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Abstract

In this thesis bird sounds are investigated with the help of signal processing
tools. Established techniques in human speech processing and speech ana-
lysis are adapted to the specific characteristics of bird songs. One core
aspect is the modeling with Hidden Markov Models (HMM). To set up
statistical models, adequate methods for analysis and parameter extraction
are examined to make realistic synthesis of bird sounds possible. Using
the example of a budgerigar, the process of training and synthesis with the
HMM-based Speech Synthesis System (HTS) is described and the results
are discussed. Budgerigars have a great ability to produce complex sounds
and their songs are accordingly diverse. In order to segment the record-
ings, an elemental breakdown of phrases is done, as well as a clustering to
identify recurring elements. Label files are composed for the use with the
toolkit, that contain additional context information to enhance the training
and synthesis. The aim of the whole process is to offer an interface, that
generates new sequences and compositions of bird songs from a user input.
Finally, an objective evaluation comparing the synthesised output to the real
recordings is performed.



Kurzfassung

In dieser Arbeit werden Vogellaute mit Hilfe von Techniken der Signal-
verarbeitung untersucht. Es wird versucht die bisherigen Methoden und
Techniken im Bereich der Analyse und Synthese menschlicher Sprache an
die Besonderheiten des Vogelgesangs anzupassen. Besonderes Augenmerk
wird dabei auf die Modellierung mittels Hidden Markov Modellen gelegt.
Hierfiir werden addquate Analysemethoden ermittelt, um statistische Mo-
delle aufstellen zu konnen und eine moglichst realistische Synthese von
Vogellauten zu erzeugen. Am Beispiel des Gesangs eines Wellensittichs
wird der Analyse- und Syntheseprozess anhand des HMM-based Speech
Synthesis System (HTS) beschrieben und die damit erzielten Ergebnisse
prasentiert. Wellensittiche besitzen ein hohes Talent komplexe Laute und
Kldnge zu erzeugen und ihr Gesang ist dementsprechend abwechslungs-
reich. Durch Unterteilung einzelner Phrasen in kleinere Elemente wird
eine Segmentierung in phonetische Einheiten durchgefiihrt. Die Elemente
der Segmentierung werden in einem Clusteringverfahren gruppiert und
gekennzeichnet, um diese mit dem HTS Toolkit verarbeiten zu konnen.
Zusitzlich zu den rein akustischen Faktoren werden fiir das Training und
die Synthese Kontextinformationen verwendet, welche in Form von Ent-
scheidungsbaumen zu einer besseren Modellierung beitragen sollen. Mit
dem erstellten Toolkit wird die Erzeugung neuer Abfolgen und Zusam-
menstellungen von Gesangsphrasen ermoglicht. Schlussendlich werden
synthetisch erzeugte Vogellaute mit nicht fiir das Training verwendeten
Originalaufnahmen objektiv verglichen.
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1. Introduction

1.1. Motivation

In the last few years more attention has been drawn to the question of
complexity in animal communication and it appears that there is still a lot
to find out (Rothenberg et al., 2014). To know more about animal communic-
ation can also help to find out more about human speech. On the search for
precursors of music and human speech, some answers may be found there
with investigation of species with less complex communication systems, that
still have similarities to the human one (Marler, 2001). Songbirds are - like
human beings - vocal learners and need a tutor to develop more complex
vocalisations, while simpler ones are inherent (Thorpe, 1958). Being able to
produce realistic sounds by synthesis should give the opportunity to set up
experiments with songbirds and find out more about sequencing rules of
their songs or how their perception of hearing works. A complete different
way to utilise a bird song synthesiser, is the use of it in areas like virtual
reality, game design, film and audio productions or even animal assisted
therapy (Bonada, Lachlan and Blaauw, 2016, p.1).

1.2. Tasks

The aim of this work is to create a system where synthesised bird sounds
can be created on the requirements of the user. Therefore, properties of
bird songs are investigated and ways to model them are presented. The
HMM-based Speech Synthesis System (HTS) is used to train and model the
vocalisations of a budgerigar, whereas the following areas will be covered:
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¢ Ways to describe bird songs, their features and how to derive stochastic
models of them.

* Description of the training process in connection with the HTS toolkit.

* Usage of the toolkit to perform training and synthesis of new songs.

¢ Evaluation of the synthesis and identification of problems that occur
in the process.

Budgerigars have a great repertoire of different vocalisations, that can even
include imitations of human speech (Dent et al., 1997). Their songs have
large variety and especially their complex contact calls do rarely reoccur in
similar way twice. On the experimental basis of a segmentation created by
Daniel M. Mann (D. M. Mann, personal communication, June 12, 2018) the
songs are cut into smaller units. Built on quick changes of the parameters in
the audio files (amplitude, fundamental frequency,...) segmentation rules
are defined and applied to recordings of one budgerigar specimen. The
segmentation algorithm evolved from initial blind segmentation methods
(Sharma and Mammone, 1996), whereas specific parameters were found
through a comparison to manual derived segmentation of budgerigar signals
based on a human visual system. The algorithm was then applied on
samples of annotated speech to find the model with the lowest error rate (D.
M. Mann, personal communication, June 14, 2018). To use the segmentation
in conjunction with HTS there is still a lot to do. First of all, similar sounds
need to be grouped together which is done by a clustering method in R (R
Core Team, 2014). Before the actual clustering, the segments are divided
into two groups - voiced and unvoiced sounds, so that the clustering can be
done individually on each set. With the clustering a reduction of more than
30 000 segments to 11 groups of voiced (v1, v2, ..., v10, v11l) and 9 groups
of unvoiced (uA, uB, ..., ul) sounds is achieved. In a typical scenario the
sounds to be synthesised as well as their sequence order have to be specified
in a label file. Most of the additional context information can be calculated
automatically, while factors like behavioural descriptions can be specified
by the user.
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1.3. Overview

This thesis is structured into three theoretic chapters and one more practical
chapter, where the theory is applied to build a bird voice model. The theory
block starts with an introduction of the anatomy of birds and helps to get
a better understanding of the mechanics used for sound generation. The
second chapter - Recording and Analysis of Bird Songs - deals with ways
to attain the caption and storing of acoustical activities and how to process
them in a meaningful manner. The last theoretical chapter will focus on the
steps that are needed to get meaningful statistical model descriptions in
relation with Hidden Markov Model (HMM) based synthesis. This section
includes an introduction of HMMs and important tasks and methods, that
will be put into practice in the experimental section later on. Finally having
reached the experimental part, the HTS toolkit will be used for the training
and synthesis of budgerigar sounds. To evaluate the resulting synthesis,
a few recordings were retained throughout the training process, so that
synthesised versions of unseen input data can be compared to the actual
recording. This makes it possible to compare the way the model creates
a song with the way that the budgerigar actually created it. Finally, the
problems of the method are discussed, a conclusion is drawn, and future
refinements are suggested.



2. Bird Anatomy and Vocalisation

In this chapter the avian anatomy that makes the characteristic bird vocal-
isation possible will be described. To specify the properties of the songs,
a division into songs, phrases, syllables, and elements is defined. Using
those elements the song structure can be analysed in a more detailed man-
ner, which enables to obtain sequential rules. Moreover, the most common
tone qualities and pitch contours are described in detail. At the end of
this chapter answers to some of the difficult questions on the existence of
language in animal communication are given.

2.1. Anatomy and Mechanics

The complexity of sound production differs a lot between bird species.
The underlying physic mechanism of sound production is close to the
mammalian one, even though the excitation signal is generated from two
different organs and locations. The mechanics of bird sound production
can be described with different models, whereas the following seems the
most promising: Air is being pressed out from air sacks through the bronchi
and syrinx, where tissues (labia) are stimulated so that they vibrate (see
figure 2.1). The sound then propagates to the trachea and the larynx. In
contrast to mammals, where the larynx is the primary source of sound
generation, trachea and larynx operate more like a variable filter, while
the syrinx produces the excitement (Mindlin and Laje, 2006, p.37). As just
mentioned before, the larynx normally is not used to create sound, but
there still exist a few species that use it to generate sibilant and hiss sounds
(Bezzel and Prinzinger, 1990).

A different proposed model for sound generation is based on the whistle
effect of air being pressed through a valve. While those different models
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Figure 2.1.: Avian respiratory system (Figure from (Jacob, 2018))
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may co-exist, investigation into the whistle model has been made without a
clear confirmation of it (Mindlin and Laje, 2006, p.37).

2.2. Syrinx

Taking a deeper look at the main generator of sound, there are numerous
differences in the details of the syrinx of each bird. Three main different
types of syrinx can be found: the tracheo-bronchial syrinx (see figure 2.2),
the tracheal syrinx and the bronchial syrinx. The main force to generate
air flow comes from the respiratory muscles. The inhalation/exhalation
process is done in a very quick way of about 25 cycles a second (Hummel,
2000, p.117f) and occurs between notes. This enables birds to produce long
songs without noticeable pauses. In figure 2.2 (2 = inner muscles, 3 =
Membrana tympaniformus lateralis, 4 = M. t. medialis, 5 = Pessulus, 8 =
Bronchidesmus, 9 = Tympanum, 10 = Labium laterale, 11 = Labium mediale,
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Figure 2.2.: Tracheo-bronchial syrinx (Figure from (Bezzel and Prinzinger, 1990, p.266))

12 = Membrana semilunaris) the skeleton elements can be seen, which
consist of membranes and muscles surrounding the syrinx. Around those
elements there is a collarbone air-sac that controls part of the pressure that
is used for the airflow and sound generation. The vocal folds are mainly
used for controlling the pressure by widening or closing the path for airflow
(this can be done in a very accurate way by turning skeleton elements into
the tube), while the membrana tympaniformis are excited to direct tonal
vibrations. The sound level is dependent on the air flow’s pressure, but it
should be kept in mind, that different sounds may also require different
air pressure to be generated (Bezzel and Prinzinger, 1990, p.266f). There
are birds like the Clay-colored Robin, that are capable of producing two
different tones and timbre at the same time, by using both sides of their
syrinx, while others use mainly one (Mindlin and Laje, 2006, p.38f, 59)
or even one after another like the brown-headed cowbird (Suthers, 2004,
p-288). Neural activities control the movement of abdominal and thoracic
muscles for airflow and can create complex movements that finally produce
multi-modal vibrations on the membranes.
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2.3. Bird Sounds

Bird sounds can be divided into two main categories:

e Vocalisation
e Sonation

While vocalisations make use of the syrinx, sonation is a non-vocal, mech-
anical production of sound that is intentionally used like special shaped
feathers, beak or the feet (Bezzel and Prinzinger, 1990, p.269). In this chapter
the focus will be on vocal sounds, that are generated by the respiratory
system.

Vocalisations are produced for special purposes and have evolved out of
surviving strategies and evolution. A rough division into calls and songs
tries to differ between the different intentions of the two, although the
differentiation is not always clear.

¢ Calls include vocal sounds, that consist of only one or few elements
and for instance involve warnings and alarms. It is of great interest
for a bird to know if there is a predator approaching and it is also
beneficial to exchange information about food sources and social
interaction. The alarm call is normally simpler in relation to bird songs
but can for instance include information about the dangerousness of
a predator, as well as if it attacks from land or from sky, which will
be important for the bird’s chosen escape strategy (Templeton, 2005).
Interestingly, some alarm calls are perceived inter species as well.

* Songs use to be more complex than calls and consist of smaller units
called syllables. Their functions include territorial boundary, attracting
partners and other communication purposes. During breeding season,
songs take an important part in defending territories and competing
for partners, where mainly the male birds show off their skills that go
hand in hand with their level of attractiveness (in the female bird’s
view) in terms of health condition. Neither is the production of songs
limited to songbirds, nor male birds, setting the Northern Cardinal
as an example. Recent studies also claim that there exist many more
species where the females sing (Odom and Benedict, 2018).
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Finally there is to say, that calls are assumed to be innate, whereas more
complex songs are learned by the birds over time individually (Rothenberg,
2007, p.124), (Thorpe, 1958).

2.4. Bird Song Unit

As bird species have very different vocalisations, attempts to standardise the
units and their names have been made. To create an initial division of units,
a temporal method is sufficient, as only pauses need to be marked. Mor-
phological methods (segmentation decisions based on specific parameter
changes) segment complex units, that often are derived trough temporal
methods, into smaller elements (Thompson, LeDoux and Moody, 1994). In
the following the common structure of bird units and the nomenclature
used is described further:

A song is the biggest unit and contains different phrases. More complex
phrases can be divided into smaller units called syllables, which again can
be divided with a short, temporal derived silence. The smallest units are
called elements and evolve from syllables (see figure 2.3). In the following
songs will be used to describe both, songs and calls, whereas only “contact”
phrases relate to actual songs according to the definition above.

Song
Phrase r 1 r 1 r 1 r 1 r 1
Syllable

Elements

1.5-10

Frequency (Hz)

200 it
31.86 32.78
Time (s)

Figure 2.3.: Unit division by the example of a budgerigar song
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2.5. Complexity of Song Structure and
Sequencing Rules

There are birds that use to mimic hundreds of sounds (like the mocking
bird) and there are birds that never really vocalise at all (like storks). De-
pending on the species, different repetition types of their repertoire can
be distinguished. Birds without more than one sound have no variety and
keep singing the same song over and over. But for the ones with a bigger
repertoire, behaviour of eventual variety and immediate variety is observed.
Eventual variety indicates that they repeat the same phrase for a few times
and then change to another. In contrast it is referred to immediate variety, if
successive phrases are diversified. Both are supposed to have sequencing
rules, that arise from the previous syllable or higher order dependencies.
An example for higher order dependencies are found in the Bengalese finch
(Lonchura striata var. domestica) songs, where the next syllable is not only
dependent of the previous one, but on more complex contexts. Even though
this higher order dependencies exist, it is still possible to describe sequen-
cing rules with first order HMMSs, where each state is only dependent of the
previous state. This can be done by a many-to-one state mapping, which
basically means that states with higher order sequencing rules are split into
different states, while each of them is again only dependent on one previous
state. (Katahira et al., 2011).

2.6. Tone Qualities and Frequency Contour

The basic tone qualities that can be found in bird songs are illustrated in
figure 2.4. More complex sounds evolve from those basic tones by recom-
bination and the change of speed and repetition (Pieplow, 2017).

¢ Whistle sounds:
Whistle sounds lack strong harmonics and have a higher fundamental
frequency as hooting sounds. Birds can actively suppress harmonics
by changing their vocal tract.
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* Hooting and cooing sounds:
Those sounds have a lower frequency than most of every other of their
vocalisations and are typical for owls.

* Ticking sounds:
Those sounds are very short, sharp, and broad band noises, without
the appearance of a fundamental frequency.

* Burry and buzzy sounds:
Combining a whistle sound with an extremely quick and strong peri-
odic pitch variation (also referred to as vibrato) creates a buzzer-like
sound. At least, this is how humans would describe it, as it is as-
sumed that birds have higher temporal resolution and might hear the
frequency contour more detailed.

* Noisy sounds:
This sounds have a frequency characteristic similar to the tick sound,
with the difference of a much longer duration.

¢ Nasal sounds:
If the fundamental frequency has less energy compared to the har-
monics, this produces a special sound - best described as nasal.

* Polyphonic sounds:
If birds use both sides of their syrinx they can create polyphonic
sounds with two independent fundamental frequencies at the same
time.

Combining all those different sounds, birds can create very complex vo-
calisations. Furthermore, continuous pitch variations can be categorised
depending on the trace of the pitch contour as illustrated in figure 2.5:

* monotone
e upslur

e downslur
e overslur
e underslur

Each bird species tends to have a characteristic sound, that results from the
creative use of the patterns. These patterns sometimes help humans as well
as birds themselves to distinct between closely related species.

10
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Figure 2.4.: Tone qualities (Figure from (Pieplow, 2017, p.14f))

‘ monotonic upslur downslur overslur underslur

—_\ ~o

Figure 2.5.: Pitch patterns (Redrawn after (Pieplow, 2017))

2.7. Hearing Abilities of a Budgerigar

To model natural sounds, hearing abilities of budgerigars need to be con-
sidered. Studies tried to estimate the birds’ critical bands and ratio, as well
as their hearing range (Saunders, Rintelmann and Bock, 1979). It was shown,
that their hearing ability puts special focus on frequencies around 3 — 4 kHz,
while their hearing range is limited to a bit over 8 kHz, because of their short
basilar papilla (membrane) with around 2.5 mm (Manley, Schwabedissen
and Gleich, 1993) to 3.7 mm (Saunders, Rintelmann and Bock, 1979, p.320).
Budgerigar’s temporal resolution of hearing is very high as their threshold
to detect gaps in white noise signals is at a duration of roughly 2.5 ms.

11
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2.8. Language in Vocal Communication of
Singing Birds

Two concepts are often used to compare human and animal language. More
complex language is required to exhibit lexicoding or lexical syntax, which
describes the ability to produce new meaning through the recombination
of smaller units in a semantically meaningful sentence. Less complex vocal
communication systems can recombine meaningless sounds to a new song,
which is called phonocoding or phonological syntax. Such recombinations
can have syntactic rules as well, but the rules only describe the process
of sequencing without giving the new songs a different meaning. While
phonocoding is a common phenomenon in song birds and other species
like whales, dolphins or bats, there is no evidence of animals that - without
human interaction - construct sentences through the application of lexical
syntax. Mocking birds, for example, are often mentioned to have great abil-
ities to rearrange their song repertoire to new sequences. Their repertoires
consist mainly of short imitation phrases of other birds or even other species.
The bird’s creative way of splitting up the phrases and combining all those
pieces to new songs, sometimes even makes it difficult for scientists to
distinguish the origin of sound material the bird is using. Still it is assumed,
that all of the beautiful songs have the same meaning, namely representation
of their identity, their social status or population membership (Marler, 2001,

P-31-48).

12



3. Recording and Analysis of Bird
Songs

To record birds, special equipment and techniques can increase the amount
of useful material. This chapter gives an overview on ways to obtain discret-
ised recordings, while paying attention to possible problems throughout the
process. Having captured the recordings, ways to visualise bird songs with
signal processing tools will be introduced.

3.1. Recording of Birds

Birds often vocalise in groups, which can make it very difficult - if not
impossible - to record their voices separately from each other in nature. The
acoustic impression of a bird swarm might be interesting as well and can be
recorded rather easy, but often the recordings are followed by tasks that need
investigations of single vocalisations. To achieve high quality recordings,
it is desirable to get close to the singing bird, without scaring it off or
causing it to stop vocalising (Budney and Grotke, 1997). The reasons why
it is attempted to get as close as possible, are the presence of background
noise in nature or loud environments, reverberant environments or the weak
signal amplitude itself (for instance when the recording is done from far
away).

3.1.1. Field Recordings

Field recordings often need windscreens or wind-shields to reduce low
frequent noise (Budney and Grotke, 1997). Still it is of great advantage
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3. Recording and Analysis of Bird Songs

to get close to the sound source, as there can be disturbing noises from
aeroplanes, cars, wind, water or another competitor singing nearby (Brumm
and Naguib, 2009, p.3). The person that is recording the birds can also
produce noise by his or her footsteps, moving in noisy clothing or simply by
breathing too loud. Early recordings were made with analogue devices or
DAT recorders (Wickstrom, 1982, p.29-36), while nowadays smaller devices
like hand-held recorders are preferred. Hand-held recorders have enough
signal-to-noise ratio (SNR) and good models offer the opportunity to attach
an external microphone to it. Headphones make it easy to control the re-
cording and check the quality of the captured sounds directly. To reduce
the problem of background noise, an external shotgun microphone is a
good choice to capture more of the bird’s sound. Shotgun microphones have
strong directional effects and therefore reduce noise, coming from the side
or back of the microphone. Another possibility to increase the quality in
the recording process, is the use of a parabolic reflector. With a parabola
only sound from the pointed direction is amplified making it possible to
create very sterile and clear recordings even in problematic higher frequency
ranges. The amount of amplification depends on the frequency of the source
and increases with high frequencies. This can be useful, as high frequencies
have greater loss over distance due to air dissipation. For an example of 22
inch (25.88 cm) the amplification starts at 200 Hz and increases with around
6dB/octave (Wildtronics, LLC, 2017). The outcome of a parabola recording
method is rather sterile and makes it possible to hear sounds, that could
barely be heard directly with human ears. The disadvantage of this method
is that small parabolas do not amplify low frequencies and that the sound
of a moving bird is difficult to capture exactly, as the pointing direction has
to follow the source precisely. Furthermore, the sterile sound can seem un-
natural in relation to gunshot microphones, that capture more reverberation.

3.1.2. Lab recordings

By lab recordings, we mean recordings being made inside houses and rooms,
in contrast to recordings outside in the natural habitat. Recordings made in
rooms without absorbers or other acoustic optimisations tend to have more
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reverberation than outdoor recordings and might need post-processing
to reduce that effect. A way to decrease reverberation in advance is a
proper selection of the microphone being used, like a cardioid or shotgun
microphone, placed as close to the animal as possible. To put a microphone
close to a bird may change its behaviour, but with continuous training, some
birds seem to get used to it very well (see figure 3.1). Another way to get

Figure 3.1.: Budgerigar recorded with a shotgun microphone in the budgerigar laboratory
Vienna (Figure from (Mann, 2018))

the microphone close to the bird is the use of a backpack-like construction
attached to their body. The construction consists of a microphone, a circuit
board with a wireless transmitter and a battery - all held together with a
harness, that has to be put around the bird to affix it. A promising example
seems to be the very lightweight backpack developed by a research group at
the Max Planck Institute for Ornithology (Gill et al., 2016). With the device
it is not only possible to get more isolated recordings in groups of birds,
but also to identify which individual actually made the sound. Also for this
technique, it should be considered throughout experiments, that attaching a
device to the bird’s body may influence its behaviour in some way.
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3. Recording and Analysis of Bird Songs

3.1.3. Problems and Solutions

Even if the equipment and setting is perfectly build up, there can be interfer-
ing factors. As birds are living creatures, they often jump around in cages,
let their wings flutter or clap rhythms with the use of their beak. Those
factors cannot be controlled and need post-processing depending on the
further use of the recording.

In the following, when talking about recordings, it is supposed that these
have already been discretised and sampled. In case of our experimental
data, a sampling rate of 48 kHz and 16 Bit per Sample will be used, as this
represents the original quality chosen for the recording and has a theoretical
bandwidth of 0 — 24 kHz, which is sufficient for frequencies in the audio
spectrum. In the experiment, the analysis window of a frame is set to eight
milliseconds, so that quick temporal changes can still be represented. The
frame shift is set to one millisecond, therefore also short segments have
enough observations to be modeled.

3.2. Feature Modeling and Extraction

Depending on what aspects to focus on, there are different methods to
extract the information needed or at least describe best what is happening
in a bird song. Different methods to capture adequate parameters were
experimented with and will be described in the following section.

3.3. FO/LFO

The fundamental frequency, also called FO or LFO (logarithmic fundamental
frequency) if the logarithmic representation is used, is the lowest present
sinusoidal frequency of a periodic sound. A common way to describe dif-
ferent phrases of bird songs is to focus on the change of the FO value over
time. To detect the correct value different approaches can be taken and
there is a lot of literature about the detection rate and comparison between
different pitch trackers (O’Reilly and Harte, 2017). In the following section
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the most common methods and their theory will be described in more detail.

® Zero crossing method:
A straightforward method to measure FO of a simple waveform like a
sinusoid is to measure the zero crossings to get the wave period and
then calculate the inverse of it in order to obtain the frequency. The
method is cheap to implement, but only applicable if there is a pure
waveform without noise and with only one occurring frequency.
¢ Autocorrelation:
Rather than just measuring the zero crossings, many pitch detection
algorithms (PDA) use a more advanced method called auto correlation
to get the FO contour. If x(t) is a continuous time signal at time t and
T is the time lag between the signal and its copy, the autocorrelation is
defined as o
r(t) = / x(t)x(t+ 7)dt (3-1)
—o0
In case of discretised signals, the integral can be written as a sum in

the following way
t+W—t

Tt [T] = Z x]-x]-+T (32)
j=t+1

with W being the window size, t and r¢[7| the autocorrelation with
lag T at the time index t (Cheveigné and Kawahara, 2002). The output
of the formula gives the similarity between the signal and its delayed
copy in a number range from 0 to 1, whereas 0 means no correlation
and 1 total correlation. For a delay of T = 0 the autocorrelation is
always 1. If there exist global maxima aside from T = 0, there ex-
ists a period and the fundamental frequency FO can be calculated as
FO = 1/7 where 7 is the time-lag of the maxima. Harmonic and noisy
sounds make the selection of the fundamental frequency more difficult,
as there exist more candidates, that could be chosen. In special cases,
where single sub-harmonics of an investigated sound have higher
energy than the lowest fundamental frequency, the choice for the FO
candidate is even harder. Therefore further refinements of this method
improve the detection rate, for instance by taking the human percep-
tion of frequencies into consideration. In reality, there are numerous
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sounds in in bird songs, with a strong first harmonic (Pieplow, 2017,
p-20). Without refinements of the PDA this may lead to problems to
detect the frequency contour of the fundamental (Huang, Acero and
Hon, 2001, p.327f). Autocorrelation has the disadvantage of rather
big analysis windows (Talkin, 1995, p.504). Its implementation within
Praat, which we used in our analysis works very well together with
the refinement possibilities (see chapter 5.0.2 and figure 5.3).

Cross-correlation or modified autocorrelation:
To avoid the reduced integration window with lag 7, the modified
equation can be written as

t+W

rltl = ). xxj« (3:3)
=1

This reduces the choice of sub-harmonics as the fundamental frequency
but may also introduce some octave errors. The maximum of the
modified autocorrelation no longer has to be at lag T = 0. The pitch
detection algorithm called YIN (Fundamental frequency estimator for
speech and music) is based on the cross-correlation (Cheveigné and
Kawahara, 2002) and improvements special made for bird songs are
developed in the YIN-bird version of it (O'Reilly and Harte, 2017).
Normalised cross-correlation:

This adaptation of the cross-correlation presents an improvement of
the original function especially for fast changing signals X, with only
little increased computational cost.

t+W
L XXjir
j=t+1

t+W 2t+W 5
Lo L X

P[] = (3-4)

j=t+1 7 j=t+1
RAPT (Robust Algorithm for Pitch Tracking) is an example for an
algorithm that uses the normalised cross-correlation for its calculation
(Talkin, 1995, p.505f). The algorithm requires the input of a minimum
and maximum fundamental frequency.
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After the calculation the next step is post processing, where the best candid-
ate for the fundamental frequency is chosen or the result is combined with
further methods. Advanced pitch detectors give the possibility to make rules
for the choice of the best candidate. Parameters like octave-jump cost take
the neighbouring values into account to reduce octave-jumps within short
periods. The logarithmic frequency scale makes frequency changes more
intuitive, as it is closer to human pitch perception and the musical scales
used in western music, where for instance one octave higher corresponds to
a doubling of the frequency (Klapuri, 2003, p.813ff).

3.4. Spectrum and Windowing

A waveform itself is not easy to interpret in regards of frequency represent-
ation and there are better ways to represent the characteristics of a signal.
Waveforms contain phase information that is less important for human
speech perception and is often removed in spectral analysis (Taylor, 2009,
p-156). Putting together the spectra of chunks of audio consecutively a spec-
trogram arises, representing the frequency power spectrum over time. The
process of concatenating the waveform in order to look at small chunks of
audio data is done by a multiplication of the full waveform with a window
function win]:

x[n] = w[n)s[n] (35

The simplest window is a rectangular window function.

(3-6)

1 ifo<n<L-1
wn] =
0 else

Improvements to this method can be achieved by using different windows
like a Hanning window

wln] =

0.5—0.5c0s(2nN/L) if0<n<L-1
(3-7)

0 else
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or a hamming window.

(3-8)

{0.54 — 046c0s(27N/L) if0<n<L-1
wln] =

0 else

To transform the signals from time domain to the frequency domain the
discrete Fourier transform (DFT) is being used in theory, while the fast-
Fourier-transform is preferred in practical cases, due to its quick calculation
speed (Taylor, 2009, S.342). The DFT is defined as

N-1 ,
X[kl = Y x[n]e 2™ /N k=0,1,2,..,N—1 (3.9)
n=0
and its inverse by
N-1
xeln] =1/n Z Xy el2kn/N n=0,1,2,.,.N—1 (3.10)
k=0

Having the spectrum calculated with DFT it can now be represented either
by its real and complex parts or by magnitude and phase. As mentioned
before, the human ear is less sensitive to phase information (Saratxaga et al.,
2012) and therefore it seems obvious to use magnitude in the frequency do-
main. As the human ear’s perception of sound amplitude is approximately
logarithmic, the amplitude is normally logarithmic and by convention the
log power spectrum is being used.

3.5. Cepstrum

The cepstrum is a convenient way to decouple source and filter of a sound.
To convert waveforms into cepstrum the inverse DFT of the logarithmic
magnitude of the DFT of a signal is being calculated.

cln] = F~{log| F{x[n]}} (3.11)
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With the source described as the source signal u[n] and the vocal tract
(together with a radiation filter) as the signal v[n] we can get the time
domain equation as

y[n] = uln] @ v[n] (3.12)

Undertaking a Fourier transformation this looks as follows:
Y(e”) = U(e™)V (™) (3.13)

Using the logarithm of that let us split the term into a sum (Furui, 2000,
p-64f) . ‘ _
log(Y(e®)) = log(U(e/*)V (e')) (3.14)

log(Y(¢*)) = log(U(e/*)) + log(V (/")) (3.15)

Using the inverse DFT (IDFT) we now get back to the time domain represent-
ation, where we have a simple addition of source and filter components.

c[n] = cy[n] + co[n] (3.16)

(Taylor, 2009, p.355)

3.6. Mel-Generalized-Cepstrum (MGC)

A common approach in speech analysis in order to model speech sound is
to use Mel-generalized-cepstrum analysis (Tokuda, Kobayashi et al., 1994).
Figure 3.2 shows a unified view of speech analysis methods, that arise
from the choice of specific values for the parameters a and +. It can be
seen, that the choice of « # 0 and —1 < ¢ < 0 leads to the area of “Mel-
Generalized Cepstral Analysis”. With that method each frame consists of
Mel-frequency cepstral coefficients (MFCC) of desired order. To obtain the
coefficients the following steps have to be made (see figure 3.4): At first
the signal has to be windowed to get frames. This can be done by using a
proper windowing function like the Hamming window. Next the frames
are Fourier transformed, which is in practice normally done by using the
fast-Fourier transformation for reasons of computational cost. Now a Mel-
scale filterbank is applied, which consists of bandpass filters, aligned in a
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Figure 3.2.: Unified view of speech analysis methods (Figure from (Tokuda, Kobayashi
et al., 1994))

non-linear fashion on the frequency axis to create equal resolution of the
bands matching human hearing.

Mel(f) = 2595 xlog1o(1 + 76(—0) (3.17)
The Mel-scale describes the perceived pitch of sinusoidal tones and their
relative change in frequency for human beings. In figure 3.3 the windows of
the filter banks and their position on the frequency axis can be seen. After
filtering the signal with the Mel-filter-bank the logarithm of the values is
being taken. To decorrelate coefficients it is transformed with the discrete
cosine transformation. When mentioning MGC parameters in the following,
this should refer to the MFCC parameters.

3.6.1. Non-Negative Matrix Factorisation

As mentioned before, MFCC might not be the optimum solution for the
analysis and modeling of bird sounds, because the Mel-scale was created
to fit human perception. A different approach would be the non-negative
matrix factorisation (NMF), that has been used in areas like speech and
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Figure 3.3.: Mel-scale filterbank as it is used in HTK (Figure from (Young et al., 2015, p.95))
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Figure 3.4.: Flow chart to obtain MFCC features

audio with good results as it provides a good representation of the material.
Short-time feature extraction, as used by MFCC, can be substituted by NMF
cepstral-like coefficients, where filter banks are learned in an unsupervised
manner during a training process by inspecting the spectrogram. This means,
that the MFCC and NMF coefficients are obtained very similar, whereas
MFCC uses the Mel-scale for its auditory filter bank and NMF uses the filter
banks obtained from the training process. Figure 3.5 shows the process of
obtaining the NMF coefficients in a bird species classifier (Ludefia-Choez,
Quispe-Soncco and Gallardo-Antolin, 2017).
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Figure 3.5.: Block diagram presenting the process of obtaining NMF filter banks (Figure
from (Ludefia-Choez, Quispe-Soncco and Gallardo-Antolin, 2017))
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4. Statistical Modeling

In this chapter the definition of observation vectors and how they are used
in statistical models will be discussed. After the presentation of general
terms commonly used for Hidden Markov Models, basic methods used for
the training of HMMs will be explained. Finally, different ways to cluster
the segmented samples and how to interpret the cluster results will be
described.

4.1. HMM Based Synthesis

Synthetic speech can be created for different purposes and the result de-
pends on the need of the application. Therefore, it is important to know
what aspects of speech we want to optimise throughout the whole process.
One aspect might be naturalness of the synthesised speech, another could
be intelligibility. There is very little knowledge about what aspects birds
focus on, while they hear vocalisations and only assumptions can be made.
To model bird songs by means of speech synthesis tools, we need to ensure,
that the underlying techniques can be applied there as well. A major com-
ponent of a statistical parametric speech synthesis system is the vocoder
which often is based on the source filter model (see figure 4.1)
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Figure 4.1.: Source filter model for human speech generation (Figure from (Tokuda,
Nankaku et al., 2013))

The source filter model is an abstraction of human voice production, where
excitation is modeled through switching between a noise signal and a
pulse train. In analogy to human anatomy, the excitation part corresponds
to the larynx. The signal is then filtered to incorporate the filtering that
takes place in the vocal tract, as well as in lip radiation. Comparing it to
sound production of birds strong similarities can be found. It was already
discussed, that birds generate sounds not with the larynx, but with their
syrinx. Still the production process can be compared to that of humans, with
the distinctive feature that birds have two separate controllable excitation
sources. The filtering done by the source tract is very similar to the birds’,
as the sound waves travel further through trachea, while lip radiation could
be equated to the bird’s beak. The Vocoder will derive the waveform from
fundamental frequency, spectral envelope and voicing condition. Therefore,
we need to provide this information in the training process by forming so
called observation vectors. These do not only contain static information
about the current frame, but may also include dynamic features, with time
derivatives typical in first and second order. The content of the vectors
can be separated into excitation and spectral parts. An example of an
observation vector at one specific frame can be seen in figure 4.2. To calculate
dynamic features, the static feature changes of neighboured observations
are compared and for example Ac; can be written in the following simple
form:

Acy = ¢t — i1 (4.1)

Figure 4.3 shows the structure of a HMM speech synthesis system, that
creates speech from a text input using the information obtained from the

26



4. Statistical Modeling
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Figure 4.2.: Observation vector of one frame (Figure from (Tokuda, Nankaku et al., 2013,
p-1236))

training. The architecture can be applied to bird synthesis as well, but text
input has to be modified into the correct format specified in table 5.6.

Speech signal Training part

{ i
Excitation Spectral
Parameter Parameter
extraction Extraction

Excitation Spectral

Training HMMs

Labels

TEXT
i Context-dependent HMMs
Text analysis & state duration models
N {
Labels 1 fomHMMs |

parameters.;'—] |_‘ Spectral

SR el art E [Excitation [ 7 SYNTHESIZED
R eneration Filter SPEECH

Figure 4.3.: Typical architecture of HMM based speech synthesis system (Figure from
(Tokuda, Nankaku et al., 2013))

4.2. Hidden Markov Model

Markov-chains are sequences of states, whereas the probability of one state
only relies on the previous one. Therefore, transition probabilities can be
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established as seen in figure 4.4. With the knowledge of these transition
probabilities, predictions about future events (states) can be made.
A hidden Markov model is a Markov-chain that includes states that are not

0.6 0.4 0.3

0.7

Figure 4.4.: Example of a Markov-chain with two states

observed directly but rather are hidden, while only their emission can be
seen. The task is to find probability functions of the hidden states through
their emissions, that can be observed and measured. To describe better what
was just explained, consider the following example, which is often used in
relation to HMM:

A guy named John has three main activities: Taking a walk, shopping, and
cleaning ({Walk, Shop, Clean}). Depending on the weather ({Rainy, Sunny})
he has tendencies of choosing which of these activities he will do each
morning (see figure 4.5). In the daily telephone conference with a friend he
always tells what activity he did today. The friend knows John's preferences
on rainy and sunny days and also knows the weather trends in John’s area.
Even though the friend cannot observe the weather directly, he can calculate
the possibility of it through John’s activities and can try to guess how the
weather probably is on that day.

In the case of my studies the HTS toolkit was used and therefore the notation
of the closely related HTK book (Young et al., 2015) will be used for further
explanations. An example of a simple left-right 5-state (N=5) HMM like it
is used in HTS can be seen in 4.6. The observations o are generated from
different states and allow to calculate probabilities that tell from which state
they might have evolved. In the example shown the entry state (j=1) and
the exit state (j=5) do not emit any observations, which is the standard in
HTK and HTS. That means, that only three output probability distributions

ba(),b3(), ba() can be put up.
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Figure 4.6.: HMM model with 5 states (Figure from (Young et al., 2015, p.128))

The transition matrix will be a 5x5 matrix, whereas the 5/ row only contains
zeros. As a rule, all other rows need to sum to 1.

N
Y a;=1 j={1,2,.,N}
j=1

withi= {1, 2,... N-1}.

The transition probabilities 4;; are non-negative terms.

A small variation of the HMM is the Hidden semi-Markov Model (HSMM),
where the duration of a hidden state is dependent on the time elapsed since
the transition into that state. In a HMM the probability of a state transition
is constant. The HSMM is an effort to improve the state duration modeling
especially for durations that are not normal distributed (see subsection 4.2.1).
To explain the training of HMMs, let 0 = [0],0],, ..., 01]T be the observation
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vectors and their corresponding speech parameters and W be the context
information, which is incorporated by the label files of the training data.
The general equation for the training process can be written as follows:

Amax = arg rnfxp(oM, W) (4-2)
with .
P(0|/\; W) = Z 7T170 H athq blh (Ot) (4-3)
vVq t=1

where q = {4, 92, ...,qr} is a state sequence (Tokuda, Nankaku et al., 2013,
p-1236).

Relation to birdsong:

In speech synthesis the hidden states are phonetic symbols, while the
acoustic sound and its representation are the observations or emissions. For
song birds there might not be a fully discovered list of phonetic symbols,
but attempts have been made to distinguish and label different sounds (see

4.7)-

R R e e I

&

ab ad ak

Figure 4.7.: Annotated spectrogram of a song by a black-headed grosbeak (Figure from
(Arriaga et al., 2015))

Models built on that kind of syntax will firstly consist of a set of monophone
HMMs, where for each phone a model is created. Each state then models
different parts of what is happening acoustically during such a phone. That
means that the duration of each state might vary a lot, if there are parts
with abrupt changes and parts with little change. In case there are more
instances of the same phone that are not exactly the same, the different
model parameters will vary. For the initial steps still all of the same phones
will be modeled through one model to get an overall description of it, before
the models will be retrained with further refinements.
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4.2.1. Gaussian Mixture Models

Mixture Gaussians are a combination of different Gaussian (normal) dis-
tributions and can be used to describe any kind of density function. To
combine the different distributions each of them is multiplied with a weight
factor c¢,; before the summation to normalise the result and to maintain, that
the integral over the whole function is one. A Gaussian distribution can be
written as A/ (u, 02), where 1 is the mean or expectation, ¢ is the standard
deviation and ¢ the variance.

Mixture of 1D Gaussians

nnnnnnnnnn

Figure 4.8.: Mixture Gaussian of two Gaussian distributions (Figure from (Turner, 2017))

Coming back to the example of a left-right HMM, the probability b;(0) of
an observation sequence o can be written as

M
b](O) = Z C]'mN(O . yjm,ij), 1< ] <N (4.4)
m=1

whereas j is the state number, M is the number of different Gaussian distri-
butions, and %, is the co-variance matrix (Young et al., 2015, p.128, slightly
simplified).

HTS uses mixture models together with multi-space probability distribu-
tion for FO modeling, so that unvoiced regions can be described as zero-
dimensional observations (Tokuda, Zen and Black, 2002). In figure 4.8 two
Gaussian distributions and their combined two component mixture model
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can be seen as an example for a Gaussian Mixture Model. A common task
is to find the underlying individual Gaussian distribution, given a mixture
model. A common method in statistic to solve this task is the use of the
Expectation-Maximization (EM) algorithm. This algorithm was created to
find the parameters of a statistical model based on given observations. In
the case of mixture models, it is used to separate the data points into differ-
ent classes, by calculating the probability of a data set to belong to one or
another Gaussian distribution. The initial start is done by arbitrary Gaussian
distributions and then the algorithm toggles between the two operation
methods “Expectation” and “Maximization”. During the “Expectation” step
a log-likelihood expectation is calculated, that is being maximised in the
second step. This procedure is described more detailed in the following:

¢ Expectation:
With the knowledge of the parameters y,. 02, and c,, the expectation
of a data point x; belonging to class c:

() _ pEC=cn) _ onN (i : jm,0)
) TenN (im0 (4-5)

* Maximisation: In this step the new parameters are changed so that
the mean of a mixture model is moved to the direction of the highest

responsibility.
Lt
Pm = : m(i)l (4-6)
Zi T'm
\ 7
=Y 47)

The algorithm is normally stopped at a time when the improvement is only
little.

4.2.2. Forward Algorithm

Given a HMM, this algorithm calculates the probability for a specific obser-
vation using dynamic programming methods. First the forward-variables
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a;(t) are introduced, that contain the probabilities of being in state 1 < j < N
at time 1 < t < T and having seen observations 010;...0¢.

[Z i az;] b](ot) (4.8)
For the initial condition we use
wj(1) = ayjbj(o1) (4.9)
() =1 (4.10)
For the special case of having reached the final condition we write
N-1

an(T) = ) ai(T)ain (4.11)
i=1

4.2.3. Backward Algorithm

This procedure is very similar to the forward algorithm but calculates the
probability of being in state 1 < i < N at time t and seeing the sequence
0102...0¢ next (Wunsch, 2001, p.10f).

Z al] 0t+1 IB] t+ 1) (4-12)
The initialisation is done by
Bi(T) = aiy (4.13)
with the final condition:
2 a1jbj(o1)B;(1) (4.14)
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4.2.4. Baum-Welch Re-Estimation

Once the overall parameters of a HMM are set, the next step is to create
more accurate models and update the HMM. For that purpose, HTK uses
the Baum-Welch Re-estimation, which was named after Leonard E. Baum
and Lloyd R. Welch and is a version of the EM algorithm (Huang, Acero
and Hon, 2001, p.387f). With the model A and output sequence o given, we
want to maximise the probability of the training data:

arg maxy P (0i|A) (4.15)

With {; ;(t) being the transition probability from state i to state j at the time
t, the update can be calculated as:

B o Déi(t)ai’jb]'(OtJrl)‘B]'(t + 1) o oci(t)ai,jbj(otﬂ)ﬁj(t + 1)
Cz,](t) = P(0|/\) " N-1N-1
I, I, ol blons)Bi(t+1)

(4.16)
To calculate the state occupation probability +; ;(t) we need to sum up the

transition probabilities over the state numbers j:
N-1
7i(t) = Y Gij(t) (4.17)
j=2

The models are improved, until a local maximum is reached for P(o;[A).
Based on the initial parameters, the local maximum might not be the best
model, which is why in practice the steps are repeated with different para-
meters (Deller, Jr., Hansen and Proakis, 1999, p.703f) (Furui, 2000, p.288ff).

4.2.5. Viterbi Algorithm

The Viterbi Algorithm provides the most likely hidden state sequence given
an output vector o and the model parameters A. It is closely related to
the Forward Algorithm but instead of calculating previous states through
summation, maximisation is used. In our work the Viterbi algorithm is
used for forced alignment during the training process. The introduced

34
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variable 6 incorporates the maximum probability at time 1 <t < T and the
observation 010;...0¢ to end up in state s; after running through a sequence
with the length of t.

¢1(i) = max P(0107...0¢;41G2---G¢|A) (4.18)
q1.92,---qt

The variable (i) contains the preceding states that were involved in getting
the maximum probability. For initialisation we don’t need a maximisation
of preceding states as there are none at the starting point in state o at time
1.

¢1(i) = ao;bi(01), 1<i<N (4.19)
P1(i) =0 (4.20)

Next we can use recursion to calculate the maximum likelihood of being in
state j at time 4+ 1 and seeing observation oy

¢r+1(j) = max [¢r(i)a;]bj(or41), 2<t<T,1<j<N  (4.21)

1<i<N

Pry1(j) = argmax(d(i)a;j], 2<t<T,1<j<N (4.22)
1<i<N

The termination equation can be written as

P* = max [¢r(i)] (4-23)

1<i<N

and the maximum final state probability is

77 = argmax[gr (i) (4:24)

1<i<N

With the following equation, finally the path of the most likely state sequence
can be calculated.

9 = ¥r1(qi41),  1<t<T-1 (4.25)
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4.3. Clustering

In the most-spoken human languages well described phone sets exist, con-
taining all the different phones of that language. If the language has not
been fully studied yet and there is no knowledge about the amount of
existing phones, the first step is to find all different sounds that occur. In
our case an initial segmentation of budgerigar songs was already done and
available, but a relation between the segments had to be built. To obtain
a rough estimation of similarities between the segments and their sounds
clustering can help to find a solution. Clustering is a process that groups
together data points which have something in common, based on respective
attributes. The following section describes an attempt to do this in theory
and in section 5.2 the results of the clustering used in the experiment will
be presented.

At first, the question of the number of different components that the ana-
lysis should provide has to be handled. While most analysis methods need
further definition of the desired number of clusters, there are methods that
try to estimate the optimal number of clusters without a user specifying it.
Clustering can be split into the following parts (Halkidi, Batistakis and
Vazirgiannis, 2001, p.2f):

* Feature selection: Not all of the features might be helpful for finding
good clusters and normally some pre-processing of data needs to be
done, before it can be used in a proper manner

¢ Choice of algorithm: There are many different algorithms with their
own advantages and disadvantages. Distance measurement and cluster
criteria describe the distinct functionality best. The first one handles
the question about the definition of neighbouring, while the second
one considers what is called a cost function.

¢ Validation: To ensure, that the result is meaningful, a validation fol-
lowing some criteria needs to be done.

¢ Interpretation: With everything done, the results will normally be used
for further experiments and need to be integrated back into the work
environment.
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4.3.1. K-Means

One popular clustering method is K-means clustering, where K describes the
number of cluster centroids. The task is to find K mean vectors (y1, p2, ...1i3)
that distinguish the data points in the sense of their proximity measure.

k k
Cost function : J=Y Y dxju) =Y Y llxj—will*> (426

i=1 X]'ESI' i=1 x]'GSi

with d(xj, ;) = ||xj — ;]|* being the Euclidean distance between a point
xj and p; and with §; being a cluster set (51, Sz, ...Sx). The initialisation of
cluster centroids is done by using random data points and assign each data
point to its nearest cluster. Then the cluster centroid is set to the mean of
the cluster and the data points are re-assigned. This process is repeated.

4.4. Decision Trees

Decision trees are a supervised method for classification and regression
(Breiman et al., 1984). It consists of branches, decision nodes, and leaf nodes
with a node question about an attribute that can be answered with “yes” or
“no”. The branches then continue to the next question and so on until a final
leaf node is reached. Decision trees can help to reduce the amount of training
data needed. As the amount of possible phone combinations is huge, it is
very likely that not all combinations will occur in the training set and that
some combination do only occur rarely. In order to get stable models for rare
and unseen combinations, different labels that share some part of context
information are merged together to a robust cluster of acoustic qualities. In
the HTS toolkit this process is also referred to as state tying where every
state has its own decision tree.
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4. Statistical Modeling
4.5. Dynamic Time Warping

With the use of dynamic time warping (DTW) it is possible to find sim-
ilarities between two time-dependent sequences. It enables to match two
sequences, even if their time alignment varies in speed, as it can be seen in

figure 4.9.
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Figure 4.9.: Alignment of two time-dependent sequences (Figure from (Miiller, 2007))

In human speech, phone duration can vary for the same phone in different
contexts and has never exactly the same length. It is very likely that this
also happens in budgerigar sounds. In a paper dealing with the synthesis
of chaffinch birds based on HMMs, it is suggested to find similar syllable
elements with the help of DTW, instead of labelling them manually by
experts (Bonada, Lachlan and Blaauw, 2016, p.3). The procedure that could
be used to execute a clustering using DTW is described in the following:

¢ 1. The first decision that has to be made is the feature parameter selec-
tion to compare the similarity of time aligned data. FO/LF0 parameters
as well as more complex features like spectrogram, linear predictive
coding (LPC), Mel-generalized-cepstrum (MGC),... can be used for
that purpose.

¢ 2. In the pre-processing work step, an appropriate choice of window
size and frame shift of each phone has to be made to divide the re-
cordings into frames of the chosen feature. The DTW based on the
fundamental frequency contour would be an adequate method for
voiced sounds but fails to cluster unvoiced phones without a funda-
mental frequency. Either there could be used two different clustering
methods for voiced and unvoiced sounds or a different parameter is
being chosen. As MFCC are used in the training process of the HTS
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toolkit, these features are a good starting point for clustering using
DTW. It is advised to do the MGC analysis with a high order, but then
only take the first coefficients for the clustering process to reduce the
dimension, while retaining the most important coefficients. This is
done in order to reduce the complexity of the calculation.

¢ 3. The next step would be to create a similarity matrix where each
phone is compared with all other phones using DTW as distance
measure. This matrix can then be used for clustering.

4.6. Bayesian Information Criterion (BIC)

The Bayesian information criteria is a value, that helps to validate the
cluster result. The lower the BIC value is, the better the model fits. It can be
calculated as follows:

BIC= -2%xInL+kxInn (4.27)

whereas L is the maximised value of the likelihood function,

k is the number of parameters that should be calculated

and n is the number of observations.

Compared to the Akaike information criterion (see section 4.7), the BIC
penalises the number of parameters more. If the BIC is plotted over the
number of clusters, there optimally should be a peak for the BIC or at least
a point at which the improvement of the BIC is only little and a plateau is
reached. (see figure 4.10)

In the experiment the software R (R Core Team, 2014) will be used to
compute the classification of the data set. There are a lot of different packages
and ways to carry out the needed tasks. The chosen package is called mclust
(Scrucca et al., 2016) and automatically detects the best number of clusters
based on finite normal mixture modeling, offering useful representations
and visualisations of fitted models. Contrary to the literature, the best model
is the one with the highest BIC (Fraley and Raftery, 2007, p.5), because they
use a slightly different definition of the BIC. Different model attributes for
volume, shape and orientation are used during the computation and figure
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4.10 illustrates the selection of the best model on an example of a diabetes
data set (Fraley and Raftery, 2007, p.4f).
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Figure 4.10.: Estimated BIC for a data set with different model parameters (Figure from

(Fraley and Raftery, 2007))

Table 4.1.: Result of BIC estimation for the example given above

log-likelihood | n | df BIC ICL
-2303.496 145 | 29 | -4751.316 | -4770.169

whereas the first column represents the log-likelihood of the optimal
BIC,

n indicates the number of observations in the data,

df the number of estimated parameters, and

ICL the Integrated complete-data likelihood.

The best model estimated by mclust for the given example is the VVV
(ellipsoidal, varying volume, shape and orientation) with 3 components as
it has the highest BIC (see table 4.1 and figure 4.10).
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4. Statistical Modeling
4.7. Akaike Information Criterion (AIC)

In simple terms, the AIC measures how much data is lost in a statistical
model, that describes a process. It is related to the Bayesian information
criterion which is described in section 4.6, but has a slightly different
calculation formula:

AIC =2xk—2%InL (4.28)

with L as the maximised value of the likelihood function,
k as the number of parameters
and n as the number of observations.
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The starting point was a segmented set of recordings of one specimen
with additional information such as context and song type. The recordings
contained 50 songs with a total length of 26 minutes and 49 seconds by a
budgerigar (Melopsittacus undulatus) specimen with the nickname “Puck”.
Budgies (short form of budgerigars) belong to the species of parrots and
have the ability to produce and mimic all kinds of sounds, including hu-
man speech. The following figure 5.1 shows an example of an annotated
recording from the data set, aligned to the wave form and spectrogram of
its underlying audio. The segmentation was made in Praat by an automated
script created by PhD candidate Daniel M. Mann from Queens College,
City University of New York, who is currently working at the university of
Vienna in the Department of Cognitive Biology.

5.0.1. Data Set

The 5 different tier levels include information about the following:

if the song is directed or undirected and who it is directed to
if typical head or courtship movement is going on

phrase type (or song type)

periodicity

segmentation of contact calls
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Figure 5.1.: Example of segmented budgie recording

To get high quality recordings without much background noise and inter-
jections from the other birds the budgies were trained to get used to having
a microphone held directly to their head. That way a high SNR could be
achieved. Still there are parts where background chirps or instrumental
noise is present in some amounts. The files are recorded as 48 kHz Wave-
files with 16 bits per sample.

The segmentation of the different budgie sounds is categorised into 7 differ-
ent groups:

* contact

¢ long harmonic
¢ short harmonic
e alarm

® noisy

e click

e unknown

Contact calls are segmented into smaller units called syllables. Syllables
are separated by pauses (labelled “silent” in figure 5.1), whereas each syl-
lable consists of smaller elements further called element segments. The
element segments represent what could be called phone segments in human
language. Yet the number of existing phones of budgerigar sounds is not
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known, which is why the non-silent parts within a contact call are only
labelled as incremented numbers not indicating any repetitive occurrences.
The space between one of the seven groups will be called “silence”. Recapit-
ulating “silence” separates two categories and “pause” separates syllables
within a contact call. In figure 5.2 examples of each groups are illustrated.

(a) Contact (331 ms)

“Jﬁ

d) Alarm (47 ms) (e) Noisy (42 ms)

B
= -

(g) Unknown (62 ms)

(f) Click (11 ms)

Figure 5.2.: The 7 main tone quality categories of the budgerigar. All spectrograms have
a logarithmic scaled frequency axis (0-15000Hz) on the ordinate, while time
windows are specified in the corresponding subcaptions.

The segmentation is done automatically through a Praat script developed
by Daniel M. Mann and will be described in the following.

* 1.The audio used for segmentation is first of all band-passed by apply-
ing a Hann filter to reduce the spectrum to frequencies between 100
Hz and 15 kHz. The same filtering will also be used on the training
tiles for the HTS toolkit.

¢ 2. The minimal fundamental frequency of the budgies is set to 400 Hz
and the maximum to 10 kHz. The filtering should therefore not affect
the fundamental frequency.

¢ 3. Firstly the rough phrase types are detected and labelled according
to parameters like frequency shifts, duration of the calls and amount
of voiced or unvoiced frames.

¢ 4. After the initial phrase division, contact phrases are further segmen-
ted. Using thresholds regarding changes of amplitude, pitch, Wiener
entropy, voiced /unvoiced regions and noise segment boundaries are
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added and labelled with consecutive numbers. In areas with silence
within a contact call a “silent” label is introduced. The shortest ele-
ments have a duration of only one millisecond. This turned out to be
a problem in the training process with HTS, because there need to be
enough parameter observations for each state. To model states with
very short durations, window size and frame shift would need to be
adjusted to values shorter than one millisecond. Further investigation
of the short duration segments indicated, that they do not contain
valuable information and led to an adaptation of the Praat scripts,
with an increased minimal duration of 5 ms.

5.0.2. Evaluating FO/LFO in Practice

To compare the detection rate of different pitch trackers one respective
recording of a budgie was analysed and the results compared. In figure
5.3 the detected fundamental frequency can be seen, as it is detected by
different PDA. In the lower part of figure 5.3 a method is used, in which
the audio is slowed down to one third of its original speed, by treating the
48 kHz signal as a 16 kHz signal for the analysis. This sometimes helps to
get better results, as pitch detectors have problems with very quick varying
parameters and areas that contain only short tonal parts. The RAPT (some-
times referred to as “GET_F0”) algorithm struggles to find a fundamental
frequency and therefore treats a lot of sounds unvoiced as it can be seen in
tigure 5.3. Trying the trick to slow down the recording does not increase
the result significantly. The result from Praat seems to give quite accurate
results as it can be seen in figure 5.3. The fundamental frequency matches
with the auditory perception and the distinction between voiced, unvoiced
and silent areas are meaningfully detected. It was therefore decided to use
Praat as the PDA for the analysis part. A significant aspect of fundamental
frequency estimation is to decide at which point a sound is still voiced or
already unvoiced, if it contains a lot of self-produced noise. Using Praat,
the parameter called “voiced / unvoiced” enables to set a threshold for that
decision.

To use Praat as the PDA in conjunction with HTS, the FO estimation needs
to be converted into an appropriate format, that can be recognised by the
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Figure 5.3.: FO estimation with different methods and PDAs

software. HTS uses the logarithmic frequency (LF0) and stores the inform-
ation in a binary format. To convert the frequency vector from Praat into
a logarithmic scale, the unvoiced regions have to be considered separately,
as their value is zero. HTS defines, that unvoiced regions need to have a
value of the number —10000000000 (=—10 * 10°). After using the logarithm
on voiced regions and setting all unvoiced regions to —10000000000 the file
has to be converted to binary format.

A problem with the format of Praat’s frequency estimation is, that there are
always a few milliseconds at the beginning and at the end of an audio file,
where no FO is calculated (Boersma and Weenink, 2014). Without further
notice, that would mess up the alignment of the FO estimation in relation to
the sound signal and speech parameters like MGC. To use the data, without
messing up the correct time/frequency interconnection a way had to be
found to preserve the correct time alignment. This could be achieved by
writing a Praat script that uses the frame number and the corresponding
time of that frame for the frequency vector output. The start and end time
was then compared to the actual length of the recording and zeros were
added for the parts that were not analysed by Praat.
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selectObject: **Sound budgie\_songs\_.o"'"'
To Pitch (ac): o0.001, 400, 15, “‘yes'', 0.03, 0.45, 0.04, 0.15, 0.04, 10000
selectObject: *Pitch budgie\_songs\_o""'
numberOfFrames = Get number of frames
for iframe to numberOfFrames
time = Get time from frame: iframe
pitch = Get value in frame: iframe, °“Hertz"'
if pitch = undefined
appendFileLine: “‘budgie\.songs\.o.txt'"', fixed\$ (time, 6), *°,'', o
else
appendFileLine: “‘budgie\.songs\.o.txt'"', fixed\$ (time, 6), ~°,'", fixed\$ (pitch, 3)

endif
endfor

5.0.3. Mel-Generalized Cepstral Representation

Trying different parameter extraction methods like linear prediction ana-
lysis' and Mel-cepstral analysis # the latter turned out to give best results,
based on a subjective evaluation of the author This also correlates with
literature about the comparison of the usage of MFCC and other paramet-
risation possibilities in conjunction with automated bird song recognition
(Kogan and Margoliash, 1998), where also MFCC achieved the best results
in relation with HMM and the HTK toolkit. It must be pointed out, that
MGC uses the Mel scale - a scale where the human auditory perception is
taken into account (Volkmann, Stevens and Newman, 1937). Still the focus
of the frequency range that should have the best resolution can be adjusted
by the frequency warping factor. The warping factor is dependent of the
sampling frequency and puts more emphasis on the analysis of a specific
frequency range.

5.0.4. Vibrato and Tremolo

It is a common problem, that HTS smooths vibrato and tremolo effects
within syllables, because of the state based modeling. A solution for that is
to introduce a 4-dimensional continuous stream that contains information
about the vibrato depth and rate, as well as about tremolo depth and its

'LPC with 10" order and setting y = —1 (Which is done by setting ¢ = 1 in HTS) and
the frequency warping factor to zero
>Mel-cepstral analysis with 34/ order
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resonance frequency as it is done in a paper, where chaffinch songs are
analysed (Bonada, Lachlan and Blaauw, 2016). It should be noted, that
the songs of chaffinches can be modeled by single sinusoids with energy
and frequency features combined with vibrato and tremolo characteristics,
that are very present in their songs. Therefore, it is reasonable, that the
spectrograms of chaffinches and budgerigars differentiate a lot. If listened
to the investigated budgerigar sound examples with human ears, vibrato
or tremolo effects do not seem present, which is also, why synthesis is
possible without the incorporation of those features. As a conclusion the
implementation of further features might increase the perceived naturalness
of the synthesised sounds for birds.

5.1. Resynthesis

In the resynthesis process offered within the HTS toolkit, it is possible to
synthesise a waveform, based on the derived LF0 values and MGC analysis.
This can be seen as the best synthesised result that can be derived since no
statistical modeling is involved. In figures 5.4 and 5.5 the slight differences
between original and resynthesised versions are illustrated.
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Figure 5.4.: Waveform of an original recording
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Figure 5.5.: Waveform of a resynthesised recording

5.2. Cluster Solution and Discussion

5.2.1. Voiced sounds

To get an initial clustering of the different phonemes the software R (R Core
Team, 2014) was used in conjunction with mclust (Scrucca et al., 2016). In
a first step a major subdivision between voiced and unvoiced sounds is
made by observing the centre frame of each segment. That means there are
two separate processes. The method that was used and will be described
now is following a method proposed in [Mak and Barnard, 1996] with some
adjustments being made. The data vectors used for the voiced segments
consist of the first 12 coefficients of the 34th-order MFCC as well as the
energy, all measured on the centre-frame of each segment. Apart from the
MECC features, the logarithmic FO and Wiener entropy is added to the data
vector, so that each vector ends up with a dimension of [1 x 15]. Direct use of
these parameters would result in a domination of high values. To solve that
problem, the data firstly needs to be scaled, so that all different parameters
have the same weight and can be compared. This can be done by using the
following formula.

X = (5.1)
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Figure 5.6.: BIC value with different model types for voiced sounds with 20 possible models

In an additional attempt to get better results, the FO is weighted to have a
heavier judicial effect. The method of using the weighting function within
mclust software fails, as it only weights certain data vectors heavier than
others, which is not the desired effect. Therefore, all columns, except the
column containing the LFO values, are multiplied with a factor of 0.5 to
reduce their effect on the clustering. The calculation result can be seen in
table 5.1 and the plot of BIC values for different number of components in
figure 5.6.

Table 5.1.: BIC value of the voiced-segments cluster result

log.likelihood | n df BIC ICL
-83840 17533 | 1495 | -182289 | -185471

The improvement of the BIC for models with more components is rather
small. For an optimum solution a clear maximum within the BIC estimation
curve would have been expected, which is not the case for this data set.
To choose the number of components, the idea was to avoid having too
many components containing rather similar segments, but also not to have
very distinct ones within the same class. The chosen model is one with 11
components and an ellipsoidal shape, with varying volume, shape, and
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orientation (VVV). The following table 5.2 shows the amount of segments
contained in each component class:

Table 5.2.: Component size of the voiced segments and their labelling
1=vl | 2=v2 | 3=v3 | 4=v4 | 5=v5 | 6=v6 | 7=v7 | 8=v8 | 9=v9 | 10=v10 | 11=v1l
1924 | 1245 | 1563 | 1942 | 1675 | 2148 | 2076 | 1574 | 1670 725 991

In figure A.1,A.2 and A.3 the first in the training set occurring voiced
elements of each component class are visualised by their corresponding
waveform, spectrogram (range 0-15 kHz) and segment boundaries.

5.2.2. Unvoiced Sounds

The unvoiced observation vectors have no FO information and have a di-
mension of [1 x 14] therefore. The result of the BIC estimation over different
component sizes can be seen in figure 5.7 for the case of unvoiced sound
segments whereas the chosen model (see table 5.3) is one with 9 compon-
ents and an ellipsoidal shape, with varying volume, shape, and orientation
(VVV)

Table 5.3.: BIC value of the unvoiced-segments cluster result

log.likelihood n df BIC ICL
-201743.8 14005 | 944 | -412500.2 | -417974

The following table 5.4 shows the amount of segments, that each unvoiced
component class contains:

Table 5.4.: Component size of the unvoiced segments and their labelling
1=uA | 2=uB | 3=uC | 4=uD | 5=uE | 6=uF | 7=uG | 8=uH | 9=ul
1405 | 2095 | 2293 | 1566 | 1369 | 1222 | 1911 | 1709 | 435

In figure A.4 the first occurring unvoiced elements of each component class
are visualised by their corresponding waveform, spectrogram (range 0 Hz
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Figure 5.7.: BIC value with different model types for unvoiced sounds with 20 possible
models

- 15 kHz) and segment boundaries. The cluster method does not take any
duration information into consideration. Figure A.5 shows the distribution
of the different voiced sounds of all training and synthesis data, to get an
idea of their differences. The additional dependency of the frequency can be
seen in a 3D-histogram in figure A.6. The high order of feature parameters
makes it difficult to detect the optimum size of components for the cluster
analysis. Instead of comparing only the centre frame, segments could be
divided into more sub-segments and their features averaged. This method
might not be meaningful for very short segments but might improve the
outcome of the clustering of longer voiced sounds. Before that, a manual
correction of the automated segmentation is inevitable.

Because the segmentation and clustering are not accurate for all segments,
some files need to be deleted from the corpus to avoid termination from
errors. After removing the error causing files, the training corpus consists
of 21 minutes and 2 seconds (out of 27 minutes 13 seconds) within 62 Wave
files (out of 75 files).
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5.3. Label Files and Decision Trees

To generate a context clustering for birds, a set of questions has to be set up
that matches with our available information. The recordings available for
that thesis were submitted with additional information about behavioural
context, like head movement of the bird or to whom the song was directed to.
As it is not known which questions will be useful in the final classification,
the aim was to provide as much context information as possible, which
resulted in the list of questions in table 5.5.

Table 5.5.: format of label files
pl the previous element identity
p2 the current element identity
p3 the next element identity
p4 position of the current element in the current syllable (forward)
p5 position of the current element in the current syllable (backward)
p6 whether the previous element is voiced or not (0: not voiced, 1: voiced)
p7 whether the current element is voiced or not (0: not voiced, 1: voiced)
p8 whether the next element is voiced or not (0: not voiced, 1: voiced)
al the number of elements in the previous syllable
bl the number of elements in the current syllable
b2 position of the current syllable in the current phrase (forward)
b3 position of the current syllable in the current phrase (backward)
cl the number of elements in the next syllable
dl the number of syllables in the previous phrase
d2 the number of syllables in the current phrase
d3 the number of syllables in the next phrase
d4 Number of elements in the previous phrase
d5 Number of elements in the current phrase
d6 Number of elements in the following phrase
el Directed (0: undirected, 1: male directed, 2: malemix directed,
3: inanimate directed
e2 Headmovement in current song(0: no, 1: yes, 2: unknown)
dl (unused!) Frequency area (0: = 0,1: < 1000,2: < 1500, 3: < 2000,
4: < 2500,5: < 3000, 6: < 4000,7: > 4000)
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The format of the created label files is shown in table 5.6:

Table 5.6.: Format of the label files
pl—p2+p3"p4 =p5@p6_p7&p8/ A :al/B :b1—b2—b3/C :cl
/D :d1.d2+4-d3!d4#d5|d6/E :el$e2/D :d1

The last feature “d1” finally is not used in the question files so that no
information about fundamental frequency needs to be specified for the
creation of a full-context label file. This means, that the toolkit generates the
FO solely from the trained models.

After training, there is the possibility to visualise the decision tree-files for
features like fundamental frequency, MGC and duration. The following
figure 5.8 shows a part of the third feature stream of MGC parameters. The
full decision tree can be seen in figure A.7 and should demonstrate the high
complexity of the derived model.

l ‘ mge_s4_30 ‘ | mge_s4_29 | ‘ mge_s4_90 ‘ | mge_s4 89 |

Figure 5.8.: Cut-out at the top of feature stream 3 to determine MGC parameters
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The first question of the decision tree in figure 5.8 regards the forward
position number of the left element. This is the most decisive question and
an interpretation could be, that an element sounds different in long songs
that have more than 13 syllables than it sounds in songs with 13 or less
syllables. The next decision in the illustrated tree is whether the element
is voiced or not. Apparently voiced and unvoiced segments have different
sound features, which is why we find that question in the decision tree that
soon. A very interesting aspect is the question about head-movement, that
has a direct influence on the “noise” leaf node in the example. This question
seems to have great significance, as it appears more often in other parts of
the tree.

In figure 5.9 the decision tree concerning LFO is illustrated. If an element
is voiced or unvoiced makes the biggest difference concerning the LFO
stream. Elements that were labelled as unvoiced, can still have areas where a
fundamental frequency exist. Another FO decisive question is the “directed”
information. It is possible, that budgerigars use different frequencies if
they communicate with a bird or an inanimate object. Head-movement also
seems to have an impact on the fundamental frequency in “male directed”
songs.

Figure 5.9.: Cut-out at the top of feature stream 3 to determine LFQ parameters

The decision tree for duration modeling can be seen in figure 5.10. The
first question in this tree is about the backward number of elements in
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the current syllable. The duration of an element in a syllable with many
elements is therefore different to the duration of an element in a short
syllable. The second most important question is a discrimination between
voiced and unvoiced sounds which is comprehensibly, as unvoiced sounds
tend to be much shorter than voiced sounds. Voiced and unvoiced elements
seem to have a critical influence on the duration of neighbouring elements,
as a question for the unvoiced element “uE” concerns the element type
(voiced or unvoiced) to its right.

Figure 5.10.: Cut-out at the top of the decision tree for duration modeling

The amount of final leave nodes contained in duration, LFO and MGC
feature-streams are summed up in table 5.7. Duration is modeled through
one feature stream, whereas LFO and MGC features have one feature stream
for each of the five states.

Table 5.7.: Summation of all tree leaf nodes per feature
Duration ‘ LFO ‘ MGC
435 \ 1946 \ 823
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5.4. Synthesis

To synthesise a budgerigar song from a user input, the following steps need
to be done:

Create sequences of phrases, whereas each phrase should be separated
with a silence label.

Contact calls need to be further divided into element segments.
Create a text-file that includes not only the current element, but also the
previous and the following one, according to the syntax presented in
table 5.6. A non-computable value (for example the previous phoneme
identity of the first element) will be labelled “xx”.

Add the context information that is available together with the numer-
ical computations of position.

Let the duration be calculated either by itself (see figure 5.11) or
introduce time information in front of each element as demonstrated
in figure 5.12, whereas the second method is not full synthesis.

XX -sil+v3r0=0@xx_0&1/A:xx/B:0-0-0/C:9/D:0_0+0!xx#0|9/E:051/D:0
sil-v3+vB8n1=9@0_181/A:xx/B:9-1-1/C:0/D:0_1+41!xx#9|7/E:051/D:3
v3-vB+v7M2=8@1 1&%1/A:xx/B:9-1-1/C:0/D:0 1+1!xx#9|7/E:051/D:6

Figure 5.11.: Short example of a label file without alignment information

0 50000 xx-sil+v3*0=0@xx_O0&1/A:xx/B:0-0-0/C:9/D:0_0+0!xx#0|9/E:051/D:0
50000 117629 sil-v3+vB8”1=9@0 1&1/A:xx/B:9-1-1/C:0/D:0 1+1!xx#9|7/E:051/D:3
117630 431640 v3-vB8+v7"2=8@1 181/A:xx/B:9-1-1/C:0/D:0 1+1!xx#9|7/E:051/D:6

Figure 5.12.: Short example of a label file with alignment information

5.5. Objective Evaluation

5.5.1. Distance Measurement

To compare the synthesised versions with the original recording, MFCC
values are compared using dynamic time warping and the score output,
which tells the difference between a test data and the reference data. A high
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distance score indicates that the two data vectors are very different from
each other, whereas a low score of 0 signifies no distance and therefore
complete conformity. The process was performed by the “Speech Signal
Processing Toolkit” (SPTK, 2015) and the result can be seen in table 5.8.
Original and resynthesised versions match best in all cases, as no statistical
modeling is involved. The comparison of the full synthesis and the original
version shows, that they have the highest distance score. In relation to the
synthesis that incorporates the original duration, we see a slight increase
of similarity to the original recording by an improvement of 0.1 (song 99)
to 0.5 (song 10). Comparison of original and resynthesis of song 10 has the
highest similarity of all song and also works best in the full synthesis.

Table 5.8.: Distance between original (Orig.), resynthesised (Resyn.) and synthesised (Syn.)
versions

Song number

Orig. - Resyn.
Original duration

Orig. - Syn.
Original duration

Orig. - Syn.
Full synthesis

10 0.784 1.240 1.478
15 0.812 1.203 1.779
17 0.836 1.452 1.682
99 0.814 1.531 1.641

Figure 5.13 and 5.14 show the comparison of spectrograms between the
original and two synthesised versions. The aligned version makes use of the
time alignment, given in the input label, whereas the unaligned one uses
the alignment of its trained duration model. The fundamental frequency
is emphasised on those parts where it is detected. In both examples the
synthesised versions show strong similarities with the original ones. The
harmonics follow the contour of the ones obtained from the original record-
ing to some point, but miss parts of the fine structure, which makes the
synthesised versions sound a bit whistle-like and lack some natural noise.
Duration modeling works well all together, but as expected the aligned
versions are more similar to the original. It can be seen, that harmonic
sounds, that are labelled as unvoiced elements are synthesised with less
energy and broadband (see the “uG” element in figure 5.14).
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Frequency (Hz)

v3 v8 v7 |v7 v2 uG v4 11uD

Time (s)

Frequency (Hz)

v3 v8 v7 |v7 v2 uG v4 11uD
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1.5-10*

Frequency (Hz)

0
0.147 0.3178
Time (s)

Figure 5.13.: Spectrogram of original (top), aligned synthesis

(middle) and full synthesis (bottom), excerpt of
song 15

59



5. Synthesis and Experiments

Frequency (Hz)

1.19
Time (s)

1.5-104

_.
i
S
+

=
<

9080+

6120+

Frequency (Hz)

3160+

Time (s)

1.5-10*

1.204-10%4

9080+

6120+

Frequency (Hz)

1357
Time (s)
Figure 5.14.: Spectrogram of original (top), aligned synthesis
(middle) and full synthesis (bottom), excerpt of
song 99
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5.5.2. FO

To illustrate the FO estimation of synthesised samples in relation to FO of
real recordings, the following figures 5.15 and 5.16 show the comparison
between the original phrase and synthesised version of it. The aligned
synthesis is not a full synthesis, as the durations are defined explicitly.
The fundamental frequency of the aligned synthesis (blue line) follows the
fundamental frequency of the original (black line) clearly but misses some
quick variations for instance at the end of song 15 (see figure 5.16). The full
synthesis has different durations for each element and therefore might not
show strong similarities on the first look. In song 15 for example the first
elements are much longer than the original ones, which introduces a time
shift to the FO shape to the full synthesis (green line).

black: original

blue: synthesis aligned
reen: synthesis unaligned

4440- [g Y gned |

Pitch (Hz)
&
3

|

0 0.19
Time (s)

Figure 5.15.: FO comparison of original recording, aligned synthesis and unaligned syn-
thesis, excerpt of song 15
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Figure 5.16.: FO comparison of original recording, aligned synthesis and unaligned syn-
thesis, excerpt of song 99

Figure 5.17 represents the difference between the extracted fundamental
frequency of the original recording and the aligned synthesised versions
throughout the whole song.
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Figure 5.17.: FO difference between the original and aligned songs
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The fundamental frequency contour of the synthesised versions is definitely
smoothed, which is not unexpected, as the models use some kind of average
pitch contour. Even though the average difference between original and
synthesised version is around 300 Hz this is a satisfying result, considering
that many frame points differ due to a time lag of the transition between
adjacent syllable elements. The statistical outliers of the box-plot, also called
whiskers, occur because of quick frequency changes over a wide range, that
are smoothed in the synthesis which gives them a bit of time lag.

5.5.3. Own Example

In this section an own song is composed, by putting together the available
elements and phrases. The input of the desired elements looks like the
following:

{“sil”;"uD”;"v5”;"v6”;"v4”;*uE”;“pau”; uk”;"v5”;"v7";"v9’";"uG”; sil”;* pau”;
“uD”;"uH”;"v4” ;" sil”;al”al” v 37 v 73 pau”; v3” uD " u A u A
“sil”;”alarm”;”sil”;*v3”;“uF”;"uB”;"uB”;"uH”;"sil” }

whereas “sil” means “silence”,

“pau” means “pause”,

and “xx” indicates non-computable information.

Additional context information about head movement is set by the user as
well as the birds directed intentions. In the example movement is set to “no
movement” and that the song should be “undirected”. A Matlab script puts
all the information together and ends up with a label file seen in figure
5.18.

XX-sil+uD™0=0@xx_0&O/A:xx/B:0-0-0/C:5/D:0_0+0!xx#0|11/E:050/D:
sil-uD+v571=5@0_0&1/A:xx/B:5-1-2/C:5/D:0_2+1!xx#11|4/E:050/D:
uD-v5+v6r2=4@0_181/A:xx/B:5-1-2/C:5/D:0_2+1!xx#11|4/E:058/D:
V5-ve+v4nr3=3@1_181/A:xx/B:5-1-2/C:5/D:0_2+1!xx#11|4/E:050/D:
v6-v4+uEr4=2@1_180/A:xx/B:5-1-2/C:5/D:0_2+1!xx#11|4/E:050/D:
v4-uE+paunr5=1@1_0&O/A:xx/B:5-1-2/C:5/D:0_2+1!xx#11|4/E:050/D:
UE-pau+uF"0=0@0_0&0O/A:5/B:5-2-1/C:5/D:0_2+1!xx#11|4/E:050/D:
pau-uF+v5”~1=5@0_0&1/A:5/B:5-2-1/C:0/D:0_2+1!xx#11|4/E:050/D:
UF-v5+vy772=4@0_181/A:5/B:5-2-1/C:0/D:0_2+1!xx#11|4/E:050/D:
v5-v7+v9r3=3@1 181/A:5/B:5-2-1/C:0/D:0 2+1!xx#11|4/E:050/D:
V7-v9+uGr4=2@1 180/A:5/B:5-2-1/C:0/D:0 2+1!xx#11|4/E:0%0/D:

Figure 5.18.: Excerpt of the script generated label file of an own composition
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The spectrogram can be seen in figure 5.19. The silence and pause parts
can be seen very clearly, as well as some voiced elements. The noisy signal
between 1.0 — 1.2 seconds is also well distinguished from the other elements.
It sounds very budgerigar-like to the reader and motivates to try out more
sequences.

1.5-10%
1204-10*
= |

> 9080

Frequenc

W N
—_ =
DN
2

—

0.2124 1.414
Time (s)

Figure 5.19.: Example of a self created budgerigar song

5.6. Problems

As the synthesis of budgerigars is a very new approach, there arise quite
a few problems that now can be addressed more clearly. One of the first
tasks that were done is the segmentation of the audio data. The initial
segmentation that was used in this thesis is produced completely automated,
which gives the possibility to find thousands of segment boundaries, but
also contains errors, that effect the clustering, training and synthesis part. A
manual correction of all segments would take too much time for the tasks
of this thesis, but would be inevitable for a further improvement, directly
solving a few problems in this section.
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Phrases with more context inform-
ation achieve much better synthesis
results than short sounds. This
might be due to the great vari-
ance of the different elements and
phrases. Therefore, “contact” calls
give the best results, whereas espe-
cially “clicks” and “noisy” produce

, , .
clearly audible errors and artefacts. o R
Reducing the number of states for

short calls might reduce the prob- [ L] '
lem (Kogan and MargOhaSh’ 19_98’ Figure 5.20.: Two segments labelled
p-12), but the solution probably lies “noisy”

within an earlier stage. The training

set we used contains quite a few different sounds labelled as “click” and
“noisy” that have great variance in terms of duration and spectral parameters
without enough additional context information. To illustrate the disparity of
their spectral parameters, two segments from the training set - both labelled
“noisy” - can be seen in figure 5.20. This is not completely unexpected,
as the prior focus was to model contact calls. What makes the synthesis
even worse, is that the “clicks” and “noisy” sounds are inserted in a too
rhythmic way. The sounds that produce the problems are all surrounded
with silence segments and could therefore be replaced with direct cut-outs
from original or resynthesised audio material, without having to consider
transitions between sounds. One approach to resolve the creation of bad
models could be the reduction of the training set by excluding most of the
problematic sounds, if it can be assumed, that those calls do not contain
important information. An even better solution would be to find classes
to label groups of them differently. As those calls are not that frequent,
this could be done manually just by looking at their spectrograms and find
similar ones.

Some parts of synthesised audio data are over-amplified, most likely be-
cause of the processes done by global variance and post filters that have
problems to deal with the big spread within models. Because turning off
global variance and post-filtering resulted in even worse quality, the effect
could only be reduced by a weight factor applied on global variance (factor
was set to 0.8). Internet research revealed that over-amplifying is a common
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issue in the relation with the HTS toolkit. Advices to reduce the volume
of the training data and to adapt the program code were followed, which
reduces the warnings, but do not fully dissolve the problem.

Because frame shift is very short, the data vectors of long sounds can soon
get too big for some computation processes during the training. Therefore,
long recordings were split into separate parts (< 50 seconds), which means
that this resulted in changes of some contextual information because some
contextual factors depend on the whole song. It is questionable if cutting
the recordings has an effect on the synthesis. Knowledge about associated
syllables would be needed, to clarify the legitimacy to adjust the file length
to the computing capacity of the software.

In direct comparison of original and synthesised material a clear smoothing
of the frequency contour for the fundamental as well as for harmonics can be
seen. This was expected because of the fast variation of pitch and intensity.
Global variance reduces the effect a bit, but some details still disappear. A
method to retain those features will be explained in the section of future
work in chapter 7.
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6. Conclusion

A synthesis toolkit based on Hidden Markov Models was developed, that
produces budgerigar vocalisations from user input. The toolkit gives the
possibility to conduct further experiments with budgerigars to find out more
about their preferences and may even help to find out more about simple
syntax contexts and pattern sequence. The quality of the synthesis varies
across the different budgerigar calls, whereas the main focus was placed
on contact calls, which were thought to be the most problematic phrases.
For these sounds satisfactory results can be obtained, though typical “click”
and “noisy” sounds have too much variation in the training set and too
less context information. The problems that occur have been described in
the corresponding sections and seem to be solvable to some point. To my
knowledge, there is no work with budgerigar synthesis made so far, due to
the problematic segmentation of complex contact calls. With the provided
segmentation, an effort was made to put its effectiveness to a hard test. The
used methods are widely used in speech synthesis and all the software
needed is available as open-source.
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Even though a lot of improvements have already taken place, there is still
a lot to be optimised and done to contribute to a more realistic synthesis
of budgerigar sounds. First of all, the technique to segment the budgerigar
songs is not always accurate, especially if there is some background noise
going on. There are a few ways to eliminate those problems. The first step
could be to clean up the recordings and cut out sections with too much
background noise, which would reduce the data-set drastically. Another
possible way might be the production of new recordings, with a special
focus on the isolated sounds of the recorded specimen to get a good signal-
to-noise ratio and paying attention to the direction between budgerigar and
the microphone. It should be noted that this process might sound much
easier than it is in practice because budgerigars are living creatures with
uncontrollable behaviour. Another task would be the manual removal of
sections where false insertions occur after the overall segmentation, or to
directly adapt the segmentation script further to make it more accurate and
more robust against background noise. All those methods would help to
generate more accurate models and produce less artefacts in the synthesised
sounds. Strongly related to segmentation is the question of how many
distinct phonemes there actually are in the communication of budgerigars,
as there has only been made assumptions in that thesis. Leaving the pre-
processing work steps behind we go further to the task of optimising
the training process. The HTS toolkit offers many parameters that can be
trimmed and experimented with to increase the naturalness of the result.
The incorporation of vibrato and tremolo features is very successful in
retaining spectral details and rapid volume changes (Bonada, Lachlan and
Blaauw, 2016) and might increase the vividness of areas where tremolo and
vibrato segments appear.

Behavioural experiments with budgerigars could evaluate, whether the
representation of the resynthesised samples actually seem natural to the
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birds. This could be done by a preference test in a setup already familiar to
the birds of the Viennese budgie lab, where the recordings were made. The
preference test allows the birds to choose between three different wooden
slats that are placed in front of a speaker. Two of the speakers are used for
playback, while one always remains silent. The elapsed time that a bird sits
on each slat is then measured and evaluated. In addition to the preference
test with budgerigars, an experiment with human listeners could evaluate
the subjective quality of the synthesised sounds for different sizes of fast
Fourier transformation, analysis window and frame shift.

69



Bibliography

Arriaga, J. et al. (2015). ‘Bird-DB: A database for annotated bird song se-
quences’. In: Ecological Informatics 277, pp. 21-25.

Bezzel, E. and R. Prinzinger (1990). Ornithologie. Stuttgart, Ulmer Verlag,
1990, UTB grofie Reihe Nr.8o51.

Boersma, P. and D. Weenink (2014). Praat: doing phonetics by computer. Ac-
cessed: 12.10.2018. URL: http://www.fon.hum.uva.nl/praat/manual/
Script_for_listing FO_statistics.html.

Bonada, J., R. Lachlan and M. Blaauw (2016). ‘Bird Song Synthesis Based on
Hidden Markov Models’. In: Interspeech 2016. ISCA.

Breiman, L. et al. (1984). Classification and Regression Trees. Taylor & Francis
Ltd. 368 pp.

Brumm, H. and M. Naguib (2009). ‘Chapter 1 Environmental Acoustics and
the Evolution of Bird Song’. In: Advances in the Study of Behavior. Elsevier,
Pp- 1-33.

Budney, G. F. and R. W. Grotke (1997). “Techniques for Audio Recording
Vocalizations of Tropical Birds’. In: Ornithological Monographs 48, pp. 147-
163.

Cheveigné, A. de and H. Kawahara (2002). ‘YIN, a fundamental frequency
estimator for speech and music’. In: The Journal of the Acoustical Society of
America 111.4, pp. 1917-1930.

Deller, Jr., J. R., J. H. L. Hansen and J. G. Proakis (21st Sept. 1999). Discrete-
Time Processing of Speech Signals. Wiley-Blackwell. 936 pp.

Dent, M. L. et al. (1997). ‘Perception of synthetic /ba/—/wa/ speech con-
tinuum by budgerigars (Melopsittacus undulatus)’. In: The Journal of the
Acoustical Society of America 102.3, pp. 1891-1897.

Fraley, C. and A. Raftery (2007). ‘Model-based Methods of Classification:
Using the mclust Software in Chemometrics’. In: Journal of Statistical
Software 18.6.

70


http://www.fon.hum.uva.nl/praat/manual/Script_for_listing_F0_statistics.html
http://www.fon.hum.uva.nl/praat/manual/Script_for_listing_F0_statistics.html

Bibliography

Furui, S. (2000). Digital Speech Processing: Synthesis, and Recognition, Second
Edition. Marcel Dekker Inc. 476 pp.

Gill, L. E et al. (2016). “A minimum-impact, flexible tool to study vocal
communication of small animals with precise individual-level resolu-
tion’. In: Methods in Ecology and Evolution 7.11. Ed. by R. Freckleton,
pp- 1349-1358.

Halkidi, M., Y. Batistakis and M. Vazirgiannis (2001). ‘Clustering algorithms
and validity measures’. In: Proceedings Thirteenth International Conference
on Scientific and Statistical Database Management. SSDBM 2001. IEEE
Comput. Soc.

Huang, X., A. Acero and H.-W. Hon (2001). Spoken Language Processing: A
Guide to Theory, Algorithm and System Development. PRENTICE HALL.
1008 pp.

Hummel, G. (2000). Anatomie und Physiologie der Vigel. Kompendium fiir
Studium und Praxis. UTB, Stuttgart.

Jacob, J. (2018). Accessed: 20.11.2018. URL: https://commons .wikimedia .
org/wiki/File:Avian_respiratory_and_vocal_anatomy.png.

Katahira, K. et al. (2011). “‘Complex Sequencing Rules of Birdsong Can be
Explained by Simple Hidden Markov Processes’. In: PLoS ONE 6. Ed. by
G. G. de Polavieja, p. 9.

Klapuri, A. (2003). “‘Multiple fundamental frequency estimation based on
harmonicity and spectral smoothness’. In: IEEE Transactions on Speech
and Audio Processing 11.6, pp. 804-816.

Kogan, J. A. and D. Margoliash (1998). “Automated recognition of bird song
elements from continuous recordings using dynamic time warping and
hidden Markov models: A comparative study’. In: The Journal of the
Acoustical Society of America 103.4, pp. 2185-2196.

Ludefia-Choez, J., R. Quispe-Soncco and A. Gallardo-Antolin (2017). ‘Bird
sound spectrogram decomposition through Non-Negative Matrix Fac-
torization for the acoustic classification of bird species’. In: PLOS ONE
12.6. Ed. by B. Sokolowski.

Mak, B. and E. Barnard (1996). ‘Phone clustering using the Bhattacharyya
distance’. In: Proceeding of Fourth International Conference on Spoken Lan-
guage Processing. ICSLP. IEEE.

Manley, G., G. Schwabedissen and O. Gleich (1993). ‘Morphology of the
basilar papilla of the budgerigar,Melopsittacus undulatus’. In: Journal of
Morphology 218.2, pp. 153-165.

71


https://commons.wikimedia.org/wiki/File:Avian_respiratory_and_vocal_anatomy.png
https://commons.wikimedia.org/wiki/File:Avian_respiratory_and_vocal_anatomy.png

Bibliography

Mann, D. M. (2018). Recording of a budgerigar at the budgie laboratory vienna.

Marler, P. (2001). Origins of music and speech: insights from animals. A Bradford
Book.

Mindlin, G. and R. Laje (2006). The Physics of Birdsong. Springer Berlin
Heidelberg.

Miiller, M. (26th Sept. 2007). Information Retrieval for Music and Motion.
Springer Berlin Heidelberg. 332 pp.

O’Reilly, C. and N. Harte (2017). ‘Pitch tracking of bird vocalizations and
an automated process using YIN-bird’. In: Cogent Biology 3.1. Ed. by
H. Burda.

Odom, K. and L. Benedict (2018). ‘A call to document female bird songs:
Applications for diverse fields’. In: The Auk 135.2, pp. 314—325.

Pieplow, N. (7th Mar. 2017). Peterson Field Guide to Bird Sounds of Eastern
North America. Houghton Mifflin. 608 pp.

R Core Team (2014). R: A Language and Environment for Statistical Computing.
Accessed: 02.12.2018. R Foundation for Statistical Computing. Vienna,
Austria. URL: https://www.R-project.org.

Rothenberg, D. (18th Sept. 2007). Warum Vigel singen. Spektrum-Akademischer
Vig.

Rothenberg, D. et al. (2014). ‘Investigation of musicality in birdsong’. In:
Hearing Research 308, pp. 71-83.

Saratxaga, L. et al. (2012). ‘Perceptual Importance of the Phase Related In-
formation in Speech’. In: 13th Annual Conference of the International Speech
Communication Association (Interspeech 2012), Portland, USA, pp. 1448—
1451.

Saunders, J. C., W. E. Rintelmann and G. R. Bock (1979). ‘Frequency selectiv-
ity in bird and man: A comparison among critical ratios, critical bands
and psychophysical tuning curves’. In: Hearing Research 1.4, pp. 303—323.

Scrucca, L. et al. (2016). ‘mclust 5: clustering, classification and density
estimation using Gaussian finite mixture models’. In: The R Journal 8.1.
Accessed: 25.11.2018, pp. 205-233. URL: https://journal .r-project.
org/archive/2016-1/scrucca-fop-murphy-etal.pdf.

Sharma, M. and R. Mammone (1996). ““Blind” speech segmentation: auto-
matic segmentation of speech without linguistic knowledge’. In: Proceed-
ing of Fourth International Conference on Spoken Language Processing. ICSLP
‘96. IEEE.

72


https://www.R-project.org
https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf
https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf

Bibliography

SPTK (2015). Speech signal processing toolkit (sptk). Accessed: 16.11.2018. URL:
http://sp-tk.sourceforge.net/.

Suthers, R. (2004). ‘How birds sing and why it matters’. English. In: Nature’s
Music: The Science of Birdsong. Elsevier Inc., pp. 272—295.

Talkin, D. (1995). A robust algorithm for pitch tracking (RAPT).

Taylor, P. (2009). Text-to-Speech Synthesis. Cambridge University Press.

Templeton, C. N. (2005). ‘Allometry of Alarm Calls: Black-Capped Chickadees
Encode Information About Predator Size’. In: Science 308.5730, pp. 1934—
1937.

Thompson, N., K. LeDoux and K. Moody (1994). “A system for describing
bird song units’. In: Bioacoustics 5.4, pp. 267-279.

Thorpe, W. H. (1958). “The Leaning of Song Patterns by Birds, with Especial
Reference to the Song Chaffinch Fringilla coelebs’. In: Ibis 100, pp. 535—
570.

Tokuda, K., T. Kobayashi et al. (1994). ‘Mel-generalized cepstral analysis - A
unified approach to speech spectral estimation’. In:

Tokuda, K., Y. Nankaku et al. (2013). ‘Speech Synthesis Based on Hidden
Markov Models’. In: Proceedings of the IEEE 101.5, pp. 1234—1252.

Tokuda, K., H. Z. Zen and A. Black (2002). ‘An HMM-based speech synthesis
system applied to English’. In: Proceedings of 2002 IEEE Workshop on
Speech Synthesis 2002 WSS-o02. IEEE.

Turner, A. (2017). Accessed: 29.11.2018. URL: https://angusturner.github.
io/generative _models /2017 /11/03/pytorch-gaussian-mixture-
model.html.

Volkmann, J., S. S. Stevens and E. B. Newman (1937). ‘A Scale for the
Measurement of the Psychological Magnitude Pitch’. In: The Journal of
the Acoustical Society of America 8.3, pp. 208—208.

Wickstrom, D. C. (1982). ‘Factors to Consider in Recording Avian Sounds’.
In: Acoustic Communication in Birds. Elsevier, pp. 1-52.

Wildtronics, LLC (2017). Accessed: 23.10.2018. URL: https://www.wildtronics.
com/parabolicarticle.html#.W89NQ2gzaUk.

Wunsch, H. (2001). ‘Der Baum-Welch Algorithmus fiir Hidden Markov Mod-
els, ein Spezialfall des EM-Algorithmus’. In: NA. Accessed: 28.11.2018.
URL: http://www.sfs.uni-tuebingen.de/resources/em. pdf.

Young, S. et al. (2015). The HTK Book (version 3.5a). Cambridge University
Engineering Depart- ment.

73


http://sp-tk.sourceforge.net/
https://angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html
https://angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html
https://angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html
https://www.wildtronics.com/parabolicarticle.html#.W89NQ2gzaUk
https://www.wildtronics.com/parabolicarticle.html#.W89NQ2gzaUk
http://www.sfs.uni-tuebingen.de/resources/em.pdf

74



Appendix A. Appendix

Appendix A.
Appendix

0.3921

0

-0.2636)
510° H2[ T T ¥ T - S5 ;. L CETTAD)
RS . ATRET SR ¥ | ZE Ak Y~ o,
! A i { i
N o4 \ r‘\‘ ¥ ¥ ».,; i v e k "I -) & e \ Ty
- f’r*@-?:— B o e e A B AT W vaa .‘*.,m:ﬁ:’: A i T
0Hz . : o ; s f " o
bl [bu foufoudg]bJoubudgie]b [ouloufbu [b folobud[bufooudbubpudgie_sfoud|b |b fou] Tob blbudbblbufpudgic_sfpud|plbu el
= 1| uff [gildgle_sofufdg|_songsju Mdgildgldgifu Juju|gie |dgiju]gie dgijuJongs_01 fgie_ju Ju |dg| Juu ju}gie Jufujdgfongs_01|gie jujdg] (?/:nj
d] fe_s|ie jngs_Jdjie] _01_v|de_sfie Je_s|d |djd| soje_sjd|_soje_Jd] _v1_23 |son|d|d fe_| [dJd|d]_so ie| _v1_36 |_so|d}ie
(a) v1
0.7566|
0 » - o A oms
-0.6041
15104 Hz -,‘ ,.A,?: ": "‘ ® , B3y "‘e' w .3-\ 2 ‘i\\\_‘\ -
= BN IR v 0 2
3 ¥ .
< )
0 Hz| —— e
budgifbudgie_fbudgiefblb ufbb udgiefbu | fofbu bu | | fb} Jbudgifbudgiefbu] [b] foudgie_pp budgif Ib]fbudgie_sof | |b el
= 1le_sonfsongs_0| songsfu ju gjufu|_songdgi juldgi dgi| | JujJe_son] songsjdg] Ju| fongs_Ofu] | | le_son] jufjngs_01_v| | ju (?:4?
gs OIf1_v2 2| 01_vjdld iefdjd|s_01_Je_s|idfe_s| e_s| | [dfJes_O1]_O1_vfie] Jd} J1_v2_ 3 gs Of|d 2 41 d

-0.2206 L

15104 Hz[

N
N
0Hz — oy
budgie_s b b b
. labels
= 1longs_01 | fe_sonjufu u )
v3_1 s_01]dd} i djd
(9 v3
0.3626|
0
-0.4153
15104 Hz[ 7 A7 EARE W > """"‘p.}‘ n‘" !‘, i LJ
Al 7 - $ oy
val f\‘“/,'.\(;.',.,, A 4
OHz| ; - ;
bjpudjb pfbu b [buj bu udb b [budgfbbfbu |bud fbud bl b fb [bbu| Jbu bl b foufbudgbulbb | budgie pud|b fbpudfbulp|bujb |b el
= 1|ufgie fuuldgfu [dgfdgijulgie_fufu fie_sofufuidgigic_Jgie Juju Ju fuldgi] Kgiju]u ldgfie_s defuju | _songs|giefu Jujgie [dg gifu fu ::j
d|_sojd[d]ie |d]ie Je_s|dJson|d|d |ngs_[d}dfe_s| son |son ld}d |d |dfe_s| fe_sid| d JicJongs]iejd}d | 01_v4] sofd |d] sofie|didje_{d |d|d

(d) v4
75

Figure A.1.: Exemplary visualisation of component class 1-4



Appendix A. Appendix

0.8498|

01

-0.7466|
1.510% Hz|

o
=

bufbudgfibfb |bud |b Jbud ppudgie_|
. . . Iabels
uldglie_s flufu Jgie_Jufgie_]songs_ (144)
e_jongs|id]d ong|d |son J03_v5_

s
[=7)

blbud Ul
ufgie_juldg
dong|d]ie

u
labels

budgle songs_ fe_ : budgie_songs_01 . p X
01_v6_L1 - Sl"nvggfg IEII V67 — s_01_v6_40 (1744)

budgi fpu
labels

e_sonfdgl o

gs_01}ie

bud |b udgle so fbud budg budg b
gie_ u as_| 01 _vT]gie fie_so| u glie_so] uju
ong||d |_songs_|d| le gs_

(c) v7

e e = e 22
| . bu ud
bbudgie_songs_
ie ==

0.4679
0

-0.4457|
15104 Hz|

u Jgie_Jdgjeie_Mgijufuju u fu jdgldgifldgdgi] Jeie_dgiffongs 01 ju (144)
son fie_Jsonfe_sjd ldjd i e fe s| Isonfe_ | _v8 43 |d

|bud bjzud bulopfb [b b;lb bbul bulbu bu |bud bufbudgie sfb|

) v8

Figure A.2.: Exemplary visualisation of component class 5-8

76



Appendix A. Appendix

03776)
of
-0.344)
1.5104 Hz|! : w B R T 7 T b
ik e B B
= i 4 S~
o~ T
. 2 A i/ [~ —
0Hz| " : o
bl ol oulbufbu] foulb pudffoudgi]b [T Toudgielo] o] bl foudgfou] IoJo[oblle . b b| Jbudgbuf{budgie_so
. p budgie_songs_01_} N Iabels
w1 |uf ujuf fdgldelde] idgju fgie]fe_sonfu [| |_songsju Ju| fu] fie_sojdgil fujufujulju v9 34 u u | fie_soldg gs 0L V9,
dlidid] fie_{iefie | Jie|d | _soffes_O1fd |§ |_01_v{d] Jd| K] Ings_[e_]{d)d}djd}jd = d d| fngs_|ie _44
(@) v9
0.1537]
0
-0.1298)
1.510% HalREe B e G T AT Al 3 ¥ TN
s el N ! N ey it
A A . i
i by ]
0 Hz|
bud of | bu Jbuj pud udgifbudgie]|budgi f§ibu} b b | foub|budgie_ budgie_jpbufbufbudgilb | foufbu fbujbudgie_s|budjbuyl el
= 1|gie_fulf ldgifdg] Jeie le_son]_songsj|e_sonfidgfu fu | kdgjujsongs_0 ongs_( gldglfe_sonju | ldgjdgildgjongs_01 jgie_jdgl ;/:4?
son Jdli fe_s}ie | |_sofie s_01]_01_v]jgs_O1fiefdjdffiejd}1_vi0_ 1_v10_[dlieie lJgs_Ofd|ficfe_slie] v10_41]son]ie
(b) vio

budgie_son b budai b b |bbudjbudgifbud pud
= 1(u fu juldg] gie|]gs_01_v11 uoresiesong u fuj gie fe_songie_Jgie 200
; ! 0L = s 02 vil 3| — |81 |i1144)

d|d dlie ie | 11_14 | so| 17 d 1 d|d]_sofgs_0}son| so

Figure A.3.: Exemplary visualisation of component class 9-11

7



0.353|

Appendix A. Appendix

0.2095|

-0.2339)

15104 Hz[ [

5316 Hz|

0 H|

labels =1 budgie
(1/40) songs|

0.183948
0218
0 nl o " e
. LU v * *t
-0.1826)
15104 He| o i ¥
[ ¥ - il =
0Hz] §s 5
- b b b | pujpJouputgie_: b|b labels
u u Ju dglongs_01 ufu (20/40)
(e) uE
0.1072] 0.3495|
0 ol

budgie_s
ngs_01_|

uffbu
gf|dg

udjbufbud
gie dggie_|

udg|
ie_s

llabels

(1/40)

labels
(1/40)

labels
(1/40)

-0.3477|

1.5-104 Hz|

udgie
songs

(i) ul

Figure A.4.: Exemplary visualisation of unvoiced component class 1-9

78

labels



Appendix A. Appendix

00T 0

0ot

00z

0o0g

oor

oF :3zis ua ]

0S
(6TLT:souoyd jo Jaquinu) TTA ﬂ:o.._%

u

0 00T 0
0 0
0s oot
(=N
c
S
oot 2 00z
g
El
05T = oog
g
&
00Z oo
ot 2215 [ 0F :3z/5 ula ]
0s¢ 00s
{6v0z:sauoyd jo saqunu) ga auoyd ({16ST:sauoyd jo sJaqunu) zA auoyd
u u
ooz 00T 0 ooy 00z 0
0 0
0s oot
(=N
00T § 00z
1<
o
05T 3 00€g
B
007 3 oor
o
0sZ oos

0 :3215 wq [

0t 3215 uig I

(sLET:s@uoyd jo Jaqunu) pa auoyd

ooE

{ggr1:seuoyd jo sequinu) ga ﬂco—_n_cca

Sul Ul uoneInp SWI Ul uoneInp

SW uj uoneInp

a
c
5
o
=2
o
3
=
3
@
0t 3215 wa ]
%mm
(v91T:seuoyd jo Jaqunu) QTA duoy
u
oor 00z ]
0
oot
a
c
5
00z
=
3
00E 5
3
@
oor
ot 2215 ua[
00s
(g€zoT:seuoyd jo Jaquinu) g9a suoyd
u
ooz 00T ]
0
ooz
a
=
ooy g
o
3
oog 5
=]
@
oo8
0 :3215 wq ]
000T

(TZzTz:s@uoyd jo Jequnu) za auoyd

ooeg 0

oot

00¢

00€

oov

00s

(T£81:s2uoyd jo Jaquinu) ga ﬂ:o.._n_cca

u
00z 0ot

o

0s

0ot

0sT

ooz

0s¢

0oe

(668:sauoyd jo Jaqunu) sa auoyd 0se

u
00z 0ot 0
0s

0ot
0sT
ooz
0SsT

0ooe

(8£zz:sauoyd jo saquinu) TA ﬂ:o:n_cmm

Sul Ul uoneInp SWI Ul uoneInp

SW uj uoneInp

Duration histogram of voiced sounds

Figure A.5.

79



Appendix A. Appendix

Iuofjeinp 0 ZH ul AduanbaySWw Ul uoeInp

000€ ZH ul Aduanbay
0s 00T

0002
005€ 007

0022
oot 000k 00€ oovz

00st
o] 0
0t (s
3 3
0z 0z
0g 0z o€
(6TLT :sauoyd jo Jaqunu) TTA auoyd (p91T :seuoyd jo saqunu) oA auoyd (TL8T :sauoyd jo Jaqunu) ga auoyd
Sl uruoneinp Iuonelnp 0 oosr ZzH ul Auanbaystd Ul uoneinp 0 0 zH ul Asuanbay
0s 00z oot 000z
00T
0sT 000F
00vZ 0009
4] 0
0T (8
3 3
0Z 0z
og o
(610z :sa2uoyd jo Jaqunu) ga auoyd (T6GT :sauoyd jo Jaqunu) LA auoyd (EZ0T :sauoyd jo Jaqunu) 9a auoyd (668 :sauoyd jo Jaqunu) ga auoyd
Sl uruoneinp ZH ul AduanbaysWw uluoneinp ZH ul AJuanbaysW Ul uoneinp ZH ul AouanbaySW Ul uoneinp ZH ui Asuanbayy
s O 00z€ . 00T Jan 0OVT . 0s . By . s 0 O0F .
00T 00VE ooz 009T 00T 0095 oot = acﬁcamm
0s1 00€ 008T 0ST wm@w 0ST ; w08z
0osE 0002 wmoqm %
0 0 - 0 0
S 0T
ot 0T
ot 2 2 0z 2 =
0Z 0T
ST og
0z 0g or o€

(SLET :seuoyd jo Jaqunu) pa auoyd (E8+T :seuoyd jo Jaqunu) ga auoyd (TZIZ :seuoyd jo Jaqunu) za auoyd (ggzz :sauoyd jo Jaqunu) TA auoyd

iced sounds

3D-histogram of vo

Figure A.6.

80



Appendix A. Appendix

A
A
i

Figure A.7.: Decision tree of the third state of MGC features
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Acronymes:
AIC Akaike information criterion
BIC Bayesian information criterion
DFT Discrete Fourier transformation
DTW  Dynamic time warping
EM Expectation-maximization algorithm
FO Fundamental frequency

HMM Hidden Markov Model

HTK  Hidden Markov Model Toolkit

HTS  HMM-based Speech Synthesis System

LFO Logarithmic fundamental frequency

LPC Linear predictive coding

MFCC Mel-frequency cepstral coefficient

MGC  Mel-generalized-cepstrum

NMF  Non-negative matrix factorisation

PDA  Pitch detection algorithm

RAPT Robust Algorithm for Pitch Tracking

SNR  Signal-to-noise ratio

SPTK  Speech Signal Processing Toolkit

VVV  Ellipsoidal, varying volume, shape, and orientation
YIN Fundamental frequency estimator for speech and music
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