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Abstract

This thesis deals with drawings of graphs in the plane, both from a structural and an algorithmic
point of view. We focus on non-planar graphs and different common restrictions on the drawings.
The first part of the thesis considers straight-line drawings. For these drawings, we study
a variant of the crossing number problem in which the edges of the drawing are 2-colored
and only crossings between edges of the same color are counted. We denote this variant the
2-colored crossing number. For the complete graph Kn we obtain asymptotic upper and lower
bounds on the 2-colored crossing number by showing that they can be derived from optimal
and near-optimal instances with few vertices. Moreover, for any fixed straight-line drawing of
Kn, we improve the upper bound on the ratio between the same-color crossings in the best
2-coloring of the edges and the total number of crossings in the drawing.

In a straight-line drawing of a graph, the placement of the vertices in the plane determines the
drawing. Thus, we extend our study to point sets in the plane and combinatorial properties
of them. Order types are equivalence classes of point sets relevant for many combinatorial
problems. We investigate straight-line drawings with few edges that unequivocally display the
order type of the point set they are drawn on. For that, we introduce the concept of exit edges,
which prevent the order type from changing under continuous motion of vertices. Exit edges
have a natural dual characterization, which allows us to efficiently compute them and to bound
their number.

Problems for which order types are relevant include Erdős-Szekeres-type questions. In this thesis
we study the variant on the number h5(n) of empty convex pentagons in any set of n points in
general position in the plane. Despite many efforts made in the last 30 years, the best upper
bound was quadratic while the best lower bound was linear. We show that h5(n) = Ω(n log4/5 n),
thus proving that there is always a superlinear number of empty convex pentagons.

In the second part of this thesis we focus on (not necessarily straight-line) drawings of graphs
in the plane with restrictions on how the edges can cross. We first consider simple drawings,
in which two edges can share at most one point, either a common endpoint or a crossing
point. Given a simple drawing of a graph, we prove that, surprisingly, deciding if an edge of
the complement graph can be inserted into the drawing such that the result is still a simple
drawing is NP-hard. We also study the computational complexity of inserting edges of the
complement graph into a particular class of simple drawings, namely 1-plane drawings. For
simple drawings of the complete bipartite graph Km,n, we prove the existence of plane spanning
trees as subdrawings, shedding light on one of the basic aspects of these drawings.

Finally, we consider semi-simple drawings, in which two incident edges cannot cross, but two
independent edges can cross multiple times. We study the question on deciding whether a given
rotation system can be realized in a semi-simple drawing and show that, in contrast to the case
of simple drawings, it is not enough to check the sub-rotation systems of five vertices. This
contrast between simple and semi-simple drawings is also demonstrated for other questions.
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Kurzfassung

In dieser Dissertation beschäftigen wir uns mit Zeichnungen von Graphen in der Ebene. Dabei
werden sowohl strukturelle, als auch algorithmische Gesichtspunkte betrachtet. Der Schwerpunkt
der Arbeit liegt dabei auf nicht-planaren Graphen und verschiedenen, in der Literatur üblichen,
Klassen von Zeichnungen.

Im ersten Teil dieser Arbeit werden geradlinige Zeichnungen betrachtet. Wir untersuchen
eine Variante des Kreuzungszahlen-Problems geradliniger Zeichnungen, bei der die Kanten
zweigefärbt sind und nur Kreuzungen zwischen Kanten gleicher Farbe für die Kreuzungszahl
berücksichtigt werden. Wir bezeichnen diese Variante als die 2-gefärbte Kreuzungszahl. Für
den vollständigen Graphen Kn erhalten wir asymptotische obere und untere Schranken für die
2-gefärbte Kreuzungszahl, indem wir zeigen, dass diese von optimalen und nahezu optimalen
Instanzen mit wenigen Knoten abgeleitet werden können. Weiters betrachten wir das Verhältnis
zwischen der 2-gefärbten Kreuzungszahl und der Gesamtanzahl an Kreuzungen für beliebige
geradlinige Zeichnungen und zeigen eine verbesserte obere Schranke für dieses Verhältnis.

Im Falle geradliniger Zeichnungen eines Graphen bestimmt die Platzierung der Knoten in der
Ebene die gesamte Zeichnung. Daher untersuchen wir Punktmengen in der Ebene und ihre
kombinatorischen Eigenschaften. Ordnungstypen sind Äquivalenzklassen von Punktmengen, die
für viele kombinatorische Probleme relevant sind. Wir untersuchen geradlinige Zeichnungen mit
wenigen Kanten, die den Ordnungstypus ihrer Knotenmenge eindeutig darstellen. Dafür führen
wir das Konzept von sogenannten Exitkanten ein. Diese verhindern eine Veränderung des Ord-
nungstypus unter stetiger Bewegung. Exitkanten haben eine natürliche duale Charakterisierung,
die es uns erlaubt, die Exitkanten effizient zu berechnen und ihre Anzahl zu beschränken.

Zu den Problemen, für die Ordnungstypen relevant sind, gehört auch die Klasse der Erdős-
Szekeres-Probleme über die Existenz und Anzahl von Vielecken in Punktmengen. In dieser
Arbeit behandeln wir die Anzahl h5(n) von leeren, konvexen Fünfecken in einer beliebigen
Menge von n Punkten in allgemeiner Lage in der Ebene. Trotz vieler Bemühungen in den
letzten 30 Jahren war die beste bekannte obere Schranke quadratisch und die beste untere
Schranke linear. Wir zeigen, dass h5(n) = Ω(n log4/5 n) und beweisen damit, dass es immer
eine superlineare Anzahl an leeren, konvexen Fünfecken gibt.

Im zweiten Teil dieser Arbeit konzentrieren wir uns auf allgemeine (nicht zwingend geradlinige)
Zeichnungen von Graphen in der Ebene, in denen es Beschränkungen gibt, inwiefern ihre
Kanten sich kreuzen dürfen. Wir betrachten zunächst simple Zeichnungen, in denen zwei
Kanten maximal einen Punkt gemeinsam haben. Dies kann ein gemeinsamer Endpunkt oder ein
Kreuzungspunkt sein. Wir zeigen, dass es in einer gegebenen simplen Zeichnung eines Graphen
NP-schwer ist zu entscheiden, ob der Zeichnung eine Kante des vollständigen Graphen so
hinzugefügt werden kann, dass das Resultat immer noch eine simple Zeichnung ist. Für spezielle
Klassen von simplen Zeichnungen, nämlich 1-planare Zeichnungen, untersuchen wir ebenso die
algorithmische Komplexität des Hinzufügens von Kanten des Komplementgraphen. Für simple
Zeichnungen des vollständigen, bipartiten Graphen zeigen wir die Existenz kreuzungsfreier
Spannbäume als Teilzeichnungen und gewinnen so mehr Einsicht in die grundlegende Struktur
dieser Zeichnungen.
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Schließlich behandeln wir sogenannte semisimple Zeichnungen. Das sind Zeichnungen, in denen
sich zwei inzidente Kanten nicht kreuzen dürfen, während zwei unabhängige Kanten sich auch
mehrfach kreuzen können. Dabei gehen wir der Frage nach, ob ein gegebenes Rotationssystem
als semisimple Zeichnung realisiert werden kann und zeigen, dass es, anders als bei simplen
Zeichnungen, nicht hinreichend ist, die Teilrotationssysteme von fünf Knoten zu überprüfen.
Dieser Unterschied zwischen simplen und semisimplen Zeichnungen wird auch für weitere Fragen
demonstriert.

viii



Acknowledgements

I want to start by thanking my advisor Oswin Aichholzer for his continuous support during
my PhD studies. I am especially grateful for him being always approachable and for the many
discussions and conversations from which I learned a lot. Research with Oswin during these
years was always not just productive, but also fun.

This gratitude also extends to the other past and present members of the computational
geometry group in Graz. Very especially, I want to thank Birgit Vogtenhuber for being a
wonderful tutor during my PhD. Her support, insightful advice, and the abundant discussions
with her on both scientific and non-scientific topics made a big difference in my PhD and beyond.
I would also like to thank all the members of the Doctoral Program “Discrete Mathematics”,
who made my PhD and my time in Graz a much better experience.

If Oswin Aichholzer is my academic father, Vera Sacristán is my academic mother. She introduced
me to the field of computational geometry and to its amazing community of researchers. I am
very grateful for that and for her honest advice and support during all these years. It is always
a pleasure to work with Vera and to learn from and with her.

During my studies I had the opportunity to work with many researchers of the discrete and
computational geometry community. Collaborating with them was an exciting and inspiring
experience that also broadened my understanding of the field. I particularly want to thank my
numerous co-authors for that. Not only did I meet wonderful researchers, but I also made good
friends. Moreover, I had the privilege to make several research visits. I want to thank my hosts
Ruy Fabila (with Carlos Hidalgo), Gelasio Salazar (with Carolina Medina), Jorge Urrutia, and
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1. Introduction

Questions on how a graph can be drawn constitute a central part of graph theory and discrete
and computational geometry. In particular, the study of how non-planar graphs can be drawn
in the plane while respecting certain properties is a highly active area of research. Probably the
oldest and most relevant open problem in that direction is the crossing number problem, which
asks for the minimum number of crossings that a drawing of a given graph can have.

During World War II, the mathematician Paul Turán was forced to work in a brick factory
pushing wagons from the kilns to the storage yards. In that situation, the crossings in the
rails were the main source of trouble. This inspired Turán to state the question of what is
the minimum number of crossings that the rails connecting every kiln with every storage yard
can possibly have [190]. The mathematical reformulation of this question asks for the crossing
number of the complete bipartite graph Km,n. In the 1950s, both Urbanik and Zarankiewicz
published a solution with a tight bound of Z(m,n) = bn2 cb

n−1
2 cb

m
2 cb

m−1
2 c crossings, attained

by a family of drawings like the one depicted in Figure 1.1(a). However, in 1965 and 1966
Kainen and Ringel, independently, found a flaw in the arguments. More on the early history of
the crossing number problem can be found in [111]. The conjecture that the crossing number
of Km,n is Z(m,n) is still open and nowadays known as Zarankiewicz’s conjecture. In 1971
Kleitman [129] proved the conjecture for drawings of K5,n. Since then, the main progress on
the lower bound for particular cases has relied on computer aid. In 1993 Woodall [200] showed
that the conjecture is true for drawings of Km,n with m ∈ {7, 8} and n ∈ {7, 8, 9, 10}. The
conjecture was tackled recently using flag algebras [43, 153] and the claimed result1 is that, for
a large enough value of n, Kn,n ≥ 0.973 · Z(n, n). This is an improvement over several previous
results [74, 73].

A similar open conjecture exists for the crossing number of the complete graph Kn. Harary–Hill
conjecture states that the crossing number of Kn is Z(n) = 1

4b
n
2 cb

n−1
2 cb

n−2
2 cb

n−3
2 c. Actually, as

for Zarankiewicz’s conjecture, there are drawings of Kn conjectured to be crossing-optimal [54,
113]. Among them, there are cylindrical drawings that can be drawn in the plane with the
vertices split between two concentric circles. Moreover, the edges between vertices on the inner
(outer) circle are drawn inside (outside) it, and the edges between vertices on different circles
are drawn in the region between the circles; see Figure 1.1(b). Harary–Hill conjecture has been
proven for n ≤ 12 [110, 164]. In the last years, the conjecture has also been proven for some
relevant classes of drawings of increasing generality, and thus containing previous classes, in a
series of papers [2, 3, 4, 5, 42, 149].

In crossing-optimal drawings two adjacent edges do not cross, and independent edges can cross
at most once. The drawings with these properties are known as simple drawings, and also

1Details have not been yet published.
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2 Chapter 1. Introduction

(a) Zarankiewicz’s drawing of K5,8

with 48 crossings.
(b) Cylindrical drawing of

K10 with 60 crossings.
(c) Optimal straight-line drawing

of K10 with 62 crossings.

Figure 1.1.: Examples of crossing-optimal drawings. The families of drawings represented in (a) and
(b) are conjectured to be crossing-optimal also in examples with more vertices.

denoted good drawings or simple topological graphs in the literature. Due to their connection
with Harary–Hill conjecture, simple drawings of the complete graph have received considerable
attention and several aspects of them have been studied [24, 38, 104, 164, 178]. In addition,
there is an efficient way of encoding all different weak isomorphism classes of simple drawings
of Kn, where two simple drawings are weakly isomorphic if the same pairs of edges cross. The
rotation of a vertex in a drawing is the (clockwise) cyclic order of all the edges incident to it.
The rotations of all the vertices of a drawing form its rotation system. Two simple drawings
of Kn have the same rotation system if and only if the same pairs of edges cross [104, 162].
This allows for all classes of simple drawings of Kn with n ≤ 9 to be enumerated [1]. Moreover,
it can be decided in polynomial time if a given set of rotations corresponds to the rotation
system of a simple drawing of Kn [137, 138]. In contrast, this realizability question is NP-hard
for general graphs. For general graphs, the crossing number problem is also NP-hard [102], even
when the rotation system is prescribed [169].

In the second part of this thesis we explore central aspects of simple drawings of general
graphs from an algorithmic perspective and of the complete bipartite graph from a structural
perspective. On the algorithmic side, we focus on the problem of extending a partial simple
drawing of a graph to a simple drawing of the full graph. In the last decade, questions on the
extendibility of partial drawings have been considered for several classes of graphs [33, 40,
57, 72, 123, 146, 167]. These questions fit in the broader context of extendibility of partial
representations of graphs, where these representations might not be drawings of a graph [64,
63, 65, 125, 128, 126, 127]. We also extend the algorithmic study on the extendibility of
simple drawings to 1-plane drawings. These drawings, considered for the first time by Ringel in
1965 [174], are simple drawings in which each edge participates in at most one crossing. We
also study semi-simple drawings of Kn, in which incident edges do not cross, but independent
edges are allowed to cross an arbitrary number of times.

A natural restricted version of (simple) drawings are straight-line drawings, also known as
geometric graphs. In this kind of drawings the edges are drawn as straight-line segments
connecting their two endpoints. Thus, the placement of the vertices in the plane entirely
determines the full drawing. The crossing number problem has also been studied in this setting,
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and it is known to be ∃R-complete for general graphs [119]. Of particular interest is the so-
called rectilinear crossing number of Kn, that asks for the minimum number of crossings in a
straight-line drawing of Kn. This value is in general different to the crossing number without
the restriction of the drawing being a straight-line one; see Figures 1.1(b) and 1.1(c) for an
illustration. Actually, the rectilinear crossing number of Kn and the crossing number of Kn,
though both are asymptotically Θ(n4), differ in the asymptotically relevant term [144]. The
question asking for the rectilinear crossing number of Kn is also an open problem, but, in
contrast to the case of general drawings, there is no formula conjectured to give the optimal
value for every n. Both the upper and the lower bound have been object of abundant work,
including very recent one [18, 88]; see the survey [8] for a compilation of previous progress. In
Chapter 2 we consider a variant of the rectilinear crossing number of Kn in which edges are
2-colored and only monochromatic crossings are counted. For this variant we give both lower
and upper asymptotic bounds. These bounds require the exploration of instances with few
vertices. In this case, as in a wide variety of combinatorial problems on point sets in the plane,
there is no need to deal with all precise placements of the points; instead, it is possible to just
consider equivalent classes that have a combinatorial description.

Especially relevant examples of equivalence classes of point sets are order types [105]. Two sets
of n points in general position in the plane have the same order type if their points can be
labeled with integers from 1 to n such that the corresponding triples of points in both point sets
have the same orientation (clockwise or counterclockwise). Among other things, the order type
determines which sets of four points are in convex position. Thus, if we connect every pair of
points with a line segment, that we can see as the straight-line drawing of the complete graph
on the point set, the order type determines which edges cross. For this reason, order types
appear ubiquitously in the study of extremal problems on point sets and straight-line drawings.
There exists an order type database [12, 26], containing all the order types realizable as sets
of up to eleven points in the plane. The order types realizable as sets of up to ten points are
available online [11] and the (over two thousand million) ones realizable as sets of eleven points
are available upon request from Aichholzer (they require almost 100GB of space). In the next
three chapters of this thesis this database is used to obtain several computer-assisted results.
Apart from order types, there are also other definitions of equivalence classes of point sets that
can be described combinatorially. For example, circular sequences define a finer classification of
point sets in the plane while radial systems provide a coarser one [27, 89].

Combinatorial problems on point sets that do not depend on the precise coordinates of the
points but on their order type, include Erdős-Szekeres-type questions. In 1933 Esther Klein
asked whether every large enough point set in general position contains a convex k-gon. The
affirmative answer published in 1935 is known as the Erdős-Szekeres theorem2 [85], a classic
result in discrete geometry and Ramsey theory. Let ES(k) be the smallest integer such that
every set of at least ES(k) points in general position contains a convex k-gon. The original
paper [85] contains two proofs. The first one is based on Ramsey’s theorem and the second
one gives the (better) upper bound ES(k) ≤

(
2k−4
k−2

)
+ 1. More than 25 years later, Erdős and

Szekeres published a construction giving the lower bound 2k−2 + 1 ≤ ES(k) and conjectured it

2There is another Erdős-Szekeres theorem on the existence of monotonically increasing or decreasing
subsequences of certain length in any large enough sequence.
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to be tight. Recently, after many years of efforts and progress that did however not improve
the order of magnitude [66, 130, 150, 154, 189, 196], Suk [187] showed that ES(k) = 2k+o(k).

In the 1970s, Erdős [83] asked whether in every large enough point set in general position in
the plane there is always an empty convex k-gon. Harborth [115] proved that there is an empty
convex pentagon in every set of 10 points in general position and showed that 9 points are
not enough. The answer was conjectured to be affirmative for every k. However, Horton [122]
gave a construction, for every value of n, of a set of n points in general position with no empty
convex heptagon. His construction was later extended to so-called Horton sets and squared
Horton sets [193] and to higher dimensions [195]. More than 20 years later, Gerken [103] and
Nicolás [151] showed independently that there is an empty convex hexagon in every sufficiently
large point set in general position. Erdős [84] also asked for the minimum number of empty
convex k-gons in a set of n points in general position. Horton’s construction implies that this
number is 0 for k ≥ 7. Abundant research has been made for k ∈ {3, 4, 5, 6}; see [10] for a survey.
In Chapter 4 we study this question for k = 5 and give the first superlinear lower bound.

1.1. Outline of the thesis

The first part of the thesis studies both point sets and straight-line drawings of graphs drawn
on them. In Chapter 2 we consider a variant of the rectilinear crossing number in which
we only count the monochromatic crossings of the best 2-edge-coloring. We give both upper
and lower asymptotic bounds for the complete graph Kn. In Chapter 3, we study compact
visualizations of order types in the plane. We introduce the concept of exit edges, which prevent
the order type from changing under continuous motion of vertices. Exit edges have a natural
dual characterization, which allows us to efficiently compute them and to bound their number.
In Chapter 4 we show that, asymptotically, the number of empty convex pentagons in every set
of n points in general position in the plane is at least superlinear.

The second part of the thesis deals with topological drawings of graphs. Given a simple
drawing D(G) of a graph G, in Chapter 5 we prove that it is NP-complete to decide whether
an edge connecting two non-adjacent vertices can be inserted into D(G) such that the result is
a simple drawing. Moreover, we present a polynomial algorithm for the particular case in which
the two vertices that we aim to connect are a dominating set for G. We also consider inserting
edges into a 1-plane drawing such that the result is still a 1-plane drawing. In Chapter 6 we show
that the problem of deciding whether k edges, each connecting two non-adjacent vertices, can be
inserted into a 1-plane drawing is fixed-parameter tractable with respect to k. In Chapter 7 we
study simple drawings of the complete bipartite graph and show that all of them contain plane
spanning trees of a particular kind. Finally, in Chapter 8 we consider semi-simple drawings the
complete graph Kn, especially in relation to rotation systems and to long-standing conjectures
for simple drawings of Kn.

Several parts of the contents of this thesis correspond to work that has been presented or is
accepted for publication [13, 14, 15, 16, 17, 19, 20, 21, 29, 35, 36, 131]. Moreover, the content
of Sections 5.5 and 7.5 is currently being prepared for publication [23, 37]. We remark that the
work in all these papers was the product of a collaborative effort between the coauthors.
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1.2. Note on notation

We use standard graph-theoretic terminology. Following [78], a graph G is an ordered pair of
(disjoint) sets (V,E) such that E ⊆ [V ]2, that is, the elements of E are 2-element subsets of V .
The elements of V are the vertices of the graph G and the elements of E are its edges. In this
thesis we consider only finite graphs where V and E are finite sets. A graph with vertex set V
is said to be a graph on V . A vertex v ∈ V is incident to an edge e ∈ E if v ∈ e, and in that
case, e is also incident to v. The degree of a vertex is the number of edges incident to it. An
edge {u, v} is denoted by uv. If uv ∈ E, then u and v are said to be adjacent and two (distinct)
edges are adjacent if there is a vertex such that both edges are incident to it. A set of vertices
or of edges is independent if no two of its elements are adjacent. A graph G′ = (V ′, E′) is a
subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. If G′ = (V ′, E′) is a subgraph of G = (V,E)
and E′ contains all the edges uv ∈ E with u, v ∈ V ′, then G′ is an induced subgraph of G. In
this case we say that G′ is induced by V ′ and denote it by G[V ′]. A subgraph G′ = (V ′, E′) of
G = (V,E) is spanning if V ′ = V . The complement G of G = (V,E) is the graph on V with
edge set [V ]2 \ E.

In a drawing of a graph, vertices are represented by distinct points in the plane and edges are
represented by Jordan arcs with their incident vertices as endpoints. We identify the vertices
and edges of the underlying abstract graph with the corresponding ones in the drawing. Thus,
in a slight abuse of notation, vertices and edges also refer to the points and arcs that represent
them. We consider drawings in which edges do not contain any other vertices, no three edges
intersect in the same point, and any point shared by two edges is either a proper crossing or a
common endpoint (tangencies are not allowed). A drawing is plane if there are no crossings.

When considering point sets in the plane in this thesis, being in general position means that no
three points are collinear. Given two points p and q in the plane, pq denotes the line segment
spanned by p and q. If p and q are points representing vertices of a graph, pq also denotes the
edge incident to the corresponding vertices.

Throughout this thesis we use O-notation to describe asymptotic behavior. We also make
use without definition of basic concepts in computational complexity, such as P, NP, and
NP-hardness. A basic introduction to these notions can be found in [68]. More specific concepts
are described in the corresponding chapters. The author of this thesis is not aware of a
particular textbook on computational complexity presenting the basic notions together with
(in)approximability, parameterized complexity and concepts more used in geometry like ∃R-
hardness, but an entertaining introduction to most of these topics oriented to obtaining lower
bounds is given in Demaine’s course [76] (available online). The interested reader can find
an introduction to computational complexity in various textbooks, including [100, 165, 184,
197]. For more advanced topics and current trends we refer to [34]. Finally, there are several
textbooks on parameterized complexity [69, 79, 80, 92, 94, 152].

Specific concepts and notation are introduced in the corresponding chapters.
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Point sets and straight-line drawings
of graphs
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2. Bounding the rectilinear 2-colored
crossing number

Part of the results presented in this chapter have been accepted for publication [20]. It is planned
that these results also appear in the thesis of the coauthor Carlos Hidalgo Toscano.

2.1. Introduction

For a drawing of a non-planar graph G in the plane it is of interest from both a theoretical
and practical point of view, to minimize the number of crossings. The minimum such number
is known as the crossing number cr(G) of G. There are many variants on crossing numbers,
see the comprehensive dynamic survey of Schaefer [179]. In this chapter we focus on a version
combining two of them: the k-planar crossing number and the rectilinear crossing number.

The k-planar crossing number crk(G) of a graph G is the minimum of cr(G1) + · · ·+ cr(Gk)
over all sets of k graphs {G1, . . . , Gk} whose union is G. For k = 2, it was introduced by
Owens [156] who called it the biplanar crossing number ; see [70, 71] for a survey on biplanar
crossing numbers. Shahrokhi et al. [183] introduced the generalization to k ≥ 2.

The rectilinear crossing number of G, cr(G), is the minimum number of pairs of edges that
cross in any straight-line drawing of G. Of special relevance is cr(Kn), the rectilinear crossing
number of the complete graph on n vertices. The current best published bounds on cr(Kn) are
0.379972

(
n
4

)
< cr(Kn) < 0.380473

(
n
4

)
+ Θ(n3) [7, 88]. The upper bound was achieved using a

duplication process and has been improved in [18] to cr(Kn) < 0.38044921
(
n
4

)
+ Θ(n3).

A k-edge-coloring of a drawing D of a graph is an assignment of one of k possible colors
to every edge of D. The rectilinear k-colored crossing number of a graph G, crk(G), is the
minimum number of monochromatic crossings (pairs of edges of the same color that cross)
in any k-edge-colored straight-line drawing of G. This parameter was introduced before and
called the geometric k-planar crossing number [159]. In the same paper, as well as in [183],
also the rectilinear k-planar crossing number was considered, which asks for the minimum of
cr(G1) + . . .+ cr(Gk) over all sets of k graphs {G1, . . . , Gk} whose union is G. We prefer our
terminology because the terms geometric and rectilinear are very often used interchangeably in
the context of crossing numbers and because the term k-planar is extensively used in graph
drawing with a different meaning; see for example [77, 120, 132]. We remark that in graph
drawing, rectilinear sometimes also refers to orthogonal grid drawings (which is not the case
here).

9
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In this chapter we focus on the case where G is the complete graph Kn, and we prove the
following lower and upper bounds on cr2(Kn):

0.03

(
n

4

)
+ Θ(n3) < cr2(Kn) < 0.11798016

(
n

4

)
+ Θ(n3).

Our approach is based on theoretical results that guarantee asymptotic bounds from the
information of small point sets. Thus, it implies computationally dealing with small sets, both
to guarantee a minimum amount of monochromatic crossings (for the lower bound) and to find
examples with few monochromatic crossings and some other desired properties (for the upper
bound).

From an algorithmic point of view, our challenge is twofold. On the one hand, we need to
optimize the point configuration (order type) to obtain a small number of crossings. On the
other hand, we need to determine a coloring of the edges of Kn that minimizes the colored
crossing number for a fixed point set.

For the first problem there is not even a conjecture of point configurations that minimize
the rectilinear crossing number of Kn for any n. The latter problem corresponds to finding a
maximum cut in a segment intersection graph, which in general is NP-complete [28]. Moreover,
these two problems are not independent. There exist examples where a point set with a non-
minimal number of uncolored crossings allows for a coloring of the edges so that the resulting
colored crossing number is smaller than the best colored crossing number obtained from a
set minimizing the uncolored crossing number. Thus, the two optimization processes need to
interleave if we want to guarantee optimality. But, as we will see in Section 2.2, even this
combined optimization does not guarantee to yield the best asymptotic result. There are sets
of fixed cardinality and with larger 2-colored crossing number which—due to an involved
duplication process—give a better asymptotic constant than the best minimizing sets. This
is in contrast to the uncolored setting [6, 7], where for any fixed cardinality, sets with a
smaller crossing number always give better asymptotic constants. Also, it clearly indicates that
our extended duplication process for 2-colored crossings differs essentially from the original
version.

As mentioned, drawings with few crossings do not necessarily admit a coloring with few
monochromatic crossings. This observation motivates the following question: given a fixed
straight-line drawing D of Kn, what is the ratio between the number of monochromatic crossings
for the best 2-edge-coloring of D and the number of (uncolored) crossings in D? A simple
probabilistic argument shows that this ratio is less than 1/2. In Section 2.4, we improve that
bound, showing that for sufficiently large n, it is less than 1/2− c for some positive constant c.

In a slight abuse of notation, we denote by cr(D) the number of pairs of edges in D that cross
and call it the rectilinear crossing number of D. The (rectilinear) 2-colored crossing number
of a straight-line drawing D, cr2(D), is then the minimum of cr(D1) + cr(D2), over all pairs
of straight-line drawings {D1, D2} whose union is D. For a given 2-edge-coloring χ of D, we
denote by cr2(D,χ) the number of monochromatic crossings in D. Thus, cr2(D) is the minimum
of cr2(D,χ) over all 2-edge-colorings χ of D.
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Outline. In Section 2.2 we prove that, given a 2-colored straight-line drawing D of Kn, there
is a duplication process that allows us to obtain a 2-colored straight-line drawing Dk of K2kn

for any k ≥ 1 whose 2-colored crossing number cr2(Dk) can be easily calculated. Moreover, we
can obtain the asymptotic value when k →∞. By finding good sets of constant size as a seed
for the duplication process, we obtain an asymptotic upper bound for cr2(Kn). In Section 2.3
we obtain a lower bound for cr2(Kn) using the crossing lemma, and we improve it with an
approach again using small drawings. For sufficiently large n, we show in Section 2.4 that for
any straight-line drawing D of Kn, cr2(D)/cr(D) < 1/2− c for a positive constant c, that is,
using two colors saves more than half of the crossings. Finally, in Section 2.5 we present a
summary of the chapter.

2.2. Upper bounds on cr2(Kn)

For the rectilinear crossing number cr(Kn), the best upper bound [18] comes from finding
examples of straight-line drawings of Kn (for a small value of n) with few crossings which are
then used as a seed for the duplication process in [6, 7]. To be able to apply this duplication
process, the starting set P with m points has to contain a halving matching. If m is even (odd),
a halving line of P is a line that passes exactly through two (one) points of P and leaves the
same number of points of P to each side. If it is possible to match each point p of P with a
halving line of P though this point in such a way that no two points are matched with the same
line, P is said to have a halving matching. It is then shown in [6] that every point of P can be
substituted by a pair of points in its close neighborhood such that the resulting set Q with 2m
points contains again a halving line matching. Iterating this process yields the mentioned upper
bound for cr(Kn), where this bound depends only on m and the number of crossings of the
starting set P .

In this section, we prove that a significantly more involved but similar approach can be adopted
for the 2-colored case. Unlike the original approach, we cannot always get a matching which
simultaneously halves both color classes. Moreover, even for sets where such a halving matching
exists, it cannot be guaranteed that this property is maintained after the duplication step. We
will see below that we need a more involved approach, where the matchings are related to the
distribution of the colored edges around a vertex. Consequently, the number of crossings which
are obtained in the duplication, and thus, the asymptotic bound we get, not only depends on the
rectilinear 2-colored crossing number of the starting set, but also on the specific distribution of
the colors of the edges. In that sense, both the heuristics for small drawings and the duplication
process for the rectilinear 2-colored crossing number differ significantly from the uncolored
case.

Throughout this section, P is a set of m points in general position in the plane, where m is
even. Let p be a point in P . By slight abuse of notation, in the following we do not distinguish
between a point set and the straight-line drawing of Kn it induces. Given a 2-coloring χ of
the straight-line drawing of the complete graph that P induces, we denote by L(p) and S(p)
the edges incident to p ∈ P of the larger and smaller color class at p, respectively. An edge pq
incident to p, q ∈ P is called a χ-halving edge of p if the number of edges of L(p) to the right of
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the line qp spanned by p and q (and directed from q to p) and the number of edges of L(p) to
the left of qp differ by at most one. A matching between the points of P and their χ-halving
edges is called a χ-halving matching for P .

Theorem 2.1. Let P be a set of m points in general position and let χ be a 2-coloring of
the edges induced by P . If P has a χ-halving matching, then the 2-colored rectilinear crossing
number of Kn can be bounded by

cr2(Kn) ≤ 24A

m4

(
n

4

)
+ Θ(n3)

where A is a rational number that depends on P , χ, and the χ-halving matching for P .

Proof. First we describe a process to obtain from P a set Q of 2m points, a 2-edge-coloring χ′

of the edges of the straight-line drawing of K2m that Q induces and a χ′-halving matching
for Q. The set Q is constructed as follows. Let p be a point in P and pq its χ-halving edge in the
matching. We add to Q two points p1, p2 placed along the line qp and in a small neighborhood
of p such that:

(i) if f is an edge different from pq that is incident to p, then p1 and p2 lie on different sides
of the line spanned by f ;

(ii) if f is an edge different from pq that is not incident to p, then p1 and p2 lie on the same
side of the line spanned by f as p; and

(iii) the point p1 is further away from q than p2.

The set Q has 2m points and the above conditions ensure that it is in general position.

Next, we define a coloring χ′ and a χ′-halving matching for Q. For every edge pq induced by P ,
we color the four edges piqj with i, j ∈ {1, 2} with the same color as pq. Hence, the only edges
remaining to be colored are the edges p1p2 between the duplicates of a point p ∈ P .

Let the point p ∈ P be matched with the edge pq of P , and let qp be the line spanned by pq
and directed from q to p. Further, let q1 and q2 be the points that originated from duplicating q,
such that q1 lies to the left of qp and q2 lies to the right of qp. We denote by Ll(p) and Lr(p)
the number of edges in L(p) to the left and right of qp, respectively. Analogously, we denote by
Sl(p) and Sr(p) the number edges in S(p) to the left and right of qp. Finally, we denote by Hl(p)
and Hr(p) the number of edges incident to p that lie to the left and right of qp, respectively,
that have the same color as pq.

There are six cases in which p can fall, depending on the color of the edge pq matched with
it and the numbers Ll(p) and Lr(p); see again Figure 2.1, where the larger color class is blue
and the smaller red. In each case, the color of the edge p1p2 and the χ′-halving matching edges
for p1 and p2 need to be determined.

In the first three cases pq is in the smaller color class S(p) at p while in the last three cases pq
is in the larger color class L(p) at p. Note that in all cases, Ll(p) and Lr(p) differ by at most
one. Furthermore, as |P | is even, the degree of p is odd and hence L(p) contains at least one



2.2. Upper bounds on cr2(Kn) 13

p1
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q2
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Ll = LrCase 1: Case 2: Case 3:

Case 4: Case 5: Case 6:

Figure 2.1.: The cases in the duplication process of Theorem 2.1 when the larger color class at p is
blue. The dotted lines represent the lines spanned by the χ-halving matching edges for P .
The numbers of blue (red) edges at p to the left and right of le, is denoted by Ll and Lr
(Sl and Sr), respectively.
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more edge than S(p). Thus, the larger color class at p1 and p2 for χ′ is the same as the one
at p for χ.

Case 1: pq ∈ S(p) and Ll(p) > Lr(p). The edge p1p2 is colored with the color of L(p). In
the matching for Q, p1 is matched with p1q1 and p2 is matched with p2q2. By this we
obtain Ll(pi) = 2Ll(p) and Lr(pi) = 2Lr(p) + 1 for i ∈ {1, 2}, implying that the matched
edges are indeed χ′-halving. Further, we have Sl(p1) = 2Sl(p), Sr(p1) = 2Sr(p) + 1,
Sl(p2) = 2Sl(p) + 1, and Sr(p2) = 2Sr(p).

Case 2: pq ∈ S(p) and Ll(p) = Lr(p). The edge p1p2 is colored with the color of S(p). In the
matching for Q, p1 is matched with p1p2 and p2 is matched with p2q2. By this we obtain
Ll(pi) = 2Ll(p) and Lr(pi) = 2Lr(p) for i ∈ {1, 2}, implying that the matched edges are
χ′-halving. Further, Sl(pi) = 2Sl(p) + 1 and Sr(pi) = 2Sr(p) + 1 for i ∈ {1, 2}.

Case 3: pq ∈ S(p) and Ll(p) < Lr(p). The edge p1p2 is colored with the color of L(p). In
the matching for Q, p1 is matched with p1q2 and p2 is matched with p2q1. By this we
obtain Ll(pi) = 2Ll(p) + 1 and Lr(pi) = 2Lr(p) for i ∈ {1, 2}, implying that the matched
edges are χ′-halving. Further, Sl(p1) = 2Sl(p) + 1, Sr(p1) = 2Sr(p), Sl(p2) = 2Sl(p), and
Sr(p2) = 2Sr(p) + 1.

Case 4: pq ∈ L(p) and Ll(p) > Lr(p). The edge p1p2 is colored with the color of S(p). In
the matching for Q, p1 is matched with p1q1 and p2 is matched with p2q1. By this we
obtain Ll(pi) = 2Ll(p) and Lr(pi) = 2Lr(p) + 1 for i ∈ {1, 2}, implying that the matched
edges are indeed χ′-halving. Further, we have Sl(p1) = 2Sl(p), Sr(p1) = 2Sr(p) + 1,
Sl(p2) = 2Sl(p) + 1, and Sr(p2) = 2Sr(p).

Case 5: pq ∈ L(p) and Ll(p) = Lr(p). The edge p1p2 is colored with the color of S(p). In the
matching for Q, p1 is matched with p1p2 and p2 is matched with p2q1. By this we obtain
Ll(p1) = 2Ll(p)+1, Lr(p1) = 2Lr(p)+1, Ll(p2) = 2Ll(p), and Lr(p2) = 2Lr(p)+1. Hence,
the matched edges are χ′-halving. Further, we have Sl(p1) = 2Sl(p), Sr(p1) = 2Sr(p),
Sl(p2) = 2Sl(p) + 1, and Sr(p2) = 2Sr(p).

Case 6: pq ∈ L(p) and Ll(p) < Lr(p). The edge p1p2 is colored with the color of S(p). In
the matching for Q, p1 is matched with p1q2 and p2 is matched with p2q2. By this we
obtain Ll(pi) = 2Ll(p) + 1 and Lr(pi) = 2Lr(p) for i ∈ {1, 2}, implying that the matched
edges are indeed χ′-halving. Further, we have Sl(p1) = 2Sl(p) + 1, Sr(p1) = 2Sr(p),
Sl(p2) = 2Sl(p), and Sr(p2) = 2Sr(p) + 1.

Having completed the coloring χ′ for the edges induced by Q, we next consider the number of
monochromatic crossings in the resulting drawing on Q.

Claim 1. The pair (Q,χ′) satisfies

cr2(Q,χ′) = 16 cr2(P, χ) +

(
m

2

)
−m

+ 4
∑
p

((
Ll(p)

2

)
+

(
Lr(p)

2

)
+

(
Sl(p)

2

)
+

(
Sr(p)

2

))
+ 2

∑
p

(Hl(p) +Hr(p)).
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(a) Type I

r s

p

(b) Type IIa

p1

p2

q1

q2

p
r

q

(c) Type IIb (d) Type III

Figure 2.2.: Counting the crossings of different types in the duplication process. The gray circles
represent the close neighborhood of the points before the duplication.

The proof of this claim follows the same counting technique used in [6].

Proof. We count the crossings in the same way as in the proof of Lemma 3 of [6]. A crossing in Q
comes from four points in convex position. We classify the crossings in three types, according
to the number of points in P that originated them; see Figure 2.2.

Type I: The points originate from duplicating two points in P ; see Figure 2.2(a). There are(
m
2

)
ways of choosing a pair of points in P , and every such pair determines a crossing

in Q unless the edge between them is a matching edge. Since we have m matching edges,
there are (

m

2

)
−m

crossings of this type.

Type IIa: The points originate from duplicating three points p, r, and s in P and none of
the edges between those points is a matching edge; see Figure 2.2(b). Without loss of
generality, p1 and p2 are involved in the crossing. Then r and s lie on the same side of
the line spanned by the matching edge e of p and both pr and ps have the same color.
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Any pair (r, s) of points of P that satisfies those conditions with respect to p generates
four crossings in Q. Thus, the number of Type IIa crossings for p is

4

[(
Ll(p)

2

)
+

(
Lr(p)

2

)
+

(
Sl(p)

2

)
+

(
Sr(p)

2

)]
.

Type IIb: The points originate from duplicating three points p, q, and r in P and one of
the edges between those points is a matching edge; see Figure 2.2(c). Without loss of
generality, assume pq is the matching edge of p. Any pair of points that originated from a
point r ∈ P such that pr has the same color as pq generates two crossings with either
p1q1 or p1q2. Thus, the number of Type IIb crossings for p is

2(Hl(p) +Hr(p)).

Type III: The points originate from duplicating four points p, q, r, and s in P that generate
a crossing in P ; see Figure 2.2(d). There are cr(P, χ) such quadruples of points, and each
one generates 16 crossings in Q. Thus, the number of Type III crossings in Q is

16cr(P, χ).

Summing the Type II crossings over each point p of P and adding them to the crossings of
Type III and Type I gives the claimed result.

We now apply the duplication process multiple times. To this end, consider again the six
different cases for a point p ∈ P when obtaining a coloring and a matching for Q. Note that
if one of the Cases 1, 2, 3, 4 and 6 applies for p, then the same case applies for its duplicates
p1, p2 ∈ Q (and will apply in all further duplication iterations). If p falls in Case 5, then for p1

and p2 we have Case 2 and 4, respectively. As no point in Q falls in Case 5, from now on, we
assume that P is such that no point of P falls in Case 5 either.

Let k ≥ 1 be an integer and let (Qk, χk) be the pair obtained by iterating the duplication
process k times, with (Q0, χ0) = (P, χ). We claim the following on cr2(Qk, χk), the number of
monochromatic crossings in the 2-edge-colored drawing of Kn induced by Qk and χk:

Claim 2. After k iterations of the duplication process, it holds that

cr2(Qk, χk) = A · 24k +B · 23k + C · 22k +D · 2k

where A,B,C and D are rational numbers that depend on P and its χ-halving matching.

The proof of this claim uses a careful analysis of the structure of (Qk, χk) in dependence of
(P, χ) and the χ-halving matching for P as well as involved calculations.
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Proof. Let p be a point of P . We iteratively construct a rooted binary tree T (p) of height k
containing a vertex for each point q of Qi that stems from duplicating p in the following way.
The root of T (p) contains the tuple (Ll(p), Lr(p), Sl(p), Sr(p)) representing p. For vertex v
in T (p) that represents a point q of Qi with 0 ≤ i ≤ k − 1, its left child contains the tuple
(Ll(q1), Lr(q1), Sl(q1), Sr(q1)) and its right child contains the tuple (Ll(q2), Lr(q2), Sl(q2), Sr(q2)),
where q1, q2 ∈ Qi+1 are the duplicates of q. In addition, we mark whether the matching edge
of p (and hence the ones of all points originating from p) is of the larger or the smaller color
class at p.

We next elaborate on the exact content of the tuple stored in the j-th vertex of the i-th level of
T (P ) with j ∈ {1, . . . , 2i}, depending on the case to be applied for p in the duplication process.

Cases 1, 3, 4 and 6: Let p be a point in P that falls in Case 1. Then in the i-th level of T (p),
the j-th vertex contains the tuple

(2iLl(p), 2
iLr(p) + 2i − 1, 2iSl(p) + j − 1, 2iSr(p) + 2i − j).

We show this by induction on i. It follows directly from the duplication process that it is
true when i = 1. Suppose that i > 1. From the induction hypothesis, the j-th vertex v of
level i contains the tuple (2iLl(p), 2iLr(p) + 2i − 1, 2iSl(p) + j − 1, 2iSl(p) + 2i − j). Since
all the vertices of T (p) represent points that fall in Case 1, the left and right children of v
contain the tuples

(2i+1Ll(p), 2
i+1Lr(p) + 2i+1 − 1, 2i+1Sl(p) + (2j − 1)− 1, 2i+1Sr(p) + 2i+1 − (2j − 1))

and

(2i+1Ll(p), 2
i+1Lr(p) + 2i+1 − 1, 2i+1Sl(p) + (2j − 1), 2i+1Sr(p) + 2i+1 − 2j),

respectively. These two vertices are precisely the (2j−1)-st and the 2j-th vertex in level
i+ 1.

Note that, if p falls in Case 4, T (p) has the exact same structure as a point of Case 1.
Furthermore, if p is a point that falls in Case 3 or Case 6, the structure of T (p) is exactly
a mirrored version of the tree from a point that falls in Case 1.

Case 2: Let p be a point in P that falls in Case 2. Then in the i-th level of T (p), the j-th
vertex contains the tuple

(2iLl(p), 2
iLr(p), 2

iSl(p) + 2i − 1, 2iSr(p) + 2i − 1).

We again proceed by induction on i. It follows directly from the duplication process that
this happens when i = 1, so suppose that i > 1. From the induction hypothesis, the j-th
vertex v of level i contains the tuple (2iLl(p), 2iLr(p) + 2i− 1, 2iSl(p) + j, 2jSr(p) + 2j − i).
Since all the vertices of T (p) represent points that fall in Case 2, the left and right children
of v contain the tuple

(2i+1Ll(p), 2
i+1Lr(p), 2

i+1Sl(p) + 2i+1 − 1, 2i+1Sr(p) + 2i+1 − 1).
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Note that T (p), together with the information whether the matching edges are of the smaller or
the larger color class, contains all the information needed to compute the crossings of Type II
in Qi+1 that involve points which originate from p.

Using the above observations we can now determine cr2(Qk, χk). We use the following notation:

fi(x) =
(

2ix
2

)
, gi(x) =

(
2ix+2i−1

2

)
, hi,j(x) =

(
2ix+j

2

)
, and PC is the subset of P of points that fall

in Case C.

Type III: Each crossing of Type III in P generates 16 crossings in Q. Iterating this process k
times, we obtain

16k cr2(P, χ)

crossings in Qk.

Type I: Every set Qi has a χi-halving matching and |Qi| = 2im, thus, there are
(

2im
2

)
− 2im

crossings of Type I in Qi+1. Moreover, each of these crossings becomes a Type III crossing
in further duplication steps, that is, it produces 16 crossings per each further duplication
step. Hence, adding the crossings of Type I that we get at each iteration and the according
crossings of Type III that they generate later, we obtain

k−1∑
i=0

16k−i−1

[(
2im

2

)
− 2im

]

crossings in Qk.

Type II for Case 2: Consider a point p ∈ P that falls in Case 2 together with all the points
in Qi that originate from it (and hence fall in Case 2 as well). Using Claim 1 and the
information from the i-th level of T (p), we obtain that Qi+1 has

4 · 2i [fi(Ll(p)) + fi(Lr(p)) + gi(Sl(p)) + gi(Sr(p))]

+ 2 · 2i
[
2i(Hl(p) +Hr(p)) + 2i+1 − 2

]
crossings of Type II that come from all points in Qi originating from p. Moreover, each of
these crossings becomes a Type III crossing for all further duplication steps. Hence, adding
the crossings of Type II that we count for points originating from p at each iteration and
the according crossings of Type III that they generate later, we obtain

4

k−1∑
i=0

16k−i−12i [fi(Ll(p)) + fi(Lr(p)) + gi(Sl(p)) + gi(Sr(p))]

+ 2

k−1∑
i=0

16k−i−12i
[
2i(Hl(p) +Hr(p)) + 2i+1 − 2

]
crossings in Qk.
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Type II for Cases 1 and 3: Consider a point p ∈ P that falls in Case 1 or 3, and with all
points in Qi that originate from it (and hence fall in Case 1 or Case 3 as well). Using
Claim 1, and the information from the i-th level of T (p), we obtain that Qi+1 has

4 · 2i [fi(Ll(p)) + gi(Lr(p))]

+ 4
2i−1∑
j=0

[hi,j(Sl(p)) + hi,j(Sr(p))]

+ 2
2i−1∑
j=0

[
2i(Hl(p) +Hr(p)) + 2j

]
crossings of Type II that come from all points in Qi in the tree T (p). Again, each of these
crossings becomes a Type III crossing for all further duplication steps. Hence, adding the
crossings of Type II that we we count for points originating from p at each iteration and
the according crossings of Type III that they generate later, we obtain

4
k−1∑
i=0

16k−i−12i [fi(Ll(p)) + gi(Lr(p))]

+ 4

k−1∑
i=0

16k−i−1
2i−1∑
j=0

[hi,j(Sl(p)) + hi,j(Sr(p))]

+ 2
k−1∑
i=0

16k−i−1
2i−1∑
j=0

[
2i(Hl(p) +Hr(p)) + 2j

]
crossings in Qk.

Type II for Cases 4 and 6: Consider a point p ∈ P that falls in Case 4 or 6, and with all
points in Qi that originate from it (and hence fall in Case 4 or Case 6 as well). Using
Claim 1, and the information from the i-th level of T (p), we obtain that Qi+1 has

4 · 2i [fi(Ll(p)) + gi(Lr(p))]

+ 4

2i−1∑
j=0

[hi,j(Sl(p)) + hi,j(Sr(p))]

+ 2 · 2i
[
2i(Hl(p) +Hr(p)) + 2i − 1

]
crossings of Type II that come from all points in Qi in the tree T (p). Again, each of these
crossings becomes a Type III crossing for all further duplication steps. Hence, adding the
crossings of Type II that we we count for points originating from p at each iteration and
the according crossings of Type III that they generate later, we obtain

4

k−1∑
i=0

16k−i−12i [fi(Ll(p)) + gi(Lr(p))]
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+ 4
k−1∑
i=0

16k−i−1
2i−1∑
j=0

[hi,j(Sl(p)) + hi,j(Sr(p))]

+ 2
k−1∑
i=0

16k−i−12i
[
2i(Hl(p) +Hr(p)) + 2i − 1

]

crossings in Qk.

Adding the number of crossings of each type, we obtain the following expression for cr(Qk, χk),
the number of monochromatic crossings in the straight-line 2-edge-colored drawing of the
complete graph induced by Qk and χk:

cr2(Qk,χk) = 16k cr2(P, χ) +
k−1∑
i=0

16k−i−1
[
fi(m)− 2im

]
(2.1)

+
∑
p∈P2

[
4
k−1∑
i=0

16k−i−12i [fi(Ll(p)) + fi(Lr(p)) + gi(Sl(p)) + gi(Sr(p))] (2.2)

+ 2

k−1∑
i=0

16k−i−12i[2i(Hl(p) +Hr(p)) + 2i+1 − 2]

]

+
∑

p∈P1∪P3

[
4
k−1∑
i=0

16k−i−12i[fi(Ll(p)) + gi(Lr(p))] (2.3)

+ 4

k−1∑
i=0

16k−i−1
2i−1∑
j=0

[hi,j(Sl(p)) + hi,j(Sr(p))]

+ 2
k−1∑
i=0

16k−i−1
2i−1∑
j=0

[2i(Hl(p) +Hr(p)) + 2j]


+

∑
p∈P4∪P6

[
4

k−1∑
i=0

16k−i−12i[fi(Ll(p)) + gi(Lr(p))] (2.4)

+ 4
k−1∑
i=0

16k−i−1
2i−1∑
j=0

[hi,j(Sl(p)) + hi,j(Sr(p))]

+ 2
k−1∑
i=0

16k−i−12i[2i(Hl(p) +Hr(p)) + 2i − 1]

]
.

It remains show that this sum can be written as A · 24k + B · 23k + C · 22k + D · 2k, where
A,B,C, and D depend on Ll(p), Lr(p), Sl(p), Sr(p), Hl(p), and Hr(p) for every point p in P .
For that, we use the following observations:
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Observation 2.2.

k−1∑
i=0

16k−i−12ifi(x) =
24k

24

k−1∑
i=0

1

23i
2i−1x(2ix− 1)

=
24k

24

k−1∑
i=0

x2

2 · 2i
− x

2 · 22i

=
24k

24

[
3x2 − 2x

3
− x2

2k
+

2x

3 · 22k

]
=

3x2 − 2x

48
· 24k − x2

16
· 23k +

x

24
· 22k.

Observation 2.3.

k−1∑
i=0

16k−i−12igi(x) =
24k

24

k−1∑
i=0

1

23i
(2ix+ 2i − 1)(2i−1x+ 2i−1 − 1)

=
24k

24

k−1∑
i=0

(x+ 1)2

2 · 2i
− 3(x+ 1)

2 · 22i
+

1

23i

=
24k

24

[
7x2 + 1

7
− (x+ 1)2

2k
+

2(x+ 1)

22k
− 8

7 · 23k

]
=

7x2 + 1

112
· 24k − (x+ 1)2

16
· 23k +

x+ 1

8
· 22k − 1

14
· 2k.

Observation 2.4.

2i−1∑
j=0

hi,j(x) =
1

2

2i−1∑
j=0

22ix2 + 2ix(2j − 1) + j(j − 1)

=
1

2

[
2i · 22ix2 + 2ix(22i − 2i+1) +

2i(2i − 1)(2i − 2)

3

]
=

3(x2 + x) + 1

6
· 23i − 2x+ 1

2
· 22i +

1

3
· 2i.

Observation 2.5.

k−1∑
i=0

16k−i−1
2i−1∑
j=0

hi,j(x)

=
24k

24

k−1∑
i=0

1

24i

[
3(x2 + x) + 1

6
· 23i − 2x+ 1

2
· 22i +

1

3
· 2i
]

=
24k

24

k−1∑
i=0

1

24i

[
3(x2 + x) + 1

6 · 2i
− 2x+ 1

2 · 22i
+

1

3 · 23i

]
=

24k

24

[
3(x2 + x) + 1

48
(24k − 23k)− 2x+ 1

24
(24k − 22k) +

1

42
(24k − 2k)

]
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=
21x2 − 7x+ 1

336
· 24k − 3(x2 + x) + 1

48
· 23k +

2x+ 1

24
· 22k − 1

42
· 2k.

We show that (2.1), (2.2), (2.3) and (2.4) can be written as

a · 24k + b · 23k + c · 22k + d · 2k.

For (2.1), it follows from Observation 2.2. For (2.2), it follows from Observations 2.2 and 2.3.
For (2.3) and (2.4), it follows from Observations 2.2, 2.3 and 2.5. Thus, cr2(Qk, χk) can be
written as A · 24k +B · 23k + C · 22k +D · 2k.

Applying Claim 2 to an initial drawing on m vertices and letting n = 2km, we get

cr2(Kn) ≤ cr2(Qk, χk) =
24A

m4

(
n

4

)
+ Θ(n3),

which completes the proof of Theorem 2.1 when n is of the form 2km. The proof for 2km <
n < 2k+1m then follows from the fact that cr2(Kn) is an increasing function.

Observe that the proof of Theorem 2.1 gives us a closed formula to calculate the number of
monochromatic crossings after k duplications of a given point set (together with a 2-edge-
coloring χ and a χ-halving matching) following the above-described procedure.

We remark that the duplication process described in the proof of Theorem 2.1 can also be
applied if the initial set P has odd cardinality. However, then it might happen that the resulting
matching is not χ′-halving for the resulting set Q. Moreover, a similar process can even be
applied with any matching between the points of P and edges induced by P , where in that
situation one needs to specify how the colors for the edges between duplicates of points (and
possibly a matching for the resulting set) is chosen.

In the uncolored duplication process for obtaining bounds on cr(Kn), halving matchings always
yield the best asymptotic behavior, which only depends on |P | and cr(P ). This is not the case
for the 2-colored setting, where we ideally would like to achieve simultaneously for every point
p ∈ P that (i) both color classes are of similar size, (ii) both color classes are evenly split by
the matching edge, and (iii) cr2(P ) is small. Yet, this is in general not possible. Starting with a
χ-halving matching for P we obtain (ii) at least for the larger color class at every point of P .
Moreover, this is hereditary by the design of our duplication process.

2.2.1. Small configurations

The previous section implies that for large cardinality we can obtain straight-line drawings of
the complete graph with a reasonably small 2-colored crossing number by starting from good
sets of constant size. Thus, in this section we describe how to obtain those small good sets.

Similar as in [18] we combine three different methods to obtain straight-line drawings of the
complete graph with few monochromatic crossings. Our heuristic iterates three steps of (1)
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locally improving a set, (2) generating larger good sets, and (3) extracting good subsets, where
also after steps (2) and (3) a local optimization is done.

For reducing the crossing number of a given drawing we use a combined approach. Similar
to [18] we use a simple version of simulated annealing to optimize the placement of the points in
the given drawing. Whenever the position of a point is changed, we in addition use a heuristic
to recolor the edges of the drawing in order to reduce the number of monochromatic crossings.
By iterating these steps and also allowing changes which (temporarily) increase the rectilinear
number of monochromatic crossings (as typical for approaches based on simulated annealing),
we can obtain better drawings for fixed cardinality. As discussed in the introduction, this
approach combines the optimization of two hard problems and will thus in general not lead to
a global optimum.

The tool for step (2) is actually implicitly given by the proof of Theorem 2.1. This proof not
only provides the bounds for the resulting crossing number, but also gives the details how to
construct a duplicated point set with twice the number of points. We used an implementation
developed for [18] and extended it by also determining the color of the edges of the complete
graph on the point set as described in the proof.

The third tool is to compute subsets of a given drawing. That is, we remove one vertex from
the drawing and consider the induced subdrawing. Again, a heuristic is used to find a good
coloring of the remaining edges. The process of removing a vertex is repeated for all vertices of
the given drawing and we select the best obtained subdrawing of cardinality n− 1. Note that
again this requires more computations and care than in the uncolored case, where an optimal
point to be removed can be identified rather easily: For each point one can add up the number
of crossings in which its incident edges are involved and take any of the points for which this
sum is maximized. Alternatively, we can also remove a (small) constant number of vertices at
the same time and recolor the remaining edges. The process of removing one (or more) vertex
(vertices) can of course be iterated to obtain smaller sets with few monochromatic crossings.

We use the three methods in alternating order by starting with a known set, apply the duplication
process from Theorem 2.1 to obtain a larger set, locally optimize it to get a better set, find
good subsets, locally optimize them, duplicate the resulting sets and so on. In this way it can
actually happen that after a few iterations we end up with a set of the same cardinality as the
starting set, but with less monochromatic crossings. Our experiments show clearly that this
combined heuristic leads to significantly better sets than just local optimization.

The currently best (with respect to the crossing constant, see below) straight-line drawing D
with 2-edge coloring χ we found1 has n = 135 vertices, the number of monochromatic crossings
is cr2(D,χ) = 1470756, and it contains a χ-halving matching.

1The interested reader can get a file with the coordinates of the points, the colors of the edges, and a
χ-halving matching from http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php.

http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php


24 Chapter 2. Bounding the rectilinear 2-colored crossing number

2.2.2. Rectilinear 2-colored crossing constant

Let cr2 be the rectilinear 2-colored crossing constant, that is, the constant such that the best
straight-line drawing of Kn for large values of n has at most cr2

(
n
4

)
monochromatic crossings. Its

existence follows from the fact that the limit limn→∞ cr2(Kn)/
(
n
4

)
exits and is a positive number.

The proof is essentially the same as for the (rectilinear) crossing constant [172]. Moreover, it
shows that the sequence cr2(Kn)/

(
n
4

)
is an increasing sequence. For completeness, we include

the proof here.

Theorem 2.6. The limit limn→∞
cr2(Kn)

(n4)
exists and is a positive number.

Proof. First, in any straight-line drawing of a graph, the edges incident to a subset of four
vertices produce at most one (monochromatic) crossing. This shows that cr2(Kn)/

(
n
4

)
is at most

one. Moreover, as we will show in Section 2.3, cr2(9) = 2. Thus, to show that the limit exists
and is positive it suffices now to show that cr2(Kn)/

(
n
4

)
≥ cr2(Kn−1)/

(
n−1

4

)
. We can rewrite

this inequality as (n− 4)cr2(Kn) ≥ ncr2(Kn−1). Consider a straight-line drawing D of Kn that
has exactly cr2(Kn) monochromatic crossings. If we remove one vertex (and its incident edges)
we get a drawing with at least cr2(Kn−1) monochromatic crossings. Doing that for every vertex
we count every monochromatic crossing exactly n − 4 times and we get that the number of
monochromatic crossings in D is at least cr2(Kn) ≥ n

n−4cr2(Kn−1), as we wanted to show.

The results in this section imply that we can derive an upper bound for the rectilinear 2-colored
crossing constant from a given set of constant size. Taking the set of 135 points obtained in
Section 2.2.1, together with its 2-coloring and its matching, and duplicating it once, we obtain
a point set of even cardinality with a coloring and matching, where Case 5 does not show up.
Plugging the values of this set into the machinery developed in the proof of Theorem 2.1 we
get the upper bound of cr2 < 0.11798016.

Theorem 2.7. The rectilinear 2-colored crossing constant satisfies

cr2 ≤
182873519

1550036250
< 0.11798016.

In [7] a lower bound of cr ≥ 277
729 > 0.37997267 has been shown for the rectilinear crossing

constant. We can thus give an upper bound on the asymptotic ratio between the best rectilinear
2-colored drawing of Kn and the best rectilinear drawing of Kn of cr2/cr ≤ 0.31049652.

2.3. Lower bounds on cr2(Kn)

In this section we consider lower bounds for the rectilinear 2-colored crossing number and the
biplanar crossing number of Kn.

In related work [159], the authors present lower and upper bounds on the sup crk(G)/cr(G)
where the supremum is taken over all non-planar graphs. We remark that this lower bound
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Figure 2.3.: Left: A 2-edge-colored rectilinear drawing of K8 without monochromatic crossings. Right:
A 2-edge-colored drawing of K9 with only one monochromatic (red) crossing marked with
a square.

does not yield a lower bound for cr2(Kn) as their bound is obtained for “midrange” graphs
(graphs with a subquadratic but superlinear number of edges). Czabarka et al. mention a lower
bound on the biplanar crossing number of general graphs depending on the number of edges [71,
Equation 3]. For the complete graph, this yields a lower bound of cr2(Kn) ≥ 1/1944n4−O(n3).

A better bound can be obtained from the crossing lemma [145] in the following way. A version of
the improved crossing lemma [9] states that for an undirected simple graph with n vertices and

e edges with e > 7n, the crossing number of the graph is at least e3

29n2 . Consider a general (not
even necessarily simple) 2-edge-colored drawing of Kn with e =

(
n
2

)
edges. If for 0 < α < 1 the

two color classes have αe and (1− α)e edges, respectively, then a lower bound for the biplanar
crossing number cr2(Kn) provided by the crossing lemma is obtained for α = 1− α = 1/2. In

that case cr2(Kn) ≥ 2 (n(n−1)/4)3

29n2 = 1
32

(n(n−1))3

29n2 . This implies that cr2 ≥ 24
29·32 = 3/116 > 1/39.

Alternatively, the next result shows that from the 2-colored rectilinear crossing number of small
sets we can obtain lower bounds for larger sets.

Lemma 2.8. Let cr2(m) = ĉ for some m ≥ 4. Then for n > m we have

cr2(Kn) ≥ 24ĉ

m(m− 1)(m− 2)(m− 3)

(
n

4

)
which implies

cr2 ≥
24ĉ

m(m− 1)(m− 2)(m− 3)
.

Proof. Every subset of m points of Kn induces a drawing with at least ĉ crossings, and thus we
have ĉ

(
n
m

)
crossings in total. In this way every crossing is counted

(
n−4
m−4

)
times. This results in

a total of 24ĉ
m(m−1)(m−2)(m−3)

(
n
4

)
crossings.
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We next determine cr2(K9), as K8 can be drawn such that cr2(K8) = 0; see Figure 2.3 (left).
We use the optimization heuristic mentioned from Section 2.2 to obtain good colorings for all
158 817 order types of K9 (which are provided by the order type data base [11]). In this way,
it is guaranteed that all (crossing-wise) different straight-line drawings of K9 (uncolored) are
considered.

To prove that the heuristics indeed found the best colorings we consider the intersection graph
for each drawing D. In the intersection graph every edge in D is a vertex, and two vertices are
connected if their edges in D cross. Note that each odd cycle in the intersection graph of D
gives rise to a monochromatic crossing in D. On the other hand, several odd cycles might share
a crossing and only one monochromatic crossing is forced by them.

We thus set up an integer linear program, where for every crossing of D we have a non-negative
variable and for each odd cycle the sum of the variables corresponding to the crossings of the
cycle has to be at least one. The objective function aims to minimize the sum of all variables,
which by construction is a lower bound for the number of monochromatic crossings in D.

Notice that in the linear relaxation, arising from dropping the integrality constraint, no variable
in an optimal solution will be larger than one. Therefore, as linear programs usually converge
much faster than integer programs, we used a two stage approach. We first check the drawing
D with the linear program, and if the result differs by less than one from the number of
monochromatic crossings obtained by the coloring from the heuristic, the 2-colored crossing
number of D is determined and we are done. Otherwise, we use the integer program. Another
way to speed up the computations is to consider odd cycles only up to a predefined length.
Again, this can be done in an iterative way. Start with a linear program which considers only 3-
and 5-cycles, and only if this is not sufficient, it adds 7-cycles and so on.

In the described way we have been able to determine all the 2-colored crossing numbers of all
drawings of K9 within a few hours. The longest cycles we considered have been 7-cycles, and
only for two cases we had to use integer programming (see [95] for details). The best drawings
we found have 2 monochromatic crossings, and thus cr2(K9) = 2. Using Lemma 2.8 for m = 9
and ĉ = 2 we get a bound of cr2 ≥ 1/63, which is worse than the bound that we obtained from
the crossing lemma.

Repeating the process of computing lower bounds for sets of small cardinality we checked all
order types of size up to 11 [12, 26] (the largest cardinality for which a complete data base
exists). We obtained cr2(K10) = 5 and cr2(K11) = 10. By Lemma 2.8, the latter gives the
improved lower bound of cr2 ≥ 1/33.

2.3.1. Straight-line versus general drawings

The best straight-line drawings of Kn with n ≤ 8 have no monochromatic crossing; see again
Figure 2.3 (left). In [159, Section 3] the authors state that no graph is known were the k-planar
crossing number is strictly smaller than the rectilinear k-planar crossing number for any k ≥ 2.
Moreover, according to personal communication [188], the similar question whether a graph
exists where the k-planar crossing number is strictly smaller than the rectilinear k-colored
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crossing number was open. We next argue that K9 is such an example. From the previous
section we know that cr2(K9) = 2. Inspecting rotation systems for n = 9 [1] which have the
minimum number of 36 crossings, we have been able to construct a drawing of K9 which has
only one monochromatic crossing; see Figure 2.3 (right). As the graph thickness of K9 is 3 [50,
192], we cannot draw K9 with just two colors without monochromatic crossings. Thus, we get
the following result.

Observation 2.9. The biplanar crossing number for K9 is one and is thus strictly smaller
than the rectilinear 2-colored crossing number cr2(K9) = 2.

2.4. Upper bounds on the ratio cr2(D)/cr(D)

In this section we study the extreme values that cr2(D)/cr(D) can attain for straight-line
drawings D of Kn.

2.4.1. General straight-line drawings of Kn

Using a simple probabilistic argument as in [159], 2-coloring the edges uniformly at random, it
can be shown that cr2(D)/cr(D) < 1/2 for every straight-line drawing D, even if the underlying
graph is not Kn. For completeness we spell out this argument here.

Lemma 2.10. For any straight-line drawing D of any graph G, the ratio cr2(D)/cr(D) is at
most 1/2.

Proof. Color each edge of D independently at random with equal probability red or blue. For
every pair of edges of D that cross, the probability of them having the same color is exactly
1/2. Therefore, the expected value of the ratio between monochromatic crossings and crossings
is equal to 1/2. Since there is a coloring (only using one color) for which the ratio is equal
to 1, there exists a 2-edge-coloring χ of D such that cr2(D,χ)/cr(D) < 1/2, and the result
follows.

In the following, we show that for Kn this upper bound on cr2(D)/cr(D) can be improved.
To obtain our improved bound, we find subdrawings of D and colorings such that many of
the crossings in these drawings are between edges of different colors. To this end, we need to
find large subsets of vertices of D with identical geometric properties. We use the following
definition and theorem. Let (Y1, ..., Yk) be a tuple of finite subsets of points in the plane. A
transversal of (Y1, ..., Yk) is a tuple of points (y1, . . . , yk) such that yi ∈ Yi for all i.

Theorem 2.11 (Positive fraction Erdős-Szekeres theorem). For every integer k ≥ 4 there is a
constant ck > 0 such that every sufficiently large finite point set X ⊂ R2 in general position
contains k disjoint subsets Y1, . . . , Yk, of at least ck|X| points each, such that each transversal
of (Y1, . . . , Yk) is in convex position.
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The Positive Fraction Erdős-Szekeres theorem was proved by Bárány and Valtr [48] (see also
Matoušek’s book [145]). Although it is not stated in the theorem, every transversal of the
(Y1, . . . , Yk) has the same (labelled) order type. Making use of that result we obtain the following
theorem.

Theorem 2.12. There exists an integer n0 > 0 and a constant c > 0 such that for any
straight-line drawing D of Kn on n ≥ n0 vertices, cr2(D)/cr(D) < 1

2 − c.

Proof. Let c4 be as in Theorem 2.11 and let n0 be such that Theorem 2.11 holds for k = 4 and
for point sets with at least n0 points. Let D be a straight-line drawing of Kn, where n ≥ n0.

Our general strategy is as follows. We first find subsets of edges of D that can be 2-colored such
that many of the crossings between these edges are between pairs of edges of different colors.
We remove these edges and search for a subset of edges with the same property. We repeat this
process as long as possible. We 2-color the remaining edges so that at most half of the crossings
are monochromatic. Afterwards, we put back the edges we removed while 2-coloring them in a
convenient way.

We define a sequence of subsets V = X0 ⊃ X1 ⊃ · · · ⊃ Xm of vertices of D, where V = X0

is the set of vertices of D, and tuples (F1, F
′
1), . . . , (Fm, F

′
m) of sets of edges of D as follows.

Suppose that Xi has been defined. If |Xi| < n0, we stop the process. Otherwise we apply
Theorem 2.11 to Xi, to obtain a tuple (Y1, Y2, Y3, Y4) of disjoint subsets of points Xi, each with
exactly bc4|Xi|c vertices, such that every transversal (y1, y2, y3, y4) of (Y1, Y2, Y3, Y4) is a convex
quadrilateral. Without loss of generality we assume that (y1, y2, y3, y4) appear in clockwise
order around this quadrilateral. This implies that the edge y1y3 crosses the edge y2y4. Let Fi
be the set of edges with an endpoint in Y1 and an endpoint in Y3; let F ′i be the set of edges
with an endpoint in Y2 and an endpoint in Y4; and finally, let Xi+1 = Xi \ (Y1 ∪ Y2). Note that
every edge in Fi crosses every edge in F ′i .

We now consider the remaining edges. Let F be the set of edges of D that are not contained in
any Fi nor in any F ′i for 1 ≤ i ≤ m. Let H be the straight-line drawing with the same vertices
as D and with edge set equal to F . By a probabilistic argument 2-coloring the edges uniformly
at random, there is a coloring χ′ of the edges of H so that cr(H)/cr2(H,χ′) ≥ 2.

We now 2-color the edges in Fi and F ′i . We define a sequence of straight-line drawings
H = Dm+1,⊂ Dm ⊂ · · · ⊂ D0 = D and a corresponding sequence of 2-edge-colorings
χ′ = χm+1, χm, . . . , χ0 = χ that satisfies the following. Each χi is a 2-edge-coloring of Di.
Also χi−1 when restricted to Di equals χi. Suppose that Di and χi have been defined and that
0 < i ≤ m+ 1. Let Di−1 be the straight-line drawing with the same vertices as D and with edge
set Ei−1 equal to Ei∪Fi−1∪Fi′−1 (where Ei is the edge set of Di). Since χi−1 coincides with χi
in the edges of Ei, we only need to specify the colors of Fi−1 and F ′i−1. We color the edges of
Fi with the same color and the edges of F ′i−1 with the other color. There are two options for
doing this, and one of them guarantees that at most half of the crossings between an edge of
Fi−1 ∪ F ′i−1 and an edge of Di are monochromatic. We choose this option to define χi−1.

In what follows we assume that D has been colored by χ. Let C be the set of pairs of edges
of D that cross. Of these, let C1 be the subset of pairs of edges such that both of them are
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contained in Fi ∪ F ′i for some 1 ≤ i ≤ m. Let C2 := C \ C1. Note that, by construction of χ, at
most half of the pairs of edges in C2 are of edges of the same color. For a given i, let E′i be
the subset of pairs of edges in C1 such that both edges are in Fi ∪ F ′i . Let (Y1, Y2, Y3, Y4) be
the tuple of disjoint subsets of points Xi used to define Fi and F ′i . Recall that each Yi consists
of bc4|Xi|c points. Every pair of crossing edges defines a convex quadrilateral and, conversely,
every convex quadrilateral defines a unique pair of crossing edges. Therefore, by construction
there at most c4

4b|Xi|c4/2 pairs of edges in E′i such that both edges are of the same color; and
there are exactly bc4|Xi|c4 pairs of edges in E′i such that the edges are of different color. Thus,
at most 1/3 of the pairs of edges in E′i are edges of the same color.

Therefore,
cr2(D,χ)

cr(D)
≤

1
2 |C1|+ 1

3 |C2|
|C1|+ |C2|

.

This is maximized when C1 is as large as possible. Since there in total at most
(
n
4

)
pairs of

edges that cross, we have |C1| ≤
(
n
4

)
− |C2|. Thus,

cr2(D,χ)

cr(D)
≤

1
2

(
n
4

)
− 1

6 |C2|(
n
4

) .

We now obtain a lower bound for the size of C2. Note that |X0| = n and |Xi| ≥ (1− 4c4)|Xi−1|.
This implies that |Xi| ≥ (1− 4c4)in and that |Ei| ≥ c4

4(1− 4c4)4in4. Therefore,

|C2| =
m∑
i=1

|Ei| ≥
m∑
i=1

c4
4(1− 4c4)4in4 = 24c4

4

(
1

1− (1− 4c4)4
− 1− o(1)

)(
n

4

)
,

which completes the proof.

2.4.2. Special cases: convex position and the double chain

We now consider the ratio cr2(D)/cr(D) for particular families of drawings D of Kn.

If the vertices of a straight-line drawing D are in convex position then the drawing D is said to
be convex. For a convex straight-line drawing D of Kn the problem of finding a 2-edge-coloring
that minimizes cr2(D) is equivalent to the problem of finding the 2-page crossing number of
the complete graph Kn; see Figure 2.4. In [5], Ábrego et al. proved that the 2-page crossing
number of Kn is equal to

1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

Note that for general graphs testing whether the 2-page crossing number is zero is NP-hard [67,
Corollary 4.4 on p. 47], though computing the 2-page crossing number is fixed-parameter
tractable with respect to the sum of the number of crossings and the treewidth [45].

Since the number of crossings in a convex straight-line drawing of Kn is
(
n
4

)
, we obtain the

following theorem.



30 Chapter 2. Bounding the rectilinear 2-colored crossing number

1

1 62

2

54

45

3
36

Figure 2.4.: Drawings of K6. Left: Optimal 2-edge-coloring of a convex straight-line drawing. Right:
Optimal 2-page book drawing.

Theorem 2.13. If D is a convex straight-line drawing of Kn, then cr2(D)/cr(D) = 3/8− o(1).

Note that this theorem implies that the maximum value of the constant c such that Theorem 2.12
holds is at most 1/8.

The other special case we consider consists of non-complete straight-line drawing whose vertices
form a double-chain. This configuration is defined as follows. For n ≥ 3, an (n, n)-double-chain
consists of two (upper and lower) convex chains of n points each, linearly separable, and facing
each other so that (i) two successive points of one chain and two successive points of the other
are always in convex position, and (ii) three successive points of one chain and one point of the
other are never in convex position.

Theorem 2.14. Let D be a straight-line drawing of a graph whose vertex set is an (n, n)-
double-chain, and in which there exists an edge between two vertices if and only if they belong
to different chains. Then cr2(D)/cr(D) ≤ 1/3 + o(1).

Proof. We label the vertices of the upper chain from left to right as 1, . . . , n and we label the
vertices on lower chain from left to right also as 1, . . . , n. Let ij be an edge of D, with i in the
upper chain and j in the lower chain. If i < j then we color ij blue; if i > j then we color ij
red; and if i = j then we color ij red or blue.

Let I = (i, j, k, l) be a tuple of indices with 1 ≤ i ≤ j ≤ k ≤ l ≤ n, and at most two of them
equal. Let S be a set of four vertices of D, whose labels are in {i, j, k, l}, and such that two
vertices are in the upper chain and the other two are in the lower chain. Note that S defines
a unique pair of edges of D that cross; and conversely, every pair of edges that cross has two
vertices in the upper chain and the other two in the lower chain. There are six possible choices
for S (for a given I) and each defines a different pair of crossing edges (except when at least
two indices are the same). Of these six pairs of crossing edges, only two are between edges of
the same color. Since the number of possible tuples (i, j, k, l) in which at most two indices are
equal is

(
n
4

)
+O(n3), the result follows.



2.5. Chapter summary 31

2.5. Chapter summary

In this chapter we have proved both lower and upper bounds on the geometric 2-colored
crossing number for the complete graph Kn. To obtain this result, we showed that asymptotic
bounds can be derived from optimal and near-optimal instances with few vertices. We obtained
such instances using a combination of heuristics, integer programming, and the order type
database [12, 26]. Moreover, for any fixed drawing of Kn, we improved the bound on the ratio
between its geometric 2-colored crossing number and its rectilinear crossing number.





3. Minimal representations of order types
by straight-line drawings

Part of the results in this chapter have been accepted for publication [17].

3.1. Introduction

Let S, T ⊂ R2 be two sets of n labeled points in general position (no three collinear). We say
that S and T have the same order type if there is a bijection ϕ : S → T such that any triple
(p, q, r) ∈ S3 of three distinct points has the same orientation (clockwise or counterclockwise) as
the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3. The resulting equivalence relation on planar n-point sets has
a finite number of equivalence classes, the order types [105]. Representatives of several distinct
order types of five or six points are illustrated in Figure 3.2. Among other things, the order
type of the set of vertices determines which edges cross in a straight-line drawing. Thus, order
types appear ubiquitously in the study of extremal problems on straight-line drawings.

Now, suppose we have discovered an interesting order type, and we would like to illustrate it in
a publication. One solution is to give explicit coordinates of a representative point set S; see
Figure 3.1 (left). This is unlikely to satisfy most readers. We could also present S as a set of
dots in a figure. For some point sets (particularly those with extremal properties), the reader
may find it difficult to discern the orientation of an almost collinear point triple. To mend
this, we could draw all lines spanned by two points in S. In fact, it suffices to present only
the segments between the point pairs (the straight-line drawing of the complete graph on S).
The orientation of a triple can then be obtained by inspecting the corresponding triangle; see
Figure 3.1 (middle). However, such a drawing is rather dense, and we may have trouble following
an edge from one endpoint to the other. Therefore, we want to reduce the number of edges in
the drawing as much as possible, but so that the order type remains uniquely identifiable; see
Figure 3.1 (right).

(-1,1)

(1,1)

(-1,-1)

(1,-1)

(-0.6,0.4)

(-0.6,-0.4)

Figure 3.1.: Three different representations of an order type of six points.

33
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We remark that there are order types requiring doubly exponential grid size in any drawing [106].
This implies that the coordinate representation of an order type might require exponential
storage. However, order types of random point sets with high probability have representatives
that can be drawn on an integer grid of small size [87].

We introduce the concept of exit edges to capture which edges are sufficient to uniquely describe
a given order type in a robust way under continuous motion of vertices. More precisely, in
a straight-line drawing on a representative point set with all exit edges, at least one vertex
needs to move across an (exit) edge in order to change the order type. We give an alternative
characterization of exit edges in terms of the dual line arrangement, where an exit edge
corresponds to one or two empty triangular cells. This allows us to efficiently compute the set
of exit edges for a given set of n points in O(n2) time and space.

Using the more general framework of abstract order types and their dual pseudoline arrange-
ments, we prove that every set of n ≥ 4 points has at least (3n − 7)/5 exit edges. We also
describe a family of n points with n− 3 exit edges, showing that the best possible lower bound
is of order Ω(n). An upper bound of n(n− 1)/3 follows from known results on the number of
triangular cells in line arrangements [108]. Thus, compared to the drawing all n(n− 1)/2 edges,
using only exit edges we save at least one third of the edges.

Two straight-line drawings (of the same graph) are isomorphic if there is an orientation-
preserving homeomorphism of the plane transforming one into the other. Each class of this
equivalence relation may be described combinatorially by the cyclic orders of the edge segments
around vertices and crossings, and by the incidences of vertices, crossings, edge segments,
and cells. In the following, we will consider topology-preserving deformations. An ambient
isotopy of the Euclidean plane is a continuous map f : R2 × [0, 1]→ R2 such that f(·, t) is a
homeomorphism for every t ∈ [0, 1] and f(·, 0) = Id. Note that if there is an ambient isotopy
transforming a straight-line drawing D(G) of a graph G into another straight-line drawing
D′(H) of a graph H, then D(G) and D′(H) are isomorphic.

Definition 3.1. Let D(G) be a straight-line drawing of a graph G on a point set S. We say
that D(G) is supporting for S if every ambient isotopy f of R2 that keeps the images of the
edges of G straight (thus, transforming D(G) into another straight-line drawing) and that allows
at most one triple of collinear points of f(S, t) for every t ∈ [0, 1], also preserves the order type
of the vertex set.

The connection between order types and straight-line drawings has been studied intensively,
both for planar drawings and for drawings minimizing the number of crossings. For example, it
is NP-complete to decide whether a planar graph can be embedded on a given point set [58].
Continuous movements of the vertices of plane straight-line drawings of graphs have also been
considered [31]. The continuous movement of points maintaining the order type was considered
by Mnëv [89, 148]. He showed that there are point sets with the same order type such that
there is no ambient isotopy between them preserving the order type, settling a conjecture by
Ringel [175]. The orientations of triples that have to be fixed to determine the order type are
strongly related to the concept of minimal reduced systems [55].
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Figure 3.2.: Representatives of all the order types of five and six points in general position. Exit edges
are drawn in black.

Outline. We introduce the concept of exit edges for a given point set. The resulting exit
drawings are always supporting, though they are not necessarily minimal. In Section 3.2 we
show that some exit edges are rendered unnecessary by non-stretchability of certain pseudoline
arrangements. Despite being non-minimal in general, we argue that exit drawings are good
candidates for supporting drawings by discussing their dual representation in pseudoline
arrangements (Section 3.3). This connection allows us to both compute exit edges efficiently
and give bounds on their number (Section 3.4). In particular we show that using exit edges to
represent order types saves at least one third of the edges with respect to drawing all the edges.
The undelying abstract graph of a supporting drawing does not need to be connected in general,
and two minimal straight-line drawings that are supporting for point sets with different order
types can be drawings of the same abstract graph; see Figure 3.2. Thus, the structure of the
drawing is crucial. In Section 3.5 we provide some further properties of the exit drawings. We
conjecture that graphs based on exit edges are not only supporting but also they encode the
order type, as discussed in Section 3.6. In Section 3.7 we present a summary of the chapter.



36 Chapter 3. Minimal representations of order types by straight-line drawings

a b

c

Figure 3.3.: If the blue region is empty of points, then the edge ab is an exit edge.

a

b

x

y

a

b

x

y

Figure 3.4.: An illustration of the proof of Proposition 3.3.

3.2. Exit edges

Clearly, a straight-line drawing of the complete graph Kn is supporting for every point set of n
points in general position. To obtain a supporting drawing with fewer edges, we select edges so
that no vertex of the resulting straight-line drawing can be moved to change the order type
while preserving isomorphism.

Let a, b, c be three distinct points. We denote by
−→
ab the ray starting at a and going through b,

and by ab the line through a and b directed from a to b.

Definition 3.2. Let S ⊂ R2 be a finite set of points in general position. Let a, b, c ∈ S be three
distinct points. Then, ab is an exit edge with witness c if there is no p ∈ S such that the line
ap separates b from c or the line bp separates a from c. The straight line drawing with vertex
set S and whose edges are the exit edges is called the exit drawing of S.

Equivalently, ab is an exit edge with witness c if and only if the double-wedge through a
between b and c and the double-wedge through b between a and c contain no point of S in their
interior; see Figure 3.3 (left).

An exit edge has at most two witnesses. If |S| ≥ 4 and ab is an exit edge in S with witness c,
neither ac nor bc can be an exit edge with witness b or a, respectively. We illustrate the set of
exit edges for sets of five and six points in Figure 3.2.

Exit edges can be characterized via 4-holes. For an integer k ≥ 3, a (general) k-hole in S is
a simple polygon P spanned by k points of S whose interior contains no point of S. If P is
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convex, we call P a convex k-hole. A point a ∈ S or an edge ab with a, b ∈ S is extremal for S
if it lies on the boundary of the convex hull of S. A point or an edge in S that is not extremal
in S is internal to S.

Proposition 3.3. Let S ⊂ R2 be a set of points in general position and let a, b ∈ S. Then, ab
is not an exit edge of S if and only if the following conditions hold:

1. If ab is extremal in S, then ab is an edge of at least one convex 4-hole in S.

2. If ab is internal in S, then there are two 4-holes abxy and bauv, in counterclockwise order,
such that their reflex angles (if any) are incident to ab.

We remark that an internal exit edge either has a witness on both sides or is incident to at
least one general 4-hole on one side.

Proof. Let ab be an exit edge with a witness c that lies, without loss of generality, to the left

of
−→
ab. Suppose there is a general 4-hole abxy, traced counterclockwise, such that the reflex

angle of abxy (if it exists) is incident to ab. We can assume that y lies to the left of
−→
ab, as in

Figure 3.4. First, suppose that abxy is convex (this must hold if ab is extremal). Since ab is
an exit edge with witness c, the line ax does not separate c from b and the line by does not
separate c from a. Thus, c must be inside the 4-hole abxy, which is impossible. Second, suppose
that abxy is not convex (then, ab is internal), and x is to the right of ab. Since ab is an exit
edge with witness c, the line bx does not separate a from c and the line ay does not separate b
from c, so c lies inside the 4-hole abxy, again a contradiction.

Conversely, assume that ab is not an exit edge. First, let ab be extremal, and let p be the closest
point in S \{a, b} to the line ab. The triangle abp is a 3-hole in S. Since p is not a witness for ab,
there is a point q ∈ S \ {a, b, p} such that, without loss of generality, the line bq separates a
from p. Since ab is extremal, q lies on the same side of ab as p and, in particular, the polygon
abpq is convex. If we choose q so that it is the closest such point to the line ap, the triangles
bpq and abq are 3-holes in S. Altogether, we obtain a convex 4-hole abpq in S.

Second, let ab be internal. Let p be closest in S \ {a, b} to the line ab such that p lies to the
left of ab. The triangle abp is a 3-hole in S. Since p is not a witness for ab, there is a point
q ∈ S \ {a, b, p} such that either the line bq separates a from p or the line aq separates b from p.
If q lies to the left of ab, we obtain a convex 4-hole as in the previous case. Thus, we can
assume that all such points q lie to the right of ab. We choose the point q so that it is (one
of the) closest to the line ab among all points that prevent ab from being an exit edge with
witness p. Without loss of generality, we assume that the line bq separates a from p. The choice
of q guarantees that bpq is a 3-hole in S. Thus, abqp is a 4-hole in S incident to ab from the left.
An analogous argument with a point p′ from S \ {a, b} that is closest to ab such that p′ lies to
the right of ab shows that there is an appropriate 4-hole in S incident to ab from the right.

Proposition 3.4. Let S ⊂ R2 be finite and in general position and, for every t ∈ [0, 1], let
S(t) be a continuous deformation of S at time t. More formally, let f : R2 × [0, 1]→ R2 be an
ambient isotopy and S(t) = {f(s, t) | s ∈ S}, for t ∈ [0, 1]. Suppose that, for every t ∈ [0, 1],
there is at most one collinear triple of points in S(t). Let (a, b, c) be the first triple to become
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a
b

c

Figure 3.5.: Moving c overs ab to make (a, b, c) oriented clockwise without changing the orientation of
other triples, would contradict Pappus’s theorem [175].

collinear, at time t0 > 0. If c lies on the segment ab in S(t0), then ab is an exit edge of S(0)
with witness c.

Proof. For t ∈ [0, t0), the triple orientations in S(t) remain unchanged, and in S(t0) the point c
lies on ab and the orientations of all triples except (a, b, c) are still unchanged. Thus, for
t ∈ [0, t0), there is no line through two points of S(t) that strictly separates the relative interior
of ab from c. In particular, there is no such separating line through a or b in S(0). Hence, ab is
an exit edge with witness c.

Corollary 3.5. The exit drawing of every point set is supporting.

The proof of Proposition 3.4 also shows that if a line separates c from the relative interior of ab,
then there is such a line through a or b. This may suggest that the exit edges are necessary
for a supporting drawing. However, this is not true in general. For example, in Figure 3.5,
we see a construction by Ringel [175]: ab is an exit edge with witness c, but c cannot move
over ab without violating Pappus’ theorem. We note that in this situation, we might consider
the abstract order type for the triple orientations we would obtain after moving c over ab. Since
there is no planar point set with this set of triple orientations, this abstract order type is not
realizable. Deciding realizability is (polynomial-time-)equivalent to the existential theory of the
reals [148]. We will revisit these concepts in Section 3.4.

We note that there are point sets where two or more other exit edges prevent a witness c
from crossing its corresponding exit edge ab; see, for example, Figure 3.6 (left). Since the two
straight-line drawings in Figure 3.6 are not isomorphic, they cannot be transformed into each
other by a continuous deformation as the one used in Definition 3.1. However, in this example,
while c cannot move to ab without changing the order type in Figure 3.6 (left), if ab were not
present, we could first change the point set to the one in Figure 3.6 (right) and then move c
over ab. Thus, ab indeed has to be in a supporting drawing.
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c

a b
c

a b

Figure 3.6.: The segment ab is an exit edge with witness c. In the left figure we cannot move c
continuously to ab without first changing the order type, unless we also move other points.

3.3. Exit edges and empty triangular cells

The (real) projective plane P2 is a non-orientable surface obtained by augmenting the Euclidean
plane R2 by a line at infinity. This line has one point at infinity for each direction, where all
parallel lines with this direction intersect. Thus, in P2, each pair of parallel lines intersects in a
unique point.

For a point set S in the Euclidean plane, add a line `∞ to obtain the projective plane. We use
a duality transformation that maps a point s of P2 to a line s∗ in P2. In this way, we get a set
of lines S∗ dual to S, giving a projective line arrangement A. The removal of a line from A
does not disconnect P2. Since P2 has non-orientable genus 1, removing any two lines `1 and `2
from P2 disconnects it into two components. We call the closure of each of the two components
a halfplane determined by `1 and `2. The marked cell c∞ is the cell of A that contains the
point `∗∞ dual to the line `∞. By appropriately choosing the duality transformation, we can
assume that `∗∞ lies at vertical infinity.

The combinatorial structure of A, together with the marked cell, determines the order type
of S. We show how to identify exit edges and their witnesses in dual line arrangements.

We use the marked cell c∞ to orient the lines from S∗: First, we orient the lines on the boundary
of c∞ in one direction. Then, we iteratively remove lines that have already been oriented, and
we define the orientation for the remaining lines from S∗ by considering the new lines on the
boundary of c∞. Then, c∞ is the only cell whose boundary is oriented consistently, that is, it
can be traversed completely along the resulting orientation. In particular, for an unmarked
triangular cell 4 in A, the directed edges of 4 form a transitive order on its vertices, with
a unique vertex of 4 in the middle (such that locally around that vertex the boundary is
oriented consistently). We call this vertex the exit vertex of 4 and the line through the other
two vertices of 4 the witness line of 4.

Note that if we consider the duality mapping a point p = (px, py) from the real plane to the
(non-vertical) line p∗ : y = pxx− py, then the described orientation procedure corresponds to
orienting these dual lines from left to right.

Theorem 3.6. Let S ⊂ R2 be in general position, and let a, b, c ∈ S. Then, ab is an exit edge
with witness c if and only if the lines a∗, b∗, and c∗ bound an unmarked triangular cell 4 in the
arrangement A of lines from S∗ so that c∗ is the witness line of 4 and the point ab

∗
= a∗ ∩ b∗

is the exit vertex of 4.
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c∗

a∗ b∗

w(b∗, c∗)w(a∗, c∗)

4

Figure 3.7.: An illustration of the proof of Theorem 3.6. If ab is an exit edge with witness c in S, then
the two bold drawn segments of the corresponding triangular cell are unintersected, and
thus, bound an unmarked triangular cell in S∗. The exit vertex is represented with a black
disk.
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b b

c c

a∗

b∗
c∗

b∗
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a a

Figure 3.8.: When using the standard duality, the exit vertices might not be the ones with intermediate
x-coordinate. Top: ab is an exit edge. The shaded area is empty of points. Bottom: Dual
line arrangements. The red region is a triangular cell and the exit vertex is represented
with a black disk.

Proof. For two points p, q ∈ S and their dual lines p∗, q∗ ∈ S∗, we denote by w(p∗, q∗) the
halfplane determined by p∗ and q∗ that does not contain the marked cell. Thus, the boundary of
w(p∗, q∗) is not oriented consistently. Since projective duality preserves incidences, the condition
that no line spanned by two points of S intersects the edge pq is equivalent in S∗ to w(p∗, q∗)
not containing any vertex of A.

Let 4 be the triangular region determined by the intersection of the two halfplanes w(a∗, c∗)
and w(b∗, c∗). By the projective duality, ab is an exit edge with witness c in S if and only if no
line of S∗ intersects a∗ inside w(b∗, c∗) or b∗ inside w(a∗, c∗). In other words, if and only if two
sides of 4, lying on a∗ and b∗, contain no intersection with lines from S∗. This is equivalent
to 4 being a cell of the arrangement A. Moreover, a∗ and b∗ share the exit vertex of 4; see
Figure 3.7. Consequently, the exit vertex a∗ ∩ b∗ is the dual of the line containing the exit
edge ab.

We remark that when considering the duality mapping a point p = (px, py) from the real plane
to the (non-vertical) line p∗ : y = pxx− py, the exit vertex of a triangular cell might not be the
one with the intermediate x-coordinate; see Figure 3.8.
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41
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v1

v2

41

42

v

Figure 3.9.: Left: The two triangular cells 41 and 42 do not form an hourglass, because they share
a vertex that is not an exit vertex. Right: The two triangular cells 41 and 42 form an
hourglass because they share an exit vertex.

Corollary 3.7. Let S be a set of n points in general position. Then the exit edges of S can be
enumerated in O(n2) time by constructing the dual line arrangement of S and checking which
cells are unmarked triangular cells.

3.4. On the number of exit edges

Line arrangements can be generalized to so-called pseudoline arrangements. A pseudoline is
a closed curve in the projective plane P2 whose removal does not disconnect P2. A set of
pseudolines in P2, where any two pseudolines cross exactly once, determines a (projective)
pseudoline arrangement. If no three pseudolines intersect in a common point, the pseudoline
arrangement is simple. All notions that we have introduced for line arrangements, such as
consistent orientations, exit vertices, or witness lines, naturally extend to pseudolines. For an
introduction to pseudoline arrangements (and oriented matroids) we refer the reader to [89,
173]. (By the Topological Representation Theorem of Folkman and Lawrence [93], pseudoline
arrangements are closely connected with oriented matrioids of rank 3.)

A pseudoline arrangement is stretchable if it is isomorphic to a line arrangement, that is, the
corresponding cell complexes into which the two arrangements partition P2 are isomorphic.
The combinatorial dual analogues of line arrangements and pseudoline arrangements are order
types and abstract order types, respectively. Thus, deciding if a pseudoline arrangement is
stretchable is (polynomial-time-)equivalent to the existential theory of the reals [89, 148].

As discussed in Section 3.3, the maximum number of triangular cells in a simple projective
pseudoline arrangement gives an upper bound on the number of exit edges of a point set.
However, one triangular cell could be c∞, and there could be pairs of triangular cells with the
same exit vertex. We call a configuration of the latter type an hourglass ; see Figure 3.9. We say
that the two pseudolines p and q that define the exit vertex of the two triangular cells of an
hourglass H slice H and that H is sliced by p and by q.

Observation 3.8. A triangular cell can be a part of at most one hourglass.

Observation 3.9. An exit edge ab with two witness points is dual to an hourglass with exit
vertex ab

∗
.
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Any projective arrangement of n ≥ 4 lines has at least n triangular cells, as each line is incident
to at least three triangular cells [141]. This is known to be tight. Therefore, taking into account
the marked cell c∞ and possible hourglasses, any set of n ≥ 4 points has at least dn−1

2 e exit
edges. We improve this lower bound by bounding from below the difference between the number
of triangular cells and the number of hourglasses.

Proposition 3.10. Any set of n ≥ 4 points in the plane has at least (3n− 7)/5 exit edges.

For the proof of Proposition 3.10 we use the following two lemmas. The first is a theorem by
Grünbaum [108, Theorem 3.7 on p. 50], and the second can be derived from the proof of that
theorem.

Lemma 3.11 (Grünbaum [108]). In a simple pseudoline arrangement L every pseudoline from
L is incident to at least three triangular cells.

Lemma 3.12 (Grünbaum [108]). Let L be a simple arrangement of pseudolines, and let H be
a closed halfplane determined by two pseudolines `1, `2 ∈ L. If two other pseudolines of L cross
in the interior of H, then there is a triangular cell in H that is incident to `1 but not to `2.

Proof of Proposition 3.10. Let L be a simple projective line arrangement of n ≥ 4 pseudolines
`1, `2, . . . , `n. For each pseudoline `i ∈ L, let ti be the number of triangular cells incident to `i
and hi the number of hourglasses sliced by `i. Set xi = ti − hi/2. For each pseudoline `i ∈ L,
there are three possible cases.

Case 1: There is no hourglass sliced by `i. By Lemma 3.11, every pseudoline is incident to at
least three triangular cells. Thus, we have xi = ti ≥ 3.

Case 2: The pseudoline `i slices an hourglass together with some pseudoline `j and the interior
of each of the two halfplanes determined by `i and `j contains at least one crossing of
some other pair of pseudolines. By Lemma 3.12, `i is incident to the two triangular cells
of the hourglass plus at least two other triangular cells, one in each closed halfplane. (We
ignore here that a cell might be the marked one.) Thus, ti ≥ 4. Observation 3.8 implies
hi ≤ ti/2. Overall we get xi = ti − hi/2 ≥ ti − ti/4 ≥ (3/4) · 4 = 3.

Case 3: The pseudoline `i slices an hourglass together with some pseudoline `j , and one of
the two closed halfplanes H1 and H2 determined by `i and `j contains no crossing of any
other pair of pseudolines in its interior. Suppose the closed halfplane that contains no
further crossing is H1. Then, the hourglass sliced by `i and `j is in H1, as the other two
lines defining the hourglass do not cross in that halfplane; see Figure 3.10 (left). Since
H1 contains no crossing in its interior, it is divided by the other pseudolines into 4-gons
and the two triangular cells of the hourglass. In particular, the marked cell is bounded
by only four pseudolines, two of them being `i and `j ; see Figure 3.10 (right). Thus,
there can be at most four pseudolines for which Case 3 applies. Notice that in this case
hi = 1, since any other hourglass sliced by `i would have one triangular cell in each of the
two halfplanes H1 and H2 and the two triangular cells in H1 form the already-counted
hourglass (and by Observation 3.8 they cannot be part of another hourglass). Thus, we
can only guarantee that xi ≥ 3− 1/2 = 5/2. However, as we showed, this case can happen
at most for two pairs of pseudolines.
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`i

`j

`i

`j

H1

Figure 3.10.: In Case 3, both `i and `j must bound the marked cell, shown striped on the right picture.
Moreover, that cell is bounded by four pseudolines. Thus, this case can happen for at
most two pairs of pseudolines.

Figure 3.11.: Construction with n− 3 exit edges.

Let T be the total number of triangular cells in L and let H be the total number of hourglasses.
Summing the contributions of Cases 1–3, we have

3T −H =

n∑
i=1

ti −
1

2

n∑
i=1

hi =

n∑
i=1

xi ≥ 3 · (n− 4) + 4 ·
(

5

2

)
= 3n− 2.

By Observation 3.8, we have T ≥ 2H. Combining these inequalities, we get

T −H =
3T −H + 2(T − 2H)

5
≥ 3T −H

5
≥ 3n− 2

5
.

By Theorem 3.6, the number of exit edges in a point set is equal to the number of exit vertices
in its dual line arrangement. In general, the number of exit vertices in a pseudoline arrangement
is bounded from below by T −H − 1. Therefore, there are at least 3

5n−
7
5 exit edges.

We do not know if the lower bound in Proposition 3.10 is tight. The smallest number of exit
edges we could achieve is n− 3 for n ≥ 9; see Figure 3.11.

The number of triangular cells in a simple arrangement of n lines in the projective plane P2

is at most n(n − 1)/3 [108, Theorem 2.21 on p. 26], so there are at most n2/3 + O(n) exit
edges. This means that representing an order type with the exit drawing instead of with all
the edges between pairs of points saves at least one third of the edges. Palásti and Füredi [98]
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Number of points n 3 4 5 6 7 8 9 10

Min. EE 3 2 3 4 5 6 6 7

OTs with min. EE 1 1 1 3 13 80 1 3

Max. EE 3 3 5 6 9 14 16 21

OTs with max. EE 1 1 1 5 4 1 11 11

OTs 1 2 3 16 135 3 315 158 817 14 309 547

Table 3.1.: Minimum and maximum number of exit edges (EE) in a point set with at most 10 points
and number of order types (OTs) achieving these minimum and maximum values.

a∗

p∗

b∗

c∗

(a)

a∗

p∗

b∗

c∗

(b)

Figure 3.12.: An illustration of Lemma 3.13.

showed that for every value of n there are simple arrangement of n lines in P2 with n(n− 3)/3
triangular cells. Moreover, Roudneff [177] and Harborth [116] showed that the upper bound
n(n− 1)/3 is tight for infinitely many values of n (see also [53]). The point sets that are dual
to the currently known triangle-maximizing arrangements have n2/6 +O(n) exit edges, since
most of their exit edges have two witnesses. This gives a quadratic lower bound for the number
of exit edges in the worst case, but the leading coefficient remains unknown.

It is worth noting that there are line arrangements with no pair of adjacent triangular cells [142],
which implies the existence of point sets where every exit edge has precisely one witness.

Regarding precise values for small point sets, Table 3.1 shows the minimum and maximum
number of exit edges in point sets with up to ten points. The values were obtained by exhaustive
computer search in the database of order types [12, 26]. In particular, it shows that the example
in Figure 3.11 displays the only order type of nine vertices with six exit edges.

The next lemma shows that the number of exit edges is non-decreasing when adding new points
to a point set with at least four points.

Lemma 3.13. Let S be a set of at least five points in general position. For any point p ∈ S, S
has at least the same amount of exit edges as S\{p}.

Proof. Let ab with a, b ∈ S\{p} be an exit edge of S\{p} with witness c ∈ S\{p}. For the proof
we consider the dual line arrangement S∗ of S. By Theorem 3.6, the lines a∗, b∗, and c∗ define
an empty triangular cell in S∗\{p∗} with a∗ ∩ b∗ as exit vertex. If p∗ intersects this triangular
cell, it can either intersect both a∗ and b∗ or c∗. In the former case, a smaller triangular cell
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exists inside the original one and a∗ ∩ b∗ is an exit vertex; see Figure 3.12(a). In the latter case,
we can assume without loss of generality that p∗ intersects both a∗ and c∗. Again in this case a
smaller triangular cell exists inside the original one; see Figure 3.12(b). Since S∗\{p∗} is a line
arrangement with at least four lines, no two triangular cells in it are separated by a common
boundary segment. Thus, the exit vertex of the smaller triangular cell cannot be the exit vertex
for any other triangular cell in S∗. Therefore, when inserting p∗ in S∗\{p∗} for each exit vertex
that gets destroyed at least new one gets created.

We now show that the expected number of exit edges is quadratic for uniformly distributed
point sets in convex shapes.

Theorem 3.14. Let S = {p1, . . . , pn} be a set of n points in the plane with pi = (i, yi) for
every i = 1, . . . , n, where each yi is chosen uniformly at random from the real interval [1, n].
Then the expected number of exit edges in S is Θ(n2).

The main idea of the proof of Theorem 3.14 is inspired by the proof of Theorem 2.3 from [46].

Proof. The upper bound O(n2) on the number of exit edges in S follows from the fact that the
number of pairs of points from S is

(
n
2

)
. In the rest of the proof we establish the lower bound

Ω(n2).

First, note that all points of S lie in the rectangle R = [1, n]× [1, n]. Assume for convenience
that n is divisible by 5. In the following, we identify each point pi with the number i, which
is the x-coordinate of pi. Let A = {1, . . . , n5 }, B = {2n

5 + 1, . . . , 3n
5 }, and C = {4n

5 + 1, . . . , n}.
(We can assume that n is multiple of 5.) Let a, b, and c be fixed integers with a ∈ A, b ∈ B,
and c ∈ C. We now find a lower bound on the probability that papc is an exit edge of S with
witness pb.

The probability that the point pb has vertical distance at most 1 from the line segment papc
is at least 1

n , because the points from {b} × R lying at distance at most 1 from papc form a
vertical line segment of length 2, and at least one half of this line segment is contained in R.

In the following, we assume that pb has distance at most 1 from papc. Consider a point pd with
d ∈ {a+ 1, . . . , n} \ {b, c}. Since a ∈ A and b ∈ B, we have b− a ≥ n/5 and d− a ≤ n. Since pb
has distance at most 1 from papc, the vertical side of the triangle T bounded by the vertical
line {b} × R and by the rays −−→papb and −−→papc has length at most 1; see Figure 3.13. Since the
triangle T ′ bounded by these two rays and by the vertical line {d}×R is similar to T , and since
d− a ≤ 5(b− a), the vertical side of T ′ has length at most 5. Thus, the probability that pd lies
in the convex wedge spanned by the rays −−→papb and −−→papc is at most 5/n. An analogous argument
shows that the probability that a point pd with d ∈ {1, . . . , c − 1} \ {a, b} lies in the convex
wedge spanned by the rays −−→pcpa and −−→pcpb is at most 5/n. In total, the probability that papc is
an exit edge of the point set {pa, pb, pc, pd} with witness pb is at least 1− 10/n.
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a b d c
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Figure 3.13.: An illustration of the proof of Theorem 3.14.

Altogether, the probability that papc is an exit edge of S with witness pb and that pb is at
vertical distance at most 1 from papc is at least

1

n
·

∏
d∈{1,...,n}\{a,b,c}

(
1− 10

n

)
=

1

n
·
(

1− 10

n

)n−3

≥ 1

n · e20
,

where we use the inequality 1− x ≥ e−2x for every real x with 0 ≤ x ≤ 1/2.

Since every exit edge of S has at most two witnesses, the expected number of exit edges of S is
at least

1

2

∑
a∈A

∑
b∈B

∑
c∈C

1

n · e20
≥ Ω(n2).

Combining the point-line duality that maps a point (a, b) to the line {(x, y) ∈ R2 : y = ax− b}
with Theorem 3.14, we obtain the following result.

Corollary 3.15. Let L = {`1, . . . , `n} be a set of lines, where `i = {(x, y) ∈ R2 : y = i · x− bi}
and where bi is chosen uniformly at random from the real interval [1, n]. Then the expected
number of triangular cells in the line arrangement induced by L is Θ(n2).

3.5. Properties of exit drawings

We present some further results on supporting drawings and exit drawings.

Theorem 3.16. Any straight-line drawing supporting a point set S, with |S| ≥ 9, contains a
crossing.

Proof. Let D(G) be a straight-line drawing with vertex set S without crossings. There is a
point set S′ with a different order type that also admits D(G): Dujmović [81] showed that
every plane graph admits a plane straight-line embedding with at least

√
n/2 points on a line.
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Figure 3.14.: An illustration of the setting for the proof of Proposition 3.17.

As we have a point set with a collinear triple that admits D(G), there are at least two point
sets S and S′ in general position with a different order type that admit D(G). Moreover, one
can continuously morph S to S′ while keeping the corresponding straight-line drawing plane
and isomorphic to D(G) (see, for example, [31]). Therefore, D(G) does not support S.

Proposition 3.17. Let S be a point set in general position in R2 and let D(G) be its exit
drawing. Every vertex on the boundary of the unbounded cell of D(G) is extremal, that is, it
lies on the boundary of the convex hull of S.

Note that, as shown in Figure 3.5 (left), an analogous statement does not hold for general
supporting drawings.

Proof. Suppose for contradiction that there is a point p ∈ S on the boundary of the unbounded
cell of the exit drawing of S and that is non-extremal, that is, lies in the interior of the convex
hull conv(S) of S. This means that there is a polygonal path inside conv(S) from p to the
boundary of conv(S) such that the interior of this path intersects no exit edge of S. Let δ(p) be
the infimum of the lengths of such paths. Since conv(S) and S are both compact sets, there is
a polygonal path Pp of length δ(p) > 0 from p to the boundary of conv(S) that has no crossing
with exit edges but may pass through other points of S. Among all such points p, let r ∈ S be
the point for which δ(r) is the minimum possible. Then Pr is a single segment. Let q be the
endpoint of Pr on the boundary of conv(S).

If q coincides with an extremal point in S, we slightly perturb the point q so that q lies in
the interior of an edge of conv(S) and the line segment rq does not intersect any exit edge
of S. Let s and t be the endpoints of the edge of conv(S) containing q; see Figure 3.14 for an
illustration.

Since exit edges are invariant to shearing, rotation, and mirroring, we assume without loss of
generality that the following three conditions are satisfied.

(i) The points r and q lie on the y-axis, s has negative x-coordinate and t has positive
x-coordinate,

(ii) the point r lies above the line st, and

(iii) all points of S have distinct x-coordinates and S does not contain the origin.
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q∗r

q
s

t

t∗s∗

Figure 3.15.: Applying the dual transformation to the point set S (left) and obtaining the line
arrangement S∗ (right).

To obtain a contradiction, we will show that the segment rq intersects the interior of an exit
edge of S. We will prove this in a dual setting.

By applying the duality transformation that maps each point p = (a, b) to the line p∗ =
{(x, y); y = ax− b}, we map the point set S to the dual line arrangement S∗. Due to the three
conditions above, the lines r∗ and q∗ are horizontal and the lines s∗ and t∗ have a negative and
a positive slope, respectively; see Figure 3.15. A triple of points of S representing the endpoints
of an exit edge together with its witness, such that the x-coordinate of the witness is between
the x-coordinates of the endpoints of the exit edge, corresponds to a triangular cell ∆ in S∗

where the dual of the witness is the line bounding ∆ with median slope.

Let 4 be the triangular region bounded by the lines r∗, s∗, and t∗. Since the line segment st is
not an exit edge in S, the triangular region 4 is not a cell in S∗. Thus, the interior of 4 is
intersected by some line from S∗. Since s and t are vertices of conv(S), their duals s∗ and t∗

are incident to the upper envelope of S∗.

Moving a point p vertically down from r to q corresponds to sweeping the dual S∗ by a horizontal
line p∗ from r∗ to q∗. Thus, meeting an exit edge of S with p corresponds to the situation in the
dual in which the sweeping line p∗ meets a vertex of a triangular cell of S∗ such that the vertex
is an intersection of a line with a positive slope and a line with a negative slope. Therefore,
the line segment rq crosses an exit edge of S if and only if there is a triangular cell 4′ of S∗

between r∗ and q∗ such that 4′ is bounded by two lines with positive and negative slope. To
obtain a contradiction, we will show that 4 contains such a triangular cell 4′.

We start with the line arrangement containing the lines r∗, s∗, and t∗ and we iteratively add the
lines of S∗ that intersect 4. We first add such lines with positive slopes, sorted by increasing
slopes, and prove that in every step we have a triangular region inside 4 with one edge on s∗. In
the beginning, 4 itself is such a triangular region. In each iterative step we have to show that if
the existing triangular region is intersected, a new such triangular region is created. Note that s∗

is the only line in our arrangement with a negative slope. Since we are iteratively inserting only
lines with positive slopes sorted by increasing slopes, the slope of the newly inserted line is
larger than the slopes of all remaining lines in our arrangement, possibly except t∗. The four
possible cases are depicted in Figure 3.16.

Since we are inserting lines with positive slope, sorted by increasing slope, the newly inserted
line cannot have minimum slope among the ones with positive slope. In fact, either t∗ or the



3.5. Properties of exit drawings 49

s∗

(a)

s∗

(b)

s∗

(c)

s∗

(d)

Figure 3.16.: All possible ways of intersecting the previous triangular region when inserting the lines
from S∗ with positive slopes. The line s∗ is the only one with negative slope and is colored
green. The newly inserted line with positive slope is depicted dashed. The leftmost case
cannot occur in our setting, since the slope of r∗ is zero and the lines are inserted by
increasing slope. A newly created triangular cell is shaded and a new triangular region
which contains a triangular cell is colored black.

s∗

s∗

Figure 3.17.: Inside the black triangular region there is a triangular cell bounded by s∗.

newly inserted line has maximum slope. Therefore, the case shown in Figure 3.16(d) cannot
occur in any step. For the cases shown in Figure 3.16(a) and 3.16(b), a new triangular cell
(shaded gray) with an edge on s∗ is created.

For the case shown in Figure 3.16(c), we show that inside the black triangular region there is a
triangular cell inside 4 with an edge on s∗. Since the lines s∗ and t∗ must bound the upper
envelope, the newly inserted line is below the intersection of s∗ and t∗. Thus, the black triangular
region is completely contained in 4. In particular, this means that the black triangular region
cannot be bounded by t∗. If the black triangular region is a cell, we are done. Otherwise, to
show that there is a triangular cell bounded by s∗ inside the black triangular region, consider
all the intersections of lines with positive slope added previously that lie in the closure of the
black triangular region. The closest intersection to s∗ is the leftmost vertex of a triangular cell
bounded by s∗, since all the inserted lines have positive slope; see Figure 3.17 for an illustration.
This shows that after inserting all lines with positive slope we have a triangular cell inside 4
with s∗ on its boundary.

After all lines with positive slope have been inserted, in the resulting arrangement there are two
lines r̃∗ and t̃∗ with non-negative slope (they possibly coincide with r∗ or t∗), which, together
with s∗, bound a triangular cell 4′ that lies inside the triangle 4.

We now iteratively add the lines with negative slope sorted by decreasing slope. In an analogous
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Figure 3.18.: All possible ways of intersecting the previous triangular region when inserting a new line
with negative slope, whereas the rightmost case cannot occur in our setting. Lines with
positive (negative) slope are colored orange (blue). The newly inserted line with negative
slope is depicted dashed. A newly created triangular cell is shaded in gray and a new
triangular region which contains a triangular cell is colored black.

manner as before, we show that in every step there is a triangular cell inside 4′ that is bounded
by t̃∗ and at least one line with negative slope. All possible cases after adding a new line are
depicted in Figure 3.18. Notice that the different cases are the mirrored versions of the ones in
Figure 3.16. The symmetry allows us to use arguments analogous to the ones used before.

In the cases shown in Figures 3.18(a) and 3.18(b), a new triangular region (depicted shaded)
bounded by t̃∗ and at least one line with negative slope is created. Since we are inserting lines
with negative slope, sorted by decreasing slope, the newly inserted line cannot have maximum
slope among the ones with negative slope. Thus, the case shown in Figure 3.18(d) cannot occur
at any step.

For the case shown in Figure 3.18(c), we show that inside the black triangular region there is a
triangular cell inside 4 with an edge on t̃∗. Since the lines s∗ and t∗ must bound the upper
envelope, the newly inserted line is below the intersection of s∗ and t∗. Thus, the black triangular
region is contained in 4 and in 4′ (since this last one was bounded by s∗). In particular, this
means that the black triangular region cannot be bounded by s∗. If the black triangular region
is a cell, we are done. Otherwise, to show that there is a triangular cell bounded by t̃∗ inside
the black triangular region, consider all the intersections of lines with negative slope previously
added that lie in the closure of the black triangular region. The intersection closest to t̃∗ is the
rightmost vertex of a triangular cell bounded by t̃∗, since the black triangular region is in 4′,
and therefore all lines intersecting it have negative slope.

Altogether, by duality, we have that the segment rq crosses an exit edge of S, which is a
contradiction.
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Figure 3.19.: Top: Two arrangements of 14 pseudolines with the same set of triangular cells (extend-
ing [90, Figure 3]). Bottom: Corresponding dual point sets. The order types are not the
same (see for example the number of extremal points).

3.6. Reconstructing the order type

We conjecture that the straight-line drawing of the exit edges not only is supporting for S,
but also that any point set S′ that is the vertex set of an isomorphic straight-line drawing
has the same order type as S. One might conjecture that already knowing all exit edges
and their witnesses (in the dual line arrangement, all triangular cells and their boundary
orientations) is sufficient to determine the order type. Surprisingly, this turns out to be not true.
A counterexample is presented in Figure 3.19 as a dual (stretchable) pseudoline arrangement of
14 lines in the projective plane, based on an example by Felsner and Weil [90]. It consists of
two arrangements of six lines in the Euclidean plane that are combinatorially different, but
share the set of triangular cells and their boundary orientations. While the exit edges are the
same for the two different order types, the corresponding exit drawings are not isomorphic.

In the dual of that example the order of the triangular cells along each pseudoline differs, but
that extra information is not enough to distinguish the two order types: We can modify the
pseudoline arrangements in Figure 3.19 by, essentially, duplicating pseudolines 1–6 and making a
pseudoline and its duplication cross between the crossings with two green pseudolines (7–14). In
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Figure 3.20.: Two arrangements of 20 pseudolines with the same set of triangular cells (extending [90,
Figure 3]) and with the same order of the triangular cells along the pseudolines, but
corresponding to different order types.

Figure 3.20 we show and illustration with two pseudoline arrangements with the same triangular
cells (including their boundary orientations) and the same order of triangular cells along each
pseudoline. However, the corresponding order types are not the same (see for example the
number of extremal points). Note that the dual point sets of the pseudoline arrangements
in Figure 3.20 can be obtained from the ones in Figure 3.19 by adding a copy of points 1–6
close to the original respective points. Thus, we cannot reconstruct the order type from that
information.

3.7. Chapter summary

In this chapter we have introduced the concept of exit edges, that allows to have a compact
visualization of the order type of a given point set S. The set of exit edges prevents the order
type from changing under continuous motion of vertices. That is, in a drawing of a point set S
with all its exit edges, in order to change the order type of S, at least one vertex needs to move
across an exit edge. Moreover, exit edges have a natural dual characterization, which allows us
to efficiently compute them and to bound their number. Due to the relevance of order types in
a wide range of geometric problems, instances in which an order type must be displayed arise
naturally. An example of the applicability of exit edges is presented in Figure 4.14 in the next
chapter.



4. A superlinear lower bound on the
number of 5-holes

The results presented in this chapter have been accepted for publication [15] and a preliminary
version of them appeared in [14]. It is planned that these results also appear in the thesis of the
coauthor Manfred Scheucher.

4.1. Introduction

The Erdős–Szekeres Theorem motivated a lot of further research, including numerous modifi-
cations and extensions of the theorem. In this chapter we study the number of empty convex
pentagons in any set of n points in general position in the plane.

Let P be a finite set of points in general position in the plane. We say that a set H of k points
from P is a k-hole in P if H is the vertex set of a convex k-gon containing no other points
of P . For positive integers n and k, let hk(n) be the minimum number of k-holes in a set of n
points in general position in the plane. For every n, Horton sets [122, 193, 195] are sets of n
points in general position in the plane with no 7-hole. Thus, hk(n) = 0 for every n and every
k ≥ 7. Asymptotically tight estimates for the functions h3(n) and h4(n) are known. The best
known lower bounds are due to Aichholzer et al. [22] who showed that h3(n) ≥ n2 − 32n

7 + 22
7

and h4(n) ≥ n2

2 −
9n
4 − o(n). The best known upper bounds h3(n) ≤ 1.6196n2 + o(n2) and

h4(n) ≤ 1.9397n2 + o(n2) are due to Bárány and Valtr [49].

For h5(n) and h6(n), no matching bounds are known. So far, the best known asymptotic
upper bounds on h5(n) and h6(n) were obtained by Bárány and Valtr [49] and give h5(n) ≤
1.0207n2 + o(n2) and h6(n) ≤ 0.2006n2 + o(n2). For the lower bound on h6(n), Valtr [194]
showed h6(n) ≥ n/229− 4.

In this chapter we present a new lower bound on h5(n). It is widely conjectured that h5(n)
grows quadratically in n, but to this date only lower bounds on h5(n) that are linear in
n have been known. As noted by Bárány and Füredi [46], a linear lower bound of bn/10c
follows directly from Harborth’s result [115]. Bárány and Károlyi [47] improved this bound to
h5(n) ≥ n/6 − O(1). In 1987, Dehnhardt [75] showed h5(11) = 2 and h5(12) = 3, obtaining
h5(n) ≥ 3bn/12c. However, his result remained unknown to the scientific community until
recently. Garćıa [99] then presented a proof of the lower bound h5(n) ≥ 3bn−4

8 c and a slightly
better estimate h5(n) ≥ d3/7(n− 11)e was shown by Aichholzer, Hackl, and Vogtenhuber [25].
Quite recently, Valtr [194] obtained h5(n) ≥ n/2−O(1). This was strengthened by Aichholzer et
al. [22] to h5(n) ≥ 3n/4− o(n). All improvements on the multiplicative constant were achieved
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n ≤ 9 10 11 12 13 14 15 16 17 18 19 20

h5(n) 0 1 2 3 3 6 9 11 ≤ 16 ≤ 21 ≤ 26 ≤ 33

Table 4.1.: The minimum number h5(n) of 5-holes determined by any set of n ≤ 20 points.

by utilizing the values of h5(10), h5(11), and h5(12). In the bachelor’s thesis of Scheucher [181]
the exact values h5(13) = 3, h5(14) = 6, and h5(15) = 9 were determined with computer aid.
Later, the value h5(16) = 11 was also determined [180]. Table 4.1 summarizes our knowledge
on the values of h5(n) for n ≤ 20. The values h5(n) for n ≤ 16 can be used to obtain further
improvements on the multiplicative constant. By revising the proofs of [22, Lemma 1] and [22,
Theorem 3], one can obtain h5(n) ≥ n− 10 and h5(n) ≥ 3n/2− o(n), respectively. We also note
that it was shown in [170] that if h3(n) ≥ (1 + ε)n2 − o(n2), then h5(n) = Ω(n2).

As our main result, we give the first superlinear lower bound on h5(n). This solves an open
problem, which was explicitely stated, for example, in a book by Brass, Moser, and Pach [56,
Chapter 8.4, Problem 5] and in the survey [10].

Theorem 4.1. There is an absolute constant c > 0 such that for every integer n ≥ 10 we have
h5(n) ≥ cn log4/5 n.

Let P be a finite set of points in the plane in general position and let ` be a line that contains
no point of P . We say that P is `-divided if there is at least one point of P in each of the two
halfplanes determined by `. For an `-divided set P , we use P = A∪B to denote the fact that `
partitions P into the subsets A and B. In the rest of the chapter, we assume without loss of
generality that ` is vertical and directed upwards, A is to the left of `, and B is to the right
of `.

The following result, which might be of independent interest, is a crucial step in the proof of
Theorem 4.1.

Theorem 4.2. Let P = A ∪B be an `-divided set with |A|, |B| ≥ 5 and with neither A nor B
in convex position. Then there is an `-divided 5-hole in P .

The proof of Theorem 4.2 is computer-assisted. We reduce the result to several statements about
point sets of size at most 11 and then verify each of these statements by an exhaustive computer
search. To verify the computer-aided proofs we have implemented two independent programs,
which, in addition, are based on different abstractions of point sets; see Subsection 4.5.2.

Using a result of Garćıa [99], we adapt the proof of Theorem 4.1 to provide improved lower
bounds on the minimum numbers of 3-holes and 4-holes.

Theorem 4.3. The following two bounds are satisfied for every positive integer n:

(i) h3(n) ≥ n2 + Ω(n log2/3 n) and

(ii) h4(n) ≥ n2

2 + Ω(n log3/4 n).
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In the rest of the chapter, we assume that every point set P is planar, finite, and in general posi-
tion. We also assume, without loss of generality, that all points in P have distinct x-coordinates.
We use conv(P ) to denote the convex hull of P and ∂ conv(P ) to denote the boundary of the
convex hull of P .

A subset Q of P that satisfies P ∩ conv(Q) = Q is called an island of P . Note that every k-hole
in an island Q of P is also a k-hole in P . For any subset R of the plane, if R contains no point
of P , then we say that R is empty of points of P .

Outline. In Section 4.2 we derive quite easily Theorem 4.1 from Theorem 4.2. Theorem 4.3
is proved in Section 4.3. Then, in Section 4.4, we give some preliminaries for the proof of
Theorem 4.2, which is presented in Section 4.5. In Section 4.6, we give some final remarks. In
particular, we show that the assumptions in Theorem 4.2 are necessary. To provide a better
general view, we present a flow summary of the proof of Theorem 4.1 in Section 4.7. Finally, in
Section 4.8 we summarize the chapter.

4.2. Proof of Theorem 4.1

We now apply Theorem 4.2 to obtain a superlinear lower bound on the number of 5-holes in a
given set of n points. It clearly suffices to prove the statement for the case in which n = 2t for
some integer t ≥ 55.

We prove by induction on t ≥ 55 that the number of 5-holes in an arbitrary set P of n = 2t

points is at least f(t) := c · 2tt4/5 = c · n log
4/5
2 n for some absolute constant c > 0. For t = 55,

we have n > 10 and, by the result of Harborth [115], there is at least one 5-hole in P . If c is

sufficiently small, then f(t) = c · n log
4/5
2 n ≤ 1 and we have at least f(t) 5-holes in P , which

constitutes our base case.

For the inductive step we assume that t > 55. We first partition P with a line ` into two sets
A and B of size n/2 each. Then we further partition A and B into smaller sets using the
following well-known lemma, which is, for example, implied by a result of Steiger and Zhao [185,
Theorem 1].

Lemma 4.4 ([185]). Let P ′ = A′ ∪B′ be an `-divided set and let r be a positive integer such
that r ≤ |A′|, |B′|. Then there is a line that is disjoint from P ′ and that determines an open
halfplane h with |A′ ∩ h| = r = |B′ ∩ h|.

We set r := blog
1/5
2 nc, s := bn/(2r)c, and apply Lemma 4.4 iteratively in the following way to

partition P into islands P1, . . . , Ps+1 of P so that the sizes of Pi ∩A and Pi ∩B are exactly r
for every i ∈ {1, . . . , s}. Let P ′0 := P . For every i = 1, . . . , s, we consider a line that is disjoint
from P ′i−1 and that determines an open halfplane h with |P ′i−1 ∩A ∩ h| = r = |P ′i−1 ∩B ∩ h|.
Such a line exists by Lemma 4.4 applied to the `-divided set P ′i−1. We then set Pi := P ′i−1 ∩ h,
P ′i := P ′i−1 \ Pi, and continue with i+ 1. Finally, we set Ps+1 := P ′s.
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Let i ∈ {1, . . . , s}. If one of the sets Pi ∩A and Pi ∩B is in convex position, then there are at
least

(
r
5

)
5-holes in Pi and, since Pi is an island of P , we have at least

(
r
5

)
5-holes in P . If this is

the case for at least s/2 islands Pi, then, given that s = bn/(2r)c and thus s/2 ≥ bn/(4r)c, we

obtain at least bn/(4r)c
(
r
5

)
≥ c ·n log

4/5
2 n 5-holes in P for a sufficiently small absolute constant

c > 0.

We thus further assume that for more than s/2 islands Pi, neither of the sets Pi ∩A nor Pi ∩B
is in convex position. Since r = blog

1/5
2 nc ≥ 5, Theorem 4.2 implies that there is an `-divided

5-hole in each such Pi. Thus there is an `-divided 5-hole in Pi for more than s/2 islands Pi.
Since each Pi is an island of P and since s = bn/(2r)c, we have more than s/2 ≥ bn/(4r)c
`-divided 5-holes in P . As |A| = |B| = n/2 = 2t−1, there are at least f(t− 1) 5-holes in A and
at least f(t− 1) 5-holes in B by the inductive assumption. Since A and B are separated by the
line `, we have at least

2f(t− 1) + n/(4r) = 2c(n/2) log
4/5
2 (n/2) + n/(4r) ≥ cn(t− 1)4/5 + n/(4t1/5)

5-holes in P . The right side of the above expression is at least f(t) = cnt4/5, because the
inequality cn(t−1)4/5+n/(4t1/5) ≥ cnt4/5 is equivalent to the inequality (t−1)4/5t1/5+1/(4c) ≥ t,
which is true if c is sufficiently small, as (t − 1)4/5t1/5 ≥ t − 1. This finishes the proof of
Theorem 4.1.

4.3. Proof of Theorem 4.3

In this section we improve the lower bounds on the minimum number of 3-holes and 4-holes.
To this end we use the notion of generated holes as introduced by Garćıa [99].

Given a 5-hole H in a point set P , a 3-hole in P is generated by H if it is spanned by the leftmost
point p of H and the two vertices of H that are not adjacent to p on the boundary of conv(H).
Similarly, a 4-hole in P is generated by H if it is spanned by the vertices of H with the exception
of one of the points adjacent to the leftmost point of H on the boundary of conv(H). We call a
3-hole or a 4-hole in P generated if it is generated by some 5-hole in P . We denote the number
of generated 3-holes and generated 4-holes in P by h3|5(P ) and h4|5(P ), respectively. We also
denote by h3|5(n) and h4|5(n) the minimum of h3|5(P ) and h4|5(P ), respectively, among all sets
P of n points.

For an integer k ≥ 3 and a point set P , let hk(P ) be the number of k-holes in P . Garćıa [99]
proved the following relationships between h3(P ) and h3|5(P ) and between h4(P ) and h4|5(P ).

Theorem 4.5 ([99]). Let P be a set of n points and let γ(P ) be the number of extremal points
of P . Then the following two equalities are satisfied:

(i) h3(P ) = n2 − 5n+ γ(P ) + 4 + h3|5(P ) and

(ii) h4(P ) = n2

2 −
7n
2 + γ(P ) + 3 + h4|5(P ).
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The proofs of both parts of Theorem 4.3 are carried out by induction on n similarly to the proof
of Theorem 4.1. The base cases follow from the fact that each set P of n ≥ 10 points contains
at least one 5-hole in P and thus a generated 3-hole in P and a generated 4-hole in P . For the
inductive step, let P = A ∪B be an `-divided set of n points with |A|, |B| ≥

⌊
n
2

⌋
, where n is a

sufficiently large positive integer.

To show part (i), it suffices to prove h3|5(P ) ≥ Ω(n log2/3 n) as the statement then follows from
Theorem 4.5. We use the recursive approach from the proof of Theorem 4.1, where we choose

r = blog
1/3
2 nc. In each step of the recursion we either obtain

⌊
n
4r

⌋
pairwise disjoint r-holes in P

or
⌊
n
4r

⌋
pairwise disjoint `-divided 5-holes in P .

In the first case, each r-hole in P admits
(
r
3

)
3-holes in P and, by Theorem 4.5, it contains(

r
3

)
− r2 + 5r − r − 4 generated 3-holes in P . Thus, in total, we count at least n

4r

(
r
3

)
−O(nr) ≥

Ω(n log2/3 n) generated 3-holes in P .

In the second case, we have at least
⌊
n
4r

⌋
`-divided 5-holes in P . Without loss of generality,

we can assume that at least 1
2

⌊
n
4r

⌋
≥
⌊
n
8r

⌋
of those `-divided 5-holes in P contain at least two

points to the right of `, as we otherwise continue with the horizontal reflection of P , which
has ` as the axis of reflection. Therefore we have at least

⌊
n
8r

⌋
`-divided generated 3-holes in P

and, analogously as in the proof of Theorem 4.1, we obtain

h3|5(P ) ≥ 2h3|5

(⌊n
2

⌋)
+
⌊ n

4r

⌋
≥ Ω(n log2/3 n).

This finishes the proof of part (i).

The proof of part (ii) is almost identical. We choose r = blog
1/4
2 nc and use the facts that every

r-hole in P contains
(
r
4

)
− r2

2 + 7r
2 − r− 3 generated 4-holes in P and that every `-divided 5-hole

in P generates two 4-holes in P , at least one of which is `-divided. This finishes the proof of
Theorem 4.3.

4.4. Preliminaries for the proof of Theorem 4.2

Before proceeding with the proof of Theorem 4.2, we first introduce some notation and definitions,
and state some immediate observations.

Let a, b, c be three distinct points in the plane. We denote by
−→
ab the ray starting at a and going

through b, and by ab the line through a and b directed from a to b. We say c is to the left
(right) of ab if the triple (a, b, c) traced in this order is oriented counterclockwise (clockwise).
Note that c is to the left of ab if and only if c is to the right of ba, and that the triples (a, b, c),
(b, c, a), and (c, a, b) have the same orientation. We say a point set S is to the left (right) of ab
if every point of S is to the left (right) of ab.
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P

p1

p2

p3

p4

S(p2, p3, p4, p1)

S(p1, p2, p3, p4)

S(p3, p4, p1, p2)

S(p4, p1, p2, p3)

Figure 4.1.: An example of sectors.

Sectors of polygons. For an integer k ≥ 3, let P be a convex polygon with vertices
p1, p2, . . . , pk traced counterclockwise in this order. We denote by S(p1, p2, . . . , pk) the open
convex region to the left of each of the three lines p1p2, p1pk, and pk−1pk. We call the region
S(p1, p2, . . . , pk) a sector of P . Note that every convex k-gon defines exactly k sectors. Figure 4.1
gives an illustration.

We use4(p1, p2, p3) to denote the closed triangle with vertices p1, p2, p3. We also use �(p1, p2, p3,
p4) to denote the closed quadrilateral with vertices p1, p2, p3, p4 traced in the counterclockwise
order along the boundary.

The following simple observation summarizes some properties of sectors of polygons.

Observation 4.6. Let P = A ∪B be an `-divided set with no `-divided 5-hole in P . Then the
following conditions are satisfied.

(i) Every sector of an `-divided 4-hole in P is empty of points of P .

(ii) If S is a sector of a 4-hole in A and S is empty of points of A, then S is empty of points
of B.

`-critical sets and islands. An `-divided set C = A ∪B is called `-critical if it fulfills the
following two conditions.

(i) Neither A nor B is in convex position.

(ii) For every extremal point x of C, one of the sets (C \ {x}) ∩ A and (C \ {x}) ∩ B is in
convex position.

Note that every `-critical set C = A ∪ B contains at least four points in each of A and B.
Figure 4.2 shows some examples of `-critical sets. If P = A ∪B is an `-divided set with neither
A nor B in convex position, then there exists an `-critical island of P . This can be seen by
iteratively removing extremal points so that none of the parts is in convex position after the
removal.
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`
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Figure 4.2.: Examples of `-critical sets.
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Figure 4.3.: Examples of a∗-wedges. Left: An example with t = |A| − 1. Right: An example with
t < |A| − 1.

a-wedges and a∗-wedges. Let P = A ∪ B be an `-divided set. For a point a in A, the

rays
−→
aa′ for all a′ ∈ A \ {a} partition the plane into |A| − 1 regions. We call the closures of

those regions a-wedges and label them as W
(a)
1 , . . . ,W

(a)
|A|−1 in the clockwise order around a,

where W
(a)
1 is the topmost a-wedge that intersects `. Let t(a) be the number of a-wedges that

intersect `. Note that W
(a)
1 , . . . ,W

(a)

t(a)
are the a-wedges that intersect ` sorted in top-to-bottom

order on `. Also note that all a-wedges are convex if a is an inner point of A, and that there
exists exactly one non-convex a-wedge otherwise. The indices of the a-wedges are considered

modulo |A| − 1. In particular, W
(a)
0 = W

(a)
|A|−1 and W

(a)
|A| = W

(a)
1 .

If A is not in convex position, we denote by a∗ the rightmost inner point of A and write t := t(a
∗)

and Wk := W
(a∗)
k for k = 1, . . . , |A| − 1. Recall that a∗ is unique, since all points have distinct

x-coordinates. Figure 4.3 gives an illustration.

We set wk := |B ∩Wk| and label the points of A so that Wk is bounded by the rays
−−−−→
a∗ak−1

and
−−→
a∗ak for k = 1, . . . , |A| − 1. Again, the indices are considered modulo |A| − 1. In particular,

a0 = a|A|−1 and a|A| = a1.

Observation 4.7. Let P = A ∪B be an `-divided set with A not in convex position. Then the
points a1, . . . , at−1 lie to the right of a∗ and the points at, . . . , a|A|−1 lie to the left of a∗.
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4.5. Proof of Theorem 4.2

First, we give a high-level overview of the main ideas of the proof of Theorem 4.2. We proceed
by contradiction and we suppose that there is no `-divided 5-hole in a given `-divided set
P = A ∪ B with |A|, |B| ≥ 5 and with neither A nor B in convex position. If |A|, |B| = 5,
then the statement follows from the result of Harborth [115]. Thus we assume that |A| ≥ 6 or
|B| ≥ 6. We reduce P to an island Q of P by iteratively removing points from the convex hull
until one of the two parts Q ∩A and Q ∩B contains exactly five points or Q is `-critical with
|Q∩A|, |Q∩B| ≥ 6. If |Q∩A| = 5 and |Q∩B| ≥ 6 or vice versa, then we reduce Q to an island
of Q with eleven points and, using a computer-aided result (Lemma 4.14), we show that there
is an `-divided 5-hole in that island and hence in P . If Q is `-critical with |Q ∩A|, |Q ∩B| ≥ 6,
then we show that |A∩∂ conv(Q)|, |B∩∂ conv(Q)| ≤ 2 and that, if |A∩∂ conv(Q)| = 2, then a∗

is the only interior point of Q∩A and similarly for B (Lemma 4.19). Without loss of generality,
we assume that |A ∩ ∂ conv(Q)| = 2 and thus a∗ is the only interior point of Q ∩A. Using this
assumption, we prove that |Q ∩ B| < |Q ∩ A| (Proposition 4.21). By exchanging the roles of
Q∩A and Q∩B, we obtain |Q∩A| ≤ |Q∩B| (Proposition 4.22), which gives a contradiction.

To prove that |Q ∩ B| < |Q ∩ A|, we use three results about the sizes of the parameters
w1, . . . , wt for the `-divided set Q, that is, about the numbers of points of Q ∩ B in the
a∗-wedges W1, . . . ,Wt of Q. We show that if we have wi = 2 = wj for some 1 ≤ i < j ≤ t, then
wk = 0 for some k with i < k < j (Lemma 4.12). Further, for any three or four consecutive
a∗-wedges whose union is convex and contains at least four points of Q ∩ B, each of those
a∗-wedges contains at most two such points (Lemma 4.18). Finally, we show that w1, . . . , wt ≤ 3
(Lemma 4.20). The proofs of Lemmas 4.18 and 4.20 rely on some results about small `-divided
sets with computer-aided proofs (Lemmas 4.15, 4.16, and 4.17). Altogether, this is sufficient to
show that |Q ∩B| < |Q ∩A|.

We now start the proof of Theorem 4.2 by showing that if there is an `-divided 5-hole in
the intersection of P with a union of consecutive a∗-wedges, then there is an `-divided 5-hole
in P .

Lemma 4.8. Let P = A ∪B be an `-divided set with A not in convex position. For integers
i, j with 1 ≤ i ≤ j ≤ t, let W :=

⋃j
k=iWk and Q := P ∩W . If there is an `-divided 5-hole in Q,

then there is an `-divided 5-hole in P .

Proof. If W is convex then Q is an island of P and the statement immediately follows. Hence

we assume that W is not convex. The region W is bounded by the rays
−−−−→
a∗ai−1 and

−−→
a∗aj and

all points of P \Q lie in the convex region R2 \W ; see Figure 4.4.

Since W is non-convex and every a∗-wedge contained in W intersects `, at least one of the
points ai−1 and aj lies to the left of a∗. Moreover, the points ai, . . . , aj−1 are to the right of a∗

by Observation 4.7. Without loss of generality, we assume that ai−1 is to the left of a∗.

If aj is to the left of a∗, then we let h be the closed halfplane determined by the vertical line
through a∗ such that ai−1 and aj lie in h. Otherwise, if aj is to the right of a∗, then we let
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Figure 4.4.: Illustration of the proof of Lemma 4.8. (a) The point aj is to the right of a∗. (b) The point

aj is to the left of a∗. (c) The hole H properly intersects the ray
−−→
a∗aj . The convex hull of

H is shaded in red and the convex hull of H ′ is shaded in blue.

h be the closed halfplane determined by the line a∗aj such that ai−1 lies in h. In either case,
h ∩A ∩Q = {a∗, ai−1, aj}.

Let H be an `-divided 5-hole in Q. We say that H properly intersects a ray r if the interior of

conv(H) intersects r. Now we show that if H properly intersects the ray
−−→
a∗aj , then H contains

ai−1. Assume there are points p, q ∈ H such that the interior of pq intersects r :=
−−→
a∗aj . Since r

lies in h and neither of p and q lies in r, at least one of the points p and q lies in h \ r. Without
loss of generality, we assume p ∈ h \ r. From h ∩A ∩Q = {a∗, ai−1, aj} we have p = ai−1. By

symmetry, if H properly intersects the ray
−−−−→
a∗ai−1, then H contains aj .

Suppose for contradiction that H properly intersects both rays
−−−−→
a∗ai−1 and

−−→
a∗aj . Then H

contains the points ai−1, aj , x, y, z for some points x, y, z ∈ Q, where ai−1x intersects
−−→
a∗aj , and

ajz intersects
−−−−→
a∗ai−1. Observe that z is to the left of ai−1a∗ and that x is to the right of aja∗. If

aj lies to the right of a∗, then z is to the left of a∗, and thus z is in A; see Figure 4.4(a). However,
this is impossible as z also lies in h. Hence, aj lies to the left of a∗; see Figure 4.4(b). As x and
z are both to the right of a∗, the point a∗ is inside the convex quadrilateral �(ai−1, aj , x, z).
This contradicts the assumption that H is a 5-hole in Q.

So assume that H properly intersects exactly one of the rays
−−−−→
a∗ai−1 and

−−→
a∗aj , say

−−→
a∗aj ; see

Figure 4.4(c). In this case, H contains ai−1. The interior of the triangle 4(a∗, ai−1, aj) is empty
of points of Q, since the triangle is contained in h. Moreover, conv(H) cannot intersect the
line that determines h both strictly above and strictly below a∗. Thus, all remaining points of
H \ {ai−1} lie to the right of ai−1a∗ and to the right of aja∗. If H is empty of points of P \Q,
we are done. Otherwise, we let H ′ := (H \ {ai−1}) ∪ {p′} where p′ ∈ P \ Q is a point inside
4(a∗, ai−1, aj) closest to aja∗. Note that the point p′ might not be unique. By construction,
H ′ is an `-divided 5-hole in P . An analogous argument shows that there is an `-divided 5-hole

in P if H properly intersects
−−−−→
a∗ai−1.

Finally, if H does not properly intersect any of the rays
−−−−→
a∗ai−1 and

−−→
a∗aj , then conv(H) contains

no point of P \Q in its interior, and hence H is an `-divided 5-hole in P .



62 Chapter 4. A superlinear lower bound on the number of 5-holes

4.5.1. Sequences of a∗-wedges with at most two points of B

In this subsection we consider an `-divided set P = A ∪B with A not in convex position. We
consider the union W of consecutive a∗-wedges, each containing at most two points of B, and
derive an upper bound on the number of points of B that lie in W if there is no `-divided 5-hole
in P ∩W ; see Corollary 4.13.

Observation 4.9. Let P = A ∪B be an `-divided set with A not in convex position. Let Wk

be an a∗-wedge with wk ≥ 1 and 1 ≤ k ≤ t and let b be the leftmost point in Wk ∩B. Then the
points a∗, ak−1, b, and ak form an `-divided 4-hole in P .

From Observation 4.6(i) and Observation 4.9 we obtain the following result.

Observation 4.10. Let P = A ∪B be an `-divided set with A not in convex position and with
no `-divided 5-hole in P . Let Wk be an a∗-wedge with wk ≥ 2 and 1 ≤ k ≤ t and let b be the
leftmost point in Wk∩B. For every point b′ in (Wk∩B)\{b}, the line bb′ intersects the segment
ak−1ak. Consequently, b is inside 4(ak−1, ak, b

′), to the left of akb′, and to the right of ak−1b′.

The following lemma states that there is an `-divided 5-hole in P if two consecutive a∗-wedges
both contain exactly two points of B.

Lemma 4.11. Let P = A ∪ B be an `-divided set with A not in convex position and with
|A|, |B| ≥ 5. Let Wi and Wi+1 be consecutive a∗-wedges with wi = 2 = wi+1 and 1 ≤ i < t.
Then there is an `-divided 5-hole in P .

Proof. Suppose for contradiction that there is no `-divided 5-hole in P . Let W := Wi ∪Wi+1

and let Q := P ∩W . By Lemma 4.8, there is also no `-divided 5-hole in Q. We label the points
in B ∩Wi as bi−1 and bi so that bi−1 is to the right of bi. Similarly, we label the points in
B ∩Wi+1 as bi+1 and bi+2 so that bi+2 is to the right of bi+1. By Observation 4.10, the point ai
is to the right of bibi−1 and to the left of bi+1bi+2. If the points bi−1, bi, bi+1, bi+2 are in convex
position, then ai, bi+1, bi+2, bi−1, bi form an `-divided 5-hole in P ; see Figure 4.5 (left). Thus,
we assume the points bi−1, bi, bi+1, bi+2 are not in convex position. Without loss of generality,
we assume that bibi−1 intersects bi+1bi+2.

We show that the segments aibi−1 and bibi+1 intersect. As bibi−1 intersects aiai−1 and bi+1bi+2,
the point bi−1 lies in the triangle 4(bi, bi+1, bi+2). Moreover, bi−1 is to the right of bi+1bi, ai is
to the left of bi+1bi, bi is to the left of aibi−1, and bi+1 is to the right of aibi−1. Consequently,
the points ai, bi+1, bi−1, bi form an `-divided 4-hole in P ; see Figure 4.5 (right).

The points ai−1, bi, bi−1, bi+2 are in convex position because ai−1 is the leftmost and bi+2 is the
rightmost of those four points and because both ai−1 and bi+2 lie to the left of bibi−1. Moreover,
the points ai−1, bi, bi−1, bi+2 form an `-divided 4-hole in P as �(ai−1, bi, bi−1, bi+2) lies in W
and wi = wi+1 = 2.

We consider the four points bi+2, bi−1, bi+1, ai+1. The point bi+2 is the rightmost of those four
points. By Observation 4.10, bi+1 lies to the right of aibi+2 and ai+1 lies to the right of bi+1bi+2.
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Figure 4.5.: Left: If bi−1, bi, bi+1, bi+2 are in convex position, then there is an `-divided 5-hole in P .
Right: The points a∗, ai+1, ai, ai−1 form a 4-hole in P .

Since bi−1 ∈Wi and bi+2 ∈Wi+1, the point bi−1 lies to the left of aibi+2. Thus, the clockwise
order around bi+2 is ai+1, bi+1, bi−1.

Suppose for contradiction that the points bi+2, bi−1, bi+1, ai+1 form a convex quadrilateral. Due
to the clockwise order around bi+2, the convex quadrilateral is �(bi+2, bi−1, bi+1, ai+1). The only
points of P that can lie in the interior of this quadrilateral are a∗, ai−1, ai, and bi. Since the trian-
gle 4(bi+2, bi+1, ai+1) is contained in Wi+1, it contains neither of the points a∗, ai−1, ai, and bi.
Since the triangle 4(bi+2, bi−1, bi+1) is contained in the convex hull of B, it does not contain a∗,
ai−1, nor ai. Moreover, as bi−1 lies in the triangle4(bi, bi+1, bi+2), the triangle4(bi+2, bi−1, bi+1)
also does not contain bi. Thus the quadrilateral �(bi+2, bi−1, bi+1, ai+1) is empty of points of P .
By Observation 4.6(i), the two sectors S(ai−1, bi, bi−1, bi+2) and S(bi+2, bi−1, bi+1, ai+1) contain
no point of P . Since every point of B \ {bi−1, bi, bi+1, bi+2} is either in S(ai−1, bi, bi−1, bi+2) or
in S(bi+2, bi−1, bi+1, ai+1), we have B = {bi−1, bi, bi+1, bi+2}. This contradicts the assumption
that |B| ≥ 5.

Therefore the points bi+2, bi−1, bi+1, ai+1 are not in convex position. In particular, the point
bi+1 lies in the triangle 4(bi−1, ai+1, bi+2), since ai+1 is the leftmost and bi+2 is the rightmost
of the points bi+2, bi−1, bi+1, ai+1 and since bi−1 lies in Wi; see the red area in Figure 4.5 (right)
for an illustration.

Consequently, the point ai+1 lies to the left of bi+1bi−1. By Observation 4.6(i), the point ai+1

is not in the sector S(bi+1, bi−1, bi, ai), as otherwise the points bi+1, bi−1, bi, ai, ai+1 form an
`-divided 5-hole in P . Thus the point ai+1 lies to the left of aibi; see Figure 4.5 (right).

The points a∗, ai+1, ai, ai−1 do not form a 4-hole in P because otherwise bi lies in the sector
S(ai−1, a

∗, ai+1, ai), which is impossible by Observation 4.6(ii).

Therefore the points a∗, ai+1, ai, ai−1 are not in convex position. Now we show that a∗ is
inside the triangle 4(ai−1, ai+1, ai). The point ai is not inside 4(ai−1, ai+1, a

∗), since, by
Observation 4.7, ai is to the right of a∗ and since a∗ is the rightmost inner point of A. Since ai−1

is to the left of a∗ai and ai+1 is to the right of a∗ai, a
∗ is the inner point of a∗, ai+1, ai, ai−1.

Figure 4.6 gives an illustration.

Since |B| ≥ 5, there is another a∗-wedge besides Wi and Wi+1 that intersects `. Now we show

that all points of B \Q lie in a∗-wedges below Wi+1. The rays
−−−→
biai−1 and

−−−−−→
bi−1bi+2 both start
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Figure 4.6.: Location of the points of A \Q in the proof of Lemma 4.11.

in Wi and then leave Wi. Moreover, the segment biai−1 intersects ` and bi−1bi+2 intersects
−−→
a∗ai.

As both bi and bi−1 lie to the right of ai−1bi+2, all points of B \ Q that lie in an a∗-wedge
above Wi also lie in the sector S(ai−1, bi, bi−1, bi+2). We recall that, by Observation 4.6(i), the
sector S(ai−1, bi, bi−1, bi+2) is empty of points of P . Hence all points of B \Q lie in a∗-wedges
below Wi+1.

We show that i = 1. That is, Wi is the topmost a∗-wedge that intersects `. By Observation 4.7,
ai+1 lies to the right of a∗. Since ai and ai+1 are both to the right of a∗ and since a∗ is inside
the triangle 4(ai−1, ai+1, ai), the point ai−1 is to the left of a∗. By Observation 4.7, we have
i = 1.

Now we show that all points of A\Q lie to the left of ai+1ai, to the right of ai+1bi+1, and to the
right of a∗ai+1. The yellow area in Figure 4.6 gives an illustration where the remaining points
of A \Q lie. We recall that the sector S(ai−1, bi, bi−1, bi+2) (red shaded area in Figure 4.6) is
empty of points of P . By Observation 4.9, both sets {a∗, ai, bi, ai−1} and {a∗, ai+1, bi+1, ai} form
`-divided 4-holes in P . By Observation 4.6(i), the two sectors S(a∗, ai, bi, ai−1) (green shaded
area in Figure 4.6) and S(a∗, ai+1, bi+1, ai) (blue shaded area in Figure 4.6) are thus empty of
points of P . Therefore, no point of A \Q lies to the left of ai+1bi+1. Since W is non-convex,
every point of P that is to the left of a∗ai+1 lies in Q. Thus every point of A \Q lies to the right
of a∗ai+1. Moreover, no point a of A \ Q lies to the right of ai+1ai (gray area in Figure 4.6)
because otherwise, ai+1 is an inner point of 4(ai, a

∗, a), which is impossible since a∗ is the
rightmost inner point of A and ai+1 is to the right of a∗.

Now we have restricted where the points of A \ Q lie. In the rest of the proof we show that
the points bi+2, bi+1, ai+1, ai+2 form an `-divided 4-hole in P . We will then use the sectors
S(bi+2, bi+1, ai+1, ai+2) and S(ai−1, bi, bi−1, bi+2) to argue that |B| = |B ∩Q| = 4, which then
contradicts the assumption |B| ≥ 5.

We consider ai+2 and show that the points ai+1, a
∗, ai−1, ai+2 are in convex position. It suffices

to show that ai+2 does not lie in the triangle 4(a∗, ai−1, ai+1) because of the cyclic order of
A \ {a∗} around a∗. Recall that a∗ lies inside the triangle 4(ai−1, ai+1, ai), that bi+1 lies inside
the triangle 4(ai, ai+1, bi+2), and that bi−1 lies inside the triangle 4(ai−1, ai, bi+2). Since the
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Figure 4.7.: Left: Location of the points of B \Q. Right: The point ai+1 lies to the left of ai.

triangles 4(ai−1, ai+1, ai), 4(ai, ai+1, bi+2), and 4(ai−1, ai, bi+2) are oriented counterclockwise
along the boundary, the point ai lies inside 4(ai−1, ai+1, bi+2). Thus also the points a∗, bi, bi+1

lie in the triangle 4(ai−1, ai+1, bi+2). Consequently, the triangle 4(a∗, ai−1, ai+1) is contained in
the union of the sectors S(ai+1, bi+1, ai, a

∗) (blue shaded area in Figure 4.6) and S(a∗, ai, bi, ai−1)
(green shaded area in Figure 4.6). Thus ai+2 does not lie in the triangle 4(a∗, ai−1, ai+1) and
the points ai+1, a

∗, ai−1, ai+2 are in convex position.

We now show that the sector S(ai+1, a
∗, ai−1, ai+2) is empty of points of P . If the quadri-

lateral �(ai+1, a
∗, ai−1, ai+2) is not empty of points of P , then there is a point a′i−1 of A in

4(a∗, ai−1, ai+2). This is because 4(a∗, ai+2, ai+1) is empty of points of A due to the cyclic
order of A \ {a∗} around a∗. We can choose a′i−1 to be a point that is closest to the line a∗ai+2

among the points of A inside 4(a∗, ai+2, ai+1). If the quadrilateral �(ai+1, a
∗, ai−1, ai+2) is

empty of points of P , then we set a′i−1 := ai−1.

By the choice of a′i−1, the quadrilateral �(ai+1, a
∗, a′i−1, ai+2) is empty of points of P . Since

ai+1 and ai+2 are consecutive in the order around a∗, no point of A lies in the sector
S(ai+1, a

∗, a′i−1, ai+2). By Observation 4.6(ii), the sector S(ai+1, a
∗, a′i−1, ai+2), the gray shaded

area in Figure 4.7 (left), is empty of points of P . Since the sector S(ai+1, a
∗, ai−1, ai+2) is a

subset of S(ai+1, a
∗, a′i−1, ai+2), the sector S(ai+1, a

∗, ai−1, ai+2) is empty of points of P .

We show that ai+1 is to the left of ai and to the right of ai+2. Recall that ai lies to the right
of a∗ and to the left of bi. The point bi lies to the left of a∗ai and the point ai+1 lies to the
right of this line; see Figure 4.7 (right). The point ai+1 then lies to the left of ai, since we know
already that ai+1 lies to the left of aibi. Recall that ai+1 is to the right of a∗. Consequently, the
point ai+2 lies to the left of ai+1, as ai+2 lies to the right of a∗ai+1 and to the left of ai+1ai.

Now we are ready to prove that the points bi+2, bi+1, ai+1, ai+2 form an `-divided 4-hole in P ,
the green area in Figure 4.7 (left). Recall that bi+2 and ai+2 both lie to the right of ai+1bi+1, and
that ai+2 is the leftmost and bi+2 is the rightmost of those four points. Altogether, we see that
the points bi+2, bi+1, ai+1, ai+2 are in convex position. The four sectors S(bi+2, ai−1, bi, bi−1),
the red shaded area in Figure 4.7 (left), S(bi−1, bi, ai, bi+1), the yellow shaded area in Figure 4.7
(left), S(bi+1, ai, a

∗, ai+1), the blue shaded area in Figure 4.7 (left), and S(ai+1, a
∗, a′i−1, ai+2),

the gray shaded area in Figure 4.7 (left) contain the quadrilateral �(bi+2, bi+1, ai+1, ai+2), the
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Figure 4.8.: An illustration of a∗-wedges Wi, . . . ,Wj in the proof of Lemma 4.12.

green area in Figure 4.7 (left). The sectors are empty of points of P by Observation 4.6(i).
Consequently, the convex quadrilateral �(bi+2, bi+1, ai+1, ai+2) is an `-divided 4-hole in P .

To finish the proof, recall that all points of B \Q lie in a∗-wedges below Wi+1 as i = 1. Since
ai+2 is to the left of ai+1, the line ai+2ai+1 intersects ` above ` ∩Wi+2. The line ai+1bi+1 also
intersects ` above `∩Wi+2, since ai+1 and bi+1 both lie in Wi+1. From i = 1, every point of B\Q
is to the right of ai+2ai+1 and to the right of ai+1bi+1. Since the points bi+2, bi+1, ai+1, ai+2

form an `-divided 4-hole in P , Observation 4.6(i) implies that the sector S(bi+2, bi+1, ai+1, ai+2)
is empty of points of P . Thus every point of B \Q lies to the left of bi+1bi+2. Since bi+1bi+2

intersects ` ∩Wi+1 above ` ∩ ai+1bi+1 and since bi−1 lies to the left of bi+2 and to the left of
bi+1bi+2, every point of B \Q lies to the left of bi−1bi+2 and to the right of bi+2, and thus in
the sector S(ai−1, bi, bi−1, bi+2). However, by Observation 4.6(i), this sector is empty of points
of P . Thus we obtain B = {bi−1, bi, bi+1, bi+2}, which contradicts the assumption |B| ≥ 5.

Next we show that if there is a sequence of consecutive a∗-wedges where the first and the last
a∗-wedge both contain two points of B and every a∗-wedge in between them contains exactly
one point of B, then there is an `-divided 5-hole in P .

Lemma 4.12. Let P = A ∪ B be an `-divided set with A not in convex position and with
|A| ≥ 5 and |B| ≥ 6. Let Wi, . . . ,Wj be consecutive a∗-wedges with 1 ≤ i < j ≤ t, wi = 2 = wj,
and wk = 1 for every k with i < k < j. Then there is an `-divided 5-hole in P .

Proof. For i = j − 1, the statement follows by Lemma 4.11. Thus we assume j ≥ i+ 2. That
is, we have at least three consecutive a∗-wedges. Suppose for contradiction that there is no
`-divided 5-hole in P . Let W :=

⋃j
k=iWk and Q := P ∩W . By Lemma 4.8, there is also no

`-divided 5-hole in Q. Note that |Q ∩B| = j − i+ 3. Also observe that |Q ∩A| = j − i+ 2 if
ai−1 = aj = at and |Q ∩A| = j − i+ 3 otherwise. We label the points in B ∩Wi as bi−1 and bi
so that bi−1 is to the right of bi. Further, we label the only point in B ∩Wk as bk for each
i < k < j, and the two points in B ∩Wj as bj and bj+1 so that bj+1 is to the right of bj ; see
Figure 4.8.
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Figure 4.9.: An illustration of the proof of Claim 1.

Claim 1. All points of B ∩ (Wk−1 ∪Wk ∪Wk+1) are to the right of akak−1 for every k with
i < k < j.

The claim clearly holds for points from B ∩Wk. Thus it suffices to prove the claim only for
points from B ∪Wk−1, as for points from B ∪Wk+1 it follows by symmetry. Since i < k < j,
Observation 4.7 implies that the points ak−1 and ak are both to the right of a∗.

We now distinguish the following two cases.

Case 1: The point ak−2 is to the left of a∗ak; see Figure 4.9 (left). Since a∗ is the right-
most inner point of A, ak−1 does not lie inside the triangle 4(a∗, ak, ak−2) and thus
�(ak−2, a

∗, ak, ak−1) is a 4-hole in P . All points of B ∩Wk−1 lie to the right of a∗ak−2

and to the left of ak−2ak−1. By Observation 4.6(ii), no point of B ∩Wk−1 lies in the
sector S(ak−2, a

∗, ak, ak−1), the red shaded area in Figure 4.9 (left), and thus all points
of B ∩Wk−1 are to the right of akak−1.

Case 2: The point ak−2 is to the right of a∗ak; see Figure 4.9 (right). Since ak−1 and ak are to
the right of a∗ and since ak−2 is to the left of a∗ak−1 and to the right of a∗ak, the point
ak−2 is to the left of a∗. By Observation 4.7, we have k = 2. That is, Wk−1 is the topmost
a∗-wedge that intersects `.

There is another a∗-wedge below Wk+1, since otherwise |B| = |B∩(Wk−1∪Wk∪Wk+1)| ≤
2+1+2 = 5, which is impossible according to the assumption |B| ≥ 6. By Observation 4.7,
the point ak+1 is to the right of a∗. Moreover, since a∗ is the rightmost inner point of A,
the point ak does not lie inside the triangle 4(a∗, ak+1, ak−1). The points a∗, ak+1, ak, ak−1

then form a 4-hole in P , which has a∗ as the leftmost point.

By definition, all points of B∩Wk−1 lie to the left of a∗ak−1. As the ray
−−−−→
a∗ak+1 intersects `,

all points of B ∩Wk−1 lie also to the left of a∗ak+1. By Observation 4.6(ii), no point of
B ∩Wk−1 lies in the sector S(a∗, ak+1, ak, ak−1). Thus all points of B ∩Wk−1 lie to the
right of akak−1.

This finishes the proof of Claim 1.

We say that points p1, p2, p3, p4 form a counterclockwise-oriented convex quadrilateral if every
triple (px, py, pz) with 1 ≤ x < y < z ≤ 4 is oriented counterclockwise.

Claim 2. The points bi−1, bi, ai, ai+1 form a counterclockwise-oriented convex quadrilateral.
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Figure 4.10.: The point bi+1 cannot lie to the left of bibi−1.

Due to Claim 1, the points bi−1 and bi are both to the right of ai+1ai. Thus the points ai and
ai+1 are both extremal points of those four points. Also the point bi−1 is extremal, since it is
the rightmost of those four points. The point bi does not lie inside the triangle 4(ai+1, ai, bi−1),
since, by Observation 4.10, bi lies to the left of aibi−1. To finish the proof of Claim 2, it suffices
to observe that the triples (bi−1, bi, ai), (bi−1, bi, ai+1), (bi−1, ai, ai+1), and (bi, ai, ai+1) are all
oriented counterclockwise.

Claim 3. The point bi+1 lies to the right of bibi−1.

Suppose for contradiction that bi+1 lies to the left of bibi−1. We consider the five points
ai−1, ai, bi−1, bi, bi+1; see Figure 4.10. By Claim 1, the points bi−1, bi, and bi+1 lie to the right
of aiai−1. Moreover, since bi−1 and bi lie in Wi and since bi+1 lies in Wi+1, the points bi−1

and bi both lie to the left of aibi+1. By Observation 4.10, the point ai−1 lies to the left of
bibi−1 and bi+1 is to the right of bi−1. Consequently, the points bi−1 and bi lie in the triangle
4(ai−1, ai, bi+1). Altogether, the points ai−1, bi, bi−1, and bi+1 are in convex position.

By Claim 1, the points bi−1 and bi+1 lie to the right of ai+1ai. Moreover, since bi−1 is to the left of
bi+1 and to the left of aibi+1, the points bi+1, bi−1, ai, and ai+1 are in convex position. Since there
are no further points in Wi and Wi+1, the sets {ai−1, bi, bi−1, bi+1} and {bi+1, bi−1, ai, ai+1} are
`-divided 4-holes in P . By Observation 4.6(i), the point bi+2 lies neither in S(ai−1, bi, bi−1, bi+1)

nor in S(bi+1, bi−1, ai, ai+1). Recall that the ray
−−−−−→
bi−1bi+1 intersects

−−→
a∗ai and the ray

−−−→
biai−1 does

not intersect
−−→
a∗ai. Therefore bi+2 is to the right of aiai+1. This contradicts Claim 1 and finishes

the proof of Claim 3.

Claim 4. For each k with i < k < j, the point bk lies to the left of akbi−1 and to the left
of bi−1.

We show by induction on k that

(i) the points bi−1, bk−1, ak−1, and ak form a counterclockwise-oriented convex quadrilateral,
which has bi−1 as the rightmost point, and

(ii) the point bk lies inside this convex quadrilateral and, in particular, to the left of akbi−1.

Claim 4 then clearly follows.

For the base case, we consider k = i+ 1. By Claim 2, the points bi−1, bi, ai, and ai+1 form a
counterclockwise-oriented convex quadrilateral. By definition, bi−1 is the rightmost of those
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Figure 4.11.: An illustration of the proofs of Claim 4 and Lemma 4.12.

four points; see Figure 4.11 (left) for an illustration. The point bi+1 lies to the right of ai+1ai
and, by Claim 3, to the right of bibi−1. Moreover, since bi+1 lies in Wi+1, it lies to the right
of aibi. By Observation 4.6(i), bi+1 does not lie in the sector S(bi−1, bi, ai, ai+1). Consequently,
bi+1 lies inside the quadrilateral �(bi−1, bi, ai, ai+1).

For the inductive step, let i+ 1 < k < j. By the inductive assumption, the point bk−1 lies to the
left of ak−1bi−1 and to the left of bi−1. By Claim 1, bk−1 lies to the right of akak−1. Hence, the
points ak and bi−1 both lie to the right of ak−1bk−1. Recall that the points bi−1, bk−1, ak−1, ak
lie to the right of a∗. Since bi−1 is the first and ak is the last in the clockwise order around a∗,
the points bi−1, bk−1, ak−1, ak form a counterclockwise-oriented convex quadrilateral,

Recall that the points bk−1 and bk both lie to the right of akak−1 and that bk−1 is to the left
of ak−1bi−1. Since bk ∈Wk, the point bk lies to the right of ak−1bi−1. Therefore the clockwise
order of {bk−1, bi−1, bk} around ak−1 is bk−1, bi−1, bk. Since bi−1 is not contained in Wk−1 ∪Wk,
the point bi−1 is not contained in the triangle 4(ak−1, bk, bk−1). Consequently, the points
ak−1, bk, bi−1, bk−1 form a convex quadrilateral and, in particular, bk lies to the right of bk−1bi−1;
see Figure 4.11 (left) for an illustration. Since bk lies in Wk, it lies to the right of ak−1bk−1. By
Observation 4.6(i), the point bk does not lie in the sector S(bi−1, bk−1, ak−1, ak). Thus bk lies
inside the quadrilateral �(bi−1, bk−1, ak−1, ak). This finishes the proof of Claim 4.

Using Claim 4, we now finish the proof of Lemma 4.12, by finding an `-divided 5-hole in Q and
thus obtaining a contradiction with the assumption that there is no `-divided 5-hole in P . In
the following, we assume, without loss of generality, that bj+1 is to the right of bi−1. Otherwise
we can consider a vertical reflection of P .

We consider the polygon P through the points bi−1, bj−1, aj−1, bj , bj+1 and we show that P is
convex and empty of points of Q; see Figure 4.11 (right) for an illustration. This will give us an
`-divided 5-hole in Q.

We show that P is convex by proving that every point of {bi−1, bj−1, aj−1, bj , bj+1} is a convex
vertex of P. The point aj−1 is a convex vertex of P because it is the leftmost point in P. The
point bi−1 is a convex vertex of P because all points of P lie to the right of a∗ and bi−1 is
the topmost point in the clockwise order around a∗. The point bj+1 is a convex vertex of P
because bj+1 is the rightmost point in P by Claim 4 and by the assumption that bj+1 is to the
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right of bi−1. The point bj−1 is a convex vertex of P because bj−1 lies to the left of aj−1bi−1 by
Claim 4 while bj and bj+1 both lie to the right of this line. The point bj is a convex vertex of P
because, by Observation 4.10, bj lies to the right of aj−1bj+1 while bj−1 and bi−1 both lie to
the right of this line. Consequently, P is a convex pentagon with vertices from both A and B.
Moreover, by Claim 4, all points bk with i < k < j lie to the left of akbi−1. Since bi is to the left
of bj−1bi−1, P is thus empty of points of Q, which gives us a contradiction with the assumption
that there is no `-divided 5-hole in P .

We now use Lemma 4.12 to show the following upper bound on the total number of points of B
in a sequence Wi, . . . ,Wj of consecutive a∗-wedges with wi, . . . , wj ≤ 2.

Corollary 4.13. Let P = A ∪ B be an `-divided set with no `-divided 5-hole, with A not in
convex position, and with |A| ≥ 5 and |B| ≥ 6. For 1 ≤ i ≤ j ≤ t, let Wi, . . . ,Wj be consecutive

a∗-wedges with wk ≤ 2 for every k with i ≤ k ≤ j. Then
∑j

k=iwk ≤ j − i+ 2.

Proof. Let n0, n1, and n2 be the number of a∗-wedges from Wi, . . . ,Wj with 0, 1, and 2 points
of B, respectively. Due to Lemma 4.12, we can assume that between any two a∗-wedges from
Wi, . . . ,Wj with two points of B each, there is an a∗-wedge with no point of B. Thus n2 ≤ n0 +1.

Since n0 + n1 + n2 = j − i+ 1, we have
∑j

k=iwk = 0n0 + 1n1 + 2n2 = (j − i+ 1) + (n2 − n0) ≤
j − i+ 2.

4.5.2. Computer-assisted results

We now provide lemmas that are key ingredients in the proof of Theorem 4.2. All these lemmas
have computer-aided proofs. Each result was verified by two independent implementations,
which are also based on different abstractions of point sets; see below for details.

Lemma 4.14. Let P = A ∪ B be an `-divided set with |A| = 5, |B| = 6, and with A not in
convex position. Then there is an `-divided 5-hole in P .

Lemma 4.15. Let P = A ∪ B be an `-divided set with no `-divided 5-hole in P , |A| = 5,
4 ≤ |B| ≤ 6, and with A in convex position. Then for every point a of A, every convex a-wedge
contains at most two points of B.

Lemma 4.16. Let P = A ∪B be an `-divided set with no `-divided 5-hole in P , |A| = 6, and
|B| = 5. Then for each point a of A, every convex a-wedge contains at most two points of B.

Lemma 4.17. Let P = A ∪B be an `-divided set with no `-divided 5-hole in P , 5 ≤ |A| ≤ 6,
|B| = 4, and with A in convex position. Then for every point a of A, if the non-convex a-wedge
is empty of points of B, every a-wedge contains at most two points of B.

To prove these lemmas, we employ an exhaustive computer search through all combinatorially
different sets of |P | ≤ 11 points in the plane. Notice that these statements only depend on the
order type of the point set, and thus, we only need to check a finite number of equivalence
classes of point sets.
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Lemmas 4.14 to 4.17 were verified by two different programs available online. The first one [180]
uses the order type database [12, 26] and runs in few hours on a standard computer. The second
one [41] neither uses the order type database nor the program used to generate the database.
Instead, it relies on the description of point sets by so-called signature functions [42, 91]. In this
description, points are sorted according to their x-coordinates and every unordered triple of
points is represented by a sign from {−,+}, where the sign is − if the triple traced in the order
by increasing x-coordinates is oriented clockwise and the sign is + otherwise. Every 4-tuple
of points is then represented by four signs of its triples, which are ordered lexicographically.
There are only eight 4-tuples of signs that we can obtain (out of 16 possible ones); see [42,
Theorem 3.2] or [91, Theorem 7] for details. All possible signature functions are generated using
a simple depth-first search algorithm. Then the conditions of the lemmas are checked for every
signature. The running time of each of the programs in this implementation takes up to a few
hundreds of hours.

4.5.3. Applications of the computer-assisted results

Here we present some applications of the computer-assisted results from Section 4.5.2.

Lemma 4.18. Let P = A ∪B be an `-divided set with no `-divided 5-hole in P , with |A| ≥ 6,
and with A not in convex position. Then the following two conditions are satisfied.

(i) Let Wi,Wi+1,Wi+2 be three consecutive a∗-wedges whose union is convex and contains at
least four points of B. Then wi, wi+1, wi+2 ≤ 2.

(ii) Let Wi,Wi+1,Wi+2,Wi+3 be four consecutive a∗-wedges whose union is convex and con-
tains at least four points of B. Then wi, wi+1, wi+2, wi+3 ≤ 2.

Proof. To show part (i), let W := Wi ∪ Wi+1 ∪ Wi+2, A′ := A ∩ W , B′ := B ∩ W , and
P ′ := A′∪B′. Since W is convex, P ′ is an island of P and thus there is no `-divided 5-hole in P ′.
Note that |A′| = 5 and A′ is in convex position. If |B′| ≤ 5, then every convex a∗-wedge in P ′

contains at most two points of B′ by Lemma 4.15 applied to P ′. So assume that |B′| ≥ 6. We
remove points from P ′ from the right, if necessary, to obtain P ′′ = A′ ∪B′′, where B′′ contains
exactly six points of B′. Note that there is no `-divided 5-hole in P ′′, since P ′′ is an island
of P ′. By Lemma 4.15, each a∗-wedge in P ′′ contains exactly two points of B′′. Let B̃ be the
set of points of B that are to the left of the rightmost point of B′′, including this point, and let
P̃ := A ∪ B̃. Note that B′′ ⊆ B̃. Since |B′′| = 6 and since W ∩ B̃ = B′′, each of the a∗-wedges
Wi,Wi+1,Wi+2 contains exactly two points of B̃. The a∗-wedges Wi, Wi+1, and Wi+2 are also
a∗-wedges in P̃ . Thus, Lemma 4.11 applied to P̃ and Wi,Wi+1 then gives us an `-divided 5-hole
in P̃ . From the choice of P̃ , we then have an `-divided 5-hole in P , a contradiction.

To show part (ii), let W := Wi ∪ Wi+1 ∪ Wi+2 ∪ Wi+3, A′ := A ∩ W , B′ := B ∩ W , and
P ′ := A′ ∪ B′. Since W is convex, P ′ is an island of P and thus there is no `-divided 5-hole
in P ′. Note that |A′| = 6 and A′ is in convex position. If |B′| = 4, then the statement follows
from Lemma 4.17 applied to P ′ since a∗ is an extremal point of P ′. If |B′| = 5, then the
statement follows from Lemma 4.16 applied to P ′ and thus we can assume |B′| ≥ 6. Suppose
for contradiction that wj ≥ 3 for some i ≤ j ≤ i + 3. If necessary, we remove points from
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P from the right to obtain P ′′ so that B′′ := P ′′ ∩ B contains exactly six points of W ∩ B.
By applying part (i) for P ′′ and Wi ∪Wi+1 ∪Wi+2 and Wi+1 ∪Wi+2 ∪Wi+3, we obtain that
|B′′ ∩Wi|, |B′′ ∩Wi+3| = 3 and |B′′ ∩Wi+1|, |B′′ ∩Wi+2| = 0. Let b be the rightmost point from
P ′′ ∩W . By Lemma 4.16 applied to W ∩ (P ′′ \ {b}), there are at most two points of B′′ \ {b} in
every a∗-wedge in W ∩ (P ′′ \ {b}). This contradicts the fact that either |(B′′ ∩Wi) \ {b}| = 3 or
|(B′′ ∩Wi+3) \ {b}| = 3.

4.5.4. Extremal points of `-critical sets

Recall the definition of `-critical sets: An `-divided point set C = A ∪B is called `-critical if
neither C ∩A nor C ∩B is in convex position and if for every extremal point x of C, one of
the sets (C \ {x}) ∩A and (C \ {x}) ∩B is in convex position.

In this section, we consider an `-critical set C = A ∪B with |A|, |B| ≥ 5. We first show that C
has at most two extremal points in A and at most two extremal points in B. Later, under the
assumption that there is no `-divided 5-hole in C, we show that |B| ≤ |A| − 1 if A contains two
extremal points of C (Section 4.5.4) and that |B| ≤ |A| if B contains two extremal points of C
(Section 4.5.4).

Lemma 4.19. Let C = A ∪B be an `-critical set. Then the following statements are true.

(i) If |A| ≥ 5, then |A ∩ ∂ conv(C)| ≤ 2.

(ii) If A ∩ ∂ conv(C) = {a, a′}, then a∗ is the only interior point in A and every point of
A \ {a, a′} lies in the convex region spanned by the lines a∗a and a∗a′ that does not have
any of a and a′ on its boundary.

(iii) If A ∩ ∂ conv(C) = {a, a′}, then the a∗-wedge that contains a and a′ contains no point
of B.

By symmetry, analogous statements hold for B.

Proof. To show statement (i), suppose for contradiction that |A ∩ ∂ conv(C)| ≥ 3. Let a, a′,
and a′′ be three such consecutive points. If there is no point of A in the triangle 4(a, a′, a′′)
spanned by the points a, a′, and a′′, then A \ {a′} is not in convex position. This is impossible,
since C is an `-critical set. If there is at least one point a(1) in 4(a, a′, a′′), then we consider an
arbitrary point a(2) from A \ {a, a′, a′′, a(1)}. Such a point a(2) exists, since |A| ≥ 5. The point
a(1) lies inside one of the triangles 4(a, a′, a(2)), 4(a, a′′, a(2)), or in 4(a′, a′′, a(2)) and thus one
of the sets A \ {a′′}, A \ {a′}, or A \ {a} is not in convex position, which is again impossible. In
any case, C cannot be `-critical and we obtain a contradiction.

To show statement (ii), assume that A ∩ ∂ conv(C) = {a, a′}. Every triangle in A with a point
of A in its interior has a and a′ as vertices, as otherwise A \ {a} or A \ {a′} is not in convex
position, which is impossible. Consider points a(1) and a(2) from A such that 4(a, a′, a(1))

contains a(2). Denote by R the region bounded by aa(2) and a′a(2) that contains a(1). If there
is a point a(3) in A \ (R ∪ {a, a′}) then a(2) lies in one of 4(a, a(1), a(3)) and 4(a′, a(1), a(3)),
implying that A\{a} or A\{a′} is not in convex position. Hence all points of A\{a, a′, a(2)} lie
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in R. Moreover, any further interior point a(4) from A∩R lies in some triangle 4(a, a′, a(5)) for
some a(5) ∈ A ∩R. Thus, a(4) also lies in one of the triangles 4(a, a(2), a(5)) or 4(a′, a(2), a(5)).
This implies that A \ {a} or A \ {a′} is not in convex position. Hence a(2) is the only interior
point of A.

To show statement (iii), assume that A∩∂ conv(C) = {a, a′}. Let Wi be the wedge that contains
a and a′. Since a and a′ are the only extremal points of C contained in A, the segment aa′ is an
edge of conv(C). The points a, a′, and a∗ all lie in A and thus the triangle 4(a, a′, a∗) contains
no points of B. Since all points of C lie in the closed halfplane that is determined by the line
aa′ and that contains a∗, the wedge Wi contains no points of B.

We remark that the assumption |A| ≥ 5 in part (i) of Lemma 4.19 is necessary. In fact, arbitrarily
large `-critical sets with only four points in A and with three points of A on ∂ conv(C) exist,
and analogously for B; see Figure 4.2(c) for an illustration.

Lemma 4.20. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C and with
|A| ≥ 6. Then wi ≤ 3 for every 1 < i < t. Moreover, if |A ∩ ∂ conv(C)| = 2, then w1, wt ≤ 3.

Proof. Recall that, since C is `-critical, we have |B| ≥ 4. Let i be an integer with 1 ≤ i ≤ t. We
assume that there is a point a in A ∩ ∂ conv(C), which lies outside of Wi, as otherwise there
is nothing to prove for Wi (either |A ∩ ∂ conv(C)| = 1 and i ∈ {1, t} or |A ∩ ∂ conv(C)| = 2
and, by Lemma 4.19(iii), Wi ∩ B = ∅). We consider C ′ := C \ {a}. Since C is an `-critical
set, A′ := C ′ ∩A is in convex position. Thus, there is a non-convex a∗-wedge W ′ of C ′. Since
W ′ is non-convex, all other a∗-wedges of C ′ are convex. Moreover, since W ′ is the union of
the two a∗-wedges of C that contain a, all other a∗-wedges of C ′ are also a∗-wedges of C. Let
W be the union of all a∗-wedges of C that are not contained in W ′. Note that W is convex
and contains at least |A| − 3 ≥ 3 a∗-wedges of C. Since |A| ≥ 6, the statement follows from
Lemma 4.18(i).

Two extremal points of C in A

Proposition 4.21. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |A ∩ ∂ conv(C)| = 2. Then |B| ≤ |A| − 1.

Proof. Since |A ∩ ∂ conv(C)| = 2, Lemma 4.20 implies that wi ≤ 3 for every 1 ≤ i ≤ t. Let a
and a′ be the two points in A∩ ∂ conv(C). By Lemma 4.19(ii), all points of A \ {a, a′} lie in the
convex region R spanned by the lines a∗a and a∗a′ that does not have any of a and a′ on its
boundary. That is, without loss of generality, a = ah−1 and a′ = ah for some 1 ≤ h ≤ |A| − 1
and, by Lemma 4.19(iii), we have wh = 0. Since all points of A \ {a, a′} lie in the convex
region R, the regions W := cl(R2 \ (Wh−1 ∪Wh)) and W ′ := cl(R2 \ (Wh ∪Wh+1)) are convex.
Here cl(X) denotes the closure of a set X ⊆ R2. Recall that the indices of the a∗-wedges are
considered modulo |A| − 1 and that R2 is the union of all a∗-wedges.

First, suppose for contradiction that |A| = 6 and |B| ≥ 6. There are exactly five a∗-wedges
W1, . . . ,W5, and only four of them can contain points ofB, since wh = 0. We apply Lemma 4.18(i)
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to W and to W ′. An easy case analysis shows that either wi ≤ 2 for every 1 ≤ i ≤ t or
wh−1, wh+1 = 3 and wi = 0 for every i 6∈ {h− 1, h+ 1}. In the first case, Corollary 4.13 implies
that |B| ≤ 5 and in the latter case Lemma 4.16 applied to P \ {b}, where b is the rightmost
point of B, gives |B| ≤ 5, a contradiction. Hence, we assume |A| ≥ 7.

Claim 1. For 1 ≤ k ≤ t − 3, if one of the four consecutive a∗-wedges Wk, Wk+1, Wk+2, or
Wk+3 contains 3 points of B, then wk + wk+1 + wk+2 + wk+3 = 3.

There are |A| − 1 ≥ 6 a∗-wedges and, in particular, W and W ′ are both unions of at least four
a∗-wedges. For every Wi with wi = 3 and 1 ≤ i ≤ t, the a∗-wedge Wi is either contained in W
or in W ′. Thus we can find four consecutive a∗-wedges Wk,Wk+1,Wk+2,Wk+3 whose union is
convex and contains Wi. Lemma 4.18(ii) implies that each of Wk,Wk+1,Wk+2,Wk+3 except
of Wi is empty of points of B. This finishes the proof of Claim 1.

Claim 2. For all integers i and j with 1 ≤ i < j ≤ t, we have
∑j

k=iwk ≤ j − i+ 2.

Let S := (wi, . . . , wj) and let S′ be the subsequence of S obtained by removing every 1-entry
from S. If S contains only 1-entries, the statement clearly follows. Thus we can assume that S′

is non-empty. Recall that S′ contains only 0-, 2-, and 3-entries, since wi ≤ 3 for all 1 ≤ i ≤ t.
Due to Claim 1, there are at least three consecutive 0-entries between every pair of nonzero
entries of S′ that contains a 3-entry. Together with Lemma 4.12, this implies that there is at
least one 0-entry between every pair of 2-entries in S′.

By applying the following iterative procedure, we show that
∑

s∈S′ s ≤ |S′|+ 1. While there
are at least two nonzero entries in S′, we remove the first nonzero entry s from S′. If s = 2,
then we also remove the 0-entry from S′ that succeeds s in S. If s = 3, then we also remove
the two consecutive 0-entries from S′ that succeed s in S′. The procedure stops when there
is at most one nonzero element s′ in the remaining subsequence S′′ of S′. If s′ = 3, then S′′

contains at least one 0-entry and thus S′′ contains at least s′ − 1 elements. Since the number of
removed elements equals the sum of the removed elements in every step of the procedure, we
have

∑
s∈S′ s ≤ |S′|+ 1. This implies

j∑
k=i

wk =
∑
s∈S

s = |S| − |S′|+
∑
s∈S′

s ≤ |S| − |S′|+ |S′|+ 1 = j − i+ 2

and finishes the proof of Claim 2.

If Wh does not intersect `, that is, t < h ≤ |A| − 1, then the statement follows from Claim 2
applied with i = 1 and j = t. Otherwise, we have h = 1 or h = t and we apply Claim 2 with
(i, j) = (2, t) or (i, j) = (1, t − 1), respectively. Since t ≤ |A| − 1 and wh = 0, this gives us
|B| ≤ |A| − 1.

Two extremal points of C in B

Proposition 4.22. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |B ∩ ∂ conv(C)| = 2. Then |B| ≤ |A|.
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Figure 4.12.: An illustration of the proof of Proposition 4.22.

Proof. If wk ≤ 2 for all 1 ≤ k ≤ t, then the statement follows from Corollary 4.13, since
|B| =

∑t
k=1wk ≤ t+ 1 ≤ |A|. Therefore we assume that there is an a∗-wedge Wi that contains

at least three points of B. Let b1, b2, and b3 be the three leftmost points in Wi ∩B from left
to right. Without loss of generality, we assume that b3 is to the left of b1b2. Otherwise we can
consider a vertical reflection of P . Figure 4.12 gives an illustration.

Let R1 be the region that lies to the left of b1b2 and to the right of b2b3 and let R2 be the
region that lies to the right of aib1 and to the right of a∗ai. Let B′ := B \ {b1, b2, b3}.

Claim 1. Every point of B′ lies in R1 ∪R2.

We first show that every point of B′ that lies to the left of b1b2 lies in R1. Then we show that
every point of B′ that lies to the right of b1b2 lies in R2.

By Observation 4.10, both lines b1b2 and b1b3 intersect the segment ai−1ai. Since the segment
ai−1b1 intersects ` and since b1 is the leftmost point of Wi ∩B, all points of B′ that lie to the
left of b1b2 lie to the left of ai−1b1. The four points ai−1, b1, b2, b3 form an `-divided 4-hole in P ,
since ai−1 is the leftmost and b3 is the rightmost point of ai−1, b1, b2, b3 and both ai−1 and b3
lie to the left of b1b2. By Observation 4.6(i), the sector S(ai−1, b1, b2, b3) is empty of points of P
(green shaded area in Figure 4.12). Altogether, all points of B′ that lie to the left of b1b2 are to
the right of b2b3 and thus lie in R1.

Since the segment aib1 intersects ` and since b1 is the leftmost point of Wi ∩ B, all points
of B′ that lie to the right of b1b2 lie to the right of aib1. By Observation 4.6(i), the sector
S(b1, b2, b3, ai−1) is empty of points of P . Combining this with the fact that a∗ is to the right
of ai−1b3, we see that a∗ lies to the right of b1b2. Since b1 and b2 both lie to the left of a∗ai and
since a∗ and ai both lie to the right of b1b2, the points b2, b1, a

∗, ai form an `-divided 4-hole
in P . By Observation 4.6(i), the sector S(b2, b1, a

∗, ai) (blue shaded area in Figure 4.12) is
empty of points of P . Altogether, all points of B′ that lie to the right of b1b2 are to the right of
a∗ai and to the right of aib1 and thus lie in R2. This finishes the proof of Claim 1.

Claim 2. If b4 is a point from B′ \R1, then b2 lies inside the triangle 4(b3, b1, b4).

By Claim 1, b4 lies in R2 and thus to the right of aib1 and to the right of a∗ai. We recall that
b4 lies to the right of b1b2.
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We distinguish two cases. First, we assume that the points b2, b3, b1, ai are in convex posi-
tion. Then b2, b3, b1, ai form an `-divided 4-hole in P and, by Observation 4.6(i), the sector
S(b2, b3, b1, ai) is empty of points from P . Thus b4 lies to the right of b2b3 and the statement
follows.

Second, we assume that the points b2, b3, b1, ai are not in convex position. Due to Observa-
tion 4.10, b2 and b3 both lie to the right of aib1. Moreover, since b3 is the rightmost of those
four points, b2 lies inside the triangle 4(b3, b1, ai). In particular, ai lies to the right of b2b3.
Therefore, since b2 and b3 are to the left of a∗ai, the line b2b3 intersects ` in a point p above
`∩a∗ai. Let q be the point `∩ b1b2. Note that q is to the left of a∗ai. The point b4 is to the right
of b2b3, as otherwise b4 lies in 4(p, q, b2), which is impossible because the points p, q, b2 are in
Wi while b4 is not. Altogether, b2 is inside 4(b3, b1, b4) and this finishes the proof of Claim 2.

Claim 3. Either every point of B′ is to the right of b3 or b3 is the rightmost point of B.

By Observation 4.6(i), the sector S(b3, ai−1, b1, b2) is empty of points of P and thus all points
of B′ ∩R1 lie to the left of ai−1b3 and, in particular, to the right of b3.

Suppose for contradiction that the claim is not true. That is, there is a point b4 ∈ B′ that is
the rightmost point in B and there is a point b5 ∈ B′ that is to the left of b3. Note that b4 is an
extremal point of C. By Claim 1 and by the fact that all points of B′ ∩R1 lie to the right of b3,
b5 lies in R2 \R1. By Claim 2, b2 lies in the triangle 4(b1, b5, b3), and thus B \ {b4} is not in
convex position. This contradicts the assumption that C is an `-critical island. This finishes
the proof of Claim 3.

Claim 4. The point b3 is the third leftmost point of B. In particular, Wi is the only a∗-wedge
with at least three points of B.

Suppose for contradiction that b3 is not the third leftmost point of B. Then by Claim 3, b3 is
the rightmost point of B and therefore an extremal point of B. This implies that B′ ⊆ R2 \R1,
since all points of B′ ∩ R1 lie to the right of b3. By Claim 2, each point of B′ then forms a
non-convex quadrilateral together with b1, b2, and b3. Since neither b1 nor b2 are extremal
points of C and since |B ∩ ∂ conv(C)| = 2, there is a point b4 ∈ B that is an extremal point
of C. Since |B| ≥ 5, the set C \ {b4} has none of its parts separated by ` in convex position,
which contradicts the assumption that C is an `-critical set. Since Wi is an arbitrary a∗-wedge
with wi ≥ 3, Claim 4 follows.

Claim 5. Let W be a union of four consecutive a∗-wedges that contains Wi. Then |W ∩B| ≤ 4.

Suppose for contradiction that |W ∩ B| ≥ 5. Let C ′ := C ∩W . Note that |C ′ ∩ A| = 6 and
that a∗, ai−1, ai lie in C ′. By Lemma 4.8, there is no `-divided 5-hole in C ′. We obtain C ′′

by removing points from C ′ from the right until |C ′′ ∩ B| = 5. Since C ′′ is an island of C ′,
there is no `-divided 5-hole in C ′′. From Claim 4 we know that b1, b2, b3 are the three leftmost
points in C and thus lie in C ′′. We apply Lemma 4.16 to C ′′ and, since b1, b2, b3 lie in a convex
a∗-wedge of C ′′, we obtain a contradiction. This finishes the proof of Claim 5.
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We now complete the proof of Proposition 4.22. First, we assume that 1 ≤ i ≤ 4. Let
W := W1 ∪W2 ∪W3 ∪W4. By Claim 5, |W ∩B| ≤ 4. Claim 4 implies that wk ≤ 2 for every k
with 5 ≤ k ≤ t. By Corollary 4.13, we have

|B| =
4∑

k=1

wk +
t∑

k=5

wk ≤ 4 + (t− 3) = t+ 1 ≤ |A|.

The case t− 3 ≤ i ≤ t follows by symmetry.

Finally, we assume that 5 ≤ i ≤ t − 4. Let W := Wi−3 ∪Wi−2 ∪Wi−1 ∪Wi. Note that W is
convex, since 2 ≤ i − 3 and i < t. By Lemma 4.18(ii), we have wi−3 + wi−2 + wi−1 + wi ≤ 3
and wi + wi+1 + wi+2 + wi+3 ≤ 3. By Claim 4, wk ≤ 2 for all k with 1 ≤ k ≤ i− 4. Thus, by
Corollary 4.13,

∑i−4
k=1wk ≤ i − 3. Similarly, we have

∑t
k=i+4wk ≤ t − i − 2. Altogether, we

obtain that

|B| =
i−4∑
k=1

wk +
i−1∑

k=i−3

wk +wi +
i+3∑

k=i+1

wk +
t∑

k=i+4

wk ≤ (i− 3) + 3 + (t− i− 2) = t− 2 ≤ |A| − 3.

4.5.5. Finalizing the proof of Theorem 4.2

We are now ready to prove Theorem 4.2. Namely, we show that for every `-divided set P = A∪B
with |A|, |B| ≥ 5 and with neither A nor B in convex position there is an `-divided 5-hole
in P .

Suppose for the sake of contradiction that there is no `-divided 5-hole in P . By the result of
Harborth [115], every set P of ten points contains a 5-hole in P . In the case |A|, |B| = 5, the
statement then follows from the assumption that neither of A and B is in convex position.

So assume that at least one of the sets A and B has at least six points. We obtain an island Q
of P by iteratively removing extremal points so that neither part is in convex position after the
removal and until one of the following conditions holds.

(i) One of the parts Q ∩A and Q ∩B has only five points.

(ii) Q is an `-critical island of P with |Q ∩A|, |Q ∩B| ≥ 6.

If (i) holds, we have |Q ∩ A| = 5 or |Q ∩ B| = 5. If |Q ∩ A| = 5 and |Q ∩ B| ≥ 6, then we let
Q′ be the union of Q ∩A with the six leftmost points of Q ∩B. Since Q ∩A is not in convex
position, Lemma 4.14 implies that there is an `-divided 5-hole in Q′, which is also an `-divided
5-hole in Q, since Q′ is an island of Q. However, this is impossible as then there is an `-divided
5-hole in P because Q is an island of P . If |Q ∩ A| ≥ 6 and |Q ∩ B| = 5, then we proceed
analogously.

Otherwise, if (ii) holds, we have |Q ∩ A|, |Q ∩ B| ≥ 6. There is no `-divided 5-hole in Q,
since Q is an island of P . By Lemma 4.19(i), we can assume without loss of generality that
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|A ∩ ∂ conv(Q)| = 2. Then it follows from Proposition 4.21 that |Q∩B| < |Q∩A|. By exchanging
the roles of Q∩A and Q∩B and by applying Proposition 4.22, we obtain that |Q∩A| ≤ |Q∩B|,
a contradiction. This finishes the proof of Theorem 4.2.

4.6. Final remarks

At a first glance, it might seem that a similar approach could be used to derive stronger lower
bounds also on the minimum number of 6-holes h6(n). However, since there are point sets of
29 points with no 6-hole [155], one would need to investigate point sets of size at least 30 in
order to find an `-divided 6-hole. This task is too demanding for our implementations, since the
number of combinatorially different point sets grows too rapidly. Moreover, the case analysis in
several steps of our proof would become much more complicated.

4.6.1. Necessity of the assumptions in Theorem 4.2

In the statement of Theorem 4.2 we require that the `-divided set P = A∪B satisfies |A|, |B| ≥ 5.
We now show that those requirements are necessary in order to guarantee an `-divided 5-hole
in P by constructing an arbitrarily large `-critical set C = A ∪ B with |A| = 4 and with no
`-divided 5-hole in C.

Proposition 4.23. For every integer n ≥ 5, there exists an `-critical set C = A ∪ B with
|A| = 4, |B| = n, and with no `-divided 5-hole in C.

Proof. First, we consider the case where n is odd. Let p+ = (0, 1) and p− = (0,−1) be two
auxiliary points and let `+ = {(x, y) ∈ R2 : y = x/4} and `− = {(x, y) ∈ R2 : y = −x/4} be
two auxiliary lines. We place the point b′1 = (2,−1/2) on the line `− and the auxiliary point
q = (2, 1/2) on the line `+. For i = 2, . . . , n, we iteratively let b′i be the intersection of the line
`+ with the segment p+b′i−1 if i is even and the intersection of `− with p−b′i−1 if i is odd. We
place two points a1 and a2 sufficiently close to p+ so that a1 is above a2, the segment a1a2 is
vertical with the midpoint p+, and all non-collinear triples (b′i, b

′
j , p

+) have the same orientation
as (b′i, b

′
j , a1) and (b′i, b

′
j , a2). Similarly, we place two points a3 and a4 sufficiently close to p− so

that a3 is to the left of a4, the segment a3a4 lies on the line p−q and has p− as its midpoint, the
point a4 is to the left of b′n, and all non-collinear triples (b′i, b

′
j , p
−) have the same orientation

as (b′i, b
′
j , a3) and (b′i, b

′
j , a4). Figure 4.13 gives an illustration.

We let A, B′, and B′3 be the sets {a1, a2, a3, a4}, {b′1, . . . , b′n}, and B′ \ {b′3}, respectively. Note
that the line a3a4 intersects the segment b′1b

′
3. Since maxa∈A x(a) < minb′∈B′ x(b′), the sets A

and B′ are separated by a vertical line `.

Next we slightly perturb b′3 to obtain a point b3 such that b3 lies above `− and all non-collinear
triples (b3, c, d) with c, d ∈ A ∪B′3 have the same orientation as (b′3, c, d). Note that the point
b3 lies in the interior of conv(B′3), since n ≥ 5.
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p+

p−

b′1

b′2

`+

`−

b′3

b′4

b′n

a1

a2

a3

a4

q

· · ·
b′n−1

`

Figure 4.13.: The set C constructed in the proof of Proposition 4.23 for n odd.

To ensure general position, we transform every point b′i = (x, y) ∈ B′3 ∩ `+ to bi = (x, y − εx2)
and every point b′i = (x, y) ∈ B′3 ∩ `− to bi = (x, y + εx2) for some ε > 0. The remaining points
in A ∪ {b3} remain unchanged. We choose ε sufficiently small so that all non-collinear triples of
points from A ∪B′3 ∪ {b3} have the same orientations as their images after the perturbation.
Finally, let B be the set {b1, . . . , bn} and set B3 := B \ {b3}.

Since the points from B3 lie on two parabolas, the set B is in general position. In particular,
points from B3 are in convex position and the point b3 lies inside conv(B3). Also observe that
the line ` separates A and B and that a1, a3, and b1 are the extremal points of C := A ∪ B.
Since neither of the sets A and B is in convex position, and removal of any of the extremal
points a1, a3, b1 leaves either A or B in convex position, the set C = A ∪B is `-critical.

We now show that C contains no `-divided 5-hole. Suppose for contradiction that there is an
`-divided 5-hole H in C. We set A+ := {a1, a2}, A− := {a3, a4}, B+ := {b2, b4, . . . , bn−1}, and
B− := {b1, b3, . . . , bn}. First we assume that H contains points from both A+ and A−. Then
H ∩B ⊆ {bn−1, bn}, since if there is a point bi in H with i < n− 1, then bn lies in the interior
of conv(H). Note that if H ∩B = {bn−1, bn}, then neither a4 nor a1 lies in H and thus |H| < 5.
Hence |H ∩B| = 1, which is again impossible, as H cannot contain all points from A. Therefore
we either have H ∩ A ⊆ A+ or H ∩ A ⊆ A− and, in particular, 1 ≤ |H ∩ A| ≤ 2. We now
distinguish these two cases.
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Case 1: |H ∩A| = 2. If H ∩A = A+, then the hole H can contain only the point bn from B−.
This is because if there is a point bi in H ∩ B− with i < n, then the point bi+1 lies in
the interior of conv(H). Additionally, H contains at most two points from B+, since
otherwise H is not in convex position. Consequently, bn lies in H and |H ∩B+| = 2, which
is impossible, as H would not be in convex position.

If H ∩A = A−, then the hole H contains no point from B+. This is because if there is
a point bi in H ∩ B+, then the point bi+1 lies in the interior of conv(H). The point b1
cannot lie in H because otherwise H is not in convex position as the line a3a4 separates b1
from B \ {b1}. Additionally, H contains at most two points from B−, since otherwise H
is not in convex position. Thus H contains at most four points of C, which is impossible.

Case 2: |H ∩A| = 1. Assume first that H ∩A ⊆ A+. Note that for bi, bj ∈ B− with i < j ≤ n,
the point bi+1 lies inside the triangle 4(a1, bi, bj) and, if j < n, the point bj+1 lies inside
4(a2, bi, bj). Thus H contains at most one point from B− or we have H∩B− = {bn−2, bn}
and H ∩A = {a2}. The latter case does not occur, since for every bi ∈ B+ with i < n− 1
the point bn−1 lies in the interior of conv({a2, bi, bn−2, bn}). Therefore we consider the
case |H ∩B−| ≤ 1. However, |H ∩B+| ≥ 3 is impossible since H would not be in convex
position. Altogether, we obtain |H| < 5, which is impossible.

Now we assume that H ∩ A ⊆ A−. Note that for bi, bj ∈ B+ with i < j < n, the point
bi+1 lies inside the triangle 4(a4, bi, bj) and the point bj+1 lies inside 4(a3, bi, bj). Thus
H contains at most one point from B+. Consequently, H contains at least three points
from B−, which is possible only if H ∩ B− = {b1, b3, b5}. However, then H contains a
point bi from B+ and b3 lies in the interior of conv(H).

Thus, in both cases H is not an `-divided 5-hole in C, a contradiction.

To finish the proof, we consider the case in which n is even. Let C̃ = A∪B̃ be the set constructed
above with |A| = 4 and |B̃| = n + 1. We set B := B̃ \ {b2} and C := A ∪ B. Note that C is
`-critical.

It remains to show that C contains no `-divided 5-hole. Suppose for contradiction that there is
an `-divided 5-hole H in C. There is no `-divided 5-hole in C̃ and thus b2 lies in the interior of
conv(H). Since b1 is the only point from C to the right of b2, the point b1 lies in H. Since a1

is the only point of C to the left of b2b1, all other points of H lie to the right of b2b1. Then,
however, the set (H \ {a1}) ∪ {b2} is a 5-hole in C̃, which gives a contradiction.

4.6.2. Necessity of the assumptions in Lemmas 4.14 to 4.17

We remark that all the assumptions in the statements of Lemmas 4.14 to 4.17 are necessary;
Figure 4.14(a) shows that the conditions |B| = 5 in Lemma 4.16 and the convexity of A in
Lemma 4.17 are both necessary. The horizontal reflection of Figure 4.14(a) also shows the
necessity of the assumption |A| = 5 in Lemma 4.14. It follows from the example in Figure 4.14(b)
that the condition |B| = 4 cannot be omitted in Lemma 4.17, since there is an a-wedge with
three points of B. The same point set without the point a′ shows that the assumption |B| ≥ 4
in Lemma 4.15 is necessary. The example from Figure 4.14(c) shows that the conditions |B| = 6
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in Lemma 4.14, the convex position of A in Lemma 4.15, and |A| = 6 in Lemma 4.16 are all
necessary. The same set without the point a shows that |A| = 5 in Lemma 4.15 is also needed
and, if we remove the points a and a′, then the resulting point set shows that we need 5 ≤ |A|
in Lemma 4.17. We can make statements only about convex a-wedges in Lemmas 4.15 and 4.16,
as there are counterexamples for the corresponding statements without the convexity condition.
It suffices to consider so-called double-chains, which are point sets obtained by placing n points
on each of the two branches of a hyperbola. Double-chains also show that A cannot be in convex
position in Lemma 4.14 and that the non-convex a-wedge must be empty of points in B in
Lemma 4.17.

`

a∗

(a)

`

a

a′

(b)

`

(c)

Figure 4.14.: Examples of points sets that witness tightness of Lemmas 4.14 to 4.17. All k-holes in
these sets with k ≥ 5 are shaded in blue. The set of edges drawn to visualize the order
type is the set of exit edges defined in Chapter 3.

4.7. Flow summary

In Figure 4.15 we present the flow summary of the results presented.

4.8. Chapter summary

In this chapter we have presented the first superlinear lower bound on the number of 5-holes
in any set of n points in the plane in general position. The main ingredient in the proof of
this bound is the following structural result, which might be of independent interest: If a finite
set P of points in the plane in general position is partitioned by a line ` into two subsets, each
of size at least five then either one side is in convex position or ` intersects the convex hull of a
5-hole in P . The proof of this result integrates the assistance of the computer for dealing with
point sets of small cardinality.
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Theorem 4.1

Theorem 4.2

Theorem 4.3

Theorem 4.5

Lemma 4.8

Lemma 4.11

Lemma 4.12

Lemma 4.14

Lemma 4.19

Lemma 4.16

Lemma 4.15 and 4.17

Lemma 4.18

Lemma 4.20 Corollary 4.13

Proposition 4.21 Proposition 4.22

Lemma 4.4

Figure 4.15.: Flow summary. The shaded boxes correspond to computer-assisted results and the result
in gray is part of a paper by Garćıa [99].
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5. Extending simple drawings

Part of the results in Sections 5.2, 5.3, 5.4 and 5.6 have been accepted for publication [35].
Very recently, we obtained the results presented in Sections 5.5 and 5.7. They are part of a
preprint [37].

5.1. Introduction

A simple drawing of a graph G (also known as good drawing or as simple topological graph in
the literature) is a drawing D(G) of G in the plane such that every pair of edges share at most
one point that is either a proper crossing (no tangent edges allowed) or an endpoint. Moreover,
no three edges intersect in the same point and edges must neither self-intersect nor contain
other vertices than their endpoints. Simple drawings, despite often considered in the study of
crossing numbers, have basic aspects that are yet unknown.

The long-standing conjectures on the crossing numbers of Kn and Kn,m, known as the Harary-
Hill and Zarankiewicz’s conjectures, respectively, have drawn particular interest in the study
of simple drawings of complete and complete bipartite graphs. The intensive study of these
conjectures has produced deep results about simple drawings of Kn [138, 158] and Kn,m [61].

In contrast to our knowledge about Kn, little is known about simple drawings of general graphs.
In [140] it was observed that, when studying simple drawings of general graphs, it is natural to
try to extend them, by inserting the missing edges between non-adjacent vertices. One of the
main results in this chapter suggests that there is no hope for efficiently deciding when such
operation can be performed.

The complement G of a graph G is the graph with the same vertex set as G and where two
distinct vertices are adjacent if and only if they are not adjacent in G. Given a simple drawing
D(G) of a graph G = (V,E) and a subset M of candidate edges from G, an extension of D(G)
with M is a simple drawing D′(G+) of the graph G+ = (V,E ∪M) that contains D(G) as a
subdrawing. If such an extension exists, then we say that M can be inserted into D(G).

Given a simple drawing, an extension with one given edge is not always possible, as shown
by Kynčl [136]: In Figure 5.1(a) the edge uv cannot be inserted, because uv would cross an
edge incident either to u or to v. We can extend this example to a simple drawing of K2,4; see
Figure 5.1(b). Moreover, we can use it to construct drawings of Km,n with larger values of m
and n in which an edge uv cannot be inserted; see Figure 5.1(d). Kynčl’s drawing can also be
extended to a simple drawing of K6 minus one edge where the only missing edge cannot be
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u
v

(a) Example by Kynčl [136].

u
v

(b) Drawing of K2,4.

u
v

(c) Drawing of K6 − uv.

u
v

..
.

..
.

(d) Drawing of Km,n.

..
.

u
v

(e) Drawing of Kn − uv.

Figure 5.1.: Drawings in which the edge uv cannot be inserted.

inserted; see Figure 5.1(c). From this drawing one can construct drawings of Kn with n ≥ 6
minus one edge where the only missing edge cannot be inserted; see Figure 5.1(e).

Extensions, by inserting both vertices and edges, have received a great deal of attention in
the last decade, especially for (different classes of) plane drawings [33, 40, 57, 72, 123, 146,
167]. It has also been of interest to study crossing number questions on planar graphs with one
additional edge [59, 109, 176]. We remark that the term augmentation has also been used in the
literature for the similar problem of inserting edges and/or vertices to a graph [86]. Extensions
of simple drawings have been previously considered in the context of saturated drawings, that
is, drawings in which no edge can be inserted [112, 140]. In that context, the main interest lies
in finding the minimum number of edges that a saturated drawing on n vertices can have. This
minimum was shown to be at most 17.5n [140] and later this bound was improved to 7n [112].

In this chapter we study the computational complexity of extending a simple drawing D(G) of
a graph G. Note that if D(G) is a straight-line drawing the problem is trivial. Pseudolinear
drawings are those in which the m curves represented the edges can be extended to an
arrangement of m pseudolines, with each edge lying in a distinct pseudoline. Levi’s enlargement
lemma states that given a pseudoline arrangement and two points u, v that do not lie on the
same pseudoline, then we can insert a new pseudoline into the arrangement that contains both
u and v. Thus, we can always (iteratively) insert any set of edges into a pseudolinear drawing.

Outline. In Section 5.2, we show that deciding whether a simple drawing D(G) can be
extended with a set M of candidate edges is NP-complete. Moreover, in Section 5.3, we prove
that finding the largest subset of edges from M that extend D(G) is APX-hard. In the rest of
this chapter we focus on the problem of deciding whether an edge can be inserted into a simple
drawing. In Section 5.4 we reformulate this problem in the dual graph of the planarization of
the drawing. In Section 5.5 we present our new result, that improves the ones in Sections 5.2
and 5.3. It shows that, surprisingly, deciding whether one candidate edge can be inserted into
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(a) Variable gadget X .
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(b) Clause gadget C.
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(c) Wire gadget W.

Figure 5.2.: Basic gadgets for the proof of Theorem 5.1.

a simple drawing is NP-complete. In Section 5.6, we present a polynomial-time algorithm to
decide whether an edge uv can be inserted into D(G) when {u, v} is a dominating set for G In
Section 5.7 we show that that the problem of deciding whether an edge can be inserted into
D(G) is FPT with respect to the number of crossings of D(G). Finally, we present a summary
and conclusions in Section 5.8.

5.2. Inserting a given set of edges is NP-complete

In this section we prove the following result:

Theorem 5.1. Given a simple drawing D(G) of a graph G = (V,E) and a set M of edges
of the complement of G, it is NP-complete to decide whether D(G) can be extended with the
set M .

Notice first that the problem is in NP, since it can be described combinatorially. Our proof of
Theorem 5.1 is based on a reduction from monotone 3SAT [52]. An instance of that problem
consists of a Boolean formula φ in 3-CNF with a set of variables X = {x1, . . . , xn} and a
set of clauses K = {C1, . . . , Cm}. An occurrence of a variable in a clause is called a literal.
Monotonicity means that in each clause either all the literals are positive (positive clause) or
they are all negative (negative clause). The bipartite graph G(φ) associated to φ is the graph
with vertex set X ∪K and where a variable xi is adjacent to a clause Cj if and only if xi ∈ Cj
or xi ∈ Cj .

We now show how to construct a simple drawing from a given formula. We start by introducing
our three basic gadgets, the variable gadget, the clause gadget, and the wire gadget, shown
in Figure 5.2. The variable gadget contains two nested cycles, avbu on the outside and cvdu
on the inside, drawn in the plane without any crossings. Two additional vertices x and y are
drawn in the interior of avcu and dvbu, respectively. They are connected with an edge that,
starting in x, crosses the edges au, ub, dv, cv, av, and vb, in this order, and ends in y. Another
two vertices i and j are drawn inside the region in the interior of avcu that is incident to x.
They are connected with an edge that, starting in i, crosses the edges uc, ud, vd, and vc, in
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this order, and ends in j; see Figure 5.2(a). Notice that the edge uv can be inserted only in two
possible regions: either inside the cycle avcu or inside the cycle dvbu. Drawing the edge uv in
any other region would force it to cross uj or xy more than once. The clause gadget and the
wire gadget are similarly defined; see Figure 5.2(b)–(c).

In each of these three gadgets shown in Figure 5.2, the edge uv can only be inserted in the
regions where the dashed arcs are drawn. In the rest of the section, when we refer to the regions
in a gadget we mean these regions where the edge uv can be inserted.

In a variable gadget, these regions encode the truth assignment of the corresponding variable xi:
Inserting the edge uv in the left region corresponds to the assignment xi = true, while inserting
it in the right region corresponds to xi = false. We call these left and right regions in a
variable gadget the true and false regions, respectively. In a clause gadget, each of the three
regions is associated to a literal in the corresponding clause. Wire gadgets propagate the truth
assignment of the variables to the clauses. They are drawn between the gadgets corresponding
to clauses and variables that are incident in G(φ). The idea is that if an assignment makes a
literal not satisfy a clause, then the edge uv in the wire gadget blocks the region in the clause
gadget corresponding to that literal by forcing uv to cross that region twice.

Let w(G) denote vertex w in gadget G. The following lemma shows that we can get the desired
behavior with a wire gadget connecting a variable gadget and a clause gadget. The precise
placement of a wire gadget with respect to the variable gadget and the clause gadget that it
connects is illustrated in Figure 5.3.

Lemma 5.2. We can combine a variable gadget X , a clause gadget C, and a wire gadget W to
produce a simple drawing with the following properties.

• If u(X )v(X ) is inserted in the false region in X , then inserting u(W)v(W) prevents u(C)v(C)

from being inserted in one specified target region in C.

• If u(X )v(X ) is inserted in the true region in X , then we can insert u(W)v(W) in a way
such that u(C)v(C) can then be inserted in any region in C.

Proof. We start with a drawing of the variable gadget X and the clause gadget C such that the
two gadgets are drawn on a line and they are disjoint. A representation of how the wire gadget
is then inserted is shown in Figure 5.3. In this proof we focus on the wire gadget drawn with
blue edges and vertices.

In Figure 5.3, gadget X lies to the left of gadget C. The true and false regions in X are
shaded in green and red, respectively. We assume that the target region in C is the leftmost one,
shaded in yellow. The left and right regions in the wire gadget are shaded in red and yellow,
respectively.

If the edge u(X )v(X ) is inserted in the false region in X then the edge u(W)v(W) cannot be
inserted in the yellow region in W, since it would cross u(X )v(X ) twice. Thus, u(W)v(W) can
only be inserted in the red region in W. If inserted in that region, u(C)v(C) cannot be inserted
in the yellow region in C, since it would cross u(W)v(W) twice. In contrast, if the edge u(X )v(X )

is inserted in the true (green) region in X , then u(W)v(W) can be inserted in either of the two
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regions in W. In particular, it can be inserted in the yellow region in a way such that u(C)v(C)

can then be inserted in any region in C.

Finally, notice that if the target region in C is not the leftmost one, we can adapt the construction
by leaving the region(s) to the left in C uncrossed by the wire gadget W; see the clause gadget
in the middle of Figure 5.3.

Let φ be an instance of monotone 3SATand let G(φ) be the bipartite graph associated to φ.
Let D(φ) be a 2-page book drawing of G(φ) in which (i) all vertices lie on an horizontal line,
and from left to right, first the ones corresponding to negative clauses, then to variables, and
finally to positive clauses; and (ii) the edges incident to vertices corresponding to positive
clauses are drawn as circular arcs above that horizontal line, while the ones incident to vertices
corresponding to negative clauses are drawn as circular arcs below it. In an slight abuse of
notation, we refer to the vertices in D(φ) corresponding to variables and clauses simply as
variables and clauses, respectively.

We construct a simple drawing D′ from D(φ) by first replacing the variables and clauses by
variable gadgets and clause gadgets, respectively, and drawn in disjoint regions. Moreover,
the clause gadgets corresponding to negative clauses are rotated 180◦. We then insert the
wire gadgets. The edges in D(φ) connecting variables to positive clauses are replaced by wire
gadgets drawn as in the proof of Lemma 5.2; see Figure 5.3. Similarly, the edges in D(φ)
connecting variables to negative clauses are replaced by wire gadgets drawn as the ones before,
but rotated 180◦.

We now describe how to draw the wire gadgets with respect to each other, so that the result
is a simple drawing; see Figure 5.3 for a detailed illustration. First, we focus on the drawing
locally around the variable gadgets. Consider a set of edges in D(φ) connecting a variable with
some positive clauses. The drawing D(φ) defines a clockwise order of these edges around the
common vertex starting from the horizontal line. We insert the corresponding wire gadgets
locally around the variable gadget following this order. Each new gadget is inserted shifted
up and to the right with respect to the previous one (as the blue and green gadgets depicted
in Figure 5.3). Edges in D(φ) connecting a variable with some negative clauses are replaced
by wire gadgets in an analogous manner with a 180◦ rotation. We assign the three different
regions in a clause gadget to the target regions in the wire gadgets following the rotation of
the edges around the clause in D(φ). (Note that we can assume without loss of generality,
by possibly duplicating variables, that each clause in φ contains three literals.) Thus, locally
around a clause gadget, it is then possible to draw the different wire gadgets connecting to it
without crossing. Since D(φ) is a 2-page book drawing, the constructed drawing D′ is a simple
drawing.

Let M be the set of uv edges of all the gadgets. The fact that φ is satisfiable if and only if M
can be inserted into D′ follows now from Lemma 5.2, finishing the proof of Theorem 5.1.
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5.3. Maximizing the number of edges inserted is APX-hard

In this section we show that the maximization version of the problem of inserting missing edges
from a prescribed set into a simple drawing is APX-hard. This implies that, if P 6= NP, then no
PTAS1 We start by showing that this maximization problem is NP-hard.

Theorem 5.3. Given a simple drawing D(G) of a graph G = (V,E) and a set M of edges in
the complement G, it is NP-hard to find a maximum subset of edges M ′ ⊆M that extends D(G).

Our proof of Theorem 5.3 is based on a reduction from the maximum independent set problem
(MIS). By showing that the reduction when the input graph has vertex degree at most three is
actually a PTAS-reduction we will then conclude that the problem is APX-hard.

An independent set of a graph G = (V,E) is a set of vertices S ⊆ V such that no two vertices
in S are incident with the same edge. The problem of determining the maximum independent set
(MIS) of a given graph is APX-hard even when the graph has vertex degree at most three [32].
We first describe the construction of a simple drawing D′(G′) from the graph G of a given MIS
instance. Then we argue that for a well-selected set of edges M that are not present in D′(G′),
finding a maximum subset M ′ ⊆M that can be inserted into D′(G′) is equivalent to finding a
maximum independent set of G.

5.3.1. Constructing a drawing from a given graph

We begin by introducing our two basic gadgets, the vertex gadget V and the edge gadget E ,
shown in Figure 5.4. They are reminiscent of the gadgets in the previous section, but adapted to
this different reduction. Similarly as in the previous gadgets, there is only one region in which
the edge uv can be inserted into V and only two regions in which the edge uv can be inserted
into E . These regions are the ones in which the dashed arcs in Figure 5.4(b) are drawn.

In Figure 5.4(c) we combined an edge gadget and two vertex gadgets. This figure shows a
copy E(e) of the gadget E (that corresponds to an edge e = wz) drawn over two different copies,
V(w) and V(z), of the gadget V (that correspond to vertices w and z, respectively). We relabel
the vertices in the copies of these gadgets by using the vertex or edge to which they correspond
as their superscripts. Since there is only one region in which v(w)u(w) and v(z)u(z) can be drawn,
inserting both of these edges prevents v(e)u(e) from being inserted. Inserting either only v(w)u(w)

or only v(z)u(z) leaves exactly one possible region where v(e)u(e) can be inserted.

We have all the ingredients needed for our construction. Suppose that we are given a simple
graph G = (V,E). This graph admits a 1-page book drawing D(G) in which the vertices are
placed on a horizontal line and the edges are drawn as circular arcs in the upper halfplane.
Since the edge gadget does not interlink the vertex gadgets symmetrically, we consider the
edges in D(G) with an orientation from their left endpoint to their right one.

1For any fixed ε > 0, a polynomial-time approximation scheme (PTAS) produces a solution to any given
instance within an approximation factor of 1 + ε in polynomial time in the input size. However, the polynomial
algorithm might be exponential in ε.
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(b) Edge gadget E .
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(c) Two vertex gadgets interlinked by an edge gadget.

Figure 5.4.: Basic gadgets and drawings for the proof of Theorem 5.3.

The following lemma shows that is possible to replace each vertex w ∈ V in the drawing
by a vertex gadget V(w) and each edge e ∈ E by an edge gadget E(e), and obtain simple
drawing D′(G′) (where G′ is the disjoint union of the underlying graphs of the vertex- and edge
gadgets).

Lemma 5.4. Given a 1-page book drawing D(G) of a graph G = (V,E), then we can replace
every vertex by a vertex gadget and every edge by an edge gadget to obtain a simple drawing.

Proof. We show that the copies {E(e) : e ∈ E} can be inserted into
⋃
w∈V V(w) such that such

that vertex gadgets corresponding to different vertices are drawn in disjoint regions and for
every edge e = wz ∈ E, V(w) ∪V(z) ∪ E(e) is as in Figure 5.4(c) (up to interchanging the indices
w and z), and such that the resulting drawing is simple.

First, for each vertex w ∈ V we place the gadget V(w) in its position, so all the copies of V lie
(equidistant) on a horizontal line and do not cross each other. For the edges of G, since the
drawing in Figure 5.4(c) is not symmetric, we choose an orientation. We orient all the edges in
the 1-page book drawing D(G) of G from left to right. We start by inserting the corresponding
E gadgets from left to right and from the shortest edges in D(G) to the longest. For an edge
wz, the intersections of the gadget E(wz): (i) with the edges u(w)a(w) and u(w)b(w) are placed to
the left of all the previous intersections of other edge gadgets with that edge; (ii) with the edge
v(w)b(w) are placed to the right of all the previous intersections with that edge; (iii) with the
edge v(w)a(w) are placed to the right of previous intersections with gadgets E(wt) and to the left
of previous intersections with gadgets E(tw); (iv) with the edges u(z)a(z) and u(z)b(z) are placed
to the left of the previous intersections with gadgets E(tz) (v) with the edge v(z)b(z) are placed
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to the left of all previous intersections; and (vi) with the edge v(z)a(z) are placed to the left of
all previous intersections with gadgets E(tz); see Figure 5.5.

Moreover, the arcs of an edge gadget connecting two vertex gadgets are drawn either completely
in the upper half-plane or completely in the lower one with respect to the horizontal line
and two arcs cross at most twice. If they are part of edges in edge gadgets connected to the
same vertex gadget, they might cross locally around this vertex gadget. However, after this
crossing, they follow the circular-arc routing induced by D(G) (or its mirror image) and do not
cross again. Otherwise, with respect to each other, they follow the circular-arc routing induced
by D(G) (or its mirror image) and thus cross at most once; see Figure 5.5.

Since in none of the gadgets two incident edges cross, and edges of different gadgets are vertex-
disjoint, we only have to worry about edges from different gadgets crossing more than once. By
construction, no edge in an edge gadget intersects more than once with an edge in a vertex
gadget. Thus, it remains to show that any two edges from two distinct edge gadgets cross at
most once. Such two edges are included in a subgraph H of G with exactly four vertices. The
drawing induced by the four vertex gadgets and the at most six edge gadgets is homeomorphic
to a subdrawing of the drawing in Figure 5.5. It is routine to check that it is a simple drawing,
and thus any two edges cross at most once.

5.3.2. Reduction from maximum independent set

Proof of Theorem 5.3. Given a graph G = (V,E), we reduce the problem of deciding whether G
has an independent set of size k to the problem of deciding whether the simple drawing D′(G′)
constructed as in Lemma 5.4 with a candidate set of edges M = {u(w)v(w) : w ∈ V } ∪ {u(e)v(e) :
e ∈ E} can be extended with a set of edges M ′ ⊆M of cardinality |M ′| = |E|+ k.

To show the correctness of the (polynomial) reduction, we first show that if G has an independent
set I of size k, then we can extend D′(G′) with a set M ′ of |E|+ k edges of M . Clearly, the k
edges {u(w)v(w) : w ∈ I} can be inserted into D′(G′) by the construction of the drawing. Since
I is an independent set, each edge has at most one endpoint in I. Thus, in every edge gadget
E(e) at most one of the two possibilities for inserting the edge u(e)v(e) is blocked by the previous
k inserted edges. We therefore can also insert the |E| edges {u(e)v(e) : e ∈ E}.

Conversely, let M ′ ⊂M be a set of |E|+k edges can be inserted into D′(G′) and that contains the
minimum number of uv edges from vertex gadgets. If the set of vertices {w ∈ V : u(w)v(w) ∈M ′}
is an independent set of G, then we are done, since at most |E| edges of M ′ can be from edge
gadgets, so at least k are from vertex gadgets. Otherwise, there are two edges u(w)v(w) and
u(z)v(z) in M ′ such that the corresponding vertices w, z ∈ V are connected by the edge wz ∈ E.
By the construction of D′(G′) this implies that the edge u(wz)v(wz) belongs to M , but it cannot
be in M ′. By removing the edge u(w)v(w) and inserting the edge u(wz)v(wz) into D′(G′), we
obtain another valid extension with the same cardinality but one less uv edge from a vertex
gadget. This contradicts our assumption.

The presented reduction can be further analyzed to show that the problem is actually APX-hard.
Note that the problem we are reducing from, maximum independent set in simple graphs, is
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APX-hard [32] even in graphs with vertex degree at most three. Our reduction can be shown
to be an L-reduction in that case, implying a PTAS-reduction. This shows the the problem is
APX-hard and implies that, unless P = NP, there is no PTAS for the problem, and thus, there is
a constant C such that finding an approximation with ratio better than C is as hard as finding
the optimal solution.

Corollary 5.5. Given a simple drawing D(G) of a graph G and a set of edges M of the
complement of G, finding the size of the largest subset of edges from M extending D(G) is
APX-hard.

Proof. Since the MIS problem for graphs with vertex degree at most three is APX-hard [32],
it suffices to show that the reduction proving Theorem 5.3 is an L-reduction. This type of
reductions was introduced by Papadimitriou and Yannakakis [166]. In order to provide a formal
definition, we present some notation.

Given an NP-optimization problem P , we denote by I(P ) the set of instances of P . For example,
the set of all graphs is I(MIS). The NP-optimization problem P has associated an objective
function costP that we would like to either maximize or minimize (in our case maximize). For
each instance x ∈ I(P ) we denote by optP (x) the optimal value of a feasible solution with
respect to costP . (For the MIS problem, the feasible solutions are the independent sets of the
instance graph and cost measures the size of a set.)

Let A and B be a pair of NP-optimization problems. There is an L-reduction from A to B if
there are polynomial-time computable functions f and g and positive constants c1 and c2 such
that,

(i) f maps every instance x ∈ I(A) to an instance x′ = f(x) ∈ I(B);

(ii) g maps every feasible solution y′ of x′ = f(x) to a feasible solution y = g(x, y′) of x ∈ I(A);

(iii) for every instance x ∈ I(A), optB(f(x)) ≤ c1 · optA(x); and

(iv) for every instance x ∈ I(A) and for every feasible solution y′ of x′ = f(x), |optA(x) −
costA(y)| ≤ c2 · |optB(x′)− costB(y′)|, where y = g(x, y′).

Given a simple graph G = (V,E), we construct a simple drawing D′(G′) as in Lemma 5.4. This
construction plays the role of f in (i). We denote by M the candidate set of edges consisting
of all the uv edges of the gadgets used to construct D′(G′), that is, M = {u(w)v(w) : w ∈
V } ∪ {u(e)v(e) : e ∈ E}. Then, as argued in the proof of Theorem 5.3, G has an independent
set of size k if and only if we can insert |E|+ k from M into D′(G′). Moreover, suppose that
M ′ ⊆M is a subset of |E|+ k edges that can be inserted into D′(G′). Using the ideas of the
proof of Theorem 5.3, if the set of vertices {w ∈ V : u(w)v(w) ∈M ′} is an independent set of G,
then they are an independent set of G of size k. Otherwise, there are two edges u(w)v(w) and
u(z)v(z) in M ′ and then the edge u(wz)v(wz) cannot be in M ′. By removing the edge u(w)v(w)

and inserting the edge u(wz)v(wz) into D′(G′), we obtain another set of candidate edges that
can be inserted with the same cardinality but with one less uv edge from a vertex gadget.
Iterating this process we obtain a subset of |E|+k edges M ′′ ⊆M such that the set of k vertices
{w ∈ V : u(w)v(w) ∈ M ′′} is an independent set of G. This defines the function g mapping a
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feasible subset M ′ ⊆M of at least |E| edges that we can insert into D′(G′) to an independent
set in G of size |M ′| − |E|. We extend g, so that every feasible subset M ′ ⊆M with |M ′| ≤ |E|
is mapped to the empty set. This proves (ii).

Let α = α(G) be the size of the maximum independent set of G. We now show (iii). First,
observe that the handshaking lemma and the fact that the vertex degrees in G are at most three
imply |E| ≤ 3/2|V |. We now bound |V | in terms of α(G). Wei [198] and Caro [62] independently
showed that α(G) ≥

∑
v∈V 1/(d(v) + 1), where d(v) is the degree of vertex v. Thus, in our

case |V | ≤ 4α. This bound also follows from Turán’s theorem [191]; five nice proofs of this
theorem can be found in [30]. Plugging this bound |V | ≤ 4α into the equation obtained by
the handshaking lemma we get |E| ≤ 3/2|V | ≤ 6α. Since an optimal solution for the problem
of inserting the largest subset of candidate edges into D′(G′) has size α+ |E| ≤ 7α, we have
proven (iii) for a constant c1 = 7.

Finally, we show (iv) for the constant c2 = 1. Let M ′ ⊆M be a set of l edges that can be inserted
into D′(G′). If l ≤ |E|, then g maps M ′ to the empty set and we have that α− 0 ≤ |E|+ α− l.
Otherwise, if l = |E|+ l′ for l′ ≥ 0 we have that α− l′ = |E|+ α− |E| − l′. Thus, the absolute
errors are in the worst case the same, as desired.

5.4. Dual graph for inserting one edge

In this section, we consider the problem of extending a simple drawing of a graph by inserting
exactly one edge uv for a given pair of non-adjacent vertices u and v. We start by rephrasing
our problem as a problem of finding a certain path in the dual of the planarization of the
drawing.

Given a simple drawing D(G) of a graph G = (V,E), the dual graph G∗(D) has a vertex
corresponding to each cell of D(G) (where a cell is a component of R2 \D(G)). There is an edge
between two vertices if and only if the corresponding cells are separated by the same segment of
an edge in D(G). Notice that G∗(D) can also be defined as the plane dual of the planarization
of D(G), where crossings are replaced by vertices so that the resulting drawing is plane.

We define a coloring χ of the edges of G∗(D) by labeling the edges of the original graph G using
numbers from 1 to |E|, and assigning to each edge of G∗(D) the label of the edge that separates
the cells corresponding to its incident vertices. Given two vertices u, v ∈ V , let G∗(D, {u, v}) be
the subgraph of G∗(D) obtained by removing the edges corresponding to connections between
cells separated by an (arc of an) edge incident to u or to v, and let χ′ be the coloring of the
edges coinciding with χ in every edge. The problem of extending D(G) with one edge uv is
equivalent to the existence of a heterochromatic path in G∗(D, {u, v}) (i.e., no color is repeated)
with respect to χ, between two vertices that corresponds to a cell incident to u and a cell
incident to v, respectively.

We remark that, from this dual perspective, it is clear that the problem of deciding whether a
simple drawing can be extended with a given set of edges is in NP.
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c1 : x1 ∨ x2 ∨ ¬x4

c2 : ¬x1 ∨ x3 ∨ x4

c3 : x2 ∨ ¬x3 ∨ x4

sc1

tc1 = sc2

tc2 = sc3

tc3 = sx1

tx1 = sx2

tx2 = sx3

tx3 = sx4

tx4

Figure 5.6.: Reduction from 3SAT: Example with four variables and three clauses.

...
u v

Figure 5.7.: The edge uv can be inserted in an exponential number of ways.

The general problem of finding an heterochromatic path in an edge-colored graph is NP-complete,
even when each color is assigned to at most two edges.

Theorem 5.6. Given a (multi)graph G with an edge-coloring χ and two vertices x and y, it is
NP-complete to decide whether there is a heterochromatic path in G from x to y, even when
each color is assigned to at most two edges.

Proof. We reduce from 3SAT. Given a formula in 3-CNF with n variables x1, . . ., xn and
m clauses C1, . . . , Cm, we construct an edge-colored (multi)graph G as the one depicted in
Figure 5.6. For each clause Cj , we construct a subgraph that consists of two vertices scj and
tcj joined by three different edges with colors j1, j2, and j3, respectively, corresponding to the
(without loss of generality) three literals in the clause.

For each variable xi, we construct a subgraph that consists of two vertices sxi and txi, and two
disjoint paths connecting them. The first path has its initial edge colored with color i, while
the rest of the edges correspond to the literals xi in the clauses. The second path also has its
initial edge colored i, and the rest of the edges correspond to the literals ¬xi in the clauses. If
an edge corresponds to the k-th literal of the clause Cj we assign color jk to this edge.

We now join all the clause subgraphs by identifying tcj with scj+1, for j = 1, . . . ,m− 1. We
also join all the variable subgraphs by identifying txi with sxi+1, for i = 1, . . . , n− 1. Finally,
we identify tcm with sx1.

It is easy to see that there is a heterochromatic path in G from sx1 to tcm if an only if the
3SAT instance is satisfiable. Finally, notice that we can easily modify the reduction to construct
a simple graph instead of a multigraph by subdividing edges and using new colors.
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However, in our setting the multigraph and the coloring come from a simple drawing. Thus,
the above reduction does not show hardness of the problem of inserting one edge into a simple
drawing. In the next section we present a reduction showing that.

5.5. Inserting one edge is NP-complete

We start by noting that there can be an exponential number of ways to insert an edge; see
Figure 5.7. The construction in Figure 5.7, though with a trivial solution, shows the spirit of
the reduction that we will present in this section. In order to connect u and v, some “barriers”
consisting of (parts of) edges in the drawing must be passed, and for that we have to decide
which edges to cross.

Theorem 5.7. Given a simple drawing D(G) of a graph G = (V,E) and an edge uv of the
complement of G, it is NP-complete to decide whether uv can be inserted into D(G), even if
V \ {u, v} induces a matching in G and u and v are isolated vertices.

We show NP-hardness via a reduction from 3SAT. Let φ be a 3SAT-formula with variables
x1, . . . , xn and with set of clauses C = {C1, . . . , Cm}. To make the reduction easier to describe,
we assume that in φ each clause has three literals (possibly with duplicated literals). In a
preprocessing step we transform φ into an equivalent formula in which no clause has three
positive or three negative literals.

Claim 1. The following transformation of the clauses in a formula preserves satisfiability of
the formula:

xi ∨ xj ∨ xk ⇒

{
xk ∨ y ∨ false (i)

xi ∨ xj ∨ ¬y (ii)
¬xi ∨ ¬xj ∨ ¬xk ⇒

{
¬xi ∨ ¬xj ∨ y (iii)

¬xk ∨ ¬y ∨ false (iv)

where y is a new variable for each transformed clause and false is the constant truth value
false.

Proof. We prove the statement for the case in which the original clause has three positive
literals, the other case is analogous. Assume xi or xj satisfies the original clause. Then it also
satisfies Clause (ii) and y can be set to true to satisfy Clause (i). If xk satisfies the original
clause, then it also satisfies Clause (i) and y can be set to false to satisfy Clause (ii). If none
of xi, xj , and xk satisfies the original clause, then to satisfy Clause (i) we have to set y to true,
which implies that case Clause (ii) is not satisfied.

We remark that without using the constant truth value false, a formula in which every clause
has a positive and a negative literal can be trivially satisfied by setting all variables to true or
to false.

After transforming a formula, the clauses are of four types depending on the number of positive
and negative literals (and false constants). Clauses (i)–(iv) in Claim 1 are each of one of these
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(a) Variable gadget. The red arcs belong to N , the
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(b) Clause gadget.

Figure 5.8.: The two main gadgets for the reduction.

types. Consequently, we denote these types Type (i)–(iv). This means that clauses of Type (i)
have two positive literals and one constant false, clauses of Type (ii) have two positive and
one negative literal, Type (iii) clauses contain two negative and one positive literal, and finally,
a Type (iv) clause has two negative literals and one constant false.

Given a transformed 3SAT-formula φ be a formula with variables x1, . . . , xn and with set of
clauses C = {C1, . . . , Cm}, the reduction uses gadgets consisting of simple drawings to represent
the variables and clauses. Satisfiability of φ will correspond to being able to insert a given edge
uv into a simple drawing D of a matching. The main idea of the reduction is that the variable
and clause gadgets act as barriers inside a simple closed region region Γ of D, in which we need
to insert an arc γ from one side to the other to complete the connection between u and v.

To simplify the description, we first restrict our attention to the inside of the simple closed
region Γ. We assume that γ cannot cross the boundary of Γ. In the following we use two lines,
named λ and µ, to bound the regions in which a variable and clause gadget will be placed. In
particular, these lines will be identified with opposite segments on the boundary of Γ.

Variable gadget. A variable gadget W includes two sets of arcs (parts of later-defined edges),
P and N , that correspond to positive and negative appearances of a variable, respectively. The
gadget is bounded on the left by a line λ and on the right by a line µ. Arcs in P and N have
one endpoint on a horizontal line κ such that the endpoints of arcs in P are to the left of the
endpoints of arcs in N and all these arcs lie between λ and µ. The other endpoint of arcs in P
and N lies below κ and on µ and λ, respectively. Notice that an arc in P intersects every arc
in N , and vice versa; see Figure 5.8(a) for an illustration. Finally, we choose two points u and v
such that u is below all arcs in W and v is above them.

Lemma 5.8. Let W be a variable gadget. Any arc between the vertical lines λ and µ that
connects u and v crosses either all arcs in P or all arcs in N .
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Proof. Assume there is an arc connecting u and v that neither crosses all the arcs in P nor
crosses all the arcs in N . Hence, there are two arcs p ∈ P and n ∈ N such that this arc
neither crosses p nor n. By the construction of the gadget, p and n cross. Thus, their union
together with λ and µ separates u from v. It follows that the arc has to cross either p or n, a
contradiction.

Clause gadget. A clause gadget K includes three arcs γa, γb, and γc (parts of later-defined
edges) incident to three points a, b, and c, respectively, and an arc (edge) dg incident to two
other points d and g. As in the variable gadget, the clause gadget is bounded on the left by a
line λ and on the right by a line µ. The arcs γa and γb have their other endpoint on λ and γc
has its other endpoint on µ. None of these three arcs intersect. The arc dg is placed such that
it crosses γa, γc, and γb in that order as we traverse it from d to g; see Figure 5.8(b) for an
illustration. Notice that we do not require any specific rotation of the crossings of dg with γa
and γb (where the rotation is the clockwise order of the endpoints of the crossing arcs). Finally,
we choose two points u and v such that u is below all arcs in K and v is above them.

Lemma 5.9. Let K be a clause gadget. Any arc uv between the vertical lines λ and µ that
connects u and v crosses either dg twice or at least one of the arcs γa, γb, and γc.

Proof. Let × be the crossing point of γc and dg. This point splits the arc dg into two arcs d×
and g×. Assume that the arc uv does not cross the arcs γa, γb, and γc. The union of γa and γc
together with d× and the lines λ and µ separates u from v. Since the arcs γa and γc are not
crossed by uv, uv must cross d× in a point that is not ×. Analogously, the union of γb, γc
together with g× and the lines λ and µ separates u from v. Thus, uv has to cross g× in a point
that is not ×. This implies that uv crosses dg twice.

Reduction. Let φ be a 3SAT-formula transformed as described in Claim 1 and with set of
clauses C = {C1, . . . , Cm} (each clause being of one of the four types described above). To
build our reduction we need one more gadget. First, we introduce the following simple drawing
described by Kynčl et al. [140, Figure 11] and depicted in Figure 5.9(a). Here, we denote
this drawing by ©� . It might be of independent interest to note that it can be modified to a
drawing of an arbitrarily large matching in which a specific edge uv cannot be inserted but
such that if we remove any edge or any other vertex then uv can be inserted; see Figure 5.10
(right). Figure 5.10 (left) shows a different drawing of a matching where the edge uv cannot be
inserted.

Following the notation by Kynčl et al., we denote the six arcs in ©� by a1, a2, a3, b1, b2, and b3
and its eight cells by X, A1, A2, A3, B1, B2, B3, and Y ; see Figure 5.9(a). The core property P
of ©� is that it is not possible to insert an edge between a point in cell X and another point in
cell Y such that the result is a simple drawing [140, Lemma 15].

For our reduction we first choose two arbitrary points u and v in the cells X and B2 and insert
them as vertices to ©� . Let ©� ′ be the simple drawing in which we inserted the vertices u and v
into ©� . Finally, let b∗2 be the part of the arc b2 between the crossing point of b2 and a2 and the
crossing point of b2 and b3.
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(a) Drawing ©� by Kynčl et al. [140, Figure 11].
It is not possible to insert an edge between
a point in X and one in Y .
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Figure 5.9.: Last gadget for the reduction acting as a frame.
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Figure 5.10.: Matchings in which the edge uv cannot be inserted. The drawing on the right is a
modification of the drawing ©� by Kynčl et al. [140, Figure 11].
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Lemma 5.10. The edge uv cannot be inserted into ©� ′ without crossing b∗2.

Proof. Assume for contradiction that uv can be inserted not crossing b∗2 and let γuv be such
an arc. If γuv did not cross b2, then we would be able to prolong it and cross b2 to reach Y ,
a contradiction to property P. Thus, γuv crosses b2. Further, we may assume without loss of
generality that γuv does not cross b2 inside A2 or B1, as otherwise it would be possible to
modify γuv to not cross b2. Thus, γuv intersects B2 on one side of the crossing with b2. Since γuv
cannot intersect Y , this crossing must be on b∗2.

The final piece we need for our a reduction is a set F of mI + mIV + 4 arcs that we insert
into ©� ′, where mI is the number of clauses of Type (i) and mIV the number of clauses of
Type (iv). For an arc f ∈ F we will place one of its endpoints on a vertical line κF inside A2

and the other one inside B2. The only crossings of f with©� ′ are with the arcs a2, a1, b3, and b2,
in that order when traversing f from its endpoint on κF to its endpoint in B2. Furthermore, f ,
traversed in that direction, crosses from A2 to A1, from A1 to B3, from B3 to Y , and from Y
to B2.

Consider the mI +mIV + 4 endpoints on κF sorted from top to bottom. We denote by fj the
arc in F incident to the j-th such endpoint. When traversing b2 from its endpoint in A2 to its
endpoint in B1, the crossings of arcs in F with b2 appear in the same order as their endpoints
on κF . More precisely, the crossings of b2 when traversed in that direction are with a2, a1, b3,
f1, f2, . . . , f|F |, and b1.

The arcs fmI+1, fmI+2, fmI+3, and fmI+4 will behave differently than the other arcs in F . In
the following, we denote these four arcs by r2, r1, `1, and `2, respectively. There are only two
crossings between arcs in F , namely of r1 and r2, and of `1 and `2, and both these crossings are
inside B2. These four crossing arcs divide B2 into three regions. We denote the region by b∗2 on
its boundary with Γ, the (other) region with the crossing of r1 and r2 on its boundary with Γr,
and the (other) region with the crossing of `1 and `2 on its boundary with Γ`. Arcs r1, r2, `1,
and `2 must be drawn such that the vertex v lies in Γ; see Figure 5.9(b) for an illustration.
The precise endpoints of the edges in F \ {r1, r2, `1, `2} will be fixed when we insert the clause
gadgets.

Lemma 5.11. The edge uv cannot be inserted into ©� ′ without crossing every arc in F inside
A1 or B3.

Proof. Assume for contradiction that there is an arc f ∈ F such that uv does not cross f . From
Lemma 5.10 we know that uv has to cross b∗2. Consider the region bounded by b∗2, b3, f , and a2.
Observe that, since b∗2 is fully contained on the boundary of this region, uv has to cross at
least one of the three other arcs as well. By assumption, uv does not cross f . Crossing b3 is
impossible by property P , as the part contained on this region’s boundary separates B3 from Y .
Finally, crossing the arc which is part of a2 is not possible, since this would imply the existence
of a point v′ in A2 such that uv passes through v′ without having crossed a2. Hence, we could
prolong the arc uv′ that is part of uv by crossing a2 such that it reaches B2 without having
crossed b∗2, a contradiction to Lemma 5.10. Furthermore, as we do not allow more than two
arcs to cross in one point, the statement follows.
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It remains to insert inside Γ the clause and variable gadgets and precisely define the endpoints
of arcs in F \ {`1, `2, r1, r2}. For simplicity, we first insert the variable gadgets and then the
clause gadgets. The idea is that each clause and variable gadget is inserted in Γ separating b∗2
from v. This is done by identifying the endpoints that were lying on λ or µ with points on
`1, `2, r1, r2, or b2. As a result, Lemmas 5.8 and 5.9 can be applied to the arc that we aim to
insert connecting u and v in the final simple drawing, since it has to cross b∗2 by Lemma 5.10.

We insert now the variable gadgets into Γ. Let W (i) be the variable gadget corresponding to
variable xi. For a gadget W (i), the arcs in N are drawn such that the endpoints on λ, lie on the
part of `1 that bounds Γ. The arcs in P are drawn similarly, but with the endpoints on µ lying
on the part of r1 that bounds Γ. Moreover, we identify vertex v in the gadget with vertex v
in ©� ′. Gadgets corresponding to different variables are inserted without crossing each other.
We now specify how they are inserted relative to each other. As we traverse `1 from its endpoint
on κF to its endpoint in Γ we encounter the endpoints of arcs in W (i) before the endpoints of
arcs in W (i+1). Analogously, as we traverse r1 from its endpoint on κF to its endpoint in Γ we
encounter the endpoints of arcs in W (i) before the endpoints of arcs in W (i+1). An illustration
is presented in Figure 5.11.

The clause gadgets are inserted in a similar way. Let K(j) be the clause gadget corresponding
to clause Cj . If Cj is of Type (i), K(j) is inserted such that the endpoints on λ lie on the part
of `2 that bounds Γ. If Cj is the j′-th clause of Type (i), we identify c with the endpoint of
the arc fj′ . Similarly, if Cj is of Type (iv), K(j) is inserted such that the endpoints on λ lie
on the part of r2 that bounds Γ. If Cj is the j′-th clause of Type (iv), we identify c with the
endpoint of the arc fmI+4+j′ . If Cj is of Type (ii), K(j) is inserted such that the endpoints
on λ lie on the part of `2 that bounds Γ and the endpoint on µ lies on the part of r2 that
bounds Γ. Similarly, if Cj is of Type (iii), K(j) is inserted such that the endpoint on µ lies on
the part of `2 that bounds Γ and the endpoints on λ lie on the part of r2 that bounds Γ. The
crossings in Γ of arcs from different clause gadgets are of arcs with an endpoint in r2 with arcs
in {fj : 1 ≤ j ≤ mI}.

We now specify how different clause gadgets are inserted relative to each other. As we traverse `2
from its endpoint on κF to its endpoint in Γ we encounter the endpoints of arcs corresponding to
clauses of Type (iii) before the ones corresponding to clauses of Type (ii), and those before the
ones corresponding to clauses of Type (i). Analogously, as we traverse r2 from its endpoint on κF
to its endpoint in Γ we encounter the endpoints of arcs corresponding to clauses of Type (iv)
before the ones corresponding to clauses of Type (iii), and those before the ones corresponding
to clauses of Type (ii). Moreover, as we traverse `2 and r2 in the specified directions, the
endpoints of arcs corresponding to the j′-th clause of a certain type are encountered before
the endpoints of arcs corresponding to the (j′ − 1)-st clause of this type. An illustration is
presented in Figure 5.11.

Finally, we connect arcs from variable and clause gadgets inside the regions Γ` and Γr. This is
done such that if a literal in a clause is xk then the corresponding arc in the clause gadget, that
has an endpoint on `2, is connected with an arc in N of the gadget W (k), that has an endpoint
on `1. Thus, these connections can lie in Γ`. Analogously, if a literal in a clause is ¬xk then the
corresponding arc in the clause gadget, that has an endpoint on r2, is connected with an arc
in P of the gadget W (k), that has an endpoint on r1. Thus, these connections can lie in Γr. Since,



104 Chapter 5. Extending simple drawings

without loss of generality, we can assume that Γ` and Γr are convex regions and the endpoints
we want to connect are in general position (no three on the same line), the connections can be
drawn as straight-line segments. (For clarity, in Figure 5.11 these connections have one bend
per arc.) Therefore, there is at most one crossing between each pair of connecting arcs.

Each connecting arc can be concatenated with the arcs in a variable and in a clause gadget
that it joins. These concatenated arcs are edges in our drawing that have one endpoint in a
variable gadget and the other in a clause gadget. By construction, each of them corresponds to
a literal in the formula φ and each pair of these edges crosses at most once. Similarly, the arcs
in F \ {`1, `2, r1, r2} have one endpoint in a clause gadget and also define a set of edges in our
final drawing that we denote by the same name as the corresponding arcs.

We now have all the pieces that constitute our final drawing. It consists of

(i) the simple drawing ©� ′;

(ii) the edges fi ∈ F drawn as the described arcs (with their endpoints as vertices);

(iii) the edges corresponding to literals (with their endpoints as vertices); and

(iv) the edges dg in each clause gadget (with d and g as vertices).

Observe that the constructed drawing is a simple drawing, as it is the drawing of a matching
(plus the vertices u and v) and, by construction, two edges cross at most once.

Correctness. It is now straight-forward to show that the presented construction is a valid
reduction.

Proof of Theorem 5.7. We show that the above construction is a polynomial-time reduction
from 3SAT to the problem of deciding whether an edge can be inserted into a simple drawing.
Given a 3SAT-formula φ with variables x1, . . . , xn and with clauses C1, . . . , Cm we construct a
simple drawing D as above and aim to insert the edge uv into it. This construction can clearly
be computed in polynomial time and space, since only the combinatorial description of the
drawing is needed.

Assume that the edge uv can be inserted into D and let uv denote the resulting arc. By
Lemmas 5.10 and 5.11 we know that uv has to cross b∗2 and every arc in F . Let u∗ be the point
where uv crosses b∗2. Each clause and variable gadget separates u∗ from v and thus, Lemmas 5.8
and 5.9 can be applied. This means that in a variable gadget W (i) either all arcs in P or all arcs
in N are crossed. In the former case we assign to variable xi the value true, and otherwise the
value false. Assume that this truth assignment does not satisfy φ. Then there exists a clause Cj
for which all three literals evaluate to false. Consider the clause gadget K(j). By Lemma 5.9
we must cross in it an edge corresponding to one of its literals. However, by Lemma 5.11 an
edge corresponding to the constant value false cannot be crossed (again) in a clause gadget.
By construction and the truth assignment of the variables, the edges corresponding to the other
literals of Cj cannot be crossed either.
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Figure 5.11.: Illustration of the reduction.
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Conversely, assume we are given a satisfying assignment of φ. We then can insert uv into D as
follows. Starting from u, edge uv crosses a1 to enter region A1, then crosses all arcs in F , and
crosses b∗2 to enter Γ; see also the dotted line in Figure 5.11. In each clause gadget, edge uv
crosses one edge corresponding to a literal evaluating to true, none corresponding to a literal
evaluating to false, and the edge dg in the gadget if necessary. By construction, this leaves in
each variable gadget all arcs either in P or in N free to be crossed by uv. Moreover, this allows
us to connect u and v without crossing any edge twice.

Remarks. The presented reduction from 3SAT constructs a simple drawing of a matching,
and thus, the problem remains NP-hard when G is as sparse as possible (isolated vertices that
are not the starting or ending vertices of the edge that we aim to insert can be disregarded for
our problem, and thus we can restrict our attention to graphs without such vertices). Moreover,
we only make use of the fact that in simple drawings an edge cannot cross itself and two edges
can cross at most once. We do not use that two incident edges are not allowed to cross. In fact,
our proof shows that deciding whether an arrangement of pseudosegments (a family of simple
curves of finite length pairwise intersecting in at most one point) can be extended by one more
pseudosegment is NP-hard. (The existance of such an extension can be seen as the analogue of
Levi’s enlargement lemma for pseudosegments.)

We remark that if we do not require G to be a matching, our variable gadget can be simplified
by identifying all the vertices on κ and removing the crossings between edges in N and P . Fur-
thermore, the disconnectedness of the produced instance is not a restriction. If an instance D(G)
is a simple drawing of a disconnected graph G we can transform it to an equivalent instance
consisting of a simple drawing of a connected graph by inserting an apex vertex into any cell of
the drawing and subdividing its incident edges that connect to all the vertices of D(G).

5.6. A case in which inserting one edge is in P

The following theorem shows that we can decide in polynomial time whether we can extend a
simple drawing D(G) of a graph G with the edge uv from G, when {u, v} is a dominating set
for G.

Theorem 5.12. Let D(G) be a simple drawing of a graph G = (V,E) and let u, v ∈ V be
non-adjacent vertices. If {u, v} is a dominating set for G, that is, every vertex in V \ {u, v} is
a neighbor of u or v, then the problem of extending D(G) with the edge uv can be decided in
polynomial time.

The rest of this section is devoted to prove Theorem 5.12. The first step is to reduce the
problem of inserting the edge uv to the problem of finding a valid path crossing some colored
arcs at most once in a plane with some forbidden regions (holes). This new problem has the
advantage of being a more suitable ground for inductive proofs. The main ingredients needed
in our algorithm are a series of lemmas describing sufficient conditions for which this problem
has a solution.
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For an integer k ≥ 1, a plane with k holes is a set Γ ⊆ R2 obtained from considering k disjoint
simple closed curves in R2, all bounding a common cell, and removing for each curve C the cell
bounded by C that is disjoint from the rest of the curves. If k = 1, then only one side of C is
removed. The closure of each removed cell is a hole of Γ.

Path problem with holes. Given a plane with holes Γ and a set of colored Jordan arcs J
drawn in Γ, the path problem with holes asks whether there is a Jordan arc connecting two
points p, q ∈ Γ \ J , called terminals, that crosses at most one arc in J of each color. If such a
pq-arc exists, then it is a valid pq-arc for the instance (Γ,J , p, q).

We assume that every instance of the path problem with holes that we consider meets the
following properties:

(i) Every two arcs of J share at most one point.

(ii) Pairs of distinct arcs in J having the same color are disjoint.

(iii) Each arc in J starts and ends on the boundary of Γ, that is, no arc has an endpoint in
the interior of Γ.

Reduction. Let D(G) be a drawing of a graph G, and let {u, v} be a dominating set of
vertices in G such that uv is an edge of G. We now reduce the problem of deciding whether uv
can be inserted into D(G) to the path problem with at most two holes.

If G′ is a subgraph of G, then we denote by D[G′] the subdrawing of D induced by the vertices
and edges of G′. In a slight abuse of notation, if G′ consists only of a vertex v or of an edge
e = uv, then we will write D[v] and D[e] (or D[uv]), respectively.

For a vertex v of G, the star of v consists of v, its adjacent vertices, and its incident edges.
Let Su and Sv be the subdrawings of D induced by the stars of u and v, respectively. Moreover,
let H be the subgraph of G that is the union of the stars of u and v. Then, Su and Sv are plane
stars whose union is D[H]. If an extension with uv exists, then the arc connecting u and v
representing the edge uv cannot cross any of those edges and must lie in the closure of a cell F
of D[H] with u and v on its boundary. Thus, our problem reduces to testing the existence of a
valid uv-arc in each cell F of D[H] with both u and v on its boundary.

We can assume without loss of generality that u and v are incident to at least one edge by
maybe inserting small segments incident to them. Let F be a cell of D[H] with both u and v
on its boundary. Notice that it might be bounded or unbounded. Moreover, the part of D[H]
that is in the closure of F can be connected of disconnected.

If it is connected, we consider a simple closed curve C in the interior of F , closely following the
part of D[H] that is in the closure of F . We slightly modify C so that, at a certain occurrence
of u and of v on ∂F , the curve C touches ∂F ; see the dashed curve in Figure 5.12 (right). In our
reduction we consider all possible modifications of C, differing on where we decide to make C
touch u and v. The number of possible resulting curves is at most the degree of u times the
degree of v. In this case we define C ′ = C.
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Figure 5.12.: Reduction to the path problem with holes.

If the part of D[H] that is in the closure of F is not connected it must consist of two connected
components containing u and v, respectively. We consider two simple curves C and C ′ in the
interior of F each one closely following one of these connected components. As before, we
slightly modify the curves so that, at a certain occurrence of u and of v on ∂F , they touch ∂F ;
see the dashed curves in Figure 5.12 (left).

In both cases, we consider the inside of the curves C and C ′ to be the regions bounded by them
and such that the union of their closures contains Su ∪ Sv. Let Γ be the closure of the region
consisting of F with the inside of the curves C and C ′ removed. Then, Γ is a plane with at
most two holes (the closures of the inside of the curves C and C ′).

To finish our reduction, we need to identify the set of colored Jordan arcs and the two terminals
in the path problem with holes. The set J is the defined as the union of the arcs of D[e] ∩ Γ,
for each edge e ∈ E. In order to assign colors to the arcs in J , we first assign a different color
to each edge of G. Each arc of D[e] ∩ Γ then inherits the color of e; see Figure 5.12. Finally,
the terminals p and q are points in the two cells of C ∪ J in Γ having D[u] and D[v] on their
boundary, respectively.

Notice that a reduction from the problem of inserting an edge into a simple drawing to the
path problem with holes results in an instance satisfying properties (i) and (ii). Moreover, if
{u, v} is a dominating set for G, then the instance of the path problem with holes also meets
property (iii). The discussion above leads to the following statement:

Observation 5.13. Let D(G) be a simple drawing of a graph G = (V,E) and let u, v ∈ V
be non-adjacent vertices such that {u, v} is a dominating set for G. The problem of deciding
whether uv can be inserted into D(G) can be reduced to the path problem with at most two holes.

We now prepare the tools for solving in polynomial time an instance of the path problem with
at most two holes with properties (i)–(iii). Apart from introducing the notation and operations
used in the algorithm solving that problem, we will show that if all arcs are of different colors,
then there is always a solution.

Given a plane with holes Γ and a set of Jordan arcs J in Γ, a cell of (Γ,J ) is the interior of
a component of Γ \ J . For any arc α ∈ J , a segment of α is the closure of a component of
α \ (J \ {α}). If the set of arcs has one element, J = {α}, then, we abuse notation by writing
(Γ, α) instead of (Γ, {α}). Two cells of (Γ,J ) are adjacent if they share a segment of an arc
in J . Given two points p, q ∈ Γ and a Jordan arc α, α is pq-separating if every pq-arc in Γ
intersects α.



5.6. A case in which inserting one edge is in P 109

(a) (b)

Figure 5.13.: The two operations transforming an instance of the path problem with at most two holes:
(a) enlarging a hole along an arc and (b) cutting through an arc.

In the following, let (Γ,J , p, q) be an instance of the path problem with at most two holes and
properties (i)–(iii). Then, a pq-separating arc α ∈ J has its ends on the same hole of Γ and p
and q are in different cells of (Γ, α). Moreover, each arc α ∈ J is one of the following three
types:

T1: α has its ends on two different holes of Γ;

T2: α has its ends on the same hole of Γ and is pq-separating; and

T3: α has its ends on the same hole of Γ and is not pq-separating.

We say that two instances of a problem are equivalent if the lead to the same output of a
decision problem. The following operation shows how to transform any instance (Γ,J , p, q) into
another equivalent one where no arcs of Type T3 occur.

Enlarging a hole along an arc. If there is an α ∈ J such that α is of Type T3, having
both its ends on the same hole h, then the operation of enlarging a hole along α converts
(Γ,J , p, q) into a new instance (Γ′,J ′, p, q), where Γ′ is obtained from Γ by removing the cell
of (Γ, α) disjoint from p and q and J ′ = J ∩ Γ′; see Figure 5.13 for an illustration.

Lemma 5.14. Let (Γ,J , p, q) be an instance of the path problem with at most two holes and
that meets properties (i)–(iii) and let (Γ′,J ′, p, q) be the instance obtained from (Γ,J , p, q) by
enlarging a hole along an arc α of Type T3. Then, for every arc β ∈ J there is at most one arc
β′ ∈ J ′ and it is of the same type as β. Thus, |J ′| < |J |. Moreover, there is a valid pq-arc in
(Γ,J , p, q) if and only if there is a valid pq-arc in (Γ′,J ′, p, q).

Proof. To see that the first part holds, consider an arc β ∈ J \ {α} with β ∩ Γ′ 6= ∅. Let F be
the cell of (Γ, α) disjoint from p and q. If α ∩ β = ∅, then β ∩ Γ′ = β′. Thus, the remaining case
is that α and β cross, and because they can only cross once, β \ α has two components: one is
included in F , while the other is in Γ \ F = Γ′ and its closure is β′. Moreover, since p and q are
not in F , p and q belong to the same cell of (Γ, β) if and only if they belong to the same cell of
(Γ′, β′). Also β has its ends on different holes if and only β′ has its ends on different holes of Γ′.
Now the second part of the lemma follows from the fact that any valid pq-arc in (Γ,J ) does
not cross α, since p and q are in the same cell of (Γ, α).

The operation of enlarging a hole along an arc allows us to eliminate all arcs of Type T3. Thus,
if our instance has only one hole, then we can transform it to one where there are only arcs of
Type T2. If there are two arcs of Type T2 of the same color, then it is clear that there cannot
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Figure 5.14.: Examples of instances with two holes.

be a solution. The following result shows that this condition is also sufficient for instances with
only one hole.

Lemma 5.15. Let (Γ,J , p, q) be an instance of the path problem with one hole that meets
properties (i)–(iii). Then a valid pq-arc exists if and only if there are no two pq-separating arcs
of the same color.

Proof. Suppose that J has at most one pq-separating arc of each color. To show that there is a
valid pq-arc, we proceed by induction on |J |. The base case |J | = 0 clearly holds. Henceforth,
we assume |J | ≥ 1.

If an arc in J is not pq-separating, then we apply Lemma 5.14 to reduce (Γ,J , p, q) into an
instance (Γ′,J ′, p, q) with fewer arcs and satisfying the same conditions as (Γ,J , p, q). The
induction hypothesis implies the existence of valid pq-arc in (Γ′,J ′, p, q), that, by Lemma 5.14,
also implies the existence of a valid one for (Γ,J , p, q).

Suppose now that every arc J is pq-separating. Since |J | ≥ 1, p and q are in different cells
of (Γ,J ). Let Fp be the cell containing p and let α ∈ J be an arc with a segment σ on the
boundary of Fp. Consider a point p′ in the other cell of (Γ,J ) having σ on its boundary.

With the exception of α, all the arcs in J are p′q-separating. From the preceding discussion it
follows that a valid p′q-arc not intersecting α exists. No p′q-separating arc has the same color
as α and therefore, we can extend this valid p′q-arc to a valid pq-arc.

With Lemma 5.15 in hand, we can now focus on instances with two holes. In this context, the
condition of not having two pq-separating arcs of the same color is not sufficient to imply the
existence of a valid pq-arc, as Figure 5.14 (a) shows. However, using the following operation, we
can transform an instance with two holes into an instance with only one hole when there is an
arc of Type T1 that cannot be crossed by a valid arc.

Cutting through an arc. Let α ∈ J be an arc of Type T1 having its ends on distinct holes.
The transformed instance (Γ′,J ′, p, q) obtained from (Γ,J , p, q) by cutting through α is defined
as follows. Consider a thin open strip Σ in Γ covering α and neither containing p nor q. Then,
Γ′ = Γ \ Σ (this merges the two holes of Γ into one hole) and J ′ = J ∩ Γ′; see Figure 5.13 (b)
for an illustration.

Observation 5.16. Let (Γ,J , p, q) be an instance of the path problem with two holes that meets
properties (i)–(iii), and let (Γ′,J ′, p, q) be the instance obtained from (Γ,J , p, q) by cutting
through an arc α ∈ J of Type T1. Then, there is a valid pq-arc in (Γ,J , p, q) not crossing α if
and only if there is a valid pq-arc in (Γ′,J ′, p, q).
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Suppose that α, β ∈ J are two crossing arcs of Type T1. Then, (Γ, {α, β}) has exactly three cells;
see Figure 5.14 (b). Moreover, if the terminals p and q are located in the pair of non-adjacent
cells, then any valid pq-arc is forced to cross both α and β. The next result shows that if, for
an arc α of Type T1, there is no arc β of Type T1 producing this situation and all arcs are of
different colors, then there is a valid pq-arc not crossing α.

Lemma 5.17. Let (Γ,J , p, q) be an instance of the path problem with two holes that meets
properties (i)–(iii). Suppose that every arc in J is either of Type T1 or of Type T2 and that all
the arcs in J are of different colors. Let α ∈ J be any arc of Type T1. If, for every Type T1
arc β ∈ J \ {α} crossing α, p and q are in adjacent cells of (Γ, {α, β}), then there is a valid
pq-arc not intersecting α.

Proof. Let (Γ′,J ′, p, q) be the instance obtained from cutting Γ along α. Let h be the hole
of Γ′ obtained from merging the two holes h1 and h2 of Γ with a thin strip covering α. We
decompose the boundary of h as the union of four arcs α1, γ1, α2 and γ2, where α1 and α2

bound the strip covering α and, for i = 1, 2, γi is the arc on the boundary of hi connecting α1

and α2.

From Observation 5.16, it is enough to show the existence of a valid pq-arc in (Γ′,J ′, p, q).
Assume for contradiction that there is no valid pq-arc for (Γ′,J ′, p, q). Lemma 5.15 shows that
then there are two separating pq-arcs β1, β2 ∈ J ′ of the same color. Since all arcs in J are of
different colors, if β ∈ J \ {α}, then the arc components (one or two, depending on whether α
and β cross or not) of Γ′ ∩ β induce one chromatic class of arcs in J ′. Thus, there is an arc
β ∈ J that crosses α and with two arc components β1 and β2 of Γ′ ∩ β.

Since β crosses α, each of β1 and β2 has exactly one endpoint on a different arc of α1 and α2.
By possibly relabeling β1 and β2, we may assume that, for i = 1, 2, βi has an endpoint ai in αi.
For i = 1, 2, let bi be the endpoint of βi that is not ai.

First, we suppose that both b1 and b2 are on the same hole of Γ, say h1 (so β is of Type T2).
Then, (Γ′, {β1, β2}) has three cells. As both β1 and β2 are pq-separating, p and q are in the two
cells of (Γ′, {β1, β2}) that do not have γ2 on the closure of their boundaries. However, these
two cells are included in the same cell of (Γ, β), contradicting that β is pq-separating (and thus
of Type T2).

Second, suppose that b1 and b2 are on different holes (so β is of Type T1). By symmetry, we
may assume b1 ∈ h1 and b2 ∈ h2. There are three cells of (Γ′, {β1, β2}), and, since β1 and β2

are pq-separating, p and q are in the cells that have exactly one of β1 and β2 on their boundary.
However, this implies that p and q are in non-adjacent cells of (Γ, {α, β}), contradicting our
hypothesis.

In fact, when all the arcs in J are of different colors there is always a valid pq-arc:

Lemma 5.18. Let (Γ,J , p, q) be an instance of the path problem with at most two holes that
meets properties (i)–(iii). If all the arcs in J are of different colors, then there exists a valid
pq-arc.
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Proof. If Γ has only one hole, then the result follows from Lemma 5.15, so we assume that Γ
has two holes. We proceed by Induction on |J |. The base case |J | = 1 clearly holds. Suppose
that |J | ≥ 2.

If J has an arc of Type T3, then we can apply Lemma 5.14 to obtain an instance with fewer
arcs that satisfies the same conditions as (Γ,J , p, q). The induction hypothesis shows that
there is a valid pq-arc for the transformed instance, and thus, there is also a valid pq-arc in
(Γ,J , p, q). Henceforth, we assume that J has only arcs of types T1 and T2.

Let Fp be the cell of (Γ,J ) containing p and let α ∈ J be an arc having a segment σ on the
boundary of Fp. Consider a point p′ in the cell adjacent to Fp that has σ on its boundary.

If α is of Type T2 (with respect to terminals p and q), then, as α is not p′q-separating, applying
Lemma 5.14 as before shows that there is a valid p′q-arc (not crossing α) that can be extended
to a valid pq-arc.

Thus, the only remaining case is that α is of Type T1, so we assume that α has its ends on two
different holes h1 and h2.

Claim 1. Either there is a valid pq-arc not intersecting α or there is a valid p′q-arc not
intersecting α.

Proof. Assume for contradiction that there are no valid pq- and p′q-arcs disjoint from α. Lemma
5.17 implies that there is a Type T1 arc β ∈ J \{α} crossing α, such that the two non-adjacent

cells F βp and F βq of (Γ, {α, β}) contain p and q, respectively. Let F β be the other cell of (Γ, {α, β})
neither including p nor q. Likewise, there exists β′ ∈ J \ {α} crossing α, such that the two

non-adjacent cells F β
′

p′ and F β
′

q of (Γ, {α, β′}) contain p′ and q, respectively. Let F β
′

be the
other cell of (Γ, {α, β′}).

Let × and ×′ be the crossings between α and β and between α and β′, respectively. By symmetry,
we may assume that when we traverse α from h1 to h2, we encounter × before ×′. Also, by
possibly relabeling h1 and h2, we may assume that F βp has a subarc of the boundary of h1 on

its boundary, while F βq has a subarc of the boundary of h2 on its boundary.

Since p ∈ Fp and Fp ⊆ F βp , the segment σ ⊆ α shared by Fp and Fp′ is located on α between
the endpoint of α in h1 and ×. As p′ ∈ Fp′ , both p′ and Fp′ are contained in F β.

The boundary of F β
′

p′ is a simple closed curve C made of three arcs: The first one connects ×′ to
the boundary of h1 along α; the second one is an subarc of the boundary of h1 connecting the
endpoint of α on h1 to the endpoint of β′ on h1; and the third one is a subarc of β′ connecting

the endpoint of β′ on h1 to ×′. Since F β
′

p′ contains Fp′ , the points on C ∩ β′ near ×′ are on the
side of α that contains points in Fp′ . As ×′ comes after × when we traverse α from h1 to h2,

the points on C ∩ β′ near ×′ are in F βq . Since the endpoint of C ∩ β′ on h1 is not in F βq , the arc
C ∩ β′ crosses β at some point ×β,β′ .

Since ×β,β′ is the only crossing between β and β′, the subarc of β′ from ×′ to h2 is disjoint

from β. The points on this subarc near ×′ are in F β, and thus, the cell F β
′

q is included in F β.

However, this shows that F βq ∩ F β
′

q = ∅, contradicting that q ∈ F βq ∩ F β
′

q .
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Algorithm 1 PPH(Γ,J , p, q): outputs whether there is a valid pq-arc.

1: while J 6= ∅ do
2: if J has an arc α of Type T3 (has its ends on same hole and is not pq-separating) then
3: (Γ,J , p, q)← ENLARGE((Γ,J , p, q), α)
4: else
5: if all arcs in J are of different colors then
6: return True

7: else
8: find two arcs α and α′ ∈ J of the same color
9: if both α and α′ are of Type T2 (pq-separating) then

10: return False

11: else if α is of Type T2 (pq-separating) and α′ is of Type T1 (has its ends on two
holes) then

12: return PPH(CUT((Γ,J , p, q), α′)))
13: else if both α and α′ are of Type T1 (have their ends on two holes) then
14: return PPH(CUT((Γ,J , p, q), α)) ∨ PPH(CUT((Γ,J , p, q), α′))
15: end if
16: end if
17: end if
18: end while
19: return True

From the previous claim, either there is a valid pq-arc not crossing α or there is a valid p′q-arc
not crossing α. In the former case we are done. In the later, we extend the valid p′q-arc to a
valid pq-arc by crossing σ.

With all the previous results we can now show the polynomial-time algorithm that proves
Theorem 5.12. From Observation 5.13, it is enough to solve the path problem with at most two
holes for instances meeting properties (i)–(iii) in polynomial time. To show this we consider
Algorithm 1.

In Algorithm 1, (Γ,J , p, q) is an instance of the path problem with at most two holes (PPH)
meeting properties (i)–(iii). ENLARGE((Γ,J , p, q), α) is a shorthand for the instance obtained
from (Γ,J , p, q) by enlarging a hole of Γ along α and CUT((Γ,J , p, q), α) is a shorthand for
the instance obtained from (Γ,J , p, q) by cutting through α. We now show the correctness of
Algorithm 1.

Theorem 5.19. Let (Γ,J , p, q) be an instance of the path problem with at most two holes
that meets properties (i)–(iii). Then, Algorithm 1 decides whether there is a valid pq-arc in
polynomial time in the number of arcs in J .

Proof. Step 1 primarily checks if our current instance (Γ,J , p, q) is trivial (i.e. J = ∅). If not,
the algorithm moves towards Step 2, where it verifies if J has an arc of Type T3. If it has one,
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it uses this arc to enlarge a hole and applies Lemma 5.14 to update our instance to one with
fewer arcs.

Otherwise, if J has no arcs of Type T3, the process continues with Step 4. The first possibility
is that all arcs in J are of different colors, and in this case the conditions of Lemma 5.18 apply,
so there is a valid pq-arc (Steps 5–6).

The second possibility is that J has two arcs α and α′ of the same color. If both α and α′

are pq-separating, then clearly no valid pq-arc exists (Steps 9–10). Otherwise, one of them,
say α′, is of Type T1. If α is pq-separating (Type T2), then any valid pq-arc must cross α, and
thus, it does not cross α′. Therefore, it is enough to look for a valid pq-arc not crossing α′.
Observation 5.16 translates that into finding a valid pq-arc for the instance with one hole that
we obtain with the operation CUT((Γ,J , p, q), α′) (Steps 11–12).

The third and last alternative is that both α and α′ are of Type T1. In this case, any valid
pq-arc crosses only one of α and α′. Thus, by Observation 5.16, it is enough verify both in-
stances obtained by applying the transformations CUT((Γ,J , p, q), α) and CUT((Γ,J , p, q), α′)
(Steps 13–14). An attentive reader may notice how, in principle, an iterative occurrence of Step 14
may lead into an exponential blow-up of the running time. However, the fact that both instances
that we obtain applying the transformations CUT((Γ,J , p, q), α) and CUT((Γ,J , p, q), α′) are
instances of the path problem with one hole, guarantees that the algorithm goes through Step 14
at most once.

5.7. FPT-algorithm for bounded number of crossings

In this section we show that for simple drawings with a bounded number of crossings it can be
decided in FPT-time2 if an edge can be inserted.

Theorem 5.20. Given a simple drawing D(G) of a graph G = (V,E) and an edge uv of the
complement of G, there is an FPT-algorithm in the number k of crossings in D(G) for deciding
whether uv can be inserted into D(G).

Proof. Let n = |V | and m = |E| be the number of vertices and edges of G, respectively. We
consider a subdrawing D′(G′) of D(G) consisting of the edges incident to u and v, the (at
most 2k) edges which are crossed, and the vertices incident to all these edges together with u
and v if they are isolated (and thus, not yet included). We first show that we can decide in
FPT-time in k whether uv can be inserted into D′(G′). We then argue that uv can be inserted
into D′(G′) if and only if it can be inserted into D(G).

As we saw in Section 5.4, the problem of extending D(G) with one edge uv is equivalent to the
existence of a heterochromatic path in G∗(D, {u, v}) between a vertex corresponding to a cell
incident to u and a vertex corresponding to a cell incident to v.

2An FPT-algorithm for a problem with respect to the parameter k runs, for an instance of size n, in time
O(f(k) · nc), where f is a computable function that does not depend on n and c is an absolute constant.
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Figure 5.15.: Rerouting uv when it crosses an edge uncrossed in D(G) more than once.

The number of segments of crossed edges in D′(G′) is at most 4k. Thus, G∗(D′, {u, v}) has
at most 4k edges (but the number of vertices might not be bounded by a function of k).
There are O(n) cells with u on their boundary, and we consider the vertices of G∗(D′, {u, v})
corresponding to them all as the possible starting cells of a valid heterochromatic path. Thus,
the algorithm checking whether uv can be inserted into D′(G′) runs in O(nk24k) time.

We now argue that uv can be inserted into D′(G′) if and only if it can be inserted into D(G).
Since D′(G′) is a subdrawing of D(G), it is clear that if uv cannot be inserted into D′(G′) then
it cannot be inserted into D(G). Suppose that uv can be inserted into D′(G′) and let γ be a
valid arc for uv in D′(G′) resulting in a simple drawing. We orient γ from u to v. If γ is not
a valid arc for uv in D(G) then it must cross more than once an edge e uncrossed in D(G).
We can modify γ such that it is routed close to e between its first and last crossings with e,
producing at most one intersection; see Figure 5.15 for an illustration. Repeating this process
for every edge uncrossed in D(G) and crossed by γ more than once we obtain a valid arc for uv
in D(G).

5.8. Chapter summary

In this chapter we have shown that, given a simple drawing D(G) of a graph G = (V,E) and two
non-adjacent vertices u, v ∈ V , it is NP-complete to decide whether uv can be inserted into D(G).
Moreover, the problem remains NP-complete when G is a matching. We presented a polynomial
algorithm for the case in which {u, v} is a dominating set for G and an FPT-algorithm in the
number of crossings of D(G).





6. Extending 1-plane drawings

An extended abstract containing the results in this chapter has appeared in [131].

6.1. Introduction

This chapter, as the previous one, studies extensions of drawings with certain properties. In
general, the (maximization version of this) problem is the following: Given a drawing D(G)
of a graph G = (V,E) that has a set of properties, and a set of candidate edges M of the
complement graph G of G, find a maximum subset M ′ ⊆M that can be inserted into D(G)
such that the result is a drawing D′(G+) of the graph G+ = (V,E ∪M ′) with a desired set of
properties and containing D(G) as a subdrawing. For a broader introduction on this type of
problems, we refer the reader to the introduction of Chapter 5.

Here we focus on maximal extensions of 1-plane drawings. We call a graph G 1-planar if there
exists a simple drawing D(G) in which no edge is crossed more than once. Such a drawing is
called 1-plane. The class of 1-planar graphs is widely studied in graph theory and graph drawing
in the context of so called “beyond planarity graphs” [77]. For general results on 1-planar
graphs see the annotated bibliography by Kobourov et al. [132]. Recognizing if a given graph is
1-planar is NP-hard [107] and it stays hard even if the graph consists of a planar graph plus
one edge [59]. It also stays hard if the rotation system is fixed [39] and it is also NP-hard for
graphs of bounded bandwidth [44].

Note that from these results it follows that deciding whether we can insert all the edges such
that the result is a 1-plane drawing is NP-hard, since the vertices in a simple drawing can be
arbitrarily placed. (And if the decision version asking whether a set of edges can be inserted is
NP-hard, then the maximization version asking how many edges can be inserted is NP-hard
too.) However, the problem we study here includes the natural assumption that the initial
drawing is connected. The proofs showing that recognition of 1-planarity is hard [39, 44, 59,
107, 134] cannot be directly applied to this setting, since they all rely on the fact that certain
vertices can be freely placed. Nevertheless, we believe that the reduction presented in [39] can
be adapted to our setting.

Outline. Given a (1-)plane drawing D(G) of a graph G and candidate set of edges M of G,
we study the problem of deciding whether there is a subset M ′ ⊆M of cardinality k that can
be inserted into D(G). In Section 6.2 we show with a simple reduction that this problem is
NP-complete, even if D(G) is plane, connected, and orthogonal. In Section 6.3 we present an
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FPT-algorithm with respect to k for deciding whether k edges in G can be inserted. Finally, we
present a summary and conclusions in Section 6.4.

6.2. NP-hardness

In this section we prove that extending a connected (1-)plane drawing by a maximum set of
given candidate edges is NP-hard, even if the initial drawing is plane and orthogonal.

Our reduction, as the one in Section 5.3 in Chapter 5, is from the maximum independent set
problem and the intuition behind it is similar. However, in this case we require the input graph
to be planar and with maximum vertex degree three. (In the previous chapter we did not require
the input graph to be planar.) For planar graphs the maximum independent set problem is
NP-hard, but not hard to approximate (there is a PTAS). Moreover, the gadgets we use are
substantially different. When extending simple drawings, the gadgets profile the ways in which
an edge can be inserted, and rely on edges that can cross multiple other edges. In our case, the
gadgets are plane, straight-line drawings, and instead, rely on pairs of edges that cannot be
inserted simultaneously. We also give an FPT-time algorithm in the size of the set M ′, when M
is the set of all edges in G. Our algorithm works even if the initial drawing is not connected
and 1-plane.

Theorem 6.1. Given a connected plane drawing D(G) of a graph G, an integer k, and a subset
M of the edges of the complement graph of G, it is NP-complete to decide whether there is a
subset M ′ ⊆M of cardinality k extending D(G) to a 1-plane drawing.

Note that the problem is in NP, since it can be encoded combinatorially. To prove Theorem 6.1
we reduce from (a variant of) maximum independent set (MIS). Recall that a set of vertices
of a graph is an independent set if no pair of vertices in the set are adjacent. The problem of
determining the maximum independent set of a given graph is NP-hard in general, even when
the given graph is planar and has degree at most three [101, Lemma 1].

Planar graphs with degree at most three admit a 2-page book embedding [51, 118]. A 2-page
book embedding is a plane drawing in which all vertices are placed on a horizontal line, the
spine of the book, and the edges lie completely either in the upper or lower half-plane. Thus,
we can construct a 2-page book embedding D(G) from an MIS instance consisting of a graph G
with degree at most three. By replacing the vertices of D(G) with vertex gadgets we construct
a plane drawing D′(G′) of a graph G′ = (V ′, E′). Then the edges in each half-plane of D(G)
define a set of edges M of the completement graph of G′ such that finding a maximum subset
of edges M ′ ⊆M extending D′(G′) to a 1-plane drawing is equivalent to finding a maximum
independent set of G.

Vertex gadget. We now introduce the main gadget for our reduction. The vertex gadget is
a orthogonal plane drawing symmetric with respect to a horizontal line (the spine) by a 180◦

rotation.
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Figure 6.1.: Reduction. Left: Vertex gadget. Right: Concatenation of two vertex gadgets and possible
extensions.

For one gadget, there are four vertices placed on the spine and connected by a path. Assume
the leftmost one is placed at (0,0). The other three are then placed at (1,0), (9,0), and (10,0),
respectively. The two rightmost vertices form a 4-cycle together with two vertices placed at (9,1)
and (10,1). We denote by b the vertex at (9,1). The two leftmost vertices on the spine are the
bottom two vertices of a 2 by 5 grid that includes all unit-length edges. We denote the vertices
at (1,3), (1,2), and (1,1) by s1, s2 and s3, respectively. The top right vertex of that grid, drawn
at (1,4), is the leftmost vertex of a horizontal path with nine vertices and unit-length edges.
We denote the vertices at (2,4), (4,4), (6,4), and (7,4) by c, u, a, and d, respectively. Finally,
we insert the four following paths (and vertices, when not already inserted) into our drawing:
(1,4)-(1,6)-(3,6)-(9,6)-(9,4), (3,6)-(3,4), (5,4)-(5,5)-(8,5)-(8,4), and (5,4)-(5,3)-(8,3)-(8,4). The
bottom part of the drawing is a copy of the top half, rotated by 180◦ such that the leftmost
vertex on the spine before the rotation corresponds to the rightmost one of the top part;
see Figure 6.1 for an illustration. For any specially named vertex in the top half we add an
apostrophe to the name in the bottom-half.

Concatenating vertex gadgets. Let D(G) be a 2-page book embedding of a graph G =
(V,E) with max-degree three. For each vertex u ∈ V we create a vertex gadget at the position
of u as above. We insert the vertex label of the corresponding vertex in V as a subscript to
the named vertices in the gadget. From left to right we connect the gadgets as follows. For
two consecutive gadgets on the spine, we identify the rightmost vertex on the spine of the first
vertex gadget with the leftmost vertex on the spine of the second vertex gadget. In that way, we
join all vertex gadgets into one plane drawing. Finally, we insert an orthogonal path connecting
the leftmost vertex on the spine with the rightmost one such that it surrounds the top-half of
the drawing; see Figure 6.1 (right). We refer to this path as the surrounding path.

Candidate edges. For each vertex in the 2-page-book drawing D(G), we sort the incident
(at most three) edges in the top half-plane in clockwise order. Consider an edge xy drawn in
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Figure 6.2.: Closed curves separating the vertices that we aim to connect.

the top half-plane of D(G). Without loss of generality, let this edge be the i-th one incident to
x and the j-th one incident to y, we then add the candidate edge sixs

j
y to M . For an edge in the

bottom half-plane of D(G) we proceed analogously. After adding all candidate edges for the
top and bottom half-planes, we add for all v ∈ V the edges avbv, a

′
vb
′
v, cvdv, c

′
vd
′
v, and uvu

′
v

to M .

Lemma 6.2. The construction is a polynomial-time reduction from maximum independent set
in planar graphs with degree at most three.

Proof. We begin by showing in the three following claims which of the candidate edges can be
inserted simultaneously into the vertex gadgets. The proofs rely on the following strategy. To
show that an edge cannot be inserted, we identify two simple closed curves whose intersection
consists at most of vertices and intersection points of the drawing. These curves strictly separate
the endvertices of the edge we want to insert.

Claim 1. Edges ab and cd (analogously a′b′ and c′d′) cannot be inserted simultaneously.
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Proof. Consider the smallest cycle C around a and d in the vertex gadget drawing; see
Figure 6.2(a). If the candidate edge ab is inserted, it must cross C since it does separate a
from b. Moreover, it must cross one of the three lower edges of C, since if the edge starts from a
and crosses one of the three upper edges of C it gets in a region not containing d; see the stripped
region in Figure 6.2(a). Now, to see that the edges ab and cd cannot be inserted simultaneously,
suppose that ab is inserted. Then there are two closed curves both strictly separating c and d
and only intersection in two points. The first one, filled in red in Figure 6.2(a), goes from a to
its left neighbor along the edge, then follows clockwise the boundary of C until its intersection
with the inserted edge ab, and finally follows ab until it reaches a. The second one, filled in blue
in Figure 6.2(a), goes from b to its bottom neighbor along the edge, then follows the edge on
the spine to the left, goes up along five edges, then one to the right, one down, and two to the
right, and, finally, follows C counterclockwise until its intersection with ab and ab until b. Thus,
ab and cd cannot be both inserted into a vertex gadget. Symmetric arguments show that a′b′

and c′d′ cannot be both inserted simultaneously.

Claim 2. If the edge uu′ is inserted into a horizontal concatenation of vertex gadgets (including
the surrounding path), neither cd nor c′d′ can be inserted.

Proof. Suppose cd is inserted. Then there are two non-crossing closed curves both strictly
separating u and u′. The first one, filled in red in Figure 6.2(b), follows all the edges along
the spine and the surrounding path. The second one, filled in blue in Figure 6.2(b), goes from
the left neighbor of c to c along the edge, then follows edge cd until d, goes to the right along
two edges, then one up, two to the left and one down. Notice that since both c and d both lie
(strictly) on the same side of the first curve, then the edge cd is also completely on that same
side, and the two curves are disjoint. If instead of cd we assume that c′d′ is inserted, then the
second curve is symmetric to the one described and again does not intersect the first one.

Claim 3. Consider a horizontal concatenation of vertex gadgets including one with x as
subscript and one with y as subscript. Then, the edge sixs

j
y cannot be inserted if both axbx and

ayby are inserted.

Proof. Assume both axbx and ayby are inserted. As in the proof of Claim 1, in a vertex gadget
edge ab, if inserted, must cross the smallest cycle around a and d. Thus, we know the cycles
where axbx and ayby spend their only crossing. Moreover, there are two disjoint cycles strictly

separating six and sjy. The first one, filled in blue in Figure 6.2(c), follows the edge axbx from ax
to bx and then goes down one edge, two to the left, four up, and six to the right until ax. The
second one, filled in red in Figure 6.2(c), is the analogous one in the other vertex gadget.

With these three claims at hand, we proceed to tackle Lemma 6.2. Let G = (V,E) be a planar
graph with degree at most three and k ∈ N. We reduce from the problem of deciding whether G
has an independent set of size k. First, we construct a plane drawing D′(G′) from G and a
set M of candidate edges as explained above. Note that this set consists of 5|V |+ |E| edges:
avbv, a

′
vb
′
v, cvdv, c

′
vd
′
v, and uvu

′
v for each v ∈ V and one sixs

j
y or s′ixs

′j
y with i, j ∈ {1, 2, 3} per

edge xy ∈ E. Moreover, it is a polynomial construction.
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The problem we want to reduce to is deciding whether D′(G′) can be extended to a 1-plane
drawing by inserting a set of edges M ′ ⊆M with cardinality |M ′| = |E|+ 2|V |+ k. The rest of
the proof goes along the lines of the proof of Theorem 5.3 in the previous chapter.

First, we show that if G has an independent set I of size k we find a subset M ′ ⊆ M of the
candidate edges of size |E|+ 2|V |+ k. Consider Figure 6.1 (right). For every vertex x ∈ I we
insert the edges axbx, a′xb

′
x, and uxu

′
x as shown in the left half of the figure. For every vertex

y ∈ V \ I we insert the edges cydy and c′yd
′
y as shown in the right half. Finally, we insert

all candidate edges of the form sixs
j
y and s′ixs

′j
y with i, j ∈ {1, 2, 3} and xy ∈ E to M ′. The

way we draw a candidate edge sixs
j
y when inserting it depends on whether x or y are part of

the independent set I. In general we draw these segments with three arcs: The first and last
ones locally around the endpoints, respectively, and the middle one as a (deformed) arc of the
2-page-book drawing D(G); see Figure 6.1 (right). Since I is an independent set, each edge
has at most one endpoint in I. Thus, each edge sixs

j
y and s′ixs

′j
y with i, j ∈ {1, 2, 3} and xy ∈ E

that we inserted into the drawing has at most one crossing. Therefore, we obtained a 1-plane
extension with |E|+ 2|V |+ k edges.

Conversely, let M ′ ⊂ M be a set of |E| + 2|V | + k candidate edges that can be inserted
into D′(G′) and that contains the minimum possible amount of uu′ edges. We then find an
independent set of size k of G in the following way: By Claim 1, at most 2|V | candidate edges
of the form ab and cd can simultaneously be inserted. Thus, at least k of the inserted candidate
edges are uu′ edges. Therefore, if the set of vertices {v : uvu

′
v ∈M ′} is an independent set of G

we are done. Assume on the contrary that {v : uvu
′
v ∈ M ′} is not an independent set. Then

there exists an edge xy ∈ E such that uxu
′
x as well as uyu

′
y were inserted. By Claim 3 axbx or

ayby cannot be inserted. Moreover, by Claim 2, neither cxdx nor cydy were inserted. If axbx is
not in M ′, we could remove uxu

′
x from M ′ and add cxdx. That edge can always be inserted by

drawing it below (and as close as needed to) the horizontal path from cx to dx, since neither ux
nor ax have an incident edge in M ′ after uxu

′
x was removed, and all other edges cannot enter a

simple closed curve that they would have to leave. Symmetrically, if ayby is not in M ′ we could
remove uyu

′
y from M ′ and add cydy to M ′. This contradicts the fact that M ′ has the minimum

amount of uu′ edges.

6.3. FPT for inserting arbitrary edges

In this section we show that for a 1-plane drawing D(G) of a graph G one can decide in
FPT-time1 in k if there exists a set of k edges in G that extend D(G) to a 1-plane drawing.

We prove this result using a series of technical lemmas and observations. The goal is to obtain
conditions checkable in polynomial time that can lead to a positive answer, and that, if not
met, imply a bound that is polynomial in k on for the size of the structures where edges can be
non-trivially inserted.

1We recall that an FPT-algorithm for a problem with respect to the parameter k runs, for an instance of
size n, in time O(f(k) · nc), where f is a computable function that does not depend on n and c is an absolute
constant.
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For a 1-plane drawing D(G) of a graph G we construct a plane drawing by placing a vertex on
every intersection point of two edges in D(G) and consider the faces of this planarized drawing
as the cells of the 1-plane drawing D(G). Note that every cell has some vertex of D(G) on its
boundary.

Observation 6.3. Let D(G) be a 1-plane drawing of a graph G. Assume there is an edge e
of G which can be drawn in one cell (two adjacent cells) of D(G) in a 1-plane way such that no
other edge of G can be inserted into D(G) intersecting the interior of that cell (either of the
two cells). Then, if D(G) can be extended with k edges, there is an extension with k edges in
which e is drawn into that cell (those two cells).

The first lemma considers a case in which we can insert k edges into a single cell of D(G).

Lemma 6.4. Let D(G) be a 1-plane drawing of a graph G. If D(G) contains a cell with at
least 6k+ 1 vertices on its boundary, then we can extend D(G) by k edges to a 1-plane drawing.

Proof. It suffices to find a vertex v on the boundary of the cell that has at least k non-neighbors
(excluding the vertex itself) on the same boundary. If such a vertex exists we can extend D(G)
by the edges between v and all its non-neighbors on the boundary of the cell without introducing
new crossings.

Assume such a vertex does not exist and denote by VB the set of vertices of G on the boundary of
the cell under consideration and by EB the edges of G between them, so |EB| ≥ |VB |·(|VB |−k)

2 . At
the same time, as G is 1-planar, every subgraph of G is K7-free [133]. By Turán’s Theorem [191]
the number of edges in a K7-free graph with n vertices is at most 5

12n
2. This means that

|EB| ≤ 5
12(|VB|)2. Calculation yields that |VB |·(|VB |−k)

2 > 5
12(|VB|)2 if |VB| > 6k, which is the

case by the choice of the cell, and we obtain a contradiction.

Now we consider cases in which we can extend drawings within many, possibly small cells.

Observation 6.5. Let D(G) be a 1-plane drawing of a graph G. If D(G) contains at least k
cells, each with the endpoints of a distinct edge of G on its boundary, we can extend D(G) by
these k edges.

However, it might be necessary to introduce new crossings when extending D(G). For this
reason, we consider pairs of adjacent cells whose shared boundary can be crossed by an inserted
edge. If one can find sufficiently many disjoint such pairs, one can avoid introducing crossings
between new edges. The main challenge is to enforce disjointness of the pairs and distinctness
of the inserted edges at the same time.

Formally, we are interested in pairs of cells such that their shared boundary can be crossed in a
1-plane extension of D(G). We call these pairs crossable pairs. For these pairs we consider edges
of G whose insertition into D(G) in the crossable pair requires crossing the shared boundary,
which we call its edge options. Observe that (i) in a crossable pair, both boundaries of the cells
share at least two vertices in V , as their boundaries share at least an edge and (ii) edge options
have a vertex on the boundary of each cell that is not on the common boundary. We remark
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that the common boundary might not be connected, as it might consist of different connected
components.

Lemma 6.6. Let D(G) be a 1-plane drawing of a graph G. If D(G) contains at least k interior-
disjoint crossable pairs, each pair having at least two edge options, then we can insert k edges
into D(G).

Proof. Let F2 be the crossable pairs with at least two edge options and Fd ⊆ F2 a maximum
set of interior-disjoint crossable pairs in F2. For two crossable pairs F1, F2 ∈ Fd we say F1 6= F2

if they share no cell. We show the lemma via induction on the size of Fd.

In case |Fd| = 1 or |Fd| = 2 the statement holds immediately. For |Fd| > 2, let F = (f1, f2) ∈ Fd
be a crossable pair with at least two edge options consisting of two adjacent cells f1 and f2

with edge options x1y1 and x2y2. Without loss of generality x1 6= x2, and both x1 and x2 lie on
the part of the boundary of f1 that is not the common boundary of f1 and f2, see Figure 6.3
for an illustration.

If we find that F is the only crossable pair in Fd for which x1y1 is an edge option, we insert
x1y1 in F into D(G) and do not remove an edge option from any other crossable pair in Fd.
Symmetrically for x2y2.

Furthermore, let v1, . . . vz ∈ V , z ≥ 2 be the vertices on the shared boundary of the cells f1, f2.
If z > 2 and since f1 and f2 are cells, there exists an edge vixj with i ∈ {2, . . . , z−1}, j ∈ {1, 2}
in G. Assume this edge was an edge option for some F ′ ∈ Fd, F ′ 6= F . Then the cells of F ′

would require to have vi as well as xj on its boundaries. It follows that the boundary of the cells
in F ′ would subdivide f1 or f2 or both, but those are cells. Therefore, we can insert vixj into
D(G) in (f1, f2) without removing an edge option from any other crossable pair. Symmetrically
for viyj with i ∈ {2, . . . , z − 1}, j ∈ {1, 2}.

In the following, assume we could not handle F with either of the two easy cases from above.
Then we can assume each edge option of F is also an edge option for at least one other F ′ ∈ Fd,
F 6= F ′, and the shared boundary between f1 and f2 is only one edge. Let vsvt be that edge
on the boundary between f1 and f2 and x1vt, x2vs such that they would cross if both drawn
inside f1. It remains to consider three cases, illustrated in Figure 6.3:

Case 1: Both, x1vt and x2vs, are edge options for crossable pairs F ′, F ′′ ∈ Fd with F ′ 6= F
and F ′′ 6= F .

Case 2: Without loss of generality, x1vt is drawn in D(G) while x2vs is edge option of one
F ′ ∈ Fd with F ′ 6= F .

Case 3: x1vt and x2vs are both drawn in D(G).

For Case 1 let F ′, F ′′ ∈ Fd be crossable pairs such that F ′ 6= F and F ′′ 6= F , x1vt is an
edge option for F ′, and x2vs is an edge option for F ′′. Observe, that two edge options of two
interior-disjoint crossable pairs, can both be inserted into D(G) without intersecting each other.
Furthermore, the cells of F ′ and F ′′ lie outside of the cells of F , hence if x1vt and x2vs are
inserted in F ′ and F ′′ into D(G), their images cross. By the previous observation, this can only
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Figure 6.3.: An illustration of Lemma 6.6. The colored vertices are the endpoints of the two edge
options x1y1 and x2y2.

be the case if F ′ = F ′′. It follows that we can simply insert x1vt in F and x2vs in F ′ without
removing an edge option from any other crossable pair in Fd.

In Case 2 we assume that, without loss of generality, x1vt is already drawn in D(G). Since f1 is
a cell we know that x1vt is not drawn inside f1. Let F ′ ∈ Fd be a crossable pair with F 6= F ′

and x2vs is an edge option of F ′. Note that any drawing of x2vs which is not inside f1, f2 in
D(G) has to cross the image of x1vt in D(G) by definition, it follows that x1vt is the shared
boundary of the cells in F ′.

Now, consider the edge option x2y2 of F . By assumption there exists a crossable pair F ′′ ∈ Fd
with F 6= F ′′ such that x2y2 is an edge option for F ′′. Furthermore, any drawing of x2y2 that
is not inside f1, f2 in D(G) has to cross the image of x1vt in D(G). It follows that F ′ and F ′′

have the same shared boundary and are hence the same crossable pair. Thus, inserting x2vs in
F and x2y2 in F ′ does not remove any edge option from any other crossable pair in Fd.

It remains to consider Case 3. Here, edges x1vt and x2vs are already drawn in D(G). Since
f1 is a cell, both are drawn completely outside of f1. Consider the simple closed curve that
is defined as follows: Starting from vs it follows the edge vsx2 until its intersection with the
edge vtx1, then it follows vtx1 until vt, and finally it follows the edge vsvt until vs. This curve
separates x1 from y1; see Figure 6.3 for an illustration.

The only part of that curve that an inserted edge can cross is the one corresponding to the
edge vsvt, since vsx2 and vtx1 already cross. It follows that to connect x1 to y1 we must use the
interior of (f1, f2). Moreover, since vsx2 is already crossed, x1y1 cannot be an edge option for any
other crossable pair. Swapping the roles of vs with vt and x1 with x2 we can argue symmetrically
that also x2y2 is unique to (f1, f2). It follows that both edge options can be inserted in F into
D(G) without removing an edge option from any other crossable pair in Fd.

Under the condition that no edge as in Observation 6.3 exists in D(G), the next lemma bounds
the number crossable pairs in which we can find a particular edge option. This lemma can then
be used to bound the number of crossable pairs with one edge option when Observation 6.3
does not apply.
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F
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y

F ′

Figure 6.4.: Illustration of the first part of Lemma 6.7. The edge option e shared by at least 3k crossable
pairs is xy. The green edges illustrate possible edge options e′ for the crossable pair F .

Lemma 6.7. Let D(G) be a 1-plane drawing of a graph G = (V,E) whose complement is
G = (V,E). If e = xy ∈ E is an edge option for at least 36k2 crossable pairs and, for each of
these crossable pairs, at least one of their cells either allows the insertion of an edge in E \ {e}
in a plane manner or is in a crossable pair with another edge option, then we can insert k edges
into D(G).

Proof. Let F be the set of crossable pairs for which e is an edge option, and let Fd ⊆ F be a
maximum set of interior-disjoint crossable pairs.

If |Fd| ≥ 3k, we order the crossable pairs in Fd cyclically in a counterclockwise manner around x.
Let F ′d = {F1, . . . , Fk} be the set that we obtain by choosing every third crossable pair with
respect to that order. (That is, we pick the third, sixth, ..., until the 3k-th crossable pair in
the cyclic order.) Then, for every two crossable pairs Fi and Fj with i 6= j, every point on the
boundary of the cells of Fi except x and y is separated from every point on the boundary of
the cells of Fj except x and y by at least two closed curves of edges in D(G).

We now describe how to find an edge to insert for every F ∈ F ′d. If there is an edge e′ 6= e of G
that can be inserted in a plane manner within one of the cells of F , then we can safely insert
this edge. Note that this edge, by construction of F ′d, cannot be inserted intersecting cells of
some F ′ ∈ F ′d \ {F}, neither in a plane manner, nor as an edge option involving any such cell,
because at least one endpoint of e′ is separated by two closed curves from the boundary of the
cells of F ′.

If there is no such edge, by the condition of the lemma, there is an edge option e′ ∈ E \ {e}
involving a cell f of F . Using an argument symmetric to the prior case, by construction of F ′d,
the edge option e′ cannot be inserted within a cell of some F ′ ∈ F ′d \ {F}. Similarly, e′ cannot
be an edge option for a crossable pair involving a cell of some F ′ ∈ F ′d \ {F}, since at least one
of the endpoints of e′ that is not an endpoint of e has to lie on the same side of the closed
curves separating the boundary of F and F ′.
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Otherwise, among the 36k2 crossable pairs in F , less than 3k are interior-disjoint. Thus, at
least 6k+ 1 crossable pairs in F share a cell. This cell has at least 6k+ 1 edges on its boundary,
and hence, more than 6k vertices. Thus, by Lemma 6.4, we can insert k edges into D(G).

We now describe how to check the conditions of Observation 6.3, Lemma 6.4, Observation 6.5,
Lemma 6.6, and Lemma 6.7. We start with Observation 6.3. For each cell f in D(G) let Ef be
the set of edges in G with at least one endpoint on the boundary of f . This set can be computed
in O(n2) time for each cell. Since there are only O(n) many cells in a 1-plane drawing all these
sets can be computed in O(n3).

For each edge uv in G we do the following: Iterate the cells incident to u and v. If there is
a cell f with |Ef | = 1 and both u and v are on the boundary of f , we insert uv into G and
D(G), and return. If there are two cells f and g, u incident to f and v incident to g, such that
|Ef | = |Eg| = 1 and f and g are adjacent, we insert uv into G and D(G), and return. To check
Observation 6.3 we execute the above algorithm k times or until no edge can be inserted.

This is correct, since if a set Ef for a cell f has only one element, this element corresponds to
the only edge of G which is incident to a vertex on the boundary of f . Hence this is the only
edge that has a possible drawing intersecting the interior of f . By precomputing for each cell
f the set of cells f is adjacent to in D(G), the above algorithm runs in O(n4). Consequently,
Observation 6.3 can be checked in O(kn4) time.

The condition of Lemma 6.4 can easily be checked by traversing the boundaries of all cells of
D(G) in polynomial time.

The conditions of Observation 6.5 and Lemma 6.6 can be modeled as cardinality maximum
matching problems. For Observation 6.5: Consider the graph H whose vertex set is the union of
the edge set of G and the set of cells of D(G), and whose edges connect any vertex corresponding
to a cell to all vertices corresponding to edges whose endpoints lie on the boundary of the cell.
Note that H can be obtained in polynomial time from D(G). It is straightforward to see that
H has a matching of size ≥ k if and only if the condition of Observation 6.5 holds for D(G).
Since H has O(n2) many vertices and, with Lemma 6.4 , O(nk2) many edges we can check if
such a matching exists in O(n2k2) time using the Hopcroft-Karp algorithm [121].

To check the conditions of Lemma 6.6 we need to check if there are k interior-disjoint crossable
pairs Fd with at least two edge options. Let F2 be the set of all crossable pairs with at least two
edge options. This set has size O(n2) and can be computed in O(n2k2). Consider the graph H
where for each cell in D(G) we have a vertex and two vertices are connected by an edge if the
corresponding cells form a crossable pair in F2. This graph has O(n) many vertices and, since
every cell has size bounded in O(k) by Lemma 6.4, O(nk) many edges. Clearly a matching of
size k in H implies the existance of a set of interior-disjoint crossable pairs of size k such that
each crossable pair in this set has at least two edge options. Vice versa the existence of such a
set implies the existence of a matching of equal size in H. It follows that H has a matching of
size k if and only if there exists a set Fd of interior-disjoint crossable pairs with at least two
edge options each with |Fd| ≥ k. Using the algorithm by Micali and Vazirani [147] we can check
the condition of Lemma 6.6 in O(nk

√
n) time.



128 Chapter 6. Extending 1-plane drawings

It follows that the conditions of Observation 6.3, Lemma 6.4, Observation 6.5, Lemma 6.6, and
Lemma 6.7 can be checked in O(n4k) time and space.

Our final theorem ties the above observations and lemmas together.

Theorem 6.8. Given a 1-plane drawing D(G) of a graph G it is FPT in k to find a subset of
k edges of the complement graph that extend D(G) to a 1-plane drawing.

Proof. We start by checking if one can insert edges that do not interfere with the insertition of
any other edge as in Observation 6.3. This can be done in polynomial time. If we could insert k
such edges we are done, otherwise, assume that we have inserted k0 of them into G and D(G).
We want to decide whether we can insert another k − k0 edges. We update k to this new value.
Note that after application of Observation 6.3, the second precondition of Lemma 6.7 is always
fulfilled.

As argued above, the conditions of Lemma 6.4, Observation 6.5, Lemma 6.6, and Lemma 6.7 can
also be checked in polynomial time. In case any of them can be applied they yield polynomial
time constructions for a valid set of k edges of G that can be inserted into D(G).

If we did not find in that way k edges that can be inserted, we know that:

(i) cells have at most 6k vertices in their boundaries,

(ii) there are at most k − 1 cells in each of which a distinct edge of G can be inserted,

(iii) there are at most k− 1 interior-disjoint crossable pairs, each pair having at least two edge
options, and

(iv) each edge option is in at most 36k2 − 1 crossable pairs.

A 1-planar graph on n vertices has at most 4n − 8 edges [161]. By property (i), in a cell
we can insert at most 24k − 8 edges. Thus, by the pigeonhole principle, if there are at least
(k − 1)(24k − 8) + 1 edges that can be inserted into D(G) without intersecting D(G), then
those edges belong to at least k different cells. Considering exactly one edge per cell contradicts
property (ii). Thus, there are at most (k − 1)(24k − 8) = 24k2 − 32k + 8 edges that can be
inserted into D(G) without intersecting any edge in D(G).

By property (i), a cell can be involved in at most 6k crossable pairs. We can apply this to, by
property (iii), the at most 2k − 2 cells of a set of disjoint crossable pairs with at least two edge
options. Therefore, the number of crossable pairs with multiple edge options is bounded by
12k2 − 12k. Furthermore, the number of edge options for one crossable pair can be bounded by
36k2 due to property (i). Thus, there are in total at most (12k2 − 12k)36k2 = 432k4 + 432k3

edge options in crossable pairs with multiple edge options.

It remains to bound the number of edge options in crossable pairs with one single edge option
each. Assume that there are at least 36k3 + 12k2 crossable pairs with one edge option each.
Then, we can insert k edges into D(G) by iteratively choosing one such crossable pair and
drawing its edge option. By property (iv), one edge option is in at most 36k2 − 1 crossable
pairs. Thus, removing a crossable pair and its edge option might lead to a decrease of at most
36k2 + 12k in the number of crossable pairs with one edge option each. Therefore, we can
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assume that there are in total at most 36k3 + 12k2 edge options in crossable pairs with one
edge option.

We have bounded the number of ways in which we can possibly extend D(G) with one edge,
that are either inserting an edge not crossing any edge of D(G), or inserting an edge option
of a crossable pair. This allows us to branch over all choices, that are at most 432k4 + o(k3).
Computing possible edge drawings can be done in polynomial time in k, using the same method
as for checking Observation 6.3.

Since all operations to check the conditions of Observation 6.3, Lemma 6.4, Observation 6.5,
Lemma 6.6, and Lemma 6.7 run in O(n4k), with n being the number of vertices in G, the whole
algorithm runs in O(k4k + n4k).

6.4. Chapter summary

We showed that the problem of finding a maximum subset of candidate edges for extending
connected 1-plane drawings is NP-hard, even if the initial drawing is connected, plane, and
orthogonal. Furthermore, we gave an FPT-algorithm in the number of edges to insert, for the
case in which the set of candidate edges M consists of all edges in G. For this special case it
remains open if it is NP-hard or polynomial time solvable.





7. Shooting stars in simple drawings of
Km,n

An extended abstract of the results in Sections 7.2, 7.3, and 7.4 has appeared in [29]. Moreover,
the results in Sections 7.3 and 7.4 appeared in the Master’s thesis [199], co-supervised by the
author of this thesis. Very recently, we obtained the result in Section 7.5. The corresponding
manuscript [23] is currently under preparation.

7.1. Introduction

In this chapter we are interested in plane spanning subdrawings of a given simple drawing, that
is, drawings without crossings that contain all the vertices of the given drawing and a subset of
its edges.

The existence of plane subdrawings of simple drawings of the complete graph Kn has re-
ceived quite a lot of attention. Ruiz-Vargas [178] showed that every simple drawing of Kn

contains Ω(n1/2−ε) pairwise disjoint edges for any ε > 0, by this improving over many previous
bounds [158, 160, 186]. Fulek and Ruiz-Vargas [97] proved that given a simple drawing of Kn,
a plane cycle C in the drawing, and any vertex v that is not part of C, at least two edges
connecting v to C do not intersect C. Hence, every simple drawing of Kn contains a plane
subdrawing with at least 2n− 3 edges. Rafla [171] conjectured that every simple drawing of Kn

contains a plane Hamiltonian cycle, a statement that is known to be true for several classes of
simple drawings (e.g., 2-page book drawings, monotone drawings, cylindrical drawings), but is
still open in the general case. Simple drawings of Kn might not contain a triangulation of the
vertices as a subdrawing. In fact, there are simple drawings of Kn with 2n− 4 triangles [114].
The currently best lower bound on the number of empty triangles in simple drawings of Kn

is n [24]. For plane trees, Pach et al. [158] proved that every simple drawing of Kn contains a
plane drawing of any fixed tree with at most c log1/6 n vertices.

In this chapter we concentrate on the existence of plane spanning trees in simple drawings. For
a vertex v in a simple drawing, a star rooted at v is a subdrawing that consists of v, a subset
of its adjacent vertices, and the edges connecting v to the vertices in this subset. The star of v
is the star rooted at v including all its adjacent vertices and the edges connecting v to them.
Obviously, any simple drawing of the complete graph Kn contains a plane spanning tree: The
star of any vertex is one.

For the complete bipartite graph Km,n, the situation is not obvious. For straight-line drawings,
the existence of plane spanning trees follows from a more general result [124]. However, as a warm
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u v

Figure 7.1.: Left: Simple drawing of K3,4 by Schröder [182] in which every edge is crossed. Right:
Drawing of the complete bipartite graph Km,n minus one edge uv that does not contain a
plane spanning tree.

up exercise, let us consider straight-line drawings of Km,n and present a simple construction.
Given a straight-line drawing of Km,n with vertex partitions R and B, we pick an arbitrary
vertex r ∈ R and consider its star. For every edge rbi, bi ∈ B in the star of r we draw the ray−→
rbi. These rays partition the plane into wedges, one of which might have an opening angle
larger than π. In each wedge, the angle bisector divides the wedge into two parts. We connect
the vertices in R lying on each part (the ones on the bisector can be assigned arbitrarily) to
the point bi ∈ B on the ray that bounds that part of the wedge. These connections together
with the star of R and the vertices in R \ r define a plane spanning tree in the straight-line
drawing of Km,n. Actually, the plane spanning tree produced is what we call a shooting star. A
shooting star rooted at v is a plane spanning tree that consists of the star of v and, for each
vertex that is not adjacent to v, an edge connecting it to a vertex in the star of v.

For simple drawings of Km,n, we are not aware of a similarly easy construction. Simple inductive
approaches such as removing an uncrossed edge and one of its incident vertices from the
drawing cannot be applied for simple drawings of Km,n: The drawing in Figure 7.1 (left) by
Schröder [182] is a simple drawing of K3,4 in which every edge is crossed at least once. We note
that by inserting copies of vertices close to the original ones we can generalize it to a drawing of
Km,n with m ≥ 3, n ≥ 4 in which every edge is crossed at least once. (For the complete graph
Kn with n ≥ 8, Harborth and Mengersen [117] showed that there are simple drawings in which
every edge is crossed.) Moreover, Figure 7.1 (right) shows a drawing of the complete bipartite
graph Km,n minus one edge uv that does not contain a plane spanning tree, since every edge in
the star of u crosses every edge in the star of v.

Outline. In this chapter we show that every simple drawing of Km,n contains a shooting
star rooted at every vertex. In Chapter 7.2 we present a mainly combinatorial proof for simple
drawings of K2,n and shooting stars rooted at vertices in the vertex partition of size two. Using
this result, we also show the existence of shooting stars in simple drawings of K3,n (Section 7.3)
and other classes of simple drawings of Km,n (Section 7.4). In Section 7.5 we show a proof
independent of the previous ones and valid for every simple drawing of Km,n. Moreover, this
proof shows the existence of a shooting star rooted at every vertex. Finally, in Section 7.6 we
present a summary and conclusions.



7.2. Shooting stars in simple drawings of K2,n 133

7.2. Shooting stars in simple drawings of K2,n

In this section we prove that every simple drawing of K2,n and K3,n contains plane spanning
trees of a certain structure. In order to do so, we introduce some notions and provide some
auxiliary results.

For a given simple drawing D of a graph G = (V,E) and two fixed vertices r 6= g ∈ V , we
define a relation →rg on the remaining vertices V \{r, g}, where u→rg v if and only if the edge
gu crosses the edge rv. In the following, we simply write u→ v if the two vertices r and g are
clear from the context.

Lemma 7.1. Let D be a simple drawing of a graph G = (V,E) and let r 6= g ∈ V be two
fixed vertices. The relation →rg is asymmetric and acyclic, that is, there are no other vertices
v1, v2, . . . , vk ∈ V with k ∈ N such that v1 → v2 → . . .→ vk → v1.

Proof. We give a proof by induction on k.

Induction basis. The case k = 1 is trivial. The case k = 2 follows from the fact that there is
at most one crossing in every subdrawing induced by four vertices of a simple drawing. Thus, if
gu crosses rv then, even when existing as edges of the drawing, gv cannot cross ru. This shows
that the relation → is asymmetric. For the case k = 3, assume there are three vertices u, v, w
with u → v → w → u. Let 4 denote the closed region bounded by the edges ru, rv, and gu
and not containing the vertex g; see Figure 7.2 for an illustration. We distinguish the following
two cases:

Case 1: w 6∈ 4. Since w → u holds, the edge gw crosses ru, and therefore the boundary of 4.
Since g 6∈ 4 and since gw cannot cross gu, gw must also cross rv. Thus, we have w → v,
which is a contradiction to v → w since the relation is asymmetric.

Case 2: w ∈ 4. Since u → v, the edge gv cannot cross ru. Moreover, since gv can neither
cross gu nor rv, it is therefore entirely outside 4. Since rw is entirely contained in 4, gv
and rw cannot cross, and therefore, v 6→ w.

Since w can neither be inside nor outside 4, the statement is proven for the case k = 3.

Inductive step. Suppose for a contradiction that there exist v1, . . . , vk with k ≥ 4 and
v1 → v2 → . . .→ vk → v1 and that there is no smaller cycle. We write u = v1, v = v2, w = vk−1,
and z = vk. Let 4 denote the closed region bounded by the edges ru,rv, and gu that does not
contain the vertex r. We distinguish the following two cases:

Case 1: z 6∈ 4. We continue analogously to Case 1 of the base case k = 3. Since z → u holds,
gz crosses ru, and therefore the boundary of 4. Since g 6∈ 4 and since gz cannot cross
gu, gz must also cross rv. Thus, z → b.
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Figure 7.2.: An illustration of the base case k = 3 in Lemma 7.1.

Case 2: z ∈ 4. Since w → z holds, gw crosses rz at some point inside 4. Since g 6∈ 4 and
since gw cannot cross gu, it must cross ru or rv (or both). Thus, we have w → u or
w → v.

In both cases, we can find v′1, . . . , v
′
l for some l < k with v′1 → . . . → v′l → v′1, which is a

contradiction. This completes the proof of the lemma.

Theorem 7.2. Let D be a simple drawing of the complete bipartite graph K2,n with vertex
partitions {r, g} and B. Then, for every k ∈ {1, . . . , n}, D contains a plane spanning tree with
k edges incident to r and n− k + 1 edges incident to g.

Proof. According to Lemma 7.1, we can find a labeling b1, . . . , bn of the vertices in B such that
bi →rg bj only holds if i < j. Let S1 be the star rooted at r and with edges rb1, . . . , rbk and
let S2 be the star rooted at g and with edges gvk, . . . , gvn. By Lemma 7.1 and the definition of
relation→rg, the edges of S1 and S2 do not cross, and hence we have a plane spanning tree.

Note that the same proof can be applied to the complete graph, and thus, we have the following
result that might be of independent interest.

Corollary 7.3. Let D be a simple drawing of the complete Kn. Then, for any two vertices r, g
of D and for every k ∈ {1, . . . , n− 2}, D contains a plane spanning tree with k edges incident
to r and n− k − 1 edges incident to g.

Going back to simple drawings of K2,n, the following corollary shows that they contain shooting
stars rooted at both vertices of the vertex partition with two vertices.

Corollary 7.4. Let D be a simple drawing of the complete bipartite graph K2,n with vertex
partitions {r, g} and B. Then for each v ∈ {r, g}, D contains a shooting star rooted at v.

Proof. Consider again the proof of Theorem 7.2. With the according labeling b1, . . . , bn of the
vertices in B, no edge gbi can cross the edge rb1. Hence, the plane spanning tree consisting of
all the edges incident to g together with the edge rb1 gives the desired shooting star rooted
at g. Similarly, the tree with all edges incident to r and the edge gbn is a shooting star rooted
at r.
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Figure 7.3.: The two crossing r-uncrossed edges together with the edges eg and ep bound the triangular
regions 4g and 4p.

7.3. Shooting stars in simple drawings of K3,n

Making use of the result in the previous section, we can show that shooting stars also exist in
simple drawings of K3,n. The proof is based on a case analysis on the placement of the third
vertex in the vertex partition with exactly three vertices.

Theorem 7.5. Let D be a simple drawing of the complete bipartite graph K3,n with vertex
partitions {r, g, p} and B. Then for each v ∈ {r, g, p}, D contains a shooting star rooted at v.

Proof. We color the vertices r, g, and p with colors red, green, and purple, respectively, and
all edges of D in the color of the vertex in {r, g, p} that they are incident to. Without loss of
generality, let v = r. Starting with the star of r, we construct a shooting star F rooted at r.

From Theorem 7.2 it follows that there is a green and a purple edge that do not cross any of
the red edges. In the rest of this proof, we call these two edges r-uncrossed edges. If they do
not cross each other, we can insert them, together with g and p, into F and hereby complete
our shooting star.

Hence, assume that the r-uncrossed edges cross. Let bg, bp ∈ B be the vertices that are incident
to the green and purple r-uncrossed edges, respectively. We denote by eg the edge gbp and by ep
the edge pbg. These two edges eg and ep can neither cross the r-uncrossed edges nor each other
(since in the subdrawing induced by four edges there can be at most one crossing). Thus, eg,
gbg, and pbp bound a (closed) triangular region 4g that does not contain p. Analogously, ep,
gbg, and pbp bound a (cloased) triangular region 4p that does not contain g; see Figure 7.3 for
an illustration.

If either eg or ep does not cross any of the red edges, we obtain our shooting star F by inserting
g, p, that edge, and the r-uncrossed edge of the other color. So assume now that both edges
cross at least one red edge. We will show that then there has to be another green or purple
edge which does neither cross a red edge nor the r-uncrossed edges.

Since red edges do not cross the r-uncrossed edges, at least one vertex must lie in the interior
of 4g and 4p. Furthermore, the red vertex r can either lie inside one of these triangular regions
or outside them both. As the case in which r lies in 4p and the case in which it lies in 4g are
symmetric, we only distinguish two cases regarding where r lies.
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Figure 7.4.: An illustration of the proof of Theorem 7.5. Left: Case 1. Right: Case 2.

Case 1: r lies in 4p. In this case, there has to be at least one vertex that lies in 4g. Actually,
all red edges that lie partly inside 4g have one endpoint in 4g (since they cannot cross the
r-uncrossed edges). We denote this set of vertices inside 4g by Vg; see Figure 7.4 (left).

Claim 1. A green edge incident to g and a vertex in Vg lies entirely in 4g.

Proof. If a green edge that has an endpoint in Vg, starting from this endpoint, leaves 4g,
it must cross the purple r-uncrossed edge to do so. Then, it cannot enter 4p, since it can
only cross one of its boundary edges. But, as it cannot cross the red edge incident to the
same point in Vg, it can then not reach g.

Claim 2. There is a green edge incident to g and a vertex in Vg that neither crosses a
red edge nor crosses the purple r-uncrossed edge.

Proof. Consider the subdrawing D′ of D that has Vg, the red vertex r, and the green
vertex g as its vertex set and all green and red edges incident to the vertices in Vg as
its edge set. Notice that D′ is a simple drawing of K2,|Vg |. From Theorem 7.2 it follows
that there is a green edge in that subdrawing that does not cross any red edge in the
subdrawing. By Claim 1, this green edge lies entirely in 4g. Thus, it does not cross the
purple r-uncrossed edge. Moreover, no green or red edge of D but not part of D′ can lie
(partly) inside 4g. Thus, that green edge fulfills the conditions of the claim.

Adding to the star of r the green edge guaranteed by Claim 2 and the purple r-uncrossed
edge completes our shooting star F in Case 1.

Case 2: r lies outside both 4g and 4p. As argued before, in the interior of both triangular
regions 4g and 4p there must be at least one vertex. As in Case 1, all red edges that
lie partly inside one of these triangular regions have one endpoint in the corresponding
triangular region.

We denote by Vg and Vp the set of vertices inside 4g and 4p, respectively. If all green
edges incident to a vertex in Vg lie entirely in 4g, we can obtain our shooting star F in
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the same way as in Case 1. Thus, we assume that this is not the case. We will show that
all purple edges lie entirely inside 4p and then we can obtain our shooting star F in the
same way as in Case 1.

Note that all the green edges incident to a vertex in Vg and that do not lie entirely
inside 4g, (i) connect to g from outside 4g, (ii) lie outside 4p, and (ii) intersect all edges
from r to a vertex in Vp; see Figure 7.4 (right). Thus, if a purple edge that has an endpoint
in Vp, starting from this endpoint, leaves 4p, it must cross the green r-uncrossed edge to
do so. Then, since it cannot cross the red edge incident to the same point in Vp, in order
to reach p it would need to cross twice all the green edges incident to a vertex in Vg and
that do not lie entirely inside 4g.

7.4. Shooting stars in certain classes of drawings of Km,n

In this section we study the problem of finding shooting stars in special kinds of simple drawings
of complete bipartite graphs.

Outer drawings [61] are simple drawings of Km,n in which all the m vertices of one vertex
partition lie on the outer boundary of the drawing. That means that we can draw a simple
closed curve through all the vertices in the vertex partition with m vertices that is not crossed
by any of the edges in the drawing.

We now proceed to prove that there is a shooting star in every outer drawing of Km,n.

Theorem 7.6. Let D be an outer drawing of the complete bipartite graph Km,n with vertex
partitions R and B where the vertices of R lie on the outer boundary. Let r be an arbitrary
vertex in R. Then D contains a shooting star rooted at r.

Proof. First, we label the vertices of R. We start in r = r1 and traverse the outer boundary in
clockwise direction. The vertices in R are denoted by r2, . . . , rm following the order in which
they occur along the boundary. Let T1 be the star of r1. We will insert edges of Ds into T1

until it becomes a spanning tree. We do so inductively by first inserting an edge incident to r2,
then an edge incident to r3 and so on until we insert an edge incident to rm. We denote by Ti
the drawing that we get by inserting into Ti−1 both ri and the selected edge incident to ri for
2 ≤ i ≤ m. We will show that it is possible to insert vertices and edges such that every Ti is
plane. After inserting the last vertex and edge, the statement follows.

In the first step, for T2, we need to find an edge that is incident to r2 and does not cross any
edge incident to r. We know from Theorem 7.2 that there is at least one such edge. We insert r2

and this edge into T1 and get a plane tree T2. For Ti we need to find an edge that is incident
to ri and does not cross any of the edges of Ti−1. We denote by ei−1 the edge of Ti−1 that is
incident to ri−1 and by bi−1 the vertex in B that ei−1 is incident to. We also denote by e′i−1

the edge that is incident to bi−1 and r. The edges e′i−1 and ei−1 separate two closed regions
inside of the outer boundary of the drawing. We call Γ1 the one including the part of the outer
boundary of the drawing that goes from r following a clockwise direction until ri−1, and the
other one Γ2; see Figure 7.5 for an illustration.
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Figure 7.5.: An illustration of the proof of Theorem 7.6. The edges e′i−1 and ei−1 together with the
outer boundary define two regions.

Claim 1. All the edges of Ti−1 that are not incident to r lie entirely inside Γ1.

Proof. Since the boundary of Γ1 consists of edges in Ti−1 and part of the outer boundary, all
edges of Ti−1 that lie partly inside Γ2 have to lie entirely inside it. The edges of Ti−1 that are
not incident to r are incident with the vertices r2, . . . , ri−1. As they have to lie on the part of
the outer boundary that is also part of the boundary of Γ1, the edges incident to these vertices
have to lie partly inside Γ1. Thus, these edges have to lie entirely inside Γ1.

We now consider the region Γ2. The subdrawing of D induced by r, ri, and all vertices of B that
lie in Γ2 is a simple drawing of K2,n′ . By Theorem 7.2, there is an edge ei incident to ri that
does not cross any edge incident to r. This edge can neither cross the outer boundary nor e′i−1

and it can only cross ei−1 once. Since ei has both end points in Γ2, it has to lie entirely in Γ2.
From Claim 1 it follows that it does not cross any edge of Ti−1 that is not incident to r. As it
does not cross any edge incident to r either, ei it does not cross any of the edges of Ti−1. Thus,
we can insert ri and ei into Ti−1 it and obtain a plane tree Ti. We continue to do so until we
inserted an edge for every vertex in B. The plane spanning tree Tm is then a shooting star.

We apply the strategy of the previous proof to a more general class of drawings. A circular
drawing is a simple drawing of Km,n in which all the m vertices of one vertex partition lie on a
closed curve that is not crossed by any edges, and all other vertices do not lie on this curve.
Since we can consider separately the subdrawings in the two regions separated by the closed
curve, we get the following corollary.

Corollary 7.7. Let D be a circular drawing of the complete bipartite graph Km,n and let v
be a vertex on the unintersected closed curve though all the vertives of one vertex partition.
Then D contains a shooting star rooted at v.
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Figure 7.6.: Left: A simple drawing of K3,3. Right: Drawing after a stereographic projection from
vertex 2.

e1

e2

e1

e2

Figure 7.7.: Left: e2 crosses e1 in clockwise direction. Right: e2 crosses e1 in counterclockwise direction.

7.5. Shooting stars in simple drawings of Km,n

We now present the general result that applies to every simple drawing of Km,n and that does
not depend on any of the previous results in this chapter.

Theorem 7.8. Let D be a simple drawing of the complete bipartite graph Km,n and let r be an
arbitrary vertex of Km,n. Then, D contains a shooting star rooted at r.

Proof. We can assume that the vertex partitions are R = {r1, . . . , rm}, and B = {b1, . . . , bn},
and the vertices in them are colored red and blue, respectively. Without loss of generality,
let r = r1.

To simplify the figures in the proof, we consider the drawing D in the sphere and apply
an stereographic projection from r onto a plane. In that way the edges in the star of r are
represented as rays; see Figure 7.6. Moreover, we will depict them in red. In order to specify how
two edges cross each other, we introduce some notation. Consider two crossing edges e1 = u1v1

and e2 = u2v2 oriented from u1 to v1 and from u2 to v2, respectively. Let × denote the crossing
point and consider the arcs ×u1 and ×v1 on e1 and the arcs ×u2 and ×v2 on e2. We say that e2

crosses e1 in clockwise direction if the clockwise cyclic order of these arcs around the crossing
point × is ×u1, ×u2, ×v1, and ×v2; see Figure 7.7 (left). Otherwise, we say that e2 crosses e1

in counterclockwise direction; see Figure 7.7 (right). In the following, we assume that all edges
are oriented from their red to their blue endpoint.

We prove Theorem 7.8 by induction on n. For n = 1, the drawing D is a shooting star rooted
at any vertex, and in particular at r.

Assume that the existence of shooting stars rooted at any vertex has been proved for any simple
drawing of Km,n′ with n′ < n. Let M be a subset of the edges of D connecting each vertex
ri 6= r to some blue vertex in B, such that (i) M ∪ {

⋃n
j=2 rbj} does not contain any crossing

and (ii) the number of crossings of M with edge rb1 is the minimum possible. Observe that the
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Figure 7.8.: Illustration of Case 1.

set M is well defined, since, by the inductive hypothesis, the drawing of D obtained by deleting
the blue vertex b1 and its incident edges contains a shooting star rooted at r. Thus, there
exists a set of edges M1 from D connecting each vertex ri 6= r to some blue vertex such that
M1 ∪ {

⋃n
j=2 rbj} does not contain any crossing. However, some of the edges in M1 might cross

rb1 in D. We remark that this set M1 might not be the one fulfilling condition (ii). Actually,
we will show that M does not contain any crossing with rb1.

Assume for a contradiction that rb1 crosses at least one edge in M . When traversing rb1 from b1
to r, let x the first crossing point of rb1 with an edge rkbt in M . Without loss of generality,
when orienting rb1 from r to b1 and rkbt from rk to bt, rkbt crosses rb1 in counterclockwise
direction (otherwise we can mirror the drawing).

Suppose first that the arc rkx (on rkbt and oriented from rk to x) is crossed in counterclockwise
direction by an edge incident to b1 (and oriented from the red endpoint to b1). Let e = rlb1 be
such an edge whose crossing with rkx at a point y is the closest to x. Otherwise, let e be the
edge rkb1 and y be the point rk. In the remaining figures, we represent in red the edges of the
star of r, in blue the edges in M , and in black the edge e.

We distinguish two cases depending on whether e crosses an edge of the star of r. The idea in
both cases is to define a region Γ and, inside it, redefine the connections between red and blue
vertices to reach a contradiction.

Case 1: e does not cross any edge of the star of r. Let Γ be the closed region of the plane
bounded by the arcs yb1 (on e), b1x (on rb1), and xy (on rkbt); see Figure 7.8. Observe
that for all the red vertices ri inside region Γ the edge rib1 must be in Γ. Let MΓ denote
this set of rib1 edges with ri ∈ Γ and note that rkb1 ∈ MΓ. Consider the set M ′ of red
edges obtained from M by replacing, for each red vertex ri ∈ Γ, the (unique) edge incident
to ri in M by the edge rib1 in MΓ, and keeping the other edges in M unchanged. In
particular, the edge rkbt has been replaced by the edge rkb1. The edges in MΓ neither
cross each other nor cross any of the red edges rbj . Moreover, we now show that the
non-replaced edges in M must lie entirely outside Γ. These edges can neither cross rkbt
(by definition of M) nor the arc b1x (on rb1). Thus, if they are incident to b1 they cannot
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Figure 7.9.: Illustration of Case 2. Region Γ is shaded in blue while regions in
⋃
ξ∈IWξ ∪Wη are

shaded in yellow. Top: η /∈ I. Bottom: η ∈ I.

cross the boundary of Γ, and otherwise their endpoints lie outside Γ and they can only
cross one arc of the boundary. Therefore, M ′ satisfies that M ′ ∪ {

⋃n
j=2 rbj} does not

contain any crossing, and has less crossings with rb1 than M (at least crossing x is not
present and none of the edges in MΓ crosses rb1). This contradicts the definition of M as
the one with the minimum amount of crossings with rb1.

Case 2: e crosses the star of r. When traversing e from rk or rl (depending on the definition
of e) to b1, let I = {α, β, . . . , ρ} be the set of indices of the edges of the star of r crossed
by edge e in precisely that order, and let yα, . . . , yρ be the corresponding crossing points
on e. Note that, when orienting e from rk or rl to b1, the edges rbξ, ξ ∈ I, oriented from r
to bξ, cross e in counterclockwise direction, since they can neither cross rkbt (by definition
of M) nor rb1.
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The three arcs ryα (on rbα), yαb1 (on e), and b1r divide the plane into two (closed) regions,
Πleft, containing vertex rk, and Πright, containing vertex bt. For each ξ ∈ I, let Mξ be
the set of red edges of M incident to some red vertex in Πright and to bξ. Note that all
the edges in Mξ (if any) must cross the edge e. When traversing e from rk or rl to b1,
we denote by xξ, zξ the first and the last crossing points of e with the edges of Mξ ∪ rbξ,
respectively. We remark that both xξ and zξ might coincide with yξ and, in particular,
if Mξ = ∅ then xξ = yξ = zξ.

We now define some regions in the drawing D. Suppose first that there is an edge in M
(oriented from the red to the blue endpoint) that crosses rb1 (oriented from r to b1) in
clockwise direction. Let rsbη be such an edge in M whose crossing with rb1 at a point x′

is the closest to x (recall that the arc b1x on rb1 is not be crossed by edges in M).
Then, if η /∈ I, we denote by Wη the region bounded by the arcs rx′ (on rb1), x′bη (on
rsbη), and rbη and not containing b1; see Figure 7.9 (top) for an illustration. If η ∈ I,
we define Wη as the region bounded by the arcs rx′ (on rb1), x′bη (on rsbη), bηzη, zηyη
(on e), and yηr (on rbη) and not containing b1; see Figure 7.9 (bottom) for an illustration.
Otherwise, if such crossing point x′ does not exist, Wη denotes the edge rb1. Moreover,
for each ξ ∈ I \ {η}, we define Wξ as the triangular region bounded by the arcs xξbξ, bξzξ,
and zξxξ (and not containing b1); see Figure 7.9 for an illustration.

We can finally define the region Γ for this case. It is the region obtained from Πleft by
removing the interior of all the regions Wξ, ξ ∈ I plus wedge Wη if η /∈ I (otherwise it is
already contained in

⋃
ξ∈IWξ). Now, consider the set of red and blue vertices contained

in region Γ. Let J denote the set of indices such that for all j ∈ J the blue vertex bj lies
in Γ (note that 1 ∈ J). Since bt is not in Γ, by the inductive hypothesis, we can find a
set of edges MΓ connecting each red vertex in Γ with a blue vertex bj , j ∈ J satisfying
that MΓ ∪ {

⋃
j∈J rbj} does not contain any crossing. We now show that all the edges

in MΓ lie entirely in Γ. An edge in MΓ cannot cross any of the edges rbj , with j ∈ J .
Thus, it cannot leave Πleft, as otherwise it would cross e twice. Moreover, if it enters one
of the regions in

⋃
ξ∈IWξ ∪Wη, it would have to leave it crossing e, and then it cannot

reenter Γ.

Consider the set M ′ of red edges obtained from M by replacing, for each red vertex
ri ∈ Γ, the edge ribξ in M by the edge ribj , j ∈ J , in MΓ, and keeping the other edges in
M unchanged. In particular, the edge rkbt has been replaced by some edge rkbj , j ∈ J .
The edges in MΓ neither cross each other nor cross any of the red edges rbj , j ∈ J nor
any of the other ones, lying entirely outside Γ. Moreover, the non-replaced edges in M
cannot enter Γ since the only part of its boundary that they can cross are arcs on e.
Therefore, M ′ satisfies that M ′ ∪ {

⋃n
j=2 rbj} does not contain any crossing, and has less

crossings with rb1 than M (at least crossing x is not present and none of the edges in MΓ

crosses rb1). This contradicts the definition of M as the one with the minimum amount
of crossings with rb1.
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7.6. Chapter summary

We have shown that every simple drawing of the complete bipartite graph Km,n contains a plane
spanning tree. Though this is a basic aspect of simple drawings of Km,n, to our best knowledge
this is the first proof. We show that, in particular, simple drawings of Km,n contain shooting
stars rooted at every vertex. However, our proof does not provide a polynomial algorithm to
find them. We have also presented alternative proofs showing the existence of shooting stars for
particular cases of simple drawings of Km,n, namely all simple drawings of K2,n and K3,n, as
well as all circular drawings of Km,n. We remark that these proofs for particular cases prove
the existence of shooting stars rooted at any vertex in one specific vertex partition out of the
two, and provide polynomial algorithms to find them.





8. Semi-simple drawings of Kn

An extended abstract containing the results in this chapter has appeared in [19]. Moreover, the
results in Sections 8.3, 8.4, 8.6, and part of the ones in Section 8.7 appeared in the Master’s
thesis [82], co-supervised by the author of this thesis.

8.1. Introduction

Two simple drawings D and D′ are weakly isomorphic if there exists an incidence-preserving
bijection between their vertices, such that two edges of D cross if and only if the corresponding
two edges of D′ cross. We will consider the classes of weakly isomorphic simple drawings of the
complete graph Kn. We can efficiently handle them using rotation systems. The rotation of a
vertex in a drawing is the (clockwise) cyclic order of all edges incident to it. The rotations of all
the vertices of a drawing form its rotation system. A rotation system is said to be realizable if
it is a rotation system of a simple drawing. Two simple drawings of Kn are weakly isomorphic
if and only if they have the same rotation system (up to reflection) [135].

A semi-simple drawing of a graph is a drawing in which edges that share a vertex do not cross,
but edges not sharing a vertex are allowed to (properly) cross an arbitrary number of times;
see [163] and also [42]. Semi-simple drawings can have regions that are bounded only by two
continuous pieces of (two) edges, which we denote lenses. If a lens contains no vertex, we call it
empty. We call a rotation system semi-realizable if it can be drawn as a semi-simple drawing. It
is known that every semi-realizable rotation system can be drawn without empty lenses [157].
We call semi-simple drawings without empty lenses minimal.

Motivated by the amount of structure of simple drawings determined by rotation systems, we
investigate the properties of (minimal) semi-simple drawings with respect to their rotation
systems. As for simple drawings, a semi-simple drawing with three vertices can only be a simple
3-cycle. A simple drawing of K4 has either no crossing or one crossing; a semi-simple drawing
with the latter rotation system has exactly one pair of edges that crosses an odd number of times.
We observe that for K4, all minimal semi-simple drawings are simple. For Kn, the rotation
system of a semi-simple drawing determines whether two edges cross an even or an odd number
of times. This is related to the Hanani-Tutte theorem, which states that a graph is planar
if and only if in a drawing any two non-adjacent edges cross an even number of times, and
which motivates the notion of the independent odd crossing number [179]. Pach and Tóth [163]
showed that semi-simple drawings can be redrawn such that no two edges that cross every edge
an even number of times intersect, a result improved in [168], who showed that, additionally,
the drawings have the same rotation system. Note that this is not equivalent to obtaining a
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drawing with no two edges crossing an even number of times. While the Hanani-Tutte theorem
(like probably most results considering the odd crossing number) considers all drawings of a
given graph, we are interested in drawings of Kn with a given rotation system.

Given a rotation system, we call the rotation systems restricted to 4 or 5 elements 4-tuples and
5-tuples, respectively. Kynčl showed that a rotation system of Kn is realizable if and only if
all its 4- and 5-tuples are realizable [138]. Recently, Cardinal and Felsner [61] proved a similar
result for outer drawings of Km,n.

Outline. In Section 8.2 we show that checking the realizability of all 4-tuples in a rotation
system of Kn can be done in O(n3). As a 4-tuple is semi-realizable if and only if it is realizable,
it was conjectured that realizability of all 4-tuples is sufficient for semi-realizability. We refute
this conjecture in Section 8.3. In Section 8.4 we present our backtracking approach for deciding
whether a given rotation system with few elements is semi-realizable. It is based on an algorithm
for generating simple drawings [1]. As the computations require an upper bound on the number
of crossings between two edges in a minimal semi-simple drawing, in Section 8.5 we tackle this
problem. The results from the computations are presented in Section 8.6. In Section 8.7 we
explore semi-simple drawings in relation with Conway’s thrackle conjecture and the existance
of plane Hamiltonian cycles. Finally, in Section 8.8 we present a summary of the chapter and
conclusions.

8.2. Realizability of rotation systems

To decide the realizability of a rotation system, it suffices to check that all 5-tuples (and thus
4-tuples) are realizable [138]. While a brute-force approach to check all the 4-tuples yields an
O(n4) time algorithm, we show that only O(n3) checks are needed.

Observation 8.1. In a realizable 4-tuple, the rotations of three of its vertices determine the
rotation system.

Lemma 8.2. In any rotation system of five vertices, the number of non-realizable 4-tuples is
even.

Proof. A flip in a rotation system is the exchange of the positions of two neighboring vertices
in the rotation of a vertex. Let R be a rotation system of the vertices {a, b, c, d, e} and consider
an arbitrary flip of two neighboring vertices b and c in the rotation of a. This flip only affects
the two 4-tuples on {a, b, c, d} and on {a, b, c, e}. Since in each of these two 4-tuples only one
rotation changes, the realizability of the two 4-tuples switches due to Observation 8.1. Hence,
by one single flip, the number of non-realizable 4-tuples in R either changes by two or stays the
same. Using the argument of various sorting algorithms, we know that by multiple single flips we
can obtain every possible rotation system. Since we know that a 5-tuple without a non-realizable
4-tuple exists the number of non-realizable 4-tuples in a 5-tuple is always even.
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Figure 8.1.: Semi-simple drawings extending a non-realizable 5-tuple (depicted in black).

Lemma 8.3. Let R be a rotation system of n vertices. If R contains a non-realizable 4-tuple,
then every vertex of R is contained in a non-realizable 4-tuple.

Proof. Assume that there are four vertices v, x, y, z whose sub-rotation system is non-realizable.
Then a 5-tuple {u, v, x, y, z} with any fifth vertex u is also non-realizable. From Lemma 8.2
we know that there exists a second non-realizable 4-tuple in this 5-tuple. This 4-tuple must
include u.

Thus, to decide realizability of all 4-tuples it suffices to check all 4-tuples containing an arbitrary
vertex u.

Corollary 8.4. Checking the realizability of all 4-tuples in a rotation system can be done in
cubic time.

There are five realizable 5-tuples and two other semi-realizable ones; see the black sub-drawings
in Figure 8.1. While for 4-tuples it was sufficient to check all those containing one fixed element,
this approach no longer works for realizability of 5-tuples, as there are arbitrarily large semi-
simple drawings containing only one non-realizable 5-tuple. Such drawings can for example be
constructed modifying the drawings in Figure 8.1 by adding an arbitrary number of copies of
the red vertex close to it.

8.3. Semi-realizability of rotation systems

From the computations we know that all rotation systems of five vertices that have only
realizable 4-tuples are either realizable or semi-realizable; see Section 8.6. Moreover, each
of them has a unique minimal semi-simple drawing (up to homeomorphism of the sphere).
However, in general it is not the case that realizability of 4-tuples implies semi-realizability,
which disproves the related conjecture mentioned in the introduction.

Theorem 8.5. The semi-realizability of a rotation system does not follow from the realizability
of all its 4-tuples.
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Figure 8.2.: Two partial drawings of the unique non-semi-realizable rotation system on six vertices.
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Figure 8.3.: The rotation system determines in which of the two regions bounded by a triangle lies a
vertex.

Figure 8.2 shows two partial drawings of a rotation system with six vertices that is not semi-
realizable, but whose 5-tuples are all semi-realizable. The left one is equivalent to the rotation
system of the geometric drawing of K5 with the five vertices in convex position; all other
5-tuples are equivalent to the rotation system of the semi-simple drawing to the right.

For proving that the given example in Figure 8.2 is not semi-realizable, we argue about
area-containment of points in triangles.

We denote the directed cycle defined by three vertices a, b, c the triangle 4(a, b, c). Every
triangle 4(a, b, c) decomposes the plane into two regions, one to the left of the directed edge ab
and one to the right. We call the former the interior of 4(a, b, c) and the latter the exterior
of 4(a, b, c). The following lemma generalizes a well-known property of simple drawings to
semi-simple drawings.

Lemma 8.6. For any rotation system of a semi-simple drawing of Kn and a triangle 4(a, b, c)
of this drawing, consider the two regions bounded by 4(a, b, c). Any other vertex v of the drawing
lies in the region in which at least two of the three edges to v emanate from a, b, and c.

Proof. Figure 8.3 illustrates the proof. We assume without loss of generality that the edges from
b and c to v start in the interior of 4(a, b, c). We further assume for the sake of contradiction
that vertex v lies in the exterior of 4(a, b, c).

Since the edge cv has to leave the triangle 4(a, b, c) and must not cross any edge incident
to c, it has to cross the edge ab. We call the first such crossing point p. Then the curves cp,
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Figure 8.4.: Triangles 4(v1, v4, v5), 4(v1, v3, v5), and 4(v2, v4, v5) of the non-semi-realizable rotation
system R.

pb, and bc bound a region in the interior of 4(a, b, c). The edge bv starts inside this region
and cannot leave it. Since v lies in the exterior of 4(a, b, c), we cannot draw the edge bv, a
contradiction.

Using Lemma 8.6 we can proof Theorem 8.5.

Proof of Theorem 8.5. We show that the rotation system R depicted in Figure 8.2 is not semi-
realizable. We remark that the statement of Theorem 8.5 also follows from the computations;
see Section 8.6.

Consider the triangles 4(v1, v4, v5), 4(v1, v3, v5), and 4(v2, v4, v5). From Lemma 8.6 it follows
that v6 has to lie in the interior of the black triangle 4b = 4(v1, v4, v5), and to the exterior of
the red triangle 4r= 4(v1, v3, v5) and the green triangle 4g= 4(v2, v4, v5).

If we can prove that in any semi-simple drawing of the 5-tuple (v1, v2, v3, v4, v5), the black
triangle 4(v1, v4, v5) is always covered by the red 4(v1, v3, v5) and the green 4(v2, v4, v5), then
it follows that there exists no semisimple drawing of R, since we cannot draw vertex v6. We
sketch the configuration of the three triangles in Figure 8.4.

We label the edges like in Figure 8.4: We denote by r1 the edge from v5 to v3, r2 the edge
from v3 to v1, and analogously g1 the edge from v5 to v2, g2 the edge from v2 to v4 and b1 the
edge from v1 to v4. Note that with the definition of the interior and exterior of a triangle it
does not make a difference which region is the unbounded one in the drawing; see Figure 8.4
for an example. There, by our definition, the interior of the green triangle 4(v2, v4, v5) is the
unbounded region.

The crossings shown in Figure 8.4 follow from the rotation system R (that is, edges crossing
in this drawing cross an odd number of times in any semi-simple drawing of R). The edge
r2 can intersect v4v5 an even number of times, forming inside 4b lenses bounded by r2 and
v4v5. We denote by 4′r the region inside 4r and outside these lenses. Analogously, we define
4′g as the region contained in 4g outside the lenses in 4b bounded by g2 and v5v1. Notice
that by definition 4r ⊆ 4′r and 4g ⊆ 4′g. We further define the following regions inside the
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Figure 8.5.: Left: Illustration of the proof of Theorem 8.5. Right: Not a possible subdrawing of R since
in the drawing v3 lies inside the green triangle.

black tirangle Rr := 4′r ∩4b and Lg := 4′g ∩4b. From the above definitions it follows that
Rr ⊆ 4′r ⊆ 4r and Lg ⊆ 4′g ⊆ 4g; see Figure 8.5 for an illustration.

Given the drawings of r1 and g1, since the two edges do not intersect, we can draw a pseudoline
` through v5 separating the two edges and dividing the plane into the left halfplane L (where
r1 lies) and the right halfplane R (where g1 lies). ` divides the black triangle into two not
necessarily connected subsets: L4 := L ∩4b and R4 := R ∩4b. Notice that from the rotation
system we know that v2 and v3 are outside the black triangle and, respectively, the red and
the green ones. In particular this means that we can draw ` such that in the drawing of the
black triangle, r1, g1, and ` the vertices v1, v2, v3, v4 and v5 lie in the unbounded face of the
subdrawing. This implies that L4 ⊆ Lg and R4 ⊆ Rr.

Summing up, we have that

4 = L4 ∪R4 ⊆ Lg ∪Rr ⊆ 4′g ∪4′r ⊆ 4g ∪4r

So, as we wanted to show, the black triangle is contained in the union of the green and the red
ones.

8.4. Computer-assisted results

To decide algorithmically whether a rotation system is semi-realizable, we used a backtracking
approach based on the algorithm for realizing simple drawings used in [1]. We modified it
allowing multiple proper crossings per edge pair. It thus requires an upper bound on the
maximum number of proper crossings per edge pair in a minimal semi-simple drawing of Kn.
From computations we get that five and ten crossings are such upper bounds for n = 6 and
n = 7, respectively; see Table 8.1.

Using these parameters, we verified that the example in Figure 8.2 is the only non-semi-realizable
one with six vertices where all 4-tuples are realizable. For seven vertices we exhaustively analyzed
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Figure 8.6.: Two edges forming a basic spiral (left) and a general spiral (right).

n 5 6 7 8 9 10 11 12 13 14 15

cr 2 5 10 27 35 59 83 143 197 323 589

Kn 2 4 10

Table 8.1.: Maximum number of crossings per edge pair for n points (cr), and maximum number of
pairwise crossings needed to draw Kn semi-simple.

all possible rotation systems. We found 480 non-semi-realizable rotation systems such that the
sub-rotation system of every proper subset of vertices is semi-realizable.

To determine an upper bound on the maximum number of crossings per edge pair, we use
another backtracking algorithm. It enumerates all different ways how two edges can cross
multiple times without creating some forbidden patterns. We proceed with an overview of how
the algorithm works; a detailed description can be found in [82].

The drawings with two edges in which we are interested are sub-drawings of minimal semi-simple
drawings of Kn, that is, we want them to be completable to a minimal semi-simple drawing
of Kn. In particular, the configuration shown in Figure 8.6, which we call a spiral, is forbidden,
as it is not completable: Vertex x lies inside a lens bounded by the edges ab and xy (gray region
in Figure 8.6), and thus, edges xa and xb cannot be added to the drawing.

The algorithm starts with a single edge. We also fix the starting vertex of the second edge. In
every step the drawing is extended by adding a crossing (and maybe a vertex) in all possible
ways avoiding spirals and empty lenses. It ends when we are forced to create an empty lens for
which we do not have a point remaining to place in.

With this algorithm we can compute an upper bound on the maximal number of crossings of
an edge pair in a semi-simple drawing of Kn. In Table 8.1 we show the results for up to 15
vertices.

8.5. Bounds on the number of crossings of edge pairs

In Section 8.4 we presented upper bounds on the number of times that two edges can cross in a
minimal semi-simple drawing obtained by computer. The numbers in Table 8.1 seem to grow
exponentially fast on the number of vertices. The next result shows that these numbers will
grow at least exponentially fast.
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Figure 8.7.: Construction of one edge pair crossing 2n−4 times.

p1

p4

p3 p2

Figure 8.8.: Extension of the construction to a drawing of Kn.

Theorem 8.7. There exist minimal semi-simple drawings of Kn in which two edges cross 2n−4

times.

Proof. We construct a drawing of a pair of edges crossing an exponential number of times in
the amount empty lenses created. To have a minimal drawing we place a point per empty lens.
The idea of the iterative construction is, in every step, to replace one edge by a folded edge
twice as long, and to add a new point where the new edge is folded; see Figure 8.8. We start
with two edges crossing once. In every step we thus duplicate the number of crossings and add
one more point, so after n− 4 steps we have drawn n points and the two edges cross 2n−4 times.

Now we show how to add the remaining edges to complete the drawing to a drawing of Kn.
In our construction we refer to the horizontal edge as the red edge, with endpoints r1 and r2,
and to the other edge, that we replace in every iteration, as the black edge, with endpoints b1
and b2. Any other point is denoted by pi with i being the iteration in which it was added.
Connections between the black and the red endpoints are done in a direct manner; see gray
edges in Figure 8.8 (left). Connecting a point pi with the red endpoints is also done in a direct
manner; see Figure 8.8 (right). The edge from pi to a black endpoint goes first in parallel to
the black edge (until reaching the unbounded face in the subdrawing of the red and the black
edges) and then it is directly connected; see Figure 8.8 (right). Finally, the edge from pi to pj
with i < j also goes first in parallel to the black edge, until reaching the unbounded face in the
subdrawing of the red and the black edges, and then it is directly connected; see Figure 8.8
(middle).
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Number of vertices 5 6 7 8

Rotation systems 7 173 39 349 42 336 167

Realizable 5 102 11 556 5 370 725

Semi-realizable, needs 2 crossings 2 62 20 634 21 657 419

Semi-realizable, needs 3 crossings - 5 3 379 ≥ 5 500 000

Semi-realizable, needs 4 crossings - 3 2 152 ≥ 1 000 000

Semi-realizable, needs ≥ 5 crossings - - 808 ?

Contains a non-semi-realizable subset - - 340 2 634 993

Minimal non-semi-realizable 0 1 480 ?

Table 8.2.: Number of rotation systems (with all 4-tuples realizable) and their types of realizations.

We remark that the construction of the two edges crossing an exponential number of times
has been presented before in the context of picture hanging [139, arXiv version, Section 5].
Concerning the completion to a semi-simple drawing, note that the intuitive straight-forward
approach of connecting all pairs of blocking points with simple arcs “from below” (similar
as the edges p1pi in Figure 8.8) does not work, as this would cause crossings between edges
incident to the same vertex.

8.6. Results from computations

Table 8.2 summarizes the results obtained from the computations described in Section 8.4. We
started with all rotation systems entirely consisting of realizable 4-tuples, and subtracted the
realizable ones; see [1].

For the remaining sets we checked whether they admit a semi-simple drawing with a predefined
maximal number of crossings per edge pair. Increasing this maximal number stepwise from
2 to the maximum given by Table 8.1, we obtained semi-simple drawings with the minimum
maximal number of crossings per edge pair. The number of rotation systems requiring 2, 3, 4
or more crossings is also given in Table 8.2. For n = 6 there is precisely one rotation system
which cannot be drawn semi-simple. For n = 7 there are 340 rotation systems which contain
this rotation system as a subset, and are thus not semi-realizable. For n = 8 there are 2 634 993
rotation systems which contain a non-semi-realizable set of cardinality 6 or 7. The computations
for n = 8 are still ongoing. Thus, we currently do not know if there exists a non-semi-realizable
rotation system containing only semi-realizable proper subsets.

Let us finally remark that for n = 6, two edges can cross up to 5 times and there exists a minimal
semi-simple drawing obtaining this number; see Figure 8.9 (left). However, for this rotation
system there is a semi-simple drawing with only 3 crossings per edge pair; see Figure 8.9 (right).
This shows that the bounds obtained in Table 8.1 are in general not tight.
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Figure 8.9.: Two semi-simple drawings of the same rotation system with up to five (left) and only
three (right) crossings per edge pair.

Figure 8.10.: A semi-simple drawing of K6 without a plane Hamiltonian cycle.

We also investigated generalizations of the conjecture on plane Hamiltonian cycles and thrackles
in simple drawings for the class of semi-simple drawings; see the following two sections.

8.7. Plane Hamiltonian cycles and thrackles

A plane Hamiltonian cycle of a drawing of G is a Hamiltonian cycle that does not cross itself. It
is conjectured that every simple drawing of Kn contains a plane Hamiltonian cycle [171], but so
far no proof was found. We show that a similar conjecture is not true for semi-simple drawings
of Kn by providing an example with 6 vertices that does not contain a plane Hamiltonian cycle
(where two edges of the cycle are allowed to cross an even number of times, but not an odd
number of times); see Figure 8.10.

A thrackle is a simple drawing of a graph where each pair of edges meets exactly once, either at
a common vertex or at a proper crossing [143]. A generalized thrackle is a drawing of a graph
in which each pair of edges meets an odd number of times. For semi-simple drawings we can
consider a notion of thrackle in between the above two. A quasi-thrackle [96] is a semi-simple
drawing of a graph where each pair of edges either is incident to a common vertex or crosses an
odd number of times.
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A

B

Figure 8.11.: Family of semi-simple thrackles matching the upper bound.

Conway conjectured that, for simple drawings, the number of edges of a thrackle cannot exceed
the number of its vertices. However, despite of the efforts to try to prove the conjecture, the
best known upper bound is m ≤ 3

2(n − 1) [60]. For generalized thrackles the tight upper
bound is m ≤ 2n− 2 [60]. However, none of the examples matching the upper bound [60] is a
semi-simple thrackle. Moreover, the proof of the upper bound of m ≤ 3

2(n− 1) [60] for thrackles
translates direclty to quasi-thrackles. A construction matching this upper bound, and thus,
showing that it is tight, is represented in Figure 8.11. This construction, that we obtained
independently, is very similar to the one in [96], that was used for showing the stated tight
bound of m ≤ 3

2(n − 1). Notice that, if Conway’s conjecture holds, the upper bound on the
number of edges in quasi-thrackles would be exactly half way (up to a constant) between the
one for thrackles and the one for generalized thrackles.

We can also consider thrackles in drawings completable to a semi-simple drawing of Kn. For
them, a direct translation of Conway’s conjecture would imply that no semi-simple drawing
of Kn can contain a quasi-thrackle with n + 1 edges. In Figure 8.12 we show a semi-simple
drawing of K7 that contains a subgraph with eight edges that pairwise either share a common
vertex or cross an odd number of times. This shows that a generalization of Conway’s thrackle
conjecture does also not directly translate for completable semi-simple thrackles.

8.8. Chapter summary

In this chapter we studied semi-simple drawings of Kn. For deciding if a rotation system
is realizable as a simple drawing it is known that only (4-tuples and) 5-tuples need to be
checked [138]. For the problem of characterizing semi-realizability, we showed that there is a
rotation system with 6 vertices that is not semi-realizable, but where every 5-tuple is realizable.
By an exhaustive computer search we found 480 rotation systems with 7 vertices such that
the rotation system of any proper subset of vertices is semi-realizable. This indicates that
checking semi-realizability is harder than checking realizability. Moreover, it seems plausible
that there are arbitrarily large minimal non-semi-realizable rotation systems. The computational
complexity of deciding semi-realizability remains an open problem. Concerning the maximum
number of times that two edges can cross in a minimal semi-simple drawing of Kn, we computed
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Figure 8.12.: A quasi-thrackle with eight edges in a semi-simple drawing of K7.

upper bounds for up to 15 vertices. A general (finite) upper bound is still unknown. Finally, we
showed that in semi-simple drawings of Kn there is not always a plane Hamiltonian cycle. And
we showed that in semi-simple drawings of Kn there might be thrackles with more edges than
vertices.



9. Open problems

Several open problems have emerged from the work presented in this thesis. We propose here a
selection of them. They are sorted by the order of the chapters they are related to.

Problem 1. Given a straight-line drawing of Kn, what is the computational complexity of
finding a 2-edge-coloring that minimizes the number of monochromatic crossings?

This problem is related to the max-cut problem of segment intersection graphs, which is NP-
complete for general graphs [28]. However, for the intersection graph of a straight-line drawing
of Kn the complexity is unknown.

Problem 2. Is the straight-line convex drawing Dn of Kn, among all straight-line drawings of
Kn, the one giving the largest ratio between the minimum number of monochromatic crossings
given by a 2-edge-coloring and the number of crossings?

In Section 2.4.2 we proved that for these drawings the ratio approaches 3/8 from below when
n→∞.

Problem 3. Does the combinatorial description of an exit drawing encode the abstract order
type?

In Section 3.6 we showed that information given by the set of exit edges together with their
witnesses is not enough to determine the order type.

Problem 4. What is the computational complexity of deciding whether a given simple drawing
is saturated, that is, no further edge can be inserted?

In Section 5.5 we presented a reduction showing that deciding if one particular edge can be
inserted into a simple drawing is NP-complete. Thus, the straight-forward approach of just
trying to insert every possible edge is hopeless.

Problem 5. What is the computational complexity of deciding whether (any) k edges can be
inserted into a given 1-plane drawing?

An FPT algorithm with respect to the parameter k was presented in Section 6.3.

Problem 6. Does every simple drawing of Kn,n contain a plane perfect matching as a sub-
drawing?

157
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In Section 7.5 we proved that every simple drawing of Km,n contains a plane spanning tree,
but the plane spanning tree that we construct might have few independent edges.

If this question is answered affirmatively, it implies that every simple drawing of Kn contains
Θ(n) pairwise non-crossing edges. This would improve the currently best lower bound of
Ω(n1/2−ε) pairwise non-crossing edges for any ε > 0 [178]. We remark that it is actually
conjectured that every simple drawing of Kn contains a plane Hamiltonian cycle [171].

Problem 7. What is the computational complexity of deciding semi-realizability of a given
rotation system of Kn?

The computational results in Section 8.6 seem to indicate that there is no finite set of obstructions,
unlike for simple drawings.
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[3] Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos,
and Gelasio Salazar. “More on the crossing number of Kn: Monotone drawings.” In:
Proceedings of the VII Latin-American Algorithms, Graphs, and Optimization Symposium
(LAGOS’13). Volume 44. Electronic Notes in Discrete Mathematics. 2013, pages 411–414
(cited on page 1).
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Scheucher, Pavel Valtr, and Birgit Vogtenhuber. “A superlinear lower bound on the
number of 5-holes.” In: Proceedings of the 33rd European Workshop on Computational
Geometry (EuroCG’17). 2017, pages 69–72 (cited on page 4).

[14] Oswin Aichholzer, Martin Balko, Thomas Hackl, Jan Kynčl, Irene Parada, Manfred
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[124] Gyula Károlyi, János Pach, and Géza Tóth. “Ramsey-type results for geometric graphs,
I.” In: Discrete & Computational Geometry 18.3 (1997), pages 247–255 (cited on
page 131).

[125] Pavel Klav́ık, Jan Kratochv́ıl, Tomasz Krawczyk, and Bartosz Walczak. “Extending
partial representations of function graphs and permutation graphs.” In: Proceedings of
the 20th European Symposium on Algorithms (ESA’12). Volume 7501. Lecture Notes in
Computer Science. Springer, 2012, pages 671–682 (cited on page 2).

[126] Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell,
and Tomás Vyskocil. “Extending partial representations of proper and unit interval
graphs.” In: Algorithmica 77.4 (2017), pages 1071–1104 (cited on page 2).

[127] Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, and Toshiki Saitoh. “Extending partial
representations of subclasses of chordal graphs.” In: Theoretical Computer Science 576
(2015), pages 85–101 (cited on page 2).

[128] Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, Toshiki Saitoh, and Tomás Vyskocil. “Extend-
ing partial representations of interval graphs.” In: Algorithmica 78.3 (2017), pages 945–
967 (cited on page 2).

[129] Daniel J. Kleitman. “The crossing number of K5,n.” In: Journal of Combinatorial Theory
9.4 (1971), pages 315–323 (cited on page 1).

[130] Daniel J. Kleitman and Lior Pachter. “Finding convex sets among points in the plane.”
In: Discrete & Computational Geometry 19.3 (1998), pages 405–410 (cited on page 4).

[131] Fabian Klute, Irene Parada, and Thekla Hamm. “Extending to 1-plane drawings.” In:
Abstracts of the XVIII Spanish Meeting on Computational Geometry (EGC’19). 2019,
pages 30–33 (cited on pages 4, 117).



173

[132] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. “An annotated
bibliography on 1-planarity.” In: Computer Science Review 25 (2017), pages 49–67 (cited
on pages 9, 117).

[133] Vladimir P. Korzhik. “Minimal non-1-planar graphs.” In: Discrete Mathematics 308.7
(2008), pages 1319–1327 (cited on page 123).

[134] Vladimir P. Korzhik and Bojan Mohar. “Minimal obstructions for 1-immersions and
hardness of 1-planarity testing.” In: Journal of Graph Theory 72.1 (2013), pages 30–71
(cited on page 117).
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land, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán.
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