

Philipp Petschar, BSc

Hygrothermische Untersuchung und Optimierung eines Bausystems mit Holz-Bausteinen

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Wirtschaftsingenieurwesen – Bauwesen

eingereicht an der

Technischen Universität Graz

Betreuer:

Univ.-Prof. DDr. Peter Kautsch

Dipl.-Ing. Baumeister Johann Hafellner

Institut für Hochbau

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Λ				Λ	•	/1	T
А	г	Г	ı	Н	·V	/	

I declare that I have authored this thesis independently, to declared sources/resources, and that I have explicitly indica quoted either literally or by content from the sources use TUGRAZonline is identical to the present master's thesis.	ated all my material which has been
 Datum/Date	Unterschrift/Signature

Danksagung

An dieser Stelle möchte ich allen Personen danken, die mir während meiner Masterarbeit mit Rat und Tat zur Seite standen.

Für die Betreuung von universitärer Seite bedanke ich mich bei Herrn Univ.-Prof. DDr. Peter Kautsch, wie auch für die exzellente Grundlagenvermittlung in seinen Lehrveranstaltungen. Mein Dank gilt ebenso Herrn Dipl.-Ing Baumeister Johann Hafellner für die erstklassige Betreuung und Korrektur meiner Masterarbeit.

Besonderer Dank gilt auch Herrn Karner, da durch seine innovative Entwicklung des Holzbausteins diese Masterarbeit ermöglicht wurde.

Besonders bedanken möchte ich mich natürlich auch bei meiner Familie, die mich die gesamte Ausbildungszeit hindurch unterstützte und bei meinen Studienkollegen, ohne die die verbrachte Zeit am Universitätsgelände nicht einmal halb so viel Spaß gemacht hätte!

Kurzfassung

Diese Masterarbeit behandelt hygrothermische Untersuchungen einer Bauweise mit dem LUX-Holzbaustein als Wandbildner. Bei Decken- und Fußbodenkonstruktionen in Leichtbauweise wird das Tragsystem durch ausgedämmte STEICOjoist-Stegträger, bei erdberührten Fußböden durch ein Plattenfundament aus Stahlbeton gebildet. In dieser Arbeit werden diverse, vorab deklarierte Detail-Varianten hygrothermisch untersucht, analysiert und im Weiteren optimiert.

Der LUX-Holzbaustein ist der Systemstein eines einfachen modularen Wandsystems, welcher in verschiedenen Größen und Formen, in einem 25 cm Raster herstellbar ist. Der Baustein soll in Längen von 25 cm bis 100 cm angeboten werden. Weiters im LUX-Sortiment enthalten sind Eck- und Sturzprofile sowie Fuß- und Kopfschwellen. Die Dicke des Bausteins beträgt 21 cm.

Im ersten Schritt wurden die vorgegebenen Bauteile eindimensional auf ihre Tauglichkeit überprüft und in weiterer Folge zu den vorgegebenen Detail-Punkten zusammengefügt. Bei der Ausarbeitung und Planung der Detail-Konstruktionen stand neben der möglichst genauen Abbildung der vorgegebenen Leit-Details vor allem die technische Ausführbarkeit und die Einhaltung der aktuellen Normen im Vordergrund. Es wird ebenfalls auf den Einfluss der Anordnung eines Wärmedämmverbundsystems und einer Hinterlüftung an der Außenseite, sowie auf den negativen Einfluss ausgedämmter innenliegender Installationsebenen eingegangen.

Insgesamt umfasst diese Arbeit die hygrothermische Untersuchung von 26 Bauteilen und den daraus resultierenden 43 Anschluss-Details.

Bei den untersuchten Bauteilen wird in acht Außenwände, acht erdberührte Fußböden, acht Fußböden über Außenluft sowie zwei flachgeneigte Dächer unterschieden. Die daraus resultierenden zusammengefügten Anschluss-Details behandeln 17 Sockel-Details mit erdberührten Fußböden auf einer Stahlbetonfundamentplatte, 20 Sockel-Details mit Fußböden über Außenluft auf Schraubenfundamenten, drei Trauf-Details, zwei Firstentlüftungs-Details sowie ein Attika-Detail.

Schlussfolgernd soll mit den betrachteten Untersuchungen ein Großteil der hygrothermischen Planungsgrundlage zur konstruktiven und einwandfreien Ausführung der LUX-Holzbaustein-Bauweise abgedeckt sein.

Keywords: Holzbaustein, Dampfdiffusion, Hygrothermisch, Bauteilkondensat, Holzfeuchte

Abstract

This master thesis deals with hygrothermal investigations of a construction method with the LUX wood-brick as a wall creator. For light-weight ceiling and floor constructions, the support system is formed by STEICOjoist girders, in the case of earth-touched floors, by a reinforced concrete foundation slab. In this work, various, previously declared detail variants are hygrothermally investigated, analyzed and further optimized.

The LUX wood-brick is the system stone of a simple modular wall system, which can be produced in various sizes and shapes, in a 25 cm grid. The building stone is to be offered in lengths from 25 cm to 100 cm. Also included in the LUX range are corner and lintel profiles as well as foot and head thresholds. The thickness of the stone is 21 cm.

In the first step, the specified components were one-dimensionally checked for their suitability and assembled in sequence to the given detail points. In the elaboration and planning of the detailed constructions, in addition to the most accurate illustration of the given key details, the focus was on technical feasibility and compliance with current standards. The influence of the arrangement of a thermal insulation composite system and a rear ventilation on the outside, as well as the negative influence of the internal installation levels, has also been considered.

In total, this work includes the hygrothermal investigation of 26 components and the resulting of 43 connection details.

In the examined components, a distinction is made between eight outer walls, eight earth-touched floors, eight floors via outside air and two flat-inclined roofs. The resulting assembled connection details cover 17 base details with earth-touching floors on a reinforced concrete foundation slab, 20 base details with floors over outside air on screw foundations, three eaves details, two ridge ventilation details as well as an attica detail.

In conclusion, most of the hygrothermal planning basis for constructive and flawless execution for the construction with the LUX wood-brick should be covered by the examined investigations.

Keywords: wood-brick, vapor diffusion, hygrothermal, component condensate, wood moisture

Inhaltsverzeichnis

1	Einlei	tung – Der LUX-Holzbaustein	1
2	Allger	neines	3
		melzeichen, Einheit, Definition	
		wendete Materialkennwerte	
3	Klima	bedingungen It. ÖNORM B 8110-2 [1]	8
	3.1 Au	Senklima	8
		enklima	
		messungs-Klimabedingungen für den Standort Klagenfurt	11
	3.4 Krit	ische Monate für die Vermeidung von Kondenswasser- und des Risikos von	40
		nimmelbildung	
4	Hygro	thermische Untersuchung der Bauteile	13
	4.1 Na	chweisfreie Konstruktionen It. ÖNORM B 8110-2 [1]	14
	4.2 Na	chweisfreie Konstruktionen It. dem Entwurf der ÖNORM B 8110-2:2018-09	15
		Senwände	
	4.3.1	AW_01 – WDVS – Holzbaustein-Sicht innen	
	4.3.2	AW_02 – WDVS – Gipskartonpatte innen	
	4.3.3	AW_03 – WDVS – Installationsebene innen	
	4.3.4 4.3.5	AW_04 – Hinterlüftung – Holzbaustein-Sicht innen	
	4.3.6	AW_05 – Hinterlüttung – Gipskartoripiatte inneri	
	4.3.7	AW 01 b – WDVS – Holzbaustein-Sicht innen – erhöhte Dämmdicke außen	
	4.3.8	AW 06 b – Hinterlüftung – Installationsebene ungedämmt innen	
	4.4 Erc	lberührte Fußböden	
	4.4.1	FBE_01 – Ausgangsbauteil	
	4.4.2	FBE_01_b - E-ALGV-4	
	4.4.3	FBE_01_c - E-ALGV-5	
	4.4.4	FBE_02 – erhöhte Dämmschüttung	
	4.4.5	FBE_02_b - erhöhte Dämmschüttung + E-ALGV-5	
	4.4.6 4.4.7	FBE_03 – erhöhte Dämmschüttung + 20 cm XPS FBE_03 b – optimierter Bauteil	
	4.4.7 4.4.8	FBE 04 – Abdichtung auf warmer Seite der Dämmung, optimierter Bauteil	
	_	Sböden über Außenluft	
	4.5.1	FBA 01 – Ausgangsbauteil	
	4.5.2	FBA_01_b – optimierter Bauteil	
	4.5.3	FBA_01_e – mit Perlit-Dämmschüttung zur Leitungsführung	
	4.5.4	FBA_02 – Nassestrich	
	4.5.5	FBA_02_b - Nassestrich - diffusionshemmende Folie über Schüttung	
	4.5.6	FBA_02_c - Nassestrich - lose Schüttung mit erhöhter Wärmeleitfähigkeit	
	4.5.7 4.5.8	FBA_02_d – Nassestrich – optimiert – erhöhter Stegträger – lose Schüttung FBA_02_e – Nassestrich – optimiert – erhöhter Stegträger – lose Schüttung –	92
	4.5.6	diffusionshemmende Folie anstelle PE-Folie	96
	4.6 Fla	chgeneigte Dächer	
	4.6.1	DA_01 – Ausgangs-Detail – hinterlüftetes flachgeneigtes Dach – mit Zwischens	
	-	Dämmung – ohne diffusionshemmende Folie	101
	4.6.2	DA_02 – optimierter Bauteil – mit diffusionshemmender Folie	105
5	Zusan	nmenfassung der bauphysikalischen Ergebnisse der Bauteile	110
6	Hygro	thermische Untersuchung der Details im Sockelbereich	112
		gemeines	
		ianten	
	6.3 So	ckel-Detail_01 – Erdberührte Bodenplatte mit Frostschürze – Fußschwelle 10 cm ü	über
	Fro	lreich	120

6.3	3.1	SD_01_a - Ausgangs-Detail	120
6.3	3.2	SD_01_b - Erhöhung der Perlit-Dämmschüttung + PE-Folie über der Schüttung	124
6.3	3.3	SD_01_c – Anordnung einer diffusionshemmenden Folie über der TSD	126
6.3	3.4	SD_01_d – Anordnung einer diffusionshemmenden Folie in der Fußschwelle	128
6.3	3.5	SD 01 e – Erhöhung der XPS-Dämmdicke unter dem STB-Fundament	130
6.3	3.6	SD 01 f – Vergrößerung des Holzquerschnitts in der Fußschwelle	133
6.3	3.7	SD 01 g – Anordnung eines Dämmkeils für eine erleichterte Ausführung	135
6.3		SD_01_h – vergrößerter Holzquerschnitt in der Fußschwelle	
6.3		SD_01_i – weitere Vergrößerung des Holzquerschnitts in der Fußschwelle	
6.3		SD_01_j – Anordnung der Abdichtung auf warmer Seite der Dämmung	
6.4		el-Detail 02 – Erdberührte Bodenplatte mit Frostschürze – Fußschwelle 15 cm über	
		eich	
6.4		SD_02_a - Ausgangs-Detail mit 20 cm XPS-Dämmung	
6.4		SD_02_b – Abdichtung auf kalter Seite der Dämmung	
6.4		SD_02_c – Abdichtung auf warmer Seite der Dämmung	
		SD 02 d – Anschluss an AW 04 – Perimeterdämmung hochgezogen	
6.4		SD 02 e – Anschluss an AW 04 – hinterlüftete Fassade im Spritzwasserbereich	
6.5		el-Detail 03 – Erdberührte Bodenplatte mit Frostschirm – Fußschwelle 15 cm über	
0.0		eich	162
6.5		SD_03_a – Abdichtung auf kalter Seite der Dämmung	
		SD 03 b – Abdichtung auf warmer Seite der Dämmung	
6.6		el-Detail 04 – Schraubenfundament – Fußboden über Außenluft – Fußschwelle 10 d	
0.0		Erdreich – Trockenestrich	
6.6		SD 04 a – AW 01 & FBA 01 b	
		SD 04 b – AW 01 & FBA 01 b mit ausgedämmtem Hohlraum	
		SD 04 c – AW 02 & FBA 01 b	
		SD 04 d - AW 03 & FBA 01 b	
		SD_04_e - AW_03 & FBA_01_b - Anordnung Kantholz an Innenkante	
		SD 04 f – AW 04 & FBA 01 b	
		SD_04_g - AW_05 & FBA_01_b	
		SD 04 h – AW 06 & FBA 01 b	
6.7	J.O Saak	el-Detail_05 – Schraubenfundament – Fußboden über Außenluft – Fußschwelle 10 d	190
0.7		Erdreich – Nassestrich	
6.7		SD 05 a – ohne diffusionshemmende Folie	
		SD_05_b - mit diffusionshemmender Folie über Schüttung	
		SD_05_b = fill dillusionshemmender Folie uber Schullung	
		SD_05_c = office diffusionshemmender Folie über Schüttung	
		SD_05_e – ungedämmte Installationsebene innen	
		SD_05_e = ungedammte Installationsebene innen mit Kantholz an Innenkante	
	7.6 7.7		
_		SD_05_g – lose Schüttung mit erhöhter Wärmeleitfähigkeit	
		SD_05_h – Erhöhung der außenliegenden Dämmdicke	
		SD_05_i – diffusionshemmende Folie über der Trittschalldämmung	
6.8		el-Detail_06 – Schraubenfundament – Fußboden über Außenluft – Fußschwelle 10 c	
0.4		Erdreich – FBA_01-Aufbau erweitert um 8 cm Perlit-Dämmschüttung	
6.8		SD_06_a – Ausgangs-Detail	
		SD_06_b – diffusionshemmende Folie über der Schüttung	
6.8	3.3	SD_06_c – diffusionshemmende Folie über Trittschalldämmung	224
Hv	aroth	nermische Untersuchung der Details im Dachbereich	227
7.1	_	meines	
7.2		anten	
7.3		n-Detail_01 – Traufe	
		DD_01_a - Betrachtung des Anschlusses an die kritische Außenwand AW_06	
		DD_01_b – Anordnung eines Kantholzes an der Innenkante der Bauteilfuge	
7.3		DD_01_c - ungedämmter Dachvorsprung	
7.4		n-Detail_02 – Firstentlüftung	
7.4		DD_02_a – ohne diffusionshemmende Folie	
7.4		DD_02_b – mit diffusionshemmender Folie	
7.5	Dach	n-Detail 03 – Attika – ausgedämmter Dachvorsprung mit ausgedämmter Attika	246

7

8	Betrachtung der Holzfeuchte im Bauteil	251
9	Zusammenfassung und Erkenntnisse der Untersuchungen	253
10	Ausblick	255
11	Literaturverzeichnis	256
12	Abbildungsverzeichnis	258
13	Tabellenverzeichnis	267
14	Anhang	268

1 Einleitung – Der LUX-Holzbaustein

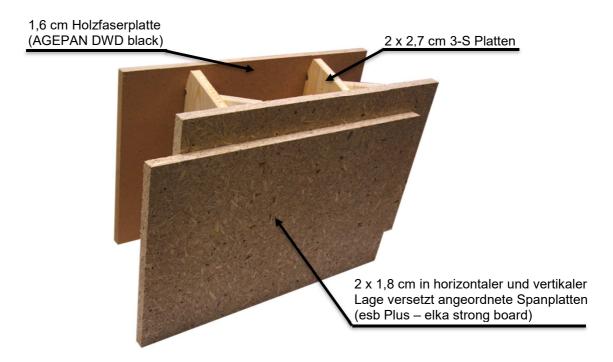
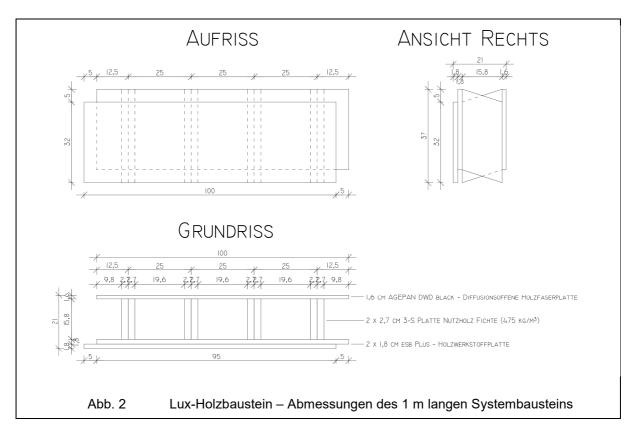



Abb. 1 Lux-Holzbaustein

Der Aufbau des LUX-Holzbausteins besteht an der raumzugewandten Seite aus zwei 1,8 cm dicken, in horizontaler und vertikaler Lage versetzt angeordneten Spanplatten (esb Plus – elka strong board). Die versetzte Anordnung hemmt den Dampfstrom und verhindert dadurch ein unkontrolliertes Durchströmen des Dampfes entlang der Fugen. Die äußere Schicht des Bausteins bildet eine 1.6 cm dicke, diffusionsoffene Holzfaserplatte (AGEPAN DWD black). Aufgrund des versetzten Anordnens der inneren Schichten und der nach außen hin abnehmenden Diffusionswiderstände soll auf eine diffusionshemmende Folie, welche in der Holzleichtbauweise regelmäßig zum Einsatz kommt, verzichtet werden. Den Verbund der innenliegenden esb Plus-Spanplatten außenliegenden AGEPAN DWD und der black-Holzfaserplatte bilden alle 25 cm zwei 3-S Platten, welche als Steg die aussteifende Funktion erfüllen. Durch eine spezielle dreieckige Ausführung der Stege wird das vertikale Ineinandergreifen der übereinanderliegenden Bausteine ermöglicht und damit eine horizontale Lagesicherung gewährleistet. Der 15.8 dicke Hohlraum zwischen Holzwerkstoffschichten wird nachträglich mit Zellulose-Einblasdämmung ausgefüllt. Als Verbindungsmittel werden Klammern verwendet, mit denen die einzelnen Teile zusammengeheftet werden.

Der LUX-Holzbaustein ist der Systemstein eines einfachen modularen Wandsystems, welcher in verschiedenen Größen und Formen, in einem 25 cm Raster herstellbar ist. Der Baustein soll in Längen von 25 cm bis 100 cm angeboten werden. Weiters im LUX-Sortiment enthalten sind Eck- und Sturzprofile sowie Fuß- und Kopfschwellen. Die Dicke des Bausteins beträgt 21 cm. Die Abmessungen des 1 m langen Systembausteins, siehe Abb. 2, wurden von der optimierten Variante vom Forschungsbericht des LKI [21] übernommen, einzig die außenliegende OSB-

Platte wurde durch eine in der Dicke geringeren, diffusionsoffenen AGEPAN DWD black-Holzfaserplatte (1,6 cm statt 1,8 cm) ersetzt. Die Außenabmessung der Dicke des Holzbausteins mit 21 cm bleibt erhalten, dadurch vergrößert sich der mit Zellulose ausgeblasene Hohlraum um 0,2 cm.

Es wurden vorab sechs verschiedene Wandaufbauten sowie diverse Sockel-, Trauf- und Attika-Detail-Varianten besprochen und für die hygrothermischen Untersuchungen definiert. In weiteren Nachbesprechungen bzw. im weiteren Verlauf der Arbeit kristallisierten sich kleinere Änderungen wie z.B. in den Dach-Varianten oder Fußbodenaufbauten heraus. Die ausgewählten Detail-Punkte werden auf die Vermeidung von Oberflächenkondensation, Schimmelbildung und Kondensat im Bauteil untersucht und optimiert. Für diese Untersuchungen wurden zuerst die vorgegebenen Bauteile eindimensional auf ihre Tauglichkeit überprüft und in weiter Folge zu den vorgegebenen Detail-Punkten zusammengefügt. Bei der Ausarbeitung und Planung der Detail-Konstruktionen stand neben der möglichst genauen Abbildung der vorgegebenen Leit-Details vor allem die technische Ausführbarkeit und die Einhaltung der aktuellen Normen im Vordergrund. Jede Untersuchung wird dokumentiert und analysiert und bei Schwachstellen bzw. bei Untauglichkeit optimiert. Es kritische Punkte aufmerksam gemacht und wenn Verbesserungsvorschläge unterbreitet. Die Untersuchungen sollen zeigen, inwiefern sich die Bauweise optimal zur Ausführung eignet und welche Varianten eher als kritisch zu betrachten sind.

2 Allgemeines

2.1 Formelzeichen, Einheit, Definition

Tab. 1 Formelzeichen, Einheit, Definition

Formelzeichen	Einheit	Definition
λ	W/mK	Wärmeleitfähigkeit
ρ	Kg/m³	Dichte
μ	-	Wasserdampfdiffusionswiderstandszahl
Sd	m	Diffusionsäquivalente Luftschichtdicke (μ x d)
Sde	m	Diffusionsäquivalente Luftschichtdicke außen
Sdi	m	Diffusionsäquivalente Luftschichtdicke innen
c_p	J/kgK	Spezifische Wärmekapazität
θ_{e}	°C	Außenlufttemperatur
θί	°C	Innenlufttemperatur
θ_{si}	°C	Oberflächentemperatur innen
Фе	%	Relative Feuchtigkeit der Außenluft
Фі,ОК	%	Relative Feuchtigkeit der Innenluft für die Bemessung der Vermeidung von Kondenswasserbildung
φi,sk	%	Relative Luftfeuchtigkeit der Innenluft für die Bemessung zur Verminderung des Risikos von Schimmelbildung
Ф	W/m	Wärmestrom
TRH100%, Taupunkt = T _{Taupunkt}	°C	Oberflächentemperatur bei 100 % relativer Luftfeuchte bei der Oberflächenkondensat entsteht – Taupunkt
$T_{ ext{min},}$ Oberflächenkondensat	°C	Minimalst auftretende Oberflächentemperatur bei der Berechnung zur Vermeidung von Oberflächenkondensat
T _{RH80%} , Schimmel = T _{Schimmel}	°C	Oberflächentemperatur bei 80 % relativer Luftfeuchte bei der das Risiko für Schimmelbildung gegeben ist
Tmin, Schimmelbildung	°C	Minimalst auftretende Oberflächentemperatur bei der Berechnung zur Vermeidung des Risikos von Schimmelbildung
f_{Rsi}		Temperaturfaktor
$T_{Rsi,min}$	°C	Geringste zulässige Temperatur für die raumseitige Oberfläche in Abhängigkeit des Bemessungstemperaturfaktors
$f_{Rsi,min}$	-	Kleinster zulässiger Bemessungstemperaturfaktor für die raumseitige Oberfläche

2.2 Verwendete Materialkennwerte

Nachfolgend sind in Tab. 2 die verwendeten Materialkennwerte, die den Berechnungen als Grundlage dienen, tabellarisch aufgelistet. Der Großteil der Materialien wurde vorgegeben und ihre Materialkennwerte von den Datenblättern der Hersteller übernommen. Fehlende Werte wurden durch diverse Normen so genau wie möglich ergänzt.

Tab. 2 Verwendete Materialkennwerte in GEQ [4] & HTflux [5]

Bezeichnung	λ [W/mK]	ρ [kg/m³]	c _p [J/kgK]	μ [-] trocken/feucht	Anmerkung
					Nutzholz Fichte
3-Schicht Platte	0,12	475	1600	50/20	It. ÖNORM B 8110- 7:2013 [2]
					Diffusionsoffene Holzfaserplatte
AGEPAN DWD black	0,10	600	1700	12	It. AGEPAN SYSTEM
	3,13	000	1700		außer c _p lt. ÖNORM EN ISO 10456 2010- 02-15 [6]
AGEPAN THD INSTALL	0,05	230	2100	3	Holzfaserdämmplatte WF (230 kg/m³)
INSTALL					It. AGEPAN SYSTEM
					Aluminiumlegierungen
Anputzwinkel	160	2800	880	100000	lt. ÖNORM B 8110- 7:2013 [2]
					μ-Wert lt. ÖNORM EN ISO 13788 [7]
					Nutzholz Fichte
Belag Fichte	0,12	475	1600	50/20	It. ÖNORM B 8110- 7:2013 [2]
		4400	4000	5000	Bitumen als Membran/Bahn
Bitumenbahn E-KV-4	0,23	1100	1000	50000	It. ÖNORM B 8110- 7:2013 [2]
					Bitumen als Membran/Bahn
Bituminöse Dampfsperre E-ALGV- 4 und E-ALGV-5	0,23	1100	1000	100000	It. ÖNORM B 8110- 7:2013 [2]
I dild E / LOV U					μ-Wert lt. ÖNORM EN ISO 13788 [7]
					It. HTflux
Erdreich	2,00	2000	1000	1	lt. ÖNORM EN ISO 13370 [13]

Bezeichnung	λ [W/mK]	ρ [kg/m³]	c _p [J/kgK]	μ [-] trocken/feucht	Anmerkung
					Holzwerkstoffplatte (Spanplatte)
esb Plus	0,10	620	1700	80/40	lt. Elka-Holzwerke GmbH
					außer c₀ lt. ÖNORM EN ISO 10456 2010- 02-15 [6]
fermacell Gipsfaser	0,32	1150	1100	13	Gipsfaserplatte
Estrich-Element	0,02	1100	1100		lt. fermacell
Function h // uma	4.25	2000	1000	400/00	Normalbeton ohne Bewehrung
Frostschürze	1,35	2000	1000	100/60	It. ÖNORM B 8110- 7:2013 [2]
					PU-Schaum
Fugendichtband	0,05	70	1500	60/60	It. ÖNORM B 8110- 7:2013 [2]
					Nutzholz Fichte
Fußschwelle	0,12	475	1600	50/20	It. ÖNORM B 8110- 7:2013 [2]
Gipskartonplatte	0,21	700	1000	10/4	It. ÖNORM B 8110- 7:2013 [2]
Holzfaserdämmplatte					Randdämmstreifen
WF-W	0,042	50	1700	10/5	It. ÖNORM B 8110- 7:2013 [2]
Leichtputzmörtel LW	0,49	1300	1000	20/5	lt. ÖNORM B 8110- 7:2013 [2]
Luft Hohlraum ISO 6946 (auto)	auto	1,23	1008	1	lt. HTflux
					It. HTflux
Luftschicht ISO 6946 (Installationsebene)	auto	1,23	1008	1	λ abhängig von horizontalem oder vertikalem Wärmestrom und der Luftschichtdicke
					Zementmauermörtel
Mörtelbett	1,41	2000	1000	35/15	lt. ÖNORM B 8110- 7:2013 [2]
					Naturkautschuk
Noppenmatte	0,13	910	1100	1000	It. ÖNORM B 8110- 7:2013 [2]

Bezeichnung	λ [W/mK]	ρ [kg/m³]	c _p [J/kgK]	μ [-] trocken/feucht	Anmerkung
					Polyethylen
PE-Folie	0,5	980	1800	100000	lt. ÖNORM EN ISO 10456 2010-02-15 [6]
Perlit-Dämmschüttung	0,051	90	1000	3/3	It. ÖNORM B 8110-7- 7:2013 [2]
Sauberkeitsschicht	1,35	2000	1000	100/60	Normalbeton ohne Bewehrung
Sauberkeitsschicht	1,33	2000	1000	100/60	It. ÖNORM B 8110- 7:2013 [2]
Schüttung aus Sand,	0,7	1800	1000	50	It. ÖNORM B 8110- 7:2013 [2]
Kies, Splitt	0,7	1600	1000	30	It. ÖNORM EN ISO 10456 2010-02-15 [6]
Sockolputz	0.79	1600	1000	35/15	Einlagenputzmörtel für außen OC
Sockelputz	0,78	1600	1000	35/15	It. ÖNORM B 8110- 7:2013 [2]
Stahlbeton 2 % bewehrt	2,5	2400	1000	130/80	It. ÖNORM B 8110- 7:2013 [2]
STEICOjoist	0,13	500	1600	50/20	Furnierschichtholz
Stegträger Gurte	0,10		1000	00/20	It. STEICO
STEICOjoist Stegträger Steg	0,14	900	1700	10/20	Hartfaserplatte It. STEICO
STEICOprotect Typ M	0,051	230	2100	5	Holzfaserdämmplatte WF (230 kg/m³) It. STEICO
					-
STEICOtherm SD	0,042	160	2100	5	Holzfaserdämmplatte It. STEICO
STEICOuniversal	0,053	270	2100	5	Holzfaserdämmplatte lt. STEICO
STEICOuniversal black	0,05	260	2100	5	Bituminierte Wandbauplatte (Holzfaserplatte It. STEICO
STEICOzell	0,040	35	2100	1-2	Holzfaser- Einblasdämmung lt. STEICO

Bezeichnung	λ [W/mK]	ρ [kg/m³]	c _թ [J/kgK]	μ [-] trocken/feucht	Anmerkung
XPS-G 30	0,035	32	1450	150/150	lt. ÖNORM B 8110- 7:2013 [2]
Zementgebundenes EPS-Granulat	0,047	99	1250	6	It. ÖNORM B 8110- 7:2013 [2]
Zement- und Zementfließestrich	1,33	2000	1080	35/15	lt. ÖNORM B 8110- 7:2013 [2]

Klebebänder wie zum Beispiel die luftdichte Verklebung oder der wind- und regendichte Verschluss der Bauteilfuge werden hier nicht mit ihren Materialkennwerten aufgelistet, da sie in der Detail-Ausbildung über ihre äquivalenten Luftschichtdicken (sd-Werte) definiert werden. Dasselbe gilt auch für dampfhemmende Folien.

3 Klimabedingungen It. ÖNORM B 8110-2 [1]

Für die Wärmebrückenberechnungen und die nachfolgenden hygrothermischen Simulationen werden die Klimabedingungen nach ÖNORM B 8110-2 [1] herangezogen.

3.1 Außenklima

Die Außenluftbedingung ist im Wesentlichen über die Klimatographie und die entsprechende Seehöhe definiert. Dabei wird Österreich in sieben Temperaturregionen mit unterschiedlichen Regressionskoeffizienten für die Berechnung der Monatsmittelwerte der Außenlufttemperatur eingeteilt. In jeder betrachteten Region hängt die Lufttemperatur hauptsächlich von der über ein Dreischichtmodell betrachteten Seehöhe ab (unter 750 m, zwischen 750 m und 1499 m und ab 1500 m). Da die nachfolgenden Betrachtungen für ganz Österreich gelten sollen, ist nach ÖNORM B 8110-2 [1] für eine generelle Bemessung eines Außenbauteils das Klagenfurter Klima heranzuziehen.

Folgende Parameter sind für den Standort Klagenfurt als bestimmt vorgegeben:

- Seehöhe: 448 m
- Region Beckenlandschaften im Süden (SB)
- Koeffizienten des Dreischichten-Regressionsmodells

Durch diese Parameter werden nach Formel (1) die in Tab. 3 ermittelten Monatsmittelwerte der Lufttemperatur berechnet:

$$\theta_e = a + b \cdot H \tag{1}$$

 θ_e Außenlufttemperatur

a, b Regressionskoeffizienten

H..... Seehöhe in 100 m

Tab. 3 Berechnung der Monatsmitteltemperaturen der Außenluft für den Standort Klagenfurt

Monat	Koeffizient a	Koeffizient b	Seehöhe [100 m]	θ _e [°C]
Jänner	-1,894	-0,423	4,48	-3,79
Februar	1,293	-0,458	4,48	-0,76
März	5,992	-0,521	4,48	3,66
April	11,261	-0,613	4,48	8,51
Mai	15,925	-0,602	4,48	13,23
Juni	19,227	-0,610	4,48	16,49
Juli	21,020	-0,597	4,48	18,35
August	20,359	-0,607	4,48	17,64
September	16,443	-0,495	4,48	14,23
Oktober	10,427	-0,413	4,48	8,58
November	4,618	-0,486	4,48	2,44
Dezember	0,133	-0,566	4,48	-2,40

Die relative Feuchte der Außenluft ist mit 80 % und in den Monaten Mai, Juni, Juli und August mit 75 % angesetzt.

3.2 Innenklima

Die Innenlufttemperatur ist mit 20 °C anzusetzen.

Für die Bemessung der relativen Feuchte der Innenluft sind die Außenluftbedingungen die in 3.1 berechnet worden sind, heranzuziehen. Die ÖNORM B 8110-2 [1] unterscheidet zwischen zwei für die Berechnungen notwendigen relativen Luftfeuchten:

- a) Für die Bemessung zur Vermeidung von Kondenswasserbildung (Tab. 4)
- b) Für die Bemessung zur Verminderung des Risikos von Schimmelbildung (Tab. 5)

Tab. 4 Berechnung der relativen Feuchte der Innenluft zur Vermeidung von Kondenswasserbildung

Außenlufttemperatur θ _e [°C]	Berechnung der relativen Feuchte der Innenluft
< 0 °C	Ausgehend von 65 % relativer Luftfeuchte wird pro 1 K Temperaturabnahme auch die relative Luftfeuchtigkeit um 1 % verringert
0 °C bis 10 °C	65 %
> 10 °C	Ausgehend von 65 % relativer Luftfeuchte wird pro 1 K Temperaturzunahme auch die relative Luftfeuchtigkeit um 1 % erhöht

Tab. 5 Berechnung der relativen Feuchte der Innenluft zur Verminderung des Risikos von Schimmelbildung

Außenlufttemperatur θ _e [°C]	Berechnung der relativen Feuchte der Innenluft
< 0 °C	Ausgehend von 55 % relativer Luftfeuchte wird pro 1 K Temperaturabnahme auch die relative Luftfeuchtigkeit um 1 % verringert
0 °C bis 5 °C	55 %
> 5 °C bis 10 °C	Ausgehend von 55 % relativer Luftfeuchte wird pro 1 K Temperaturzunahme auch die relative Luftfeuchtigkeit um 1 % erhöht
> 10 °C	Ausgehend von 60 % relativer Luftfeuchte wird pro 1 K Temperaturzunahme die relative Luftfeuchtigkeit um 1,5 % erhöht

3.3 Bemessungs-Klimabedingungen für den Standort Klagenfurt

In Tab. 6 sind die berechneten Klimabedingungen tabellarisch dargestellt:

Tab. 6 Klimabedingungen zur Vermeidung von Kondenswasserbildung (φ_{i,OK} & T_{Taupunkt}) und des Risikos von Schimmelbildung (φ_{i,SK} & T_{Schimmel}) nach ÖNORM B 8110-2 [1]

Monat	θ _e [°C]	φ _e [%]	θ _i [°C]	Фі,ок [%]	T _{Taupunkt} [°C]	Фі,ѕк [%]	T _{Schimmel} [°C]
Jänner	-3,79	80	20	61,21	12,31	51,21	13,01
Februar	-0,76	80	20	64,24	13,04	54,24	13,88
März	3,66	80	20	65,00	13,22	55,00	14,09
April	8,51	80	20	65,00	13,22	58,51	15,03
Mai	13,23	75	20	68,23	13,97	64,85	16,62
Juni	16,49	75	20	71,49	14,69	69,74	16,6
Juli	18,35	75	20	73,35	15,09	72,53	17,39
August	17,64	75	20	72,64	14,94	71,46	17,17
September	14,23	80	20	69,23	14,19	66,35	15,76
Oktober	8,58	80	20	65,00	13,22	57,87	14,87
November	2,44	80	20	65,00	13,22	55,00	14,09
Dezember	-2,40	80	20	62,60	12,65	52,60	13,41

3.4 Kritische Monate für die Vermeidung von Kondenswasser- und des Risikos von Schimmelbildung

Aufgrund der in Tab. 6 berechneten Klimabedingungen werden über die höchstzulässigen Bemessungstemperaturfaktoren für die Vermeidung von Oberflächenkondensat und des Risikos zur Schimmelbildung die relevanten, für die hygrothermischen Berechnungen erforderlichen, Monate ermittelt. In Tab. 7 sind die kritischen Monate angegeben. Alle Varianten werden auf die jeweiligen Monate untersucht.

Temperaturfaktor spiegelt das Verhältnis der Differenz von raumseitigen Oberflächentemperatur θ_{si} und Außenlufttemperatur θ_{e} zur Differenz von Innenlufttemperatur θ_i und Außenlufttemperatur θ_e wieder. Dabei werden als innere Oberflächentemperaturen jene minimalsten Grenztemperaturen herangezogen bei welcher Oberflächenkondensat entsteht, bzw. welche Schimmelbildung begünstigt. Der Temperaturfaktor wird für alle Monate berechnet und der kleinste Zulässige für die Bemessung herangezogen (= Bemessungstemperaturfaktor).

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e} \tag{2}$$

Tab. 7 Kritische Monate für die Vermeidung von Kondenswasser- und des Risikos von Schimmelbildung berechnet mit HTflux [5]

	Kondensation*	Schimme
Monat	Jänner	Dezember
θ _i [°C]	20	20
φ _{i,OK} ; φ _{i,SK} [%]	61,21	52,60
θ _e [°C]	-3,79	-2,40
φ _e [%]	80	80
T _{Rsi,min} = _{upunkt} & T _{Schimmel} [°C]	12,31	13,40
f _{Rsi,min}	0,677	0,705

^{*}Kondensationsbedingung gilt für die Betrachtung von Oberflächenkondensation und Bauteilkondensation

Unter der Berücksichtigung der Bemessungstemperaturfaktoren ist in Tab. 7 ersichtlich, dass der Jänner für die Vermeidung von Oberflächenkondensat maßgebend ist. Die Oberflächentemperatur darf mit den gegebenen Randbedingungen nicht unter 12,31 °C fallen.

Für die Vermeidung von Schimmelbildung ist hingegen der Dezember maßgebend. Hierbei darf die innere Oberflächentemperatur nicht unter 13,40 °C fallen, da die relative Luftfeuchtigkeit an der Oberfläche dabei 80 % erreicht, und dies Schimmelbildung begünstig.

4 Hygrothermische Untersuchung der Bauteile

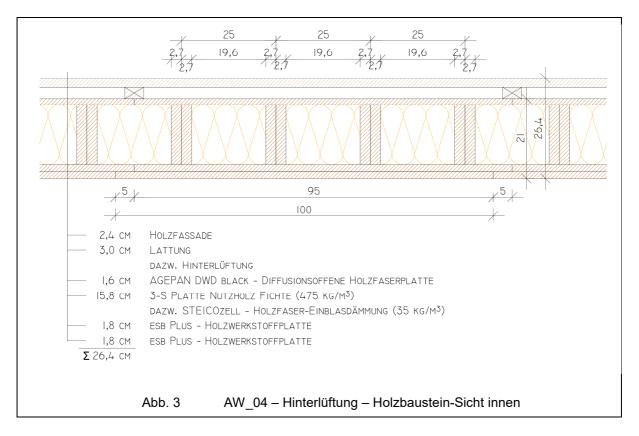
Die Ausgangsbauteile bzw. Basisvarianten der untersuchten Bauteile sind grundsätzlich in ihrer Schichtanordnung und ihren jeweiligen Dicken von den zur Verfügung gestellten Unterlagen und Zeichnungen übernommen worden.

Vorab wird untersucht, ob es sich bei den betrachteten Bauteilen um nachweisefreie Konstruktionen nach der aktuellen ÖNORM B 8110-2 [1] handelt, oder ob diffusionstechnische Nachweise zu führen sind. Zusätzlich wird auch der Entwurf der ÖNORM B 8110-2:2018-09 (Stand 2019-02-21) betrachtet.

Als nächsten Schritt werden die Wärmedurchgangskoeffizienten (U-Werte) der betrachteten Bauteile ermittelt, sowie die Tauglichkeit auf Wasserdampfdiffusion (Kondensat- und Schimmelbildung) untersucht. Die Berechnungen wurden einerseits mit dem eindimensionalen Berechnungsprogramm der Zehentmayer Energieausweis Software GEQ [4] und andererseits mit dem hygrothermischen Simulationsprogramm HTflux [5] durchgeführt. Der Vollständigkeit halber soll hierbei angemerkt werden, dass die zwei verwendeten Berechnungsprogramme andere Kriterien zur Berechnung der maßgebenden Monate verwenden. Während HTflux [5], wie in der ÖNORM B 8110-2 [1] gefordert, die maßgebenden Monate über die Bemessungs-Temperaturfaktoren, siehe Punkt 3.4, berechnet, bezieht sich GEQ [4] auf die Differenz zwischen innerer Oberflächentemperatur zu Taupunkttemperatur Oberflächentemperatur bei welcher sich 80 % relative Luftfeuchtigkeit einstellt und somit Schimmelbildung begünstigt. Folgend gibt GEQ [4] jene Monate als maßgebend aus, welche die geringste Temperaturdifferenz aufweisen.

Die Wärmeübergangswiderstände werden je nach Berechnungsart entsprechend der ÖNORM B 8110-2 [1] angepasst.

Die berechneten Wärmeströme wurden mit den Klimabedingungen für das Kondensat-Kriterium ermittelt, die zugehörigen konventionellen Wärmeübergangswiderstände in Abhängigkeit der Richtung des Wärmestroms gemäß ÖNORM EN ISO 6946 [23] gewählt.


Wird bei den untersuchten Varianten ein Problem hinsichtlich der Wärmedämm- oder Diffusionseigenschaften festgestellt, wird der Bauteil dahingehend verändert und optimiert.

Die Dicken der dampfhemmenden Folien wurden so gewählt, dass sich mit einer Dampfdiffusionswiderstandszahl von 100000 die Diffusionsvorgänge im Bauteil so auswirken, dass kein Bauteilkondensat entsteht. Es müssen daher nicht die Dicken der Folien, sondern ihre vorhandenen äquivalenten Luftschichtdicken (sd-Werte) eingehalten werden.

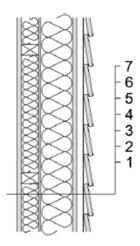
4.1 Nachweisfreie Konstruktionen It. ÖNORM B 8110-2 [1]

Die für diese Masterarbeit verwendete aktuelle ÖNORM B 8110-2 (Ausgabe: 2014-11-15) [1] legt für gewisse Bauteile fest, dass kein diffusionstechnischer Nachweis zu führen ist. Für Wände in Holzbauart bedeutet das, dass kein diffusionstechnischer Nachweis erforderlich ist, wenn die innenseitige Bauteilschicht eine diffusionsäquivalente Luftschichtdicke von ≥ 10 m aufweist und die diffusionsäquivalente Luftschichtdicke der außenliegende Bauteilschicht hingegen nicht größer als die Hälfte der innenseitig liegenden Schicht ist.

Folgend werden die zwei esb Plus-Spanplatten zusammengefasst als innenseitig liegende Bauteilschicht, die AGEPAN DWD black-Holzfaserplatte als außenliegende Schicht betrachtet. Die verwendeten Materialkennwerte sind unter Punkt 2.2 angegeben. Betrachtet wird die Außenwand AW_04 mit Hinterlüftung (nähere Betrachtung unter Punkt 4.3.4). Dadurch jede untersuchte Außenwand durch den Holzbaustein gebildet wird, können die Ergebnisse grundsätzlich auch auf die anderen Konstruktionen umgelegt werden.

s_d-Wert innen:

$$s_{di} = \mu \times d = 40 \times (2 \times 0.018 \text{ m}) = 1.44 \text{ m} < 10.0 \text{ m}$$
 (2)


Die innere äquivalente Luftschichtdicke ist kleiner als die geforderten 10 m, daher müssen sämtliche Nachweise nach der aktuellen ÖNORM B 8110-2 [1] durchgeführt werden.

4.2 Nachweisfreie Konstruktionen It. dem Entwurf der ÖNORM B 8110-2:2018-09

Im Vergleich zur nachweisfreien Konstruktion der in dieser Masterarbeit verwendeten aktuellen Ausgabe der ÖNORM B 8110-2 (Ausgabe: 2014-11-15) [1] wird in diesem Punkt der Entwurf der ÖNORM B 8110-2:2018-09 (Stand 2019-02-21) behandelt. Dabei gelten Außenbauteile in Holzbauweise, welche die folgend angeführten Anforderungen nach Tabelle 2 (siehe Abb. 4) des Entwurfs erfüllen, als Konstruktionen, für welche keinen Nachweis gegen schadensverursachende Kondensation erforderlich ist.

Tabelle 2 — s_d-Werte für nachweisfreie Außenbauteile in Leichtbauweise

Zeile	s _{di} -Wert innen	s _{de} -Wert außen
1	≥ 2,0 m oder feuchtevariable Dampfbremse	≤ 0,3 m
2	$\geq 4 \times s_{de} \text{ und} \geq 2.0 \text{ m}$	0,3 m ≤ s _{de} ≤ 4,0 m

Legende:

- 1 Bekleidung
- 2 Installationsebene mit WD oder ohne WD (R_D maximal 20 % des Gesamtwärmedurchlasswiderstandes)
- 3 Diffusionshemmende Schichte und ev. Beplankung (luftdichte Ebene, sdi-Wert siehe Tabelle 2)
- 4 Riegelkonstruktion mit einem zwischenliegenden Dämmstoff
- 5 winddichte Ebene, s_{de}-Wert siehe Tabelle 2, optional Beplankung Gesamtwärmedurchlasswiderstandes)
- 6 Hinterlüftungsebene
- 7 Außenwandverkleidung

Abb. 4 Nachweisfreie Konstruktion nach dem Entwurf der ÖNORM B 8110-2: 2018-09 (Stand 2019-02-21)

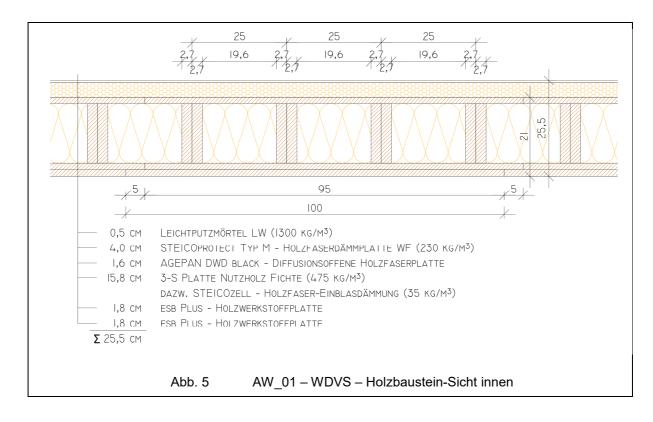
Folgend wird der Holzbaustein als die in der Norm angegebene Riegel-Konstruktion mit zwischenliegendem Dämmstoff betrachtet. Die außen liegende AGEPAN DWD black-Holzfaserplatte bildet die diffusionsoffene winddichte Schicht, die innenliegenden zwei esb Plus-Spanplatten die Diffusionshemmende. Die verwendeten Materialkennwerte sind unter Punkt 2.2 angegeben. Betrachtet wird wie schon in Punkt 4.1 die Außenwand AW_04 mit Hinterlüftung.

s_d-Wert außen:

$$s_{de} = \mu x d = 12 x 0,016 m = 0,192 m$$
 (4)

Mit der vorhandenen äußeren äquivalente Luftschichtdicke von 0,192 m wird Zeile 1 mit einem s_{de} -Wert < 0,3 m maßgebend. Daher muss die innen liegende Schicht einen s_{d} -Wert > 2,0 m aufweisen, oder eine feuchtevariable Dampfbremse enthalten.

s_d-Wert innen:


$$s_{di} = \mu \times d = 40 \times (2 \times 0.018 \text{ m}) = 1.44 \text{ m} < 2.0 \text{ m}$$
 (5)

Da die innere äquivalente Luftschichtdicke weniger als 2,0 m beträgt, ist der Holzbaustein auch nach dem Entwurf keine nachweisfreie Konstruktion und sämtliche Nachweise müssen gesondert geführt werden.

4.3 Außenwände

4.3.1 AW_01 - WDVS - Holzbaustein-Sicht innen

AW_01 ist der Standart-Aufbau der hygrothermisch zu untersuchenden Außenwand als Wärmedämmverbundsystem. Das Grundgerüst bildet der 21 cm breite Holzbaustein, auf welchem eine 4 cm dicke Holzfaserdämmplatte aufgebracht wird. Den Abschluss bildet ein Leichtputz, der die Konstruktion vor Witterung schützt. Das Innere des Holzbausteins wird bei jeder Variante mit einer STEICOzell Holzfasereinblasdämmung ausgefüllt. Innenseitig bleibt der Holzbaustein unbehandelt. Die esb Plus-Spanplatte soll eine schöne Holz-Sicht des Innenraumes ermöglichen.

1 esb Plus - Holzwerkstoffplatte

2 esb Plus - Holzwerkstoffplatte

Wärmedurchgangskoeffizient

3 3-Schicht Platte Nutzholz Fichte (475 kg/m³) dazw.

STEICOzell - Holzfaser-Einblasdämmung

5 AGEPAN DWD black - Diffusionsoffene Holzfaserplatte

	uteilbezeichnung: W01 WDVS - Holzziegel-Sich							
	uteiltyp: ßenwand		ı			A		
Wä	ärmedurchgangskoeffizient	O 6946			\prec			
		U - Wert	0,23 [\	N/m²K]				
								M 1:10
Ko	nstruktionsaufbau und Bere	echnung						
	Baustoffschichten		d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen		Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew.
Nr	Bezeichnung		[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]

6 STEICOprotect T	yp M - Holzfaserdämi	mplatte W	/F (230	0,040	5	0,051		230	9,2	
7 Leichtputzmörtel I	LW (1300 kg/m³)	0,005	5	0,490		1.300	6,5			
Bauteildicke [m]										
Flächenbezogene Masse des Bauteils [kg/m²]										
Zusammengesetzt	er Bauteil - 1 inhon	nogene 9	Schicht			(Be	erechnung	nach EN	ISO 6946)	
3-Schicht Plat:	Achsabstand [m]:	0,250	Breite [m]:	0,054			Rs	+ R _{se} =	0,170	
Oberer Grenzwert:	$R_{To} = 4,5173$	Untere	r Grenzwert:	R _{Tu} =	4,2429		R _T =	4,3801	[m ² K/W]	

U = 1 / R_T

Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

0,018

0,018

0,158

0,016

0,100

0,100

0,120

0,040

0,100

21,6

78,4

40

20

1

12

11,2

11,2

16,2

4,3

9,6

620

475

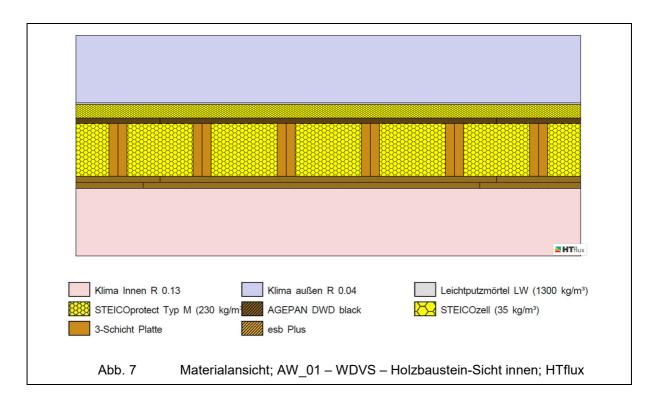
35

600

0,23 [W/m²K]

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Temperatur(80%): 18,42°C

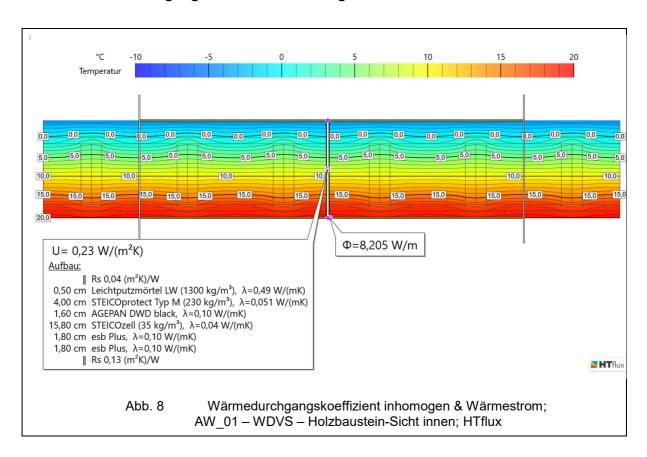
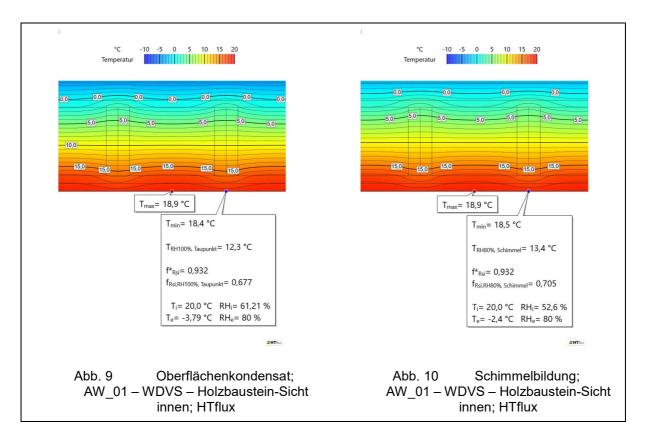
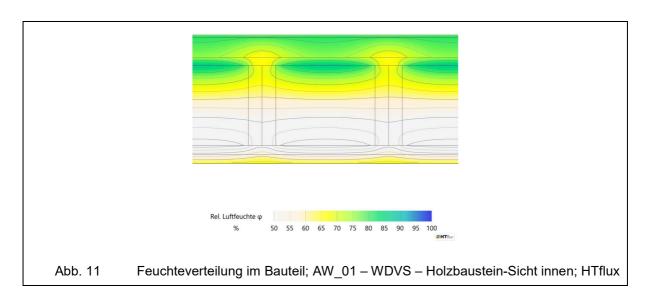

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 6 Wärmedurchgangskoeffizient & Wasserdampfdiffusion; AW_01 – WDVS – Holzbaustein-Sicht innen; GEQ

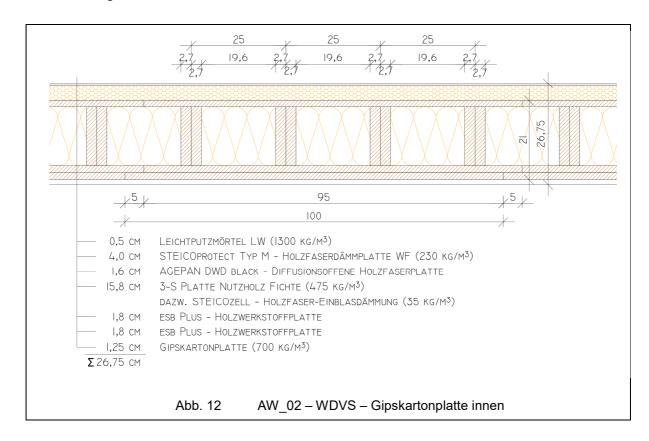

4.3.1.1 Materialansicht in HTflux [5]

4.3.1.2 Wärmedurchgangskoeffizient inhomogen & Wärmestrom



4.3.1.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat- und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.3.1.4 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

4.3.2 AW_02 - WDVS - Gipskartonpatte innen

AW_02 ist die um eine innenliegende Gipskartonplatte erweiterte Form der Außenwand AW_01. Wenn keine Holzbaustein-Sicht im Innenraum gewünscht ist kann der Innenraum dadurch ausgemalt werden.

Bauteilbezeichnung:

ı	W02 WDVS - Gipskartonplatte innen						
ı	uteiltyp: ußenwand	ı			А		
Wä	ärmedurchgangskoeffizient berechnet nach ÖNORN	O 6946					
	U - Wert	0,23 [\	N/m²K]				
							M 1:10
Ko	nstruktionsaufbau und Berechnung						
	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
\vdash	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew.
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Gipskartonplatte (700 kg/m³)	0,013	4	0,210		700	8,8
2	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
3	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
4	3-Schicht Platte Nutzholz Fichte (475 kg/m³) dazw.		20	0,120	21,6	475	16,2
	STEICOzell - Holzfaser-Einblasdämmung	0,158	1	0,040	78,4	35	4,3

Zusammengesetzter Bauteil - 1 inhomogene Schicht (Berechnung nach EN IS								ISO 6946)		
3-Schicht Plat:	Achsabst	and [m]:	0,250	Breite [m]:	0,054			R_s	+ R _{se} =	0,170
Oberer Grenzwert:	R _{To} =	4,5828	Unterer	Grenzwert:	R _{Tu} =	4,3024		R _T =	4,4426	[m ² K/W]
Wärmedurchgangskoeffizient				U = 1 / R	т			(0,23 [W/ı	n²K]

Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM Region : SB - Beckenlandschaften im Süden

Seehöhe: 448 m

0,016

0,040

0,005

0,268

0,100

0,051

0,490

5

5

600

1.300

9,6

9,2

6,5

76,9

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet

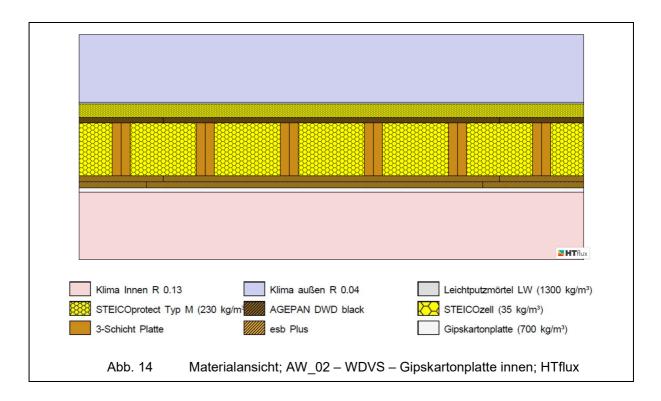
Es gibt keine Kondensation im Inneren des Bauteils.

6 AGEPAN DWD black - Diffusionsoffene Holzfaserplatte

7 STEICOprotect Typ M - Holzfaserdämmplatte WF (230

8 Leichtputzmörtel LW (1300 kg/m³)

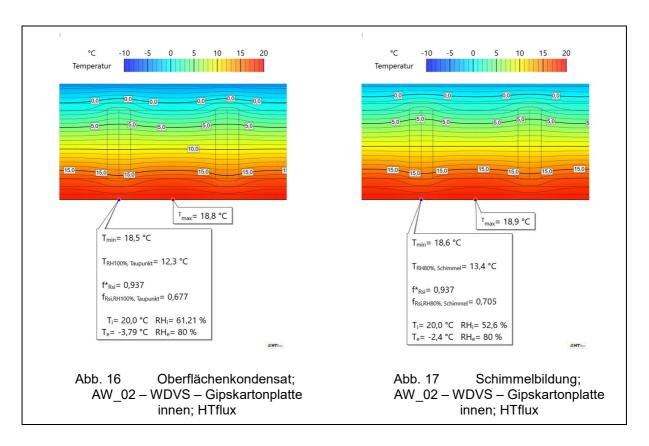
Flächenbezogene Masse des Bauteils [kg/m²]


Bauteildicke [m]

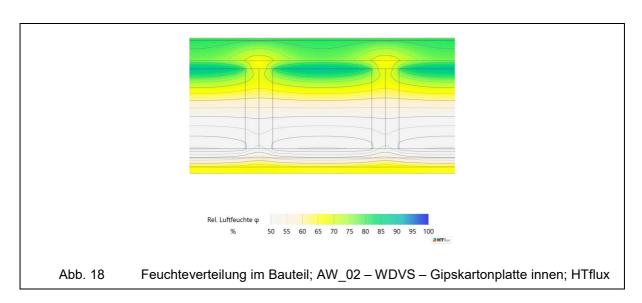
Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Temperatur(80%): 18,42°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 13 Wärmedurchgangskoeffizient & Wasserdampfdiffusion; AW 02 - WDVS - Gipskartonplatte innen; GEQ

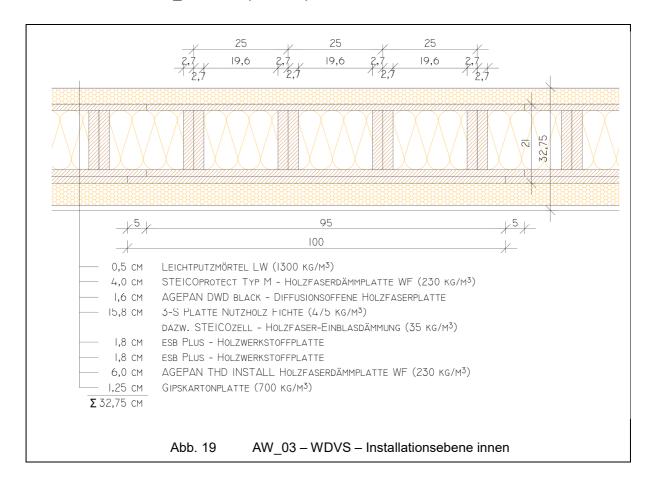

4.3.2.1 Materialansicht in HTflux [5]

4.3.2.2 Wärmedurchgangskoeffizient inhomogen & Wärmestrom



4.3.2.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.3.2.4 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

4.3.3 AW_03 - WDVS - Installationsebene innen

Bei dieser Außenwand dient eine innenliegende 6 cm dicke Holzfaserdämmplatte als Installationsebene, in welcher diverse Leitungen, wie sie in Bädern oder Küchen vorhanden sind, über die Wand nach unten in den Fußboden geführt werden können. Den Abschluss bildet wie schon in AW_02 eine Gipskartonplatte.

Bauteilbezeichnung: AW03 WDVS - Installationsebene innen Bauteiltyp: Außenwand Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946 U - Wert 0,18 [W/m²K]

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d		
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew		
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]		
1	Gipskartonplatte (700 kg/m³)	0,013	4	0,210		700	8,8		
2	AGEPAN THD INSTALL Holzfaserdämmplatte WF (230	0,060	3	0,050		230	13,8		
3	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2		
4	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2		
5	3-Schicht Platte Nutzholz Fichte (475 kg/m³) dazw.		20	0,120	21,6	475	16,2		
	STEICOzell - Holzfaser-Einblasdämmung	0,158	1	0,040	78,4	35	4,3		
7	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6		
8	STEICOprotect Typ M - Holzfaserdämmplatte WF (230	0,040	5	0,051		230	9,2		
9	Leichtputzmörtel LW (1300 kg/m³)	0,005	5	0,490		1.300	6,5		
В	auteildicke [m]	0,328							
Flächenbezogene Masse des Bauteils [kg/m²]									

Zusammengesetz	Berechnung nach EN ISO 6946)					
3-Schicht Plat:	Achsabstand [m]:	0,250 Breite [m]: 0,054		$R_{si} + R_{se} = 0,170$		
Oberer Grenzwert:	$R_{To} = 5,8716$	Unterer Grenzwert: R Tu	= 5,5024	$R_T = 5,6870 \text{ [m}^2\text{K/W]}$		
Wärmedurchgang	skoeffizient	U = 1 / R _T		0,18 [W/m²K]		

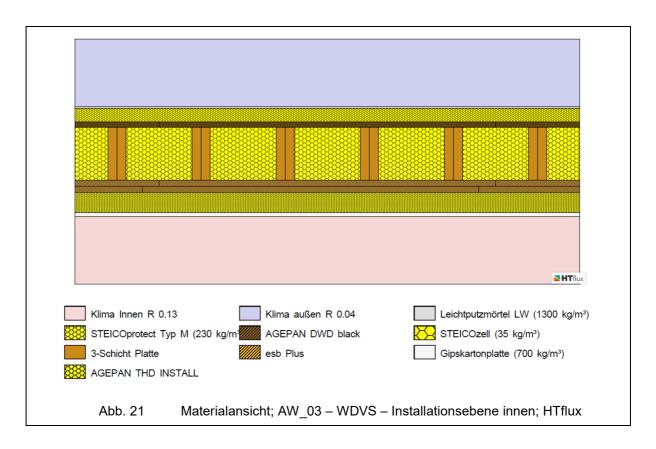
Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM Region : SB - Beckenlandschaften im Süden

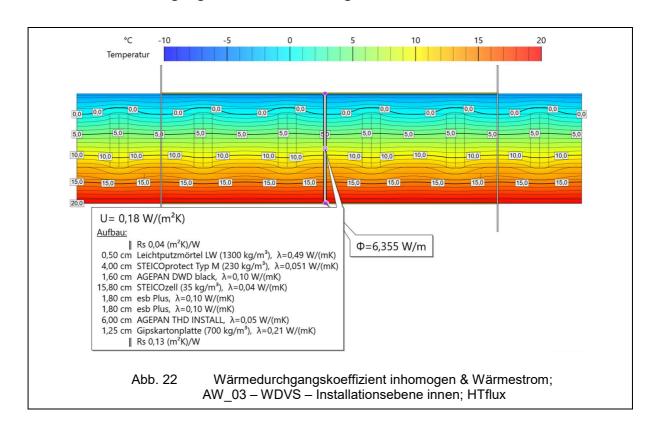
Seehöhe: 448 m

Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Taupunkttemperatur: 15,09°C

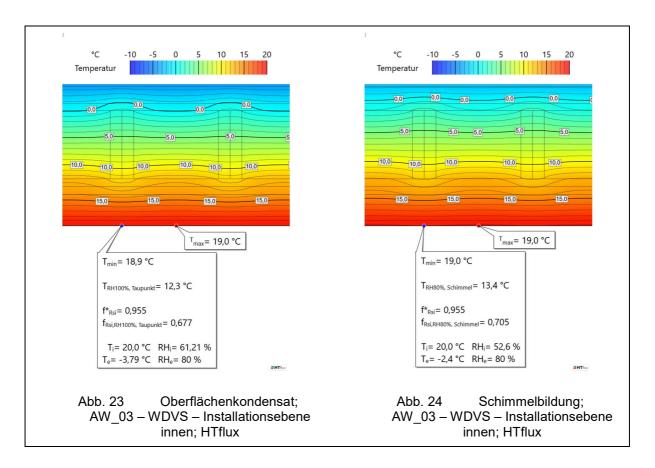
Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

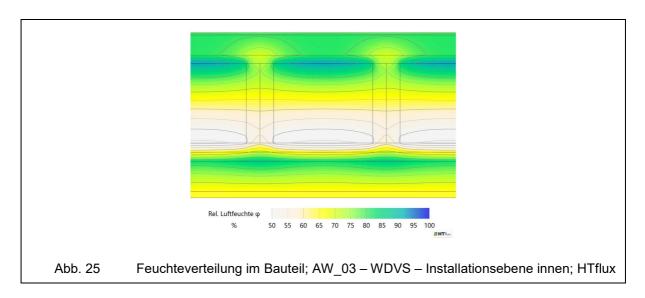
Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Temperatur(80%): 18,42°C


Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Wärmedurchgangskoeffizient & Dampfdiffusion; Abb. 20 AW 03 - WDVS - Installationsebene innen; GEQ

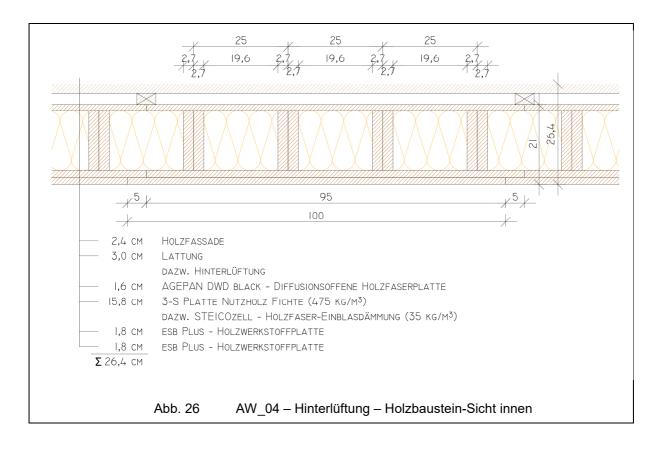

4.3.3.1 Materialansicht in HTflux [5]

4.3.3.2 Wärmedurchgangskoeffizient inhomogen & Wärmestrom



4.3.3.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.3.3.4 Feuchteverteilung im Bauteil

Durch die vorgesetzte Installationsebene lässt sich im Vergleich zu AW_01 und AW_02 eine erhöhte relative Luftfeuchte an der Innenseite der esb Plus-Spanplatten erkennen. Die Feuchteverteilung an der Innenseite der AGEPAN DWD black-Holzfaserplatte ist ähnlich. Ein Kondensat-Ausfall ist jedoch auch bei dieser Variante nicht zu erwarten.

4.3.4 AW_04 - Hinterlüftung - Holzbaustein-Sicht innen

Im Bauteil AW_04 bildet den äußeren Abschluss der Außenwand eine Holzfassade mit Hinterlüftungsebene. Der Holzbaustein deckt die gesamte statische und wärmetechnisch relevante Funktion des Bauteils ab. Die raumseitige Oberfläche bleibt wie schon in AW_01 unbehandelt.

Bauteilbezeichnung: AW04 Hinterlüftung - Holzziege	AW04 Hinterlüftung - Holzziegel-Sicht innen					
Bauteiltyp: Außenwand hinterlüftet			ı		A	
Wärmedurchgangskoeffizient	berechnet nach ÖN	IORM EN ISO 6946				
	U - Wert	0,28 [W/m²K]				
					M 1 : 10	

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
2	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
3	3-Schicht Platte Nutzholz Fichte (475 kg/m3) dazw.	0,158	20	0,120	21,6	475	16,2
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	78,4	35	4,3
5	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6
6	Lattung dazw.	* 0,030	20	0,120	5,0	475	0,7
	Hinterlüftung	*	1	0,025	95,0	1	0,0
8	Holzfassade	* 0,024	20	0,120		475	11,4
Ва	auteildicke (wärmetechnisch relevant) [m]	0,210					
Ва	auteildicke gesamt [m]	0,264					
FI	ächenbezogene Masse des Bauteils [kg/m²]						64,6

Zusammengesetzt	Berechnung nach EN ISO 6946)						
3-Schicht Platte	Achsabstand [m]:	0,250 Breite [m]:	0,054		$R_{si} + R_{se} = 0,260$		
Lattung:	Achsabstand [m]:	1,000 Breite [m]:	0,050				
Oberer Grenzwert:	$R_{To} = 3,7206$	Unterer Grenzwert:	R _{Tu} =	3,5384	$R_T = 3,6295 \text{ [m}^2\text{K/W]}$		
Wärmedurchgang	skoeffizient	U = 1 / R	Т		0,28 [W/m²K]		

^{*...} diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)

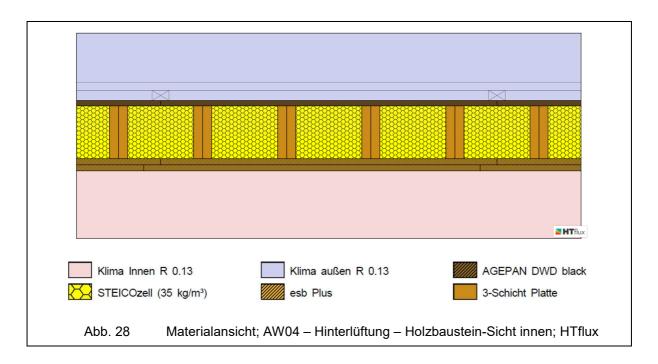
Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Temperatur(80%): 18,42°C

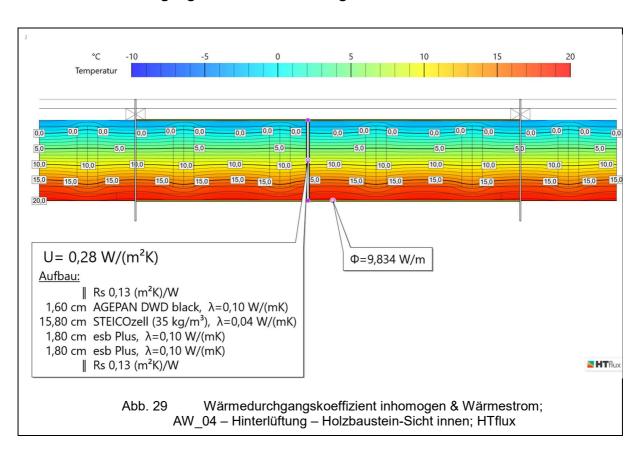
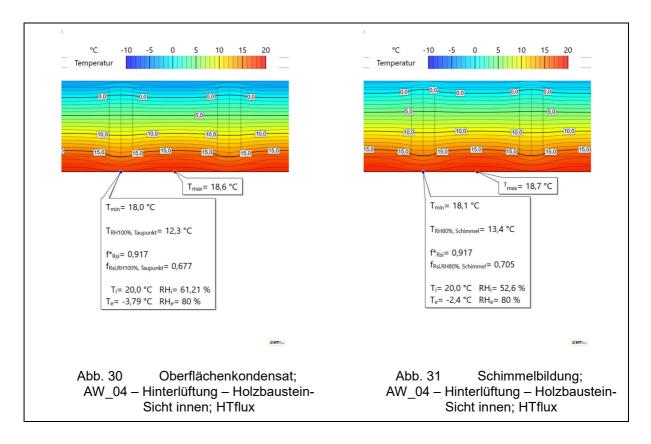
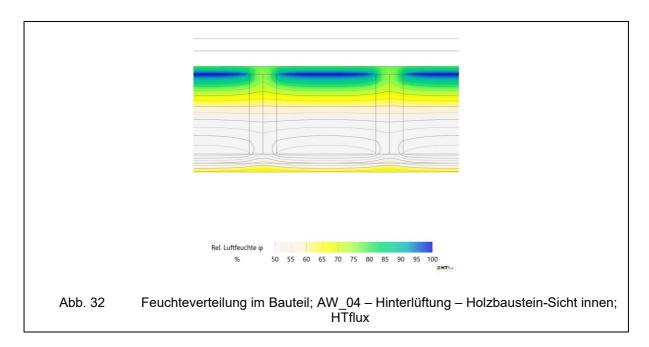

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 27 Wärmedurchgangskoeffizient & Dampfdiffusion; AW_04 – Hinterlüftung – Holzbaustein-Sicht innen; GEQ

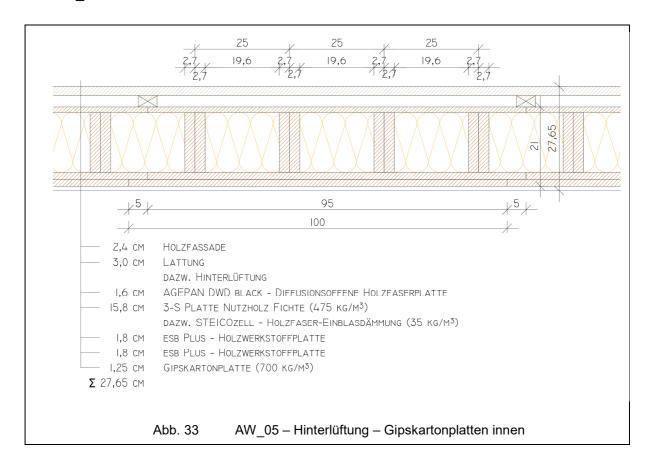

4.3.4.1 Materialansicht in HTflux [5]

4.3.4.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.3.4.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.3.4.4 Feuchteverteilung im Bauteil

Es lässt sich erkennen, dass an der Innenseite der AGEPAN DWD black-Holzfaserplatte der Diffusionsstrom gehemmt wird und die relative Luftfeuchtigkeit sehr hohe Werte annimmt. Kondensat bildet sich jedoch keines. Auf die sich einstellende Luftfeuchtigkeit wird unter Punkt 8 näher eingegangen.

4.3.5 AW_05 - Hinterlüftung - Gipskartonplatte innen

AW_05 ist die um eine Gipskartonplatte an der inneren Raumoberfläche erweiterte Variante von AW_04.

Bauteilbezeichnung: AW05 Hinterlüftung - Gipskart	onplatte innen			
Bauteiltyp: Außenwand hinterlüftet				A
Wärmedurchgangskoeffizient	berechnet nach ÖN	IORM EN ISO 6946		
	U - Wert	0,27 [W/m ² K]		
			M 1 :	10

Κr	onstruktionsau	fhau und Re	rechi	nuna							M 1 : 10
	Baustoffschic			9		d	μ	λ	Anteil	ρ	ρ *d
	von innen nach a	ußen				Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgev
Nr	Bezeichnung					[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Gipskartonplatte	(700 kg/m³)				0,013	4	0,210		700	8,
2	esb Plus - Holzwe	erkstoffplatte			0,018	40	0,100		620	11,	
3	esb Plus - Holzwe	erkstoffplatte				0,018	40	0,100		620	11,
4	3-Schicht Platte N	Nutzholz Fichte	(475 k	g/m³) da	zw.	0,158	20	0,120	21,6	475	16,
	STEICOzell - I	Holzfaser-Einbl	asdäm	mung			1	0,040	78,4	35	4,
6	AGEPAN DWD b	lack - Diffusions	soffene	e Holzfas	erplatte	0,016	12	0,100		600	9,
7	Lattung dazw.					* 0,030	20	0,120	5,0	475	0,
	Hinterlüftung					*	1	0,025	95,0	1	0,
9	Holzfassade					* 0,024	20	0,120		475	11,
Ва	auteildicke (wärme	etechnisch rele	evant)	[m]		0,223		•			
Ва	auteildicke gesam	ıt [m]				0,277					
FI	ächenbezogene M	Masse des Bau	ıteils [kg/m²]			l				73,4
Ζι	ısammengesetzt	ter Bauteil						(B	erechnung	nach EN	ISO 6946
;	3-Schicht Platte Achsabstand [m]: 0,250 Breite [m]:								R_s	+ R _{se} =	0,260
-	Lattung:	Achsabstand		1,000	Breite [m]:	0,050			3	. 50	
O	berer Grenzwert:	$R_{T_0} = 3.7$	7898	Untere	r Grenzwert:	R=	3.5979		R - =	3,6938	[m ² K/W]

^{*...} diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)

Wärmedurchgangskoeffizient

Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

 Randbedingungen:
 Innentemp.: gemäß ÖNORM
 Außentemp.: gemäß ÖNORM

 Luftfeuchtigkeit:
 Außen: gemäß ÖNORM
 Innen: gemäß ÖNORM

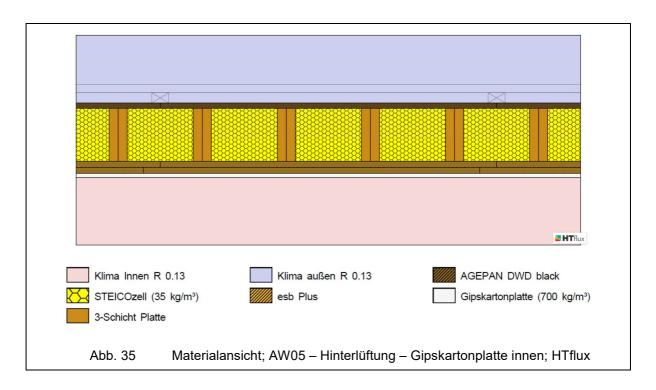
Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

0,27 [W/m²K]

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Taupunkttemperatur: 15,09°C

U = 1 / R_T

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Temperatur(80%): 18,42°C

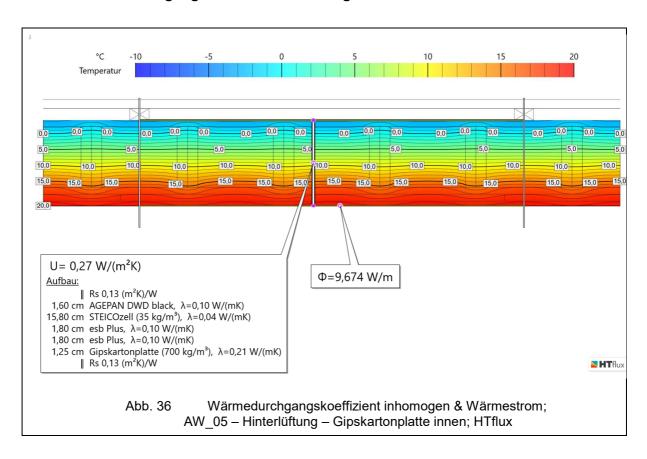
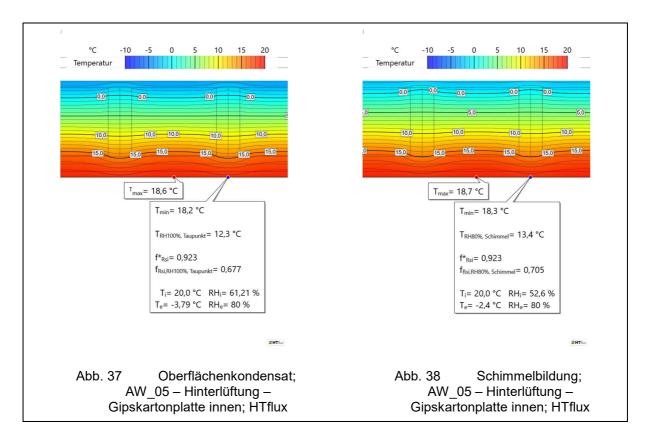
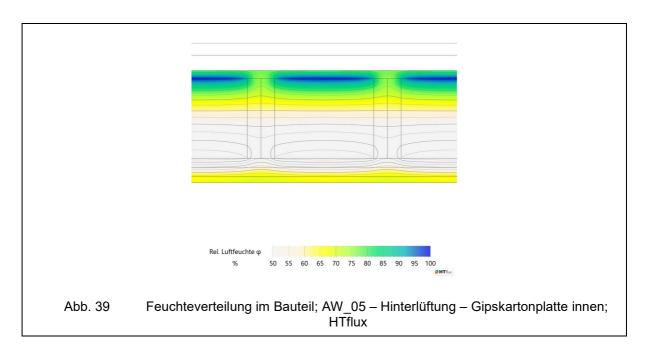

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 34 Wärmedurchgangskoeffizient & Dampfdiffusion; AW_05 – Hinterlüftung – Gipskartonplatte innen; GEQ

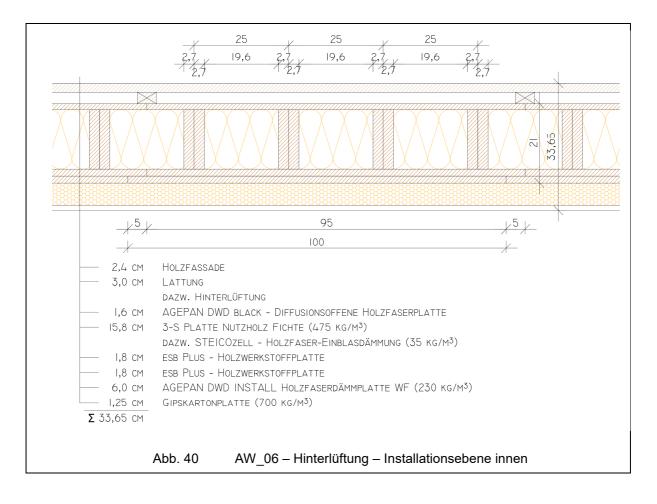

4.3.5.1 Materialansicht in HTflux [5]

4.3.5.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.3.5.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.3.5.4 Feuchteverteilung im Bauteil

Diese Simulation weißt ähnliche Ergebnisse auf wie die Betrachtung von AW_04. Es fällt auch hier kein Kondensat im Bauteilinneren an. Auf die sich einstellende Luftfeuchtigkeit wird unter Punkt 8 näher eingegangen

4.3.6 AW_06 - Hinterlüftung - Installationsebene innen

Bei dieser Außenwand bildet wie schon in Variante AW_03 den innenliegenden Abschluss eine 6 cm dicke Holzfaserdämmplatte mit Gipskarton verkleidet. Diese dient als Installationsebene, in welcher diverse Leitungen, wie sie in Bädern oder Küchen vorhanden sind, über die Wand nach unten in den Fußboden geführt werden können.

Bauteilbezeichnung: AW06 Hinterlüftung - Installation	onsebene innen			
Bauteiltyp: Außenwand hinterlüftet			,	A
Wärmedurchgangskoeffizient	berechnet nach ÖN	ORM EN ISO 6946		
	U - Wert	0,20 [W/m ² K]		
				M 1 : 10

	Baustoffschio	chten			d	μ	λ	Anteil	ρ	ρ *d
	von innen nach a	außen			Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgev
Nr	Bezeichnung				[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Gipskartonplatte	(700 kg/m³)			0,013	4	0,210		700	8,8
2	AGEPAN THD IN	NSTALL Holzfaserdän	mplatte V	VF (230	0,060	3	0,050		230	13,8
3	esb Plus - Holzw	erkstoffplatte	0,018	40	0,100		620	11,2		
4	esb Plus - Holzw	erkstoffplatte	0,018	40	0,100		620	11,2		
5	3-Schicht Platte Nutzholz Fichte (475 kg/m³) dazw.					20	0,120	21,6	475	16,2
	STEICOzell -	Holzfaser-Einblasdän	nmung			1	0,040	78,4	35	4,0
7	AGEPAN DWD	olack - Diffusionsoffen	e Holzfas	erplatte	0,016	12	0,100		600	9,6
8	Lattung dazw.				* 0,030	20	0,120	5,0	475	0,7
	Hinterlüftung				*	1	0,025	95,0	1	0,0
10	Holzfassade				* 0,024	20	0,120		475	11,4
Ва	uteildicke (wärm	etechnisch relevant)	[m]		0,283					
Ва	uteildicke gesan	nt [m]			0,337					
Fla	ächenbezogene	Masse des Bauteils [kg/m²]							87,2
Zι	ısammengesetz	ter Bauteil					(B	erechnung	nach EN	ISO 6946)
(3-Schicht Platte	0,054			R_s	+ R _{se} =	0,260			
- 1	_attung:	Achsabstand [m]:	1,000	Breite [m]:	0,050					

^{*...} diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)

Oberer Grenzwert: R_{To} = 5,1215 Unterer Grenzwert:

Wärmedurchgangskoeffizient

Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

 Randbedingungen:
 Innentemp.: gemäß ÖNORM
 Außentemp.: gemäß ÖNORM

 Luftfeuchtigkeit:
 Außen: gemäß ÖNORM
 Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

R_{Tu}=

4,7979

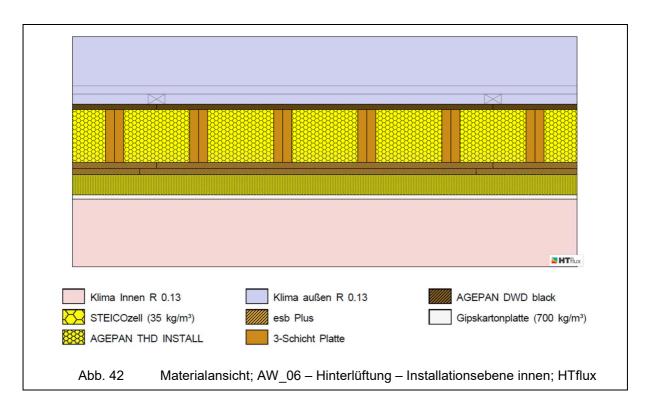
4,9597 [m²K/W]

0,20 [W/m²K]

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Taupunkttemperatur: 15,09°C

U = 1 / R_T

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Temperatur(80%): 18,42°C

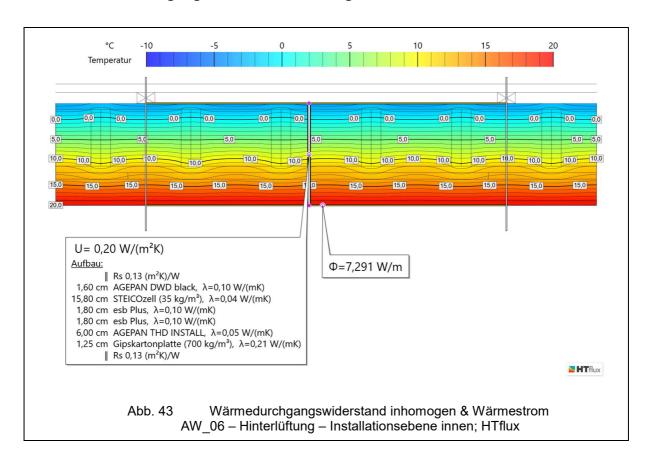
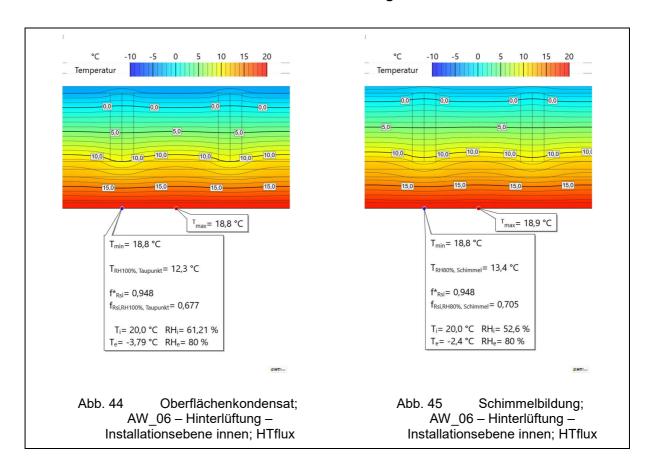
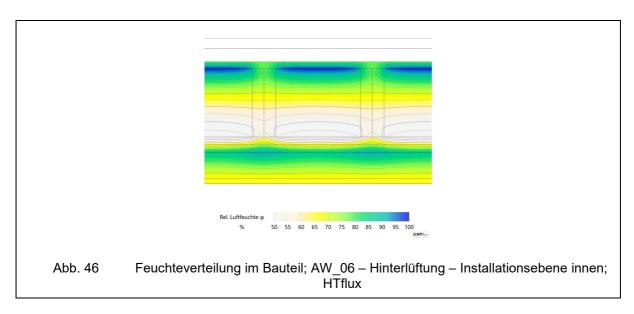

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 41 Wärmedurchgangskoeffizient & Dampfdiffusion; AW_06 – Hinterlüftung – Installationsebene innen; GEQ


4.3.6.1 Materialansicht in HTflux [5]

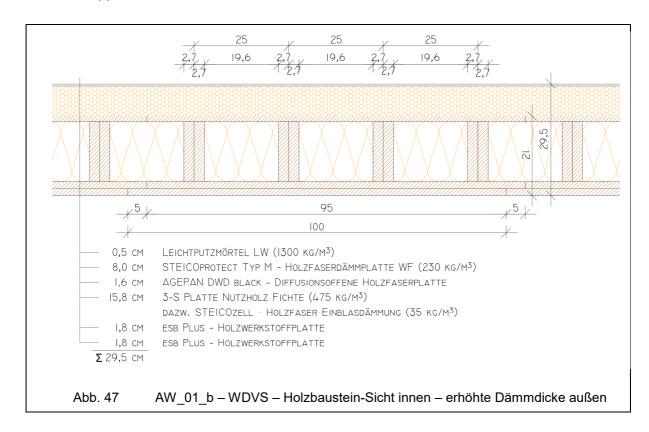
4.3.6.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.3.6.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.3.6.4 Feuchteverteilung im Bauteil



In Abb. 46 lässt sich erkennen, dass wie schon in den Varianten AW_04 und AW_05 an der außenliegenden AGEPAN DWD black-Holzfaserplatte der Dampfstrom stark gehemmt wird und eine relativ hohe Feuchtigkeit vorherrscht. Auf die Auswirkungen wird unter Punkt 8 näher eingegangen.

Es fällt kein Kondensat im Bauteilinneren an

4.3.7 AW_01_b - WDVS - Holzbaustein-Sicht innen - erhöhte Dämmdicke außen

Durch die Detail-Untersuchungen wird immer wieder auf den Lösungsvorschlag einer außenseitig höheren Dicke der Dämmung verwiesen. Aus diesem Grund wird in dieser Variante der Standard-Wandaufbau AW_01 herangezogen und die äußere Dämmstärke auf 8 cm verdoppelt.

Bauteilbezeichnung:
AW08 AW_01_b - WDVS - Holzziegel-Sicht innen

Bauteiltyp:
Außenwand

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946
U - Wert 0,19 [W/m²K]

Konstruktionsaufbau und Berechnung											
	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d				
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew				
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]				
1	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2				
2	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2				
3	3-Schicht Platte Nutzholz Fichte (475 kg/m³) dazw.		20	0,120	21,6	475	16,2				
	STEICOzell - Holzfaser-Einblasdämmung	0,158	1	0,040	78,4	35	4,3				
5	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6				
6	STEICOprotect Typ M - Holzfaserdämmplatte WF (230	0,080	5	0,051		230	18,4				
7	Leichtputzmörtel LW (1300 kg/m³)	0,005	5	0,490		1.300	6,5				
Ва	auteildicke [m]	0,295									
Flächenbezogene Masse des Bauteils [kg/m²]											

Zusammengesetzter Bauteil - 1 inhomogene Schicht (Berechnung nach EN ISO 694										
3-Schicht Plat:	Achsabstand [m]:	0,250 Breite [m]:	0,054	$R_{si} + R_{se} = 0,170$						
Oberer Grenzwert:	R _{To} = 5,3674	Unterer Grenzwert:	R _{Tu} = 5,02	$R_T = 5,1973 \text{ [m²K/W]}$						
Wärmedurchgang	skoeffizient	U = 1 / R	Т	0,19 [W/m²K]						

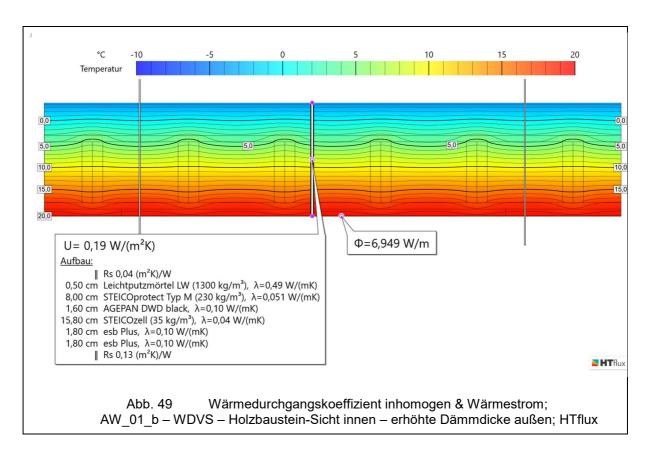
Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

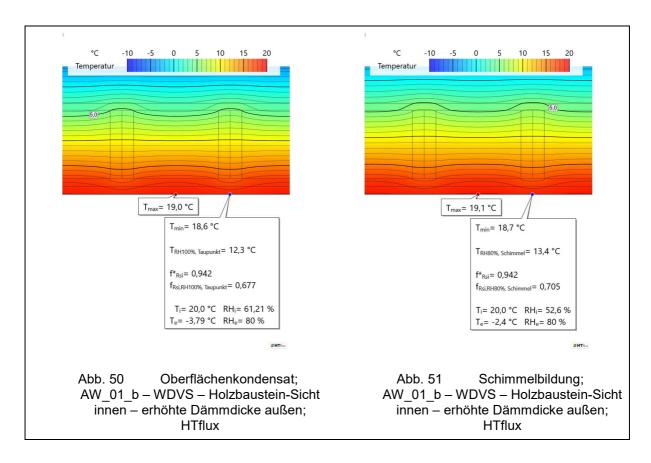
Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

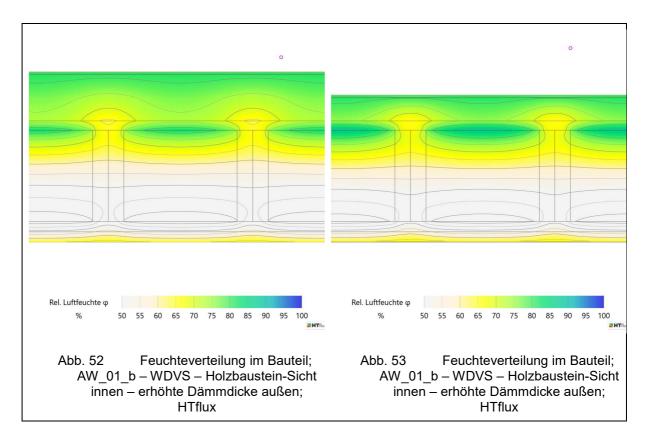
Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Temperatur(80%): 18,42°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet


Abb. 48 Wärmedurchgangskoeffizient & Wasserdampfdiffusion; AW_01_b - WDVS - Holzbaustein-Sicht innen - erhöhte Dämmdicke außen; GEQ

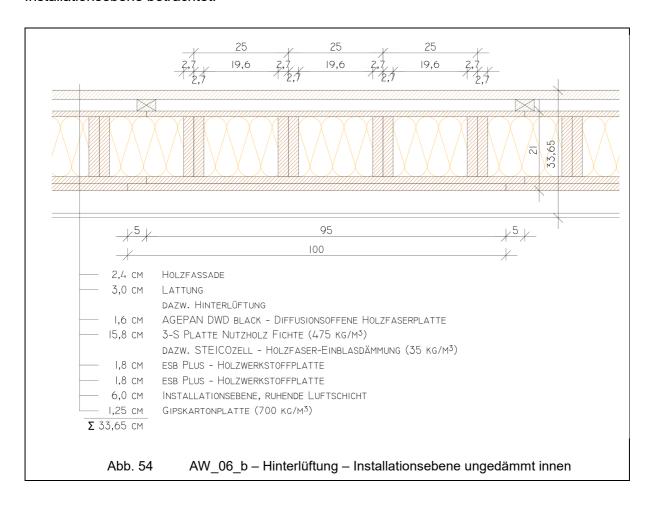
4.3.7.1 Wärmedurchgangskoeffizient inhomogen & Wärmestrom

Wie in Abb. 49 ersichtlich ist, verbessert sich der Wärmedurchgangskoeffizient im Vergleich zu AW_01 um 0,04 W/(m²K).


4.3.7.2 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat- und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

Durch die Erhöhung der Dämmdicke erhöhen sich auch die Oberflächentemperaturen innenseitig. Die minimalen Oberflächentemperaturen bei der Untersuchung zur Vermeidung von Oberflächenkondensat und des Risikos zur Schimmelbildung erhöhen sich jeweils um 0,2°C.



Es fällt kein Kondensat im Bauteilinneren an.

Wie im Vergleich von Abb. 52 und Abb. 53 ersichtlich ist, bewirkt eine Erhöhung der außenliegenden Dämmdicke eine Reduktion der sich einstellenden relativen Feuchtigkeit im Bauteil, speziell an der Innenseite der außenliegenden AGEPAN DWD black-Holzfaserplatte. Dies ist noch besser bei der Detail-Untersuchung von SD_05_h unter Punkt 6.7.8 erkennbar.

4.3.8 AW_06_b - Hinterlüftung - Installationsebene ungedämmt innen

In Variante AW_06_b wird die hinterlüftete Außenwand AW_06 mit ungedämmter Installationsebene betrachtet.

Bauteilbezeichnung: AW07 AW_06_b - Hinterlüftung Installationsebene innen, ruhende Luftschicht

Bauteiltyp:
Außenwand hinterlüftet

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,26 [W/m²K]

Ko	nstruktionsauf	bau und Berech	nung			<u>'</u>				
	Baustoffschich	nten			d	μ	λ	Anteil	ρ	ρ *d
	von innen nach au	ıßen			Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung				[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Gipskartonplatte (700 kg/m³)			0,013	4	0,210		700	8,8
2	Luft steh., W-Fluss	s horizontal 55 < d	<= 60 mm		0,060	1	0,333		1	0,1
3	esb Plus - Holzwe	rkstoffplatte			0,018	40	0,100		620	11,2
4	esb Plus - Holzwe	rkstoffplatte	0,018	40	0,100		620	11,2		
5	3-Schicht Platte N	utzholz Fichte (475 k	0,158	20	0,120	21,6	475	16,2		
	STEICOzell - H		1	0,040	78,4	35	4,3			
7	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte					12	0,100		600	9,6
8	Lattung dazw.				* 0,030	20	0,120	5,0	475	0,7
	Hinterlüftung				*	1	0,025	95,0	1	0,0
10	Holzfassade				* 0,024	20	0,120		475	11,4
Ba	auteildicke (wärme	technisch relevant)	[m]		0,283					
Ва	auteildicke gesamt	[m]			0,337					
Fla	ächenbezogene M	lasse des Bauteils [kg/m²]							73,4
71	ısammengesetzte	ar Rautail					(B	erechnung	nach EN	ISO 6946)
	· ·				0,054		(D	-		
								R_{si}	+ R _{se} =	0,260
		0,050	0.7704		-	0.0074	OLZ () A ()			
	perer Grenzwert:	$R_{To} = 3,9967$	R _{Tu} =	3,7781		R _T =	3,8874			
W	Värmedurchgangskoeffizient $U = 1 / R_T$				т			_ C	,26 [W/n	n²K]

^{*...} diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)

Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

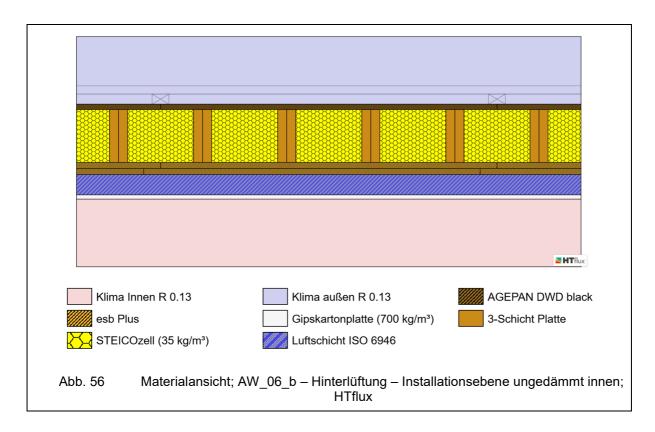
 Randbedingungen:
 Innentemp.: gemäß ÖNORM
 Außentemp.: gemäß ÖNORM

 Luftfeuchtigkeit:
 Außen: gemäß ÖNORM
 Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,92°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,92°C Temperatur(80%): 18,42°C

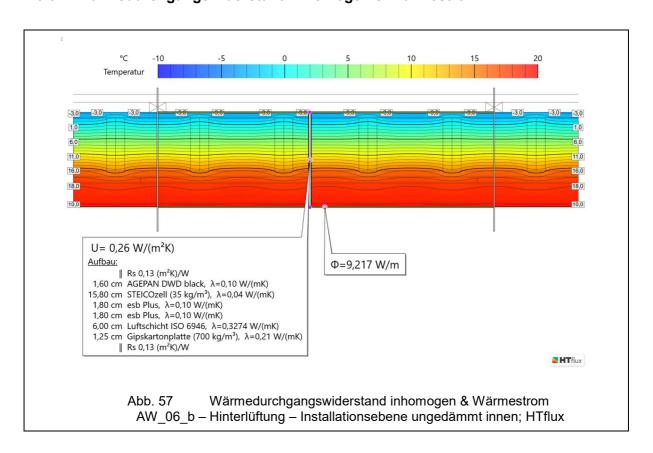
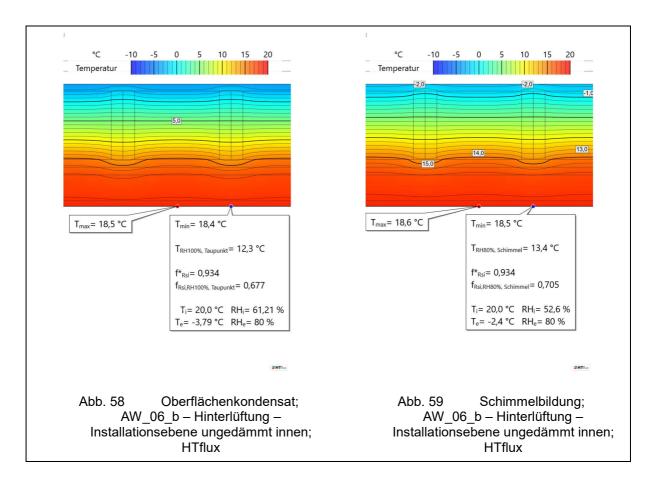
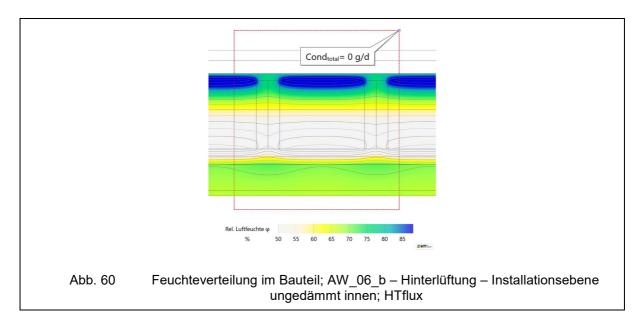

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 55 Wärmedurchgangskoeffizient & Dampfdiffusion; AW_06_b – Hinterlüftung – Installationsebene ungedämmt innen; GEQ


4.3.8.1 Materialansicht in HTflux [5]

4.3.8.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.3.8.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.3.8.4 Feuchteverteilung im Bauteil

Auch wenn in Abb. 60 kein Bauteilkondensat ausgegeben wird, ist diese Variante als Außenwand kritisch zu betrachten Die relative Luftfeuchtigkeit nimmt an der Innenseite der außen liegenden AGEPAN DWD black-Holzfaserplatte sehr hohe Werte an, die zu einer Schädigung des Bauteils führen kann. Siehe auch Anmerkung unter Punkt 5 und die Betrachtung der sich einstellenden Holzfeuchte unter Punkt 8.

4.4 Erdberührte Fußböden

4.4.1 FBE_01 - Ausgangsbauteil

FB_01 ist die Basisvariante des erdberührten Fußbodens. Durch zuerst eindimensionale Untersuchungen des Bauteils mit Hilfe des Programmes GEQ [4] und anschließender zweidimensionaler Betrachtung mittels HTflux [5], wird die Basisvariante soweit verändert, dass sie hygrothermisch unproblematisch ist. Die Abdichtung wird bewusst unterhalb der Dämmschicht ausgeführt um Beschädigungen während der Bauausführung, vor allem beim Bewehren und darauffolgendem Betonierten der Fundamentplatte zu minimieren bzw. gänzlich zu vermeiden. In weiterer Folge wird jedoch auch eine Variante mit bituminöser Abdichtung auf der warmen Seite der Dämmebene betrachtet, siehe Punkt 4.4.8.

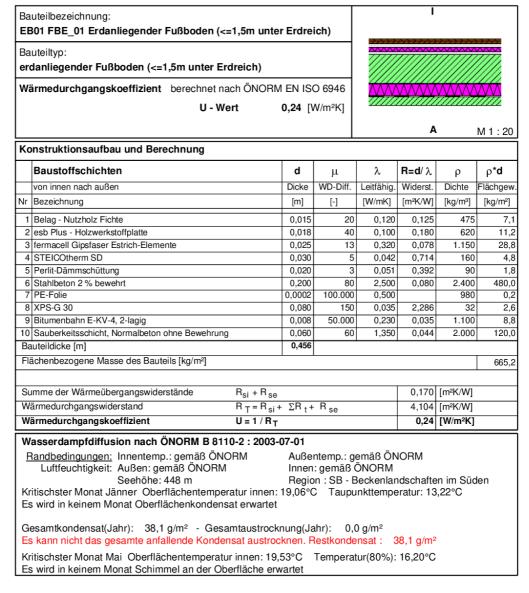
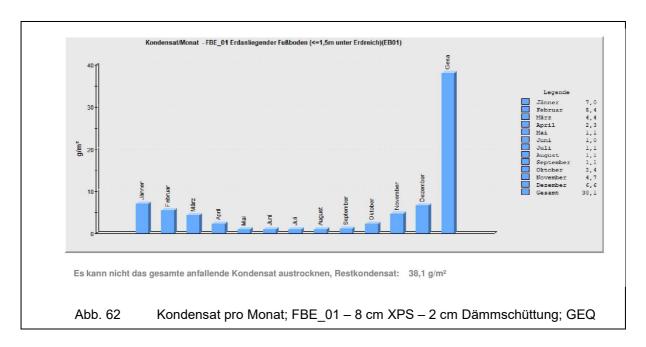
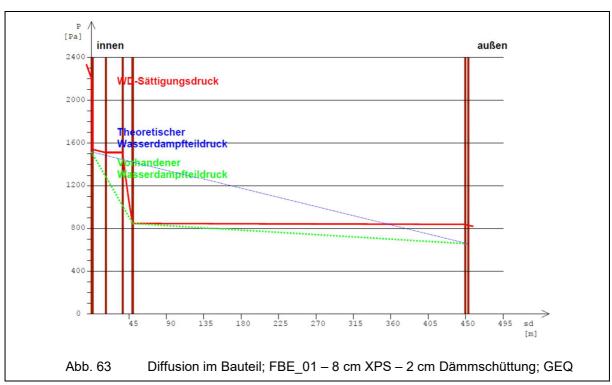




Abb. 61 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_01 – 8 cm XPS – 2 cm Dämmschüttung; GEQ

Im erdberührte Fußboden FBE_01 bildet sich Kondensat, welches über die Sommermonate nicht austrocknen kann, siehe Abb. 61, Abb. 62 und Abb. 63. Das Kondensat fällt in der Dämmebene an. Der Dampfstrom wird durch die auf der kalten Seite liegende Bauwerksabdichtung gehemmt. Daher wird in der nächsten Variante FBE_01_b an der Oberseite des Stahlbeton-Fundamentes eine bituminöse Dampfsperre E-ALGV-4, die auch als Schutz gegen aufsteigende Feuchte der Fußschwelle des Holzbausteins fungiert, angeordnet.

4.4.2 FBE_01_b - E-ALGV-4

FBE_01_b ist der um eine auf der Oberseite der Stahlbeton-Fundamentplatte angeordnete bituminöse Dampfsperre erweiterter Aufbau der Variante FBE_01. Durch die Dampfsperre soll das anfallende Kondensat im Bauteil reduziert werden.

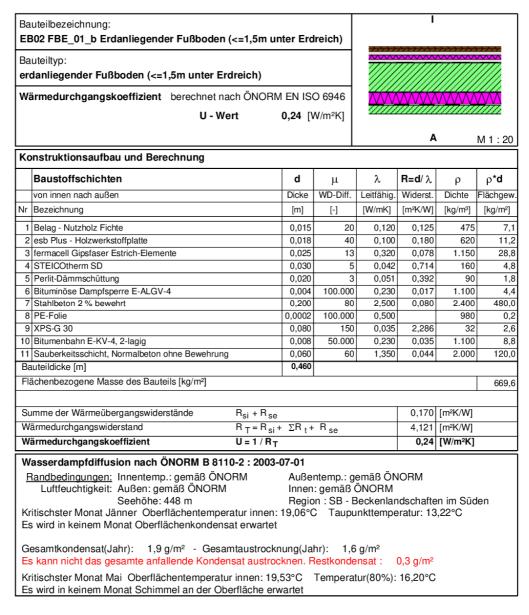
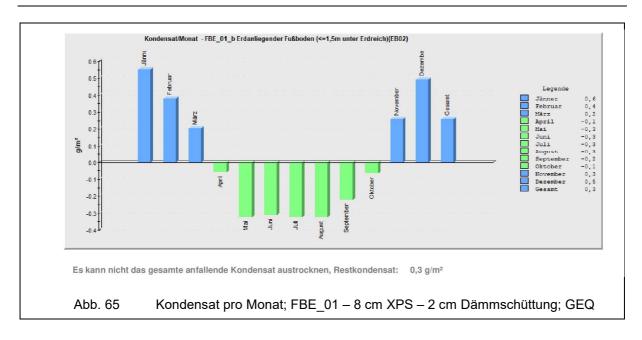



Abb. 64 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_01_b - 8 cm XPS - 2 cm Dämmschüttung; GEQ

Durch das Anordnen der bituminösen Dampfsperre E-ALGV-4 über der Stahlbeton-Fundamentplatte kann das gesamt anfallende Kondensat über die Sommermonate noch immer nicht austrocknen. Daher wird in der nächsten Variante eine dichtere Dampfsperre E-ALGV-5 angeordnet.

4.4.3 FBE_01_c - E-ALGV-5

In FBE_01_c wird auf der Oberseite des Stahlbeton-Fundamentes eine bituminöse Dampfsperre E-ALGV-5 angeordnet. Durch die Dampfsperre soll das anfallende Kondensat im Bauteil reduziert werden.

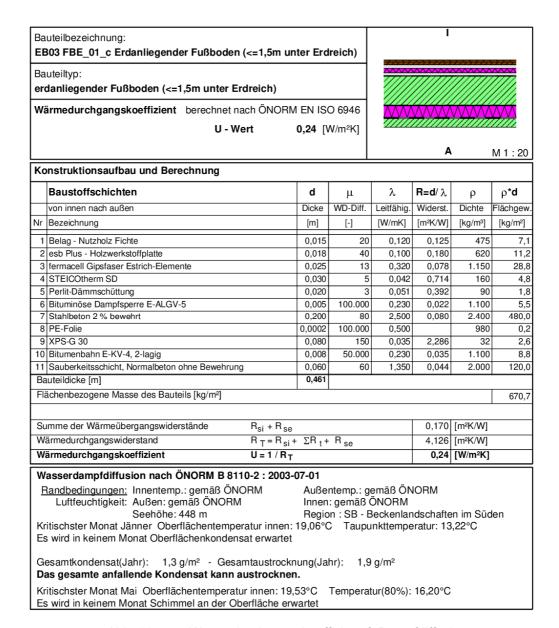
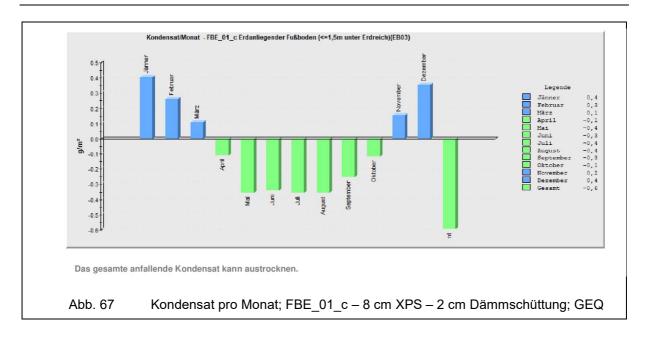



Abb. 66 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_01_c - 8 cm XPS - 2 cm Dämmschüttung; GEQ

Das gesamt anfallende Kondensat kann über die Sommermonate austrocknen.

4.4.4 FBE_02 – erhöhte Dämmschüttung

In FBE_02 wurde der Aufbau FBE_01_c insofern verändert, dass die Dicke der Perlit-Dämmschüttung auf 8 cm erhöht und eine dampfhemmende Folie mit einem sd-Wert von 150 m über der Trittschalldämmung angeordnet wurde. Der Hintergrund der Veränderung ist sich bildendes Bauteilkondensat, welches unter Punkt 6.3 näher beschrieben wird. Zuerst wird aber ermittelt, ob durch die Anordnung der dampfhemmenden Folie über der Trittschalldämmung die bituminöse Dampfsperre entfallen kann.

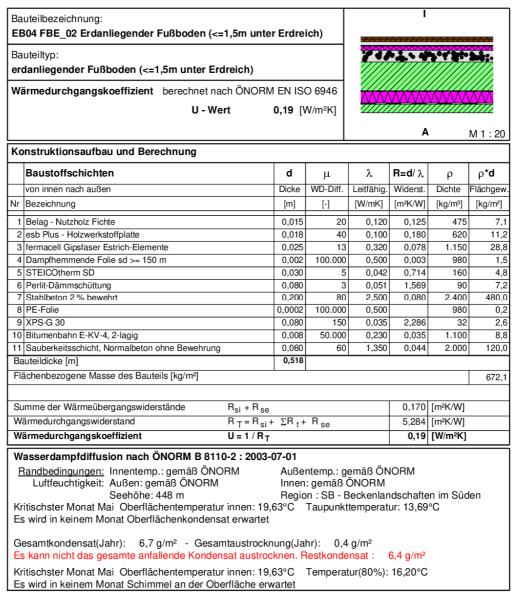
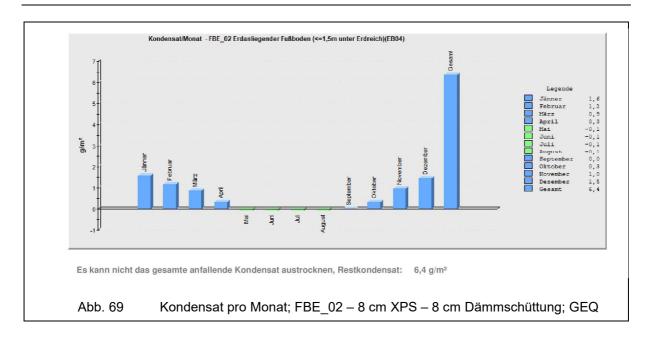
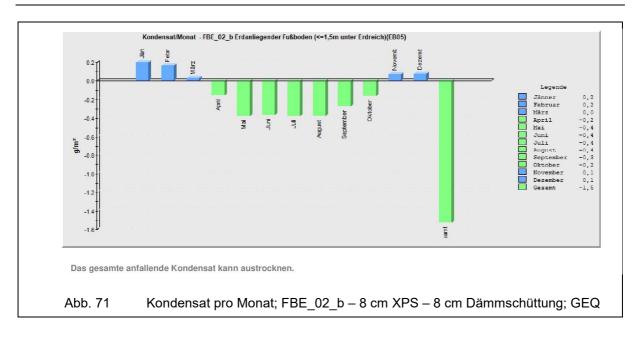



Abb. 68 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_02 – 8 cm XPS – 8 cm Dämmschüttung; GEQ

Trotz des Anordnens der dampfhemmenden Folie mit einem sd-Wert von 150 m über der Trittschalldämmung bildet sich Kondensat im Bauteil. Wie schon in Variante FBE_01 wird das anfallende Bauteilkondensat mittels einer bituminösen Dampfsperre E-ALGV-5 auf der Oberkante der Stahlbeton-Fundamentplatte reduziert, siehe Punkt 4.4.3.

4.4.5 FBE_02_b - erhöhte Dämmschüttung + E-ALGV-5


FBE_02_b ist der um eine bituminöse Dampfsperre erweiterte Aufbau von FBE_02. Durch die Dampfsperre wird das anfallende Bauteilkondensat reduziert.

	uteiltyp: danliegender Fußboden (<=1,5m un	ter Erdreich)							
W	ärmedurchgangskoeffizient berech	net nach ÖNORI	RM EN ISO 6946					$\frac{1}{\sqrt{\Lambda}}$	
	ι	J - Wert	0,19 [\	N/m²K]					
						A	i	M 1 : 20	
Kc	nstruktionsaufbau und Berechnung	l							
	Baustoffschichten		d	μ	λ	$R=d/\lambda$	ρ	ρ *d	
	von innen nach außen		Dicke	WD-Diff.	Leitfähig.	Widerst.	Dichte	Flächgew	
Nr	Bezeichnung		[m]	[-]	[W/mK]	[m²K/W]	[kg/m³]	[kg/m²]	
1	Belag - Nutzholz Fichte		0,015	20	0,120	0,125	475	7,	
	esb Plus - Holzwerkstoffplatte		0,018	40	0,100	,	620	11,3	
	fermacell Gipsfaser Estrich-Elemente		0.025	13	0.320	0.078	1.150	28.	
	Dampfhemmende Folie sd >= 150 m		0,002	100.000	0,500	- ,	980	1,	
	STEICOtherm SD		0.030	5	0,042	0,714	160	4,	
_	Perlit-Dämmschüttung		0.080	3	0,051	1,569	90	7,	
	Bituminöse Dampfsperre E-ALGV-5		0,005	100.000	0,230	0,022	1.100	5,	
	Stahlbeton 2 % bewehrt		0,200	80	2,500	0,080	2.400	480,	
9	PE-Folie		0,0002	100.000	0,500	,	980	0,2	
10	XPS-G 30		0,080	150	0,035	2,286	32	2,	
11	Bitumenbahn E-KV-4, 2-lagig		0,008	50.000	0,230	0,035	1.100	8,	
12	Sauberkeitsschicht, Normalbeton ohne Bew	ehrung	0,060	60	1,350	0,044	2.000	120,	
Ва	auteildicke [m]		0,523						
Fla	ächenbezogene Masse des Bauteils [kg/m²	2]						677,6	
Sı	ımme der Wärmeübergangswiderstände	R _{si} + R _{se}				0,170	[m ² K/W]		
W	ärmedurchgangswiderstand	$R_T = R_{si}$	+ ΣR ₊ +	R se		5,306	[m ² K/W]		
W	ärmedurchgangskoeffizient	U = 1 / R _T				0,19	[W/m ² K]		
Wärmedurchgangskoeffizient U = 1 / R _T 0,19 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Außentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Innen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,63°C Taupunkttemperatur: 13,69°C Es wird in keinem Monat Oberflächenkondensat erwartet									

Abb. 70 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_02_b - 8 cm XPS - 8 cm Dämmschüttung; GEQ

Kritischster Monat Mai Oberflächentemperatur innen: 19,63°C Temperatur(80%): 16,20°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Das gesamt anfallende Kondensat kann über die Sommermonate austrocknen.

4.4.6 FBE_03 - erhöhte Dämmschüttung + 20 cm XPS

FBE_03 ist die Optimierung der Variante FBE_02_b, wobei vorerst wieder ermittelt wird, ob dieser Aufbau ohne die bituminöse Dampfsperre auf der Oberseite der Fundamentplatte funktioniert. Der Anlass für die Optimierung ist wie schon in FBE_02 das Kondensat im Bauteilinneren und wird unter Punkt 6.3 näher erläutert.

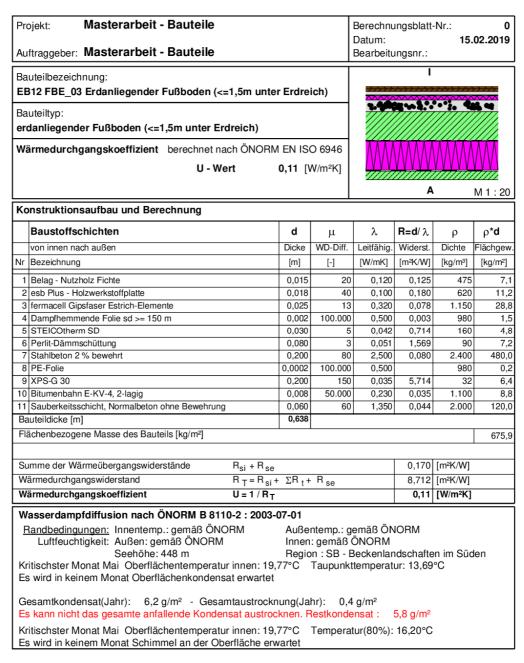
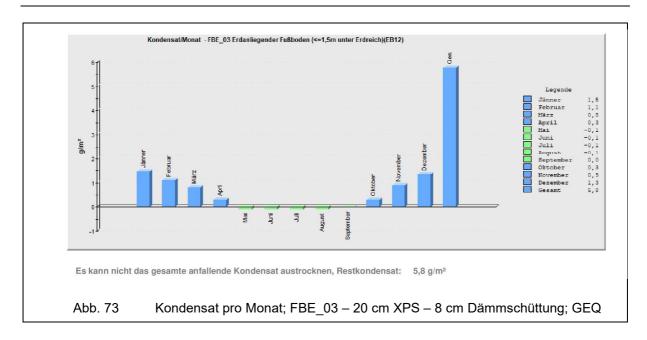



Abb. 72 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_03 – 20 cm XPS – 8 cm Dämmschüttung; GEQ

Auch in Variante FBE_03 bildet sich Bauteilkondensat, welches nicht über die Sommermonate austrocknen kann. Es wird daher wie in den vorhergehenden Varianten eine bituminöse Dampfsperre an der Oberseite der Stahlbeton-Fundamentplatte angeordnet.

4.4.7 FBE_03_b - optimierter Bauteil

Bauteilbezeichnung:

FBE_03_b ist der um eine bituminöse Dampfsperre erweiterte Aufbau von FBE_03. Durch die Dampfsperre wird das anfallende Bauteilkondensat reduziert.

Nr Bezeichnung [m] [-] [W/mK] [m²K/W] [kg/m³] [kg/m²] 1 Belag - Nutzholz Fichte 0,015 20 0,120 0,125 475 7 2 esb Plus - Holzwerkstoffplatte 0,018 40 0,100 0,180 620 11 3 fermacell Gipsfaser Estrich-Elemente 0,025 13 0,320 0,078 1.150 28 4 Dampfhemmende Folie sd >= 150 m 0,002 100.000 0,500 0,003 980 1 5 STEICOtherm SD 0,030 5 0,042 0,714 160 4 6 Perlit-Dämmschüttung 0,080 3 0,051 1,559 90 7 7 Bituminöse Dampfsperre E-ALGV-5 0,005 100.000 0,230 0,022 1.100 5 8 Stahlbeton 2 % bewehrt 0,200 80 2,500 0,080 2.400 480 9 PE-Folie 0,0002 100.000 0,500	EE	813 FBE_03_b Erdanliegender Fußboden (<=1,5เ	m unter Er	dreich)	$\rightarrow \rightarrow \rightarrow \rightarrow$	/>>//	^ ✓ √ ✓ √ ✓	$\longrightarrow\longrightarrow\longrightarrow$
Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946 U - Wert 0,11 [W/m²K] A M 1 : 2 Konstruktionsaufbau und Berechnung Baustoffschichten d μ νοι innen nach außen λ R=d/ λ ρ ρ γ*d ρ γ*d Ivon innen nach außen Dicke WD-Diff. Leitfähig. Widerst. Dichte Flächge Worderst. Dichte Flächge Widerst. Dichte Flä		• •			<u> </u>			
No. No.	er	danliegender Fußboden (<=1,5m unter Erdreich)						
Raustoffschichten d μ λ R=d/ λ ρ ρ*d γ*d γ*d γ*d R=d/ λ ρ ρ*d γ*d	Wä	irmedurchgangskoeffizient berechnet nach ÖNG	ORM EN IS	SO 6946		()()()	MAMA	
Baustoffschichten d		U - Wert	0,11 [[W/m²K]	<u> </u>	<u>V V V V V</u>	VVVV	V V V
Baustoffschichten					1////	/////// A	<i></i>	M 1 · 20
Baustoffschichten	Ko	netruktioneaufhau und Berechnung						W 1 . 20
von innen nach außen Dicke WD-Diff. Leitfähig. Widerst. Dichte Flächge Nr Bezeichnung [m] [·] [W/mk] [m²k/W] [kg/m²] 7 2 esb Plus - Holzwerkstoffplatte 0,018 40 0,100 0,120 0,120 0,120 0,120 0,120 0,120 0,020 11 15 28 4Dampfhemmende Folie sd >= 150 m 0,025 13 0,320 0,078 1,150 28 4Dampfhemmende Folie sd >= 150 m 0,002 100.000 0,500 0,003 39 0 1 4 6Perlit-Dämnschüttung 0,080 3 0,051 1,560 0,042 0,714 160 4 6 1,569 90 7	-							I
Nr Bezeichnung m [-]			d		λ		·	· .
Belag - Nutzhotz Fichte		von innen nach außen	Dicke	WD-Diff.	Leitfähig.	Widerst.	Dichte	Flächgew
2 esb Plus - Holzwerkstoffplatte 0,018 40 0,100 0,180 620 11 3 fermacell Gipsfaser Estrich-Elemente 0,025 13 0,320 0,078 1.150 28 4 Dampfhemmende Folie sd >= 150 m 0,002 100.000 0,500 0,003 980 1 5 STEICOtherm SD 0,030 5 0,042 0,714 160 4 6 Perlit-Dämmschüttung 0,080 3 0,051 1,569 90 7 7 Bituminöse Dampfsperre E-ALGV-5 0,005 100.000 0,230 0,022 1.100 5 8 Stahlbeton 2 % bewehrt 0,200 80 2,500 0,080 2.400 480 9 PE-Folie 0,0002 100.000 0,500 980 0 0 10 XPS-G 30 0,200 150 0,035 5,714 32 6 11 Bitumenbahn E-KV-4, 2-lagig 0,008 50.000 0,230 0,035 1.100 8 12 Sauberkeitsschicht, Normalbeton ohne Bewehrung 0,643 0,643 0,44 0,00 1.00 0,035 1.100 0	Nr	Bezeichnung	[m]	[-]	[W/mK]	[m ² K/W]	[kg/m³]	[kg/m²]
3 fermacell Gipsfaser Estrich-Elemente	1	Belag - Nutzholz Fichte	0,015	5 20	0,120	0,125	475	7,1
4 Dampfhemmende Folie sd >= 150 m 0,002 100.000 0,500 0,003 980 1 5 STEICOtherm SD 0,030 5 0,042 0,714 160 4 6 Perlit-Dämmschüttung 0,080 3 0,051 1,569 90 7 7 Bituminöse Dampfsperre E-ALGV-5 0,005 100.000 0,230 0,022 1.100 5 8 Stahlbeton 2 % bewehrt 0,200 80 2,500 0,080 2.400 480 9 PE-Folie 0,0002 100.000 0,500 980 0 10 XPS-G 30 0,200 150 0,035 5,714 32 6 11 Bitumenbahn E-KV-4, 2-lagig 0,008 50.000 0,230 0,035 1.100 8 12 Sauberkeitsschicht, Normalbeton ohne Bewehrung 0,060 60 1,350 0,044 2.000 120 Bauteildicke [m] 0,643 Flächenbezogene Masse des Bauteils [kg/m²] 681 681 Wärmedurchgangswiderstände R ₁ + R ₁ + R ₂ 8,734 9,770 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,	2	esb Plus - Holzwerkstoffplatte	0,018	3 40	0,100	0,180	620	11,2
5 STEICOtherm SD	3	fermacell Gipsfaser Estrich-Elemente	0,025	13	0,320	0,078	1.150	28,8
6 Perlit-Dämmschüttung	4	Dampfhemmende Folie sd >= 150 m	0,002	100.000	0,500	0,003	980	1,5
7 Bituminöse Dampfsperre E-ALGV-5 0,005 100.000 0,230 0,022 1.100 5 8 Stahlbeton 2 % bewehrt 0,200 80 2,500 0,080 2.400 480 9 PE-Folie 0,0002 100.000 0,500 980 0 10 XPS-G 30 0,200 150 0,035 5,714 32 6 11 Bitumenbahn E-KV-4, 2-lagig 0,008 50.000 0,230 0,035 1.100 8 12 Sauberkeitsschicht, Normalbeton ohne Bewehrung 0,060 60 1,350 0,044 2.000 120 Bauteildicke [m] 0,643	5	STEICOtherm SD	0,030	5	0,042	0,714	160	4,8
8 Stahlbeton 2 % bewehrt 0,200 80 2,500 0,080 2.400 480 9 PE-Folie 0,0002 100.000 0,500 980 0 0 0 0 0 0 0 0 0	6	Perlit-Dämmschüttung	0,080	3	0,051	1,569	90	7,2
9 PE-Folie 0,0002 100.000 0,500 980 0 10 XPS-G 30 0,200 150 0,035 5,714 32 6 11 Bitumenbahn E-KV-4, 2-lagig 0,008 50.000 0,230 0,035 1.100 8 12 Sauberkeitsschicht, Normalbeton ohne Bewehrung 0,060 60 1,350 0,044 2.000 120 Bauteildicke [m] 0,643 Flächenbezogene Masse des Bauteils [kg/m²] 681 Summe der Wärmeübergangswiderstände R _{Si} + R _{Se} 0,170 [m²K/W] Wärmedurchgangswiderstand R _T = R _{si} + ΣR _t + R _{se} 8,734 [m²K/W] Wärmedurchgangskoeffizient U = 1 / R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Seehöhe: 448 m Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	7	Bituminöse Dampfsperre E-ALGV-5	0,005	100.000	0,230	0,022	1.100	5,5
10 XPS-G 30	8	Stahlbeton 2 % bewehrt	0,200	80	2,500	0,080	2.400	480,0
11 Bitumenbahn E-KV-4, 2-lagig 0,008 50.000 0,230 0,035 1.100 8 12 Sauberkeitsschicht, Normalbeton ohne Bewehrung 0,060 60 1,350 0,044 2.000 120 Bauteildicke [m] 0,643 Flächenbezogene Masse des Bauteils [kg/m²] 681 Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W] Wärmedurchgangswiderstand R _T = R _{si} + ΣR _t + R _{se} 8,734 [m²K/W] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	-		0,0002	100.000	,			0,2
12 Sauberkeitsschicht, Normalbeton ohne Bewehrung Bauteildicke [m] Flächenbezogene Masse des Bauteils [kg/m²] Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W] Wärmedurchgangswiderstand R _T = R _{si} + ΣR _t + R _{se} 8,734 [m²K/W] Wärmedurchgangskoeffizient U = 1/R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	10	XPS-G 30	0,200	150	0,035	5,714	32	6,4
Bauteildicke [m] Flächenbezogene Masse des Bauteils [kg/m²] Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W] Wärmedurchgangswiderstand R _T = R _{si} + ΣR _t + R _{se} 8,734 [m²K/W] Wärmedurchgangskoeffizient U=1/R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Innen: gemäß ÖNORM Seehöhe: 448 m Region: SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	l .	, 00	0,008	50.000	0,230	0,035	1.100	8,8
Flächenbezogene Masse des Bauteils [kg/m²] 681 Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W] Wärmedurchgangswiderstand R _T = R _{si} + ∑R _t + R _{se} 8,734 [m²K/W] Wärmedurchgangskoeffizient U = 1 / R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	12	Sauberkeitsschicht, Normalbeton ohne Bewehrung	0,060	60	1,350	0,044	2.000	120,0
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W] Wärmedurchgangswiderstand R _T = R _{si} + ΣR _t + R _{se} 8,734 [m²K/W] Wärmedurchgangskoeffizient U = 1 / R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	Ba	uteildicke [m]	0,643	3		•		•
Wärmedurchgangswiderstand R T = R si + ∑R t + R se 8,734 [m²K/W] Wärmedurchgangskoeffizient U = 1 / RT 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Außentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	Flá	achenbezogene Masse des Bauteils [kg/m²]						681,4
Wärmedurchgangswiderstand R _T = R _{si} + ∑R _t + R _{se} 8,734 [m²K/W] Wärmedurchgangskoeffizient U = 1 / R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	_					0.470	F 014/04/0	
Wärmedurchgangskoeffizient U = 1 / R _T 0,11 [W/m²K] Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Außentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Innen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C		31						
Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01 Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C		·		+ R _{se}		1 ' 1		
Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM Region: SB - Beckenlandschaften im Süden Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C	W	ärmedurchgangskoeffizient U = 1	/R _T			0,11	[W/m ² K]	
Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Taupunkttemperatur: 13,69°C		landbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM	Auße Inner	n: gemäß (ÖNORM		on im Cö-	lon
		itischster Monat Mai Oberflächentemperatur innen	: 19,77°C					ien

Abb. 74 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_03_b - 20 cm XPS - 8 cm Dämmschüttung; GEQ

Gesamtkondensat(Jahr): 0,8 g/m² - Gesamtaustrocknung(Jahr): 2,0 g/m²

Kritischster Monat Mai Oberflächentemperatur innen: 19,77°C Temperatur(80%): 16,20°C

Das gesamte anfallende Kondensat kann austrocknen.

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Wie in Abb. 75 ersichtlich ist, kann das gesamt anfallende Kondensat im Bauteil über das Jahr austrocknen.

4.4.8 FBE_04 – Abdichtung auf warmer Seite der Dämmung, optimierter Bauteil

Bei folgend betrachtetem erdberührtem Fußboden wird die Abdichtung auf die warme Seite der Dämmung verlegt. Dies hat den Vorteil, dass die bituminöse Dampfsperre auf der Oberseite des Stahlbetonfundamentes entfallen kann. Jedoch sollte darauf hingewiesen werden, dass eine sehr genaue Ausführung beim Herstellen der Fundamentplatte erfolgen muss. Beim Betonier-Vorgang kann durch das Herumsteigen auf der Bewehrung die Abdichtung durchdrückt werden und somit Undichtheiten entstehen. Es muss daher jedenfalls eine durchstanzsichere Schutzlage (It. ÖNORM B 3692 [11]) auf der Abdichtung angeordnet werden.

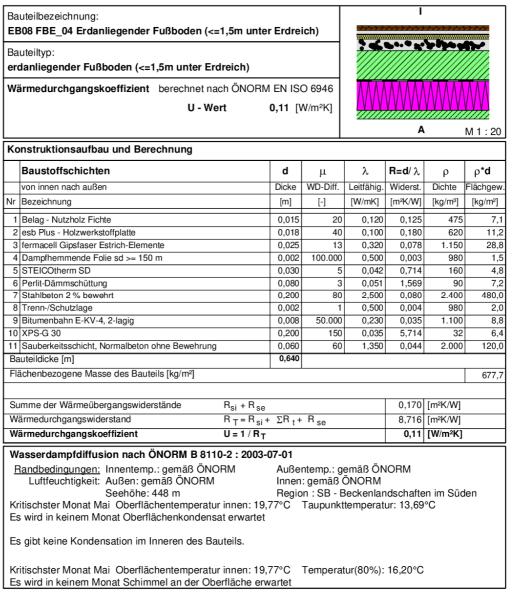
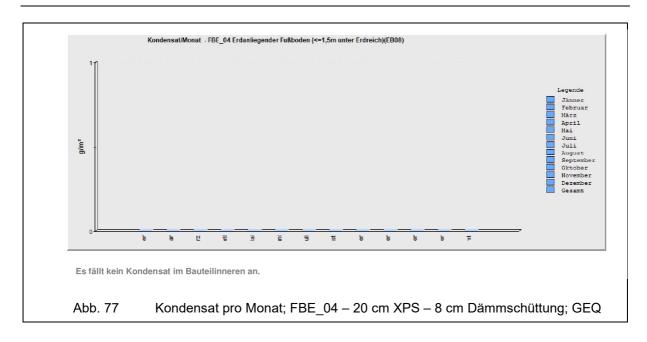
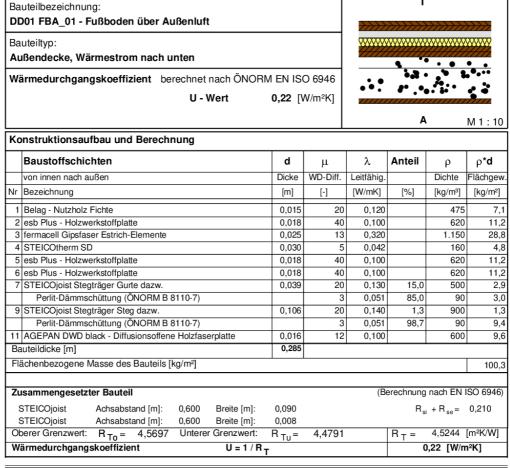



Abb. 76 Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_04 – 20 cm XPS – 8 cm Dämmschüttung; GEQ



Dadurch die Abdichtung auf der warmen Seite der Dämmung angeordnet wurde, fällt in keinem Monat Kondensat im Inneren des Bauteils an. Es ist nurmehr im Bereich der Fußschwelle des Holzbausteins eine Abdichtung gegen aufsteigende Feuchtigkeit vorzusehen. Auf diese wird in der Detail-Ausbildung in Kapitel 6 näher eingegangen.

4.5 Fußböden über Außenluft

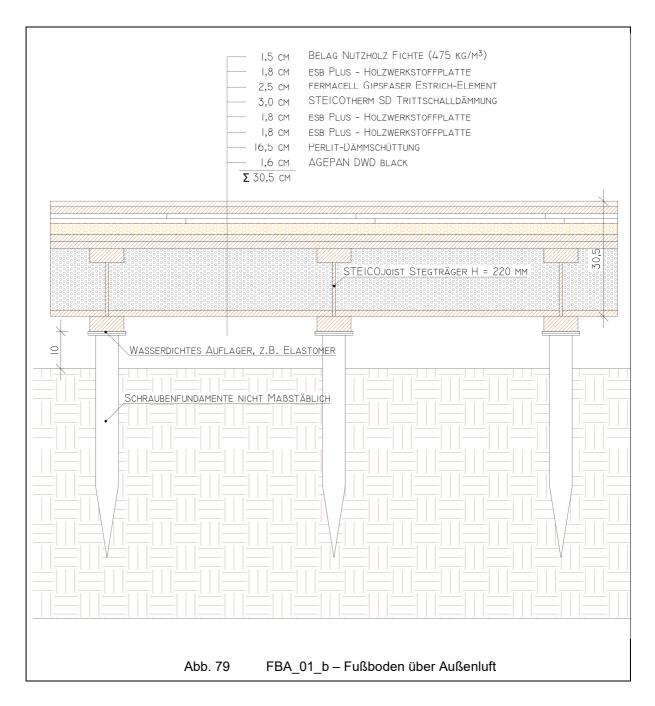
4.5.1 FBA_01 - Ausgangsbauteil

FBA_01 ist ein auf Schraubenfundamenten aufgeständerter Fußboden über Außenluft. In einem Raster von 60 cm über den Schraubenfundamenten ausgedämmte STEICOjoist-Stegträger bilden das Tragsystem, auf welchem der Fußbodenaufbau aufliegt. Wie aus den zur Verfügung gestellten Plänen gemessen, wurde die Höhe der Stegträger mit 20 cm gewählt.

Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Seehöhe: 448 m
Region: SB - Beckenlandschaften im Süden
Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C
Es wird in keinem Monat Oberflächentemperatur innen: 19,91°C
Taupunkttemperatur: 15,09°C
Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C
Temperatur(80%): 18,42°C
Es wird in keinem Monat Schimmel an der Oberfläche erwartet


Abb. 78 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_01 – Fußboden über Außenluft; GEQ

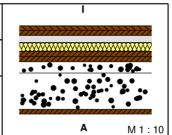
Wie in Abb. 78 ersichtlich ist, beträgt der Wärmedurchgangskoeffizient 0,22 W/(m²K). Nach OIB-RL 6 [15] darf der U-Wert bei Decken über Außenluft höchstens 0,20 W/(m²K) betragen, aus diesem Grund wird in der nächsten Variante die Höhe des Stegträgers soweit erhöht, bis die Anforderungen an den wärmeübertragenden Bauteil erfüllt sind.

Eine weitere Möglichkeit die U-Wert Anforderungen zu erfüllen und die Höhe des Stegträgers zu belassen, wäre, anstelle der Perlit-Dämmschüttung eine bessere Dämmung mit schlechterer Wärmeleitfähigkeit zu wählen.

4.5.2 FBA_01_b - optimierter Bauteil

Durch die Vorgabe der Perlit-Dämmschüttung und die mit ihr einhergehende Wärmeleitfähigkeit muss die Dicke des Dämmstoffes erhöht werden, um die U-Wert Anforderungen an die OIB-RL 6 [15] zu erfüllen. Mit der betrachteten Ausführungsweise ist dies mit der nächsten Größe des STEICOjoist-Stegträgers mit einer Höhe von 22 cm zu erreichen.

Bauteilbezeichnung:


DD02 FBA_01_b - Fußboden über Außenluft

Bauteiltyp:

Außendecke, Wärmestrom nach unten

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

0,20 [W/m²K]

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte	0,015	20	0,120		475	7,
2	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
3	fermacell Gipsfaser Estrich-Elemente	0,025	13	0,320		1.150	28,8
4	STEICOtherm SD	0,030	5	0,042		160	4,8
5	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
6	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
7	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	85,0	90	3,0
9	STEICOjoist Stegträger Steg dazw.	0,126	20	0,140	1,3	900	1,5
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	98,7	90	11,2
11	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6
Ва	auteildicke [m]	0,305					
Fla	ächenbezogene Masse des Bauteils [kg/m²]						102,4

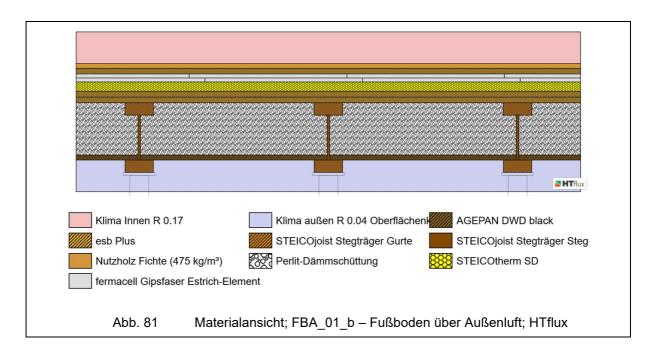
Zusammengesetzt	er Bauteil					(B	erechnung	nach EN	ISO 6946)
STEICOjoist	Achsabstand [m]:	0,600	Breite [m]:	0,090			R,	+ R _{se} =	0,210
STEICOjoist	Achsabstand [m]:	0,600	Breite [m]:	0,008					
Oberer Grenzwert:	$R_{To} = 4,9566$	Untere	Grenzwert:	R _{Tu} =	4,8623		R _T =	4,9095	[m ² K/W]
Wärmedurchgangs	skoeffizient		U = 1 / R	т			(0,20 [W/ı	m²K]

Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Außentemp.: gemäß ÖNORM Innen: gemäß ÖNORM

Seehöhe: 448 m Region: SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,92°C Taupunkttemperatur: 15,09°C


Es wird in keinem Monat Oberflächenkondensat erwartet

Es gibt keine Kondensation im Inneren des Bauteils.

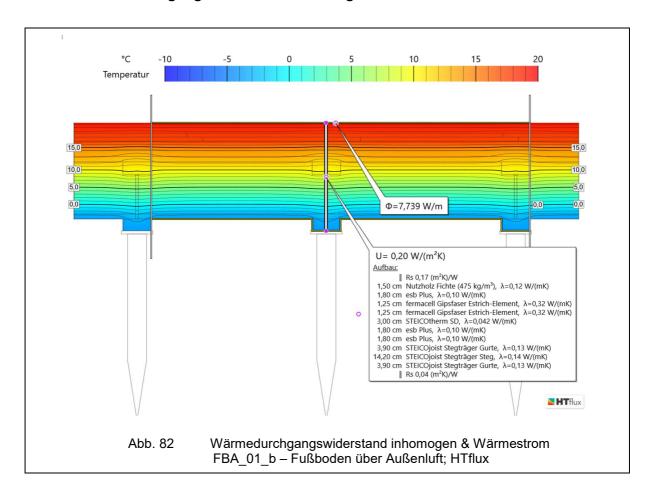
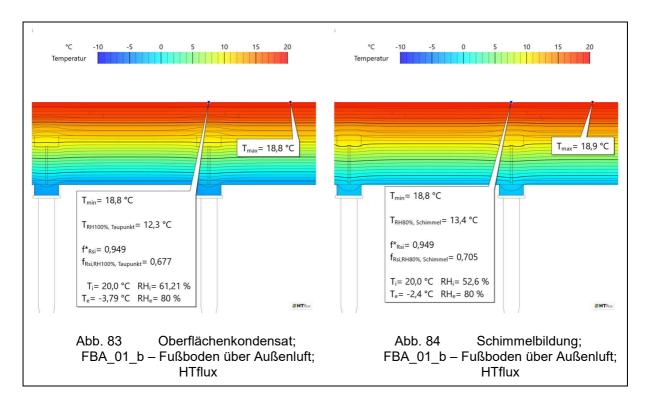
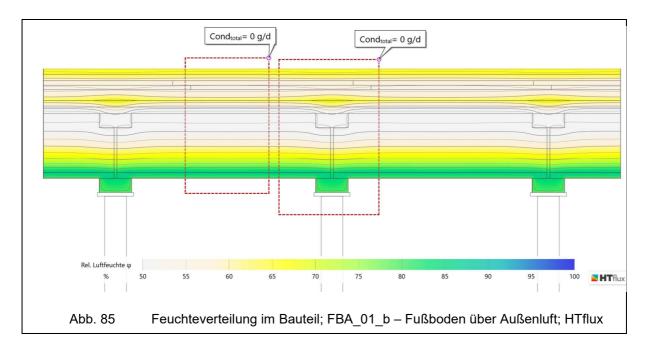

Kritischster Monat Juli Oberflächentemperatur innen: 19,92°C Temperatur(80%): 18,42°C Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 80 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_01_b - Fußboden über Außenluft; GEQ


4.5.2.1 Materialansicht in HTflux [5]

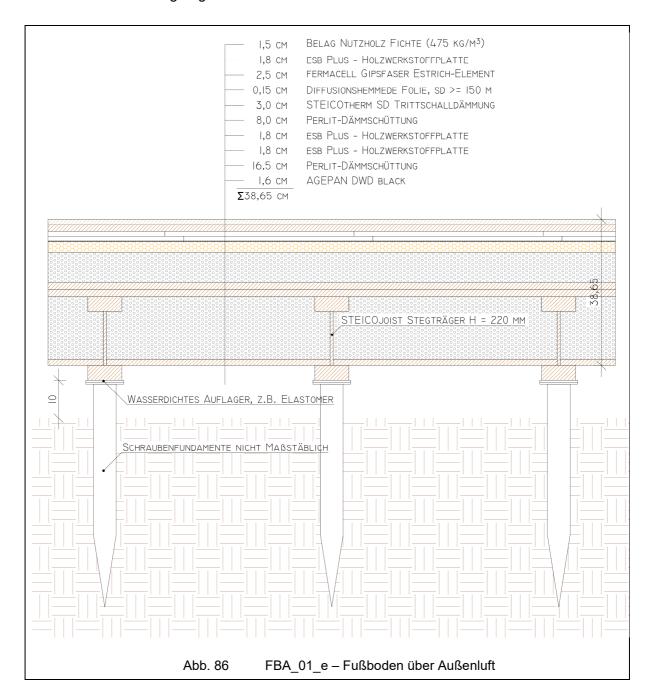
4.5.2.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.5.2.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.5.2.4 Feuchteverteilung im Bauteil



Es fällt kein Kondensat im Bauteilinneren an.

4.5.3 FBA_01_e - mit Perlit-Dämmschüttung zur Leitungsführung

Die Fußböden FBA_01_c und FBA_01_d werden hier nicht angeführt, da sich in den Detail-Untersuchungen von Sockel-Detail_06 unter Punkt 6.8 zeigt, dass sich bei den Anschlüssen an die Außenwand AW_01 mit diesen Fußbodenaufbauten Bauteilkondensat bildet.

In FBA_01_e wird zur Leitungsführung eine 8 cm dicke Perlit-Dämmschüttung unter der Trittschalldämmung eingefügt. Zusätzlich wird aufgrund von Kondensat im Bauteil, siehe Punkt 6.8, eine diffusionshemmende Folie mit einer äquivalenten Luftschichtdicke von 150 m über der Trittschalldämmung angeordnet.

Bauteilbezeichnung:
DD09 FBA_01_e - Fußboden über Außenluft

Bauteiltyp:
Außendecke, Wärmestrom nach unten

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,15 [W/m²K]

M 1:20

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgev
٧r	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte	0,015	20	0,120		475	7,
2	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,
3	fermacell Gipsfaser Estrich-Elemente	0,025	13	0,320		1.150	28,
4	Dampfhemmende Folie sd >= 150 m	0,002	100.000	0,500		980	1,
5	STEICOtherm SD	0,030	5	0,042		160	4
6	Perlit-Dämmschüttung	0,080	3	0,051		90	7
7	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11
8	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11
9	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	85,0	90	3
11	STEICOjoist Stegträger Steg dazw.	0,126	20	0,140	1,3	900	1
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	98,7	90	11
13	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9
Ba	auteildicke [m]	0,387					
Fla	ächenbezogene Masse des Bauteils [kg/m²]	-					111

Zusammengesetz	ter Bauteil			(E	Berechnung nach EN ISO 6946)
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,090		$R_{si} + R_{se} = 0,210$
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,008		
Oberer Grenzwert:	$R_{To} = 6,5328$	Unterer Grenzwert:	R _{Tu} =	6,4340	$R_T = 6,4834 \text{ [m}^2\text{K/W]}$
Wärmedurchgang	skoeffizient	U = 1 / R	т		0,15 [W/m ² K]

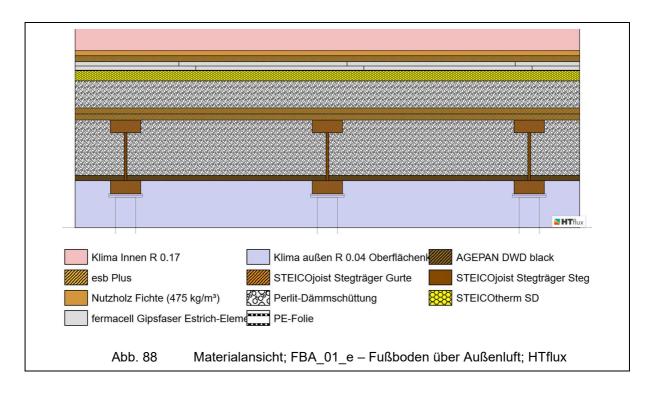
Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen:Innentemp.: gemäß ÖNORMAußentemp.: gemäß ÖNORMLuftfeuchtigkeit:Außen: gemäß ÖNORMInnen: gemäß ÖNORM

Außen: gemäß ONORM Innen: gemäß ONORM Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Taupunkttemperatur: 15,09°C

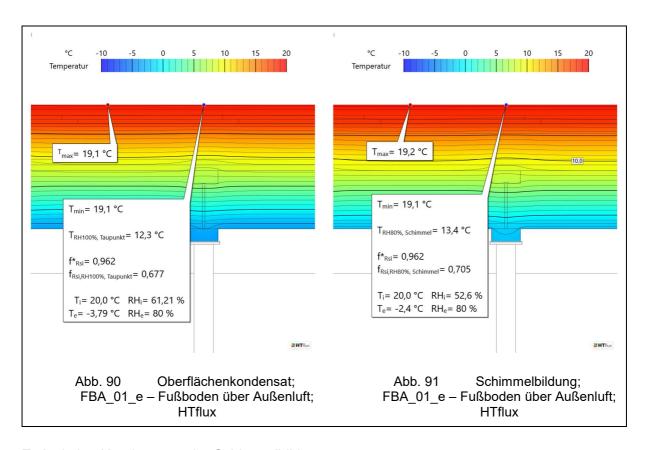
Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

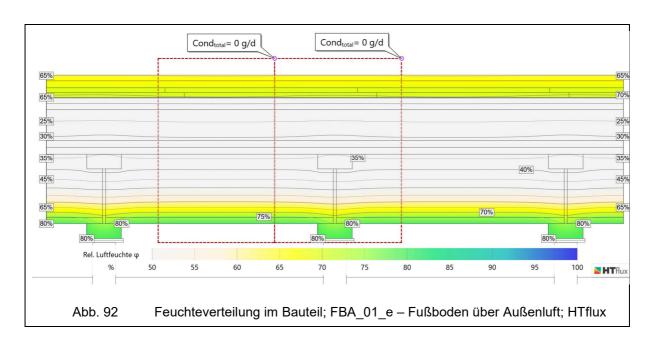
Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Temperatur(80%): 18,42°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 87 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_01_e – Fußboden über Außenluft; GEQ


4.5.3.1 Materialansicht in HTflux [5]

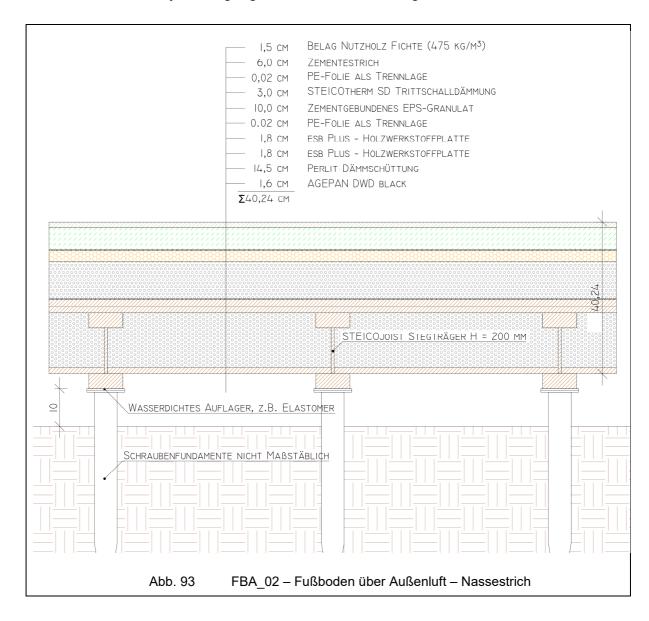
4.5.3.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.5.3.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.5.3.4 Feuchteverteilung im Bauteil



Es fällt kein Kondensat im Bauteilinneren an.

4.5.4 FBA_02 - Nassestrich

Auf nachträglichem Wunsch wurde ein weiterer Fußbodenaufbau für die Untersuchungen definiert. Im Gegensatz zu den zur Verfügung gestellten Zeichnungen, soll der Fußbodenaufbau mit einem Nassestrich ausgeführt werden. Als Schicht für die Leitungsverlegung wird zementgebundenes EPS-Granulat als Schüttung gewählt. Um die esb-Plus Spanplatten vor Feuchtigkeit beim Einbringen der Schüttung zu schützen, wird eine PE-Folie als Trennlage angeordnet. Die verwendete Trittschalldämmung STEICOtherm SD ist laut Herstellerangaben für ein Nassestrich-System geeignet. Für das Einbringen des Estrichs ist wieder eine PE-Folie als Trennlage auszuführen.

Durch die zementgebundene Schüttung wird der Wärmedurchgangskoeffizient im Vergleich zu FBA_01 verbessert, was wiederum eine Reduktion der Höhe der Träger erlaubt. Daher wird die Höhe des STEICOjoist-Stegträgers wie aus den Unterlagen mit 20 cm betrachtet.

Konstruktionsaufbau und Berechnung

Bauteilbezeichnung:
DD04 FBA_02 - Fußboden über Außenluft

Bauteiltyp:
Außendecke, Wärmestrom nach unten

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,16 [W/m²K]

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte	0,015	20	0,120		475	7,1
2	Zement- und Zementfließestrich (2000 kg/m³) (ÖNORM B	0,060	15	1,330		2.000	120,0
3	PE-Folie	0,0002	100.000	0,500		980	0,2
4	STEICOtherm SD	0,030	5	0,042		160	4,8
5	Zementgebundenes EPS-Granulat (99 kg/m³) (ÖNORM B	0,100	6	0,047		99	9,9
6	PE-Folie	0,0002	100.000	0,500		980	0,2
7	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
8	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
9	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	85,0	90	3,0
11	STEICOjoist Stegträger Steg dazw.	0,106	20	0,140	1,3	900	1,3
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	98,7	90	9,4
13	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6
Ва	auteildicke [m]	0,402					-
FI	ächenbezogene Masse des Bauteils [kg/m²]						190,7

Zusammengesetz	ter Bauteil			(E	Berechnung nach EN ISO 6946)
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,090		$R_{si} + R_{se} = 0,210$
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,008		
Oberer Grenzwert:	$R_{To} = 6,4898$	Unterer Grenzwert:	R _{Tu} =	6,3946	$R_T = 6,4422 \text{ [m}^2\text{K/W]}$
Wärmedurchgang	skoeffizient	U = 1 / R	Т		0,16 [W/m²K]

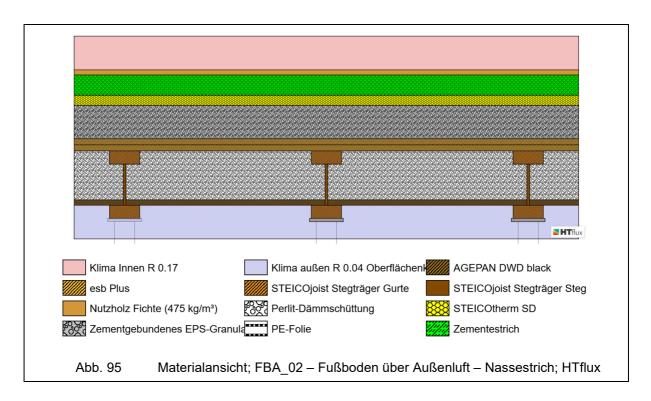
Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Temperatur(80%): 18,42°C

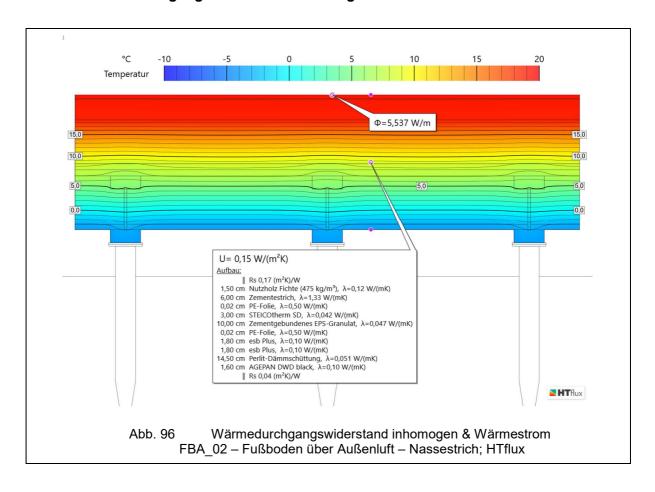
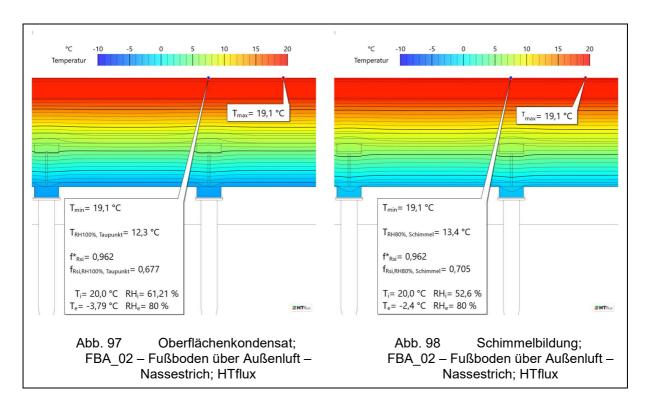
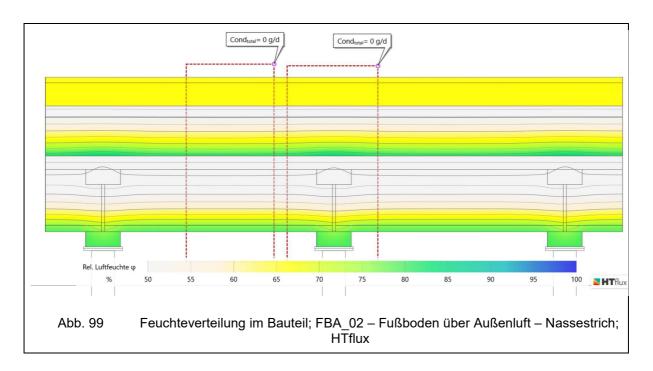

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 94 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02 – Fußboden über Außenluft – Nassestrich; GEQ

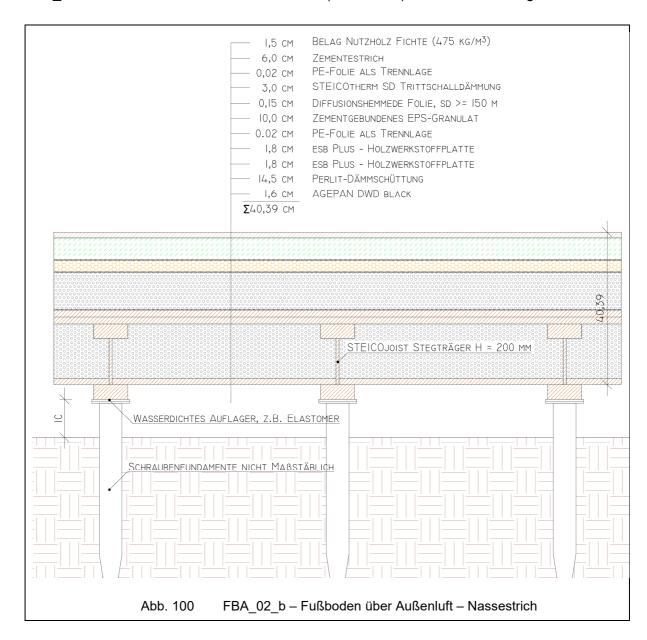

4.5.4.1 Materialansicht in HTflux [5]

4.5.4.2 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.5.4.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.5.4.4 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

4.5.5 FBA_02_b - Nassestrich - diffusionshemmende Folie über Schüttung

Durch die Optimierungen in den Varianten von Sockel-Detail_05 wird der Fußbodenaufbau FBA 02 mit einer diffusionshemmenden Folie ($s_d = 150 \text{ m}$) über der Schüttung erweitert.

Bauteilbezeichnung: DD05 FBA_02_b - Fußboden ü	ber Außenluft		I
Bauteiltyp: Außendecke, Wärmestrom nach	ch unten		• • •
Wärmedurchgangskoeffizient	berechnet nach ÖN	ORM EN ISO 6946	3 · 4 3 4 · 4 8
	U - Wert	0,16 [W/m ² K]	

M 1:20

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ* d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte	0,015	20	0,120		475	7,1
2	Zement- und Zementfließestrich (2000 kg/m³) (ÖNORM B	0,060	15	1,330		2.000	120,0
3	PE-Folie	0,0002	100.000	0,500		980	0,2
4	STEICOtherm SD	0,030	5	0,042		160	4,8
5	Dampfhemmende Folie sd >= 150 m	0,002	100.000	0,500		980	1,5
6	Zementgebundenes EPS-Granulat (99 kg/m³) (ÖNORM B	0,100	6	0,047		99	9,9
7	PE-Folie	0,0002	100.000	0,500		980	0,2
8	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
9	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
10	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	85,0	90	3,0
12	STEICOjoist Stegträger Steg dazw.	0,106	20	0,140	1,3	900	1,3
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	98,7	90	9,4
14	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6
Ва	auteildicke [m]	0,404					
FI	ächenbezogene Masse des Bauteils [kg/m²]						192,2

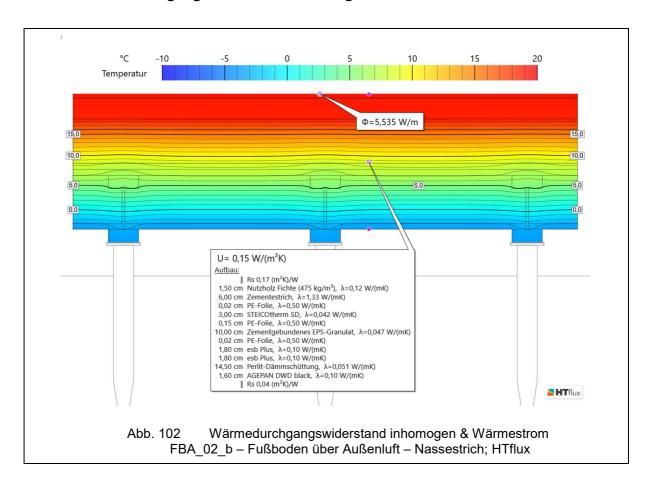
Zusammengesetzt	er Bauteil			(1	Berechnung nach EN ISO 6946)
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,090		$R_{si} + R_{se} = 0,210$
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,008		
Oberer Grenzwert:	$R_{T_0} = 6,4928$	Unterer Grenzwert:	R _{Tu} =	6,3976	$R_T = 6,4452 \text{ [m}^2\text{K/W]}$
Wärmedurchgang	skoeffizient	U = 1 / R	т		0,16 [W/m ² K]

Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

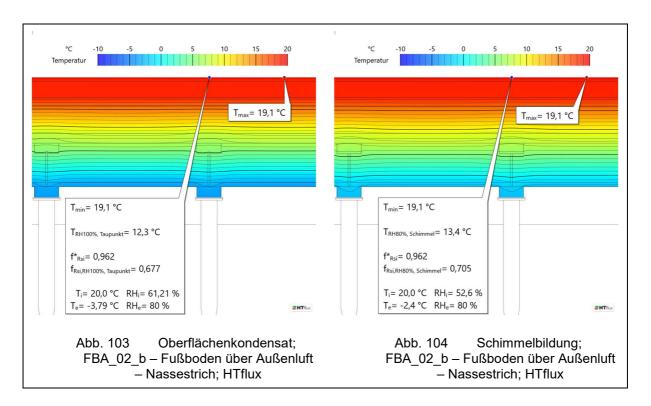
Randbedingungen: Innentemp.: gemäß ÖNORM Außentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet

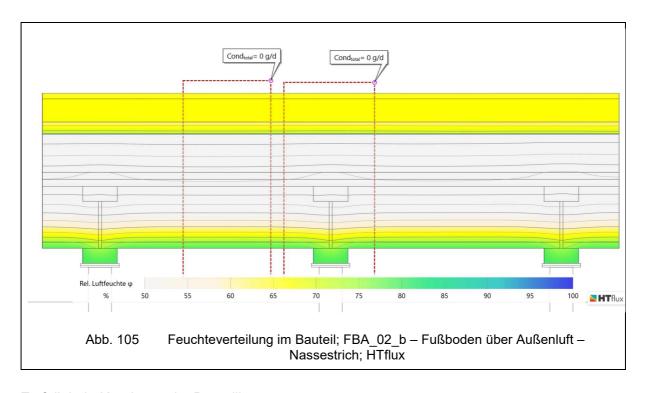

Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Temperatur(80%): 18,42°C


Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Wärmedurchgangskoeffizient & Dampfdiffusion; Abb. 101 FBA_02_b - Fußboden über Außenluft - Nassestrich; GEQ

4.5.5.1 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.5.5.2 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.5.5.3 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

In Abb. 105 ist sehr gut zu erkennen, dass im Vergleich zur vorherigen Variante (Vgl. Abb. 99), der Dampfstrom, durch die weiter innenliegende dampfhemmende Folie, im wärmeren Bereich der Konstruktion gehemmt wird. Dadurch ist auch die sich ausbildende Feuchtigkeit im Bauteil geringer.

4.5.6 FBA_02_c - Nassestrich - lose Schüttung mit erhöhter Wärmeleitfähigkeit

Durch die Optimierungen in den Varianten von Sockel-Detail_05 wird im Fußbodenaufbau FBA_02_b die zementgebundene EPS-Granulat Schüttung durch eine lose Kies Schüttung mit einer höheren Wärmeleitfähigkeit ersetzt. Da die Schüttung aus zementgebundenem EPS-Granulat, eine, für Schüttungen gesehen relativ gute Wärmedämmeigenschaft besitzt, wirkt diese ebenfalls wie eine Innendämmung und zieht den Taupunkt weiter in den Bauteil hinein. In dieser Variante wird deshalb versucht, mit einer losen Schüttung aus Kies, die im Vergleich zum vorher betrachteten EPS-Granulat eine ca. 15-mal höhere Wärmeleitfähigkeit besitzt, diesen Umstand zu nutzen und den Bauteil feuchtetechnisch risikoärmer zu gestalten.

Wärmeleitfähigkeit der betrachteten Schüttungen:

- Zementgebundenes EPS-Granulat: λ = 0,047 W/mK
- Schüttungen aus Sand, Kies, Splitt: λ = 0,7 W/mK

	uteilbezeichnung: 006 FBA_02_c - Fußb	oden über	Außen	uft				ı		
	uteiltyp: ıßendecke, Wärmest	rom nach ι	ınten							•
Wä	ärmedurchgangskoe	ffizient be	rechnet	nach ÖNOR	M EN IS	O 6946	903	• • •	٤٥.	•
			U - 1	Wert	0.22 [\	0,22 [W/m²K]			70,	**
					-, [.			А		M 1 : 20
Ko	onstruktionsaufbau u	nd Berech	nung			<u> </u>				
	Baustoffschichten				d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen				Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung				[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte				0.015	20	0,120		475	7,1
	Zement- und Zementfließ	sestrich (2000	ka/m³) (Ċ	NORM B	0,060	15	1,330		2.000	120.0
	PE-Folie	, , , , , , , , , , ,	5 / (-	0.0002	100.000	0,500		980	0,2
4	STEICOtherm SD				0,030	5	0,042		160	4,8
5	Dampfhemmende Folie s	d >= 150 m			0,002	100.000	0,500		980	1,5
6	Schüttungen aus Sand, k	(ies, Splitt (18	00 kg/m ³	(ÖNORM B	0,100	50	0,700		1.800	180,0
7	PE-Folie				0,0002	100.000	0,500		980	0,2
8	esb Plus - Holzwerkstoffp	olatte			0,018	40	0,100		620	11,2
9	esb Plus - Holzwerkstoffp	olatte			0,018	40	0,100		620	11,2
10	STEICOjoist Stegträger (0,039	20	0,130	15,0	500	2,9
	Perlit-Dämmschüttung	, ,	8110-7)			3	0,051	85,0	90	3,0
12	STEICOjoist Stegträger S	•			0,106	20	0,140	1,3	900	1,3
	Perlit-Dämmschüttung	, ,				3	0,051	98,7	90	9,4
	AGEPAN DWD black - D	iffusionsoffen	e Holzfas	erplatte	0,016	12	0,100		600	9,6
	auteildicke [m]				0,404					
Fla	ächenbezogene Masse o	les Bauteils [kg/m²]							362,3
Zι	ısammengesetzter Bau	teil					(B	erechnung	nach EN	ISO 6946)
9	STEICOjoist Achsa	bstand [m]:	0,600	Breite [m]:	0.090			R	+ R _{se} =	0.210
		bstand [m]:	0,600	Breite [m]:	0,008			''s	···se	-,0
	perer Grenzwert: R _{To}		Untere	r Grenzwert:	R _{Tu} =	4,4128		R _T =	4,4579	[m²K/W]
W	ärmedurchgangskoeffi			U = 1 / R),22 [W/n	12K]

Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

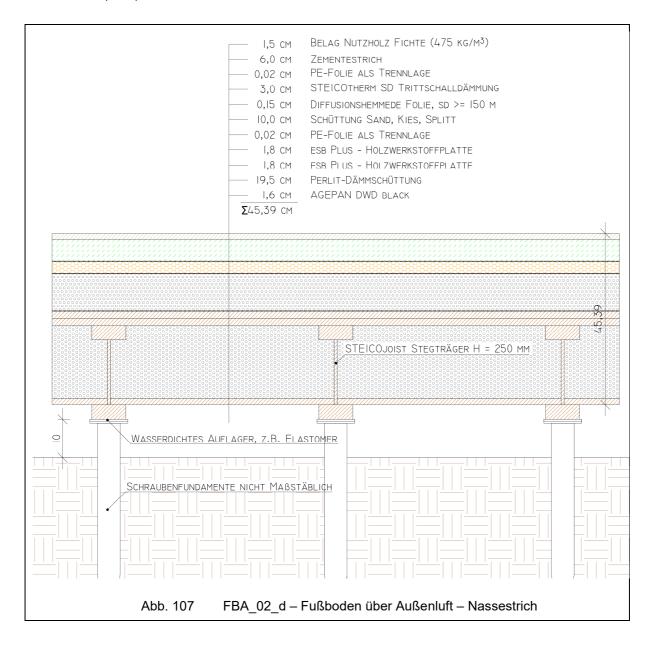
Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet

Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Temperatur(80%): 18,42°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet


Abb. 106 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA 02 c – Fußboden über Außenluft – Nassestrich; GEQ

Wie in Abb. 106 ersichtlich ist, beträgt der Wärmedurchgangskoeffizient 0,22 W/(m²K). Nach OIB-RL 6 [15] darf der U-Wert bei Decken über Außenluft höchstens 0,20 W/(m²K) betragen, aus diesem Grund wird in der nächsten Variante die Höhe des Stegträgers soweit erhöht, bis die Anforderungen an den wärmeübertragenden Bauteil erfüllt sind.

Eine weitere Möglichkeit die U-Wert Anforderungen zu erfüllen und die Höhe des Stegträgers zu belassen, wäre, anstelle der Perlit-Dämmschüttung eine bessere Dämmung mit schlechterer Wärmeleitfähigkeit zu wählen.

4.5.7 FBA_02_d - Nassestrich - optimiert - erhöhter Stegträger - lose Schüttung

Der Fußbodenaufbau FBA_02_d ist die optimierte Version von FBA_02_c. Durch die Erhöhung des STEICOjoist-Stegträgers von 200 mm auf die übernächste Trägerhöhe von 250 mm werden die U-Wert Anforderungen nach OIB-RL 6 [15] bei Decken über Außenluft von 0,20 W/(m²K) erfüllt.

Bauteilbezeichnung: DD07 FBA_02_d - Fußboden ü	ber Außenluft		ı	
Bauteiltyp: Außendecke, Wärmestrom nach	h unten			
Wärmedurchgangskoeffizient	berechnet nach ÖN	ORM EN ISO 6946	M	
	U - Wert	0,18 [W/m²K]	800	
			Α	M 1 : 20

	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew.
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte	0,015	20	0,120		475	7,1
2	Zement- und Zementfließestrich (2000 kg/m³) (ÖNORM B	0,060	15	1,330		2.000	120,0
3	PE-Folie	0,0002	100.000	0,500		980	0,2
4	STEICOtherm SD	0,030	5	0,042		160	4,8
5	Dampfhemmende Folie sd >= 150 m	0,002	100.000	0,500		980	1,5
6	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) (ÖNORM B	0,100	50	0,700		1.800	180,0
7	PE-Folie	0,0002	100.000	0,500		980	0,2
8	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
9	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
10	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	85,0	90	3,0
12	STEICOjoist Stegträger Steg dazw.	0,156	20	0,140	1,3	900	1,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	98,7	90	13,9
14	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6
Ва	uteildicke [m]	0,454			-		
Flächenbezogene Masse des Bauteils [kg/m²]							367,3

	•		•			•	
Zusammengesetzter Bauteil					Berechnung nach EN	ISO 6946)	
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,090		$R_{si} + R_{se} =$	0,210	
STEICOjoist	Achsabstand [m]:	0,600 Breite [m]:	0,008				
Oberer Grenzwert:	$R_{To} = 5,4697$	Unterer Grenzwert:	R _{Tu} =	5,3708	R _T = 5,4203	[m ² K/W]	
Wärmedurchgangs	skoeffizient	U = 1 / R _T			0,18 [W/m²K]		

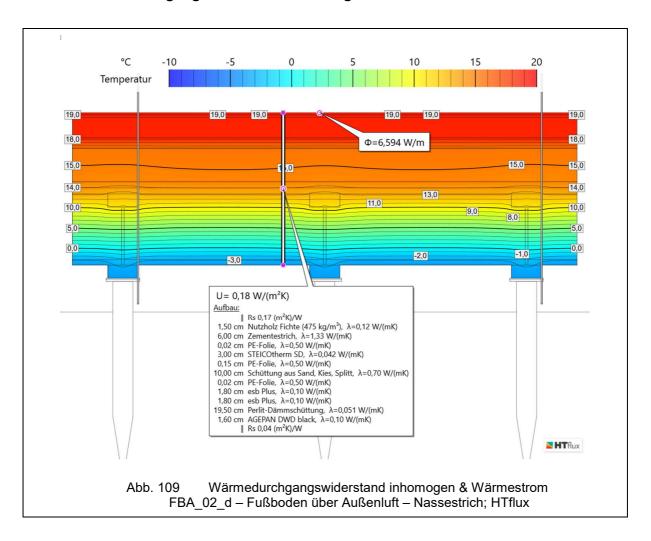
Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM
Luftfeuchtigkeit: Außen: gemäß ÖNORM
Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Temperatur(80%): 18,42°C

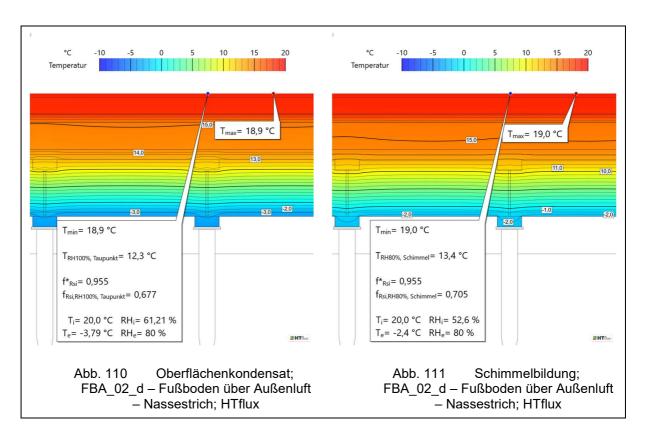
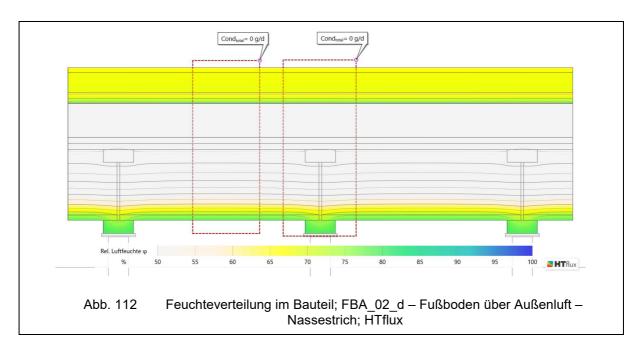

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

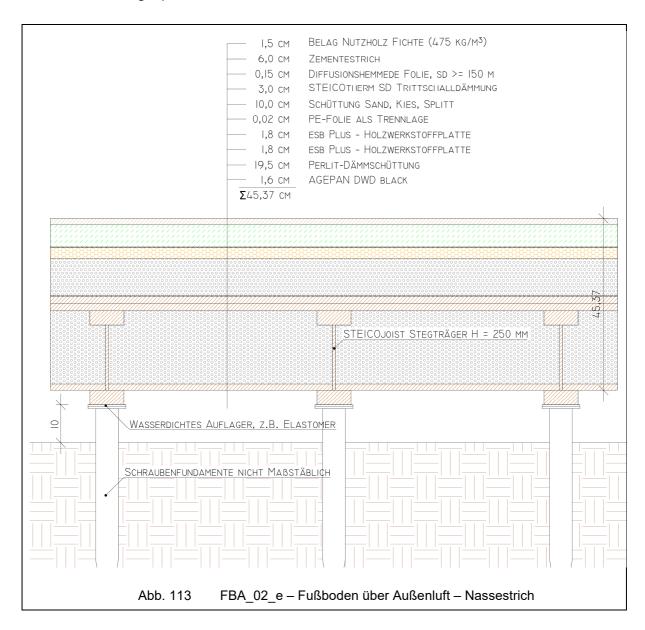
Abb. 108 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02_d – Fußboden über Außenluft – Nassestrich; GEQ

4.5.7.1 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.5.7.2 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.5.7.3 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

4.5.8 FBA_02_e - Nassestrich - optimiert - erhöhter Stegträger - lose Schüttung - diffusionshemmende Folie anstelle PE-Folie

Der Fußbodenaufbau FBA_02_e ist eine weitere Optimierung des Fußbodens FBA_02_d. Die Trennlage unter dem Estrich wird anstelle der PE-Folie durch eine diffusionshemmende Folie mit einer äquivalenten Luftschichtdicke von 150 m ausgeführt. Dadurch können Arbeitsschritte und eine Folie eingespart werden.

M 1:20

Bauteilbezeichnung: DD10 FBA_02_e - Fußboden über	r Außenluft		ı
Bauteiltyp: Außendecke, Wärmestrom nach	unten		
Wärmedurchgangskoeffizient be	erechnet nach ÖNG	ORM EN ISO 6946	
	U - Wert	0,18 [W/m²K]	

Ko	nstruktionsaufbau und Berechnung						
	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von innen nach außen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Belag - Nutzholz Fichte	0,015	20	0,120		475	7,1
2	Zement- und Zementfließestrich (2000 kg/m³) (ÖNORM B	0,060	15	1,330		2.000	120,0
3	Dampfhemmende Folie sd >= 150 m	0,002	100.000	0,500		980	1,5
4	STEICOtherm SD	0,030	5	0,042		160	4,8
5	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) (ÖNORM B	0,100	50	0,700		1.800	180,0
6	PE-Folie	0,0002	100.000	0,500		980	0,2
7	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
8	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
9	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	85,0	90	3,0
11	STEICOjoist Stegträger Steg dazw.	0,156	20	0,140	1,3	900	1,9
	Perlit-Dämmschüttung (ÖNORM B 8110-7)		3	0,051	98,7	90	13,9
13	AGEPAN DWD black - Diffusionsoffene Holzfaserplatte	0,016	12	0,100		600	9,6
Ва	auteildicke [m]	0,454					
Fla	ächenbezogene Masse des Bauteils [kg/m²]						367,1

Zusammengesetzt	Zusammengesetzter Bauteil (B							erechnung	nach EN	I ISO 6946)
STEICOjoist	Achsabsta	and [m]:	0,600	Breite [m]:	0,090			R,	+ R _{se} =	0,210
STEICOjoist	Achsabsta	and [m]:	0,600	Breite [m]:	0,008					
Oberer Grenzwert:	R _{To} =	5,4693	Untere	r Grenzwert:	R _{Tu} =	5,3704		R _T =	5,4199	[m ² K/W]
Wärmedurchgang	skoeffizien	nt		U = 1 / R	Т				0,18 [W/	m²K]

Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01

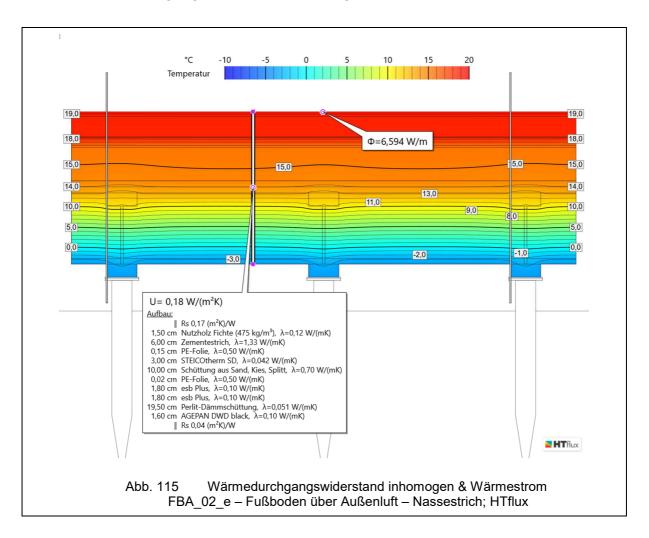
 Randbedingungen:
 Innentemp.: gemäß ÖNORM
 Außentemp.: gemäß ÖNORM

 Luftfeuchtigkeit:
 Außen: gemäß ÖNORM
 Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet


Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,93°C Temperatur(80%): 18,42°C

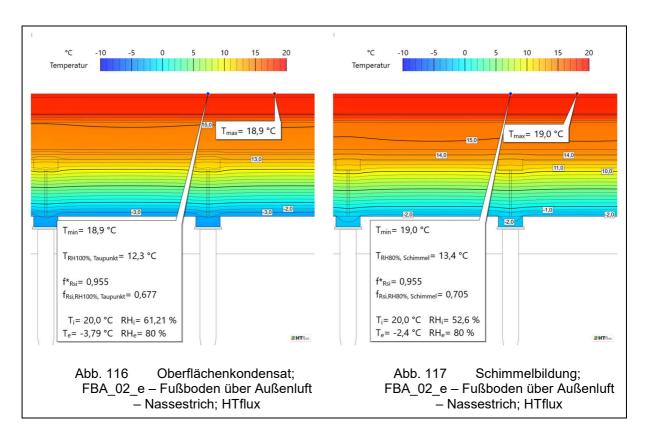
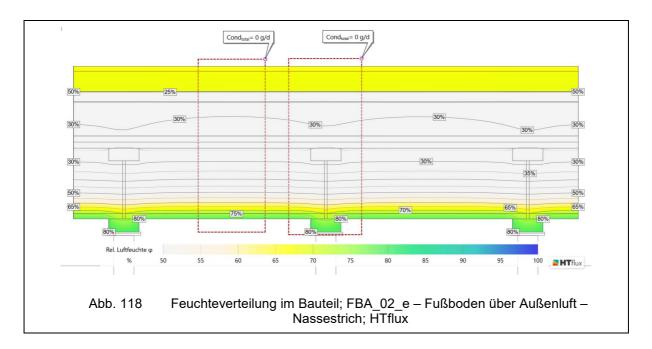

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Abb. 114 Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02_e – Fußboden über Außenluft – Nassestrich; GEQ

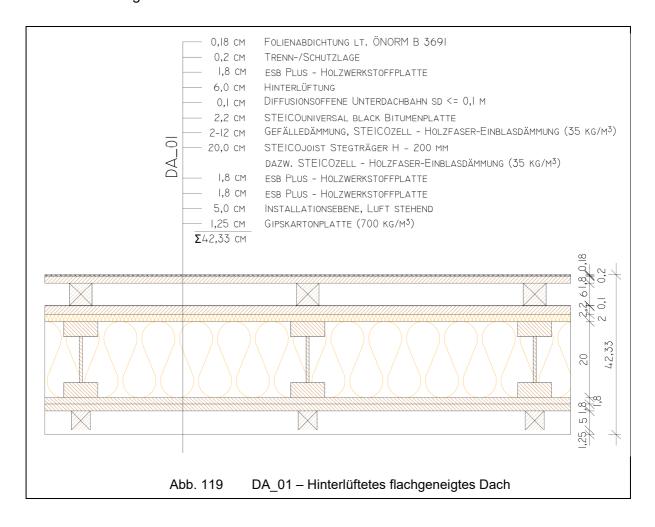
4.5.8.1 Wärmedurchgangswiderstand inhomogen & Wärmestrom



4.5.8.2 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.5.8.3 Feuchteverteilung im Bauteil


Es fällt kein Kondensat im Bauteilinneren an.

In Abb. 118 lässt sich erkennen, dass im Vergleich zu FBA_02_d aufgrund der Anordnung der diffusionshemmenden Folie über der Trittschalldämmung, die Feuchteverteilung im Bauteil, wesentlich reduziert wird. Dies hat den Grund, dass der Dampfstrom im wärmen Bereich des Bauteils gehemmt wird.

4.6 Flachgeneigte Dächer

4.6.1 DA_01 – Ausgangs-Detail – hinterlüftetes flachgeneigtes Dach – mit Zwischensparren-Dämmung – ohne diffusionshemmende Folie

DA_01 betrachtet den Aufbau eines flachgeneigten hinterlüfteten Daches. Der Aufbau der Konstruktion ist ähnlich wie bei den Außenwänden; anstelle der Stege des Holzbausteins wird die Tragkonstruktion jedoch aus 20 cm hohen STEICOjoist-Stegträgern gebildet. Dadurch die Schichten nach außen hin immer diffusionsoffener werden, sollte das Dach ohne eine innenliegende dampfhemmende Folie ausgeführt werden. Es wird jedoch hinsichtlich der Untersuchungen der Firstentlüftung, siehe Punkt 7.4, empfohlen, eine diffusionshemmende Folie an der Innenseite der Konstruktion anzubringen. Bei der eindimensionalen Betrachtung des Bauteils wird, da das Dach durch eine Gefälledämmung die erforderliche Neigung erhält, die Untersuchung an der Stelle mit der geringsten Dämmdicke durchgeführt. Dies verfälscht zwar den Wärmedurchgangskoeffizienten, für die Betrachtung zur Vermeidung von Oberflächenkondensat und des Risikos zur Schimmelbildung, sowie Kondensat im Bauteil ist die Untersuchung aber auf der sicheren Seite.

Bauteilbezeichnung:

	auteiltyp: ußendecke, Wärmestrom nach oben hinterlüfte	et					
Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946							WWW.
	U - Wert	0,16 [W/m²K]		X X X		
					I		M 1:20
Kc	onstruktionsaufbau und Berechnung						
	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von außen nach innen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Kunststoff-Abdichtungsbahn PVC, frei geklebt	* 0,002	0	0,140		1.200	2,2
	Trenn-/Schutzlage	* 0.002	1	0.500		980	
3	esb Plus - Holzwerkstoffplatte	* 0,018	40	0,100		620	11,
4	Luft steh., W-Fluss n. oben 56 < d <= 60 mm	* 0,060	1	0,375		1	0,
5	Diffusionsoffene Unterdachbahn sd <= 0,1 m	0,001	100	0,220		300	0,
6	STEICOuniversal black	0,022	5	0,050		260	5,7
7	STEICOzell - Holzfaser-Einblasdämmung im Gefälle (2-1	2 0,020	1	0,040		35	0,
8	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	85,0	35	1,
10	STEICOjoist Stegträger Steg dazw.	0,122	20	0,140	1,3	900	. ,
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	98,7	35	,
12	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	-,
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	85,0	35	,
	esb Plus - Holzwerkstoffplatte	0,018		0,100		620	11,2
	esb Plus - Holzwerkstoffplatte	0,018		0,100		620	11,2
16	Nutzholz (475kg/m³ -Fi/Ta) gehobelt, techn. getro. dazw.	0,050	20	0,120	6,3	475	1,5
	Luft steh., W-Fluss n. oben 46 < d <= 50 mm		1	0,313	93,8	1	-,-
	Gipskartonplatte (700 kg/m³)	0,013	4	0,210		700	8,8
	auteildicke (wärmetechnisch relevant) [m]	0,342					
	auteildicke gesamt [m]	0,423					
Fla	ächenbezogene Masse des Bauteils [kg/m²]	•					68,5

0,600

0,600

0,600

Breite [m]:

Breite [m]:

Breite [m]:

U = 1 / R

Unterer Grenzwert:

0,090

0,008

0,090

R_{Tu}=

6,1398

6,3068 [m²K/W]

0,16 [W/m²K]

Achsabstand [m]:

Achsabstand [m]:

Achsabstand [m]:

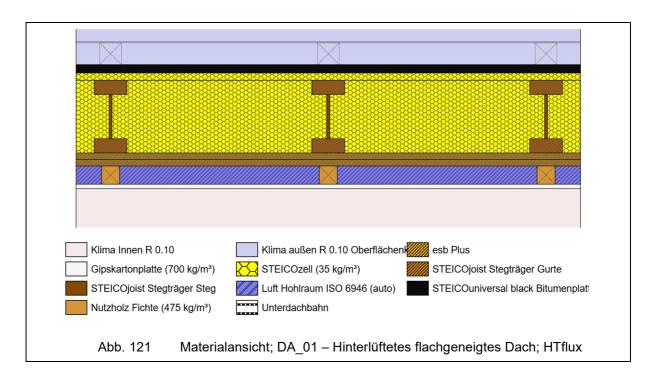
 $R_{To} = 6,4739$

STEICOjoist

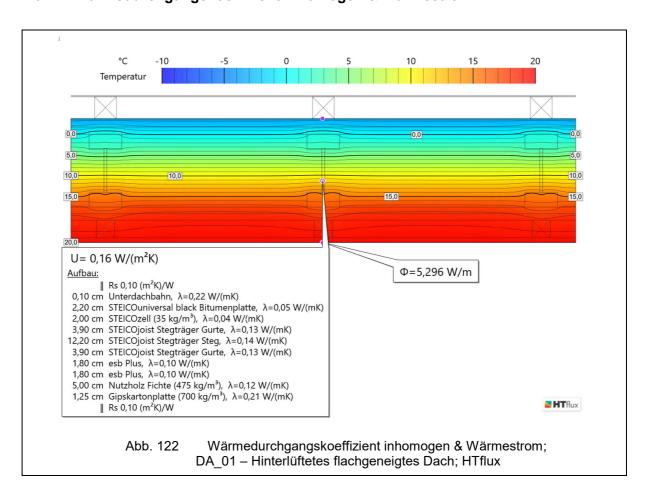
STEICOjoist

STEICOjoist

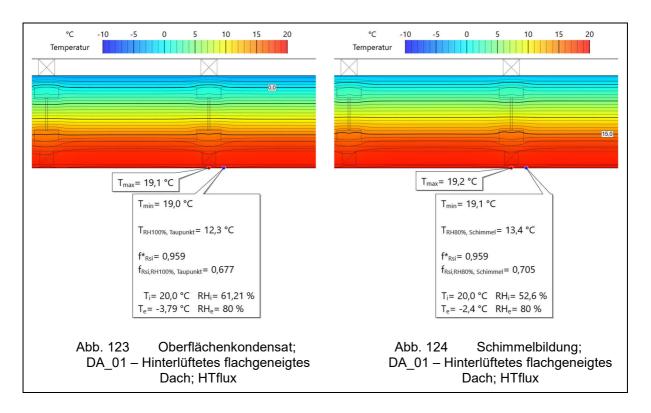
Oberer Grenzwert:


Wärmedurchgangskoeffizient

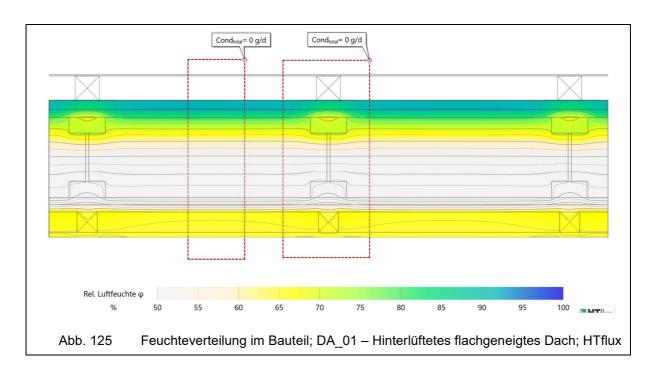
Globa daliment zanie mante zan Barbarinang (warmataarinaarin dalam)							
Wasserdampfdiffusion nach ÖNORM B 8110-2 : 2003-07-01							
Randbedingungen: Innentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Seehöhe: 448 m Kritischster Monat Juli Oberflächentemperatur innen: 19, Es wird in keinem Monat Oberflächenkondensat erwartet							
Es gibt keine Kondensation im Inneren des Bauteils.							
Kritischster Monat Juli Oberflächentemperatur innen: 19, Es wird in keinem Monat Schimmel an der Oberfläche en							


Abb. 120 Wärmedurchgangskoeffizient & Wasserdampfdiffusion; DA_01 – Hinterlüftetes flachgeneigtes Dach; GEQ

^{*...} diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)

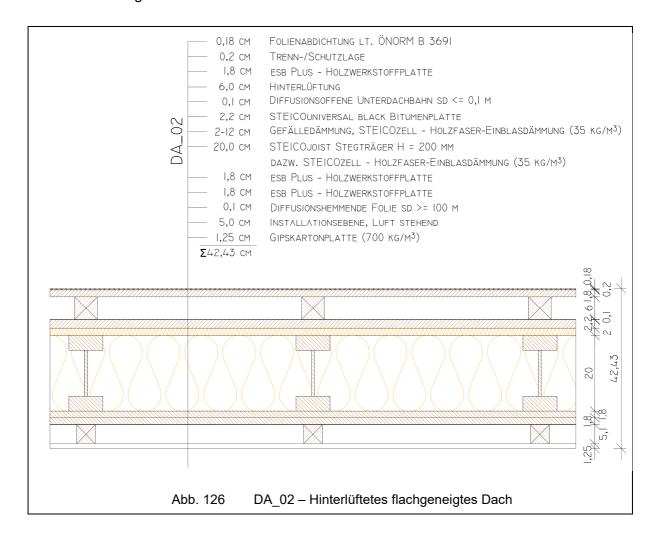

4.6.1.1 Materialansicht in HTflux [5]

4.6.1.2 Wärmedurchgangskoeffizient inhomogen & Wärmestrom



4.6.1.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat- und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.


4.6.1.4 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

4.6.2 DA_02 - optimierter Bauteil - mit diffusionshemmender Folie

DA_02 ist der um eine diffusionshemmende Folie erweiterte Dachaufbau DA_01. Der Grund ist die sich einstellende Feuchte im Bereich der STEICOuniversal black-Bitumenplatte, siehe Punkt 7.4.1. Wie auch schon bei der Untersuchung von DA_01 wird dieser Aufbau an der schwächsten Stelle der Gefälledämmung durchgeführt. Dies verfälscht zwar den Wärmedurchgangskoeffizienten, für die Betrachtung zur Vermeidung von Oberflächenkondensat und des Risikos zur Schimmelbildung, sowie Kondensat im Bauteil ist die Untersuchung aber auf der sicheren Seite.

	uteilbezeichnung: 003 DA_02				Α		
	uteiltyp: Bendecke, Wärmestrom nach oben hinterlüftet				XXXX	XXXX	***
Wä	ärmedurchgangskoeffizient berechnet nach ÖNORM	EN IS	O 6946	www.			X X Y
	U - Wert	0,16 [\	N/m²K]	×	XXX	N N	X
					1		M 1 : 20
Ko	nstruktionsaufbau und Berechnung						
	Baustoffschichten	d	μ	λ	Anteil	ρ	ρ *d
	von außen nach innen	Dicke	WD-Diff.	Leitfähig.		Dichte	Flächgew
Nr	Bezeichnung	[m]	[-]	[W/mK]	[%]	[kg/m³]	[kg/m²]
1	Kunststoff-Abdichtungsbahn PVC, frei geklebt *	0,002	0	0,140		1.200	2,2
2	Trenn-/Schutzlage *	0,002	1	0,500		980	2,0
3	esb Plus - Holzwerkstoffplatte *	0,018	40	0,100		620	11,2
4	Luft steh., W-Fluss n. oben 56 < d <= 60 mm *	0,060	1	0,375		1	0,
5	Diffusionsoffene Unterdachbahn sd <= 0,1 m	0,001	100	0,220		300	0,0
6	STEICOuniversal black	0,022	5	0,050		260	5,7
7	STEICOzell - Holzfaser-Einblasdämmung im Gefälle (2-12	0,020	1	0,040		35	0,7
8	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	85,0	35	1,2
10	STEICOjoist Stegträger Steg dazw.	0,122	20	0,140	1,3	900	1,5
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	98,7	35	4,2
12	STEICOjoist Stegträger Gurte dazw.	0,039	20	0,130	15,0	500	2,9
	STEICOzell - Holzfaser-Einblasdämmung		1	0,040	85,0	35	1,2
14	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
	esb Plus - Holzwerkstoffplatte	0,018	40	0,100		620	11,2
16	Dampfhemmende Folie sd >= 100 m	0,001	100.000	0,500		980	1,0
17	Nutzholz (475kg/m³ -Fi/Ta) gehobelt, techn. getro. dazw.	0,050	20	0,120	6,3	475	1,5
	Luft steh., W-Fluss n. oben 46 < d <= 50 mm		1	0,313	93,8	1	0,0
19	Gipskartonplatte (700 kg/m ³)	0,013	4	0,210		700	8.8

						(Berechnung nach E		
Zusammengesetzt	Zusammengesetzter Bauteil							
Nutzholz (475kg/m	³ Achsabstand [m]:	0,800	Breite [m]:	0,050		R _{si} + R _{se}	= 0,200	
STEICOjoist	Achsabstand [m]:	0,600	Breite [m]:	0,090				
STEICOjoist	Achsabstand [m]:	0,600	Breite [m]:	0,008				
STEICOjoist	Achsabstand [m]:	0,600	Breite [m]:	0,090				
Oberer Grenzwert:	$R_{To} = 6,4759$	Untere	Grenzwert:	R _{Tu} =	6,1418	$R_T = 6,308$	88 [m²K/W]	
Wärmedurchgang	skoeffizient		U = 1 / R	Т		0,16 [\	V/m²K]	

Bauteildicke (wärmetechnisch relevant) [m]

Flächenbezogene Masse des Bauteils [kg/m²]

Bauteildicke gesamt [m]

Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM Außentemp.: gemäß ÖNORM Luftfeuchtigkeit: Außen: gemäß ÖNORM Innen: gemäß ÖNORM

Seehöhe: 448 m Region : SB - Beckenlandschaften im Süden

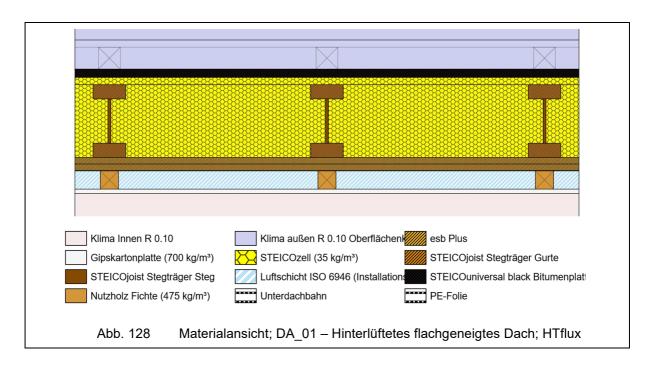
0,343 0,424

69,5

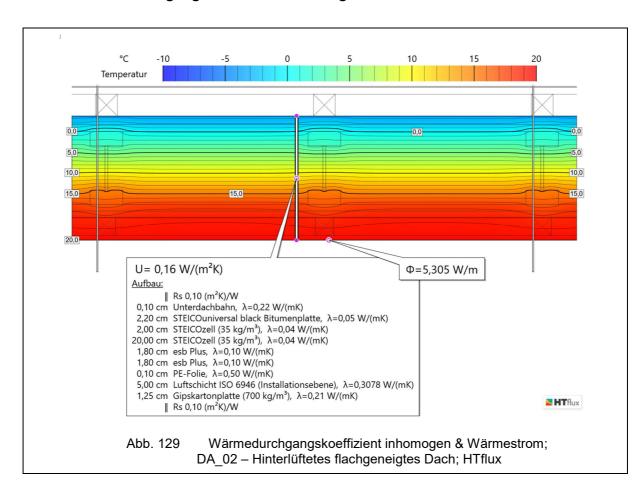
Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Taupunkttemperatur: 15,09°C

Es wird in keinem Monat Oberflächenkondensat erwartet

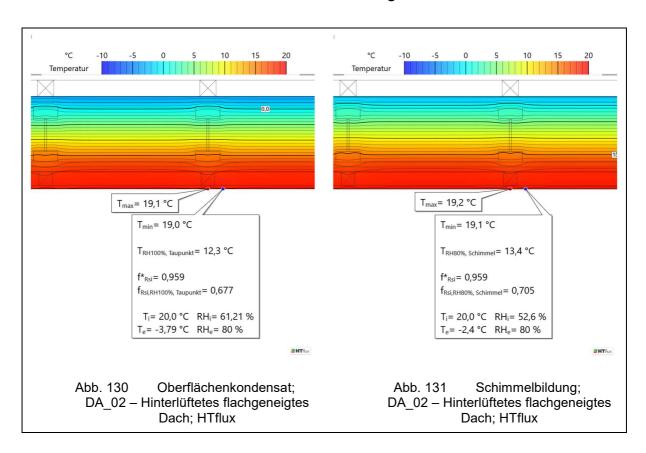
Es gibt keine Kondensation im Inneren des Bauteils.


Kritischster Monat Juli Oberflächentemperatur innen: 19,94°C Temperatur(80%): 18,42°C

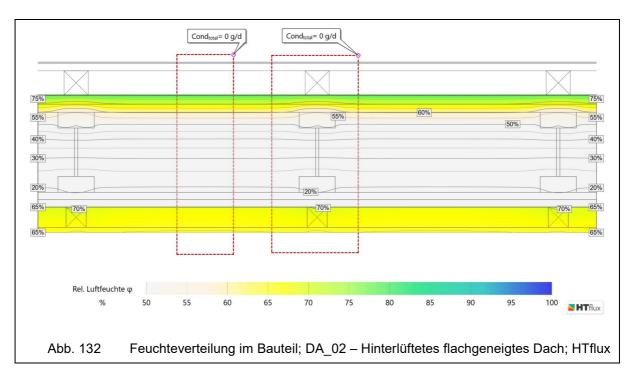
Es wird in keinem Monat Schimmel an der Oberfläche erwartet


Abb. 127 Wärmedurchgangskoeffizient & Wasserdampfdiffusion; DA_02 - Hinterlüftetes flachgeneigtes Dach; GEQ

diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)


4.6.2.1 Materialansicht in HTflux [5]

4.6.2.2 Wärmedurchgangskoeffizient inhomogen & Wärmestrom



4.6.2.3 Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat- und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

4.6.2.4 Feuchteverteilung im Bauteil

Es fällt kein Kondensat im Bauteilinneren an.

Durch die dampfhemmende Folie lässt sich deutlich erkennen, dass die sich einstellende relative Feuchtigkeit an der Außenseite der Konstruktion im Vergleich zu DA_01 sehr stark minimiert wird. Dies ist auch bei der Untersuchung des Detail-Punktes der Firstentlüftung unter Punkt 7.4 zu betrachten.

5 Zusammenfassung der bauphysikalischen Ergebnisse der Bauteile

In folgender Tabelle werden die bauphysikalisch relevanten Ergebnisse der Bauteile für die als kritisch zu betrachteten Monate Jänner (Kondensat-Kriterium, $T_{Taupunkt}$ = 12,3 °C) und Dezember (Schimmelbildung, $T_{Schimmel}$ = 13,4 °C) zusammengefasst. Die Klimabedingungen können unter Punkt 3.4 in Tab. 7 entnommen werden.

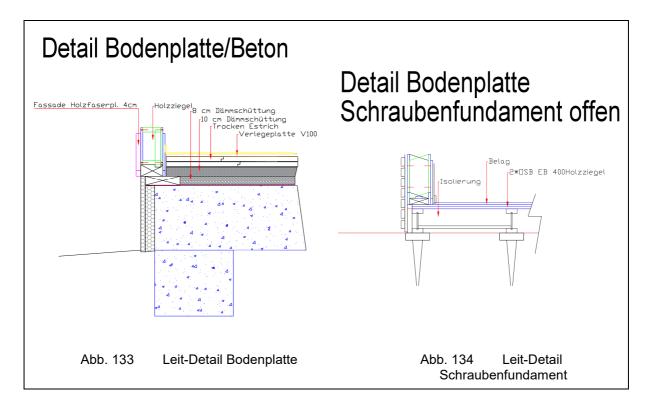
Tab. 8 Zusammenfassung der bauphysikalisch relevanten Ergebnisse der Bauteile – berechnet mit HTflux [5]

Bauteil	Anmerkung	U-Wert [W/(m²K)]	T _{min,} Oberflächenkondensat [°C]	T _{min,} Schimmelbildung [°C]
AW_01	WDVS – Holzbaustein-Sicht innen	0,23	18,4	18,5
AW_02	WDVS – Gipskartonplatte innen	0,23	18,5	18,6
AW_03	WDVS – Installationsebene innen	0,18	18,9	19,0
AW_04	Hinterlüftung – Holzbaustein-Sicht innen	0,28	18,0	18,1
AW_05	Hinterlüftung – Gipskartonplatte innen	0,27	18,2	18,3
AW_06	Hinterlüftung – Installationsebene innen	0,20	18,8	18,8
AW_01_b	WDVS – Holzbaustein-Sicht innen – erhöhte Dämmdicke außen	0,19	18,6	18,7
AW_06_b	Hinterlüftung – Installationsebene ungedämmt innen	0,26	18,4	18,5
FBE_03_b	erdberührter Fußboden – optimierter Bauteil	0,11*	19,6*	19,6*
FBE_04	erdberührter Fußboden – Abdichtung auf warmer Seite der Dämmung	0,11*	19,6*	19,6*
FBA_01_b	Fußboden über Außenluft – optimierter Bauteil	0,20	18,8	18,8
FBA_01_e	mit Perlit-Dämmschüttung zur Leitungsführung	0,15	19,1	19,1
FBA_02	Nassestrich - Ausgangsbauteil	0,15	19,1	19,1

FBA_02_b	Nassestrich – diffusionshemmende Folie über Schüttung	0,15	19,1	19,1
FBA_02_c	Nassestrich – lose Schüttung mit erhöhter Wärmeleitfähigkeit	0,22**	18,7	18,8
FBA_02_d	Nassestrich – optimiert erhöhter Stegträger – lose Schüttung	0,18	18,9	19,0
FBA_02_e	Nassestrich – optimiert – erhöhter Stegträger – lose Schüttung – diffusionshemmende Folie anstelle PE-Folie	0,18	18,9	19,0
DA_01	hinterlüftetes Flachgeneigtes Dach – ohne diffusionshemmende Folie	0,16***	19,0	19,1
DA_02	optimierter Bauteil – mit diffusionshemmender Folie	0,16***	19,0	19,1

^{*} Da die erdberührten Bauteile eindimensional nicht mit HTflux [5] nachgewiesen wurden, sind diese Werte aus GEQ [4] übernommen.

Im erdberührte Fußboden FBE_03_b bildet sich Kondensat in der Dämmebene, welches jedoch über die Sommermonate wieder austrocknen kann. In allen anderen oben angeführten Bauteilen fällt kein Kondensat an, es soll hierbei jedoch angemerkt werden, dass sich in den Betrachtungen von AW_03, AW_04, AW_05, AW_06, AW_06_b und DA_01 eine relativ hohe Luftfeuchtigkeit einstellt, welche zu einer Schädigung der Bauteile führen kann. Nähere Erläuterung siehe Punkt 8.


An den Außenwänden AW_04, AW_05 und AW_06 wurde wegen der hohen Konzentration der relativen Luftfeuchtigkeit an der Innenseite der außen liegenden AGEPAN DWD black-Holzfaserplatte weiters getestet, ab welchem μ -Wert dieser Schicht ein Kondensat-Ausfall zu beobachten ist. Schon ab einem Anstieg des μ -Wertes um 1 (von μ = 12 auf μ = 13) ist eine geringe Menge an Bauteilkondensat in den Außenwänden AW_04 und AW_05 zu verzeichnen, bei AW_06 bei einem Anstieg um 2 (von μ = 12 auf μ = 14). Die hinterlüfteten Außenwände liegen demnach mit ihren angenommenen und von den Herstellern der Baustoffe vorgegebenen Dampfdiffusionswiderstandszahlen an der Grenze zur Entstehung von Kondensat im Bauteilinneren. Durch eine zusätzlich an der Holzbaustein-Außenseite angebrachten Dämmung lässt sich das Risiko der Entstehung von Bauteilkondensat und der Einstellung einer schädlichen relativen Luftfeuchtigkeit sowie Ungenauigkeiten in der Bauausführung minimieren.

^{**} Erfüllt die U-Wert Anforderungen It. OIB-Richtlinie 6 [15] nicht.

^{***} An der Stelle mit der geringsten Dämmdicke gemessen, über eine größere Sparrenlänge ist der Wärmedurchgangskoeffizient besser.

6 Hygrothermische Untersuchung der Details im Sockelbereich

Folgende Leit-Details wurden als Vorgabe für die Untersuchungen zur Verfügung gestellt:

Das in Abb. 133 gezeigte Leit-Detail der Bodenplatte aus Beton wird in den Ausführungen einer Stahlbeton-Fundamentplatte umgesetzt. Es werden mehrere Varianten des Randabschlusses mittels einer Frostschürze und eines Frostschirmes untersucht und auf ihre hygrothermische Tauglichkeit überprüft.

Das in Abb. 134 gezeigte Leit-Detail der aufgeständerten Bodenplatte auf Schraubenfundamenten wird für die verschiedenen Wandaufbauten (Punkt 4.3) untersucht und bis zur Funktionsfähigkeit optimiert.

6.1 Allgemeines

Die ausgeführten Detail-Varianten werden auf Basis von folgenden Normen und Richtlinien, einer Masterarbeit sowie einer Projektarbeit erstellt, und nachfolgend optimiert. Grundsätzlich sollen die fertig optimierte Detail-Lösung kein Bauteilkondensat aufweisen. Die Schritte bis zum Erreichen dieser Ausführung werden genauestens dokumentiert, bis zum letztlich optimierten Detail betrachtet, auf Probleme eingegangen und Lösungsvorschläge unterbreitet.

- ÖNORM B 3802-2 [3]
- ÖNORM B 2320 [8]
- ÖNORM B 2340 [9]
- ÖNORM B 3691 [10]
- ÖNORM B 3692 [11]
- Masterarbeit Hygrothermische Untersuchungen von Detaillösungen und Entwicklung eines Normenleitfadens für den Holzrahmeinbau [12]
- Masterprojekt Ausarbeitung von Details im Sockel- und erdberührten Bereich, sowie die Vorgehensweise zur Temperaturverteilung im angrenzenden Erdreich [14]
- Richtline Sockelanschluss im Holzausbau [19]

Laut ÖNORM B 3802-2 [3] darf Holz in den Gebrauchsklassen 0 bis 3.2 weder mit dem Erdreich in Berührung kommen, noch unter Außenniveau eingebaut werden. Die Unterkante des Holzbauteils muss sich mindestens 30 cm über dem Außenniveau befinden. Wenn allerdings besondere technische Maßnahmen wie zum Beispiel Drainagen, Abdichtungen oder Verblechungen die Holzkonstruktion schützen, dann darf die Sockelhöhe auf 10 cm über dem Erdreich und auf 5 cm zu wasserführenden Ebenen reduziert werden. Bei Holzbauteilen die auf mineralischen, kapillar wirksamen Materialien (z.B.: Beton) dauerhaft aufliegen und sich unter 1 m über Außenniveau befinden, ist der Feuchteeintrag durch feuchtesperrende Schichten zu verhindern. [3]

Da eine Forderung war, die Holzkonstruktion so bodennah wie möglich auszuführen, wird an die ÖNORM B 3802-2 [3] angelehnt, der minimalste Abstand zum Erdreich – 10 cm – als Basis-Detail betrachtet. Grundsätzlich sollte immer darauf geachtet werden an welchem Standort die Konstruktion realisiert wird. Bauweisen an Hanglagen oder Hochwasser gefährdeten Zonen sollten daher gesondert betrachtet und womöglich mit erhöhten Anforderungen ausgeführt werden. Bodennahe Detail-Lösungen, wie in dieser Masterarbeit betrachtet, könnten sich in diesen Gebieten als ungünstig erweisen.

Bei der Planung von Abdichtungen erdberührter Bauteile ist es notwendig den gegebenen Untergrund zu kennen, um den Lastfall, der für die Bemessung der Abdichtung notwendig ist zu bestimmen. Die Detail-Varianten werden mit der Annahme nicht-drückendes Wasser ausgeführt. Um den Anforderungen dieses Lastfalls zu entsprechen, wird eine 2-lagige Bitumenbahn mit 8 mm Dicke als Bauwerksabdichtung geplant. [11]

Für die Simulation der Feuchteverteilung im Bauteil wurden die Randbedingungen der Klimabedingungen nach ÖNORM B 8110-2 [1] definiert. Das Erdreich wurde nach ÖNORM EN ISO13370 [13] angenommen. Der hygrothermischen Simulation geht immer eine stationäre Simulation voraus. Die Genauigkeit der Berechnung liegt bei einem Raster von 1 mm. Sobald sich in der Konstruktion Bauteilkondensat bildet wurde die Simulation gestoppt. Es wird daher nur gezeigt, dass sich im jeweiligen Detail Kondensat bildet. Daher können die in der Auswertung gezeigten Kondensatmengen weit unter den Ausfallenden liegen.

Sonstige Annahmen und Kriterien der Ausführungen:

- Bei Bauwerksabdichtungen ist bei An- und Abschlüssen ein Hochzug von mindestens
 15 cm über das angrenzende Bodenniveau auszuführen. [11]
- Die Perimeterdämmung außerhalb von Abdichtungen ist mindestens 5 cm dick auszuführen. [11]
- Beim Übergang von horizontalen zu vertikalen Abdichtungen ist eine mindestens
 25 cm breite Anschlussfläche auszuführen. [11]
- Die Bauwerksabdichtung wird unter der Fundamentplatte geführt, damit durch ein Befestigen der Fußschwelle auf der Fundamentplatte die Abdichtung nicht durchstoßen wird.
- Als Abdichtung gegen aufsteigende Feuchtigkeit wird auf der Fundamentplatte eine bituminöse Dampfsperre E-ALGV-4 bzw. E-ALGV-5 aufgebracht. In weiterer Folge wird die Abdichtung auf den Bereich der Fußschwelle des Holzbausteins reduziert.
- Für einen Niveauausgleich und den optimalen Ansatz der Fußschwelle ist ein Mörtelbett vorzusehen.
- Eine in der Dicke variable Perlit-Dämmschüttung wird ebenfalls als Niveauausgleich für den Fußbodenaufbau geplant. In den weiterführenden Detail-Ausbildungen auch zur Leitungsführung geeignet.
- Ein luftdichter Verschluss der Bauteilfuge (Holzbausteinwand zu Fundamentplatte) ist an der Innenseite herzustellen. [9]
- Ein wind- und regendichter Verschluss der Bauteilfuge ist an der Außenseite herzustellen. [8]
- Ein Spritzwasserschutz ist mindestens 30 cm über das Außenniveau zu führen durch Putze gemäß den WDVS-Herstellerrichtlinien oder durch Opferbretter bei hinterlüfteten Fassaden. [19]
- Eine Fugenabdichtung wie z. B. ein Fugendichtband ist zwischen Perimeterdämmung und WDVS vorzusehen. [8]

6.2 Varianten

In Tab. 9 sind die untersuchten Detail-Varianten mit ihren zugehörigen Bauteilen aufgelistet. Es wird gezeigt ob die Ausführungen hygrothermisch geeignet sind oder nicht.

Die betrachteten Varianten unterscheiden sich in folgenden Ausführungen:

Sockel-Detail_01: In dieser Ausführung wird der nach ÖNORM B 3802-2 [3] minimalste Abstand der Holzkonstruktion zum Erdreich behandelt. Die tragende Fußschwelle liegt 10 cm über dem Erdniveau und muss durch zusätzliche technische Maßnahmen, siehe Punkt 6.1, geschützt werden.

Sockel-Detail_02: Diese Ausführung betrachtet die Variante der reduzierten Höhe nach ÖNORM B 2320 [8]. Die tragende Fußschwelle liegt 15 cm über dem Erdreich. Auch in diesem Detail muss die Fußschwelle, da sie sich im Spritzwasserbereich befindet durch zusätzliche technische Maßnahmen geschützt werden. Der Vorteil dieser Variante ist, wie unter Punkt 6.4 gezeigt, dass der Abdichtungshochzug 15 cm – also nur bis zur Fußschwelle des Holzbausteins – hochgeführt werden muss und damit eine leichtere Ausführung gegeben ist.

Sockel-Detail_03: Unterscheidet sich grundsätzlich nur in der Gründung von den Varianten aus Sockel-Detail 02. Es wird Anstelle einer Frostschürze ein Frostschirm betrachtet.

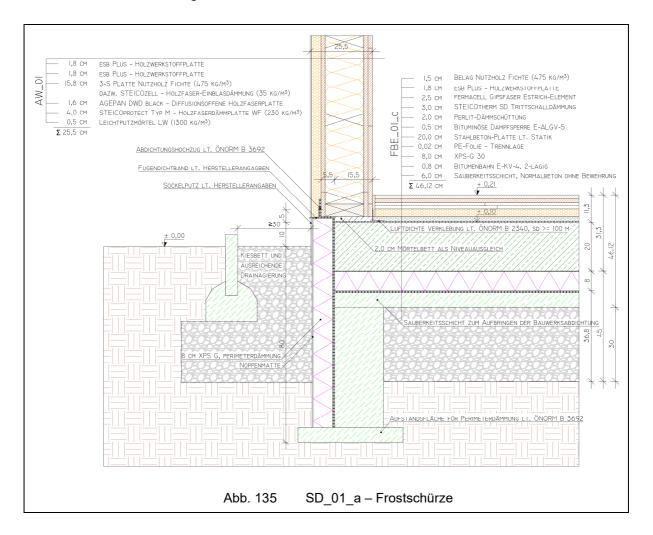
Sockel-Detail_04: Ist die Betrachtung des Fußbodens auf Schraubenfundamenten. Es werden alle untersuchten Außenwände mit dem Fußbodenaufbau FBA 01 b betrachtet.

Sockel-Detail_05: Betrachtet maßgebende Varianten aus Sockel-Detail_04 mit einem Fußboden über Außenluft als Nassestrich-System

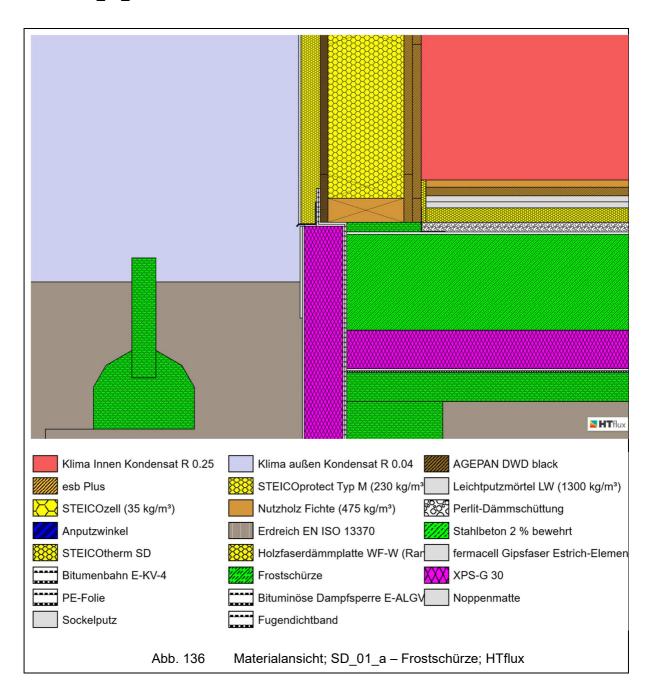
Sockel-Detail_06: Um Platz für die Leitungslegung zu schaffen, wird der optimierte Fußboden FBA_01_b durch eine Perlit-Dämmschüttung unter der Trittschalldämmung erweitert. Es werden Detail-Anschlüsse der Standard-Außenwand mittels des Holzbausteins AW_01 mit dem Fußboden über Außenluft betrachtet.

Tab. 9 Untersuchte Sockel-Varianten in der Detail-Ausbildung

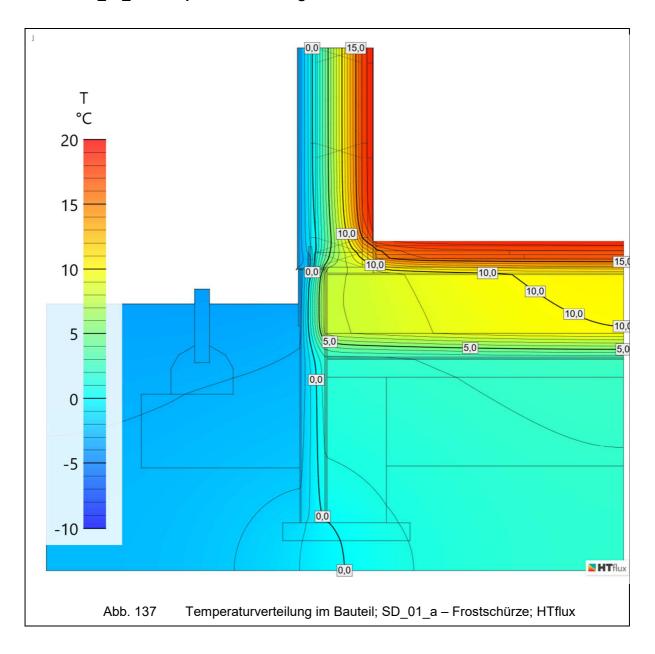
Var	ianten	Anmerkung	Wandbauteil	Fußboden	Detail kondensatfrei
	SD_01_a	Ausgangs-Detail	AW_01	FBE_01_c	Nein
_	SD_01_b	Erhöhung der Perlit-Dämmschüttung + PE-Folie über der Schüttung	AW_01	FBE_02_b mit PE-Folie über Schüttung	Nein
_	SD_01_c	Anordnung einer diffusionshemmenden Folie über der TSD	AW_01	FBE_02_b	Nein
Sockel- Detail 01, -	SD_01_d	Anordnung einer diffusionshemmenden Folie in der Fußschwelle	AW_01	FBE_02_b	Nein
erdberührte Bodenplatte mit	SD_01_e	Erhöhung der XPS-Dämmdicke unter dem STB- Fundament	AW_01	FBE_03_b	Ja
Frostschürze, - Fußschwelle 10 cm über	SD_01_f	Vergrößerung des Holzquerschnitts in der Fußschwelle	AW_01	FBE_03_b	Nein
Erdreich -	SD_01_g	Anordnung eines Dämmkeils für eine erleichterte Ausführung	AW_01	FBE_03_b	Nein
_	SD_01_h	vergrößerter Holzquerschnitt in der Fußschwelle	AW_01	FBE_03_b	Nein
_	SD_01_i	weitere Vergrößerung des Holzquerschnitts in der Fußschwelle	AW_01	FBE_03_b	Ja
_	SD_01_j	Anordnung der Abdichtung auf der warmen Seite der Dämmung	AW_01	FBE_04	Ja

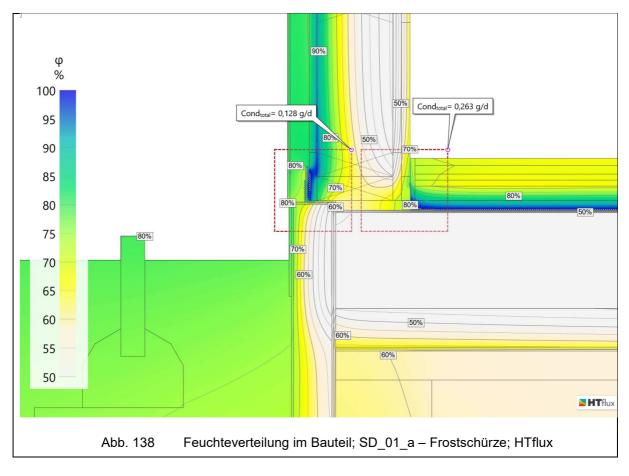

Varia	anten	Anmerkung	Wandbauteil	Fußboden	Detail kondensatfrei
	SD_02_a	Ausgangs-Detail mit 20 cm XPS Dämmung	AW_01	FBE_01_b	Nein
Sockel- Detail 02,	SD_02_b	Abdichtung auf kalter Seite der Dämmung	AW_01	FBE_03_b	Ja
Erdberührte Bodenplatte mit	SD_02_c	Abdichtung auf warmer Seite der Dämmung	AW_01	FBE_04	Ja
Frostschürze, Fußschwelle 15 cm über	SD_02_d	Anschluss an AW_04 – Perimeterdämmung hochgezogen	AW_04	FBE_04	Nein
Erdreich	SD_02_e	Anschluss an AW_04 – hinterlüftete Fassade im Spritzwasserbereich	AW_04	FBE_04	Ja
Sockel- Detail 03, Erdberührte Bodenplatte mit	SD_03_a	Abdichtung auf kalter Seite der Dämmung	AW_01	FBE_03_b	Ja
Frostschirm, Fußschwelle 15 cm über Erdreich	SD_03_b	Abdichtung auf warmer Seite der Dämmung	AW_01	FBE_04	Ja
	SD_04_a	AW_01 & FBA_01_b	AW_01	FBA_01_b	Ja
	SD_04_b	AW_01 & FBA_01_b mit ausged. Hohlraum	AW_01	FBA_01_b	Ja
Sockel- Detail 03, —	SD_04_c	AW_02 & FBA_01_b	AW_02	FBA_01_b	Ja
Fußboden über	SD_04_d	AW_03 & FBA_01_b	AW_03	FBA_01_b	Nein
Außenluft, — 10 cm über	SD_04_e	AW_03 & FBA_01_b	AW_03	FBA_01_b	Ja
Erdreich, — Trockenestrich	SD_04_f	AW_04 & FBA_01_b	AW_04	FBA_01_b	Ja
	SD_04_g	AW_05 & FBA_01_b	AW_05	FBA_01_b	Ja
	SD_04_h	AW_06 & FBA_01_b	AW_06	FBA_01_b	Ja

Vari	anten	Anmerkung	Wandbauteil	Fußboden	Detail kondensatfrei
	SD_05_a	ohne diffusionshemmende Folie	AW_01	FBA_02	Ja
_	SD_05_b	mit diffusionshemmender Folie über Schüttung	AW_01	FBA_02_b	Ja
_	SD_05_c	ohne diffusionshemmende Folie	AW_06	FBA_02	Nein
Sockel-	SD_05_d	mit diffusionshemmender Folie über Schüttung	AW_06	FBA_02_b	Nein
Detail 05, – Fußboden über	SD_05_e	ungedämmte Installationsebene innen	AW_06_b	FBA_02_b	Nein
Außenluft, – 10 cm über Erdreich,	SD_05_f	ungedämmte Installationsebene innen mit Kantholz an Innenkante	AW_06_b	FBA_02_b	Ja
Nassestrich -	SD_05_g	lose Schüttung mit erhöhter Wärmeleitfähigkeit	AW_06	FBA_02_c	Ja
	SD_05_h	Erhöhung der außenliegenden Dämmdicke	AW_01_b	FBA_02_d	Ja
_	SD_05_i	diffusionshemmende Folie über der Trittschalldämmung	AW_01_b	FBA_02_e	Ja
Sockel- Detail 06, Fußboden über	SD_06_a	Ausgangs-Detail	AW_01	FBA_01_c	Nein
Außenluft, 10 cm über Erdreich,	SD_06_b	diffusionshemmende Folie über der Schüttung	AW_01_b	FBA_01_d	Nein
Trockenestrich mit 8 cm Perlit- Dämmschüttung	SD_06_c	diffusionshemmende Folie über der Schüttung	AW_01_b	FBA_01_e	Ja


6.3 Sockel-Detail_01 – Erdberührte Bodenplatte mit Frostschürze – Fußschwelle 10 cm über Erdreich

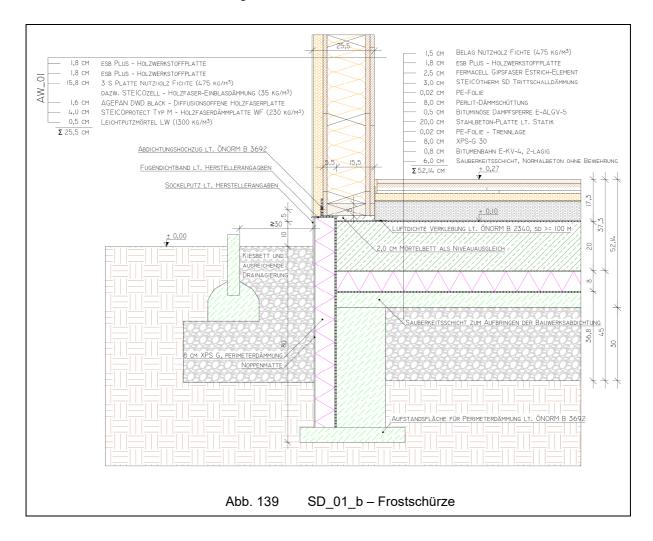
6.3.1 SD_01_a - Ausgangs-Detail


Bei dieser Variante wurde versucht, den Minimalstabstand zum Erdreich von 10 cm auszuführen. Durch diese Vorgabe ist der Abdichtungshochzug über den Vorsprung des Holzbausteins und weiter an der Holzbausteinaußenseite hochzuführen. Die Befestigung des Anputzwinkel wurde genau 15 cm über Bodenniveau angeordnet. Die Perlit-Dämmschüttung ist nur konstruktiv als Ausgleichsschicht vorhanden.



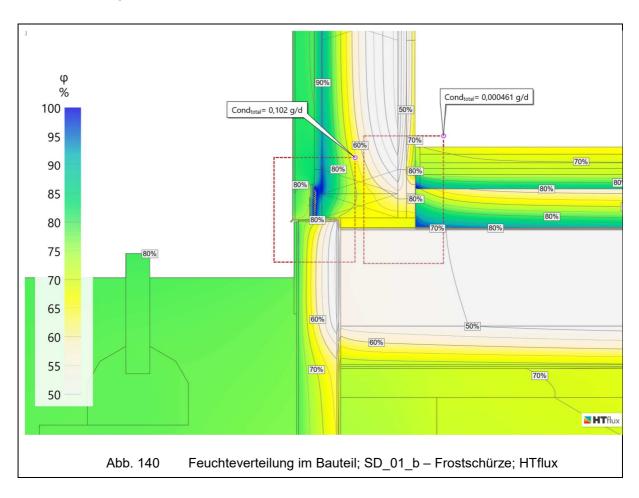
6.3.1.1 SD_01_a - Materialansicht

6.3.1.2 SD_01_a - Temperaturverteilung im Bauteil


6.3.1.3 SD_01_a - Feuchteverteilung im Bauteil

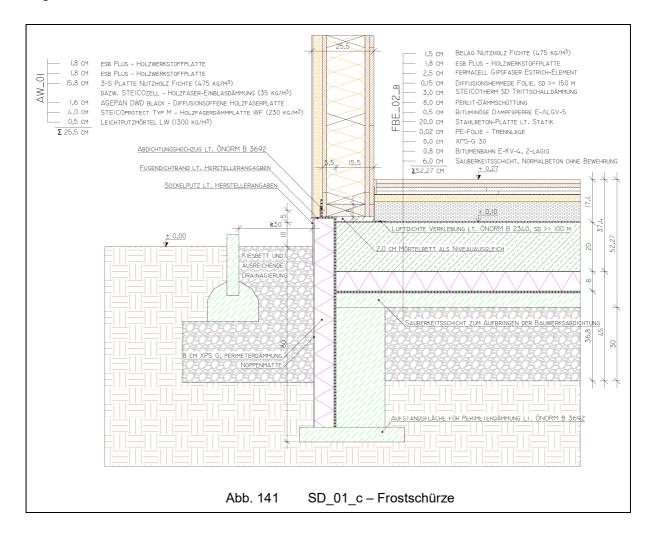
In Abb. 138 lässt sich erkennen, dass an der Innenkante der Bauteilfuge durch die luftdichte Verklebung eine geringe Menge an Kondensat entsteht. Auch durch den Abdichtungshochzug wird der Dampfstrom von innen nach außen aufgehalten und kondensiert an der kalten Innenseite der Bitumenbahn.

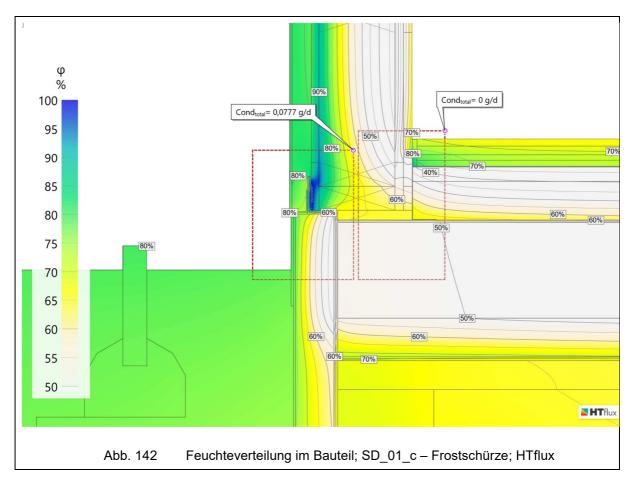
Durch das Erhöhen der Perlit-Dämmschüttung auf 8 cm (auch der Sinnhaftigkeit der Verlegung von Installationen geschuldet) und das zusätzliche Einbringen einer PE-Folie als Trennlage über der Schüttung, sollte das Kondensat an der Innenkante der Bauteilfuge verschwinden. Diese Variante wird folgend betrachtet.


6.3.2 SD_01_b - Erhöhung der Perlit-Dämmschüttung + PE-Folie über der Schüttung

In SD_01_b wird versucht, durch eine Erhöhung der Perlit-Dämmschüttung auf 8 cm (auch der Sinnhaftigkeit der Verlegung von Installationen geschuldet) und der zusätzlichen Anordnung einer PE-Folie über der Schüttung, das Kondensat an der Innenkante zu reduzieren.

6.3.2.1 SD_01_b - Feuchteverteilung im Bauteil

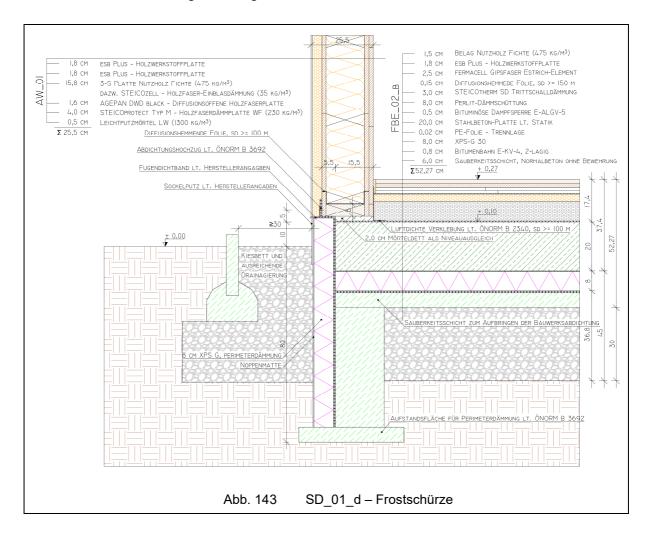

In Abb. 140 wird gezeigt, welche Auswirkungen die Anordnung einer PE-Folie über der Perlit-Dämmschüttung hat.

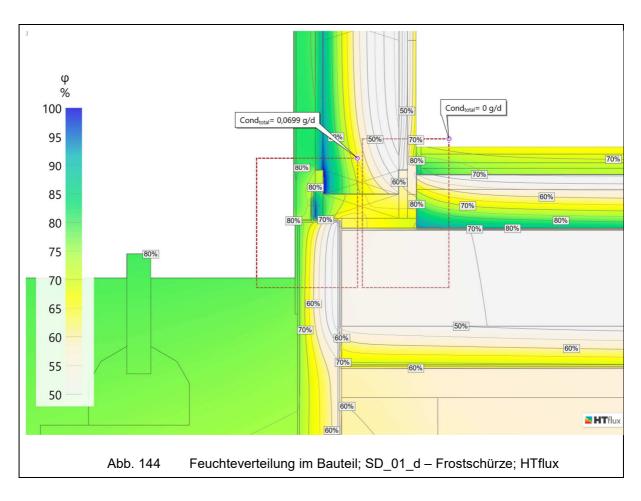


Auch in dieser Variante bilden sich noch geringe Mengen an Kondensat an der inneren Bauteilkante. Die Kondensation am außen liegenden Hochzug hingegen hat sich nicht maßgebend verringert. Um das Kondensat an der inneren Bauteilkante gänzlich zu reduzieren, wird in der folgenden Variante eine dampfhemmende Folie mit einem sd-Wert von 150 m über der Trittschalldämmung angeordnet.

6.3.3 SD_01_c - Anordnung einer diffusionshemmenden Folie über der TSD

Um das Kondensat an der inneren Bauteilkante gänzlich zu reduzieren, wird in dieser Variante eine diffusionshemmende Folie mit einem sd-Wert von 150 m über der Trittschalldämmung angeordnet.

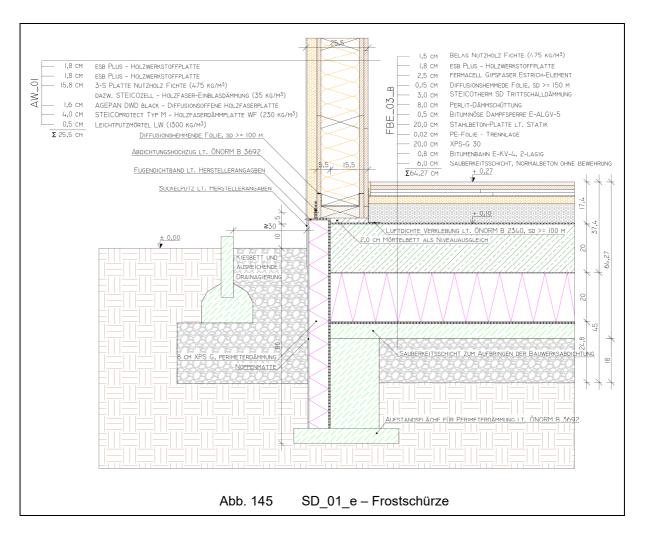

6.3.3.1 SD_01_c - Feuchteverteilung im Bauteil


Durch das Anordnen der dampfhemmenden Folie mit einem sd-Wert von 150 m über der Trittschalldämmung, wird der Dampfstrom in einem wärmeren Bereich des Bauteils abgefangen und bildet nun kein Kondensat mehr an der Innenkante. Auch das Kondensat am Abdichtungshochzug hat sich reduziert, ist jedoch nicht gänzlich verschwunden. Es wurde ebenfalls eine dampfhemmende Folie mit einem sd-Wert von 100 m untersucht, doch bei dieser Variante bildeten sich noch geringe Mengen an Kondensat an der Innenkante.

In der nächsten Variante wird versucht, durch eine in der Fußschwellenkonstruktion liegenden Dampfbremse das Kondensat am Hochzug zu reduziert.

6.3.4 SD_01_d - Anordnung einer diffusionshemmenden Folie in der Fußschwelle

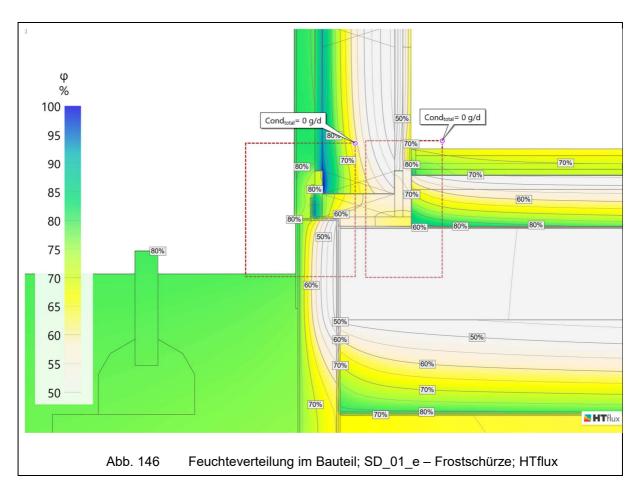
In dieser Variante wird SD_01_c um eine in der Fußschwellenkonstruktionen liegenden diffusionshemmenden Folie mit einem sd-Wert von 100 m erweitert. Durch die Folie soll das Kondensat am Abdichtungshochzug reduziert werden.

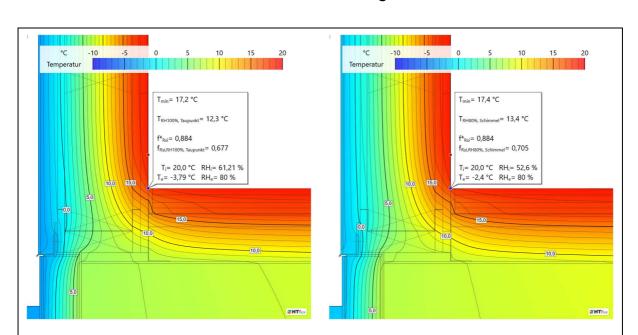

6.3.4.1 SD_01_d - Feuchteverteilung im Bauteil

Durch die Anordnung der dampfhemmenden Folie mit einem sd-Wert von 100 m in der Fußschwellenkonstruktion verringert sich die vorhandene Kondensatmenge zur vorherigen Variante, verschwindet aber nicht gänzlich.

Da die Dicke der Perimeterdämmung mit den Vorgaben des Bauherren (Anschluss an die 4 cm starke Holzfaserdämmplatte auf Holzzielgel) technisch nur schwer erhöht werden kann, wird in der nächsten Variante versucht, mit einer von 8 cm auf 20 cm erhöhten unter der Fundamentplatte liegenden Dämmschicht die Temperaturen im Inneren des Bauteils zu erhöhen.

6.3.5 SD_01_e - Erhöhung der XPS-Dämmdicke unter dem STB-Fundament


SD_01_e zeigt die erste simulierte kondensatfrei Detail-Ausbildung des Fußpunktes mit der Außenwand AW_01 und des Fußbodens FBE_03_b. Dabei wurde, um die Temperaturen im Inneren des Bauteils zu erhöhen, die in den vorherigen Varianten betrachtete 8 cm dicke XPS-Dämmung unter der Fundamentplatte auf 20 cm erhöht. Um das Kondensat an der Innenkante der luftdichten Verklebung zu eliminieren wurde eine diffusionshemmende Folie mit einem sd-Wert von 150 m über der Trittschalldämmung angeordnet. Um die Kondensation am Abdichtungshochzug zu vermeiden wurde des Weiteren eine Folie mit einem sd-Wert von 100 m in der Schwellenkonstruktion angebracht.


Wichtig:

Bei der Montage der Folie sollte darauf geachtet werden, dass diese zwischen den Baustein-Stößen eingeklemmt werden sollte um ein späteres verrutschen oder herunterklappen bei der Befüllung des Bausteins mit der Einblasdämmung zu vermeiden. Auch muss darauf geachtet werden, dass die Dampfbremse an den innen liegenden Kanten satt anliegt, um einen auf die Konstruktion ungünstig wirkenden Lufthohlraum zu vermeiden.

Durch die auf 20 cm erhöhte Dämmung unter der Fundamentplatte und der Dampfbremse an der Innenseite der Fußschwelle bildet sich nun kein Kondensat mehr im Inneren des Sockelanschlusses.

6.3.5.2 SD_01_e – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

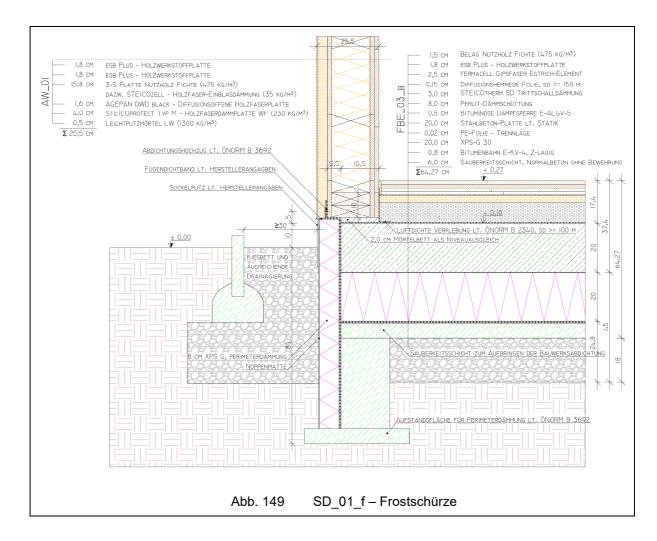
Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

Oberflächenkondensat;

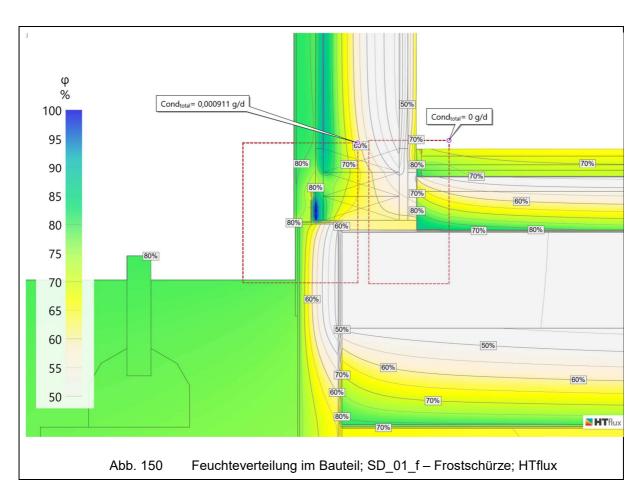
SD_01_e; HTflux

Da die Ausführung der Dampfbremse in der Fußschwellenkonstruktion als schwierig angenommen wird und durch eine nicht fachgerechte Montage zu Bauschäden führen kann, wird folgend eine weitere Variante untersucht, um den Bauteil kondensatfrei zu halten. Es wird betrachtet, ob sich durch die Erhöhung der Schwelle mit einer Vollholzkonstruktion von zwei übereinander liegenden Pfosten Kondensat bildet.

Abb. 148

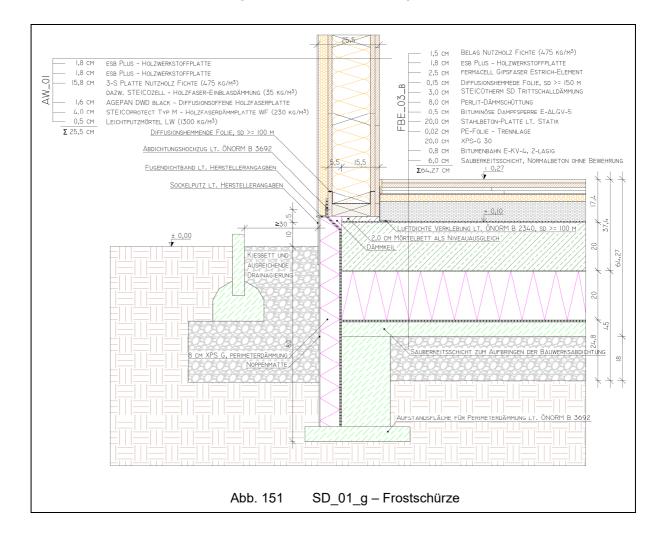

Schimmelbildung;

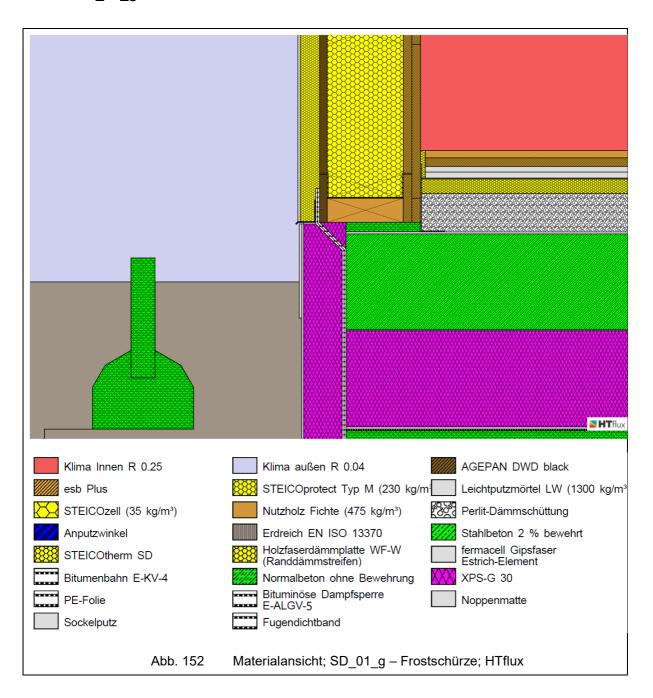
SD_01_e; HTflux


Abb. 147

6.3.6 SD_01_f - Vergrößerung des Holzquerschnitts in der Fußschwelle

In dieser Variante wird versucht, mithilfe einer Erhöhung des Holzquerschnitts in der Fußschwellenkonstruktion das Kondensat am Abdichtungshochzug zu reduzieren. Durch den vergrößerten Vollholzquerschnitt, der eine absichtlich herbeigeführte Wärmebrücke darstellt, wird der außenliegende Bereich erwärmt. Auf diese Weise soll der Dampfstrom nicht unter seinen Taupunkt abgekühlt und damit das ausfallende Kondensat reduziert werden. Die Erhöhung des Holzquerschnittes stellt eine Alternative zur Variante SD_01_e da, bei welcher die Fußschwellenkonstruktion mittels einer eingelegten dampfhemmenden Folie kondensatfrei bleibt.

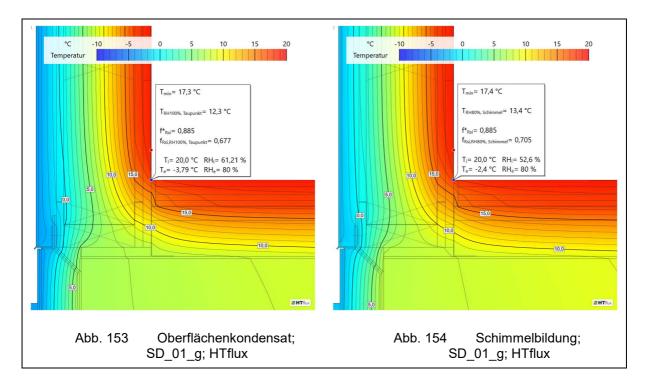



Durch die Erhöhung des Vollholzquerschnitts in der Fußschwelle kann das auftretende Kondensat maßgeblich verringert werden. Eine verschwindend geringe Menge wird jedoch noch über das Berechnungsverfahren ausgegeben. Da das Programm mit der Berechnungsmethode des Glaser-2d Verfahrens auf der konservativen Seite liegt und nicht die Eigenschaften der Kapillarität und Ausbreitung der Wasseransammlung der Baustoffe (kapillar Aktivität der Zellulose-Einblasdämmung) berücksichtigt, kann davon ausgegangen werden, dass diese Konstruktion ausführbar ist und kein schädliches Kondensat auftritt. Zu Bedenken wäre jedoch, dass auch Ausführungsfehler passieren können und die Konstruktion somit noch anfälliger wird. Auch sollte auf die sich einstellende hohe Feuchtigkeit und die damit einhergehende Holzfeuchte, siehe Punkt 8, verwiesen werden.

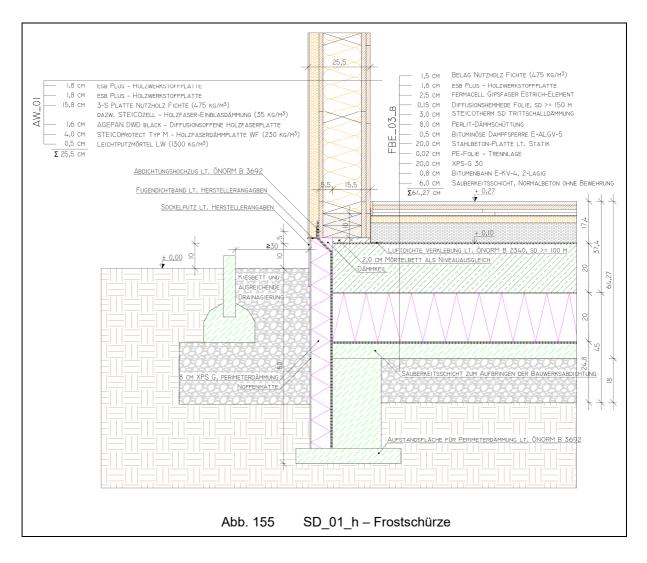

6.3.7 SD_ 01_g - Anordnung eines Dämmkeils für eine erleichterte Ausführung

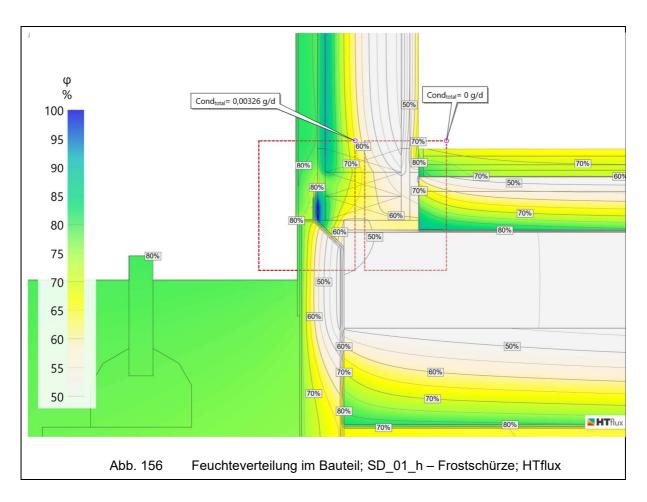
Da bei den Varianten, bei welcher die Fußschwelle auf 10 cm über dem Erdreich liegt, der Abdichtungshochzug über den Holzbaustein gezogen werden muss um die nach ÖNROM B 3692 [11] geforderten 15 cm Hochzugshöhe zu erreichen, wird die verwendete Abdichtung zweimal um die Kante geführt. Diese Ausführung wird mit der folgend gezeigten Variante eines Dämmkeiles erleichtert. Zusätzlich wurde eine diffusionshemmende Folie mit einem sd-Wert von 100 m auf der Holzschwelle angeordnet. SD_01_g unterscheidet sich nur durch die erleichterte Ausführung der Bauwerksabdichtung mittels Dämmkeil von SD_01_e.

6.3.7.1 SD_01_g - Materialansicht



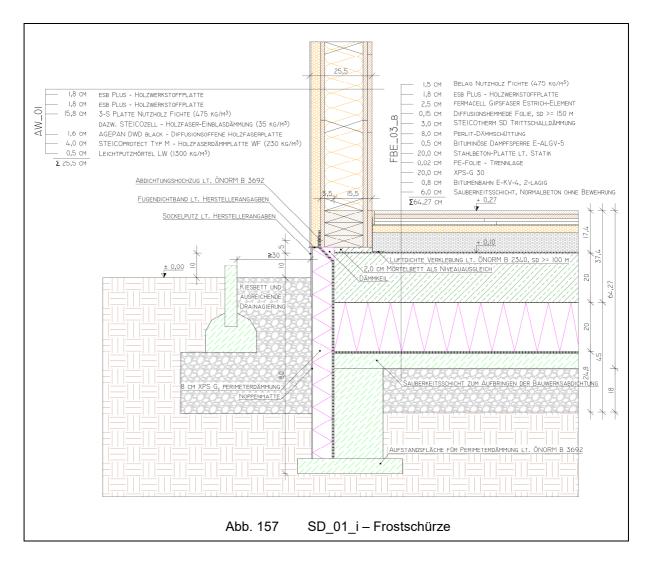
Es bildet sich aufgrund der in die Fußschwellenkonstruktion eingesetzten diffusionshemmenden Folie kein Kondensat mehr am Abdichtungshochzug, jedoch eine sehr geringe Menge an eben jener Folie. Interessanterweise entsteht an der ähnlichen Variante SD 01 e kein Kondensat an jener Stelle. Es sollte darauf vermerkt werden, dass die anfallende Kondensatmenge sehr gering ist und wie schon in SD 01 f beschrieben, das Programm mit der Berechnungsmethode des Glaser-2d Verfahrens auf der konservativen Seite liegt und nicht die Eigenschaften der Kapillarität und Ausbreitung Wasseransammlung der Baustoffe (kapillar Aktivität der Zellulose-Einblasdämmung) berücksichtigt. Es kann davon ausgegangen werden, dass diese Konstruktion ausführbar ist und kein schädliches Kondensat auftritt. Zu Bedenken wäre jedoch, dass auch Ausführungsfehler passieren können und die Konstruktion somit noch anfälliger wird. Um alle Unsicherheiten einer solchen Konstruktion mit einer diffusionshemmenden Folie innerhalb der Fußschwellenkonstruktion zu vermeiden. sollten die Varianten erhöhtem Vollholzquerschnitt in der Schwelle bevorzugt werden. Siehe Variante SD_01_i, Punkt 6.3.9.

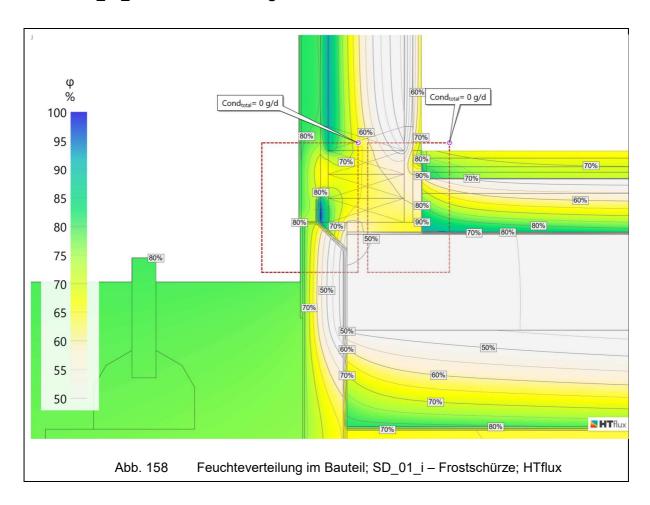

6.3.7.3 SD_01_g – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.3.8 SD_01_h - vergrößerter Holzquerschnitt in der Fußschwelle

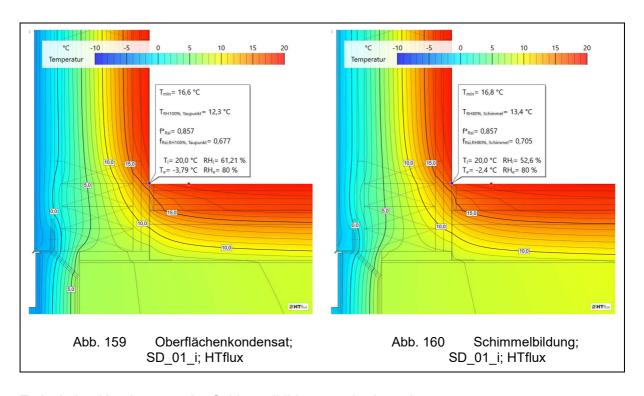
SD_01_h ist die mit einem Dämmkeil ausgeführte Variante SD_01_f.


6.3.8.1 SD_01_h - Feuchteverteilung im Bauteil


Die Feuchteverteilung in Variante SD_01_h ist ähnlich der vergleichbaren Variante SD_01_f. Es fällt eine geringe Menge an Bauteilkondensat an der Innenseite des Hochzuges an. Folgend wird betrachtet, ob durch einen zusätzlichen dritten Pfosten und dadurch die nochmalige Erhöhung der Fußschwelle das restliche anfallende Bauteilkondensat verschwindet.

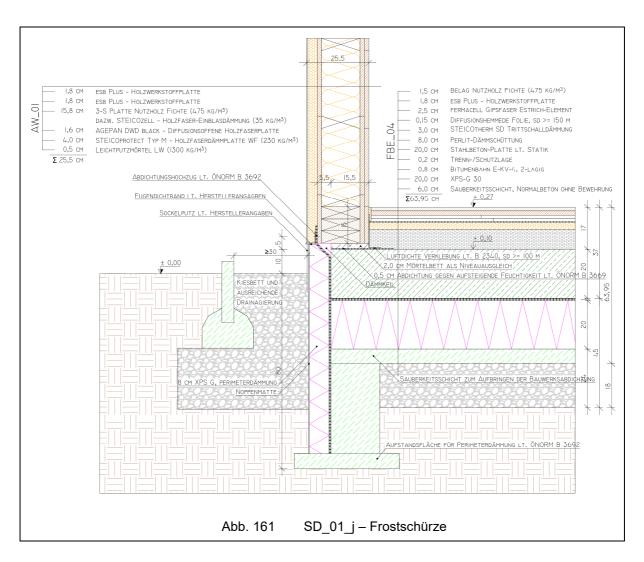
6.3.9 SD_01_i - weitere Vergrößerung des Holzquerschnitts in der Fußschwelle

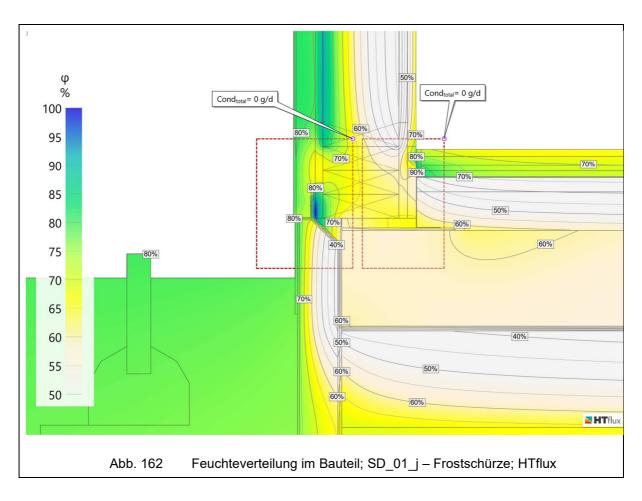
Um die Varianten SD_01_f, SD_01_g und SD_01_h gänzlich von anfallendem Kondensat zu befreien wird folgend ein dritter Vollholz-Pfosten der Fußschwellen-Konstruktion hinzugefügt. Die Schwelle kann natürlich auch mit anderen Holzkonstruktionen gefertigt werden, es muss nur darauf geachtet werden, dass die Dimensionen eingehalten sind.



6.3.9.1 SD_01_i - Feuchteverteilung im Bauteil

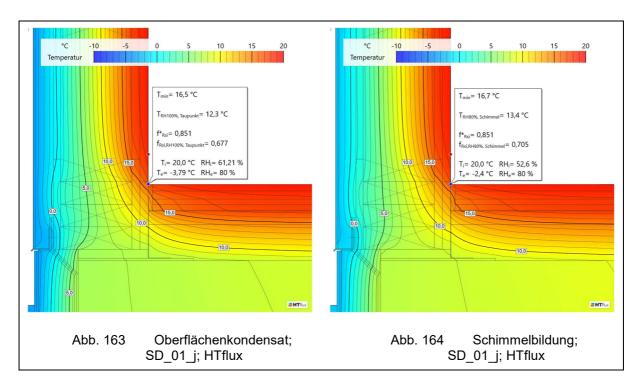
Durch den Einbau des dritten Vollholzpfosten und die damit einhergehende Erhöhung der Fußschwellenkonstruktion, wird erstens durch die Holzkonstruktion der Dampfstrom in höherem Maße gehemmt als durch die Zellulose-Einblasdämmung, zweitens durch den Holzquerschnitt eine absichtliche Wärmebrücke erzeugt, welche den Bereich des Abdichtungshochzuges erwärmt. Durch diese Einflüsse ist nunmehr keine Kondensation im Bauteil zu beobachten.


6.3.9.2 SD_01_i – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.3.10 SD_01_j - Anordnung der Abdichtung auf warmer Seite der Dämmung

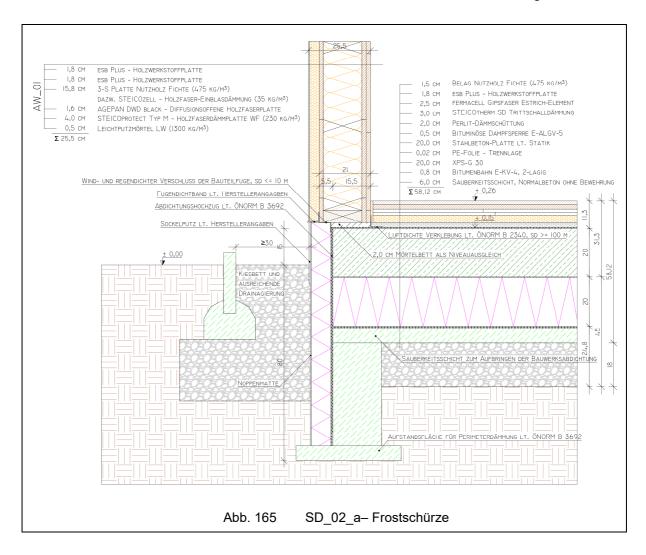
In dieser Variante wird SD_01_i mit dem Fußbodenaufbau FBE_04 betrachtet. Die wesentlichen Merkmale dieser Variante sind, dass die Abdichtungslage auf die warme Seite der Dämmung gelegt wird, daher kann auf die bituminöse Dampfsperre auf der Oberseite des Stahlbetonfundamentes verzichtet werden. Jedoch wird darauf hingewiesen, dass eine sehr genaue Ausführung beim Herstellen der Fundamentplatte erfolgen muss. Beim Betonier-Vorgang kann durch das Herumsteigen auf der Bewehrung die Abdichtung durchdrückt werden und somit Undichtheiten entstehen. Eine Abdichtung gegen aufsteigende Feuchtigkeit im Bereich der Fußschwelle des Holzbausteins ist It. ÖNORM B 2320 [8] jedoch weiterhin auszuführen.



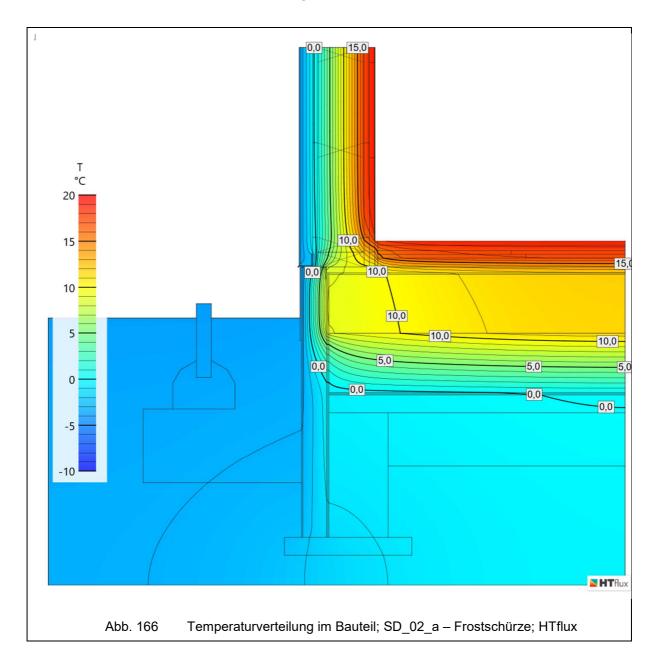
6.3.10.1 SD_01_j - Feuchteverteilung im Bauteil

Es ist kein Bauteilkondensat zu erwarten.

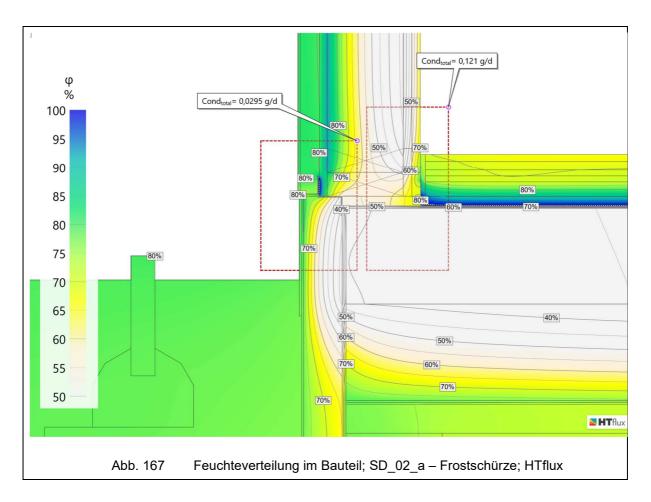
6.3.10.2 SD_01_j - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

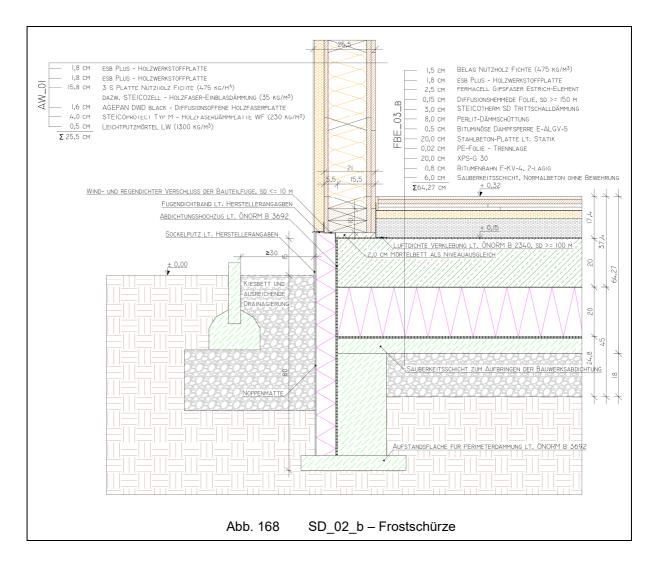
6.4 Sockel-Detail_02 – Erdberührte Bodenplatte mit Frostschürze – Fußschwelle 15 cm über Erdreich

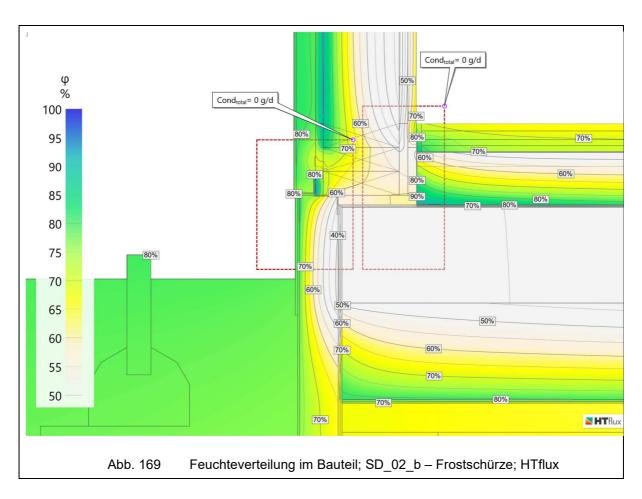

Die Varianten von SD_01 mit der Fußschwelle 10 cm über Bodenniveau sind aufgrund des Abdichtungshochzuges erschwerend auszuführen. Der Abdichtungshochzug wird, da er mindestens 15 cm über das fertige Bodenniveau hinausragen muss, zweimal um die Kante geführt. Auch mit den Varianten des Dämmkeiles sind zusätzliche Arbeitsschritte und eine erforderliche Genauigkeit in der Umsetzung notwendig. Um die Ausführung des Sockelanschlusses in der Praxis zu erleichtern, werden folgend Detail-Anschlüsse gezeigt, bei welchen die Fußschwelle 15 cm über dem fertigen Erdniveau liegt. Diese Varianten sind abdichtungstechnisch leichter auszuführen, da die Bauwerksabdichtung nur bis zur Fundamentoberkante geführt werden muss. Die Bauwerksfuge muss lediglich wind- und regendicht verschlossen werden, z. B. mit einem dafür geeigneten Klebeband. Dieses ist leichter zu verarbeiten als eine 4 mm dicke Bitumenbahn.

6.4.1 SD_02_a - Ausgangs-Detail mit 20 cm XPS-Dämmung


Bei der Betrachtung von SD_02_a wird gleich zu Beginn die Dämmung unter der Fundamentplatte mit einer Dicke von 20 cm angenommen um somit die Temperatur im Innenbereich zu erhöhen und damit Kondensation an der Innenkante vorzubeugen.

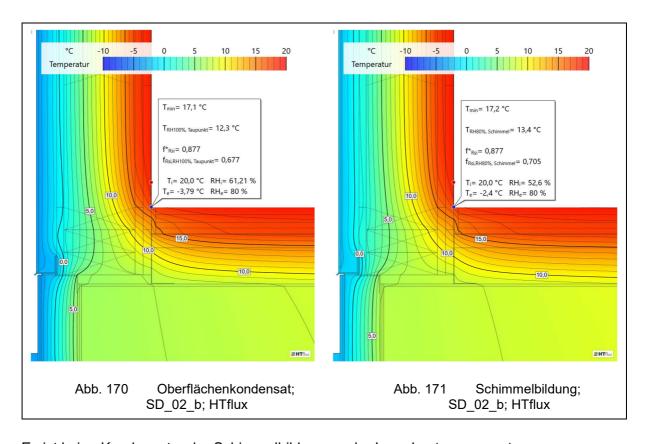
6.4.1.1 SD_02_a - Temperaturverteilung im Bauteil


6.4.1.2 SD_02_a - Feuchteverteilung im Bauteil

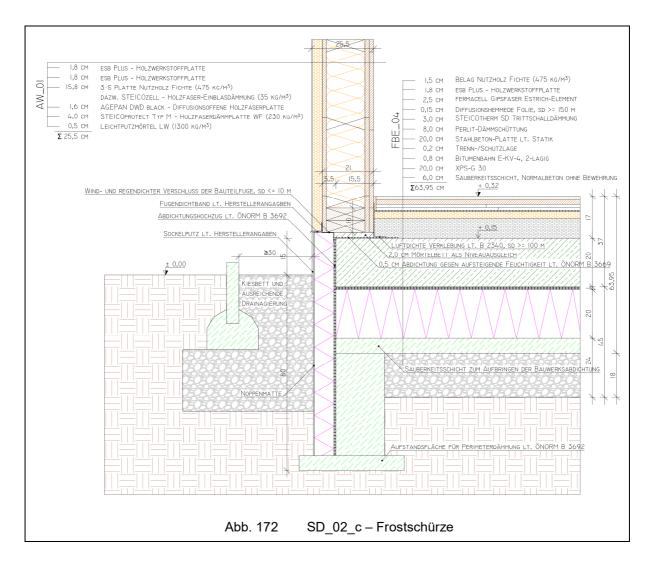

Auch in dieser Variante bildet sich, trotz der schon im Ausgangs-Detail angenommenen erhöhten Dämmdicke, an der Innenkante und am wind- und regendichten Verschluss der Bauteilfuge Kondensat. Diesen Umständen entsprechend wird SD_02 nach den in SD_01 erkannten Verbesserungen optimiert.

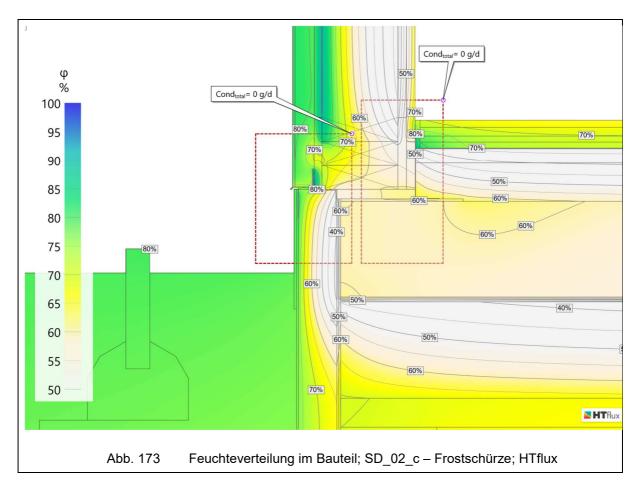
6.4.2 SD_02_b - Abdichtung auf kalter Seite der Dämmung

In dieser Variante wird das Ausgangs-Detail der Variante_02_a mit dem erdberührten Fußboden FBE_03_b optimiert. Das Kondensat, welches am wind- und regendichten Verschluss der Bauteilfuge anfällt, soll mit der Erhöhung der Fußschwelle durch eine Vollholzkonstruktion verschwinden.



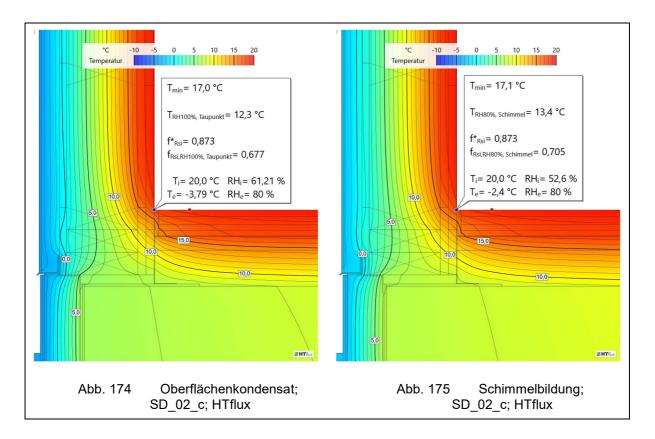
Diese Variante unterscheidet sich aufgrund der Höhe des Niveaus der Fußschwelle zum angrenzenden Erdreich von der Variante SD_01_h. Durch die Erhöhung muss der Abdichtungshochzug nur bis auf Schwellen-Höhe (15 cm über Bodenniveau) geführt werden. Der Verschluss der Bauteilfuge mit einer wind- und regendichten Abdichtung, hat einen geringeren sd-Wert, als die in SD_01_h über die Schwelle geführte bituminöse Abdichtung. Aus diesem Grund entsteht bei dieser Variante schon bei einer Erhöhung der Fußschwellen-Konstruktion auf zwei Vollholzpfosten kein Kondensat mehr am äußeren Bereich der Bauteilfuge.


6.4.2.2 SD_02_b - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

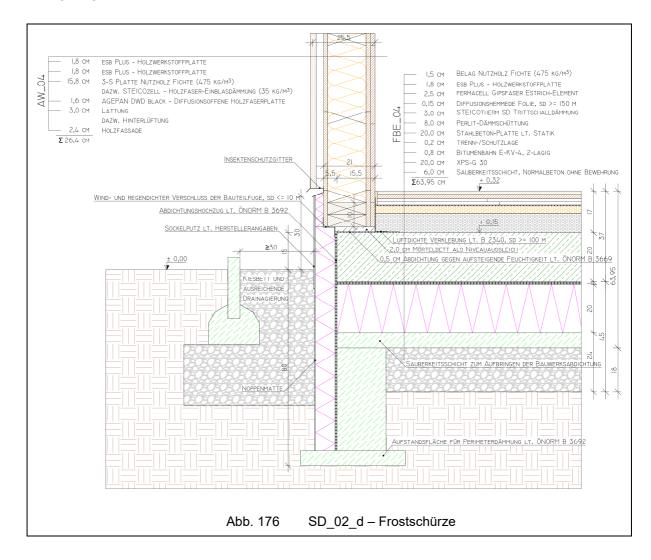
6.4.3 SD_02_c - Abdichtung auf warmer Seite der Dämmung

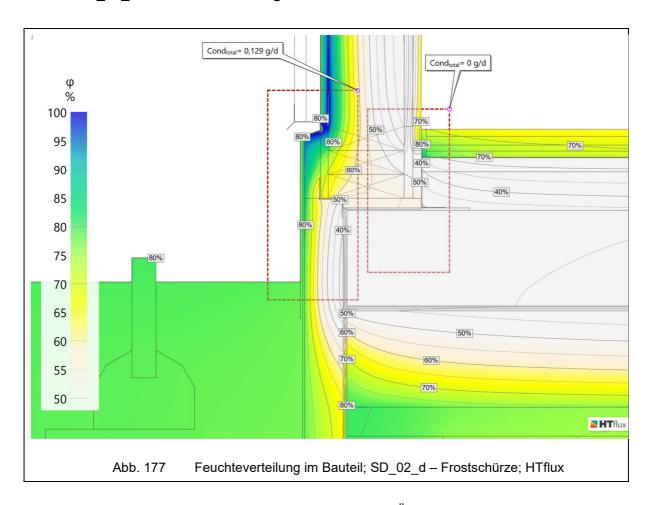
In dieser Variante wird SD_02_b mit dem Fußbodenaufbau FBE_04 betrachtet. Wie schon in SD_01_j sind die wesentlichen Merkmale dieser Variante, dass die bituminöse Abdichtung auf der warmen Seite der Dämmung verlegt wird, damit kann die bituminöse Dampfsperre auf der Oberseite des Stahlbetonfundamentes entfallen. Eine Abdichtung gegen aufsteigende Feuchtigkeit im Bereich der Fußschwelle des Holzbausteins ist It. ÖNORM B 2320 [8] jedoch weiterhin auszuführen.



6.4.3.1 SD_02_c - Feuchteverteilung im Bauteil

Es ist kein Bauteilkondensat zu erwarten.

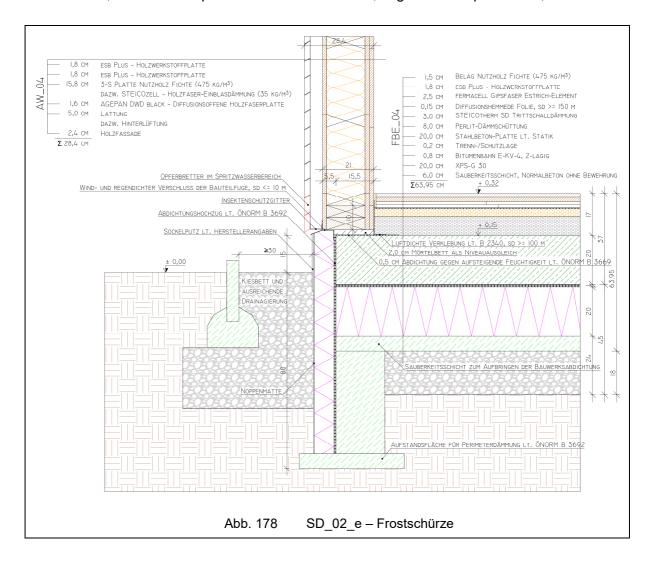

6.4.3.2 SD_02_c - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

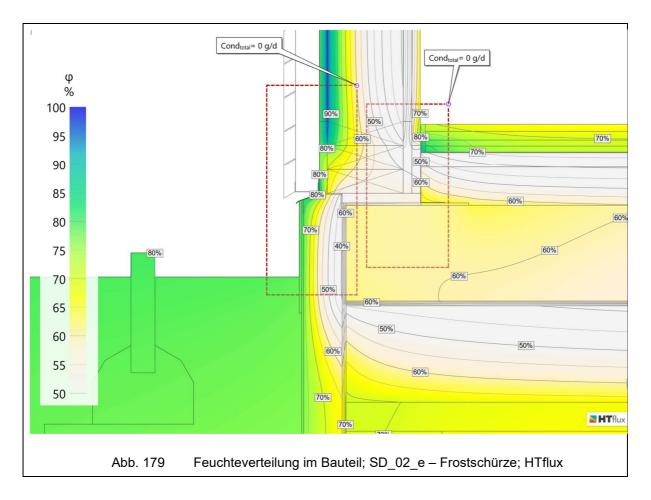
6.4.4 SD_02_d - Anschluss an AW_04 - Perimeterdämmung hochgezogen

Folgende Variante betrachtet die hinterlüftete Außenwand AW_04 und den erdberührten Fußboden FBE_04. Um die Holzfassade aus dem Spritzwasserbereich und damit ein zu schnelles Verschleißen zu vermeiden, muss ein Abstand zum Erdreich von mindestens 30 cm eingehalten werden. Dadurch wird die Perimeterdämmung am Holzbaustein weiter hochgezogen.

6.4.4.1 SD_02_d - Feuchteverteilung im Bauteil

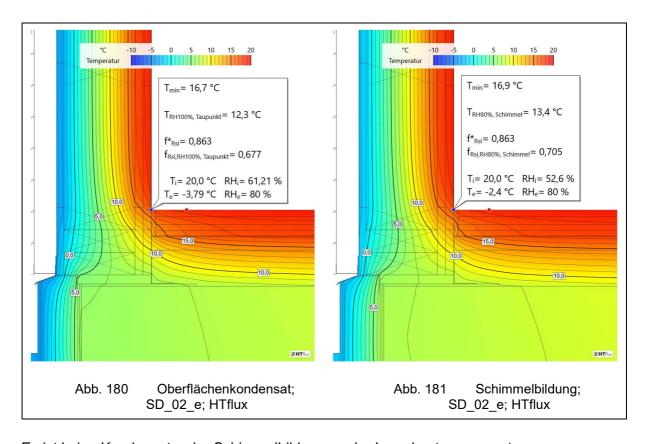


Wie in Abb. 177 erkennbar ist, bildet sich im Bereich des Übergangs von Perimeterdämmung zu Hinterlüftung Kondensat. Dies ist darauf zurückzuführen, dass das Abdeckblech der Dämmung zu dicht ist und den Dampfstrom hemmt. In der nächsten Variante werden die Perimeterdämmung und das Anschlussblech weiter nach unten gezogen. Damit fällt die Hinterlüftung in den Spritzwasserbereich, was wiederum gesonderte Maßnahmen, wie zum Beispiel austauschbare Bretter, erfordert.


6.4.5 SD_02_e - Anschluss an AW_04 - hinterlüftete Fassade im Spritzwasserbereich

Um mit der hinterlüfteten Fassade einen geeigneten Überstand über die Perimeterdämmung herzustellen, wird die Lattung der Außenwand AW_04 auf 5 cm Dicke erhöht. Durch diese Erweiterung bleiben die bauphysikalischen Eigenschaften der Außenwand AW_04 gleich, da die hinterlüftete Fassade nur mit dem Wärmeübergangswiderstand in die Berechnung eingeht, dieser sich aber dadurch nicht ändert.

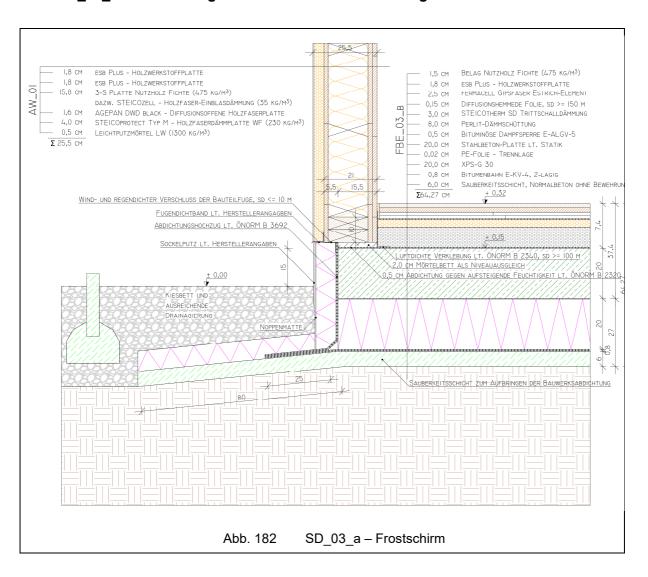
Die Hinterlüftungsebene fällt bei dieser Variante in den Spritzwasserbereich was gesonderte Maßnahmen, wie zum Beispiel austauschbare Bretter, sogenannte Opferbretter, erfordert.



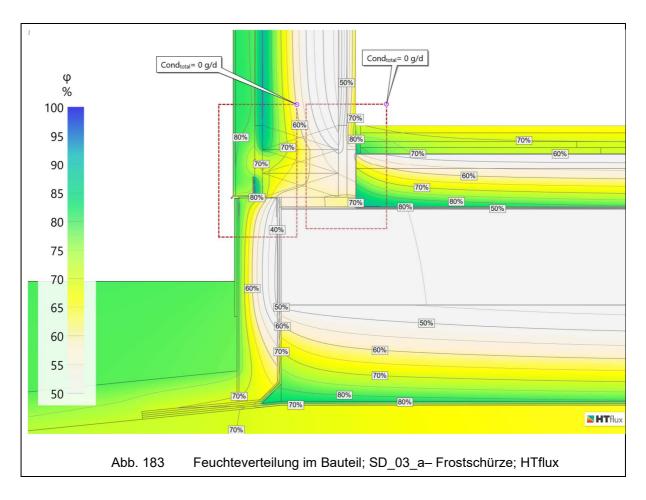
6.4.5.1 SD_02_e - Feuchteverteilung im Bauteil

In SD_02_e ist mit keinem Kondensat im Bauteil zu rechnen.

6.4.5.2 SD_02_e – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

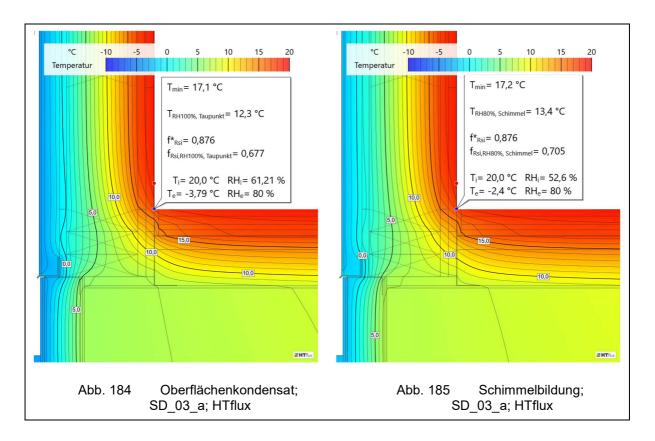


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

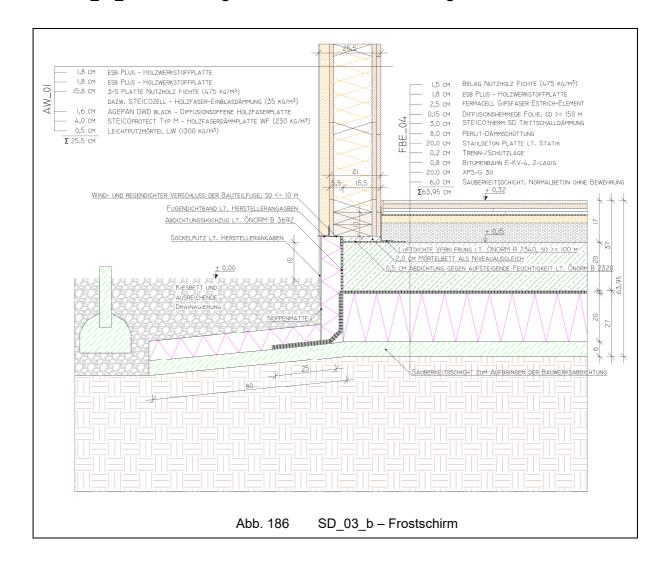

6.5 Sockel-Detail_03 – Erdberührte Bodenplatte mit Frostschirm – Fußschwelle 15 cm über Erdreich

Die folgenden ausgeführten Varianten sind ähnlich denen von SD_02. Es wird anstelle einer Frostschürze ein Frostschirm ausgebildet. In SD_03_a wird der Fußbodenaufbau FBE_03_b betrachtet, in SD_03_b der Fußbodenaufbau FBE_04.

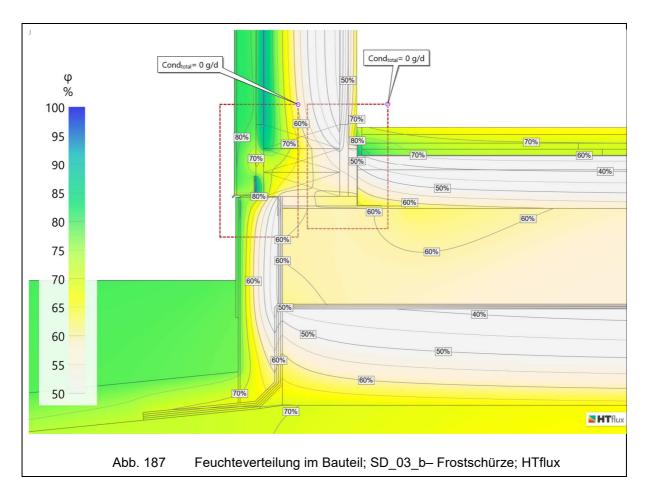
6.5.1 SD_03_a - Abdichtung auf kalter Seite der Dämmung



6.5.1.1 SD_03_a - Feuchteverteilung im Bauteil

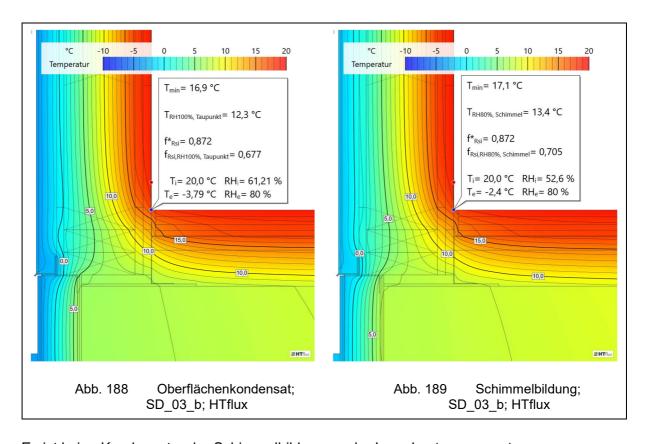

In SD_03_a ist mit keinem Kondensat im Bauteil zu rechnen.

6.5.1.2 SD_03_a – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung



Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.5.2 SD_03_b - Abdichtung auf warmer Seite der Dämmung



6.5.2.1 SD_03_b - Feuchteverteilung im Bauteil

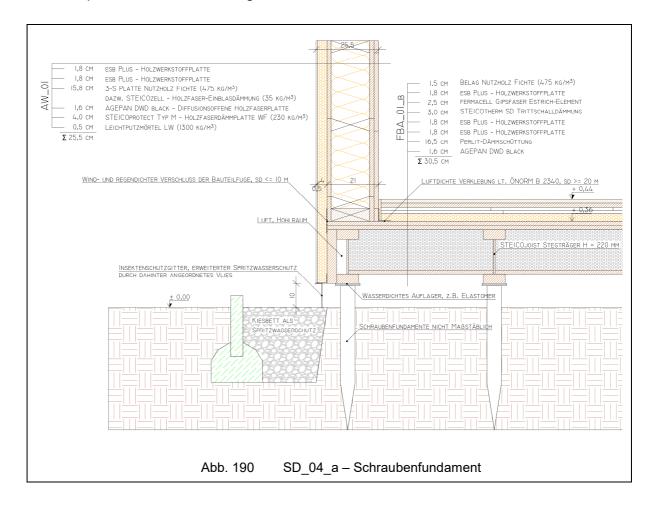
In SD_03_b ist mit keinem Kondensat im Bauteil zu rechnen.

6.5.2.2 SD_03_b - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.6 Sockel-Detail_04 – Schraubenfundament – Fußboden über Außenluft – Fußschwelle 10 cm über Erdreich – Trockenestrich

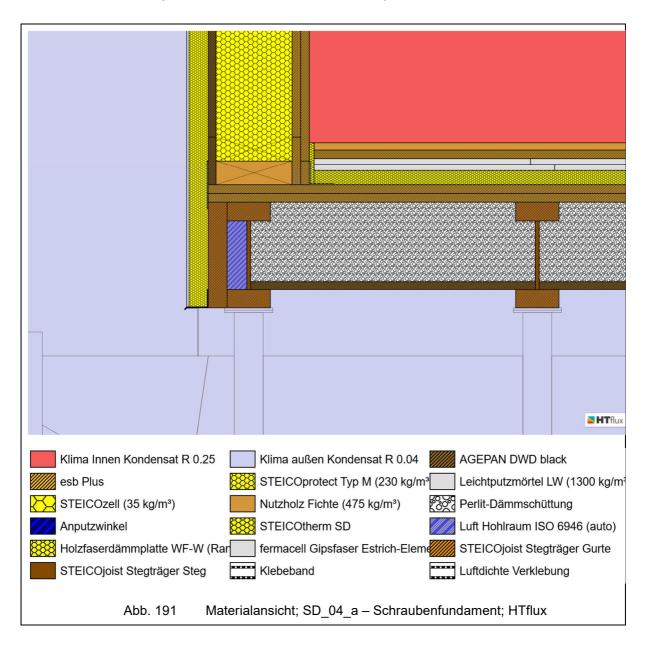
Die Varianten in Sockel-Detail_04 betrachten die Ausführung einer aufgeständerten Fußbodenkonstruktion auf Schraubenfundamenten. Es wird nach ÖNORM B 3802-2 [3] die minimalste Konstruktionshöhe der Fußschwelle über dem Erdreich von 10 cm ausgeführt. Dies erfordert besondere technische Maßnahmen des Schutzes der Holzbauteile. In diesem Fall wird zur Reduktion der Spritzwasserbelastung ein Kiesbett unter der Schwellenkonstruktion angeordnet, sowie ein Blech als Wandabschluss, welches als Tier, bzw. Insektenschutz dienen soll. Hinter dem Insektenschutzgitter kann für einen erhöhten Spritzwasserschutz ein luftdurchlässiges Vlies angeordnet werden. Um eine thermische Trennung zu schaffen, wird auf den Schraubenfundamenten ein wasserdichtes Auflager angeordnet (Elastomer oder ähnliches). In den betrachteten Varianten wurde ein 5 mm dickes unbewehrtes Elastomer-Punktlager gewählt. Die luftdichte Verklebung an der Innenkante wurde mit einer äquivalenten Luftschichtdicke von 20 m angenommen. Der wind- und regendichte Verschluss der Bauteilfuge sollte einen sd-Wert kleiner als 10 m aufweisen.

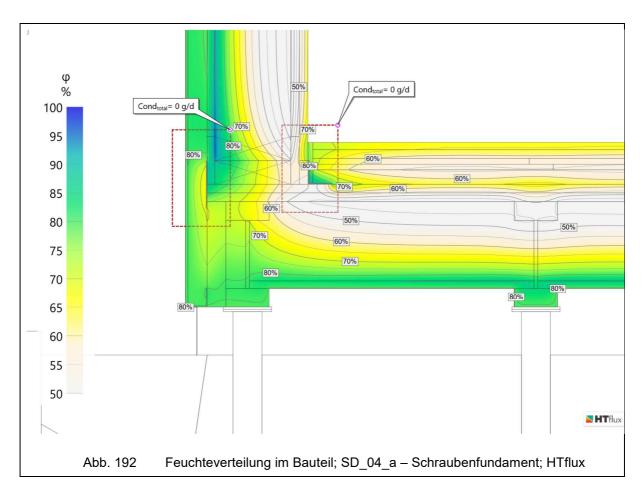

Bei allen Varianten wird der Holzbaustein bündig auf den Fußboden aufgesetzt und anschließend der wind- und regendichte Verschluss sowie die luftdichte Verklebung der Bauteilfuge hergestellt. Abschließend wird außenseitig bei den Wänden mit Wärmedämmverbundsystem die Holzfaserdämmplatte mit Putzsystem und bei den hinterlüfteten Fassaden die Konterlattung als Hinterlüftungsebene mit der jeweiligen Holzfassade montiert.

Der innere Wandabschluss unterscheidet sich jeweils durch die Varianten Holzbaustein-Sicht innen, Gipskartonplatte innen und einer innenliegenden Installationsebene innen, siehe Punkt 4.3 Außenwände.

Umläufig der unteren Sockelkonstruktion bei den hinterlüfteten Fassaden wurde vertikal am Abschlussholz und auf der Unterseite des STEICOjoist-Stegträgers ein 1 mm starker bituminöser Anstrich mit einem sd-Wert von 50 m aufgebracht. Dieser soll die Holzbauteile vor möglichem in die Hinterlüftungsebene gelangtem Niederschlagswasser schützen. Da die Fassadenkonstruktion in den Spritzwasserbereich ragt, sind die untersten Bretter als Opferbretter zu betrachten. Sie sollten nach gegebener Zeit ohne viel Aufwand ausgetauscht werden können.

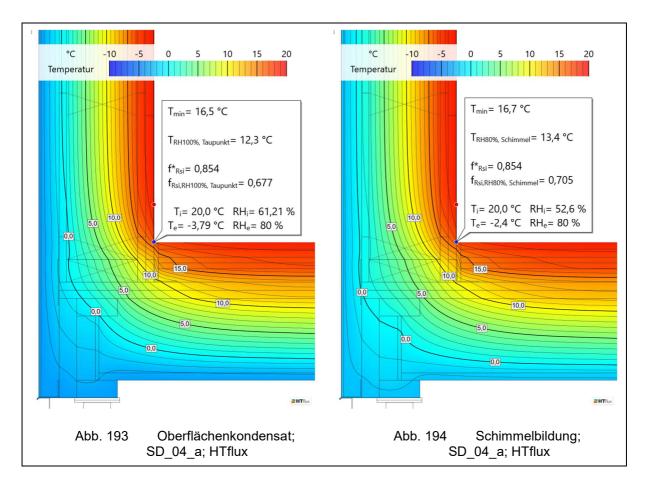
6.6.1 SD_04_a - AW_01 & FBA_01_b


SD_04_a betrachtet den Fußbodenaufbau FBA_01_b mit der Standard-Außenwand AW_01 als Wärmedämmverbundsystem. In dieser Variante wird der Hohlraum, welcher am Randabschluss zwischen STEICOjoist-Stegträger und abschließender umläufiger Hartfaserplatte entsteht, nicht ausgedämmt.


6.6.1.1 SD_04_a - Materialansicht

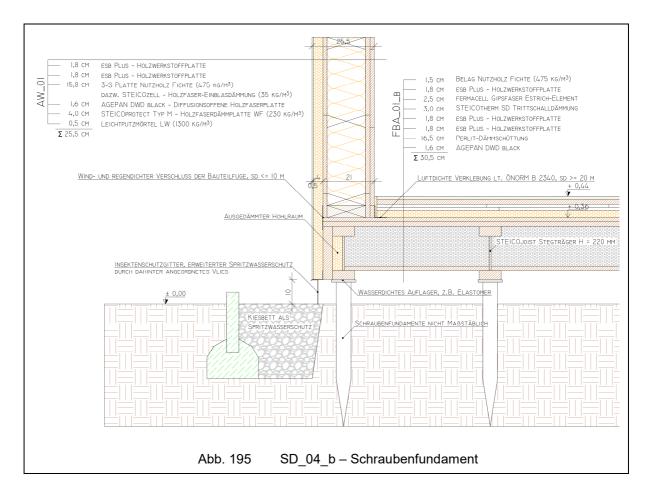
Da die Fußbodenkonstruktion auf Schraubenfundamenten aufgeständert ist, wird angenommen, dass sich als Randbedingung zwischen Fußboden und Erdreich Außenklima einstellt. Da die Schraubenfundamente die Stegträger nur punktuell berühren, werden sie in der Berechnung als Außenklima behandelt.

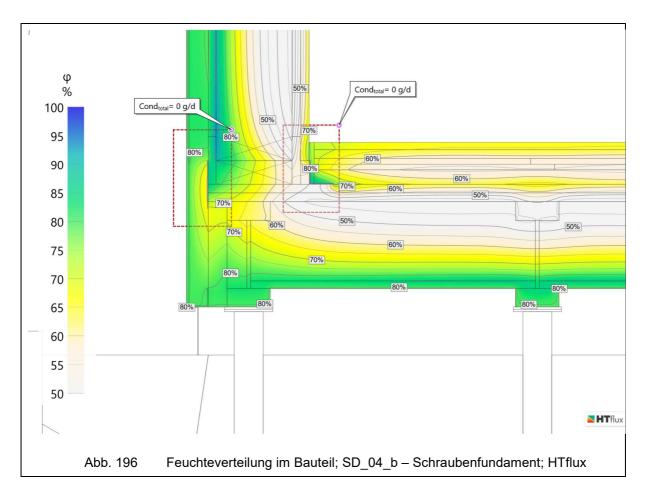
Die Materialzuweisungen in HTflux sind in Abb. 191 dargestellt.



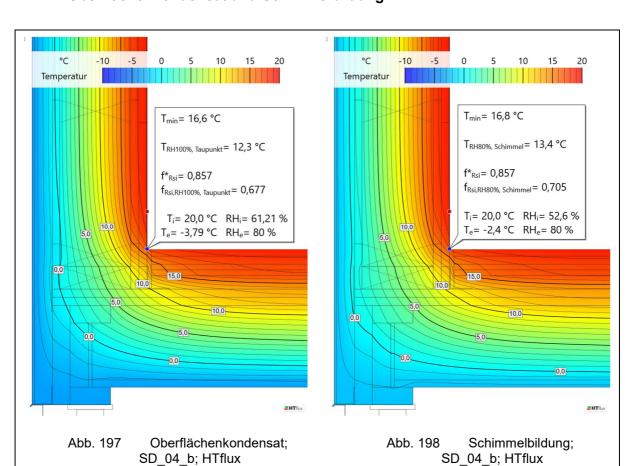
6.6.1.2 SD_04_a - Feuchteverteilung im Bauteil

In SD_04_a ist mit keinem Kondensat im Bauteil zu rechnen.


6.6.1.3 SD_04_a – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

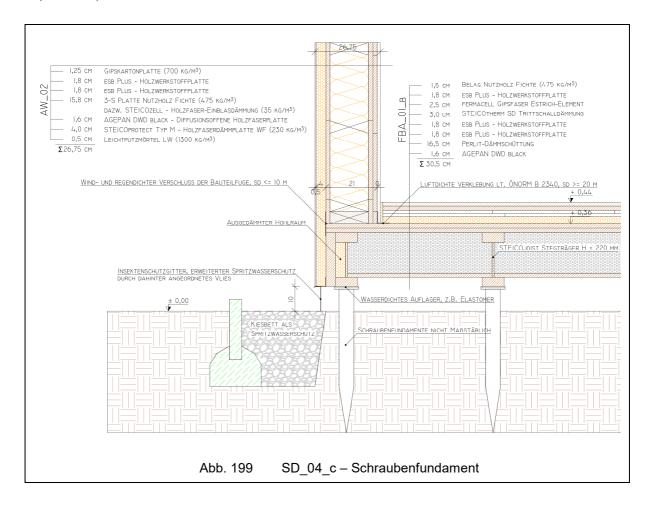

Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.6.2 SD_04_b - AW_01 & FBA_01_b mit ausgedämmtem Hohlraum

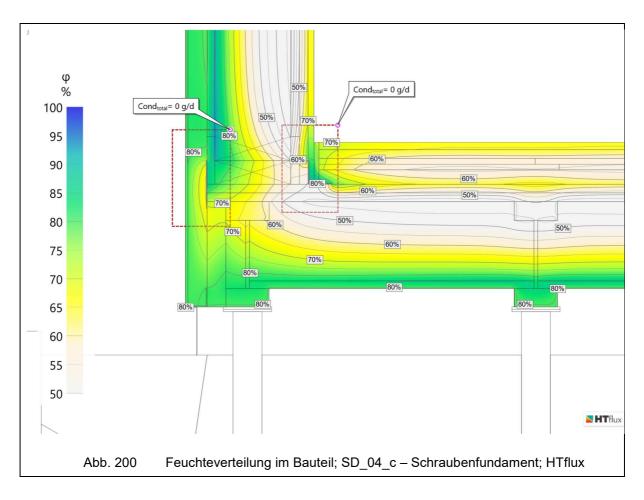

Um den Hohlraum zwischen STEICOjoist-Stegträger und Hartfaserplatte am äußeren Rand zu vermeiden, wird empfohlen in mit einer Holzfaserdämmplatte auszudämmen.

6.6.2.1 SD_04_b - Feuchteverteilung im Bauteil

In SD_04_b ist kein Bauteilkondensat zu erwarten.

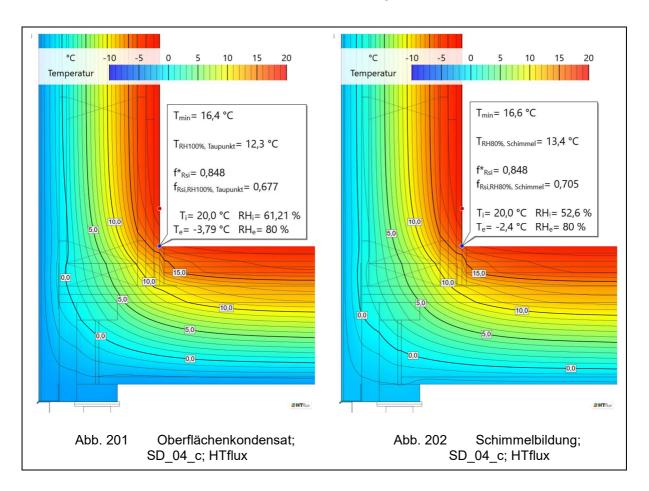

6.6.2.2 SD_04_b - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Der ausgedämmte Hohlraum bewirkt im Vergleich zur Variante SD_04_a eine Temperaturerhöhung der inneren Bauteiloberfläche, bei der Betrachtung zur Vermeidung von Oberflächenkondensat und Schimmelbildung, jeweils um 0,1°C.


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

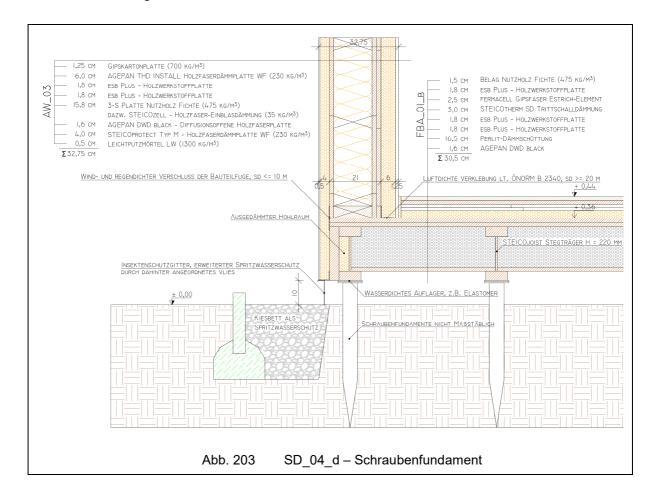
6.6.3 SD_04_c - AW_02 & FBA_01_b

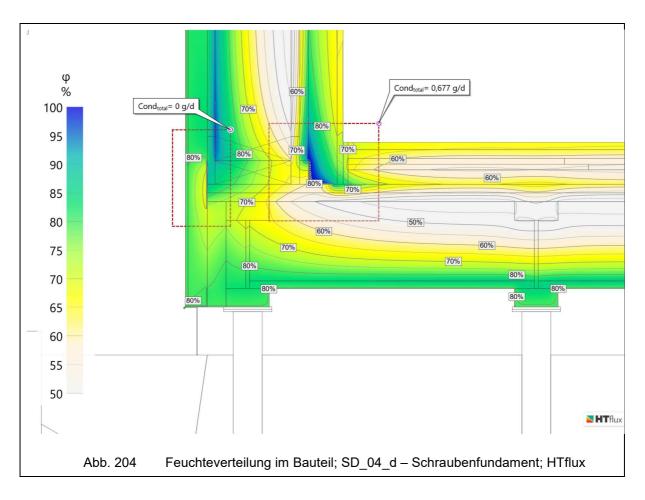
In SD_04_c wird der Anschluss von Fußbodenaufbau FBA_01_b mit der Außenwand AW_02 betrachtet. Der einzige Unterschied zu SD_04_b liegt in der innen angeordneten Gipskartonplatte.



6.6.3.1 SD_04_c - Feuchteverteilung im Bauteil

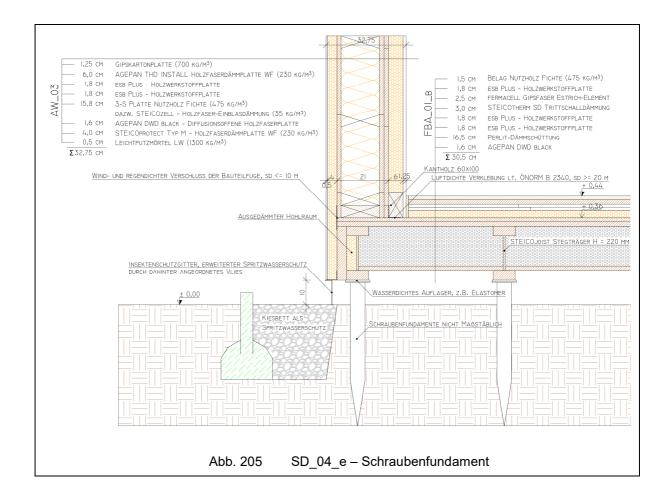
In SD_04_c ist kein Bauteilkondensat zu erwarten.




Die minimalen Oberflächentemperaturen nehmen im Vergleich zu SD_04_b aufgrund der Gipskartonplatte an der Innenkante jeweils um 0,2°C ab. Es ist keine Kondensat- oder Schimmelbildung zu erwarten.

6.6.4 SD_04_d - AW_03 & FBA_01_b

In SD_04_d wird der Anschluss des Fußbodenaufbaus FBA_01_b mit der Außenwand AW_03 betrachtet. Der Holzbaustein wird mit einem außenliegenden Wärmedämmverbundsystem und einer innenliegenden Installationsebene versehen.

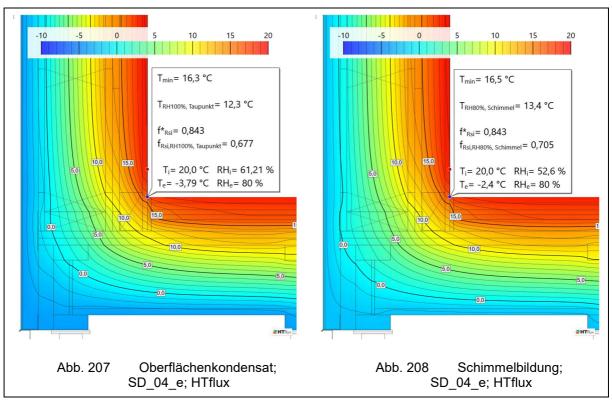

6.6.4.1 SD_04_d - Feuchteverteilung im Bauteil



Durch die Installationsebene die als Innendämmung wirkt und damit den Taupunkt weiter in den Bauteil hineinzieht, entsteht Bauteilkondensat an der nun kälteren Holzbaustein-Innenseite bzw. an der luftdichten Verklebung. In der nächsten Variante wird versucht, mithilfe eines Kantholzes anstelle der Wärmedämmung die Innenkante wärmer zu gestalten um dadurch das Bauteilkondensat zu reduzieren.

6.6.5 SD_04_e - AW_03 & FBA_01_b - Anordnung Kantholz an Innenkante

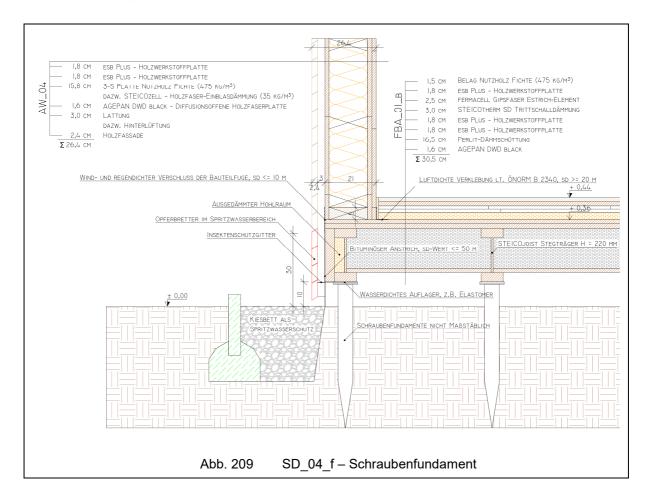
In dieser Variante wird mithilfe eines am inneren Wandanschluss angeordneten Kantholzes (60x100) versucht, dass sich bildende Kondensat an der Bauteilkante von SD_04_d zu reduzieren.

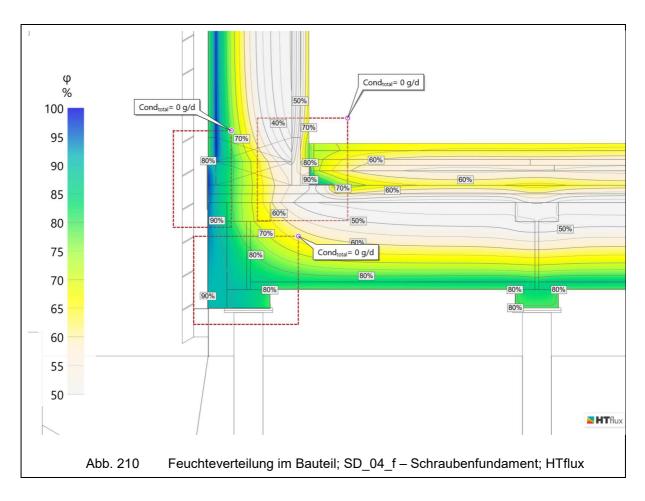


6.6.5.1 SD_04_e - Feuchteverteilung im Bauteil

Durch die Anordnung eines Kantholzes (60x100) im unteren Bereich des Wandanschlusses anstelle der Wärmedämmung, erhöht sich die Temperatur an der Innenkante. Somit ist in SD_04_e kein Bauteilkondensat zu erwarten.

Wie in Abb. 206 ersichtlich ist, erreicht die relative Luftfeuchtigkeit im Bereich der luftdichten Verklebung trotz Anordnung des Kantholzes Werte über 90 %. Dies könnte in weiterer Folge zu einer Schädigung der Holzbauteile führen, siehe Punkt 8. Um dem entgegen zu wirken, wäre eine dickere Dämmung an der Außenseite des Holzbausteins in Betracht zu ziehen. Weitere Untersuchungen wie zum Beispiel instationäre Berechnungen wären sinnvoll.

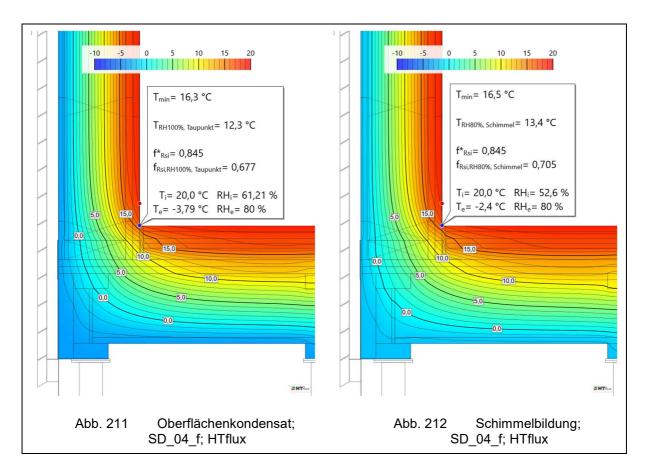




Durch Installationsebene und das aufgrund der Kondensation im Bauteilinneren angeordnete Kantholz nehmen die minimalen Oberflächentemperaturen an der inneren Bauteilkante im Vergleich zu den vorher untersuchten Varianten, jeweils bei der Betrachtung zur Vermeidung von Oberflächenkondensat und für das Risiko zur Schimmelbildung, ab. Es ist jedoch keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.6.6 SD_04_f - AW_04 & FBA_01_b

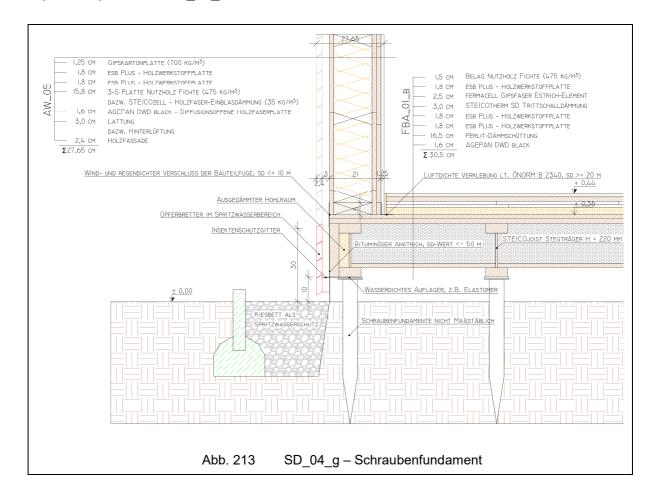
In SD_04_f wird der Anschluss des Fußbodenaufbaus FBA_01_b mit der hinterlüfteten Außenwand AW_04 betrachtet.

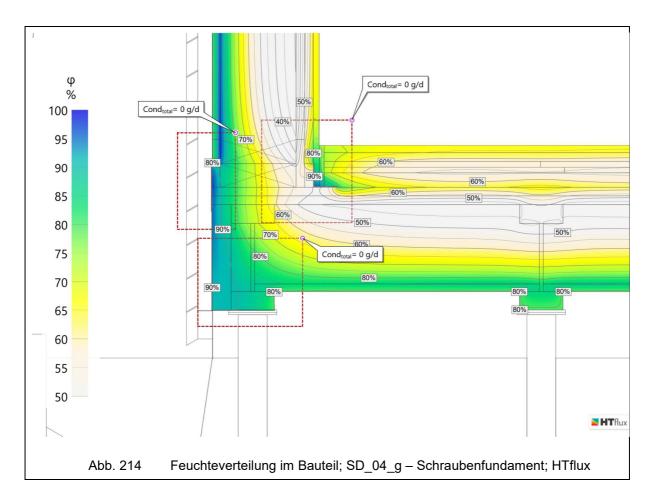

6.6.6.1 SD_04_f - Feuchteverteilung im Bauteil

Es ist kein Bauteilkondensat zu erwarten.

Wie aber in Abb. 210 ersichtlich ist, nimmt die relative Luftfeuchtigkeit am äußeren Rand der Konstruktion enorm zu. Zu bedenken wäre, dass durch die hohe Konzentration der Luftfeuchtigkeit auch die Holzfeuchte stark zunimmt und dies zu einer Schädigung der Holzbauteile führen kann, siehe Punkt 8. Um dem entgegen zu wirken, wäre eine Dämmung hinter der Hinterlüftungsebene von Vorteil.

Dies ist bei allen betrachteten hinterlüfteten Fassadenkonstruktionen empfehlenswert.

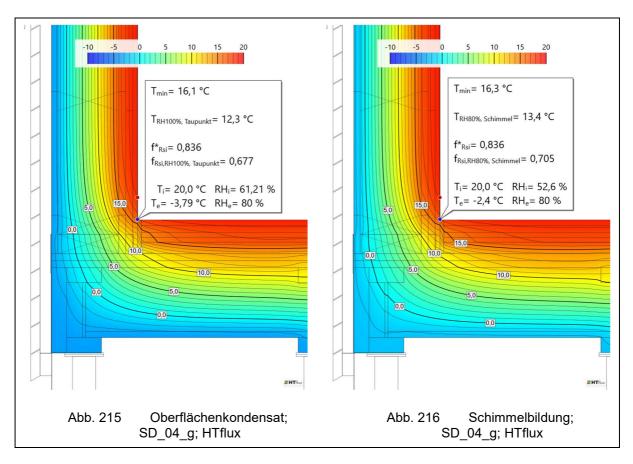




Es lässt sich grundsätzlich erkennen, dass im Vergleich zu den Varianten mit Wärmedämmverbundsystem, geringere Oberflächentemperaturen an der inneren Bauteilkante vorhanden sind. Einzig die Variante SD_04_e mit der innenliegenden Installationsebene weist, durch das wegen Bauteilkondensat angeordnete Kantholz, die gleichen minimalen Oberflächentemperaturen an der Innenkante auf. Es ist jedoch keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.6.7 SD_04_g - AW_05 & FBA_01_b

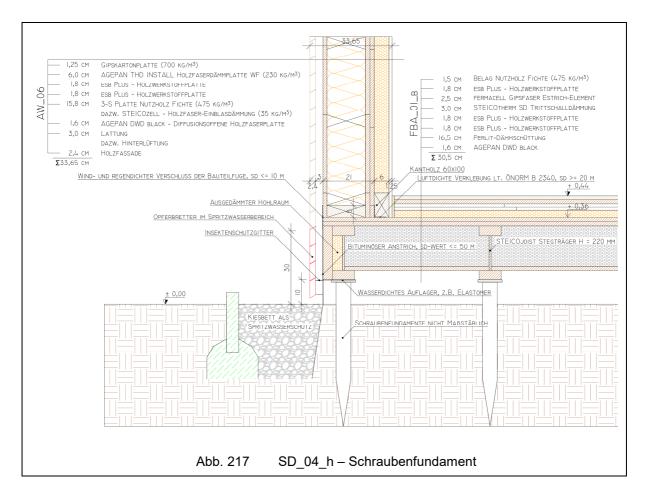
SD_04_g betrachtet den Anschluss des Fußbodenaufbaus FBA_01_b mit der hinterlüfteten Außenwand AW_05. Diese Variante unterscheidet sich nur aufgrund der innenliegenden Gipskartonplatte von SD_04_f.

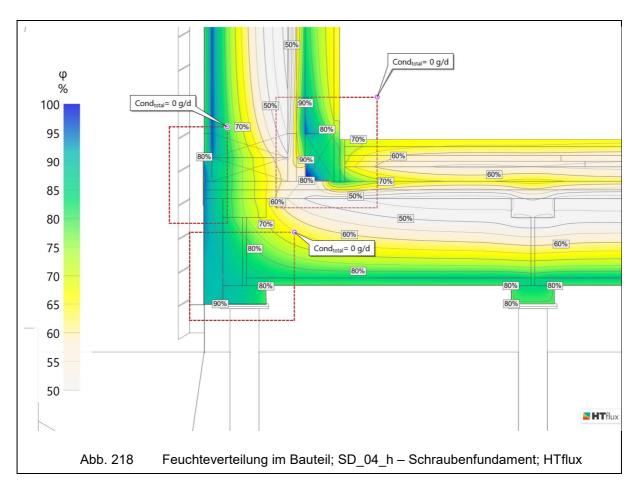

6.6.7.1 SD_04_g - Feuchteverteilung im Bauteil

Es ist kein Bauteilkondensat zu erwarten.

Wie schon in der vorhergehenden Variante ist in Abb. 214 ersichtlich, dass die relative Luftfeuchtigkeit am äußeren Rand der Konstruktion enorm zunimmt. Zu bedenken wäre, dass durch die hohe Konzentration der Luftfeuchtigkeit auch die Holzfeuchte stark zu nimmt und dies zu einer Schädigung der Holzbauteile führen kann, siehe Punkt 8. Um dem entgegen zu wirken, wäre eine Dämmung hinter der Hinterlüftungsebene von Vorteil.

Dies ist bei allen betrachteten hinterlüfteten Fassadenkonstruktionen empfehlenswert.

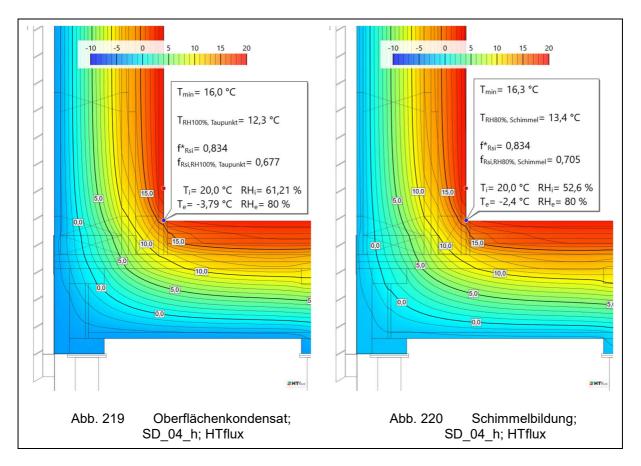




Durch die vorgesetzte Gipskartonplatte nimmt an der inneren Bauteilkante die Oberflächentemperatur, jeweils bei der Betrachtung zur Vermeidung von Oberflächenkondensat und für das Risiko zur Schimmelbildung, um 0,2 °C ab. Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.6.8 SD_04_h - AW_06 & FBA_01_b

In SD_04_h wird der Anschluss des Fußbodenaufbaus FBA_01_b mit der hinterlüfteten Außenwand AW_06 mit innenliegender Installationsebene betrachtet. Aus den Erkenntnissen mit der Außenwand AW_03 wird in dieser Variante schon zu Beginn der Untersuchung ein Kantholz an der inneren Bauteilfuge angeordnet.



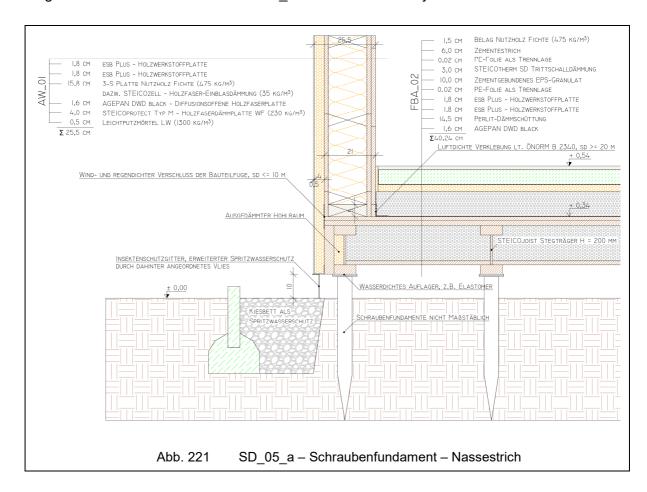
6.6.8.1 SD_04_h - Feuchteverteilung im Bauteil

Wie auch schon bei SD_04_e ist in Abb. 218 ersichtlich, dass die relative Luftfeuchtigkeit im Bereich der luftdichten Verklebung trotz Anordnung des Kantholzes Werte über 90 % erreicht. Dies könnte in weiterer Folge zu einer Schädigung der Holzbauteile führen, siehe Punkt 8. Um dem entgegen zu wirken, wäre eine Dämmung zwischen Holzbaustein und Hinterlüftungsebene empfehlenswert. Weitere Untersuchungen wie zum Beispiel instationäre Berechnungen wären sinnvoll.

Es ist jedoch kein Bauteilkondensat zu erwarten.

6.6.8.2 SD_04_h – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

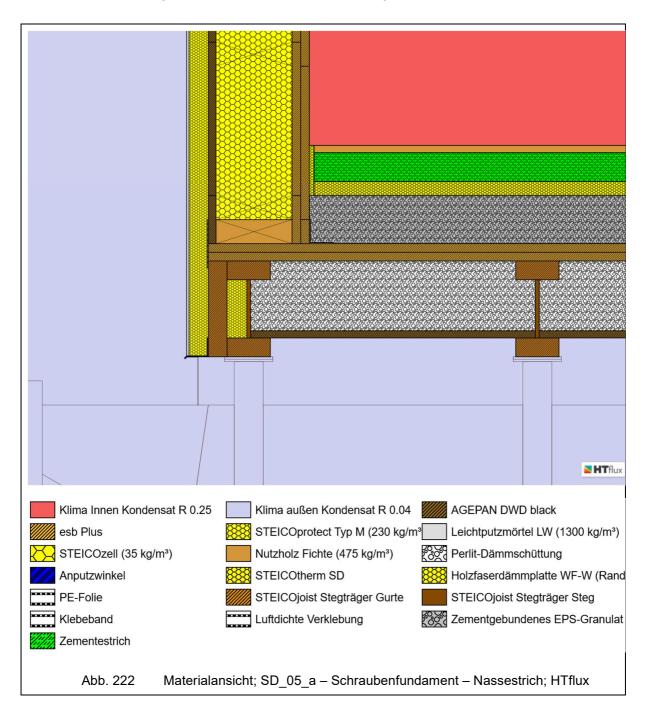
Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

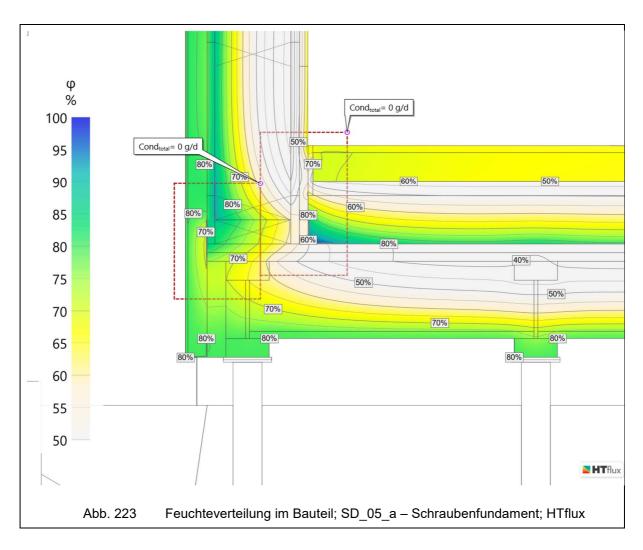

6.7 Sockel-Detail_05 – Schraubenfundament – Fußboden über Außenluft – Fußschwelle 10 cm über Erdreich – Nassestrich

In SD_05 werden dieselben Detail-Varianten wie in SD_04 betrachtet, jedoch mit einem Nassestrich-System als Fußbodenaufbau. Es werden dabei nur die Anschlüsse an die maßgebenden Außenwände AW_01 und AW_06 untersucht. AW_01 ist der deklarierte Standardwandaufbau. AW_06 gilt, wie durch die vorhergehenden Simulationen gezeigt, hygrothermisch als kritisch einzuordnen.

Ein paar Simulationen weisen eine erhöhte relative Luftfeuchtigkeit am Übergang von Trittschalldämmung und Randdämmstreifen auf. Dies hat den Grund, dass der Dampfstrom über den Randdämmstreifen eintritt und dann von diversen dampfhemmenden Folien gehemmt wird. In der Praxis würden Randleisten bzw. das überschlagen der PE-Folie über den Randdämmstreifen das eindiffundieren abmindern. Das bewusste weglassen der Randleisten für die Simulation soll eine konservative Betrachtung darstellen und Kondensat-Probleme leichter ersichtlich machen.

6.7.1 SD_05_a – ohne diffusionshemmende Folie

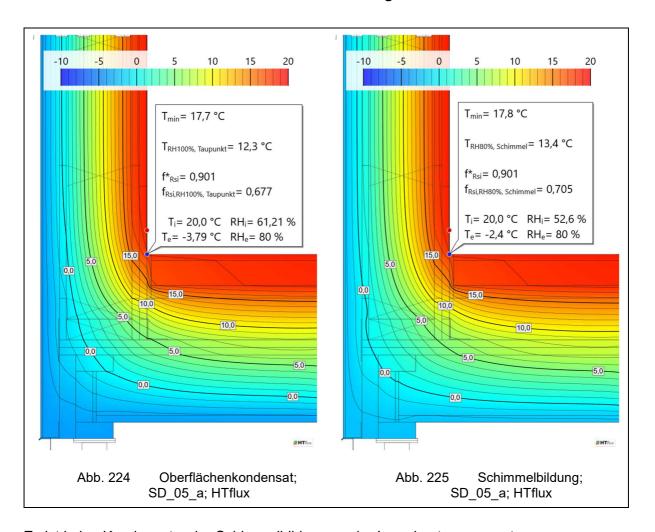

SD_05_a betrachtet den Anschluss des Standardwandaufbaus AW_01 mit dem aufgeständerten Fußbodenaufbau FBA 02 als Nassestrich-System.



6.7.1.1 SD_05_a - Materialansicht

Da die Fußbodenkonstruktion auf Schraubenfundamenten aufgeständert ist, wird angenommen, dass sich als Randbedingung zwischen Fußboden und Erdreich Außenklima einstellt. Da die Schraubenfundamente die Stegträger nur punktuell berühren, werden sie in der Berechnung als Außenklima behandelt.

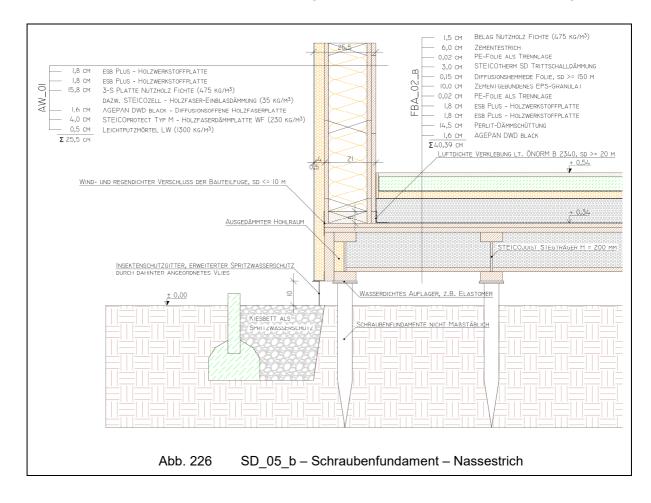
Die Materialzuweisungen in HTflux sind in Abb. 222 dargestellt:

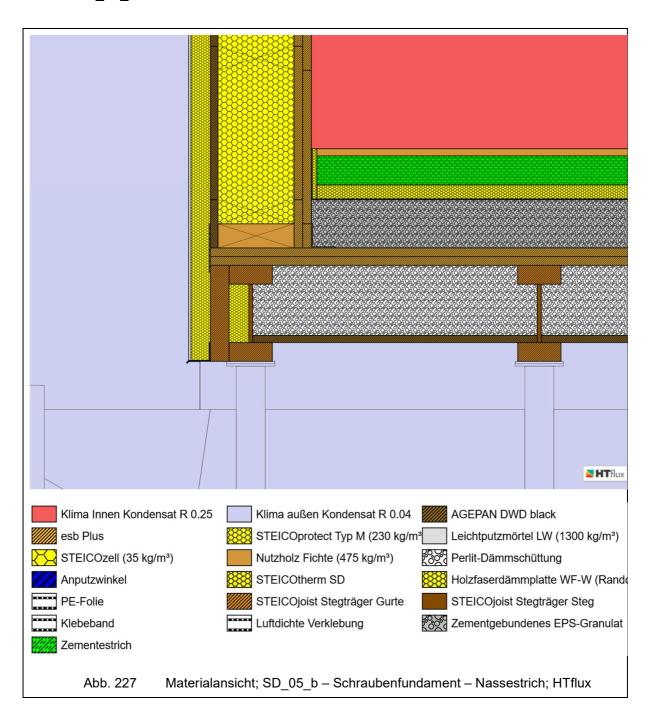


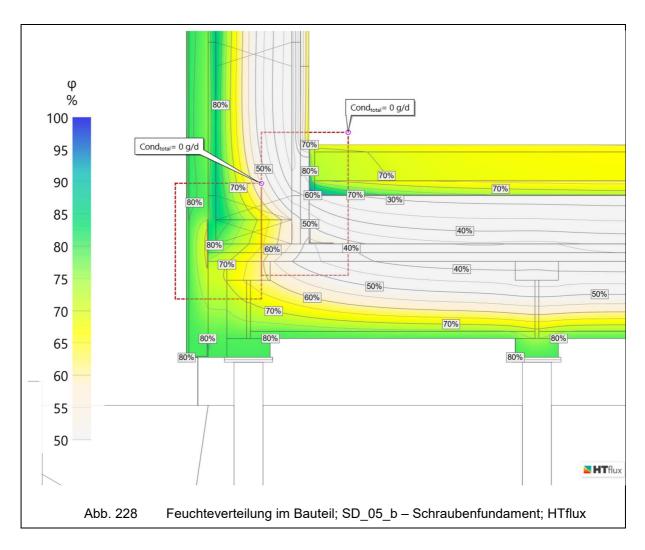
6.7.1.2 SD_05_a - Feuchteverteilung im Bauteil

In SD_05_a ist mit keinem Kondensat im Bauteil zu rechnen.

Auch wenn mit keinem Kondensat zu rechnen ist, ist in Abb. 223 ersichtlich, dass eine Hemmung des Diffusionsstromes an der inneren Bauteilkante der luftdichten Verklebung erfolgt. Um das Risiko von Bauteilkondensat noch weiter zu minimieren, wäre die Möglichkeit einer dampfhemmenden Folie über der Schüttung in Betracht zu ziehen, wie in Punkt 6.7.2 betrachtet.

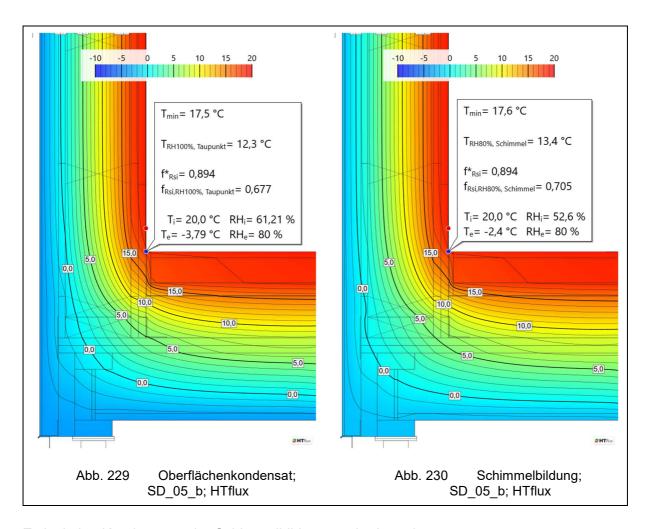

6.7.1.3 SD_05_a – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.


6.7.2 SD_05_b - mit diffusionshemmender Folie über Schüttung

Auch wenn die Variante SD_05_a durch die stationäre Simulation kondensatfrei ist, bildet sich an der inneren Bauteilfuge eine hohe relative Feuchtigkeit, siehe Abb. 223. Um das Risiko der Bildung von Kondensat und die hohe Feuchtigkeit zu minimieren wird in dieser Variante, bezugnehmend auf den Erkenntnissen aus den Varianten von SD_01, eine dampfhemmende Folie über der zementgebundenen Schüttung angeordnet. Diese soll den Dampfstrom in den wärmeren Bereichen der Konstruktion abfangen und somit die Konstruktion sicherer gestalten.

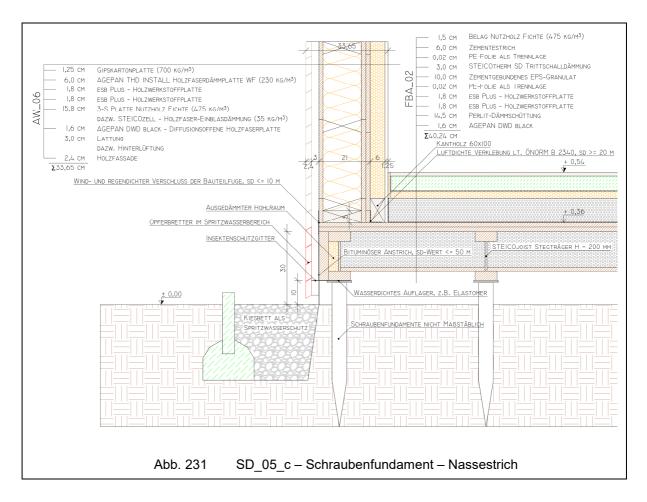
6.7.2.1 SD_05_b - Materialansicht

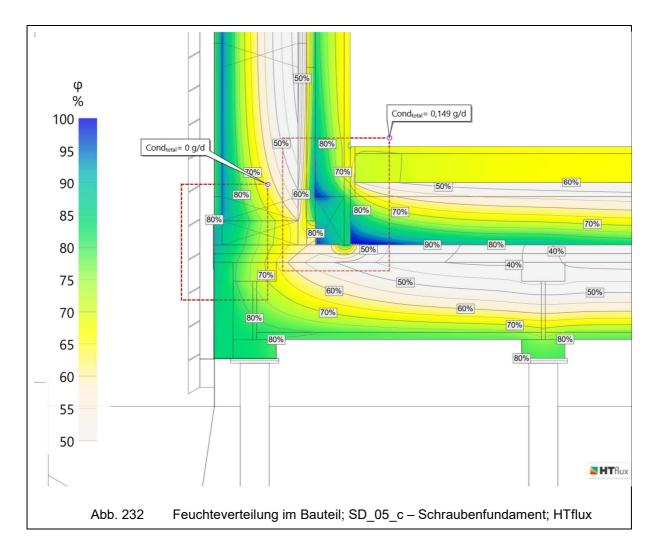


6.7.2.2 SD_05_b - Feuchteverteilung im Bauteil

In SD_05_b ist mit keinem Kondensat im Bauteil zu rechnen.

Durch das Anordnen einer diffusionshemmenden Folie über der zementgebundenen Schüttung wird die innere Bauteilfuge von der hohen relativen Feuchtigkeit entlastet.


6.7.2.3 SD_05_b - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung



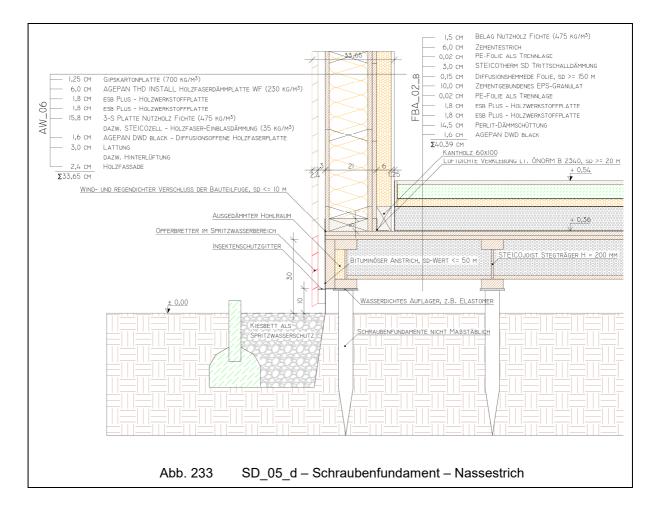
Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.7.3 SD_05_c - ohne diffusionshemmende Folie

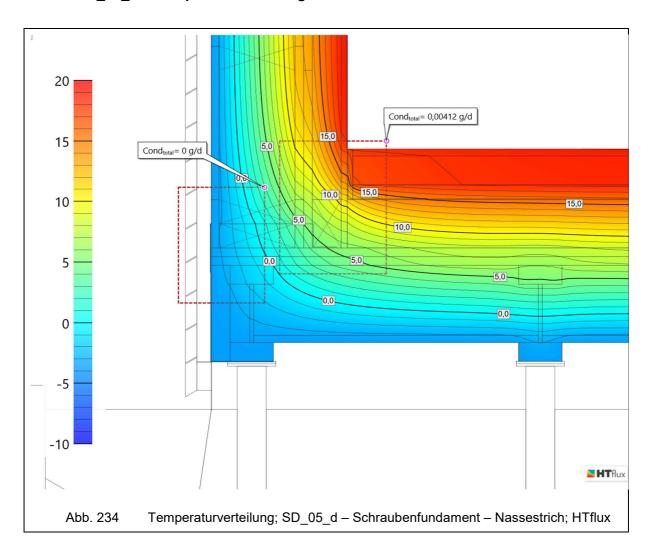
SD_05_c zeigt den Anschluss der als kritisch zu betrachtenden hinterlüfteten Außenwand AW_06 an den aufgeständertem Fußboden über Außenluft FBA_02 mit einem Nassestrich-System. Es werden dabei die Erkenntnisse aus der Untersuchung von SD_04_e und SD_04_h angewandt. Dabei wird ein Kantholz an der inneren Bauteilkante angeordnet, um diesen Bereich wärmer zu gestalten.

6.7.3.1 SD_05_c - Feuchteverteilung im Bauteil

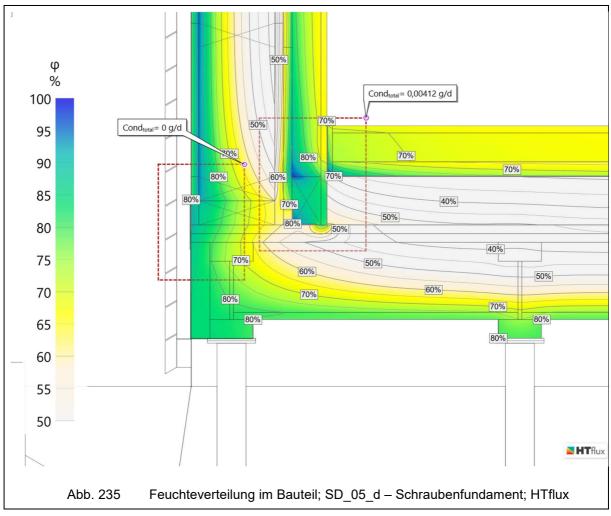
Wie in Abb. 232 ersichtlich, treten in dieser Detail-Variante, trotz Anordnung des Kantholzes, innenliegend drei kritische Bereiche auf:


- Am unteren Abschluss der Vorsatzschale
- Am Übergang des Kantholzes zur Holzbausteinwand
- Am Anschlussbereich der Schüttung

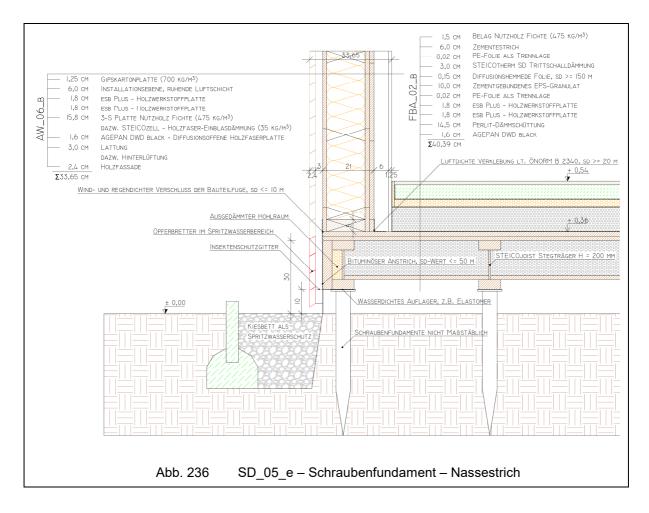
Am Anschlussbereich der Schüttung bildet sich eine geringe Menge an Kondensat. Die PE-Folie, welche aufgrund der Einbaufeuchte der zementgebundenen Schüttung die angrenzende Holzkonstruktion und Gipskartonplatte schützen soll, hemmt den Diffusionsstrom soweit, dass Kondensat anfällt.

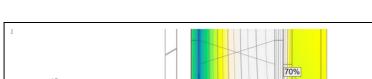

In der nächsten Variante wird deshalb versucht, wie auch schon bei den Varianten von SD_01, mithilfe einer dampfhemmenden Folie über der Schüttung den Dampfstrom soweit zu hemmen, dass kein Bauteilkondensat mehr entsteht.

6.7.4 SD_05_d - mit diffusionshemmender Folie über Schüttung

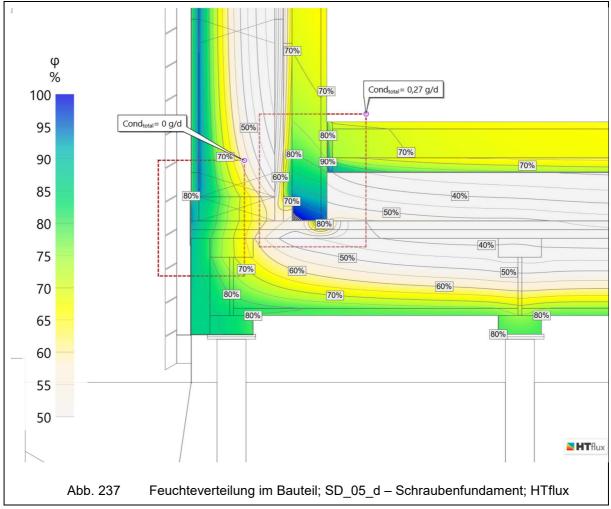

In dieser Variante soll mithilfe einer diffusionshemmenden Folie mit einem sd-Wert von 150 m, der Dampfstrom im Bauteilinneren soweit gehemmt werden, dass kein Kondensat mehr am Übergang von Schüttung zu Gipskartonplatte entsteht.

6.7.4.1 SD_05_d - Temperaturverteilung

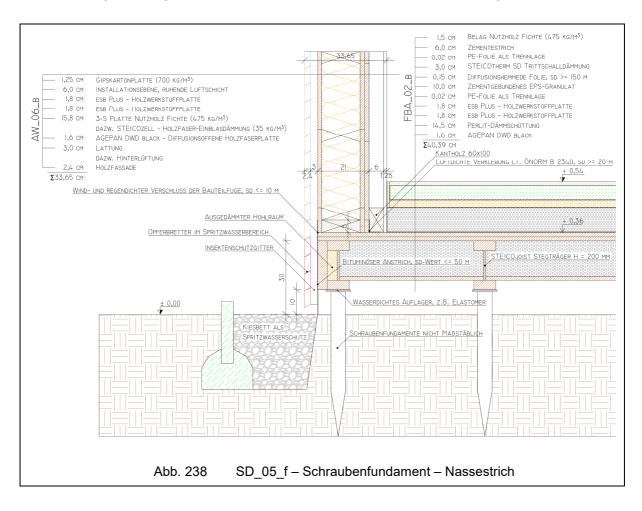




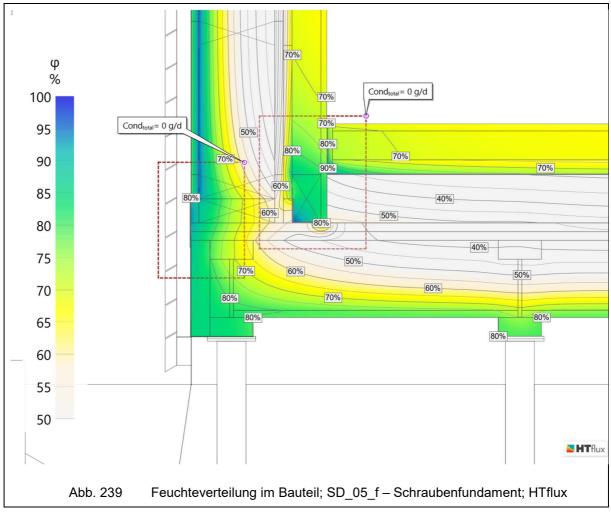
Durch die eingebrachte dampfhemmende Folie entsteht kein Bauteilkondensat mehr am Anschlussbereich der Schüttung, jedoch bildet sich nun eine geringe Menge Kondensat an der Kante der dampfhemmenden Folie. Der Grund liegt unter anderem an der Temperatur, die sich an den dampfhemmenden Bereichen einstellt. Wie in Abb. 234 ersichtlich ist, verlegt die Installationsebene, welche als Innendämmung wirkt, den kalten Bereich weiter in den Bauteil hinein – der Taupunkt wandert weiter nach innen. Das bewirkt, dass an dem Bereich wo Kondensat aufritt die Taupunkttemperatur, der sich dort einstellenden Temperatur unterschritten wird und somit Kondensat anfällt. Es wäre empfehlenswert den Taupunkt weiter aus dem Bauteil hinauszuführen, zum Beispiel mit der Anordnung einer Dämmschicht auf der Außenseite des Holzbausteins. Die Hinterlüftungsebene kann zusätzlich vorgesetzt werden.


6.7.5 SD_05_e – ungedämmte Installationsebene innen

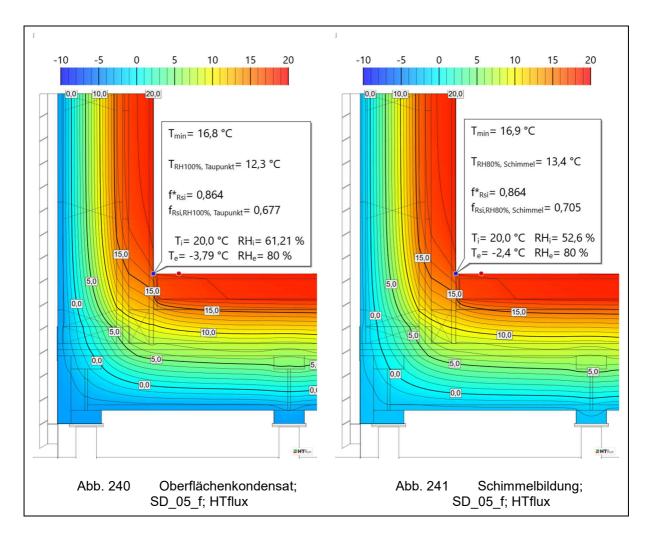
In SD_05_e wird der Anschluss an die hinterlüftete Außenwand AW_06_b, welche eine ungedämmte Installationsebene an der Innenseite aufweiset, betrachtet. Die nicht ausgedämmte Installationsebene soll bewirken, dass die kritischen Bereiche der Konstruktion wärmer ausgelegt sind und damit nicht unter die Taupunkttemperatur fallen.


6.7.5.1 SD_05_e - Feuchteverteilung im Bauteil

Wie Abb. 237 zeigt, bewirkt das ungedämmte Ausführen der Installationsebene nicht das gewünschte Ergebnis. An der innenliegenden Bauteilfuge entsteht Bauteilkondensat. In der nächsten Variante wird an der Kante wieder ein Kantholz angebracht um den Bereich wärmer auszubilden und den Dampfstrom zu hemmen.


6.7.6 SD_05_f - ungedämmte Installationsebene innen mit Kantholz an Innenkante

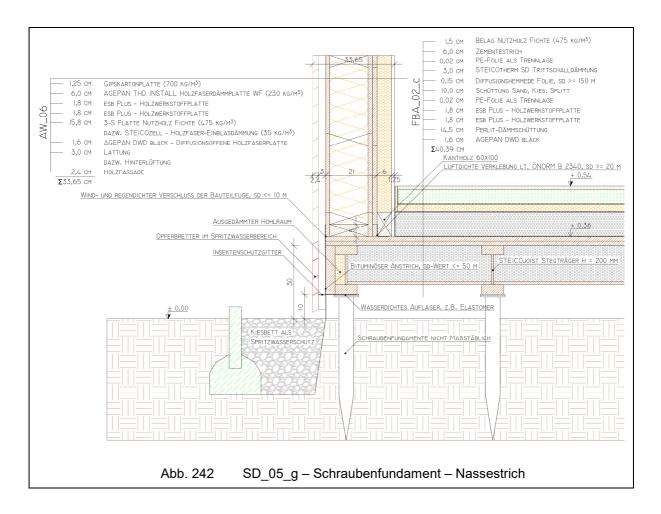
In dieser Variante wird versucht mithilfe eines Kantholzes (60 x 100 mm) an der Innenkante der Bauteilfuge die ungedämmte Installationsebene kondensatfrei zu bringen.



6.7.6.1 SD_05_f - Feuchteverteilung im Bauteil

Durch das Anordnen eines Kantholzes (60 x 100 mm) an der Innenkante der Bauteilfuge ist in SD 05 f mit keinem Kondensat mehr im Bauteil zu rechnen. Es lässt sich allerdings gut erkennen, dass die relative Feuchtigkeit an der luftdichten Verklebung sehr hoch ausfällt. Auf die sich einstellende Holzfeuchte bei einer vorhandenen relativen Luftfeuchtigkeit wird in Punkt 8 näher eingegangen.

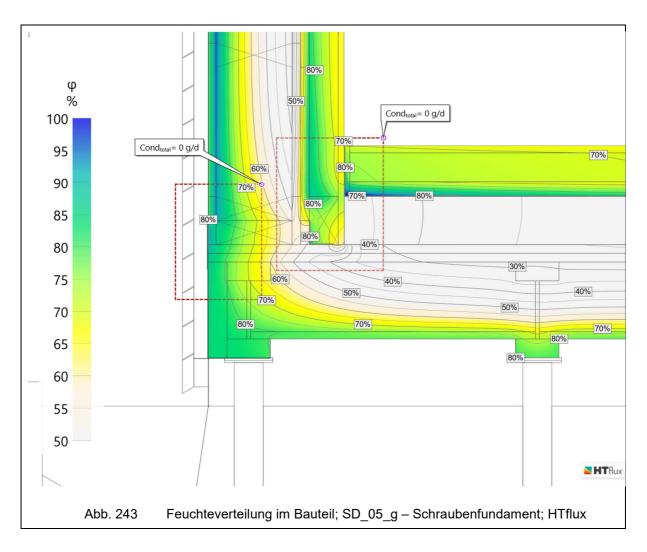
6.7.6.2 SD_05_f – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

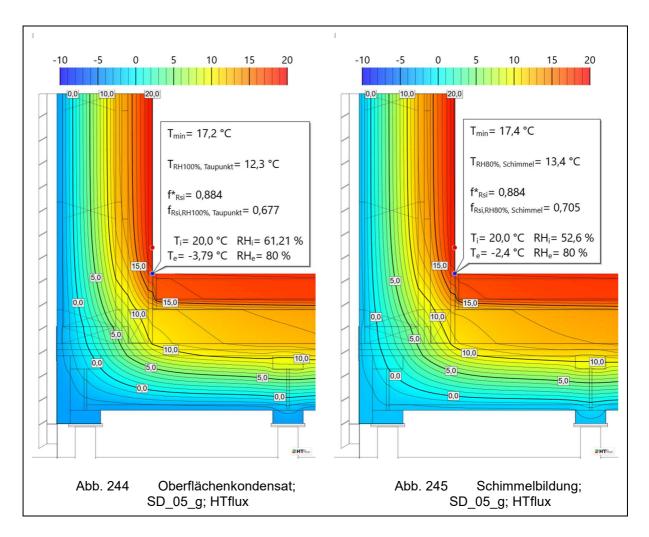
6.7.7 SD_05_g – lose Schüttung mit erhöhter Wärmeleitfähigkeit

Da die Schüttung aus zementgebundenem EPS-Granulat, eine, für Schüttungen gesehen relativ gute Wärmedämmeigenschaft besitzt, wirkt diese ebenfalls ähnlich wie eine innenliegende Dämmung und zieht den Taupunkt weiter in den Bauteil hinein. In dieser Variante wird deshalb versucht, mit einer losen Schüttung aus Kies, die im Vergleich zum vorher betrachteten EPS-Granulat eine ca. 15-mal höhere Wärmeleitfähigkeit besitzt, diesen Umstand zu nutzen und den Bauteil feuchtetechnisch risikoärmer zu gestalten.

Wärmeleitfähigkeit der betrachteten Schüttungen:

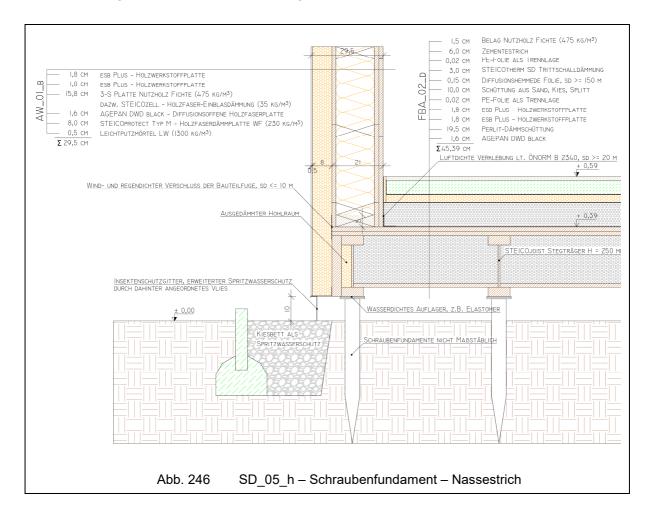

- Zementgebundenes EPS-Granulat: λ = 0,047 W/mK
- Schüttungen aus Sand, Kies, Splitt: λ = 0,7 W/mK

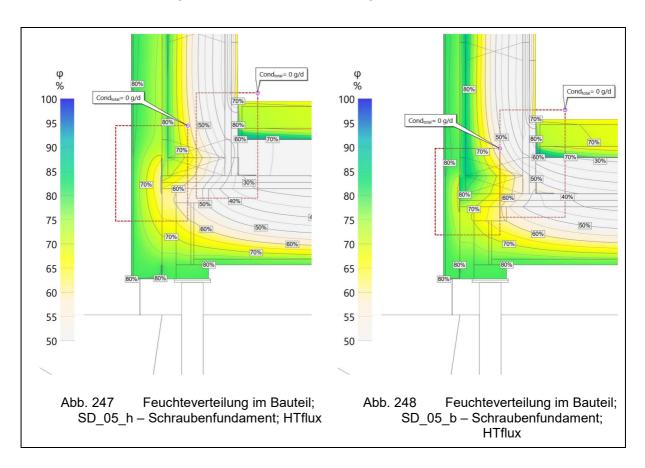
Achtung:


Der in dieser Variante betrachtete Fußboden FBA_02_c ist nach OIB-RL 6 [15] nicht zulässig, da er den maximal zulässigen U-Wert bei Decken über Außenluft von 0,20 W/(m²K) überschreitet. Zur Veranschaulichung was der Austausch der Schüttung bewirkt, wurde die Variante trotzdem im Bericht belassen. Die Alternative ist eine Erhöhung des STEICOjoist-Stegträgers auf die übernächste, angebotene Höhe von 250 mm, siehe FBA 02 d, um die U-Wert Anforderungen zu erfüllen.

6.7.7.1 SD_05_g - Feuchteverteilung im Bauteil

Aufgrund der höheren Wärmeleitfähigkeit der Schüttung ist in SD_05_g, im Gegensatz zu SD_05_d, mit keinem Kondensat im Bauteil zu rechnen.

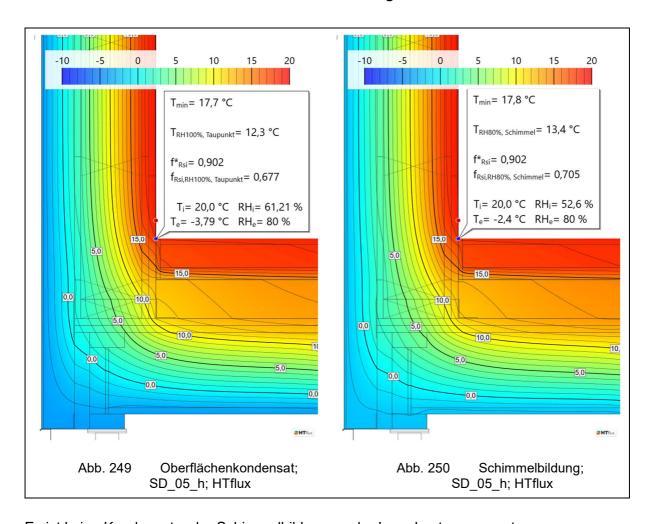

6.7.7.2 SD_05_g – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung



Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.7.8 SD_05_h – Erhöhung der außenliegenden Dämmdicke

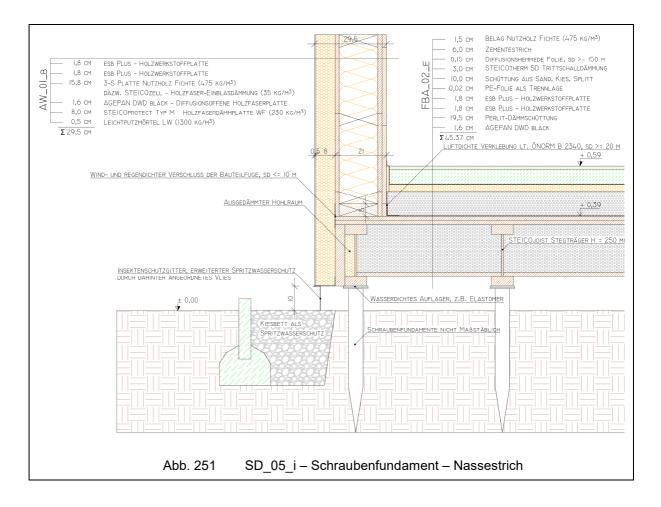
Da die relative Feuchte, vor allem in den betrachteten Detail-Varianten der hinterlüfteten Außenwände, Werte an die 90 % annimmt und dies zur Schädigung von Holzprodukten führen kann, siehe Punkt 8, wird in dieser Variante die schon im Bericht häufig angesprochene Erhöhung der außenliegenden Dämmdicke betrachtet. Dabei wird die Dämmung der Außenwand AW_01 von 4 cm auf 8 cm und der STEICOjoist-Stegträger von 20 cm auf 25 cm erhöht. Auch wird die zementgebunden Schüttung wie in Variante SD_05_g durch eine lose Kies-Schüttung mit höherer Wärmeleitfähigkeit ersetzt.

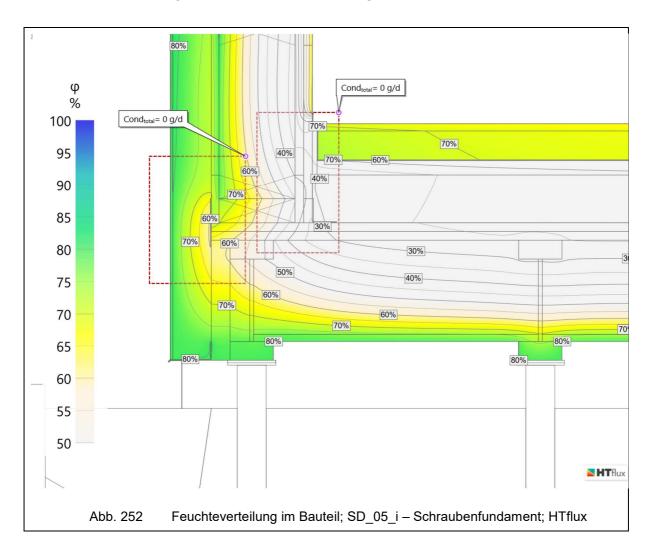


6.7.8.1 SD_05_h - Vergleich der Feuchteverteilung im Bauteil mit SD_05_b

In SD 05 h ist mit keinem Kondensat im Bauteil zu rechnen.

Der Vergleich von Abb. 247 mit Abb. 248 lässt sehr gut erkennen, welche feuchtetechnische Auswirkung die außenliegende erhöhte Dämmung auf den Feuchteverlauf im Bauteil hat. Es ist deutlich erkennbar, dass sich an den äußeren Bereichen, die sich einstellende relative Feuchtigkeit verringert. Dies entlastet die Holzkonstruktion und reduziert das Risiko etwaiger Schäden.

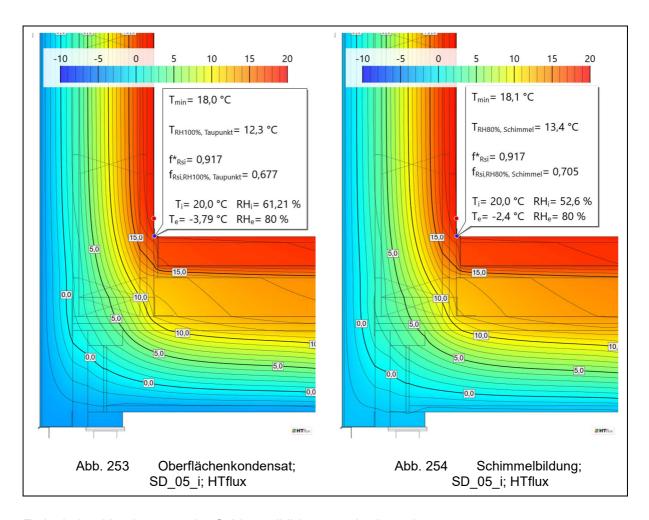

6.7.8.2 SD_05_h – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung



Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

6.7.9 SD_05_i – diffusionshemmende Folie über der Trittschalldämmung

In den vorherigen Varianten wurde die diffusionshemmende Folie über der Schüttung angeordnet. Dies ist dem arbeitstechnischen Ablauf der Masterarbeit zuzuschreiben, indem immer versucht wurde die diffusionshemmende Schicht an jener Stelle anzuordnen, an welcher sie unbedingt erforderlich ist, um den Bauteil kondensatfrei zu halten. Eine weitere und feuchtetechnisch bessere Variante die Folie anzuordnen wäre, sie weiter im Inneren der Konstruktion, anstelle der PE-Folie zu verlegen. In diesem Fall erfüllt sie nicht nur den Zweck der Hemmung des Dampfstromes, sondern ist zugleich jene Trennlage, welche die Gleitfunktion des schwimmenden Estrichs erfüllt. Somit wird eine Folie eingespart. Ausführungstechnisch sollte bei dieser Variante beachtet werden, dass die Folie über den Randdämmstreifen gezogen werden und an der Holzbaustein-Innenseite sauber befestigt werden muss, um ein unkontrolliertes eindiffundieren über den Randdämmstreifen zu verhindern.

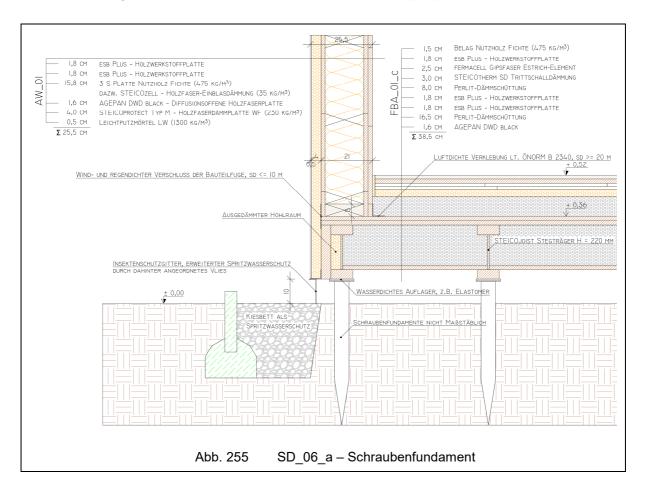


6.7.9.1 SD_05_i - Vergleich der Feuchteverteilung im Bauteil

In SD_05_i ist mit keinem Kondensat im Bauteil zu rechnen.

In Abb. 252 lässt sich erkennen, dass im Vergleich zu den Varianten, an welchen die diffusionshemmende Folie unter der Trittschalldämmung angeordnet wurde, die Feuchteverteilung im Fußbodenaufbau wesentlich geringer ausfällt. Das liegt daran, dass der Diffusionsstrom im wärmeren Bereich des Bauteils gehemmt wird und nicht weiter eindiffundiert, wo er folgend abkühlen kann.

6.7.9.2 SD_05_i – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

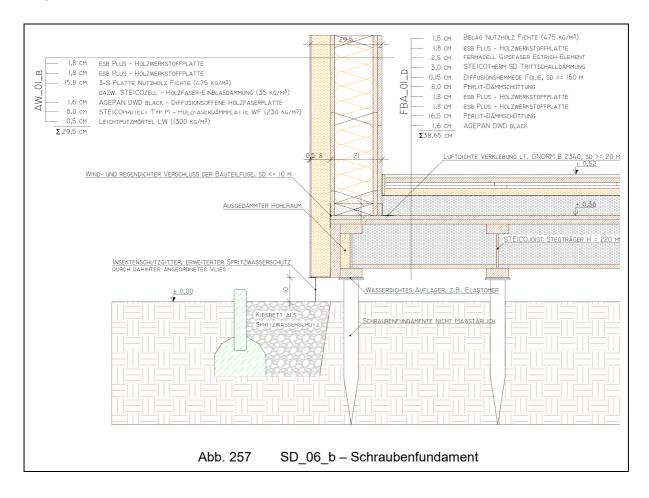
6.8 Sockel-Detail_06 – Schraubenfundament – Fußboden über Außenluft – Fußschwelle 10 cm über Erdreich – FBA_01-Aufbau erweitert um 8 cm Perlit-Dämmschüttung

In SD_06 wird, um Platz für Leitungslegung zu schaffen, der optimierte Fußboden FBA_01_b durch eine Perlit-Dämmschüttung unter der Trittschalldämmung erweitert. Es werden Detail-Anschlüsse der Standard-Außenwand des Holzbausteins mit dem Fußboden über Außenluft betrachtet.

6.8.1 SD_06_a - Ausgangs-Detail

SD_06_a betrachtet den Anschluss der Standard-Außenwand AW_01 mit dem um eine Perlit-Dämmschüttung erweiterten Fußboden über Außenluft FBA_01_c.

6.8.1.1 SD_06_a - Feuchteverteilung im Bauteil


Abb. 256

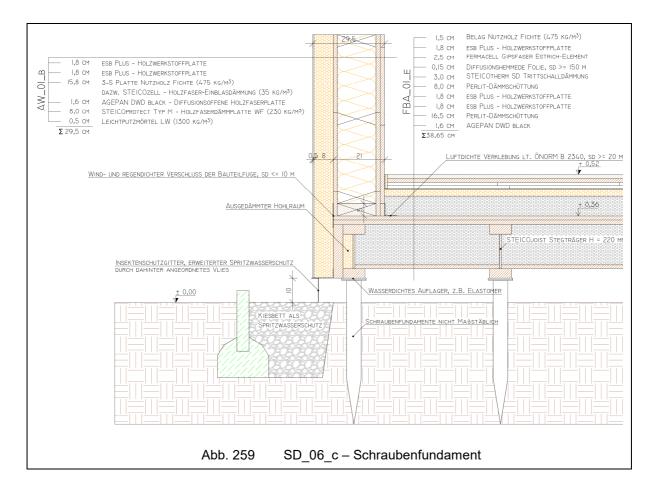
Wie in Abb. 256 ersichtlich ist, bildet sich an der unteren Bauteilfuge Kondensat. Dies ist darauf zurückzuführen, dass die angeordnete Perlit-Dämmschüttung wie eine Innendämmung wirkt und die Wärme an der Innenkante sozusagen "weggedämmt". Um die Feuchte in diesem Bereich zu minimieren, wird in der nächsten Variante versucht, mithilfe einer diffusionshemmenden Folie über der Schüttung, den Dampfstrom soweit zu hemmen, dass kein Bauteilkondensat mehr entsteht. Zusätzlich wird auch die Dämmung an der Außenwand erhöht, da in Abb. 256 ebenfalls ersichtlich ist, dass sich an der Innenseite der außenliegenden AGEPAN DWD black-Holzfaserplatte eine relativ hohe Luftfeuchtigkeit bildet, welche für die Konstruktion schädlich sein kann, siehe Punkt 8. Zusätzlich wäre auch empfehlenswert eine Schüttung mit höherer Wärmeleitfähigkeit (einer schlechteren Dämmeigenschaft) zu wählen, um den Anschluss risikoärmer zu gestalten.

Feuchteverteilung im Bauteil; SD_06_a – Schraubenfundament; HTflux

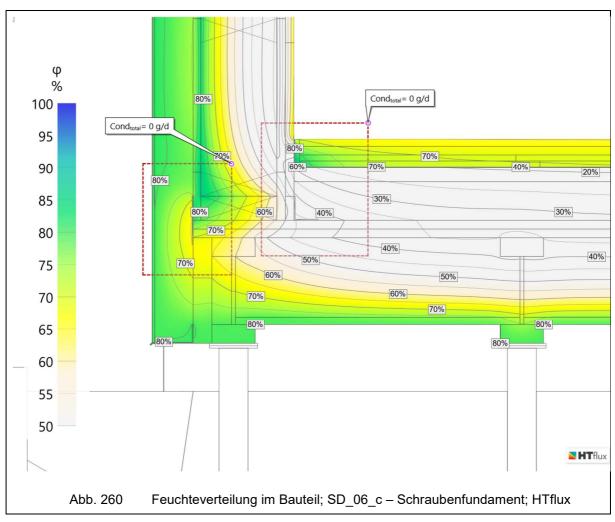
6.8.2 SD_06_b - diffusionshemmende Folie über der Schüttung

In SD_06_b wird versucht, mithilfe einer diffusionshemmenden Folie mit einem sd-Wert von 150 m über der Schüttung, sich bildendendes Bauteilkondensat an der luftdichten Verklebung der Bauteilfuge zu minimieren. Gleichzeitig wird die Dämmdicke der Holzfaserdämmplatte verdoppelt, um die hohe Luftfeuchtigkeit die sich in SD_06_a an der Außenseite der AGEPAN DWD black-Holzfaserplatte bildet zu reduzieren und den Bauteil hygrothermisch risikoärmer zu gestalten.

6.8.2.1 SD_06_b - Feuchteverteilung im Bauteil

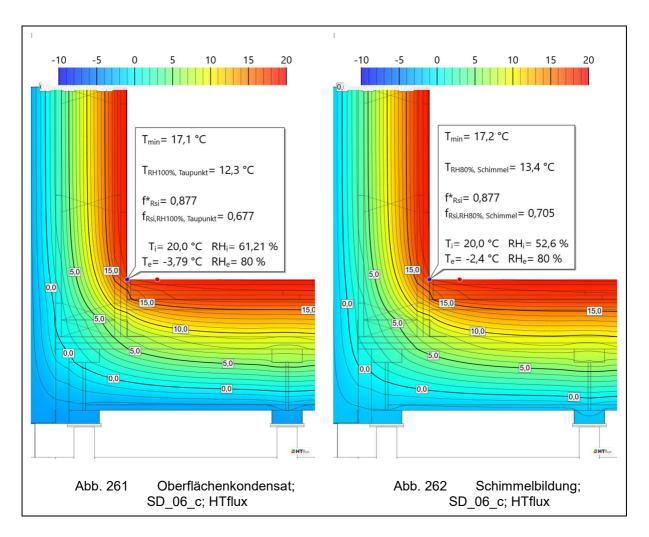

Abb. 258

Durch die diffusionshemmende Folie mit einer äquivalenten Luftschichtdicke von 150 m bildet sich kein Bauteilkondensat mehr an der luftdichten Verklebung. Es entsteht jedoch eine geringe Menge an Kondensat an der Kante, an welcher die Folie an der Wand hochgezogen wird. Die relative Luftfeuchtigkeit an der außenliegenden AGEPAN DWD black-Holzfaserplatte hingegen hat sich beträchtlich reduziert. In der nächsten Variante wird die Folie über der Trittschalldämmung angeordnet, dies soll den Dampfstrom im wärmeren Bereich der Konstruktion hemmen und somit das Bauteilkondensat gänzlich reduzieren.


Feuchteverteilung im Bauteil; SD_06_b - Schraubenfundament; HTflux

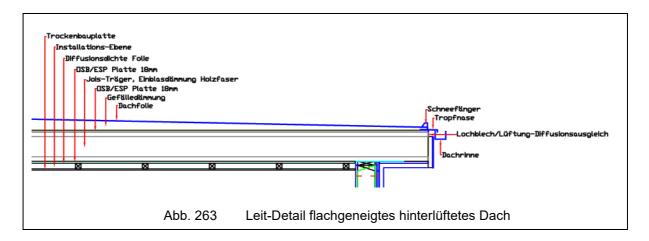
6.8.3 SD_06_c - diffusionshemmende Folie über Trittschalldämmung

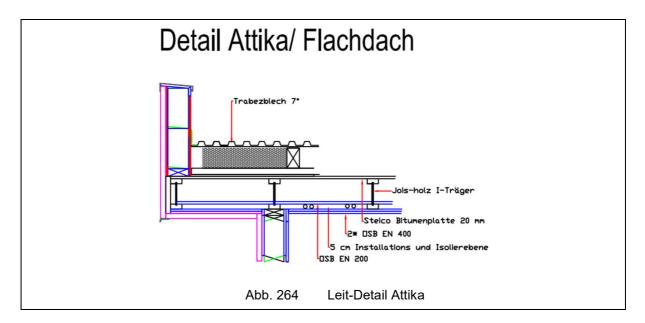
In dieser Variante wird die diffusionshemmende Folie mit einem sd-Wert von 150 m über der Trittschalldämmung angeordnet. Dadurch soll der Dampfstrom im wärmeren Bereich des Fußbodenaufbaus gehemmt und das Bauteilkondensat in diesem Detail gänzlich reduziert werden.



6.8.3.1 SD_06_c – Feuchteverteilung im Bauteil

Durch das Anordnen der diffusionshemmenden Folie mit einer äquivalenten Luftschichtdicke von 150 m über der Trittschalldämmung wird der Dampfstrom soweit gehemmt, dass in SD_06_c kein Bauteilkondensat mehr auftritt.


6.8.3.2 SD_06_c - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

7 Hygrothermische Untersuchung der Details im Dachbereich

Folgende Detail-Vorgaben wurden für die Untersuchungen zur Verfügung gestellt:

In Abb. 263 sind die vorgegebenen Leit-Details für ein flachgeneigtes hinterlüftetes Dach abgebildet. Untersucht wird der traufseitige Anschluss Wand-Dach, sowie am Hochpunkt eine Firstentlüftung.

Das in Abb. 264 abgebildete Leit-Detail wird wie besprochen als hinterlüftetes Kaltdach, aber mittels einer Folienabdichtung als Dachhaut anstelle des Trapezbleches ausgeführt. Die Attika soll dreiseitig umlaufend sein und die Dachabdichtung an der vierten Seite als Pultdach ausgeführt, in eine Dachrinne münden.

7.1 Allgemeines

Die ausgeführten Detail-Varianten werden auf Basis von folgenden Normen und Richtlinien, erstellt, und nachfolgend optimiert. Grundsätzlich sollen die fertig optimierte Detail-Lösung kein Bauteilkondensat aufweisen. Die Schritte bis zum Erreichen dieser Ausführung werden genauestens dokumentiert, bis zum letztlich optimierten Detail betrachtet, auf Probleme eingegangen und Lösungsvorschläge unterbreitet.

- ÖNORM B 3802-2 [3]
- ÖNORM B 2320 [8]
- ÖNORM B 3691 [10]
- ÖNORM B 3521-1 [16]
- ÖNORM B 4119 [17]
- Fachregel für Bauspenglerarbeiten [18]

Sonstige Annahmen und Kriterien der Ausführungen für Foliendeckungen:

- Das Gefälle der Dachabdichtung wird ohne Berücksichtigung von Verformungen mit 3 % (~1,7°) gemessen an der jeweiligen Falllinie geplant. [10]
- Lt. ÖNORM B 3691 [10] sind bei belüfteten Dächern, Unterdächer
 lt. ÖNORM B 4119 [17] zu planen.
- Bei belüfteten Dächern mit Dachabdichtungen sind bei einer Dachneigung weniger als
 10° (~17,6 %) Unterdächer mit erhöhter Regensicherheit auszuführen. [17]
- Erst ab einer Dachneigung von mehr als 8° (~14 %), darf nach ÖNORM B 4919 [17] auf die Ausführung eines Unterdachs verzichtet werden, wenn Maßnahmen zur Winddichtung und gegen den Eintrieb von Flugschnee ausgeführt werden.
- Da die betrachtete Dachneigung mit 3 % (~1,7°) gewählt wurde, die Mindesthöhe für die Konterlattung (Hinterlüftungsebene) in der ÖNORM B 4119 [17] aber erst ab einer Dachneigung von 5° (~8,7 %) angegeben wird, wird nun aufgrund der beiden anderen Parameter (einer angenommenen Sparrenlänge von 5 m bis 10 m und einer angenommenen charakteristischen Schneelast < 3,25 KN/m²) eine Höhe von 60 mm gewählt.</p>
- Die Hinterlüftungsebene muss an der Traufe Zuluftöffnungen und am First Abluftöffnungen besitzen. [17]
- Da der Dachaufbau ohne innenliegende diffusionshemmende Schicht ausführbar sein soll, wird die erforderliche Unterdeckbahn mit einer diffusionsäquivalenten Luftschichtdicke < 0,1 m gewählt. Wie aber in den Untersuchungen unter Punkt 7.4 gezeigt, sollte eine diffusionshemmende Schicht innenliegend in Betracht gezogen werden.

- Diverse Wandanschlüsse werden mindestens 150 mm über die wasserführende Ebene hochgeführt. [16] Dabei gelten auch die Bestimmungen der ÖNORM B 3691 [10].
- Bei Unterdächern mit erhöhter Regensicherheit nach ÖNORM B 4119 [17] sind die Anund Abschlussbleche wasserdicht auszuführen. [16]

7.2 Varianten

In Tab. 10 sind die untersuchten Detail-Varianten mit ihren zugehörigen Bauteilen aufgelistet. Es wird gezeigt ob die Ausführungen hygrothermisch geeignet sind oder nicht.

Die betrachteten Varianten unterscheiden sich in folgenden Ausführungen:

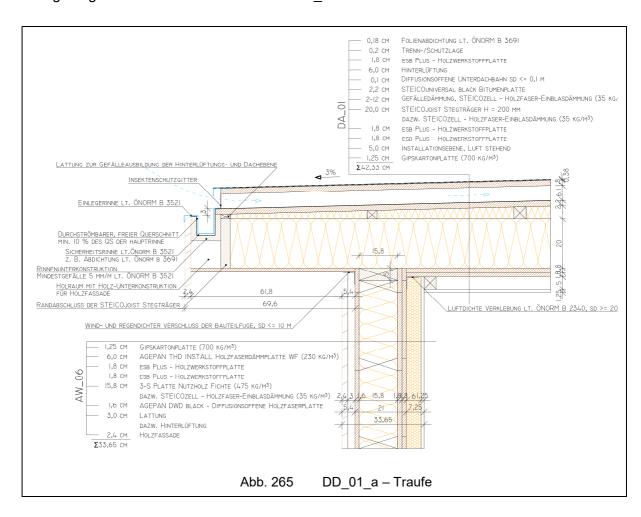
Dach-Detail_01: Untersucht den Anschluss der kritisch zu betrachteten hinterlüfteten Außenwand AW_06 mit dem flachgeneigten hinterlüfteten Dachaufbau DA_01. Es wird ein Anschluss entworfen, bei welchem kein Kondensat im Bauteil auftritt. Durch die Betrachtung der hygrothermisch kritischsten Außenwand kann das Detail auf die wärmetechnisch empfehlenswerteren Außenwände mit Wärmedämmverbundsystem umgelegt werden. Ebenfalls wird der Einfluss eines ungedämmten Dachvorsprungs auf den Anschluss der optimierten Außenwand AW 01 b mit dem optimierten Dachaufbau DA 02 betrachtet.

Dach-Detail_02: Dieses Anschluss-Detail betrachtet die gemäß ÖNORM B 4119 [17] geforderte Firstentlüftung des Dachaufbaus DA_01. Durch die Erkenntnisse der Untersuchung wird eine diffusionshemmende Folie an der Innenseite des Dachaufbaus empfohlen.

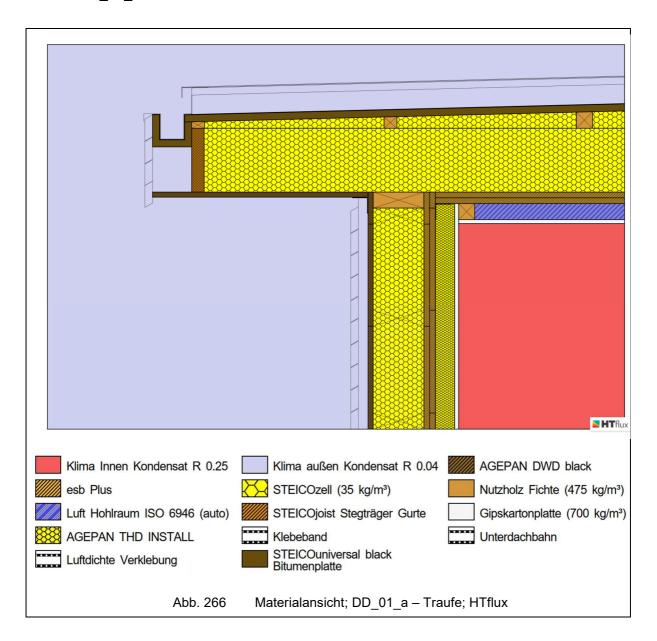
Dach-Detail_03: Betrachtet den Anschluss des hinterlüfteten flachgeneigten Dachaufbaus DA_02 an eine Attika mit der hygrothermisch empfohlenen Außenwand AW_01_b.

Tab	10	Untersuchte	Dach-Variante	n in dei	Detail-Ausbildung
Tab.	10	Office Sucrite		iii iii aci	Dotail-Ausbildurig

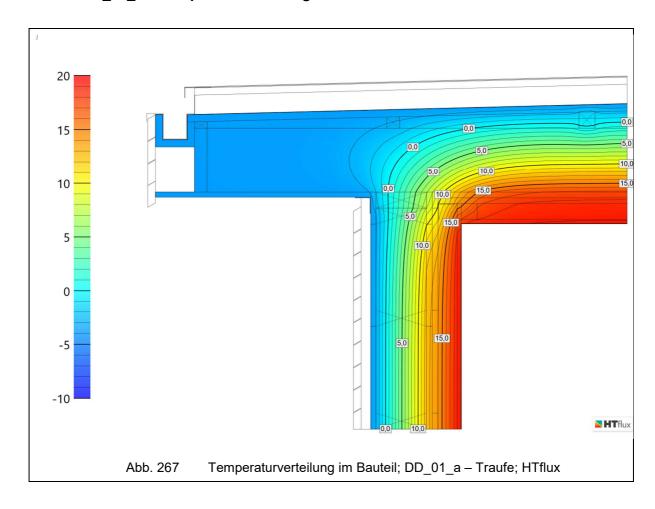
Varian	ten	Anmerkung	Wandbauteil	Dachbauteil	Detail kondensatfrei
	DD_01_a	Betrachtung der kritischen Außenwand	AW_06	DA_01	Nein
Traufe	DD_01_b	Anordnung eines Kantholzes an der Bauteilkante	AW_06	DA_01	Ja, aber kritisch zu betrachten
	DD_01_c	ungedämmter Dachvorsprung	AW_01_b	DA_02	Ja
Firstontlüftung .	DD_02_a	ohne diffusionshemmende Folie	-	DA_01	Ja, aber kritisch zu betrachten
Firstentlüftung	DD_02_b	mit diffusionshemmender Folie	-	DA_02	Ja
Attika	DD_03	ausgedämmter Dachvorsprung mit ausgedämmter Attika	AW_01_b	DA_02	Ja

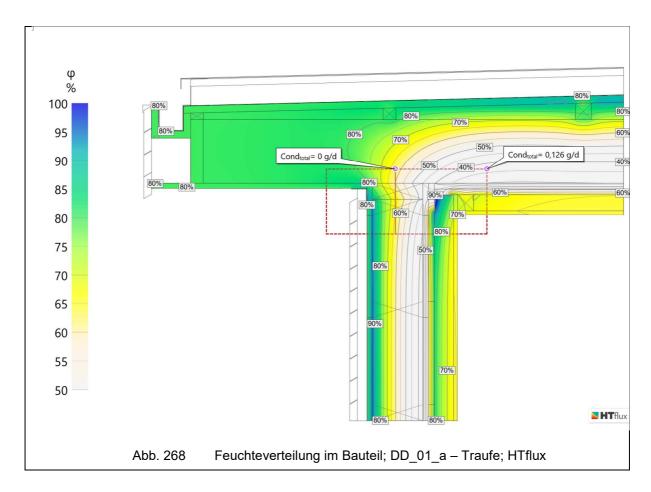

7.3 Dach-Detail_01 - Traufe

Für den betrachteten Anschluss wird die von allen Wandaufbauten in den vorhergehenden Untersuchungen als maßgebend zu sehende Außenwand AW_06 und der Dachaufbau DA_01 betrachtet. AW_06 ist maßgebend aufgrund der innenliegenden Installationsebene, welche als Innendämmung wirkt und den Taupunkt weiter in den Bauteil hineinzieht.

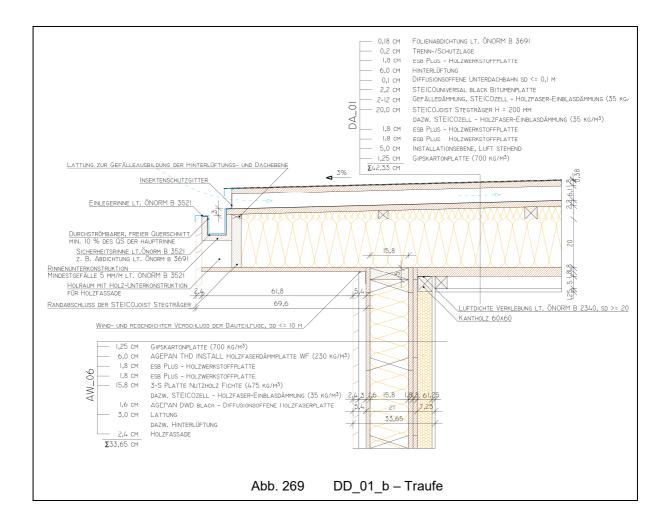

7.3.1 DD_01_a - Betrachtung des Anschlusses an die kritische Außenwand AW_06

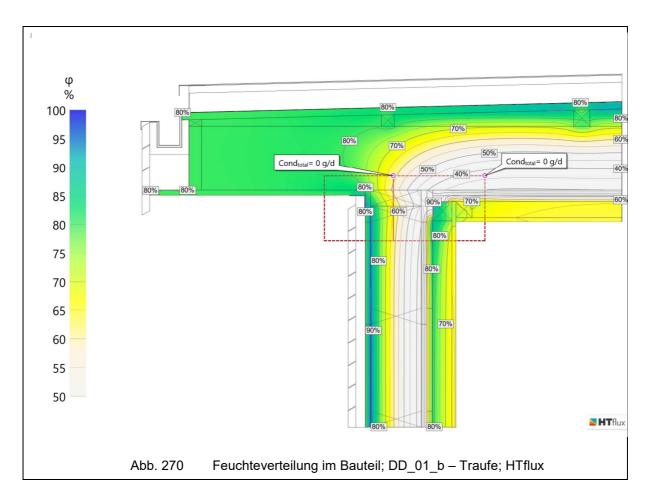
In dieser Variante wird der luftdichte Verschluss der Bauteilfuge am inneren Anschluss des Holzbausteins zu Decke angeordnet. Die Installationsebene wird bis zu den zwei esb Plus-Spanplatten hochgezogen. Auf ihr wird eine Gipskartonplatte befestigt. Die abgehängte Decke schließt an die Installationsebene mit einem Kantholz an.


Betrachtet wird der Anschluss der als kritisch bewerteten Außenwand AW_06 an den flachgeneigten hinterlüfteten Dachaufbau DA 01.


7.3.1.1 DD_01_a - Materialansicht

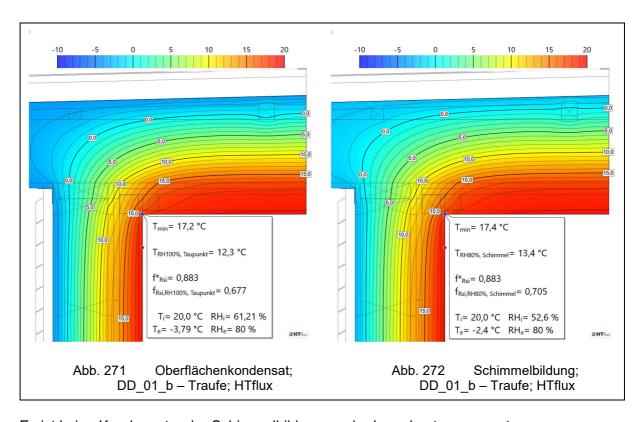
7.3.1.2 DD_01_a - Temperaturverteilung im Bauteil




Es lässt sich erkennen, dass an der innenliegenden luftdichten Verklebung der Bauteilfuge Kondensat entsteht. Die innen angeordnete Installationsebene dämmt sozusagen die Wärme am Bauteilanschluss weg und kühlt den Bereich der luftdichten Verklebung ab. In der nächsten Variante wird versucht durch ein an der inneren Bauteilfuge angeordnetes Kantholz den Bereich wärmer auszulegen und dadurch den Kondensat-Ausfall zu reduzieren.

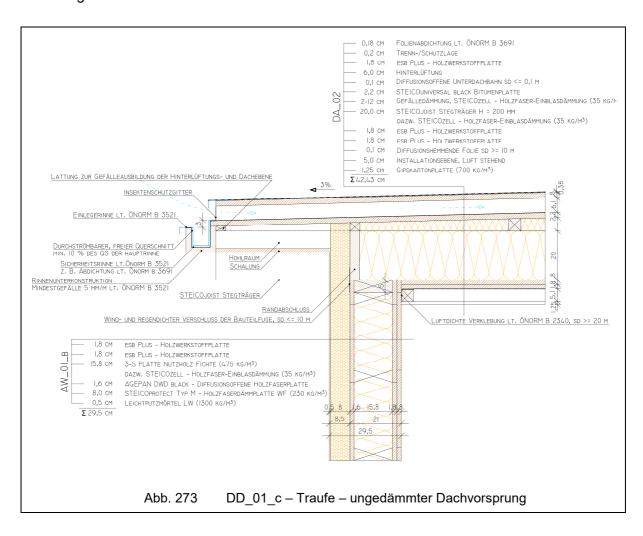
7.3.2 DD_01_b - Anordnung eines Kantholzes an der Innenkante der Bauteilfuge

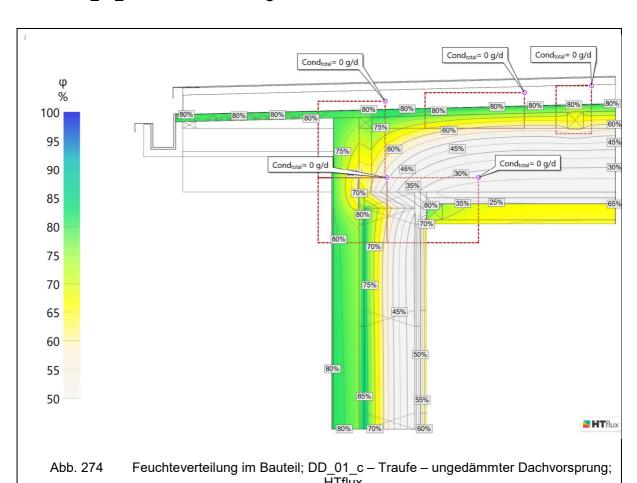
In dieser Variante wurde an der Innenkante der Bauteilfuge ein Kantholz 60x60 mm angeordnet. Dadurch soll der Bereich an der Innenkante wärmer und sich bildendes Bauteilkondensat verhindert werden.



7.3.2.1 DD_01_b - Feuchteverteilung im Bauteil

Durch das an der inneren Bauteilkante angeordnete Kantholz ist kein Bauteilkondensat mehr zu erwarten. Jedoch stellt sich an der äußeren AGEPAN DWD black-Holzfaserplatte eine sehr hohe relative Luftfeuchtigkeit ein, die zu einer Schädigung des Holzwerkstoffes führen kann, siehe Punkt 8.

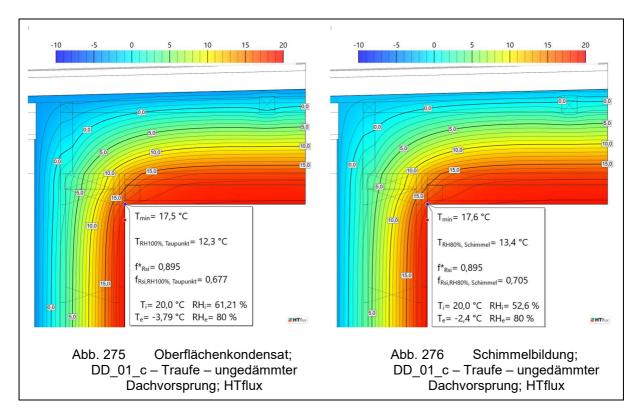

7.3.2.2 DD_01_b - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung



Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

7.3.3 DD_01_c - ungedämmter Dachvorsprung

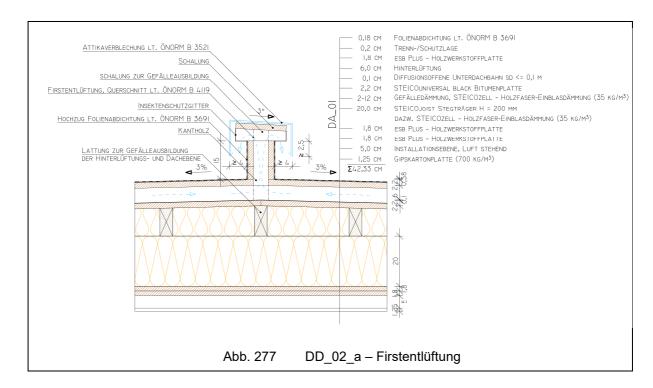
In dieser Variante wird der Einfluss eines ungedämmten Dachvorsprungs auf das Anschluss-Detail untersucht. Es wird dabei die Außenwand AW_01_b betrachtet, da in den vorhergehenden Varianten des Traufanschlusses ersichtlich war, dass die sich einstellende Feuchtigkeit an der außenliegenden AGEPAN DWD black-Holzfaserplatte sehr hohe Werte annimmt und diese dadurch geschädigt werden kann, siehe Punkt 8. Außerdem wird der Dachaufbau DA_02 verwendet. Dies hat den Grund, da in der weiterer Betrachtung des Dachaufbaus DA_01, siehe Detail-Varianten der Firstentlüftung unter Punkt 7.4, erkannt wurde, dass ohne eine diffusionshemmende Folie die sich einstellende Feuchtigkeit an den außenliegenden Schichten ebenfalls kritische Werte erreicht.



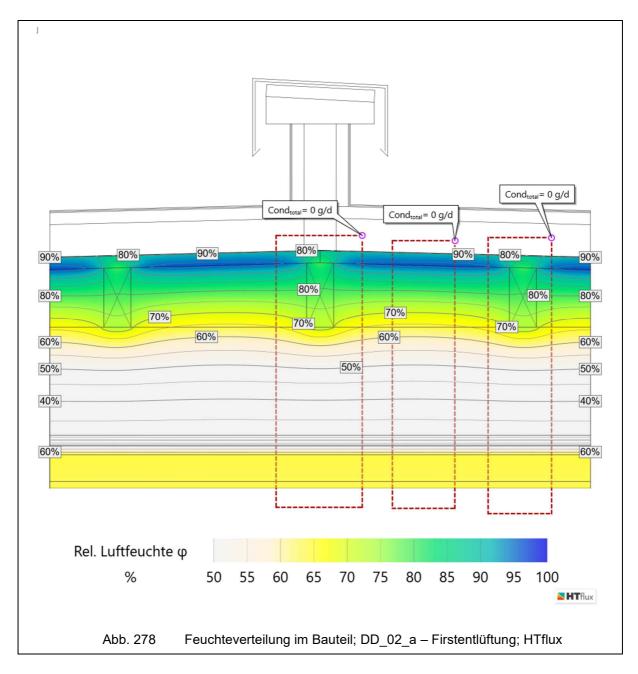
7.3.3.1 DD_01_c - Feuchteverteilung im Bauteil

In Abb. 274 ist ersichtlich, dass das ungedämmte ausführen des Dachvorsprungs keine negativen Auswirkungen auf den Detail-Anschluss hat. Das ausdämmen ist bauphysikalisch nicht notwendig. Auch ist zu erkennen, dass durch das Erhöhen der außenliegenden Dämmdicke und das Anordnen einer diffusionshemmenden Folie an der Innenseite die sich einstellende relative Luftfeuchtigkeit im Bauteil unterhalb des kritischen Bereichs bleibt, siehe Punkt 8.

7.3.3.2 DD_01_c - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

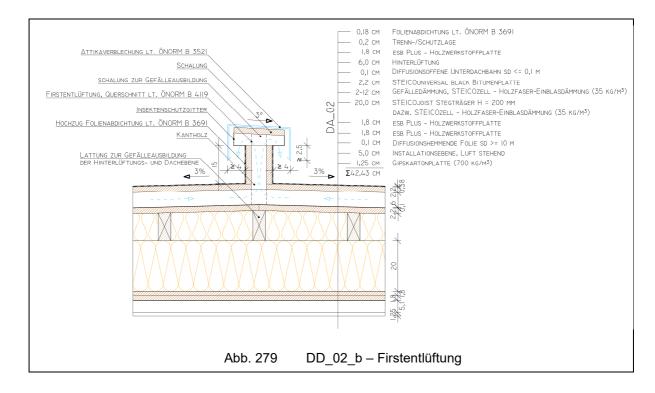


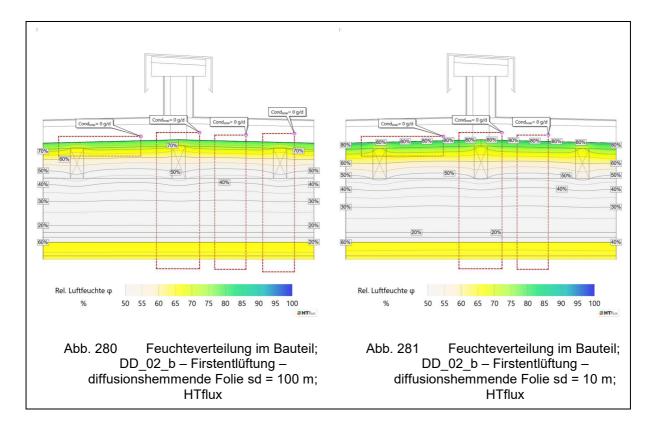
Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.


7.4 Dach-Detail_02 - Firstentlüftung

7.4.1 DD_02_a – ohne diffusionshemmende Folie

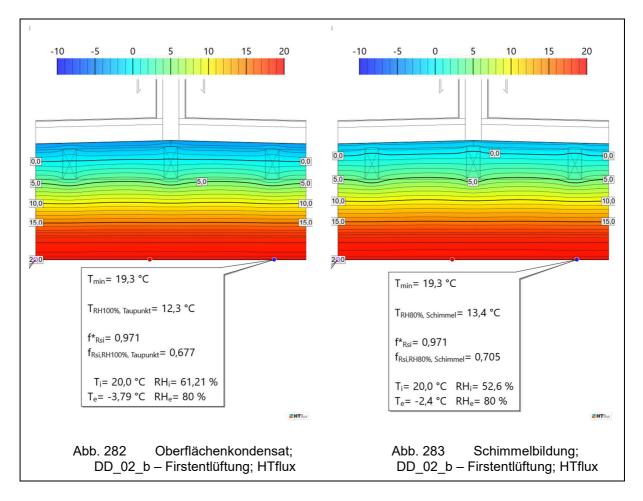
Da It. ÖNORM B 4119 [17] eine Hinterlüftungsebene Zu- und Abluftöffnungen aufweisen muss, wird in diesem Detail-Anschluss eine aufgesetzte Firstentlüftung in Anlehnung an ein Beispieldetail aus der Fachregel für Bauspenglerarbeiten [18] untersucht.


7.4.1.1 DD_02_a - Feuchteverteilung im Bauteil


Es entsteht kein Kondensat im Bauteil, jedoch ist in Abb. 278 ersichtlich, dass die relative Luftfeuchte an der Innenseite der außen liegenden STEICOuniversal black-Bitumenplatte sehr hohe Werte annimmt. Um Schäden zu vermeiden, siehe Punkt 8, sollte eine Hemmung des Dampfstromes weiter innen liegend, zum Beispiel durch eine diffusionshemmende Folie, in Betracht gezogen werden.

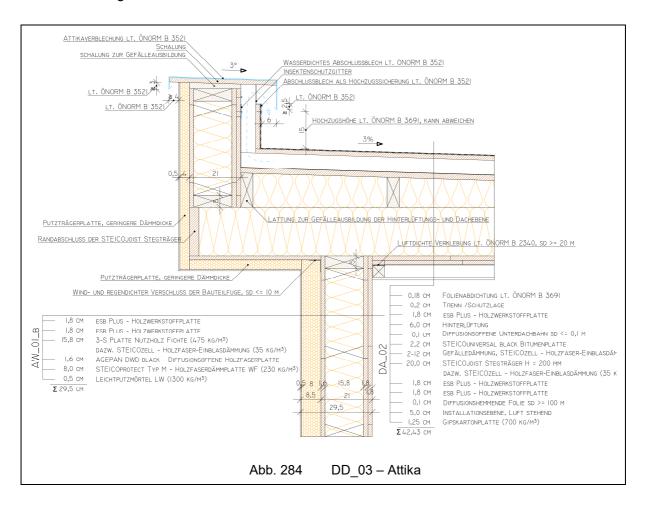
7.4.2 DD_02_b - mit diffusionshemmender Folie

Da sich im vorherigen Detail an der außenliegenden STEICOuniversal-Bitumenplatte eine sehr hohe relative Luftfeuchtigkeit einstellt, wird in dieser Variante betrachtet, welchen Einfluss eine innenliegende diffusionshemmende Folie auf den Bauteil hat. Dabei werden Folien mit unterschiedlichen diffusionsäquivalenten Luftschichtdicken (sd = 100 m und 10 m) auf den innenliegenden esb Plus-Spanplatten angeordnet.

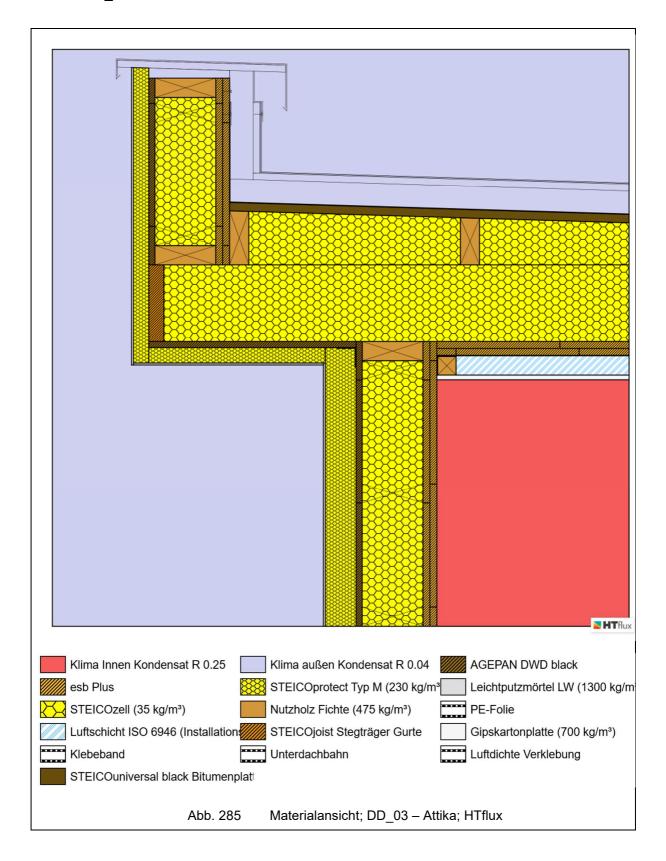


In Abb. 280 und Abb. 281 lässt sich erkennen, dass durch die Anordnung der diffusionshemmenden Folien unter den esb – Plus Spanplatten die relative Luftfeuchtigkeit im Bauteil, im Vergleich zur Variante DD_02_a, drastisch abnimmt. Der Unterschied durch die verschiedenen Folien ist in den Abbildungen ersichtlich. Die sich einstellende relative Luftfeuchtigkeit bleibt aber bei beiden Varianten unter jener (= 84 %) die eine Schädigung der Holzwerkstoffe hervorrufen kann, siehe Punkt 8. Durch einen Leitsatz in der Bauphysik "So diffusionsdicht wie nötig, so diffusionsoffen wie möglich" sollte auf die Variante mit der diffusionsoffeneren Folie zurückgegriffen werden.

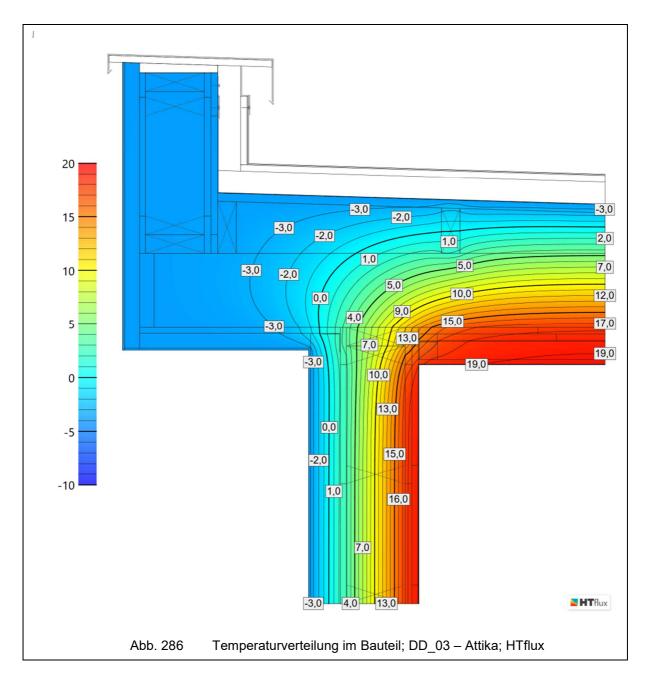
7.4.2.2 DD_02_b - Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung


Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

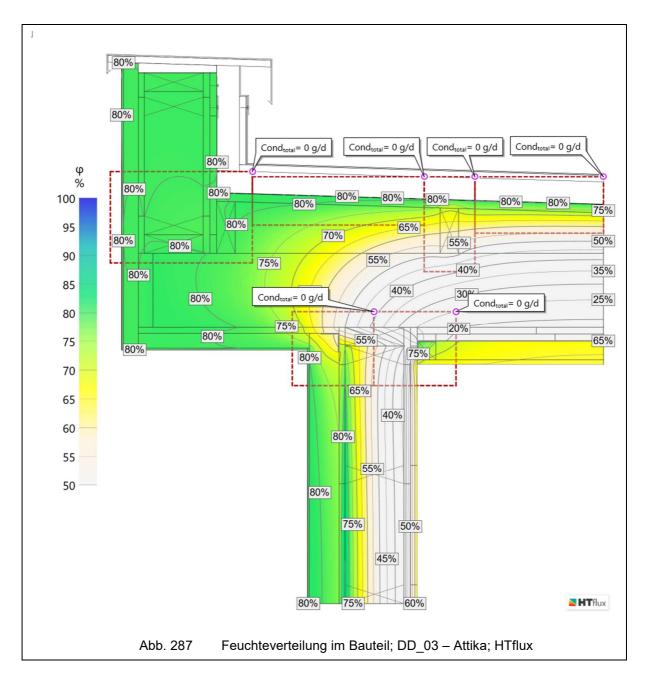
7.5 Dach-Detail_03 – Attika – ausgedämmter Dachvorsprung mit ausgedämmter Attika


Da der Wunsch bestand ein "verstecktes" Pultdach dreiseitig eingefasst von einer Attika zu untersuchen, wird in dieser Variante der Anschluss des Hochpunktes, welcher die Entlüftung der Hinterlüftungsebene beinhaltet betrachtet.

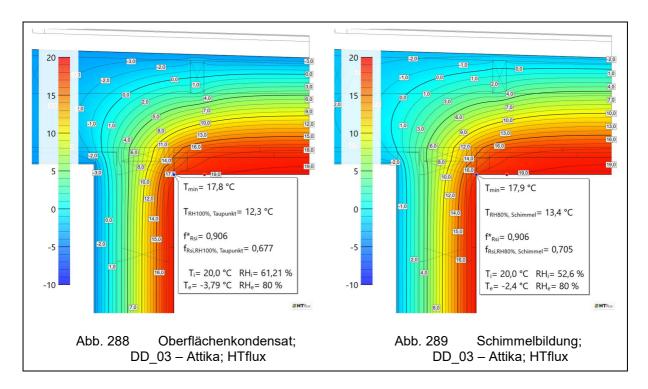
Bei einer angenommenen Sparrenlänge von ca. 4 m, einer Dachneigung von 3 % (~1,7°) und einer Anfangshöhe der Gefälledämmung von 2 cm bedeutet dies, dass die Gefälledämmung an der Attika eine Höhe von ca. 14 cm aufweist (4 m * tan(1,7°) + 0,02 m). Dieses Anschluss-Detail wird konstruktiv geplant und anschließend hygrothermisch betrachtet. Zwecks der Risikominimierung wird der Dachaufbau DA02 mit einer diffusionshemmenden Folie betrachtet, siehe Punkt 7.4.2.


Die zwei Holzbausteine, welche die Attika bilden, werden ausgedämmt ausgeführt, da nicht prognostiziert werden kann, wie sich der Hohlraum im Baustein verhält. In den Simulationen zeigt sich mit den Norm-Werten, dass die Attika temperatur- und diffusionstechnisch fast unberührt bleibt. Allerdings können auch andere klimatische Situationen (z. B. im Sommer) auftreten, indem die kräftige Sonneneinstrahlung die Außenseite der Attika erwärmt, und die im Schatten liegende Innenseite noch relativ kühl bleibt.

7.5.1.1 DD_03 - Materialansicht



7.5.1.2 DD_03 - Temperaturverteilung im Bauteil


Wie in Abb. 286 erkennbar ist, nimmt die Attika keinen Einfluss auf die Temperaturverteilung. Es stellt sich die Temperatur der Außenluft ein. Erst ab der Gefälledämmung und der Mitte der Auskragung beginnt sich die Temperatur leicht zu erhöhen. Wie in der Untersuchung des ungedämmten Dachvorsprungs der Traufe, siehe Punkt 7.3.3, kann mit einer geeigneten Konstruktion auf das ausdämmen verzichtet werden. Es sollte dabei jedenfalls beachtet werden, dass keinerlei Hohlräume entstehen, da diese nicht genau prognostizierbar sind.

7.5.1.3 DD_03 - Feuchteverteilung im Bauteil

Es ist kein Kondensat im Bauteil zu erwarten.

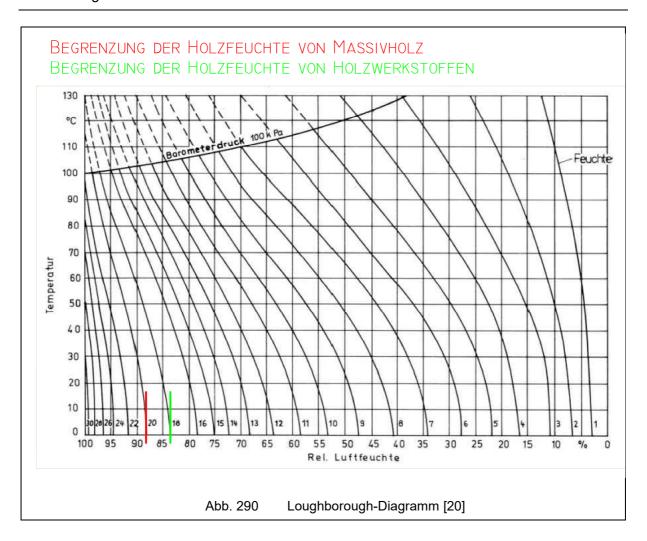
7.5.1.4 DD_03 – Kritische Oberflächentemperaturen zur Vermeidung von Oberflächenkondensat und Schimmelbildung

Es ist keine Kondensat- oder Schimmelbildung an der Innenkante zu erwarten.

8 Betrachtung der Holzfeuchte im Bauteil

Grundsätzlich sind die simulierten Detail-Varianten auf die Vermeidung von Oberflächenkondensation, Schimmelbildung und Kondensat im Bauteil bemessen. Durch die Berechnungen lässt sich allerdings erkennen, dass vor allem bei den hinterlüfteten Außenwänden, AW_04, AW_05, AW_06 und AW_06_b, die relative Luftfeuchtigkeit an den äußeren Bauteilschichten Werte über 90 % annimmt. Auch bei der Außenwand AW_03 kann mit der innenliegenden ausgedämmten Installationsebene die sich einstellende Feuchtigkeit an der außenliegenden AGEPAN DWD black-Holzfaserplatte als kritisch angesehen werden.

In der ÖNORM B 3802-2 [3] wird eine Begrenzung der Holzfeuchtigkeit bei Massivholzprodukten von 20 % und bei Holzwerkstoffen von 18 % vorgeschrieben. Denn durch die Zunahme der Holzfeuchte verschlechtern sich die Eigenschaften des Werkstoffes Holz. Es tritt die Möglichkeit der Schädigung durch holzzerstörende Pilze, eine Erhöhung der Wärmeleitfähigkeit und eine Abnahme der Festigkeit ein.


Um von der vorherrschenden relativen Luftfeuchtigkeit auf die sich einstellende Holzfeuchte zu schließen, wird folgend das Loughborough-Diagramm, Abb. 290, betrachtet. In dem Diagramm wird von den maximal zulässigen Feuchtegehalten 18 % und 20 % auf die maximal zulässige Luftfeuchtigkeit geschlossen.

Es ist ersichtlich, dass die sich einstellende Luftfeuchtigkeit bei Holzwerkstoffen 84 % und bei Massivholzprodukten 88 % nicht überschreiten sollte.

Aus diesem Grund ist es empfehlenswert, auch die hinterlüfteten Fassaden mit einer zusätzlichen Dämmung auf der Holzbaustein-Außenseite auszuführen. Grundsätzlich bewirkt eine Erhöhung der Dämmdicke an der Außenseite immer eine Verlegung des Taupunktes weiter aus der Konstruktion heraus und der Baustein wird daher feuchtetechnisch entlastet. Siehe auch Untersuchung 6.7.8 mit erhöhter Dämmdicke.

Es sei auch anzumerken, dass die Außenluftbedingungen It. ÖNORM B 8110-2 [1] mit dem Wert von 80 % relativer Luftfeuchtigkeit vorgegeben werden und die außenliegenden Holzfaserplatten, die von den Herstellern dafür als geeignet definiert sind, ständig mit einer hohen relativen Luftfeuchtigkeit in Berührung kommen.

Um aussagekräftige Behauptungen über die sich einstellende Feuchtigkeit in den besagten Holzschichten treffen zu können, wären instationäre Simulationen in Betracht zu ziehen. Weiters wären Messungen im eingebauten Zustand, wenn möglich sogar über mehrere Jahre, denkbar.

9 Zusammenfassung und Erkenntnisse der Untersuchungen

Mit dem LUX-Holzbaustein wurde ein System gefunden, welches für das schnelle und kostengünstige Aufstellen diverser Bauten, mit dem nachwachsenden Rohstoff Holz, geeignet ist. Vom Kleingartenhaus bis hin zum Einfamilienhaus soll der Baustein durch sein einfaches modulares Steckkasten-System brillieren. Die einfache Montage soll die Häuslbauer zum Mitarbeiten anregen. Auch dass der Baustein in schwer erreichbare Baugründe ohne schwere Geräte transportiert werden kann (z. B. Heimgärten), soll Kunden von der Bauweise überzeugen. [22]

Aber auch in technischer Hinsicht hat der LUX-Holzbaustein ein besonderes Merkmal: durch die intelligente Anordnung der Schichten (nach außen hin diffusionsoffen) kommt er, was im Holzleichtbau eher unüblich ist, ohne innenliegende diffusionshemmende Folie aus. Lediglich luft- und regendichte Verklebungen an den Bauteilfugen finden bei den Wand-Systemen Verwendung.

Mit den untersuchten Varianten und ihrer jeweiligen Optimierung wurden Detail-Lösungen gefunden, welche unter den gegebenen Rahmenbedingungen in Bezug auf Vermeidung von Oberflächenkondensation, Schimmelbildung und Kondensat im Bauteil nach ÖNORM B 8110-2 [1] geeignet sind. Es wurden jedoch auch kritische Punkte bemerkt, auf welche folgend eingegangen wird:

- Bei den betrachteten hinterlüfteten Außenwänden entwickelt sich zwischen der außenliegenden AGEPAN DWD black-Holzfaserplatte und Zellulose-Einblasdämmung eine sehr hohe relative Luftfeuchtigkeit. Durch längeres Andauern der hohen Luftfeuchte kann die Holzfeuchte zunehmen und dadurch eine Schädigung durch holzzerstörende Pilze eintreten. Auch eine Verschlechterung wärmedämmtechnischen Eigenschaften der Zellulose-Einblasdämmung ist möglich. Um diesem Umstand entgegenzuwirken wird empfohlen, auch die hinterlüfteten Fassaden mit einer zusätzlich angebrachten Dämmung auf der Holzbaustein-Außenseite auszuführen. Die Hinterlüftung kann ergänzend auf der Dämmebene angeordnet werden.
- Da bei den Außenwänden AW_04, AW 05 und AW 06 die Konzentration der relativen der Innenseite der außenliegenden **AGEPAN** Luftfeuchtigkeit an DWD black-Holzfaserplatte sehr hoch ist, wurde getestet, ab welchem µ-Wert dieser Schicht ein Kondensat-Ausfall zu beobachten ist. Schon ab einem Anstieg des μ-Wertes um 1 (von μ = 12 auf μ = 13) ist eine geringe Menge an Bauteilkondensat in den Außenwänden AW 04 und AW 05 zu verzeichnen, bei AW 06 bei einem Anstieg um 2 (von μ = 12 auf μ = 14). Die hinterlüfteten Außenwände liegen demnach mit ihren den Herstellern Baustoffe angenommenen und von der vorgegebenen Dampfdiffusionswiderstandszahlen an der Grenze zur Entstehung von Kondensat im Bauteilinneren. Durch eine zusätzlich an der Holzbaustein-Außenseite angebrachten Dämmung lässt sich das Risiko der Entstehung von Bauteilkondensat und der Einstellung einer schädlichen relativen Luftfeuchtigkeit sowie Ungenauigkeiten in der Bauausführung minimieren.

- Durch Fußbodenkonstruktionen mit Nassestrich-Systemen bzw. mit gebundenen Schüttungen, welche notwendigerweise den Einbau von Folien erfordern, wird der Dampfstrom am Durchgang gehemmt. Durch das Zusammenwirken der Folien, Installationsebenen (welche als Innendämmung wirken) und Schüttungen (welche eine niedrige Wärmeleitfähigkeit aufweisen) wird bewirkt, dass der Taupunkt weiter in die Konstruktion hineinversetzt wird und die Konstruktionen Kondensat anfällig werden. Innenliegende diffusionshemmende Folien sind daher bei gewissen Detail-Ausführungen anzuordnen.
- Da eine Schüttung aus zementgebundenem EPS-Granulat eine, für Schüttungen gesehen, relativ gute Wärmedämmeigenschaft besitzt, wirkt diese ebenfalls ähnlich wie eine innenliegende Dämmung und zieht den Taupunkt weiter in den Bauteil hinein. Durch das Einbringen einer losen Schüttung aus Kies, die im Vergleich zum betrachteten EPS-Granulat eine ca. 15-mal höhere Wärmeleitfähigkeit besitzt, kann dieser Umstand genutzt werden, um den Taupunkt weiter nach außen zu verlegen und den Bauteil damit feuchtetechnisch risikoärmer zu gestalten.
- Auch bei den betrachteten Dachaufbauten ist eine innenliegende diffusionshemmende Folie empfehlenswert, um den Bauteil risikoärmer auszubilden. Ohne die Folie entsteht zwar kein Kondensat, jedoch nimmt die relative Luftfeuchtigkeit an den äußeren Schichten für den Holzbau sehr hohe Werte an, welche die Konstruktion schädigen könnte.
- Auch festzuhalten ist, dass eine innenliegende Installationsebene an den Außenwänden einen kritischen Punkt des Systems darstellt, siehe Untersuchungen mit der Außenwand AW_03. Durch sie wird der Taupunkt weiter in den Bauteil hineingezogen und die Wärme an der Innenseite des Holzbausteins sozusagen "weggedämmt". Das kann zu Kondensat führen. Es ist zu empfehlen, notwendige Installationsebenen eventuell nicht an den Außenwänden anzuordnen und speziell in Sanitärräumen dampfhemmende Schichten an den Innenseiten auszuführen.
- Die betrachteten Varianten stellen grundsätzlich die Mindestanforderungen an die Konstruktion dar. Jegliche Verbesserung des Systems, wie z. B. die Erhöhung der Wärmedämmung außen oder das Erhöhen des Sockels um die Holzkonstruktion weiter vom Erdniveau wegzubringen, wird empfohlen.

10 Ausblick

Grundsätzlich soll mit den betrachteten Untersuchungen ein Großteil der hygrothermischen Planungsgrundlage zur konstruktiven und einwandfreien Ausführung der LUX-Holzbaustein-Bauweise abgedeckt sein. In weiterer Folge wäre unter anderem die Betrachtung diverser Fenster-, Tür-, Geschoßdecken- und Balkon-Anschlüsse in Aussicht zu stellen.

Da sich bei den hinterlüfteten Fassaden ohne Dämmung auf den Holzbausteinen eine relativ hohe Luftfeuchtigkeit einstellt, wären, um aussagekräftige Behauptungen über die sich einstellende Feuchtigkeit in den besagten Holzschichten treffen zu können, instationäre Simulationen in Betracht zu ziehen.

Weiters wären Messungen im eingebauten Zustand, wenn möglich sogar über mehrere Jahre, denkbar. Eine darauffolgende Validierung der erhaltenen Ergebnisse mit jenen dieser Arbeit ist für die Zukunft sicher sehr aufschlussreich.

11 Literaturverzeichnis

- [1] ÖNORM B 8110-2, Wärmeschutz im Hochbau Teil 2: Wasserdampfdiffusion und Kondensationsschutz, Ausgabe: 2003-07-01
- [2] ÖNORM B 8110-7, Wärmeschutz im Hochbau Teil 7: Tabellierte wärmetechnische Bemessungswerte
- [3] ÖNORM B 3802-2, Holzschutz im Bauwesen Teil 2: Baulicher Schutz des Holzes, Ausgabe: 2015-01-15
- [4] GEQ, Zehentmayer Energieausweis Software, Zehentmayer Software GmbH, Übungsversion 2018
- [5] HTflux, Thermische und hygrothermische Simulationssoftware, HTflux Engineering GmbH, Studentenversion 1,10 64-bit
- [6] ÖNORM EN ISO 10456, Baustoffe und Bauprodukte Wärme- und feuchtetechnische Eigenschaften Tabellierte Bemessungswerte und Verfahren zur Bestimmung der wärmeschutztechnischen Nenn- und Bemessungswerte, Ausgabe: 2010-02-15
- [7] ÖNORM EN ISO 13788, Wärme- und feuchtetechnisches Verhalten von Bauteilen und Bauelementen – Raumseitige Oberflächentemperatur zur Vermeidung kritischer Oberflächenfeuchte und Tauwasserbildung im Bauteilinneren – Berechnungsverfahren, Ausgabe: 2013-04-01
- [8] ÖNORM B 2320, Wohnhäuser aus Holz Technische Anforderungen, Ausgabe: 2017-08-01
- [9] ÖNORM B 2340, Maßnahmen zur Erfüllung der Anforderungen an die Luftdichtheit der Gebäudehülle von Holz- und Holzfertighäusern, Ausgabe: 2007-07-01
- [10] ÖNORM B 3691, Planung und Ausführung von Dachabdichtungen, Ausgabe: 2019-02-01
- [11] ÖNORM B 3692, Planung und Ausführung von Bauwerksabdichtungen, Ausgabe: 2014-11-15
- [12] PÖLL W.: Hygrothermische Untersuchung von Detaillösungen und Entwicklung eines Normenleitfadens für den Holzrahmenbau Masterarbeit, Graz, 2017
- [13] ÖNORM EN ISO 13370, Wärmetechnisches Verhalten von Gebäuden Wärmeübertragung über das Erdreich- Berechnungsverfahren, Ausgabe: 2018-02-01
- [14] TESCH S.: Ausarbeitung von Details im Sockel- und erdberührten Bereich, sowie die Vorgehensweise zur Temperaturverteilung im angrenzenden Erdreich – Masterprojekt, Graz, 2017
- [15] OIB-Richtlinie 6, Energieeinsparung und Wärmeschutz, März 2015
- [16] ÖNORM B 3521-1, Planung und Ausführung von Dacheindeckungen und Wandverkleidungen aus Metall, Teil 1: Bauspenglerarbeiten handwerklich gefertigt, Ausgabe: 2012-08-01
- [17] ÖNORM B 4119, Planung und Ausführung von Unterdächern und Unterspannungen, Ausgabe: 2018-03-01
- [18] Fachregel für Bauspenglerarbeiten, Bundessinnung der Dachdecker, Glaser und Spengler, Ausgabe: 2014-09-01
- [19] Richtlinie Sockelanschluss im Holzhausbau, Holzforschung Austria, 1. Ausgabe: 2019-04-10

- [20] Franz Kollmann: Technologie des Holzes und der Holzwerkstoffe, Anatomie und Pathologie, Chemie, Physik, Elastizität und Festigkeit 2. Aufl., Reprint [d. Ausg.] Berlin, Göttingen, Heidelberg, Springer; München, Bergmann, 1951 Berlin [u.a.]: Springer, 1982
- [21] SILLY G.: Optimierung und statische Untersuchung des LUX wood-brick, Forschungsbericht, Graz, Juli 2017
- [22] Luxhome, URL: http://www.luxhome.at/, Zugriffsdatum: 2019-06-08
- [23] ÖNORM EN ISO 6946, Bauteile und Bauelemente Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient Berechnungsverfahren, Ausgabe: 2018-02-01

12 Abbildungsverzeichnis

Abb. 1	Lux-Holzbaustein1
Abb. 2	Lux-Holzbaustein – Abmessungen des 1 m langen Systembausteins2
Abb. 3	AW_04 – Hinterlüftung – Holzbaustein-Sicht innen14
Abb. 4	Nachweisfreie Konstruktion nach dem Entwurf der ÖNORM B 8110-2: 2018-09 (Stand 2019-02-21)
Abb. 5	AW_01 – WDVS – Holzbaustein-Sicht innen17
Abb. 6	Wärmedurchgangskoeffizient & Wasserdampfdiffusion; AW_01 – WDVS – Holzbaustein-Sicht innen; GEQ18
Abb. 7	Materialansicht; AW_01 – WDVS – Holzbaustein-Sicht innen; HTflux19
Abb. 8	Wärmedurchgangskoeffizient inhomogen & Wärmestrom; AW_01 – WDVS – Holzbaustein-Sicht innen; HTflux19
Abb. 9	Oberflächenkondensat; AW_01 – WDVS – Holzbaustein-Sicht innen; HTflux 20
Abb. 10	Schimmelbildung; AW_01 – WDVS – Holzbaustein-Sicht innen; HTflux 20
Abb. 11	Feuchteverteilung im Bauteil; AW_01 – WDVS – Holzbaustein-Sicht innen; HTflux
Abb. 12	AW_02 – WDVS – Gipskartonplatte innen21
Abb. 13	Wärmedurchgangskoeffizient & Wasserdampfdiffusion; AW_02 – WDVS – Gipskartonplatte innen; GEQ22
Abb. 14	Materialansicht; AW_02 – WDVS – Gipskartonplatte innen; HTflux23
Abb. 15	Wärmedurchgangskoeffizient, inhomogen & Wärmestrom; AW_02 – WDVS – Gipskartonplatte innen; HTflux23
Abb. 16	Oberflächenkondensat; AW_02 – WDVS – Gipskartonplatte innen; HTflux 24
Abb. 17	Schimmelbildung; AW_02 - WDVS - Gipskartonplatte innen; HTflux24
Abb. 18	Feuchteverteilung im Bauteil; AW_02 – WDVS – Gipskartonplatte innen; HTflux
Abb. 19	AW_03 – WDVS – Installationsebene innen25
Abb. 20	Wärmedurchgangskoeffizient & Dampfdiffusion; AW_03 – WDVS – Installationsebene innen; GEQ26
Abb. 21	Materialansicht; AW_03 – WDVS – Installationsebene innen; HTflux27
Abb. 22	Wärmedurchgangskoeffizient inhomogen & Wärmestrom; AW_03 – WDVS – Installationsebene innen; HTflux27
Abb. 23	Oberflächenkondensat; AW_03 – WDVS – Installationsebene innen; HTflux 28
Abb. 24	Schimmelbildung; AW_03 – WDVS – Installationsebene innen; HTflux28
Abb. 25	Feuchteverteilung im Bauteil; AW_03 – WDVS – Installationsebene innen; HTflux
Abb. 26	AW_04 – Hinterlüftung – Holzbaustein-Sicht innen30
Abb. 27	Wärmedurchgangskoeffizient & Dampfdiffusion; AW_04 – Hinterlüftung – Holzbaustein-Sicht innen; GEQ31
Abb. 28	Materialansicht; AW04 – Hinterlüftung – Holzbaustein-Sicht innen; HTflux32

Wärmedurchgangskoeffizient inhomogen & Wärmestrom; AW_04 – Hinterlüftung – Holzbaustein-Sicht innen; HTflux32
Oberflächenkondensat; AW_04 – Hinterlüftung – Holzbaustein-Sicht innen; HTflux
Schimmelbildung; AW_04 – Hinterlüftung – Holzbaustein-Sicht innen; HTflux 33
Feuchteverteilung im Bauteil; AW_04 – Hinterlüftung – Holzbaustein-Sicht innen; HTflux34
AW_05 – Hinterlüftung – Gipskartonplatten innen35
Wärmedurchgangskoeffizient & Dampfdiffusion; AW_05 – Hinterlüftung – Gipskartonplatte innen; GEQ36
Materialansicht; AW05 – Hinterlüftung – Gipskartonplatte innen; HTflux 37
Wärmedurchgangskoeffizient inhomogen & Wärmestrom; AW_05 – Hinterlüftung – Gipskartonplatte innen; HTflux37
Oberflächenkondensat; AW_05 – Hinterlüftung – Gipskartonplatte innen; HTflux
Schimmelbildung; AW_05 – Hinterlüftung – Gipskartonplatte innen; HTflux 38
Feuchteverteilung im Bauteil; AW_05 – Hinterlüftung – Gipskartonplatte innen; HTflux39
AW_06 – Hinterlüftung – Installationsebene innen40
Wärmedurchgangskoeffizient & Dampfdiffusion; AW_06 – Hinterlüftung – Installationsebene innen; GEQ41
Materialansicht; AW_06 – Hinterlüftung – Installationsebene innen; HTflux 42
Wärmedurchgangswiderstand inhomogen & Wärmestrom AW_06 – Hinterlüftung – Installationsebene innen; HTflux42
Oberflächenkondensat; AW_06 – Hinterlüftung – Installationsebene innen; HTflux
43
Schimmelbildung; AW_06 – Hinterlüftung – Installationsebene innen; HTflux43
Feuchteverteilung im Bauteil; AW_06 – Hinterlüftung – Installationsebene innen; HTflux44
AW_01_b - WDVS - Holzbaustein-Sicht innen - erhöhte Dämmdicke außen 45
Wärmedurchgangskoeffizient & Wasserdampfdiffusion; AW_01_b - WDVS - Holzbaustein-Sicht innen - erhöhte Dämmdicke außen; GEQ46
Wärmedurchgangskoeffizient inhomogen & Wärmestrom; AW_01_b – WDVS – Holzbaustein-Sicht innen – erhöhte Dämmdicke außen; HTflux47
Oberflächenkondensat; AW_01_b – WDVS – Holzbaustein-Sicht innen – erhöhte Dämmdicke außen; HTflux
Schimmelbildung; AW_01_b - WDVS - Holzbaustein-Sicht innen - erhöhte Dämmdicke außen; HTflux
Feuchteverteilung im Bauteil; AW_01_b – WDVS – Holzbaustein-Sicht innen – erhöhte Dämmdicke außen; HTflux
Feuchteverteilung im Bauteil; AW_01_b – WDVS – Holzbaustein-Sicht innen – erhöhte Dämmdicke außen; HTflux
AW_06_b - Hinterlüftung - Installationsebene ungedämmt innen 50

Abb. 55	Wärmedurchgangskoeffizient & Dampfdiffusion; AW_06_b - Hinterlüftung - Installationsebene ungedämmt innen; GEQ51
Abb. 56	Materialansicht; AW_06_b – Hinterlüftung – Installationsebene ungedämmt innen; HTflux52
Abb. 57	Wärmedurchgangswiderstand inhomogen & Wärmestrom AW_06_b – Hinterlüftung – Installationsebene ungedämmt innen; HTflux52
Abb. 58	Oberflächenkondensat; AW_06_b – Hinterlüftung – Installationsebene ungedämmt innen; HTflux53
Abb. 59	Schimmelbildung; AW_06_b - Hinterlüftung - Installationsebene ungedämmt innen; HTflux53
Abb. 60	Feuchteverteilung im Bauteil; AW_06_b – Hinterlüftung – Installationsebene ungedämmt innen; HTflux54
Abb. 61	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_01 - 8 cm XPS - 2 cm Dämmschüttung; GEQ55
Abb. 62	Kondensat pro Monat; FBE_01 - 8 cm XPS - 2 cm Dämmschüttung; GEQ 56
Abb. 63	Diffusion im Bauteil; FBE_01 – 8 cm XPS – 2 cm Dämmschüttung; GEQ 56
Abb. 64	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_01_b - 8 cm XPS - 2 cm Dämmschüttung; GEQ57
Abb. 65	Kondensat pro Monat; FBE_01 – 8 cm XPS – 2 cm Dämmschüttung; GEQ 58
Abb. 66	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_01_c - 8 cm XPS - 2 cm Dämmschüttung; GEQ59
Abb. 67	Kondensat pro Monat; FBE_01_c - 8 cm XPS - 2 cm Dämmschüttung; GEQ 60
Abb. 68	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_02 - 8 cm XPS - 8 cm Dämmschüttung; GEQ61
Abb. 69	Kondensat pro Monat; FBE_02 – 8 cm XPS – 8 cm Dämmschüttung; GEQ 62
Abb. 70	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_02_b - 8 cm XPS - 8 cm Dämmschüttung; GEQ63
Abb. 71	Kondensat pro Monat; FBE_02_b - 8 cm XPS - 8 cm Dämmschüttung; GEQ 64
Abb. 72	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_03 - 20 cm XPS - 8 cm Dämmschüttung; GEQ65
Abb. 73	Kondensat pro Monat; FBE_03 - 20 cm XPS - 8 cm Dämmschüttung; GEQ 66
Abb. 74	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_03_b - 20 cm XPS - 8 cm Dämmschüttung; GEQ67
Abb. 75	Kondensat pro Monat; FBE_03_b - 20 cm XPS - 8 cm Dämmschüttung; GEQ 68
Abb. 76	Wärmedurchgangskoeffizient & Dampfdiffusion; FBE_04 - 20 cm XPS - 8 cm Dämmschüttung; GEQ69
Abb. 77	Kondensat pro Monat; FBE_04 - 20 cm XPS - 8 cm Dämmschüttung; GEQ 70
Abb. 78	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_01 – Fußboden über Außenluft; GEQ71
Abb. 79	FBA_01_b - Fußboden über Außenluft
Abb. 80	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_01_b - Fußboden über Außenluft; GEQ74
Abb. 81	Materialansicht; FBA_01_b – Fußboden über Außenluft; HTflux75

Abb. 82	Wärmedurchgangswiderstand inhomogen & Wärmestrom FBA_01_b – Fußboden über Außenluft; HTflux75
Abb. 83	Oberflächenkondensat; FBA_01_b – Fußboden über Außenluft; HTflux76
Abb. 84	Schimmelbildung; FBA_01_b - Fußboden über Außenluft; HTflux76
Abb. 85	Feuchteverteilung im Bauteil; FBA_01_b – Fußboden über Außenluft; HTflux76
Abb. 86	FBA_01_e – Fußboden über Außenluft77
Abb. 87	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_01_e – Fußboden über Außenluft; GEQ78
Abb. 88	Materialansicht; FBA_01_e – Fußboden über Außenluft; HTflux79
Abb. 89	Wärmedurchgangswiderstand inhomogen & Wärmestrom FBA_01_e – Fußboden über Außenluft; HTflux79
Abb. 90	Oberflächenkondensat; FBA_01_e – Fußboden über Außenluft; HTflux80
Abb. 91	Schimmelbildung; FBA_01_e - Fußboden über Außenluft; HTflux 80
Abb. 92	Feuchteverteilung im Bauteil; FBA_01_e – Fußboden über Außenluft; HTflux 80
Abb. 93	FBA_02 – Fußboden über Außenluft – Nassestrich
Abb. 94	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02 – Fußboden über Außenluft – Nassestrich; GEQ82
Abb. 95	Materialansicht; FBA_02 – Fußboden über Außenluft – Nassestrich; HTflux 83
Abb. 96	Wärmedurchgangswiderstand inhomogen & Wärmestrom FBA_02 – Fußboden über Außenluft – Nassestrich; HTflux83
Abb. 97	Oberflächenkondensat; FBA_02 – Fußboden über Außenluft – Nassestrich; HTflux
Abb. 98	Schimmelbildung; FBA_02 – Fußboden über Außenluft – Nassestrich; HTflux 84
Abb. 99	Feuchteverteilung im Bauteil; FBA_02 – Fußboden über Außenluft – Nassestrich; HTflux84
Abb. 100	FBA_02_b - Fußboden über Außenluft - Nassestrich85
Abb. 101	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02_b – Fußboden über Außenluft – Nassestrich; GEQ86
Abb. 102	Wärmedurchgangswiderstand inhomogen & Wärmestrom FBA_02_b – Fußboden über Außenluft – Nassestrich; HTflux87
Abb. 103	Oberflächenkondensat; FBA_02_b - Fußboden über Außenluft - Nassestrich; HTflux
Abb. 104	Schimmelbildung; FBA_02_b - Fußboden über Außenluft - Nassestrich; HTflux
Abb. 105	Feuchteverteilung im Bauteil; FBA_02_b – Fußboden über Außenluft – Nassestrich; HTflux89
Abb. 106	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02_c – Fußboden über Außenluft – Nassestrich; GEQ91
Abb. 107	FBA_02_d – Fußboden über Außenluft – Nassestrich
Abb. 108	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02_d – Fußboden über Außenluft – Nassestrich; GEQ93
Abb. 109	Wärmedurchgangswiderstand inhomogen & Wärmestrom FBA_02_d – Fußboden über Außenluft – Nassestrich; HTflux94

Abb. 110	Oberflächenkondensat; FBA_02_d – Fußboden über Außenluft – Nassestric	
Abb. 111	Schimmelbildung; FBA_02_d – Fußboden über Außenluft – Nassestrich; HTfl	
Abb. 112	Feuchteverteilung im Bauteil; FBA_02_d – Fußboden über Außenluft Nassestrich; HTflux	_
Abb. 113	FBA_02_e – Fußboden über Außenluft – Nassestrich	
Abb. 114	Wärmedurchgangskoeffizient & Dampfdiffusion; FBA_02_e – Fußboden üb Außenluft – Nassestrich; GEQ	
Abb. 115	Wärmedurchgangswiderstand inhomogen & Wärmestrom FBA_02_e – Fußbod über Außenluft – Nassestrich; HTflux	
Abb. 116	Oberflächenkondensat; FBA_02_e – Fußboden über Außenluft – Nassestric	
Abb. 117	Schimmelbildung; FBA_02_e – Fußboden über Außenluft – Nassestrich; HTfl	lux
Abb. 118	Feuchteverteilung im Bauteil; FBA_02_e – Fußboden über Außenluft Nassestrich; HTflux1	
Abb. 119	DA_01 – Hinterlüftetes flachgeneigtes Dach1	01
Abb. 120	Wärmedurchgangskoeffizient & Wasserdampfdiffusion; DA_01 – Hinterlüftet flachgeneigtes Dach; GEQ1	
Abb. 121	Materialansicht; DA_01 – Hinterlüftetes flachgeneigtes Dach; HTflux1	03
Abb. 122	Wärmedurchgangskoeffizient inhomogen & Wärmestrom; DA_01 – Hinterlüftet flachgeneigtes Dach; HTflux1	
Abb. 123	Oberflächenkondensat; DA_01 – Hinterlüftetes flachgeneigtes Dach; HTflux 1	04
Abb. 124	Schimmelbildung; DA_01 – Hinterlüftetes flachgeneigtes Dach; HTflux1	04
Abb. 125	Feuchteverteilung im Bauteil; DA_01 – Hinterlüftetes flachgeneigtes Dach; HTfl	
Abb. 126	DA_02 – Hinterlüftetes flachgeneigtes Dach1	05
Abb. 127	Wärmedurchgangskoeffizient & Wasserdampfdiffusion; DA_02 – Hinterlüftet flachgeneigtes Dach; GEQ1	
Abb. 128	Materialansicht; DA_01 – Hinterlüftetes flachgeneigtes Dach; HTflux1	07
Abb. 129	Wärmedurchgangskoeffizient inhomogen & Wärmestrom; DA_02 – Hinterlüftet flachgeneigtes Dach; HTflux1	
Abb. 130	Oberflächenkondensat; DA_02 – Hinterlüftetes flachgeneigtes Dach; HTflux 1	80
Abb. 131	Schimmelbildung; DA_02 – Hinterlüftetes flachgeneigtes Dach; HTflux1	80
Abb. 132	Feuchteverteilung im Bauteil; DA_02 – Hinterlüftetes flachgeneigtes Dach; HTfl	
Abb. 133	Leit-Detail Bodenplatte1	12
Abb. 134	Leit-Detail Schraubenfundament1	12
Abb. 135	SD_01_a - Frostschürze1	20
Abb. 136	Materialansicht; SD_01_a – Frostschürze; HTflux1	21
Abb. 137	Temperaturverteilung im Bauteil; SD_01_a – Frostschürze; HTflux1	22
Abb. 138	Feuchteverteilung im Bauteil; SD_01_a – Frostschürze; HTflux1	23

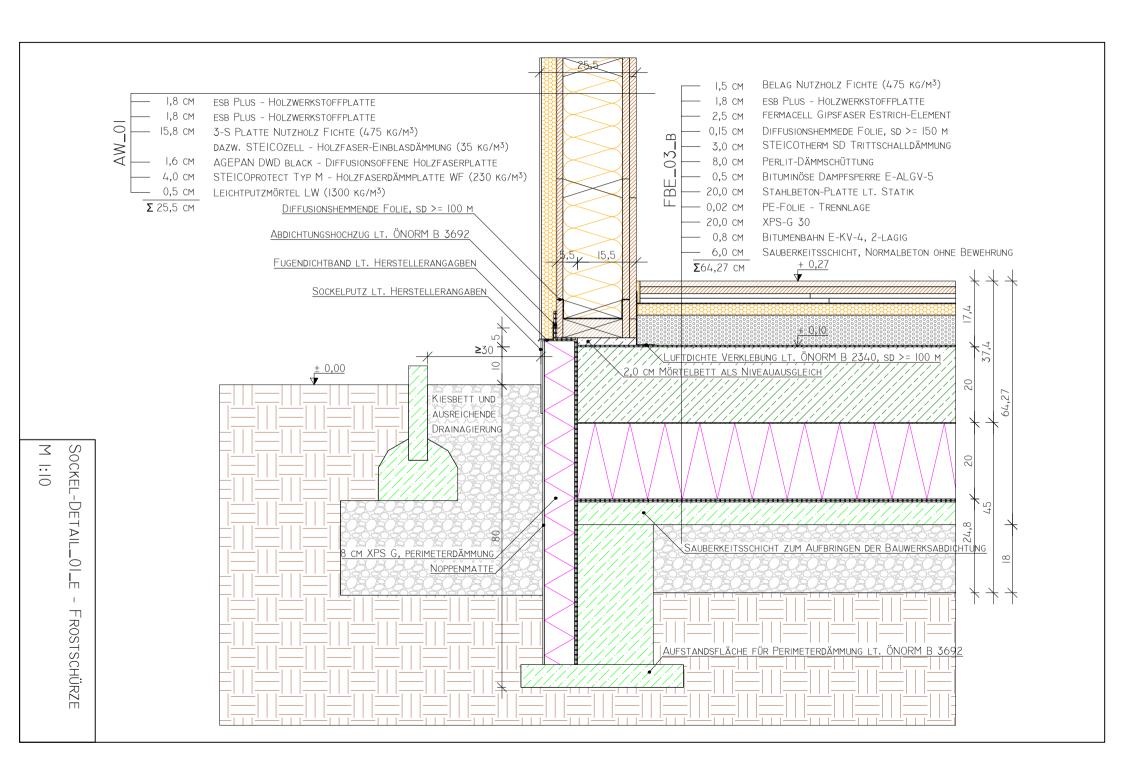
Abb. 139	SD_01_b - Frostschürze	124
Abb. 140	Feuchteverteilung im Bauteil; SD_01_b – Frostschürze; HTflux	125
Abb. 141	SD_01_c - Frostschürze	126
Abb. 142	Feuchteverteilung im Bauteil; SD_01_c – Frostschürze; HTflux	127
Abb. 143	SD_01_d - Frostschürze	128
Abb. 144	Feuchteverteilung im Bauteil; SD_01_d – Frostschürze; HTflux	129
Abb. 145	SD_01_e - Frostschürze	130
Abb. 146	Feuchteverteilung im Bauteil; SD_01_e – Frostschürze; HTflux	
Abb. 147	Oberflächenkondensat; SD_01_e; HTflux	132
Abb. 148	Schimmelbildung; SD_01_e; HTflux	132
Abb. 149	SD_01_f - Frostschürze	133
Abb. 150	Feuchteverteilung im Bauteil; SD_01_f – Frostschürze; HTflux	134
Abb. 151	SD_01_g - Frostschürze	135
Abb. 152	Materialansicht; SD_01_g – Frostschürze; HTflux	136
Abb. 153	Oberflächenkondensat; SD_01_g; HTflux	138
Abb. 154	Schimmelbildung; SD_01_g; HTflux	
Abb. 155	SD_01_h – Frostschürze	139
Abb. 156	Feuchteverteilung im Bauteil; SD_01_h – Frostschürze; HTflux	140
Abb. 157	SD_01_i – Frostschürze	141
Abb. 158	Feuchteverteilung im Bauteil; SD_01_i – Frostschürze; HTflux	142
Abb. 159	Oberflächenkondensat; SD_01_i; HTflux	
Abb. 160	Schimmelbildung; SD_01_i; HTflux	143
Abb. 161	SD_01_j - Frostschürze	144
Abb. 162	Feuchteverteilung im Bauteil; SD_01_j – Frostschürze; HTflux	145
Abb. 163	Oberflächenkondensat; SD_01_j; HTflux	146
Abb. 164	Schimmelbildung; SD_01_j; HTflux	146
Abb. 165	SD_02_a- Frostschürze	148
Abb. 166	Temperaturverteilung im Bauteil; SD_02_a – Frostschürze; HTflux	149
Abb. 167	Feuchteverteilung im Bauteil; SD_02_a – Frostschürze; HTflux	150
Abb. 168	SD_02_b - Frostschürze	151
Abb. 169	Feuchteverteilung im Bauteil; SD_02_b – Frostschürze; HTflux	152
Abb. 170	Oberflächenkondensat; SD_02_b; HTflux	153
Abb. 171	Schimmelbildung; SD_02_b; HTflux	153
Abb. 172	SD_02_c - Frostschürze	
Abb. 173	Feuchteverteilung im Bauteil; SD_02_c – Frostschürze; HTflux	155
Abb. 174	Oberflächenkondensat; SD_02_c; HTflux	
Abb. 175	Schimmelbildung; SD_02_c; HTflux	
Abb. 176	SD_02_d - Frostschürze	
Abb. 177	Feuchteverteilung im Bauteil; SD_02_d – Frostschürze; HTflux	

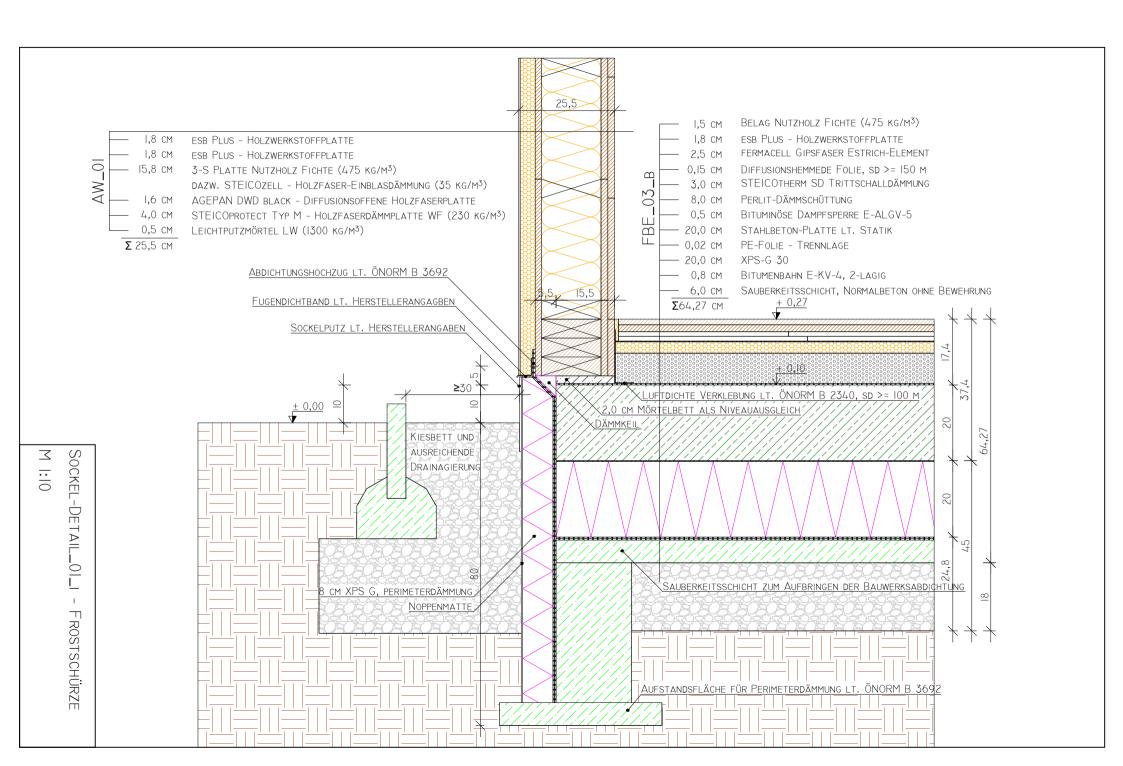
Abb. 178	SD_02_e - Frostschürze	159
Abb. 179	Feuchteverteilung im Bauteil; SD_02_e – Frostschürze; HTflux	160
Abb. 180	Oberflächenkondensat; SD_02_e; HTflux	161
Abb. 181	Schimmelbildung; SD_02_e; HTflux	161
Abb. 182	SD_03_a – Frostschirm	162
Abb. 183	Feuchteverteilung im Bauteil; SD_03_a- Frostschürze; HTflux	163
Abb. 184	Oberflächenkondensat; SD_03_a; HTflux	164
Abb. 185	Schimmelbildung; SD_03_a; HTflux	164
Abb. 186	SD_03_b - Frostschirm	165
Abb. 187	Feuchteverteilung im Bauteil; SD_03_b- Frostschürze; HTflux	166
Abb. 188	Oberflächenkondensat; SD_03_b; HTflux	167
Abb. 189	Schimmelbildung; SD_03_b; HTflux	167
Abb. 190	SD_04_a - Schraubenfundament	169
Abb. 191	Materialansicht; SD_04_a – Schraubenfundament; HTflux	170
Abb. 192	Feuchteverteilung im Bauteil; SD_04_a – Schraubenfundament; HTflux	171
Abb. 193	Oberflächenkondensat; SD_04_a; HTflux	172
Abb. 194	Schimmelbildung; SD_04_a; HTflux	172
Abb. 195	SD_04_b - Schraubenfundament	173
Abb. 196	Feuchteverteilung im Bauteil; SD_04_b - Schraubenfundament; HTflux	174
Abb. 197	Oberflächenkondensat; SD_04_b; HTflux	175
Abb. 198	Schimmelbildung; SD_04_b; HTflux	175
Abb. 199	SD_04_c - Schraubenfundament	176
Abb. 200	Feuchteverteilung im Bauteil; SD_04_c - Schraubenfundament; HTflux	177
Abb. 201	Oberflächenkondensat; SD_04_c; HTflux	178
Abb. 202	Schimmelbildung; SD_04_c; HTflux	178
Abb. 203	SD_04_d – Schraubenfundament	179
Abb. 204	Feuchteverteilung im Bauteil; SD_04_d – Schraubenfundament; HTflux	180
Abb. 205	SD_04_e - Schraubenfundament	181
Abb. 206	Feuchteverteilung im Bauteil; SD_04_e - Schraubenfundament; HTflux	182
Abb. 207	Oberflächenkondensat; SD_04_e; HTflux	183
Abb. 208	Schimmelbildung; SD_04_e; HTflux	183
Abb. 209	SD_04_f – Schraubenfundament	184
Abb. 210	Feuchteverteilung im Bauteil; SD_04_f – Schraubenfundament; HTflux	185
Abb. 211	Oberflächenkondensat; SD_04_f; HTflux	186
Abb. 212	Schimmelbildung; SD_04_f; HTflux	186
Abb. 213	SD_04_g – Schraubenfundament	187
Abb. 214	Feuchteverteilung im Bauteil; SD_04_g – Schraubenfundament; HTflux	188
Abb. 215	Oberflächenkondensat; SD_04_g; HTflux	189
Abb. 216	Schimmelbildung; SD_04_g; HTflux	189

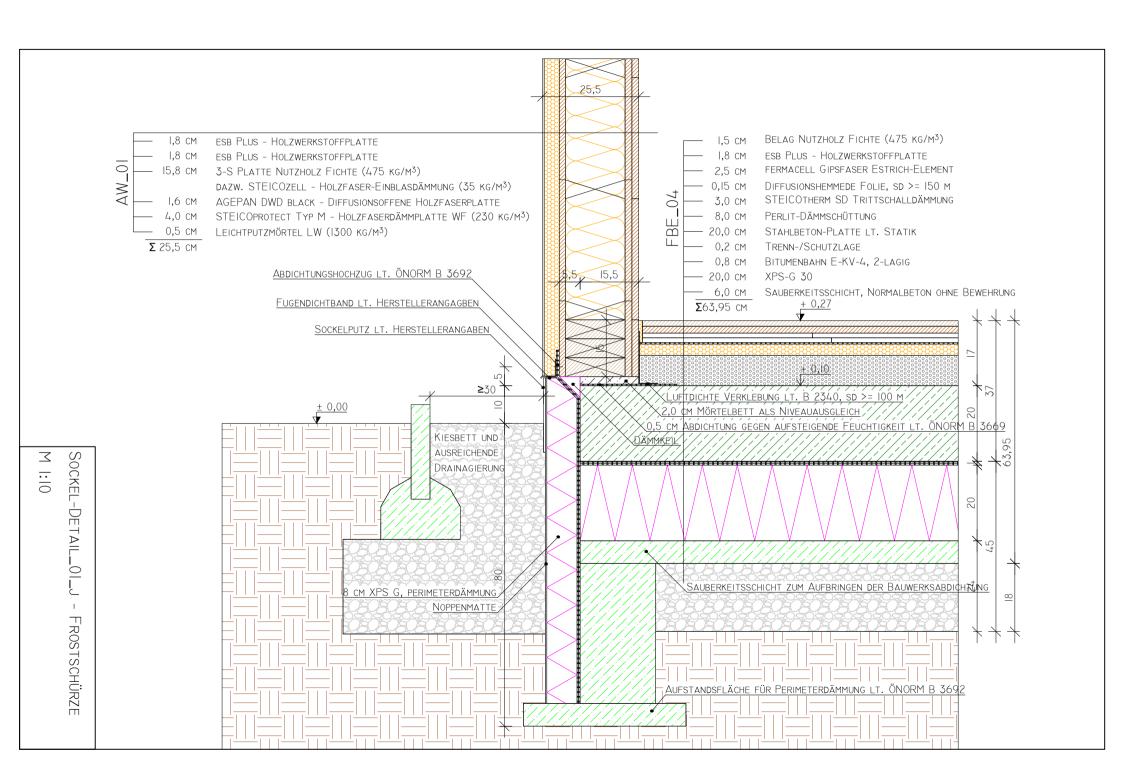
Abb. 217	SD_04_h - Schraubenfundament	190
Abb. 218	Feuchteverteilung im Bauteil; SD_04_h – Schraubenfundament; HTflux	191
Abb. 219	Oberflächenkondensat; SD_04_h; HTflux	192
Abb. 220	Schimmelbildung; SD_04_h; HTflux	192
Abb. 221	SD_05_a - Schraubenfundament - Nassestrich	193
Abb. 222	Materialansicht; SD_05_a - Schraubenfundament - Nassestrich; HTflux	194
Abb. 223	Feuchteverteilung im Bauteil; SD_05_a – Schraubenfundament; HTflux	195
Abb. 224	Oberflächenkondensat; SD_05_a; HTflux	196
Abb. 225	Schimmelbildung; SD_05_a; HTflux	196
Abb. 226	SD_05_b - Schraubenfundament - Nassestrich	197
Abb. 227	Materialansicht; SD_05_b - Schraubenfundament - Nassestrich; HTflux	198
Abb. 228	Feuchteverteilung im Bauteil; SD_05_b – Schraubenfundament; HTflux	199
Abb. 229	Oberflächenkondensat; SD_05_b; HTflux	200
Abb. 230	Schimmelbildung; SD_05_b; HTflux	200
Abb. 231	SD_05_c - Schraubenfundament - Nassestrich	201
Abb. 232	Feuchteverteilung im Bauteil; SD_05_c - Schraubenfundament; HTflux	202
Abb. 233	SD_05_d - Schraubenfundament - Nassestrich	203
Abb. 234	Temperaturverteilung; SD_05_d - Schraubenfundament - Nassestrich; H	
Abb. 235	Feuchteverteilung im Bauteil; SD_05_d – Schraubenfundament; HTflux	
Abb. 236	SD 05 e – Schraubenfundament – Nassestrich	
Abb. 237	Feuchteverteilung im Bauteil; SD_05_d – Schraubenfundament; HTflux	
Abb. 238	SD_05_f – Schraubenfundament – Nassestrich	
Abb. 239	Feuchteverteilung im Bauteil; SD_05_f – Schraubenfundament; HTflux	
Abb. 240	Oberflächenkondensat; SD_05_f; HTflux	
Abb. 241	Schimmelbildung; SD_05_f; HTflux	
Abb. 242	SD_05_g – Schraubenfundament – Nassestrich	
Abb. 243	Feuchteverteilung im Bauteil; SD_05_g – Schraubenfundament; HTflux	
Abb. 244	Oberflächenkondensat; SD_05_g; HTflux	
Abb. 245	Schimmelbildung; SD_05_g; HTflux	213
Abb. 246	SD_05_h - Schraubenfundament - Nassestrich	
Abb. 247	Feuchteverteilung im Bauteil; SD_05_h – Schraubenfundament; HTflux	215
Abb. 248	Feuchteverteilung im Bauteil; SD_05_b – Schraubenfundament; HTflux	215
Abb. 249	Oberflächenkondensat; SD_05_h; HTflux	216
Abb. 250	Schimmelbildung; SD_05_h; HTflux	216
Abb. 251	SD_05_i – Schraubenfundament – Nassestrich	
Abb. 252	Feuchteverteilung im Bauteil; SD_05_i – Schraubenfundament; HTflux	
Abb. 253	Oberflächenkondensat; SD_05_i; HTflux	
Abb. 254	Schimmelbildung; SD_05_i; HTflux	

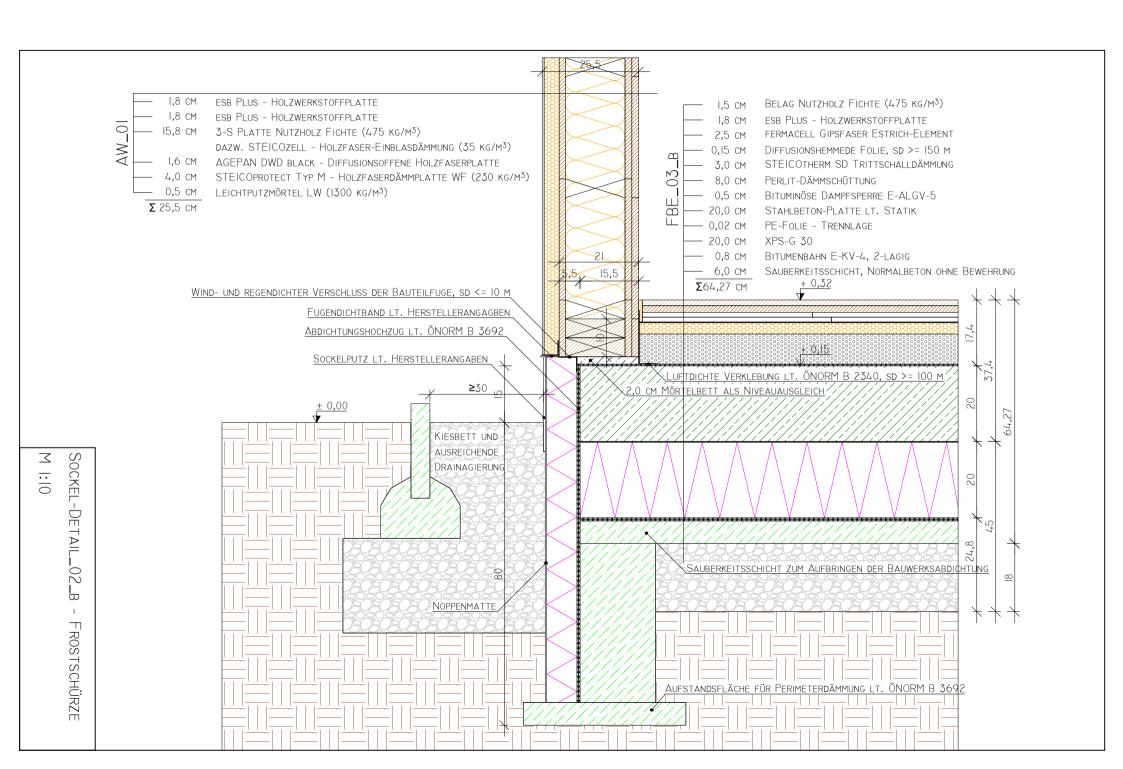
Abb. 255	SD_06_a – Schraubenfundament	220
Abb. 256	Feuchteverteilung im Bauteil; SD_06_a – Schraubenfundament; HTflux	221
Abb. 257	SD_06_b - Schraubenfundament	222
Abb. 258	Feuchteverteilung im Bauteil; SD_06_b – Schraubenfundament; HTflux	223
Abb. 259	SD_06_c - Schraubenfundament	224
Abb. 260	Feuchteverteilung im Bauteil; SD_06_c – Schraubenfundament; HTflux	225
Abb. 261	Oberflächenkondensat; SD_06_c; HTflux	226
Abb. 262	Schimmelbildung; SD_06_c; HTflux	226
Abb. 263	Leit-Detail flachgeneigtes hinterlüftetes Dach	227
Abb. 264	Leit-Detail Attika	227
Abb. 265	DD_01_a – Traufe	231
Abb. 266	Materialansicht; DD_01_a – Traufe; HTflux	232
Abb. 267	Temperaturverteilung im Bauteil; DD_01_a – Traufe; HTflux	233
Abb. 268	Feuchteverteilung im Bauteil; DD_01_a – Traufe; HTflux	234
Abb. 269	DD_01_b - Traufe	235
Abb. 270	Feuchteverteilung im Bauteil; DD_01_b – Traufe; HTflux	236
Abb. 271	Oberflächenkondensat; DD_01_b - Traufe; HTflux	237
Abb. 272	Schimmelbildung; DD_01_b - Traufe; HTflux	237
Abb. 273	DD_01_c - Traufe - ungedämmter Dachvorsprung	238
Abb. 274	Feuchteverteilung im Bauteil; DD_01_c – Traufe – ungedämmter Dachvorsp HTflux	
Abb. 275	Oberflächenkondensat; DD_01_c – Traufe – ungedämmter Dachvorsp HTflux	
Abb. 276	Schimmelbildung; DD_01_c - Traufe - ungedämmter Dachvorsprung; HTflux	x 240
Abb. 277	DD_02_a - Firstentlüftung	241
Abb. 278	Feuchteverteilung im Bauteil; DD_02_a – Firstentlüftung; HTflux	242
Abb. 279	DD_02_b - Firstentlüftung	243
Abb. 280	Feuchteverteilung im Bauteil; DD_02_b - Firstentlüftung - diffusionshemm Folie sd = 100 m; HTflux	
Abb. 281	Feuchteverteilung im Bauteil; DD_02_b - Firstentlüftung - diffusionshemm Folie sd = 10 m; HTflux	ende 244
Abb. 282	Oberflächenkondensat; DD_02_b - Firstentlüftung; HTflux	245
Abb. 283	Schimmelbildung; DD_02_b - Firstentlüftung; HTflux	245
Abb. 284	DD_03 - Attika	246
Abb. 285	Materialansicht; DD_03 – Attika; HTflux	247
Abb. 286	Temperaturverteilung im Bauteil; DD_03 – Attika; HTflux	248
Abb. 287	Feuchteverteilung im Bauteil; DD_03 – Attika; HTflux	249
Abb. 288	Oberflächenkondensat; DD_03 – Attika; HTflux	250
Abb. 289	Schimmelbildung; DD_03 – Attika; HTflux	250
Abb. 290	Loughborough-Diagramm [20]	252

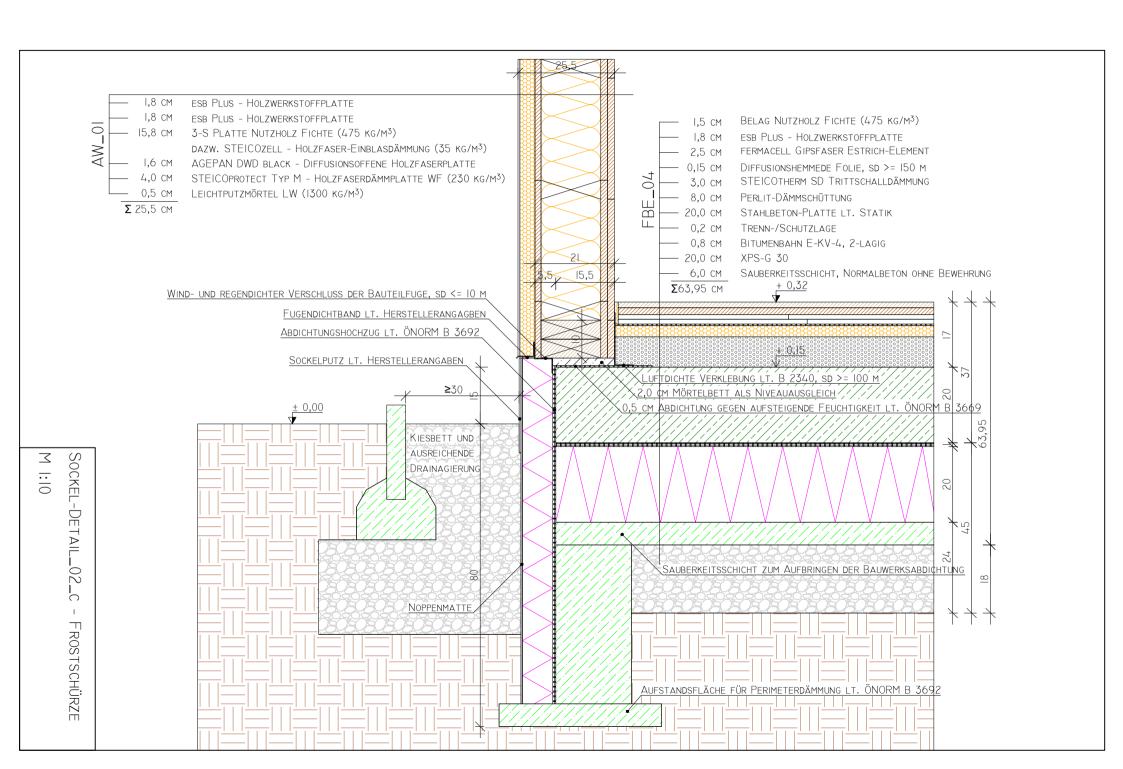
13 Tabellenverzeichnis

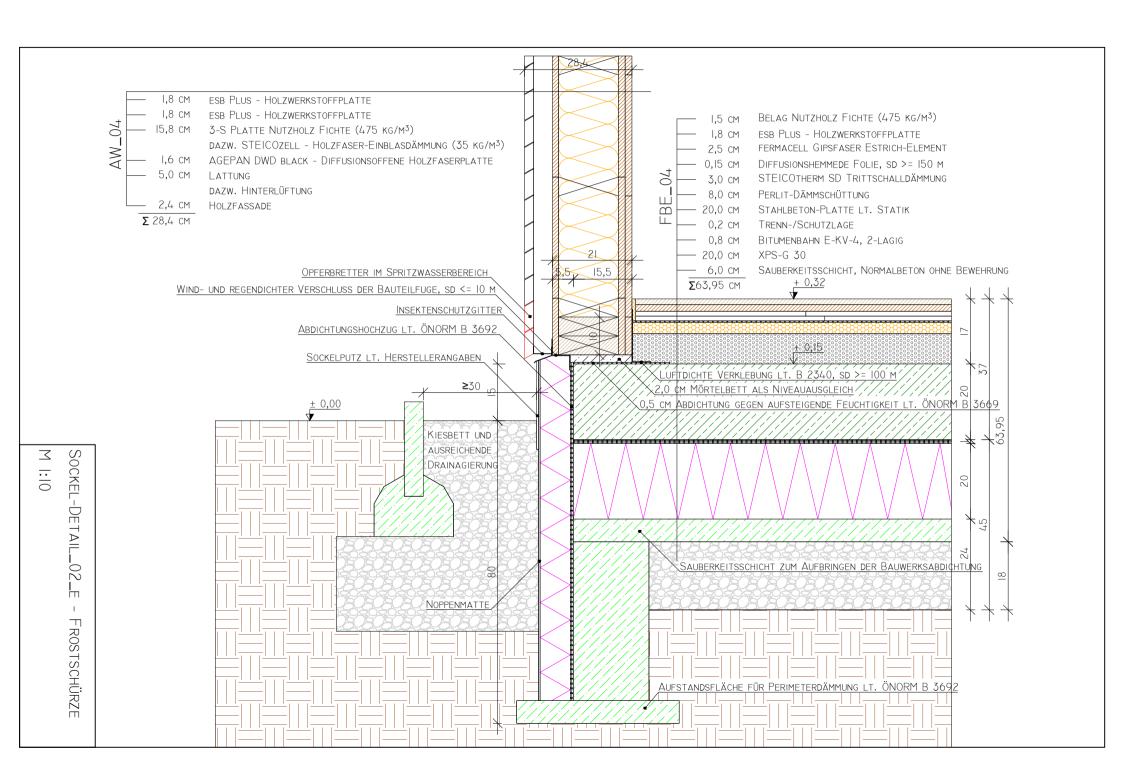

Tab. 1	Formelzeichen, Einheit, Definition	3
Tab. 2	Verwendete Materialkennwerte in GEQ [4] & HTflux [5]	4
Tab. 3	Berechnung der Monatsmitteltemperaturen der Außenluft für den Star Klagenfurt	
Tab. 4	Berechnung der relativen Feuchte der Innenluft zur Vermeidung Kondenswasserbildung	
Tab. 5	Berechnung der relativen Feuchte der Innenluft zur Verminderung des Risikos Schimmelbildung	
Tab. 6	Klimabedingungen zur Vermeidung von Kondenswasserbildung ($\phi_{i,OK}$ & T_{Tat} und des Risikos von Schimmelbildung ($\phi_{i,SK}$ & $T_{Schimmel}$) nach ÖNORM B 8110-	-2 [1
Tab. 7	Kritische Monate für die Vermeidung von Kondenswasser- und des Risikos Schimmelbildung berechnet mit HTflux [5]	von
Tab. 8	Zusammenfassung der bauphysikalisch relevanten Ergebnisse der Baute berechnet mit HTflux [5]	
Tab. 9	Untersuchte Sockel-Varianten in der Detail-Ausbildung	. 117
Tab. 10	Untersuchte Dach-Varianten in der Detail-Ausbildung	. 230

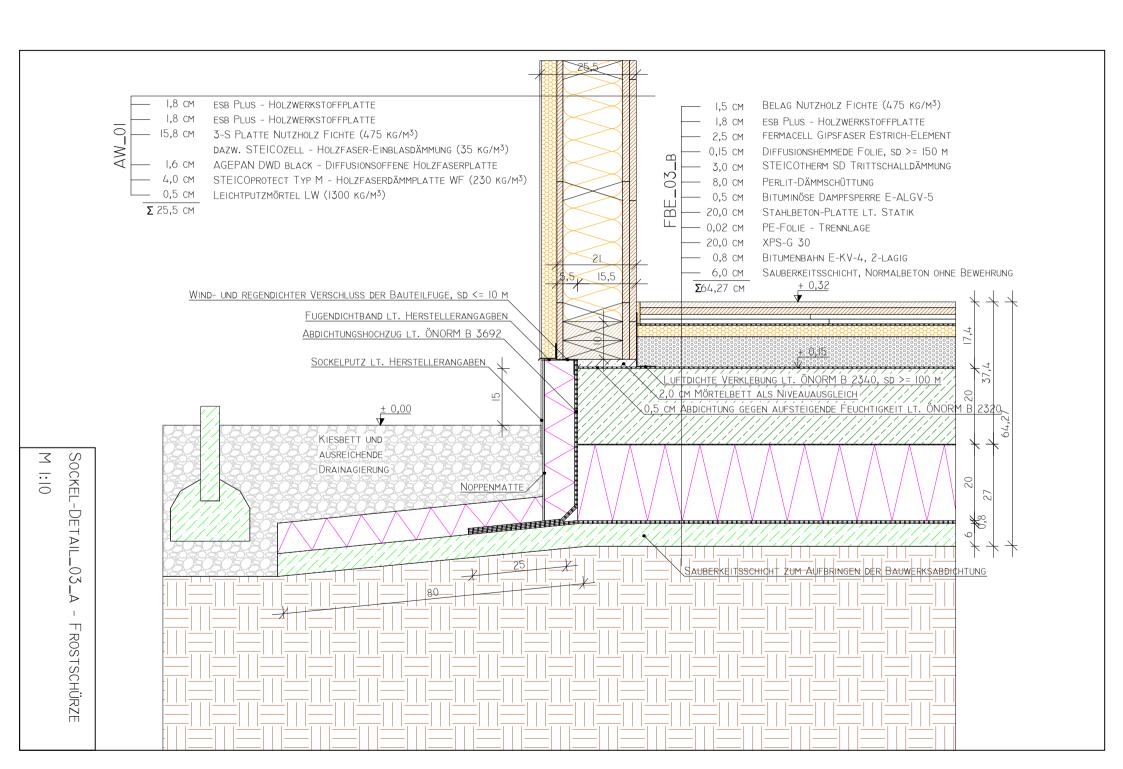

14 Anhang

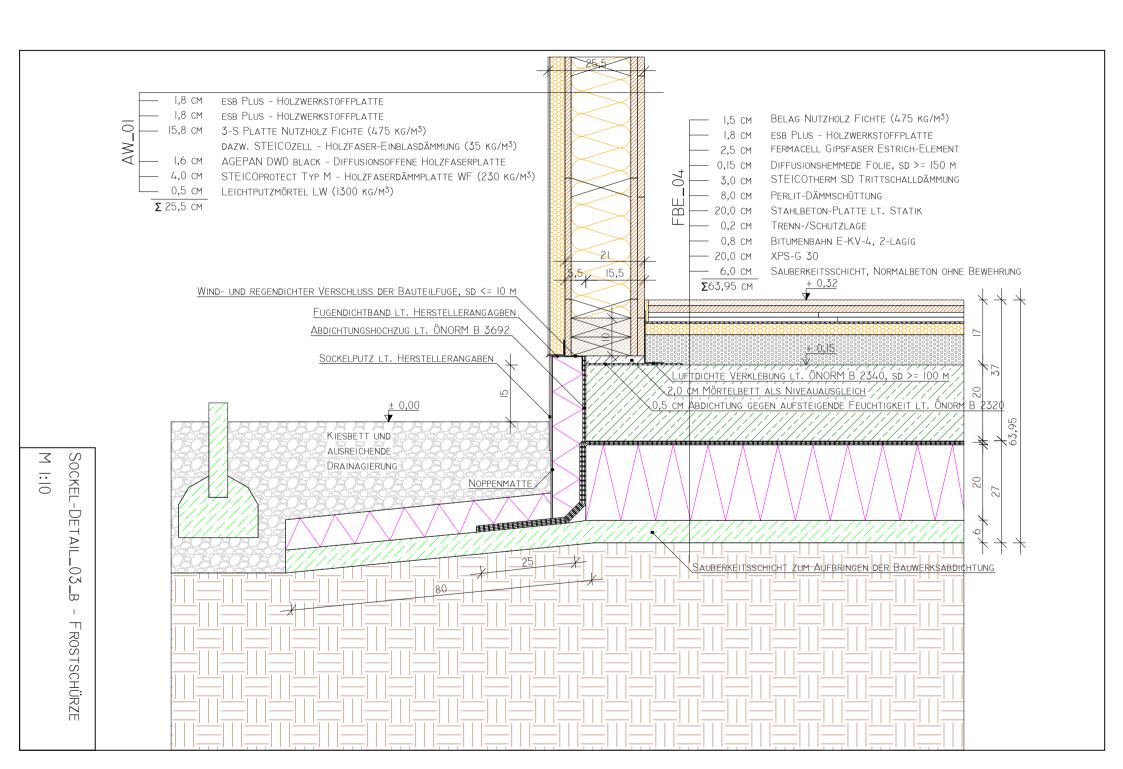

- Optimierte, kondensatfreie Detail-Varianten

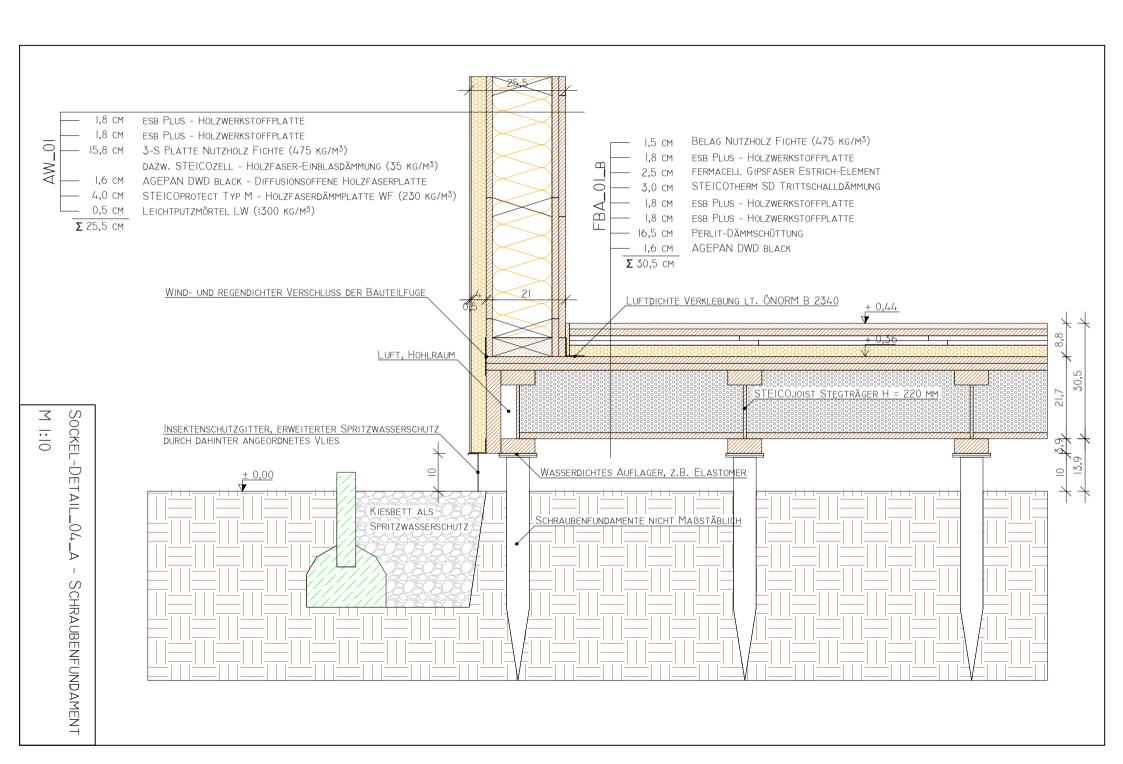

Im Anhang sind zur besseren Darstellung alle optimieren Detail-Varianten, in welchen kein Bauteilkondensat mehr anfällt, im Maßstab 1:10, beigelegt. Es wird empfohlen, bei ihrer Umsetzung, die Erkenntnisse der Zusammenfassung dieser Arbeit mit einzubeziehen.

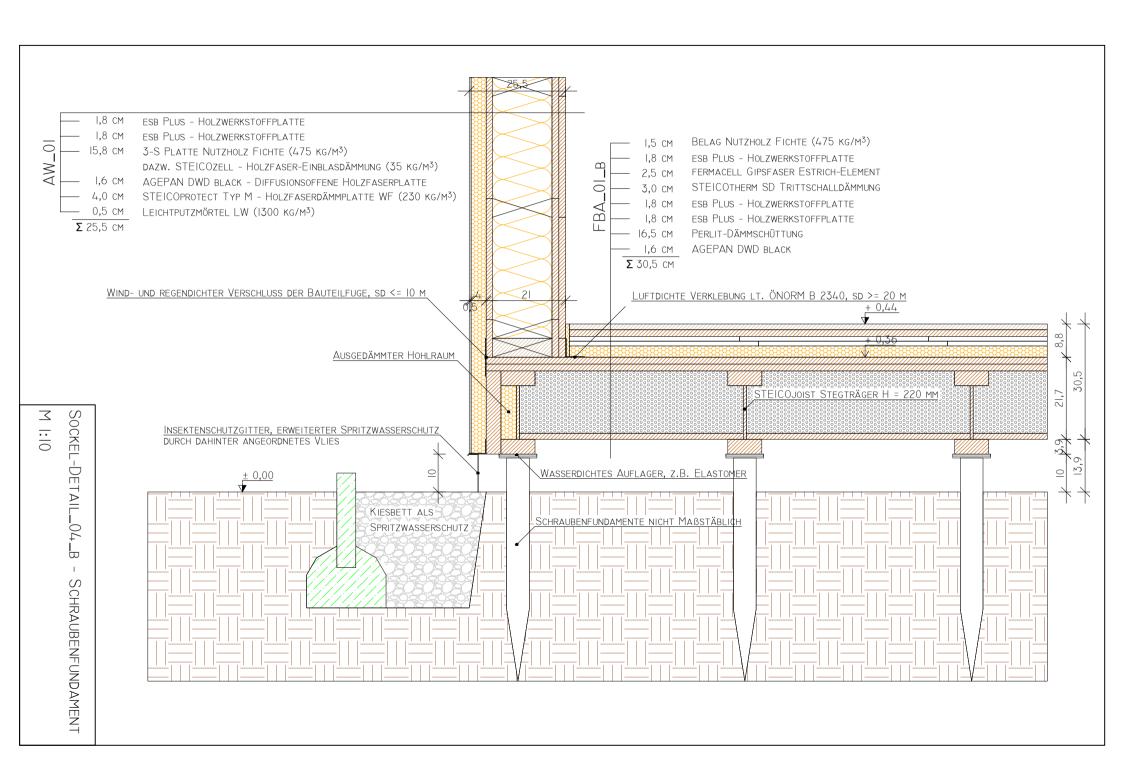

- Produktdatenblätter der verwendeten Materialien

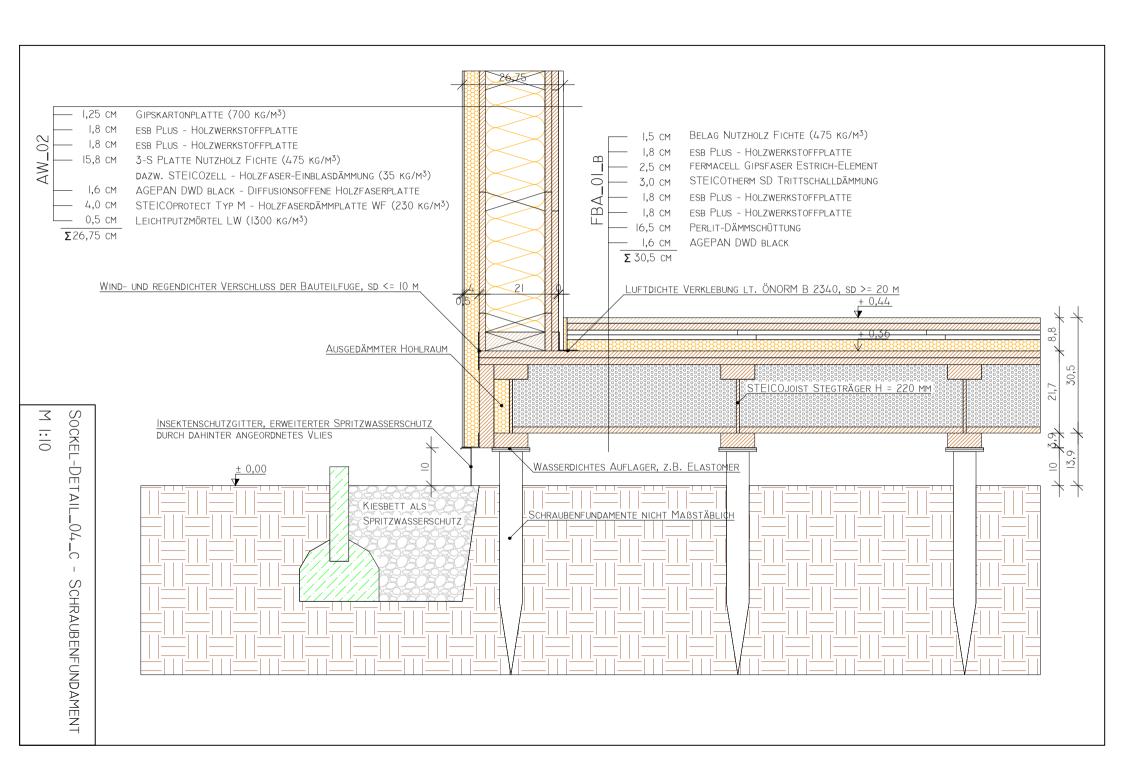


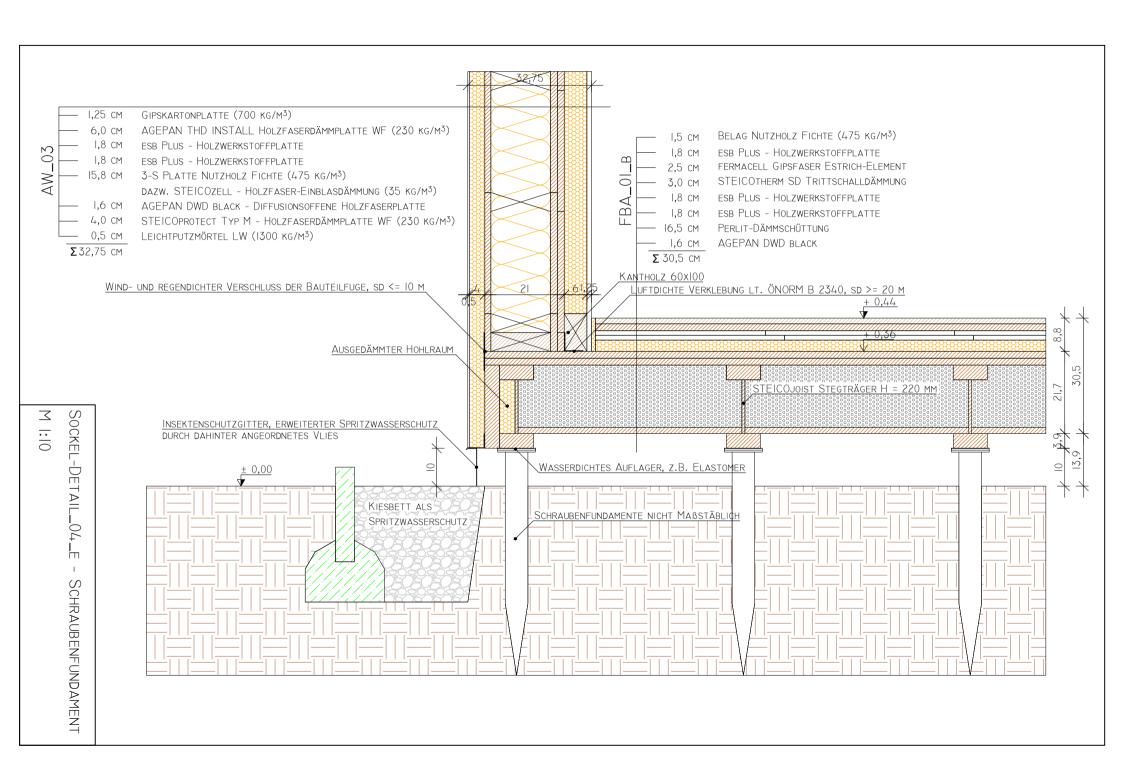


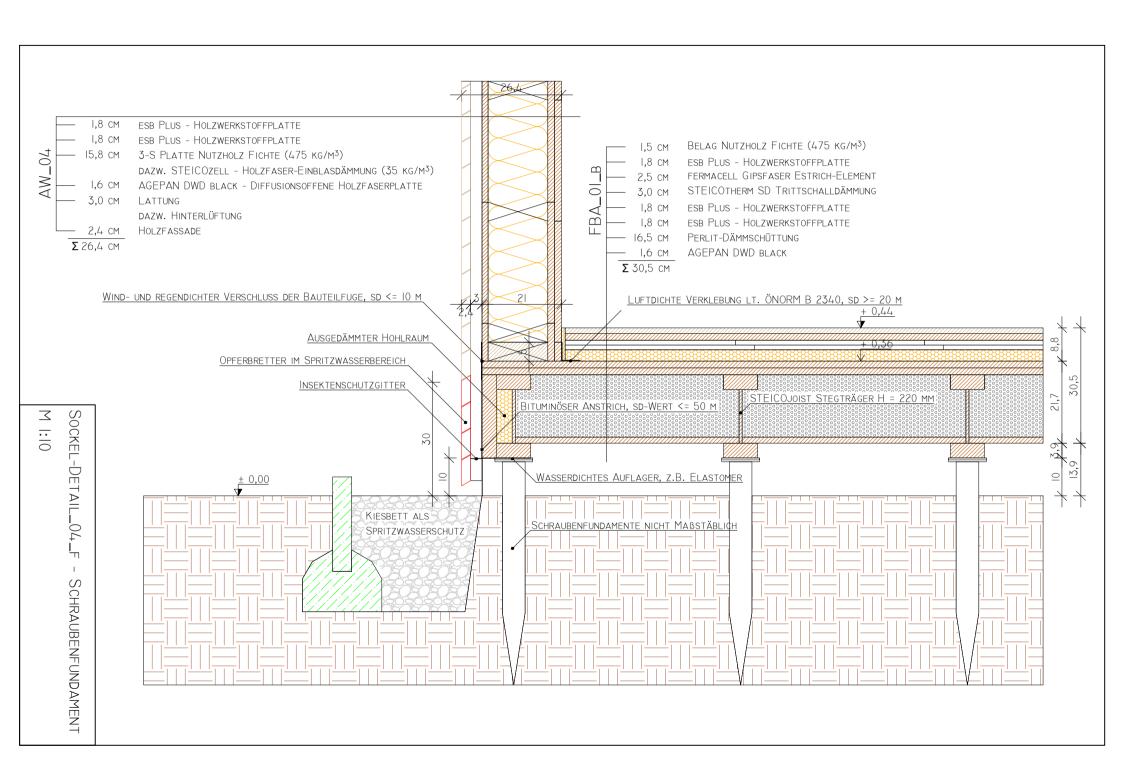


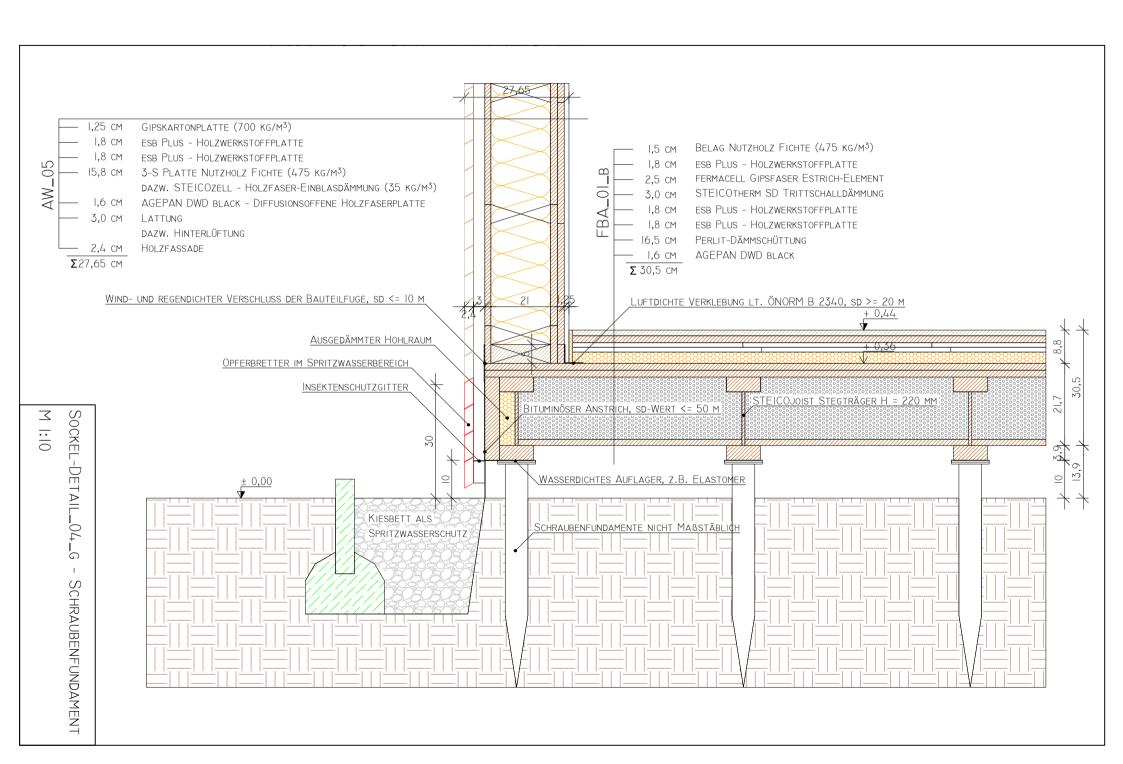


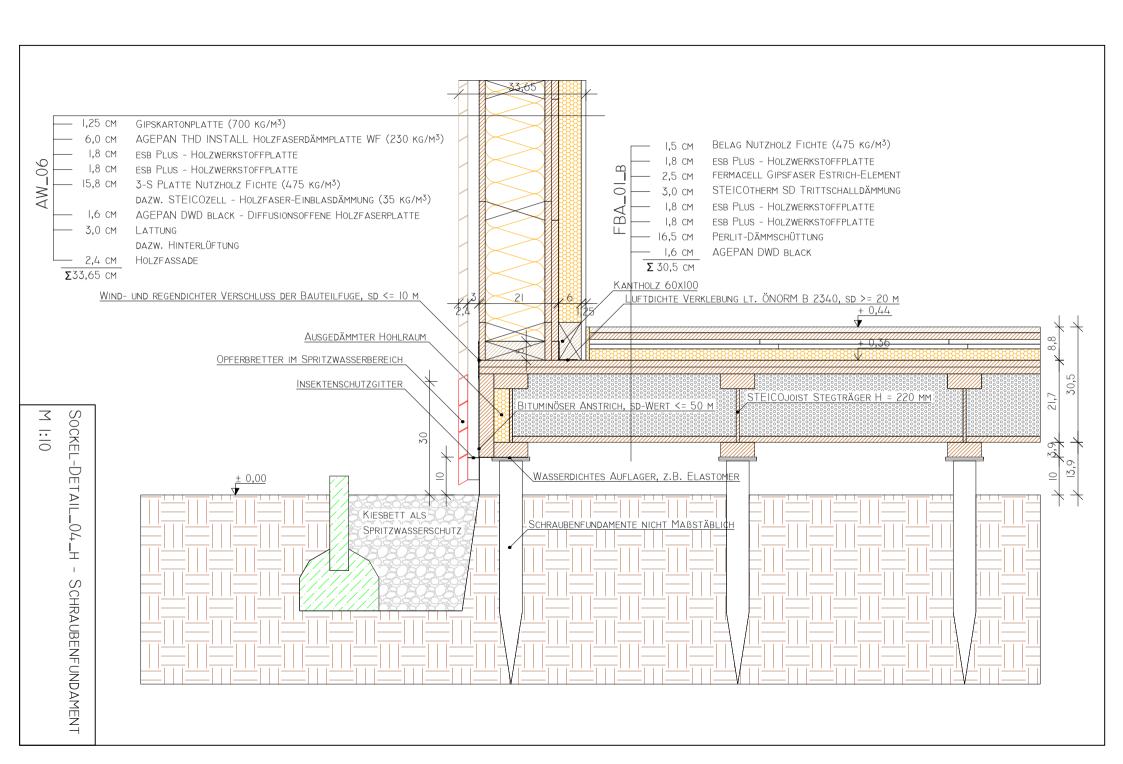


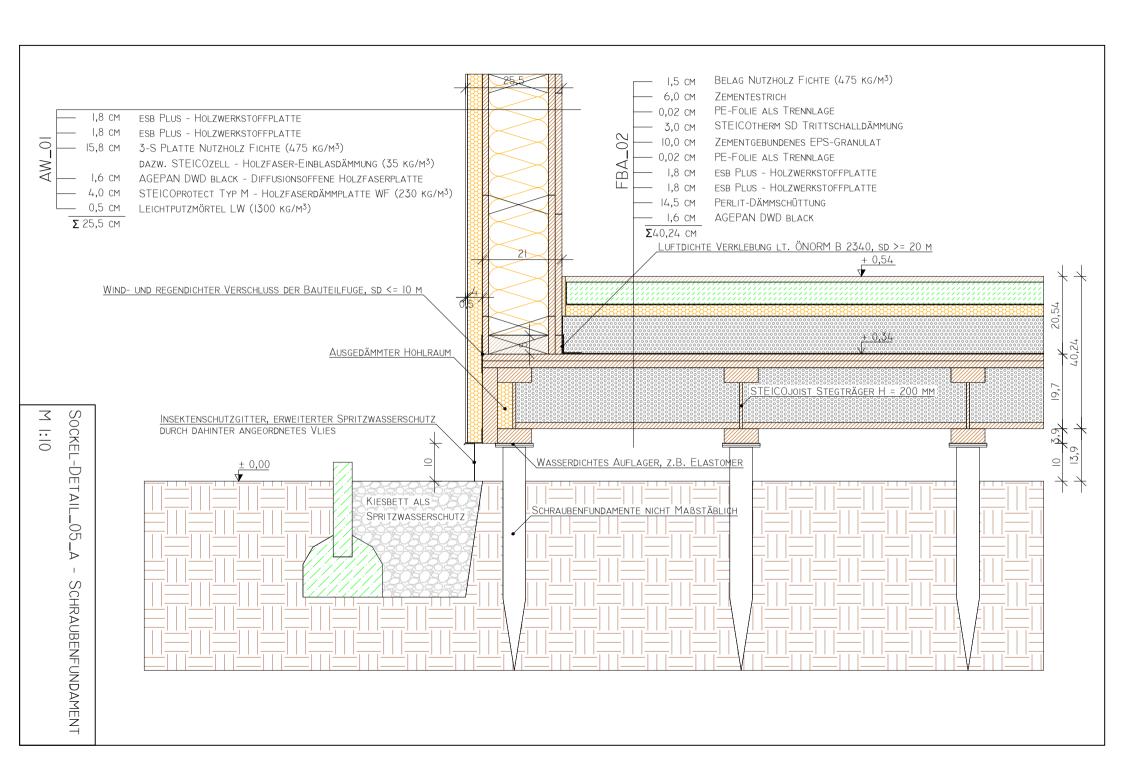


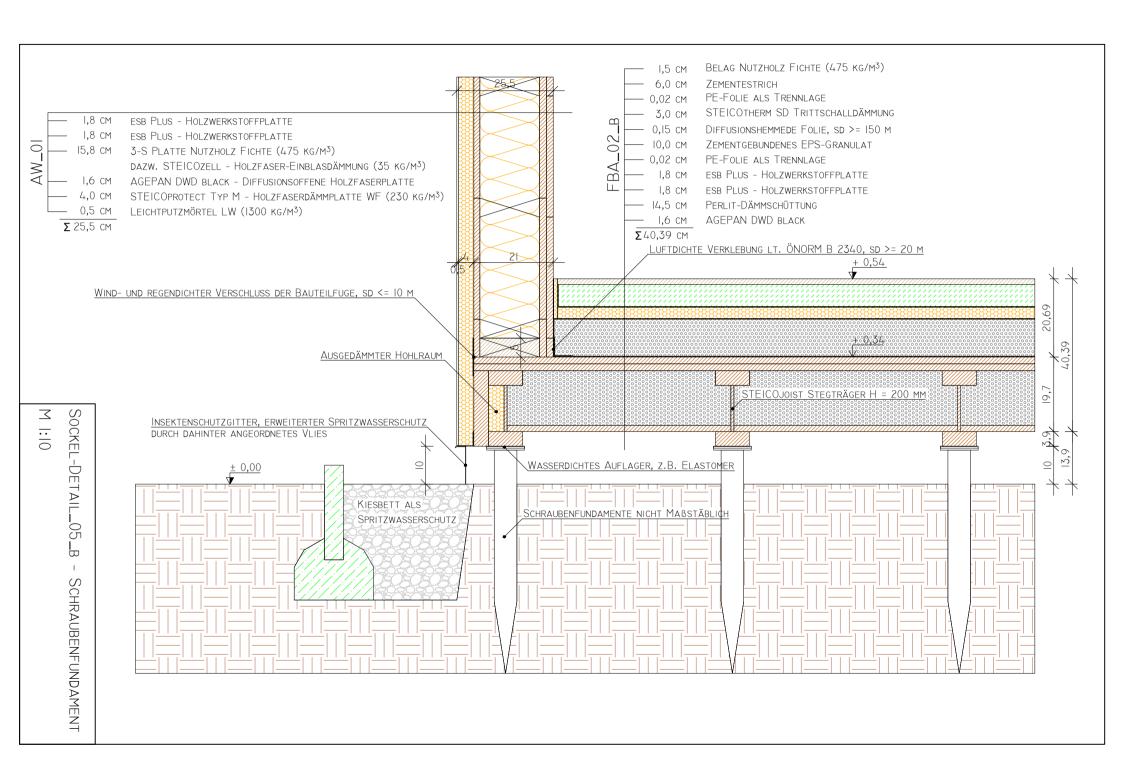


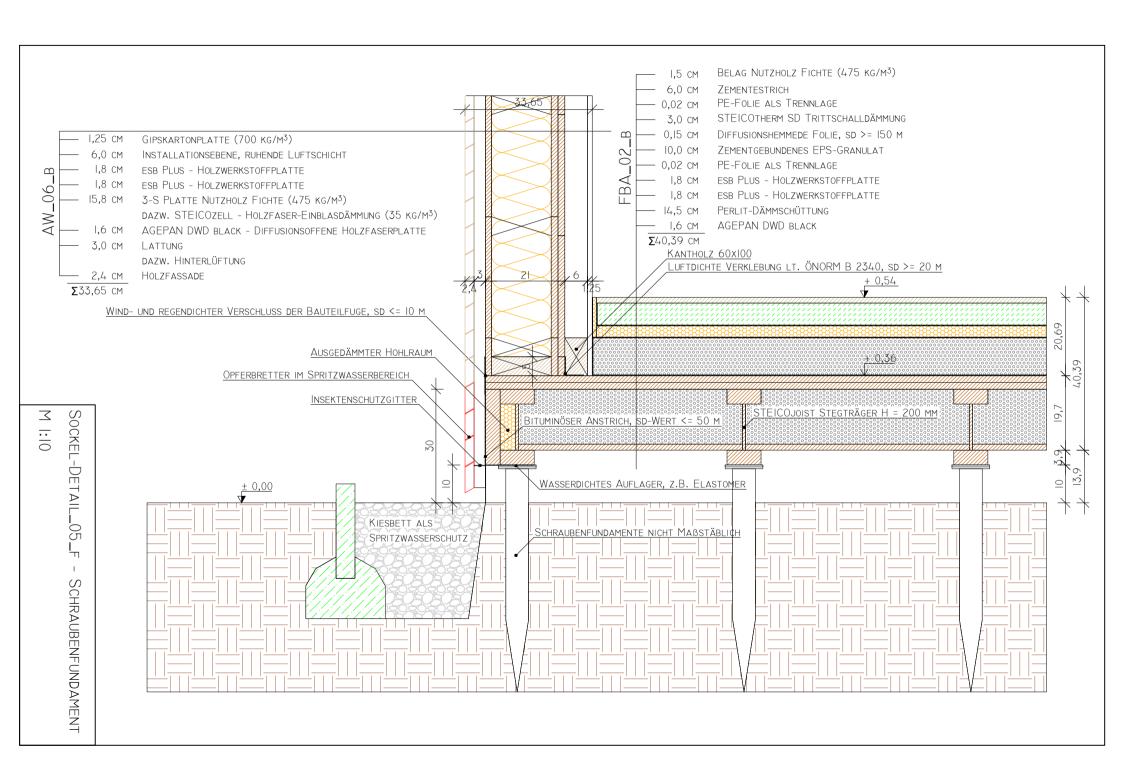


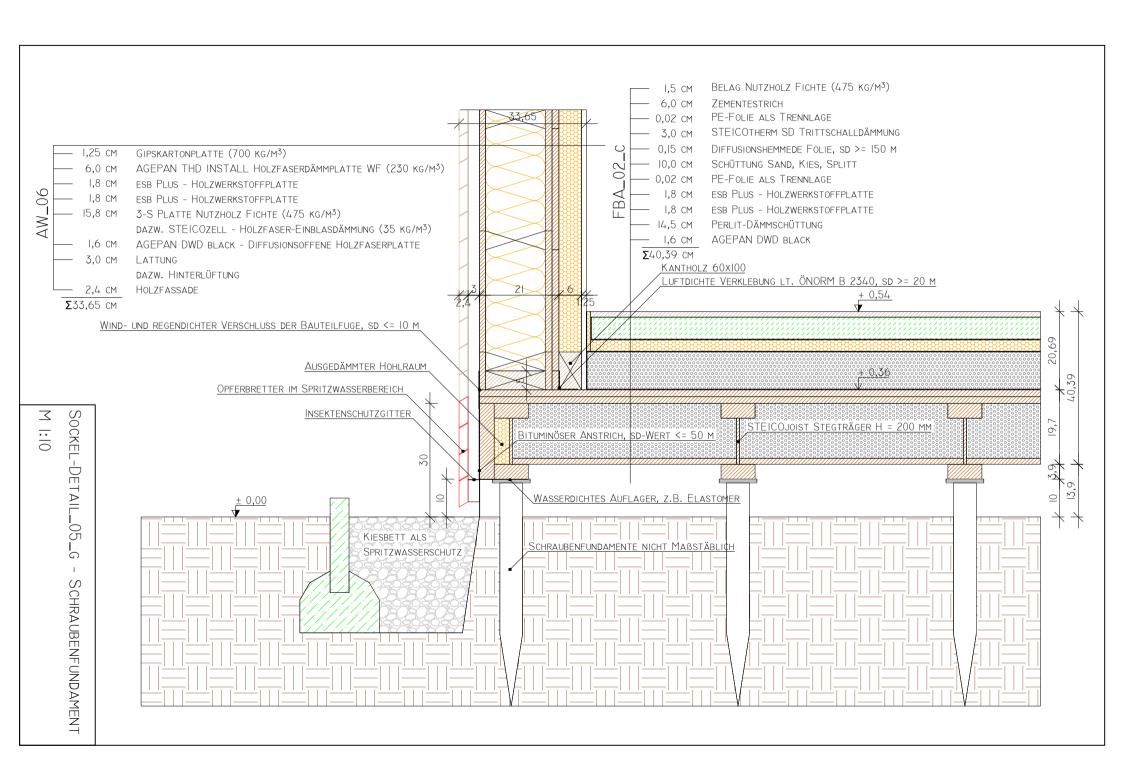


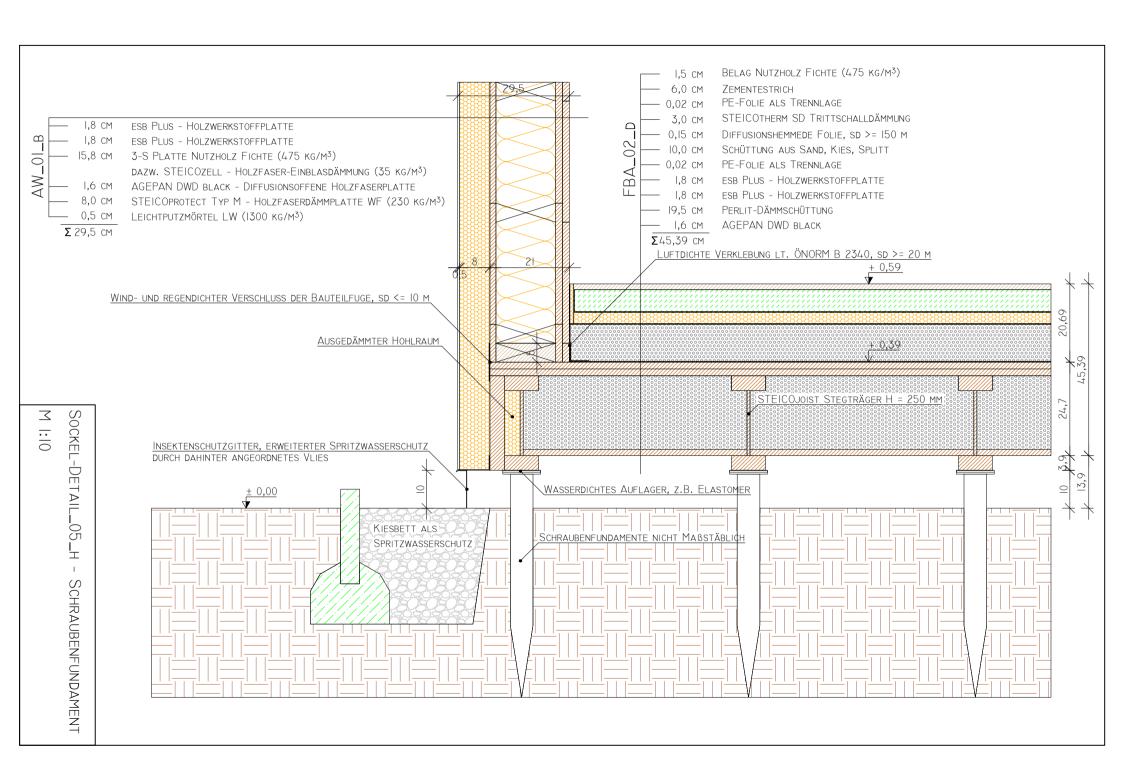


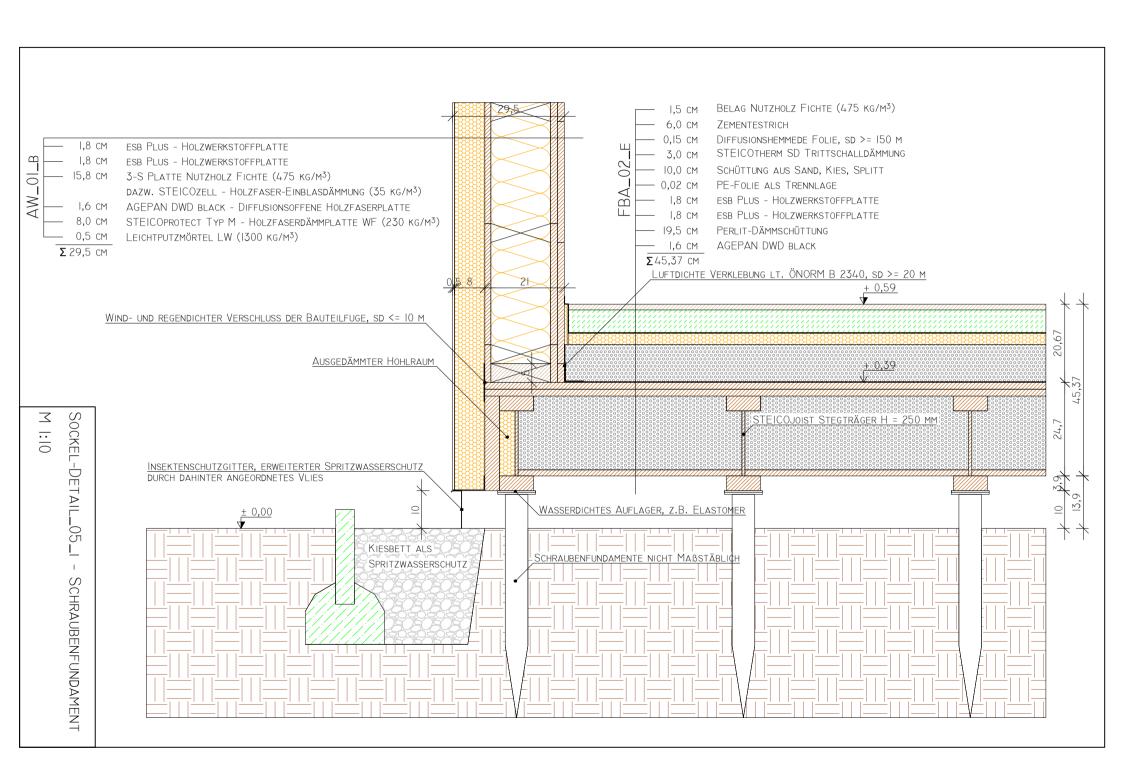


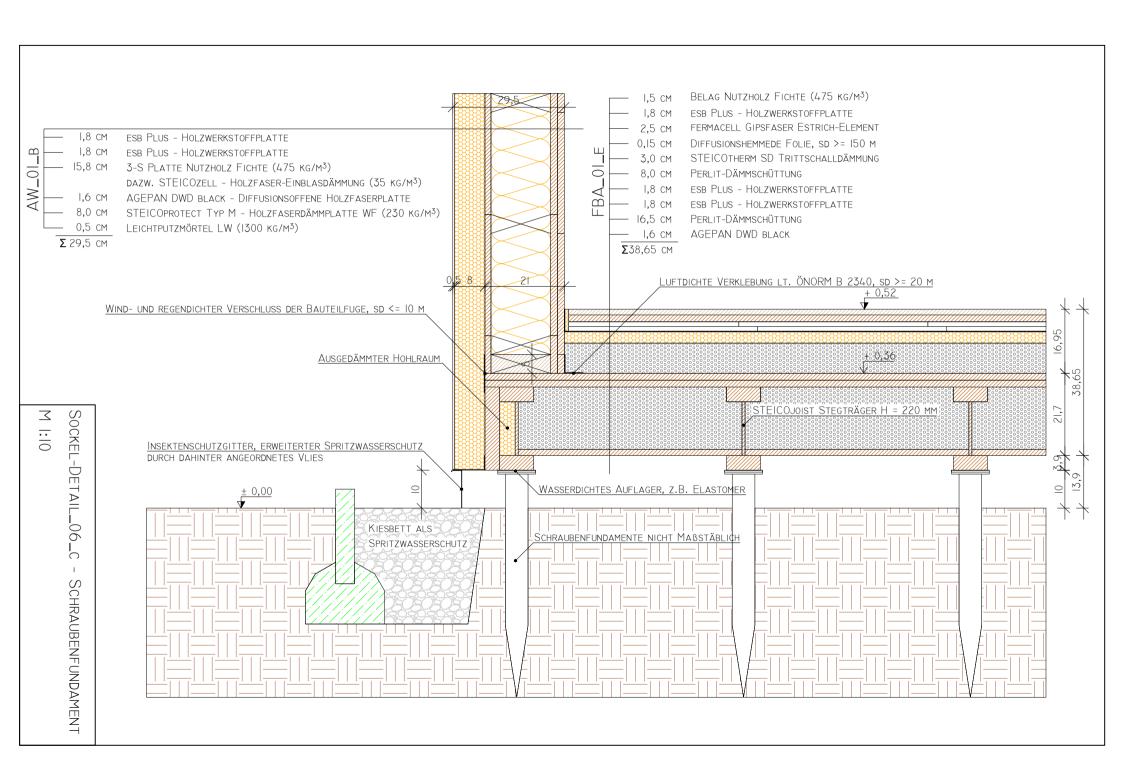


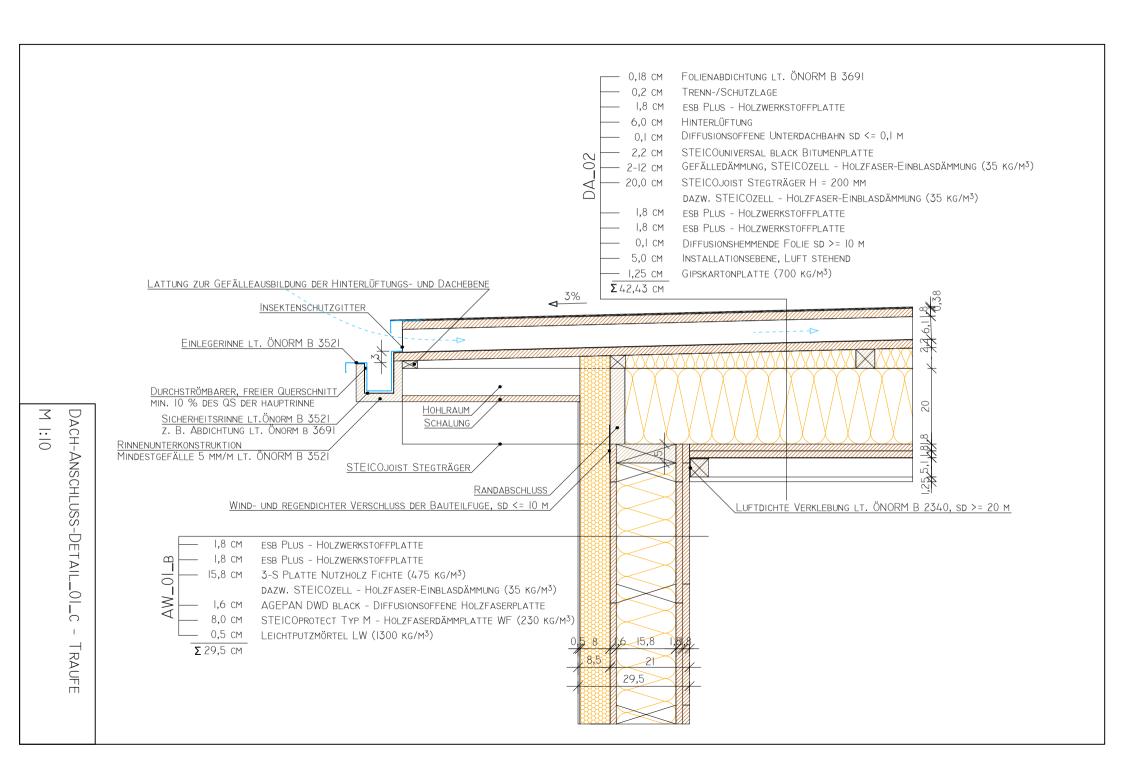


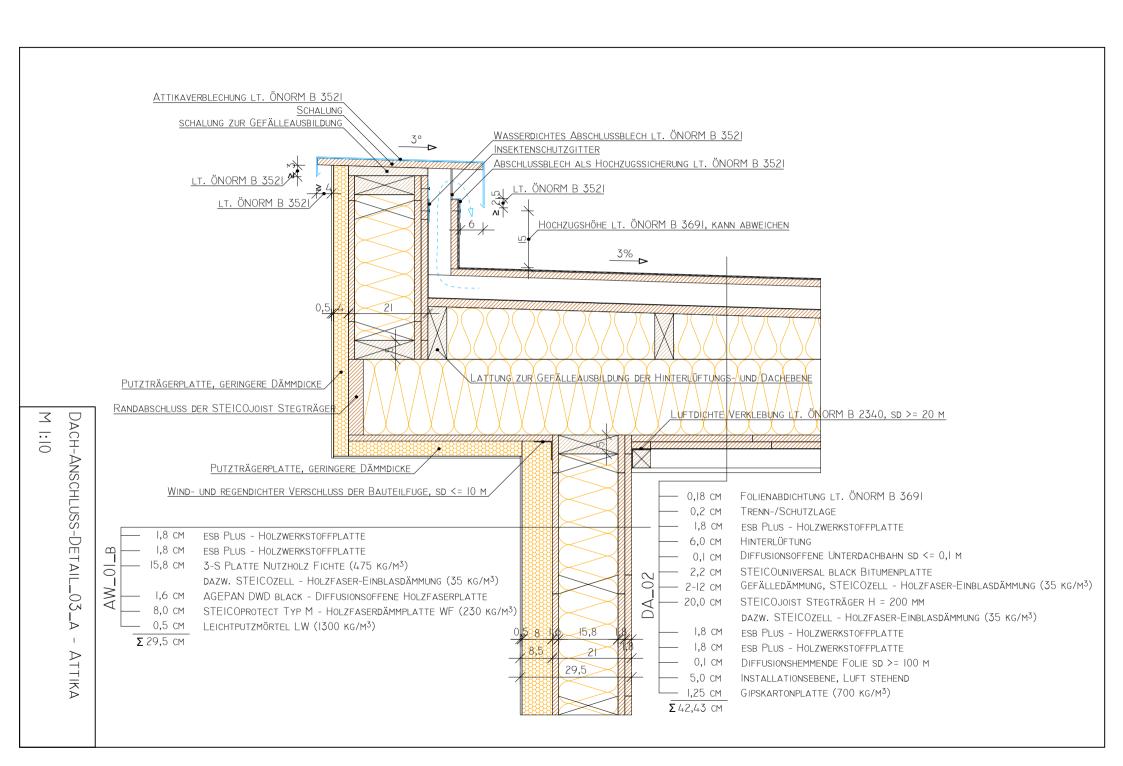












AGEPAN® DWD black DIE SCHWARZE

AGEPAN® DWD black

Die AGEPAN® DWD black ist eine diffusionsoffene Holzfaserplatte des Typs MDF. RWH gemäß EN 622-5, einsetzbar nach DIN EN 14964. Unsere AGEPAN® DWD black ist ideal für den Einsatz in Vorhangfassaden mit offenen Leistenbekleidungen. Ob für Rhombusschalungen oder andere moderne Fassadenlösungen, ist sie die optimale Unterkonstruktion. Auf eine Fassadenbahn kann verzichtet werden.

VORTEILE

- Optimaler Einsatz bei Vorhangfassaden
- UV- und feuchtebeständig, gemäß Prüfbericht
- Hervorragende Optik durch einheitliche, schwarze Durchfärbung
- Für Gesundheit und Umwelt unbedenklich, da formaldehydfrei verleimt
- Hohe Qualität wird durch regelmäßige, externe Überwachungen
- Hervorragendes Raumklima durch feuchteregulierende Eigenschaften
- Made in Germany

ANWENDUNGSBEREICHE

- · Hinterlüftete Vorhangfassade mit offener Leistenbekleidung (Rhombusschalung)
- Stabile Fassadenplatte
- Geeignet für Brandschutzkonstruktionen gemäß DIN 4102-4 (Rohdichte \geq 600 kg/m³)

TECHNISCHE DATEN

EIGENSCHAFT	EINHEIT	WE	RT
Norm		DIN EN 622-5	5 / EN 13986
Nenndicke	mm	16	6
Berechnungsmaß	mm	2515 x 640	3000 x 1247
Deckmaß	mm	2500 x 625	3000 x 1247
Kantenausführung		N+F	STD
Rohdichte	kg / m³	≥ 6	00
Wärmeleitfähigkeit λ	W / (m*K)	0,1	0
Wasserdampf-Diffusionswiderstandszahl μ		12	2
Wasserdampfdiffusionsäquivalente Luftschichtdicke s _d	m	0,1	9
Formaldehyd-Emissionsklasse		E1 – formaldeh	ydfrei verleimt
Brandverhalten nach DIN EN 13501-1		D-s1	,d0
Baustoffklasse nach DIN 4102		B	2
Auslieferungsfeuchte	%	9 ±	4
Längenänderung je 1 % Holzfeuchteänderung	%	0,0	35
max. Rippenabstand	m	1,0	0

FUNKTIONSH (22°

einer Hand

Promotina

Ihr AGEPAN® SYSTEM Partner

Bauphysikalisch: weitestgehend diffusionsoffener Werkstoff, siehe WUFI®-Datenbank

Gute statische Werte (gemäß DIN EN 12369 Teil 1/DIN 20000-1)

und technische Werte (gemäß DIN EN 13986 bzw. EN 312)

Hohe Passgenauigkeit
Geschliffene, helle Oberfläche
Frischholz ohne Geruchsemission

Formaldehyd < 0,03 ppm & geringe VOC

Recyclingfreundliche MUF-Verleimung

Als Unterdeckplatte N+F gemäß ZVDH/Köln einsetzbar

Optimales Preis-/Leistungsverhältnis

Allgemein verwendbar für tragende Bauteile im Feuchtbereich P5 DIN EN 312

Nut und Feder sind präzise aufeinander abgestimmt.

Elha-Holzwerke GmbH Hochwaldstraße 44 D-54497 Morbach

Telefon: +49 (0) 65 33 / 9 56-332 Telefax: +49 (0) 65 33 / 9 56-330

E-Mail: vertrieb@elka-holzwerke.de Internet: www.elka-holzwerke.eu

Die **Elka**-Holzwerke GmbH ist ein Unternehmen, das auf eine über 100-jährige Firmengeschichte zurückblicken kann. Fachlich qualifizierte Mitarbeiter und moderne Fertigungstechniken sind Garant für den hohen Qualitätsstandard der **Elka**®-Markenprodukte.

Mehr Zeit...durch Elka Vielfalt & Tempo.

esb-Technik

elka strong board

Das ausgezeichnete Premium-Produkt für gesundes Bauen & Wohnen

Auszeichnungen:

Format Nut und Feder:

258 cm × 67,5 cm / Deckmaß in 12, 15, 18, 22, 25 mm

Format stumpf:

 $259.5 \text{ cm} \times 125 \text{ cm} \text{ in } 12, 18, 22, 25 \text{ mm}$ $265/280/300 \text{ cm} \times 187.5 \text{ cm} \text{ in } 15 \text{ mm}$

Großformat stumpf:

520 cm × 206 cm *) 12/15/18/22/25 mm *) bereits ab 120 Stück / Stärke lieferbar

Materialstärken/ Verpackungseinheiten:

12 mm 75 Stück

15 mm 60 Stück

18 mm 49 Stück

22 mm 40 Stück

25 mm 36 Stück

Sonderstärken auf Anfrage

Gesundheitliche Vorteile:

- Geringe Emissionen
 (Formaldehyd < 0,03 ppm & geringe VOC)
- ✓ Altholzfrei (100% Frischholzspäne)
- Recyclingfreundliche MUF-Verleimung
- Zertifiziert mit
 - Blauem Engel (Version 1.1.2017)
 - Sentinel Haus Institut GmbH
 - Empfehlung EGGBI e.V. (Europäische Gesellschaft für gesundes Bauen und Innenraumhygiene)

Technologische Vorteile:

- Biegefestigkeit und E-Modul in beiden Richtungen gleich
- Höhere Querzugfestigkeit als OSB (ca. 40 % höher)
- ✓ Niedrigere Quellung als OSB

Als Unterdeckplatte N+F gemäß ZVDH/Köln einsetzbar

Anwendungsvorteile:

- Sehr helle Oberfläche und hervorragende Optik
- Mindest Rohdichte 620 kg/m³
- Entspricht dem IPPC-Standard ISPM Nr. 15 bei Holzverpackungen
- Geschliffene Oberfläche und daher:
 - weitestgehend diffusionsoffen
 - Auftragen von Klebstoffen, Farben und Lacken möglich
 - nahezu geschlossene Oberfläche
 - hohe Passgenauigkeit
- Sehr gute Schraubenauszugsfestigkeit

Technische Eigenschaften 1)

	The second second		The second second	A CONTRACTOR	The state of the s	Style Style
	Stärke [mm]	12	15	18	22	25
M	Тур			ESB P5		
	Querzugfestigkeit [N/mm²]	>0,45	>0,45	>0,45	>0,40	>0,40
1	Biegefestigkeit längs [N/mm²]	>18	>16	>16	>14	>14
	Biegefestigkeit quer [N/mm²]	>18	>16	>16	>14	>14
	24h Quellung [%]	<11	<10	<10	<10	<10

ESB-Platten sind deutlich besser. 0,10 W/mK, Wasserdampfdiffusionswiderstandszahl (µ-Wert) tro./feucht = 80/40 gemäß EN 13986 bei OSB nach DIN 300, die tatsächlichen Werte der **DIN EN 312**; Technische Eigenschaften bei ESB nach Wärmeleitfähigkeit λ

Bauregelliste B Teil 1 unter 1.3.2.1. aufgeführt und somit bauaufsichtlich zugelassen. **Bauwesen ist in** als Holzwerkstoff zur Verwendung im **ESB-Platte** Die

| EINSATZBEREICHE

Geeignet für viele bauseitige **Hohlraumdämmungen.**

Vorfertigung von geschlossenen **Wand- und Dachelementen** mit Dämmung.

Idealer Dämmstoff für

Modernisierung von Dach, Außenwand und Decke.

- Fugenfrei, verschnittfrei, dämmt Hohlräume aller Größen und Dicken
- Exzellente Dämmeigenschaften im Winter
- · Hervorragender Hitzeschutz im Sommer
- Besonders diffusionsoffen für erhöhte Konstruktionssicherheit
- Sicherheit durch jahrzehntelange Produkterfahrung
- Dauerhaft setzungssicher durch dreidimensionale Verzahnung der Holzfasern
- Hohe Qualität durch geschulte Verarbeitungsbetriebe
- Sortenreine Holzfasern aus frischem, unbehandeltem Nadelholz
- Schall- und Brandschutznachweise verfügbar
- Ökologisch, umweltverträglich und recycelbar wie natürliches Holz

Weitere Informationen und Verarbeitungshinweise finden Sie in den entsprechenden Konstruktionsheften oder unter **www.steico.com**

STEICOzell dämmt mit reinen Holzfasern, die sämtliche Hohlräume vollständig ausfüllen.

> Jede dieser Fasern trägt in sich die konzentrierten Vorteile des natürlichen Holzes: Dauerhaftigkeit, Stabilität und sehr gute Wärmedämmeigenschaften.

Das Zeichen für

Ökologische Qualität, unabhängig bestätigt: Das Holz, das für die Herstellung von STEICOzell verwendet wird, stammt aus Forsten, die nach den strengen Regeln des FSC® verantwortungsvoll bewirtschaftet werden.

Zur Erzeugung der Dämmschicht wird das Fasermaterial unter hohem Druck in die geschlossenen Gefache eingeblasen und passt sich dort exakt den begrenzenden Flächen an. Dadurch eignet sich STEICOzell sowohl als Dämmstoff für die industrielle Vorfertigung (z.B. von kompletten Wandelementen) als auch für Sanierungsarbeiten.

| DÄMMSTOFF MIT UNBEGRENZTEN MÖGLICHKEITEN

Bei der Dämmung mit STEICOzell spielt es keine Rolle, ob die Gefache auf gängige Dämmstoffgrößen abgestimmt sind. Auch Installationselemente in den Gefachen werden beim Einblasen ohne langwierige Handarbeit exakt umschlossen. So wird eine homogene und fugenfreie Füllung selbst bei kompliziertesten Konstruktionen erreicht. Neben der Einblasdämmung lässt sich STEICOzell auch als Aufblasdämmung verwenden. Das Aufblasverfahren kommt zum Einsatz, wenn STEICOzell als freiliegender Wärmedämmstoff auf horizontalen, gewölbten oder mäßig geneigten Flächen zwischen Bindern oder Balken von Dachstühlen aufgeblasen wird. Egal ob Neubau, Altbau, Fachwerk, Holzbau – mit STEICOzell lässt sich besonders wirtschaftlich und ökologisch dämmen.

| SCHNELLE VERARBEITUNG UND **DAUERHAFTE SICHERHEIT**

Die Einbringung von STEICOzell erfolgt ausschließlich über geschulte Partner und Lizenzbetriebe (gemäß bauaufsichtlicher Zulassung). Werkseitige Schulungen und Überwachungen durch das MPA NRW (Materialprüfungsamt Nordrhein-Westfalen) sichern Planern und Bauherren dauerhaft hohe Qualität – bei der Produktion und der Verarbeitung.

STEICOzell wird komprimiert und in Säcke verpackt geliefert. Das verdichtete Fasermaterial wird in speziellen Einblasmaschinen aufbereitet und über flexible Rohre bis an den Verarbeitungsort geblasen. Der Vorteil: Die Maschine sowie das Dämmmaterial können außerhalb des Gebäudes gelagert werden, so dass zügiges Arbeiten auch in engen Räumen gewährleistet ist.

Bei STEICOzell fällt kein Verschnitt an. Kehrreste etc. können wiederverwendet werden STEICOzell ist bei sachgemäßen Einbau auch nach vielen Jahren noch wiederverwendbar. Sogar beim Recycling punktet STEICOzell, denn es kann wie natürliches Holz behandelt werden. Damit unterscheidet sich STEICOzell von vielen konventionellen Dämmstoffen, bei deren Entsorgung strenge Gesundheitsvorschriften zu beachten sind und mitunter hohe Kosten anfallen.

| ANGENEHMES RAUMKLIMA – DAS GANZE JAHR

STEICOzell ist sorptionsfähig (feuchtigkeitspuffernd) und diffusionsoffen (wasserdampfdurchlässig). So trägt die Dämmung zu einem baubiologisch optimalen Wohnklima bei. Durch seine hohe Wärmespeicherfähigkeit verhindert STEICOzell außerdem den Eintrag von sommerlicher Hitze in das Gebäude. Der Effekt: angenehme Kühle an den heißesten Tagen, wohlige Wärme im tiefsten Winter.

Gut für's Klima: Innen und aussen

Wer mit Holz dämmt, leistet einen wichtigen Beitrag zum Klimaschutz. Denn Holz ist ein wirksamer CO₂-Speicher. Während des Wachstums entziehen Bäume der Atmosphäre große Mengen des Treibhausgases CO₂ und lagern es in Form von Kohlenstoff in das Holz ein. In einem Kubikmeter Holz ist knapp eine Tonne CO₂ gebunden, während gleichzeitig 0,7 t Sauerstoff erzeugt wurden.

Zugleich unterstützt die Verwendung von Holz ein positives Raumklima. Denn Holz ist sorptionsfähig und trägt zu einer gleichmäßigen Luftfeuchtigkeit im physiologisch vorteilhaften Bereich bei

Ausserdem sind Holzfaser-Dämmstoffe von STEICO diffusionsoffen (wasserdampfdurchlässig). Sollte einmal ausserplanmäßige Feuchtigkeit in die Dämmschicht eindringen, kann sie nach aussen verdunsten. Das wiederum sorgt für Sicherheit in der gesamten Konstruktion.

| SETZUNGSSICHERHEIT

Um über Jahrzehnte hinweg eine konstante Dämmleistung zu erbringen, ist es wichtig, dass der Dämmstoff seine Form und sein Volumen behält. Beim Einblasen von STEICOzell kommt es zu einer dreidimensionalen Verzahnung und Verkrallung der einzelnen Holzfasern untereinander (Mikroskopaufnahme). Selbst bei geringen Rohdichten wird dadurch ein höchstes Maß an Setzungssicherheit bei hoher Elastizität garantiert.

LIEFERUNG IN HANDLICHEN SÄCKEN

Die Lieferung erfolgt in PE-Säcken zu 15 kg 21 Sack je Palette = 315 kg/Palette Palettenmaße = ca. 0,80*1,20*2,60 m (L*B*H)

| LIEFERUNG ALS PALETTENWARE (INDUSTRIEVERPACKUNG)

Ballen zu 15/20 kg, offen gestapelt auf Palette, mit Stretchhaube wetterfest verpackt. 18 Ballen je Palette = 270 kg/Palette (Ballen zu 15 kg) / 360 kg/Palette (Ballen zu 20 kg) Palettenmaße = ca. $0.80 \times 1.20 \times 2.30 \text{ m}$ (L * B * H)

Weitere Lieferformen auf Anfrage

| TECHNISCHE KENNDATEN STEICOzell

Zulassung für lose Holzfasern als Wärmedämmung	
Europäische technische Zulassung (ETA)	12/0011
Qualifizierte, technische Spezifikation / AbZ	Deutsches Institut für Bautechnik Z-23.11-1120
Brandschutzklasse nach DIN EN 13501-1	E
Brandklassifizierung durch technisches Labor ITB (EN13501-1+A1:2010) (Prüfzeugnis 02039/18/Z00NZP)	B-s2,d0
Nennwert der Wärmeleitfähigkeit λ_D [W/(m*K)]	0,038 (gem. ETA-12/0011)
Bemessungswert der Wärmeleitfähigkeit λ_B [W/(m*K)]	0,040 (gem. AbZ- Z-23.11-1120)
Empfohlene Rohdichte p [kg/m³] • offenes Aufblasverfahren: oberste Geschossdecke • geschlossene Bauteilhohlräume: Dach, Decke, Wand.	
Wasserdampfdiffusionswiderstandszahl µ	1-2
Spezifische Wärmekapazität c [J/(kg*K)]	2.100
Abfallschlüssel-Nr. (EAK)	030105/170201

Bemessungswert der Wärmeleitfähigkeit gemäß ETA λ [W/(m*K)]	0.038
v [aav/iii v/]	
Bemessungswert der Wärmeleitfähigkeit gemäß SIA	+
λ [W/(m*K)]	0,038
Brandkennziffer	BKZ 5.3
Brandverhaltensgruppe nach VKF Branschutzrichtlinie	RF2

| MINDEST-ROHDICHTEN-TABELLE STEICOzell

32

| MATERIAL

Holzfasern produziert nach qualifizierter technischer Spezifikation Z-23.11-1120 mit laufender Güteüberwachung.

Für STEICOzell wird ausschließlich frisches Nadelholz verwendet, das nach den strengen Regeln des FSC® (Forest Stewardship Council®) zertifiziert ist.

| HINWEISE

STEICOzell bitte trocken lagern.

Die Transportverpackung bitte erst entfernen, wenn die Palette auf festem Untergrund steht.

Bitte Vorschriften zur Staubbeseitigung beachten.

Tipp für die Vorbemessung der Materialmenge: 40 kg/m³ oder 2,5-3,0 Sack/m³.

STEICOzell darf in Außenbauteilen Gk0 in Holzbauwerken und vorgefertigten Elementen gemäß der Randbedingungen der AbZ Z-23.11-1120 verwendet werden.

Dämmstärke

≤ 16 cm

≤ 22 cm

≤ 28 cm

≤ 34 cm

Überwacht nach Z-23.11-1120

Voraussetzung für die Setzungssicherheit ist die eingeblasene Menge lt. Verdichtungstabelle sowie die gleichmäßige Verteilung der STEICOzell im Gefach.

≮ 0°-20°

35

★ 20°-60°

35

35

[kg/m³]

Bei vorgefertigten Bauteilen und anschließendem Transport müssen 7 kg/m³ Materialmenge zugegeben werden. Eine Kontrolle der eingeblasenen Felder auf der Baustelle ist unumgänglich, um die hohen Qualitätsansprüche zu erfüllen.

Seite 1 der Europäischen Technischen Bewertung ETA-06/0238, ausgestellt am 24. September 2014 (Deutsche Übersetzung)

British Board of Agrément Bucknalls Lane Watford Herts WD25 9BA

Tel.: +44 (0)1923 665300 Fax: +44 (0)1923 665301

E-Mail: clientservices@bba.star.co.uk

Website: www.bbacerts.co.uk

Europäische Technische Bewertung ETA-06/0238

Fünfte Ausgabe*

Technische Bewertungsstelle, die die ETA ausstellt und gemäß Artikel 29 der Verordnung (EU) Nr. 305/2011 benannt wurde:

Handelsname STEICOjoist und STEICOwall

Inhaber der Bewertung: STEICO SE

Otto-Lilienthal-Ring 30

85622 Feldkirchen, Deutschland Tel.: +49 (0)89 99 1551-0 Fax: +49 (0)89 99 1551-99 E-Mail: info@steico.com Website: www.steico.com

Art und Verwendung des

Bauprodukts:

Leichte Holzbauträger und -stützen für tragende Anwendungen

Ausgestellt am: Mittwoch, 24. September 2014

Produktionsstätte: STEICO SP. z o.o. ul. Przemyslowa 2 64-700 Czarnkow Polen

Grundlage der ETA: Die vorliegende Europäische Technische Bewertung wurde in

Übereinstimmung mit der Verordnung (EU) Nr. 305/2011, auf der Grundlage der Leitlinie für die Europäische Technische Zulassung (ETAG) 011 – Ausgabe

Jan. 2002 für leichte Holzbauträger und -stützen als Europäisches

Bewertungsdokument (EAD) erteilt.

Seite **2** der Europäischen Technischen Bewertung ETA-06/0238, ausgestellt am 24. September 2014 (Deutsche Übersetzung)

Diese Europäische Technische Bewertung enthält: Die vorliegende Europäische Technische Bewertung umfasst vier Seiten und vier Anhänge, die integrale Bestandteile des Dokuments sind.

1. Technische Produktbeschreibung

STEICO I-joist-Produkte sind Stegträger, bestehend aus Vollholz- oder LVL-Gurten und Hartfaser- oder OSB-Stegen.

Für die Verbindung von Steg zu Gurt wird der Steg in eine Fuge in der Mitte der längeren Seite des Gurts eingeklebt. Für die Steg-zu-Steg- und Steg-zu-Gurt-Verbindungen wird ein Klebstoff nach EN 301, Typ 1 oder ein PU-Klebstoff nach EN 15425, Typ 1 verwendet. Die Komponenten werden maschinell in einem Durchgang zusammengesetzt.

Abbildung und Beschreibung des Produkts sind in Anhang A aufgeführt.

2. Spezifikation des vorgesehenen Verwendungszwecks

Die STEICO I-joist-Produkte sind zur Verwendung als tragendes Teil in Bauwerken vorgesehen, z. B. als Bau- oder Rahmenelement für Wände, Dächer, Böden, Fassaden und Dachstühle. Weiterführende Informationen sind in Anhang B aufgeführt.

Die Bestimmungen dieser Europäischen Technischen Bewertung basieren auf einer angenommen Nutzungsdauer der Stegträger von 50 Jahren. Die bezüglich der Nutzungsdauer gemachten Angaben können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl eines geeigneten Produktes im Hinblick auf die erwartete, wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

3. Leistung des Produkts und Verweise auf die zur Bewertung eingesetzten Methoden

3.1. Mechanische Festigkeit und Standsicherheit (BWR1)

Wesentliche Merkmale	Leistung
Charakteristische Konstruktionsmerkmale – Vollholzgurte, ETAG 011	Siehe Anhang C, Tabelle C1
$Charakteristische \ Konstruktionsmerkmale-LVL-Gurte,\ ETAG\ 01$	1 Siehe Anhang C, Tabelle C2
Charakteristische Auflagerfestigkeit – Vollholz, ETAG 011	Siehe Anhang C, Tabelle C3
Charakteristische Auflagerfestigkeit – LVL-Gurt, ETAG 011	Siehe Anhang C, Tabelle C4
Werte für k _{mod} , EC5	Siehe Anhang C, Tabelle C5
Werte für k _{def} , EC5	Siehe Anhang C, Tabelle C6
Wert für γ_M , EC5	Siehe Anhang C, Tabelle C7
Konstruktionsempfehlungen für Stegdurchbrüche, ETAG 011	Siehe Anhang C, Tabelle C8 und C9
Axial belastete Bauelemente	Siehe Anhang C, Tabelle C10 und C11
Konstruktionsempfehlungen für Kerben in LVL-Gurten	Siehe Anhang C

3.2. Brandschutz (BWR2)

S.E. Brandoonate (BTTTE)	
Wesentliche Merkmale	Leistung
Brandverhalten	D-s2, d0
Feuerbeständigkeit	NPD

3.3. Hygiene, Gesundheit und Umwelt (BWR3)

Die technische Spezifikation gemäß der Erklärung des Herstellers wurde mit den in der Richtlinie 76/769/EWG des Rates (in der geänderten Fassung) im Einzelnen aufgeführten und in der Datenbank auf der EU-Website des Baugewerbes aufgelisteten gefährlichen Stoffen verglichen um nachzuweisen, dass diese technische Spezifikation keine derartigen, über den zulässigen Grenzwerten liegenden Stoffe enthält.

Der Hartfasersteg sowie OSB-Stege und LVL-Gurte werden gemäß EN 13986:2004 und EN 14374:2004 hinsichtlich des extrahierbaren Formaldehydgehalts der Kategorie E1 zugeordnet. Die

Seite **3** der Europäischen Technischen Bewertung ETA-06/0238, ausgestellt am 24. September 2014 (Deutsche Übersetzung)

I-Stegträger enthalten kein Pentachlorphenol. Die chemische Behandlung dieses Produkts wird auf nationaler Ebene geregelt. Falls ein Träger oder Teile eines Trägers chemisch behandelt werden, müssen die Auswirkungen der chemischen Behandlung auf die anderen Eigenschaften des Trägers (z. B. Bautechnik, Haltbarkeit der Verbindungselemente) von den Zulassungsbehörden der einzelnen Mitgliedsstaaten berücksichtigt werden.

Zusätzlich zu den besonderen Bestimmungen in Verbindung mit den in dieser Europäischen Technischen Zulassung enthaltenen gefährlichen Stoffen können die in ihren Geltungsbereich fallenden Produkte (z. B. durch die Umsetzung europäischer Gesetzgebung und nationaler Gesetze, Vorschriften und Verwaltungsbestimmungen) weiteren Anforderungen unterliegen. Um die Bestimmungen der EU-Richtlinie (Nr. 305/2011) zu erfüllen, ist die Einhaltung dieser Anforderungen, insoweit diese zutreffend sind, ebenfalls erforderlich.

3.4. Nutzungssicherheit (BWR4)

Für dieses Produkt nicht relevant

3.5. Schallschutz (BWR5)

Für dieses Produkt nicht relevant

3.6. Energieeinsparung und Wärmeschutz (BWR6)

Wesentliche Merkmale	Leistung
Hygrothermische Eigenschaften	Siehe Anhang D, Tabelle D1

3.7. Nachhaltige Nutzung natürlicher Ressourcen (BWR7)

Für die nachhaltige Nutzung natürlicher Ressourcen wurden für dieses Produkt keine Leistungen ermittelt

Allgemeine Aspekte der Gebrauchstauglichkeit

Haltbarkeit und Gebrauchsfähigkeit sind nur gewährleistet, wenn die Spezifikationen für den Verwendungszweck gemäß Anhang B eingehalten werden.

4. Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP)

In Übereinstimmung mit der Entscheidung 97/638/EC der Europäischen Kommission⁽¹⁾, in der geänderten Fassung, finden die Systeme zur Bewertung und Überprüfung der Leistungsbeständigkeit (siehe Anhang V der EU-Verordnung Nr. 305/2011) Anwendung, die in der nachstehenden Tabelle aufgeführt sind.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Leichte Holzbauträger und -stützen	Tragende Teile in Bauwerken		1

5. Zur Umsetzung des AVCP-Systems erforderliche technische Details

5.1. Aufgaben des Herstellers

Aufgaben des Herstellers:

- · Werksseitige Produktkontrolle
- Weitere Tests von Stichproben im Werk durch den Hersteller in Übereinstimmung mit dem vorgeschriebenen Kontrollplan.

Der Hersteller betreibt weiterhin ein werkseigenes Produktionskontrollsystem. Alle vom Hersteller übernommenen Elemente, Anforderungen und Bestimmungen werden dokumentiert, damit das Produkt mit dieser Europäischen Technischen Bewertung konform ist.

Der Hersteller darf nur Rohstoffe verwenden, die mit den relevanten Inspektionsdokumenten, wie im vorgeschriebenen Kontrollplan⁽¹⁾ festgelegt, geliefert werden. Vor der Annahme hat der Hersteller die Rohstoffe Kontrollen und Prüfungen zu unterziehen. Die Wareneingangskontrollen umfassen eine Kontrolle der von den Lieferanten vorgelegten Konformitätsbescheinigungen (Vergleich mit den Nominalwerten) durch die Überprüfung der Abmessungen und die Feststellung der Materialeigenschaften.

Die hergestellten Stegträger werden geprüft auf:

· Gurt- und Stegmaterial

Seite **4** der Europäischen Technischen Bewertung ETA-06/0238, ausgestellt am 24. September 2014 (Deutsche Übersetzung)

- · Maßgenauigkeit
- visuelle Qualität
- Klebstoffauftrag
- · Passgenauigkeit der Komponenten
- Festigkeit des fertiggestellten Stegträgers

Die Häufigkeit der während der Produktion und an den zusammengebauten Stegträgern durchgeführten Kontrollen und Prüfungen ist im vorgeschriebenen Kontrollplan unter Berücksichtigung des Herstellungsprozesses des Stegträgers festgelegt. Die Ergebnisse der werkseigenen Produktionskontrolle werden aufgezeichnet und ausgewertet. Die Aufzeichnungen umfassen mindestens:

- · die Bezeichnung des Produkts, der Ausgangsmaterialien und Komponenten
- das Datum der Herstellung des Produkts und das Datum der Kontrolle oder Prüfung des Produkts oder der Ausgangsmaterialien
- das Ergebnis der Kontrollen oder Prüfungen und, soweit zutreffend, einen Vergleich mit den Anforderungen
- · die Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind der an der laufenden Überwachung beteiligten Inspektionsstelle vorzulegen. Einzelheiten über Umfang, Art und Häufigkeit der im Rahmen der werkseigenen Produktionskontrolle durchzuführenden Prüfungen und Kontrollen haben dem vorgeschriebenen Kontrollplan zu entsprechen, der Bestandteil der technischen Dokumentation dieser Europäischen Technischen Bewertung ist.

- (1) Der vorgeschriebene Kontrollplan ist beim British Board of Agrément hinterlegt und wird den am Verfahren der Konformitätsbescheinigung beteiligten zugelassenen Stellen zugänglich gemacht. Der Hersteller muss eine Konformitätserklärung gemäß den Anforderungen dieser Europäischen Technischen Bewertung abgeben.
- (1) Amtsblatt der Europäischen Union Nr. L254 vom 08.10.1996

5.2. Aufgaben der notifizierten Stellen

Aufgaben der notifizierten Stelle:

- Feststellung des Produkttyps anhand von Typprüfung, Typberechnung, Wertetabellen oder Unterlagen zur Produktbeschreibung
- Erstinspektion von Herstellerwerk und werkseigener Produktionskontrolle
- Laufende Überwachung, Beurteilung und Bewertung der werkseigenen Produktionskontrolle Wenn die Bestimmungen der Europäischen Technischen Bewertung und ihres Kontrollplans nicht mehr erfüllt sind, muss die notifizierte Behörde die Bescheinigung über die Leistungsbeständigkeit widerrufen und das British Board of Agrément umgehend darüber informieren.

Im Auftrag des British Board of Agrément	[Unterschrift unleserlich]	[Unterschrift unleserlich]
	Brian Chamberlain Leiter Zulassungen – Engineering	Claire Curtis-Thomas Chief Executive

Seite **5** der Europäischen Technischen Bewertung ETA-06/0238, ausgestellt am 24. September 2014 (Deutsche Übersetzung)

ANHANG A ABBILDUNG UND PRODUKTBESCHREIBUNG

A1 Produktbeschreibung

Die STEICO I-Joist-Produkte (Abbildung A1) sind in den in Tabelle A1 und Tabelle A2 aufgeführten Größen erhältlich.

Die Vollholzgurte gehören der Güteklasse L17 oder L36 nach EN 14081-4:2009 an und sind in Längsrichtung gemäß EN 385:2001 keilgezinkt. Die LVL-Gurte gehören der Güteklasse 1.6E oder der Klasse 2.0E an und bestehen aus Furnierschichtholz mit parallelem Faserverlauf, das mit einem Phenol-Formaldehyd-Klebstoff verklebt ist. Die Furnierlagen sind senkrecht zum Steg ausgerichtet.

Der Hartfasersteg entspricht dem Typ HB.HLA1 gemäß EN 622-2:2004 und wird in die Träger in 1200 bis 2500 mm langen Abschnitten eingelegt. OSB/3 und OSB/4 entsprechen EN 300:2006 und die OSB-Späne verlaufen senkrecht zur Längsachse des Stegträgers. Die Stege werden mittels einer Nutund Federverbindung zusammengefügt.

A2 Produktabbildung

Abbildung A1 Querschnitte (Abmessungen in mm)

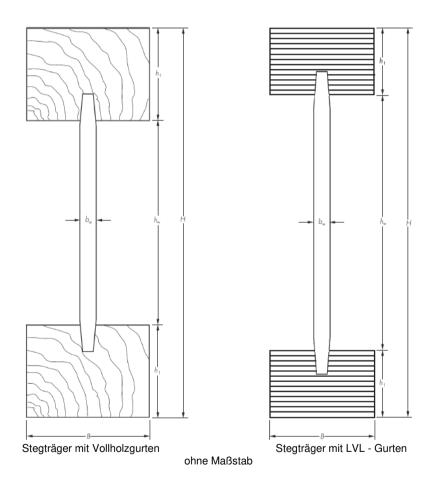


Tabelle A1 Abmessungen und Angaben zu STEICO-Stegträgern mit Vollholzgurten

Serie	Gurtbreite B (mm)	Höhe des Stegträgers H (mm)	Gurt- höhe h _f (mm)	Gurt- klasse		Stegdicke b _w (mm)	
					HB.HLA1	OSB/3	OSB/4
SJ 45	45	160 bis 400	45	L36	8,0	10,0	8,5
SJ 60	60	160 bis 500	45	L36	8,0	10,0	8,5
SJ 90	90	160 bis 500	45	L36	8,0	10,0	8,5
SW 45	45	160 bis 400	45	L17	6,7 oder 8,0	6,7 oder 10,0	6,7 oder 8,5
SW 60	60	160 bis 500	45	L17	6,7 oder 8,0	6,7 oder 10,0	6,7 oder 8,5
SW 90	90	160 bis 500	45	L17	6,7 oder 8,0	6,7 oder 10,0	6,7 oder 8,5

Tabelle A2 Abmessungen und Angaben zu STEICO-Stegträgern mit LVL-Gurten

Serie	Gurtbreite B (mm)	Höhe des Stegträgers H (mm)	Gurt- höhe h _f (mm)	Gurt- klasse		Stegdicke b _w (mm)	
		, ,	, ,	-	HB.HLA1	OSB/3	OSB/4
SJ _L 45	45	160 bis 400	39	2.0E LVL	8,0	10,0	8,5
SJ _∟ 60	60	160 bis 500	39	2.0E LVL	8,0	10,0	8,5
SJ _L 90	90	160 bis 500	39	2.0E LVL	8,0	10,0	8,5
SW _L 45	45	160 bis 400	39	1.6E LVL	6,7 oder 8,0	6,7 oder 10,0	6,7 oder 8,5
SW _L 60	60	160 bis 500	39	1.6E LVL	6,7 oder 8,0	6,7 oder 10,0	6,7 oder 8,5
$SW_L 90$	90	160 bis 500	39	1.6E LVL	6,7 oder 8,0	6,7 oder 10,0	6,7 oder 8,5

Tabelle A3 Fertigungstoleranzen (mm)				
Bezeichnung ⁽¹⁾	Toleranzen (mm)			
Höhe des Stegträgers – H	-2 bis +1			
Breite des Stegträgers – B	-2 bis +2			
Gurthöhe – h _f	-2 bis +2			
Stegdicke – b _w	-0,8 bis +0,8			
Höhe des Stegträgers – L	-0			
	•			

⁽¹⁾ Siehe Abbildung A1.

ANHANG B SPEZIFIKATION DES VORGESEHENEN VERWENDUNGSZWECKS

B1 Vorgesehener Verwendungszweck

Das Produkt ist zur Verwendung als tragendes Teil in Bauwerken vorgesehen, z. B. als Bau- oder Rahmenelement für Wände, Dächer, Böden, Fassaden und Dachstühle, für die die grundlegenden Anforderungen (ER) 1, 2, 3 und 6 Mechanische Festigkeit und Standsicherheit, Brandschutz, Hygiene, Gesundheit und Umweltschutz und Energieeinsparung und Wärmeschutz gelten.

Die unbehandelten Stegträger sind für die Verwendung in Holzbauten, die Bedingungen ausgesetzt sind wie in den Nutzungsklassen 1 und 2 der EN 1995-1-1:2004 (Eurocode 5) und den Gefahrenklassen 1 und 2 der EN 335-1:2006 festgelegt, und für Bauelemente mit statischer oder quasi-statischer Belastung bestimmt. Sie können während des Einbaus für kurze Zeit dem Wetter ausgesetzt werden.

Die Tragefähigkeit des Produkts ohne übermäßige Durchbiegung (Gebrauchstauglichkeit) wird in Abschnitt BWR1 Mechanische Festigkeit und Standsicherheit behandelt. Die Beurteilung der Brauchbarkeit für den vorgesehenen Verwendungszweck wurde gemäß ETAG 011 durchgeführt.

B2 Fertigung

Das Produkt wird gemäß den Bestimmungen der Europäischen Technischen Bewertung unter Verwendung der bei der Inspektion des Werkes durch das British Board of Agrément und die notifizierte Stelle festgestellten und in der technischen Dokumentation festgelegten Produktionsprozesse hergestellt.

B3 Einbau

Ein Stegträger gilt als für den vorgesehenen Verwendungszweck brauchbar, sofern:

- er gemäß Eurocode 5 oder einem geeigneten nationalen Code unter Verwendung der in Anhang C angegebenen Konstruktionsdaten konstruiert wurde. Konstruktion und Einzelheiten bezüglich der Bauwerke sollten von einer entsprechend qualifizierten und erfahrenen Person gemäß den Anweisungen des Herstellers und den Anforderungen dieser Europäischen Technischen Zulassung durchgeführt werden.
- nachprüfbare Berechnungen, Aufzeichnungen und Zeichnungen unter Berücksichtigung der Belastungen erstellt werden, denen das Produkt standhalten muss.
- die Mindest-Endauflagerlänge für Stegträger mit LVL-Gurt 35 mm und die Mindest-Zwischenauflagerlänge 45 mm beträgt.
- die Mindest-Endauflagerlänge für Stegträger mit Vollholzgurt 45 mm und die Mindest-Zwischenauflagerlänge 75 mm beträgt.

B4 Kriterien

- Von einer Gebrauchstauglichkeit des Stegträgers kann ausgegangen werden, wenn er gemäß den folgenden Anforderungen ordnungsgemäß eingebaut wird:
- Der Einbau erfolgt durch für diese Arbeit angemessen qualifizierte Mitarbeiter unter der Leitung von Kontrollpersonal.
- Der Einbau erfolgt gemäß den technischen Spezifikationen und den Zeichnungen des Herstellers, welche für diesen Zweck erstellt wurden, und unter Verwendung geeigneter Werkzeuge.
- Die Gurte werden vor Ort nicht angebohrt, eingekerbt oder anderweitig verändert, es sei denn, dies ist in den Ausführungen oder der Spezifikation des Herstellers ausgeführt (Anhang C).
- Die Stegträger sollten auf ähnliche Weise wie Vollholzträger behandelt und eingebaut werden. Die Festigkeit und Steifigkeit von Stegträgern ist an ihrer Nebenachse jedoch geringer als die der entsprechenden Vollholzteile. Vorsicht ist daher angebracht, damit die Stegträger während des Handlings aufgrund von Durchbiegung an ihrer Nebenachse nicht beschädigt werden. Gemäß der üblichen Sorgfalt im Umgang mit Holz sollten sie während des Einbaus vor Feuchtigkeit geschützt werden.

Seite **8** der Europäischen Technischen Bewertung ETA-06/0238, ausgestellt am 24. September 2014 (Deutsche Übersetzung)

- Die in Anhang C, Tabelle C1 und C2 genannten charakteristischen Biegemomente basieren auf der Voraussetzung, dass die Druckgurte (im Abstand von max. der zehnfachen Gurtbreite) gegen seitliches Ausknicken gehalten werden. Eine alternative Aussteifung muss gesondert untersucht werden.
- Die Stegträger sollten zum Zeitpunkt des Einbaus über einen Feuchtigkeitsgehalt ähnlich dem während der Nutzung erreichten verfügen.
- Eine vorläufige Querversteifung sollte angebracht werden, um die Stegträger während des Einbaus in einer geraden und lotgerechten Position zu halten.
- Starre Versorgungsrohrleitungen können in die Hohlräume von Boden, Dach oder Wand durch werksseitig eingebrachte Löcher gemäß den Ausführungen oder der Spezifikation des Herstellers eingebracht werden, wie in Anhang C im Einzelnen aufgeführt.
- Befall durch Insekten wie beispielsweise Langhornbockkäfer, Trockenholztermiten und Holzwürmer kann die Haltbarkeit des Produktes beeinträchtigen.

B5 Empfehlungen zu Verpackung, Beförderung und Lagerung

Lieferung und Lagerung vor Ort müssen gemäß den Anweisungen des Herstellers erfolgen. Während des Transports müssen die Stegträger vor ungünstigen Wettereinflüssen geschützt werden. Die Stegträger sollten mit Abstand zum Boden gelagert und vertikal gestapelt werden (in der Ebene der Spannweite). Es sollten Vorkehrungen getroffen werden, um Veränderungen des Feuchtigkeitsgehalts aufgrund von Wettereinflüssen so gering wie möglich zu halten. Eine vollständige Abdeckung sollte bereitgestellt werden, jedoch einen freien Luftdurchgang zulassen.

B6 Empfehlungen zu Verwendung, Wartung und Instandsetzung

Die Brauchbarkeitsbeurteilung basiert auf der Annahme, dass während der angenommenen vorgesehenen Nutzungsdauer keine Wartung erforderlich ist.

Sollte eine Instandsetzung erforderlich werden, muss in jedem einzelnen Fall eine Beurteilung erfolgen. Der Hersteller ist dafür verantwortlich sicherzustellen, dass die Angaben bezüglich der besonderen Bedingungen in Abschnitt 3, A1, B3 und B4 sowie Anhang C an alle Beteiligten weitergeleitet werden. Diese Information kann durch Vervielfältigung der entsprechenden Abschnitte der Europäischen Technischen Bewertung erfolgen.

ANHANG C MECHANISCHE FESTIGKEIT UND STANDSICHERHEIT

Die mechanischen Eigenschaften, die charakteristische Tragfähigkeit und die Änderungsfaktoren des Produkts sind im vorliegenden Anhang dargestellt und wurden gemäß ETAG 011 ermittelt. Einzelheiten bezüglich der Einbringung von Löchern in den Steg und der axialen Belastung sollten für Konstruktionen gemäß EN 1995-1-1:2004 (Eurocode 5) verwendet werden. Die Tragfähigkeit wurde rechnerisch ermittelt und durch testgestützte Berechnungen untermauert.

Ist für das Bauwerk ein Nachweis auf Erdbeben erforderlich, kann das Produkt die Fähigkeit besitzen, sich als Scherwand zu verhalten. Dies muss anhand von Tests oder anhand der Konstruktion für ein Vollwandsystem überprüft werden:

- Das duktile Verhalten der fertigen Konstruktion muss so ausgelegt sein, dass die Fugen und Anschlüsse mit Sicherheit in Übereinstimmung mit Eurocode 8 und dem nationalen Anhang der Mitgliedsstaaten konstruiert und installiert werden.
- Das dissipative Tragwerksverhalten ist ausschließlich von der Zusammensetzung der Wandkomponenten, den Verbindungen und dem Verkleidungsmaterial wie OSB, Gipskartonplatten, Sperrholz und Spanplatten sowie dem Aufbau des Wandsystems im Bauwerk abhängig.
- Die Verbindung zwischen Verkleidungsmaterial und den Stegträgergurten kann als Verbindung zwischen dem Verkleidungsmaterial und Vollholz bzw. einem Vollholz-LVL-Abschnitt betrachtet werden.

Tabelle C1 Charakteristische Konstruktionseigenschaften – Vollholzgurte

Гур	Höhe	Momenten-	Schub-	Biegesteifigkeit	Schubsteifigkeit
	(mm)	tragfähigkeit (kN·m)	tragfähigkeit (kN)	EI-Träger (N mm² x 10 ⁹)	GA-Träger (MN)
J 45	160	4,96	9,79	183	1,42
	200	7,09	11,98	327	2,09
	220	8,00	13,04	416	2,42
	240	8,92	14,07	516	2,76
	250	9,38	14,43	571	2,70
	300	9,36 11,74	16,14	888	3,77
	350	13,64	17,72	1281	4,61
	360	14,01	18,02	1369	4,78
	400	15,51	19,20	1753	5,45
1.00					
J 60	160	6,75	10,36	249	1,42
	200	9,45	12,64	436	2,09
	220	10,66	13,74	554	2,42
	240	11,87	14,81	687	2,76
	250	12,48	15,18	759	2,93
	300	15,57	16,93	1177	3,77
	350	18,03	18,52	1693	4,61
	360	18,52	18,83	1808	4,78
	400	20,45	20,01	2310	5,45
	450	22,83	21,41	3030	6,29
	500	25,20	21,62	3855	7,13
J 90	160	10,04	11,18	370	1,42
	200	14,13	13,65	651	2,09
	220	15,96	14,82	827	2,42
	240	17,75	15,96	1025	2,76
	250	18,65	16,35	1132	2,70
	300	23,21	18,17	1752	3,77
	350	26,80	19,82	2513	
	360			2683	4,61
	400	27,51	20,13	3419	4,78
		30,30 33,74	21,34 22,77	4472	5,45
N/ 4E	450				6,29
V 45	160	37,12	23,46	5675	7,13
	500	2,49	6,86	127	1,12
	200	3,56	8,40	227	1,63
	220	4,01	9,15	289	1,88
	240	4,48	9,88	359	2,13
	250	4,63	10,13	390	2,26
	300	5,90	11,35	618	2,89
	350	6,86	12,47	893	3,52
	360	7,05	12,50	954	3,64
	400	7,81	11,55	1223	4,15
W 60	160	3,32	7,25	169	1,12
	200	4,74 5.24	8,86	302	1,63
	220	5,34	9,64	384	1,88
	240	5,95	10,39	477 520	2,13
	250	6,18	10,65	520	2,26
	300	7,82	11,89	818	2,89
	350	9,06	13,02	1178	3,52
	360	9,30	13,24	1258	3,64
	400	10,28	13,40	1608	4,15
	450	11,48	11,97	2108	4,78
	500	12,67	10,92	2685	5,41
V 90	160	4,91	7,85	251	1,12
	200	7,05	9,56	450	1,63
	220	7,99	10,39	574	1,88
	240	8,89	11,19	711	2,13
	250	9,27	11,46	779	2,26
	300	11,64	12,75	1216	2,89
	350	13,44	13,91	1746	3,52
	360	13,80	14,14	1863	3,64
	400	15,21	14,14	2376	4,15
	450	16,93	13,70	3107	4,78

Seite 10 der Europäischen Technischen Zulassung ETA-06/0238, ausgestellt am 24. September 2014 ANHANG C MECHANISCHE FESTIGKEIT UND STANDSICHERHEIT (Fortsetzung)

500	18.64	12,72	3945	5.41
300	10,07	12,12	0070	٠,٠٠١

HINWEIS 1: Die charakteristischen Eigenschaften von Trägern innerhalb des in der Tabelle nicht angegebenen Höhenbereichs können durch lineare Interpolation errechnet werden.

Tabelle C2 Charakteristische Konstruktionseigenschaften – LVL-Gurte

Тур	Höhe	Charakteristisches	Charakteristischer	Biegesteifigkeit	Schubsteifigkeit
	(mm)	Biegemoment (kN·m)	vertikaler Schub (kN)	EI-Träger (N mm² x 10°)	GA-Träger (MN)
SJ _∟ 45	160	5,90	9,79	195	1,83
	200	7,81	11,98	343	2,50
	220	8,79	13,04	433	2,84
	240	9,78	14,07	536	3,18
	250	10,27	14,43	591	3,34
	300	12,82	16,14	912	4,18
	350	15,43	17,72	1308	5,02
	360	15,96	18,02	1397	5,19
	400	17,75	19,20	1783	5,86
J∟ 60	160	7,85	10,36	259	1,83
	200	10,36	12,64	455	2,50
	220	11,65	13,74	575	2,84
	240	12,94	14,81	709	3,18
	250	13,60	15,18	782	3,34
	300	16,91	16,93	1203	4,18
	350	20,30	18,52	1721	5,02
	360	20,98	18,83	1836	5,19
	400	23,61	20,01	2337	5,86
	450	26,48	21,41	3056	6,70
	500	29,34	21,62	3880	7,54
J _∟ 90	160	11,82	11,18	389	1,83
	200	15,47	13,65	679	2,50
	220	17,37	14,82	857	2,84
	240	19,28	15,96	1056	3,18
	250	20,24	16,35	1164	3,34
	300	25,09	18,17	1785	4,18
	350	30,03	19,82	2545	5,02
	360	31,02	20,13	2714	5,19
	400	35,04	21,34	3447	5,86
	450	39,73	22,77	4493	6,70
	500	44,13	23,46	5687	7,54
W _L 45	160	3,38	6,86	148	1,56
	200	4,47	8,40	260	2,12
	220	5,03	9,15	330	2,41
	240	5,60	9,88	407	2,69
	250	5,89	10,13	450	2,83
	300	7,36	11,35	695	3,53
	350	8,87	12,47	998	4,24
	360	9,18	12,50	1066	4,38
	400	10,21	11,55	1362	4,94
W _L 60	160	4,49	7,25	197	1,56
	200	5,93	8,86	346	2,12
	220	6,67	9,64	437	2,41
	240	7,41	10,39	539	2,69
	250	7,79	10,65	595	2,83
	300	9,70	11,89	916	3,53
	350	11,65	13,02	1311	4,24
	360	12,04	13,24	1399	4,38
	400	13,56	13,40	1783	4,94
	450	15,23	11,97	2333	5,64
	500	16,89	10,92	2964	6,35
W _L 90	160	6,72	7,85	294	1,56

HINWEIS 2: Die Schubsteifigkeit muss bei der Verwendung von OSB als Stegmaterial um den Faktor 0,85 reduziert werden.

220	9,94	10,39	651	2,41
240	11,03	11,19	802	2,69
250	11,58	11,46	884	2,83
300	14,37	12,75	1357	3,53
350	17,21	13,91	1937	4,24
360	17,78	14,14	2065	4,38
400	20,09	14,99	2624	4,94
450	22,80	13,70	3423	5,64
500	25,34	12,72	4335	6,35

HINWEIS 1: Die charakteristischen Eigenschaften von Trägern innerhalb des in der Tabelle nicht angegebenen Höhenbereichs können durch lineare Interpolation errechnet werden.

Tabelle C3 Charakteristische Auflagerfestigkeit – Vollholz

Тур	Höhe des Stegträgers		Endauflager (kN			Ž	Zwischen	auflager (k	(N)
(mm)	(mm)	45 r			9 mm		mm		mm
		Verstä	ırkung		tärkung		ärkung		ärkung
		ohne	mit	ohne	mit	ohne	mit	ohne	mit
SJ 45	160	8,1	9,1	8,7	10,1	17,8	20,9	20,1	21,2
	200	8,1	9,7	8,7	10,7	17,8	21,5	20,1	21,8
	220	8,1	10,0	8,7	11,0	17,8	21,8	20,1	22,1
	240	8,1	10,3	8,7	11,3	17,8	22,1	20,1	22,4
	250	8,1	10,5	8,7	11,5	17,8	22,2	20,1	22,5
	300	8,1	11,2	8,7	12,2	17,8	23,0	20,1	23,3
	350	8,1	12,0	8,7	13,0	17,8	23,7	20,1	24,0
	360	8,1	12,1	8,7	13,1	17,8	23,9	20,1	24,2
	400	8,1	12,7	8,7	13,7	17,8	24,5	20,1	24,8
SJ 60	160	12,0	12,1	12,6	13,6	19,9	20,7	21,6	22,4
	200	12,0	12,7	12,6	14,2	19,9	21,3	21,6	23,0
	220	12,0	13,0	12,6	14,5	19,9	21,6	21,6	23,3
	240	12,0	13,3	12,6	14,8	19,9	21,9	21,6	23,6
	250	12,0	13,5	12,6	15,0	19,9	22,1	21,6	23,8
	300	12,0	14,2	12,6	15,7	19,9	22,8	21,6	24,5
	350	12,0	15,0	12,6	16,5	19,9	23,6	21,6	25,3
	360	12,0	15,1	12,6	16,6	19,9	23,7	21,6	25,4
	400	12,0	15,7	12,6	17,2	19,9	24,3	21,6	26,0
	450	10,8	16,5	11,4	18,0	18,7	25,1	20,4	26,8
	500	9,5	17,2	10,1	18,7	17,4	25,8	19,1	27,5
SJ 90	160	12,9	13,2	15,3	14,8	27,1	31,0	29,3	35,3
	200	12,9	13,8	15,3	15,4	27,1	31,6	29,3	35,9
	220	12,9	14,1	15,3	15,7	27,1	31,9	29,3	36,2
	240	12,9	14,4	15,3	16,0	27,1	32,2	29,3	36,5
	250	12,9	14,6	15,3	16,2	27,1	32,3	29,3	36,7
	300	12,9	15,3	15,3	16,9	27,1	33,1	29,3	37,4
	350	12,9	16,1	15,3	17,7	27,1	33,8	29,3	38,2
	360	12,9	16,2	15,3	17,8	27,1	34,0	29,3	38,3
	400	12,9	16,8	15,3	18,4	27,1	34,6	29,3	38,9
	450	11,7	17,6	14,1	19,2	25,8	35,3	28,1	39,7
	500	10,4	18,3	12,8	19,9	24,6	36,1	26,8	40,4

HINWEIS: Die charakteristischen Eigenschaften von Trägern innerhalb des in der Tabelle nicht angegebenen Höhenbereichs können durch lineare Interpolation errechnet werden.

HINWEIS 2: Die Schubsteifigkeit muss bei der Verwendung von OSB als Stegmaterial um den Faktor 0,85 reduziert werden.

Tabelle C4 Charakteristische Auflagerfestigkeit – LVL-Gurt

Тур	Höhe			Endaufl	ager (kN	۷)			Zw	ischena	uflager	(kN)	
(mm)	des		mm	45	mm	89	mm	45	mm	75 ı	mm	89	mm
	Stegträ	Verstä	ärkung	Verstä	arkung	Verstä	irkung	Verstä	arkung	Verstä	arkung	Verstä	ärkung
	gers (mm)	ohne	mit	ohne	mit	ohne	mit	ohne	mit	ohne	mit	ohne	mit
SJ _L 45	160	8,1	14,0	9,1	16,0	11,3	17,9	15,9	20,8	17,9	21,3	21,2	25,2
	200	8,1	14,6	9,1	16,6	11,3	18,5	15,9	21,4	17,9	21,9	21,2	25,8
	220	8,1	14,9	9,1	16,9	11,3	18,8	15,9	21,7	17,9	22,2	21,2	26,1
	240	8,1	15,2	9,1	17,2	11,3	19,1	15,9	22,0	17,9	22,5	21,2	26,4
	250	8,1	15,3	9,1	17,4	11,3	19,2	15,9	22,2	17,9	22,7	21,2	26,6
	300	8,1	16,1	9,1	18,1	11,3	20,0	15,9	22,9	17,9	23,4	21,2	27,3
	350	8,1	16,8	9,1	18,9	11,3	20,7	15,9	23,7	17,9	24,2	21,2	28,1
	360	8,1	17,0	9,1	19,0	11,3	20,9	15,9	23,8	17,9	24,3	21,2	28,2
	400	8,1	17,6	9,1	19,6	11,3	21,5	15,9	24,4	17,9	24,9	21,2	28,8
$SJ_L 60$	160	9,5	16,3	12,2	17,1	14,3	17,6	18,9	28,8	22,5	31,0	25,3	34,5
	200	9,5	16,9	12,2	17,7	14,3	18,2	18,9	29,4	22,5	31,6	25,3	35,1
	220	9,5	17,2	12,2	18,0	14,3	18,5	18,9	29,7	22,5	31,9	25,3	35,4
	240	9,5	17,5	12,2	18,3	14,3	18,8	18,9	30,0	22,5	32,2	25,3	35,7
	250	9,5	17,7	12,2	18,4	14,3	18,9	18,9	30,2	22,5	32,3	25,3	35,8
	300	9,5	18,4	12,2	19,2	14,3	19,7	18,9	30,9	22,5	33,1	25,3	36,6
	350	9,5	19,2	12,2	19,9	14,3	20,4	18,9	31,7	22,5	33,8	25,3	37,3
	360	9,5	19,3	12,2	20,1	14,3	20,6	18,9	31,8	22,5	34,0	25,3	37,5
	400	9,5	19,9	12,2	20,7	14,3	21,2	18,9	32,4	22,5	34,6	25,3	38,1
	450	-	-	10,9	21,4	13,0	21,9	-	-	21,3	35,3	24,0	38,8
	500	-	-	9,7	22,2	11,8	22,7	-	-	20,0	36,1	22,8	39,6
$SJ_L 90$	160	11,1	20,9	15,6	23,5	16,5	23,4	23,1	36,8	27,1	38,2	31,3	42,5
_	200	11,1	21,5	15,6	24,1	16,5	24,0	23,1	37,4	27,1	38,8	31,3	43,1
	220	11,1	21,8	15,6	24,4	16,5	24,3	23,1	37,7	27,1	39,1	31,3	43,4
	240	11,1	22,1	15,6	24,7	16,5	24,6	23,1	38,0	27,1	39,4	31,3	43,7
	250	11,1	22,3	15,6	24,9	16,5	24,7	23,1	38,2	27,1	39,6	31,3	43,8
	300	11,1	23,0	15,6	25,6	16,5	25,5	23,1	38,9	27,1	40,3	31,3	44,6
	350	11,1	23,8	15,6	26,4	16,5	26,2	23,1	39,7	27,1	41,1	31,3	45,3
	360	11,1	23,9	15,6	26,5	16,5	26,4	23,1	39,8	27,1	41,2	31,3	45,5
	400	11,1	24,5	15,6	27,1	16,5	27,0	23,1	40,4	27,1	41,8	31,3	46,1
	450	-	-	14,4	27,9	15,3	27,7	-	-	25,8	42,6	30,1	46,8
	500	-	-	13,1	28,6	14,0	28,5	-	-	24,6	43,3	28,8	47,6

HINWEIS: Die charakteristischen Eigenschaften von Trägern innerhalb des in der Tabelle nicht angegebenen Höhenbereichs können durch lineare Interpolation errechnet werden.

Tabelle C5 Bei der Konstruktion von STEICO-Stegträgerprodukten nach Eurocode 5 zu verwendende kmd-Werte

Dauer	Bieg	e- und		Schubfestigkeit			Auflagerfestigkeit	
der	axiale F	estigkeit						
Lasteinwirkung								
	Nutzungs-	Nutzungs-	Nutzu	zungs- Nutzungs-		Nutzungs-	Nutzungs	
	klasse 1	klasse 2	klass	se 1	klasse 2		klasse 1	- klasse 2
		•	HB*	OSB	HB*	OSB	_	
ständig	0,60	0,60	0,42	0,48	0,34	0,42	0,60	0,60
lang	0,70	0,70	0,56	0,59	0,45	0,53	0,70	0,70
mittel	0,80	0,80	0,72	0,74	0,60	0,66	0,80	0,80
kurz	0,90	0,90	0,87	0,90	0,73	0,79	0,90	0,90
sehr kurz	1,10	1,10	1,10	1,10	0,93	0,99	1,10	1,10

^{*} HB – Hartfasersteg

Tabelle C6 Bei der Konstruktion von STEICO-Stegträgerprodukten nach Eurocode 5 zu verwendende k_{def}-Werte

Dauer der Lasteinwirkung	Biege- und axi	und axiale Verformung Schubverformung		Schubv		
	Nutzungs- klasse 1	Nutzungs- klasse 2	Nutzungs- klasse 1			zungs- sse 2
			HB	OSB	НВ	OSB
ständig	0,60	0,80	2,25	1,50	3,00	2,25

Tabelle C7 Empfohlene, bei der Konstruktion von STEICO-Stegträgerprodukten nach Eurocode 5 zu verwendende -y_M-Werte, falls keine national festgelegten Parameter vorliegen

Kombination	Biege- und axiale Festigkeit	Schubfestigkeit	Auflagerfestigkeit
ständige und vorübergehende Bemessungssituation	1,2	1,3	1,2
außergewöhnliche Bemessungssituation	1,0	1,0	1,0

Konstruktionsempfehlungen für Stegdurchbrüche

Die charakteristische Schubkraft der STEICO I-Trägerprodukte mit Löchern im Steg kann wie folgt errechnet werden:

$$V_{Loch,k} = V_k \bullet k_{Loch}$$

wobei gilt:

 V_k Charakteristische Schubkraft für STEICO I-Trägerprodukte ohne Löcher im Steg. Reduktionsfaktor für Stegdurchbrüche

Reduktionsfaktor für runde Steadurchbrüche:

$$k_{Loch} = \frac{H_{Tr\"{a}ger} - h_f - 0.9 \bullet D}{H - h_f}$$
 wobei gilt:
$$\begin{array}{cc} H_{\text{Tr\"{a}ger}} & \text{H\"{o}he des Tr\"{a}gers} \\ h_{\text{f}} & \text{H\"{o}he des Gurtes} \\ D & \text{Lochdurchmesser D} \leq \text{H} - 2.1 \bullet \text{h}_{\text{f}} \leq 200 \text{ mm} \end{array}$$

Diese Reduzierung des Schubs darf bei Rundlöchern mit einem Durchmesser ≤ 38 mm nicht berücksichtigt werden.

Reduktionsfaktor für rechteckige Stegdurchbrüche:

$$k_{hole} = min \left\{ 0.30 \cdot \left(\frac{H_{Tr\ddot{a}ger}}{h_{Loch}} \right)^{0.1} \cdot \left(\frac{H_{Tr\ddot{a}ger}}{l_{Loch}} \right)^{0.18} \cdot \left(\frac{h_{Loch}}{l_{Loch}} \right)^{0.2} \cdot k_{H\ddot{o}he}; 0.9 \right\}$$

 $\begin{array}{lll} \text{wobei gilt:} & \text{$H_{\text{Tr\"{a}ger}}$} & \text{$H\"{o}$he des Tr\"{a}gers} \\ & \text{h_{Loch}} & \text{$Lochh\"{o}$he $h_{\text{Loch}} \leq H - 2,1$ $^{\bullet}$h}_{\text{f}} \leq 200 \text{ mm} \\ & \text{I_{Loch}} & \text{$Lochl\"{a}$nge $I_{\text{Loch}} \leq 300 \text{ mm}$} \\ & \text{$K_{\text{Tiefe}}$} & \text{$Tiefenfaktor} \end{array}$

Für Träger mit 200 mm ≤ H < 400 mm:

$$k_{H\ddot{o}he} = \left(\frac{280}{H_{Tr\ddot{a}ger}}\right)^{0.8}$$

Für Träger mit 400 mm ≤ H < 500 mm:

$$k_{H\ddot{o}he} = \left(\frac{H_{Tr\ddot{a}ger}}{500}\right)^{1,3}$$

Hinweise:

- 1. Das Verhältnis von Länge zu Höhe muss bei Rechtecklöchern zwischen 0,5 und 2,0 betragen.
- 2. Die Rechteckloch-Gleichungen müssen mit einer Länge und Höhe > 20 mm verwendet werden.
- 3. Die Reduzierung des Schubs darf bei Rechtecklöchern mit einer maximalen Größe von 15 mm x 40 mm nicht berücksichtigt werden.
- 4. Alle zulässigen Durchbrüche sind in der Stegmitte anzuordnen.

Hinweise zu Löchern ohne rechnerisch Nachweisführung

Hartfaserstege:

Tabelle C8 Löcher, für die keine individuelle Konstruktion in Hartfaserstegen erforderlich ist

Lochtyp	Anzahl an Löchern in einer Reihe ⁽¹⁾	Mindestabstand zwischen Lochrändern (mm)	Lage im Steg	Mindestträger höhe (mm)	Schubkraft ⁽²⁾ (%)
Rund: D bis 25 mm	5	25	Beliebig	200	100
Rund: D von 26 mm bis 38 mm	3	2 x D	Trägerachse	200	100
Rechteckig: H x I ≤ 14 mm x 40 mm	1	-	Beliebig	200	100

⁽¹⁾ Eine Reihe bezeichnet eine Gruppe von Löchern, die mit Mindestabstand zueinander angeordnet sind. Der Abstand zwischen den Lochreihen muss größer oder gleich der Stegtiefe sein.

OSB-Stege:

Tabelle C9 Löcher, für die keine individuelle Konstruktion in OSB-Stegen erforderlich ist

Tabelle do Locher, far al	c Kellie iliaividaelie	Tronstruction in OOD Ot	egen enoraem		
Lochtyp	Anzahl an	Mindestabstand	Lage im Steg	Mindestträger	Schubkraft ⁽²⁾
	Löchern in einer	zwischen Lochrändern		höhe (mm)	(%)
	Reihe ⁽¹⁾	(mm)		, ,	, ,
Rund:	5	25	Beliebig	200	90
D bis 25 mm	3	50	Beliebig	220	100
Rund:	3	2 x D	Trägerachse	200	80
D von 26 mm bis 38 mm	2	2 x D	Trägerachse	220	100
Rechteckig:	1	-	Beliebig	200	100

⁽¹⁾ Eine Reihe bezeichnet eine Gruppe von Löchern, die mit Mindestabstand zueinander angeordnet sind. Der Abstand zwischen den Lochreihen muss größer oder gleich der Stegtiefe sein.

^{(2) 100 %} bedeutet, dass keine Reduktion der Schubkraft erforderlich ist $V_{Loch,k} = V_k$.

^{(2) 100 %} bedeutet, dass keine Reduktion der Schubkraft erforderlich Ist: $V_{Loch,k} = V_k$. 90 % bedeutet eine Reduktion der Schubkraft um 10 %: $V_{Loch,k} = 0.9 \times V_k$ 80 % bedeutet eine Reduktion der Schubkraft um 20 %: $V_{Loch,k} = 0.8 \times V_k$

Axial belastete Bauelemente

Die axiale Tragfähigkeit von STEICO-Stegträgerprodukten sollte gemäß den in Eurocode 5 angegebenen Verfahren errechnet werden. Die Tragfähigkeit sollte aus dem Querschnitt der Stegträger in Anhang A und den charakteristischen Werten für LVL-Gurtmaterial in Tabelle C10 abgeleitet werden. STEICOwall mit L 17-Vollholzgurten müssen unter Verwendung der Festigkeitswerte in EN 338:2003 für die Güteklasse C 18, STEICOjoist mit L 36-Vollholzgurten müssen unter Verwendung der Festigkeitswerte in EN 338:2003 für Güteklasse C 35 berechnet werden. Im Fall von Mehrfachwirkungen (z. B. Druck und Biegung) sollte die in Eurocode 5 angegebene maßgebliche Wechselgleichung verwendet werden.

Tabelle C10 Charakteristische Werte für LVL-Gurtmaterial in Nmm⁻² und kgm⁻³

Eigenschaft		LVL 2,0E	LVL 1,6
Biegefestigkeit	$f_{m,k}$	48,0	26,0
Zugfestigkeit parallel zur Faser	$f_{t,0,k}$	36,0	16,0
Druckfestigkeit parallel zur Faser	$f_{c,0,k}$	36,0	22,0
Mittleres Elastizitätsmodul parallel zur Faser	E_{mittel}	13800	11000
Charakteristisches Elastizitätsmodul parallel zur Faser	E _{0,05}	11600	10000
Charakteristische Dichte	ρ_{k}	480	430

Die charakteristischen Werte für die HB.HLA1-Hartfaser und OSB für Konstruktionen gemäß Eurocode 5 sind in Tabelle C11 dargestellt.

Tabelle C11 Charakteristische Werte für HB.HLAI und OSB-Stegmaterial in N⋅mm⁻² und kg⋅m⁻³

Eigenschaft		HB.HLA1	OSB/3	OSB/4
Biegefestigkeit des Stegs schmalseitig parallel zum Träger	f _{m,90,k}	31,0	7,2	8,5
Zugfestigkeit des Stegs parallel zum Träger	$f_{t,90,k}$	20,0	7,2	8,5
Druckfestigkeit des Stegs parallel zum Träger	$f_{c,90,k}$	21,0	12,9	14,3
Schubfestigkeit des Stegs schmalseitig	$f_{v,k}$	14,0	6,8	6,9
Mittleres Elastizitätsmodul parallel zum Träger	E _{mittel}	5300	3000	3200
Mittleres Steifigkeitsmodul	G_{mittel}	2100	1080	1090
Charakteristische Dichte	ρ_{k}	900	550	555

Die charakteristische Schubfestigkeit der Steg-Gurt-Verbindung ist f_{v.Fuqe.k} = 2,40 N·mm⁻².

Konstruktionsempfehlungen für Kerben in LVL-Gurte

Die charakteristische Momentkapazität von Stegträgern mit Kerben auf Seiten der Gurte kann wie folgt berechnet werden:

$$M_{Kerbe, k} = M_k \bullet k_{Kerbe}$$

wobei gilt:

M_{Kerbe k} Charakteristische Momentkapazität für STEICO Stegträgerprodukte mit Kerben auf

Seiten der Gurte

M_k Charakteristische Momentkapazität für STEICO Stegträgerprodukte ohne Kerben

$$k_{Kerbe} = \frac{b_{Gurt} - t_{Kerbe}}{b_{Gurt}}$$

wobei gilt:

b_{Gurt} Gurtbreite

t_{Kerbe} Tiefe der Kerbe ≤ 0,25 • b_{Gurt}

Die maximale Breite der Kerbe parallel zur Trägerlänge beträgt bis zu 2 • b_{Gurt}.

ANHANG D HYGROTHERMISCHE EIGENSCHAFTEN

Die hygrothermischen Eigenschaften gemäß EN 12524:2004 sind in Tabelle D1 dargestellt. Die natürlichen Schwankungen der Materialien wurden bei diesen Werten berücksichtigt.

Tabelle D1 Hygrothermische Eigenschaften

Material	Dichte ⁽¹⁾ (mittlere) ρ _m	Wärmeleitfähig keit λ	Spezifische Wärmekapa zität		mpf-Festigk aktor ⁽²⁾
	(kg·m ⁻³)	$(W \cdot m^{-1} \cdot K^{-1})$	c _p (J kg⁻¹⋅K⁻¹)	trocken	feucht
LVL-Gurte	500	0,13	1600	50	20
Vollholzgurte	450	0,13	1600	50	20
Hartfaserstege	900	0,14	1700	10	20
OSB-Stege	600	0,13	1700	200	200

⁽¹⁾ Die Dichte von Holz und Produkten auf Holzbasis entspricht der Gleichgewichtsdichte bei 20 °C und 65 % relativer Feuchtigkeit.

Bucknalls Lane, Watford, Hertfordshire WD25 9BA
Tel.: +44 (0)1923 665300 Fax: +44 (0)1923 665301
E-Mail: clientservices@bba.star.co.uk
Website: www.bbacerts.co.uk

⁽²⁾ Die Wasserdampf-Diffusionswiderstandszahlen werden unter Trocken- bzw. Feuchtklimabedingung angegeben (siehe EN ISO 12572:2001).

| EINSATZBEREICHE

Putzbeschichtbares Holzfaser-Dämmplatten-System

HINWEISE

STEICO protect Holzfaser-Dämmplatten bitte liegend, plan und trocken lagern.

Kanten vor Beschädigungen schützen.

Folienverpackung bitte erst bei trockenem Umgebungsklima entfernen und Palettenbeipackzettel aufbewahren.

> Bitte Vorschriften zur Staubbeseitigung beachten.

- Putzbeschichtbare Holzfaser-Dämmplatte für bauaufsichtlich zugelassene Wärmedämm-Verbundsysteme
- Dämmplatten können zur Aussteifung der Konstruktion mit angesetzt werden. (Tabelle Seite 2: Eignung einzelner Plattentypen) Ideal für diffusionsoffene Ausbauhäuser.
- · Wasserabweisende und gleichzeitig diffusionsoffene Platten für robuste Konstruktionen
- Exzellente Dämmeigenschaften im Sommer wie im Winter
- Schon ab 40 mm Plattenstärke, auch bei Einblasdämmung einsetzbar
- Wirtschaftliche und robuste Systemverarbeitung
- Gemäß Allgemeiner bauaufsichtlicher Zulassung: STEICOsecure Timber AbZ Z-33.47-1581

UNSERE PUTZEMPFEHLUNGEN:

Eine Marke der quick-mix A Gruppe

Weitere Informationen finden Sie in den entsprechenden Planungsheften, in den Verarbeitungshinweisen oder unter www.steico.com.

| LIEFERFORMEN STEICOprotect

4-seitig Nut und Feder Ideal für die Baustellenmontage bei Holzrahmenbau und Fassadensanierung mit Unterkonstruktion.

Format brutto	Deckmaß	Dicke	Тур	Stück/Palette	Gewicht/m ²	m²/Palette	Gewicht/Pal.
1.325 * 600 mm	1.300 * 575 mm	40 mm	Н	56	10,60 kg	44,5	ca. 482 kg
1.325 * 600 mm	1.300 * 575 mm	60 mm	Н	38	15,90 kg	30,2	ca. 490 kg
1.325 * 600 mm	1.300 * 575 mm	80 mm	М	28	18,40 kg	22,3	ca. 420 kg
1.325 * 600 mm	1.300 * 575 mm	100 mm	M	22	23,00 kg	17,5	ca. 413 kg

Palettenformat: ca. 1,33 * 1,21 * 1,30 m

Großformatplatten mit stumpfer Kante Besonders für werkseitige Vorfertigung im Holzrahmenbau.

Typ H aussteifend gemäß AbZ Z-9.1-826

Format	Dicke	Тур	Stück/Palette	Gewicht/m ²	m²/Palette	Gewicht/Palette
2.800 * 1.250 mm	40 mm	H◆	28	10,60 kg	98,0	ca. 1049 kg
2.800 * 1.250 mm	60 mm	H◆	19	15,90 kg	66,5	ca. 1070 kg
2.800 * 1.250 mm	80 mm	М	14	18,40 kg	49,0	ca. 912 kg
2.800 * 1.250 mm	100 mm	M	11	23,00 kg	38,5	ca. 896 kg

Palettenformat: ca. 2,80 * 1,25 * 1,30 m; ◆Aussteifend gemäß AbZ Z-9.1-826.

4-seitig Nut und Feder Besonders geeignet für den verschnittarmen und flexiblen werkseitigen Elementbau.

Typ H aussteifend gemäß AbZ Z-9.1-826

Format brutto	Deckmaß	Dicke	Тур	Stück/Palette	Gewicht/m ²	m²/Palette	Gewicht/Pal.
2.625 * 1.175 mm	2.600 * 1.150	40 mm	H◆	28	10,60 kg	86,4	ca. 926 kg
2.625 * 1.175 mm	2.600 * 1.150	60 mm	H◆	19	15,90 kg	58,6	ca. 942 kg
2.625 * 1.175 mm	2.600 * 1.150	80 mm	М	14	18,40 kg	43,2	ca. 805 kg

Palettenformat: ca. 2,63 * 1,18 * 1,30 m; ◆Aussteifend gemäß AbZ Z-9.1-826.

Stumpfe Kante Ausschließlich für Detailausbildungen und Fensterlaibungen.

Format	Dicke	Тур	Stück/Palette	Gewicht/m ²	m²/Palette	Gewicht/Palette
1.350 * 500 mm	20 mm	Н	112	5,00 kg	75,6	ca. 403 kg
1.350 * 500 mm	20 mm	Н	6◆	5,00 kg	4,1	ca. 22 kg

 $Paletten format: ca.\ 1,35*1,00*1,24\,m; ~ \bullet Versand~ aus~ Logistik lager-gesonderte~ Frachtkosten~ auf~ Anfrage~ Logistik lager-gesonderte~ Frachtkosten~ auf~ Anfrage~ Logistik lager-gesonderte~ Frachtkosten~ auf~ Logistik lager-gesonderte~ Logistik lager-gesond$

| TECHNISCHE KENNDATEN STEICOprotect

Bemessungswert der Wärme-					
leitfähigkeit λ [W/(m*K)]					
Тур Н	Тур М				
0,053	0,051				

Nennwert der Wärme-					
leitfähigkeit λ [W/(m*K)]					
Тур Н	Тур М				
0,048	0,046				
Brandkennziffer					
BKZ 4.3	-				
Brandverhaltensgruppe nach					
VKF Brandschutzrichtlinie					
RF3	RF3				

Parameter	Тур Н	Тур М		
Plattenkennzeichnung nach DIN EN 13171	WF EN 13171 - T5 - DS(70/90)3 - CS (10\Y)150 - TR20(30) - WS1,0 - MU5	WF EN 13171 - T5 - DS(70/90)3 - CS(10\Y)100 - TR15(30) - WS1,0 - MU5		
Brandverhalten nach DIN EN 13501-1		E		
Nennwert der Wärmeleitfähigkeit λ_D [W/(m*K)]	0,048	0,046		
Bemessungswert der Wärmeleitf. λ_B [W/(m*K)]	0,050	0,048		
Rohdichte [kg/m³]	ca. 265	ca. 230		
Wasserdampfdiffusionswiderstandszahl μ		5		
Spezifische Wärmekapazität c [J/(kg*K)]	2.1	2.100		
Druckfestigkeit [kPa]	180	100		
Grenzmaße Rechtwinkligkeit n. EN 824	3 mr	m/m		
Zugfestigkeit senkrecht zur Plattenebene [kPa]	20	15		
$\begin{array}{lll} \text{Dimensionsstabilit"at} & \text{L"ange } \Delta \epsilon_l \\ \text{48h, 70°C, 90\% relative} & \text{Breite } \Delta \epsilon_b \\ \text{Luftfeuchte} & \text{Dicke } \Delta \epsilon_d \end{array}$	≤3	3% 3% 3%		
Abfallentsorgungsschlüssel sortenreines / nicht sortenreines Material (AVV)	030105	/170201		

Herstellwerk zertifiziert gem. ISO 9001:2015

Ihr STEICO Partner

www.steico.com

AGEPAN® SYSTEM

AGEPAN® THD INSTALL DIE ALTERNATIVE ZUR HERKÖMMLICHEN

INSTALLATIONSEBENE

AGEPAN® THD INSTALL

VORTEILE

- Ideal als schnell zu verlegende Installationsebene
- · "Massive" Schicht, kein Hohlraum
- Direkte Montage von GKB und Rigidur mit geprüften Schrauben und Klammern möglich
- · Direkte Befestigung auf OSB
- Schnelles Einarbeiten der Kabelkanäle
- · Befestigung von Konsollasten problemlos möglich
- Hohe Arbeitszeitersparnis durch einfache Verlegung, da keine Lattung erforderlich
- F 90-B (REI 90) Konstruktionen im AGEPAN® SYSTEM

ANWENDUNGSBEREICHE

- Direkt verputzbare Installationsebene mit zugelassenem System (z. B. Rotkalk, Firma Knauf Gips KG)
- Lehm-Beschichtungsaufbauten mit Firma CLAYTEC®, Viersen
- · Universelle, druckfeste Wärmedämmung
- Als Innendämmung im Wand- und Deckenbereich einsetzbar
- Anwendungsbereiche gemäß DIN 4108-10 Tabelle 13: DI-dm / DEO-ds / WI-dm / WTR

TECHNISCHE DATEN

EIGENSCHAFT	EINHEIT		WERT	
Norm / Zulassung		DIN EN 13171 / Z-23.15-1508		
Nenndicke	mm	40	60	80*
Berechnungsmaß	mm		2650 x 600	
Deckmaß	mm		2650 x 600	
ca. Gewicht je m²	kg / m²	9,20	13,80	18,40
Kantenausführung		stumpf		
Rohdichte	kg / m³	230		
Nennwert Wärmeleitfähigkeit λ _D	W / (m*K)	0,047		
Bemessungswert Wärmeleitfähigkeit λ _R	W / (m*K)	0,050		
Wasserdampf-Diffusionswiderstandszahl μ		3		
Wasserdampfdiffusionsäquivalente Luftschichtdicke s _d	m	0,12	0,18	0,24
Druckfestigkeit	kPa		≥ 200	
Spezifische Wärmekapazität	J / (kg*K)		2100	
Formaldehyd-Emissionsklasse			E1 – formaldehydfrei ve	erleimt
Brandverhalten nach DIN EN 13501-1		E		
Baustoffklasse nach DIN 4102 B2		B2		
Hydrophobierungsgruppe		WS 1,0		
Bezeichnungsschlüssel		WF-EN 13171-T3-CS(10/Y)100- TR10-WS1,0 WF-EN 13171-T3-CS(10/ Y)100-TR7,5-WS1,0		

^{*} keine Lagerware

FUNKTIONSH (22°

Ihr AGEPAN® SYSTEM Partner

9 Kenndaten

9.1 fermacell Gipsfaser Estrich-Elemente

Die Elemente bestehen aus zwei werkseitig miteinander verklebten 10 mm oder 12,5 mm dicken **fermacell** Gipsfaser-Platten. Die beiden Platten sind gegeneinander versetzt angeordnet, sodass ein 50 mm breiter Stufenfalz

entsteht. Die Abmessungen der Elemente betragen 1500×500 mm (Deckfläche 0,75 m²). **fermacell** Gipsfaser Estrich-Elemente sind ohne und mit unterschiedlichen Dämmstoffkaschierungen erhältlich.

9.2 fermacell Powerpanel TE

Die Elemente bestehen aus zwei werkseitig miteinander verklebten 12,5 mm dicken Powerpanel H₂O Platten. Die beiden Platten sind gegeneinander versetzt angeordnet, sodass ein 50 mm breiter Stufenfalz entsteht. Die Abmessungen der Elemente betragen 1250×500 mm (Deckfläche 0,625 m²).

Kennwerte von fermacell Gipsfaser-Platten	
Rohdichte (Produktionsvorgabe) ρ _κ	1150 ± 50 kg/m³
Wasserdampf-Diffusionswiderstandszahl μ	13
Wärmeleitzahl λ	0,32 W/mK
spezifische Wärmekapazität c	1,1 kJ/kgK
Brinellhärte	30 n/mm²
Dickenquellung nach 24 Std. Wasserlagerung	< 2 %
thermischer Ausdehnungskoeffizient	0,001 %/K
Dehnung/Schwindung bei Veränderung der rel. Luftfeuchtigkeit um 30 % (20 °C)	0,25 mm/m
Ausgleichsfeuchte bei 65 % rel. Luftfeuchte und 20 °C Lufttemperatur	1,3 %
Baustoffklasse gemäß DIN EN 13501-1 (nichtbrennbar)	A 2
pH-Wert	7–8

Kennwerte von fermacell Powerpanel H₂0	
Rohdichte (Produktionsvorgabe) ρ _κ	1000 kg/m³
Wasserdampf-Diffusionswiderstandszahl µ	56 nach DIN EN 12572
Wärmeleitzahl λ	0,173 W/mK nach DIN EN 12664
spezifische Wärmekapazität c	1,0 kJ/kgK
Ausgleichsfeuchte bei 65 % rel. Luftfeuchte und 20 °C Lufttemperatur	ca. 5 %
Baustoffklasse gemäß DIN EN 13501-1 (nichtbrennbar)	A 1
pH-Wert	ca. 10

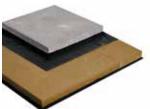
| EINSATZBEREICHE

Trittschalldämmplatte unter Trockenund Nassestrichsystemen.

Wärmedämmung unter Trocken- und Nassestrichsystemen.

MATERIAL

Holzfaserdämmplatte produziert nach DIN EN 13171, mit laufender Güteüberwachung.


Das Holz für STEICOtherm SD stammt aus verantwortungsvoll bewirtschafteten Wäldern und ist unabhängig zertifiziert gemäß den Richtlinien des FSC®. (Forest Stewardship Council®)

- Klassifizierte Trittschalldämmung für Estrichsysteme
- Trittschalldämmplatte für Massiv- und Holzbalkendecken
- Geeignet für schwimmend verlegte Trockenestrichsysteme aus Gipsfaser- oder Holzwerkstoffplatten
- Geeignet für Nassestrichsysteme wie Zement- oder Anhydritestrich
- Besonders diffusionsoffen
- Schnelle und einfache Verlegung
- Hautfreundlich
- Ökologisch, umweltverträglich und recyclingfähig

Weitere Informationen und Verarbeitungshinweise finden Sie in den entsprechenden Konstruktionsheften oder unter **www.steico.com**

| LIEFERFORMEN STEICOtherm SD

Dicke [mm]	Format [mm]	Gew. [kg/m²]	Stück/ Palette	m²/ Palette	Gew./Pal. [kg]
21/20	1.350 * 600	3,20	116	94,0	ca. 300
31/30	1.350 * 600	4,80	74	59,9	ca. 300

| ANWENDUNGSGEBIETE

nach DIN 4108-10:2015

Innendämmung der Decke oder Bodenplatte (oberseitig)	DES - sh, sg
unter Estrich mit Schallschutz-	
anforderungen	

 $sg = Trittschalldämmung, \ geringe \ Zusammendrückbarkeit \\ sh = Trittschalldämmung, \ erhöhte \ Zusammendrückbarkeit$

HINWEISE

Liegend, plan und trocken lagern.

Kanten vor Beschädigung schützen.

Maximale Stapelhöhe: 2 Paletten.

Bitte Vorschriften zur Staubbeseitigung beachten.

Bemessungswert der Wärmeleitfähigkeit gemäß ÖNorm B 6015-5: $\lambda = 0.042 \text{ [W/(m*K)]}$

Bemessungswert der Wärme- leitfähigkeit gemäß SIA	-
$\lambda = 0.038 [W/(m*K)]$	
Brandkennziffer BKZ	4.3
Brandverhaltensgruppe nach	
VKF Brandschutzrichtlinie	RF3

| TECHNISCHE KENNDATEN STEICOtherm SD

Plattenkennzeichnung 21/20 mm Dicke WF – EN 13171 – T7 – SD50 – CP2 31/30 mm Dicke WF – EN 13171 – T7 – SD30 – CP2 Kantenausbildung Brandverhalten nach DIN EN 13501-1 E Rohdichte ρ [kg/m³] ca. 160 Dynamische Steifigkeit s' [MN/m³] 50 31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit 0.000	Produziert und überwacht gemäß DIN EN 13171				
31/30 mm Dicke WF – EN 13171 – T7 – SD30 – CP2 Kantenausbildung stumpf Brandverhalten nach DIN EN 13501-1 E Rohdichte ρ [kg/m³] ca. 160 Dynamische Steifigkeit s' [MN/m³] 21/20 mm Dicke 50 31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit	3				
Kantenausbildung stumpf Brandverhalten nach DIN EN 13501-1 E Rohdichte ρ [kg/m³] ca. 160 Dynamische Steifigkeit s' [MN/m³] 21/20 mm Dicke 50 31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit					
Brandverhalten nach DIN EN 13501-1 E Rohdichte ρ [kg / m³] ca. 160 Dynamische Steifigkeit s' [MN/m³] 21/20 mm Dicke 50 31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit		WF – EN 13171 – T7 – SD30 – CP2			
Rohdichte p [kg/m³] ca. 160 Dynamische Steifigkeit s' [MN/m³] 21/20 mm Dicke 50 31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit	Kantenausbildung	stumpf			
Dynamische Steifigkeit s' [MN/m³] 21/20 mm Dicke 50 31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit	Brandverhalten nach DIN EN 13501-1	Е			
21/20 mm Dicke5031/30 mm Dicke30Nennwert Wärmeleitfähigkeit	Rohdichte ρ [kg/m³]	ca. 160			
31/30 mm Dicke 30 Nennwert Wärmeleitfähigkeit					
Nennwert Wärmeleitfähigkeit					
3	31/30 mm Dicke	30			
	3				
Λ _D [W/(m^K)] 0,038	$\lambda_{D} [W/(m*K)]$	0,038			
Nennwert Wärmedurchlasswiderstand	Nennwert Wärmedurchlasswiderstand				
$R_D[(m^2*K)/W]$					
21/20 mm Dicke 0,50		17.1			
31/30 mm Dicke 0,75	31/30 mm Dicke	0,75			
Bemessungswert der Wärmeleitfähigkeit					
$\lambda_{B} [W/(m^*K)]$ 0,040	λ_{B} [W/(m*K)]	0,040			
Wasserdampfdiffusionswiderstandszahl μ 5	Wasserdampfdiffusionswiderstandszahl μ	5			
S _d -Wert [m] 0,10/0,15	S _d -Wert [m]	0,10/0,15			
Spezifische Wärmekapazität c [J/(kg*K)] 2.100	Spezifische Wärmekapazität c [J/(kg*K)]	2.100			
Längenbezogener Strömungs-	Längenbezogener Strömungs-				
widerstand [(kPa*s)/m²] ≥100	widerstand [(kPa*s)/m²]	≥100			
Zusammendrückbarkeit bei Nutzlast	Zusammendrückbarkeit bei Nutzlast				
≤ 5 kPa [mm] ≤2	≤ 5 kPa [mm]	≤2			
Einsatzstoffe Holzfaser, Lagenverklebung	Einsatzstoffe	Holzfaser, Lagenverklebung			
Abfallschlüssel (EAK) 030105/170201, Entsorgung wie Holz und	Abfallschlüssel (EAK)	030105/170201, Entsorgung wie Holz und			
Holzwerkstoffe		Holzwerkstoffe			

Ihr STEICO Partner

www.steico.com

Bituminierte Wandbauplatte für Vorhangfassaden

| EINSATZBEREICHE

Bituminierte Wandbauplatte zur Verwendung hinter Vorhangfassaden.

MATERIAL

Holzfaserplatte produziert nach DIN EN 13986, mit laufender Güteüberwachung.

Der Rohstoff Holz für STEICOuniversal black stammt aus verantwortungsvoll bewirtschafteten Forsten, die nach den strengen Regeln des FSC® (Forest Stewardship Council®) und des PEFC® zertifiziert sind.

- Schwarze Oberfläche für horizontale Vorhangfassaden mit Fugenanteil bis 20 mm Breite, z.B. Rhombusleisten
- Witterungsschutz ohne zusätzliche Fassadenbahn
- Volle Funktion und Optik auch bei oberflächlichen Beschädigungen
- Umlaufendes Nut- und Federprofil, kann im Feld gestoßen werden
- · Nahezu verschnittfreie Verlegung
- Robuste Oberfläche bei UV-Belastung
- Besonders diffusionsoffen für erhöhte Konstruktionssicherheit
- Schnell und einfach in der Verarbeitung

Weitere Informationen und Verarbeitungshinweise finden Sie unter www.steico.com

| LIEFERFORM STEICOuniversal black

Dicke [mm]	Format [mm]	Deckmaß [mm]	Gewicht [kg/m²]	Stück/Palette	m²/Palette	Deckfl./Pal. [m²]	Gew./Pal. [kg]
22	2.500 * 600	2.480 * 585	5,83	52	78	75,4	ca. 500
35	2.500 * 600	2.480 * 585	9,10	66	99	95,8	ca. 960

22 mm mit durchgehender Bituminierung, 35 mm mit bituminierter Decklamelle;

| HINWEISE

Liegend, plan und trocken lagern. Kanten vor Beschädigungen schützen. Folienverpackung bitte erst entfernen, wenn Palette auf festem, ebenem und trockenem Untergrund steht.

Bitte Vorschriften zur Staubbeseitigung beachten.

| ANWENDUNGSGEBIETE

Wandbauplatte für horizontale Bekleidungen mit offenen Fugen bis 20 mm, wobei das Deckmaß der Fassadenbekleidung mindestens das Dreifache der Fugenbreite beträgt.

Wandbauplatte hinter vorgehängten hinterlüfteten oder belüfteten geschlossenen Fassadenbekleidungen.

| TECHNISCHE KENNDATEN STEICOuniversal black

Produziert und überwacht gemäß DIN EN 13986 und DIN EN 622-4				
Plattenkennzeichnung	SB.E-E1			
Kantenausbildung	Nut und Feder			
Brandverhalten nach DIN EN 13986	E			
Nennwert Wärmeleitfähigkeit λ_D [W/(m*K)] nach DIN EN 13986	0,050			
Nennwert Wärmedurchlasswiderstand $R_D [(m^2*K)/W]$	0,40(22) / 0,70(35)			
Rohdichte [kg/m³]	ca. 260			
Wasserdampfdiffusionswiderstandszahl μ gem. DIN EN 13986	5			
s _d -Wert [m]	0,11(22) / 0,18(35)			
Kurzzeitige Wasseraufnahme [kg/m²]	≤1,0			
Spezif. Wärmekapazität c [J/(kg*K)]	2.100			
Druckspannung bei 10% Stauchung σ ₁₀ [N/mm²]	0,15			
Druckfestigkeit [kPa]	150			
Einsatzstoffe	Holzfaser, Aluminiumsulfat, Bitumen			
Abfallschlüssel (EAK/AVV)	030105/170201, Entsorgung wie Holz und Holzwerkstoffe			

Qualitätsmanagement ISO 9001:2015

Ihr STEICO Partner

www.steico.com