

Acknowledgements

First I would like to thank my thesis advisor Priv.-Doz. Dr. Daniele D’Angeli
of the Institute of Discrete Mathematics at TUGraz for introducing me to the
interesting topics I was able to research for my master thesis. He provided me
with very helpful references and guidance, but still allowed this thesis to be
my own work.

Further sincere thanks go to my very good friend and fellow student Chris-
tian Lindorfer. Through his valuable suggestions and constructive criticism
during the writing process the quality of this document was greatly improved.
Moreover I am very grateful to my close friend Daniel Hischenhuber for pro-
viding his assistance and pointing out some mistakes.

Lastly, I would like to thank my parents for all their encouragement and
support.

iii

Abstract

The Wiener index is the sum of all distances in a given graph and thus a
measure of connectedness. We examine its basic properties and exhibit some
known lower and upper bounds. Furthermore we use it to show that the
average distance of graphs in a growing sequence of graphs with vertices of
bounded degree tends to infinity. Then we discuss methods to calculate the
Wiener index and present two algorithms. The first algorithm is well known
and can be used for every graph, whereas the second is newly developed and
works very efficiently but can only be applied to trees.

A (Mealy) automaton is a machine that is located in a state, it receives
an input symbol and depending on the current state and the input symbol
it moves to the next state and produces an output symbol. We provide the
basic concepts of automata and indicate the requirements necessary to gener-
ate associated groups called automata groups. To visualize these groups we
introduce Schreier graphs and give some examples. Moreover we exhibit the
connection between the automaton group and the free group generated by the
states of the automaton.

One very interesting automaton is the so called Basilica automaton. After
its formal introduction we take a closer look on the Schreier graphs of its
automaton group and examine their structures. Using these insights we prove
a new result concerning the exact growth rate of the Wiener index of the
Schreier graphs of the Basilica automaton.

iv

Contents

Preface 1

1 Wiener index and average distance 4

1.1 Basic notation and simple bounds 4

1.2 A lower bound and its application to the average distance . . . 10

1.3 Algorithmic calculation of the Wiener index 12

2 Automata and Schreier graphs 19

2.1 Group actions and their visualization via Schreier graphs 19

2.2 Automata basics . 23

2.3 The automaton group . 29

3 The Basilica automaton 34

3.1 The Basilica automaton and graph substitutions 35

3.2 An upper bound on the Wiener index of Schreier graphs of the
Basilica automaton . 42

3.3 A lower bound on the Wiener index of Schreier graphs of the
Basilica automaton . 45

3.4 Further discussion on the Wiener index of Schreier graphs . . . 49

Appendix A C++-implementations 51

A.1 The Breadth-First Search Wiener Index Calculation 51

A.2 Creation of adjacency lists of simplified Schreier graphs of the
Basilica automaton . 52

v

List of Figures

1.1 Tree for Example 1.20 and 1.22. 10

2.1 State diagram of the incrementation automaton. 23

2.2 State diagram of the inverse incrementation automaton. 25

2.3 State diagram of the first-bit-switch automaton. 29

2.4 2-regular rooted tree associated to Σ∗ for Σ = {0, 1}. 29

2.5 Schreier graphs of the first-bit-switch automaton. 31

2.6 Second, third and fourth Schreier graph of the incrementation
automaton. 33

3.1 State diagram of the Basilica automaton. 35

3.2 Julia set of z2 − 1. 36

3.3 Zeroth, first, second and third Schreier graph of the Basilica
automaton. 36

3.4 Substitution of Gw by G0w ∪G1w for Γn+1(AFBS). 37

3.5 Substitutions for the Schreier graphs of AI 38

3.6 Substitutions for the Schreier graphs of B. 39

3.7 Fifth Schreier graph of the Basilica automaton. 40

3.8 Fourth Schreier graph of the Basilica automaton. 41

3.9 Some k-decorations. 46

3.10 Simplified representation of a Schreier graph of the Basilica au-
tomaton. 48

vi

Preface

In 1947 the chemist Harry Wiener published that the boiling points of
paraffins can be approximated by t = aw + bp + c, where a, b, c are constants
that depend on the given isomeric group, p is the polarity number and w
is the path number. This path number is defined as the sum of all carbon-
carbon bonds between all pairs of carbon atoms (see [40]). In other words, it
is the sum of all distances in the appropriate graphical representation of the
chemical structure. Later the path number became known as the Wiener index,
sometimes also called Wiener number, and its significance in the research of
correlations between chemical properties and the structure of molecules was
acknowledged (see [33]).

There are various other important applications (see e.g. [10]) and connec-
tions to interesting graph properties. For example, the Wiener index is directly
related to the average distance of a graph, which is a natural measure for the
compactness of a graph. The average distance is especially useful in the fields
of communication and architecture (e.g. see [27]).

Thus it is not surprising that a lot of mathematical work has been dedicated
to the research of the Wiener index. One major subject is the calculation
of the Wiener index on trees. An extensive summary of various results and
applications of the Wiener index on trees by Dobrynin et al. can be found
in [11]. A different approach was pursued by Gutman et al. in [22]. They
examined the inverse problem for the Wiener index, i.e. which natural numbers
can occur as the Wiener index of a graph. They were able to prove that every
positive integer, except for 2 and 5, is the Wiener index of some connected
graph. This research was extended by restricting the type of graphs to a
certain class. Wagner proved a similar result for trees in [39] and the analogue
for bipartite graphs is shown in [21] by Gutman and Yeh. The aim in this
master thesis is to examine the Wiener index in a very different setting, namely
combined with the theory of finite automata.

The first finite automata-like structure was defined in 1943 by McCul-
loch and Pitts in [28], although a mathematical model of a computing
machine was already introduced in 1936 by Turing (see [38]). A little more
than a decade later Mealy and Moore generalized this theory and pub-
lished independent papers (see [29] and [31], respectively), that became the
foundation of the finite automata theory.

Finite automata, sometimes also called finite-state machines, can be di-
vided into the two basic types acceptor and transducer. Both types are essen-

1

Preface 2

tially machines that move from a current state to a new state when receiving
an input symbol, where the movement depends on the current state and the
input symbol. This can be represented by a tuple consisting of a finite set of
states, a finite set of input symbols and a transition function that maps a state
and an input symbol to a new state. The transition function is then naturally
extended to the set of finite words over the input symbols, by simply applying
the transition on the symbols successively. The acceptor has additionally given
an initial state and a set of final states. A finite word over the input symbols
is accepted, if the automaton moves with the given word as input from the
initial state to a final state, otherwise it is rejected.

Acceptors are closely related to the concept of formal languages. In fact,
Kleene’s theorem states, that the language accepted by a finite automaton
is a regular language and every regular language is accepted by some finite
automaton (see [24] or [35]). Transducers are also related to languages, but in
a different way.

In addition to the two sets and the transition function the transducer has
a set of output symbols which may coincide with the set of input symbols, and
an output function. The output function always maps into the set of output
symbols, but the domain depends on a further classification into Mealy and
Moore machines. For the Mealy machine the output is determined by the
current state and the input symbol, so the domain is the Cartesian product of
the set of states and the set of input symbols. The output of the Moore machine
depends only on the new state, hence the domain of the output function is the
set of states.

Similar to the transition function the output function can be extended,
such that a finite word over the input symbols can be processed and an output
word of the same length is generated. This is the main usage of the transducer.
Common examples are vending machines, traffic lights and bar code scanners.
In the sense of producing output Mealy and Moore machines are equivalent,
that means for every Mealy machine there is a Moore machine that produces
the same output and vice versa, albeit Moore machines tend to have more
states. A proof of this fact and more details can be found in Section 3.1 of
[36]. Note that in [36] both Mealy and Moore machines have an initial state
like acceptors. This is often called an initial automaton.

Here we are interested in Mealy machines having a common set of input
and output symbols and simply call them (finite) automata. An automaton of
this type is called invertible if the output function restricted to any state is a
bijection on the set of input and output symbols. The set of finite words over
the input and output symbols can be endowed with the structure of a regular
rooted tree and under these considerations the output function restricted to a
state is a graph-automorphism on the tree. Hence we can use the restrictions
of the output function to states in order to generate a subgroup of the auto-
morphisms on the set of finite words over the input and output symbols. Such
groups arising from invertible automata are called automata groups. They
were introduced in the beginning of the 1960s (see [14] and [23]), but it took

Preface 3

several years until the significance and utility of automata groups were realized.
The first major results were contributions to the General Burnside Problem,
one of the most famous problems in algebra. The General Burnside Problem
asks, whether there are finitely generated infinite torsion groups (more infor-
mation can be found in [1] and [19]). Various mathematicians used automata
in the 1970s and 1980s to construct such groups (see [2], [37], [15] and [20]).
Among them was Grigorchuk, who also utilized automata groups to show
the existance of infinite groups having intermediate growth (more than poly-
nomial and less than exponential, see [16] and [17]), solving another famous
problem stated by Milnor (see [30]).

A structure of great interest in the study of automata groups is the Schreier
graph. For a finitely generated group acting on a set, we take the members of
the set as vertices and connect them in accordance to the action of a finite set
of generators. Considering an automaton group we have an action on the set
of finite words over the input and output symbols. Since the length of words
is not changed by the action, we get an infinite disconnected graph. Hence
we restrict the action to words of a certain length. This leads to the main
topic of this thesis, the examination of the growth of the Wiener index of the
increasing sequence of Schreier graphs given by an automaton.

In the first chapter we define the class of graphs we are working with and
introduce the Wiener index. Then we show some known basic bounds and
talk about the algorithmic calculation of the Wiener index. Furthermore we
present a new and very efficient algorithm for calculating the Wiener index of
a tree.

The second chapter discusses the automaton group. We start by introduc-
ing group actions and Schreier graphs. Then we establish the basic automata
theory and take a closer look on the automaton group.

The central topic of the third chapter is a new result concerning the Basilica
automaton. After defining the Basilica automaton we show how its Schreier
graphs can be generated recursively. This is the main ingredient required to
determine the order of growth of the Wiener index on the Schreier graphs of
the Basilica automaton.

Chapter 1

The Wiener index and the
average distance

The aim of the first section of this chapter is to define the basic terminology
necessary to work with the Wiener index. Usually the Wiener index is studied
on simple graphs. However, we will have graphs with parallel edges and loops
later on, so we start with a more involved introduction to graph theory. We
conclude the section by showing simple known lower and upper bounds of the
Wiener index and identify graphs achieving one of the bounds. These bounds
can also be found in [12] with some slight alterations and alternative proofs.

In the second section we construct a lower bound of the Wiener index
depending on the maximum degree of the given graph. This leads to an inter-
esting result about graph sequences with increasing number of vertices.

The third section is dedicated to the algorithmic calculation of the Wiener
index. First we show some basic approaches using algorithms solving the All
Pairs Shortest Path Problem and compare their running times. Then we
talk about the difference between the All Pairs Shortest Path Problem
and the calculation of the Wiener index and mention some classes of graphs
for which the calculation of the Wiener index is indeed easier than solving the
All Pairs Shortest Path Problem. Lastly we present a newly developed
algorithm that calculates the Wiener index of a tree and has linear running
time.

1.1 Basic notation and simple bounds

Definition 1.1. An (undirected) graph G = (V,E) consists of a set of vertices
V , a set of edges E and an incidence relation. The incidence relation pairs
each edge with a set of one or two vertices. Thus if e is incident to {u, v} we
usually write e = {u, v} or e = {v, u}, although there may be more edges with
this relation. If there is another edge f = {u, v}, we say e and f are parallel.
Note that u and v may be equal, in this case we call e a loop. If G has no
loops and no parallel edges it is called simple.

4

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 5

For {u, v} ∈ E with u 6= v, we say that u and v are adjacent, or they are
connected by an edge. Furthermore we call u a neighbour of v and vice versa.
NG(v) ··= {w ∈ V | {v, w} ∈ E} is the set of neighbours of v. The degree of a
vertex v is denoted by degG(v). It is the number of edges incident to v where
loops are counted twice. If there is an r ∈ N0 such that degG(v) = r for all
vertices v ∈ V , then the graph is called r-regular.

Let G′ = (V ′, E ′) be a second graph. G∪G′ ··= (V ∪V ′, E∪E ′) is the union
of the graphs G and G′, where its incidence relation is obtained by the union
of the incidence relations of G and G′. The vertex and edge sets, respectively,
may not be disjoint, so in case an edge e is contained in both graphs and is
incident to different vertices in G and G′, we add a new edge e′ to the union
and use for e the incidence of G and for e′ the incidence of G′. We say G′ is a
subgraph of G, written G′ ⊂ G, if V ′ ⊂ V , E ′ ⊂ E and the incidence relation
of G′ is the incidence relation of G restricted to the edges and vertices of G′.
If there exists a bijective map ϕ : V → V ′, where for all v, w ∈ V the sets
{v, w} and {ϕ(v), ϕ(w)} are incident to the same number of edges, then we
say G and G′ are isomorphic, written G ∼= G′. Such a map ϕ is called (graph)
isomorphism. If additionally G = G′ then ϕ is also said to be an automorphism
on G.

Remark 1.2. If G = (V,E) is a simple graph we can identify each edge with
the two incident vertices, i.e.

E ⊂
(
V

2

)
··= {{u, v} | u, v ∈ V, u 6= v}. (1.1)

Furthermore the inequality |NG(v)| ≤ degG(v), holding for any v ∈ V , simpli-
fies to an equality.

Definition 1.3. Let G = (V,E) be a graph. The simplification of G is the
simple graph H = (V,E ′) where E ′ consists of the edges {u, v} for all vertices
u, v ∈ V , u 6= v, that are adjacent.

Remark 1.4. The simplification of a graph can also be defined by successively
deleting parallel edges and loops from the edge set until the graph is simple.
Using this process the simplification is not unique, but all graphs constructed
in this manner are isomorphic.

The graph properties used in this chapter are invariant under simplification,
so we can always use the simplified graph and get the same result. Thus we
will not explicitly state it but treat graphs as if they were simple.

Sometimes it is useful to characterize edges by more than their incident
vertices. Hence we introduce labels and a labelling function.

Definition 1.5. A graph G = (V,E) is called (edge-)labelled, if it has a label
function lG : E → L attached, where L is a finite non-empty set of labels. We

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 6

say e ∈ E is labelled (by) a ∈ L if lG(e) = a.

Let G = (V,E) and G′ = (V ′, E ′) be isomorphic graphs with the label
functions lG : E → L and lG′ : E ′ → L, respectively, and the same set of
labels L. An isomorphism ϕ : V → V ′ is called label preserving if for all
v, w ∈ V and a ∈ L, {v, w} and {ϕ(v), ϕ(w)} are incident to the same number
of edges labelled by a. G and G′ are called label-isomorphic if a label preserving
isomorphism from V to V ′ exists.

Walks and paths are a basic concept of graphs, but the specific definitions
vary from author to author. Since we are interested in distances, we only
need sequences of non-repeating vertices, where all consecutive vertices are
connected via edges, and call them paths.

Definition 1.6. Let G = (V,E) be a graph. A path in G is a sequence of
pairwise distinct vertices π = (v0 , v1 , . . . , vm), where m ∈ N0 and {vi , vi+1} ∈
E for i = 0, . . . ,m− 1. We say π connects the startpoint v0 and the endpoint
vm and the edges {vi , vi+1} are (contained) in the path. The length of π is
the number of edges in the path, where only one edge is considered per pair
of vertices {vi , vi+1}. It is equal to the number of vertices in the path minus
one and denoted by |π| = m.

A path π = (v0 , v1 , . . . , vm) with m ≥ 2 and {vm , v0} ∈ E can be extended
to a cycle C = (v0 , v1 , . . . , vm , v0) of length |C| = m + 1. A graph that does
not contain a cycle is called acyclic.

If any two vertices in the graph are connected via some path, we say G
is connected, else it is disconnected. A simple, acyclic, connected graph is
called tree. The distance of two vertices u and v in the graph, denoted by
dG(u, v), is defined as the length of the shortest path connecting u and v,
if they are connected, and as ∞, if they are not. The maximum distance
diam(G) ··= max{dG(u, v) | u, v ∈ V } is called the diameter of G. For a vertex
v ∈ V we set dG(v) to the sum of distances from v to all other vertices, i.e.

dG(v) ··=
∑

u∈V \{v}

dG(v, u). (1.2)

Remark 1.7. For every vertex v the path (v) of length 0 connects v to v,
therefore dG(v, v) = 0 and dG(v) can be simplified to

dG(v) =
∑
u∈V

dG(v, u). (1.3)

Paths and cycles can also be considered as (sub-)graphs or sequences of edges,
hence we may use them in this manner.

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 7

Definition 1.8. Let G = (V,E) be a graph on 2 or more vertices, i.e. |V | ≥ 2.
The Wiener index W (G) is defined as the sum of all distances in G, written

W (G) ··=
∑
{u,v}⊂V

dG(u, v) . (1.4)

The average distance of two vertices in G is the sum of all distances divided
by the number of distances greater then 0, i.e.

µ(G) ··=
W (G)(|V |

2

) . (1.5)

Remark 1.9. The Wiener index can also be defined as 0 for a graph with
only one vertex, but the average distance is not useful in this instance and the
formula cannot be extended. So we excluded this case.

In disconnected graphs the Wiener index and the average distance are
infinite. In many situations this fact does not alter the results we are looking
at, but we will state the connectedness explicitly if needed.

Remark 1.10. We can reformulate the Wiener index using dG(·):

W (G) =
∑
{u,v}⊂V

dG(u, v) =
1

2

∑
u∈V

∑
v∈V

dG(u, v) =
1

2

∑
u∈V

dG(u) . (1.6)

This gives a different formula for the average distance as well:

µ(G) =
W (G)(|V |

2

) =

∑
u∈V dG(u)

|V |(|V | − 1)
. (1.7)

In order to get a deeper understanding on the Wiener index and the average
distance, we want to look at some bounds for dG(·). We start by introducing
some more convenient graph properties.

Definition 1.11. Let G = (V,E) be a graph, v ∈ V a vertex and r ∈ N0. The
ball with radius r and center v is the set of vertices with distance less than r
to v, i.e.

Bv(r) ··= {u ∈ V | dG(v, u) < r}. (1.8)

Its boundary, the set of vertices with distance exactly r to v, is named Sv(r),
the sphere with radius r and center v.

Proposition 1.12. Let G = (V,E) be a connected graph on n vertices. For
every vertex v ∈ V ,

n− 1 ≤ dG(v) ≤ n(n− 1)

2
(1.9)

and these bounds are tight, i.e. there are graphs containing vertices achieving
the lower or the upper bound.

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 8

Proof. Take a vertex v ∈ V and let ni be the number of vertices of distance i
to v, i.e. ni ··= |Sv(i)|, then

dG(v) =
n−1∑
i=1

nii and n =
n−1∑
i=0

ni . (1.10)

n0 = 1 and if n1 = n − 1, then ni = 0 for all i ≥ 2, thus the lower bound
is attained. This means that all other vertices are neighbours of v. In case
n1 < n− 1, the sum increases since n2 > 0 and hence the lower bound holds.

For the upper bound take note that ni = 0 implies nj = 0 for all j ≥ i.
Thus the sum maximizes if ni = 1 for i = 0, . . . , n− 1. This gives the desired
upper bound:

dG(v) ≤
n−1∑
i=1

i =
n(n− 1)

2
. (1.11)

To achieve this bound, G must be a path and v has to be the startpoint or the
endpoint of the path.

Let Kn ··=
(
V,
(
V
2

))
be the complete graph on n vertices. This graph can be

considered the ‘most connected graph’. We examine it to obtain some simple
lower bounds for the Wiener index and the average distance.

Remark 1.13. Any pair of distinct vertices u, v of the complete graph satisfies
dKn

(u, v) = 1. Thus for every graph G = (V,E) on n vertices

W (G) ≥ W (Kn) =
∑
{u,v}⊂V

dKn
(u, v) =

∣∣∣∣(V2
)∣∣∣∣ =

n(n− 1)

2
(1.12)

and µ(G) ≥ µ(Kn) = 1.

Conversely a path can be seen as the ‘least connected graph’. We will see,
that this intuition is right and then calculate the Wiener index of the path,
but before addressing this task, we need some more preparatory work.

Definition 1.14. Let G = (V,E) be a graph and G′ a subgraph of G with
vertex set V ′ ⊂ V . The graph G[V ′] ··= (V ′, E ′) is the subgraph of G induced
by the vertex set V ′, where E ′ is the set of all edges in E that are only incident
to vertices of V ′.

G−G′ = G− V ′ ··= G[V \ V ′] (1.13)

is the subgraph of G induced by V \ V ′. If G is connected and G− V ′ is not,
we call V ′ a separator. In case the separating set V ′ consists of a single vertex
v ∈ V , we call v a cut-vertex. Furthermore we simplify the notation to G− v.
A maximal connected subgraph without a cut-vertex is called a block.

Proposition 1.15. Let G = (V,E) be a graph on more than 2 vertices. For
every vertex v ∈ V ,

W (G) ≤ W (G− v) + dG(v). (1.14)

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 9

Proof. Removing a vertex v ∈ V from G can only increase distances, i.e.
dG−v(u,w) ≥ dG(u,w) for all u,w ∈ V \ {v}. This fact is enough to complete
the proof:

W (G) =
∑

{u,w}⊂V \{v}

dG(u,w) +
∑
u∈V

dG(v, u) ≤ W (G− v) + dG(v). (1.15)

Remark 1.16. In case the removed vertex v is a cut-vertex, the Wiener index
of G− v is infinite and the bound trivially holds.

If we choose a vertex v such that for all u,w ∈ V \ {v} there is a shortest
path connecting u and w and not containing v, then equality holds in (1.14).

Whenever v has only one neighbour it can only be the end point of a
shortest path, thus the condition in the second part of the remark is fulfilled.
We use this fact in the next result.

Proposition 1.17. Every connected graph G = (V,E) on n vertices satisfies

W (G) ≤ n(n2 − 1)

6
. (1.16)

Equality holds if G is a path.

Proof. We use induction on n ≥ 2.

For n = 2 we have W (G) = 1 since G is connected. Thus we have equality
in (1.16).

Now suppose (1.16) holds for n and let G = (V,E) be a connected graph
on n + 1 vertices. Clearly not every vertex in V is a cut-vertex, so we can
take v ∈ V such that G − v is a connected graph on n vertices. Thus, using
Proposition 1.12 and 1.15 we are able to verify the inequality:

W (G) ≤ W (G− v) + dG(v) ≤ n(n2 − 1)

6
+

(n+ 1)n

2

=
n3 + 3n2 + 2n

6
=

(n+ 1)((n+ 1)2 − 1)

6
.

(1.17)

Additionally we suppose that G is a path and equality holds in (1.16) for paths
of length n. Let v be the endpoint of G. Then G − v is a path on n vertices
and v has only one neighbour. Hence equality holds in the first step of (1.17).
In the proof of Proposition 1.12 we have seen that dG(v) = (n+1)n/2 and thus
using the induction hypothesis equality in the second step holds as well.

Remark 1.18. The previous proposition leads to the following upper bound
for the average distance: Every connected graph G on n vertices satisfies

µ(G) ≤ n+ 1

3
. (1.18)

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 10

1.2 A lower bound and its application to the

average distance

Proposition 1.19. Let G = (V,E) be a graph on n vertices of bounded degree
k ≥ 3, i.e. degG(v) ≤ k for all v ∈ V . Then for every vertex v ∈ V and for
all m ∈ N,

|Bv(m)| ≤ 1 + k
(k − 1)m−1 − 1

k − 2
. (1.19)

Proof. We fix a vertex v ∈ V and prove by induction over i that

ni ··= |Sv(i)| ≤ k(k − 1)i−1. (1.20)

n1 = degG(v) ≤ k, so the statement holds for i = 1.

Now suppose (1.20) holds for i ≥ 1. Every vertex u ∈ Sv(i) has a neighbour
in Sv(i− 1), thus the number of neighbours of u with distance i+ 1 has to be
at least one less than the degree of u. Since the degree is bounded by k we
obtain |{w ∈ NG(u) | dG(v, w) = i+ 1}| ≤ k − 1. This yields (1.20) for i+ 1:

ni+1 ≤ ni(k − 1) ≤ k(k − 1)i. (1.21)

Using (1.20) we complete the proof:

|Bv(m)| =
m−1∑
i=0

ni ≤ 1 +
m−1∑
i=1

k(k − 1)i−1 = 1 + k
(k − 1)m−1 − 1

k − 2
. (1.22)

r

s

t

Figure 1.1: Tree for Example 1.20 and 1.22.

Example 1.20. We want to compare some bounds given by (1.19) for the tree
in Figure 1.1. It is of bounded degree 4, so we can simplify (1.19) to

|Bv(m)| ≤ 2 · 3m−1 − 1 (1.23)

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 11

where v ∈ V and m ∈ N0. Hence for m = 1, 2, 3 we get

|Bv(m)| ≤


1 if m = 1,

5 if m = 2,

17 if m = 3.

(1.24)

By counting vertices we see that for v = r equality holds in all cases, whereas
for v = s equality is only true for m = 1 and m = 2. However, if we take v = t
the inequality is strict whenever m > 1. So for the most choices of vertices
and m the inequality is strict, but there are cases of equality.

Using Proposition 1.19 we can calculate an upper bound for the number of
vertices that are ‘near’ a given vertex v, but we also obtain a lower bound for
the number of vertices that are ‘not near’. We use the second approach in the
following proposition.

Proposition 1.21. Let G = (V,E) be a graph on n vertices of bounded degree
k ≥ 3 and

νk(m) ··= 1 + k
(k − 1)m−1 − 1

k − 2
for m ∈ N. (1.25)

Then for all m ∈ N,

W (G) ≥ nm(n− νk(m))

2
. (1.26)

Proof. Take a vertex v ∈ V and m ∈ N. By Proposition 1.19 at most νk(m)
vertices have a distance of less than m to v, so at least n−νk(m) vertices have
a distance of at least m to v. Thus

dG(v) =
∑
u∈V

dG(v, u) ≥
∑
u∈V

dG(v,u)≥m

dG(v, u)

≥ |{u ∈ V | dG(v, u) ≥ m}|m ≥ (n− νk(m))m.

(1.27)

Applying this estimate on the Wiener index completes the proof:

W (G) =
1

2

∑
v∈V

dG(v) ≥ 1

2

∑
v∈V

(n− νk(m))m =
nm(n− νk(m))

2
. (1.28)

Example 1.22. Let T be the tree given in Figure 1.1. The lower bound of the
Wiener index determined in the proposition above is only useful if it is positive
and hence the number of vertices should be greater than νk(m) = 2 · 3m−1− 1.
Since T has 17 vertices m ≥ 3 does not provide reasonable bounds. Thus we
calculate nm(n− νk(m))/2 for m = 1, 2. This leads to W (T) ≥ 136 for m = 1
and W (T) ≥ 204 for m = 2.

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 12

We determine the Wiener index via calculating dG(·) for r, s and t and using
the symmetries of T . By counting the number of vertices of a given distance
we obtain:

dG(r) = 4 · 1 + 12 · 2 = 28,
dG(s) = 4 · 1 + 3 · 2 + 9 · 3 = 37,
dG(t) = 1 · 1 + 3 · 2 + 3 · 3 + 9 · 4 = 52.

(1.29)

By symmetry there are exactly 3 other vertices in T that have the same dG(·)
as s and 11 other vertices that are similar to t. Thus

W (T) =
dG(r) + 4dG(s) + 12dG(t)

2
= 400. (1.30)

This example shows that lower bounds calculated using Proposition 1.21
can be very rough. In fact most bounds determined in this way are kind of
rough, but they are still tight enough to provide the following interesting result.

Theorem 1.23. Let (Gi = (Vi, Ei))i∈N be a sequence of graphs s.t. ni ··=
|Vi| → ∞ for i→∞ and all Gi are of bounded degree k ≥ 3. Then

µ(Gi)→∞ for i→∞.

Proof. We fix i and set mi ··= 1 +
⌊
logk−1

ni

2k

⌋
. Then

νk(mi) ≤ 1 +
ni

2
− k

k − 2
=

ni

2
− 2

k − 2
≤ ni

2
. (1.31)

Using this inequality with Proposition 1.21 yields a useful estimate for the
Wiener index:

W (Gi) ≥
nimi(ni − νk(mi))

2
≥
n2
i (1 +

⌊
logk−1

ni

2k

⌋
)

4
. (1.32)

Inserting this estimate in the definition of the average distance gives

µ(Gi) =
W (Gi)(

ni

2

) ≥
n2
i (1 +

⌊
logk−1

ni

2k

⌋
)

2ni(ni − 1)
≥ 1

2

⌊
logk−1

ni
2k

⌋
. (1.33)

The last term goes to infinity for i→∞ as k is fixed.

1.3 Algorithmic calculation of the Wiener in-

dex

Throughout this section we suppose to have a graph with n vertices and m
edges and use the Landau-notation to compare the running times of algorithms.
See section 1.2.11 of [25] for details on the Landau-notation.

A naive approach to determine the Wiener index is to use algorithms solv-
ing the All Pairs Shortest Path Problem, for example the Floyd-
Warshall Algorithm (see chapter 7 in [26] for details). This algorithm

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 13

is easy to comprehend and implement but needs O(n3) time. Pettie used a
more elaborated approach in [34] and showed that the running time can be
improved to O(mn+n2 log log n). In the worst case, if the graph is dense, the
running time is still O(n3), but for sparse graphs, i.e. m = O(n), this is a
good improvement. All these algorithms are for edge-weighted graphs, so it is
not surprising that there are more suitable approaches.

In a graph without weighted edges, the distance from one vertex to all oth-
ers can be determined with a slightly modified breadth-first search. Therefore,
by using the breadth-first search on every vertex we can solve the All Pairs
Shortest Path Problem in undirected graphs. In the following we describe
an algorithm that puts this idea to calculate the Wiener index into practice
and prove its correctness.

Breadth-First Search Wiener Index Calculation (BFS-WIC)

Input: A connected graph G = (V,E).

Output: The Wiener index w = W (G) of the graph G.

1 Set w ··= 0.

2 For each vertex s in V do:

a Set R ··= {s}, d ··= 0, t ··= s and add the pair (s, 0) to the empty
queue Q.

b For each neighbour u of t do:
If u /∈ R, then insert (u, d+ 1) in Q and set R ··= R ∪ {u}.

c Set w ··= w + d and remove (t, d) from Q.

d If Q is not empty, then take the next pair (v, c) of Q, set t ··= v,

d ··= c and go to b .

3 Set w ··= w/2.

A complete and fully functional C++-implementation of the Breadth-
First Search Wiener Index Calculation can be found in Appendix A.1.

Proposition 1.24. The Breadth-First Search Wiener Index Calcu-
lation works correctly and needs O(mn) time and O(m) space.

Proof. We prove that dG(s) is added to w in 2 for each vertex s. Then
the output is correct by the reformulation of the Wiener index stated in Re-
mark 1.10.

During step 2 , w is only changed in c , so we have to show that each
vertex t is stored in the queue Q precisely once, paired with the correct distance

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 14

d = dG(s, t). Each vertex is added at least once to Q, since the graph is
connected. Furthermore after a vertex is queued it is also added to the set
R and hence cannot be added a second time to Q. For the distance we use
an inductive argument. Clearly dG(s, s) = 0, thus s is correctly added to
the queue. Now suppose that all vertices u with distance dG(s, u) < d were
already stored in the queue with the correct distance dG(s, u) and all vertices
v with distance dG(s, v) < d − 1 are in R. Take a vertex t that is added to
the queue with d. Then it has to be the neighbour of some vertex x with
distance dG(s, x) = d− 1, hence dG(s, t) ≤ d. Since no vertex v with distance
dG(s, v) < d− 1 can be connected to t (otherwise t would have been added to
Q earlier, as all v are already in R), we conclude dG(s, t) = d. This completes
the proof of the correctness.

Next we examine the running time. Task 1 and task 3 have constant

running time, thus it suffices to focus on 2 . For a given vertex s every vertex
is queued exactly once and the time to process one queued vertex depends only
on the number of its neighbours. So for one vertex the executions in 2 need
O(m) time. There are n vertices, thus the complete running time is O(mn).

For the examination of the space that is necessary during the computation
only the set R and the queue Q are relevant. Both contain at most n elements,
hence the most space is required by the graph itself. Note that n = O(m) since
G is connected, thus O(m) space is necessary.

In the case of sparse graphs, the running time of the Breadth-First
Search Wiener Index Calculation is quadratic in the number of ver-
tices, this is another good improvement compared to the algorithms above.
Under these conditions it is also best possible for an algorithm solving the
All Pairs Shortest Path Problem since O(n2) distances have to be cal-
culated. For dense graphs the running time is still cubic in the number of
vertices. This situation has been intensely studied and some of the latest re-
sults for undirected graphs without weighted edges can be found in [5] and
[6]. In the first cited paper Chan presented an algorithm with running time
approaching O(n3/ log2 n).

Aside from the discussion above, it is not known if it is necessary to cal-
culate all distances in a graph in order to obtain its Wiener index. For some
classes of graphs it was shown that calculating the Wiener index needs less
time than solving the All Pairs Shortest Path Problem. Dankel-
mann proved in [9] that the average distance, and thus also the Wiener index
of an interval graph can be computed in O(m) time. He mentioned in the
same paper that his algorithm can be modified to calculate the average dis-
tance of a tree in O(n) time. Below we show a different and completely new
way to calculate the Wiener index of a tree in O(n) time with a more concrete
explanation.

A benzenoid graph is a subgraph of the hexagonal lattice induced by a
closed walk and all interior vertices of the walk. It was shown in [7] that the
Wiener index can also be calculated in O(n) time for benzenoid graphs. These
are all best possible running times.

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 15

Let T = (V,E) be a tree and u ∈ V a leaf, i.e. a vertex with degree 1 in a
tree. Then equality holds in (1.14), i.e.

W (T) = W (T − u) + dT (u). (1.34)

Since u is a leaf it is connected to exactly one vertex t. As a consequence of
the following proposition from [12], it turns out that dT (u) can be determined
from dT−u(t). Thus W (T) can be calculated in terms of W (T−u) and dT−u(t).

Proposition 1.25. Let G = (V,E) be a graph and u, v ∈ V neighbours. Then

dG(v) + |{w ∈ V | dG(v, w) < dG(u,w)}|
= dG(u) + |{w ∈ V | dG(u,w) < dG(v, w)}|.

(1.35)

Proof. Take a vertex v ∈ V , let u ∈ NG(v), w ∈ V and π a shortest path from
v to w. Either u is contained in the path π or we can extend π by u. So there
is a path from u to w with length ≤ |π| + 1. Thus dG(u,w) ≤ dG(v, w) + 1.
Since v is also a neighbour of u we can switch their roles and get analogously
dG(v, w) ≤ dG(u,w) + 1. Therefore dG(u,w) and dG(v, w) cannot differ by
more than 1.

Next we split V into 3 disjoint sets, i.e.

V ··= V1 ∪ V2 ∪ V3 where

V1 ··= {w ∈ V | dG(v, w) = dG(u,w)},
V2 ··= {w ∈ V | dG(v, w) > dG(u,w)},
V3 ··= {w ∈ V | dG(v, w) < dG(u,w)}.

(1.36)

Using the fact from above and this decomposition we can finish the proof:

dG(v) =
∑
w∈V1

dG(v, w) +
∑
w∈V2

dG(v, w) +
∑
w∈V3

dG(v, w)

=
∑
w∈V1

dG(u,w) +
∑
w∈V2

(dG(u,w) + 1) +
∑
w∈V3

(dG(u,w)− 1)

=
∑
w∈V

dG(u,w) +
∑
w∈V2

1 −
∑
w∈V3

1

= dG(u) + |{w ∈ V | dG(v, w) > dG(u,w)}|

− |{w ∈ V | dG(v, w) < dG(u,w)}|.

(1.37)

This shows that the difference of dG(·) for two neighboured vertices can be
determined by counting the vertices that are closer to one of the two neigh-
boured vertices. This is very convenient when comparing dG(·) for neighboured
vertices, especially if one of the vertices is a cut-vertex. This is the case for
the setting described above.

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 16

Corollary 1.26. Let T = (V,E) be a tree and u ∈ V a leaf connected to the
vertex t ∈ V . Then

dT (u) = dT−u(t) + |V | − 1. (1.38)

Proof. All vertices except u are closer to t than to u and

dT (t) = dT−u(t) + 1. (1.39)

Let T = (V,E) be a tree and R a subset of the vertex set V such that T [R]
is a subtree of T . Suppose we add a vertex u to the set R which is a neighbour
of some vertex t ∈ R. Then by (1.34) and (1.38),

W (T [R ∪ {u}]) = W (T [R]) + dT [R](t) + |R|. (1.40)

The main idea of the Tree Wiener Index Calculation described be-
low is the following:

Increase a set of vertices R by walking through the graph like in a depth-
first search and calculate W (T [R]) every time the set R is changed. Start with
a vertex s and set R ··= {s}. Let t be the currently processed vertex, w the
Wiener index of the current subtree induced by the set R and d ··= dT [R](t). If
t has a neighbour u not contained in R, add u to R, change the Wiener index
accordingly to 1.40 and update d. If all neighbours of t are already in R and
not all vertices are processed, go back to the vertex xt that was active when
the vertex t was added to R and update d to represent the sum of all distances
to xt in T [R]. Stop the process when every vertex is contained in R.

Tree Wiener Index Calculation

Input: A tree T = (V,E) and a starting vertex s ∈ V .

Output: The Wiener index w = W (T) of the tree T .

1 Set

w ··= 0, bs ··= 1,
d ··= 0, t ··= s,

R ··= {s} and av ··= 1 for all vertices v in V .

2 While R 6= V do:

a If NT (t) ⊂ R then set

d ··= d− bxt + at, bxt ··= |R|,
axt ··= axt + at, t ··= xt .

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 17

b Else take u ∈ NT (t) \R, set

w ··= w + d+ |R|, xu ··= t,
d ··= d+ |R|, bu ··= |R|+ 1,

t ··= u

and R ··= R ∪ {u}.

Proposition 1.27. The Tree Wiener Index Calculation works cor-
rectly and needs O(n) time and space.

Proof. Throughout this proof t denotes the active vertex at the beginning of
the task or iteration and xt the active vertex when t is added to R. We call xt
the predecessor of t.

We show that the following assertions are true at the beginning of each
loop in task 2 :

(i) w is the Wiener index of the tree induced by the set R, i.e. w = W (T [R]).

(ii) d is the sum of all distances to the active vertex t in W (T [R]), i.e.
d = dT [R](t).

(iii) If the active vertex t is not equal to the start vertex s, then bxt is the
number of vertices of T [R] closer to xt than to t, and at is the number
of vertices of T [R] closer to t than to xt.

Subsequent to task 1 , R has one vertex, thus correctly w = 0 = W (T [R])
and d = 0 = dT [R](t). So we can assume, that at the start of each iteration in

2 assertions (i), (ii) and (iii) are correct.

In each loop of task 2 either task a or task b is performed. First

let us look at the situation after an execution of b . Assertion (i) remains
true since the update of w is correct by the assumptions and (1.40). Due to
the assumptions and Corollary 1.26 the new value of d is equal to the sum of
distances to the next active vertex u in T [R∪{u}], thus (ii) is satisfied as well.
Note that t must have been introduced as active vertex in the last iteration
or in task 1 , hence bt = |R|. Furthermore t is the only vertex in T [R ∪ {u}]
connected to u, thus bt = |R| and au = 1 satisfy the claims in (iii).

In a the value of w and the set R are not changed, thus (i) remains
true. Assertion (ii) is correct by the assumptions and Proposition 1.25. If
xt = s, then there is nothing to prove. In case xt is not equal to s, let v be
the predecessor of xt . The most recent time v was active was in the iteration
where xt was added to R, hence bv is set to the number of vertices added to R
before xt . This is exactly the number of vertices closer to v than to xt in T [R],
thus the first claim of (iii) is correct. At the time the vertex t was added to

CHAPTER 1. WIENER INDEX AND AVERAGE DISTANCE 18

R, axt was equal to the number of vertices that were closer to xt than to v in
the subtree induced by all vertices that had been added before t. All vertices
closer to t than to xt are also closer to xt than to v. Thus the calculation of
axt in a is correct and (iii) holds.

Since for every vertex in R every neighbour is added to R and the tree T
is connected, the algorithm has to terminate with the correct Wiener index
w = W (T).

Clearly task 1 is executed in O(n) time. For task 2 we only need to

count the number of times either task a or b is performed since both this

tasks are performed in constant time. In every run of b a vertex is added to
R, hence it is executed exactly n− 1 times. If a vertex is active in task a it

can never be active again, thus a is executed at most n−1 times. So in total
we have a running time of O(n) and thus the algorithm needs O(n) space.

Chapter 2

Automata and Schreier graphs

We start the first section of the second chapter with an introduction to free
monoids and generating sets of groups. Then we define group actions and show
how they are used to construct Schreier graphs.

In the second section we present the basic concepts of automata theory
and illustrate them by giving some simple examples. We show how to invert
special types of automata and extend the transition and output function.

The third section is concentrated on the automaton group. After its for-
mal introduction we look at a simple example of an automaton group. Then
we exhibit the connection between the automaton group and the free group
generated by the states of the automaton.

2.1 Group actions and their visualization via

Schreier graphs

In this chapter we will encounter situations where we need edges with a direc-
tion. Thus we briefly introduce directed graphs.

Definition 2.1. A directed graph G = (V,E) consists of a set of vertices V ,
a set of edges E and an incidence relation. The only difference to undirected
graphs is that for directed graphs the incidence relation pairs each edge with
an ordered pair of vertices. As for undirected graphs, if e is incident to (u, v) ∈
V ×V we usually write e = (u, v), although there may be more edges with this
relation. Other basic concepts of undirected graphs are carried over as well.

Definition 2.2. An alphabet is a finite non-empty set Σ consisting of elements
called symbols or letters.

Σ∗ ··= {(w1 , . . . , wn) | n ∈ N, w1 , . . . , wn ∈ Σ} ∪ {ε} (2.1)

is the set of finite words over the alphabet Σ, where ε ··= () is the empty word.
For w = (w1 , . . . , wn) ∈ Σ∗ we simply write w = w1 . . . wn . A word consisting

19

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 20

of n times the letter s is abbreviated by sn. The length of w is the number
of symbols used for the word and denoted by |w| = n. For n ∈ N0 the subset
Σn ··= {w ∈ Σ∗ | |w| = n} is the set of words of length n.

Let · be the concatenation of words, i.e. v ·w = vw ··= v1 . . . vnw1 . . . wm for
v = v1 . . . vn , w = w1 . . . wm ∈ Σ∗. Then (Σ∗, ·) is a monoid with ε as identity
element. We call it the free monoid on Σ.

In order to create a group based on the free monoid we need to introduce
some inverses and conceptualize cancelling. This is done in the next definition.

Definition 2.3. Let S be a non-empty set and M ··=
(
S ∪ S−1

)∗
, where

S−1 ··= {s−1 | s ∈ S} is the set of inverse symbols of S and S ∩ S−1 = ∅. We
call a word w ∈M , with w = vv−1 for some v ∈M skew-symmetric. The word
w is called non-reduced if it contains a non-empty skew-symmetric subword,
i.e. there are v, x, y ∈ M with v 6= ε and w = xvv−1y, otherwise it is called
reduced.

For every word in M we end up with exactly one reduced word, when we
successively remove any non-empty skew-symmetric subword. Thus we can
describe this process with a function ρ : M → M and call it reduction. Using
this preparatory work it is possible to define the free group generated by S,
namely

〈S〉 ··= (ρ(M), ρ ◦ ·), (2.2)

where · is the concatenation of words and ◦ the composition of functions.

Remark 2.4. 〈S〉 can also be defined via the equivalence relation on M given
by the pre-images of the reduction ρ. Then 〈S〉 consists of the equivalence
classes and the operation is the concatenation of classes.

|·| may be restricted to ρ(M), so every element of 〈S〉 has a unique length.
All words v, w ∈M satisfy |v ·w| = |v|+ |w| and |ρ(v ·w)| ≤ |v|+ |w|, thus |·|
is additive on M but only sub-additive on 〈S〉.

Example 2.5. To illustrate the definition above we take as an example S ··=
{a, b}. Then S−1 ··= {a−1, b−1} and M is the set of finite words over the
alphabet {a, b, a−1, b−1}. The word w ··= a−1a b b−1 is not skew-symmetric,
but the subwords w1 = a−1a and w2 = b b−1 are skew-symmetric so w is non-
reduced. The reduction ρ applied to w may remove w1 first and then w2 or
vice versa, but the result is always the empty word ε. Thus, with respect to
the equivalence relation given by the reduction, the words w, w1 and w2 are
all equivalent.

As a second word we take x ··= a a−1b b−1a. It has as non-empty skew-
symmetric subwords x1 = a a−1, x2 = b b−1 and x3 = a−1b b−1a. In contrast to
before the subword x3 intersects both other subwords. So after removing x3

from x the reduced word a remains, whereas if we remove first x1 or x2 , then
we have to remove x2 or x1 afterwards to get the reduced word a.

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 21

The group operation ρ ◦ · applied to the reduced words a and a−1b has the
form ρ(a ·a−1b) = b. This shows that |·| is not additive on ρ(M). Furthermore
the group is clearly non-commutative as ρ(a−1b · a) = a−1b a.

If (G, ∗) is a group and S a subset of G we would like 〈S〉 to be a subgroup
of (G, ∗), i.e. ∗ is the group operation of 〈S〉 and ρ(M) a subset of G. This
is easy to achieve, but in order to prevent overloading the 〈〉 notation, we add
the group as index.

Definition 2.6. Let (G, ∗) be a group and S a subset of G. We set M =
(S ∪ S−1)

∗
and define the group reduction to G as

ρG : M → G
m1 . . .mn 7→ m1 ∗ · · · ∗mn .

(2.3)

Then 〈S〉G ··= (ρG(M), ∗) is the subgroup of G generated by S.

We say that S is a generating set of G if 〈S〉G = G and the group is finitely
generated if there exists a finite generating set of G.

If the group G is isomorphic to a free group generated by some B ⊂ G
with B ∩B−1 = ∅, written G ∼= 〈B〉, then G is called free and B is a basis of
G. In this setting every basis has the same cardinality, called the rank of the
group.

Remark 2.7. Let S ⊂ G be a generating set of the group (G, ∗). Every group
element can be represented in terms of elements of S and their inverses. If
additionally S is a basis, then such a representation is unique up to skew-
symmetric subwords.

Definition 2.8. Let (G, ∗) be a group and M a set. A (left) group action of
G on M is a map G ×M → M, (g,m) 7→ g ·m such that for all g1 , g2 ∈ G
and all m ∈M the following holds:

(i) 1G ·m = m,

(ii) g1 · (g2 ·m) = (g1 ∗ g2) ·m

where 1G is the identity element of the group G.

G ·m ··= {g ·m | g ∈ G} is the orbit and StabG(m) ··= {g ∈ G | g ·m = m}
the stabilizer of m ∈ M . If G ·m = M for some m ∈ M , the action is called
transitive. The action is denoted as free, if StabG(m) = {1G} for all m ∈M .

Remark 2.9. Since the orbits are closed under the action, G also acts on any
orbit. If the action is transitive, then G ·m = M holds for all m ∈M .

Suppose that S ⊂ G is a basis of G. Then any function from S × M
to M satisfying (i) and (ii) from Definition 2.8, i.e. (s1 ∗ s−1

1) · m = m and
s1 · (s2 ·m) = (s1 ∗ s2) ·m for all s1 , s2 ∈ S and m ∈M , has a unique extension
to a group action of G on M .

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 22

Definition 2.10. Let (G, ∗) be a group generated by S and suppose G acts
on a set M . We define the labelled graph Γ(G,S,M), called Schreier graph,
to visualize the action of G on M with respect to the generating set S. The
vertex set of Γ(G,S,M) is M , the set of labels is S and for any m ∈ M and
s ∈ S there is an edge {m, s · m} labelled by s. If the action is transitive,
the Schreier graph is connected. In case the action is not transitive, we get
one connected component for each orbit. We call these components orbital
Schreier graphs and they are of the form Γ(G,S,G ·m) for m ∈M .

Now suppose M = Σ∗ for a non-empty set Σ and each orbit has only words
of the same length, i.e. for all m ∈M there is an n ∈ N0 such that G ·m ⊂ Σn.
Then we can define the n-th Schreier graph Γ(G,S,Σn). Note that all n-th
Schreier graphs are connected if and only if G acts spherically transitively, that
means the action on words of a fixed length is transitive. In this case every
n-th Schreier graph is also an orbital Schreier graph.

Remark 2.11. For every generator s ∈ S and every vertex m ∈ M there are
either the two edges {m, s · m} and {s−1 · m,m} or there is a loop {m,m}.
Hence a Schreier graph Γ(G,S,M) is a 2|S|-regular graph with |S| · |M | edges
that may be parallel edges or loops.

Usually it is meaningless to include the identity element 1G in S since it
just produces a loop on every vertex. Other elements of the group acting like
1G on M should be excluded from the generating set as well if possible.

Sometimes Schreier graphs are defined as directed graphs, where the edges
{m, s · m} are replaced by edges (m, s · m). Then S is additionally required
to be symmetric, i.e. S = S−1. This concept is, with some minor exceptions,
analogous to the above definition.

Schreier graphs are classical objects of study in group theory. This fact
becomes more evident under the considerations below.

Remark 2.12. Let the action of G on M be transitive and S a generating set
of G. For m ∈ M the stabilizer StabG(m) is a subgroup of G. Thus we can
build the left cosets G/ StabG(m) ··= {g ∗ StabG(m) | g ∈ G} and observe that
G acts on these with h · (g ∗ StabG(m)) ··= (h ∗ g) ∗ StabG(m) for h ∈ G and
g ∗ StabG(m) ∈ G/ StabG(m). Furthermore the map

G/ StabG(m)→M

g ∗ StabG(m) 7→ g ·m
(2.4)

is a bijection that is compatible with the action of G on G/ StabG(m) and
M . Therefore the Schreier graphs Γ(G,S,M) and Γ(G,S,G/ StabG(m)) are
label-isomorphic.

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 23

2.2 Automata basics

Definition 2.13. A (finite) automaton is a quadruple A = (S,Σ, α, β) where

(i) S is a non-empty finite set, called the set of states,

(ii) Σ is a non-empty finite set, called the set of input and output symbols or
input/output alphabet,

(iii) α : S × Σ→ S is a map, called the transition function,

(iv) β : S × Σ→ Σ is a map, called the output function.

The automaton can be represented by a directed labelled graph SD(A) ··=
(S,E), named (Mealy) state diagram. The vertices are given by the states S
and for every state p ∈ S and symbol s ∈ Σ there is an edge (p, α(p, s)) labelled
by s|β(p, s). Such an edge corresponds to the transition starting at the state
p given the input symbol s.

Sometimes it is of interest to get to a state via an application of α. We say
that a state p is reachable if it is included in the image of α, i.e. p ∈ α(S,Σ),
otherwise p is called unreachable.

Example 2.14. The first easy example we look at is the incrementation au-
tomaton AI = ({a, id}, {0, 1}, α, β), also called adding machine, where

α(a, 0) ··= id, α(id, s) ··= id,
α(a, 1) ··= a, β(a, s) ··= 1− s,
and for s ∈ {0, 1} β(id, s) ··= s.

(2.5)

We can see the state diagram SD(AI) of the incrementation automaton in
Figure 2.1.

a id
0|1

1|0 1|1

0|0

Figure 2.1: State diagram of the incrementation automaton.

For a single input this automaton is not very interesting. Thus, we think
about a way to extend α and β to S×Σ∗. Suppose we have the input sequence
101 and start in the state a. The first output symbol is 0 and we stay in state
a. Then the next output symbol is 1 and we move to state id. Finally we get
the output 1 and the whole input sequence is processed. The complete output
is 011, so, when treating input and output as binary numbers written in least

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 24

significant bit order, the transition starting in state a increases the input by
1. A more thorough inspection yields that in case k 6= 2n − 1, the transition
starting at state a with the input number k represented by n bits gives the
output number k + 1 represented by n bits as well. If the input is k = 2n − 1,
then the result is 0.

This example delivers an idea of how to extend α and β. We do this in a
rigorous way and show, that everything works as intended.

Definition 2.15. Let A = (S,Σ, α, β) be an automaton. We define the ex-
tensions α : S × Σ∗ → S and β : S × Σ∗ → Σ∗ recursively. Let p ∈ S, s ∈ Σ
and w ∈ Σ∗, then

α(p, sw) ··= α(α(p, s), w) and

β(p, sw) ··= β(p, s)β(α(p, s), w).
(2.6)

Furthermore, applications on the empty word are treated in the following way:

α(p, ε) ··= p,

β(p, ε) ··= ε.
(2.7)

Remark 2.16. By using (2.6) recursively every function application of α and
β can be written in terms of applications of α and β on S ×Σ ∪ {ε}. Thus, it
is easy to see that the extensions are well defined by (2.6) and (2.7).

Interestingly enough it can be shown that β(p, ε) = ε follows from (2.6) if
every state is reachable. Moreover it is not difficult to prove that everything is
well defined if we take a word for s in (2.6) instead of single symbol. Therefore
we can split the word in the second argument in any position and it is not
mandatory to do it after the first symbol. Then β(p, ε) = ε follows also from
(2.6), but still not the equation α(p, ε) = p, even if every state is reachable.

Since we extended α and β in the second argument it seems natural to
try the same in the first argument. It will turn out that this works almost as
before, but we can extend α and β to even more than S∗ × Σ∗ under certain
conditions.

Definition 2.17. An automaton A = (S,Σ, α, β) is called invertible if for all
p ∈ S the output function of the transition starting at the state p, namely
βp ··= β(p, ·) : Σ → Σ , is a bijection. In this case we can extend β to(
S ∪ S−1

)
× Σ∗ via the inversion, i.e.

β(p−1, ·) ··= (βp)
−1. (2.8)

Furthermore we define the extension of α to
(
S ∪ S−1

)
× Σ∗ by

α(p−1, ·) ··= (α(p, β(p−1, ·)))−1
(2.9)

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 25

while expanding the range to S ∪ S−1.

With these tools the inverse automaton of A is defined by simply changing
the set of states to the set of inverted states, so A−1 ··= (S−1,Σ, α, β).

Remark 2.18. Let A = (S,Σ, α, β) be an invertible automaton. Suppose
α(p, s) = q and β(p, s) = t, then

β(p−1, t) = s and

α(p−1, t) = (α(p, β(p−1, t)))
−1

= (α(p, s))−1 = q−1.
(2.10)

Hence we obtain the state diagram SD(A−1) from the state diagram SD(A)
by replacing each vertex p with p−1 and changing each label s|t to t|s. Conse-
quently SD(A−1) and SD(A) are isomorphic, but usually not label-isomorphic.

Example 2.19. Again we take a look at AI = ({a, id}, {0, 1}, α, β), the incre-
mentation automaton, which we have already seen in Example 2.14. Clearly
AI is invertible.

Applying the insights of the remark above, it is very easy to derive the
state diagram SD(A−1

I) from SD(AI). It can be seen in Figure 2.2 and is
obviously rather similar to SD(AI) (compare with Figure 2.1).

a−1 id−1
1|0

0|1 1|1

0|0

Figure 2.2: State diagram of the inverse incrementation automaton.

In Example 2.14 we started a transition in state a with input 101 and
got the output 011. If we take 011 as input and start a transition in state
a−1 the output is 101. It is not immediately evident by the definition, but it
could be expected that starting in the inverse state gives the initial input. In
fact for the input number k represented by n bits the transition starting in
state a−1 produces the output number (k − 1) mod 2n represented by n bits.
Consequently it seems natural to call A−1

I the decrementation automaton.

Initially we treated βp as a function from Σ to Σ. Since we extended β to
work with words, it makes sense to use this extension for βp as well.

Proposition 2.20. Let A = (S,Σ, α, β) be an invertible automaton. For
every state p ∈ S ∪ S−1 the extended output function starting at p, namely

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 26

βp = β(p, ·) : Σ∗ → Σ∗, is bijective and

βp ◦ βp−1 = β
p
−1 ◦ βp = idΣ

∗ , (2.11)

where idΣ
∗ is the identity map on Σ∗.

Proof. Let p be a state in S ∪ S−1. If (2.11) holds, then βp is a bijection,
hence all we need to show is that βp(βp−1(w)) = β

p
−1(βp(w)) = w applies for

all words w ∈ Σ∗. This is done by induction over the length of w. Since A is
invertible the claim is clearly true if |w| = 1.

Now let w = w0 . . . wn and suppose (2.11) holds for all words of length n
or less. We set w′ = w1 . . . wn and use (2.6) to obtain

βp(w) = βp(w0)βα(p,w0)(w
′). (2.12)

Applying (2.6) again we get

β
p
−1(βp(w)) = β

p
−1(βp(w0))β

α(p
−1
, βp(w0))

(βα(p,w0)(w
′)). (2.13)

Definition 2.17 and the induction hypothesis show that

α(p−1, βp(w0)) = (α(p, β
p
−1(βp(w0)))−1 = (α(p, w0))−1. (2.14)

Thus, by setting q ··= α(p, w0) the right hand side of (2.13) can be simplified
to

β
p
−1(βp(w0))β

q
−1(βq(w

′)). (2.15)

Using the induction hypothesis twice we derive

β
p
−1(βp(w0))β

q
−1(βq(w

′)) = w0w
′. (2.16)

When we exchange the order of βp and β
p
−1 we just need to exchange p

and p−1 in (2.13). Since

α(p−1, w0) = (α(p, β
p
−1(w0))−1 (2.17)

we set q ··= α(p−1, w0) and all other steps work as before. This finishes the
induction and hence (2.11) holds.

Now we have gathered all tools necessary to define the full extensions of
the transition function α and the output function β.

Definition 2.21. Let A = (S,Σ, α, β) be an invertible automaton. We define
the extensions α : 〈S〉 × Σ∗ → 〈S〉 and β : 〈S〉 × Σ∗ → Σ∗ recursively in the
first component. Let p ∈ S, q̄ ∈ 〈S〉 and w ∈ Σ∗, then

α(q̄p, w) ··= α(q̄, β(p, w))α(p, w) and

β(q̄p, w) ··= β(q̄, β(p, w)).
(2.18)

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 27

Remark 2.22. For p ∈ 〈S〉 and w ∈ Σ∗ the function executions α(p, w) and
β(p, w) are determined by first splitting the expressions in the first argument
until α and β are only executed on states in S ∪ S−1 and then splitting the
words in the second argument.

Let 1〈S〉 be the identity element of 〈S〉 and w ∈ Σ∗, then

β(1〈S〉 , w) = β(pp−1, w) = βp(βp−1(w)) = w. (2.19)

Furthermore

α(1〈S〉 , w) = α(1〈S〉1〈S〉 , w) = α(1〈S〉 , β(1〈S〉 , w))α(1〈S〉 , w) (2.20)

implies
α(1〈S〉 , w) = 1〈S〉. (2.21)

At this point we have everything we need to handle α and β. But for the
sake of completeness we show that the extension rules (2.6) and (2.18) can be
used more generally.

Proposition 2.23. Let A = (S,Σ, α, β) be an invertible automaton. For
p, q ∈ 〈S〉 and v, w ∈ Σ∗ the following equalities hold:

α(p, vw) = α(α(p, v), w), (2.22)

α(qp, w) = α(q, β(p, w))α(p, w), (2.23)

β(p, vw) = β(p, v)β(α(p, v), w), (2.24)

β(qp, w) = β(q, β(p, w)). (2.25)

Proof. We show the equalities for β only. The proofs of (2.22) and (2.23) are
analogous to the following proofs of (2.25) and (2.24), respectively.

First we show (2.25) by induction over the length of p ∈ 〈S〉. If |p| = 0,
then p = 1〈S〉 and thus (2.25) holds since β(1〈S〉 , w) = w.

Now let p = p0 . . . pn and suppose (2.25) holds for all elements of length
n or less. By multiple applications of the induction hypothesis we get for
p′ ··= p1 . . . pn :

β(qp, w) = β(qp0 , β(p′, w))

= β(q, β(p0 , β(p′, w)))

= β(q, β(p0p
′, w)).

(2.26)

Thus, the induction is complete and (2.25) holds.

Next we use induction over the length of v to show (2.24) for p ∈ S ∪ S−1.
|v| = 0 is equivalent to v = ε. We know that α(p, ε) = p and β(p, ε) = ε if
p ∈ S ∪ S−1, so (2.24) holds in this case.

As before we take v = v0 . . . vn , suppose (2.24) holds for words of length n
or less if p ∈ S ∪S−1 and set v′ ··= v1 . . . vn . Then making use of the induction

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 28

hypothesis and the definitions of the extensions of α and β we obtain:

β(p, vw) = β(p, v0)β(α(p, v0), v′w)

= β(p, v0)β(α(p, v0), v′)β(α(α(p, v0), v′)), w)

= β(p, v0v
′)β(α(p, v0v

′), w).

(2.27)

Hence for p ∈ S ∪ S−1 (2.24) is true.

To finish the proof we show that the result stays the same if we exchange
the order of application of (2.24) and (2.25). We consider β(qp, vw), where
p, q ∈ 〈S〉, v, w ∈ Σ∗, and begin with (2.24) first:

β(qp, vw)
(2.24)
= β(qp, v)β(α(qp, v), w)

(2.25)
= β(q, β(p, v))β(α(qp, v), w)

(2.23)
= β(q, β(p, v))β(α(q, β(p, v))α(p, v), w)

(2.25)
= β(q, β(p, v))β(α(q, β(p, v)), β(α(p, v), w)).

(2.28)

This time we use (2.25) first:

β(qp, vw)
(2.25)
= β(q, β(p, vw))

(2.24)
= β(q, β(p, v)β(α(p, v), w))

(2.24)
= β(q, β(p, v))β(α(q, β(p, v)), β(α(p, v), w)).

(2.29)

In the first reformulation process the order of step two and three can be
exchanged not altering the result. All other steps following the first are de-
terministic, so the result does not depend on different orders of application of
(2.24) and (2.25). Thus (2.24) can also be used if p ∈ 〈S〉.

The main purpose of this lengthy examination of α and β was to thor-
oughly comprehend the action of an automaton. It is easy to see, that already
Definition 2.21 and Remark 2.22 provide everything required to guarantee that
β is a group action of 〈S〉 on Σ∗. Unfortunately, the size of 〈S〉 can be fairly
large in comparison to the possible outcomes of the action applied on a single
element. This is shown in the following example.

Example 2.24. Let AFBS = ({a, id}, {0, 1}, α, β) be the first-bit-switch au-
tomaton, where

α(·, ·) ··= id, β(a, s) ··= 1− s,
and for s ∈ {0, 1} β(id, s) ··= s.

(2.30)

The state diagram SD(AFBS) of the first-bit-switch automaton is drawn in
Figure 2.3.

Clearly AFBS is invertible and the state diagram of the inverse first-bit-
switch automaton is label-isomorphic to SD(AFBS). Thus for all w ∈ {0, 1}∗,

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 29

a id

1|0

0|1

1|1

0|0

Figure 2.3: State diagram of the first-bit-switch automaton.

β(a, w) = β(a−1, w) and furthermore β(aa, w) = w hold. Using these facts it
is not difficult to show that if w 6= ε, the orbit 〈S〉 ·w consists of w and another
word of the same length where only the first letter differs to w. So the action
applied to a single element has only two possible outcomes, whereas 〈{a, id}〉
is a free group of rank 2 and thus infinite.

2.3 The automaton group

To visualize the action of 〈S〉 on Σ∗ via some Schreier graph, we need a suitable
generating set. Obviously the smallest generating set of 〈S〉 is S. But as we
have seen in Example 2.24 there may be states, e.g. id, that act on Σ∗ like
the identity element 1〈S〉 . This is something we want to avoid in a generating
set, as well as different states providing the same action on Σ∗. For example if
we had a state b in Example 2.24 with α(b, ·) ··= α(a, ·) and β(b, ·) ··= β(a, ·),
then nothing would change for the action, but we would end up with many
redundant parallel edges in the resulting Schreier graph. Thus, we construct
another group related to the automaton. We start by studying Σ∗ some more.

Definition 2.25. Let T = (V,E) be a tree. We say T is rooted if we have a
given root vertex r ∈ V . Then we classify all other vertices by levels. A vertex
v ∈ V is in the n-th level if the distance between v and r is n ∈ N0.

A rooted tree is called d-regular if the degree of the root is d ∈ N and the
degree of all other vertices is d+ 1.

ε

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 2.4: 2-regular rooted tree associated to Σ∗ for Σ = {0, 1}.

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 30

Remark 2.26. Let Σ be a non-empty finite set of symbols. We can view
Σ∗ as rooted tree, where Σ∗ is the vertex set, ε the root and two vertices are
connected by an edge if and only if they are of the form w and ws for some
w ∈ Σ∗ and s ∈ Σ. In particular this is a |Σ|-regular tree, where the n-th level
consists of |Σ|n words of length n. An exemplary illustration for Σ = {0, 1}
can be seen in Figure 2.4.

Definition 2.27. Let Σ be a non-empty finite set of symbols. A map from Σ∗

to Σ∗ is called automorphism if it is an automorphism on the rooted tree given
by Σ∗. We define Aut(Σ∗) to be the set of all automorphisms on the rooted
tree given by Σ∗.

Remark 2.28. It is easy to see that Aut(Σ∗) paired with the composition
of functions forms a group that acts on Σ∗. Furthermore, any automorphism
ϕ ∈ Aut(Σ∗) has to map the empty word to the empty word since it is the
only vertex with degree |Σ|. Thus, for every n ∈ N0 , ϕ is also a bijection from
the n-th level to itself.

Remark 2.29. In Proposition 2.20 we proved for an invertible automaton
A = (S,Σ, α, β) that for every p ∈ S the map βp is a bijection from Σ∗ to
Σ∗. Let w ∈ Σ∗, a ∈ Σ and p ∈ S, then βp(wa) = βp(w)βα(p,w)(a). So the
words βp(w) and βp(wa) are connected with an edge. Hence βp is an element
of Aut(Σ∗).

Definition 2.30. Let A = (S,Σ, α, β) be an invertible automaton. The au-
tomaton group of A is defined as the subgroup of Aut(Σ∗) generated by all
automorphisms βp , namely

G(A) ··= 〈{βp | p ∈ S}〉Aut(Σ
∗
) . (2.31)

Example 2.31. We want to determine the automaton group of the first-bit-
switch automaton AFBS = ({a, id}, {0, 1}, α, β) introduced in Example 2.24.
We showed for w ∈ Σ∗ that βa(βa(w)) = w, and βid(w) = w holds by definition.
Thus G(AFBS) = {βid , βa}, i.e. the automaton group of AFBS has only 2
elements and is therefore isomorphic to Z/2Z.

In comparison to 〈S〉 the automaton group can be much smaller but it still
produces the same action on Σ∗. Therefore it makes sense to utilize it to visu-
alize the action of the automaton. Since the action cannot change the length of
words, the complete Schreier graph is always infinite and disconnected. Con-
sidering this fact we only look at words of a certain length.

Definition 2.32. Let A = (S,Σ, α, β) be an invertible automaton. For n ∈ N0

we define the n-th Schreier graph of A as the n-th Schreier graph of the action
of G(A) on Σ∗, where the corresponding generating set of G is {βp | p ∈ S}

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 31

without the identity element of Aut(Σ∗), written

Γn(A) ··= Γ(G(A), {βp | p ∈ S} \ {1Aut(Σ
∗
)},Σ

n). (2.32)

To simplify the notation we replace each label βp by the state p itself.

Example 2.33. We take a look at the first four Schreier graphs of the first-
bit-switch automaton AFBS = ({a, id}, {0, 1}, α, β) drawn in Figure 2.5.

ε

a

Γ0(AFBS)

0

1

a a

Γ1(AFBS)

00 01

10 11

a a a a

Γ2(AFBS)

000 001 010 011

100 101 110 111

a a a a a a a a

Γ3(AFBS)

Figure 2.5: Schreier graphs of the first-bit-switch automaton.

As for any automaton, the zeroth Schreier graph consists of the vertex ε
and a loop for every element in the generating set. Like the first Schreier graph
it is connected, whereas all other Schreier graphs of AFBS are disconnected.
This stems from the fact that the first-bit-switch automaton can only change
the first letter of a word.

We have already seen that every orbit of the action of 〈{a, id}〉 on {0, 1}∗
has exactly two elements, except for the one consisting of only the empty word.
The same holds true for the action of G(AFBS) on {0, 1}∗. Thus, the n − th
Schreier graph of AFBS consists of 2n−1 pairs of vertices that are connected by
double edges labelled a.

The actions of the automaton group and 〈S〉 on Σ∗ are alike, so it seems
natural that the groups are related. We examine their connection in the re-
mainder of this chapter.

Definition 2.34. Let G be a group acting on a set M . The pointwise stabilizer
of M in G is defined as the intersection of all stabilizers of elements in M , i.e.

StabG(M) ··=
⋂
m∈M

StabG(m). (2.33)

Remark 2.35. Let a, b ∈ StabG(M) and m ∈M . Then we get

(a ∗ b−1) ·m = (a ∗ b−1) · (b ·m) = (a ∗ b−1 ∗ b) ·m = a ·m = m. (2.34)

Thus, a ∗ b−1 ∈ StabG(M) and consequently StabG(M) is a subgroup of G.

For a ∈ StabG(M), g ∈ G and m ∈M it holds that

(g ∗ a ∗ g−1) ·m = g · (a · (g−1 ·m)) = g · (g−1 ·m) = m. (2.35)

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 32

This shows that StabG(M) is closed under conjugation and as a result a normal
subgroup of G.

Theorem 2.36. Let A = (S,Σ, α, β) be an invertible automaton.
〈S〉/ Stab〈S〉(Σ

∗) is a group able to inherit the group action of 〈S〉 on Σ∗, i.e.
p Stab〈S〉(Σ

∗) · w = β(p, w) for p ∈ 〈S〉 and w ∈ Σ∗. Furthermore there is an
isomorphism

ϕ : 〈S〉/Stab〈S〉(Σ∗)→ G(A) (2.36)

compatible with the action on Σ∗.

Proof. We have seen that the pointwise stabilizer of a group on a set is a
normal subgroup, therefore 〈S〉/Stab〈S〉(Σ∗) is a group.

All p ∈ 〈S〉, r ∈ Stab〈S〉(Σ
∗) and words w ∈ Σ∗ satisfy

β(pr, w) = β(p, β(r, w)) = β(p, w), (2.37)

so clearly 〈S〉/Stab〈S〉(Σ∗) can inherit the action of 〈S〉 on Σ∗.

We show that ϕ given for p ∈ 〈S〉 by

ϕ(p Stab〈S〉(Σ
∗)) ··= βp . (2.38)

is well defined.

Let p, q ∈ 〈S〉 with p Stab〈S〉(Σ
∗) = q Stab〈S〉(Σ

∗). This is equivalent to

pq−1 ∈ Stab〈S〉(Σ
∗) and hence β(pq−1, w) = w for all w ∈ Σ∗, which can be

stated as β
pq
−1 = 1Aut(Σ

∗
). We conclude

βq = 1Aut(Σ
∗
) ◦ βq = β

pq
−1 ◦ βq = βp . (2.39)

Finally for p ∈ 〈S〉 and w ∈ Σ∗ we infer

p Stab〈S〉(Σ
∗) · w = β(p, w) = βp(w). (2.40)

This was the last theoretic result in this chapter about automata and their
visualization via state diagrams and Schreier graphs. To conclude the section
we look at an example, where we calculate the Wiener index.

Example 2.37. Once more our object of study is the incrementation au-
tomaton AI = ({a, id}, {0, 1}, α, β) of Example 2.14. First we determine the
automaton group G(AI). Clearly βid = 1Aut({0,1}∗) , hence we focus on βa . In
Example 2.14 we have seen that βa increases a binary word w of length n by
1 mod 2n, so for m ∈ N, (βa)

m(w) increases the binary number given by the
word w by m mod 2n. Thus certainly (βa)

m(w) 6= w if m < 2n. In other
words, no power of βa is the identity element of Aut({0, 1}∗) and hence βa has
infinite order. This yields G(AI) ∼= 〈βa〉 ∼= Z, i.e. the automaton group of the
incrementation automaton is a free group of rank 1 generated by βa .

CHAPTER 2. AUTOMATA AND SCHREIER GRAPHS 33

Now we look at some Schreier graphs of the incrementation automaton in
Figure 2.6. Note that the zeroth and the first Schreier graph of AI are not
included in Figure 2.6 since they are label-isomorphic to the respective Schreier
graph of AFBS (see Figure 2.5).

00

10

01

11

aa

a a

Γ2(AI)

000

100
010

110

001

101
011

111

a
aa

a

a
a a

a

Γ3(AI)

0000

1000
0100

110000101010

0110
1110

0001

1001
0101

1101 0011 1011

0111
1111

a
a

aaaa
a
a
a
a
a a a a

a
a

Γ4(AI)

Figure 2.6: Second, third and fourth Schreier graph of the incrementation automa-
ton.

As the Schreier graphs drawn in Figure 2.6 suggest, Γn(AI) is a cycle
of length 2n. Hence Γn(AI) is connected and it is reasonable to examine
the behaviour of the Wiener index and the average distance of these graphs.
Clearly for fixed n ∈ N0 , dΓn(AI)(·) is the same for every vertex, so we calculate
it just once via counting. Let v be a vertex of Γn(AI), then

dΓn(AI)(v) = 2 · 1 + 2 · 2 + · · ·+ 2 ·
(

2n

2
− 1

)
+ 1 · 2n

2

= 2
2
n−1∑
k=1

k − 2n−1 = 2n−1(2n−1 + 1)− 2n−1 = 22(n−1).

(2.41)

Since Γn(AI) has 2n vertices, we obtain

W (Γn(AI)) =
2n · 22(n−1)

2
= 23(n−1) (2.42)

and

µ(Γn(AI)) =
22(n−1)

2n − 1
=

2n + 1

4
+

1

4 · (2n − 1)
. (2.43)

This implies that the average distance of the n-th Schreier graph of the in-
crementation automaton tends towards one forth of the length of the cycle,
i.e.

lim
n→∞

µ(Γn(AI))
2n

=
1

4
. (2.44)

Chapter 3

The Basilica automaton

The main objective of this chapter is the proof of the following new theorem:

Theorem 3.1. The Wiener index of the n-th Schreier graph of the Basilica

automaton B is of order 2
5n
2 . More precisely, there are constants c1, c2 > 0 s.t.

for all n ≥ 2,

c12
5n
2 ≤ W (Γn(B)) ≤ c22

5n
2 . (3.1)

The most important ingredient to prove this result are the substitution
rules for the Schreier graphs of the Basilica automaton showed by D’Angeli

et al. in chapter 3 of [8]. Note that 2
5n
2 is exactly the order of the geometric

mean of the simple bounds presented in the first section of chapter one (see
Remark 1.13 and Proposition 1.17).

We start the first section of chapter three by introducing the Basilica au-
tomaton and formalizing the concept of graph substitution rules. Then we
give two examples showing how they are utilized. Thereafter we formulate
and prove Proposition 3.1 of [8] using our notations for graph substitution
rules. This proposition is subsequently applied to examine the structure of
Schreier graphs of the Basilica automaton.

Section two discusses the upper bound of Theorem 3.1. We initiate the
section with another known upper bound of the Wiener index depending on
the diameter of the graph. Thus, after determining the diameter of the n-th
Schreier graph of the Basilica, the claim follows easily.

In the third section we prove the lower bound of Theorem 3.1. This requires
some more research on the structure of the Schreier graphs of the Basilica
automaton.

The fourth and final section of chapter three starts with a comparison of
the bounds given by Theorem 3.1 to some calculated values of the Wiener
index. Then some conclusions are drawn and two questions leading to further
research topics are stated.

34

CHAPTER 3. THE BASILICA AUTOMATON 35

3.1 The Basilica automaton and graph substi-

tutions

Definition 3.2. The Basilica automaton B = ({a, b, id}, {0, 1}, α, β) is defined
by the following transitions and outputs for p ∈ {a, b, id} and s ∈ {0, 1}:

α(p, 1) ··= id, β(a, s) ··= s,
α(a, 0) ··= b, β(b, s) ··= 1− s,
α(b, 0) ··= a, β(id, s) ··= s.
α(id, 0) ··= id,

(3.2)

The corresponding state diagram SD(B) of the Basilica automaton can be
seen in Figure 3.1.

a

id

b

0|0

1|1

0|1

1|0

1|1

0|0

Figure 3.1: State diagram of the Basilica automaton.

The Basilica automaton is invertible, hence its automaton group, called the
Basilica group G(B), exists.

The Basilica automaton is named after its automaton group introduced
by Grigorchuk and Żuk in [18]. The Basilica group is of major interest
since it was the first example of an amenable group having exponential growth
(see [3]). It has various other interesting properties and was described by
Nekrashevych in [32] as the iterated monodromy group of the complex
polynomial z2 − 1. Using this description of the Basilica group it can be
associated to a compact limit space isomorphic to the Basilica fractal, that is
the Julia set of z2 − 1 (see Figure 3.2 and for more details [32]). The Basilica
fractal resembles the Basilica di San Marco in Venice together with its reflection
in the water, so this is presumably the origin of the name ‘Basilica’.

To get a feeling for the action of the Basilica group, we take a look at the
first few Schreier graphs drawn in Figure 3.3.

Like the Schreier graphs of the incrementation and the first-bit-switch au-
tomaton the Schreier graphs of the Basilica automaton are similar to each
other. To formalize the similarities we introduce a new concept playing a ma-
jor role in the remaining chapter, since it is very convenient to describe the
common structures of the Schreier graphs.

CHAPTER 3. THE BASILICA AUTOMATON 36

Figure 3.2: Julia set of z2 − 1, drawing by Prokofiev, CC BY-SA 3.0.

ε
a b

Γ0(B)

10
a

b

b
a

Γ1(B)

10 00 01 11
a

b

b

a

a

b

b
a

Γ2(B)

110 010 000

101

001

100

011 111
a

b

b

a

a
b

a

b

b

a

b
a

a

b

b

a

Γ3(B)

Figure 3.3: Zeroth, first, second and third Schreier graph of the Basilica automaton.

Definition 3.3. Let G = (V,E) be a graph. A pair (GS , G
′
S) of graphs is

called a graph substitution applicable on G if GS is a subgraph of G. The
result of the application has the form

(GS , G
′
S)G ··= (G−GS) ∪G′S . (3.3)

Let S = {(G1 , G
′
1), . . . , (Gn , G

′
n)} be a set of graph substitutions applicable

on G. Then we define the application of S on G by

SG ··= (G− (G1 ∪ · · · ∪Gn)) ∪G′1 ∪ · · · ∪G′n . (3.4)

We call S a substitution rule if Gi
∼= Gj and G′i ∼= G′j for all i, j = 1, . . . , n.

Remark 3.4. For two graphs G and G′, the pair (G,G′) is a substitution
applicable on G. So there is always a substitution rule that applied on G
yields G′. But instead of substituting one big graph, the idea behind defining
substitution rules is to find a small type of graph with a structure appearing
repeatedly in G and substitute it by another type of small graph.

https://commons.wikimedia.org/wiki/File:Julia_z2-1.png
https://creativecommons.org/licenses/by-sa/3.0/

CHAPTER 3. THE BASILICA AUTOMATON 37

For a set of graph substitutions S = {(G1, G
′
1), . . . , (Gn, G

′
n)} it is possible

that graphs Gi , Gj, for i 6= j, have non-empty intersection. The same is true
for G′i and G′j with i 6= j. This is necessary to produce connected graphs. In
all uses of graph substitutions here, these intersections consist only of vertices
and no edges. This makes the process of ‘gluing’ the graphs together easier.

In order to better apprehend the definition above and get a deeper un-
derstanding of how to utilize the substitution rules we look at two examples
concerning Schreier graphs of the first-bit-switch automaton and the incremen-
tation automaton.

Example 3.5. We construct a substitution rule Sn consisting of pairs of small
graphs such that the n+ 1-th Schreier graph of the first-bit-switch automaton
AFBS of Example 2.24 can be obtained from the n-th Schreier graph by ap-
plying Sn . In Figure 2.5 we can see, that a common structure is a subgraph
possessing two vertices connected by two edges. Therefore we take for every
w ∈ {0, 1}n−1 the subgraph Gw consisting of the two vertices 0w and 1w con-
nected by two edges labelled a. A closer examination yields that Gw should
be replaced by G0w and G1w . For a given w ∈ {0, 1}n−1 a single substitution
can be seen in Figure 3.4. Hence

Sn ··= {(Gw, G0w ∪G1w) | w ∈ Σn−1} (3.5)

is the substitution rule we need for SnΓn(AFBS) = Γn+1(AFBS).

0w

1w

00w 01w

10w 11w

⇒a a a a a a

Figure 3.4: Substitution of Gw by G0w ∪G1w for Γn+1(AFBS).

Example 3.6. To construct substitution rules for the Schreier graphs of the
incrementation automaton AI = ({a, id}, {0, 1}, α, β) introduced in Exam-
ple 2.14, we denote two different types of subgraphs. The first type is called
G1
w and consists of vertices 0w, 1w ∈ {0, 1}n differing only in the first let-

ter. The second type, called G2
w , has two vertices 1w, 0v ∈ {0, 1}n, where

v = βa(w), i.e. the vertices differ in more than one letter. We substitute the
first type G1

w by G1
0w ∪G2

0w and the second type G2
w by G1

1w ∪G2
1w . Figure 3.5

shows the substitutions for given vertices w, v ∈ {0, 1}n−1, where v = βa(w).

In conclusion we have the two substitution rules

S1
n = {(G1

w , G
1
0w ∪G2

0w) | w ∈ {0, 1}n−1},
S2
n = {(G2

w , G
1
1w ∪G2

1w) | w ∈ {0, 1}n−1}.
(3.6)

CHAPTER 3. THE BASILICA AUTOMATON 38

(
G1

w , G
1
0w ∪G2

0w

)
0w 1w 00w

10w

01w
⇒a

a a

(
G2

w , G
1
1w ∪G2

1w

)
1w 0v 01w

11w

00v
⇒a

a a

Figure 3.5: Substitutions for the Schreier graphs of AI .

To obtain Γn+1(AI) from Γn(AI) by the substitution rules we need to apply
both rules at the same time. Thus we take their union, i.e.(

S1
n ∪ S2

n

)
Γn(AI) = Γn+1(AI). (3.7)

The same scheme works for the Basilica automaton as well. We state the
substitution rules in the following proposition and prove that the application
of these rules produces the n+1-th Schreier graph of the Basilica from its n-th
Schreier graph.

Proposition 3.7. For w, v ∈ {0, 1}∗ with v = βb(w) we define the following
graphs:

• G1
w consists of the vertex 1w with a loop labelled a attached.

• G2
w consists of the two vertices 0w, 0v connected by an edge labelled a.

• G3
w consists of the two vertices w, v connected by an edge labelled b.

• H1
w consists of the two vertices 11w, 01w connected by two edges labelled

b and a loop attached to 1w labelled a.

• H2
w consists of the three vertices 00w, 10v, 00v, where 10v has a loop

labelled a attached and is connected to each of the other two vertices with
one edge labelled b.

• H3
w ··= G2

w .

Furthermore we define the three substitution rules

• S1
n ··= {(G1

w , H
1
w) | w ∈ {0, 1}n−1},

• S2
n ··= {(G2

w , H
2
w) | w ∈ {0, 1}n−1},

• S3
n ··= {(G3

w , H
3
w) | w ∈ {0, 1}n}.

A visualization of the graphs and substitution rules can be found in Figure 3.6.
Then

Γn+1(B) =
(
S1
n ∪ S2

n ∪ S3
n

)
Γn(B). (3.8)

CHAPTER 3. THE BASILICA AUTOMATON 39

(
G1

w , H
1
w

)
1w

a ⇒
11w 01w

a
b

b(
G2

w , H
2
w

)
0w 0v

⇒a

00w
10v

00v

a

b b

(
G3

w , H
3
w

)
w v

b ⇒
0w 0v

a

Figure 3.6: Substitutions for the Schreier graphs of B.

Proof. First we look at the applications of βa and βb on {0, 1}∗. Let w ∈ {0, 1}∗
and v ··= βb(w), then

(i) βa(1w) = 1w,

(ii) βa(0w) = 0v,

(iii) βb(11w) = 01w,

(iv) βb(01w) = 11w,

(v) βb(10w) = 00w,

(vi) βb(00w) = 10v.

By (i), (iii) and (iv), H1
w is a subgraph of Γn+1(B). H2

w is a subgraph of
Γn+1(B) by (i), (v) and (vi), due to G2

w being a subgraph of Γn(B). To see
that also H3

w is a subgraph of Γn+1(B), we only need (ii) and the fact that G3
w

is a subgraph of Γn(B).

For different words w, v all graphs H i
w and Hj

v for i, j ∈ {1, 2, 3} cannot
have any edges in their intersection. Furthermore all vertices of Γn(B) are sub-
stituted by applying the three substitution rules. Thus

(
S1
n ∪ S2

n ∪ S3
n

)
Γn(B)

is a subgraph of Γn+1(B).

To prove equality we show that
(
S1
n ∪ S2

n ∪ S3
n

)
Γn(B) has 2n+2 edges, as

many as Γn+1(B). Γn(B) has 2n+1 edges, half of which are labelled a and the
other half are labelled b. All edges labelled a are substituted by three edges
and all edges labelled b by only one edge. Hence

(
S1
n ∪ S2

n ∪ S3
n

)
Γn(B) has

3 · 2n + 2n edges.

Using these handy substitution rules we can construct some more Schreier
graphs. In Figure 3.8 we see the fourth and in Figure 3.7 the fifth Schreier
graph of the Basilica automaton.

Further on we exhibit some common features of the Schreier graphs of the
Basilica automaton, with notations taken from [8].

CHAPTER 3. THE BASILICA AUTOMATON 40

11110

01110

00110

10010

00010

10110

0100011000

00000

01010 11010

10101

00101

10001
00001

10100

00100

10000

0110111101 01100 11100

0101111011

00011

01001 11001

10111

00111

10011

01111

11111

a

bb

aa

b

a

b b

a

b

a
b

a

b a a b

a
b

a

b
a

b

b

a

b b

a

b

b

a
b

ab
a

b a a b

a
ba

a
b

a

b a a b

a
b

a

b

a

b b

a

b

aa

bb

a

Figure 3.7: Fifth Schreier graph of the Basilica automaton.

CHAPTER 3. THE BASILICA AUTOMATON 41

1110 0110 0010

1000

0000

1010

0101

1101

0001

0100

1100

1011

0011

1001

0111 1111
a

b

b

a

a
b

a

b

b

a

b

a

b

a

b

a

a

b

a

b

a

b

a

b

b

a

b
a

a

b

b

a

Figure 3.8: Fourth Schreier graph of the Basilica automaton.

Remark 3.8. Every vertex v of Γn(B) is incident to two edges labelled b.
Either both of these edges connect v with a single vertex or v is part of a cycle
with all edges labelled b. For edges labelled a in addition to the two cases
appearing for edges labelled b a third one is possible. A vertex v is incident
to a single loop labelled a if and only if it starts with the letter 1. This is the
only case where deleting v from Γn(B) does not disconnect the graph. Hence
v is a cut-vertex if and only if it has no loop attached, which is equivalent to
v’s first letter being a 0.

This fact, in combination with the substitution rules of Proposition 3.7,
yields that blocks of Schreier graphs of the Basilica automaton are either cycles
with some loops attached or two vertices connected by two edges where one
vertex may be incident to a loop.

Definition 3.9. For n ≥ 3 we call the cycle containing the vertices 0n and
0n−11 the central cycle of the n-th Schreier of the Basilica automaton.

Obviously there cannot be more than one central cycle, but it is not im-
mediately evident, that there always is a cycle containing the vertices 0n and
0n−11. The following result elucidates this matter of fact.

Proposition 3.10. For n ≥ 3 the central cycle of the n-th Schreier graph of

the Basilica automaton is a longest cycle of length 2d
n
2 e and the vertices 0n

and 0n−11 are always directly opposite to each other on the central cycle, i.e.

at distance 2d
n
2 e−1.

Proof. All edges of a given cycle in Γn(B) are either labelled a or b. If they
are labelled b, then by the substitution rules of Proposition 3.7 all edges are
simply replaced by edges labelled a and thus the length of the cycle does not
change in the substitution process. If all edges of the cycle are labelled a then

CHAPTER 3. THE BASILICA AUTOMATON 42

they are replaced by two edges labelled b and a loop, hence the length of the
cycle is doubled.

In Figure 3.3 we see that Γ3(B) has a central cycle being the only longest

cycle of length 4 = 2d
3
2e. Thus, thanks to the observation before, all claims

about the length of the central cycle are true. Furthermore the vertices 000
and 001 are directly opposite to each other. By using an inductive argument
in combination with the substitution rules the same holds for 0n and 0n−1.

3.2 An upper bound on the Wiener index of

Schreier graphs of the Basilica automaton

We start this section with a practical upper bound of the Wiener index that
depends solely on the diameter of the graph.

Proposition 3.11. Every graph G = (V,E) on n vertices satisfies

W (G) ≤ n(n− 1) diam(G)

2
. (3.9)

Proof. For every vertex v ∈ V ,

dG(v) =
∑

u∈V \{v}

dG(v, u) ≤
∑

u∈V \{v}

diam(G) = (n− 1) diam(G). (3.10)

This yields the desired upper bound for the Wiener index:

W (G) =
1

2

∑
v∈V

dG(v) ≤ 1

2

∑
v∈V

(n− 1) diam(G) =
n(n− 1) diam(G)

2
. (3.11)

Example 3.12. All vertices u, v of Kn , the complete graph on n vertices,
satisfy dKn

(u, v) = 1. Hence the diameter of the complete graph is 1 and by
Proposition 3.11

W (Kn) ≤ n(n− 1)

2
. (3.12)

In fact, we have shown in Remark 1.13 that n(n− 1)/2 is the Wiener index of
the complete graph on n vertices, so this bound is tight.

Let us have a look at Γn(AI), the n-th Schreier graph of the incrementation
automaton introduced in Example 2.14. It is a cycle of length 2n, so the
diameter is half of its length, i.e. diam(Γn(AI)) = 2n−1. Hence

W (Γn(AI)) ≤ 22(n−1)(2n − 1). (3.13)

This upper bound is significantly higher than the actual Wiener index 23(n−1),
but still of the same order. It will turn out, that the same holds true for the
Schreier graphs of the Basilica automaton.

CHAPTER 3. THE BASILICA AUTOMATON 43

In order to be able to apply Proposition 3.11 to the Schreier graphs of the
Basilica automaton we first need their diameters.

The proof of the following result utilizes generating functions. We only use
common basics like the identity

∞∑
n=0

(αx)n =
1

1− αx
. (3.14)

More informations about generating function can be found in [13]. Note that
when working with formal power series, the convergence can be ignored.

Proposition 3.13. Let n ∈ N, then

diam(Γn(B)) =

{
7 · 2

n−2
2 − 4 if n is even,

5 · 2
n−1
2 − 4 if n is odd.

(3.15)

Proof. Let s, t ∈ {0, 1} and v, w ∈ {0, 1}n, such that the vertices sv and tw
achieve the maximum distance in the n + 1-th Schreier graph. Then, due to
the substitution rules of Proposition 3.7, v and w have the maximum distance
in the n-th Schreier graph. 1v’s only neighbour is 0v, thus 1v has a greater
distance to tw than 0v. We can exchange v and w in this argument, hence
s = t = 1. By applying this scheme recursively we get that the only two words
obtaining the maximum distance in the n-th Schreier graph are 1n−10 and 1n.

Thus we need to calculate the length of a shortest path from 1n−10 to 1n.
Clearly there is no unique shortest path from 1n−10 to 1n, so we take just one
shortest path and call it πn . We denote with an and bn the number of edges
in πn labelled by a and b, respectively.

By looking at the zeroth and first Schreier graph of the Basilica automaton
we get a0 = b0 = a1 = 0 and b1 = 1 (see Figure 3.3). We use the substitution
rules of Proposition 3.7 to construct recurrences for an and bn revealing that
an and bn do not depend on the choice of πn .

S3
n tells us that every edge labelled b in πn corresponds to an edge labelled

a in πn+1 . S2
n produces two edges labelled b and a loop labelled a that is

irrelevant, since loops cannot be part of any path. But 1n−10 and 1n always
have a loop attached each corresponding to one edge labelled b in πn+1 due to
S1
n. Hence we get

an+1 = bn ,

bn+1 = 2an + 2.
(3.16)

This leads to
bn+1 = 2bn−1 + 2. (3.17)

To make the calculation easier we define cn to be the even elements and dn to
be the odd elements of the sequence bn , i.e. cn = b2n and dn = b2n+1 . Then

cn+1 = 2cn + 2, where c0 = 0,

dn+1 = 2dn + 2, where d0 = 1.
(3.18)

CHAPTER 3. THE BASILICA AUTOMATON 44

We solve the recursion for cn using generating functions. Multiplication of
the recursion for cn by xn and summation gives

∞∑
n=1

cnx
n =

∞∑
n=1

2cn−1x
n +

∞∑
n=1

2xn. (3.19)

Let C(x) ··=
∞∑
n=0

cnx
n, then (3.19) can be reformulated to

C(x) =
2x

(1− x)(1− 2x)
=

2

1− 2x
− 2

1− x
(3.20)

by using partial fraction expansion. Another reformulation using the identity
(3.14) yields

C(x) =
∞∑
n=0

2(2n − 1)xn. (3.21)

Thus cn = 2(2n − 1). The same approach for dn yields dn = 3 · 2n − 2. Hence

bn =

{
2(2

n
2 − 1) if n is even,

3 · 2
n−1
2 − 2 if n is odd.

(3.22)

Finally diam(Γn(B)) = an + bn = bn−1 + bn ={
3 · 2

n−2
2 − 2 + 2(2

n
2 − 1) = 7 · 2

n−2
2 − 4 if n is even,

2(2
n−1
2 − 1) + 3 · 2

n−1
2 − 2 = 5 · 2

n−1
2 − 4 if n is odd.

(3.23)

Now by combining this result with Proposition 3.11 we get an upper bound
for the Wiener index of the n-th Schreier graph of the Basilica automaton.

Proposition 3.14. The Wiener index of the n-th Schreier graph of the Basilica

automaton W (Γn(B)) is bounded from above by 7
2
· 2

5n
2 .

Proof. The n-th Schreier graph of the Basilica automaton has 2n vertices and
its diameter is bounded from above by 7 · 2

n
2 , thus by Proposition 3.11

W (Γn(B)) ≤ 2n(2n − 1) diam(Γn(B))

2
≤ 7

2
· 2

5n
2 . (3.24)

This proves the upper bound of Theorem 3.1 with c2 = 7
2

. Ignoring the
negative terms the constant can be reduced by nearly the factor 1

2
, but then

the exact value depends on the parity of n.

CHAPTER 3. THE BASILICA AUTOMATON 45

3.3 A lower bound on the Wiener index of

Schreier graphs of the Basilica automaton

In order to determine a lower bound of the n-th Schreier graph of the Basilica
automaton Proposition 1.21 can be used. This leads to a lower bound of order

n · 22n. Unfortunately there is still a gap to the order 2
5n
2 we want to reach.

Thus we think of a different approach based on the structure of the Schreier
graphs of the Basilica automaton. We start by introducing the well known
handshaking lemma and then expand our research of the structure on the
basis of the results shown in the first section of this chapter. The substitution
rules shown in Proposition 3.7 prove to be especially valuable.

Proposition 3.15. Every graph G = (V,E) satisfies∑
v∈V

degG(v) = 2 · |E|. (3.25)

Proof. If we sum up the degrees of all vertices, we count each edge twice.

Definition 3.16. After removing a vertex from Γn(B) the resulting graph has
either one or two connected components. Thus for some vertex v, Γn(B)− v is
the union of two connected subgraphs G1 = (V1, E1) and G2 = (V2, E2), where
one subgraph may have no vertices. The graph Γn(B)− v has an odd number
of vertices, hence we can assume |V1| < |V2| without loss of generality. We call
the subgraph of Γn(B) induced by the smaller vertex set V1 plus the vertex v
the decoration of v, written

D(v) ··= Γn(B)[V1 ∪ {v}]. (3.26)

A decoration D(v) is called a k-decoration if it is label-isomorphic to the dec-
oration of the vertex 0k in the k-th Schreier graph of the Basilica automaton
for some k ∈ {1, . . . , n}. A few k-decorations are drawn in Figure 3.9.

Every part of a Schreier graph of the Basilica except the central cycle can
be described by a decoration. This is the essence of the following result.

Proposition 3.17. For every v ∈ {0, 1}n \{0n}, D(v) is a k-decoration if and
only if v is of the form 0k−11w for some w ∈ {0, 1}n−k.

Proof. For a given vertex v ∈ {0, 1}n, let SD(v) be the restriction of the sub-
stitution rules of Proposition 3.7 to the decoration of v, i.e.

SD(v) ··= {(Gi
n , H

i
n) ∈ Sin | Gi

n ⊂ D(v), i ∈ {1, 2, 3}}. (3.27)

Then
SD(v)D(v) = D(0v). (3.28)

CHAPTER 3. THE BASILICA AUTOMATON 46

All 2-decorations in Γ2(B)

D(00)

D(01)

D(010)

D(000)

10 00
a

b

b

01 11

b

b
a

A 2-decoration and
a 3-decoration in Γ3(B)

110 010
a

b

b

110 010 000
a

b

b

a

a

A 2-decoration and a 4-decoration in Γ4(B)

D(0100) D(0001)

0100

1100

0001

1011

0011

1001

0111 1111

b

a

b

b

a

b

b

a

b
a

a

b

b
a

Figure 3.9: Some k-decorations (compare with Figure 3.3 and 3.8).

Suppose v = 0k−11w ∈ {0, 1}n for some k ∈ {1, . . . , n}, then D(v) can be
created by applying k − 1 restricted substitution rules starting with D(1w).
The decoration of 1w is just a loop incident to one edge labelled a, and thus
it is label-isomorphic to D(0). k − 1 restricted substitutions applied to D(0)
yield D(0k). These restricted substitutions are label-isomorphic to the ones
used to obtain D(0k−11w) from D(1w), hence D(0k−11w) is label-isomorphic
to D(0k).

Now let v ∈ {0, 1}n\{0n}, then there exist k ∈ {1, . . . , n} and w ∈ {0, 1}n−k
such that v = 0k−11w. Hence the decoration D(v) is a k-decoration for some
k ∈ {1, . . . , n}. Furthermore a decoration clearly cannot be a k- and an l-
decoration if k 6= l.

Another ingredient necessary to prove the lower bound is the number of
vertices in a k-decoration.

Proposition 3.18. A k-decoration is a graph on

2k+1 + (−1)k + 3

6
(3.29)

vertices.

Proof. To start off we take a similar approach as in the second half of the
proof of Proposition 3.13. Let ak be the number of edges labelled a and bk the
number of edges labelled b in the decoration of 0k in Γk(B).

CHAPTER 3. THE BASILICA AUTOMATON 47

By looking at the first and second Schreier graph of the Basilica automaton
we obtain a1 = a2 = 1, b1 = 0 and b2 = 2 (see Figure 3.3).

The decoration of 0k+1 in Γk+1(B) can be directly obtained by applying the
substitution rules of Proposition 3.7 on the decoration of 0k in Γk(B). An edge
labelled a in D(0k) corresponds to one edge labelled a and two edges labelled
b in D(0k+1) and an edge labelled b corresponds to just one edge labelled a.
Thus we get

ak+1 = ak + bk ,

bk+1 = 2ak .
(3.30)

This yields
ak+1 = ak + 2ak−1 (3.31)

and we set a0 ··= 0 to complete the recursion of ak . Multiplication of ak by xk

and summation gives

∞∑
k=2

akx
k =

∞∑
k=2

ak−1x
k +

∞∑
k=2

2ak−2x
k. (3.32)

Let A(x) ··=
∞∑
n=0

akx
k, then (3.32) can be reformulated to

A(x) =
x

(1 + x)(1− 2x)
=

1

3

(
1

1− 2x
− 1

1 + x

)
(3.33)

by using partial fraction expansion. Another reformulation using the identity
(3.14) leads to

A(x) =
∞∑
k=0

2k − (−1)k

3
xk. (3.34)

Thus

ak =
2k − (−1)k

3
and bk =

2k + 2(−1)k

3
. (3.35)

Let nk be the number of vertices in D(0k). The vertex 0k has degree 2 in
D(0k) and all other vertices have degree 4. Hence by the handshaking lemma
(Proposition 3.15),

4nk − 2 = 2(ak + bk). (3.36)

We isolate nk and insert ak and bk to get the desired result

nk =
ak + bk + 1

2
=

2k+1 + (−1)k + 3

6
. (3.37)

With this proposition we have finished the preparations and gained all tools
required to prove the lower bound of Theorem 3.1.

CHAPTER 3. THE BASILICA AUTOMATON 48

Proposition 3.19. The Wiener index of the n-th Schreier graph of the Basilica

automaton W (Γn(B)) is bounded from below by 1
12
· 2

5n
2 .

Proof. In the first step we show that dΓn(B)(0
n) ≤ dΓn(B)(v) for all vertices

v ∈ {0, 1}n. In the second step we find a lower bound for dΓn(B)(0
n) and insert

it into the reformulation of the Wiener index.

Let v be a neighbour of 0n on the central cycle as shown in Figure 3.10.
There we can see that all vertices above the dashed line are closer to v and
all below are closer to 0n. Because of the symmetries of the Schreier graphs,
for every vertex above there is one vertex below and vice versa. Thus by
Proposition 1.25, dΓn(B)(v) = dΓn(B)(0

n). Inductively this equality is true for
all vertices v of the central cycle.

0n
0n−11

v

v′

D(v)

u

D(v′)

D(0n) D(0n−11)

central cycle

Figure 3.10: Simplified representation of a Schreier graph of the Basilica automaton.

Now for v being a vertex of the central cycle, let u be a neighbour of v not
contained in the central cycle. Then v is a cut-vertex andD(v) is a k-decoration
for some k in {1, . . . , n}, where all vertices outside of this k-decoration are
closer to v than to u (see Figure 3.10). Combined with Proposition 1.25 we
obtain the following inequality:

dΓn(B)(u) +
2k+1 + (−1)k + 3

6
≥ dΓn(B)(v) + 2n − 2k+1 + (−1)k + 3

6
. (3.38)

By shifting the terms and making some estimates we get a lower bound on the
difference dΓn(B)(u)− dΓn(B)(v). For n ≥ 2,

dΓn(B)(u)− dΓn(B)(v) ≥ 2n − 2 · 2k+1 + (−1)k + 3

6

≥ 2n − 2n+1 + 4

3
=

2n − 4

3
≥ 0.

(3.39)

To summarize, we have finished the first step and showed that for any vertex
u ∈ {0, 1}n,

dΓn(B)(0
n) ≤ dΓn(B)(u). (3.40)

By Proposition 3.10, 0n is directly opposite to 0n−11 on the longest cycle

of length 2d
n
2 e. Every vertex in the decoration of 0n−11 is farther away from

CHAPTER 3. THE BASILICA AUTOMATON 49

0n than from 0n−11, i.e

dΓn(B)(0
n, w) ≥ 2

n
2

2
(3.41)

for all w ∈ D(0n−11). By Proposition 3.18 the decoration of 0n−11 has

2n+1 + (−1)n + 3

6
>

2n

3
(3.42)

vertices. We put all these estimates together to get a lower bound on the sum
of all distances to 0n:

dΓn(B)(0
n) =

∑
v∈{0,1}n

dΓn(B)(0
n, v) >

∑
v∈D(0

n−1
1)

dΓn(B)(0
n, v) >

2n

3

2
n
2

2
=

2
3n
2

6
. (3.43)

Finally

W (Γn(B)) =
1

2

∑
v∈{0,1}n

dΓn(B)(v) ≥ 1

2

∑
v∈{0,1}n

dΓn(B)(0
n) >

2n

2
· 2

3n
2

6
=

2
5n
2

12
. (3.44)

This proves the lower bound of Theorem 3.1 with c1 = 1
12

. Using the
methods from above the constant c1 cannot easily be increased, although there
are many strict inequalities in the proof.

3.4 Further discussion on the Wiener index of

Schreier graphs of the Basilica automaton

and general automata

As a part of this thesis a C++-algorithm was implemented that determines a
simplified adjacency list of the n-th Schreier graph of the Basilica automaton
for some given n ≥ 3. It can be found in Appendix A.2. Using this algorithm
and the Breadth-First Search Wiener Index Calculation introduced
in Section 1.3 we calculated the Wiener index of Γn(B) for n = 3, . . . , 20. Due
to the exponential growth of the graphs it is hardly feasible to continue this
calculation with increasing n. In Table 3.1 a comparison of the Wiener index
and the bounds of Theorem 3.1 with c1 = 1

12
and c2 = 7

2
for n = 2, . . . , 10 can

be found.

A thorough analysis of the first 20 values with a computer algebra system
suggests that

W (Γn(B)) ∼

{
123
224
· 2

5n
2 +O(22n) if n even,

1√
2
· 177

224
· 2

5n
2 +O(22n) if n odd.

(3.45)

CHAPTER 3. THE BASILICA AUTOMATON 50

n
⌈

1
12
· 2

5n
2

⌉
W (Γn(B))

⌊
7
2
· 2

5n
2

⌋
2 3 10 112
3 16 70 633
4 86 436 3584
5 483 2728 20274
6 2731 15952 114688
7 15447 95392 648773
8 87382 543040 3670016
9 494304 3183232 20760745

10 2796203 17900800 117440512

Table 3.1: The Wiener index in comparison to its lower and upper bound.

Note that the constants in front of 2
5n
2 are very close to each other since

177√
2
≈ 125.16. Unfortunately it seems rather difficult to prove (3.45), or even

directly calculate the Wiener indices of the Schreier graphs of the Basilica
automaton. Proposition 3.7, the main ingredient to prove the lower and upper
bound, appears hardly suitable for this task.

Aside from determining the exact behaviour of the Wiener index many
other interesting questions arise. What can be said about the automaton group
if we know the order of growth of the Wiener index? In Example 2.31 it was
shown that the first-bit-switch automaton AFBS generates a finite group and
in Example 2.33 we have seen that all except the first two of its Schreier graphs
are disconnected. Hence, the Wiener indices of all except the first two Schreier
graphs of the first-bit-switch automaton are infinite. For the incrementation
automaton AI the situation is rather different. Example 2.37 showed that
the automaton group of the incrementation automaton is free abelian, thus
infinite, and

W (Γn(AI)) =
1

8
· 23n. (3.46)

These facts suggest a connection between the automaton group and the be-
haviour of the Wiener index on the Schreier graphs. Note that also free non-
abelian groups can be realized as automata groups (e.g. automaton 2240 in
[4]).

Another interesting aspect is the order of growth of the Wiener index being
directly related to the order of growth of the diameter, for all three automatons
studied in this master thesis, i.e. for A ∈ {AI ,AFBS ,B},

W (Γn(A)) = Θ(22n diam(Γn(A))). (3.47)

By Proposition 3.11

W (Γn(A)) = O(m2n diam(Γn(A))) (3.48)

holds for all automata A with a set of input and output symbols of cardinality
m, but there is nothing known about the other direction.

Appendix A

C++-implementations

A.1 The Breadth-First Search Wiener Index

Calculation

The code of the function is included as complete entity, i.e. it is not split into
header and source file. The standard template libraries for vector and queue
are necessary to compile the function, thus they are included in the code.

Implementation of the BFS-WIC

#include <vector >

#include <queue >

//! \brief Calculates the Wiener index of the graph

//! given by @p adjacency_list.

//!

//! \param[in] adjacency_list a connected graph

//! \return the calculated Wiener index

uint64_t bfs_wic(const std::vector <std::vector <uint64_t >>&

adjacency_list)

{

uint64_t wiener_index = 0;

for (size_t i = 0; i < adjacency_list.size (); ++i)

{

std::vector <char > vertex_queued(adjacency_list.size ());

vertex_queued[i] = 1;

std::queue <std::pair <uint64_t , uint64_t >> bfs_queue;

bfs_queue.emplace(i, 0);

while (bfs_queue.size() > 0)

{

const auto& current_pair = bfs_queue.front ();

for (const auto& vertex :

adjacency_list[current_pair.first])

{

if (vertex_queued[vertex] == 0)

51

APPENDIX A. C++-IMPLEMENTATIONS 52

{

bfs_queue.emplace(vertex ,

current_pair.second + 1);

vertex_queued[vertex] = 1;

}

}

wiener_index = wiener_index + current_pair.second;

bfs_queue.pop();

}

}

wiener_index = wiener_index / 2;

return wiener_index;

}

Note that this function does not check the connectedness of the graph. In
case a disconnected graph is inserted, the Wiener index of every connected
component is calculated and all these indices are summed up. Furthermore
there is no mechanism preventing or detecting overflow errors.

A.2 Creation of adjacency lists of simplified

Schreier graphs of the Basilica automaton

As in Appendix A.1 the code is not split into header and source file and
we include the necessary standard template libraries in the beginning. The
main idea of the following implementation is interpreting each word over the
alphabet consisting of the symbols 0 and 1 as a binary number. Thus, every
given word of length n can be associated with a certain number between 0
and 2n − 1. To switch from a word to a number or vice versa the functions
calcAssociatedVal and calcAssociatedWord are used.

Functions to switch from word/value to value/word

#include <vector >

//! \brief Calculates the value associated to the word

//! given by @p word.

//!

//! \param[in] word a word written with 0s and 1s

//! \return the associated value

size_t calcAssociatedVal(const std::vector <bool >& word)

{

size_t val = 0;

for (auto i = word.size (); i > 0; --i)

{

val = val * 2 + word[i - 1];

}

return val;

APPENDIX A. C++-IMPLEMENTATIONS 53

}

//! \brief Calculates the word with @p length letters

//! that is associated to the value given by @p val.

//!

//! \param[in] val a value

//! \param[in] length the length of the resulting word

//! \return the associated word

std::vector <bool > calcAssociatedWord(size_t val ,

const size_t length)

{

std::vector <bool > word(length , 0);

size_t i = 0;

while (val > 0)

{

word[i] = val % 2;

val = val / 2;

++i;

}

return word;

}

The next six functions correspond to β(s, w) where β is the output function
of the Basilica automaton, s a state and w a word. The state s inserted into
the output function is determined by the variable state b and the function
itself. For the non-inverted functions we have s = b if state b is true and s = a
otherwise. The inverted functions take s = b−1 if state b is true and s = a−1

if state b is false.

Functions corresponding to the output function of the Basilica automaton

//! \brief Applies the output function to the state given

//! by @p state_b and the word @p word.

//!

//! \param[in] word the word inserted into the

//! output function

//! \param[in] state_b implies state b if state_b is true ,

//! otherwise implies state a

//! \return result of the applied output function

std::vector <bool > outputFunc(std::vector <bool > word ,

bool state_b)

{

size_t i = 0;

bool last_val = 0;

while (i < word.size() && last_val == 0)

{

last_val = word[i];

if (state_b)

{

word[i] = !word[i];

}

++i;

state_b = !state_b;

}

APPENDIX A. C++-IMPLEMENTATIONS 54

return word;

}

//! \brief Applies the output function to the state a

//! and the word @p word.

//!

//! \param[in] word the word inserted into the

//! output function

//! \return result of the applied output function

std::vector <bool > edgeA(std::vector <bool > word)

{

return outputFunc(word , false);

}

//! \brief Applies the output function to the state b

//! and the word @p word.

//!

//! \param[in] word the word inserted into the

//! output function

//! \return result of the applied output function

std::vector <bool > edgeB(std::vector <bool > word)

{

return outputFunc(word , true);

}

//! \brief Applies the output function to the inverse state

//! given by @p state_b and the word @p word.

//!

//! \param[in] word the word inserted into the

//! output function

//! \param[in] state_b implies the inverse state of b if

//! state_b is true , otherwise

//! implies the inverse state of a

//! \return result of the applied output function

std::vector <bool > inverseOutputFunc(std::vector <bool > word ,

bool state_b)

{

size_t i = 0;

bool last_set_val = 0;

while (i < word.size() && last_set_val == 0)

{

if (state_b)

{

word[i] = !word[i];

}

last_set_val = word[i];

++i;

state_b = !state_b;

}

return word;

}

//! \brief Applies the output function to the inverse

//! state of a and the word @p word.

APPENDIX A. C++-IMPLEMENTATIONS 55

//!

//! \param[in] word the word inserted into the

//! output function

//! \return result of the applied output function

std::vector <bool > edgeAInverse(std::vector <bool > word)

{

return inverseOutputFunc(word , false);

}

//! \brief Applies the output function to the inverse

//! state of b and the word @p word.

//!

//! \param[in] word the word inserted into the

//! output function

//! \return result of the applied output function

std::vector <bool > edgeBInverse(std::vector <bool > word)

{

return inverseOutputFunc(word , true);

}

The last C++-function is the main control unit utilizing the above functions
to create the adjacency list. In order to avoid parallel edges and loops the
output function is not applied to every combination of state and word. This
is guaranteed by the if statements.

Implementation of the main control unit

//! \brief Creates an adjacency list of the simplified

//! n-th Schreier graph of the Basilica automaton

//!

//! \param[in] n determines the (n-th) Schreier graph

//! \return the created adjacency list

std::vector <std::vector <uint64_t >>

createBasilicaAdjacencyList(const unsigned int n)

{

size_t nr_vertices = 1 << n;

std::vector <std::vector <uint64_t >>

adjacency_list(nr_vertices);

for (size_t i = 0; i < nr_vertices; ++i)

{

adjacency_list[i]. push_back(calcAssociatedVal(

edgeB(calcAssociatedWord(i, n))));

if (i % 4 < 2)

{

adjacency_list[i]. push_back(calcAssociatedVal(

edgeBInverse(calcAssociatedWord(i, n))));

}

if (i % 2 == 0)

{

adjacency_list[i]. push_back(calcAssociatedVal(

edgeA(calcAssociatedWord(i, n))));

if (i % 8 < 4)

{

adjacency_list[i]. push_back(calcAssociatedVal(

APPENDIX A. C++-IMPLEMENTATIONS 56

edgeAInverse(calcAssociatedWord(i, n))));

}

}

}

return adjacency_list;

}

Bibliography

[1] Adian, S. I.: The Burnside problem and identities in groups, volume 95
of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Math-
ematics and Related Areas]. Springer-Verlag, Berlin-New York, 1979,
ISBN 3-540-08728-1. Translated from the Russian by John Lennox and
James Wiegold.

[2] Alešin, S. V.: Finite automata and the Burnside problem for periodic
groups. Mat. Zametki, 11:319–328, 1972, ISSN 0025-567X.

[3] Bartholdi, L. and Virág, B.: Amenability via random walks. Duke Math.
J., 130(1):39–56, 2005, ISSN 0012-7094. https://doi.org/10.1215/

S0012-7094-05-13012-5.

[4] Bondarenko, I., Grigorchuk, R. I., Kravchenko, R., Muntyan, Y., Nekra-
shevych, V., Savchuk, D., and Šunić, Z.: On classification of groups gener-
ated by 3-state automata over a 2-letter alphabet. Algebra Discrete Math.,
(1):1–163, 2008, ISSN 1726-3255.

[5] Chan, T. M.: More algorithms for all-pairs shortest paths in weighted
graphs. SIAM J. Comput., 39(5):2075–2089, 2010, ISSN 0097-5397.
https://doi.org/10.1137/08071990X.

[6] Chan, T. M.: All-pairs shortest paths for unweighted undirected graphs
in o(mn) time. ACM Trans. Algorithms, 8(4):Art. 34, 17, 2012,
ISSN 1549-6325. https://doi.org/10.1145/2344422.2344424.

[7] Chepoi, V. and Klavžar, S.: The wiener index and the szeged index of
benzenoid systems in linear time. Journal of Chemical Information and
Computer Sciences, 37(4):752–755, 1997. https://doi.org/10.1021/

ci9700079.

[8] D’Angeli, D., Donno, A., Matter, M., and Nagnibeda, T.: Schreier graphs
of the Basilica group. J. Mod. Dyn., 4(1):167–205, 2010, ISSN 1930-5311.
https://doi.org/10.3934/jmd.2010.4.167.

[9] Dankelmann, P.: Computing the average distance of an interval graph.
Inform. Process. Lett., 48(6):311–314, 1993, ISSN 0020-0190. https://

doi.org/10.1016/0020-0190(93)90174-8.

57

https://doi.org/10.1215/S0012-7094-05-13012-5
https://doi.org/10.1215/S0012-7094-05-13012-5
https://doi.org/10.1137/08071990X
https://doi.org/10.1145/2344422.2344424
https://doi.org/10.1021/ci9700079
https://doi.org/10.1021/ci9700079
https://doi.org/10.3934/jmd.2010.4.167
https://doi.org/10.1016/0020-0190(93)90174-8
https://doi.org/10.1016/0020-0190(93)90174-8

BIBLIOGRAPHY 58

[10] Darafsheh, M., Jolany, H., and Khalifeh, M.: Computing the wiener index
of a phenylenic pattern. Fullerenes Nanotubes and Carbon Nanostructures
- FULLER NANOTUB CARBON NANOSTR, 19:749–752, November
2011.

[11] Dobrynin, A. A., Entringer, R., and Gutman, I.: Wiener index of
trees: theory and applications. Acta Appl. Math., 66(3):211–249, 2001,
ISSN 0167-8019. https://doi.org/10.1023/A:1010767517079.

[12] Entringer, R. C., Jackson, D. E., and Snyder, D. A.: Distance in graphs.
Czechoslovak Math. J., 26(101)(2):283–296, 1976, ISSN 0011-4642.

[13] Flajolet, P. and Sedgewick, R.: Analytic combinatorics. Cambridge Uni-
versity Press, Cambridge, 2009, ISBN 978-0-521-89806-5. https://doi.

org/10.1017/CBO9780511801655.

[14] Gluškov, V. M.: The abstract theory of automata. I. Magyar Tud. Akad.
Mat. Fiz. Oszt. Közl., 13:287–309, 1963.

[15] Grigorchuk, R. I.: On Burnside’s problem on periodic groups. Funktsional.
Anal. i Prilozhen., 14(1):53–54, 1980, ISSN 0374-1990.

[16] Grigorchuk, R. I.: On the Milnor problem of group growth. Dokl. Akad.
Nauk SSSR, 271(1):30–33, 1983, ISSN 0002-3264.

[17] Grigorchuk, R. I.: Degrees of growth of finitely generated groups and the
theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939–
985, 1984, ISSN 0373-2436.

[18] Grigorchuk, R. I. and Żuk, A.: On a torsion-free weakly branch group
defined by a three state automaton. Internat. J. Algebra Comput.,
12(1-2):223–246, 2002, ISSN 0218-1967. https://doi.org/10.1142/

S0218196702001000, International Conference on Geometric and Com-
binatorial Methods in Group Theory and Semigroup Theory (Lincoln,
NE, 2000).

[19] Gupta, N.: On groups in which every element has finite order. Amer.
Math. Monthly, 96(4):297–308, 1989, ISSN 0002-9890. https://doi.

org/10.2307/2324085.

[20] Gupta, N. and Sidki, S.: On the Burnside problem for periodic groups.
Math. Z., 182(3):385–388, 1983, ISSN 0025-5874. https://doi.org/10.
1007/BF01179757.

[21] Gutman, I. and Yeh, Y. N.: The sum of all distances in bipartite graphs.
Math. Slovaca, 45(4):327–334, 1995, ISSN 0139-9918.

[22] Gutman, I., Yeh, Y. N., and Chen, J. C.: On the sum of all distances in
graphs. Tamkang J. Math., 25(1):83–86, 1994, ISSN 0049-2930.

https://doi.org/10.1023/A:1010767517079
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1142/S0218196702001000
https://doi.org/10.1142/S0218196702001000
https://doi.org/10.2307/2324085
https://doi.org/10.2307/2324085
https://doi.org/10.1007/BF01179757
https://doi.org/10.1007/BF01179757

BIBLIOGRAPHY 59

[23] Hořeǰs, J.: Transformations defined by finite automata. Problemy Kiber-
net., 9:23–26, 1963.

[24] Kleene, S. C.: Representation of events in nerve nets and finite automata.
In Automata studies, Annals of mathematics studies, no. 34, pages 3–41.
Princeton University Press, Princeton, N. J., 1956.

[25] Knuth, D. E.: The art of computer programming. Vol. 1: Fundamental
algorithms. Second printing. Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont, 1969.

[26] Korte, B. and Vygen, J.: Combinatorial optimization, vol-
ume 21 of Algorithms and Combinatorics. Springer, Berlin, 2018,
ISBN 978-3-662-56038-9; 978-3-662-56039-6. https://doi.org/10.

1007/978-3-662-56039-6, Theory and algorithms, sixth edition.

[27] March, L. and Steadman, P.: The Geometry of Environment, volume 6.
The MIT Press, January 1971.

[28] McCulloch, W. S. and Pitts, W.: A logical calculus of the ideas immanent
in nervous activity. Bull. Math. Biophys., 5:115–133, 1943. https://

doi.org/10.1007/bf02478259.

[29] Mealy, G. H.: A method for synthesizing sequential circuits. Bell System
Tech. J., 34:1045–1079, 1955, ISSN 0005-8580. https://doi.org/10.

1002/j.1538-7305.1955.tb03788.x.

[30] Milnor, J.: Problem 5603. The American Mathematical Monthly,
75(6):685–686, 1968, ISSN 00029890, 19300972. http://www.jstor.org/
stable/2313822.

[31] Moore, E. F.: Gedanken-experiments on sequential machines. In Automata
studies, Annals of mathematics studies, no. 34, pages 129–153. Princeton
University Press, Princeton, N. J., 1956.

[32] Nekrashevych, V.: Self-similar groups, volume 117 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI,
2005, ISBN 0-8218-3831-8. https://doi.org/10.1090/surv/117.

[33] Nikolić, S., Trinajstić, N., and Mihalić, Z.: The wiener index: Devel-
opment and applications. Croatica Chemica Acta, 68:105–129, January
1995.

[34] Pettie, S.: A new approach to all-pairs shortest paths on real-weighted
graphs. Theoret. Comput. Sci., 312(1):47–74, 2004, ISSN 0304-3975.
https://doi.org/10.1016/S0304-3975(03)00402-X, Automata, lan-
guages and programming.

[35] Sakarovitch, J.: Kleene’s theorem revisited. In Trends, techniques, and
problems in theoretical computer science (Smolenice, 1986), volume 281

https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://www.jstor.org/stable/2313822
http://www.jstor.org/stable/2313822
https://doi.org/10.1090/surv/117
https://doi.org/10.1016/S0304-3975(03)00402-X

BIBLIOGRAPHY 60

of Lecture Notes in Comput. Sci., pages 39–50. Springer, Berlin, 1987.
https://doi.org/10.1007/3540185356_29.

[36] Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2008.

[37] Suščans’kĭı, V. Ī.: Periodic p-groups of permutations and the unrestricted
Burnside problem. Dokl. Akad. Nauk SSSR, 247(3):557–561, 1979,
ISSN 0002-3264.

[38] Turing, A. M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. Proc. London Math. Soc. (2), 42(3):230–265, 1936,
ISSN 0024-6115. https://doi.org/10.1112/plms/s2-42.1.230.

[39] Wagner, S. G.: A class of trees and its Wiener index. Acta Appl.
Math., 91(2):119–132, 2006, ISSN 0167-8019. https://doi.org/10.

1007/s10440-006-9026-5.

[40] Wiener, H.: Structural determination of paraffin boiling points. Journal of
the American Chemical Society, 69(1):17–20, 1947. https://doi.org/

10.1021/ja01193a005, PMID: 20291038.

https://doi.org/10.1007/3540185356_29
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/s10440-006-9026-5
https://doi.org/10.1007/s10440-006-9026-5
https://doi.org/10.1021/ja01193a005
https://doi.org/10.1021/ja01193a005

	Preface
	Wiener index and average distance
	Basic notation and simple bounds
	A lower bound and its application to the average distance
	Algorithmic calculation of the Wiener index

	Automata and Schreier graphs
	Group actions and their visualization via Schreier graphs
	Automata basics
	The automaton group

	The Basilica automaton
	The Basilica automaton and graph substitutions
	An upper bound on the Wiener index of Schreier graphs of the Basilica automaton
	A lower bound on the Wiener index of Schreier graphs of the Basilica automaton
	Further discussion on the Wiener index of Schreier graphs

	Appendix C++-implementations
	The Breadth-First Search Wiener Index Calculation
	Creation of adjacency lists of simplified Schreier graphs of the Basilica automaton

