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Preface

The 16th Computer Vision Winter Workshop (CVWW) was organized by the Institute for Computer Graphics
and Vision at Graz University of Technology. It took place from 2nd to 4th of February 2011 in Mitterberg,
Austria. The Computer Vision Winter Workshop is the annual meeting of several computer vision research
groups located in Graz, Ljubljana, Prague, and Vienna. The basic goal of this workshop is to communicate
new ideas within the groups and to provide conference experience to PhD students. In this spirit the topics
of the workshop were not explicitly limited to a specific topic but include computer vision, image analysis,
pattern recognition, medical imaging, 3D vision, human computer interaction, vision for robotics, as well as
applications.

We received 30 paper submissions from six countries. Each paper was reviewed by three members of our
international program committee. Among these 30 papers, 24 papers were accepted for presentation at the
workshop (18 oral and 6 poster presentations). 12 papers were presented at the workshop but are not published
in the proceedings so that no restrictions on submitting the work to other conferences and journals are imposed.

Besides papers selected in the review process, two invited talks were included in the program. We would like
to express our thanks to Dr. Jürgen Gall (Swiss Federal Institute of Technology Zürich) and Dr. Christoph
Lampert (Institute of Science and Technology Austria). We extend our thanks to the members of the program
committee for their time and their detailed and helpful feedback to the authors. We are grateful to Peter M. Roth
for providing several hints for organizing this workshop and to our secretary Renate Hönel, who has overtaken
many of the “administrative struggles”. We also want to thank the sponsors of the workshop for their support:
The Federal Government of Styria and Vexcel Imaging - a Microsoft company.

Andreas Wendel, Sabine Sternig, Martin Godec
CVWW 2011 Workshop Chairs

Graz, Austria, January 2011
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16th Computer Vision Winter Workshop
Andreas Wendel, Sabine Sternig, Martin Godec (eds.)
Mitterberg, Austria, February 2-4, 2011

Structured Learning and Prediction in Computer Vision

Christoph Lampert
Institute of Science and Technology, Klosterneuburg, Austria

chl@ist.ac.at

Abstract. Powerful statistical models that can be learned efficiently from large amounts of data are
currently revolutionizing computer vision. These models possess rich internal structure reflecting
task-specific relations and constraints. In my talk I will give an introduction to the most popular
classes of structured models in computer vision, concentrating on discrete graphical models and the
challenges and opportunities of applying them in a computer vision context. Special emphasis lies on
the question how we can efficiently learn the parameters of these models. I will also present examples
of successful application of structured prediction techniques to computer vision tasks from my own
work and other groups, e.g. in object localization, image segmentation, graph matching and pose
estimation.
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16th Computer Vision Winter Workshop
Andreas Wendel, Sabine Sternig, Martin Godec (eds.)
Mitterberg, Austria, February 2-4, 2011

Vision-based Human Motion Capture:
State-of-the-Art and Applications

Jürgen Gall
Computer Vision Laboratory

Swiss Federal Institute of Technology, Zürich, Switzerland
gall@vision.ee.ethz.ch

Abstract. In this talk, I will present a vision-based human motion capture engine based on inter-
acting simulated annealing and its extensions to various applications like in-house monitoring, video
editing, or avatar acquisition. The first extension performs both pose estimation and segmentation. It
achieves state-of-the-art results on the HumanEva-II benchmark without imposing restrictions on the
dynamics. It can also be used for human motion capture with off-the-shelf handheld video cameras.
When shape parameters are estimated in addition to the pose, the shape parameters of the tracked
human can be furthermore modified for movie editing. The second extension does not only estimate
skeleton motion or the shape of the body, it also estimates detailed time-varying surface geometry.
To acquire a realistic avatar from video data, it automatically identifies non-rigidly deforming pieces
of apparel and learns a physically-based cloth simulation model for it. Using this approach, real-
time animations of humans captured in general apparel can be created. The third extension estimates
the human pose and the performed action. To this end, the space of human poses is subdivided into
action-specific subspaces. A variant of interacting simulated annealing is used to optimize jointly
over the set of subspaces. The approach is promising for monitoring applications where both detailed
human pose and performed actions are relevant.
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16th Computer Vision Winter Workshop
Andreas Wendel, Sabine Sternig, Martin Godec (eds.)
Mitterberg, Austria, February 2-4, 2011

Addressing false alarms and localization inaccuracy
in traffic sign detection and recognition∗

Igor Bonači
Faculty of electrical engineering and computing

Unska 3, Zagreb, Croatia
igor.bonaci@fer.hr

Ivan Kusalić
ivan.kusalic@fer.hr

Ivan Kovaček
ivan.kovacek@fer.hr

Zoran Kalafatić
zoran.kalafatic@fer.hr

Sinǐsa Šegvić
sinisa.segvic@fer.hr

Abstract. We present a study on applying Viola-
Jones detection and SVM classification for recogniz-
ing traffic signs in video. Extensive experimentation
has shown that this combination suffers from high in-
cidence of false alarms and low tolerance to local-
ization inaccuracy of the true positive detection re-
sponses. We report on three improvements which ef-
fectively alleviate these problems. Firstly, we confirm
the previous result that raw detection performance of
Viola-Jones detector can be improved by exploiting
color. Additionally, we propose a solution for filter-
ing false positive detection responses, based on a prop-
erly trained artificial neural network classifier in the
last stage of the detection cascade. Finally, we pro-
pose a novel approach for alleviating the degradation
of the classification performance due to localization
inaccuracy. Experiments have been performed on sev-
eral video sequences acquired from a moving vehicle,
containing several hundred triangular warning signs.
The results indicate a dramatic improvement in de-
tection precision, as well as significant improvements
in classification performance. At the system level, the
proposed system correctly classified more than 97% of
triangular warning signs, while producing only a few
false alarms in more than 130000 image frames.

1. Introduction

The ability to detect and classify objects is a key
component of many computer vision applications.
This paper considers a framework based on combin-
ing a boosted Haar cascade detection (the Viola-Jones
algorithm) with support vector machine (SVM) clas-

∗This research has been jointly funded by the Croat-
ian National Foundation for Science, Higher Education and
Technological Development, and the Institute of Traffic and
Communications under programme Partnership in Basic re-
search, project number #04/20. The project web page is at
http://www.zemris.fer.hr/ ssegvic/mastif

sification. Although we address issues of general in-
terest in object detection and recognition, our focus is
on studying the considered framework in the context
of ideogram-based traffic signs.

There are many exciting application fields of traf-
fic sign recognition in video such as driving assistance
systems, automated traffic inventories, and autono-
mus intelligent vehicles. These applications are im-
portant for the society since their main goal is to in-
crease the traffic safety. Consequently, the challenges
towards achieving human-like performance (e.g. illu-
mination and color variance or motion blur) are ac-
tively researched. Recent high-class car models al-
ready come with optional traffic recognition systems,
but only limited technical information about the em-
ployed algorithms and their performance is available.
These recognition systems usually detect only speed
limit signs and assume highway conditions, which sig-
nificantly simplifes the problem.

In early experiments with the proposed framework
we experienced two major problems: i) large num-
ber of false alarms, and ii) poor classification of the
detection responses. This paper reports on several
improvements which effectively alleviate these prob-
lems. We first report that color sensitive detection
can reduce the false positive detection rate while im-
proving the recall for large signs. The false detection
rate is additionally reduced by a novel method con-
sisting of adding an artificial neural network classifier
as an additional level of a boosted Haar cascade. We
present experiments which suggest that the poor clas-
sification performance is caused by the localization er-
ror in the detection responses. To solve this problem
we propose an additional novelty, which is to modify
the classifier training set according to the empirically
determined properties of the localization error. The
presented methods significantly improve the classifi-
cation performance on standalone images, while the
performance in video experiments approaches 100%

11



correct detection and classification.

2. Related work

Automated traffic sign detection and recognition
has been an active problem for many years, and there
is a vast number of related publications. The detec-
tion procedure solves the problem of locating traffic
signs in input images, while the classification proce-
dure determines the types of the detected traffic signs.

There are different approaches to detection. Some
of the methods [6],[16] use color based segmentation,
and model matching in order to detect the traffic sign.
There are also researchers that rely only on the shape,
using Hough transform [9][7], radial basis transform
[11] etc. The other approach is to use a general pur-
pose object detector. A popular algorithm for gen-
eral object detection has been proposed by Viola and
Jones [20]. The algorithm has been applied for traf-
fic sign detection by several researchers [2, 18, 4]. A
disadvantage of the original algorithm is that it disre-
gards the color information, which might be valuable
for detection. Bahlman et al. [1] use the Viola-Jones
detector with extended feature set in order to use
color information. That paper reports better detec-
tion performance using color, especially in reducing
the false positive rate. This result encouraged us to
use color information in Viola-Jones detector as well.

Munder and Gavrila [12] compared object detec-
tion methods performance on pedestrian classifica-
tion. Their experiments show that the combination of
Support Vector Machines with Local Receptive Field
features performs best, while boosted Haar cascades
can, however, reach quite competitive results, at a
fraction of computational cost. We took advantage
of both the Viola-Jones detector speed and the per-
formance of a slower classifier by building a hetero-
geneous cascade of boosted Haar-like features with
Artificial Neural Network as the final level of cas-
cade. This approach significantly lowered the number
of false detections.

For the classification task, most of the previous
approaches used one of well studied classification
schemes, such as SVM [3], multiple discriminant
analysis [17], neural networks [14] etc. A detailed
report on current research in sign detection can be
found in a recently published review paper by Nguwi
and Kouzani [13].

3. The Dataset

We used two datasets, labeled as dataset A and
dataset B. The dataset A was used for learning and
validation, while dataset B was used to test the per-
formance. Both datasets were extracted from video
sequences recorded with camera mounted on top of
a moving vehicle. Video sequences were recorded at
daytime, at different weather conditions. The dataset

A corresponds to video material containing about 450
physical triangular warning signs, in which 1802 oc-
curences have been manually annotated. The dataset
B contains 265 physical triangular warning signs. Fig-
ure 1 shows examples of annotations.

Figure 1. Examples of extracted images

Traffic sign images were annotated manually in
video sequences, while background images are ex-
tracted randomly from video sequences in dataset A.
Altogether, 25 classes of traffic signs are represented
in the dataset. Figures 2a and 2b show the distribu-
tions of the traffic sign classes present in datasets A
and B.

(a)

(b)

Figure 2. Distribution of samples with respect to the sign
class for dataset A (2a) and dataset B (2b).

4. Detection

Our detection scheme is based on Viola and Jones’
algorithm [20], a very popular method for real-time
object detection.

In the next sections we will show the results of a
standard Viola-Jones detector on our dataset and the
modifications that were made to further improve the
detection rate and the false positive rate.

4.1. Viola and Jones’ algorithm

Viola-Jones detector uses a cascade of boosted
Haar-like features calculated on a gray-scale image.

For a human observer color is of great importance
in traffic sign detection, so that by intuition we expect
that color information should useful in machine detec-
tion as well. Bahlmann et al. [1] suggest computing
the Haar-like features from multiple color channels
(R, G, B, normalized r, g, b and grayscale).
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(a)

(b)

Figure 3. Comparison of the Viola Jones detection with
and without color information. 3a shows the detection
rates with respect to the traffic sign size. The y-axis rep-
resents the detection rate for traffic sign that have an area
larger than the value plotted on the x-axis. The dotted
blue line corresponds to the color-based cascade, while the
solid red line represents the grayscale cascade. 3b shows
the distribution of the test dataset with respect to the
traffic sign size.

We developed our own implementation of the al-
gorithm which enables us to evaluate the impact of
color information to the detection performance. The
implementation employs the channels from the Lab
color space, with which we obtained best results. Fig-
ure 3a compares the detection rates obtained by our
color-enabled implementation and the corresponding
grayscale version. The y-axis represents the detection
rate for traffic signs that have an area larger than the
value plotted on the x-axis1. The results show that
color information has a positive impact when detect-
ing larger traffic signs, but it has a negative impact
when detecting small traffic signs (smaller than 30
pixels in size). The reason is that images of distant
traffic signs are very small and contain very little color
information, while larger images contain enough color
(cf. Fig. 1).

In this work, we focus on the detection rate of
larger traffic signs because our system will be used
with video sequences and we expect that every traffic
sign will become large enough for the system to de-
tect. The problem with the system described so far
is the false positive rate. When using the Lab cas-
cade we get the false positive rate2 of 68.7%, while
with the grayscale cascade we obtain the false posi-
tive rate of 109.24%. Better detection rate for larger

1Detailed results and parameters used are presented in the
results sections.

2False positive rate is defined as the number of false detec-
tions divided by the number of existing traffic signs.

traffic signs and smaller false positive rate was the
reason for choosing the color cascade. We still need
to drastically reduce the false positive rate, because
we use the system on video sequences.

4.2. Decreasing the false positive rate

In order to reduce the false positive rate we have
added an additional stage to the detector cascade.
The new stage is a binary classifier based on an ar-
tificial neural network3. The negative examples for
ANN training have been collected as false positives of
the Viola-Jones detector applied to the images from
the learning dataset A. The positive training images
are exactly the same as for the preceding stages of
the cascade. The feature set for the neural network
is based on the HOG (Histogram of Oriented Gradi-
ents) descriptor [5]. Figure 4 shows the arrangement
of the HOG cells.

Figure 4. Arrangement of HOG cells in the detection win-
dow. The cell size is 6x6 pixels.

The Viola-Jones detector is used because it en-
ables real-time detection, but in order to reduce the
false positive rate it is better to use a heterogeneous
cascade. Munder et al. [12]report that adding more
stages to the VJ cascade further reduces the training
set error, but the validation and test sets were ob-
served to run into saturation. Using a stronger and
less efficient classifier as the last stage of a VJ clas-
sifier does not have a negative impact on detection
speed because only a small fraction of image patches
passes the VJ cascade.

There are two possible ways of integrating ANN
classifier with the Viola-Jones cascade. In the first
arrangement the ANN is applied after the integra-
tion of multiple detections. That scheme drastically
lowers the detection rate because of small errors in
localization introduced by the integration of multiple
detections. The neural network discards almost all
traffic signs which are not aligned perfectly as the an-
notations used in the learning process. In the second
arrangement the ANN is placed before the integra-
tion step, which proved to be much more effective.
Usually there are several detections of a single traf-
fic sign produced by the Viola-Jones detector, and
some of these detections are perfectly aligned. Those
detections are accepted by the ANN.

Figure 5 evaluates the impact of using the de-
scribed combination. It is important to note that the
detection rate is lowered only for traffic signs smaller

3SVM could be used instead of ANN as they yield almost
identical results.
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than 45×45 pixels. The false positive rate on a test
dataset is reduced from 65.74% to 7.04%.

Figure 5. Detection rate with (solid red line) and without
(dotted blue line) the ANN stage with respect to traffic
sign size in pixels. The y-axis represents the detection
rate for traffic signs that have an area larger than the
value plotted on the x-axis.

Additionally, it is interesting to note that localiza-
tion has improved after adding the additional level
of cascade. We define localization as the percentage
of overlap between an annotated traffic sign and the
detection response. Figure 6 evaluates this impact,
showing the distribution of traffic sign detections with
respect to the localization error. We can see that the
ANN stage removes some of the most inaccurately
localized detection responses.

Figure 6. Localization error with (solid red line) and with-
out (dashed blue line) adding the ANN stage. The x-axis
represents the percentage of overlap between an annotated
traffic sign and the detection response (localization qual-
ity).

5. Classification

When a traffic sign is detected, the next step is to
determine the class it belongs to. In this section we
describe the problems which arise due to localization
inaccuracy of the detection responses and propose the
solution.

5.1. Feature set and classifier

The first step in solving the classification prob-
lem is to choose which features to extract from the
resized image patches corresponding to the detec-
tion responses. For that purpose we chose HOG de-
scriptors [5] since they performed better than the
raw pixels in early experiments with an ANN clas-
sifier. Before calculating the HOG descriptor the re-
sized grayscale patches are first resized to 48× pixels,
and then contrast-normalized and smoothed with the

Figure 7. Arrangement of HOG cells over the detection
window. Both sets of histograms are used for classifica-
tion.

Figure 8. Classification performance of ANN (dotted blue
line) and SVM (solid red line) with regard to the per-
centage of overlapping area between calculated area and
annotation, after integration with the detection process.
This graph represents the classification rate for all de-
tections that have percentage of overlapping area with
annotation larger than value plotted on the x-axis. Clas-
sification rate of the SVM classifier is consistently higher
than the classification rate of the ANN. The decrease of
classification rate at 98% overlap is a result of a single
error in classification and therefore falls within the limits
of a statistical error. The distribution of traffic signs (top
image) is a coarsely discretized distribution from Fig. 6
(solid red line).

Gaussian filter. Figure 7 shows arrangement of HOG
cells in a resized patch. Figure 7a shows cells of 6×6
pixels, while figure 7b shows cells of 4×4 pixels.

For each cell, a histogram of gradient orientations
is calculated, and added to the feature vector. For
the cells shown in figure 7a histograms have 4 bins
and cover (0, π) radians, while cells shown in figure
7b have histograms with 7 bins which cover (0, 2π)
radians. Both sets of cells shown in figure 7 are used
in calculation of the feature vector. The dimension of
the resulting feature vector is 174.

Having decided on the features that we will use,
next we needed to choose a classifier, for which ANN
and SVM were considered. After integration of both
classifiers with the detection process, results shown
in figure 8 were obtained. Dataset B was used as a
test set, while the dataset A was used for learning
(cf. Fig. 2). The figure clearly shows that SVM per-
forms better then ANN, so that we chose SVM as our
classifier.

Initial testing results showed that SVM with HOG

414



Figure 9. SVM as multi-class classifier. Two DAGSVM
trees are shown, both of which use the same binary classi-
fiers (A vs B, B wins; A vs C, C wins; A vs D, A wins; B
vs C, C wins; B vs D, B wins; C vs D, D wins). To build
DAGSVM tree, all available classes are divided into pairs.
On the left side, pairs are: (A,B), (C,D) and on the right,
pairs are (A,C) and (B,D). In each round, all pairs are
evaluated using binary SVMs, and the winners advance
to the next round (solid lines), which are in turn again
divided into pairs. Losers are simply discarded (dashed
lines). This process continues until only one class re-
mains. Different arrangement of initial pairs can end up
with different decisions, as is the case with the illustrated
DAGSVM trees.

performs good enough without using kernels. There
is no need to use kernels, because the results show
that the classes are linearly separable in the feature
space.

Because SVM is a binary classifier, we needed to
decide on a strategy for using SVM as multi-class clas-
sifier. We decided against standard one-vs-one and
one-vs-all methods, as they can both produce ambigu-
ity errors in voting process if classes significantly vary
in number of training examples. Instead, we used a
method similar to the DAGSVM [15, 8]. Our method
consists of building a directed acyclic graph which
looks like upside-down binary tree with all available
classes as leaves. In each step, all classes that are not
eliminated are divided into pairs which are then used
for one-vs-one binary classification. This way, after
each step the number of classes considered is halved,
until finally only one class remains. The remaining
class is the classifier’s decision. Each side of figure 9
illustrates this process.

Because different binary classifiers vary in reliabil-
ity, this method can produce different results depend-
ing on the way classes are initially divided into pairs,
as shown on figure 9, where two DAGSVMs make
different decisions using the same binary classifiers.
Obviously, one of those decisions is wrong, but it is
not clear which one. That is why we construct this
binary tree a few times (usually 5 times) and employ
a simple voting strategy. Each time different separa-
tion into pairs is used. Different pairing distributions
had little effect, as most of binary SVMs are quite re-
liable. Nevertheless it did improve classification rate
a little, and had no trade offs, as it only consumes
slightly more time, which is not of concern in the
classification process.

5.2. Modelling the localization error

Aside from relative performances of ANN and
SVM, figure 8 shows another interesting phenomena,

namely that both classifiers have lower classification
rates then we first anticipated. This was at first con-
fusing, as both classifiers performed much better in
initial tests that were used to verify validity of im-
plementations, with classification rates around 95%
(ANN) and 98% (SVM). We realised that the problem
was caused by the localization inaccuracy of the de-
tection responses. Many detections have a small off-
set, mostly only a pixel or two in each direction. Fig.
10 shows localization error of the detections, while
Fig. 11 shows relative scale deviation4, both with re-
gard to the groundtruth annotations. The presented
data was obtained by evaluating the previously de-
scribed detector on images from dataset A and com-
paring the detections with annotated locations of traf-
fic signs.

To solve this localization problem, we decided to
expand training set with examples that resemble de-
tector’s errors, with traffic signs annotated slightly
off. Specifically, for each annotated example in train-
ing set, we added another 10 examples which model
detector’s errors. As it can be seen from figures 10
and 11, both types of errors can be modeled with
normal distribution. Localization error (expressed
relative to the vertical or horizontal sizes of traffic
signs) was modeled as normal distribution with pa-
rameters (µ = −0.014, σ = 0.0016) for x-axis and
(µ = −0.026, σ = 0.002) for y-axis. Relative scale
deviation was modeled as normal distribution, with
parameters (µ = 1.065, σ = 0.074). The distributions
shown on figures 10 and 11 were obtained by com-
paring detection responses to the annotations from
the training set. The SVM classifier trained on the
modified training set got the correct classification rate
of 95.42%, as opposed to 91.33% obtained with the
unmodified training set. Figure 12 shows detailed
comparison of results achieved with SVMs trained on
different training sets.

The idea of increasing the training set by adding
translational jitter has been proposed before, but
with different purpose and motivation. For example,
Laptev [10] employs this idea to enlarge the train-
ing dataset for learning an object detector, while our
primary motivation is to improve the recognition per-
formance in presence of localization inaccuracy of the
detector responses.

6. System overview

After detection and classification is conducted on
images, the next step is to identify the traffic sign
through the consecutive images (i.e. video). An out-
put of the Viola-Jones detection is considered a false
positive, and thereby is discarded, if a detection is not
present in at least three consecutive frames. Group-

4Relative scale deviation describes the ratio between de-
tected size and the annotated size.
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Figure 10. Relative translational deviation of the detec-
tion responses with regard to annotation.

Figure 11. Relative scale deviation of the detection re-
sponses with regard to annotation.

Figure 12. Comparison of classification results achieved
with SVMs trained on unmodified (solid red line) and
modified (dotted blue line) training sets. This graph rep-
resents the classification rate for all detections that have
percentage of overlapping area with annotation larger
than value plotted on the x-axis. The decrease of clas-
sification rate at about 97% overlap is a result of a single
error in classification and therefore falls within limits of a
statistical error.

ing of single frame detections to a joint detection
through the video is based on thresholding the over-
lapping area between two consecutive detections. For
each detection a classification phase is conducted and
the final class is determined by voting with equal
weights for all detections.

The final process consists of 5 phases:

1. Traffic sign detection with Viola-Jones detector
2. Filtering false detections with ANN classifier
3. Integration of multiple detections
4. Traffic sign classification (SVM)
5. Identifying traffic signs in video

Example of system behaviour is shown in figure 15.
Final system has a frame rate of 15 frames per

second with an input image size of 480x360 pixels on
Intel 1.8 GHz Dual Core computer. The detection
process is implemented to take advantage of multi-
threading features of a processor.

7. Experimental results

The performed experiments are divided in two cat-
egories: results on standalone images and results on
video. All experiments were conducted on the same
test dataset B corresponding to about 1.5 hours of
video material. Detailed information about the test
dataset is as follows:

• duration: 1 hour, 28 minutes and 16 seconds
• resolution: 480x360 pixels
• frame rate: 25 fps
• number of frames: 132420
• number of physical traffic signs: 265

For each frame from the video sequence, position of
all the traffic signs is given, along with the annotated
classification.

7.1. Results on standalone images

We provide results achieved on standalone images
first, as the employed core algorithms naturally take
an image on input.

Parameters for detection algorithm are as follows:

• Viola-Jones scale factor: 1.2
• Viola-Jones sliding window step size: 5% of cur-

rent window size
• minimal number of detections needed for con-

firming the detection: 3

Figure 13 shows achieved detection rates with re-
gard to size of annotation. Total detection rate is
83.53%, which does not look all that impressive at
first. Main reason for such low detection rate is the
fact that our Viola-Jones implementation uses slid-
ing window with minimal size of 24×24 pixels. If the
images with smaller signs are excluded from the test
dataset the detection rate increases to 89.18%, which
is still too low for practical usage. However, almost
all signs larger than 50×50 pixels were successfully
detected (99.14%), which gives hope that detections
on video would be good enough. The reason for this
optimism lies in the fact that the size of a traffic sign
increases as video progresses and the vehicle advances
closer to the sign.

In experiments in this subsection, the classification
was evaluated only on successful detections. Figure
14 shows comparison of SVMs trained on unmodi-
fied (dotted blue line) and modified (solid red line)
training set (extracted from dataset A). Similarly to
the detection results, the total classification rate of
SVM trained on modified set is 93.59%, as opposed
to 85.14% for SVM trained on unmodified set. It is
important to note the importance of dataset modeling
according to the localization error.

7.2. Results on video sequence

The results presented in the previous section can
be extended to take advantage of multiple occurences
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Figure 13. Detection rates with regard to the annotation
size in the test dataset. The y-axis represents the detec-
tion rate for traffic signs that have an area larger than the
value plotted on the x-axis.

Figure 14. Classification rates with regard to percent-
age of overlap area between detection and annotation are
shown. Solid red line represents classification rate for
SVM trained on a modified set, and the dotted blue line
represents classification rate for SVM trained on an un-
modified set. Graphs represent the classification rate for
all detections for which the percentage of overlapping area
with the corresponding annotation is larger than value
plotted on the x-axis.

Table 1. Final detection results on video sequence.

No. of traffic signs 265
No. of detected signs 260
No. of false detections 2

Detection rate 98.11%
False positive rate 0.75%
False positives per frame 0.0015%

of physical traffic signs in video. The detection re-
sults on the test video sequence are given in Table 15.
The achieved results are very good, since only smaller
traffic signs of poor quality are not detected. This
suggests that the detection rate could be increased if
the video of higher resolution was used.

There are 243 physical traffic signs that are consid-

5False positive rate on video sequence is defined as the num-
ber of false detected traffic signs divided by the total number
of traffic signs.

Table 2. Final classification results on video sequence.

No. of traffic signs 243
No. of correct classifications 241
Classification rate 99.17%

Figure 15. Typical behavior at the system level. In the
beginning, the traffic sign is too small, but as time goes
on, it becomes big enough and gets detected.

Figure 16. A misdetection of a traffic sign. Size of the
traffic sign on the right is 25×25 pixels. Four out of five
misdetections at the system level are very similar to this
one.

ered for classification as opposed to 265 total traffic
signs present in the video sequence. The 22 missing
signs belong to classes for which the classifier has not
been trained because dataset A used for training pur-
poses contains insufficient number of training exam-
ples from those classes (or none at all). Final results
for classification on video sequence are given in table
2. Only two traffic signs were misclassified, both of
which are similar to their respective target classes.
By combining detection and classification processes,
we get overall system performance of 97.3%. Typical
results at the system level are illustrated in Fig. 15.

Fig. 16 is an example of a misdetection. The traffic
sign in question does not get bigger than 25×25 pixels
so that it is detected only in a single frame and is
consequently discarded.

8. Conclusion and future work

This paper presents two novel methods that can
improve performance of detection and classification
either in standalone images or in video. The first
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method is used to decrease the false positive detection
rate by extending the boosted Haar cascade with an
additional stage containing a strong nonlinear binary
classifier. The second method adapts the training set
to the empirically estimated model of the localization
error in the detection responses. Both methods were
applied in the frame of a real-time system working
on video sequences. The obtained results strongly
suggest that automated road inspection is likely to
become feasible in the near future.

Some categories of the triangular warning signs are
represented with less than 10 samples in the employed
training dataset. Thus we believe that it would be
possible to obtain even better classification results by
collecting a more complete training dataset.

The implemented method for combining informa-
tion from consecutive frames is very simple, and could
be improved in several ways. One of the directions we
are currently pursuing is to obtain better detection
for small signs by making the ANN detection filter
less strict and resolve the remaining false positives
with additional approaches. These additional meth-
ods would be based either on spatio-temporal prop-
erties of the recorded trajectories of the traffic signs,
or on enforcing the temporal consistency of the detec-
tion responses corresponding to the common physical
traffic sign.

We are also interested in expanding the scope of
this research to other traffic sign types, such as round
traffic signs (mandatory signs). Traffic signs of type
C (informational signs) could prove to be especially
challenging, as they come in many different shapes
and sizes. Using a Viola and Jones’ detector for each
type of a traffic sign would slow the system consid-
erably. Torralba et al. [19] proposed a method for
multiclass object detection, which could be of use in
dealing with this diversity without adding much over-
head to detection time.

Finally, we are also interested in detecting the state
of deterioration of the detected traffic signs. The is-
sues we would like to deal with are fading colors, de-
formation of the sign pole or the sign itself, inappro-
priate orientation, or partial occlusion.
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Abstract. A new method for text line formation for
text localization and recognition is proposed. The
method exhaustively enumerates short sequences of
character regions in order to infer values of hidden
text line parameters (such as text direction) and ap-
plies the parameters to efficiently limit the search
space for longer sequences. The exhaustive enumer-
ation of short sequences is achieved by finding all
character region triplets that fulfill constraints of tex-
tual content, which keeps the proposed method effi-
cient yet still capable to perform a robust estimation
of the hidden parameters in order to correctly initial-
ize the search. The method is applied to character
regions which are detected as Maximally Stable Ex-
tremal Regions (MSERs).

The performance of the method is evaluated on
the standard ICDAR 2003 dataset, where the method
outperforms (precision 0.60, recall 0.60) a previ-
ously published method for text line formation of
MSERs.

1. Introduction

Text localization and recognition in images of
real-world scenes is still an open problem, which
has been receiving significant attention in the last
decade [12, 1, 5, 4, 10, 3]. In contrast to text
recognition in documents, which is satisfactorily ad-
dressed by state-of-the-art OCR systems [6], no effi-
cient method for scene text localization and recogni-
tion has been yet published.

Methods for text localization are based on two ap-
proaches: sliding windows and connected compo-
nent analysis. The methods based on sliding win-
dows [2] are more robust to noise, but they have

high computational complexity (scanning whole im-
age with windows of multiple sizes is required) and
they cannot detect slanted or perspectively distorted
text. That is why methods based on individual region
detection and subsequent connected component anal-
ysis are getting more attention in the text localiza-
tion community [5, 4, 10]. On the most cited dataset
(ICDAR 2003 [8]) the methods based on connected
component analysis achieve state-of-the-art results in
text localization [11].

In this paper, we present a text line formation
method, which groups Maximally Stable Extremal
Regions (MSERs) [9] representing characters into
text lines. The main contribution of this work is an
ability to exhaustively enumerate short sequences of
character regions in order to infer values of hidden
text line parameters (such as text direction) and sub-
sequently applying the parameters to efficiently limit
the search space for longer sequences. The exhaus-
tive enumeration of short sequences is achieved by
finding all character region triplets that fulfill con-
straints of textual content, which keeps the proposed
method efficient yet still capable to perform a robust
estimation of the hidden parameters in order to cor-
rectly initialize the search. The method was eval-
uated using the hypotheses-verification framework
for text localization and recognition published by
Neumann and Matas [10], where the heuristic text
line formation stage was replaced by the proposed
method.

The rest of the document is structured as follows:
In Section 2, hidden text line parameters used by the
proposed method are defined. Section 3 describes
the proposed method for text line formation. Per-
formance evaluation of the proposed method is pre-
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sented in Section 4. The paper is concluded in Sec-
tion 5.

2. Hidden text line parameters

It can be observed that text in real-world images
follows a certain structure. The structure is not as
strict as in the case of text in printed documents, but
it is possible to make certain observations at least on
the level of individual words; text parameters such
as character height, character color, spacing between
individual characters have only limited number of
distinct values inside a single word. Moreover each
word (and possibly more than one word) has an im-
plied direction in which all characters are laid out.

In this paper, we refer to all such parameters as
hidden text line parameters (or just hidden param-
eters). The initial values of the hidden parameters
are obtained by exhaustively enumerating all region
triplets and then the inferred values are used to limit
the search space during next steps of the text forma-
tion. The hidden text line parameters used by the
proposed method are height ratio (Section 2.1), cen-
troid angle (Section 2.2) and text direction (Section
2.3).

2.1. Height ratio

The height of two following letters in a word is
constrained to a limited interval. In order to express
this relation, the height ratio hr between two charac-
ters c1 and c2 is introduced as

hr(c1, c2) = log
h1
h2

= log
c1b − c1t
c2b − c2t

(1)

where cit and cib denote top and bottom co-ordinate
of a bounding box of the character c (see Figure 1a).
The measurement is scale invariant, but it is not ro-
tation invariant, which implies that various rotations
had to be included in the training set.

Figure 1b depicts the normalized histogram of
height ratio values in the training set and their
inferred approximation using a Gaussian Mixture
Model.

2.2. Centroid angle

Given a sequence of three following letters in a
word, the angle between lines connecting their cen-
troids (see Figure 2a) is also constrained to a limited
interval. The centroid angle ca of three characters c1,
c2 and c3 is defined as

h1
h2

(a) (b)
Figure 1. Height ratio. (a) Measurement example. (b)
Normalized histogram (green) and inferred Gaussian Mix-
ture Model Mhr (blue)

α

(a) (b)
Figure 2. Centroid angle. (a) Measurement example. (b)
Normalized histogram (right, green) and inferred Gaus-
sian Mixture Model Mca (blue)

ca(c1, c2, c3) =∣∣∣∣∣arctan

(
c1cy − c2cy
c1cx − c2cx

)
− arctan

(
c2cy − c3cy
c2cx − c3cx

)∣∣∣∣∣ (2)

where cicx (cicy) denotes horizontal respectively
vertical co-ordinate of a centroid of the character ci.
The measurement is both scale and rotation invariant.

Figure 2b depicts the normalized histogram of
centroid angle values in the training set and their
inferred approximation using a Gaussian Mixture
Model.

2.3. Text direction

The structure of text in real-world images exhibits
higher-order properties, which cannot be fully cap-
tured by measurements which are defined only using
pairs or triplets of individual characters (such as the
parameters in Sections 2.1 and 2.2).

In this paper we introduce a set of parameters
called text direction to capture higher-order structure
of text, which exploits an observation that the top
and bottom boundaries of individual characters in a
word can be fitted by a line. Depending on which
letters form the word, each word has either 1 or 2 top
lines (see Figure 3), depending whether only upper-
case or both upper-case and lower-case letters are
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present in the word. Let t1(x) and t2(x) denote ver-
tical position of first respectively second top line at
point x. The same observation applies to the bottom
lines where either 1 or 2 lines are present, depending
whether underline characters such as “y” or “g” are
present or not. Let b1(x) and b2(x) again denote ver-
tical position of the bottom lines at point x. Text di-
rection T is then defined as quaternion (t1, t2, b1, b2).

Given a text direction T , text direction distance of
a character c is defined as

d(c, T ) = max
(

min(|t1(cl)− ct|, |t2(cl)− ct|),

min(|b1(cl)− cb|, |b2(cl)− cb|)
)

(3)

where ct, cl and cb denote top, left and bottom co-
ordinate of a bounding box of the character c.

Mutual position of the lines is not arbitrary ei-
ther. An assumption was made that these lines are
parallel, because height of individual characters in
a single word is assumed to be constant and effects
caused by perspective distortion in a single word are
marginal. Let D(a(x), b(x)) = |a(x)− b(x)| denote
vertical distance between lines a and b at horizontal
co-ordinate x. Since it was assumed that the lines are
parallel, the distance D does not depend on the hor-
izontal position and we can simply write D(a, b) for
distance between lines a and b.

In order to express the constraints for mutual ver-
tical distance of the lines, a height of a top bend ht, a
middle bend hm and a bottom bend hb is defined (see
Figure 3) as

ht(T ) = D(t1, t2) (4)

hm(T ) = D(max(t1, t2),min(b1, b2)) (5)

hb(T ) = D(b1, b2) (6)

In order to make the text direction parameters
scale invariant, they are normalized using a maximal
height of a character in the word hmax:

d̄(c) =
d(c)

hmax
(7)

h̄t(T ) =
ht(T )

hmax
(8)

h̄m(T ) =
hm(T )

hmax
(9)

h̄b(T ) =
hb(T )

hmax
(10)

As shown in Figure 4 the variance of text direc-
tion distance d̄(c) measured on the training set is rel-
atively small, which suggests that this parameter can

ht

hm

hb

Figure 3. Text direction - top lines (red) and bottom lines
(green)

Figure 4. Text direction distance d̄(c) - histogram (green)
and inferred Gaussian Mixture Model Md (blue)

Figure 5. Top band height h̄t - histogram (green) and in-
ferred Gaussian Mixture Model Mtb (blue)

Figure 6. Middle band height m̄t - histogram (green) and
inferred Gaussian Mixture Model Mmb (blue)

be used as a feature to distinguish between textual
and non-textual structures.
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Figure 7. Bottom band height b̄t - histogram (green) and
inferred Gaussian Mixture Model Mbb (blue)

Procedure la(cc)
tp := top points of all chars in cc
bp := bottom points of all chars in cc
ap := fit bp by a line using Least-Median Squares
k := tangent of ap

t1,t2 := fit(tp, k)
b1,b2 := fit(bp, k)
T := (t1, t2, b1, b2)
return T

Procedure fit(points, k)
bestError := Inf
for each p,q in points
line1 := line through p with tangent k
line2 := line through q with tangent k

error := 0
for each r in points
dist := (min(line1(r[x]),line2(r[x]))-r[y])ˆ2
error := error + dist

if error < bestError
bestError := error
l1 := line1
l2 := line2

return (l1, l2)

Figure 8. Pseudo-code of the text direction approximation
procedure la(cc)

In order to obtain the text direction T from a se-
quence of characters cc = c1, c2 . . . cn a procedure
la(cc) is introduced (see Figure 8). The example out-
put of the procedure is shown in Figure 9.

3. Text line formation

3.1. Region graph

Individual characters are obtained by detecting
Maximally Stable Extremal Regions (MSERs) [9]
and then including only the MSERs which are clas-
sified as characters using a trained classifier, as pro-
posed by Neumann and Matas [10].

Figure 9. Sequence of characters cc with marked top (red)
and bottom (green) points and text direction (top lines -
red, bottom lines - green) obtained using the procedure
la(cc)

Figure 10. Region graph (initial configuration without any
edge labeling)

Let G = (V,E) denote the region graph. The
set of vertices V corresponds to the set of charac-
ter MSERs found in the image. The set of edges E
is formed in the following matter: For each vertex,
edges to 3 nearest neighboring vertices to the right
are created (whilst excluding edges whose centroid
angle α is above 40◦). The distance between two ver-
tices is measured as the distance between their cen-
troids. Figure 10 shows an example of such a graph.

3.2. Graph energy

Let f : E → {0, 1} denote a configuration of
the region graph G. The text localization task is for-
mulated as finding the best configuration f∗ of given
graph G such that graph energy E(G, f) is minimal:

f∗ = argmin
f
E(G, f) (11)

The energy E is composed of the following weighted
components

E(G, f) = α1Ehr(G, f) + α2Eca(G, f)

+α3Ed(G, f) + α4Ela(G, f) (12)
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where Ehr denotes energy of character height ratios
(see Section 2.1), Eca denotes energy of character
centroid angles (see Section 2.2) and Ed (Ela) denotes
energy of text direction distances and energy of line
approximation respectively (see Section 2.3). Coef-
ficients αi then denote non-negative weights, which
in our setup were all set to 1 in order to give each en-
ergy an identical weight. The individual energy com-
ponents are defined using a Gaussian Mixture Model
(GMM) approximation, which was created using the
training dataset (as shown in Figures 1, 2, 4, 5, 6 and
7).

Given a Gaussian Mixture Model M obtained
from training data

f(x) =
n∑

i=1

αiNµi,σi(x) =
n∑

i=1

αiNM (x) (13)

the energy LM (x) for corresponding model M at
point x is defined as

LM (x) = min

{(
µi − x
σi

)2

: i = 1 . . . n

}
− θ

(14)
where θ denotes a threshold parameter defining what
square distance from mean value is considered ac-
ceptable. In our setup the value θ was set so that
95% values from training data is accepted.

Let E′ denote a subset of edges
{e ∈ E | f(e) = 1} of the graph G and let C(G, f)
denote a set of strongly connected components of
the graph G when taking into account only edges in
E′.

The energy of character height ratios Ehr(G, f) is
defined as

Ehr(G, f) =
∑

e∈E′
LMhr

(hr (eb, ee)) (15)

where eb (ee) denotes a vertex where the edge e be-
gins (ends).

The energy of character centroid angles Eca(G, f)
is defined as

Eca(G, f) =
∑

e1,e2∈E′

e1e=e
2
b

LMca(ca(e1b , e
1
e, e

2
e)) (16)

where again eib (eie) denotes a vertex where the edge
ei begins (ends).

Figure 11. Normalized histogram of training data (green),
inferred Gaussian Mixture Model M (blue) and corre-
sponding energy function LM (red)

The energy of text direction distances Ed(G, f)
and energy of line approximation Ela are defined as

Ed(G, f) =
∑

cc∈C(G,f)

∑

c∈cc
LMd

(
d(c, τ)

hmax

)
(17)

Ela(G, f) =
∑

cc∈C(G,f)

max

{
LMtb

(
ht(τ)

hmax

)
,

LMmb

(
hm(τ)

hmax

)
,LMbb

(
hb(τ)

hmax

)}
(18)

τ = la(cc), hmax = max
c′∈cc

(c′b − c′t)

3.3. Building region sequences

Region sequences are iteratively built by altering
the graph configuration f in order to minimize the
energy of the graph E(G, f). In each step the proce-
dure test compares energy of newly created graph
configuration f ′ to the best energy found so far and
if a lower energy is found, the current configuration
f is updated.

The method starts by enumerating all region
triplets, taking only the acceptable triplets (the ones
which decrease the graph energy E(G, f)) and thus
initializing values of text line hidden parameters.
Then, single regions are enumerated and the hidden
text line parameters are used to efficiently prune the
search space. As a last step the method tries to dis-
connect regions based on the inferred parameters of
the whole line of text, because some regions might
have been connected in the early stage as a result of
inaccurate hidden parameters estimation on short se-
quences. The process is outlined in Figure 12, a re-
sult of the process is shown in Figure 13.
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Procedure findBestConfiguration (G)
f := (0,0, ... 0)
E := 0
{ Connecting triplets of regions to obtain
initial values of hidden parameters }

for each subsequent pair of edges e,e’ in G
f’ := f
f’(e, e’) = 1
(E, f) := test(E, f, f’)

{ Connecting single regions }
for each edge e in G
f’ := f
f’(e) := 1
(E, f) := test(E, f, f’)

{ Trying to disconnect pairs of nodes }
for each edge e in G
f’ := f
f’(e) := 0
(E, f) := test(E, f, f’)

return f

Procedure test(E, f, f’)
E’ = calculateEnergy(f’)
if E’ < E
E := E’
f := f’

return (E, f)

Figure 12. Pseudo-code of finding the best region graph
configuration f in the region sequences building process

Figure 13. Region graph and its edge labeling correspond-
ing to the best configuration (edges of the graph f(e) = 1
marked green, f(e) = 0 marked red)

4. Experiments

The method was evaluated using the hypothesis-
verification framework proposed by Neumann and
Matas [10] and replacing the heuristics text forma-
tion stage by the proposed method. The standard and
most cited ICDAR 2003 Robust Reading Competi-

method precision recall f
Pen et. al [11] 0.67 0.71 0.69

Zhang et. al [13] 0.73 0.62 0.67
Epshtein et. al [4] 0.73 0.60 0.66

Hinnerk Becker [7] 0.62 0.67 0.62
proposed method 0.60 0.60 0.60

Alex Chen [7] 0.60 0.60 0.58
Neumann and Matas [10] 0.59 0.55 0.57

Ashida [8] 0.55 0.46 0.50
HWDavid [8] 0.44 0.46 0.45

Wolf [8] 0.30 0.44 0.35
Qiang Zhu [7] 0.33 0.40 0.33
Jisoo Kim [7] 0.22 0.28 0.22

Nobuo Ezaki [7] 0.18 0.36 0.22
Todoran [8] 0.19 0.18 0.18

Table 1. Text localization results on the ICDAR 2003
dataset

tion dataset1[8] was used for performance evaluation.
The Train set was used to obtain the method parame-
ters and an independent Test set was used to evaluate
the performance. In total the ICDAR 2003 Test set
contains 5370 letters and 1106 words in 249 pictures.

Applying the evaluation protocol defined in [8],
the proposed method achieved precision of 0.60 and
recall of 0.60, which gives f-measure of 0.60. Figure
14 shows examples of text localization and recogni-
tion on the ICDAR 2003 dataset.

5. Conclusions

A novel method for text line formation was pro-
posed. The method uses the hidden parameters of the
text line (such as text direction) to group Maximally
Stable Extremal Regions (MSERs) into lines of text.
The exhaustive enumeration of short sequences is
achieved by finding all character region triplets that
fulfill constraints of textual content, which keeps the
proposed method efficient yet still capable to perform
a robust estimation of the hidden parameters in order
to correctly initialize the search.

The proposed method was evaluated on the stan-
dard ICDAR 2003 dataset using the standard evalu-
ation protocol [8], where it outperforms the method
for forming text lines of Neumann and Matas [10] (f-
measure is increased from 0.57 to 0.60). The method
is still behind the state-of-the-art method for text lo-
calization (Pen et al. [11], f-measure 0.69), but the
text localization results have to be interpreted care-
fully as there are known problems with the evaluation

1http://algoval.essex.ac.uk/icdar/Datasets.html
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Figure 14. Text localization and recognition examples on
the ICDAR 2003 dataset.

protocol and ground truth of the ICDAR 2003 dataset
[7, 10]. The proposed method aims to solve the com-
plete problem of text detection and recognition (see
Figure 14), however all the methods superior in text
localization performance [11, 13, 4, 7] aim only to
solve one part of the problem and thus direct com-
parison cannot be made.

Most frequent problems of the proposed method is
unsupported text line structure (Figure 15a), symbols
or pictographs placed close to text lines (Figure 15b),
letters not detected as individual regions (Figure 15c)
and false positives caused by repetitive textures with
a text-like spacial structure (Figure 15d).
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Abstract. With the increasing availability of anno-
tated multimedia data on the Internet, techniques are
in demand that allow for a principled joint process-
ing of different types of data. Multiview learning and
multiview clustering attempt to identify latent com-
ponents in different features spaces in a simultane-
ous manner. The resulting basis vectors or centroids
faithfully represent the different views on the data
but are implicitly coupled and they were jointly esti-
mated. This opens new avenues to problems such as
label prediction, image retrieval, or semantic group-
ing. In this paper, we present a new model for multi-
view clustering that extends traditional non-negative
matrix factorization to the joint factorization of dif-
ferent data matrices. Accordingly, the technique pro-
vides a new approach to the joint treatment of im-
age parts and attributes. First experiments in image
segmentation and multiview clustering of image fea-
tures and image labels show promising results and
indicate that the proposed method offers a common
framework for image analysis on different levels of
abstraction.

1. Motivation and Background

The rise of the social web and the user generated
content movement have turned the Internet into a
virtually limitless repository of annotated and rated
multimedia data. For example, as of this writing,
there are more than 4.5 billion images available on

flickr most of which are tagged, rated, catego-
rized, and appraised by the community. This devel-
opment offers tremendous possibilities for research
on image understanding but also calls for methods
that allow for an integrated processing of different
types of data.

Our goal is a principled joint treatment of image
features and image tags. We present a new technique
for multiview clustering that simultaneously deter-
mines latent dimensions or centroid vectors in dif-
ferent feature spaces. In contrast to ad hoc meth-
ods such as, say, concatenating different types of
features into a single descriptor, multiview cluster-
ing is faithful to the different characteristics of dif-
ferent descriptors. Since latent components or cen-
troids are jointly estimated, multiview techniques al-
low for advanced inference. Since for every centroid
in one feature space there is a corresponding centroid
in another space, transitions between different views
are straightforward. This offers auspicious new ap-
proaches to segmentation, automatic image tagging,
or tag-based image retrieval.

Although they have a long and venerable tradition,
there is a renewed interest in multiview learning and
multiview clustering. The canonical example of a
method that simultaneously uncovers latent compo-
nents in different spaces is Hotelling’s canonical cor-
relation analysis (CCA) [12, 2] for which kernelized
and probabilistic extension have been proposed as of
late [7, 11, 3]. Other recent developments consider
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extensions of spectral clustering to multiple graphs
that encode different types of similarities [27, 21].

Our new approach to multiview clustering extends
non-negative matrix factorization (NMF) [17, 16] to
the joint factorization of several data matrices. It is
motivated by the following considerations:

i) Similar to principal component analysis (PCA)
[13] or singular value decomposition (SVD) [9] CCA
does not necessarily do justice to purely non-negative
data such as color histograms or term frequency vec-
tors. Non-negative matrix factorization, however,
typically yields results that can be seen as part-based
representations and accommodate human perception.

ii) Methods based on spectral clustering of simi-
larity matrices scale quadratically with the number of
data and are therefore prohibitive in modern, large-
scale data and image analysis problems.

iii) For NMF, on the other hand, there exist effi-
cient algorithms that factorize matrices of billions of
entries [23] which may apply to the multiview set-
ting.

In the next section, we clarify the relation between
matrix factorization and clustering. Then, in sec-
tion 3, we briefly review NMF according to [17, 16]
and extend this approach toward the joint factoriza-
tion of different data matrices. In section 4, we
present experiments on using multiview NMF in im-
age segmentation, label prediction, and image re-
trieval. A conclusion will end this contribution.

2. Matrix Rank Reduction and Clustering

In this section, we briefly review how matrix rank
reduction applies to the problem of clustering or vec-
tor quantization.

Consider a data matrix X = [x1 . . .xn] ∈ Rm×n

of rank r ≤ min(m,n) whose column vectors xi

correspond to feature vectors obtained from some
measurement process. Using the singular value de-
composition (SVD) [9] any matrix X ∈ Rm×n can
be written as

X = UΣV T =
r∑

j=1

σjujv
T
j (1)

where U = [u1 . . .um] ∈ Rm×m and V =
[v1 . . .vn] ∈ Rn×n are orthogonal matrices and
Σ = diag(σ1, . . . , σr). The SVD is a popular tool
in data analysis because it is known that the optimal
solution to the rank reduction problem

min
rank(X̃)=k<r

∥∥X − X̃
∥∥2 (2)

is given by

X̃ =
k∑

j=1

σjujv
T
j = ŨΣ̃Ṽ

T
. (3)

SubstitutingW = Ũ ∈ Rm×k andH = Σ̃Ṽ
T ∈

Rk×n, we recognize that X ≈ WH is approxi-
mated as a product of a matrix of basis vectors and a
matrix of coefficients. This allows for dimensionality
reduction, since

xi ≈
k∑

j=1

wjhji (4)

so that to every data vector xi ∈ Rm there is a coef-
ficient vector hi ∈ Rk where k < m.

Depending on which constraints are imposed on
W and H , one obtains different dimensionality re-
duction schemes when solving the general matrix
factorization problem

min
W ,H

∥∥X −WH
∥∥2. (5)

For instance, principal component analysis (PCA)
[13] is recovered from

min
W ,H

∥∥X −WH
∥∥2

s.t. W TW = I. (6)

Casting matrix factorization in a yet more general
form reveals a connection to vector quantization and
clustering. For example, running the k-means algo-
rithm is tantamount to solving

min
G,H

∥∥X −XGH
∥∥2

s.t. gTj 1 = 1 (7)

gj � 0

hi = [0 . . . 010 . . . 0]T .

Due to the convexity constraints on the columns of
G, the resulting basis vectors in W =XG are con-
vex combinations of certain data points in X and
since the coefficient vectors in H are unitary vec-
tors, every data point xi inX will be represented by
exactly one centroid wj inW .

3. NMF for Multiview Clustering

In this section, we first summarize non-negative
matrix factorization (NMF) and then introduce our
generalization of NMF toward multiview clustering.
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3.1. Factorization of Data via NMF

Orthogonal basis vectors such as determined by
PCA or SVD are not always the best choice for di-
mensionality reduction or clustering [17, 16, 25, 6,
15, 14]. In particular data that consist exclusively
of non-negative measurements cannot be guaranteed
to retain non-negativity after projection onto lower-
dimensional subspaces that are spanned by its dom-
inant eigenvectors. As an alternative that is true to
the non-negative nature of certain data Lee and Se-
ung popularized the idea of non-negative matrix fac-
torization [17, 16]. In computer vision where image
data typically consists of non-negative values, NMF
was observed to yield superior results in segmenta-
tion, feature extraction, motion-, or pose estimation
[26, 10, 4, 22].

Viewed as a constrained least squares optimization
problem, NMF amounts to solving

min
W ,H

∥∥X −WH
∥∥2

s.t. W ,H � 0. (8)

Although (8) is convex in eitherW orH , the simul-
taneous estimation of basis vectors and coefficients
in (8) does not admit a closed form solution and is
known to suffer from many local minima. A unique
optimum provably exists [25], however, algorithms
that are guaranteed to find it are not known to date
(see the discussions in [25, 6, 15, 14]).

In the work presented here, we consider multi-
plicative fixed point iterations to find a solution to
NMF because their extension to multiview clustering
is immediate. In the following, A�B ∈ Rm×n de-
notes the Hadamard product of two matricesA,B ∈
Rm×n where

(
A�B

)
ij
= aij · bij . The Hadamard

division � is defined accordingly but for better read-
ability we writeA�B = A/B.

Concerned with the problem in (8), Lee and Seung
[17, 16] randomly initialize the matrices W and H .
They derive the following update rules

W ←W � XHT

WHHT
and

H ←H � W TX

W TWH
(9)

and prove their convergence using an expectation
maximization argument. Next, we will extend this
approach to multiview data.

3.2. Simultaneous Factorization of Multiview Data
via NMF

Our main motivation behind the work presented
in this paper is to cluster entities for which there are
different types of data available. For instance, im-
ages retrieved from flickr can be characterized
by means of different abstract image features but at
the same time there are user generated tags or labels
available that describe their content or formation. We
hypothesize that simultaneous clustering of such dif-
ferent views on the data will yield more meaningful
clusters and may provide a tool to fill in missing in-
formation. In particular, multiview clustering of im-
age features and image tags may provide a way to
predict a set of tags given an image or to retrieve rel-
evant images from a database given a set of query
tags.

Assuming a set of n different images, it can be
characterized by an m × n image-feature matrix X
as well as by an l × n term-by-image matrix Y . Our
basic idea is to uncover suitable bases W and V for
the image- and text features, respectively, which are
implicitly coupled via a common coefficient matrix
H . In other words, we aim at finding two low rank
approximations

X ≈WH and Y ≈ V H (10)

whereW ∈ Rm×k, V ∈ Rl×k, andH ∈ Rk×n.
Our solution is to formalize this idea as a convex

combination of two constrained least squares prob-
lems

min
W ,V ,H

(1− λ)
∥∥X −WH

∥∥2 + λ
∥∥Y − V H

∥∥2

s.t. W ,V ,H � 0 (11)

where λ ∈ [0, 1] is user specified constant that allows
for expressing preferences for either of the two fea-
ture types. Just as with the original NMF problem
in (8), the extended problem in (11) does not admit a
closed form solution. We therefore adapt the Lee and
Seung type fixed point iteration to our case. For the
matrices of basis vectorsW and V , the update rules
immediately carry through and read:

W =W � XHT

WHHT
and

V = V � Y HT

V HHT
. (12)
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Since the coefficient matrix H now couples two
bases, its update is slightly more involved. The sim-
plified version of the fixed point iteration for the co-
efficients is:

H =H � (1− λ)W TX + λV TY(
(1− λ)W TW + λV TV

)
H
. (13)

3.3. Discussion

Our choice of a convex combination of the indi-
vidual optimization problems in (11) is not an arbi-
trary decision. There is a known close relation be-
tween non-negative matrix factorization and proba-
bilistic latent semantic analysis [8, 5]. Assuming an
appropriate normalization, NMF can be understood
as learning the parameters of a joint probability dis-
tribution which is expressed as a product of marginal
distributions. By choosing a convex combination of
two NMF problems, this analogy may be lifted to the
level of learning a distribution of distributions. This
is akin to Latent Dirichlet Allocation [18, 1] but we
will leave possible implications to future work.

We note that by setting λ = 0 or λ = 1 our model
and its updates reduce to the original form of NMF.
Moreover, the model is not confined to the case of
two different types of views. Its extension to convex
combinations of p different views is straightforward:

min
W i,H

p∑

i=1

λi
∥∥Xi −W iH

∥∥2

s.t. W i,H,λ � 0 (14)

λT1 = 1

Finally, as with with all alternating least squares
schemes, convergence of the extended update algo-
rithm for multiview NMF is guaranteed. We omit
the formal proof but sketch the argument: Given H ,
none of the updates in (12) will increase either term
in (11); given W and V , the update in (13) cannot
increase the expression in (11).

4. Experiments

In the following subsections we present first ex-
perimental results obtained from using multiview
NMF for image segmentation, label prediction, and
image retrieval. Note that, so far, these are prelimi-
nary experiments intended to validate the approach.
We are currently working on extended experimen-
tal evaluations to compare the proposed approach to
other methods in the literature.

4.1. Image Segmentation via Joint Non-negative
Matrix Factorization

In a first series of experiments, we apply simul-
taneous NMF to the problem of image segmenta-
tion. We consider color images of natural scenes
downloaded from flickr. We convert the RGB
pixel values into the LUV color-space because of
its alleged perceptual uniformity which ensures that
equally distant colors in the color space would be
also equidistant perceptually.

In order to segment an image into homogeneous
regions, we sample 1000 pixels from each image and
build two feature matrices, one containing 1000 three
dimensional column vectors of color information and
one containing 1000 two dimensional column vec-
tors containing pixel coordinates. This way, we sep-
arate color from location and run simultaneous NMF
to obtain centroid vectorsW and V in the respective
spaces that are coupled via the common coefficients
H .

We conduct several experiments where we vary
the number of centroids k = {4, 10, 20} and the
weighting parameter λ = {0.1, 0.5, 0.9}. When λ
is larger, more weight is given to the color descrip-
tor of the pixels and when it is smaller more weight
is given to the location of the pixels. After random
initialization to positive values sampled from a Gaus-
sian distribution, we run the update rules for the ma-
trices W , V and H until convergence but at most
100 times.

Given the results of the training phase, the test
phase in these experiments consist in assigning ev-
ery pixel x of an image to one of the k result-
ing cluster centroids. Given W and V , we solve
min(1−λ)‖x−Wh‖2+λ‖x−V h‖2 for the coeffi-
cients h and determine the cluster index c according
to

c = argmax
j

hj . (15)

Figure 1 shows examples of images we considered
in our segmentation experiments. The accuracy of
the segmentation appears to improve with an increas-
ing value of the weighting parameter λ. This corre-
sponds to intuition because assigning more weight
to color information should yield image segments
grouped together based on color rather than on spa-
tial proximity. However the result of segmentation
seems best for λ = 0.5 where location and color val-
ues of the pixels contribute equally to the resulting
matrix factors. This resembles the behavior of a bi-
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Figure 1. A sample image and its segmentation results ob-
tained from computing cluster centroids using multiview
NMF applied to pixel location- and color information. For
a smaller λ, more weight will be assigned pixel location
information, for a larger λ, more weight will be assigned
to pixel color information. With larger weights on lo-
cation information, small regions of rather homogenous
color disappear in the segmentation process. For larger
weights on color information, we observe a tendency to-
wards over-segmentation and noisy segment boundaries.
For the case where color and location information con-
tribute equally, small regions are preserved and segment
boundaries are smoother.

lateral filter [24] which also incorporates color- and
location information and is known to yield smooth
segment boundaries.

4.2. Label Prediction and Image Retrieval via
Joint Factorization of Image- and Text-
Features

This series of experiments aims at exploring
whether or not multiview NMF is capable of filling
in missing information. We considered a training set
of natural images retrieved from the “most interest-
ing” category at flickr. This set of training im-
ages contains 10 different classes (clouds, moonlight,
beach, ship, bridge, mountain, forest, city, church,
castle) of motives and we considered 300 images per
class.

In these experiments, the feature vectors are cal-
culated using local self similarity (SSIM) [20] fea-
ture extraction scheme. The feature vectors are then
clustered into a visual vocabulary of k = 750 visual
words. For each image in the dataset, a histogram of
this vocabulary is created. The individual histograms
of all the images in the dataset are then collected in
an image-feature matrix F ∈ Rk×n.

Textual descriptors for the tag list of the images
are created by using the well known Bag of Features
[19] approach. Firstly, the most frequent tags in the
dataset are collected and the textual vocabulary or the
dictionary is generated by filtering the irrelevant tags
such as foreign names, flickr group names, and
abbreviations. Secondly, all the tag lists correspond-
ing to the respective images are compared with the
dictionary and according to the presence (1) or ab-
sence (0) of the dictionary words in the tag list of an
image, a binary text feature vector is formed. Finally,
the feature vectors are stored in a matrixX ∈ Rm×n

with n being the number of images in the dataset and
m = 1000 being the size of the textual dictionary.

the matricesW , V andH were initialized to ran-
dom positive values sampled from a Gaussian and we
ran the multiview NMF update algorithm until con-
vergence but at most 100 times, to obtain coupled
factorizations (k = 10, λ = 0.5) of the image- and
text-feature matrices X and Y , respectively. In the
test phase of these experiments, we considered two
different settings.

4.2.1 Label Prediction

Given an image that was not part of the training set,
we compute its image-feature vector x and solve
min‖x −Wh‖2s.t.h � 0 for h. Given h, we plug
it into y = V h to obtain a corresponding vector y in
the text-feature space.

Given y, we search for that column vector yi of
the training data matrix Y for which ‖y − yi‖ is
minimal. We use y to predict a ranked list of tags.
To this end, we determine and rank those words in
the lexicon that correspond to the 20 basis vectors
ti in the original text-by-image space for which the
projection yT ti is maximal. The 10 highest ranked
tags are selected to be the tag list of the test image.
In Figure 1, the retrieved tags for some of the images
are shown.
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(a) bridge

(b) bridge + sea

(c) bridge + sea + sky

(d) bridge + sea + sky + building

Figure 2. The 3 most relevant images retrieved by query-
ing with the word or the group of words below them. The
retrieved images tend to be more specific with the increas-
ing number of words used in the queries.

4.2.2 Image Retrieval

In this setting, we queried random words such as
bridge, sea, sky individually or as a group to retrieve
the best corresponding images. The text feature vec-
tor y of the random words are created the same way
as training tag lists of the images. We then solve
min‖y − V h‖2s.t.h � 0 for h. Given h, we plug it
into x =Wh to obtain a corresponding vector x in
the image-feature space.

Given x, we search for that column vector xi of
the training data matrix X for which ‖x − xi‖ is
minimal. The four most similiar images are shown
in Table 2 that correspond to the words below.

high blue water
travel water sky
cruise trees clouds

holiday bridge waves
morning reflections rocks
cityscape grass sea
daybreak yellow ocean

tower woods seascape
sea railing raining
land waterscape waterscape

water sky nightscape
beach clouds blue

sunrise blue stars
outdoors holiday afterdark

nature red sky
reflection castle night
landscape bluesky landscape

raining raining moonlight
walking disneyland yellow
yellow middleages city

Table 1. Results of automatic image annotation. The
taglist corresponds to the first ranked 10 tags retrieved by
querying an unknown image.

5. Conclusion and Future Work

The work presented in this paper aims at the anal-
ysis of images for which there is additional informa-
tion available. We introduced a new model for multi-
view clustering that extends the idea of non-negative
matrix factorization (NMF) towards the joint analy-
sis of different types of features. We cast multiview
NMF as a convex combination of individual opti-
mization problems and adopt the well known multi-
plicative fixed point algorithm for NMF to this case.
The approach avoids ad hoc combinations of differ-
ent types of features and thus stays true to the nature
of different descriptors. The individual optimiza-
tion problems in our multiview NMF formulation are
coupled via a common coefficient matrix. Due to
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this coupling, the resulting basis vectors or cluster
centroids allow for inferring one type of descriptor
(e.g. image labels) from another type of descriptor
(e.g. image features).

In preliminary experiments we validated the appli-
cability of the proposed approach in image segmen-
tation, tag prediction, and tag-based image retrieval.
Our first results suggest that multiview clustering can
provide a framework for image analysis that applies
to different levels of abstraction. Image parts could
be identified by combining pixel-color and -location
information in the principal manner that is provided
by the multiview approach. Information as diverse
as color histograms and text-by-image vectors were
coupled using our framework and we found it to be
capable to predict missing information from what
data was available.

Currently, we are conducting more extensive ex-
periments to provide a more quantitative analysis as
well as to compare the proposed approach to other
multiview methods such as (kernelized) canonical
component analysis. In contrast to related methods
from the literature, we expect that highly efficient
implementations of multiview NMF will be possi-
ble. To this end, we are currently adopting tech-
niques such as convex-hull NMF to our model. We
will also further explore how multiview NMF relates
to LDA and whether it offers an alternative approach
to hierarchical latent topic models. Finally, we envi-
sion further applications of the proposed method, for
instance in the area of hyperspectral imaging.
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Abstract. Content-based image retrieval deals with
retrieval in large databases using the actual visual
content. In this paper we propose to use hand-drawn
object sketches highlighting the outline of an object
of interest as query. Due to the lack of appearance,
the focus lies on the shape of an object. Such a
scenario requires a common representation for the
sketch and the images. We propose novel shape-
based descriptors that are calculated on local con-
tour fragments. The contour descriptors are stored in
a hierarchical data structure, which enables efficient
retrieval in sub-linear time, potentially handles mil-
lions of images, and does not require retraining when
inserting new images. We demonstrate superior per-
formance in this query-by-shape-sketch retrieval for
our novel features, and efficient retrieval in 50 mil-
liseconds on a standard single core computer.

1. Introduction

Image retrieval [5, 14, 15], which deals with the
finding of similar images to a given query in large
databases, has seen tremendous progress in the last
years. Impressive advances were achieved in terms
of number of images indexed in the database (up to
millions) [5, 19, 23], types of features able to process
(color, texture, shape) [11, 12] and most recently also
the types of input. The last part deals with what kind
of input is provided as query to run image retrieval,
for example semantic language based queries, full
feature images, or scene and object sketches [7, 13].

In general, mainly three different approaches of
how to define the query in a retrieval system can be
distinguished. The first group extends standard text
retrieval systems relating them to images. The sec-
ond group considers fully featured images as query,
which contain rich scene information in appearance
and shape. However, concerning a user guided im-

Figure 1. Query by shape sketch image retrieval: Sketch-
ing an object outline is the most intuitive user input to
support visual image search. Contrary to scene sketching
with focus on appearance, the main issue for this novel
approach is efficient matching of the shape of an object as
well its discrimination to background clutter.

age retrieval system, such data may not be available,
because the user looks for a specific type of image
and cannot provide an exemplar image, since this is
the actual goal of the search. The third approach uses
hand-drawn sketches, showing the desired scene col-
ors or shape of objects, where the visual similarity is
defined on a more abstract semantic level.

The goal of this paper is to introduce a content-
aware image retrieval system, which solely uses a
sketch of the outline of an object as query as it is
illustrated in Figure 1. This enables a novel intuitive
system, where users simply sketch an object of in-
terest on e. g. a tablet PC and immediately retrieve
images containing the specified object.

Our content-based image retrieval system is based
on a novel feature for describing the local shape
of contour fragments and an efficient data structure
to retrieve images from large databases in short re-
sponse time. Inherent properties of our system are
the focus on shape, efficient fragment matching con-
sidering connectedness of sketch stroke sequences
and possible handling of occlusions. We demonstrate
how our shape descriptor improves retrieval perfor-
mance and allows for a content-based image retrieval
focused on objects rather than scenes.
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Figure 2. Overview of content-based image retrieval by
query type: text, image, scene- and shape-sketch.

2. Related work

Methods for content-based image retrieval can be
classified into the following four fields: (a) semantic
language-based , (b) image-based, (c) scene sketch-
based and (d) object sketch-based, see Figure 2 for
an overview. In the following sections, related work
in these four fields and properties are discussed.

2.1. Query by text (language-based)

The first field, denoted as query-by-text, deals with
retrieving images by matching the user input to meta
data provided with images, as for example is avail-
able on websites or image annotation databases. The
features analyzed are not considering image content
but rather text describing the content. Powerful scor-
ing functions have been developed for such text re-
trieval systems to accurately measure the similar-
ity between language data like the well-known term
frequency / inverse document frequency (TF/IDF)
scheme. Modern search engines such as Bing or
Google deal only with semantic queries, whereas for
example Cortina [11]1 is a combination of seman-
tic knowledge and image features from the MPEG-7
specification [22] and the SIFT descriptor [17].

2.2. Query by image (full feature images)

In the second field, denoted as query-by-image, a
single image is provided as query and the most sim-
ilar images from the database should be obtained.
This is for example required for re-localization in 3D
reconstruction methods or to identify near duplicate
images for copyright protection. The key features are
extracted from the full extend of visual information
in terms of texture, color and shape.

1http://vision.ece.ucsb.edu/multimedia/cortina.shtml

For example, TinEye2 creates a unique finger-
print for a complete image (actual technique not re-
vealed) to find the exact matches including crops,
editing and resizing. Windsurf3 retrieves images
based on wavelet-indexing of images under region
fragmentation. That is, multiple region segmenta-
tions are described and used in a one-to-many match-
ing setup [1]. CIRES4 uses perceptual grouping on
low-level edges to obtain a structure of the image,
which is a high-level semantic cue for retrieval to-
gether with features from Gabor filters and Lab color
space [12]. FIDS5 focuses on efficient retrieval by
using color, edge histograms as well as wavelet de-
composition [3].

Most of these approaches focus on complete im-
age retrieval, which given the full feature image as in-
put delivers visually similar and even near-duplicate
retrieval results. Recent query-by-image retrieval
systems [5, 14, 18] deal with better scoring strategies
and more effective vocabulary construction.

2.3. Query by scene sketch (color drawings)

The third field, denoted as query-by-scene-sketch,
uses a manual drawing reflecting an image scene by
color as query. The user provides a drawing, where
complex visual features may not be used because
there is simply no data on which to compute them
since the sketch is more a cartoon-like drawing.

For example, Retrievr6 extracts a multi-resolution
wavelet fingerprint of the complete image comparing
color and shape [13]. The compression to just 20
coefficients allows efficient retrieval.

2.4. Query by shape sketch (line drawings)

The last field of image retrieval systems, which we
denote as query-by-shape-sketch, uses simple shape
sketches as query. The user simply draws a rough
outline of an object focusing entirely on the shape
as it is illustrated in Figure 1. In our opinion this
level of user interaction provides the most natural ex-
tension of a language based word-level query, since
it enables intuitive systems, where users can simply
sketch an object e. g. on a Tablet PC with only a small
amount of user interaction required. Previous work
in this field uses only histograms or full image simi-
larities to retrieve images containing similar content.

2http://www.tineye.com
3http://www-db.deis.unibo.it/Windsurf/
4http://cires.matthewriley.com/
5http://www.cs.washington.edu/research/imagedatabase/demo/fids/
6http://labs.systemone.at/retrievr/
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Figure 3. Properties of a user sketch: a) focus on shape, b)
multiple strokes (shown in different colors), c) direction of
drawing (shown by thicker starting point) and d) sequence
information of the connected strokes.

We propose a novel scheme to combine sketches and
shape cues using powerful local shape descriptors to
retrieve images with similar objects.

3. Image retrieval by shape-sketch

The goal of this work is to enable efficient image
retrieval in large databases based on modeling an ob-
ject of interest using a sketch of the object shape.
Hence, we define the term sketch as a thin line draw-
ing by a user by means of an electronic pencil. As
shown in Figure 3, such a sketch focuses on shape,
has no appearance information, may contain one to
many line strokes and has defined end points for each
stroke (defining a valuable stroke point ordering).

In the following sections we will outline our novel
retrieval method that uses such sketches as query to
efficiently retrieve images containing the sketched
object from potentially large databases. The core
idea is to describe both the sketch and the images in
terms of a bag of local fragment codewords, where
codewords are fragment prototypes (found by com-
paring fragment shape) that are obtained from edges
in the image database. For this we describe local
fragments by a powerful shape descriptor that is ex-
plained in detail in Section 3.1. In Section 3.2 we
describe how a hierarchical data structure denoted as
vocabulary tree can be used to define our vocabulary
of codewords. The vocabulary is built by analyzing
the image database, nevertheless once the data struc-
ture is built, new images can be inserted without the
need of re-training. Finally, in Section 3.3 we show
how to use the obtained vocabulary tree in our query-
by-shape-sketch object retrieval system.

3.1. Local contour fragment description

In a cluttered environment it is important to be
able to discriminatively describe shape cues and dis-

tinguish them from mere background clutter. Addi-
tionally, for a content-based image retrieval system,
efficient processing is a vital aspect. For this rea-
son time-consuming learning tasks have to be moved
to the offline preprocessing stage. Current state-of-
the-art systems based on complex shape features still
require a lot of online processing time and are dis-
similar in terms of description of object sketches and
images, i. e. they do not allow the same description.
For this reason we made a thorough analysis of the
related work in shape analysis focusing on speed and
possible similar description of a binary shape and a
full feature image. Possible descriptors include the
Edge Histogram Descriptor (EHD) which is speci-
fied in the MPEG-7 standard [22], the Shape Context
(SC) [2], the Turning Angle (TA), which is a subset
of the Beam Angle Histograms (BAH) [20], and the
PArtial Contour and Efficient Matching (PACEM)
descriptor [21], which is a recent shape descriptor de-
signed for partial matching and encoding of sequence
information.

In this work we extend the shape description
from [21] to enable efficient content-based image
retrieval. As will be described in detail in the ex-
perimental section, our new shape descriptor makes
query-by-shape-sketch feasible and successful be-
cause of an immense speedup and a powerful de-
scription of the shape of local fragments.

We define the term contour as a connected se-
quence of points, which might come from an edge
obtained from an image or from a stroke from the
input sketch. Further, a contour fragment is a con-
nected subset of a contour. Essential to our descrip-
tion is that all contour fragments are an ordered list
of points. Our descriptor is now calculated for such
local contour fragments, all having a fixed number of
points L and it considers the available ordering of the
points. In comparison, the Shape Context (SC) [2]
descriptor loses all the ordering information due to
the histogram binning. It is further important to note,
that the image edges and user strokes may be over-
fragmented and broken into multiple contours. Con-
trary to [21], where partial matching is used to over-
come this fragmentation, we simply analyze purely
local contour fragments.

Our descriptor is inspired by the chord distribu-
tion. A chord is a line joining two points of a re-
gion boundary, and the distribution of their lengths
and angles was used as shape descriptor before, as
for example by Cootes et. al [6] or in the work on
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Geometric Hashing [24]. Our descriptor analyzes
these chords, but instead of building histograms of
their distributions, we use the relative orientations
between specifically chosen chords.

Our descriptor is based on angles αij which de-
scribe the relative spatial arrangement of the points
P1 . . . PL located on the analyzed contour fragment.
An angle αij is calculated between a chord PiPj

from a reference point Pi to another sampled point
Pj and a chord PjP∞ from Pj to P∞ by

αij = � (PiPj , PjP∞
)
, (1)

where � ( . . .) denotes the angle between the two
chords and P∞ is the point at vertical infinity. Thus
the angle is calculated between the chord and a ver-
tical line.

In the same manner L different angles αi1 . . . αiL

can be calculated for one selected reference point Pi.
Additionally, each of the sampled points can be cho-
sen as reference point and therefore a L × L matrix
A defined as

A =




α11 · · · α1L
...

. . .
...

αL1 · · · αLL


 (2)

can be used to redundantly describe the entire shape
of a fragment with length L. This descriptor matrix
is not symmetric because it considers relative orien-
tations. Please note, that such a shape descriptor in-
cludes local information (close to the main diagonal)
and global information (further away from the diago-
nal) and it additionally encodes the global orientation
of the fragment. In such a way the shape of every
contour fragment of length L can be described by an
L× L matrix.

3.2. Fragment vocabulary generation

In general, the goal of a content-based image re-
trieval system (CBIR) is to provide fast results on a
large scale database. Most related work on query-by-
scene-sketch and query-by-shape-sketch focuses on
an approximated nearest neighbor search to achieve
this. In this work we propose to use hierarchical data
structures as introduced in query-by-image research
to cluster and efficiently search our shape descriptors
for defining a visual vocabulary. We apply a data
structure known as vocabulary tree [19] for our pur-
poses, which exhibits the benefits of data adaption
and ability to handle high dimensional features as
contrary to nearest neighbor search or kd-trees [10].

Figure 4. An example vocabulary tree for three cluster
centers and a depth of four levels [19]. Each hierarchi-
cal level contains a part of the previous data and refines
the clustering detail allowing for better data adaptation.

The vocabulary tree [19] is a highly effective way
to define the vocabulary for bag-of-word representa-
tions and assign query descriptors to the codewords.
The approach uses k-means clustering for each level
of the tree. This yields a hierarchy of clusters which
again is used to efficiently traverse the vocabulary
tree and find matching cluster centers.

In its definition a vocabulary tree is a data structure
of k cluster centers and a depth of l levels. Figure 4
shows an illustration from Nister and Stewenius of
a vocabulary tree built for three cluster centers and
a depth of four levels. For each new level the data
clustered to the number of centers and divided. A
new level of clustering provides more detailed quan-
tization of the descriptors.

The cluster centers are referred to as nodes of
the tree and the nodes at the last level are known
as leaves. Each of these nodes contains an inverted
file list. This list maintains an index to the images
whose feature descriptors are included in the respec-
tive nodes. So instead of holding the actual descrip-
tors themselves, only a correspondence between best
matching node and image identifier is available.

Further each node contains a weight based on en-
tropy. The more images are included in a node the
less distinctive it becomes. Nister and Stewenius de-
fine various voting strategies for retrieval. First, the
flat strategy defines a scoring where only the leaf
nodes are used. If a descriptor of an image matches
to a node in the lowest level, its weight is included in
a sum later normalized by the number of descriptors
in total. Second, the hierarchical strategies define
scoring based on how many levels upwards from the
leaf level are also considered during scoring. While
the second one improves the recognition rate, the flat
scoring allows much faster retrieval. We adopt this
strategy and define the weight wi of a node as

wi = ln(
N

ni
), (3)

where the total number of images N in the vocab-
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Figure 5. Illustration of the hierarchical traversal through a
vocabulary tree: Only the nodes in green are considered at
each level and the orange nodes indicate the best matches.
These determine the k of kl+1 cluster nodes which are
considered at the next level l + 1.

ulary tree and the number of images ni which are
contained in a node i are used as entropy measure.

The final score s is determined by the sum over all
nodes where the query descriptor matches this node.
The frequency of matches for each descriptor is used
and normalized by the total number of descriptors –
for the query image and the already known images in
the vocabulary tree. The final score is then defined as

s =
∑

i

wi × qi × di
Q×D (4)

wherewi represents the weight of the current node, qi
and di the number of times a descriptor for a query or
database image passed through the current node, and
Q and D are the total number of query or database
descriptors respectively.

We use the vocabulary tree to create a general
shape vocabulary for an efficient retrieval system.
For this, we extract Canny edges [4] from the im-
ages of our database using the standard hysteresis
thresholding in Matlab and link the results to a set
of coordinate lists. This linking is done by analyz-
ing an 8 connected neighborhood [16]. Each edge
is represented as an ordered sequence of sampled
points and we extract heavily overlapping contour
fragments from every edge (each of lengthL), by one
point shifting, so that neighboring contour fragments
overlap by L−1 points. The fragment length L is se-
lected as a balance between discriminative power and
edge fragmentation. For each fragment individually
we sort the sequence clockwise and calculate the cor-
responding shape descriptor matrix of size L×L as it
is described in Section 3.1. All obtained descriptors
are then used to build the vocabulary tree. In such
a way, at the final level of the clustering, the leaves
define the desired codewords representing prototypes
of contour fragments.

Once the vocabulary tree is generated, it may be
used for fast codeword assignment and scoring, as
well as insertion of new images for retrieval. For

each of its description vectors, the top nodes and their
cluster centers are matched. Only the children of the
best matched cluster center are then matched again.
This reduction of search space allows for a complete
search of the vocabulary in k × l comparisons. Thus
for a structure of ten cluster centers and six levels
searching the one million leaf nodes for a best match
only requires 60 comparisons, see Figure 5 for an il-
lustration of this process.

During the insertion of a new image this advantage
is used to find the best matching leaf node quickly.
For each of the shape descriptors such a match is
sought. Then, a new image identifier is included
into the nodes’ inverted file lists and their weights
are updated. No further steps are required. The same
hierarchical matching is used to determine the best
matching leaf nodes for retrieval.

3.3. Retrieval system

For retrieving images from a database a user has
to provide a shape sketch by drawing strokes. There-
fore, we created a sketching interface, where the user
draws on a tablet computer with an electronic pen or
mouse. This directly allows to store the location and
sequence of strokes. In such a way our object model
has the following four attributes (refer to Figure 3):
The sketch models the shape of the object of interest
the user is searching for. It contains multiple strokes,
which are the user-drawn lines to outline the object.
Each stroke has a direction of drawing given by the
user. Finally, adopted from the direction, each stroke
has a sequence in which points along the stroke may
be sampled.

To be able to retrieve images from the database,
each stroke is modeled as a contour and highly
overlapping contour fragments, as described in Sec-
tion 3.2, are extracted for every stroke. All contour
fragments are represented by our proposed powerful
shape descriptor and the descriptors are passed to the
vocabulary tree to obtain corresponding codewords.
The retrieval result is a ranking of all images in the
database using the final similarity scores as defined
in Equation 4.

4. Experiments

The goal of this work is to propose a novel
structure-capturing shape cue for content-based im-
age retrieval (CBIR) systems. For this reason, we fo-
cus on evaluating shape cues for the quality in image
retrieval. Due to the design of our retrieval system,
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it shows the following properties. The shape vocab-
ulary generation is performed in an offline stage and
stays the same over all experiments. The vocabulary
tree allows a fast retrieval of images as well as inser-
tion of new images in constant time. The computa-
tion only depends on the number of k clusters and l
levels chosen for the vocabulary, which is k = 3 and
l = 6 for all our experiments. The constant time for
insertion or retrieval of new images is thusO(k × l),
which is (almost) independent of the number of im-
ages in the database. Since we focus on efficient lo-
cal shape features, the time for calculating the de-
scriptors is a few milliseconds. The full retrieval is
performed on average in 50 milliseconds seconds per
object sketch.

4.1. Shape-based features

For evaluation of our contour descriptor, we ana-
lyzed four additional descriptor methods. The Shape
Context (SC) [2] is a correlated histogram of edges
and is intended to provide a description for a set
of points to determine their correspondences. The
description is a normalized binned histogram, how-
ever in a log-polar layout to capture the relative dis-
tribution of points. The Turning Angle (TA) is a
subset of the Beam Angle Histogram (BAH) [20].
The BAH is a histogram over beam angle statistics,
where the beam angles θij , at points on the shape
Pi, i = 1, 2, . . . , are the chord lines (Pi−j , Pi) and
(Pi, Pi+j). The PArtial Contour and Efficient Match-
ing (PACEM) [21] is a recent shape descriptor de-
signed for partial matching and encoding of sequence
information.

4.2. Experimental setup

The experiment is designed to evaluate the perfor-
mance of a query-by-shape-sketch, where rich visual
features are not available. As it is difficult to evalu-
ate an interactive user scenario, we setup the exper-
iment to use the ETHZ shape classes [9] of 255 im-
ages containing five classes and let several users draw
sketches for each class. The benefits are that the class
for each image is known and we can use it to eval-
uate the retrieval performance, which is otherwise
not well-defined in large image retrieval systems,
where the exact number of true positive matches is
not known.

For evaluation we use all obtained sketches, which
represent the range of variations of typical user
sketches. See Figure 6 for an overview of some of
the sketches, which are provided as query input to

Figure 6. Subset of the 700 user sketches for the five
ETHZ classes used in evaluation. The sketches cover
the range of user input in a query-by-shape-sketch re-
trieval system. Second last column shows top performing
sketches, and right column the sketches by Ferrari [9].

the image retrieval system. This new sketch dataset7

contains 700 sketches drawn by 36 users. There are
on average three user strokes with a length of 320
pixels. We use contour fragments of length 100 and
sample every 5th point, leading to a length L = 20,
which in experiments showed is a reasonable bal-
ance between discriminative power, dimensionality
and limitations due to edge fragmentation.

For this dataset the performance measure is the
top-T ranked results, where the top-T score is defined
as the number of true positive images (ground truth
class vs. sketch query class) over the top T = 20 result
images. This performance score shows how many re-
trieved images actually contain the desired object.

4.3. Results and discussion

Table 1 shows a summary of the average results of
the 700 queries for the top-20 ranked images. The
results show that the performance scores of the novel
query-by-shape-sketch image retrieval paradigm are
still moderate, however clearly demonstrate the ben-
efits of using a shape descriptor, which captures the
sequence of user strokes. Our descriptor performs on
average 25% better than other shape descriptions.

7www.icg.tugraz.at/Members/hayko/retrieval-by-sketch
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Method Sketch (avg./best) Ferrari [9]
SC [2] 23.5% 41% 20%
TA 20.7% 44% 20%
BAH [20] 19.6% 55% 24%
PACEM [21] 19.2% 50% 20%
Proposed 48.5% 87% 58%

Table 1. Percentage of true positives within first 20 re-
trieved images using each of the 700 sketches of the novel
dataset (average and best results) and the hand-drawn pro-
totype models (right column).

Figure 8 shows a recall plot for the retrieval task,
where the number of top ranked images was varied
from T = 1 to T = 20. The retrieval score is consistent
over all top ranked images.

For completeness, we can evaluate the individual
class results of the ETHZ dataset. This is not rele-
vant for the retrieval systems, however the confusion
table in Figure 7 shows that some categories can be
modeled better than others. The average percentage
of true positives within the first 20 retrieved images
over all user sketches (including very crude ones) is
for Applelogo 59%, Bottle 57%, Giraffe 66%, Mug
38%, Swan 23%. This distribution of performance
is also visible when using the hand-drawn proto-
type models provided by Ferrari et. al [9]: Applel-
ogo 60%, Bottle 85%, Giraffe 90%, Mug 20%, Swan
35%. Furthermore the scores if only considering the
top performing sketch per class yields: Applelogo
100%, Bottle 90%, Giraffe 100%, Mug 80%, Swan
70%. The classes for swans and mugs are the hardest,
since they are most often confused with applelogos

Figure 7. Confusion table for average scores for each
ETHZ shape class [9] on the 700 user sketches.

Figure 8. Recall for varying number of top ranks shows
consistent retrieval results for query-by-shape-sketch.

and bottles, respectively, due to similar local shapes
(head, neck and straight vertical lines).

However, for retrieval one is interested in the av-
erage performance over all classes, which is shown
in Table 1. Here prototype models scored 58%, the
average of all 700 user sketches scored 48.5% and
the best single sketches scored 87%. Thus we can
confirm that the sketches by Ferrari et al. resemble
the shape prototypes quite well [8], however there
are better prototypes, see second last column in Fig-
ure 6 for our best sketches. Thus on average, which
reflects the typical user behavior, we can achieve a
retrieval rate of 48.5%. This means using a simple
hand-drawn sketch of the shape of an object, we can
retrieve half of the desired images in an interactive
content-based retrieval system in 50 milliseconds.

5. Conclusion

In this work we showed a novel content based im-
age retrieval (CBIR) system, which queries a large
database by means of a user-drawn sketch. This
query-by-shape-sketch paradigm is the most intu-
itive extension of the current language-based seman-
tic queries onto the visual domain. Our novel com-
bination of shape-based features which exploit the
properties of user sketches such as partial descrip-
tion, multiple line strokes, as well as direction and
sequence of the stroke itself, and an efficient retrieval
system based on hierarchical clustering and scoring
allows the user to search for images by simply draw-
ing the object of interest. This extends the current
state-of-the-art by allowing an object-centered search
rather than full scene retrieval.

Future work will focus on the integration of other
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input feature types such as color and texture, adopt-
ing a query expansion by linking query-by-shape-
sketch results and a query-by-image strategy, local-
ization and geometric verification of sketched objects
within the retrieval results and finally, investigating
the universality of the shape vocabulary.
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Abstract. The segmentation of images as input for
image analysis is used in various applications. The
resulting segments are often called superpixels and
can be used for further analysis to compute certain
information about the objects in the picture. Unfor-
tunately, the majority of superpixel algorithms are
computationally expensive. Especially for real-time
video analysis it is hard to find a proper algorithm to
compute superpixel representations without decreas-
ing the quality of the results. Available algorithms
for real-time use may not satisfy the requirements
of every application case. In this paper we suggest
an incremental approach for real-time segmentation
of incremental video data. We show that our incre-
mental approach does not influence the quality of the
results noticeably. Finally the efficiency of the ap-
proach is demonstrated within a panoramic-tracking
based application and shows the advantage over ex-
isting real-time superpixel algorithms.

1. Introduction

There are several fields of application for segmen-
tation of images or so-called superpixel algorithms.
Computing a superpixel representation of an image
is often a first step for further processing in image
analysis. It is typically used to locate image regions
or compute image statistics. Application fields are
for instance medicine, geographical applications or
augmented reality. Due to the wide range of applica-
tion areas the requirements for superpixel algorithms
differ. Geographical or medical applications need to
process a large amount of data. On the other hand,
using superpixels for image analysis on live cam-
era streams like in augmented reality applications re-
quires short computation times. For image interpre-
tation perceptually natural shapes of the computed

superpixel are useful. For instance Felzenszwalb and
Huttenlocher introduced an approach that tries to pre-
serve the natural shape of objects [2]. They showed
the consistency of their superpixel elements and hu-
man perception of shapes. Due to these characteris-
tics their Efficient Graph-Based Image Segmentation
algorithm (EGBIS) is used for various applications.
For example Hoim et al. used it for creating geomet-
ric interpretations of scenes from one image [3] and
Zollmann et al. used the EGBIS superpixels as in-
put for improving the depth-perception by applying
occlusion management in augmented reality applica-
tions [13] depending on perceptual groups.

However, EGBIS is computationally too expen-
sive for real-time processing, a requirement for aug-
mented reality applications. On the other hand, ex-
isting real-time superpixel algorithms are subject to
quality degradation compared to ground truth seg-
mentation data [1].

Zollmann et al. managed EGBIS’s lack of
performance by capturing a panoramic image of
the whole environment and computing the time-
consuming superpixel calculation once in advance on
this panoramic representation. During runtime, they
remap the panoramic superpixel map into the cur-
rent camera view by using tracking data. The dis-
advantage of this approach is that the complete envi-
ronment has to be captured before starting their ap-
proach.

To avoid such an involved precomputational step,
the idea of our approach is to compute superpixels in-
crementally at the time new image data is acquired.
For example, in the panoramic mapping and tracking
approach described by Wagner et al. [10], the com-
plete panoramic image is not available from the be-
ginning, but compiled over time. Applying the seg-
mentation to the subset of newly recorded pixels is
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fast enough for real-time applications. However, tra-
ditional segmentation methods work in a global way
and assumes the overall image is known. In this pa-
per, we extended a traditional segmentation method
to cope with an image that is recorded incrementally.
We will show that the superpixels can be created in
real-time. In an accuracy comparison with manu-
ally created ground thruth data we will prove that
the results of our incremental method are almost the
same like the results of EGBIS. Furthermore we will
show the application of our incremental method by
integrating it into a panoramic mapping and tracking
approach and creating superpixels in real-time for a
panoramic image at the same the panoramic image is
build online.

2. Related work

There is a lot of previous work on segmentation
based on different techniques. For instance graph-
based image segmentation techniques represent an
image as a graph G = (V,E), where each node V
represents one pixel in the image and each edge E
connect neighboring pixels. An early graph-based
method is the work of Zahn et al. [12]. It is based
on the minimum spanning tree of the graph and uses
fixed thresholds. The edge weights are based on the
differences between pixels. Zahn’s method breaks
edges with large weights. But that leeds to high vari-
ability regions being split into multiple regions or it
merges ramps and constant regions together.

In 1982 Urquhart et al. [9] tried to deal with that
problem. They normalize the edge weights by using
the smallest weight incident on the nodes connected
by that edge.

One of the fastest superpixel methods is the graph-
based EGBIS approach introduced by Felzenschwalb
and Huttenlocher [2]. Superpixel created by EGBIS
are perceptually natural in shape since they preserve
details in low-variability image regions and ignore
details in high-variability image regions.

Other segmentation methods are based on finding
minimum cuts in a graph. The goal is to minimize
the similarity between pixels that are being split. Wu
and Leahy were the first to introduce a segmentation
method using graph cuts [11]. But their algorithm
was biased finding small components. Shi and Malik
approached that bias with their normalized cut crite-
rion often referred to as N-Cuts [7]. This was the ba-
sis for the graph cut superpixel algorithm of Ren and
Malik, which segments an image into a large num-

Figure 1. A Pathfinder segmentation compared to the re-
sult of an EGBIS segmentation for one of the ground truth
images. Left: Both segmentations with a number of 70
superpixels. Right: Both segmentations with about 600
superpixels.

ber of small and quasi-uniform superpixels [6]. But
these algorithms are too slow for real-time use.

Levinshtein et al. [4] introduced the so-called
TurboPixels that are based on geometric flow, limit
under-segmentation and provide a better perfor-
mance than N-Cuts but still slower than EGBIS.

A real-time superpixel algorithm that is based on
least-cost paths was introduced by Drucker and Mac-
Cormick [1]. Indeed their Pathfinder can be 30x
faster (depending on the image size) than EGBIS, but
shows rasterized superpixels, which appeal synthetic
in shape. Drucker and MacCormick showed the qual-
itative differences between Pathfinder and EGBIS by
an quantitative comparison. For that purpose they
computed the mean accuracy of the segmentation
with reference to a manually drawn ground truth seg-
mentation [8], as defined by Moore et al. [5].

Figure 1 shows the result of both methods for one
of the ground truth images. EGBIS achieves more
accurate and perceptually consistent superpixels than
PathFinder at the same number of superpixels. The
left side of Figure 1 presents the segmentation results
for a very small number of superpixels while the right
side shows the segmentation results for a commonly
used number of superpixels. In both cases EGBIS
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Figure 2. Edges in EGBIS are constructed for every pixel
and four of its neighbors.

preserves much more details of distinct regions.
To provide the real-time computation of percep-

tually natural shaped superpixels with a high quality
in reference to ground thruth segmentation, we de-
cided to build an incremental version of the EGBIS
segmentation method.

3. Traditional EGBIS Method

Since our incremental approach is based on the
traditional EGBIS method, we will shortly describe
the details of the method that are important for un-
derstanding the incremental approach.

The EGBIS algorithm represents images as a
graph. While every node in the graph corresponds
to a pixel of the image, the edge between two nodes
represents the difference measure between the nodes.

The first step of the EGBIS method is the cre-
ation of the graph. Therefore Felzenszwalb and Hut-
tenlocher compute difference measurements for ev-
ery pixel and four of its neighbors (see Figure 2).
These measurements form the weights of the edges.
This computing step is repeated for every pixel and
an edge for every pair of directly adjacent pixels is
constructed. Finally the edges are sorted by non-
decreasing edge weight.

The next step is the creation of superpixels them-
selves. When comparing two regions, the methods
checks if the differenceD(C1, C2) between the com-
ponents C1 and C2 is small compared to the internal
difference within the two components. The differ-
ence between two components is defined as the min-
imum weight between them. The internal difference
I(C) of each component of the graph is defined as
the largest weight in the minimum spanning tree.

I(C) = D(CA, CB) + τ(C) (1)

where D(CA, CB) is the weight of the edge connect-
ing the last two components (CA and CB) merged
into C.

A threshold function τ(C), which is based on the
size of the component and a constant k, is used to

define how much the difference between the compo-
nents must be smaller than the minimum internal dif-
ference,

τ(C) =
k

|C| (2)

where |C| is the size of the component and k is a
parameter to control the preference for the compo-
nent’s size. If the difference between the components
is smaller than the minimum internal difference of
both, the components are merged. The algorithm it-
erates over all edges repeating that comparison for
every edge.

Finally, in their implementation they used a post-
processing step that is not described in their paper.
The post-processing merges superpixels with a size
below a defined minimum size min. Because edges
are sorted in increasing order of their weights, re-
gions with lower differences will be merged first.

4. The Incremental Superpixel Algorithm

The basic idea of our method is to divide the pro-
cess of traditional EGBIS segmentation into smaller
steps. Therefore we subdivide a full image into cells
and instead of segmenting the complete image at
once the image is segmented cell by cell. Thereby the
current processed cell may correspond for instance to
the current field of view of the camera or to parts of
a video image that changed in content or interest.

Algorithm 1 Incremental Superpixel
Initialize data structures for complete image
for each newly completed cell do

Initialize and smooth cell image
Create and sort edges in cell
Segment cell by using internal difference
Merge sorted cell edges in complete edge set
Copy disjoint-set forest containing superpixels
Perform post-processing on complete image

end for

Our method consists of an initial part that has to be
performed once in advanced to create all data struc-
tures and incremental parts that have to be performed
for each processed cell. Like the EGBIS method our
approach stores the segmentation by using a disjoint-
set forest. Initially, this disjoint-set forest is con-
structed for the complete image with w × h default
elements and without joined components (where w
is width and h is height of the image). In each in-
cremental step the edges for the current cell are cal-
culated and sorted, the segmentation for the current
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Figure 3. Edges in our method are constructed for every
cell like in the original algorithm and additionally for bor-
der pixels with existing neighbors.

cell is performed and the edges of the current cell
are merged into a set of edges of the complete image.
Finally, the post-processing is performed in each step
but on the complete already segmented data to ensure
that also superpixels that are distributed over differ-
ent cells are properly merged.

4.1. Edge Creation

The calculation of the weights of the edges is quite
similar to the traditional EGBIS algorithm. For each
processed cell we calculate the edges like for a sep-
arate image in the original algorithm. There is only
one case which needs special attention: At the cell
border neighboring cell could have been already seg-
mented. That means the border between the current
cell and the already processed cell has to be seg-
mented as well. To find already segmented cells a
boolean matrix stores for each pixel, wether it have
been already processed. If a pixel at the cell border
is stored as already segmented we compute an addi-
tional edge between the border pixels. The computa-
tion of the additional edges for two neighboring cells
is illustrated in Figure 3.

4.2. Segmentation

To segment the current image cell all edges of
the image cell are sorted in increasing order by their
weights. After sorting we iterate through all edges
of that cell and compute their corresponding compo-
nents (preliminary superpixel) by using the disjoint-
set forest. Each set of the disjoint-set forest is the
data-representation of one component.

In the beginning of the iteration process each pix-
els corresponds to one preliminary component, that
means that no pixel share the set with another pixel.
To determine the components of each pixel we com-
pare in each iteration step the weight of the current
processed edge with the internal difference (as de-
scribed in Equation 1) of the both components con-
nected by this edge. If the weight is smaller than the

internal difference we merge both sets representing
the components into a single set.

At each part of this process special attention has to
be paid to the border regions between two cells. For
instance, regions that are considered to belong to one
perceptual group but are distributed over several cells
have to be handled with special care. Although these
edges are sorted and processed in the cell’s segmen-
tation process as well, it may happen that due to the
changed data order of the subdivide image originally
connected superpixel are not detected.

The main problem of subdividing the image into
cells is that very homogeneous components, which
are distributed over two ore more cells, may be not
determined as being part of the same component but
as different components. We refer to this problem
as tiling. Figure 4 shows that in the picture of the
palm tiling occurs especially in the homogenous re-
gions of the sky or the clouds. Instead of merging
the homogenous components to one large component
nearly for each cell one component is created.

Figure 4. Left: Example image. Right: Example image
segmented without using the border threshold.

Figure 5. Tiling: Detailed view of Figure 4 (right side of
the beach) showing the problem of tiling. Left: EGBIS
without tiling. Right: Incremental methods shows tiling.

The reason for tiling is that instead of processing
all edges of the complete image as in the traditional
algorithm, in the incremental approach we only use
the edges of the current image cell and the border
edges for the segmentation.

The segmentation criterion of the original EGBIS
is based on the amount of variability of adjacent seg-
ments. This creates problems when segmenting an
image incrementally. To describe the origin of this
problem we will briefly describe how superpixels
grow in our method and how they grow in the origi-
nal EGBIS depending on the internal difference.
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Figure 6. Illustration of tiling problem from Figure 5. Top:
Example of merging superpixels by EGBIS. Bottom: Ex-
ample of merging superpixels by our incremental method
at a cell size of 30 pixels per side. The yellow and blue
arrows show the edges and their weights.

As defined in equation 1 the internal difference of
a superpixel C depends on the size of a superpixel
|C|, on a constant for controlling the shape of the
superpixels k and on the weight of the edge connect-
ing the last two components merged into C. In the
case that a cell of an image is a very homogeneous
area like parts of the beach in Figure 4, the differ-
ences between all pixels in that cell are very small.
Thus all weights of edges of the current processing
step are very small. And not only that it is likely that
nearly all pixels are mapped to one single component
inside the current cell, but also the internal difference
of this component is very small since D(CA, CB) is
staying small and |C| is getting larger. Because of the
homogeneity of the cell, there will be no edge that
increases the internal difference. That means that it
is getting unlikely that exactly the boarder edges be-
tween the cells will fulfill the requirement for merg-
ing, because they have a higher weight.

The original algorithm does not have this kind of
problem, because the edges covering the whole im-
age and are not limited to a homogenous area. That
means that all kind of different weights will occur.
Segments will start to grow with edges with low
weights, but also edges with higher weights can be
included in the growing segment, because if there are
still few edges included k

|C| is large and the internal
difference may be not too small for merging.

Figure 6 illustrates this problem by showing the
differences in segment merging of both algorithms.
The top figure shows how a superpixel is created by
merging a few smaller superpixels. In that example

Figure 7. Example image from Figure 4 segmented by the
incremental method using the border threshold.

all drawn edges are at a weight smaller than the in-
ternal weights of the superpixels they connect. So
they are all merged together as shown in Figure 6
a) with the large pink segment. Figure 6 bottom
shows the tiling in the incremental approach. By
using only edges with a low differences in each in-
cremental step (because a homogeneous cell has no
edges with higher weights), the internal differences
(visualized as background numbers) are getting very
low and segments distributed over different cells of-
ten can not be merged, because nearly no border edge
(visualized with the orange triangles) will meet the
required minimal difference.

We decided to approach that problem by intro-
ducing a new threshold value. This threshold value
allows us to investigate if components that are dis-
tributed over several cells should be merged. If the
difference between two components of different cells
that have a direct connection to each other is lower
than this threshold value, they will be merged. In this
case it is not likely that there exist a real perceptual
border between these components. Figure 7 shows
the result of using the threshold.

4.3. Post-processing

The postprocessing of the traditional EGBIS
merges superpixels containing less pixels as the
minimum size algorithm parameter. Changing the
sorting of the edges due to subdividing the image
into cells also influences the behaviour of the post-
processing. If we would perform the post-processing
on a per-cell base, it is likely that all superpixel that
do not have the minimum superpixel size are merged
to one large superpixels covering nearly the com-
plete cell. Thereby the post-processing disregards
that smaller superpixels may be distributed over sev-
eral cells and may meet the size requirements in the
next incremental step.
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Figure 8. Post-processing error. If the post-processing is
applied on a per cell-base, it is likely that the incremental
approach creates very large superpixels covering nearly
the complete image.

But in the next processing step the large superpix-
els of each cell may be merged together with other
large superpixels of neighboring cells. That may re-
sult in even larger superpixels spanning nearly over
the whole image as shown in Figure 8. To avoid
this kind of post-processing error and since the post-
processing itself is not highly computationally ex-
pensive, we decided to apply the post-processing not
only on the currently processed cell, but also on all
finished cells.

Furthermore we had to adapt the data management
of the superpixels, because in the traditional algo-
rithm the segmentation process as well as the post-
processing are performed on the same disjoint-set
forest. Since our approach is an incremental method,
the output of the post-processing (the disjoint-set for-
est) is on the other hand the input for the next in-
cremental step. To avoid the influence of the post-
processing to the next incrementation step, we have
to make a copy of the original disjoint-set forest and
perform the post-processing on this copy.

Additionally the dataset that stores all edges has to
be updated as well, since the post-processing uses the
edges for iterating. Therefore we insert the edges of
each new cell in the sorted list of the existing edges.

In each step four edges for each pixel are created.
For instance for small cells of 30 × 30 pixels that
would be an amount of 3600 edges. Sorting all these
edges into complete set of edges which can have an
final amount of w × h × 4 edges is also not com-
putationally inexpensive. But in this step it is very
easy to save processing time. Because the difference
between two superpixels is defined as the minimum
weight between them. That means it is not neces-
sary to keep all edges between them. Only the min-
imum difference is needed. Deleting the redundant

Size in pixel 30x30 50x50 70x70
Image Creation 9 ms 7 ms 9 ms
Edge Creation 1 ms 3 ms 5 ms
Merge 1 ms 1 ms 1 ms
Segment 5 ms 10 ms 24 ms
Postprocess 9 ms 8 ms 9 ms

Table 1. Computation times of the algorithm in relation
to the cell size.

edges reduces the edges to be merged into the com-
plete edge database for every cell to an average of
125 edges.

5. Results

To show quality of results and the improvements
considering the processing time, we compared our
incremental method with the traditional EGBIS al-
gorithm.

We computed the average processing time for 50
different images with the same image size (750×563
pixel) but for different cell sizes. Figure 9 illustrates
the processing time per cell in relation to the size of
the cell averaged. The processing time per cell in-
creases with the cell size, but is still capable for real-
time applications until a cell size of 70 × 70 pixel.
In table 1 we show the processing time of each step
of the incremental method. The post-processing and
creation of the image structure are the most compu-
tationally expensive parts, fortunately these steps are
not increasing linearly with the cell size.

Figure 4 shows a selected example of the 50 im-
ages used for the average computation. On our
test system (Intel Core i7 740QM, 8 GB Ram) the
traditional EGBIS algorithm needs 577 ms to seg-
ment this image with the following parameter: pre-
processing smoothing parameter σ = 0.5, k = 50,
min = 500. Segmenting the image with the same

Figure 9. Average compuation time in relation to cell size
(in pixel per side) of 50 different images.
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Figure 10. Comparison of the mean accuracy of EGBIS
and the incremental superpixel method computed in re-
spect of 50 ground truth segmentations.

parameters with the incremental method has an av-
erage processing time of 25 ms per 30 × 30 pixel
cell. When assuming a cycle time of 25 ms per cell
and one cell per application cycle a frame rate of 40
frames per second can be achieved, which is ade-
quate for real-time applications.

For comparing the accuracy of our method to the
accuracy of the traditional EGBIS algorithm we use
ground truth segmentations as described by Drucker
and MacCormick [1]. The comparison is calculated
by finding for each superpixel of the algorithm output
the ground-truth segment which shows the biggest
overlap. The accuracy of a single superpixel is then
defined as the amount of the overlap with the seg-
ment in relation to its size. We computed the mean
accuracy as the average accuracy of all superpixels
for 50 ground truth images. Figure 10 shows the
mean accuracy of EGBIS and the Incremental Super-
pixel. We found that the accuracy of both algorithms
is nearly the same with a mean of 91.3% of EGBIS
to a mean of 91.7% of our method. That shows that
our method does not decrease in accuracy compared
to EGBIS.

Figure 11 shows an example of 50 ground truth
segmentations. In Figure 12 we show the corre-
sponding segmentations of that example. They were
done by all three algorithms PathFinder, EGBIS and
Incremental Superpixels with left approximately 70
and right approximately 600 superpixels.

These figures show that the incremental superpixel
method can achieve a perceptual superpixel quality
similar to EGBIS while PathFinder falls back behind
both considerably.

6. Incremental superpixels for panoramic
mapping and tracking

To test our method in an application we inte-
grated the incremental superpixels into a simultane-

Figure 11. Example of a ground truth image segmenta-
tion.

Figure 12. Ground truth comparison of Pathfinder, EGBIS
and the incremental superpixel method. Left: For around
70 superpixels. Right: For around 600 superpixels.

ous panoramic mapping and tracking approach simi-
lar to the one introduced by Wagner et al. [10].

Simultaneous panoramic mapping and tracking al-
lows accurate and robust rotation tracking in outdoor
scenarios by creating a panoramic map from the live
camera stream. The panoramic map is then used for
tracking and is stored in three different resolution
levels (2048×512, 1024×256 and 512×128 pixel).

Figure 13. A partly finished panoramic map.
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Figure 14. Incremental superpixels for panoramic map-
ping and tracking.

During the creation process of the panoramic map
the map is splitted into 32x8 cells as shown in Figure
13. Every cell has a state that describes if the cell is
either unfinished or finished. Finished cells are then
down-sampled from the full resolution to the lower
resolution levels. The lower resolution levels are
used for keypoint extraction. We decided to use the
medium resolution to calculate the superpixel repre-
sentation by using our incremental approach. That
means that for each finished cell superpixels are com-
puted and merged to the existing superpixel represen-
tation as shown in Figure 14. The superpixel repre-
sentation of the panoramic map can then be used to
extract the superpixels for the current camera view
by remapping the map into the current camera per-
spective as described by Zollmann et al. [13].

7. Conclusion

In this paper we introduced a method that reduces
the cost of a superpixel segmentation by applying it
incrementally as new image data is acquired. This
approach can be used for all applications that rely on
an incremental image data acquiring process, such as
panoramic mapping and tracking or video analysis
which is partly updated (e.g. fixed background). To
implement the incremental method, we extended an
traditional algorithm to enable the segmentation of
newly arriving image cells. Merging the information
of incremental segmentation steps has several chal-
lenges, such as the special attention that has to be
paid to border edges of a cell, the reduced data set
used in each incremental step and thus the changed
order of sorted image edges. Furthermore the post-
processing can not be applied incrementally.

Finally we showed the application of our method
by integrating it into a panoramic mapping and track-
ing approach. Even if we do not reach the perfor-
mance of the PathFinder method and will not get the
exactly same results as the traditional EGBIS, our ap-
proach is a good trade-off between performance and
quality of results.
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Abstract. In this approach we estimate the depth
structure of sceneries in aerial images captured by
small-scale UAVs to improve the mosaicking of an
orthographic overview image. Initial image transfor-
mations derived from inaccurate position and orien-
tation data of UAVs are enhanced by the camera pose
obtained using Structure from Motion. Correspond-
ing points are then selected on a common ground
plane to find accurate image transformations. The
resulting mosaick preserves distances and minimizes
distortions. A rough placement is immediately pre-
sented and optimized incrementally if more images
are considered.

1. Introduction

For many applications, such as disaster response,
monitoring accident scenes and building sites, up to
date and spatially accurate overview images are re-
quired. In particular, after severe disasters such as
earthquakes or floodings wide area overviews are of
special interest and importance to guide first-time re-
sponders.

We are investigating an approach to generate a
wide area overview image from single images, pre-
serving spatial distances as seen in orthophotos. To
cover wide areas we favor aerial images from un-
manned aerial vehicles (UAVs), because images from
static cameras are hardly available due to the lack of
infrastructure in typical scenarios.

For taking the essential aerial images small-scale
UAVs, flying autonomously at low altitudes, are pre-
ferred to human operated planes or helicopters be-
cause of their advantages in availability, safety, ro-
bustness, ease of use and cost efficiency. Apply-
ing standard image registration algorithms to images

from low altitudes, often lead to perspective distor-
tions.

We achieve an overview image that can be per-
ceived as orthophoto, if we only consider the planar
ground and neglect objects on the ground. To keep
the uniform scale in an orthophoto we have to opti-
mize the image transformations accordingly. We do
not aim to generate true orthophotos, which would
require dense 3D models. Hence, images are taken
with a nadir view, i.e., orthogonal to the earth’s sur-
face, to reduce the perspective influences of the non-
planar scene and to allow a simplified orthorectifica-
tion.

The ideal solution would be, of course, a full 3D
reconstruction of the scene. But this is not feasible on
small scale UAVs due to limitations of payload, bat-
tery capacity and computational performance. Fur-
thermore, the resulting overview image should be
presented iteratively as quick as possible. Thus, the
images are processed already during flight of our
networked small-scale UAVs and interim results are
transmitted over the wireless channel with limited
bandwidth.

In our approach, rough image transformations
based on the metadata are refined by structure data
from overlapping images. The Structure from Mo-
tion technique is used to compute the scene structure
within overlapping regions to specifically match ar-
eas on the ground plane. For selecting correspond-
ing points only on the ground plane it is necessary to
apply a plane fitting algorithm to the structure data.
With the resulting points an image transformation is
computed that preserves distances while mosaicking.

Furthermore, the position and orientation data
from the UAV’s sensors is merged with the data ex-
tracted from images by Structure from Motion to es-
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timate the real camera orientation and position. This
allows a more accurate spatial referencing of points
on the ground plane and refined orthorectification of
single images.

The remainder of this paper is organized as fol-
lows: Section 2 gives a short overview on related
work. Section 3 elaborates challenges and research
questions of mosaicking aerial images incrementally
and leads to Section 4, that proclaims our approach
for mosaicking by means of the scene structure. Sec-
tion 5 presents mosaicking results and finally Sec-
tion 6 concludes the paper and gives some outlook
on future work.

2. Related Work

In many cases single transformations applied to
one image are sufficient to achieve appealing mo-
saicks. Recent works from Xing et al. [12] show
satisfactory results when applying perspective trans-
formations estimated by RANSAC (Random Sample
Consensus) [1] and optimized SIFT (Scale Invariant
Feature Tracker) features, taking images from air-
planes.

Wang et al. combines orthorectified images with
panorama images in [11] for 3D reconstruction of
buildings, where the user has to select lines on the
ground plane in the panorama images. The cam-
era pose is computed from these lines on the ground
plane, which represent footprints of buildings. The
camera is kept at the same position and rotated to
build a panorama image. After processing and man-
ual optimization the ground images are projected on
the proposed 3D model. For a larger area many
panorama images are taken and processed one by one
and are finally combined using bundle adjustment.

When considering hundreds of images with lit-
tle overlaps, the initial image transformation is es-
timated by the metadata as proposed in [13]. The
authors assume an exact nadir view of the camera
onto a planar scene and neglect perspective distor-
tions. Images annotated with metadata, i.e., altitude,
global position and camera pose, are aligned by their
global position. These transformations are refined af-
terwards by processing image correspondences.

In [14] the authors describe an effective method
for combining data from images, taken from an air-
plane, with data from inertial sensors to achieve a
seamless and geo-referenced mosaic. For the mo-
saicking the data from the inertial sensors and posi-
tion sensors are combined with image features with-

out 3D reconstruction or complex global registration.
Aerial images from airplanes are made with tele-
photo lenses and from high distances to objects do
not show perceptible perspective distortions.

Manually selected reference points on the ground
are the base for a mosaicking approach presented
in [9] that first extracts and matches feature points by
Multi-Scale Oriented Patches (MOPs), clusters im-
ages, and finally uses RANSAC-initialized bundle
adjustment to optimize all constraints over the en-
tire image set. A simultaneous optimization balances
the requirements of precise mosaicking and absolute
placement accuracy on an overview image.

In our work we go one step further and introduce a
basic structure and scene reconstruction with Struc-
ture from Motion to improve the metadata and image
based mosaicking to deliver high resolution and fre-
quently updated overview images.

3. Problem Definition

The goal is to mosaick a high resolution overview
image from single aerial images and at the same time
keep the uniform scale in the scenery. In order to
generate this orthographic overview image, high res-
olution images are taken from multiple UAVs. Each
image is annotated with metadata that contains posi-
tion and orientation information, among others, from
the UAV’s sensors.

Creating a mosaick by simple placing images
based on their metadata will lead to bad results, be-
cause this data is associated with uncertainty due to
inaccuracy from the low cost and light weight design
of small-scale UAVs. To cover wide areas from low
altitudes, typically up to 150m above ground, with a
minimum number of images it is obvious to use wide
angle lenses. The tolerance of the image boundaries,
projected on the ground, is in the range of 10 % of
the image size, explored in detail in the work [13].

Hence, the challenge is to compute image trans-
formations in the orthographic mosaick, while the
non-planar scenery induces significant perspective
distortions at individual images compared to aerial
images taken from high altitudes. Moreover, a de-
tailed 3D model of the scenery is not available.

We have to cope with several constraints, most
prominent are the resource limitations. We cannot
compute the whole overview image on the UAV nor
transmit all high resolution images to the ground or
other UAVs. For an online mosaicking a distributed
processing is of interest, considering that high res-

52



Figure 1. Initial image placement of images Ii by raw
metadata where i ∈ {1, 2, 3}. Mosaicking errors can be
explored on the ground plane. The trajectory of the UAV
is shown in red.

olution images are not available immediately at the
ground station.

To achieve a correct image placement that pre-
serves distances within the overview image we need
to estimate the camera position more accurately.

4. Structure Based Matching for Image Mo-
saicking

Our approach of mosaicking nadir aerial images
annotated with metadata can be split into two main
components:

I For the required online mosaicking the image
transformations can be done with raw metadata
without considering image contents.

II In parallel, these transformations can be refined
as soon as more accurate camera extrinsics (po-
sition and orientation data), are estimated.

To improve the accuracy of the camera extrinsics
from the metadata the Structure from Motion is used.

Hence, we model an optimization problem extend-
ing the two-step approach presented in [13] to find
appropriate image transformations for each image in
the set of aerial images. To avoid the accumulation
of local perspective errors the metadata from cameras
and the structure of the scene is taken into account.

4.1. Refined Estimation of Camera Extrinsics

In parallel to the rough placement, only by exploit-
ing metadata, a refinement of the image transforma-
tion is executed as outlined in the following. Due to

resource limitations the processing pipeline consid-
ers distributed execution; some processing steps can
be executed directly on the UAV.

1. Determine a pair of images with sufficient over-
lap.

2. Match extracted feature points within the over-
lapping areas.

3. Use Structure from Motion to compute camera
position and 3D structure for the matched fea-
ture points.

4. Merge the resulting camera extrinsics with the
raw extrinsics and orthorectify both images.

5. Use plane fitting in the 3D structure to select
feature points on the common ground plane and
estimate the final image transformation.

Find a pair of images with sufficient overlap.

First the overlapping image areas O are determined
by projecting the raw camera extrinsics from the
metadata PIMU, cf. Equation 17, onto the estimated
ground plane. In Figure 1 the projection by the meta-
data and initial state for three images is presented be-
fore computing the refined transformations.

From all available pairs that overlap, a pair of im-
ages {Ii, Ij} is selected to have the maximum over-
lapping area. Furthermore, for each image the fea-
tures are extracted and the feature descriptor vectors
δi and feature coordinates fi are stored. For the fol-
lowing processing steps only the features, a few kilo-
byte in size, are necessary, instead of the whole im-
age of up to 4 megabytes (compressed). This al-
lows the reduction of the communication bandwidth
significantly. In this approach we currently use the
SIFT (Scale Invariant Feature Tracker) features [2],
because it is has been proven to be very powerful [6].

{δi, fi} = SIFTextract (Ii) , {δi, fi} ∈ F i (1)

Match extracted feature points within the over-
lapping areas.

Only features within the overlapping area Oi,j =
Ii∩ Ij are considered for the matching. This reduced
feature set F ′i ⊆ F i for image Ii and F ′j ⊆ F j

for image Ij in the overlapping image area Oi,j are
matched simply by a nearest neighbor search. The
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Figure 2. Matched features in the Euclidean scene recon-
struction. Note, only the inliers on the same plane are
plotted for a better visualization.

minimum Euclidean distance for the invariant feature
descriptor vector δ′i of feature f ′i ∈ F ′i is compared
to a descriptor vector δ′j of f ′j ∈ F ′j to find corre-
spondences as suggested by Lowe [5].

{δ′i, f ′i} ∈ F ′i, {δ′j , f ′j} ∈ F ′j (2)

M = {F ′i,F ′j |f ′i , f ′j ∈ Oi,j} (3)

{f̂i, f̂j} = match
(
F ′i,F

′
j

)
(4)

Use Structure from Motion to compute camera
position and 3D structure for the matched feature
points.

From the matched features f̂i, f̂j in the overlapping
image area Oi,j we compute the scene structure of
these points by triangulation. Thus, the 3D struc-
ture, cf. Figure 2, i.e., elevation levels and the cam-
era pose, is reconstructed by an estimation of the
epipolar geometry [4]. The epipolar geometry, de-
fined by the fundamental matrix F , essential matrix
E, and the epipoles e1 and e2 is computed by Struc-
ture from Motion [3, 7]. Since we are using cali-
brated cameras, the camera calibration matrix K is
known, the camera extrinsics PSfMi , cf. Equation 8,
are determined by a singular value decomposition
(SVD) from the essential matrix and epipoles [8].

E = [t̂]×R̂ = U ΣV, F = K−T EK−1 (5)

x̂T
i Ex̂i = xT

i K
−TEK−1f̂i = xT

i F f̂i (6)

The essential matrix is estimated by using
RANSAC within the matched features f̂i and f̂j to
reduce outliers that do not match the approximated
resulting essential matrix, cf. Equation 6.

In Figure 3 the structure inliers for each image are
presented in the image plane. The point coordinates
of selected feature points f̂ in image Ii and Ij are
mapped to 3D point coordinates x = [x, y, z]T ∈
R3. With the estimated camera extrinsics, cf. Equa-
tion 5, the Euclidian coordinates of the scene points
xi ∈Xi and xj ∈Xj are reconstructed.

Merge the resulting camera extrinsics with the
raw extriniscs.

The camera pose PSfM from the image data is merged
with the camera orientation and position PIMU from
the metadata. With the relative coordinates from
Structure from Motion and the scaling from the meta-
data, the resulting camera extrinsics PC are com-
puted, cf. Equation 9. PC describes the projective
view of the camera that is used to transform images
to their nadir view before the mosaicking. This pro-
cess is known as orthorectification.

PIMUi = [RIMUi , TGPSi ]4×3 (7)

PSfMi = [R̂i, t̂i]4×3 (8)

To project and maintain the spatial coordinates and
distances on the ground plane the rotation compo-
nent RCi of camera pose PCi is used. The optimized
camera pose PCi replaces the first estimation from
the raw metadata for image Ii.

PCi = [RCi , TCi ]4×3 (9)

Fitting a ground plane into the 3D structure

A subset of points from the 3D points Xi and Xj

is adjudged as optimum for the final image transfor-
mation computation by the following constraint: All
points on the same elevation level, respectively plane,
preserve spatial relations with the image transforma-
tion Tmatch,i, cf. Equation 15. Hence, it is impor-
tant to find those points that avoid perspective distor-
tions and inaccurate distances in the final mosaicking
stage.

Inliers on the common plane XΠ are determined
from the structure points in Xi and Xj by fitting a
plane to all available points with RANSAC. The fit-
ting function for RANSAC is the plane function for
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plane Π in Equation 10, that is further optimized to
be the most perpendicular plane to the camera’s prin-
cipal axis. Therefore, the angle between the plane
normal vector ~n and the principle axis vector ~p, de-
rived from PCi , is minimized, assuming a horizontal
ground plane.

Π = ~n · q arccos(|~n| · |~p|) ≤ ε (10)
~n = (x′2 − x′1)× (x′3 − x′1) (11)

XΠ = {x′1,x′2,x′3} ∈X (12)

At least the three points defining the plane are suffi-
cient to compute the matching transformation Tmatch,i
in the order of a similarity transformation. For an
improved matching function, e.g., by estimation and
fitting again with an approximation approach, addi-
tional points x′i can be selected by their closest dis-
tance d to the plane within a certain threshold γ.

d = |~n · ~v| ~v = x′ − q (13)

x′i ∈XΠ | d ≤ γ (14)

The matching transformation Tmatch applied to the
whole image is computed by the normalised direct
linear transformation algorithm given by Hartley and
Zisserman [3].

x′ = Tmatch x = [sR, t]3×3 x (15)

4.2. Incremental Mosaicking

After refining the image transformations and cam-
era poses with the structure base matching the inac-
curate mosaicking from raw data can be improved as
expressed in the following.

Raw mosaicking with camera extrinsics

Single images Ii are merged with function
⊎

to the
overview image I , cf. Equation 16. Hence, the merg-
ing function

⊎
is an arbitrary image fusion function.

For demonstration we use a simple overlay function
with alpha-blending. Initially images are placed by
transformations derived from PIMU, cf. Equation 17,
based on their annotated GPS and IMU data. The
images are orthorectified by the projective transfor-
mation R̃i and placed on the overview image by the
transformation Tpos,i (cf. Figure 1).

I =

n(t)⊎

i=1

TiIi (16)

PIMUi = [RIMUi , TGPSi ]4×3 ⇒ {R̃i, Tpos,i} (17)

Refine the mosaicking with the output from the
structure based matchting

Next, the refinement of the global mosaicking is
achieved by the structure based matching, as de-
scribed in Section 4.1. The optimized camera ex-
trinsics matrix PCi , now improves the orthorectifica-
tion of each image, opposed to R̃i. Furthermore, the
initial placement by Tpos,i is enhanced to the image
alignment based on the scene structure.

Finally, the images are mosaicked with neighbor-
ing images by the transformation Tmatch,i that is ap-
proximated to optimize the output quality within the
reduced search space in the overlapping image areas.

Hence, omitting perspective distortions that may
propagate over images is one benefit of using projec-
tive transformations only for single images. When
aligning individual images Ii to an overview image I
by Tmatch,i only lower order transformations like the
similarity transformation are allowed.

The resulting optimized image transformation Ti
applied in the final mosaicking stage, cf. Equa-
tion 18, is composed from the raw metadata position
and structure based transformation. The perspective
projection RCi derived from the camera’s intended
pose PCi orthorectifies the image into nadir view,
while the global alignment is applied with the refined
global position TCi .

Ti = RCi · TCi · Tmatch,i (18)

5. Preliminary results

In the current state of evaluations the method of
SIFT feature extraction is used for finding correspon-
dences. However, the used feature extraction and
matching methods are exchangeable, but SIFT shows
sufficiently good results for our approach. The fea-
tures are extracted from a copy of each image Ii, that
is downscaled to 816× 612 pixels.

In Figure 2 the result of the Structure from Mo-
tion point reconstruction in the overlapping area is
presented. Note, only points on the common plane
{x′i,x′j} ∈ XΠ and the two cameras PCi , PCj are
plotted for better visualization. Figure 4 shows the fi-
nally transformed image Ii on the previous overview
image. Image Ii and image Ij of the current test set
I where i = 1, j = 2 are orthorectified by RCi , RCj

derived from PCi , PCj beforehand. The selected fea-
tures on the common plane are marked with red and
blue crosses.

55



Image Coordinates X (px)

Im
ag

e 
C

oo
rd

in
at

es
 Y

 (
px

)
Extracted features of Image 2 (left) and Image 3 (right)

 

 

0 200 400 600 800 1000 1200 1400 1600

0

100

200

300

400

500

600

Figure 3. Image I1 (left) and Image I2 (right) with red markers on the remaining inliers from the Structure from Motion
in the overlapping image region. These points show the input X1 and X2 for the plane fitting.
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Figure 4. Matched features on the same plane in image I1
and I2

In the next iteration with the increased set of im-
ages the image I3 has the maximum overlap with im-
age I2. The overview image presented in Figure 5
shows the previously mosaicked images I1 and I2

and the newly transformed image I3 mosaicked on
top. The red and blue markers show the common
plane points from {x′2,x′3} ∈XΠ again.

Moreover, in Table 1 the evolution of the features
used for the final transformation optimization is pre-
sented where the significant reduction of the plane
inliers to 21 in I1 ∩ I2 and 13 in I2 ∩ I3 can be ex-
plored.

For each image and every pair of images the qual-
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Figure 5. Matched features on the same plane in image I2
and I3 on top of image I1. The correlation on the ground
plane is excellent compared to the distortion effects of ob-
jects in the scene.

ity function Q is evaluated and its result is presented
in Figure 6(a) for I1, I2 and Figure 6(b) for I2, I3.
Figure 6 shows the pixel deviation of the inliers x′i on
the ground plane, which can be directly transformed
to spatial deviations when projecting with the camera
position and pose PCi and PCj . The correlation error
for those ground plane inliers shows excellent results
in a radius r = 5 pixels.
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Processing Stage I1 I2 I3

Feature Extraction 1660 1492 1518
Reduced Search Range I1, I2 342 311
Correlation Matching I1, I2 247 247
SfM inliers I1, I2 201 201
Plane Fitting I1, I2 21 21
Reduced Search Range I2, I3 568 602
Correlation Matching I2, I3 548 548
SfM inliers I2, I3 483 483
Plane Fitting I2, I3 13 13

Table 1. The number of feature points can be significantly
reduced from considering only overlapping regions to in-
liers on the same plane.

(a) Spatial distance error in pixels after transformation of image
I2 on image I1

(b) Spatial distance error in pixels after transformation of image
I3 on image I2

Figure 6. Distance deviations of points on the ground
plane in the final mosaick.

Transformation Quality

The quality function Q weights the spatial accuracy
function Gi(Ii, I) and the pixel correlation function
Ci(Ii, I) by α, (0 ≤ α ≤ 1) defined in Equation 19.
The distance function of a projected feature point xi

on the ground plane of image Ii to the correspond-
ing feature point on the overview image I is denoted
by d and c measures the pixel correlation in a small
neighborhood r of the feature point coordinate to the
corresponding area on the overview image I .

Q =
n∑

i=1

(αGi(Ii, I) + (1− α)Ci(Ii, I)) (19)

Gi(Ii, I) =
1

m

m∑

k=1

d(xk ∈ Ii, I) (20)

Ci(Ii, I) =
1

m

m∑

k=1

c(xk ∈ Ii, I, r) (21)

|r = β size(Ii)

6. Conclusion and Future Work

In this approach we have shown that distorted
aerial images from low altitudes and taken with wide
angle lenses can still be used to build an orthographic
overview image that preserves a uniform scale on the
ground plane. We compute the structure of the scene
with Structure from Motion and optimize a rough
mosaicking from annotated metadata of the images,
i.e., GPS and IMU data of the UAV, to an accurate
mosaick with matched correspondences on a com-
mon ground plane.

In this work, the results from Structure from Mo-
tion are only used to find a common plane and to
enhance the estimation of the camera pose. This im-
proves the spatial projection on the ground plane and
delivers more accurate image transformations. We
have experienced that the computational effort is sig-
nificantly reduced when limiting the search range to
structure inliers on the same plane and determining
corresponding images from a large set by their pro-
posed positions.

We will further analyze enhanced Struc-
ture from Motion estimation algorithms and
optimization strategies for fitting common planes
in adjacent images in the 3D domain. The recon-
struction of the 3D structure of the scene can be
further optimized by bundle adjustment [10]. We
will investigate whether this method will get along
with the available resources.

In future steps this additional knowledge about
the scene could be used to generate a detailed depth
model or mark objects in the scene.
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Abstract. In this paper, we propose an approach to
an algebraic computation of a projective transforma-
tion matrix that upgrades a 3D reconstruction. Con-
straints are derived from images of segments of equal
lengths and yield a set of polynomial equations which
we try to solve by the means of Gröbner bases. Since
a straightforward computation is infeasible for this
problem, a strategy is introduced in which a Gröbner
basis is constructed for a special template data first
and the actual data is processed afterwards accord-
ing to the resulting procedure template. We present
experiments that encourage the assumption that this
method is applicable in general.

1. Introduction

The presented approach is motivated by problems
arising in the field of medical robotics and image-
guided surgery. Within that scope, accurate and ro-
bust 3D reconstruction and tracking of deformable
tissue is a fundamental but difficult task, because
such surfaces often lack distinctive features and de-
tailed texture or they are partially covered by liquids.
Various approaches to 3D tissue deformation recov-
ery have been published [15, 18, 14]. Some of them
apply optical markers and thus require special sur-
gical equipment to cope with the mentioned issues.
But as space is strongly limited in this environment,
methods without the need of extra instrumentation
are preferable.

The instruments used for the particular surgical
procedure are anyway present in the scene and al-
most always visible. They are rigid and mostly well
detectable. Consequently, it seems utile to benefit
from these properties in order to improve the tissue
reconstruction. Though, relying on exact dimensions
of the tools is not advisable, because detailed specifi-
cations of commercial items are hardly to get and the

instruments are changed quite frequently. Often, var-
ious scissor-like instruments are applied whose two
legs have equal lengths. From this fact a constraint
could be derived in order to upgrade a preliminary
projective reconstruction and the corresponding cam-
era projection matrix.

The approach in [13] is based on that idea.
Therein, the authors introduce a method to recon-
struct dynamic articulated structures from multiple
uncalibrated views assuming affine cameras. In par-
ticular, they aim to track human motion in sports
broadcasts. An affine 3D reconstruction is com-
puted first. Constraints are derived from the fact
that the lengths between rotational joints of the body
remain constant over time. As parallel projection
is assumed, these equations are linear and can be
solved via singular value decomposition. Although
the affine camera model is a reasonable assumption
in recordings of sport events where long focal lengths
are used, it is not applicable to the case of endoscopy
where the observed surface is located very close to
the camera.

Assuming perspective projection, the constraints
derived from equal lengths of observed objects con-
stitute a system of non-linear algebraic equations.
Polynomial systems occur in various computer vi-
sion problems and many of them have been solved
by means of Gröbner bases [7, 8, 17]. But there
is no easy, straightforward method to solve general
polynomial systems efficiently and robustly. Instead,
each particular problem usually requires the manual
design of a suitable Gröbner basis solver. However,
an automatic generator of minimal problem solvers
was presented in [12]. But it turned out to be inap-
plicable to solve the present problem in preliminary
tests.

In this paper, we present ongoing work to find al-
gebraically a transformation to upgrade a reconstruc-
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tion based on constraints derived from equally dis-
tant pairs of points. The following section gives a
description of the problem. Section 3 briefly intro-
duces the notion of Gröbner bases. In section 4, we
explain a possible strategy to solve the problem by
constructing a Gröbner basis for template data first
and processing the actual data according to the re-
sulting procedure template afterwards. We give an
overview of the experiments we have performed so
far in section 5 and summarize our conclusions in
section 6.

2. Problem formulation

The image projection of a scene point Xi, repre-
sented by its homogeneous coordinates [10], is de-
noted as

xi ∝ PXi, (1)

i.e. an αi ∈ R exists, such that xi = αiPXi.
Let us assume that we have measured n image co-

ordinates x̂i ∝/ xi, i ∈ N, and computed P̂, P̂ ∝/ P,
as well as X̂i ∝/ Xi, from those points, such that

x̂i ∝ P̂X̂i (2)

Now, we want to find a non-singular matrix H ∈
R4×4 which upgrades X̂i and P̂ by a projective trans-
formation, such that

PXi ∝ P̂H−1HX̂i (3)

and
Xi ∝ HX̂i. (4)

In order to reduce the number of unknowns in H,
we have to fix the reference frame. For this pur-
pose, we choose three of the preliminarily recon-
structed points X̂i to determine the origin, the x-
axis and the the xy-plane. From now on, let us as-
sume that all points X̂i have already been mapped
by a similarity transform such that there exist three
points (0, 0, 0, 1)>, (x̂i, 0, 0, 1)> and (x̂j , ŷj , 0, 1)

>,
x̂i, x̂j , ŷj ∈ R \ {0}, which determine the coordinate
frame.

In order to map the point of origin to itself,
(0, 0, 0, 1)> ∝ H(0, 0, 0, 1)>, points on the x-
axis to the x-axis, (xi, 0, 0, 1)> ∝ H(x̂i, 0, 0, 1)

>,
and points in the xy-plane to the xy-plane again,
(xj , yj , 0, 1)

> ∝ H(x̂j , ŷj , 0, 1)
>, the transforma-

tion matrix has to be of the form

H =




h1 h2 h3 0
0 h4 h5 0
0 0 h6 0

h1 − h9 h7 h8 h9


 . (5)

Two constraints on H easily arise from that. First,
the projection matrix has to be invertible and there-
fore H must fulfill

0 6= det(H) = h1h4h6h9. (6)

Secondly, we want to avoid solutions that yield
points at infinity. Hence, it has to be

0 6= X4i = H4X̂i, ∀i ∈ N, i ≤ n (7)

with H4 denoting the 4-th row of H andX4i describ-
ing the 4-th element of Xi.

Let us now assume that there are two pairs of
points, (Xi, Xi′) and (Xj , Xj′), with equal Eu-
clidean distances between the points of each pair
‖Xi −Xi′‖ =

∥∥Xj −Xj′
∥∥, and the indices i, i′, j,

j′, where i 6= i′, j 6= j′ and i′ 6= j′, are known to
us. Replacing Xi by HX̂i, yields the following con-
straint on H:

0 = (H4X̂j)
2(H4X̂j′ )

2
3∑

l=1

(HlX̂iH4X̂i′ −H4X̂iHlX̂i′ )
2

− (H4X̂i)
2(H4X̂i′ )

2
3∑

l=1

(HlX̂jH4X̂j′ −H4X̂jHlX̂j′ )
2 (8)

where Hl denotes the l-th row of H.
Equation (8) constitutes a homogeneous polyno-

mial of degree 8 in 9 variables, with 808 terms in
the general case. Therefore, at least 9 quadruples
(Xi, Xi′ , Xj , Xj′) are required, to obtain the 9 equa-
tions which determine H. Introducing two more vari-
ables h10 and h11, we can rewrite the inequalities (6)
and (7) as equalities [5]

0 = 1− h1h4h6h9h10 (9)

0 = 1− h11
n∏

i=1

H4X̂i (10)

Now, the problem is to solve the system of m =
m′ + 2 algebraic equations, m′ ≥ 9, in 11 variables
h1, . . . , hm,

0 = f1(h) = · · · = fm(h). (11)

3. Gröbner bases
Systems of polynomial equations can

be solved efficiently by means of Gröbner
bases [9]. F denotes the set of m polynomials
F = {f1(h), . . . , fm(h)|fi(h) ∈ K[h1, . . . , hn]}
in n variables h = (h1, . . . , hn) over a field K.
The ideal I = 〈F 〉 generated by F is the set of all
polynomial linear combinations

I =

{
m∑

i=1

fi(h)qi(h)|qi(h) ∈ K[h1, . . . , hn]

}
. (12)
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A Gröbner basis is a special set of generators with
desirable algorithmic properties. In particular, a
Gröbner basis of an ideal I has the same set of solu-
tions as I . But similar to a system of linear equations
after Gaussian elimination, the solutions of I can be
easily identified in the corresponding Gröbner basis
w.r.t. a lexicographical monomial ordering [9].

Theoretically, the Gröbner basis can be computed
from any generating set of I by a method called
Buchberger’s algorithm [9]. The basic mechanism
is to take each pair (fi(h), fj(h)) from F , fi(h) 6=
fj(h), compute its S-polynomial (see appendix), re-
duce it by F and add the remainder to F if it is not
zero. This is done until the S-polynomials of all pairs
in F reduce to zero.

Unfortunately, this problem is known to be
EXPSPACE-complete [11]. Nevertheless, much bet-
ter bounds can be found for many cases that actu-
ally occur in practice and several well-known meth-
ods exist to improve the basic algorithm. But they
do not guarantee that a given practical problem can
be solved within the limits of available memory. Our
first attempts to solve the system of polynomial equa-
tions with standard methods for Gröbner bases com-
putations in Maple 12, Macaulay2 [3] and SINGU-
LAR [4] were not successful due to a lack of memory
after some time of computation.

4. Strategy to solve via template data

As a straightforward computation of a Gröbner ba-
sis from the set of equations introduced in section 2
is not feasible, an alternative strategy to solve this
problem has to be found. We propose to construct a
Gröbner basis for a simpler template set of polynomi-
als first. These polynomials are generated in the same
way as explained above and differ from the original
set only in its coefficients. The underlying data deter-
mining the coefficients must be chosen in such a way
that the construction of the Gröbner basis from that
template set can be done within a reasonable amount
of time.

We assume that the sequence of operations to con-
struct the Gröbner basis is basically identical for dif-
ferent sets of polynomials, given that the equations
in those sets contain the same monomials and differ
only in their coefficients [19]. With this assumption,
we rely on the fact that Buchberger’s algorithm and
its improved variants do not consider the values of
non-zero coefficients for the choice of critical pairs,
the detection of unnecessary pairs or the selection of

reductors.
During the computation of the template set we log

which pairs effectively contribute to the final basis,
i.e. those pairs that form S-polynomials which later
do not reduce to zero. In the second step, the Gröbner
basis is constructed from the original set. But S-
polynomials are only computed for those pairs iden-
tified before. Thus, a lot of computation time usually
wasted for reducing S-polynomials to no avail can
be saved. Succeeding in that, we will be able to solve
systems of polynomial equations that cannot be com-
puted by direct construction of a Gröbner basis up to
now.

The crucial point in this scheme is to find an ap-
propriate template system that is simple enough to be
feasible yet general enough to be used for the original
problem. The difficulty is in the fact that having iden-
tical monomials in the template polynomials and in
the original is required to achieve the same sequence
of computation but does not necessarily lead to the
desired result.

To generate the template set, we simplified the
general problem by using small integers in a finite
field Zp instead of real numbers as point coordinates.
Moreover, we found that a suitable template sys-
tem can be derived from integer points with equal
distances ‖Xi −Xi′‖ and

∥∥Xj −Xj′
∥∥ being also

integer numbers. That means each pair of points
(Xi, Xi′) and (Xj , Xj′) has to fulfill

d2 = ‖Xi −Xi′‖2 = ‖Xj −Xj′‖2 = a2+b2+c2, (13)

where a, b, c, d ∈ Z, d 6= 0, thus forming a
Pythagorean quadruple if a, b, c ∈ Z \ {0} or a
Pythagorean triple respectively if a = 0, b 6= 0 and
c 6= 0. The possibility to use such a special poly-
nomial system as a template for the general prob-
lem is justified by the fact that every triple in R3

has a sufficiently precise scaled representation as a
Pythagorean triple in Z3 [16]. Hence, we are look-
ing for a generic Pythagorean case which is feasible
to compute and at the same time implementable for a
wide range of practically occurring systems originat-
ing from real coefficients. Experiments to find such
cases are presented in the next section.

5. Experiments

The construction of a Gröbner basis for such
a Pythagorean case to generate a template as ex-
plained above is still time consuming. Previously,
we conducted some experiments where we used the
slimgb algorithm incorporated in SINGULAR, an
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open source computer algebra system for polyno-
mial computations, to construct Gröbner bases from
several template systems. Those computations took
about 15 minutes for each template system. How-
ever, SINGULAR turned out to be unsuitable to
adopt the proposed strategy.

Consequently, we implemented our own version
of the slimgb algorithm, described in [6], in C++ us-
ing CoCoALib-0.99 [1], a library for computations
in commutative algebra. As the current implementa-
tion is not as optimized as the one in SINGULAR,
computation time amounts to approximately 75 min-
utes for the same template systems. Thus, optimizing
the implementation suggests itself. Before we spend
a lot of time doing this, presumably trading in clar-
ity of the code and possibilities to adapt it easily to
new ideas for faster computation, we want to be sure
that these efforts are likely to lead to a practicable
method.

For this reason, simpler constraints are used for a
start to provide an evidence that the strategy outlined
in the previous section is effectively applicable. In-
stead of assuming equal lengths of two segments, we
act on the assumption of known distances between
the two points of each pair (Xi, Yi), ‖Xi − Yi‖2 =
d2i for i = 1, . . . , N .

That simplifies equation (8) to

fi(h) =

3∑

l=1

(HlX̂iH4Ŷi −H4X̂iHlŶi)
2 − (H4X̂iH4Ŷi)

2d2i

= 0 (14)

yielding a homogeneous polynomial of degree 4 in 9
variables with 97 terms in the general case.

The additional two constraints, which ensure that
H is non-singular and points at infinity are avoided,
are applied as in equations (9) and (10)

fN+1(h) = 0 = 1− h1h4h6h9h10 (15)

fN+2(h) = 0 = 1− h11
n∏

i=1

H4X̂iH4Ŷi. (16)

All 6 experiments presented here follow the same
workflow. In the first step of each experiment, ten
template sets F ′k and test sets Fk are generated, k =
1, . . . , 10. Each template set F ′k contains 17 polyno-
mials f ′i(h) that are constructed from template data
comprising 15 pairs of points (X ′i, Y

′
i ) and a matrix

H′ according to equation (5). In general, this data
is generated from random numbers but some restric-
tions apply.

In order to determine the coordinate frame, the
first two pairs of points must have the form

X ′1 = (0, 0, 0, 1)>, Y ′1 = (y′1,1, 0, 0, 1)
> (17)

X ′2 = (0, 0, 0, 1)>, Y ′2 = (y′1,2, y
′
2,2, 0, 1)

>, (18)

whereas the remaining 13 pairs are

X ′i = (x′1,i, x
′
2,i, x

′
3,i, 1)

>, Yi = (y′1,i, y
′
2,i, y

′
3,i, 1)

> (19)

with x′l,i 6= 0 and y′l,i 6= 0 for all l = 1, 2, 3 and
i = 1, . . . , 15.

Additionally, each pair (X ′i, Y
′
i ) must form a

Pythagorean quadruple (x′1,i−y′1,i, x′2,i−y′2,i, x′3,i−
y′3,i, d), such that

d′2i =
∥∥X ′i − Y ′i

∥∥2 =
3∑

l=1

(x′l,i − y′l,i)2 (20)

where d′i ∈ Z \ {0} for all i = 1, . . . , 15.
Furthermore, the pairs of points as well as the

matrix H′ have to be selected in such way that the
15 polynomials f ′i(h) ∈ F ′k resulting from equa-
tion (14) using the pairs of points (X̂ ′i, Ŷ

′
i ), where

X̂ ′i = H′−1X ′i and Ŷ ′i = H′−1Y ′i for i = 1, . . . , 15,
have the maximum number of terms which is 3 if
i = 1, 9 if i = 2 and 97 otherwise. Together with
the two polynomials that we get from equations (15)
and (16), this constitutes a set of 17 template polyno-
mials F ′k = {f ′1(h), . . . , f ′17(h)}.

Basically, the test sets Fk are generated in the
same way from test data as explained above for the
case of template sets. But there are two major dif-
ferences. One distinction is that the pairs of points
(Xi, Yi) in the test data are not required to form
Pythagorean quadruples according to equation (20).
The other difference concerns the underlying field
from which random numbers are generated. For the
template data, all random numbers are integers, such
that x′l,i, y

′
l,i, h

′
j ∈ Z for all l = 1, 2, 3, i = 1, . . . , 15

and j = 1, . . . , 11. This does not necessarily hold for
generating test data as random numbers are rational
in some experiments. However, the interval of ad-
missible numbers is equally limited in both cases, i.e.
x′l,i, y

′
l,i, xl,i, yl,i ∈ [−20, 20] for all l = 1, 2, 3 and

i = 1, . . . , 15, and h′j , hj ∈ [−10, 10] with h′j 6= 0
and hj 6= 0, for all j = 1, . . . , 11.

In the second step of each experiment, a reduced
Gröbner basis G′k is constructed for the ideal gener-
ated by each template set F ′k. The algorithm corre-
sponds mostly to the one in [6] and is implemented
in C++ using CoCoALib-0.99 [1]. The computa-
tion of coefficients is done in the finite field Zp with
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p = 3322513141 as this proved to be a sufficiently
large prime number in earlier experiments.

During Gröbner basis construction, the procedure
template is recorded. In that, the pairs of polynomi-
als whose S-polynomial does not reduce to zero are
logged, as well as the new position of the reduced
S-polynomial in the ordered basis. In that way, time
is saved later during the computation of the test data
according to this template because the reduction of
S-polynomials that do not contribute to the result is
avoided. Furthermore, the reduced polynomials do
not have to be compared to the ones already in the
current basis (which contains up to 834 polynomials
in these experiments) to find the appropriate position.

Subsequently, all test sets Fk, k = 1, . . . , 10,
are processed according to the template created from
F ′k∗ for several k∗ ∈ {1, . . . , 10}. In this step, co-
efficients are in principle computed in R. Though
in practice, exact computation in R is impossible
and additional difficulties arise from accumulating
rounding errors of floating point arithmetic. As a
consequence, some coefficients are very small but
not exactly zero causing terms not to cancel out each
other correctly. In principle, this can be avoided by
memorizing when which coefficients get zero during
the initial Gröbner basis construction from template
data. Then, the corresponding coefficients are set to
zero during Gröbner basis construction of the test
data according to the recorded scheme, following a
simplified version of the proposition in [20].

However, this would take a considerable amount
of memory and computation time. Hence, we favour
the more practicable way of simply processing the
template data once again, simultaneously with the
test data. Whenever a coefficient of the template data
(computed in Zp) becomes zero, the corresponding
coefficient in the test data is set to zero, too. Since the
CoCoALib provides no means to realize this tech-
nique of computing ”shadow” coefficients, we had to
implement the algorithm for Gröbner basis construc-
tion from scratch without that library. To be able
to handle large integers and high precision floating
point coefficients, we employ the GNU Multiple Pre-
cision Arithmetic Library [2] in our implementation.

In the final step of each experiment, the reduced
Gröbner basis Gk,k∗ , that was constructed from the
test set Fk using the template generated with tem-
plate set F ′k∗ , is evaluated. As we created the test data
artificially, we know the desired values for the actual
unknowns h1, . . . , h11. If these given h1, . . . , h11

are in the solution set of Gk,k∗ , i.e. if all gj(h) =
0 ∀gj(h) ∈ Gk,k∗ when those values are inserted
into the polynomials gj(h), then F ′k∗ constitutes a
suitable template set for the test set Fk. If this holds
for all test sets Fk, especially for all Fk 6= F ′k∗ in the
considered experiment, we call the template gener-
ated by F ′k∗ an adequate template.

As our ultimate goal is to solve many general real-
world cases, we are looking for templates that can
be applied to correctly construct Gröbner bases from
as many test sets as possible. The purpose of the fol-
lowing experiments is to verify that we can create ad-
equate templates from simplified Pythagorean cases
computed in Zp that give correct results when used
to process more general non-Pythagorean cases in R.
For this reason, we start the experiments with very
restricted, thus simple, template and test sets, and in-
crease the generality of test data successively.

All experiments presented here led to the same
template procedure and the same form of reduced
Gröbner basis G′k, varying only in the coefficients of
g′j ∈ G′k,

g′1 = h′69 h
′
10 + c′1h

′
5h
′
6 g′8 = h′26 + c′8h

′2
9 (21)

g′2 = h′710 + c′2h
′
5h
′
6h
′
11 g′9 = h′1 + c′9h

′
9 (22)

g′3 = h′69 h
′
11 + c′3h

′6
10 g′10 = h′2 + c′10h

′
9 (23)

g′4 = h′5h
′4
9 h
′
10 + c′4h

′
6 g′11 = h′3 + c′11h

′
9 (24)

g′5 = h′6h
′4
9 h
′
10 + c′5h

′
5 g′12 = h′4 + c′12h

′
5 (25)

g′6 = h′5h
′
6h
′2
9 h
′
10 + c′6 g′13 = h′7 + c′13h

′
9 (26)

g′7 = h′25 + c′7h
′
1h
′
9 + c′15h

′2
9 g′14 = h′8 + c′14h

′
9. (27)

Consequently, the reduced Gröbner bases Gk that re-
sult from processing the templates differ from G′k
also only in the coefficients of the contained poly-
nomials.

Generating the template took about 1:30min for
each F ′k and processing time of Fk was 3min on av-
erage. Certainly, this can still be accelerated. Any-
way, the fact that processing the test cases takes ac-
tually longer than generating the templates does not
contradict our previously claimed objective of saving
computation time by applying the proposed strategy.
Ideally, the template generation would be required
only once in order to process all cases of a particular
class of such problems which cannot be solved oth-
erwise. In addition, the ratio of computation times is
likely to be reciprocal for the more general problem
of equal but unknown distances.

Results of the experiments are displayed in the fol-
lowing tables. The symbol 3 in the third row (F ′3)
and second column (F2) indicates, e.g., that during
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the respective experiment, gj = 0 for all gj ∈ G2,3

resulting from processing the test set F2 with the
template produced by F ′3. The symbol 5 is used
when at least one gj ∈ Gk,k∗ exists, such that gj 6= 0.
Thus, the template generated by F ′k∗ is an adequate
template if all entries in the respective row contain a
check mark.

Experiment 1

The first experiment is performed to see if the
presented method can be applied at least to differ-
ent sets of polynomials that all originate from data
that forms Pythagorean quadruples, such that equa-
tion (20) holds. The test data in this case is the
same as the template data, i.e. Fk = F ′k for all
k = 1, . . . , 10. Furthermore, we restrict the the diag-
onal elements of H′k to be 1, h′1 = h′4 = h′6 = h′9 =
h′10 = h′11 = 1, in order to ensure that all elements
of H′−1k , and thus all X̂ ′i, Ŷ

′
i as well, are integers.

The diagonal entries of table 1 show expectedly
that the coefficients computed in R within the re-
duced Gröbner basis for each test set Fk using the
template of the respective template set F ′k are cor-
rect (because here Fk = F ′k for all k). Moreover,
we see that the sets F ′6, F ′7 and F ′10 provide an ade-
quate template, in the above explained sense, for all
test sets F1, . . . , F10. It would be interesting to inves-
tigate the reasons why only some sets F ′k constitute
adequate template sets.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F ′1 3 5 3 3 3 5 5 3 5 5

F ′2 5 3 5 5 5 5 5 5 5 5

F ′3 3 5 3 3 3 5 5 3 5 5

F ′4 5 5 5 3 5 5 5 5 5 5

F ′5 3 5 3 3 3 5 5 3 5 5

F ′6 3 3 3 3 3 3 3 3 3 3

F ′7 3 3 3 3 3 3 3 3 3 3

F ′8 3 5 3 3 3 5 5 3 5 5

F ′9 5 3 5 5 5 5 5 5 3 5

F ′10 3 3 3 3 3 3 3 3 3 3

Table 1. Results of experiment 1

Experiment 2

Now, we want to find out whether the template sets
from the previous experiment can be used to pro-
cess data that does not originate from Pythagorean
triples and quadruples. Therefore, we reuse the tem-
plate sets F ′k from the previous experiment, but gen-

erate new test sets Fk, such that F ′k 6= F ′k for all
k = 1, . . . , 10. This test data is as well generated
from random integers, hence xl,i, yl,i, hj ∈ Z for
all l = 1, 2, 3, i = 1, . . . , 15, and j = 1, . . . , 11.
But test points do not form Pythagorean quadruples,
therefore equation (20) does not hold. As before, di-
agonal elements of H′ and H are set to 1 to guarantee
that the elements of the corresponding inverse matri-
ces are also only integers.

This experiment shows that the templates which
proved be adequate in the first experiment are also
applicable to correctly process non-Pythagorean in-
teger test cases. As expected, templates that failed in
the experiment before, are not successfully applica-
ble here either and not all of them were tested.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F ′1 3 5 5 3 5 3 3 3 3 3

F ′2 5 5 5 5 5 5 5 5 5 5

F ′3 3 5 5 3 5 3 3 3 3 3

F ′4 5 5 5 5 5 5 5 5 5 5

F ′6 3 3 3 3 3 3 3 3 3 3

F ′7 3 3 3 3 3 3 3 3 3 3

F ′10 3 3 3 3 3 3 3 3 3 3

Table 2. Results of experiment 2

Experiment 3

Next, we release the restrictions on the matri-
ces Hk for creating test sets. New test sets Fk

are generated similarly as in the previous experi-
ment using random xl,i, yl,i, hj ∈ Z that do not
form Pythagorean quadruples for all l = 1, 2, 3,
i = 1, . . . , 15 and j = 1, . . . , 11. But now, instead of
setting the diagonal elements of Hk to one, they have
to be a power of 2, h1, h4, h6, h9 ∈

{
±n2|n ∈ N

}
,

in order to avoid repeating decimals in H−1k which
possibly introduce additional errors when truncated
at the beginning of the procedure. The same tem-
plate sets F ′k as in the two experiments before are
used here.

In this experiment, none of the templates from the
sets F ′k used so far represented an adequate template
to process the present test sets Fk. There were at least
2 gj 6= 0 in each Gk,k∗ , for all k = 1, . . . , 10 and
k∗ = 1, . . . , 10. Consequently, templates that were
created with the restriction that the diagonal elements
of H′ are one cannot be successfully applied to test
sets Fk for which this constraint does not hold.
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Experiment 4

As a consequence of the results in experiment 3,
we create new template sets with less rigorous re-
strictions on H′k. In particular, the diagonal ele-
ments of H′k must be a power of 2, h′1, h

′
4, h
′
6, h
′
9 ∈{

±n2|n ∈ N
}

. Apart from that, the template sets F ′k
are generated as before with x′l,i, y

′
l,i, h

′
j ∈ Z for all

l = 1, 2, 3, i = 1, . . . , 15 and j = 1, . . . , 11, form-
ing Pythagorean quadruples, such that equation (20)
holds.

Analogously to the first experiment, we use the
template sets as test sets here, such that Fk = F ′k for
all k = 1, . . . , 10, to verify that the method can be
applied to different Pythagorean cases. As expected,
the diagonal entries of table 1 again show that the co-
efficients computed in R within the reduced Gröbner
basis for each test set Fk using the template of the re-
spective template set F ′k are correct. Similar to exper-
iment 1, the results in table 3 demonstrate that some
F ′k constitute adequate templates while others do not.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F ′1 3 5 5 3 5 5 5 5 5 5

F ′2 5 3 3 3 5 5 5 5 5 5

F ′3 5 5 3 5 5 5 5 5 5 5

F ′4 5 5 5 3 5 5 5 5 5 5

F ′5 5 5 5 5 3 5 5 5 5 5

F ′6 3 3 3 3 3 3 3 3 3 3

F ′7 5 5 5 5 5 5 3 5 5 5

F ′8 5 5 5 5 5 5 5 3 5 5

F ′9 3 3 3 3 3 3 3 3 3 3

F ′10 3 3 3 3 3 3 3 3 3 3

Table 3. Results of experiment 4

Experiment 5

Similarly to experiment 2, we want to investi-
gate now if the template sets from the previous ex-
periment are applicable to process non-Pythagorean
cases. Hence, the template sets F ′k from experiment
4 are reused. The test sets Fk are generated in the
same way as in experiment 3, i.e. test data is gen-
erated from integers that do not form Pythagorean
quadruples and the diagonal elements of H are pow-
ers of 2.

The results shown in table 4 confirm that the tem-
plate sets F ′k which were successfully applied to pro-
cess test data in the previous experiment, represent
adequate templates in this experiment, too. The other
templates are expected to be not adequate as they

were in the experiment before. Hence, they were not
tested, except for the one from F ′2 which supports
this assumption.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F ′2 5 5 5 5 5 5 3 3 5 5

F ′6 3 3 3 3 3 3 3 3 3 3

F ′9 3 3 3 3 3 3 3 3 3 3

F ′10 3 3 3 3 3 3 3 3 3 3

Table 4. Results of experiment 5

Experiment 6

So far, the values of xl,i, yl,i, hj to generate the
test sets were integers only. Finally, we check if
the proposed strategy also works for rational test
data. Again, we reuse the template sets F ′k from
experiments 3 and 4. As mentioned, the test sets
Fk are generated from random rational numbers,
i.e. xl,i, yl,i, hj ∈ Q for all l = 1, 2, 3, i =
1, . . . , 15, j = 1, . . . , 11. No further restrictions ap-
ply on xl,i, yl,i or hj . In particular, diagonal elements
of H may be any rational number in [−10, 10] except
zero.

Table 4 displays the results for this experiment.
According to that, the template sets F ′6, F ′9 and F ′10
are adequate to process the considered rational non-
Pythagorean cases. Solving the system of equa-
tions (21) to (27) in the resulting reduced Gröbner
basis Gk reveals that there are in fact 4 real so-
lutions, including the h1, . . . , h11 that were use to
generate the test data, determined only up to a
non-negative h9. The 4 solutions correspond to 4
possible orientations of the resulting sets of points
{Xi, Yi|i = 1, . . . , 15} for which Y1 is on the x-axis
and Y2 in the xy-plane.

h1 = −c9h9 h2 = −c10h9 (28)

h3 = −c11h9 h4 = −c12h5 (29)

h5 = ±
√
c7c9 − c15h9 h6 = ±

√
−c8h9 (30)

h7 = −c13h9 h8 = −c14h9 (31)

h10 = −c6h−1
5 h−1

6 h−2
9 h11 = −c3c66h−6

5 h−6h−18
9 (32)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F ′2 5 5 5 5 5 5 3 3 5 5

F ′6 3 3 3 3 3 3 3 3 3 3

F ′9 3 3 3 3 3 3 3 3 3 3

F ′10 3 3 3 3 3 3 3 3 3 3

Table 5. Results of experiment 6
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6. Conclusion

In this paper, we proposed an algebraic way to
compute a transformation to upgrade a preliminary
projective reconstruction to an Euclidean one by
means of constraints derived from segments of equal
lengths. We think, this could be useful in environ-
ments were distinct features are rare and hence 3D
reconstruction by standard methods is error-prone.

We have shown that though the general problem
is impossible to solve with standard methods, it is
possible to solve it for some special template cases
and use the obtained template to solve more gen-
eral cases. We assume that this can be generalized
to real world cases. Our experiments with simplified
constraints indicate that this is possible. However,
the method has to be tested more thoroughly using
the original constraints to provide evidence for this
assumption and to investigate under what circum-
stances it may fail.
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Appendix: Notation
We use the notations term and monomial as they

are explained in [9], i.e. given a polynomial ring
K[x1, x2, . . . , xn], a monomial is a product of the form
xα1
1 · xα2

2 · · ·xαn
n = xα, with non-negative integer ex-

ponents α1, α2, . . . αn. A term then denotes the product
aαx

α of a monomial and a non-zero coefficient aα ∈ K.
An S-polynomial of a pair of polynomials (f, g) is

computed as S(f, g) = xγ(LT(f))−1f − xγ(LT(g)−1g
where xγ = LCM(LM(f),LM(g)) is the least common
multiple of LM(f) and LM(g). LM(f) denotes the lead-
ing monomial and LT(f) the leading term of f w.r.t. a
monomial ordering.
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Abstract. In this paper a method for the automated
identification of tree species from images of leaves,
bark and needles is presented. The automated identi-
fication of leaves uses local features to avoid segmen-
tation. For the automated identification of images of
the bark this method is compared to a combination
of GLCM and wavelet features. For classification a
Support Vector machine is used. The needle images
are analyzed for features which can be used for clas-
sification.

The proposed method is evaluated on a dataset
provided by the “Österreichische Bundesforste AG”
(“Austrian federal forests”). The dataset contains
1183 images of the most common Austrian trees. The
classification rate of the bark dataset was 69.7%.

1. Introduction

Identification of tree species from images of bark,
leaves, and needles is a task which requires exper-
tise. This expert knowledge can be expected from
foresters and botanists. For people without this
knowledge the identification of tree species is a dif-
ficult assignment since the difference between some
tree species is small or information for the identifi-
cation, like the shape of the leaf, or the color and
haptics of the bark have been forgotten.

Within a project with the “Österreichische Bun-
desforste AG” (“Austrian federal forests”) people
should be able to identify tree species using their mo-
bile devices by photographing leaves, bark, or nee-
dles of a tree and the identification is done automati-
cally by the mobile device and additional information
for this tree species is then displayed on the screen.

An approach for an automated classification of the
tree species from images of the leaves has been pre-
sented in Fiel and Sablatnig [4] which avoids the

binarization of the leaves. In contrast, this work
proposes a method for the automated classification
from bark images using local descriptors based on
the method for the identification of leaf images. The
advantage of the proposed approach is that the same
methodology can be used for leaf and bark images.
Thus, a preprocessing step can be introduced to dis-
tinguish between leaf and bark images without cal-
culating new features. Furthermore the proposed
method is compared to a combination of Gray Level
Co-occurence Matrices (GLCM) and wavelet fea-
tures.

The needle images are analyzed for features which
can be used for classification and a method is de-
scribed to distinguish between fir and spruce needles.

This paper is organized as follows: Section 2 re-
views the state of the art for automatic identification
of plant species from images of the bark. In Section
3 the methodology for the identification of bark im-
ages is presented and features which can be used for
the identification of needle images are searched. The
results are presented in Section 4. Finally a conclu-
sion is given in Section 5.

2. Related work

This section describes the current methods for the
automated identification of the tree species. First an
overview of the identification using books is given,
then the automated classification of images bark is
given. To the best knowledge of the author no work
has been published about the identification of tree
species using images of needles.

The traditional identification of tree species is
done manually by using a book like Godet [5]. For
the classification of leaves and needles, these books
contain a diagnostic key where the user has to make
various decisions which describes the leaf or the nee-
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dle better in each step. The users have to follow a tree
step by step to identify the leaf. Since the bark can
not be described as easily as leaves or needles, the
user has to scroll through the book and has to look
for the corresponding bark. The process of the iden-
tification can take several minutes since it includes
scrolling through the book because most of the deci-
sions lead to another page. Also the users have to be
familiar with the vocabulary or have to compare the
leaf with the illustrations in the book.

The automated identification of plant species from
photos of the bark is done with a texture analyz-
ing methods. Wan et al. [12] made a compara-
tive study based on statistical features. The gray
level run length method, GLCM, histogram method,
and the auto-correlation methods are compared. For
each GLCM the entropy, angular second moment,
contrast, inverse different moment, cluster tendency,
cluster shade, correlation, maximum probability, and
two correlation information measures are calculated.
The best results are achieved with the GLCM with
an average recognition rate of 77%, followed by the
auto-correlation method with 72% and the run-length
method with 69%. The histogram method has the
lowest results with 65%. To improve the classifica-
tion rate each of the three color channels are handled
separately. This improves the recognition rate for the
GLCM method to 89%, for the run-length method
to 84% and for the histogram method to 80%. The
dataset used contained 160 preselected images of 9
classes.

Song et al. [11] proposed to use a combination of
gray scale and binary texture features. As gray scale
texture features the GLCM and as binary texture fea-
tures the long connection length emphasis are used.
The classification rate with a nearest neighbor classi-
fier is 87.5% on a dataset containing 180 images of 8
classes.

Huang et al. [8] uses fractal dimension features
additional to the GLCM features. The fractal di-
mension describes the complexity and self-similarity
of texture at different scales. For the classification
a three layer artificial neural network is used and a
recognition rate of 91.67% is achieved. The dataset
consisted of 360 preselected images of 24 classes.

Huang [7] combined color and textural informa-
tion for bark image recognition. Both information
were extracted using the multiresolution wavelets.
For the textural features the energy of the wavelet
transformed images have been used. The color fea-

tures were gained by transforming the color from
RGB values to the YCbCr color space and calcu-
lating the energy at depth 3 of the wavelet pyramid
for each channel. A radial basis probabilistic neu-
ral network is used for classification and an average
recognition rate of 84.68% is achieved. The dataset
consisted of 300 preselected bark images.

Chi et al. [2] proposed to use Gabor filter banks
for the recognition due to its efficiency and accu-
racy. They introduced multiple narrowband signals
model to overcome problems with textures with a lot
of maximas. The recognition performance for this
approach is 96%. The dataset containted 8 classes of
plants and each class containing 25 samples.

3. Methodology

In this section the methodology for the automated
identification of tree species from images of the bark
is presented, followed by an evaluation of needles
images for classification. The automated identifica-
tion of tree species from images of the leaves is de-
scribed in Fiel and Sablatnig [4].

3.1. Identification of bark

Classification of the bark is done by using texture
analysis methods. In Chen et al. [1] texture is defined
as repetitive patterns that occur in a region. The bark
of trees does not have exact periodical and identical
patterns due to natural growth. Natural cover of the
bark, like moss and lichens, distort these patterns or
the repetitive occurrence. Due to different lighting
conditions the gray values of the patterns are chang-
ing and influence the recognition of the patterns. The
color of the bark can not be taken into account since
with changing lighting conditions and cameras the
variance is high.

One of the defining qualities of texture is the spa-
tial distribution of gray values. This distribution can
be described using statistical texture analysis meth-
ods like the GLCM which was introduced by Hara-
lick et al. [6]. It describes the spatial distribution of
the gray values in an image in given orientation and
distance. The features used for the classification are
contrast, correlation, homogeneity and energy.

Other techniques rely on signal processing like
wavelets which was introduced to multi-resolution
signal decomposition by Mallat [10]. It allows the
decomposition of a signal using a series of elemental
functions which are created by scalings and transla-
tions of a base function. Thus, wavelets provide spa-
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Codebook SVM Training

Bag of Words SVMSIFT

Figure 1: Workflow of the proposed methodology: The input image is normalized to a gray scale image on
which the SIFT features are calculated. A histogram of occurrences is generated by searching the nearest
cluster center in the codebook which is used for the classification. The gray area represents the machine learning
part where codebooks are generated from the trainingsset. For each image in the trainingsset a histogram of
occurrences is calculated which are then used to train the SVMs.

tial and frequency information at different scales. As
feature for the classification the average energy of the
wavelets coefficients are used.

Zhang et al. [13] showed that SIFT features, in-
troduced by Lowe in [9], can keep up with common
texture classification methods. The SIFT features are
used to describe the texture of the region. Since this
method is used for the automated identification of the
leaf images it has also been tested on bark images.
The advantage of this method is that it does not rely
on periodical patterns but on patterns which occur
frequently in the image. With the bag of words ap-
proach, which was introduced by Csurka et al. [3],
these patterns do not have to be identical since the
nearest cluster center is searched which represents
similar regions. So the method from Fiel and Sab-
latnig [4] which is used for the identification of leave
images is also applied for the automated identifica-
tion of tree species from images of the bark.

Figure 1 illustrates the workflow which is used
for the classification. The method consists of three
steps. First the images are transformed into a nor-
malized gray scale image. There the SIFT features
are calculated by searching keypoints in the images
using DoG at different scales. The neighborhood of
these keypoints are then described using orientation
histograms which are then used for a bag of worlds
model. Features of the trainings set were clustered

to form a codebook. New images can then be de-
scribed by generating a histogram of occurrences of
the nearest cluster center. This histogram can then be
classified using a one-vs-all Support Vector Machine
(SVM).

A SVM is used since it rather minimizes the over-
all risk than the overall error of a training set, which
results in a good generalization performance even
for high-dimensional features. To handle multiple
classes the one-vs-all approach is used. It generates
a SVM for each class which classifies the data points
of the class against all other data points. The classi-
fication is done by a winner-takes-all strategy, mean-
ing that the classifier with the highest output function
assigns the class. For each class the value of the out-
put function can be used as percentage of belonging
to this class. Thus, a threshold can be introduced to
eliminate images which have only a small percentage
of belonging to a class.

3.2. Identification of needles

The dataset of needle images contains the 6 most
common Austrian conifer trees which can be divided
into two classes. The first class are trees on which
one needle grows separately on the branch and the
second class are the trees on which the needles grow
on clusters at the branch.

Fir and Spruce are the two trees on which the nee-
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dles grow separately on the branch. The easiest way
to distinguish their needles is that the spruce needle
has two white stripes on the backside. Since it can
not be assumed that every image shows the backside
of the needle this characteristic can not be used. The
next differences between the needles is that spruce
needles are blunt and they grow in one plane on the
branch and fir needles are pointed and they can grow
in every direction. Due to overlapping needles of the
spruce the grow direction can not be determined. The
endings of the needles are found by segmenting the
image (see Figure 2 a)) followed by calculating the
skeleton of the needles (see Figure 2 b)). The end-
point of the skeleton are the endpoints of the needles
(see Figure 2 c)). The endings of the needles are now
analyzed by calculating features like the eccentricity,
solidity, curvature features, and the moment invari-
ants.

(a) (b)

(c)

Figure 2: Finding the endings of the needles of an
image of a spruce. The segmentation of the branch
and the needles from the background is shown in (a).
In the middle is the skeleton of the first image and
with this skeleton the endpoints of the needles can be
found (c).

The trees on which the needles grow in cluster are
distinguished by the number of needles in the clus-
ter. The endings of the needles can be found with
the method described above. Since the needles in
the cluster are overlapping and the clusters are ly-

ing close to each other the number of needles in the
cluster can not be determined.

4. Experiments and results

In this section the experiments and results are
presented. The experiments were done on datasets
which were provided by the “Österreichische Bun-
desforste AG”. In Section 4.1 the experiments on the
leaf dataset are presented. Afterwards, in Section 4.2,
the experiments on the bark dataset are evaluated.

Since no method has been found to identify the
tree species from images of the needles no experi-
ments have been carried out for the trees on which
the needles grow in clusters. Fir and spruce can be
identified by analyzing the endings of the needles.
5 of 5 images of the fir and 7 of 9 images of the
spruce were identified correctly. The spruce needles
are misclassified since the needles are rotated on the
branch and so the blunt ending of the spruce needles
become pointed in the image.

4.1. Experiments on the leaf dataset

The leaf dataset consists of 134 images of the five
most common Austrian broad leaf trees. This im-
ages are scaled to either 800 pixel height or 600 pixel
width. Each class has between 25 and 34 images. Ex-
periments have shown that 30 cluster centers for each
class lead to the best results on our dataset.

The description of the results has already been
shown in Fiel and Sablatnig [4]. For reasons of com-
pleteness the results are shown again in Table 1.
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Ash 14 1 1 1
Beech 20 2
Hornbeam 1 25
Mountain oak 14
Sycamore maple 15

Table 1: Confusion matrix of the first experiment on
the leaf dataset. The tree names on the top are the
estimated classes, the names on the left side the true
classes.
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4.2. Experiments on the bark dataset

The bark dataset consists of 1183 images of the
eleven most common Austrian trees. The images,
which are showing a section of the bark of the size of
approximately an A4 paper, are scaled to either 800
pixel height or 600 pixel width. Each class contains
between 16 and 213 images.

The first experiment is done on the whole bark
dataset. The amount of the centers has been set to
30 per class and the size of the trainings set is set to
30, which was evaluated empirically. Classes which
have less then 30 images are also trained but no im-
ages are left for testing. These classes are skipped in
the rows of the table. The results are shown in Ta-
ble 2. The classification rate is 69.7%. The highest
recognition rate has the Spruce with 82% (101 out of
123 images), followed by the fir with 76% (51 out of
67). 55 images (which are 72%) of the black pine im-
ages are assigned to the correct class. The larch and
the swiss stone pine have a classification rate of 70
respectively 67% (77 out of 110 respectively 12 out
of 18 images). 62% of the mountain oak image are
assigned correctly which are 29 out of 47. The scots
pine has a recognition rate of 53% (53 out of 100).
The ash has the poorest result with 33% but since
there are only three images remaining in the test set
this result is not representative.

The same dataset was tested with a combination
of GLCM features (contrast, correlation, energy, and
homogeneity) and the average energy of the wavelets
coefficients. The GLCM features are calculated for
0, 45, 90, and 135 degrees with a distance of 1 and
5 pixels and the depth of the wavelet packet was 5.
The results of this experiment are presented in Table
3. The classification rate is 61.2%. All three remain-
ing images of the ash dataset are identified correctly.
The fir and the spruce are the classes with the second
best recognition rate of 67% respectively 65%. 53%
of the black pine are assigned to the correct class,
whereas the method has the worst performance on
the mountain oak and the swiss stone pine with 43
respectively 39%.

The next experiment was done on a subset of
the bark images containing 9 images of each class.
The trainings sets are maximal 30 images, for those
classes which have less then 39 images the rest of the
dataset was used as trainings set. The number of cen-
ters per class for the bag of word method remained at
30.

This subset was presented with an online survey

to two employees of the “Österreichische Bundes-
forste AG”. The first is a biologist, who studied at
the University of Natural Resources and Life Sci-
ences in Vienna and is now working in the natural
resource management department and the second is a
forest ranger with practical experience of more than
15 years. The classification rate of the first experts
was 56.6% and the classification reate of the second
expert was 77.8%. Both experts said at the end of
the experiment that they had the biggest problem by
distinguishing the three pine species and the larch.
Sample images which are showing that the difference
between the classes is often lower then the intraclass
variance can be seen in Figure 3. Both experts noted
that they use other chracteristics for the identifica-
tion, like the location where the tree grows, the habit
of the bark, or the buds on the branches.

Figure 3: Sample images to show the intraclass dif-
ference. The first row shows 3 images of black pines,
the second row shows two images of a scots pine and
one image of a larch.

The proposed method is also applied on the same
subset of images. The results of this experiment can
be seen in Table 4. The classification rate is 65.5%,
which is approximately between the rate of the two
experts. The ash, beech, black pine, fir, and spruce
have a recognition rate of 88.8%. The hornbeam and
the swiss stone pine have a recognition rate of 77.7%.
6 of the 9 images of the scots pine are classified cor-
rectly and 5 of the mountain oak images are assigned
correctly. None of the larch or sycamore maple are
identified. The reason why none of the sycamore
maple is classified correctly is that in these images
shadows occur and the trees are covered with moss
and lichens. 6 of the larch images are assigned to the
black pine class, also three images of the scots pine,
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Ash 1 1 1
Black pine 1 55 10 10
Fir 1 51 2 3 1 9
Larch 13 1 77 1 11 2 3 2
Mountain oak 2 2 1 3 29 6 4
Scots pine 1 10 4 2 19 53 4 6 1
Spruce 2 1 4 2 7 1 101 1 4
Swiss stone pine 1 2 1 2 12

Table 2: Confusion matrix of the experiment on the bark dataset with a trainings set size of 30 images. The tree
names on the top are the estimated classes, the names on the left side the true classes. Classes where no images
are left for testing are skipped in the first column.
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Ash 3
Black pine 40 16 15 1 3 1
Fir 45 3 9 7 2 1
Larch 12 1 71 21 5
Mountain oak 4 1 2 20 8 4 7 1
Scots pine 11 2 17 64 2 3 1
Spruce 4 3 6 12 4 2 3 83 2 4
Swiss stone pine 1 2 1 5 1 7 1

Table 3: Confusion matrix of the experiment with combined features of the GLCM and wavelets. The trainings
set contained maximal 30 images per class. Classes where no images are left for testing are skipped in the first
column.

which confirms that the three pines and the larch are
hard to identify. This was already shown in Figure 3.

5. Conclusion

This paper presented a method for an automated
identification of tree species from images of the bark
based on the method for the identification of leaves.
The method described uses local features to describe
the texture since local features can keep up with tex-
ture classification methods [13]. No method has been
found for the classification of the needle images. A
method has been presented to distinguish between fir

and spruce needles but the images has to be in good
quality because segmentation is needed and the end-
ings are analyzed.

The proposed method consisted of three steps.
First the images were transformed into a normalized
gray scale image. There the SIFT features were cal-
culated and the neighborhood of these keypoints are
then described using orientation histograms. Fea-
tures of the trainings set are clustered. For each fea-
ture in an image the nearest cluster center is searched
and the histogram of the occurrences can then be
used to train a one-vs-all SVM. When classifying a
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Ash 8 1
Beech 8 1
Black pine 8 1
Fir 8 1
Hornbeam 7 2
Larch 6 - 2 1
Mountain oak 3 5 1
Scots pine 3 6
Spruce 1 8
Swiss stone pine 1 1 7
Sycamore maple 1 4 1 1 2 -

Table 4: Confusion matrix of the experiment on the bark dataset used for the experiments with the experts. The
tree names on the top are the estimated classes, the names on the left side the true classes.

new image the SIFT features are calculated and the
histogram of the nearest cluster centers is used as in-
put for the SVM.

Experiments and results have been presented
datasets of leaf and bark images. The classification
rate for the leaf dataset was 93.6%. When applying
the proposed method on the bark dataset the classi-
fication rate was 69.7%. A subset of the bark im-
ages were generated and experiments with two ex-
perts were made. The classification rates of the two
experts were 56.6 respectively 77.8%. When apply-
ing the proposed method to this subset the classifi-
cation rate was 65.6% which is approximately in be-
tween.

The disadvantage of the proposed method is that
the calculation of the SIFT features is computational
intensive and due to the clustering for the bag of word
model online learning is not possible. The advantage
is that the proposed method can be applied to leaf
and bark images. Thus, a preprocessing step can be
introduced to distinguish between bark and leaf im-
ages without calculating new features.
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Abstract. We present a method to detect trees in 3D
point clouds of forest area acquired by a terrestrial
laser scanner. Additionally, a method to determine
the diameter at breast height of the detected trees is
shown. Our method is able to process large data sets
bigger than 20 GB in a reasonable amount of time.
Results from scans on our test site with different sea-
sonal vegetation are shown. Tree diameters can be
reliably determined from the same trees in different
scans.

1. Introduction

Terrestrial laser scanners gained widespread pop-
ularity in the last years because point cloud repre-
sentations of 3D objects can be acquired rapidly and
easily. Applications cover a wide range from docu-
mentation of cultural heritage sites or accidents to en-
vironmental change detection or industrial engineer-
ing. We are interested in the development of methods
to extract forestry related parameters from scans of
forest area. These so-called inventory parameters for
a particular forest site, e.g. tree height, diameter at
breast height, crown diameter and basis, are impor-
tant for forest monitoring and management. Usually,
a sample set of trees is measured manually by time
intensive methods to determine values for a forest. In
some cases destructive methods cannot be avoided to
obtain reliable results.

Laser scanning is especially attractive for this kind
of tasks since it allows fast capturing of scenes in a
non-destructive way. The scene analysis can then be
performed off-site and already acquired point clouds
can always be processed again if other parameters are
needed.

Our aim here is the automatic generation of a map
of the trees within the laser scanned scene. The

actual number of trees within the area is unknown.
Each tree has to be characterized by its diameter at
breast height defined at 1.3m w.r.t. the lowest tree
trunk point. Furthermore, the tree position is consid-
ered to be the center point of the circle from which
the diameter is obtained.

A lot of work has also been done on detecting and
segmenting trees in airbourne laser scans as reported
in [11]. Our focus lies on terrestrial laser scanning
within the scope of our ongoing project to recover the
3D forest structure, from which we present prelimi-
nary results. Similar work on tree detection and di-
ameter estimation was described in [1], but the stud-
ied test site was less than half the size of ours. Our
study site consists of a birch stock covering an area
(160m×80m) of about 1.3ha. The site was captured
from 12 separate scanning positions in winter and
spring 2010. The scenes show substantial seasonal
changes in vegetation. Because of the size of the test
area, our focus is on developing a robust method that
can calculate the tree diameter reliably with different
understorey vegetation present.

The paper is organized as follows: Section 2 gives
an overview of laser scanner techniques and the data
specifications. In section 3, the investigated meth-
ods are explained in detail. Following, experimental
results using scans from our test site are presented in
section 4. Finally, section 5 summarizes our findings.

2. Data Acquisition

A terrestrial laser scanner determines the distance
to an object by emitting a laser pulse and measuring
the time of flight until the reflection of an object is
observed at the device or by a phase comparison of
the reflection to the initial value. Usually, a laser in
the near-infrared is utilized. The strength of the re-
flected laser pulse affects the measurement accuracy
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and is dependent on the incident angle and object ma-
terial properties.

Most scanners work in their own polar coordinate
systems with the scanning mechanism as origin. The
vertical and horizontal directions are divided by an
angular sampling interval of αr degrees obtaining
a spherical grid around the scanner head. A laser
beam is sent through each of the spherical grid points
(θ, φ). The distance d to the first object hit by the
laser beam is measured. Thus, a particular object
can only be measured if the line of sight between
scanning mechanism and object is unobstructed. For
this reason lower trunk parts are occasionally insuf-
ficiently represented due to understorey vegetation
which is closer to the scanner than the targeted trees.
Additionally, the laser exhibits a beam divergence re-
sulting in an increasing beam diameter with distance.
Therefore, several objects might be hit by one laser
beam resulting in multiple reflection at the scanner.
Some scanner models utilizing phase-comparison av-
erage the range values from several observed reflec-
tions ([1]), which decreases the accuracy of the scene
representation.

The point cloud acquired in polar coordinates
(θ, φ, d) is then converted to Cartesian coordinates
(x, y, z). The resulting point cloud is a sampled rep-
resentation of the object surfaces around the scan-
ner. To represent an object from all sides, several
scans have to be acquired providing full object cov-
erage. The separate scans need to be registered to
the same coordinate system using natural or artificial
markers. Although the basic principle of laser scan-
ners is straightforward and provides 3D coordinates
of the objects around the device, accuracy depends
on the characteristics of the utilized device as well
as the object properties. An in-depth description of
terrestrial laser scanning can be found in [11].

We used the terrestrial laser scanner Imager 5006i
from Zoller+Fröhlich to capture the test site. The
scanner uses a phase comparison technique which
can resolve distances up to maximal 79m ([12]). Ob-
ject points which are hit further away are treated as
if they would lie within the maximum distance, i.e.
d = d − 79m, resulting in ghost points. As re-
ported in [1], these points have usually a very low
reflection strength and can be removed by applying
a suitable threshold. Therefore, we set the thresh-
old value for the reflection strength to 0.005. The
reflection strength of the measurements is in the in-
terval [0 . . . 1]. Only points with a reflection strength

Session 1 Session 2
time of scan March May
binary file size 24 GB 27.6 GB
total no. points 1,738,900,000 2,005,000,000
no. of points used 1,269,056,557 1,471,058,980

Table 1: Laser scanner data specifications. One
point consists of 3D coordinates and a value indicat-
ing the reflection strength of the particular measure-
ment as floats. The number of points used denotes
points with an reflection strength greater than 0.005.

greater than the threshold are used. This reduces the
point cloud sizes by about 15% to 29%. Since nat-
ural materials, e.g. bark or leaves with low incident
angle, also yield low reflection strengths, it cannot be
ruled out that a fraction of those are removed as well.

The angular resolution used was 0.0018◦ result-
ing in 20, 000 range measurements per 360◦. The
field of view in the vertical direction is limited to
310◦ due to the scanner tripod. The test site is cap-
tured by 12 scans from fixed positions as indicated
by figure 1. The 12 separate scans for each scanning
session were co-registered by fixed spherical markers
mounted on same trees. Registration was performed
manually with the Zoller+Fröhlich scanner software.
Each separate point cloud was limited to a radius of
37m around the scanner and exported as 3D Carte-
sian coordinates. The data specifications are sum-
marized in table 1. The first session was scanned
in March 2010 when there was no foliage on the
trees and the understorey vegetation had been freshly
pruned. In May 2010, the second session was ac-
quired when the vegetation had grown significantly
and trees were covered by foliage again.

3. Methods

The generation of a Digital Terrain Model (DTM)
is necessary to determine the lowest trunk point of
each tree. The DTM represents the ground as 2D
matrix containing height values as elements. For the
DTM generation a method presented in [3] is ap-
plied. The actual detection of trees within the point
clouds is based on the assumption that the highest
density of scan points is on the tree trunks. This was
also exploited in [5], [4], [8] and [1]. A problem of
the tree detection is the possible mutual occlusion of
trees and other vegetation in the scans at different
heights. Therefore, the detection method needs to
consider several different heights. The targeted birch
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Figure 1: Distribution of the 12 scanner positions
per session with radius of 37m.

trees in the area are 38m in height. Smaller trees and
some coniferous trees are also present within the area
as well as shrubs of different extent. As the number
of trees within the test site is unknown, the detection
method needs to be robust enough so that no birch
trees are missed.

Following tree detection, the points contributing
to single trees are analysed separately to find points
in breast height. Based on the previously determined
DTM plane, the breast height of a particular tree is
computed. Then, points at breast height are used to fit
a circle to obtain the trunk diameter. Since a tree usu-
ally does not grow up perfectly straight, it can hardly
be completely located using one 3D point. In spite of
this, we use the center point of the fitted circle to in-
dicate the position of a tree. The tree position is used
to create an overview map of the test site. For fur-
ther processing an ample radius around the reported
position has to be considered.

The main issue is to determine the boundary of the
tree trunk in breast height. This is complicated by the
fact that in lower heights many scan points represent
other vegetation partially obstructing the trunks. In
[1], this task was performed with only few trees on
a very small test site, taking about 10h processing
time. We present a method to achieve reliable results
in a reasonable amount of time for a comparatively
large data set. The method is summarized in algo-
rithm 1. The position and diameter at breast height
values for the trees are eventually summarized as a
map of the trees on the test site.

1. determine DTM plane gDTM for 3D point setE
from all positions of a scan session

2. detect trees and calculate a set of tree position
estimates T (see algorithm 2)

3. for each tree position t ∈ T

(a) load 3D points within bounding volume
from E,
Pt = {p ∈ E : tx − bx ≤ px ≤ tx + bx
∧ ty − by ≤ py ≤ ty + by}

(b) if |Pt| is sufficient determine DTM plane
tDTM from Pt, otherwise use gDTM

(c) calculate circle estimate c in height hs (see
algorithm 3)

(d) compute lowest trunk point height k1z by
projecting the circle center onto the DTM
plane

(e) calculate circle update c (see algorithm 3)

(f) compute new lowest trunk point height k2z
(g) if |k1z −k2z | > ε then repeat starting at step

(c) with hs = hs + ho

(h) log resulting diameter at breast height
tdbh = 2 · cradius and tree position
tp = (cx, cy, cz) for the tree

Algorithm 1: Scheme of subtasks for tree detection
and diameter calculation.

3.1. Digital Terrain Model generation

The method to generate the DTM that is summa-
rized here, was originally presented in [3]. The xy-
plane is partitioned into a 2D grid with cell size sc.
When projected onto this plane, several 3D points lie
in the same cell. For each single cell, the z-axis is
divided in several bins each covering a height inter-
val of sl. Points which are located within the current
cell are counted in the bins corresponding to their z
coordinate. Thus a height histogram is built for each
cell from the point numbers. The histogram bin with
the highest number is assumed to be the ground and
the bin height is assigned to the current cell.

If a tree trunk was occluded by vegetation closer
to the scanner, then there are hardly any points at
the real ground height. In this case lower histogram
bins are empty because the trunk points are only con-
tributing to higher bins of the particular cell. The
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Figure 2: Arc- or circle-like shapes caused by tree
trunks in different height layers indicated by gray
value.

maximum bin is determined far to high resulting in
a false height value. Therefore, the grid cell heights
need to be filtered. If a cell height is too high in com-
parison to its neighbouring cells and a determined
threshold then the cell value is removed.

Afterwards, cells with missing height values are
interpolated using neighbouring grid cell heights.
The 2D index of each cell is converted to (x, y) coor-
dinates in the point cloud coordinate system with the
cell height as z coordinate. Finally, an adjusted plane
is fitted to this 3D point set.

A DTM is generated for each point cloud of one
scan session separately. To obtain a general DTM
for the entire scan session, the separate DTMs are
merged. The DTMs of separate point clouds are
overlapping in several parts of the test area. In these
cases uninterpolated height values were preferred
and averaged if multiple values were available.

3.2. Tree Detection

Our tree detection method is presented in algo-
rithm 2. As already mentioned, it is based on the
assumption that in the forest area the highest density
of scan points are located at the tree trunks. To bene-
fit from the nearly full trunk coverage in the overlap-
ping parts of the point clouds, the entire scan session
needs to be processed at once. Therefore a height
slice of the scan session is considered. Points within
that slice are projected to a 2D grid that partitions the
xy-plane. For each cell, the number of points within
the cell is counted. Grid cells with a point count less
than a defined threshold minNbPoints are cleared.
If a suitable threshold is applied, the non-zero cells
are likely to correspond to positions at the tree trunks.
The trunk boundaries appear as components with an
arc- or circle-like shape as shown in figure 2, though
the cross section of a trunk is rarely a perfect circle.
A more detailed analysis of the trunk points is neces-

1. at different heights hi, slices of thickness t,
project all points within onto a plane li parallel
to xy-plane

2. partition li by a 2D grid gi, count no. of points
in each grid cell

3. grid gi represented by anm×nmatrix Ii where

Ii(m,n) =

{
1 gi(m,n) > minNbPoints
0 otherwise

}

4. concatenate matrices Ii with OR operation, thus

K(m,n) =

{
1 Ii(m,n) = 1
0 otherwise

}

5. dilate K with square structure element of size
s× s

6. find and uniquely label components in K by
connected component labelling

7. find components in Ii by connected component
analysis, join components c by component num-
ber from K thus
M [K(cm, cn)] =M [K(cm, cn)] ∪ (cm, cn)

8. for each index list in M calculate 2D centroid
from indices, convert to point cloud coordinate
system, resulting 2D coordinates are tree posi-
tion estimate

Algorithm 2: Detection of trees in point clouds.

sary for each tree in any case, therefore determining
approximate coordinates of the tree location is suffi-
cient for the tree detection step.

It is possible that a tree does not appear on the
2D grid of a particular height because of occlusions.
Hence, several different heights have to be analysed.
The components in each of the 2D grids are de-
tected by a connected component labelling algorithm
([9]). Because of the skewed tree growth, compo-
nents corresponding to the same tree in grids of dif-
ferent heights do not necessarily cover the same grid
cells. But components of the same tree are inevitably
close together and are joined to clusters. Seldomly,
components resulting from branches with high scan
coverage produce separate clusters, which are at the
moment treated as valid detections as well. The 2D
centroid of each cluster is computed and constitutes
the tree position.

Finally, for each estimated tree position, all points
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located within a bounding volume are exported to
a separate file. The bounding volume is a box of
square base with the position estimate at its center.
The generation of these smaller point clouds for each
presumed tree is the most time intensive part using
standard hardware, because of the high number of
read and write operations. If sufficient memory, i.e.
at least 30 GB, could be provided such that all point
clouds of a scan session can be hold within memory,
the creation of temporary point clouds for the tree
position estimates would be unnecessary.

3.3. Tree Location and Diameter Determination

For tree location and diameter determination, each
point cloud section belonging to an estimated tree po-
sition is processed separately. First, a DTM is calcu-
lated for the point cloud section. If this fails because
of an insufficient number of points, an adjusted plane
is used instead that is fitted to the 3D points of the
respective section of the session DTM.

A first computation of the trunk circle center is
necessary to determine the lowest trunk point height
accurately. The largest aggregation of 3D points
within a circular slice at height hs around the es-
timated position is assumed to be the trunk. This
subset of points can be found by taking the maxi-
mum and neighbouring bins greater than a predefined
threshold from histograms of point numbers along
the x and y axis as indicated in figure 3. A circle is
calculated with Kasa method ([6]) using the 3D point
subset. The circle equation is rearranged to

− 2cxx− 2cyy + c2x + c2y − cr = −(x2 + y2) (1)

and transformed with the given point set to matrix
representation

An×3 · k3×1 = ln×1 (2)

with n denoting the number of the considered points.
The solution vector k

k =
[
−2cx −2cy c2x + c2y − c2r

]T (3)

is obtained by least-squares minimization

k = (ATA)−1 ·AT · l (4)

of the algebraic distances. Following, the elements
of k have to be solved for the circle parameters.

The 2D center point (cx, cy) is projected onto the
DTM plane to calculate the trunk point height k1z . In

(a) Plot of points on xy-plane

(b) Histogram with bin size of 0.01m along x axis.

Figure 3: Determination of tree circle estimate using
a histogram of point amounts along the x and y axis
with predefined threshold t.

a defined height of 1.3m w.r.t. the lowest trunk point,
a new set of points within a circular slice around
the calculated circle center is considered as summa-
rized in algorithm 3. To find a cluster of points in
the set resembling a circle the Circular Hough Trans-
form as reported in [10] is utilized. The Circular
Hough Transform is based on the fact, that the dis-
tance of every point on the perimeter of a circle cm
with known radius r is r. When a circle cp of the
same radius r is drawn around each perimeter point,
all circles cp will necessarily meet at the center point
of circle cm as shown in figure 4.

In [1] the Circular Hough Transform was applied
to the non-empty cells of a 2D grid. Previously, the
point set was projected onto this grid partitioning the
xy-plane and thresholded like explained in section
3.2. Present on the 2D grid are arc- or circle-like
shapes from trunks, but also components caused by
branches. The accumulation of circles around the
component cells on the grid results in only weak sup-
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port for a particular circle. Instead of the few number
of non-empty grid cells, we use each 3D point of the
considered set for the circle accumulation. We ini-
tialize an empty 2D grid partitioning the xy-plane.
The 3D points of the considered slice are projected
onto the grid and a circle of size r is drawn around
each of the points. For each cell the number of circles
passing through it are counted.

In this way many more points are voting for the
same circle center resulting in a distinct peak in the
grid. Because only an estimate cr of the precise ra-
dius is known, the Circular Hough Transform is ap-
plied several times with an increasing radius r. The
maximum peak on the grid over all iterations denotes
the new circle center (cx, cy). The circle radius cr is
updated with the radius r of the corresponding itera-
tion. Finally, a new set of 3D points S is considered
containing only points at the previously determined
height hb ± t

2 within a radius defined by cr with an
additional offset d3. Again, the algebraic circle fit of
equation 1 to 4 is used to calculate values

c = (cx cy cr)
T (5)

for the circle parameters. The circle is then fitted
([7]) by a least-squares minimization as in equation 4
with

A =
[
−x−cx

cr
−y−cy

cr
−1

]
n×3

(6)

and

l =

[
cr −

√
(x− cx)2 + (y − cy)2

]

n×1

(7)

to minimized the geometric distances. The result-
ing improvements in vector k are added to the circle
parameters. The center point of the adjusted circle is
the location of the tree tc. The diameter tDBH = 2·cr
is obtained from the circle radius.

The lowest trunk point is determined again by pro-
jecting the circle center point onto the DTM. If the
resulting trunk point differs from the previously de-
fined height in comparison to a suitable threshold,
then a new iteration of the method is performed un-
less the maximum number of iterations is reached. In
this case the first circle estimate is determined anew,
starting at a height of hs = hs + ho.

4. Experiments

We applied our method to both scan sessions of
the test site. The results are summarized in table

Figure 4: Circular Hough Transform

1. create 3D point set
S =

{
p ∈ Pt : hb − t

2 ≤ pz ≤ hb + t
2

∧ d(p, tc) < cr + d2}

2. adjust rmin, rmax, rstep according to current cir-
cle radius estimate

3. for r = rmin, r < rmax, r = r + rstep

(a) project all 3D points of S onto a plane l
parallel to xy-plane

(b) draw a circle with radius r around each
point s ∈ S

(c) partition plane l by a 2D grid g with cell
size sc, in each cell count no. of circles
passing through

4. determine radius r of iteration with maximum
cell value in grid g

5. convert grid indices to point cloud coordinates
(cx, cy) for circle c and update circle radius cr
with r

6. recreate 3D point set
S =

{
p ∈ Pt : hb − t

2 ≤ pz ≤ hb + t
2

∧ d(p, tc) < cr + d3}

7. update circle c with a new circle estimate using
S

8. calculate adjusted circle fit with c and S

Algorithm 3: Determination of tree points in breast
height and calculation of radius by circle fitting.

2 and processing times are reported in table 3. We
are not able to assess the results of the tree detec-
tion method regarding its completeness, because the
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number of birch trees actually present on the test site
is not documented. For this reason, the number of
false negatives, i.e. trees which were not detected, is
also unknown.

We evaluated the results of the detection method
manually. 99% of all detected items in session one
and 97% in session two are actual trees present on the
test site. 91% and 92% of all detections in the respec-
tive session are the targeted birch trees, while 8% and
5% are other small or coniferous trees. 1% and re-
spectively 3% of all cases are false positives, which
means that structures have been detected which are
not trees. These detections were caused by branches
with high scan coverage. In the second session more
items were detected falsely which is probably due to
the foliage present on branches.

We do not have ground truth values for the DBHs
of the trees. The evaluation of the DBH only on basis
of the computed values is not reliable. Tree diame-
ters are quite variable, which makes the definition of
a particular interval difficult. Furthermore, a circle
fitted wrongly to a set of points belonging to a shrub
nearby the sought-after trunk can also yield a diame-
ter value, which is typical for birch trees.

For this reason, it was verified visually whether
the points used for the calculation of the DBH are ac-
tually located at the respective tree trunk. For 95% of
all detected birch trees in the first and 92% in the sec-
ond session sufficient correctly located points were
selected and therefore an accurate DBH value could
be calculated. The averaged standard deviation of
the point sets to the fitted circles is 7mm and 8mm.
For 5% and respectively 8% of the birch trees the
trunk was not sufficiently covered by scan points or
the points used for DBH calculation were not local-
ized on the trunk yielding an invalid DBH value.

We are interested in the seasonal change of the
vegetation. Before a comparison of the tree appear-
ance in both sessions is possible, the scan sessions
have to be registered to each other. The scan ses-
sions exhibit a rotation to each other, but the corre-
spondences and coordinates of the sphere targets are
known. The sphere targets were previously used to
register separate point clouds of one session to each
other. We applied the Iterative Closest Point algo-
rithm ([2]) to obtain a transformation matrix M us-
ing sphere target correspondences. With M the tree
positions of the second scan session could be trans-
formed to the coordinate system of the first session.
Then we established correspondences between tree

Figure 5: Histogram of DBH differences between
the corresponding birch trees.

session 1 session 2
total detections 363 368
detected birch trees 331 325
false detections 3 11
other detected trees 29 32
valid point set for DBH 316 299
correspondences 323

Table 2: Results of first and second scan session.
All detections were manually checked. The number
of false detections is caused by branches which were
interpreted as separate vegetation structures.

total processing times session 1 session 2
DTM generation 9min 9min 28s
tree detection 4min 57s 5min 46s
tree separation 147min 157min
DBH calculation 20min 17min

Table 3: Processing times for the first and second
scan session.

positions from both sessions manually.
A total of 323 distinct birch tree correspondences

were found. For this set the DBH values were com-
pared. The absolute differences of the DBH values of
each pair ε =

∣∣t1DBH − t2DBH

∣∣ were calculated and
are shown in figure 5 as histogram. 90% of the cor-
respondences exhibit a DBH deviation of less than
2cm and even 63% of less than 5mm. Regarding a
maximum DBH difference of 1cm, the DBH value
could reliably determined in both scan sessions for
an amount of 268 birch trees present on the test site.

5. Conclusion

We have shown that the generation of a map of
trees on a comparably large test site is feasible in a
reasonable amount of computation time. Although
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we cannot entirely evaluate the detections on the test
site concerning their completeness, the results look
promising. The greatest amount of detections are
the targeted birch trees and their diameters at breast
height could be determined precisely from the avail-
able terrestrial laser scanner point clouds.

There are still a lot of possibilities for improve-
ments. The tree detection method needs to be evalu-
ated whether actually all trees are detected. Further
processing would profit from a more detailed anal-
ysis by which kind of vegetation structure the de-
tection was caused. False detections from branches
or smaller, unwanted trees on the test site could be
avoided. Additionally, it is necessary to improve
on the diameter calculation. The diameter at breast
height has not been accurately calculated for all birch
trees though the scan coverage was sufficient.

The DTM generation from scans with dense un-
derstorey vegetation is more error-prone, because the
actual ground is not sampled enough. We will try to
use the DTM from winter scans as basis for all ses-
sions to obtain more reliable height values. The mu-
tual registration of the scan sessions will be neces-
sary for that. The calculation of an appropriate trans-
formation matrix might be improved by utilizing the
established tree position correspondences as well.

We have two more scan sessions captured in July
and October 2010 exhibiting considerably more sea-
sonal change in comparison to the first session.
Therefore, the changing of parameter values is prob-
ably not appropriate and a way to adaptively adjust
parameter values of the processing step would be
beneficial. Furthermore, the representation of the
tree location as a single 3D point is in fact not suf-
ficient. Instead, we will aim to capture the topology
of a tree directly.

References
[1] T. Aschoff and H. Spiecker. Algorithms for the auto-

matic detection of trees in laser scanner data. Inter-
national Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, 36(8/W2),
2004. 1, 2, 3, 5

[2] P. Besl and N. McKay. A method for registration of
3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–256, 1992. 7

[3] A. Bienert, S. Scheller, E. Keane, G. Mullooly, and
F. Mohan. Application of terrestrial laser scanners
for the determination of forest inventory parameters.
International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 36, 2006.
2, 3

[4] J. G. Henning and P. J. Radtke. Detailed stem mea-
surements of standing trees from ground-based scan-
ning lidar. Forest Science, 52:67–80, 2006. 2

[5] C. Hopkinson, L. Chasmer, C. Young-Pow, and
P. Treitz. Assessing forest metrics with a ground-
based scanning lidar. Canadian Journal for Forest
Research, 34:573–583, 2004. 2

[6] I. Kasa. A curve fitting procedure and its error analy-
sis. IEEE Transactions on Instrumentation and Mea-
surement, 25:8–14, 1976. 5

[7] T. Luhmann. Nahbereichsphotogrammetrie: Grund-
lagen, Methoden und Anwendungen. Wichman Ver-
lag, Heidelberg, 2000. 6

[8] H. Maas, A. Bienert, S. Scheller, and E. Keane.
Automatic forest inventory parameter determination
from terrestrial laserscanner data. International
Journal of Remote Sensing, 29(5):1579–1593, 2008.
2

[9] L. G. Shapiro and G. C. Stockmann. Computer Vi-
sion. Prentice Hall, 2001. 4

[10] M. Sonka, V. Hlavac, and R. Boyle. Image process-
ing, analysis, and machine vision. PWS Publishing,
second edition, 1998. 5

[11] G. Vosselman and H. Maas, editors. Airborne and
Terrestrial Laser Scanning. Whittles Publishing,
2010. 1, 2
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Abstract. This work presents an objective method to
measure ball spin in monocular video data. We ap-
ply this method to objectively classify racket sports
equipment. Therefore, we observe the ball impact
on a racket and compare spin differences measured
prior to and after the impact. The method combines
ball center tracking with surface corner tracking to
calculate ball spin. Because our method’s applica-
tion has real-time constraints our spin measurements
are fully automatic and without user intervention. Fi-
nally, we validate our approach with experimental
results and prove that racket classification is feasible
based on visual spin measurements.

1. Introduction

We present a visual method for measuring ball
spin aimed for the ball sports domain. Knowledge
about ball spin enables a range of applications for
sports where spin plays a crucial role like in table
tennis, tennis, soccer, baseball, golf, bowling, and
billiard. Three application domains in racket sports
motivate us: Our primary domain is racket equip-
ment classification (Domain-1). The amount of spin
a racket imparts on a ball is a significant classifica-
tion factor. Such classifications can be used in two
ways: First, athletes can make objective and deliber-
ate decisions to purchase equipment. Second, sports
federations can classify illegal equipment which does
not conform to the rules. Domain-2 is training feed-
back analysis. Feedback based on ball spin is a useful
pointer to improve an athlete’s technique. Domain-
3 are virtual replays for television broadcasts of
ball sports events. Showing spectators significant
ball spin characteristics in virtual replays makes a
sport more “tangible” and thereby potentially arouses
more interest in the audience. This work focuses only
on equipment classification (Domain-1). However,

the other two domains are clear long-term goals even
though their realization requires an adapted or new
approach.

Whereas lots of research (like e.g. [5], [7], and [3])
has been done focused on ball tracking to obtain tra-
jectory paths less past work has dealt with ball spin
analysis. Previous work on spin analysis was done
in following sports domains: tennis [2], soccer [6],
table tennis [9], and baseball [10]. The authors of [2]
measure the spin of tennis balls based on high-speed
image sequences but favor manual spin measurement
over computer vision methods because of higher ac-
curacy. Neilson et al. [6] measure the spin of a soc-
cer ball. Their results are based on a unique color
pattern on the ball surface where each 2D view of the
ball identifies its 3D position. Our approach in con-
trast works with arbitrary corner features on a ball’s
surface. Tamaki et al. [9] measure ball spin of table
tennis balls. Their approach is based on image regis-
tration in addition to depth information from a man-
ually fitted 3D sphere model. The work of Borac-
chi et al. [1] examines spin by analyzing blurred im-
ages. For the general case of a spinning and translat-
ing ball they propose a semi-automatic user-assisted
approach. Both [9] and [1] require manual user in-
tervention whereas our approach is fully automatic.
Theobalt et al. [10] determine the spin of baseballs
based on multi-exposure stereo images. Their ap-
proach relies on 3D depth data of predefined tracked
color markers. We instead only use a single camera
and do not need depth information.

Our contribution is a fully automated spin mea-
surement without user intervention. High-speed
cameras, as used in our acquisition setup, usually de-
liver gray scale image data. Therefore, our method
relies solely on arbitrary corner features in gray scale
image data. We provide measurement results within
less than three seconds for 20 processed frames—
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sufficient for racket classification application. Fur-
ther, our method is independent from any motion
model, works with uncalibrated, monocular camera
data, and does not require a certain ball size. We
point out that we only measure spin with a rotational
axis perpendicular to the image plane—which makes
our approach inappropriate for assessing spin in real
game rallies. Although ball trajectory analysis re-
veals additional discriminative data for racket classi-
fication we neglect it in this paper and focus solely
on spin measuring.

We explain our video data acquisition setting in
Section 2 followed by implemented method details
in Section 3. In Section 4 we present and discuss
experimental results which are compared to existing
approaches in Section 5. Finally, we revise our con-
tribution and give an outlook in Section 6.

2. Video Data Acquisition

We assume our scene under orthography by a large
distance between object and image plane and by a
large focal length—thereby, perspective distortions
are negligible. Hence, motion components towards
the image plane cannot be measured with our ap-
proach. This poses no limitation for the envisioned
racket classification application because we can con-
trol the spin axis position in our acquisition setting.

We use rotating table tennis balls as a test environ-
ment. Compared to tennis, soccer, baseball, and golf
we can reproduce and verify results with less effort
due to a simpler data acquisition setting, depicted in
Figure 1. A similar setting with a rigidly mounted
racket is described in [2]. We use an automatic
ball feeder (on the left of Figure 1) to obtain repeat-
able preconditions. The feeder propels the balls with
backspin (3800± 100 revolutions per minute (rpm))
towards the rigidly mounted racket from a short dis-
tance (0.5 m)—we capture the ball before and af-
ter impact on the racket with a high-speed camera.
The image plane is parallel to the translational ball
motion and the camera observes the ball from 2 m
distance (focal length 100 mm). We light the scene
with three 1000 W floodlights to achieve enough con-
trast on the ball contour and on the ball surface fea-
tures for further processing. The main light direction
of all three floodlights is positioned perpendicular to
the image plane. The frame rate is 1000 frames per
second (fps), the exposure time is 1

7000s to minimize
motion blur, and the captured image sequences have
a resolution of 1280 × 512 pixels (landscape). Ev-

Figure 1. Video data acquisition setting

ery certified table tennis ball has a printed logo of
the manufacturer on its surface. Such a logo cov-
ers at most 20% of the whole ball surface. For this
reason a single logo might potentially be occluded
from the camera viewpoint during an observed scene.
Hence, we augment the ball surface with addition-
ally painted arbitrary corner features to ensure visi-
ble texture in every captured frame. To make clear,
the corner features of a manufacturer logo are good
enough for our algorithm as long as they are visible
in the scene (we prove this by an example shown in
Figure 12 detail (f)).

3. Spin Calculation

Figure 2 depicts the measuring principle with four
superimposed frames of a sequence—the ball moves
from left to right as in Figure 1. The first two frames
are taken prior to the ball impact whereas the last two
frames are taken after the impact. For better visi-
bility a yellow dot marks a particular surface corner
which is tracked in all four frames (this yellow dot
only augments Figure 2 and does not exist on the
ball itself). The spin results from the angle the dot
has traveled between two frames within an elapsed
time. Blue dashed lines mark the ball center in each
frame and solid red lines indicate the current angle
of the tracked dot with reference to the current ball
center. We calculate spin rates for the sequence be-
tween frames 13 and 19 as well as between frames 36
and 56. The lower part of the figure sums up the
interpretation and calculation: An angle difference
of 138,5◦ within 6 frames corresponds to 3847 rpm
whereas an angle difference of 17◦ within 20 frames
corresponds to 141 rpm.

Our basic idea is the calculation of displacements
between corresponding corners in two subsequent
frames. As visualized in Figure 3 the spin calcula-
tion approach consists of the following six steps:

1. Segment the ball from the background.

2. Find the ball contour and calculate its center po-
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Figure 2. Measurement principle

Figure 3. Proposed method for spin calculation

sition.

3. Identify corners within the ball contour.

4. Track identified corners between consecutive
frames.

5. Calculate displacement vectors of ball center
and displacement vectors of corresponding cor-
ners to obtain pure rotational corner displace-
ments by vector subtraction.

6. Measure the angles spanned by rotational corner
displacements and calculate spin based on angle
per time frame.

In the following we detail the above steps of our ap-
proach and explain them according to Figure 4:

Step 1: Segmentation of the ball from the back-
ground: In Figure 4 this step transforms the original
input image in detail (a) into a binary image in de-
tail (b). To do this, we learn a background model
based on frames before a ball becomes visible in
the scene. During this learning phase we observe
a certain intensity range for each image pixel. Af-
ter the learning phase a pixel is considered as fore-

Figure 4. Illustrated method: (a) Original image, (b) seg-
mented image, (c) original image with two different su-
perimposed fitted circles and centers, (d) circle fitted to
segmented image, (e) found corners, (f) trace of tracked
corners and center, (g) rotational displacements, (h) cal-
culated spins

ground when this pixel’s intensity value is outside the
learned intensity range. This segmentation method is
implemented in OpenCV and derived from [4].

Step 2: Finding the ball contour and calculating
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its center position: The result of this step is visible in
Figure 4 when we compare details (b) and (d). In de-
tail (d) we observe an overlaid blue fitted circle to the
ball contour as well as the identified ball center. We
compute the ball center position in three small steps:
First we calculate the convex hull of the segmented
ball, second we fit a bounding box around the con-
tour, and third we fit a circle into the bounding box.
Finally, the center is obtained from the circle’s ra-
dius. Detail (c) highlights a problem of accurate cen-
ter finding: It shows the input image with two super-
imposed circles and ball centers where the smaller in-
ner circle corresponds to the fitted circle in detail (d).
The larger outer circle visualizes the true ball con-
tour; the true ball center is also shown by the dashed
cross-hair. In our acquisition setting the ball surface
cannot be lit uniformly during the whole sequence.
Hence, the contour border has varying contrast with
the background. After segmentation the ball contour
appears smaller and shifted and thus, the circle is fit-
ted inexactly. The different contour size alone has
no negative effect on the accurate center position but
a shifted contour also shifts the center position. In
Step 5 we will detail why an accurate center position
is crucial for an accurate spin calculation.

Step 3: Identifying corners within the ball con-
tour (see red dots in Figure 4 detail (e)): According
to the criterion for “good” corners in [8] we identify
corners where both eigenvalues of the second mo-
ment matrix are above a certain threshold. We set
the threshold to 80% of the best found corner’s lower
eigenvalue. This threshold has been evaluated empir-
ically and ensures “good corner quality”.

Step 4: Tracking identified corners between con-
secutive frames: Figure 4 detail (f) shows the
tracked trace of identified corners between subse-
quent frames with red lines and the tracked center
with a blue line. We apply the Kanade-Lucas-Tomasi
algorithm [11] for tracking corresponding corners.

Step 5: Calculating rotational displacement: Fig-
ure 4 detail (g) highlights the rotational displacement
vectors with green elements. Step 2 revealed the ball
center displacement and Step 4 revealed displace-
ments of corresponding surface corners. Based on
these displacements Figure 5 explains the calcula-
tion of the pure rotational displacement based on vec-
tor subtraction: Two consecutive frames (top left and
middle) are virtually superimposed (top right frame).
Solid blue crosses mark the ball center and dashed
red crosses mark the tracked corner. The vector sub-

Figure 5. Calculating rotational displacement

traction is depicted in the superimposed frame and
enlarged below: The ball translation vector in blue
is subtracted from the corner displacement vector in
red. This results in the pure rotational displacement
highlighted in green. The lower left part illustrates
this displacement based on the first frame—this is the
corner displacement without translation.

Step 6: Calculating spin: Figure 4 detail (h)
shows two calculated spin values. A rotational dis-
placement vector together with the ball center spans
a certain angle (see lower left frame in Figure 5)
which is measured with straightforward trigonome-
try. The ball rotates by this angle within the time
frame of 1

1000s (see frame rate). So the spin (in rpm)
is calculated according to: spin = angle·60s

360◦·timeFrame
(angle measured in degrees).

4. Experimental Results

Obtaining ground truth data from real image se-
quences is a tedious task. Therefore, we gener-
ated synthetic image sequences where ground truth
is known. Figure 6 visualizes a snapshot of an ana-
lyzed synthetic image sequence where the simulated
spin is 3667 rpm prior to impact. Three corners of
the square-like region are automatically chosen and
tracked. The upper right image corner contains the
three computed corresponding spin values. Ideally,
all three values should be the same, the difference be-
tween them indicates inaccuracy. Seven vectors with
three different colors are visible, their end points are
marked with dots of the same color. According to
Figure 5 the ball center translation is shown in blue,
the tracked corners’ general displacements are shown
in red, and the pure rotational corner displacements
after vector subtraction of the center translation are
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Figure 6. Spin calculation (synthetic image)

Figure 7. Results of synthetic sequence

shown in green. In this particular snapshot we obtain
a mean error of -7.7%, which means that the true spin
rate is underestimated.

Figure 7 shows the calculated spins of the syn-
thetic sequence where ground truth spin is 3667 rpm
prior to impact and 417 rpm after impact, marked
with red lines. Measured values are marked with
blue crosses. The value close to zero spin at frame
15 is due to the simulated impact with momentarily
zero motion. The values in this diagram represent
average values calculated over the number of tracked
corners—with reference to Figure 6 this is an average
over three values. Of course this simple averaging
includes also outliers but we want to show the mean
error variation. Figure 8 quantifies the errors of mea-
sured spins with reference to the ground truth of the
synthetic sequence, detailed in Figure 7. The mean
measurement error prior to impact is -3.2% and after
impact -0.9%. The relative errors seem to be almost
independent from the absolute spin magnitude—the
errors are scattered between +12 and -12%.

Figure 4 detail (h) depicts a snapshot of an
analyzed real image sequence where the spin is
3750 rpm prior to impact. The mean error of
this snapshot is -20.5% and results mainly from in-

Figure 8. Errors of synthetic sequence

Figure 9. Results of real sequence

exact center computation because of non-uniform
lighting—we explained this in Section 3 (Step 2).
Furthermore, although the image acquisition process
is completely under our control we cannot ensure
a spin axis constantly ideally perpendicular to the
image plane in the whole scene. This fact has the
most negative effect prior to impact—when the ball’s
translational and rotational displacement are maxi-
mal. None of these two negative effects is existent in
synthetic sequences. Between Figure 4 detail (h) and
Figure 6 we notice the apparently less smooth ball
contour shape of the real snapshot. This results from
varying contrast between the projected real ball con-
tour and the background in the real sequence. Only
two corners are tracked in the real sequence due to
corner correspondence quality. Figure 9 shows the
calculated spins of the real sequence. We obtain
the ground truth by manually measuring angle dif-
ferences between corresponding corners in the se-
quence on a computer display. The spin prior to im-
pact is 3750 rpm and after impact 500 rpm. Figure 10
quantifies the errors of measured spins with reference
to the ground truth of the real sequence. As men-
tioned above the large errors prior to impact result
from inexact center computation due to non-uniform
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Figure 10. Errors of real sequence

lighting and slightly varying spin axis. The mean
measurement error prior to impact is -19.3% but is
simultaneously less important. Prior to impact we
can assume the ball feeder to generate constant spin
through all captured sequences—therefore, spin prior
to impact needs not to be measured accurately be-
cause no changes are expected. In contrast, after im-
pact, when we expect differences caused by different
rackets, the mean error magnitude descends signifi-
cantly to 2.4%.

We captured eight sequences with five different
rackets with results similar to Figure 7 and Figure 9
(these measurements are not shown in detail). We
call the measured spin of a racket after impact its
spin response to a certain spin before impact. Mea-
sured spin responses revealed an average range per
sequence between 200 and 1250 rpm depending on
the racket. Figure 11 illustrates these measurements
where Racket 3 corresponds to results of Figure 9 af-
ter impact. In the case of these five rackets the spin
response is discriminative but insufficient to uniquely
classify the rackets. Further measurements based on
ball trajectory can enhance the discriminative power
of the classification but these rather straightforward
measurements are not the scope of this paper.

In Figure 12 we prove that our method can
cope with different surface patterns in real image
sequences—ten processed snapshots are depicted.
Details (a) to (f) have been obtained with the set-
ting described in Section 2. In contrast details (g)
to (j) correspond to an earlier experimental setting in
which balls move from right to left (observe the cen-
ter trace) towards a not rigidly fixed racket. Detail (f)
is exceptional because we have not added artificial
surface patches. Nevertheless, we are able to calcu-
late the spin based solely on the visible part of the
manufacturer logo on the surface.

Figure 11. Spin responses with five different rackets

5. Comparison

To reveal our strengths and limitations we com-
pare our results with two approaches ([1], [10]):
The blur approach of Boracchi et al. [1] requires
a feature to have an observed angle displacement
of at least 3.6◦—our method does not have a lower
bound. In [1] the authors assessed only cases with-
out translation where the mean error was 3 - 11%
for a spin range 833 - 1666 rpm. In contrast to them
we cope with additionally superimposed translations.
Theobalt et al. [10] state an error of 0.4 - 2.5% for
spins of 1258 - 1623 rpm for their stereo based ap-
proach. In contrast to both approaches we cope with
a larger spin range between 0 - 3750 rpm. On the
other hand our mean error magnitude can increase to
about 20% but only during less important measure-
ments prior to impact as mentioned above in connec-
tion with Figure 9.

6. Conclusion and Outlook

We have shown a motion analysis approach fo-
cused on the measurement of ball spin. Experiments
proved different spin responses on different rackets
which makes this method’s results feasible for racket
classification based on spin measurements. A se-
quence of 20 captured frames is sufficient for a sig-
nificant racket classification. The execution time for
processing 20 frames is about 3 seconds (run on an
Intel Core i7 L620, 2 GHz processor)—this delay is
acceptable for an application like on site classifica-
tion of illegal rackets during sports events. However,
the same delay might be an upper limit for applica-
tion domains like training feedback and virtual re-
plays for sports broadcasts.

We identify two major future steps:
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Figure 12. Snapshots of different sequences: (a) to (c) Results prior to impact, (d) to (f) results after impact, (g) to (i)
results prior to impact (different setting), (j) results after impact (different setting)

• Most importantly, we strive for measuring spin
without restrictions on the spin axis position.
Thus, an adapted or new approach is crucial for
the intended two long-term applications, train-
ing feedback and virtual replays.

• Our method should be sufficiently robust to
measure spin based on any two subsequent
frames. We will successively challenge this ro-
bustness by decreasing the number of artificial
surface features.
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Abstract. The paper presents contributions to the
design of the Flock of Trackers (FoT). The FoT track-
ers estimate the pose of the tracked object by robustly
combining displacement estimates from local track-
ers that cover the object.

The first contribution, called the Cell FoT, allows
local trackers to drift to points good to track. The
Cell FoT was compared with the Kalal et al. Grid
FoT [4] and outperformed it on all sequences but one
and for all local failure prediction methods.

As a second contribution, we introduce two new
predictors of local tracker failure - the neighbour-
hood consistency predictor (Nh) and the Markov pre-
dictor (Mp) and show that the new predictors com-
bined with the NCC predictor are more powerful than
the Kalal et al. [4] predictor based on NCC and FB.

The resulting tracker equipped with the new pre-
dictors combined with the NCC predictor was com-
pared with state-of-the-art tracking algorithms and
surpassed them in terms of the number of sequences
where a given tracking algorithm performed best.

1. Introduction

Tracking is an important task in computer vision.
Given two consecutive frames and the position of an
object in the first frame, the task is to estimate the
pose of the object in the second frame. In a video
sequence, tracking is the task of estimation the full
trajectory of the object.

There are many approaches addressing the prob-
lem. This paper focuses on the so-called Flock of
Trackers (FoT). The Flock of Trackers is a tracking
approach where the object motion is estimated from
the displacements, or, more generally, transformation
estimates, of a number of independent local trackers
covering the object.

Each local tracker is attached to a certain area

specified in the object coordinate frame. The local
trackers are not robust and assume that the tracked
area is visible in all images and that it all undergoes a
simple motion, e.g. translation. The Flock of Track-
ers object motion estimate is robust if it is obtained
by a combination of local tracker motions which is
insensitive to failures.

This idea was utilized in the Median-
Flow (MF) [4] tracker and was shown to be
comparable to state-of-the-art trackers. In [4],
the FoT is based on local trackers placed on a
regular grid, i.e. the local trackers cover the object
uniformly. The object motion, which is assumed
to be well modelled by translation and scaling, is
estimated by the median of a subset of local tracker
responses.

Theoretically, the median is robust up to 50% of
outliers for translation and 100 × (1 −

√
0.5)% for

scale estimation which is based on pairs of corre-
spondences. In practice, the outlier tolerance is often
higher since the outlier do not ”conspire” and are not
all above or below the median. Nevertheless, in chal-
lenging tracking scenarios, the inlier percentage was
not sufficient and the median failed.

In order to robustify the FoT, [4] proposed sev-
eral local tracker filtering methods which perform the
task of finding and removing probable outliers before
the median estimation. The outlier subset of local
trackers is selected by a failure-predicting procedure
which takes into account the following quantities:
the normalised cross-correlation of the correspond-
ing patches (NCC), the sum of squared differences
(SSD) and the consistency of the so called forward-
backward procedure (FB). The forward-backward
procedure runs the Lucas-Kanade tracker [5] twice,
once in the forward direction and then in the reverse
direction. The probability of being an oulier is a
function of the distance of the starting point and the
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point reached by the FB procedure.
The paper present two contributions to the design

of the Flock of Trackers. First we show that supe-
rior tracking results are achieved if the failed local
trackers are not reset to the grid position and they are
allowed to track those areas of the object they drifted
to. This process can be viewed as a new method for
selecting ”good points to track” on the object which
can be described as ”good points to track are those
the tracker drifted to”.

Second, we propose two new predictors of local
tracker failure - the neighbourhood consistency pre-
dictor (Nh) and the Markov predictor (Mp). The
Nh predictor is based on the idea that a correct lo-
cal tracker will return a displacement similar to its
neighbours. The Markov predictor exploits tempo-
ral consistency, a local tracker that performed well in
the recent past is likely to perform well on the current
frame and vice versa.

We show the new predictors combined with the
NCC predictor are more powerful than the Kalal
et al. [4] predictor based on NCC and FB. More-
over, the new predictors are efficiently computed,
at a cost of about 10% of the complete FoT proce-
dure whereas the forward-backward procedure slows
down tracking approximately by a factor of two,
since the most time consuming part of the process,
the Lucas-Kanade local optimization, is run twice.
With the proposed precise failure predictors, a FoT
with much higher robustness to local tracker prob-
lems is achieved with negligible extra computational
cost.

The rest of the paper is structured as follows. Sec-
tion 2 discussed placement of the local trackers in
FoT and present the cell placement strategy. Sec-
tion 3 propose two new predictors of local tracker
failure. Finally, Section 4 evaluate proposed im-
provements and compare resulting MF tracker with
the state-of-the-art tracking algorithms and conclu-
sion is given in Section 5.

2. Local tracker placement in FoT

The task of object tracking is usually decomposed
into two steps. First, interesting points to track are
found (e.g. ”the good features to track” [8]). Next,
the selected points are tracked. In the case of FoT,
Kalal et al. [4] omit the first step and chooses the
points to evenly cover the object of interest - the lo-
cal trackers are laid out on a regular grid. It is clear
that not all local trackers will be placed at location

suitable for tracking. The poorly placed local track-
ers drift away from the original position on the grid.
The Grid FoT (as proposed in [4]) resets, after esti-
mating the global object motion, all local trackers to
their original place in grid.

We argue that this is a suboptimal approach, be-
cause local trackers reinitialized to the same position
unsuitable for tracking will drift again. Instead, we
propose the Cell FoT, where each local tracker is al-
lowed to ”find” a suitable offset from its default po-
sition in the grid, see Fig. 1. The local trackers are
forced to stay in their cells, and thus guaranteeing to
evenly cover the tracked object, but within the cell
the local trackers are let to assume the best position
for tracking.

To avoid tracking points that are near each other,
which could make the local trackers dependent and
likely to fail simultaneously, the cells within which a
local tracker must stay may not completely cover the
object, as depicted in Fig.1. In preliminary experi-
ments, we observed that the cell parameters cw and
ch have a noticable influence on the results. How-
ever, to keep the method simple, in experiments re-
ported in this paper they are set to the grid resolution,
i.e. the local trackers are allowed to assume any po-
sition on the object (the cells cover the object).

The improvement of the FoT achieved by the
Cell method is demonstrated in experiments in Sec-
tion 4.1.

Figure 1: A comparison of the Grid and the Cell FoT.
In the Grid FoT, in every frame, local trackers are
placed on a regular grid. In the Cell FoT, after the
first frame, the location the local tracker drifted to is
tracked - the offset with respect to the grid positions
is stored. Only local trackers that drifted away form
their cells are reset.
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3. New failure prediction methods

In this section, two novel methods for the local
tracker failure prediction are presented together with
a method that combines them with a predictor based
on normalised cross-correlation and achieves very
high accuracy at a very low computational cost. This
new Median-Flow tracker with the new TΣ combined
predictor is evaluated in Section 4.2. The section
is structured as follows: Section 3.1 describes the
Neighbourhood constraint, Section 3.2 present an or-
thogonal predictor based on temporal local trackers
behaviour.

3.1. Neighbourhood consistency constraint pre-
dictor

The idea of the neighbourhood constraint predic-
tor Nh is that the motion of neighbouring local track-
ers is very similar, whereas failing predictors return
a random displacement. The idea corresponds to the
smoothness assumption which is commonly used in
optic flow estimation, e.g. [7].

The Nh predictor was implemented as follows.
For each point i, a neighbourhood Ni is defined. In
all experiments, Ni was the four neighbourhood of i
(three points are used on the edge, two in the corner
of the grid). The neighbourhood consistency score
SNh
i , i.e. number of the neighbourhood local track-

ers that have similar displacement, is calculated for
each point i as follows:

SNh
i =

∑

j∈Ni

[‖ ∆j −∆i ‖2< ε]

where [expression] =

{
1 if expression is true
0 otherwise

(1)
and where ε is the displacement difference threshold,
and ∆i is the displacement of local tracker i. A local
tracker is defined consistent if SNh

i ≥ θ. The value
of θ was set to 1. The displacement difference thresh-
old ε was set to 0.5 pixels. The process is visualised
in Fig. 2).

3.2. The Markov predictor

The Markov predictor (Mp) exploits a simple
model of the past performance of a local tracker. The
model is in the form of a Markov chain (Fig. 3) with
two states, state = {inlier=1, outlier=0}.

The predicted state of the local tracker depends on
its state in the previous time instance and the tran-
sition probabilities. Transition probabilities are com-
puted incrementally, from frame to frame. Each local

Figure 2: The neighbourhood consistency tracking
failure predictor. The neighbourhood (red area) of
the local tracker (blue circle) is explored for motion
coherence. Blue arrow - center local tracker displace-
ment, green arrows - local trackers with coherent mo-
tion, red arrows - local tracker with incoherent mo-
tion.

tracker i in time t is modeled as transition matrix Ti
t

described in eq. 2.

Ti
t =

[
pi(st+1 = 1 | st = 1) pi(st+1 = 1 | st = 0)
pi(st+1 = 0 | st = 1) pi(st+1 = 0 | st = 0)

]

(2)
where st is the current state of the local tracker and
sums in columns are equal to 1. Prediction that cer-

Figure 3: The state diagram of the Markov chain for
the local tracker in the generalized form of two states
probabilistic automaton with transition probabilities
pi, where i identifies the local tracker.

tain local tracker would be inlier (or outlier) is dual
task to next state prediction in Markov chain. To pre-
dict next state in time t+1 we compute probability of
crossing to state 1 with apriori of current state. This
is done according to equation 3.
[
pi(st+1 = 1)
pi(st+1 = 0)

]
= Ti

t ×
[
pi(st = 1)
pi(st = 0)

]
(3)

where p(st = 1) = 1 if current state is inlier, 0 other-
wise (likewise for p(st = 0)). The left side of equa-
tion 3 are then probabilities that next state would be
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inlier (outlier) (e.g. if p(st+1 = 1) = 0.6, then we
considered local tracker as inlier in 60% of cases).

Model update is equal task to estimation
of transition probabilities pi(st+i = 1 | st = 1)
and pi(st+i = 1 | st = 0). These probabilities are
updated in each frame as follow :

pi(st+1 = 1 | st = 1) =
ni11

ni1

pi(st+1 = 1 | st = 0) =
ni01

ni0

(4)

where n1 (n0) are relative frequency for the local
tracker i being inlier (outlier), and n11 (n01) are rel-
ative frequency for event that the local tracker i was
inlier (outlier) in the time t and inlier in the time t+1,
for t ∈ (0, t〉. The current state of the local tracker
being inlier (outlier) is obtained by fitting the local
tracker correspondence to estimated global motion
(by MF) and thresholding their errors.

4. Performance evaluation

The performance of the proposed FoT was tested
on challenging video sequences with object occlu-
sion (or disappearance), illumination changes, fast
motion, different object sizes and object appearance
variance. The sequences are described in Tab. 1.

In the experiments, the predictor of neighbour-
hood consistency (Nh) and the Markov predictor
(Mp) were run as explained in Section 3. The
sum of squared differences (SSD), normalized cross-
correlation (NCC) and the forward-backward predic-
tor (FB) rank local trackers by their score and treat
the top 50% as inliers. Predictors are denoted by the
names of their error measure, except for the combi-
nation Mp+NCC+Nh which is abbreviated to Σ.

A frame is considered correctly tracked if the
overlap with ground truth is greater than 0.5, with
the exception of experiment 4.4 where influence of
the initialization of the tracker was assessed. Since in
this case the bounding boxes are randomly generated
and may not fully overlap the object, the threshold
was lower to 0.3, see Fig. 6.

4.1. Cell FoT-MF vs. Grid FoT-MF

Two version of the FoT that differ by local tracker
placement — the Cell FoT-MF and the Grid FoT-MF
— were compared on sequences presented in Tab. 1.

The tests were carried out for all individual predic-
tors and for most combination of local tracker failure
predictors; some combinations, e.g. SSD and NCC,

make no sense since the predictions are highly corre-
lated.

The performance was first measured by the length
of correctly tracked sub-sequences (Tab. 2) and, on a
single sequence, by the overlap of the estimated ob-
ject pose and the ground truth bounding box (Fig. 4).

According to both criteria, the Cell FoT outper-
form Grid FoT for almost all sequences and failure
prediction methods. We therefore conclude that the
Cell FoT is superior to the Grid FoT.

Finally, the Grid and the Cell trackers were com-
pared by the fraction of local trackers that are inliers
to the global object motion, see Tab. 3. Again, the
Cell method dominates. The interpretation of this
result is not straightforward since the median and
mean inlier rates are calculated on the whole cor-
rectly tracked sub-sequences, which are different for
different method.

4.2. Comparison of failure prediction methods

We compared performance of individual predic-
tors and combinations FB+NCC (as proposed in [4])
and Σ within the MF tracker on sequences pre-
sented in Tab. 1. Performance was measured in
terms the length of the subsequence that was cor-
rectly tracked and by the number of sequences where
a given tracker failed last (Tab. 2 last row). All pa-
rameters for Nh was fixed for all sequences, as de-
scribed in Section 3.1. The proposed local tracker
failure predictor Σ outperform FB+NCC on all tested
sequences.

4.3. Comparison of TFB+NCC and TΣ speed

The MF tracker is intended for real-time perfor-
mance and thus the speed of local tracker predictor is
important. The experiment was performed on a sub-
set of sequences listed in Tab. 1 (where the trackers
successfully tracked the whole sequence) and then
the results were averaged. Speed was measured as
the average time needed for frame-to-frame tracking
(Tab. 4). Processing time for I/O operations, includ-
ing image loading, and other tasks not relevant to
tracking, was excluded. The MF with Σ predictor
performs 58% faster than FB+NCC. Moreover, the
Σ overhead is negligible compared to reference MF
tracker (i.e. MF without any predictor).

4.4. Robustness to bounding box initialization

For a tracker, it is highly desirable not to be sensi-
tive to the initial pose specified by the object bound-
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Sequence name frames First appeared in preview
1 David 761 D.Ross et al., IJCV’08 [6]
2 Jumping 313 Q. Yu et al., ECCV’08 [9]
3 Pedestrian 1 140 S. Avidan, PAMI’07 [1]
4 Pedestrian 2 338 Q. Yu et al., ECCV’08 [9]
5 Pedestrian 3 184 Q. Yu et al., ECCV’08 [9]
6 Car 945 Q. Yu et al., ECCV’08 [9]

Table 1: The description of test sequences and sample images with the selected object of interest.

Sequence T g
∅ /T c

∅ T g
SSD/T c

SSD T g
NCC/T c

NCC T g
FB/T c

FB T g
Nh/T c

Nh T g
Mp/T c

Mp T g
Σ/T c

Σ T g
FB+NCC/T c

FB+NCC
1 296/476 63/529 133/479 761/761 761/761 597/700 453/761 761/761
2 36/36 78/79 49/56 45/76 33/34 36/36 76/76 36/36
3 14/12 20/26 29/33 34/38 15/27 28/27 125/140 45/49
4 90/90 33/33 90/90 264/90 90/90 90/90 153/264 90/90
5 52/52 52/52 52/52 52/52 52/52 52/52 52/52 52/52
6 389/345 290/374 510/510 510/510 510/510 510/510 510/510 510/510

best 1/1 1/2 2/2 4/3 3/3 2/2 2/5 3/3

Table 2: A comparison of the Grid (T g) and the Cell (T c) FoT-MF with different local tracker failure predictors
in term of the length of the successfully tracked subsequences. Best results for each sequence are in bold. Row
best shows the number of sequences where the tracking method perform best.The total number of a frames in
the sequences are listed in Tab. 1 The T c

Σ clearly dominates.

Sequence T g
∅ /T c

∅ T g
SSD/T c

SSD T g
NCC/T c

NCC T g
FB/T c

FB
1 0.41(0.45)/0.51(0.55) 0.12(0.13)/0.52(0.55) 0.26(0.25)/0.50(0.53) 0.57(0.61)/0.60(0.64)
2 0.64(0.76)/0.66(0.77) 0.47(0.45)/0.47(0.45) 0.55(0.63)/0.52(0.55) 0.60(0.70)/0.50(0.54)
3 0.33(0.33)/0.35(0.33) 0.40(0.43)/0.39(0.40) 0.41(0.40)/0.43(0.43) 0.42(0.40)/0.43(0.40)
4 0.52(0.53)/0.53(0.54) 0.47(0.48)/0.54(0.56) 0.52(0.51)/0.53(0.52) 0.52(0.53)/0.53(0.52)
5 0.68(0.71)/0.68(0.72) 0.70(0.74)/0.70(0.73) 0.67(0.69)/0.68(0.73) 0.68(0.71)/0.68(0.73)
6 0.74(0.81)/0.75(0.81) 0.74(0.81)/0.74(0.81) 0.74(0.81)/0.75(0.82) 0.74(0.81)/0.75(0.82)

# better 0/6 2/2 1/5 1/4
Sequence T g

Nh/T c
Nh T g

Mp/T c
Mp T g

Σ/T c
Σ T g

FB+NCC/T c
FB+NCC

1 0.58(0.62)/0.61(0.66) 0.47(0.50)/0.53(0.57) 0.56(0.60)/0.59(0.63) 0.54(0.57)/0.56(0.59)
2 0.68(0.78)/0.65(0.78) 0.65(0.76)/0.66(0.76) 0.48(0.49)/0.48(0.44) 0.65(0.79)/0.64(0.76)
3 0.40(0.40)/0.41(0.39) 0.40(0.39)/0.40(0.38) 0.34(0.33)/0.35(0.35) 0.43(0.43)/0.43(0.43)
4 0.53(0.52)/0.54(0.55) 0.52(0.51)/0.52(0.52) 0.51(0.51)/0.52(0.51) 0.50(0.49)/0.51(0.49)
5 0.68(0.72)/0.68(0.72) 0.68(0.72)/0.68(0.72) 0.67(0.71)/0.68(0.71) 0.67(0.70)/0.67(0.70)
6 0.74(0.81)/0.75(0.81) 0.74(0.81)/0.75(0.82) 0.74(0.80)/0.75(0.82) 0.74(0.81)/0.75(0.83)

# better 1/3 1/4 1/5 1/3

Table 3: A comparison of the Grid (T g) and the Cell (T c) FoT-MF in terms of inliers rates, i.e. the frac-
tion of local trackers consistent with the estimated global object motion. Entries are in the following format:
mean(median) of inliers rates for the correctly tracked sub-sequences. Row # better shows the number of
sequences where the grid/cell methods perform better then the other one.

ing box as it is often selected manually, with un-
known precision.

If part of the bounding box does not cover the ob-
ject, the Mp predictor should soon discover that the

local trackers are consistently in the outlier set. The
Mp predictor can be used to define the object more
precisely, e.g. as the set of cells that are likely to
be inliers, according to Mp. Also, with Mp, there
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Figure 4: A comparison of the Grid and the Cell
trackers with (a) TΣ (b) TFB+NCC in terms of the over-
lap with ground truth as a function of time for the
sequence 1 (David).

Method f[Hz] T [ms]
T∅ ≈ TSSD [ref] 227 4.41

TFB+NCC 131 7.63
TΣ 207 4.83

Table 4: A comparison of the speed of tracking fail-
ure prediction methods for the MF tracker.

is hope that the global tracker will be insensitive to
initialization.

This experiment tested this assumption on the
challenging sequence 3 (Pedestrian 1). We gener-
ated randomly 100 initial bounding boxes overlap-
ping the object of interest (Fig. 6) and count the cor-

rectly tracked frames (Tab. 5). In this experiment, the
frame was declared correctly tracked if overlap with
ground truth was greater than 0.3. The TΣ tracker
perform about 90% better than TFB+NCC and was able
to track the object correctly up to frame 85 in aver-
age. Figs. 5a and 5b show the histograms of the num-
ber of correctly tracked frames and fig. 5c show 2D
histogram of the corresponding numbers of correctly
tracked frames.

Score mean (median)
TFB+NCC [ref] 4493 45 (21)

TΣ 8438 84.4 (99.5)

Table 5: Evaluation of filtering methods in terms
of the number of correctly tracked frames with ran-
domly initialized bounding box (see. Fig. 6). Score
is the total number of correctly tracked frames, the
mean and the median of the same quantity is pre-
sented in the right column.
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Figure 5: Histograms of the number of correctly
tracked frames for (a) TFB+NCC, (b) TΣ and the (c) 2D
histogram of the corresponding numbers of correctly
tracked frames for different bounding box initializa-
tions.
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Figure 6: Exmaples of randomly generated initial
bounding boxes (yellow) which were randomly gen-
erated within the red rectangle.

4.5. Comparison with state-of-the-art approaches

The proposed method was compared with the
state-of-the-art algorithms. Results of the experiment
are presented in Table 6. The key results is presented
in the bottom (denoted best). The number is de-
fined as number of sequences where the given track-
ing algorithm perform best. Results for algorithms
[6, 3, 1, 2] were obtained from [4]. The experiment
follows [4] - each frame was considered tracked cor-
rectly if overlap with ground truth was bigger than
0.5. Object initialization was done by the ground
truth. The proposed Σ predictor with MF tracker out-
perform state-of-the-art algorithms and proof to be
superior in speed and robustness to FB+NCC (as was
shown in sections 4.3, 4.4), which perform similarly.

sequence [6] [3] [1] [2] [4] TΣ

1 17 n/a 94 135 761 761
2 75 313 44 313 170 76
3 11 6 22 101 140 140
4 33 8 118 37 97 264
5 50 5 53 49 52 52
6 163 n/a 10 45 510 510

best 0 1 1 1 3 4

Table 6: A comparison of the proposed MF TΣ

tracker with recently published tracking methods.

5. Conclusions

This paper presented an improvement of the Flock
of Trackers, the so called Cell FoT that allows lo-

cal trackers to drift to points good to track. The Cell
FoT was compared with the Grid FoT [4] and outper-
formed it on all sequences but one and for all local
failure prediction methods.

As a second contribution, two new local tracker
failure predictors were introduced - the neighbour-
hood consistency predictor and the Markov predic-
tor. Together with the NCC predictor, they formed a
very strong predictor Σ. The Σ predictor was com-
pared with the FB+NCC predictor in the framework
of the Median Flow. The Σ predictor outperformed
the FB+NCC in all criteria, ie. in terms of speed, the
length of correctly tracked sequences and the robust-
ness to bounding box initialization.

The MF tracker equipped with Σ predictor was
compared with state-of-the-art tracking algorithms
and surpassed them in terms of the number of se-
quences where a given tracking algorithm performed
best.
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Abstract. We present a shape representation for ob-
jects based on 3D contour fragments that build a ‘3D
Contour Cloud’. Our approach for the automatic re-
construction of such ‘3D Contour Clouds’ from cali-
brated stereo image sequences includes a novel idea
on the reconstruction of 3D contour fragments from
stereo frame pairs and a robust Structure and Motion
analysis. Moreover, we propose an extension of 2D
shape context to 3D – 3D shape context – which we
use for outlier analysis. We show results on a stan-
dard multi-view stereo dataset as well as on our own
stereo dataset. We achieve qualitatively convincing
‘3D Contour Clouds’ for various objects including
the automatic generation of 3D bounding boxes and
object-centered coordinate systems.

1. Introduction

3D shape modeling gains more and more impor-
tance in computer vision and graphics in terms of
shape retrieval, shape matching, object recognition
and categorization. Especially in object categoriza-
tion, shape features can provide powerful cues to rep-
resent object categories, and 2D shape information
has successfully been used in several recent catego-
rization systems [9, 12, 18]. These 2D shape mod-
els use silhouette contour fragments as well as in-
ner contour fragments to model a category. How-
ever, such 2D shape models are sensitive regarding to
pose changes. Consequently, several models for var-
ious aspects are needed [12], a drawback that could
be eliminated by having just one 3D shape model per
category.

But modeling of shape is not only required in com-
puter vision and object categorization. Geometric
modeling of 3D shape plays an important role in sev-

eral research areas in vision and graphics and forms
the basis for many applications. Methods to gener-
ate 3D models allow us to model the 3D nature of
an object and this can provide additional information
about shape and appearance of objects.

Point clouds, generated by laser range scanners,
by stereo vision, or by Structure-from-Motion tech-
niques, are probably the most obvious and simplest
way to represent 3D shape. Often these point clouds
are converted to triangle meshes or polygonal mod-
els. Extensive research has been done to gener-
ate, analyze, match, and classify such models. The
shape representations vary from shape distributions
[5, 10, 11, 13] to symmetry descriptors [7] or Skeletal
Graphs [19]. Koertgen et al. [8] describe a similarity
measure between 3D models based on 2D shape con-
text which is similar to our idea. Iyer et al. [6] and
Tangelder and Veltkamp [20] discuss several shape
representation methods. Moreover, there exist 3D
model databases such as the Princeton Shape Bench-
mark [17] and the ISDB [5].

So far, only few methods in 3D curve reconstruc-
tion exist. One method based on the usage of a
double stereo rig was presented by Ebrahimnezhad
and Ghassemian [3]. The authors describe a method
for 3D reconstruction of object curves from dif-
ferent views and motion estimation based on these
3D curves. Park and Han [14] propose a method
for Euclidean contour reconstruction including self-
calibration. Unfortunately, their matching algorithm
is not applicable to our data. Experiments using
their matching algorithm with our data show that
the resulting point correspondences are too inaccu-
rate and thus many outliers exist. In contrast to
our method their contour point correspondence algo-
rithm is mainly based on epipolar information and lo-
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cal descriptors. Recently, Fabbri and Kimia [4] pre-
sented an approach for multi-view stereo reconstruc-
tion and calibration of curves. They concentrate on
the reconstruction of contour fragments without mo-
tion analysis and their algorithm is mainly based on
so called view-stationary curves, e.g. shadows, sharp
ridges, reflectance curves. Therefore, it is well appli-
cable for aerial images as they show in their results.

Motivated by these aspects, we aim to extend 2D
contour fragment models towards 3D shape models
for objects using 3D contour fragments. Our ‘3D
Contour Clouds’ have potential applications in vari-
ous research areas including contour-based 3D shape
retrieval, matching and categorization.

The main contribution of this paper is the auto-
matic stereo reconstruction of ‘3D Contour Clouds’
for individual objects from stereo image sequences.
Section 2 describes in detail our ‘3D Contour Cloud’
reconstruction method and introduces the idea of 3D
shape context for 3D contour fragment matching,
which we use for outlier reduction. In Section 3, we
describe our own dataset containing calibrated stereo
image sequences of humans and hand-held objects.
We show reconstruction results on this dataset as well
as on a standard multi-view stereo dataset.

2. ‘3D Contour Cloud’ stereo reconstruction

The determination of long and salient 3D contour
fragments is a rather difficult task. One main task in
reconstructing 3D contour fragments is to find accu-
rate point correspondences on 2D contour fragments
of the left and the right stereo frame. Two problems
may occur:

• Linking: Different linking of edges to longer
contour fragments in different views (stereo
frame pairs as well as consecutive frames) influ-
ences a matching procedure. Contour fragments
may not have the same length, same start point,
and the same end point.

• Shape deformation: The shape of contours
changes significantly when viewing them from
different poses, which makes it harder to track
contours over time and to find stereo correspon-
dences (visual rim changes).

A standard stereo correspondence algorithm would
compute the intersection between epipolar line and
contour fragments and search in a neighborhood of
these intersection points for the corresponding point.

In contrast to this method, our new approach inte-
grates the well known 2D shape context with epipo-
lar information in one single cost matrix.

Nevertheless, 2D contour fragments with similar
shape may produce false correspondences of 2D con-
tour fragments and contour points which result in in-
correctly reconstructed 3D contour fragments. For
outlier reduction we introduce 3D shape context as
an extension of 2D shape context.

2.1. Stereo reconstruction of 3D contour frag-
ments

2D shape context is very suitable for our contour
fragment matching, but using shape context in com-
bination with epipolar geometry has many more ad-
vantages. First, we can limit our search space to a
subset of contours by only taking into account those
contour fragments which lie in regions restricted by
the epipolar lines. Second, we rely on point corre-
spondences which are more precise than using just
one of the methods. We apply the Canny edge de-
tection algorithm (subpixel accuracy) to extract con-
tour fragments in the left and the right frame of a
stereo frame pair. Then, a linking algorithm based on
smoothing constraints (Leordeanu et al. [9]) is used
to obtain long, connected 2D contour fragments. For
the point correspondences we generate a new cost
matrix where we build a weighted combination of the
shape context cost matrix and a cost matrix computed
from epipolar information.

Let pi be a point on a contour fragment in the left
stereo image and qj be a point on a contour fragment
in the right stereo image. Then, the original cost ma-
trix (see [1]) is given by

CSij :=
1

2

K∑

k=1

[hi(k)− hj(k)]2
hi(k) + hj(k)

, (1)

where hi(k) and hj(k) are the normalized his-
tograms (K1 bins) at points pi and qj . In shape
context, each point pi on a contour fragment is repre-
sented by a histogram which contains the relative po-
sition to all other points on the contour fragment. The
cost matrix CS is simply the χ2 measure between the
point-histograms of two contour fragments. Hence,
the cost matrix CS contains for each point pi on
one fragment the matching cost to each point qj on
the second contour fragment. For our application for

1In our experiments K = 12 ∗ 5, where 12 is the number of
bins for θ and 5 is the number of bins for r (cmp. [1])
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stereo correspondences we create an additional cost
matrix which contains for each epipolar line ej of
one point pi of the left contour fragment the distance
to each point qj on the right contour fragment and
vice versa. Consequently,

ej = Fpi and ei = FTqj , (2)

where F is the Fundamental Matrix, ej and ei define
the epipolar lines for points pi and qj . This leads to
the second cost matrix CE, with

CEij =
(d(ej ,qj) + d(ei,pi))

2

max((d(ej ,qj) + d(ei,pi))2)
, (3)

where d is the Euclidean distance between the
epipolar line and the point. The maximum
max((d(ej ,qj) + d(ei,pi))

2) is the maximum over
all entries of the matrix and denotes a normalization
factor. We combine both cost matrices by

Cij = w1 ∗CSij + w2 ∗CEij , (4)

where w1 and w2 are weighting factors. Empirically,
we found w1 = 0.3 and w2 = 0.7 to be good choices
for the weighting factors.

For a continuous reconstruction, we additionally
use an ordering constraint on the contour fragments,
because neighboring points should have neighboring
correspondence points. By first achieving a clock-
wise ordering of the contour points, the correspond-
ing points then are given by a sub-diagonal of the
cost matrix. Based on these contour point corre-
spondences we reconstruct the 3D contour fragments
using the ‘Object Space Error for General Camera
Models’ [15].

2.2. 3D Shape Context

Outliers - falsely reconstructed 3D contour fragments
- may always occur due to false stereo correspon-
dences or false matching over time. It is not al-
ways possible to detect falsely reconstructed 3D con-
tour fragments only on the basis of 2D information.
Therefore, we introduce a 3D shape representation
and matching based on the idea of extending 2D
shape context - we call it 3D shape context - to re-
duce the number of outliers in a ‘3D Contour Cloud’.
A ‘3D Contour Cloud’ CC consists of a number of
3D contour fragments

CC = {Fl, l = 1...N}, (5)

where N is the number of 3D contour fragments in a
cloud. Each of these 3D contour fragments has been

Figure 1. 3D shape context description: For each point on
a 3D contour fragment (blue curve) the relative position
(r , φ, θ) to all other points is computed.

seen in several frames and tracked over time, so that
each 3D contour fragment Fl consists of a number of
reconstructed fragments

Fl = {f li , i = 1...M}, (6)

where M is the number of frames in which Fl is
tracked. We then use 3D shape context to verify those
fragments f li which have the most similar shape.
Fragments which do not have a similar shape as the
majority of Fl are rejected as outliers. The cost ma-
trix on the fragment Fl is defined by

CFij = sc cost 3D(f li , f
l
j) ∀i, j ∈M, (7)

where sc cost 3D(f li , f
l
j) is the 3D shape context

matching cost between fragment f li and f lj . By an-
alyzing the median and variance of this cost matrix
we can identify those tracked 3D contour fragments
f ln which are not similar to the other fragments of Fl.

The 3D shape context matching cost
sc cost 3D(f li , f

l
j) is defined in a similar way

as in 2D. Let pa be a 3D contour point of frag-
ment f li . Similar to 2D shape context we build a
multi-dimensional histogram h1a by computing
the relative positions to all other contour points g
on fragment f li in a 3D log-polar space. Hence,
we compute the distance r , the azimuth θ and
elevation φ. The basis for this computation builds
an object-centered coordinate system. Figure 1
illustrates the principle.

Then, our 3D shape context is defined in the fol-
lowing way

h1a(k) := # {g 6= pa : (r , θ, φ) ∈ bin(k)} . (8)
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In our experiments the number of bins K = 12∗12∗
5 where 12 is the number of bins for θ and φ, and
5 defines the number of bins for r . Here, the cost
matrix CS3D between to fragments is defined in the
same manner as in the 2D case using the χ2 measure

CS3Dab :=
1

2

K∑

k=1

[h1a(k)− h1b(k)]2
h1a(k) + h1b(k)

, (9)

for points pa and qb. Taking into account also the
position on the object, we compute a second, very
sparse histogram h2a. To obtain the position of the
contour points to a reference point, we compute the
distance r , the azimuth θ and elevation φ relative to
the defined reference point oc e.g. object center:

h2a(k) := # {oc 6= pa : (r , θ, φ) ∈ bin(k)} .
(10)

This histogram is sparse in the sense, that for each
point pa we have just one entry - the bin which con-
tains (r , θ, φ) for pa. The cost matrix is given by

CP3Dab :=
1

2

K∑

k=1

[h2a(k)− h2b(k)]2
h2a(k) + h2b(k)

. (11)

The overall cost matrix is then given by a weighted
sum of both cost matrices:

C3Dab = w1 ∗CS3Dab + w2 ∗CP3Dab, (12)

where we found empirically w1 = 0.6 and w2 =
0.4. The matching cost sc cost 3D between two 3D
contour fragments f li and f lj is then computed by

sc cost 3D(f li , f
l
j) =

max( 1
A

A∑

a=1

minbC3Dab,
1

B

B∑

i=1

minaC3Dab)

(13)
whereA (B) is the number of contour points on frag-
ment f li (f lj). Contour fragments with a matching
cost greater than a threshold wrt. to the majority of
all other fragments are detected as outliers. Here, the
threshold is defined by computing the median and
variance of the cost matrix.

3. Experiments and Results

We evaluate our ‘3D Contour Cloud’ reconstruction
approach on our own dataset consisting of two types
of videos and a standard multi-view dataset.

3.1. Datasets

Our own video datasets, Graz-Stereo-Base-Eye and
Graz-Stereo-Base-30 2 are taken by a calibrated
stereo rig. However, we wish to point out that the un-
derlying algorithmic components (structure and mo-
tion analysis) are well-suited to capture 3D object
models from other, more complex video data in the
future. Therefore, we also show experiments on a
standard multi-view stereo dataset.

3.1.1 Graz-Stereo-Base-Eye

We captured in the lab several videos of small toy
objects which are manipulated naturally by hand in
front of a stereo camera system (see Figure 2). Each
of these stereo videos typically contains an object,
which is presented in a hand-held manner in front
of homogeneous background. So, we avoid the con-
trolled setting of turntables. The object is manip-
ulated such that it is seen from all sides, showing
all aspects. In order to reconstruct just contours of
the hand-held objects and not contours of the hand,
we first have to mask the hand in the stereo videos
of hand-held objects. Here, we use a segmenta-
tion system based on variational methods (see [21]),
which gives us a precise hand segmentation. Fea-
tures that belong to the hand are subsequently ig-
nored. The motion analysis is based on the approach
by Schweighofer et al. [15]. The system is able to re-
construct Structure and Motion of stationary scenes
and it is robust if there are at least 50% of the features
in the stationary scene, foreground motion is detected
as outliers. In our case, because the majority of the
interest points is located on a rigid object, the system
assumes that the stereo rig is moving around the ob-
ject although we manipulate the object in front of the
cameras. This leads to an ‘object-centered’ represen-
tation as shown in Figure 6.

3.1.2 Graz-Stereo-Base-30

We capture several videos of humans moving in front
of a stereo camera system (see Figure 3). People
rotate around their vertical axis in front of homoge-
neous background and show several aspects to the
stereo rig. Again, the motion estimation is done us-
ing the approach by [15].

2The video data are available for download from http:\\
www.emt.tugraz.at/˜pinz/data
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Figure 2. Stereo rig to capture the Graz-Stereo-Base-Eye
database. We use two µEye 1220C cameras and Cos-
micar/Pentax lenses with a focal length of 12.5 mm. The
baseline is approximately 6 cm (human eye distance), the
vergence angle 5.5o. The frame rate is 15 Hz. The size of
the images is 480x752 px. For the calibration of the stereo
rig we use the Camera Calibration Toolbox for Matlab [2]

Figure 3. Stereo rig to capture the Graz-Stereo-Base-30
database. Focal length: 6.5 mm, Baseline: 30 cm, ver-
gence angle: 6.5o.

Figure 4. One example stereo frame pair of the database
Stereo-Graz-Stereo-10-Base-Eye. The hand is masked us-
ing the method by [21]

3.1.3 Multi-view stereo dataset

The multi-view dataset of [16] consists of two image
sequences (Dino-dataset and Temple-dataset). The
datasets were generated by sampling several views
on a hemisphere around the objects. The camera cal-
ibration parameters and camera poses are available.

3.2. 3D Contour Clouds of Graz-Stereo-Base-Eye

The Graz-Stereo-Base-Eye consists of stereo videos
of small hand-held objects which are manipulated in
front of the stereo rig (see Figure 4).

First, we want to demonstrate the ‘3D Con-

Figure 5. 3D contour fragments per stereo frame pair for
a small subset of stereo frame pairs over 180o. For space-
saving only the left frames of stereo pairs are shown,
above their corresponding reconstructions.

tour Cloud’ reconstruction method on one example
stereo video of our dataset. The stereo video we
choose shows a small toy horse with the dimensions
length = 175mm, height = 95mm, and width =
45mm (see Figure 4). Figure 5 shows the output for
the stereo reconstruction process - 3D contour frag-
ments for single stereo frame pairs. We can see how
the 3D shape changes over time when rotating the
object.

Figure 6 shows the estimated camera poses of the
stereo rig around the object in an object-centered
coordinate system. We can see that we manipu-
late the object by first rotating it for approximately
360o around the vertical axis of the horse and then
by about 180o around the horizontal axis. Figure 7
shows a ‘3D Contour Cloud’ of the horse for 201
frames without reducing the outliers, Figure 8 shows
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Figure 6. Camera poses of the stereo rig (green and blue
triangle connected by a red line) estimated around the
horse using [15] represented in an object-centered coor-
dinate system.

Figure 7. ‘3D Contour Cloud’ of a horse for 201 frames.
In this reconstruction outliers have not been removed us-
ing 3D shape context and all 3D contour fragments are
drawn.

the same ‘3D Contour Cloud’ by reducing the out-
liers and only drawing 3D contour fragments which
were tracked for at least 3 frames. 201 frames cor-
respond to a rotation of the object of approximately
270o around the vertical axis of the object. In the re-
construction we choose every fifth frame. Instead of
visualizing one representative contour fragment, we
show all registered contours in corresponding color,
which explains the width of the visualized contour
fragments. We see that a high number of outliers can
be reduced so that the shape of the horse is clearly
visible. We see that there is no contour for the back
of the horse, which is caused by the fact that in the
first part of manipulating the horse, the back is oc-
cluded by the hand (comp. Figure 4).

Figure 9 shows a reconstructed ‘3D Contour
Cloud’ with an automatically generated 3D Bound-
ing Box and object-centered coordinate system. We
choose the longest dimension of the 3D Bounding
Box as x-axis. For the purpose of visualization, we
choose a ‘3D contour cloud’ with a reduced number
of 3D contours where we reconstruct the ‘3D con-
tour cloud’ just for a short subsequence of the stereo
video.

Figure 8. ‘3D Contour Cloud’ of a horse for 201 frames.
Outliers have been removed using 3D shape context and
the median as threshold. Only those 3D fragments are
visible which have been tracked over ≥ 3 frames.

Figure 9. ‘3D contour cloud’ with automatically gen-
erated 3D Bounding Box and object-centered coordinate
system

3.3. 3D Contour Clouds of Graz-Stereo-Base-30

The Graz-Stereo-Base-30 consists of calibrated
stereo videos showing humans that rotate around
their vertical axis (see Figure 10). Figure 11(a)
shows the estimated camera poses of the stereo rig
around the object in an object centered coordinate
system. We can see that the human rotates approx-
imately 360o around his vertical axis. Figure 11(b)
shows a ‘3D Contour Cloud’ of the human. We can
clearly identify the shape of the human. Again, in-
stead of visualizing one representative contour frag-
ment, we show all registered contours in correspond-
ing color, which explains the width of the visualized
contour fragments. We can see at the example of the
green 3D contour fragment on the arm how the visual
rim is tracked over some frames, when it is similar to
other poses. Figure 12 shows the results for another
human stereo video.

3.4. 3D Contour Clouds of the Multi-view stereo
dataset

To show that our method is also applicable to stan-
dard datasets, we apply our reconstruction method to
the multi-view dataset of [16], which consists of the
Dino-dataset (see Figure 13) and the Temple-dataset
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Figure 10. Example images for one stereo video of the
database Graz-Stereo-Base-30. For space-saving only the
left frame of a stereo pair is shown.

(a) (b)

Figure 11. Camera poses of the stereo rig (green and blue
triangle connected by a red line) estimated around the hu-
man using [15] represented in an object-centered coordi-
nate system.

Figure 12. Stereo reconstruction of a human: left frame;
estimated camera poses; ‘3D Contour Cloud’ with outliers
(top); ‘3D Contour Cloud’ without outliers and 3D con-
tour fragments which are tracked over ≥ 2 frames (bot-
tom)

(see Figure 14), including camera parameters and
camera poses. For these datasets, views sampled on
a hemisphere or on a ring are available.

Figure 15 shows a ‘3D Contour Cloud’ for a sub-
set of images of the Dino-dataset, and Figure 16 for
the Temple-dataset. For the visualization we choose
a small subsample of images captured from the same

Figure 13. Sample images of the Dino-dataset. 363 views
are sampled on a hemisphere.

Figure 14. Sample images of the Temple-dataset. 312
views are sampled on a hemisphere.

Figure 15. ‘3D Contour Cloud’ of the dino.

Figure 16. ‘3D Contour Cloud’ of the temple.

aspect (side view of the dino and the temple). Similar
to the other datasets, we show all registered contours
in corresponding color, which explains the width of
the visualized contour fragments. We can see that the
plates of the stegosaurus result in many different 3D
contour fragments because of different illumination
effects, and that the striation on the pillars delivers
many non-distinguishable inner contour fragments.

4. Conclusion and Outlook

We have presented an automatic reconstruction
method that can generate ‘3D Contour Clouds’ for
several objects and various databases. Furthermore,
the system generates 3D bounding boxes and object-
centered coordinate systems. Although most of our
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experimental results are obtained on our own stereo
datasets, we show that the approach is also applicable
to a standard multi-view stereo dataset. Moreover,
the paper presents an extension of standard 2D shape
context towards 3D, a contribution that will be useful
in various other 3D shape matching applications.

Various applications may benefit from the ‘3D
Contour Clouds’ presented in this paper, but our
main interest is in object categorization using pose-
invariant 3D shape models. Here, the focus does
not lie in a precise reconstruction, rather in a qual-
itatively convincing representation of 3D shape of a
category by salient contour fragments. We are aware
that an exact silhouette reconstruction is not possible
based on two views where different silhouette con-
tours may be seen on the ‘visual rim’ of the object.
On the other hand, there is the advantage that all as-
pects of the object’s ‘visual rim’ are integrated into
one single 3D model.

The representation by ‘3D Contour Clouds’ con-
stitutes a powerful method for geometric modeling
of 3D shape. In addition, 3D contour fragments are
more discriminative than standard point cloud repre-
sentations.
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Abstract.
Linear predictors (LPs) are being used for track-

ing because of their computational efficiency which
is better than steepest descent methods (e.g. Lucas-
Kanade). The only disadvantage of LPs is the nec-
essary learning phase which hinders the predictors
applicability as a general patch tracker. We address
this limitation and propose to learn a bank of LPs
off-line and develop an on-line detector which selects
image regions that could be tracked by some pre-
dictor from the bank. The proposed detector differs
significantly from the usual solutions that attempt to
find the closest match between a candidate patch and
a database of exemplars. We construct the detec-
tor directly from the learned linear predictor. The
detector positively detects the learned patches, but
also many other image patches, which were not used
in LP learning phase. This means, that the LP is
able to track also previously unseen image patches,
the appearances of which are often significantly di-
verse from the patches used for learning. We propose
a fast LP-structure-based detection method, which
is in computational cost comparable with standard
appearance-based detectors and is easy to construct
directly from a trained LP without any further learn-
ing.

1. Introduction

Many computer vision techniques (e.g. 3D recon-
struction, simultaneous localization and mapping)
and applications (e.g. surveillance, robot’s visual
navigation) require real-time, reliable and accurate
tracking algorithms. The most natural approach to
tracking is scanning around the last known position

for the maximum response of a criterion function.
Since an exhaustive scanning through the whole im-
age is time consuming, the search space is often re-
stricted. If it is known, that the last position is not
too far from the current position, a local estimation
methods, like steepest descend methods [10, 3] or
regression-based methods [9] are often used. Un-
fortunately, locality of such methods is unavoidable.
Each method has a limited range within which it
works. The range is usually determined by the max-
imal inter-frame object displacement. A detector is
essentially needed for any tracking application in or-
der to resolve cases when the track is lost. For ex-
ample the Lucas-Kanade tracker usually re-starts on
features that are good to track [12].

Linear predictor is one of the simplest yet power-
ful regression-based tracking method. Linear predic-
tor (LP) is a linear regression function which maps
observed image intensities to motion parameters. It
has been shown in [17] that LPs outperform steep-
est descend method in both the size of the basin-
of-attraction and the speed of tracking. However,
the off-line learning stage limits their practical us-
age as a general tracker in an open world environ-
ment. To avoid this drawback we propose to pre-train
a database of LPs and equip each LP by a detector
that finds trackable patches. A naive solution, which
would check the neighbourhoods of all image points
for LP convergence, would make the usage of LPs
prohibitively time consuming. We propose a way
how to build the LP-structure-based detector, which
detects all LP trackable points, rejects most of the
other points and preserves computational cost com-
parable with standard appearance-based detectors.

The rest of the paper is organized as follows: Sec-
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tion 1.1 introduces state-of-the-art in linear predic-
tors, Section 2 explains the functionality and con-
struction of the detector and finally Section 3 shows
experimental evaluation of the method.

1.1. State-of-the-art

Given the initial position s0 ∈ S, where S is the
set of all 2D coordinates in the current image I, a
tracker estimates motion1 t of the object by some
function ϕ(I, s0):

t = ϕ(I, s0). (1)

The most common way of tracking is repeated min-
imization of some image similarity (criterion) func-
tion f(t; I, s0) given an image I and previous object
position s0

t∗ = argmin f(t; I, s0) = ϕ(I, s0), (2)

where t∗ is the estimate of the object’s motion. Cri-
terion f(t; I, s0) includes implicit or explicit model
of object’s possible appearances and optionally some
relation to s0. Criterion f could be for example ob-
tained as a similarity function as well as a classifier
or foreground/background probability ratio learned
from training examples.

By optimization-based tracking we understand an
on-line optimization technique solving problem (2).
While some approaches [11, 2, 8, 4] exhaustively
search for object in a subset of object positions S
with a classifier approximating f(t; I, s0), another
approaches [10, 3, 14, 12] use a gradient optimiza-
tion of some criterion.

Regression-based tracking methods attempt to
model explicitly the relationship between image ob-
servations and the optimal motion t∗ without the ne-
cessity of defining criterion f(t; I, s0). They learn
function ϕ(I, s0) (used in equation (1)) in a super-
vised way from synthesized training data [9, 5, 15].
We outline main principle of the regression-based
methods.

The regression-based methods [5, 9, 15] estimate
the motion t directly from locally observed intensi-
ties on some set of pixels X ⊂ S called support
set (pixels coordinates spread over the object) instead
of optimizing the criterion function f(t; I, s0). Such
an approach requires a learning stage. Pairs of mo-
tions t and corresponding vector of image intensities

1For simplicity, we talk about 2D position and 2D motion but
the method also generalizes to more complex transformations.

(t o X)2

(t o X)1

X

ϕ( )= (0, 0)> ϕ( )= (25, 25)>

ϕ( )= (0, 15)>ϕ( )= (−15, 0)>

Figure 1. Learning of a linear mapping between image
intensities and motion parameters. The synthetically cre-
ated training examples (image patches) are collected in a
close neighborhood of the object’s position under known
set of motions. A linear mapping ϕ between these image
samples and motion parameters is than computed using
the least squares method.

I(t◦X), observed in coordinatesX moved by vector
t, are collected and a mapping ϕ : I→ t minimizing
some error on these examples is estimated, see Fig-
ure 1,

ϕ∗ = argmin
ϕ

∑

t

‖ϕ
(
I
(
t ◦X

))
− t‖, (3)

In the tracking stage, the learned mapping ϕ∗ di-
rectly estimates motion parameters without the ne-
cessity of an on-line optimization of any criterion
function.

Notice that Lucas-Kanade tracker [10] solves a
similar optimization task in each frame, where it
needs to compute the image gradient, Jacobian of the
warp and pseudo-inverse of the Hessian. This pro-
cess can be replaced by using a regression matrix H

learned on a set of synthesized examples. Matrix H

forms a linear mapping between intensities I(t ◦X)
and motion t,

t = ϕ
(
I(t ◦X)

)
= H
(
I(t ◦X)− I(X)

)
, (4)

In the tracking procedure, the motion parameters t
are simply computed as a linear function H(I(t◦X)−
I(X)) of the object intensities. We call such method
Linear Predictor. In the following, the least squares
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learning of the LP is described, since it is the most
commonly used.

Let us suppose we are given template J = I(X)
and collected training pairs (Ii = I(ti ◦ X), ti)
(i = 1 . . . d) of observed vectors of intensities
Ii and corresponding motion parameters ti, which
aligns the object with the current frame, see Fig-
ure 1. Then the training set is an ordered pair
(I, T), such that I = [I1 − J, I2 − J, . . . Id − J] and
T = [t1, t2, . . . td]. Given the training set, LP’s coef-
ficients minimizing the square of Euclidean error on
the training set are computed as follows:

H∗ = T I>(II>)−1︸ ︷︷ ︸
I+

= TI+. (5)

Since the regression method is very effective it is
widely applied in tracking. In particular, Cootes et
al. [5, 6] estimate the parameters of Active Appear-
ance Model (AAM) - i.e. deformable model with the
shape and appearance parameters projected into a
lower dimensional space by the PCA. In [5] a linear
predictor (4) learned by the least squares method (5)
estimates all parameters of the AAM. Since the lin-
earity holds only for a small range of parameters, the
solution is iterated. Iterations are computed with the
same matrix but the length of the optimization step is
locally optimized.

This approach was later adapted by Jurie et al. [9]
for tracking of rigid objects. Unlike Cootes et al. [5],
Jurie’s linear predictors estimate local 2D transla-
tions only. The global motion is estimated from lo-
cal motions by the RANSAC algorithm, showing the
method to be very efficient and robust. Williams
et al. [15] extended the approach to the non-linear
motion predictors learned by Relevance Vector Ma-
chine [13] (RVM). Agarwal and Triggs [1] used
RVM to learn the linear and non-linear mapping for
tracking of 3D human poses from silhouettes. An-
other extension was suggested by Zimmermann et
al. [17] who proposed an optimal way to concatenate
several regression functions into a sequential predic-
tor. Different learning techniques have also been pro-
posed, e.g. Drucker et al. [7] search for the regression
function that has at most certain deviation from the
actually obtained poses. Zhou et al. [16] proposed
greedy learning for additive regression functions, us-
ing weak regressor formed of a linear combination of
binary functions.

All training patches Trackable patches

LP1

LP2

Figure 2. Examples of patches used for learning (middle
column) and some of trackable patches (right column) for
2 different LPs are shown for visual comparison. You may
notice, that the trackable patches, which were found by
our detector, are not visually similar to the patches used
for training.

1.2. Contribution

We show that an LP allows to track many points it
has not been trained for, for examples see Figure 2.
Notice, that appearance of the set of LP trackable
patches are very discrepant from the set of training
patches. Such points could not be detected by any
standard detector trained on the appearance of train-
ing examples – simply because the trackability rather
stems from the structure of the LP than from the ap-
pearance of the training samples.

We propose an efficient detector of LP trackable
points which (i) does not require any time consum-
ing learning (ii) detects all trackable points and (iii)
has computational costs comparable with standard
appearance based detectors. The detector construc-
tion is described in the following section.

2. Detector of LP trackable points

Different forms of LPs provide different sensitiv-
ity to object appearance – the more degrees of free-
dom, the more general the LP is, but the longer learn-
ing is needed. In this paper, the two following forms
of LPs are studied:

Basic LP: t = HI(t ◦X), (6)

Extended LP: t = H(I(t ◦X)− I(X)). (7)

The basic LP uses directly the vector of observed im-
age intensities I(t◦X) whereas the extended LP sub-
stracts the object template I(X) from I(t ◦X). The
extended version allows the tracker to be more vari-
able, as will be seen in Section 3. Note, that although
we speak about Linear predictors (because of histori-
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(a) Convergence of the LP (b) Terminology

X

Y
(t o X)

(t o X)
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(t o X)

1

2
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4
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Figure 3. (a) Convergence of the LP from a neighbour-
hood of a single point (predictions are depicted by green
arrows). Arrows point from the LP’s initial position to
the predicted object center. Left - depicts only a few of
used votings for better visualization. Right - shows all the
votings from the neighborhood R used in our algorithm.
When all the arrows point to one pixel (or close enough),
which is also the currently evaluated point, than the point
is trackable. When the arrows point to some random di-
rections, the point is not trackable by particular LP. (b)
Terminology: X is the set of 2D coordinates, called sup-
port set. (tj ◦ X) is the support set transformed by local
motion perturbation tj and Y is union of all perturbations
of the support set, i.e. Y =

⋃
tj∈R(tj ◦X).

cal reasons), huge class of possible non-linear exten-
sions is at hand (e.g. polynomials can be treated as
linear combinations of monomials).

The simplest way to detect the a trackable point
would be to build a naive detector which evaluates
LP’s convergence (see Figure 3a) at every single
point (rotation and/or scale) in the image. Let us con-
sider that we want to check convergence of a simple
LP with coefficients (regression matrix) H and sup-
port set X . Convergence of the LP means that each
row h>i of H and corresponding element tji of every
local perturbation tj from the considered neighbour-
hood R = {t1, t2, . . . , tn} has to satisfy

∀j h>i I(t
j ◦X) = tji + h>i I(X) + ∆j (8)

for reasonably small prediction errors ∆j , where
I(tj ◦ X) is a vector of intensities collected in the
support set X transformed by local perturbation tj .
For the sake of simplicity, row index i is further omit-
ted.

This approach is, however, reasonably applica-
ble just for LPs in the basic form and it can eas-
ily become prohibitively time consuming. Therefore,
we propose sufficiently fast detection method of LP
trackable points, applicable for more general forms
of LPs, e.g. Equation (7) or other [18].

Main idea is based on the fact that checking the
convergence of an LP on some region is almost
equivalent to checking whether the mean and vari-

ance of the prediction errors ∆j are close to zero.
We first introduce the set of all pixels

Y =
⋃

tj∈R
(tj ◦X), (9)

used in linear system (8), see Figure 3b. Then the
Equation (8) is rewritten to the intensity independent
form as follows:

∀j h>I(tj ◦X) = f j>I(Y )

= tj + h>I(X) + ∆j ,(10)

where f j consists of suitable permutations of ele-
ments of h> and zeros. Since I(Y ) contains all ele-
ments of I(X) we can express prediction error in the
following form

∆j = [f j>I(Y )]− [tj + h>I(X)]

= wj>I(Y )− tj . (11)

If the point is trackable then the prediction errors ∆j

has distribution F(µ, σ) with both mean µ(∆) and
variance σ2(∆) close to zero which is further denoted
as µ(∆), σ2(∆) ≈ 0. If µ(∆) or σ2(∆) gets far from
zero, then there exist local perturbation(s) around the
selected point, which cannot be compensated by the
LP. It means, that to reject the hypotheses that the
point is trackable by a given LP, it is not necessary to
check all the linear equations in system (10), but we
can easily check necessary but not sufficient condi-
tion:

µ =
1

n

∑

j

∆j

=
( 1

n

∑

j

wj>
)

︸ ︷︷ ︸
w>

I(Y )−
( 1

n

∑

j

tj
)

︸ ︷︷ ︸
b

= w>I(Y ) + b ≈ 0, (12)

the computational cost of which is the same as the
computational cost of just one equation of the lin-
ear system (10). This condition will be insufficient
for example in the case, where all LP predictions has
got flipped signs or in the case where I(Y ) is con-
stant (i.e. gradient is zero). While the first case is
very rare, the second case is quite often. Image areas
with constant (or almost constant) intensity function
are inherently not trackable and can be eliminated in
advance.
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Similarly the variance σ2(∆) can be expressed as
the following sparse quadratic form:

σ2 = E((∆j)2)− E(∆j)2

=
1

n

∑

j

(
w>j I(Y )− tj

)2 − µ2

= I>(Y )
( 1

n

∑

j

wjwj>
)

︸ ︷︷ ︸
A

I(Y )−

−
( 2

n

∑

j

wj>tj
)

︸ ︷︷ ︸
b>

I(Y ) +

+
( 1

n

∑

j

(tj)2
)
− µ2

︸ ︷︷ ︸
c

= I(Y )>AI(Y )− b>I(Y ) + c ≈ 0, (13)

where A is a sparse, positive-semidefinite and sym-
metrical matrix, b> is a vector and c is a scalar. Spar-
sity of A, which is crucial for the computational effi-
ciency, depends on the set of considered local pertur-
bations R. We observed that around 80% of its ele-
ments are equal to zero. All the coefficients needed
for µ-test, i.e. Equation (12), and σ-test, i.e. Equa-
tion (13), are off-line directly created from the ele-
ments of H, the on-line detection means only a few
hundreds of scalar multiplications per point.

The point trackability is determined by the result-
ing µ and σ, which should not be bigger than cor-
responding threshold values Θµ and Θσ. If none of
the values (µ or σ respectively) is bigger than thresh-
old (Θµ or Θσ respectively), than the point is track-
able by a particular LP, othervise it is not trackable.
Note, that in our experiments 99.8% of not track-
able points were already filtered by the µ-condition
and the σ-condition was usually evaluated on only a
few points. Note, that the same detector can be con-
structed for the basic LP by omitting term h>I(X)
in Equation (11).

3. Experiments

Experiments were performed on two video se-
quences, 1548 frames and 2595 frames long. Mov-
ing camera captured walls with windows, see Fig-
ure 4 for few example frames. Ground-truth inter-
frames homographies were computed from manually
labeled 4-point correspondences in both sequences,
in order to be able to detect the loss-of-track of tested

Figure 4. Example images from tested sequences. The se-
quences contained mainly 2D translations with small scale
changes and rotations. The tracked objects were mainly
planar walls, windows or doors.

LPs. The LPs used in our experiments predicted 2D
motion only. The tested sequences contain mainly
2D motion with small scale changes and small in-
plane rotations to see the robustness of tested LPs.
We demonstrate the results of experiments by graphs
of average track length L on horizontal axis for par-
ticular number of trackable patches N on vertical
axis. Changing the thresholds [Θµ,Θσ] for detec-
tor changes the number and quality of detected and
tracked points, which than generates various points
in these NL−diagrams. We evaluate the results for
one (Figs. 6 and 7) up to six LPs (Fig. 5) trained on
different patches for various [Θµ,Θσ] thresholds.

Comparison of the basic and extended linear pre-
dictor: µ and σ conditions are in practice evalu-
ated with respect to some thresholds Θµ and Θσ.
The higher thresholds the more points are accepted
but the lower is the average length of the track be-
cause of the worse local convergence of the LP. Fig-
ure 5 shows the threshold combinations for basic
LPs (in blue) and extended LPs (in red). The re-
sults show the average LP performance computed
from six distinct LPs over 2 sequences. Lines con-
nect combinations with fixed Θµ. The ideal LP with
ideal detector would have all threshold pairs on the
most right vertical line, since it would allow to track
all the points for as long as possible. The pareto-
optimal threshold combinations, which are empha-
sized by the thick line show the best performance,
which may be obtained with particular set of patches
for two tested sequences. Both predictor types have
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(a) Basic LP
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(b) Extended LP
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Figure 5. Comparison of the (a) Basic LP and (b) Ex-
tended LP: Lines connect threshold combinations with
fixed Θµ, pareto-optimal threshold combinations are em-
phasized by the thick lines. Both predictor versions have
different properties. The basic LP is able to track lower
number of patches for more frames, while the extended
LP is able to track a lot of patches, but looses the track
more frequently.

different properties. The extended LP is alowes to
track a high number of patches for a smaller number
of frames (when averaged) than the basic LP, which
tracks a lower number of patches for higher number
of frames. The higher adaptibility of the extended LP
on possible patch appearances, caused by the tem-
plate I(X) substraction in equation 7. On the other
hand the extended LP has zero mean on image re-
gions with constant intensities (zero image gradient),
which requires to compute the time consuming σ-test
in more image points, than for the basic LP. So for the
extended LP, it usually takes a little longer to detect
the trackable points.

LP trained on 1 patch and 3 patches
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Figure 6. Single versus multiple patch learning: Com-
parison of the performance of single LP trained for one
image patch (blue) and the same LP which was incremen-
tally trained for another two patches. The aditional two
training patches improved the predictor performance al-
though the right number of training patches and the crite-
ria for their selection is still not solved.

µ-test vs (µ & σ)-test
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Figure 7. Importance of σ-test: NL-diagram of the
points detected only by the µ-condition (in red) and points
detected by both conditions with pareto-optimal thresh-
olds (in green) for single LP.

Using one or more patches to train the LP: On
Figure 6 you may see the comparison of performance
of LP trained for one patch (object) and the same
LP, which was incrementally trained for another two
patches. Adding a few training examples improves
the LP’s generality.

The numbers of patches for learning of the LPs
used in our experiments vary from one to five.
Some LPs (used in all experiments) were trained on
patches, which appear in the tested sequences, but
most of them were trained on completely different
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patches and objects, which do not appear in the tested
sequences. The aditional training patches were se-
lected manually and generally contained some dis-
tinctive visual features (e.g. harris corners or well
textured areas). The automatic selection of training
patches (and their number) for the most general LP
is clearly an important issue and it will be the focus
of our future work.

Importance of σ-test: In this experiment, we show
the importance of the σ-test. We compare NL-
diagram of the points detected only by the µ-
condition (i.e., with Θσ = ∞) and points detected
by both conditions with pareto-optimal thresholds,
showing that σ-test yields important improvement.
Results are summarized in Figure 7.

4. Conclusion

We design a simple method for detection of LP
trackable points. Depending on the µ and σ thresh-
olding, one linear predictor may successfully track
around 100 of different patches, for which the LP was
not trained . The detector is very efficient and does
not slow down the learing phase, because it is con-
structed directly from the learned LP. An interesting
opened question is how to select the proper patches
in the off-line training phase. For the moment we se-
lect examples by hand. In the future work we would
like to optimize over wider range of possible patches.

We believe also that presented method can be ex-
tended to more general forms of LPs notably for
the sequential LPs [17] or appearance parameterized
LPs [18].
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