we
gained up to now. While the hopping parameters are also influenced by the bias voltage, we
know from Secs. 4.4.2 and 4.5.1 that the influence is small in comparison to the energy shift of
the onsite energies. Furthermore, it shows that the inclusion of the influence of the bias voltage
on the hopping parameter without also improving the description of the effective d orbitals does
not improve the agreement of the model results and first-principles results. Therefore we use
the same parameters for modeling the electrodes as in equilibrium, except for the onsite energy
of the effective d orbitals. We shift the onsite energy of the d orbitals according to

εUB
d,j = εUB=0V

d,j + ∆εd,j , (4.35)

where j ∈ {L,R}. We set εUB=0V
d,j = −4 (see Sec. 4.3.1) and take the energy shift ∆εd,j of the

effective d orbitals to have the same value as the energy shift of the gold atoms at the electrode
surfaces in Fig. 4.19. Tab. 4.7 contains the energy shifts of the d orbitals we use in the model
calculations.

Tab. 4.7. Energy shift ∆εd,j of the surface orbitals of the left (j = L) and right (j = R) electrode entering

the TCSO
π model.

(a) meta-BDT

UB / V ∆εd,L / eV ∆εd,R / eV

0 0.00 0.00

1 0.49 -0.49

3 1.44 -1.45

(b) para-BDT

UB / V ∆εd,L / eV ∆εd,R / eV

0 0.00 0.00

1 0.48 -0.48

3 1.38 -1.44

We reduce the TRANSIESTA Hamiltonian matrices of the BDT+planar systems to TCSO
π Hamil-

tonian matrices using the procedure from Sec. 3.2.2.3. The resulting Hamiltonian matrices
rounded off to the second decimal are given in appendix E. The results of the DFT calculations
and the model calculations agree better in the case of not rounding off the Hamiltonian matrices.
Therefore we do not round off the Hamiltonian matrices in the following calculations. Fig. 4.23
shows the transmission curves of the model systems. The energies at which DQI occurs are
summarized in Tab. 4.8. By comparing Figs. 4.16 and 4.23 we see that the simple TCSO

π model
reproduces the trends of the first-principles calculations. The model shows that the effective
energy shift of the benzene rings we observe in Fig. 4.19 results in the DQI shifting towards
lower energies.

We see in Tab. 4.8 that the DQI is shifted towards lower energies in the same way the onsite
energies of the carbon atoms are. Using the results of Tab. 4.8 we calculate by how many eV
the DQI of the meta-BDT+planar system in non-equilibrium is shifted relative to the DQI of
this system in equilibrium. We compare in Tab. 4.9 the shift of the DQI in the TCSO

π model to
the effective energy shifts of the benzene ring from Sec. 4.4.3. We see that the shift of the DQI
is in good agreement with the effective shift of the benzene ring.
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Fig. 4.23. Transmission of meta-BDT (left) and para-BDT (right) for an energy resolution of ∆E =
0.005. The simple TCSO

π model reproduces the trends we observe in Fig. 4.16. The model also shows
that, due to the effective energy shift of the benzene rings we observe in Fig. 4.19, DQI is shifted towards
lower energies.

Tab. 4.8. Energies at which DQI occurs in Fig. 4.23 (inlay plot).

UB / V E − EF / eV

0 -0.535

1 -0.550

3 -0.680

Tab. 4.9. Comparison of the shift of the DQI and the average energy shift of the benzene ring ∆εeff. We
take ∆εeff to be the change of the onsite energies of the carbon atoms of the meta-BDT+planar system
at sites 2 and 5 with respect to the bias voltage. The energy at which DQI occurs is shifted by about the
same amount the onsite energies of the benzene ring are effectively shifted.

UB / V E − EF + 0.535 / eV ∆εeff / eV

0 -0.000 -0.000

1 -0.015 -0.011

3 -0.145 -0.151



Chapter 5

Conclusion

In this work we studied destructive quantum interference (DQI) upon benzenedithiolate us-
ing a density functional theory and non-equilibrium Green’s function (DFT+NEGF) approach.
We contacted benzene-1,3-dithiolate (meta-BDT) and benzene-1,4-dithiolate (para-BDT) to
Au(111) electrodes to study, how contacting different sites of a benzene ring influences the
transmission of the transport systems. We contacted meta-BDT and para-BDT to planar and
to pointed electrodes to study also the impact of the electrode shape on the transmission.

Firstly, we studied in Sec. 4.1 benzene and benzenedithiolate within a simple Hückel model with
parameters taken from literature. In Sec. 4.1.1 we studied the pristine molecules. We broadened
the energy levels of the molecules artificially to study the impact of level broadening at sites
other than the ones coupled to the electrodes, e.g. due to the molecule lying on a substrate.
Exact DQI is no longer observable, while in the case of meta-BDT DQI also appears to have
shifted to higher energies. We studied benzene and BDT being contacted to electrodes modeled
in the wide-band limit in Sec. 4.1.2. By contacting benzene at meta-position states are induced
around the Fermi energy at various carbon sites but not at the carbon sites contacted to the
electrodes. Likewise meta-BDT has no states around the Fermi energy at the carbon sites
contacted to the sulfur atoms. Contacting benzene at para-position and para-BDT induced
states around the Fermi energy at every carbon site. We observe that DQI in meta-benzene and
meta-BDT is accompanied by the absence of states around the Fermi energy at sites contacted
to the electrodes and the sulfur atoms, respectively.

We calculated in Sec. 4.2 the transmission and the PDOS of the different systems in equilibrium
using a DFT+NEGF approach. In Sec. 4.2.1 we relaxed the geometry of the systems. We
observed in Sec. 4.2.2, that the transmission of meta-BDT around the Fermi energy is lower
than the transmission of the para-BDT, but the transmisson of meta-BDT neither vanishes
nor has its minimum at the Fermi energy. We also found that the transmission in the case of
meta-BDT being contacted to planar electrodes is about 5 times the transmission of it being
contacted to pointed electrodes. In Sec. 4.2.2.1 we split the transmission into contributions
from a p-channel and a r -channel, where the former channel is supposed to display DQI while
the latter is not. The p-channel contains the basis functions of the TRANSIESTA calculations
describing the pz orbitals of the carbon and sulfur atoms, and the r -channel contains the basis
functions describing the remaining orbitals of the BDT molecule. In the case of planar electrodes
the transport of the meta-BDT is dominated by the r -channel, while the transport of para-BDT
is dominated by the p-channel. We observed that the transmission of the p-channel of the
meta-BDT contacted to planar electrodes has a small but finite transmission around the Fermi
energy.
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In Sec. 4.3 we mapped the first-principles calculations of the meta-BDT and para-BDT contacted
to planar electrodes onto various models with different degrees of approximation. In Sec. 4.3.1
we showed that the planar electrodes can be modeled in terms of simple analytic functions,
while the PDOS of the pointed electrodes displays too much structure for doing so. In Sec. 4.3.2
we observed that part of the transmission of the p-channel arises from the electrodes coupling
not just to the sulfur atoms but to further atoms of the BDT molecule. Therefore exact DQI
is only observable in the case that one considers only the p-channel and enforces the electrodes
to couple only to the sulfur atoms. We saw that the π-electron approximation, within which
only electrons in the pz orbitals of the carbon and sulfur atoms are treated explicitly and the
remaining electrons of the BDT solely as an contribution to the potential, is a reasonably good
approximation in the case of para-BDT contacted to planar electrodes. In the case of meta-BDT
contacted to planar electrodes, DQI is predicted at slightly lower energies within the π-electron
approximation and thereby changes the transmission of several transmission peaks considerably.
We also observed in Sec. 4.3.3 that by further simplifying the model to a Hückel one, DQI is
predicted at slightly higher energies, resulting in a quite good prediction of the energy at which
DQI is observed. The Hückel model shows once more that by coupling the electrodes only to the
sulfur atoms we do not fully support the p-channel. Aside from the unsupported contributions
of the p-channel, the results of the Hückel model and the first-principles calculations are in good
agreement.

Finally, in Sec. 4.4 we drove the four systems out of equilibrium by applying various bias volt-
ages to the transport systems. In Sec. 4.4.1 we saw that the influence of the bias voltage on the
transmission of the systems depends considerably on the PDOS of the electrodes. The trans-
mission of each system changes considerably in the energy range, in which the PDOS of the
electrodes is strongly energy-dependent. We also observed that the energy shift of the carbon
atoms induced by the bias voltage corresponds to a fraction of this bias voltage indicating that
part of the voltage drop occurs at the electrodes. Therefore we studied the influence of the bias
voltage on the Hamiltonian matrices of the systems in Sec. 4.4.2. The bias voltage changes the
diagonal elements of the Hamiltonian matrices considerably, while the off-diagonal terms are
less influenced. We calculated the energy shift of the onsite energies in Sec. 4.4.3 and observed,
that only part of the bias voltage drops at the benzene ring. On average the benzene rings
are shifted towards lower energies, especially when contacted to pointed electrodes, which is a
consequence of the systems not being perfectly symmetric. In Sec. 4.4.4 we studied the behavior
of the PDOS of the benzene rings in non-equilibrium in more detail. Except for para-BDT
being contacted to pointed electrodes, the PDOS of the systems are in qualitative agreement
with the PDOS from the Hückel model in Sec. 4.1.2. Also in non-equilibrium, the benzene rings
of the meta-BDT molecules have close to no states around the Fermi energy at the carbon sites
next to the sulfur atoms, while para-BDT has a large number of states at this sites around the
Fermi energy. In Sec. 4.4.5 we dealt with the current-voltage characteristics of the systems. The
current across the para-BDT molecule is higher than across the meta-BDT molecule. In the
case of planar electrodes the current ratio IMeta

IPara
is larger than in the case of pointed electrodes.

In Sec. 4.4.5 we also saw that meta-BDT contacted to pointed electrodes displays a negative
differential conductivity.

In Sec. 4.5 we mapped the first-principles calculations in non-equilibrium onto the same models
as we did in equilibrium. In Sec. 4.5.1 we analyzed to which extent the bias voltage changes
the model parameters. Like in the first-principles calculations, the influence on the off-diagonal
elements is small compared to the influence on the diagonal elements. By considering the energy
shifts from Sec. 4.5.1 we showed in Sec. 4.5.2, that DQI is also predicted in non-equilibrium, with
DQI being shifted towards lower energies by the same amount the benzene ring is effectively
shifted towards lower energies.



Appendix A

Degrees of approximations within the
different models

Tight Coupling (TC)

We split the central region of the transport systems into the clusters CL, BDT and CR as we
have discussed in Sec. 3.2.2.1. We enforce “tight coupling” by setting all elements of the coupling
matrices Vj,BDT and VBDT,j with j ∈ {CL,CR} to zero, which do not correspond to hopping
processes between the electrodes and the nearest-neighbor sulfur atoms. Similarly, we set all
elements of the overlap matrices sj,BDT and sBDT,j to zero, which do not correspond to overlap
elements of the electrodes and nearest-neighbor sulfur atoms. We label the resulting coupling
and overlap matrices with the superscript TC. We calculate the matrix Green’s function and
the transmission of the TC model from

GTC(E) =
[
ESBDT −HBDT −ΣTC

CL
−ΣTC

CR

]−1
(A.1)

TTC(E) = Tr
(

(GTC)†ΓCR
TCGTCΓCL

TC

)
(A.2)

with

Γj
TC = i

(
ΣTC

j −
(
ΣTC

j

)†)
= i
(
VTC

BDT,jGjV
TC
j,BDT −

(
VTC

BDT,jGjV
TC
j,BDT

)†)
, (A.3)

where we used the notation (2.102). Gj is the matrix Green’s function (3.3).

Tight Coupling + π-electron approximation (TCπ)

The d orbitals (polarization orbitals) of the BDT are several eV higher in energy than the
pz orbitals and therefore we expect the contribution from these d orbitals to be negligible.
Additionally, the pz orbitals of the BDT can be treated decoupled from the s, px and py orbitals
according to the π-electron approximation [15]. Therefore we set entries of the Hamiltonian
matrix HBDT and of the overlap matrix SBDT as well as of the hybridization matrices ΣTC

j ,
corresponding to hopping between pz orbitals and other orbitals to zero. We label the resulting
Hamiltonian matrix, overlap matrix and hybridization matrices as HTCπ , STCπ and ΣTCπ

j ,
respectively. We calculate the matrix Green’s function and transmission of the TCπ model from

GTCπ(E) =
[
ESTCπ −HTCπ −ΣTCπ

CL
−ΣTCπ

CR

]−1
(A.4)
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TTCπ(E) = Tr
(

(GTCπ)†ΓCR
TCπ

GTCπΓ
CL
TCπ

)
, (A.5)

where the level-width functions Γj
TCπ

are calculated from the hybridization matrices ΣTCπ
j .

Tight Coupling + π-electron approximation + effective single orbital (TCSO
π )

We reduce the Hamiltonian matrices and overlap matrices from the first-principles calculations
using the procedure discussed in Sec. 3.2.2.3. We label the matrices resulting from this procedure
as HTCSO

π
and STCSO

π
. We calculate the matrix Green’s function and transmission of the TCSO

π

model from

G̃TCSO
π

(E) =
[
EI− H̃TCSO

π
− Σ̃

TCSO
π

CL
− Σ̃

TCSO
π

CR

]−1
(A.6)

TTCSO
π (E) = Tr

(
(G̃TCSO

π
)†Γ̃CR

TCSO
π

G̃TCSO
π

Γ̃CL

TCSO
π

)
, (A.7)

where the tilde denotes the orthonormality of the basis functions. The entries of the hybridization
matrices are described by Eq. (3.10). We calculate the level-width functions from

Γ̃j

TCSO
π

= i

(
Σ̃

TCSO
π

j −
(
Σ̃

TCSO
π

j

)†)
. (A.8)

Tight-binding (TB)

We reduce the Hamiltonian matrix H̃TCSO
π

to a tight-binding one by setting all hopping elements

of H̃TCSO
π

to zero, which do not correspond to nearest-neighboring ones. We calculate the matrix
Green’s function and transmission of the TB model from

G̃TB(E) =
[
EI− H̃TB − Σ̃

TCSO
π

CL
− Σ̃

TCSO
π

CR

]−1
(A.9)

TTB(E) = Tr
(

(G̃TB)†Γ̃CR

TCSO
π

G̃TBΓ̃CL

TCSO
π

)
. (A.10)

Hückel

We describe only the benzene ring of the BDT by a Hückel model (see Eq. (4.1)). We reduce
the number of parameters from the TB Hamiltonian matrix to a total of four: the average of
the onsite energies of the sulfur atoms εS, the average of the onsite energies of the carbon atoms
εC, the average of the hopping elements describing hopping between nearest-neighboring carbon
atoms tC and the hopping elements describing hopping between nearest-neighboring carbon and
sulfur atoms tSC. We calculate the matrix Green’s function and transmission of the Hückel
model from

G̃Hückel(E) =
[
EI− H̃Hückel − Σ̃

TCSO
π

CL
− Σ̃

TCSO
π

CR

]−1
(A.11)

THückel(E) = Tr
(

(G̃Hückel)
†Γ̃CR

TCSO
π

G̃HückelΓ̃
CL

TCSO
π

)
. (A.12)
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Hückel parameters taken from literature

We take the onsite energies, the radii of the atoms and also the formula to calculate the inter-
atomic matrix elements (hopping parameters) from Ref. [30]. Tab. B.1 summarizes the parame-
ters taken from Ref. [30]. The energies of the orbitals can be taken directly as the corresponding
onsite energies. The hopping terms are calculated by

Vll′m = ηll′m
~2

med2
= ηll′m

7.62

d2
, (B.1)

where ηll′m is a fitting parameter. me is the electron mass and d is the distance between the
two atoms involved. For calculating the hopping parameter tSC we assume that the radius of
the carbon atom bound to the sulfur is dC

2 .

Tab. B.1. Parameters taken from literature.
The energies are in units of eV and the radii in units of Å

Parameter value additional info

εC -8.97 energy of the p orbitals of carbon

εS -10.27 energy of the p orbitals of sulfur

dC 1.54 length of the covalent C-C bond (no ionic radius provided)

rS 1.90 radius of ionic sulfur

ηppπ -0.81 fitting parameter for two p orbitals forming a π bond

tSC -0.87 calculated using above formula

tC -2.60 calculated using above formula

We won’t take the onsite energies of the orbitals as shown in Tab. B.1 but set the onsite energy
of the carbon atoms to be at 0 eV. We do so in the following way

H #»c = ES #»c
/
− εCS #»c . (B.2)
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We will use these parameters within the Hückel model, which assumes an orthonormal basis.
Therefore we get

(H− εCI)︸ ︷︷ ︸
H′

#»c = (E − εC)︸ ︷︷ ︸
E′

#»c . (B.3)

The parameters of the primed Hamiltonian matrix are now

ε′C = 0 eV

ε′S = −1.30 eV

t′C = −0.87 eV

t′SC = −2.60 eV ,

where we omit the prime in the main text to shorten the notation.



Appendix C

List of DFT parameters

Tab. C.1 lists the parameters, which we use in the first-principles calculations throughout this
thesis. We take the pseudopotentials from Ref. [29], where a similar system to the one in Fig. 1.3c
was calculated with an 3×3 gold atoms wide electrode and a lattice constant of 4.18 Å. We choose
the electronic temperature to be 25 meV. We limit the basis size of the calculations in this thesis
to DZP. A thorough analysis of the band structure of a gold bulk shows that the choice of a SZP
or DZP basis describing the gold atoms does influence the results only marginally. Therefore we
describe gold atoms not part of the tips by a SZP basis. We converge the number of k-points in
the direction perpendicular to the transport direction with respect to the transmission. It shows
that the trend of the transmission converges pretty fast, but convergence needs a considerably
larger number of k-points. Therefore we consider a 4×4 k-grid to be converged. We converged the
parameter MeshCutoff using the energy difference of the total energy and the Fermi energy from
the SIESTA calculations as convergence criterion. For the remaining parameters the convergence
criterion was the transmission. For further information on the parameters listed below we refer
the reader to the SIESTA and TBTRANS manuals.

Tab. C.1. Parameter settings in the DFT calculations

Option / Parameter Value additional information

BasisSize DZP for BDT and gold tips

ElectronicTemperature 25 in units of meV (≈ 290 K)

k-points 4× 4× 1 used in the TRANSIESTA calculations

k-points 4× 4× 20 used in the electrode calculations

MeshCutoff 550 in units of Rydberg

EnergyShift 0.01 in units of Rydberg

SplitNorm 0.40 fraction of norm carried by 2nd basis function of an orbital

MD.MaxForceTol 0.04 in units of eV
Å

circle part of the contour 75 number of contour points

tail part of the contour 17 number of contour points

TS.Contours.Eq.Pole 5.5 in eV, imaginary part of tail part at the Fermi energy

Emin -40 in eV, lower limit of circle part of the contour
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Appendix D

Transmission through different transport
channels

We split up the Hamiltonian matrix of the central region according to Sec. 3.2.2.1. We are
interested in the transmission of the pz orbitals of the carbon and sulfur atoms. Therefore we
further split up the Hamiltonian matrix HBDT in Eq. (3.1)

HC =


HCL

VCL,BDT 0

VBDT,CL
HBDT VBDT,CR

0 VCR,BDT HCR

 =


HCL

VCL,p VCL,r 0

Vp,CL
Hp Vpr Vp,CR

Vr,CL
Vrp Hr Vr,CR

0 VCR,p VCR,r HCR

 , (D.1)

where the gray areas mark the same submatrices. Hp is the Hamiltonian matrix of the p-channel,
while Hr is the Hamiltonian matrix of the r -channel. We split up the overlap matrix SC in the
exact same way.

We treat the clusters CL and CR as discussed in Sec. 3.2.2.1. We use the notation (2.102) and
calculate the hybridization matrices of Eq. (D.1) according to Eqs (2.56) and (2.57)

Σj =

 VpjGjVjp VpjGjVjr

VrjGjVjp VrjGjVjr

 =

 Σpp
j Σpr

j

Σrp
j Σrr

j

 (D.2)

with j ∈ {CL,CR}. We calculate the matrix Green’s function GBDT from

GBDT =
[
E+SBDT −HBDT −ΣCL

−ΣCR

]−1
, (D.3)

where GBDT has now the form

GBDT =

 Gp Gpr

Grp Gr

 . (D.4)
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We calculate the level-width functions from Eq. (D.2) and split them up into

Γj = i
(
Σj −Σ†j

)
=

 Γpp
j 0

0 0


︸ ︷︷ ︸

Γp
j

+

 0 0

0 Γrr
j


︸ ︷︷ ︸

Γr
j

+

 0 Γpr
j

Γrp
j 0


︸ ︷︷ ︸

Γint
j

. (D.5)

Now we calculate the transmission using Eq. (D.5) and get

T(E) = Tr
((

GBDT
)†

ΓCR
GBDTΓCL

)
= Tr

((
GBDT

)†
Γp

CR
GBDTΓp

CL
+
(
GBDT

)†
Γp

CR
GBDTΓr

CL
+
(
GBDT

)†
Γp

CR
GBDTΓint

CL

+
(
GBDT

)†
Γr

CR
GBDTΓp

CL
+
(
GBDT

)†
Γr

CR
GBDTΓr

CL
+
(
GBDT

)†
Γr

CR
GBDTΓint

CL

+
(
GBDT

)†
Γint

CR
GBDTΓp

CL
+
(
GBDT

)†
Γint

CR
GBDTΓr

CL
+
(
GBDT

)†
Γint

CR
GBDTΓint

CL

)
.

(D.6)

We take advantage of the following property of the trace

Tr (A + B) = Tr (A) + Tr (B) (D.7)

and rewrite the transmission

T(E) = Tr
((

GBDT
)†

Γp
CR

GBDTΓp
CL

)
+ Tr

((
GBDT

)†
Γr

CR
GBDTΓr

CL

)
+ Tr

((
GBDT

)†
Γp

CR
GBDTΓr

CL
+
(
GBDT

)†
Γp

CR
GBDTΓint

CL
+
(
GBDT

)†
Γr

CR
GBDTΓp

CL

+
(
GBDT

)†
Γr

CR
GBDTΓint

CL
+
(
GBDT

)†
Γint

CR
GBDTΓp

CL
+
(
GBDT

)†
Γint

CR
GBDTΓr

CL

+
(
GBDT

)†
Γint

CR
GBDTΓint

CL

)
. (D.8)

We evaluate the first and second trace in Eq. (D.8) using Eq. (D.4) and get

Tr
((

GBDT
)†

Γp
CR

(
GBDT

)
Γp

CL

)
= Tr

(
G†pΓpp

CR
GpΓpp

CL

)
= Tp(E) (D.9)

Tr
((

GBDT
)†

Γr
CR

(
GBDT

)
Γr

CL

)
= Tr

(
G†rΓ

rr
CR

GrΓ
rr
CL

)
= Tr(E) , (D.10)

where we identify the first trace as the transmission across the pz orbitals of the carbon and
sulfur atoms and the second trace as the transmission across the remaining orbitals. Therefore
we write the transmission as

T(E) = Tp(E) + Tr(E) + Tint(E) , (D.11)

where Tint(E) is an interference term containing all the remaining terms from Eq. (D.8).



Appendix E

Model Hamiltonian matrices

We consider only the BDT+planar systems as discussed in Sec. 4.3.1. Below, we give the
Hamiltonian matrices we gained by applying the procedure described in Sec. 3.2.2.3 to the
Hamiltonian matrices resulting from the TRANSIESTA calculations. The blue highlighted parts
of the matrices describe the sulfur sites, the red highlighted parts describe the benzene ring, the
green highlighted parts describe the hopping of the electrons between the sulfur atoms and the
benzene ring, while the yellow highlighted parts describe the hopping of the electrons between
the sulfur atoms with one another. The order of the carbon atoms is chosen according to
Sec. 2.6.2 with the sulfur atoms being the nearest-neighbors of the starred carbon atoms.

Matrices of the meta-BDT

HUB=0V
Meta =



− 2.23 − 1.58 −0.04 0.06 0.02 −0.00 0.15 − 0.01

− 1.58 − 0.26 −2.54 0.09 −0.26 0.27 −2.23 0.06

−0.04 −2.54 0.26 −2.59 0.31 −0.15 0.33 −0.03

0.06 0.09 −2.59 −0.20 −2.25 0.30 −0.25 −1.59

0.02 −0.26 0.31 −2.25 0.16 −2.60 0.15 0.16

−0.00 0.27 −0.15 0.30 −2.60 0.42 −2.65 −0.01

0.15 −2.23 0.33 −0.25 0.15 −2.65 0.17 0.02

− 0.01 0.06 −0.03 −1.59 0.16 −0.01 0.02 − 2.21



(E.1)

HUB=1V
Meta =



− 1.83 − 1.58 −0.04 0.06 0.02 −0.00 0.16 − 0.01

− 1.58 − 0.13 −2.54 0.09 −0.26 0.27 −2.23 0.06

−0.04 −2.54 0.25 −2.59 0.31 −0.15 0.32 −0.03

0.06 0.09 −2.59 −0.35 −2.25 0.30 −0.25 −1.59

0.02 −0.26 0.31 −2.25 0.06 −2.60 0.15 0.16

−0.00 0.27 −0.15 0.30 −2.60 0.41 −2.65 −0.01

0.16 −2.23 0.32 −0.25 0.15 −2.65 0.25 0.02

− 0.01 0.06 −0.03 −1.59 0.16 −0.01 0.02 − 2.64



(E.2)
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HUB=3V
Meta =



− 1.12 − 1.57 −0.03 0.06 0.02 −0.00 0.16 − 0.01

− 1.57 0.04 −2.54 0.09 −0.26 0.27 −2.23 0.06

−0.03 −2.54 0.10 −2.59 0.31 −0.15 0.32 −0.03

0.06 0.09 −2.59 −0.78 −2.25 0.30 −0.24 −1.59

0.02 −0.26 0.31 −2.25 −0.24 −2.60 0.15 0.15

−0.00 0.27 −0.15 0.30 −2.60 0.27 −2.65 −0.01

0.16 −2.23 0.32 −0.24 0.15 −2.65 0.28 0.02

− 0.01 0.06 −0.03 −1.59 0.15 −0.01 0.02 − 3.58



(E.3)

Matrices of the para-BDT

HUB=0V
Para =



− 3.05 − 1.80 0.03 0.04 0.04 0.03 0.07 − 0.01

− 1.80 − 0.40 −2.54 0.19 −0.32 0.19 −2.54 0.04

0.03 −2.54 0.13 −2.87 0.19 −0.20 0.36 0.04

0.04 0.19 −2.87 0.14 −2.54 0.36 −0.20 0.02

0.04 −0.32 0.19 −2.54 −0.39 −2.54 0.19 −1.80

0.03 0.19 −0.20 0.36 −2.54 0.13 −2.85 0.08

0.07 −2.54 0.36 −0.20 0.19 −2.85 0.12 0.03

− 0.01 0.04 0.04 0.02 −1.80 0.08 0.03 − 3.02



(E.4)

HUB=1V
Para =



− 2.70 − 1.79 0.03 0.04 0.04 0.03 0.07 − 0.01

− 1.79 − 0.30 −2.54 0.19 −0.32 0.19 −2.54 0.04

0.03 −2.54 0.18 −2.87 0.19 −0.20 0.36 0.04

0.04 0.19 −2.87 0.06 −2.54 0.36 −0.20 0.02

0.04 −0.32 0.19 −2.54 −0.53 −2.54 0.19 −1.80

0.03 0.19 −0.20 0.36 −2.54 0.05 −2.85 0.08

0.07 −2.54 0.36 −0.20 0.19 −2.85 0.17 0.03

− 0.01 0.04 0.04 0.02 −1.80 0.08 0.03 − 3.42



(E.5)

HUB=3V
Para =



− 2.12 − 1.79 0.04 0.04 0.04 0.03 0.07 − 0.01

− 1.79 − 0.09 −2.54 0.19 −0.32 0.19 −2.54 0.04

0.04 −2.54 0.28 −2.87 0.19 −0.20 0.35 0.04

0.04 0.19 −2.87 −0.08 −2.53 0.37 −0.20 0.02

0.04 −0.32 0.19 −2.53 −0.78 −2.54 0.19 −1.81

0.03 0.19 −0.20 0.37 −2.54 −0.08 −2.85 0.07

0.07 −2.54 0.35 −0.20 0.19 −2.85 0.28 0.03

− 0.01 0.04 0.04 0.02 −1.81 0.07 0.03 − 4.19



(E.6)
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