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Abstract

During the past years, deep learning has shown a great potential for segmentation and classi-

fication tasks not only in computer vision but also in medical imaging. However, many more

opportunities for applying deep learning techniques exist in medical imaging, ranging from

data acquisition and reconstruction to computer aided diagnosis. In this thesis, we explore the

potential of deep learning for medical image reconstruction. First, this thesis provides a broad

overview of how deep learning techniques can be used to improve image reconstruction. Sec-

ond, we propose Variational Networks to solve various inverse problems. Variational Networks

are rooted in variational methods and deep learning. Their aim is to keep the structure of vari-

ational models and use deep learning techniques to improve on both the regularization of these

models and the reconstruction algorithm itself. In this thesis, we explore different ways to fur-

ther improve the results of the Variational Networks. We study different types of regularization

used in the Variational Networks ranging from Fields of Experts regularizers, that concentrate

on low-level features, to deep regularizers, that are able to incorporate mid- and high-level

features. Furthermore, we investigate the impact of different pixel-based and patch-based loss

functions. The main focus of this thesis is the application of Variational Networks to various

inverse problems in medical image reconstruction. First, we setup a Variational Network for

image enhancement to correct structured artifacts in limited-angle Computed Tomography.

The second application for the proposed Variational Networks is accelerated Magnetic Res-

onance image reconstruction of static multi-coil 2D data. Here, we investigate the impact

and generalization potential of Variational Networks on clinical knee data, including a reader

study on image quality. In the third application, we explore the potential of Variational Net-

works for dynamic Magnetic Resonance image reconstruction using cardiac multi-coil data and

spatio-temporal regularization. All studied applications have in common that typical struc-

tured artifacts arise in the reconstructed images due to the acquisition process, which cannot

be removed efficiently with current state-of-the-art techniques. Using the proposed Variational

Networks, we achieve promising results in terms of improved image quality and reduced arti-

facts. Once the Variational Networks are learned, new data can be reconstructed efficiently and
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no further parameter tuning is required, which are major limitations of current state-of-the-art

reconstruction approaches. Consequently, this new approach to image reconstruction offers

the potential to be directly integrated into the clinical workflow and improve patient comfort,

patient safety and healthcare costs.

Keywords. Variational Networks, Deep Learning, Variational Methods, Inverse Problems,

Magnetic Resonance Imaging, Limited-Angle Computed Tomography



Kurzfassung

Forschungsergebnisse der letzten Jahre zeigen ein großes Potential von Maschinellem Ler-

nen für diverse Anwendungen in der Bildverarbeitung, wie Segmentierung und Klassifizierung.

Jedoch gibt es viele weitere Möglichkeiten, Maschinelles Lernen im Bereich der medizinis-

che Bildverarbeitung anzuwenden, zum Beispiel bei der Datenakquisition, Bildrekonstruktion

oder in der computerassistierten Diagnose. Diese Arbeit gibt einen Überblick über laufende

Entwicklungen in der medizinische Bildrekonstruktion basierend auf Maschinellem Lernen. Hi-

erzu wird das Konzept von Variationsnetzwerken vorgestellt, in denen die Strukturiertheit von

Variationsmethoden mit Ideen aus dem Maschinellem Lernen vereint werden, um nicht nur

verbesserte Bildqualität zu erreichen, sondern auch den Rekonstruktionsalgorithmus ansich

zu lernen. In dieser Arbeit werden auch Erweiterungen von Variationsnetzwerken vorgestellt,

um die Bildqualität weiter zu verbessern. Dazu werden unterschiedliche Arten von Regu-

larisierung, die in den Variationsnetzwerken verwendet wird, vorgestellt. Diese beinhalten

Fields of Experts Regularisierung, die sich auf low-level Features von Bildern beschränkt, sowie

tiefe Regularisierung, die auch mid-level und high-level Features von Bildern in den Lern-

prozess miteinbeziehen kann. Des Weiteren werden diverse Pixel-basierte und Patch-basierte

Ähnlichkeitsmaße, die für die Qualität des Lernens verantwortlich sind, vorgestellt. Der Fokus

dieser Arbeit liegt auf der Anwendung von Variationsnetzwerken für diverse Inverse Probleme

aus dem Bereich der medizinischen Bildrekonstruktion. Zuerst werden Variationsnetzwerke zur

Nachbearbeitung und Artefaktkorrektur in der Computertomographie verwendet. Im Bereich

der Magnetresonanztomographie wird zuerst auf die Rekonstruktion von statischen Kniedaten,

die im Rahmen von klinischen Untersuchungen akquiriert wurden, eingegangen. Dies bein-

haltet eine umfassende Analyse um den Einfluss und das Generalisierungspotential von Varia-

tionsnetzwerken zu zeigen, und inkludiert auch eine radiologische Studie, um die Bildqualität

von Knierekonstruktionen mittels Variationsnetzwerken zu erfassen. Zuletzt wird die Anwen-

dung von Variationsnetzwerken auf dynamischen Daten des Herzens gezeigt, die sowohl einer

räumlichen als auch einer zeitlichen Regularisierung bedürfen. Obwohl es sich um unter-
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schiedlichste Applikationen handelt, haben diese etwas gemeinsam: Die Art der Artefakte, die

bei der Datenakquisition entstehen sind so strukturiert, dass sie mit gewöhnlichen Algorithmen

nicht zufriedenstellend rekonstruiert werden können. Mit den vorgestellten Variationsnetzw-

erken können diese Artefakte erheblich reduziert und gleichzeitig die Bildqualität verbessert

werden. Des Weiteren können neu akquirierte Daten effektiv rekonstruiert werden und bedürfen

keiner Feineinstellung von Parametern, wie dies bei gewöhnlichen Rekonstruktionsalgorithmen

oft der Fall ist. Infolgedessen eröffnen die vorgestellten Variationsnetzwerke das Potential

um direkt in den klinischen Arbeitsablauf integriert zu werden, um so Patientenkomfort sowie

-sicherheit zu verbessern, als auch die Kosten im Gesundheitssystem zu reduzieren.

Schlagwörter. Variationsnetzwerke, Maschinelles Lernen, Variationsmethoden,

Inverse Probleme, Magnetresonanztomographie, Computertomographie
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1
Introduction

Radiologists who use AI will replace

radiologists who don’t.

Curtis Langlotz, RSNA 2017

Contents

1.1 The Potential of Artificial Intelligence in Medical Imaging . . 2

1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 3

During the past years, deep learning [73, 148] has caused a paradigm shift in computer vision

from using handcrafted features and classifiers to data-driven and learning-based approaches

which are able to learn the feature representations in combination with statistical classifiers

from suitable training data. Impressive improvements in image quality and accuracy have been

achieved for various applications in computer vision such as image classification [142], seman-

tic segmentation [42], optical flow [61] and image restoration [271]. In medical imaging, the

deep learning techniques have mostly focused on image classification [159] and segmentations

tasks [121]. In these applications, deep learning was mainly used as a tool for image processing

and interpretation, however, the concept of learning can also be used at earlier stages of image

formation such as data acquisition or image reconstruction, which is of particular interest in

medical imaging. Although first results in using Artificial Neural Networks (ANNs) for re-

construction in Magnetic Resonance Imaging (MRI) [124], Computed Tomography (CT) [166]

and Single Photon Emission Computed Tomography (SPECT) [67, 127, 139, 184] have already

been shown in the 1990s, a breakthrough of deep learning for medical image reconstruction

started in 2016 [171, 244, 245]. The major reason for today’s success of deep learning methods

for medical imaging is that the training data and computational power have increased tremen-

dously over the past years. Furthermore, continuous developments of dedicated algorithms in

combination with freely available toolboxes allow us to implement new architectures with a

1
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few lines of code. Although impressive results are being achieved, these ”black box” results

are hard to interpret and incomprehensible, which does not only give rise to hope but also fear

concerning the application of Artificial Intelligence (AI) in healthcare.

1.1 The Potential of Artificial Intelligence in Medical Imaging

In the last years, deep learning algorithms have shown astonishing performance on medical

tasks that could only be performed by trained Medical Doctors (MDs). One example was

shown in 2017 where researchers at Google applied deep learning to detect metastatic breast

cancer on microscopy images [160]. Their deep learning algorithm achieved comparable or

greater accuracy on detecting cancer than human MDs which underwent extensive training

to detect tiny signs of cancer on these microscopic images. However, even if these first

results are promising, the employed algorithms have to be assessed thoroughly on large scale

studies if they have the potential to improve diagnostic accuracy and how these algorithms

are able assist MDs. Another application of AI is precision medicine: A vast amount of

data is available nowadays such as medical records, treatment plans, the patients’ history and

background information or even data from genome sequences, medical sensors and wearables.

Processing and analyzing these data might allow MDs to set up or improve new treatment

plans or prevention concepts on a single-patient level to improve individual diagnosis and

patient monitoring. These developments might generate new view points for MDs by moving

away from general, narrow ‘textbook‘ solutions to a more open, holistic view.

Indeed, there are a lot of opportunities how AI could change the world of radiology. In

the area of medical imaging, these opportunities range from computer aided diagnosis over

semantic image segmentation, image quantification to image acquisition and reconstruction.

This thesis is focused on deep learning for medical image reconstruction. Medical imaging

modalities such as CT and MRI are extremely powerful and have become indispensable in

clinical workflow, however, these modalities suffer from specific drawbacks that need to be

improved. Magnetic Resonance (MR) imaging offers excellent soft-tissue contrast and protocol

flexibility, which makes it a very powerful imaging modality for neurological, musculoskeletal,

and oncological diseases. However, the long acquisition time in MRI, which can easily exceed

30 minutes for a typical imaging protocol, leads to low patient throughput, problems with

patient comfort and compliance, artifacts from patient motion, and high exam costs. The

acquisition time can be decreased by combinations of improved (1) hardware concepts, such as

stronger gradients, phased array receive coils, higher field strengths, (2) signal generation and

acquisition design and (3) reconstruction concepts such as Parallel Imaging (PI) [77, 190, 227]

and Compressed Sensing (CS) [31, 60]. While MR is not hazardous, CT relies on ionizing

radiation, hence, a major goal is to decrease radiation dose in CT examinations. This can be

achieved by different concepts such as lowering the tube current, interrupted beam acquisitions

or acquiring less projections. However, there are some applications where it is not possible to

acquire data over the full angular range, known as limited-angle CT.

For all medical imaging technologies, the employment of more sophisticated image re-
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construction techniques requires to compute solutions iteratively and every single exam and

corresponding reconstruction task is treated as a new optimization problem. Hence, these opti-

mization problems do not use additional information explicitly, such as the expected appearance

of the anatomy or the known structure of artifacts, which appear due to reduced amount of

acquired data. This stands in stark contrast to how human radiologists read images. Radiolo-

gists are trained extensively throughout their careers to look for certain reproducible patterns.

They obtain remarkable skills to “read through” known image artifacts [105], even though local

noise provides a measure of uncertainty. Translating this conceptual idea of human learning to

deep learning allows us to shift the key effort of optimization from the online reconstruction

stage to an up-front offline training task, which enables both accelerated data acquisition and

accelerated image reconstruction.

AI leverages the potential to change the complete imaging workflow in radiology. Most

of the big tech-companies such as Google, Facebook, Microsoft, IBM and Amazon as well as

many smaller start-ups have started to develop deep learning algorithms for medical applica-

tions. However, many of currently existing algorithms were developed regardless of practical

relevance in medical imaging. Hence, one of the biggest challenges will be the interdisciplinary

work of AI specialists and medical professionals, who have the profound medical training and

understanding of the imaging workflow, to develop solutions with high practical relevance.

1.2 Contributions and Outline

The field of learning-based medical image reconstruction evolved tremendously during the

course of my PhD studies. Due to the enormous development of new algorithms and ap-

plication of deep learning algorithms to medical image reconstruction, this topic became al-

most unmanageable within a short amount of time. The first contribution is to provide an

overview and deeper understanding how deep learning can improve image reconstruction. In-

spired by variational models and deep learning, the second contribution is to leverage the

potential of Variational Networks (VNs), which were initially proposed as a reaction-diffusion

model [43, 46], for medical image reconstruction and radiology. First, we formulate image re-

construction as an image enhancement problem and use VNs for artifact-correction in limited-

angle CT. This study was conducted in cooperation with the Friedrich-Alexander-University

Erlangen-Nürnberg, Germany. Second, we formulate image reconstruction as an iterative re-

construction problem with a limited number of iterations and explore the impact of VNs on

accelerated MRI reconstruction of multi-coil patient data, which was the primary focus of this

thesis. This study was conducted in close collaboration with medical and MRI experts at the

Department of Radiology at New York University, NY, USA, who provided clinical patient data

of knee exams and experts’ knowledge, which served as a basis to develop an algorithm with

respect to a real clinical setting. This formulation was further extended to dynamic MR image

reconstruction, which was conducted in collaboration with the Institute of Medical Engineering

at Graz University of Technology, Austria.

This thesis is organized as follows: Chapter 2 provides an extensive overview how ma-
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chine learning can improve medical image reconstruction. The theory of VNs is introduced

in Chapter 3, along with improvements on the network architecture and the loss function,

which measures the similarity of the reconstructed image to the reference during training. The

following chapters illustrate different applications of VNs for medical image reconstruction. In

Chapter 4, a VN is formulated for image enhancement to correct artifacts of limited-angle CT

data. Chapter 5 presents the impact of VNs for the reconstruction of accelerated MR data in

a static 2D setting. Chapter 5 involves also practical details about the acquisition strategies

in clinical practice in Section 5.1 and data acquisition for the used clinical knee protocol in

Section 5.2. In Section 5.3, we gain insights into how VNs impact accelerated MR image

reconstruction for different sequences used in clinical knee imaging and Cartesian sampling

patterns, including a reader study on image quality. The generalization potential for a large

range of datasets and the impact of different loss functions on the image reconstructions are

explored in Section 5.4 and Section 5.5. Chapter 6 presents insights in using VNs with spatio-

temporal regularization for dynamic MRI applications. Each application chapter involves a

review of fundamental principles of the underlying applications. However, these introductory

sections have their own notation which should not be confused with the general notation of the

related work presented in Chapter 2 or the theory of VNs presented in Chapter 3. Chapter 7

summarizes the contributions of this thesis and presents an outlook on future research.

AI - New perspectives on the future of radiology1

1This image was generated by style-transfer [69] of an image containing colored wired structures on an MR
image of the knee.
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This chapter introduces how deep learning is able to improve upon the state-of-the-art in

medical image reconstruction of high-quality images from incomplete data. We present a

general overview over existing techniques in computer vision and medical imaging in order to

give an intuition of how deep learning can be applied to image reconstruction. Furthermore,

this chapter provides a deeper mathematical understanding of how deep learning techniques

can be employed for image reconstruction tasks. Therefore, we draw connections to traditional

approaches of solving inverse problems, rather than presenting details about the used neural

5
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network architectures. Approaches for both unsupervised, such as dictionary learning, and

supervised learning are covered in this chapter. The reviewed approaches for supervised learning

range from learning of hyper-parameters and more general regularizers in a variational model

to replace steps in an iterative reconstruction algorithm with Convolutional Neural Networks

(CNNs), to learning image enhancement and learning a full mapping between measured data

and reconstructed images. With the major focus on supervised learning, this chapter also

includes key challenges such as suitable training data, transfer learning, selection of the loss

function for training and evaluation of image quality.

2.1 Inverse Problems in Imaging

Inverse problems arise in various applications ranging from medicine over geophysics to eco-

nomics. In the area of computer vision, this includes, but is not limited to image segmentation,

motion correction, image registration, object detection and image reconstruction. Considering

medical image reconstruction, the goal is to reconstruct an image x ∈ KNx from measurement

data y ∈ KNy given the following system of equations

y = A(x) + ν, (2.1)

where ν ∈ KNy is an additive random noise variable, the field K = R,C is the set of either

real numbers R or complex numbers C. The dimensions of the vector space of the image

x and data y is denoted by Nx and Ny. The forward operator A : KNx → KNy defines a

mapping between the normed vector spaces of the image data and the measurement data. In

this work, we mainly consider the `p-norm for p ≥ 1 over a vector z ∈ KN which is defined

for an N -dimensional field KN as

‖z‖p =

(
N∑
i=1

|zi|p
) 1

p

.

The forward operator A describes the acquisition process to measure y given the physical and

technical conditions and limitations, which often involves approximations of the real physics.

In Magnetic Resonance Imaging (MRI), the forward operator includes the Fourier Transform

(FT) to map an image to the measurement space (k-space), while the fundamental relationship

to map images to sinograms in Computed Tomography (CT) is mainly described by the Radon

transform. Figure 2.1 illustrates examples for image and measurement data for MRI and

CT. Typical examples for medical image reconstruction problems are the reconstruction from

Cartesian or non-Cartesian undersampled k-space data in MRI from single or multiple receiver

channels, where the latter is commonly termed Parallel Imaging (PI). In CT typical applications

are low-dose, sparse-view and limited-angle CT, which are based on parallel-beam, cone-beam,

fan-beam or spiral acquisitions. In Positron Emission Tomography (PET), typical applications

are dose reduction, improved resolution, attenuation correction and motion correction. In
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Photoacoustic Tomography (PAT), one aims at recovering the initial pressure distribution

which is related to the optical absorption of biological tissue. Common techniques here are

sparse sampling or limited-angle acquisitions. Generally speaking, one often seeks to acquire

as few measurements as possible. This reduces acquisition time, ionizing radiation dose for

CT or PET and decreases motion artifacts, which greatly increases patient comfort, reduces

risks for patients and lowers overall healthcare costs.

(b) Sinogram(a) CT image (d) k-space(c) MR image

Figure 2.1: Example measurement spaces and image spaces for CT and MRI. A CT image (a) is
reconstructed from a sinogram (b) based on the Radon transform. For Magnetic Resonance (MR)
images (c), the data are acquired in Fourier domain, termed k-space (d).

Recovering x from the measurement data y is often an ill-posed problem: A solution might

not exist, the solution might not be unique or the solution might be unstable with respect to

small variations in the data [81]. Obtaining a solution for x in Equation (2.1) is ill-posed in

most practical cases, because of uncertainties due to measurement errors, low Signal-to-Noise

Ratio (SNR), incomplete data and hardware limitations. Hence, no explicit solution can be

obtained for x. A natural approach is to minimize the data-misfit using

x∗ ∈ arg min
x∈KNx

D [A(x), y] , (2.2)

where D : KNy × KNy → R is a mapping representing the statistical properties of the data.

For normally distributed noise, an assumption that is true for MRI k-space data, a common

approach here is to estimate a least-squares solution

x∗ ∈ arg min
x∈KNx

1

2
‖A(x)− y‖22 . (2.3)

For different noise statistics, e.g., Poisson distributed samples encountered in PET and to some

degree in CT, the Kullback-Leibler divergence is commonly used

x∗ ∈ arg min
x∈KNx

Ny∑
i=1

(A(x)i − yi log(A(x))i),
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where i denotes discrete sampling locations. Calculating the minimizer of these problems

often leads to over-fitting the noisy measurement data. There exists several methods to

restrict the solution space and search for an approximate solution in order to avoid solutions

that are dominated by noise. One possibility is to perform early stopping [97], which acts

as regularization. Another possibility is to impose additional constraints on x and add an

regularization term to Equation (2.2) leading to the variational model

x∗ ∈ arg min
x∈KNx

λD [A(x), y] +R [x] , (2.4)

where λ > 0 is a weight parameter that controls the influence of the regularization term R
and the data consistency term D. In traditional optimization, simple generic and robust image

priors are used. In the context of imaging, a common choice for the regularization term is a

discrete approximation of the Total Variation (TV) semi-norm [207], which reads as

R [x] = ‖Dx‖2,1 =

Nx∑
i=1

√∑
d

(
|Dx|(d)

i

)2
, (2.5)

where the operator D : KNx → KNx·d approximates the image gradient by finite differ-

ences [35], the index i indicates the discrete pixel locations in image domain and d denotes

the dimension of the image space. Due to the convexity of the TV semi-norm and, hence, the

entire variational model in Equation (2.4), it allows for efficient global optimization. One par-

ticular feature of the TV semi-norm is that it approximates sparsity in the image edges, hence,

it allows for sharp discontinuities in the reconstruction. However, it favors piece-wise constant

solutions which are often not a suitable regularization to describe the content of natural and

medical images. Especially when it comes to the acceleration of the image acquisition process,

the choice of the regularization part and thus the weight parameter has a strong influence on

how the final solution appears.

In the context of medical image reconstruction, Compressed Sensing (CS) [19, 31, 60, 164]

is a widely used technique to reconstruct images from only a few measurements, sampled below

the Nyquist rate [177, 220]. CS requires three conditions to be fulfilled. The first condition

is the incoherence of artifacts arising due to the encoding of the undersampled measurements

y [31, 60]. In MRI this can be achieved by non-Cartesian [19] or pseudo-random [164] sampling

trajectories. The second condition states that the image has to be represented sparsely in a

certain transform domain, which can be achieved by Wavelets [53, 164] or the TV semi-

norm including extensions to higher-order Total Generalized Variation (TGV) [19, 21, 132,

207] as presented in Equation (2.5). To enforce sparsity and additionally allow for efficient

global optimization, the `1 norm is used to approximate sparsity of the transformed image

in the convex setting. Finally, both conditions, i.e., the consistency to the measured data

and the sparsity in the transform domain, are combined in a non-linear reconstruction given

in Equation (2.4), defining the third CS condition.

CS approaches show highly promising results for various imaging applications, however,
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the translation to clinical practice is not trivial. In the case of MRI, Cartesian sampling

schemes, which violate the incoherence assumption of artifacts, form the majority of clinical

examinations [105]. Another observation is that the sparsifying transforms used in CS are too

simple to capture the complex image content and structure of artifacts of medical images.

Images reconstructed with the simple, handcrafted priors are often criticized by radiologists

because the reconstructions can appear unnatural or blocky [105]. Another drawback, not only

for CS-based approaches but also for many other iterative approaches, is the computational

complexity and long reconstruction times for many of the algorithms used to solve the non-linear

optimization problems. Finally, the sensitivity of hyper-parameters to the final reconstruction

results makes it challenging to translate CS to clinical examinations, where imaging situations

might vary. If the hyper-parameters are selected poorly, the reconstruction might be either

under-regularized and still show artifacts or it might be over-regularized and thus biased. The

latter case often results in a loss of details, which could be pathologies in the worst case, and

an unnatural appearance of the images.

If we take a closer look at iterative reconstruction approaches, we observe that every

new task is treated as a new optimization problem and no prior knowledge of the known

structure of artifacts and the image content is taken into account. However, this contradicts

how human radiologists read images, as they are trained throughout their careers to recognize

certain patterns and read through diagnostic non-relevant patterns as residual artifacts [105].

When translating this observation to machine learning, this means that the optimization task

can be transferred to an off-line training task where the key parameters are learned from

undersampled data and clean images instead of solving an on-line optimization task for each

new dataset based on handcrafted features. In the following sections, we will see how deep

learning strategies in unsupervised and supervised learning improve upon the regularizer and

overcome other challenges of CS-based approaches.

2.2 Unsupervised Learning in Image Reconstruction

We briefly review unsupervised learning strategies such as dictionary and sparsifying transform

learning along with a K-sparse Autoencoder (KSAE). The dictionary or the sparsifying trans-

form can either be pre-trained from a set of distorted training data or learned simultaneously

with the reconstruction, which is termed blind compressed sensing.

Dictionary learning works at the level of image patches xp ∈ KNp of size p × p. The

dimension of the patch is defined by Np = p2. An arbitrary path xp,i ∈ KNp can be extracted

from an image x for the ith patch location using a patch extraction matrix Pi : KNp×Nx .

This patch extraction matrix Pi is defined for all Ns possible patch locations i in the image

and considers the correct boundary conditions, e.g., symmetric or zero boundary conditions.

The aim of synthesis dictionary learning is that an image patch can be approximated by a

sparse linear combination of a dictionary D ∈ KNp×Nα with a sparse Nα-dimensional vector

αi ∈ KNα . The dictionary D = [d1, . . . , dNα ] consists of a normalized set of basis vectors

dj , j = 1, . . . , Nα, called atoms. The according optimization problem for blind compressed
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sensing is formulated as [195]

min
x∈KNx

D∈KNp×Nα

Ns∑
i=1

1

2
‖Pix−Dαi‖22 +

λ

2
‖Ax− y‖22 s.t. ‖αi‖0 ≤ K0 ∀i, ‖dj‖2 ≤ 1∀j

where λ > 0 and the parameter K0 defines the sparsity level. However, the above problem is

NP-hard, even if the `0 quasi-norm is replaced by the convex `1 norm. Ravishankar et al. [195]

proposed to solve this problem using an alternating minimization scheme. In the first step,

the dictionary is learned using a K-Singular Value Decomposition (SVD) [8] algorithm. Due

to the high computational requirement, only a fraction of all patches is used for this step.

The sparse codes αi for all image patches are then estimated using the Orthogonal Matching

Pursuit (OMP) algorithm [28]. In the second step, the reconstruction is updated, while the

dictionary D and sparse codes αi are fixed. The reconstruction quality highly depends on the

sparsity level K0 and the size of the dictionary. Promising results using dictionary learning

have been shown for MRI [26, 195] and CT [258].

Instead of learning a synthesis dictionary, Ravishankar et al. [196] also proposed to learn

the sparsifying transform, which can be seen as a generalization of the analysis model. Applied

to blind compressed sensing, the corresponding model reads [197, 198]

min
x∈KNx

W∈KNp×Np
α∈KNα×Ns

Ns∑
i=1

(
1

2
‖WPix− αi‖22 + β ‖αi‖0

)
+
λ

2
‖Ax− y‖22 s.t. W ∗W = I,

where β > 0, λ > 0 and α = [α1, . . . , αNs ] is a matrix of all sparse vectors αi. The sparsifying

transform is represented by the matrix W ∈ KNp×Np . Similar to dictionary learning, this

problem can be solved by alternating minimization of the sparsifying transform W , the sparse

codes αi ∀i and the reconstruction x [197, 198]. In general, learning of the sparsifying transform

is computationally inexpensive compared to dictionary learning, because a closed-form solution

based on thresholding exists for the sparse codes. In medical imaging, transform-based learning

has led to promising results for both MRI and CT [197, 198, 200, 275]. Recently, the dictionary,

transform and thresholding operators for MRI reconstruction were learned based on a supervised

learning scheme [199] (see Section 2.3.2 for more details).

In both dictionary learning and sparsifying transform learning, patches are approximated

by a sparse combination of dictionary atoms. To incorporate the whole image, an alternative

approach is to learn a convolutional sparse representation [48, 250], where an image is approx-

imated by convolving a number of K dictionary filters ζk ∈ KNζ with sparse coefficient maps

ck ∈ KNx . The convolutional dictionary problem in synthesis form is formulated as

min
ζk∈K

Nζ

ck∈KNx

1

2

S∑
s=1

∥∥∥∥∥xs −
K∑
k=1

ζk ∗ ck,s

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖ck,s‖1

 s.t. ‖ζk‖2 ≤ 1 ∀k,
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where λ > 0 and xs is the sth of S training samples. To reconstruct a new image, the filters

ζk are fixed and the sparse coefficient maps ck are learned. The final image is reconstructed

by computing x∗ =
∑K

k=1 ζk ∗ ck.

A very recent approach for unsupervised learning learns a non-linear sparse prior based on

KSAE [252] with application to iterative low-dose CT reconstruction. The goal of the KSAE

is [167] to train an encoder fenc and decoder fdec

(θ∗enc, θ
∗
dec) ∈ arg min

θenc,θdec

Ns∑
i=1

1

2
‖xi − fdec(fenc(xi))‖22 s.t. ‖fenc(xi)‖0 ≤ K0 ∀i,

where K0 defines the sparsity level and θ∗enc and θ∗dec denote the optimal parameters for the

encoder fenc and decoder fdec, respectively. Here, xi denotes the ith of Ns training patches

of clean reference images, i.e., normal-dose CT images. The encoder and decoder are realized

using fully-connected networks and Rectified Linear Unit (ReLU) activations. Once the encoder

and decoder networks are learned, a new image can be reconstructed according to the following

unconstrained optimization problem

min
x∈KNx

x̂∈KNx×Ns

1

2

Ns∑
i=1

‖Pix− fdec(fenc(x̂i))‖22 +
λ

2
‖Ax− y‖22 ,

where λ > 0, Pi is the patch-extraction matrix as defined for dictionary and transform learning,

and x̂ = [x̂1, . . . , x̂Ns ] are the patches projected on the set trained by the autoencoder. Wu et

al. [252] propose this optimization problem in an alternating manner using the Separable

Quadratic Surrogate (SQS) algorithm.

2.3 Supervised Learning in Image Reconstruction

Supervised learning approaches require three major ingredients for successful learning: A net-

work architecture fθ , suitable training data and an appropriate loss function L. In an off-

line training procedure as depicted in Figure 2.2, the corrupted data are fed to a network

parametrized by the parameters θ that are optimized during training. The output of the net-

work is compared to a reference image using a loss function L that measures the similarity be-

tween the two images. This determines the reconstruction error that is back-propagated [147]

through the network to obtain a new set of updated parameters. This process is repeated

until the training has converged. Once all the parameters are learned, new images can be

reconstructed efficiently as a simple application of fθ .

Figure 2.3 illustrates different strategies of how neural networks can be employed in image

reconstruction. In the first method, a data-driven regularizer is learned from pairs of corrupted

and clean images. This includes learning optimal weight parameters using bi-level optimization

or learning an improved denoiser, which replaces fixed proximal steps in an iterative reconstruc-

tion scheme involving operations that ensure consistency to the given measurement data. The
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acquired raw data reconstruction
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Figure 2.2: Schematic illustration of the training process. The corrupted data are propagated through a
network with parameters θ that should be learned to obtain an artifact-free reconstruction. The quality
corresponds to the selected loss function L that measures the similarity between the reconstructed
image and the reference image. The reconstruction error is propagated back through the network to
achieve a new set of parameters. Once the training has converged, new images can be reconstructed
efficiently by simply forward-propagating the new data through the network using the fixed learned
parameters.

second approach focuses on learning an unrolled iterative optimization scheme, involving data

consistency term operations in every single unrolled step. These two approaches ensure data

consistency to the measured data, which is not ensured by the following two approaches. The

third approach defines image reconstruction as an image enhancement problem, which tries

to improve upon an initial corrupted reconstruction from the measured data without including

the measured data in the learning process. This approach also includes improvements upon

the measured data directly in the measurement domain and performs, e.g., artifact correction

before the image is finally reconstructed. The fourth approach focuses on mapping the mea-

sured data directly to the image domain, where the whole transform or parts of the image

formation process can be learned. The four different approaches will be reviewed in detail in

the following subsections.

2.3.1 Learning an Improved Regularization Function

Given the variational model in Equation (2.4), a natural question is how to select not only the

correct weight parameter λ, but also the regularization function R itself. While bi-level opti-

mization [29, 55–57, 185, 209, 240] addresses the first question, the underlying handcrafted

regularizer might still be too weak for more complex reconstruction tasks. Thus, develop-

ments have focused on the use of non-convex regularizers, embedded in a bi-level optimization

approach. An overview over modern regularization techniques for inverse problems can be
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(a) Learning a better regularizer off-line for traditional iterative reconstruction
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(b) Learning iterative reconstruction for a fixed number of iterations T
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Figure 2.3: Overview of how image reconstruction can be defined as deep learning-based problem.
(a) Data-driven regularization in a traditional optimization problem with an off-line trained denoising
network. (b) Learning an unrolled optimization scheme for a fixed number of iterations T (c) Image
enhancement in data or image domain (d) Direct Mapping.
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found in [15]. In recent publications, CNNs are trained to act as additional regularization in a

variational model or to replace a proximal mapping in a Proximal Gradient (PG) scheme.

Non-Convex Regularization. Simple convex regularizers such as the TV semi-norm as de-

fined in Equation (2.5) enable efficient global optimization where a unique solution exists.

The used `1 norm is a convex approximation to the sparsity-inducing l0 norm. However, the

`1 norm is not a suitable model to describe the prior distribution of natural and medical im-

ages. The quasi-convex `q norm with q ∈ (0, 1) approximates the prior distribution better

and already yields superior results [175]. However, when leaving convexity assumptions behind

and moving to non-convex optimization, finding a good solution is even more challenging and

highly sophisticated optimization algorithms are needed to overcome spurious local minima

while allowing for efficient computation.

An example for non-convex regularization is the Fields of Experts (FoE) model [206], which

can be seen as an extension of the TV semi-norm

R [x] =

Nk∑
i=1

〈ρi(Kix),1〉 .

Here, the single term of the TV semi-norm is extended to Nk terms consisting of non-linear

potential functions ρi(z) = (ρi,1(z1), . . . , ρi,N (zN )) ∈ KNx and linear convolution operators

Ki : KNx → KNx . The symbol 1 ∈ KNx indicates a vector of ones. The free parameters of the

FoE model are the convolution operators and the parametrization of the non-linear potential

functions, which are both learned from data [206, 209]. The selected potential functions

are associated with the statistics of natural images [119]. An example are the log-student-t

functions ρi,j(zj) = αi,j log(βi,jz
2
j +1), applied in a point-wise manner, where j represents the

discrete pixel locations in image domain. Learning strategies of the FoE model such as bi-level

optimization [44, 45, 209] and learned iterative reconstructions, termed Variational Networks

(VNs) [46, 84, 140], will be presented in this chapter and in Chapter 3.

Bi-level Optimization. One natural question that arises when solving Equation (2.4) is

how to select the weight parameter λ. Different approaches exist to tackle this problem

such as reinforcement learning [221] and bi-level optimization. Bi-level optimization problems

consist of two problems: (i) A higher-level problem which defines the goal of the optimization,

e.g., minimizing the Mean Squared Error (MSE). The outcome of this problem depends on

(ii) the solution of the lower-level problem, which could be the solution to Equation (2.4).

Mathematically speaking, bi-level optimization reads as

min
θ≥0
L (x∗(θ), xref) s.t. x∗(θ) ∈ arg min

x∈KNx
E(x, θ),

where x∗ is a solution to the lower-level problem arg minx∈KNx E(x, θ), depending on trainable

parameters θ, and minimizing L defines the higher-level problem that compares x∗ with a
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reference xref using a certain mapping L. To solve this bi-level optimization problem, the

lower-level problem needs to be solved with high accuracy and is in general required to be

twice differentiable in order to compute the gradient of the higher-level problem

∂L
∂θ

= − ∂2E

∂x∗∂θ

(
∂2E

(∂x∗)2

)−1
∂L
∂x∗

,

where β > 0 and λ > 0. In [178], a way to consider non-smooth functions as lower-level prob-

lems in bi-level optimization is proposed. Bi-level optimization helps to tune the reconstruction

results, as the right weight parameters are learned as shown for analysis prior learning [185] and

various image restoration problems [29, 55–57, 240]. However, the underlying regularizers are

often still too simple to capture the characteristics of natural and medical images. Hence, the

focus moved from learning single parameters to learning function parametrizations and filters

from data [44, 45, 144, 209] which fit the statistics of natural images better [119]. However,

the major drawbacks of bi-level optimization problems are the huge computational effort and

the requirement to solve the lower-level problem exactly, which is especially critical in the

context of medical image reconstruction due to, e.g., large-scale problems or the expensive

computations of the forward operator A and the adjoint operator A∗.

Convolutional Neural Networks as Regularization. There are different ways to include

CNNs in existing models. The earliest example in the context of MR image reconstruction

trains a CNN that maps artifact-corrupted images A∗(y) to artifact-free images xref [246]. The

trained CNN is then embedded in a CS formulation, where the CNN output acts as a reference

image for the new optimization problem

x∗ ∈ arg min
x∈KNx

β

2
‖fθ(A∗(y))− x‖22 +

λ

2
‖A(x)− y‖22 +R [x] .

The parameters β > 0 and λ > 0 are weight parameters that have to be selected individually

for this optimization problem and R [x] is an arbitrary fixed regularization function. The

operators A and A∗ define the forward and adjoint operator, respectively.

Another possibility how CNNs can improve the reconstruction quality is to replace existing

proximal mappings in iterative reconstruction procedures to estimate a solution for the vari-

ational model in Equation (2.4). In many iterative reconstruction algorithms such as the PG

method, the proximal mapping proxτR is employed to fulfill the regularization constraint while

a gradient step is performed wrt. the data consistency term D. This leads to the following

iterative scheme

xt+1 = proxτR
(
xt − τ∇xD

[
A(xt), y

])
,



16 Chapter 2. Machine Learning for Image Reconstruction

where the proximal operator is defined as

proxτR(x̂) = arg min
x∈KNx

1

2τ
‖x− x̂‖22 +R [x] . (2.6)

Heide et al. [102] and Venkatakrishnan et al. [241] observed that the proximal mapping in

Equation (2.6) coincides with the Maximum-A-Posteriori (MAP) estimation of a Gaussian

denoiser. It was suggested to replace the proximal operator by more sophisticated denoising

algorithms such as BM3D [50] and Non-Local Means (NLM) [25]. In fact, this does not have

to be necessarily done for the projected gradient method, but can also be achieved with any

first-order method such as the Alternating Direction Method of Multipliers (ADMM) [20], used

in the plug-and-play priors framework by [241], or the Primal-Dual (PD) algorithm [34], as

shown in [102]. Replacing the denoising steps by BM3D and NLM denoising steps in medical

image reconstruction has been successfully applied to MRI [4, 5, 64] and CT [47, 192].

Inspired by [102, 241], Meinhardt et al. [174] replaced the proximal operator by a learned

denoising CNN

xt+1 = fθ
(
xt − τ∇xD

[
A(xt), y

])
.

As before, this is not only restricted to a single PG method, but can also be used for other

methods like ADMM or PD. The training of the used CNN is based on pairs of corrupted

and clean reference images. The CNN can be trained more effectively by additionally feed-

ing pairs of intermediate reconstruction results and reference images to the CNN [80, 126].

Promising results towards learning a proximal operator were shown for CT [37, 80, 126] and

PET [71]. Obviously, learning a proximal operator has the advantage that it can be trained

offline, meaning that the content of natural or medical images is reflected in the CNN. Once

the denoiser is learned, it offers flexible usage for any new optimization problem with arbitrary

data consistency terms. The learned denoiser, i.e., the proximal operator, remains the same in

every single step of the optimization procedure.

2.3.2 Learning an Iterative Reconstruction Model

Instead of solving a new optimization problem for each task, the whole iterative reconstruction

procedure itself can be learned. This can be motivated by the Landweber method [146]. Given

an iteration-dependent step size τ t and an initial solution x0, the Landweber method performs a

gradient descent on the least-squares problem Equation (2.3), leading to the following iterative

algorithm

xt+1 = xt − τ t∇xD
[
A(xt), y

]
.

In order to prevent over-fitting to the measurement data y, it is beneficial to stop the Landweber

method after a finite number of iterations T [97], which is known as early stopping. When

including the regularization term, this idea can be extended to unroll a (proximal) gradient
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Algorithm 1 Learned Proximal Gradient, gradient in R [58, 213]

Input: x0 ∈ KNx

for t = 0, . . . , T − 1 do
xt+

1
2 = xt − fθt

xt+1 = proxλtD[A(·),y]

(
xt+

1
2

)
= arg min

x∈KNx
1
2

∥∥∥x− xt+ 1
2

∥∥∥2

2
+ λtD [A(x), y]

end for

algorithm for a finite number of iterations T , where the data consistency term and regularization

term are applied in an alternating manner

xt+
1
2 = f1(xt), (2.7)

xt+1 = f2(xt+
1
2 ). (2.8)

Here, the functions f1 and f2 consider the prior term and the data term, or vice versa,

depending on the algorithm. The goal is now to learn this optimization scheme for a fixed

number of T iterations, including step sizes, the prior model and weight parameters. We

also see that this formulation enforces data consistency steps in every iteration. In 2005,

Gregor and LeCun made first attempts towards learning an unrolled scheme by proposing the

Learned Iterative Shrinkage and Thresholding Algorithm (LISTA) algorithm [76], which learns

an encoder network to approximate the sparse codes in Iterative Shrinkage and Thresholding

Algorithm (ISTA) [33, 52]. As stated in the previous section, this scheme is not only restricted

to (proximal) gradient methods [1, 46, 84, 213], but can be also extended to a broader class

of optimization algorithms [2, 58, 243, 247, 263].

The first possibility to solve Equation (2.7) and Equation (2.8) is with a PG method where

f1 computes the gradient wrt. R and f2 models the proximal operator on D. This results in

xt+
1
2 = xt − τ t∇xR

[
xt
]
, (2.9)

xt+1 = proxτ tλD[A(·),y]

(
xt+

1
2

)
= arg min

x∈KNx

1

2τ t

∥∥∥x− xt+ 1
2

∥∥∥2

2
+ λD [A(x), y] . (2.10)

Diamond et al. [58] and Schlemper et al. [213] suggest to replace the gradient update in

Equation (2.9) by a trainable function fθt representing a CNN, which is allowed to change

in every iteration t, or the weights θ can be shared across the different iterations [6, 7, 193].

Then, Equation (2.9) naturally turns into a residual neural network [101]. The step size

in Equation (2.10) can be neglected as it is implicitly contained in the weight parameter λ

and the CNN, which are both allowed to change in every iteration. This version of the learned

PG with the gradient in R is depicted in Algorithm 1. To train Algorithm 1 end-to-end, a

closed-form solution of the proximal operator has to exist.
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Algorithm 2 Learned Proximal Gradient, gradient in D [100]

Input: x0 ∈ KNx

for t = 0, . . . , T − 1 do
xt+1 = fθt

(
xt,∇xD

[
A(xt), y

])
end for

Example: Single-coil MRI reconstruction [213]. An example in medical imaging for which

the proximal operator has a closed-form solution is single-receive-coil MRI reconstruction. The

data consistency term reads as D [A(x), y] = 1
2 ‖Ax− y‖

2
2 with A = PF , where F is the

Fourier transform and P models the encoding matrix, filling the missing k-space lines with

zeros. The proximal mapping to this data consistency term is computed as

xt+1 = F∗ΛtFxt+
1
2 +

λt

1 + λt
F∗P ∗y,

Λtii =

{
1 if i /∈ Ω

1
1+λt if i ∈ Ω

where Λ is a diagonal matrix and Ω defines the index set of acquired k-space samples. As this

proximal mapping enforces data consistency, this step is also termed data consistency layer

in [193, 213].

Various applications in MRI exist to solve Equation (2.4) with algorithms like Algorithm 1.

Schlemper et al. [213] proposed a deep cascaded CNN with the focus on dynamic MRI in a

single-coil setting. This approach was improved by Qin et al. [193] who introduced a recurrent

neural network architecture that shares weights over layers and considers additional memory in

both spatial and time domain. Aggarwal et al. [6, 7] proposed an approach for both single-coil

and multi-coil MRI for static and dynamic imaging. A similar idea was used by [170], which

consists of a single iteration of CNN regularization and data consistency step. An improved

version using a recurrent architecture was presented in [169].

A second possibility to solve Equation (2.7) and Equation (2.8) is a variant of the PG

method where f1 now computes the gradient wrt. D and f2 models the proximal operator on

R, resulting in

xt+
1
2 = xt − τ t∇xD

[
A(xt), y

]
,

xt+1 = proxτ tR

(
xt+

1
2

)
.

In principle, the proximal operator can be replaced by a trainable function fθt , however, it is

challenging to define the correct step size τ t. Therefore, Adler et al. [1, 2] and Hauptmann et

al. [100] proposed to let the CNN learn how to combine xt with the gradient of the data

consistency term ∇xD
[
A(xt), y

]
. Hence, fθt takes xt stacked with ∇xD

[
A(xt), y

]
as an

input, such that the update xt+1 can be reformulated as shown in Algorithm 2. Motivated
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Algorithm 3 Learned Proximal Gradient with memory, gradient in D [1]

Input: x0 ∈ KNx , x0
mem ∈ KNx,mem

for t = 0, . . . , T − 1 do(
xt+1, xt+1

mem

)
= fθt

(
xt,∇xD

[
A(xt), y

]
, xtmem

)
end for

by accelerated gradient methods, information of earlier iterates can be used by extending the

formulation with an additional memory variable xmem ∈ KNx,mem , leading to Algorithm 3, where

Nx,mem defines the dimension of the memory.

To introduce another class of optimizers, let us first go back to traditional optimization.

For this purpose, we formulate the variational model in Equation (2.4) as a general model

min
x∈KNx

F (H(x)) +G(x), (2.11)

where F : KNp → R is a proper convex lower-semicontinuous (l.s.c.) and possibly non-smooth

function, the function G : KNx → R is smooth and proper convex l.s.c., and H : KNx → KNp

is a differentiable, possibly non-linear, operator. In some cases, the proximal mapping on F

does not have a closed-form solution, so PD methods [34, 35], which were extended to non-

linear operators [239], offer a possibility to tackle this problem. By introducing a dual variable

p ∈ KNp , the primal problem in Equation (2.11) can be cast to a PD saddle-point problem

with following structure

min
x∈KNx

max
p∈KNp

〈H(x), p〉+G(x)− F ∗(p),

where F ∗ is the Fenchel conjugate of F . A solution can be approximated by using the (non-

linear) PD hybrid gradient method depicted in Algorithm 4, where τ, σ are the primal and dual

step sizes, and the expression
[
∂H(xt)

]∗
: KNp → KNx denotes the adjoint of the derivative

of H, evaluated in xt. When inspecting Algorithm 4, we observe two proximal operators in the

primal and dual space, as well as an over-relaxation step. This is the motivation of Adler et

al. [2] to learn the proximal operators along with the update steps, resulting in the learned PD

Algorithm 5, where the parameters that are learned during training are θ = [θprimal, θdual].

The learned PG methods have been applied to different medical inverse problems. Adler et

al. [1, 2] showcase Algorithm 3 and Algorithm 5 on a 2D CT problem, including a discussion on

the performance using linear and non-linear operators. Hauptmann et al. [100] used Algorithm 2

for PAT reconstruction. An extension to a multi-scale U-net architecture was presented in [99].

Another possibility to tackle the problem defined in Equation (2.4) is to take gradient

steps in the direction of the prior term and the data consistency term, either in an alternated

way or in a single combined step. This concept was initially used in learning an optimized

reaction-diffusion process for image restoration [46], and further led to the formulation of

Variational Networks [84, 140], which have a strong connection to both variational models and
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Algorithm 4 Non-Linear Primal-Dual Hybrid Gradient [34, 239]

Input: x0 ∈ KNx , p0 ∈ KNp

Choose: σ, τ > 0 s.t. στ ‖H‖22 ≤ 1, ϑ ∈ [0, 1]
for t = 0, . . . , T − 1 do
pt+1 = proxσF ∗

(
pt + σH(x̃t)

)
xt+1 = proxτG

(
xt − τ

[
∂H(xt)

]∗
(pt+1)

)
x̃t+1 = xt+1 + ϑ

(
xt+1 − xt

)
end for

Algorithm 5 Learned Primal-Dual [2]

Input: x0 ∈ KNx , p0 ∈ KNp , x0
mem ∈ KNx,mem , p0

mem ∈ KNp,mem

for t = 0, . . . , T − 1 do(
pt+1, pt+1

mem

)
= fθtdual

(
pt, ptmem, H(x

(1),t
mem), y

)
(
xt+1, xt+1

mem

)
= fθtprimal

(
xt, xtmem,

[
∂H(xt)

]∗
(pt+1)

)
end for

deep learning. As VNs are the main focus of this thesis, their theory is described in detail in

Chapter 3. The basic concept of VNs relies on unrolling a gradient descent step for a finite

number of iterations T in direction of the gradient of a smooth variational model defined in

Equation (2.4)

xt+1 = xt − τ t
(
∇xR

[
xt
]

+∇xD
[
A(xt), y

])
.

The step size τ t can be neglected during learning as it is implicitly contained in R and D. VNs

are characterized by the special structure of the regularization term and data consistency term

which is related to variational models as depicted in Algorithm 6. For the regularization part,

this relation is typically fulfilled by the FoE model. In case the exact data consistency term

is not known, it can be replaced by a trainable data consistency term, e.g., D
[
A(xt), y

]
=

ρtD
(
Axt − y

)
[130, 243] where ρD are potential functions defined in the same way as ρ. Due

to the strong connection to variational models, VNs allow us to gain some insights into what is

learned by the model, as filters and activation / potential functions can be visualized. The first

works on restricting the potential functions to convex functions and studies on the relation

to energy minimization were shown in [140]. Furthermore, VNs are a versatile architecture

that have shown state-of-the-art results not only in image restoration tasks, including image

denoising [46], JPEG deblocking [46], demosaicing [130] and image inpainting [267], but also in

MRI reconstruction [84, 136] and low-dose CT reconstruction [141]. In Real-Time Hand-Held

Sound-Speed Imaging [243], an unrolled gradient descent scheme with momentum is learned

along with an additional parametrization of the data consistency term. Inspired by the idea

of VNs, Chen et al. [39] replaced the gradient of the regularization function by a CNN part

for sparse-view CT reconstruction. In a similar approach, a CNN with trainable activation



2.3. Supervised Learning in Image Reconstruction 21

Algorithm 6 VNs [46, 84, 140]

Input: x0 ∈ KNx

for t = 0, . . . , T − 1 do
xt+1 = xt − fθtR(xt)− fθtD(xt, y) s.t. fθtR = ∇xRθtR , fθtD = ∇xDθtD

end for

Algorithm 7 Recurrent Inference Machines [191]

Input: x0 ∈ KNx , x0
mem = 0

for t = 0, . . . , T − 1 do
xt+1
mem = f̂θ(∇x log p(y|x)(xt), xt, xt+1

mem)
xt+1 = xt + fθ(∇x log p(y|x)(xt), xt, xt+1

mem)
end for

functions was used for joint denoising and segmentation of tumor cells [63].

A different approach for learned iterative MR reconstruction using Recurrent Inference

Machines [191] was shown in [161] and is stated in Algorithm 7. An aliased image along with

the gradient of its log-likelihood ∇x log p(y|x)(xt) is fed to a recurrent neural network fθ ,

where weights are shared across iterations. This produces an incremental update of the input

x and the latent memory variable xmem, where f̂θ in Algorithm 7 is the part of fθ generating

the update for xmem.

There are also other approaches that fall into the class of learning an iterative recon-

struction. Dictionary-transform learning has been presented in Section 2.2, where alternating

updates wrt. to data consistency term and dictionary / transform update steps are performed.

Recently, Ravishanker et al. [199] proposed to unroll this scheme and learn the regularizer

layer-by-layer in a supervised way, involving the dictionary, transforms and thresholds using

a neural network approach. For MRI reconstruction, Eo et al. [65] proposed the KIKI-net

that performs iterative updates in the k-space and image domain which are both trained with

CNNs, with intermediate data consistency layers.

The presented unrolled model-based iterative approaches were defined in a very generic way

which makes them convenient to adapt to a new model when the forward and adjoint operators

A and A∗ are known. Thus, data consistency to the measured data y is ensured in every single

iteration. However, the complexity of some operators in medical image reconstruction such

as PAT [100] makes it infeasible to train the whole algorithm end-to-end. In this case, the

algorithm has to be trained in a greedy manner iteration-by-iteration, although end-to-end

training would result in a performance increase [46]. Hence, a trade-off between tractable

computation time and quality of the output has to be made. If the parameters in every iteration

vary, the model is more flexible to adapt to training data [140]. Special recurrent architectures

share the weights across iterations and additionally transport information through the iterative

procedure via a memory state variable, which greatly reduces the number of parameters while

still being flexible.
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2.3.3 Deep Learning for Image and Data Enhancement

In contrast to iterative reconstruction methods, where the measured raw data are accounted

in every reconstruction step, enhancement methods do not include the physical model. En-

hancement can be performed in the data domain as pre-processing y∗ = fθ(y) or in the image

domain as post-processing x∗ = fθ(x
0). In the case of pre-processing, the reconstruction is

performed on the enhanced measurement data y∗, while in the case of post-processing an

initial solution x0 is first reconstructed and then enhanced to obtain x∗. An obvious advan-

tage is that the training is highly efficient as the physical model, which is often heavily time

consuming to evaluate numerically, is not considered. The drawback is that the used network

architecture can only work on information that is provided in the initial guess and the informa-

tion that is extracted from the training data. Consequently, consistency to measured raw data

is not maintained for post-processing methods. As the algorithms solely work in the image

domain, various types of post-processing methods such as image denoising, artifact removal

and image super-resolution fall into this class of problems. These algorithms are either applied

after reconstruction of x0 or on top of other correction methods.

In MR imaging, the input to the used algorithms are mainly coil-combined or sum-of-

squares-combined images. In [111, 261], MR images were reconstructed from aliased single-coil

images using a U-net architecture. Extensions to 3D [118] and dynamic MRI [210] were made

using similar approaches. Jin et al. [118] additionally suggest to provide input and reference

images that underwent a Wavelet transform to suppress image modality-specific noise, similar

to [123]. Instead of learning the mapping from the aliased input image to the artifact-free

reference image, residual learning [101] provides a way to learn the aliasing artifacts instead,

which are then subtracted from the aliased input image as presented in [96, 151]. Using a

similar approach, Lee et al. [150] included both image magnitude and phase information and

showed that this acts as iterative k-space interpolation. While the aforementioned algorithms

mainly work on single-coil images, Kwon et al. [145] introduced a Multi Layer Perceptron

(MLP) that unfolds the single coil images of Cartesian undersampled data line-by-line, similar

to classical Sensitivity Encoding (SENSE) [190]. However, this architecture has to be adapted

and retrained for different matrix sizes and sampling patterns. Besides undersampled MR

image reconstruction, a residual CNN approach was used for single-shot T2 mapping using

overlapping-echo detachment planar imaging [27]. Another research area for post-processing

methods is image superresolution. Deep learning approaches offer a way to directly learn the

mapping from low-resolution to high-resolution images, where learning-based results generally

outperform conventional interpolation approaches such as cubic interpolation. This topic was

studied in the context of dynamic MRI [179], static MRI [36, 186, 223], fetal MRI [172] and

Diffusion Tensor Imaging (DTI) [228].

Image denoising of low-dose CT data is a well studied example for the application of CNNs

in medical image reconstruction [40, 41, 154, 219, 251, 262]. Low-dose CT has been also

studied within the framework of deep-convolutional framelets [122, 123, 266], which draws

a mathematical connection between CNNs and Framelet representations where the underly-
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ing encoder-decoder structure originates from the Hankel matrix decomposition. Within this

framework, the input to the used U-net underwent a Wavelet transform. A similar Wavelet

residual learning approach was proposed for limited-angle CT [78]. VNs [46, 140] provide

another alternative for both low-dose CT [141] and limited-angle CT [92]. To account for

the structured streaking artifacts in sparse-view CT, opposed to an increase in unstructured

noise that arise from low-dose CT, algorithms such as residual learning using a U-net archi-

tecture [93, 117, 256], deep convolutional framelets [94], or a combination of DenseNet and

deconvolution [273] were proposed. Image super-resolution was also studied in the context

of CT to map thick slices to thin slices [183]. Another application of image enhancement

methods is CNN-based Metal Artifact Correction (MAR) in CT [272]. Here, a CNN is trained

to generate an image with reduced artifacts from uncorrected and pre-corrected images. The

forward projections of the predicted image are then used to correct the projections which are

affected by metals such that the Filtered Back-Projection (FBP) yields an artifact-reduced

image.

Image enhancement in PET imaging has been studied in [260]. Here, an enhanced PET

image was generated from multiple MAP solutions with different regularization weights using

an MLP. Xu et al. [257] proposed to map a set of adjacent low-dose PET slices to a standard-

dose PET image using a U-net architecture. Xiang et al. [255] fed both a low-dose PET and

a T1-weighted MR image in a CNN to obtain a standard-dose PET image.

In the area of PAT, Antholzer et al. [12] presented a CNN approach to improve the quality

of sparsely sampled reconstructions. Schwab et al. [217] first reconstructed limited-view PAT

data and applied a dynamic aperture length correction algorithm, before a U-net is applied to

improve the final reconstruction quality.

Instead of performing post-processing to enhance reconstructions in the image domain, an-

other approach is to perform pre-processing to enhance the measurement data itself. Examples

here are artifact detection and removal, such as MAR in CT. While Claus et al. [49] used a

MLP to inpaint the missing data in the sinogram on patches, Park et al. [182] learned a U-net

to correct the areas affected by metals on the whole sinogram. In PAT, reflection artifacts are

created by waves due to echogenic structures, which might appear as a true signal. Allman et

al. [11] locate and classify wave sources and artifacts and correct the measurement data before

reconstruction.

2.3.4 Learning a Direct Mapping

Up to now, the presented methods train a neural network in the image domain. Image recon-

struction can be also seen from a different perspective where the complete or partial mapping

from the measured data to the image is learned. Learning the complete mapping means that

no information of the underlying physics is incorporated, i.e.,

x∗ = fθ(y).
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To be able to realize this mapping, a high dimensional parameter space as well as diverse

training data that account for all kinds of different data are required. However, this is typ-

ically infeasible in medical imaging due to the limited amount of training data. Besides the

high memory requirements of full direct mappings, there is also no guarantee that the final

reconstruction is consistent to the measured data. Furthermore, it is a challenging question if

the valid and well known operations such as FT or Radon transform should be replaced by a

neural network, although efficient implementations exist.

An example for a full direct mapping from the measured data to the image is Automated

Transform by Manifold Approximation (AUTOMAP) [276] which was proposed for a broad

range of applications. The key of the network architecture is that fully connected layers are

used as first layers, followed by a CNN, similar to ReconNet [143] which acts on sparsely

sampled image patches. In the context of MRI, the inverse FT is learned. Although results

for small image sizes in [276] demonstrate this to be a promising research direction, a major

practical challenge of AUTOMAP is that the algorithm does not scale to large problems due

to the huge memory requirements of fully connected layers.

Another example that falls into this class of problems is learning a transform from a small

number of Digitally Reconstructed Radiograph (DDR) projections to a CT reconstruction using

a CNN [229, 230, 265]. In [229, 230], images are generated from 1D sum projections DDRs

which are repeated in the direction of the acquisition angle. The images of the different

acquisition angles are stacked and form the input to a U-net architecture, whose output is

the final CT image. Similarly, sinograms can be directly mapped to image space using a

CNN architecture. This direct reconstruction approach using an encoder-decoder network was

proposed by Häggström et al. [82] for PET reconstruction.

Instead of learning the entire model, only parts of the reconstruction process can be replaced

by deep neural networks, while known mathematical transforms contained in A∗ are fixed and

fully connected layers become needless

x∗ = A∗(fθ(y)).

Hence, parts such as the ramp filter for Backprojection (BP) could be learned [67]. A similar

approach was proposed for limited-angle CT, where projection-domain weights are learned

to account for missing data for different geometries [253, 254]. The backprojection layer

is mapped to a neural network with fixed weights corresponding to the true mathematical

transform, enabling full end-to-end training of the architecture.

Motivated by the k-space interpolation by the Annihilating Filter-Based Low-Rank Hankel

Structured Matrix Completion Approach (ALOHA), Ye et al. [266] drew connections between

the Hankel matrix decomposition and deep neural networks by convolutional framelets, which

have been presented for image enhancement problems in Section 2.3.3. Similar U-net archi-

tectures and residual learning strategies were used to inpaint the missing k-space data while

the loss function itself is defined in image domain, with application to accelerated MRI [95],

MR angiography [32] and Echo Planar Imaging (EPI) ghost correction [152].
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2.3.5 Other Approaches for Image Reconstruction

Besides the presented approaches so far, there are also other applications where learning can

be helpful to improve image reconstruction. One example is MRI where the selection of the

sampling pattern has a strong influence on the appearance of undersampling artifacts. Gözcü et

al. [75] proposed an learning-based approach to optimize for this sampling patterns, justified

by statistical learning theory.

In PET/MR, the attenuation correction of PET images is challenging, because the neces-

sary information cannot be extracted from MR images directly. Gong et al. [72] proposed to

use Dixon MR images together with Zero Echo Time (ZTE) images to generate pseudo-CT

images using a U-net architecture. These pseudo-CT images can then be used for attenuation

correction.

2.4 Training data

Training data is one of the key ingredients why learning-based solutions became successful in

the last years. In the computer vision community, the ImageNet database [116] became one of

the most important databases for deep learning, consisting of about 14 million labeled images

from 1000 different classes. This freely available database allows the researchers to develop new

methods with a huge amount of data and serves as a standardized test benchmark that makes

it possible to compare the newly developed methods objectively to other existing approaches in

literature. However, obtaining training data for medical solutions comprises various challenges.

While crowdsourcing made it possible that ImageNet grew within a short time to this huge

amount of labeled images in an inexpensive way, collecting training data for medical solutions

is expensive and requires highly trained Medical Doctors (MDs) to perform tedious labeling

tasks. Furthermore, data has to be a anonymized before it is shared. Hence, big data becomes

available only slowly in medical imaging. The UK Biobank1 aims to provide medical data from

500,000 volunteers to improve the diagnoses, treatment and prevention of a broad range of

life-threatening and serious illnesses. Further examples for ongoing projects that provide data

to the public are the human connectome project2, the Montreal Neurological Institute’s Brain

Images of Tumors for Evaluation database 3, the National Alzheimer’s Coordinating Center

(NACC)4, the Alzheimer’s disease Neuroimaging Initiative (ADNI)5 or DeepLesion6 [259].

While these projects offer a great potential for a wide range of applications, including

classification and segmentation, they cannot be used for image reconstruction, because only

the reconstructed Digital Imaging and Communications in Medicine (DICOM) images and

not the raw measurement data is included. Most of currently available data repositories

1http://www.ukbiobank.ac.uk/
2http://www.humanconnectomeproject.org/
3http://www.bic.mni.mcgill.ca/ laurence/data/
4https://www.alz.washington.edu/WEB/researcher home.html
5http://adni.loni.usc.edu/
6https://nihcc.app.box.com/v/DeepLesion
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consist only of small collections of data. This data were either associated with dedicated

research challenges, like the Low Dose CT challenge organized by Mayo Clinic7 or provided by

individual groups in connection with specific research papers, e.g., in our case we provided 100

datasets of a full clinical knee protocol with our paper on accelerated MRI reconstruction [84].

However, these fragmented datasets were obtained with the same scanner hardware and same

imaging protocol and do not reflect the wide range of scanner hardware from multiple vendors,

scanner protocols and imaging artifacts associated with the acquisition. Even sharing raw

data across multiple vendors is challenging, as different data formats are used. A first multi-

center endeavor was recently started8 with the goal to provide raw k-space data from multiple

vendors in the standardized ISMRMD raw data format [112]. However, due to the limited

availability of raw data for image reconstruction, every research group uses its own dataset

for learning. Additionally, numerous assumptions are made in many cases and algorithms

are only deployed for simulated datasets and not for real clinical settings. In summary, the

current lack of a big raw data archive, including data from multiple scanner hardware, makes

it challenging to both train models from large data sets, and validate the performances of a

new approaches. Recently, a first step towards a generalized data archive was made by the

cooperation between Facebook Artificial Intelligence Research (FAIR) and New York University

by releasing an MRI-dataset consisting of more than 1,500 volumes of raw k-space data of

clinical knee examinations collected with different Siemens scanners [268]. In addition to this

raw data, DICOM data from 10,000 clinical knee examinations were released, which could be

used for, e.g., transfer learning.

Transfer Learning. Current network architectures consist of a large number of free param-

eters and require extensive computations, training time and large datasets. Especially in cases

where it is challenging or impossible to acquire large-scale datasets, a common scenario in

medical imaging, the concept of transfer learning [59] provides a way to still be able to obtain

reasonable results for learning-based approaches. The idea of transfer learning [59] is that

networks are pre-trained on large available datasets such as ImageNet [116] or simulated data.

Afterwards, the network is fine-tuned on a limited amount of application-dependent data such

that the networks adapt on the current application. Transfer learning was recently investigated

for MR image reconstruction of neurological data [51] with a cascaded CNN architecture pro-

posed in [213], and for musculoskeletal data [136] using a VN [92] where the architectures were

pre-trained on natural images. Learning destreaking on CT images and fine-tune on radially

undersampled MR data was presented in [96].

2.5 Image Quality

The performance of learning-based approaches does not only depend on the network architec-

ture and training data, but also on the loss functions used during training. Quantitative image

7https://www.aapm.org/GrandChallenge/LowDoseCT/
8http://mridata.org/
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quality measures, such as the pixel-wise squared `2 loss or the patch-based Structural Similarity

Index (SSIM) [248], serve as typical loss functions. However, the reconstructed images trained

with these measures can appear oversmoothed due to the averaging nature of these approaches

and their sensitivity to noise [274]. This effect is particularly prominent if the training data are

noisy. More details on loss functions can be found in Section 3.4.

Generative Adversarial Networks (GANs) [74] have shown a great potential in increasing the

perceptual image quality by training a loss function from data. Figure 2.4 shows the basic archi-

tecture of GANs for image reconstruction. GANs consist of two networks, a generator network

and a discriminator network, that try to compete with each other: The generator generates

images from a source distribution, whereas the discriminator tries to distinguish the generated

images from a clean reference distribution. However, GANs are inherently difficult to train. The

initial formulation involves a sigmoid cross-entropy loss which often leads to mode collapse,

vanishing gradients and thus unstable training. Many other strategies have been proposed

to stabilize the training such as Wasserstein Generative Adversarial Networks (wGANs) [13],

which were further stabilized with gradient penalty [79], or least-squares GANs [168].

While GANs are capable to generate images that appear with a similar texture to the

target distribution, this does not necessarily conclude that the resulting images are anatom-

ically correct. Especially, if only few data are available, GANs might introduce new artificial

structures, an effect commonly known as hallucination. While this behavior can be desirable

in the context of natural images, when the goal is only to create images that appear sharp and

natural, it must be avoided in medical imaging and diagnosis. Therefore, pixel-based content

losses such as `2 or `1 norms are added to the GAN loss to guide the reconstruction and

thus provide general information about the image content [114, 149]. This idea was further

extended by introducing a perceptual loss [14, 149], which is based on feature responses of the

VGG network [225].

Wolterink et al. [251] used a GAN together with an `2 loss for noise reduction in low-dose

CT. In another approach for low-dose CT image denoising, a wGAN architecture with gradient

penalty was combined with MSE as content loss and a perceptual VGG loss [262]. Thaler et

al. [229] included an `1 content loss in a wGAN architecture with gradient penalty for CT

reconstruction from DDR projections. They also provide first insights in the importance of the

content loss to guide the reconstruction process and the limits for data acquisition to obtain

reasonable results.

A classical GAN approach combined with stabilizing content losses for enhancing MRI

reconstructions was proposed in [128, 224, 261]. Least-squares GANs were studied in [169, 170]

in combination with an `2 loss for accelerated MR. Quan et al. [194] adopted a GAN with cyclic

loss [277] that ensures that the generated images are similar to the input distribution using

a second generator. In another approach for MRI, Seitzer et al. [218] refined reconstructions

trained with MSE by learning a residual image using a GAN architecture with additional feature

matching loss [208] and VGG loss.
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Figure 2.4: For image reconstruction, GANs are combined with a content loss Lc such as MSE to
stabilize the training. Various authors showed that using a perceptual loss Lp based on features from
the VGG network [225] results in even more improved reconstructions.

Evaluation. The loss function used for training has an impact on the quality of the recon-

struction. These measures serve also for quantitative, hence, objective comparison for the

newly developed approaches. Although this kind of evaluation is essential, these measure give

only limited insight into the real diagnostic value of the reconstructed images. While the

presence or absence of tiny and subtle structures in the reconstructed images is indispens-

able in a diagnostic setting, these structures are usually not captured well by quantitative

criteria. Therefore, an important open question in the context of medical imaging is if the

currently developed learning-based approaches are robust and general enough so that they

can be translated successfully to clinical practice. This requires large scale prospective clini-

cal evaluation studies, where inter-subject anatomical and pathological variations encountered

in a typical patient population are assessed. A radiologists reader study of the visual image

quality of the reconstructions regarding criteria like image sharpness, residual aliasing artifacts

and apparent SNR was performed in our initial publication on VNs for 20 knee exams [92],

see Section 5.3. In [38], the performance of this architecture was evaluated with similar cri-

teria in 157 abdominal patients. In both studies, learned image reconstruction was found to

outperform conventional PI and CS with respect to these criteria. While these studies are

examples of evaluations that go beyond objective quantitative metrics, the diagnostic value

of these studies is still limited because the diagnostic information are not considered in these

reader studies. Current learning-based solutions might result in a degraded image quality and

remaining artifacts, which might not influence the radiologists to make the correct diagnosis.

However, if the degraded images and remaining artifacts lead to an incorrect diagnosis and,

hence, an incorrect patient management decision this case can be considered as a truly failed

imaging exam. A small-scale prospective study of the diagnostic content of learned image
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reconstruction was performed in our work [134] for 25 knee MRI patients. The reconstructions

were assessed for the presence or absence of typical pathologies like meniscal tears or ligament

tears and the diagnostic outcome was compared to a clinical gold standard data acquisition

and for some cases was followed up with a scope exam to obtain a true ground truth. Ex-

cellent agreement between the two acquisitions was found in this study, demonstrating that

an accelerated acquisition with a learned reconstruction had the same diagnostic content and,

hence, led to the same clinical decision as the existing gold standard. However, this study is

still limited by its comparably small sample size, the restriction to a very specific type of exam

and the analysis of only one contrast out of a usually more diverse MR acquisition.

2.6 Reproducible Research

Using deep learning approaches, impressive results are presented more than ever and it is often

challenging to reproduce the claims and results authors make in their publications, especially

because validations are usually only performed on their own individual datasets. Reproducible

research promotes that data and source code should be made available along with the pub-

lication of the paper. In the special issue for learning-based image reconstruction of IEEE

Transactions on Medical Imaging [245], sharing code was mandatory with publication of the

paper. Most authors shared their code on GitHub9. Available software repositories for the

presented approaches in this chapter can be found alongside the publication entry in the ref-

erences.

During the course of my PhD, I contributed to several open-source projects which were

used for various experiments throughout this thesis:

• ImageUtilities10: Bridging the gap between Central Processing Unit (CPU) and Graphics

Processing Unit (GPU) to overcome the tedious memory management in CUDA code,

with python and Matlab interfaces.

• Primal-Dual Toolbox11: Implementation of various TV and second-order TGV prob-

lems using the primal-dual algorithm [34], including python and Matlab wrappers. This

toolbox includes algorithms for TGV-based MRI reconstruction for Cartesian and radial

sampled data as well as real-valued and complex-valued denoising.

• Tensorflow-ICG12: Fork of the original tensorflow repository13. Includes custom operators

which are necessary for the VN implementations such as trainable activation functions,

Inertial Proximal Alternating Linearized Minimization (IPALM) optimizer [188], core

framework for VNs as well as complex convolutions and Fourier operators, including

centered 2D (inverse) FT and (inverse) fftshift.

9https://github.com
10https://github.com/VLOGroup/imageutilities
11https://github.com/VLOGroup/primal-dual-toolbox
12https://github.com/VLOGroup/tensorflow-icg
13https://github.com/tensorflow/tensorflow
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• Denoising VN14: Tensorflow implementation of the VN for image denoising.

• MRI VN15: Tensorflow implementation of the VN for MRI reconstruction of 2D Cartesian

sampled data.

14https://github.com/VLOGroup/denoising-variationalnetwork
15https://github.com/VLOGroup/mri-variationalnetwork
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In this chapter, we introduce the theory and a general notation of Variational Networks (VNs),

holding for a variety of applications. For the sake of clarity, some basic concepts of inverse

problems presented in Chapter 2 are revised. Application-specific details, e.g., how complex

values are considered in Magnetic Resonance Imaging (MRI), are described in the subsequent

chapters.
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3.1 From Linear Reconstruction to a Variational Network

We consider the ill-posed linear inverse problem of finding a reconstructed image x ∈ KNx from

measurement data ŷ ∈ KNy described by a linear forward model A : KNx → KNy , satisfying

the following system of equations

Ax = ŷ. (3.1)

Since Equation (3.1) is ill-posed, we cannot solve for x explicitly. Therefore, a natural idea is

to compute x by minimizing the least squares error

min
x

1

2
‖Ax− ŷ‖22 . (3.2)

In practice we do not have access to the true ŷ but only to a noisy variant y satisfying

‖ŷ − y‖2 ≤ δ,

where δ is the noise level. A closed-form solution x∗ to Equation (3.2) is given by the pseudo-

inverse

x∗ = (A∗A)−1A∗y.

However, in some applications computing the pseudo-inverse is computationally intractable,

hence, iterative methods such as the Conjugate Gradient (CG) algorithm are required. Another

idea is to simply perform a gradient descent on the least squares problem Equation (3.2) that

leads to an iterative algorithm, which is known as the Landweber method [146]. It is given by

choosing some initial x0 and performing the iterations with step sizes τ t

xt = xt−1 − τ tA∗(Axt−1 − y), t ≥ 1, (3.3)

where A∗ is the adjoint linear sampling operator. To prevent over-fitting to the noisy data y,

it is beneficial to stop the Landweber iterative algorithm early [97], i.e., after a finite number

of iterations T . Instead of early stopping, we can also extend the least squares problem by

an additional regularization term R [x] to prevent over-fitting. The associated (variational)

minimization problem is given by

min
x

{
R [x] +

λ

2
‖Ax− y‖22

}
.

The minimizer of the regularized problem depends on the trade-off between the regularization

term and the least squares data fidelity term controlled by λ > 0. One of the most influential

regularization terms in the context of images is the Total Variation (TV) semi-norm [207]

defined in Equation (2.5). The main advantage of the TV semi-norm is that it allows for
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sharp discontinuities (edges) in the solution while being a convex functional enabling efficient

global optimization. From a sparsity point of view, the TV semi-norm induces sparsity in

the image edges and hence, favors piece-wise constant solutions. However, it is also clear

that the piece-wise constant approximation is not a suitable criterion to describe the complex

structure of medical images and a more general regularizer is needed. A generalization of the

TV semi-norm is the Fields of Experts (FoE) model [206]

R [x] =

Nk∑
i=1

〈ρi(Kix),1〉 . (3.4)

Here, the regularization term is extended to Nk terms and 1 denotes a vector of ones. The

linear operator K : KNx → KNx/Nf models convolutions with filter kernels k of size s and

depth Nf , which is expressed as

Kx⇔ x ∗ k.

The filter depth Nf equals the number of features in x. The non-linear potential functions

ρ(z) = (ρ(z1), ..., ρ(zN ))> : KNx/Nf → KNx/Nf are composed by scalar functions ρ. In

the FoE model [206], both the convolution kernels and the parametrization of the non-linear

potential functions, such as student-t functions, are learned from data. Plugging the Fields of

Experts model Equation (3.4) into the Landweber iterative algorithm Equation (3.3) yields

xt = xt−1 − τ t
(
Nk∑
i=1

(Ki)
>φi(Kix

t−1) + λA∗(Axt−1 − y)

)
, (3.5)

where φi(z) = diag (φi(z1), . . . , φi(zN )) are the activation functions defined by the first deriva-

tive of potential functions φi. Observe that the application of the transpose operation (Ki)
>

can be implemented as a convolution with filter kernels ki rotated by 180◦. Chen et al. [43, 46]

introduced a trainable reaction-diffusion approach that performs early stopping on the gradi-

ent scheme Equation (3.5) and allows the parameters, i.e., filters, activation functions and

data term weights, to vary in every gradient descent step t. All parameters of the approach

are learned from data. We rewrite the trainable gradient descent scheme with time-varying

parameters Kt
i , φ

t
i and λt as

xt = xt−1 −
Nk∑
i=1

(Kt
i )
>φti(K

t
ix
t−1)− λtA∗(Axt−1 − y), 1 ≤ t ≤ T. (3.6)

Additionally, we omit the step size τ t in Equation (3.5) because it is implicitly contained in the

activation functions and data term weights. By unfolding the single iterations of Equation (3.6),

we obtain the Variational Network structure depicted in Figure 3.1. Essentially, one iteration of

an iterative reconstruction can be related to one step in the network. As different applications

can be modeled via the forward operator A and its adjoint operator A∗, we can directly use
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the raw measurement data as input. In the case of image enhancement, the operator A

simplifies to the identity matrix. For the regularization part, the FoE model is commonly used.

Theoretically, any regularizer that can be formulated as energy can be used. An example for

deep regularization is presented in Section 3.5. Different regularizers are depicted in Figure 3.2,

along with their gradients in Figure 3.3.

x0 xT

GD1 GDt GDT... ...

xt−1

λtA∗(Axt−1 − y)
∇Rl[x

t−1]

xt−1 xt

Σ-
+

-

Figure 3.1: Basic VN structure. The VN is defined as an unrolled Gradient Descent (GD) scheme with
T steps. Each of these steps can be seen as a residual block [140]. The gradient of these GD steps
correspond to the gradient of a variational model which consists in our case of a square data term and
a regularization term. Examples for different regularizers are depicted in Figure 3.2.

x
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Figure 3.2: Examples for different regularizers. The corresponding gradients are depicted in Figure 3.3.
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Figure 3.3: Gradient visualization of the regularizers depicted in Figure 3.2.
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Figure 3.4: RBFs provide a way to smoothly approximate any function. The single Gaussian bases
with fixed standard deviation appear at equidistant nodes within a pre-defined interval.

3.2 Variational Network Parameters

The VN defined by Equation (3.6) contains a number of parameters: Filter kernels kti , activa-

tion functions φti, and data term weights λt. First, we constrain the filters to be zero-mean,

i.e.,
∑

j k
t
i,j = 0∀i. Additionally, the whole kernel is constrained to lie in the unit-sphere, i.e.,∥∥kti∥∥2

≤ 1 ∀i, to avoid a scaling problem of the activation functions. To learn the activation

functions, we require a suitable function parametrization between filters and corresponding

activation functions. A standard choice to smoothly approximate any function are Gaussian

radial basis functions (RBFs) as illustrated in Figure 3.4. We define the scalar activation

functions φti as a weighted combination of Nw RBFs with equidistant nodes µ and standard

deviation σ = 2Imax
Nw−1 ,

φti(z) =

Nw∑
j=1

wtij exp

(
−(z − µj)2

2σ2

)
.

The nodes are distributed in an equidistant way in [−Imax, Imax] which allows us to achieve the

same resolution over the whole defined range. Note here that µ, σ depend on the maximum

estimated filter response Imax. The final parameters that we consider are the data term weights

λt which are constrained to be non-negative, i.e., λt > 0. During training, all constraints on

the parameters are realized based on projected gradient methods.

However, although the
∥∥kti∥∥2

≤ 1 constraint slightly restricts the scaling ambiguity of

the activation functions, it is still not optimal for training. Furthermore, it is challenging to

estimate the maximum filter responses as this could be different for the individual kernels and,

hence, the maximal resolution of the activation functions cannot be exploited. This suggests
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to scale the input z of the activation function

z :=
z − µz√
σ2
z + ε

αz

where µz, σ
2
z are the mean and variance values of the input z and ε = 10−6 is a small constant

to avoid the division by zero. The parameter αz is responsible to re-scale the input range and

can be fixed or learned from data. This transformation is known as batch normalization in

deep learning literature [113].

3.3 Variational Network Training

During the offline training procedure, the goal is to find an optimal parameter set θ =(
θ0, ..., θT−1

)
, θt =

(
wtij , k

t
i , λ

t
)

for our proposed VN in Equation (3.6). After training, the

parameters θ are fixed and we can reconstruct previously unseen data efficiently by forward-

propagating the new data through the VN. To set up the training procedure, we minimize a loss

function over a set of images S with respect to the parameters θ. The loss function defines the

similarity between the reconstructed image xT and a clean, artifact-free reference image xref. A

common choice for the loss function is the Mean Squared Error (MSE), which is defined along

with other similarity measures in Section 3.4. To solve this highly non-convex training problem,

we deploy different first-order optimizers such as the Inertial Incremental Proximal Gradient

(IIPG) optimizer, which is related to the Inertial Proximal Alternating Linearized Minimization

(IPALM) algorithm [188], or the proximal ADAM optimizer with block-preconditioning on the

parameters based on the original ADAM optimizer [129]. For algorithmic details on these

first-order optimizers we refer to Appendix C and additionally for IIPG to [140]. First-order

optimizers require both the loss function value and the gradient with respect to the parameters

θ. This gradient can be computed by simple back-propagation [147], i.e., applying the chain

rule

∂L
(
xT (θ), xref

)
∂θt

=
∂xt

∂θt
· ∂x

t+1

∂xt
. . .

∂xT

∂xT−1
·
∂L
(
xT (θ), xref

)
∂xT

.

The derivation of the gradients for the parameters is provided in Appendix D.

A question that arises often is, why we did not deploy the standard ADAM optimizer [129]

for our problems, as it is the most common optimizer for stochastic optimization of deep

learning problems. We observed during our experiments that either convolution kernels or

activation functions were favored, leading to either noisy kernels or activation functions that

did not move very far from their initialization. We believe that the different parameter sets such

as kernels and influence functions are defined in different domains, which makes it challenging

for standard optimization schemes if they are all treated equally. These observation motivated

us to continuously work on different optimizers. The IIPG for example has proven convergence

rates for deterministic problems, however, the convergence proofs for stochastic, non-convex
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problems are still a subject to future work. The IPALM optimizer [188] with line-search allows

us to have self-adapted step sizes for the defined parameter blocks. However, as each parameter

block is updated in an alternating manner, optimization becomes exhausting if the number of

parameter blocks increases. Furthermore, we observed issues in optimization when the batch

size becomes small, which resulted in large oscillations of the loss. These observation inspired

us to include a preconditioning based on the gradient norm of the parameter blocks in the

ADAM optimizer together with a proximal mapping for our specific VN structure. Details

about this optimizer can be found in the Appendix C.2.

3.4 Loss Functions and Quantitative Evaluation

The success of supervised machine learning approaches depends on many aspects, which are

the training data, network architecture, optimizer, and a loss function. The loss function mea-

sures the similarity between the reconstructed image and a reference image during training.

Consequently, the loss function has a huge impact on the final image quality of the recon-

structions. For simplicity, we drop the dependence on the samples in the definitions of the loss

functions.

A common choice in deep learning approaches is the MSE

Lmse

(
xT (θ), xref

)
=

1

2N

∥∥xT (θ)− xref
∥∥2

2
,

where N denotes the number of pixels. Although the MSE is easy to optimize, it is know

to be not robust against outliers and to result in blurred reconstructions [274] due to its

averaging behavior. There are also a number of evaluation measures that are commonly used

for quantitative evaluation, which are related to the MSE. The Normalized Root Mean Squared

Error (NRMSE) allows for comparison between data that differ in terms of scaling

Lnrmse

(
xT (θ), xref

)
=

∥∥xT (θ)− xref
∥∥

2

‖xref‖2
.

The Peak Signal-To-Noise Ratio (PSNR) involves the maximum possible intensity value Imax

of the image and is a common measure used for quantitative evaluation

Lpsnr
(
xT (θ), xref

)
= 20 log10

Imax

√
N

‖xT (θ)− xref‖2
.

Obviously, all these measures compare images pixel-by-pixel, however, it is known that these

measures represent the human perceptual system poorly [248, 274].

Instead of comparing pixel-wise intensity values, the perceptual-motivated Structural Sim-

ilarity Index (SSIM) [248] considers local patch statistics. The variant of SSIM which is

commonly used in literature consists of a luminance term l and contrast term c defined as
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follows

SSIM(x, xref) =
1

N

∑
i∈Ω

l(x(i), xref(i))
αc(x(i), xref(i))

β

=
1

N

∑
i∈Ω

(
2µx(i)µxref(i) + c1

µ2
x(i) + µ2

xref(i)
+ c1

)α(
2σx(i)σxref(i) + c2

σ2
x(i) + σ2

xref(i)
+ c2

)β
.

The means µ·(i) and standard deviations σ·(i) for each patch around the pixel position i defined

in the domain Ω can be modeled by convolving the whole image with a Gaussian filter with

standard deviation σG or an average filter of a predefined window size, according to the

implementation. The parameters c1, c2 are user-defined constants and the exponents α and β

are commonly set to 1. Common settings for the SSIM are a Gaussian filter of size 11 along

with standard deviation σG and c1 = (0.01L)2, c2 = (0.03L)2 where L denotes the dynamic

range of the underlying images. As the SSIM is defined in the interval [−1, 1] the final loss

function can be written as

Lssim
(
xT (θ), xref

)
= 1− SSIM(xT (θ), xref).

More details on the implementation of the SSIM can be found in Appendix D.2.

As the formulation shows, the outcome of the measure depends on the chosen Gaussian ker-

nel with standard deviation σG. Wang et al. [249] proposed a Multi-Scale Structural Similarity

Index (MS-SSIM), which evaluates and combines the SSIM values across different resolutions.

However, this involves computing a pyramid at different levels which is computationally de-

manding. As we aim at using the MS-SSIM as loss function, we follow Zhao et al. [274] who

evaluate the SSIM for various standard deviations σG,m, imitating different scales m, leading

to following definition

MS-SSIM(x, xref) =
1

N

∑
i∈Ω

lαM (x(i), xref(i))
M∏
m=1

cβmm (x(i), xref(i)).

For our purpose, we use four different standard deviations σG,m ∈ {0.5, 1, 2, 4}. Again, the

exponents are dropped not only for simplicity but also for computational reasons, as this

results in undefined behavior during optimization because of the accelerated implementation

of exponents in the used Tensorflow framework. For quantitative evaluation, we use a factor

of 1/M for the exponents. Similar to SSIM the full loss function for MS-SSIM can be written

as

Lms-ssim

(
xT (θ), xref

)
= 1−MS-SSIM(xT (θ), xref).

Although there exist more complex quantitative error measures such as Feature Similarity

Index (FSIM) [156] or HaarPsi [202], not every quantitative similarity measure can be used as

a loss function, because differentiability is required for network training, which might not be
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the case for more complex quantitative measures.

3.5 Deep Regularization for Variational Networks

Previous work investigated trainable FoE regularization that focuses on low-level features.

In deep learning, impressive results are achieved by exploiting mid- and high-level features

in a deep network, consisting of cascaded convolution and activation layers. However, this

commonly requires a huge number of network parameters which makes it difficult to train

and a number of strategies have to be followed to ease the training of these architectures.

Ronneberger et al. [205] proposed a U-net architecture that showed great success not only for

segmentation tasks but also for image-to-image problems. The U-net can be seen a symmetric

Convolutional Neural Network (CNN) with a contracting and expanding path, where both

information from the downsampling path, modelled by skip connections, and information from

the upsampling path are combined. However, as these architectures tend to be huge, an

enormous amount of (augmented) training data are needed to train these architectures. To

incorporate mid- and high-level features in our VN, we deepen the structure of the Fields-

of-Experts regularizer by a series of convolution operators and potential functions, while still

fulfilling the requirement of an energy functional. Furthermore, we still aim at keeping structure

in our models to keep the number of network parameters low instead of stacking more and

more layers.

Inspired by the work of Ronneberger et al. [205], we add the responses of different regular-

ization terms consisting of a different number of layers. Let us define following abbreviations

to account for the different dimensions of the layers

L1 =
NxNf1

Nfin

,

L2 =
NxNf2

NfinNds
,

L3 =
NxNf3

NfinN
2
ds

.

The number of input features is denoted by Nfin , the number of features for the individual

layers l is denoted by Nfl . It is also possible that Kl involves a downsampling operator where

Nds denotes the downsampling factor. We define the regularizers as

R1 [x] = 〈ρ1(K1x),1〉 , K1 : KNx → KL1 , ρ1 : KL1 → KL1 ,

R2 [x] = R1 [x] + 〈ρ2(K2ρ1(K1x)),1〉 , K2 : KL1 → KL2 , ρ2 : KL2 → KL2 ,

R3 [x] = R2 [x] + 〈ρ3(K3ρ2(K2ρ1(K1x))),1〉 , K3 : KL2 → KL3 , ρ3 : KL3 → KL3 .

Note here that the convolution operators Kl and potential functions ρl operate on a stack of

features Nfl . In every layer, we exploit the feature responses of previous layers. The responses
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of all layers are finally added. Deriving the gradients yields

∇R1 [x] = K>1 φ1(K1x),

∇R2 [x] = K>1 φ1(K1x)
[
1 +K>2 φ2(K2ρ1(K1x))

]
,

∇R3 [x] = K>1 φ1(K1x)
[
1 +K>2 φ2(K2ρ1(K1x))

[
1 +K>3 φ3(K3ρ2(K2ρ1(K1x))

]]
.

A graphical visualization of these regularizers up to l = 3 is depicted in Figure 3.2. If we

inspect the gradient of the proposed deep regularizer, visualized in Figure 3.3, we observe

similarities to the U-net architecture [205]. Most obvious are the contracting and expending

paths as well as residual connections at the different layers. Note here that as it is possible to

include a downsampling operator in Kl, resulting in an adjoint upsampling operator after K>l
in the gradient derivation.

3.6 Implementation Details

Nowadays, different frameworks that can be used for deep learning are available and most of

them can be used with Python. Examples are Tensorflow1 developed by Google, PyTorch2

developed by Facebook, Caffe3 developed by Berkeley Artificial Intelligence (AI) research and

Theano4 developed at Montreal Institute for Learning Algorithms. All of these frameworks

have in common that they were basically implemented in C++, have Graphics Processing Unit

(GPU) support based on CUDA and CUDNN and offer a way for automatic differentiation. Our

initial variant for VNs was implemented from scratch using Matlab. To have more flexibility,

we first switched to Theano, however, when it came to the application of medical data, we

constantly ran out of memory which made it impossible to train larger networks, and the

support of complex numbers was very limited at that time. Hence, we implemented our

own version5 from scratch using C++/CUDA with CUDNN support, which could be used for

various applications in a GPU memory efficient way. However, the limited flexibility would

have required tedious software engineering. As Tensorflow was also published at the same

time, which offered more flexibility and also more support for complex numbers, we finally

moved our VN framework to tensorflow. This explains why the different applications in the

preceding chapters have different setups.

1http://www.tensorflow.org
2https://pytorch.org/
3http://caffe.berkeleyvision.org/
4http://deeplearning.net/software/theano/
5Special credits go to my colleagues Erich Kobler and Teresa Klatzer.

http://www.tensorflow.org
https://pytorch.org/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
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The general formulation of Variational Networks (VNs) offers a great application potential for

both medical image reconstruction and image enhancement. In this first application, VNs are

explored for artifact correction in limited-angle CT. First, this chapter outlines the fundamental

principles of CT from a signal processing perspective in Section 4.1. Section 4.2 introduces

the challenges of limited-angle CT data. Reconstruction of limited-angle CT data is seen as a

two-step process, as presented in Section 4.3 and the preceding sections, where in the first step

reconstruction is carried out using a Convolutional Neural Network (CNN) approach proposed

by Würfl et al. [253], while the main focus is put on the correction of artifacts in image domain.

41
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Figure 4.1: Examples for different beam geometries in CT.

4.1 Fundamental Principles of CT

Along with Magnetic Resonance Imaging (MRI), CT is an important imaging modality for

clinical examinations. The main advantages to MRI are lower costs and faster image acqui-

sition, however, CT scans involve ionizing radiation which poses a potential risk for cancer.

In the following, fundamentals of CT image formation and reconstruction are described. For

more details on the physics and image formation process of CT, we refer the interested reader

to [62, 270].

The term tomography is derived from the Greek words tomos (τ óµoς, slice) and graphein

(γράϕειν, to write), hence, tomography means to image a cross-section. For this purpose,

X-rays of an initial intensity I0(s, β) at a detector position (s, β) are directed at an object

at multiple orientations. As the X-rays travel through the object, they are attenuated due to

the interior structures of the object and arrive with reduced intensity Id(s, β) at the detector

position (s, β). Figure 4.1 illustrates source-detector systems for acquisition such as parallel-

beam and fan-beam geometries. In the following, we consider only the parallel-beam geometry

to understand the fundamental principles of CT reconstruction.

The relationship between the source intensity I0 and the detected intensity Id is described

by the Lambert-Beer’s law

Id(s, β) = I0(s, β) exp

(
−
∫
C
µ(x, y) dl

)
⇒ p(s, β) = ln

(
I0(s, β)

Id(s, β)

)
=

∫
C(s,β)

µ(x, y) dl,

i.e., we measure the line-integral over a line C of the attenuation coefficients µ(x, y) : R2 → R
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with compact support. The line C(t) = (x(t), y(t)) is parametrized by

x(t) = s cosβ − t sinβ, y(t) = s sinβ + t cosβ

where s defines the detector position, t the ray direction, and β the view angle. Using this

parametrization, the line integral, also termed projection, can be expressed as

p(s, β) =

∞∫
−∞

µ(s cosβ − t sinβ, s sinβ + t cosβ) dt.

This principle is illustrated by the projection of a point source in Figure 4.2, where we see the

relationship between x-y and s-t plane as well as the angle-dependency on β. The sinogram

depicts a set of projection data of different angles β, where we view the projections in the s-β

plane. Once the projection data are acquired, the main question is how to recover the attenu-

ation coefficients µ(x, y) within the object from the measured beam intensity. To understand

the back-projection of the data, we first consider the projection-slice theorem. The basis for

the projection-slice theorem is the Fourier Transform (FT)

F (u, v) = (F2Df) (u, v) =

∞∫
−∞

∞∫
−∞

f(x, y)e−j2π(ux+vy) dx dy

and inverse FT

f(x, y) = (F∗2DF ) (x, y) =

∞∫
−∞

∞∫
−∞

F (u, v)ej2π(ux+vy) dudv.

The symbols F and F∗ denote the forward and inverse Fourier operator. Consider now the

1D FT of the projection

P (w, β) = (F1Dp) (w, β) =

∞∫
−∞

p(s, β)e−j2πws ds.

This can be rewritten as

P (w, β) =

∞∫
−∞

∞∫
−∞

µ(x, y)e−j2πw(x cosβ+y sinβ) dx dy,

where we see the relation of the 1D-FT of a projection to the 2D-FT of a slice

P (w, β) = F (w cosβ,w sinβ), u = w cosβ, v = w sinβ.



44 Chapter 4. Variational Networks for Image Enhancement in Limited-Angle CT

Taking the inverse FT to recover µ(x, y) yields

µ(x, y) =

2π∫
0

∞∫
0

F (w cosβ,w sinβ)ej2πw(x cosβ+y sinβ)w dw dβ, (4.1)

where the factor w is the determinant of the Jacobian that arises due to the change from

the Cartesian coordinate system (u, v) into the polar coordinate system (w, β). As p(s, β) =

p(−s, β + π), Equation (4.1) can be rewritten as

µ(x, y) =

π∫
0

∞∫
−∞

|w|P (w, β)ej2πw(x cosβ+y sinβ) dw dβ,

with changed integration limits. This can be interpreted as filtering the FT of the projection

data with a ramp-filter |w| before applying the inverse FT to reconstruct µ(x, y), known as

Filtered Back-Projection (FBP).

Another more complex example to show the CT reconstruction principle is illustrated in

Figure 4.3. It becomes obvious that a certain number of projection data are required to fully

recover an image. The influence on the FBP reconstruction on the number of projections

is depicted in Figure 4.4, along with the error to the reference image and the sinogram. If

the full angular range is considered with an angle spacing of 0.5◦, the image can be exactly

reconstructed. Taking only a few projections with equidistant spacing of 5◦ results in noise-

like streaking artifacts in the FBP reconstruction, which means that a much lower radiation

dose is required to obtain the projection data. Recently, VNs have shown promising results

in dose-reduction by interrupted-beam acquisition and tube-current reduction, which can be

formulated as CT-reconstruction and CT-denoising problem, respectively [141]. In this chapter,

we focus on artifact-correction of limited-angle CT data in image domain using VNs.

4.2 Artifact Correction in Limited-Angle CT

Limited-angle CT is important in some applications where the projection data cannot be

acquired over the full angular range. Examples for such configurations are robot assisted

scanners in medicine or scanning of very large objects in industrial CT. As limited-angle CT does

not acquire data over the full angular range, the projection data are incomplete which results in

intensity inhomogeneities as well as streaking artifacts in the image domain, illustrated in the

third row of Figure 4.4. Further sources for streaking artifacts are the non-linear attenuation

of polychromatic X-rays or inelastic scattering of photons. All these artifacts are corrected

with specialized heuristic compensation procedures that tune each step independently.

Many specialized iterative algorithms exist which clearly improve the image quality [109,

110]. A disadvantage of iterative techniques is their high runtime requirement. In contrast,

analytical algorithms are less computationally demanding, but typically suffer from intensity
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inhomogeneities and streaking artifacts in the image domain due to missing projections. To

correct for intensity inhomogeneities, Riess et al. [203] use a heuristic scheme based on com-

pensation weights. Würfl et al. [253] reformulate filtered back-projection as a neural network

and learn compensation weights for limited-angle CT reconstruction. However, their approach
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Figure 4.4: Examples for FBP reconstructions for view angles that cover the full angular range with
angle spacing ∆β = 0.5◦ (first row), few-view reconstruction with ∆β = 5◦(second row) and limited-
angle reconstruction with ∆β = 0.5◦ (third row). Depending on which projection data are missing, this
results in incoherent artifacts for few-view FBP reconstruction or strong coherent streaking artifacts
and intensity inhomogeneities for limited-angle FBP reconstruction.

cannot account for the remaining streaking artifacts due to the missing non-linear filtering

step.

To correct for remaining streaking artifacts, a number of non-linear filtering methods can

be applied. For limited-angle CT, Riess et al. [203] apply a bilateral filter [231] after the

compensation of missing projection data. Although there exists a number of generic non-

linear filtering methods such as BM3D [50], first-order and higher-order Total Generalized

Variation (TGV) [21, 207], they can mainly correct for unstructured Gaussian noise. These

models cannot describe the complex image content as they make assumptions on the image



4.3. Methods 47

statistics such as piece-wise constancy in the case of the Total Variation (TV) semi-norm.

This motivated us to use deep learning approaches that are able to account for coherent noise

artifacts to overcome the limitation of generic non-linear filtering methods. In this chapter, we

propose a two-step deep learning architecture for limited-angle CT reconstruction. In a first

step, compensation weights in the projection domain are learned based on [253] to correct for

intensity changes. Inspired by variational image restoration, we formulate a non-linear filtering

problem as a VN to eliminate coherent streaking artifacts in the image domain.

4.3 Methods

We propose a two-step deep learning architecture for artifact compensation in limited-angle

CT. The basic network architecture is illustrated in Figure 4.5. In a first step, we learn the

compensation weights to account for missing projection data due to the limited-angle CT

acquisition. In a second step, we eliminate streaking artifacts using a VN architecture.

Step 1: A neural network to learn compensation weights To correct for intensity inho-

mogeneities in limited-angle CT, we adapt the network architecture of Würfl et al. [253] to our

problem. The input of the neural network is a sinogram with missing angular data, denoted

by ysin. The network represents the fan-beam reconstruction as

y = Ψ (BKbpWcompWcosysin) ,

where B denotes the backprojection operator, Kbp implements filtering with a one-dimensional

convolution kernel and the weight operators Wcos and Wcomp implement element-wise mul-

tiplications with cosine weights and compensation weights, respectively. The non-negativity

constraint is realized via the operator Ψ. While the operators B and Wcos are fixed, the com-

pensation weights in Wcomp and the one-dimensional reconstruction filter in Kbp are learned.

During a training procedure, we compare the neural network reconstruction y to a reference

ygt obtained from full angular data using the Mean Squared Error (MSE)

Lmse (Wcomp,Kbp) =
1

2S

S∑
i=1

‖y − ygt‖22 , (4.2)

where S is the number of training samples. For more details, we refer the interested reader

to [253]. After training, the network can be applied to a new sinogram and yields the intensity-

corrected reconstruction y. As this network only corrects artifacts in the projection domain,

we now introduce a VN for suppressing the remaining streaking artifacts in the image domain.

Step 2: A Variational Network to remove streaking artifacts To remove streaking

artifacts in the neural network reconstruction y ∈ RNx , we learn a non-linear filtering method
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Figure 4.5: Deep learning architecture for limited-angle CT reconstruction. The first neural network
(blue) models FBP and corrects the intensity inhomogeneities in the image domain by learning compen-
sation weights Wcomp in the projection domain. The second VN (green) formulates non-linear filtering as
T unrolled Gradient Descent (GD) steps. In each step t, the filters kti , derivative of potential functions
φti and the regularization parameter λt are learned to remove the remaining streaking artifacts.

using a VN. We seek an optimal image with eliminated streaking artifacts x ∈ RNx . The

variational image restoration problem is given as

E(x) =
λ

2
‖x− y‖22 +

Nk∑
i=1

〈ρi(Kix),1〉 ,

where the first term is a data fidelity term that measures the similarity to the intensity-corrected

network input y and the second term is the regularization term that imposes prior knowledge

on the image x. The impact of both terms is regulated by a parameter λ. The regularization

term is based on the Fields of Experts (FoE) model where we apply Nk convolution operators

Ki : RNx → RNx , followed by non-linear functions ρi : RNx → RNx to x and 1 ∈ RNx
is a vector of ones. Plugging the gradient of the variational model into Landweber iterative

algorithm Equation (3.3) yields the VN for image restoration

xt = xt−1 −
Nk∑
i=1

(Kt
i )
>φti(K

t
ix
t−1)− λt(xt−1 − y), 1 ≤ t ≤ T. (4.3)

In the gradient calculation, we additionally introduce the derivative of potential functions

φti : RNx → RNx and transpose convolution operators (Kt
i )
>. In a training procedure similar

to the neural network reconstruction in Section 4.3, we obtain the convolution kernels Kt
i , non-

linear derivatives of potential functions φti and the regularization parameter λt for each of the T

gradient steps by minimizing the MSE as stated in Equation (4.2). The VNs are trained using

the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm with stage-wise

pre-training for 100 iterations and joint training for 700 iterations according to [46].
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Method PSNR SSIM

Neural network 34.66±2.07 0.91±0.01
Bilateral filtering (σs = 0.5, σc = 0.1) 29.93±3.61 0.91±0.02

BM3D (σ = 1.5) 34.75±2.09 0.91±0.02
TV (λ = 300) 34.82±2.10 0.91±0.01

Second-order TGV (λ = 2, α0 = 0.01, α1 = 0.02) 34.80±2.09 0.91±0.01
VN (kernel size 5) 36.13±2.13 0.93±0.01
VN (kernel size 7) 36.86±2.01 0.94±0.01
VN (kernel size 9) 38.14±2.27 0.95±0.01

VN (kernel size 11) 37.87±1.98 0.95±0.01
VN (kernel size 13) 38.23±2.06 0.95±0.01

Table 4.1: Quantitative comparison of non-linear filtering methods along with the used parameter
settings. The comparison is performed in terms of PSNR and SSIM (mean ± standard deviation) in
the Field of View (FoV). The neural network result is the intensity-inhomogeneity corrected output of
a first correction step and defines the input to all methods.

Experimental Setup To obtain training data, we simulated 450 fan-beam projections of size

512× 512 from volumetric datasets of ten different patients. For evaluation, we performed a

5-fold cross validation and split the dataset into 80% training data and 20% validation data.

For our VN architecture, we report results for different kernel sizes k ∈ {5, 7, 9, 11, 13} and

fixed the number of filter kernels Nk = 24 and gradient steps T = 5 empirically.

4.4 Results

We compared our VN results to bilateral filtering, BM3D, TV and second-order TGV qualita-

tively and quantitatively. Table 4.1 shows the mean values and standard deviations for Peak

Signal-To-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The parameters for all

methods were estimated by grid-search. Figure 4.6 shows the qualitative comparison of the

different methods and illustrates that the VN result has less streaking artifacts and appears

more natural compared to BM3D. Our deep learning architecture outperforms all methods

qualitatively and quantitatively. The best results can be achieved for a filter kernel size of 13.

4.5 Discussion

We propose a two-step deep learning architecture to correct for imperfections in limited-angle

CT reconstruction due to missing projection data. In a first step, we correct intensity inho-

mogeneities in the image domain by learning compensation weights in the projection domain.

In a second step, we train a VN to learn regularization to remove structured streaking arti-

facts. Our proposed approach substantially reduces streaking artifacts and outperforms current

state-of-the-art non-linear filtering approaches that can mainly deal with unstructured noise.

The strength of our proposed model is that it eliminates the need for manual tuning and re-

places heuristic compensation steps by data-driven optimization. We see that the non-linear
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Figure 4.6: Qualitative comparison of different non-linear filtering methods to the full scan reference.
The VN reconstruction with kernel size k = 13 shows significantly reduced streaking artifacts compared
to BM3D. The neural network result is the intensity-inhomogeneity corrected output of a first correction
step and defines the input to all methods.

filtering performs better for larger kernel sizes. However, Table 4.1 indicates that the results

for kernel size 11 is worse in terms of PSNR compared to kernel sizes 9 and 13, which might

be due to slight instabilities during training with the L-BFGS optimizer. This suggests to use

different optimizers as outlined in Section 3.3. As the results suggests, larger kernel sizes are

advantageous to deal with structured noise artifacts, as information over a larger FoV can be

processed. Due to the large extent of the artifacts, deeper regularizers with increased percep-

tive field, motivated by CNNs and the U-net architecture [205], could be helpful to further
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decrease the artifacts.

In the proposed architecture, reconstruction and artifact-correction are formulated as two

different subproblems. Our proposed VN architecture suggests to reformulate this problem into

a single problem by including the real reconstruction operator into the data term, including

learning of the compensation weights. Therefore, artifacts in the image domain and in the

data domain could be treated jointly and, hence, the final reconstruction quality might be

improved. Another possibility for joint artifact correction in both domains would be to train

the two different network architectures in an end-to-end manner. Further extensions to the

proposed setup should also account for more physical effects.





5
Variational Networks for 2D Cartesian MR Image

Reconstruction

In theory, there is no difference between theory

and practice. But, in practice, there is.

Walter J. Savitch

This chapter is based on the publications:

K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson,

T. Pock, and F. Knoll. Learning a variational network for reconstruction of

accelerated MRI data. Magnetic Resonance in Medicine, 79(6):3055–3071, 2018,

https://github.com/VLOGroup/mri-variationalnetwork

F. Knoll, K. Hammernik, E. Kobler, T. Pock, M. P. Recht, and D. K. Sodickson.

Assessment of the generalization of learned image reconstruction and the potential

for transfer learning. Magnetic Resonance in Medicine, 81(1):116–128, 2019

Contents

5.1 Fundamental Principles of Magnetic Resonance (MR) Image

Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Insights into Learning a Variational Network (VN) for Accel-

erated Magnetic Resonance Imaging (MRI) Data . . . . . . . . 71

5.4 Exploring the Generalization Potential of VNs for Acceler-

ated MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Influence of Loss Function Design for Accelerated MR Image

Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

53

https://github.com/VLOGroup/mri-variationalnetwork


54 Chapter 5. Variational Networks for 2D Cartesian MR Image Reconstruction

5.6 Improved Regularization for Accelerated MR Image Recon-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Intra-Vendor Reproducibility . . . . . . . . . . . . . . . . . . . . 104

5.8 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . 104

In Chapter 4 we formulated a VN for image enhancement. This rises the important question

if the acquired raw data should be included in the learning-based reconstruction pipeline. To

get a first answer to this question, we performed an experiment with VNs for accelerated MR

image reconstruction. Accordingly, we trained one reconstruction VN using the data term

D [x, y] = ‖Ax− y‖22, where A models the linear MRI forward operator and y is the acquired

MR data. For the second VN, we set the data consistency term to a denoising data term

D [x, y] =
∥∥x− x0

∥∥2

2
, where x0 corresponds to the initial zero-filled solution x0 = A∗y. While

the only difference between the two VNs is the data consistency term, the number of parameters

and structure of the regularizer to handle complex numbers is the same for both networks.

Furthermore, the VNs were trained on 10 coronal proton-density-weighted knee datasets with

FS according to [84]. Figure 5.1 shows the results for the reconstruction VN and denoising VN

on four times undersampled Cartesian data. It clearly demonstrates that the reconstruction

VN outperforms the denoising VN for this specific setup in terms of visual impression and

the quantitative measures, i.e., Root-Mean-Squared-Error (RMSE) and Structural Similarity

Index (SSIM). In the presence of more training data and more complex networks, the denoising

network might also learn the appearance of certain structures in the image domain, and might

lead to improved results. However, the information content of the measurement data can

only by equal for orthogonal transformations in a best case scenario and decreases with every

processing step otherwise. These results also suggest that it is beneficial to include the data

term in the reconstruction to decrease the complexity of the regularizer.

In this chapter, we first introduce fundamental principles for MR image reconstruction in

Section 5.1, including signal generation, practical acquisition strategies, challenges in acceler-

ated data acquisition and Parallel Imaging (PI), which are important to define the MR forward

model for static imaging. To explore the potential of the proposed VNs for MR image recon-

struction, a clinical knee protocol was used to acquire MR data from a representative patient

population, described in Section 5.2. First insights in using VNs for MR image reconstruction,

including qualitative and quantitative comparisons to state-of-the-art reconstruction methods

as well as a reader study on image quality are presented in Section 5.3. Further experiments

consider the generalization potential of the proposed VNs in Section 5.4, the influence of loss

functions on learning in Section 5.5 and the influence of the regularization in Section 5.6.

5.1 Fundamental Principles of MR Image Reconstruction

MRI offers excellent soft tissue contrast and is the leading imaging modality for a wide range

of musculoskeletal, neurological and oncological diseases. However, MRI suffers from long ac-
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Figure 5.1: Comparison of a reconstruction VN and denoising VN for the reconstruction of four
times Cartesian undersampled MRI data of the knee. The two networks were trained with the same
configuration [84] and only differed in the data consistency term. The denoising results show a lot
of remaining artifacts which can be fully suppressed using the reconstruction VN. The quantitative
measures RMSE and SSIM support the observations in image quality.

quisition time, which results in high exam costs and makes the acquisition itself uncomfortable

for the patients. Furthermore, the acquired data are prone to artifacts due to patient motion.

This section covers important concepts for accelerated MR image reconstruction from a signal

processing perspective. Hence, the fundamental physics of MRI is not covered in this thesis.

For details on the MR physics, we refer the interested reader to textbooks [17, 24, 155, 173].

5.1.1 From Signals to Images

In conventional MRI, we aim at measuring a discretized map of macroscopic magnetization

related to the concentration of hydrogen protons 1H and the tissue-specific molecular environ-

ment of an object that is placed in a strong external magnetic field B0. The hydrogen nuclei

precess with the so-called Larmor frequency f0 around the direction of the external magnetic

field B0, following the Larmor equation

f0 = γB0,

where γ is the gyromagnetic ratio which is specific for the underlying nuclei

(γ1H = 42.58 MHz/T). In the presence of B0, the magnetic moments of the individual

protons are summed up and form the longitudinal net magnetization. In order to get a signal,

the net magnetization has to be pushed out of the equilibrium, which can be achieved by

applying a short Radio Frequency (RF) pulse that matches the Larmor frequency of the spins.

This phenomenon is known as resonance. This results in a transverse magnetization of the

precessing protons which induce an electrical voltage in a receiver coil according to Faraday’s

law of induction. After excitation of the spins, the protons turn back into the equilibrium

state and align again with the B0 field.

Right now, we know about the origin of an MR signal, however, the coil measures a

composite signal from all protons, which does not include any spatial information. To identify

the correct spatial locations, different encoding schemes are required which are realized by
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applying magnetic gradients in different directions. Figure 5.2 shows the encoding process for

a regular Spin Echo (SE). In the first step, a slice selection gradient Gz is applied orthogonal

to the desired image plane. We refer the slice direction to z. This results in a change of the

Larmor frequency for different slice positions

fz = γ(B0 +Gzz).

Simultaneously, an RF pulse is applied to match a band of Larmor frequencies fz±∆fz defining

a desired slice position with specific thickness ∆z. In the second step, a Phase Encoding (PE)

gradient is applied in y direction for a fixed time Ty. Once the gradient is turned off, the spins

precess with the same frequency but different phase ϕ(y) as a function of the y position

ϕ(y) = γGyTyy.

In the final readout step, the signal undergoes Frequency Encoding (FE) in x direction. Hence,

the Larmor frequency varies along the x direction and the protons precess with frequency

fx = γ(B0 +Gxx).

In the presence of FE and PE, the signal Sq can be acquired over time t in a Q-channel

receive-coil array following [204]

Sq(kx, ky) =

∞∫
−∞

∞∫
−∞

s(x, y)cq(x, y)e−j2π(γGxtx+γGyTyy) dx dy.

Here, s describes the prepared transverse magnetization that arises due to the excited spins

affected by the RF pulses. The sensitivity cq of the qth receiver coil modulates the magnetization

depending on the spatial location of the receiver coil which is described by the principle of

reciprocity [106, 107, 226]. We see that this equation follows the 2D Fourier Transform (FT)

F2D

Sq(kx, ky) = (F2D(s · cq)) (kx, ky) =

∞∫
−∞

∞∫
−∞

s(x, y)cq(x, y)e−j2π(kxx+kyy) dx dy (5.1)

with spatial frequencies kx = γGxt and ky = γGyTy. The symbol

With the described Cartesian sampling strategy, the pulse sequence has to be repeated after

a fixed Repetition Time (TR) in order to perform the different PE steps and consequently fill

the corresponding lines in k-space. Hence, it is obvious that the PE is the time consuming

part in data acquisition. Another important timing parameter is the Echo Time (TE). The TE

defines the time between the center of the slice-selective RF pulse and the maximum peak of

the echo signal which represents the k-space center. Depending on the selection of TE and

TR, the transverse magnetization s is prepared differently and, hence, different tissue contrasts
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Figure 5.2: Cartesian sampling: (a) Example pulse sequence of a SE and sampling trajectory (b).
To identify the correct spatial locations, gradients for slice selection (SS), phase encoding (PE) and
frequency encoding (FE) have to be applied. The repetition time (TR) and echo time (TE) influence
the overall contrast of the acquired images.

are achieved. The image contrast itself depends on the spin distribution and relaxation effects

of the flipped magnetization, i.e., longitudinal (spin-lattice) relaxation, characterized by the

T1 relaxation time, transversal (spin-spin) relaxation, characterized by the T2 relaxation time,

and additional dephasing effects due to locally varying B0 inhomogenities characterized by T∗2.

Besides the simple Cartesian sampling trajectory, there exist also other sampling strategies

such as radial sampling. Figure 5.3 exemplifies the SE sequence used for magnetization prepa-

ration along with the gradient timing for radial sampling trajectories. To sample the lines,

known as spokes, for the radial trajectory, PE and FE are switched on and off simultaneously.

The spokes can be acquired at different angles φn by varying the strengths of the gradients

Gx,n and Gy,n in x and y direction for every nth excitation

φn = arctan
Gy,n
Gx,n

.

The described sampling strategies already illustrate that the theoretically continuous signal

has to be sampled during a limited amount of time in practice. However, discrete sampling of

a finite signal introduces new challenges which will be covered in the following sections.

5.1.2 The Discrete World of k-Space

Obtaining a perfect reconstruction would require to sample the k-space at an infinite number of

locations, which is not feasible in practice. Hence, the MR signal is sampled at a finite number

Nx and Ny of discrete locations kx = ∆kxix, ix = −Nx
2 , . . . ,

Nx
2 − 1 and ky = ∆kyiy, iy =
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Figure 5.3: Radial sampling: (a) Example pulse sequence of a SE and sampling trajectory (b). To
identify the correct spatial locations, gradients for slice selection (SS), phase encoding (PE) and fre-
quency encoding (FE) have to be applied. The repetition time (TR) and echo time (TE) influence the
overall contrast of the acquired images.

−Ny
2 , . . . ,

Ny
2 − 1 within a frequency bandwidth kx,max and ky,max, leading to the discrete FT

S[lx∆kx, ly∆ky] = ∆x∆y

Nx
2
−1∑

ix=−Nx
2

Ny
2
−1∑

iy=−Ny
2

s[ix∆x, iy∆y]e−jlx∆kxly∆kyix∆xiy∆y. (5.2)

Due to the discrete sampling, the imaged object occurs periodically at a distance FOVx, FOVy.

If we assume that a physical object is bounded by FOVx and FOVy, the replicas do not overlap

if the sampling steps ∆k fulfill the Nyquist criterion. If the conditions defined in the following

equations does not hold, the replicas overlap in image space, resulting in aliasing artifacts, also

known as backfolding or wrap-around artifacts

∆kx ≤
1

FOVx
, ∆kx = γGx∆t,

∆ky ≤
1

FOVy
, ∆ky = γGyTy,

where ∆t is the sampling time interval at readout. By varying the strength of the PE gradient

Gy, different spatial locations ky can by addressed. Inversely, the highest spatial frequency

kmax defines the image resolution

∆x =
1

2kx,max
,

∆y =
1

2ky,max
.
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The base resolution Nx defines the matrix size and, hence, the number of encoding steps,

resulting in following relations in image space and k-space

Nx = ∆x∆kx.

These relationships between image space and k-space are visualized in Figure 5.4. For radial

sampling, we require assumptions on the angular and the frequency sampling interval ∆φ and

∆k [17, 155], illustrated in Figure 5.3b. While ∆k is easy to obtain by

∆k = γG∆t ≤ 1

FOV
, G =

√
G2
x +G2

y,

obtaining ∆φ is a bit trickier. First, we use the small angle approximation to express the line

AB joining A and B in Figure 5.3 as

AB = 2 sin

(
∆φ

2

)
kmax ≈ ∆φkmax.

The Nyquist criterion is fulfilled if the distance AB at the edge of k-space does not exceed

the frequency sampling interval ∆k

∆φ ≤ ∆k

kmax
≤ 1

kmaxFOV
.

An interesting question is how many spokes Nφ are required to fulfill the Nyquist criterion.

The number of spokes Nφ and the number of samples along the trajectory Nk can be expressed

as

Nφ =
π

∆φ
Nk =

∆k

2kmax
.

This leads to the relationship

Nφ =
π

2
Nk

which states that π
2 ≈ 1.57 times more samples are required than a corresponding Cartesian

sampling to fulfill the Nyquist criterion.

Truncation artifacts that occur due to windowing of the infinite signal are another type

of artifacts in MR data acquisition. As windowing with a rectangular window in the Fourier

domain corresponds to convolving the image with a sinc filter, this results in Gibb’s ringing

artifacts that occur as parallel lines along sharp edges. Increasing the matrix size or decreasing

the Field of View (FoV), which both increase the sampling density, can reduce the truncation

artifacts. However, this decreases the voxel size as well as the Signal-to-Noise Ratio (SNR), and

increases the acquisition time due to the higher number of PE steps for the increased matrix

size. As the sampling density is in general lower in PE direction, the truncation artifacts are
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also more prominent in the PE direction.

We see that there are essential connections between base resolutions Nx and Ny, spatial

resolutions ∆x and ∆y, selection of the FoV, sampling distances ∆kx and ∆ky, and the

maximum sampling frequencies kx,max and ky,max. Hence, changing a single parameter effects

all other parameters as well as the SNR, too. To sample more efficiently, different strategies

are considered in practice.

5.1.3 Acquisition Strategies in Clinical Practice

In this section, common acquisition strategies in clinical practice are described, which are rele-

vant for modeling our MR forward and adjoint operators. Let us assume the following scenario:

We examine different patients and want to obtain images with the same base resolution. Due

to the different anatomies of the patients, the anatomy we want to visualize might not fit

in the desired FoV. In order to fit the anatomy on the image, the FoV can be adapted for

every patient, however, this influences the spatial resolution. Furthermore, increasing the FoV

in PE direction or increasing the base resolution also increases the number of PE steps and

consequentially increases the acquisition time.

Readout Oversampling. One strategy to avoid aliasing artifacts in FE direction is to over-

sample the k-space in FE direction. Readout oversampling doubles the number of FE steps

and consequentially doubles the FoV at no additional acquisition time costs. For displaying

the final images at the desired matrix size, the oversampled part is cropped in image domain.

Readout oversampling is implemented on Siemens MR scanners by default.

Phase Oversampling. While readout oversampling can be done at no additional time costs,

phase oversampling requires additional excitation pulses to increase the FoV in PE direction,

which is time consuming. Instead of increasing the FoV and base resolution, to maintain the

same spatial resolution, the FoV can be increased only for acquisition, e.g., when the patient’s

anatomy does not fit into the desired FoV but the base resolution should stay the same. The

effect of phase oversampling, which is defined as percentage, is visualized in the second column

of Figure 5.5. In a post-processing step, the rectangular FoV is cropped to display only the

central part at the given base resolution.

Phase Resolution. Reducing the phase resolution, defined as percentage, can be used to

decrease the number of PE steps and, hence, acquisition time. In fact, this is realized by

lowering the bandwidth ky,max as displayed in the third column of Figure 5.5. Lowering ky,max

influences the spatial resolution ∆y, therefore, the acquired voxels are rectangular. To obtain

square voxels and increase image resolution, the k-space is padded with zeros, known as zero

filling of Fourier interpolation. No information is gained or lost due to zero-filling, hence, no

additional artifacts are introduced.
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Figure 5.4: Visualization of the relationship of k-space and image space in terms of the FoV, spa-
tial resolutions ∆x and ∆y, sampling frequencies ∆kx and ∆kx, and maximum k-space sampling
frequencies kx,max and ky,max.

5.1.4 Accelerated MR Imaging

The major drawbacks of MR imaging are the physical limitations of the acquisition times.

As outlined in the previous sections, the FoV as well as the desired resolution are important

parameters that determine the number of required PE steps and impact the duration of the

scan. Hence, faster acquisition techniques are desired to improve not only patient comfort

and compliance, but also decrease, e.g., motion artifacts. Improved hardware concepts such as

higher field strengths, stronger gradients and phased array receive coils with multiple elements

lead to improved acquisition time and image quality. Due to the increased Specific Absorption

Rate (SAR) associated with higher field strengths, physiological phenomena such as nerve

stimulations limit further developments in this direction. The introduction of PI [77, 190, 227]

led to a breakthrough in accelerated data acquisition. Raw k-space data is acquired in multiple

coil elements as depicted in Figure 5.6 along with the individually reconstructed images in

Figure 5.7. When only a subset of data are sampled, characteristic aliasing artifacts occur. To

recover an image from these undersampled data, the data redundancy and spatial sensitivity of

the individual coil elements are exploited to remove the artifacts. Theoretically, the acceleration

potential of PI-based methods is limited by the number of coil elements. Practically, the

measured data of the individual coil elements deliver redundant information which limits the

acceleration potential as the underlying reconstruction problem becomes ill-posed.

In the clinical setting, an acceleration factor of 2 is used for static 2D Cartesian imaging.

Dynamic acquisitions allow for far higher acceleration due to the data redundancy in time
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Figure 5.5: Reducing the FoV of Figure 5.4 results in aliasing of the turmeric into the apple. This
effect can be avoided by oversampling in PE direction, which increases the FoV in this direction, while
displaying only the desired part. To decrease acquisition time, the phase resolution can be reduced,
resulting in a degraded image quality.

domain. The acceleration potential for 3D imaging is also higher as the number of phase

encoding steps can be reduced in two directions. However, an accurate estimate of the coil

sensitivity maps is required. As the coil sensitivity maps change based on the coil load,

additional strategies have to be carried out. Examples to estimate the coil sensitivity maps are

to perform a pre-scan or to acquire additional low-resolution scan lines, also known as ACLs.

For reconstruction, the coil sensitivity maps have to be known either implicitly as for k-space

methods, or explicitly as for image-based methods.

A new era of PI began in 1997 when Sodickson et al. [227] introduced Simultaneous Ac-

quisition of Spatial Harmonics (SMASH), where missing PE lines in k-space are recovered by

exploiting the spatial coil configurations. Further important developments in k-space meth-

ods were proposed by Griswold et al. [77] with Generalized Autocalibrating Partially Parallel

Acquisitions (GRAPPA). Here, linear, shift-invariant convolution kernels are estimated from

scan-specific ACLs in the center of the k-space, describing the relationship between the indi-

vidual coil elements. These kernels are then used to recover the missing k-space data before

the inverse FT is applied. In contrast to k-space methods, Pruessmann et al. [190] introduced
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Figure 5.6: Acquired k-space data from a 15-channel knee coil.

Sensitivity Encoding (SENSE) that requires an explicit estimation of coil sensitivity maps (see

Figure 5.8). The explicit coil sensitivity maps are applied in image domain to support the

unalising. While the initial publication focused on Cartesian sampling [190], an extension to

arbitrary sampling trajectories was presented in [189]. Pruessmann et al. [190] also introduced

the g-factor map to characterize the ill-posedness of the reconstruction problem due to the

redundant data that are measured by the individual coil elements in practice. The geometry

factor g is a spatially varying measure for noise amplification in PI methods and can be deter-

mined via a noise covariance matrix of the single coil elements. The geometry factor g also
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Figure 5.7: Reconstructed coil images for fully sampled data acquired with a 15-channel knee coil.

influences the SNRpi of PI methods, together with the acceleration factor R

SNRpi =
SNRfull√
Rg

,

where SNRfull is the SNR of the fully sampled image. For further information on noise esti-

mation and g-factor estimation, we suggest further reading, e.g., [10, 22].

Indeed, k-space and image-space methods are treated independently although there exist

a lot of connections. With the introduction of ESPIRiT, Uecker et al. [236] showed how to
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Figure 5.8: Coil sensitivity maps were estimated for each channel using ESPIRiT [236] from 24 Auto-
Calibration Lines (ACLs) in the center of the k-space.

bridge the gap between k-space and image-space methods and, hence, achieve the advantages

of both methods.

In this thesis, we focus on a SENSE-based reconstruction. Therefore, we need the definition

of the forward model which is described in Section 5.1.5. A more detailed overview of PI is

out-of-scope of this thesis and we refer the interested reader to the original publications or

tutorial-/overview papers [18, 216, 235].

Besides the improved hardware concepts, the acquisition time in MR imaging can be also
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reduced by advanced software concepts and reconstruction methods, where Compressed Sens-

ing (CS) [31, 60, 164] led to a substantial improvement additional to PI. A compact overview

of CS can be found in [163]. CS relies on three conditions to obtain images from k-space data

sampled below the Nyquist rate [177, 220]. The first CS condition requires a data acquisition

protocol for undersampling such that the artifacts become incoherent in a certain transform

domain [31, 60]. In MRI, we usually achieve incoherence by random [164] or non-Cartesian

sampling trajectories [19], such as radial or spiral sampling schemes. Figure 5.9 depicts how dif-

ferent undersampling schemes impact the aliasing structure in the final reconstruction. Radial

sampling, illustrated in the right column, results in characteristic noise-like streaking artifacts.

The incoherence of these artifacts fulfills the CS conditions. However, most routine clinical

MRI examinations are still based on Cartesian sequences as shown in the left column, resulting

in severe coherent aliasing artifacts. Especially in the case of 2D sequences, it can be chal-

lenging to fulfill the criteria for incoherence required by CS [105]. The second requirement

for CS is that the image to be reconstructed must have a sparse representation in a certain

transform domain. Common choices are the Wavelet transform [53, 164] or the Total Variation

(TV) semi-norm [19, 132, 133, 207]. In these transform domains, the `1 norm is commonly

applied to obtain approximate sparsity. The third CS condition requires a non-linear recon-

struction algorithm that balances sparsity in the transform domain against consistency with

the acquired undersampled k-space data. Despite the high promises of CS and its advances

in different specialized research areas, its translation to clinical examinations is challenging.

Besides the requirements on incoherence, the handcrafted sparsifying transforms are too simple

to describe the complex image content of medical images. Furthermore, CS algorithms rely

on a number of hyper-parameters that need to be tuned by hand thoroughly, which reduces

the generalization potential and is not feasible in clinical practice. Finally, many of the used

algorithms suffer from long reconstruction times.

5.1.5 Definition of the Static MR Forward Model

In this thesis, we use an MR forward model for Cartesian undersampled data, motivated by

the image-based PI method SENSE [190]. The undersampled data is acquired by multiple

receiver coils, where each coil is only sensitive in a certain region, which is modeled by coil

sensitivity maps. Furthermore, the acquired data includes FE oversampling, as this is a standard

behavior of the used scanner hardware. To limit the computational burden in image domain,

we include the removal of FE oversampling in the forward model. We aim at reconstructing

an image x ∈ CNx of size M × N and Nx = MN from noisy measurement data y ∈ CNy ,

Ny = M̃NQ acquired with multiple receiver coils Q. The acquired data y additionally includes

FE oversampling reflected in M̃ . While undersampling is performed in PE direction, the

oversampling in this direction is not touched by the forward operator A to avoid additional

artifacts. Hence, x and y have the same dimension in the PE encoding direction. In contrast,

the FE oversampling can be removed without any problems in A. Hence, the forward operator
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Figure 5.9: Examples for aliasing of Cartesian and radially undersampled data. While Cartesian
undersampling leads to characteristic coherent backfolding artifacts, radially undersampled data results
in incoherent streaking artifacts.

A : CNx → CNy is defined as

Ax =

m�F (c1 �Bx)
...

m�F (cQ �Bx)


where c = [c1, ..., cQ] ∈ CNy is the set of coil sensitivities, m ∈ CNx,pad and B : CNx → CNx,pad
is the pre-processing operator where Nx,pad = M̃N . The symbol � denotes the Hadamard

product, i.e., element-wise multiplications. First, the pre-processing operator B pads the

image in FE-direction, which is in our case the y direction, by zeros to achieve the image of

size M̃ ×N . Then the coil-sensitivity maps cq are applied in image domain. This is followed

by a centered FT F , scaled by 1√
M̃×N

. The undersampling pattern is stored in the sampling
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mask m, which is finally multiplied on the data in the Fourier domain.

We require also the transpose (backward) operator A∗(y) : CNy → CNx defined as

A∗y = B∗

 Q∑
q=1

c∗q �F∗ (yq �m)

 .

The individual coil raw data is masked and transformed to image domain by a centered inverse

FT F∗, scaled by 1√
M̃×N

. The individually transformed coil-images are combined with the

sensitivity maps cq and summed up over the coil dimension q. Finally, the post-processing

operator B∗ : CNx,pad → CNx crops the central portion of the image in FE-direction at(
nFE

4 : 3nFE
4

)
to achieve an image x ∈ CNx .

Once we have these operators defined, we are able to obtain a SENSE-based reconstruction

by solving the least-squares problem Equation (3.2). In cases where computing the pseudo-

inverse is infeasible, iterative methods such as the Conjugate Gradient (CG) method can be

applied to obtain a solution. For MRI, the CG SENSE was introduced in [189], which is

used as a reference method through this chapter. To further stabilize the reconstruction,

regularization techniques are applied (see Section 2.1). Throughout this chapter, we compare

our approach to second-order Total Generalized Variation (TGV), where we refer the interested

reader to [21, 132] for details.

Sampling Masks. Basically, any pattern can be used as sampling masks. In our case, we

focus on Cartesian sampling. Our raw data is acquired with reduced phase resolution meaning

that some of the the acquired raw data are padded with zeros to achieve squared voxels.

Naturally, we would setup a sampling mask that is also zero at these position. However, this

leads to an undefined behaviour in these regions, because they can be filled with any unwanted

values during reconstruction as there is no constraint forcing these regions to zero in the data

term. Another example is visualized in Figure 5.10. Here, we use the fully-sampled Stanford

3D FSE Knee dataset1 which was acquired with a Cartesian sampling pattern. If we extract

2D slices of these data, we observe that the raw data are defined in an ellipsoidal Region

Of Interest (ROI) as illustrated in Figure 5.10 (d). If arbitrary random sampling patterns

are used to reconstruct these data, the regions outside the ROI have to be set to ones to

again force the raw data to zero in these regions. To show the influence, we reconstruct 2D

slices of these data with CG SENSE with a high number of CG iterations and TGV. For the

sampling mask, we generated a random pattern with a net acceleration factor of 4 according

to Lustig et al. [164], including a fully sampled block of size 24× 24 in the center of k-space.

The reconstructed images are depicted along with the resulting k-space in Figure 5.10 as well

as the used sampling masks. In the case of CG SENSE, we observe larger noise amplification

in the reconstructed image if the regions outside the ROI are set to zero in the sampling mask.

For TGV, we do not observe a visual difference in the reconstruction. This can be explained

1http://mridata.org/list?project=Stanford%20Fullysampled%203D%20FSE%20Knees

http://mridata.org/list?project=Stanford%20Fullysampled%203D%20FSE%20Knees
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Acquisition Time

Acceleration Coronal PDw Coronal PDw-FS Axial T2w-FS Sagittal T2w-FS Sagittal PDw Total Time

Fully Sampled 3:53 min 4:17 min 2:58 min 4:03 min 7:16 min 22:27 min
Clinical IPAT 2 2:41 min 2:51 min 1:38 min 1:58 min 3:48 min 12:56 min

IPAT 3 1:54 min 2:02 min 1:10 min 1:23 min 2:41 min 9:10 min
IPAT 4 1:32 min 1:39 min 0:58 min 1:10 min 2:05 min 7:24 min

Table 5.1: Acquisition times for a clinical knee protocol with different acceleration factors.

that the TGV regularizer does not allow regions with amplified noise to appear. However, the

impact of masking the undefined regions can be best seen in the k-space of the reconstructed

images visualized in Figure 5.10 (h,i,k,l). Here, we clearly see that the undefined regions have

to be considered in the sampling mask to achieve valid reconstruction results for all iterative

methods, including but not limited to CG SENSE, CS-based or learning-based methods.

5.2 Data Acquisition

A major goal of our work was to explore the generalization potential of a learning based

approach for MRI reconstruction. For this purpose, we used a standard clinical knee protocol

for data acquisition with a representative patient population that differed in terms of anatomy,

pathology, gender, age and body mass index. The protocol consisted of five 2D Turbo Spin

Echo (TSE) sequences that differed in terms of contrast, orientation, matrix size and SNR.

For each sequence, we scanned 20 patients on a clinical 3T system (Siemens Magnetom

Skyra) at New York University Langone Health, NY, USA, using a 15-channel knee coil. All

data were acquired without acceleration, and undersampling was performed retrospectively. In

addition, we acquired prospectively accelerated data for one case. The total scan times for

different acceleration factors are listed in Table 5.1. The number of acquired slices was chosen

individually for each clinical patient exam. The study was approved by our institutional review

board. To test the algorithm on different hardware, additional fully sampled and prospectively

undersampled data were acquired with the same hardware specifications for one case at Graz

University of Technology, Graz, Austria. The sequence parameters along with the details about

the scanned patient population are listed in Table 5.2.

Coil sensitivity maps were precomputed from a data block of size 24 × 24 at the center of

k-space using ESPIRiT [236]. For both training and quantitative evaluation, each network

reconstruction was compared against a gold standard reference image. We defined this gold

standard as the coil-sensitivity combined reconstruction which was obtained by applying the

adjoint operator A∗ to the fully sampled k-space data. The fully sampled raw data were then

retrospectively undersampled for both training and testing. Concerning all experiments the

acceleration factor, e.g., R = 4, is solely the number of skipped phase encoding steps, while

the effective acceleration factor is slightly less due to the fully sampled block in the center of

k-space.

With the recent release of the fastmri dataset [268], a large open database is now available
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(a) Reference (b) CG SENSE with mask1 (c) PI-CS TGV with mask1

(d) k-space reference (e) CG SENSE with mask2 (f) PI-CS TGV with mask2

(g) mask1 (h) k-space of (b) with mask1 (i) k-space of (c) with mask1

(j) mask2 (k) k-space of (e) with mask2 (l) k-space of (f) with mask2

NRMSE=0.5114
SSIM=0.4264

NRMSE=0.4992
SSIM=0.4375

NRMSE=0.1344
SSIM=0.9249

NRMSE=0.1325
SSIM=0.9257

Figure 5.10: The fully-sampled raw data is defined by an ellipsoidal region. The sensitivity-combined
reconstruction is shown in (a) along with its k-space in (b). If the mask in (i) is used, the regions
are not forced to 0 in the data consistency term. To account for the undefined regions, we set these
regions to 1 (j). Although there is not a great visual difference for these examples for CG SENSE (e,h)
and TGV (f,i) when using the masks (g,j), it impacts the k-space greatly. While regions in k-space are
forced to 0 (k,l) when using mask2 (j), these regions are filled with unwanted signal (h,i) when using
mask1 (g), which might result in artifacts and noise in the image domain.
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Clinical Protocol

Parameter Coronal PDw Coronal PDw-FS Axial T2w-FS Sagittal T2w-FS Sagittal PDw

Sample image

Base resolution 320 320 320 320 384
Field-of-View (FoV) 140 mm 140 mm 140 mm 140 mm 140 mm

Phase encoding direction R � L R � L R � L H � F H � F
Phase resolution 90% 90% 80% 80% 80%

Phase oversampling 15% 15% 50% 100% 100%
Slice thickness 3 mm 3 mm 3mm 3 mm 3 mm

TR 2750 ms 2870 ms 4000 ms 4300 ms 2800 ms
TE 27 ms 33 ms 65 ms 50 ms 27 ms

Fat saturation (FS) No Weak Weak Weak No
Turbo factor 4 4 9 11 4
Flip angle 180◦ 180◦ 150◦ 180◦ 150◦

Bandwidth 260 Hz/Px 200 Hz/Px 252 Hz/Px 200 Hz/Px 303 Hz/px
Number of slices 35-42 33-44 33-41 31-40 31-38

Gender 5 F / 15 M 10 F / 10 M 10 F / 10 M 11 F / 9 M 11 F / 9 M
Age 15-76 yrs 30-80 yrs 20-70 yrs 12-73 yrs 15-94 yrs
BMI 20.46-32.94 19.76-33.87 19.20-35.69 18.16-37.31 18.69-35.15

Table 5.2: Overview of sequence parameters for the used clinical knee protocol along with details
about the scanned patient population.

for the MRI reconstruction community. From the fastmri dataset, we extracted the data

acquired with the same hardware and matrix-size parameter as our dataset, resulting in 140

training volumes each for coronal PDw and coronal PDw-FS, and 50 test volumes for these

contrasts and performed additional experiments with these data.

5.3 Insights into Learning a VN for Accelerated MRI Data

Despite the high promise of CS approaches, most routine clinical MRI examinations are still

based on Cartesian sequences. Especially in the case of 2D sequences, it can be challenging

to fulfill the criteria for incoherence required by CS [105]. One other obstacle in the way of

incorporating CS into some routine clinical routine examinations is the fact that the sparsifying

transforms employed in CS applications up to now may be too simple to capture the complex

image content associated with biological tissues. This can lead to reconstructions that appear

blocky and unnatural, which reduces acceptance by clinical radiologists. A further drawback,

not only for CS but for advanced image acquisition and reconstruction methods in general, is

the long image reconstruction time typically required for iterative solution of non-linear opti-

mization problems. A final challenge concerns the selection and tuning of hyper-parameters

for CS approaches. A poor choice of hyper-parameters leads either to over-regularization, i.e.,

excessively smooth or unnatural-looking images, or else to images that still show residual under-

sampling artifacts. The goal of this section is to demonstrate that, using learning approaches,
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we can achieve accelerated and high-quality MR image reconstructions from undersampled

data which do not fulfill the usual CS conditions.

In this section, we formulate a VN for accelerated MRI reconstruction of complex-valued

multi-channel MR data. We train the VN on a complete clinical protocol for musculoskeletal

imaging, evaluating performance for different acceleration factors, and for both regular and

pseudo-random Cartesian 2D sampling. Furthermore, we evaluate the image quality of the

proposed approach compared to PI-CS using a reader study, examined by trained radiologists.

Using clinical patient data, we investigate the capability of the VN approach to preserve unique

pathologies that are not included in the training data set.

5.3.1 Methods

In MRI reconstruction, we naturally deal with complex numbers. Here, we introduce a mapping

to real-valued numbers that we will use throughout this chapter. We define complex images

x̃ of size nx × ny = Nx as equivalent real images x as follows:

x̃ = xre + jxim ∈ CNx ⇔ x = (xre, xim) ∈ R2Nx .

Considering an inverse problem (3.1), we denote the reconstructed image as x ∈ R2Nx and

y ∈ RNy is the given undersampled k-space data, where missing data are padded by zeros.

The linear forward sampling operator A implements point-wise multiplications with Q coil

sensitivity maps, FTs, and undersampling according to a selected sampling pattern as described

in detail in Section 5.1.5. Originally, the operator A is defined by the mapping CNx → CNy ,

but embedding it in our real-valued problem changes the mapping to R2Nx → R2Ny . This

convolution operator K = (Kre,Kim) : R2Nx → RNx models convolutions with filter kernels

k ∈ Rs×s×2 of size s

Kx = Krexre +Kimxim, x ∈ R2Nx ⇔ x ∗ k = xre ∗ kre + xim ∗ kim, x ∈ Rnx×ny×2.

(5.3)

and non-linear potential functions ρ(z) = (ρ(z1), . . . , ρ(zN ))> : RNx → RNx . Using this

notation, we end up in a VN structure as illustrated in Figure 5.12. A zero filled solution

is computed from the undersampled k-space data by applying the adjoint operator A∗. The

measured raw data and sensitivity maps, together with the zero filled initializations, are fed

into the VN as illustrated in Figure 5.11. The sensitivity maps are used in the operators A

and A∗, which perform sensitivity-weighted image combination and can also implement other

processing steps such as the removal of readout oversampling. While both raw data and

operators A and A∗ are required in every iteration of the VN to implement the gradient of the

data term, the gradient of the regularization is only applied in the image domain as depicted

in Figure 5.12.

To set up the training procedure, we minimize a loss function over a set of images S with

respect to the VN parameters θ. A common choice for the loss function is the Mean Squared
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Figure 5.11: Proposed image reconstruction pipeline: A zero filled solution is computed from the
undersampled k-space data by applying the adjoint operator A∗, which involves the application of the
sampling mask, inverse FT and coil sensitivity maps. We feed the undersampled k-space data, coil
sensitivity maps and the zero filling solution to the VN to obtain a reconstruction. For simplicity, we
show the magnitude images, but all the input and output data of the VN are complex-valued.

Error (MSE). As we are dealing with complex numbers in MRI reconstruction and we typically

assess magnitude images, we define the MSE of (ε-smoothed) absolute values as loss function

for training

min
θ

{
L
(
xT (θ), xref

)
=

1

2S

S∑
s=1

∥∥|xTs (θ)|ε − |xref,s|ε
∥∥2

2

}
, |x|ε =

√
x2
re + x2

im + ε,

where | · |ε is understood in a point-wise manner. More details on the choice of this loss

functions as well as experiments using different loss function is presented in Section 5.5.

Experimental Setup. Our experiments differed in contrast, orientation, acceleration factor

and sampling pattern. For all our experiments, we pre-normalized the acquired k-space vol-

umes with nsl slices by
√
nsl10000
‖y‖2

. We trained an individual VN for each experiment and kept

the network architecture fixed for all experiments. The VN consisted of T = 10 steps. The

initial reconstruction x0 was defined by the zero filled solution. In each iteration Nk = 48

real/imaginary filter pairs of size 11 × 11 were learned. For each of the Nk filters, the corre-

sponding activation function was defined by Nw = 31 Gaussian radial basis functions (RBFs)
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Figure 5.12: The VN consists of T gradient descent steps. To obtain a reconstruction, we feed
the undersampled k-space data, coil sensitivity maps and the zero filling solution to the VN. Here, a
sample gradient step is depicted in detail. As we are dealing with complex-valued images, we learn
separate filters kti for the real and complex plane. The non-linear activation function φti combines the
filter responses of these two feature planes. During a training procedure, the filter kernels, activation
functions and data term weights λt are learned.

equally distributed between [-150,150]. Including the data term weight λt in each step, this

resulted in a total of 131,050 network parameters.

For optimization, we used the Inertial Incremental Proximal Gradient (IIPG) optimizer

described in Appendix C.1. The IIPG optimizer allows us to handle the previously described

constraints on the network parameters. We generated a training set for each of the five knee

datasets. In each experiment, we used 20 image slices from 10 patients with the same contrast

weighting and orientation, which amounts to 200 images, as the training set. For each patient,

the central 20 slices were used for training. In fact, each single pixel of these training images

provides a training example. In the case of a 320 × 320 matrix, this results in more than 20

million pixels which is orders of magnitudes larger than the number of network parameters.

The training set was split into mini batches of size 10. Optimization was performed for 1000

iterations with a step size of η = 10−3.

Implementations. The VN approach as well as the reference methods were implemented

in C++/CUDA with CUDNN support. We provide Python and Matlab interfaces for test-

ing. Experiments were performed on a system equipped with an Intel Xeon E5-2698 Central

Processing Unit (CPU) (2.30GHz) and a single Nvidia Tesla M40 Graphics Processing Unit

(GPU). For dictionary learning, we used the Matlab implementation provided by Ravishankar et

al. [195] and extended their formulation to be used with our multi-coil sampling operator. This

requires to solve Eq. (7) in their work using the conjugate gradient method which additionally
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(a) Regular sampling pattern (b) Variable density random
sampling pattern (VDS)

(c) Point-spread functions (PSF) for
different sampling patterns

Figure 5.13: Cartesian sampling patterns for R = r: (a) shows a regular clinical pattern and (b)
illustrates a VRS pattern. Both patterns have the same amount of ACLs and PE steps. While the
regular Cartesian sampling pattern introduces coherent backfolding artifacts, depicted by the blue PSF
in (c), the VRS pattern introduces more randomness, depicted by the green PSF in (c).

increases runtime. Source code and data are available online based on Tensorflow2.

Experiments. In the first step, we investigated whether the learning-based VN approach

actually benefits from structured undersampling artifacts due to regular undersampling, or

if it performs better with incoherent undersampling artifacts as are typically present in CS

applications. We used a regular sampling scheme with fully-sampled k-space center consisting

of 24 ACLs, identical to the vendor implementation of an accelerated TSE sequence on an MR-

system. This regular sampling pattern, visualized in Figure 5.13a, results in coherent aliasing

artifacts as indicated by the Point Spread Function (PSF) Figure 5.13c. We also generated a

Variable Density Random Sampling (VRS) pattern according to Lustig et al. [164], illustrated

in Figure 5.13b, in order to introduce more randomness as indicated by the PSF in Figure 5.13c.

Both sampling patterns have the same fully-sampled k-space center and same number of PE

steps. We evaluated the acceleration factors R ∈ {3, 4} for two sequences which differ in

contrast and SNR. The second step was to explore the generalization potential with respect to

different contrasts and orientations of a clinical knee protocol. In a third step, we performed

an experiment with prospectively accelerated data.

Evaluation. We tested our algorithm on data from 10 clinical patients per sequence and

reconstructed the whole imaged volume for each patient. These cases were not included in the

training set, and they also contained pathology not represented in the training set. It is worth

noting that the number of slices was different for each patient, depending on the individual

optimization of the scan protocol by the MR technologist.

We compared our learning-based VN to the linear PI reconstruction method

CG SENSE [190] and a combined PI-CS non-linear reconstruction method based on

2https://github.com/VLOGroup/mri-variationalnetwork

https://github.com/VLOGroup/mri-variationalnetwork
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TGV [21, 132]. Additionally, we compared our qualitative results to dictionary learning [195]

and provide quantitative measures for the selected cases. However, a full comparison

to dictionary learning for all cases is out of scope of this work due to the long runtime

requirements (approximately one hour per slice). The forward and adjoint operators for all

three reference methods, in particular the coil sensitivity maps, were consistent with our

VN approach. All hyper-parameters for CG SENSE and PI-CS TGV such as the number of

iterations and regularization parameters were estimated individually by grid search for each

sampling pattern, contrast and acceleration factor, such that the MSE of the reconstruction

to the gold standard reconstruction was minimized. For dictionary learning, we used the

standard parameters as in [195] and estimated the regularization parameter by grid search

such that the MSE of the depicted slices was minimized. We assessed the reconstruction

results quantitatively in terms of MSE, Normalized Root Mean Squared Error (NRMSE), and

SSIM [248] with σ = 1.5 on the magnitude images.

In addition to the qualitative and quantitative evaluation, we performed a reader study

that compared results from the proposed VN method with results from PI-CS TGV. The

50 test cases from all five sequences were independently reviewed by two fellowship trained

musculoskeletal radiologists who were blinded to the MRI reconstruction method. Cases were

reviewed in two different sessions, separated by 2 weeks to minimize recall bias. Each session

consisted of a random selection of 25 VN and 25 TGV reconstructions. Using a 4-point ordinal

scale, reconstructed images were evaluated for sharpness (1: no blurring, 2: mild blurring, 3:

moderate blurring, 4: severe blurring), SNR (1: excellent, 2: good, 3: fair, 4: poor), presence

of aliasing artifacts (1: none, 2: mild, 3: moderate, 4: severe) and overall image quality

(1: excellent, 2: good, 3: fair, 4: poor). Comparisons in terms of image quality scores,

averaged over the two readers, were made using a one-sided Wilcoxon signed-rank test. The

null hypothesis that PI-CS TGV reconstruction results are equal or better than VN-based

results is rejected at significance level α = 0.05 if the resulting p-value of the test is lower than

the significance level α.

5.3.2 Results

First, we show results for the retrospective experiments.This is followed by prospective results

as well as results for the reader study on image quality in. Finally, we show some examples for

learned VN parameters in Section 5.3.2.

Retrospective Variational Network Reconstructions. Figure 5.18 displays the impact of

acceleration factor R = 4 and sampling patterns for CG SENSE, dictionary learning, PI-CS

TGV and our learned VN on coronal PDw images. Additionally, we plot zero filling solutions

to illustrate the amount and structure of undersampling artifacts. Difference images to the

reference are visualized in Figure 5.19. The reconstruction results for acceleration factor R = 3

along with the difference images are illustrated in Figure 5.14 and Figure 5.15. Residual

artifacts and noise amplification can be observed for CG SENSE, in particular for R = 4.
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In case of acceleration factor R = 3, the PI-CS image appears less noisy than CG SENSE;

however, similar undersampling artifacts are present. For R = 4 the PI-CS TGV result contains

fewer undersampling artifacts than CG SENSE but small details in the image are already lost.

Dictionary learning leads to an improved removal of undersampling artifacts, resulting in

a lower NRMSE than PI-CS TGV for this particular case. The learned VN suppresses these

artifacts while still providing sharper and slightly more homogeneous images. Interestingly,

dictionary learning as well as the PI-CS TGV and learned VN reconstruction with R = 3

regular sampling perform slightly better than with VRS in terms of intensity homogeneity and

sharpness. For acceleration R = 4, randomness improves the reconstruction results.

Similar observations can be made for coronal PDw-FS scans, as depicted in Figure 5.20.

Again, the reconstruction results for acceleration factor R = 3 along with the difference images

are illustrated in Figure 5.16 and Figure 5.17. The main difference is that this sequence has a

lower SNR compared to the non-FS version. Since additional noise reduces sparsity, the PI-CS

TGV reconstructions produce an even more unnatural blocky pattern and contain substantial

residual artifacts. The dictionary learning results appear blurrier at image edges and the general

reconstruction quality is lowered at this level of SNR, which can best be seen in the error maps

in Figure 5.19 and is supported by the quantitative values for this particular slice. Our learned

VN is able to suppress these undersampling artifacts and shows improved image quality at this

SNR level as well.

All our observations are supported by the quantitative evaluation depicted in Table 5.4 for

R = 4 and in Table 5.3 for R = 3. The wide range in quantitative values over the different

sequences illustrates the effect of SNR on the reconstructions. The learned VN reconstructions

show superior performance in terms of MSE, NRMSE and SSIM in all cases. Table 5.4 and

Table 5.3 also support the qualitative impression that there is no improvement using VRS for

R = 3 for PI-CS TGV and VN reconstruction. In contrast, VRS outperforms regular sampling

for R = 4 in all coronal cases.

We illustrate results for individual scans with regular sampling of R = 4 for a complete

knee protocol, which contains various pathologies, taken from subjects ranging in age from

15 to 57, and anatomical variants, including a pediatric case. In particular, the coronal PDw

scan (M32) depicted in Figure 5.18 shows osteoarthritis, most advanced within the lateral

tibiofemoral compartment with associated marginal osteophyte formation, indicated by the

green bracket. An extruded and torn medial meniscus, indicated by the green arrow, is visible

in the coronal PDw-FS scan in Figure 5.20. Additionally, this patient (F57) has broad-based,

full-thickness chondral loss within the medial compartment and a subchondral cystic change

underlying the medial tibial plateau, as indicated by the green bracket. Further results for

different orientations and contrasts are illustrated in Figure 5.22 for regular sampling with

R = 4 along with the error maps in Figure 5.23. The sagittal PDw scan illustrates a skeletally

immature patient (F15) with almost completely fused tibial physes. A partial tear of the

posterior cruciate ligament is visible in the sagittal T2w-FS scan M34. A full-thickness chondral

defect centered in the medial femoral trochlea (green arrow) is visible on the axial T2w-FS

scan (F45) on a background of patellofemoral osteoarthritis.
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Regular Random

Data set Method MSE NRMSE SSIM in % MSE NRMSE SSIM in %

Coronal PDw

Zero Filling 17.69±4.05 0.17±0.02 81.61±2.09 17.18±3.96 0.17±0.02 81.00±2.15
CG SENSE 2.25±0.55 0.12±0.03 90.16±2.15 4.82±1.02 0.15±0.03 85.45±2.45
PI-CS TGV 1.13±0.30 0.08±0.02 93.85±1.58 1.88±0.43 0.09±0.02 91.22±1.67
Learning 0.88±0.21 0.07±0.02 94.89±1.45 1.27±0.29 0.08±0.02 93.61±1.48

Coronal PDw-FS

Zero Filling 18.07±3.40 0.21±0.03 77.48±2.81 17.93±3.32 0.21±0.03 77.00±2.78
CG SENSE 11.05±1.37 0.21±0.03 80.12±3.08 12.73±1.32 0.24±0.04 75.15±4.52
PI-CS TGV 5.84±0.96 0.17±0.03 82.40±3.84 6.51±0.90 0.17±0.03 81.53±3.73
Learning 4.86±0.75 0.15±0.03 84.88±3.37 5.26±0.70 0.16±0.03 84.31±3.30

Sagittal T2w-FS

Zero Filling 17.11±3.29 0.18±0.02 87.85±1.93 15.09±2.69 0.18±0.02 87.49±1.91
CG SENSE 4.08±0.92 0.12±0.03 91.81±2.06 6.81±1.38 0.15±0.03 89.14±2.22
PI-CS TGV 2.63±0.58 0.10±0.02 93.54±2.10 3.44±0.66 0.11±0.02 92.54±2.03
Learning 2.42±0.49 0.09±0.02 94.26±1.87 2.93±0.56 0.10±0.02 93.57±1.80

Sagittal PDw

Zero Filling 3.61±0.54 0.09±0.01 90.50±1.57 2.94±0.45 0.08±0.01 90.83±1.58
CG SENSE 0.45±0.09 0.05±0.02 95.42±1.31 0.81±0.13 0.06±0.02 93.46±1.35
PI-CS TGV 0.31±0.06 0.04±0.01 97.23±1.01 0.47±0.08 0.04±0.01 96.45±1.08
Learning 0.29±0.05 0.04±0.01 97.53±0.95 0.40±0.07 0.04±0.01 96.89±0.98

Axial T2w-FS

Zero Filling 37.46±8.64 0.25±0.01 82.52±1.61 36.05±7.84 0.25±0.01 81.64±1.77
CG SENSE 15.59±2.85 0.19±0.02 87.41±1.89 20.24±3.40 0.23±0.02 82.59±2.67
PI-CS TGV 10.32±2.98 0.16±0.03 88.23±2.87 11.81±2.79 0.18±0.03 87.18±2.79
Learning 7.92±1.93 0.14±0.02 90.78±2.05 9.06±1.90 0.15±0.02 89.82±2.09

Table 5.3: Quantitative evaluation results in terms of MSE, NRMSE, and SSIM for a clinical knee
protocol and acceleration factor R = 3 for regular sampling and VRS.

Regular Random

Data set Method MSE NRMSE SSIM in % MSE NRMSE SSIM in %

Coronal PDw

Zero Filling 19.41±4.43 0.17±0.02 79.00±2.36 15.83±3.68 0.16±0.02 80.64±2.41
CG SENSE 5.20±0.97 0.16±0.03 84.01±2.21 4.26±0.98 0.15±0.03 85.57±2.29
PI-CS TGV 2.35±0.40 0.09±0.02 89.80±1.75 1.91±0.45 0.09±0.02 90.36±1.79
Learning 1.64±0.28 0.08±0.02 92.14±1.68 1.37±0.32 0.08±0.02 92.86±1.63

Coronal PDw-FS

Zero Filling 20.71±4.07 0.23±0.03 73.96±3.04 17.69±3.30 0.22±0.03 75.10±3.17
CG SENSE 14.55±1.62 0.25±0.05 73.06±4.62 11.79±1.39 0.24±0.04 74.78±4.55
PI-CS TGV 7.73±1.14 0.19±0.04 79.19±4.14 7.07±1.07 0.18±0.03 79.69±4.09
Learning 6.49±0.80 0.17±0.03 81.97±3.60 5.81±0.85 0.17±0.03 82.47±3.67

Sagittal T2w-FS

Zero Filling 16.66±3.14 0.19±0.03 85.71±2.62 17.35±3.21 0.19±0.03 84.91±2.59
CG SENSE 6.27±1.62 0.15±0.04 87.86±3.08 9.55±2.11 0.18±0.04 85.06±3.11
PI-CS TGV 3.39±0.82 0.11±0.03 91.84±2.81 4.76±0.95 0.13±0.03 90.29±2.70
Learning 2.99±0.68 0.11±0.03 92.83±2.40 3.92±0.81 0.12±0.03 91.85±2.35

Sagittal PDw

Zero Filling 5.17±0.75 0.11±0.01 87.53±1.95 3.32±0.51 0.09±0.01 89.49±1.80
CG SENSE 0.86±0.15 0.06±0.02 92.74±1.46 1.03±0.16 0.07±0.02 92.37±1.48
PI-CS TGV 0.49±0.09 0.05±0.01 96.22±1.17 0.64±0.11 0.05±0.01 95.47±1.24
Learning 0.44±0.07 0.04±0.01 96.64±1.16 0.52±0.09 0.05±0.01 96.07±1.17

Axial T2w-FS

Zero Filling 44.57±9.95 0.27±0.02 78.52±1.92 48.03±11.13 0.28±0.02 77.80±1.98
CG SENSE 23.75±4.56 0.24±0.03 80.30±3.20 31.98±4.88 0.27±0.02 78.87±2.43
PI-CS TGV 13.65±3.78 0.18±0.03 85.51±3.25 15.30±2.57 0.19±0.02 84.93±2.60
Learning 10.63±2.48 0.16±0.02 88.46±2.43 12.06±2.13 0.17±0.02 87.74±2.30

Table 5.4: Quantitative evaluation results in terms of MSE, NRMSE, and SSIM for a clinical knee
protocol and acceleration factor R = 4 for regular sampling and VRS.
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Reader scores regular

Dataset Criterion PI-CS TGV Learning p-value

Coronal PDw

Artifact 3.60±0.57 1.65±0.07 0.0010
Sharpness/Blur 2.90±0.14 2.15±0.07 0.0234

SNR 2.60±0.28 1.45±0.21 0.0078
Overall image quality 3.30±0.14 2.05±0.21 0.0010

Coronal PDw-FS

Artifact 3.95±0.07 2.90±0.42 0.0020
Sharpness/Blur 3.95±0.07 3.15±0.64 0.0020

SNR 3.75±0.21 2.90±0.71 0.0049
Overall image quality 3.95±0.07 3.20±0.57 0.0020

Sagittal T2w-FS

Artifact 2.90±0.14 2.80±0.28 0.3750
Sharpness/Blur 3.40±0.14 2.75±0.21 0.0156

SNR 3.20±0.28 2.50±0.28 0.0234
Overall image quality 3.30±0.28 2.75±0.07 0.0078

Sagittal PDw

Artifact 2.10±0.14 2.00±0.14 0.4063
Sharpness/Blur 2.10±0.14 2.10±0.14 0.6875

SNR 1.60±0.00 1.50±0.28 0.3828
Overall image quality 2.20±0.14 2.05±0.07 0.2656

Axial T2w-FS

Artifact 3.15±0.07 3.10±0.57 0.5000
Sharpness/Blur 3.05±0.07 2.95±0.49 0.3750

SNR 3.10±0.14 2.75±0.49 0.0313
Overall image quality 3.20±0.14 3.05±0.49 0.2266

Table 5.5: Image quality reader scores for a clinical knee protocol and acceleration factor R = 4 for
regular sampling. For the reader scores, we depict the mean values and standard deviations averaged
over both readers along with the p-value obtained by the one-sided Wilcoxon signed-rank test. Values
that accept the alternative hypothesis with a significance level α = 0.05, that VN reconstructions have
a better quality score, are marked as bold.
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Figure 5.23: Difference images for sagittal T2w-FS, sagittal PDw and axial T2w-FS sequences of a
complete knee protocol presented in Figure 5.22.
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Figure 5.25: Examples of learned parameters of the VN. Filter kernels for the real kre and imaginary
kim plane as well as their corresponding activation φ′ and potential function ρ are shown. The potential
function ρ was obtained by integrating the activation function φ′ including an additional integration
constant.

The presence of these particular variations, which were not included in the training data set,

does not negatively affect the learned VN reconstruction. The reduction of residual aliasing

artifacts, marked by yellow arrows, the reduced noise level, and the overall improved image

quality lead to an improved depiction of the pathologies when compared to the reference

methods. Again, the quality improvement of the learned VN is supported by the quantitative

analysis of similarity measures depicted in Table 5.3 and Table 5.4.

Prospective Variational Network Reconstructions. The reconstruction results of prospec-

tively undersampled data for regular sampling and acceleration R = 4 are depicted in Fig-

ure 5.24. While PI-CS TGV and dictionary learning perform reasonably well for non-FS scans,

a noise pattern can be observed in certain regions for dictionary learning and blocky appearance

for PI-CS TGV. Our VN reconstructions are more homogeneous and less prone to remaining

artifacts.

Reader Study. The average scores of the readers together with the p-values of the Wilcoxon

signed-rank test are listed in Table 5.5. The mean values of the reader scores indicate that all

VN reconstructions have equal or better scores than the PI-CS TGV reconstructions. P-values

indicate that the null hypothesis is rejected for most of the sequences for the given significance

level α. Coronal as well as sagittal T2 VN reconstructions have significantly better image

quality than PI-CS TGV. The difference between the individual reconstruction methods for the

sagittal PDw case is not significant, which is already obvious in the negligible difference of the

qualitative results and quantitative results for this sequence. No significant difference in image

quality, except SNR, can be observed for the axial T2w-FS scans.
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Variational Network Parameters. Examples of learned filter kernel pairs for real and imagi-

nary feature planes are plotted along with their corresponding activation and potential functions

in Figure 5.25. The potential functions are computed by integrating the learned activation func-

tions, and they can be linked directly to the norms that are used in the regularization terms of

traditional CS algorithms. We observe that same are very close to the convex `1 norm used in

CS (e.g., the function in the 2nd column), but we can also observe substantial deviations. We

can identify functions with log-student-t characteristics and concave functions. Some of the

learned filter pairs have the same structure in both the real and imaginary plane while some

of them seem to be inverted in the real and imaginary part.

5.3.3 Discussion

While deep learning has resulted in clear breakthroughs in Computer Vision, the application

of deep learning to medical image reconstruction is just beginning [246]. Initial results for our

deep learning image reconstruction approach presented in detail here were first presented at

the Annual Meeting of the International Society for Magnetic Resonance in Medicine in May

of 2016 [88]. Early attempts to use machine learning for MRI reconstruction were based on

dictionary learning [26, 195, 198]. The key difference to our VN approach is that they learn a

reconstruction online as a combination of dictionary elements directly from undersampled data,

hence, no reference data is required. Although the learned dictionary might be reused, a new

optimization problem has to be performed for every new reconstruction, which is computation-

ally demanding. While dictionary learning methods act on patches, which need to be properly

combined, and do not involve non-linearities in the combination of dictionary elements, our

proposed VN approach directly reconstructs the whole images and learns non-linearities, which

are important to enhance or suppress certain filter responses. Wang et al. [244] showed first

results using a Convolutional Neural Network (CNN) architecture to define a relationship be-

tween zero filled solution and high-quality images based on pseudo-random sampling. The

learned network can then be used as regularization in a non-linear reconstruction algorithm.

Yang et al. [263] introduced a network architecture that is based on unrolling the Al-

ternating Direction Method of Multipliers algorithm. They proposed to learn all parameters

including image transforms and shrinkage functions for CS-based MRI. Han et al. [96] learned

destreaking on Computed Tomography (CT) images and then fine-tuned the learning on MR

data to remove streaking from radially undersampled k-space data. All three approaches used

single-coil data, and it remains unclear how they deal with the complex domain of MR images.

Kwon et al. [145] introduced a neural network architecture to estimate the unfolding of multi-

coil Cartesian undersampled data. Similar to a classic SENSE reconstruction [190], unfolding

is performed line-by-line. This restricts the applicability to a fixed matrix size and a particular

1D undersampling pattern. Most recently, Lee et al. [151] used residual learning to train two

CNNs to estimate the magnitude and phase images of Cartesian undersampled data.

In this work, we present the first learning-based MRI reconstruction approach for clinical

multi-coil data. Our VN architecture combines useful properties of two successful fields: vari-
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ational methods and deep learning. We formulate image reconstruction as a variational model

and embed this model in a gradient descent scheme, which forms the specific VN structure.

The VN was first introduced as a trainable reaction-diffusion model [46] with application to

classic image processing tasks [46, 130, 267]. All these tasks are similar in the sense that

the data are corrupted by unstructured noise in the image domain. MR image reconstruction

presents several substantial differences: complex-valued multi-coil data are acquired in the

Fourier domain and transformed into the image domain. This involves the use of coil sensi-

tivity maps and causes distinct artifacts related to the sampling pattern. For our MR image

reconstruction task, the optimal design of the VN, such as the number of stages, the number

of filters per stage and the kernel size, is currently an open question. Our particular design

choice is based on preliminary experiments [88] and, in line with the experiments presented

here, delivered consistent results for a wide range of experimental conditions. We also found

that the performance of our VN was stable when varying the design of the architecture. In

practice, the design of the network is essentially a trade-off between model complexity and

training efficiency. For example, the number of RBFs that are used to model the activation

functions in a smoothed function approximation, defines the flexibility to approximate arbitrary

functions in an accurate way. In our experimental setup as well as in the latest studies on image

processing tasks [140], we reduced the number of RBFs compared to the initial work [46] by

a half without a loss in performance but with reduced training time.

Our VN structure allows us to visualize the learned parameters, which is non-trivial for

classical CNNs [269]. The potential functions are computed by integrating the learned activa-

tion functions, and they can be linked directly to the norms that are used in the regularization

terms of traditional CS algorithms. Some of the learned filter pairs have the same struc-

ture in both the real and imaginary plane while some of them seem to be inverted in the

real and imaginary part. In general, the filters in both the real and imaginary part represent

different (higher-order) derivative filters of various scales and orientations, similar to Gabor fil-

ters [54, 68]. Handcrafted Gabor filters have been successfully used in image processing [115],

and learning-based approaches [142] report similar filters. It has also been shown that these

types of filters have a strong relation to the human perceptual system [180].

Some of the learned potential functions in Figure 5.25 are very close to the convex `1
norm used in CS (e.g., the function in the 3rd column), but we can also observe substantial

deviations. We can identify functions with log-student-t characteristics also used in [206].

Indeed, non-convex functions of log-student-t type introduce more sparsity than, e.g., the

convex `1-norm and are reported to fit the statistics of natural images better than the `1-

norm [119]. Potential functions like those in columns 1, 4 and 7 have been associated with

image sharpening in the literature [278].

Designing filters and functions is not a trivial task. Using learning-based approaches pro-

vides a way to tune these parameters such that they are adapted to specific types of image

features and artifact properties. The strength of our algorithm are the trainable activation

functions which stands in contrast to other deep learning approaches that use fixed activation

functions such as Rectified Linear Units or sigmoid functions. Hence, instead of adding more
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and more layers and creating deeper networks, we introduce more structure and flexibility in

the individual layers, which might help to reduce the overall complexity of the network. As

shown in [140] for image denoising and non-blind deblurring, fixing the activation functions

to less flexible, e.g., convex, functions might also lead to a decrease in performance for our

application.

Compared to convex `1 minimization where we can understand the characteristics and

artifacts of hand-crafted filters and potential functions, learning-based methods are often con-

sidered to be black-boxes, which are difficult to interpret. While we cannot claim insight into

the properties of the model and the resulting images to the same degree of a simpler model

like TV, one of the key strengths of our proposed VN is the motivation by a generalized, train-

able variational model. To gain an understanding of what the VN learns, we first inspect the

intermediate outputs of the gradient descent steps of our VN. We observe successive low-pass

and high-pass filtering, and note that the prevalence of undersampling artifacts decreases after

each single iteration. A continuous improvement over the iterations does not occur because

our training is designed such that the result after the last gradient step is optimal in terms

of the error metric chosen for evaluation. Although it would be possible to train the VN for

progressive improvement, this would reduce the flexibility of the algorithm for adjusting the

learned parameters during the training procedure.

In any iterative CS approach, every reconstruction is handled as an individual optimization

problem. This is a fundamental difference to our proposed data-driven VN. In our VN approach,

we perform the computationally expensive optimization as an offline pre-computation step to

learn a set of parameters for a small fixed number of iterations. In our experiments, one

training took approximately four days for on a single graphics card. Once the VN is trained,

the application to new data is extremely efficient, because no new optimization problem has

to be solved and no additional parameters have to be selected. In our experiments, the VN

reconstruction took only 193 ms for one slice. In comparison, the reconstruction time for zero

filling was 11 ms, for CG SENSE with 6 iterations 75 ms and for PI-CS TGV with 1000 primal-

dual iterations [132] 11.73 s on average. Thus, the online VN reconstruction using the learned

parameters for the fixed number of iterations does not affect the hard time constraints during

a patient exam. However, PI-CS TGV requires hundreds of iterations to obtain a convergent

solution, 1000 iterations were used for grid search to guarantee a converged solution.

Our VN is individually trained for different sampling patterns, reflected in the forward

and adjoint operators. We do not learn a global mapping between undersampled k-space and

reconstruction, but how to enhance local structures, while ensuring consistency to the acquired

k-space data. First results towards learning a general regularizer, that could be applied for any

sampling pattern, were recently presented at the annual meeting of ISMRM in 2017 [87]: We

showed that a network trained for regular sampling patterns can be used for reconstruction of

randomly sampled data, but a network trained for randomly sampled data is not capable of

removing coherent undersampling artifacts, which indicates that the dependency of sampling

patterns is required to train the regularizer. However, the systematic performance evaluation

for a wide range of sampling patterns is beyond the scope of this particular manuscript, and
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will be the target of future work. We will not only explore joint training of various sampling

patterns, acceleration factors and sequences, but also the application of VN reconstruction to

non-Cartesian sampling, dynamic and multi-parametric data.

The reconstruction quality of all methods does not only rely on the sampling pattern,

but also on other parameters. Larger filter sizes, such as the 11 × 11 filters used in our VN

architecture, provide the possibility to capture more efficiently the characteristic backfolding

artifacts of Cartesian undersampled data, which are spread over several pixels. This stands in

contrast to models like TV or TGV that are based on gradient filters in a small neighborhood

(e.g., only forward differences in the x and y direction are considered). To suppress artifacts with

PI-CS TGV, the regularization parameters must be chosen in such a way that the remaining

image appears over-smoothed, and fine details are lost. Even though the piece-wise affine

prior model of TGV is more complex than the piece-wise constant prior model of TV, the

images appear artificial, especially if MR images with low SNR are reconstructed. Dictionary

learning involves also larger filter kernels and works reasonably well for data with high SNR,

reconstructions of low SNR data contain lots of noisy regions and blurry edges.

The image quality reader study confirms our quantitative and qualitative observations for

regular sampling of R = 4. In general, the image quality of the FS sequences was rated lower

than for the non-FS sequences for both VN and PI-CS TGV. The difference between the two

types of sequences is the baseline SNR, which is much lower for the FS sequences. It is well

known that in all CS-based methods, the best performance can be achieved in the case of a

high baseline SNR and incoherent artifacts. The presented experiments demonstrate that if

the corruption of the reconstructed images is dominated by noise, performance of both CS and

VN reconstruction drops. If the baseline SNR drops to a level where the noise has a higher

impact than aliasing artifacts, the VN concentrates on denoising instead of undersampling

artifact removal. In addition, some of our results show residual artifacts, most prominent in

the axial sequences. The source of these artifacts is residual aliasing and Gibbs’ ringing. These

residual methods are present in all our reconstructions and not unique for our VN.

While radiologists learn throughout their career to distinguish certain patterns in images

such as artifacts, we have to reflect the quality of learning in our presented approach by not

only choosing the right architecture but also a suitable similarity measure. As demonstrated

by our evaluation, quantitative scores are not always on par with image quality readings by

radiologists. The used MSE for training compares pixel-wise differences and is likely not optimal

for representing similarity to artifact-free reference reconstructions. Future investigations will

also involve the choice of different error metrics or the investigation of Generative Adversarial

Networks (GANs) [74] for training.
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5.4 Exploring the Generalization Potential of VNs for Acceler-

ated MR Imaging

MRI offers a great flexibility during data acquisition with respect to numerous acquisition

parameters that can be adapted individually for each acquired sequence. Furthermore, different

institutions have different protocols with varying imaging parameters for the same clinical exam.

Therefore, one of the major questions regarding the success of learning-based approaches in

practice is how the trained architectures generalize with respect to changes in the data, because

re-training a network for each individual protocol is simply infeasible in clinical practice. Hence,

we want to further explore open questions such as how many samples are needed to train a

network or how sensitive is the learned network to changes in the input data. We focus in

this section on the influence of the number of training samples and the influence with respect

to baseline SNR and present results for an increased patient population compared to [136].

Further experiments on the influence of image contrast and SNR along with results on transfer

learning can be found in [136].

5.4.1 Methods

For the following experiments, we use the same VN architecture as presented in Section 5.3.1

with Nk = 24 filter kernels and additional batch normalization as outlined in Section 3.2, where

the scaling parameter is learned. The network is trained with the Proximal ADAM optimizer

with block-preconditioning (see Appendix C.2) for 300 epochs using a batch size of 10. The

batch normalization update is turned after 50 epochs. The learning rate is set to 4e-3 and

exponential decay (decay rate=0.75, decay steps=30 epochs) is used to decrease the learning

rate during optimization, along with the ADAM parameters β1 = 0.9, β2 = 0.999. Note here

that the maximum number of iterations for the optimizer depends on the number of samples.

As we fix the number of epochs, we guarantee that each sample is seen equally often during

training, independent of the sample size.

As training and test data we use a subset of the fully sampled raw data from the fastmri

dataset [268] which were acquired using the same hardware and matrix-size parameters as our

coronal PDw and PDw-FS knee data (see Table 5.2). These data do not only differ in image

contrast but also in the baseline SNR as discussed in Section 5.3. Training is performed on

the central 20 slices of each case and data is normalized with respect to the maximal value

in the zero-filled solution. The data is retrospectively undersampled using a regular Cartesian

sampling scheme with acceleration factor R = 4. The trainings are evaluated jointly for all

datasets as well as individually for both datasets using the NRMSE, Peak Signal-To-Noise

Ratio (PSNR) and SSIM. The following trainings are performed to study the influence of the

number of training cases n and the heterogeneity of the training data:

1. Coronal PDw, n = 10 as studied in Section 5.3

2. Coronal PDw, n = 140
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Test Data

Coronal PDw (n = 20) Coronal PDw-FS (n = 20) Joint coronal (n = 40)

Training Data NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM

Coronal PDw (n = 10) 0.0530±0.0059 41.94±1.35 0.9655±0.0069 0.1604±0.0245 36.07±2.26 0.8631±0.0478 0.1067±0.0565 39.01±3.48 0.9143±0.0616
Coronal PDw (n = 140) 0.0498±0.0057 42.50±1.33 0.9688±0.0066 0.1518±0.0234 36.48±2.25 0.8730±0.0451 0.1008±0.0538 39.49±3.53 0.9209±0.0578
Coronal PDw-FS (n = 10) 0.0599±0.0051 40.23±1.33 0.9530±0.0088 0.1075±0.0110 39.02±1.75 0.9247±0.0217 0.0837±0.0253 39.63±1.67 0.9389±0.0218
Coronal PDw-FS (n = 140) 0.0551±0.0049 41.12±1.33 0.9611±0.0075 0.1048±0.0110 39.32±1.78 0.9295±0.0211 0.0799±0.0263 40.22±1.80 0.9453±0.0224

Joint coronal (n = 20) 0.0537±0.0050 41.52±1.35 0.9634±0.0072 0.1076±0.0115 39.11±1.80 0.8631±0.0478 0.0806±0.0284 40.32±2.00 0.9447±0.0249
Joint coronal (n = 280) 0.0507±0.0050 42.20±1.35 0.9684±0.0065 0.1055±0.0112 39.30±1.80 0.9291±0.0215 0.0781±0.0287 40.75±2.15 0.9487±0.0253

Table 5.6: Quantitative results in terms of the NRMSE, PSNR and SSIM for generalization experiments
using VNs. Joint training of both coronal knee datasets performed similarly well as individual training
of the single contrasts. Applying a VN to a contrast that was not seen during training resulted in a
dropped performance.

3. Coronal PDw-FS, n = 10 as studied in Section 5.3

4. Coronal PDw-FS, n = 140

5. Coronal PDw and PDw-FS, n = 20

6. Coronal PDw and PDw-FS, n = 280

5.4.2 Results

We first assess the generalization potential of our proposed VNs with respect to contrast,

accompanied with different levels of SNR qualitatively, depicted in Figure 5.26. Unsurprisingly,

the best results were achieved when a VN was applied to test data from the same sequence

as it was trained on. If we apply a VN on different data, we basically observe similar behavior

as for CS-based approaches. If a VN is trained on PDw-FS data with low SNR and applied

to PDw data with higher SNR, the reconstructed images appear slightly blurred and contain

some residual artifacts. In contrast, if a VN is trained on PDw data with high SNR and

applied to PDw-FS data with lower SNR, a substantial amount of noise is still present in the

reconstructed images. If both coronal knee datasets with different levels of SNR are trained

jointly, the VNs perform on similar lines as the individually trained networks. The quantitative

values supporting our qualitative observations are presented in Table 5.6. These values indicate

that joint training of both coronal knee datasets performed similarly well as training for the

individual contrast.

Second, we studied the influence of the number of training samples on the final reconstruc-

tion quality. While almost no difference in terms of image quality can be seen in Figure 5.26,

residual artifacts are slightly reduced and the images appear slightly more homogeneous when

browsing through the whole test dataset and comparing the images directly on the screen.

This observation is again supported by Figure 5.26. Improvements in all quantitative measures

can be observed if the number of training samples is pushed by 14×. Pushing the number of

training samples improved image quality for all data.
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5.4.3 Discussion

In our experiments, we focused on two coronal knee datasets that differed both in contrast

and SNR. We observed a substantial reduction of image quality if the training and test data

differed. Indeed, our results can be related to observations from CS approaches. While in our

VN, the data term weights λ, the regularizer as well as the step sizes of the gradient descent

scheme are learned from data, the number of iterations for an iterative CS approach [189] and

the regularization parameter [164] have to be manually tuned for the individual datasets. The

choice of these parameters have an influence on the resolution, residual aliasing artifacts as

well as noise amplification due to the g-factor. While a set of CS hyper-parameters tuned for

PDw-FS data leads to over-smoothed reconstructions, CS hyper-parameters tuned for PDw

data with high SNR leads to noisy reconstructions with residual artifacts of low SNR PDw-FS

data. Our VN reconstructions show exactly the same behavior for these two image contrasts.

These observations raise the question if the VN is sensitive to both the image contrast and level

of SNR. This question was studied in more detail in [136] and results showed that the critical

parameter in training is SNR. Low SNR PDw-FS data showed comparable performance on VNs

individually trained for PDw-FS data and PDw with additionally added noise, that matches

the SNR of PDw-FS data. The results for training both coronal knee datasets jointly perform

similarly as the individual trainings. This again poses an interesting question: If we again

think of CS-based approaches, the regularizer is constant, but the regularization parameter is

adapted to the individual levels of SNR. For the VNs, the learned regularization parameters

are the same for PDw and PDw-FS data, hence, different levels of SNR. This indicates that

the regularization term might compensate for the difference in SNR.

The presented experiments towards the generalization potential of VNs pose an interest-

ing starting point to use VNs as a discovery tool and to explore relations between CS-based

approaches and VNs more deeply. Specifically, it would be interesting to explore the perfor-

mance of a convex VN as studied by [140] for medical applications in future work. Another

interesting point is how we can include prior knowledge about the SNR level into the proposed

VN architecture, hence, to train a generalized VN which is independent of image contrast and

level of SNR, without increasing the complexity of regularizers.

5.5 Influence of Loss Function Design for Accelerated MR Image

Reconstruction

One important ingredient that impacts the success of deep learning-based approaches is not

only a suitable network architecture but also a meaningful loss function for training. It is com-

mon to train deep networks with a simple squared L2 norm. In a simple experiment, we show

that it might be already beneficial to consider magnitude images instead of complex-valued

images for the evaluation of the loss function. In this experiment, we perform CG SENSE re-

constructions of PDw and PDw-FS scans and assess the reconstruction quality quantitatively

in terms of the RMSE on both complex-valued and magnitude images, denoted as MSEcomplex
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and MSEabs, as illustrated in Figure 5.27. We observe that the minimum MSEcomplex value

is achieved after a lower number of iterations as the minimum MSEabs value. This observa-

tion holds for both investigated contrasts, i.e., high and low SNR data. When assessing the

qualitative results in Figure 5.28 for R = 3, the results for a different number of iterations

makes a huge difference especially for low SNR data. While the CG SENSE result after 2

iterations is still blurry and corrupted by artifacts, the result after 3 iterations gets sharper

and artifacts are reduced. This observation motivates to evaluate the magnitude images in

the loss function. Therefore, we validate in this section if this observation also holds for VN

reconstructions trained with loss functions on complex-valued and magnitude images.

While the L2 norm is simple to compute, it, however, suffers from a number of drawbacks:

The L2 norm compares pixel-wise differences, which stands in stark contrast of how the human

perceptual system works, and it is not robust against outliers [248, 274]. These observations

suggest to use different loss functions for training, e.g., the SSIM, which takes local patch

statistics into account. In this section, we will also investigate the impact of perceptual-based

loss functions such as the SSIM and Multi-Scale Structural Similarity Index (MS-SSIM) on VN

reconstructions.

5.5.1 Methods

The experiments were conducted with the same VN architecture as presented in Section 5.4.1.

We used Nk = 24 filter kernels of size 11×11 and T = 10 stages. We added batch normaliza-

tion and additionally learn the scaling parameter (see Section 3.2). For training, we used the

Proximal ADAM optimizer with block-preconditioning presented in Appendix C.2 with param-

eters β1 = 0.9, β2 = 0.999. We ran the optimizer for 300 epochs with learning rate 4e-3 and

exponential decay (decay rate=0.75, decay steps=30 epochs). The batch normalization was

turned off after 50 epochs. For training and testing, we used the fastmri dataset [268] and

extracted the data which were acquired with the same hardware and matrix-size parameters

as our initial coronal data presented in Table 5.2. The raw data were globally normalized with

the maximum value of the zero-filled solution. We used the central 20 slices for training of

each case to avoid slices with too much background. Evaluation was performed on the whole

volume.

We performed retrospective Cartesian undersampling for R = 4. The trainings were per-

formed individually for each coronal contrast, PDw and PDw-FS, for a varying number of

datasets n ∈ {10, 140}. For quantitative evaluation, we report the same error measures as

used as loss function along with the NRMSE and PSNR values. The goal of our experiments

is to compare the influence of different pixel-based and patch-based loss functions. Therefore,

we performed experiments with following loss functions:

1. Pixel-based: MSEcomplex

2. Pixel-based: MSEabs

3. Patch-based: SSIM with a Gaussian kernel with standard deviation σ = 1.5
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Dataset Training Loss Function MSEcomplex in 10−5 MSEabs in 10−5 SSIM in 1 MS-SSIM in 1 NRMSE in 1 PSNR in dB

Coronal PDw
(n = 10)

MSEcomplex 13.82±3.60 9.37±2.52 0.9625±0.0074 0.9755±0.0051 0.0522±0.0054 41.86±1.33
MSEabs 14.21±3.64 9.20±2.42 0.9655±0.0069 0.9763±0.0051 0.0530±0.0059 41.94±1.35
MS-SSIM 14.77±3.70 9.69±2.46 0.9673±0.0068 0.9764±0.0052 0.0541±0.0062 41.70±1.42

SSIM σ = 1.5 15.22±3.76 9.98±2.50 0.9669±0.0068 0.9757±0.0052 0.0550±0.0065 41.57±1.42

Coronal PDw
(n = 140)

MSEcomplex 12.32±3.37 8.36±2.32 0.9643±0.0074 0.9775±0.0049 0.0493±0.0052 42.37±1.31
MSEabs 12.54±3.39 8.10±2.21 0.9688±0.0066 0.9785±0.0047 0.0498±0.0057 42.50±1.33
MS-SSIM 12.65±3.31 8.36±2.18 0.9705±0.0063 0.9790±0.0047 0.0500±0.0057 42.35±1.38

SSIM σ = 1.5 12.83±3.33 8.44±2.20 0.9708±0.0063 0.9787±0.0047 0.0504±0.0056 42.31±1.37

Coronal PDw-FS
(n = 10)

MSEcomplex 4.60±1.26 2.72±0.77 0.9160±0.0222 0.9401±0.0173 0.1079±0.0102 38.83±1.70
MSEabs 4.56±1.24 2.59±0.72 0.9247±0.0217 0.9423±0.0174 0.1075±0.0110 39.02±1.75
MS-SSIM 4.61±1.23 2.61±0.70 0.9272±0.0215 0.9429±0.0176 0.1082±0.0113 38.98±1.78

SSIM σ = 1.5 4.68±1.25 2.63±0.71 0.9278±0.0214 0.9423±0.0177 0.1091±0.0113 38.95±1.77

Coronal PDw-FS
(n = 140)

MSEcomplex 4.33±1.26 2.49±0.71 0.9223±0.0221 0.9436±0.0171 0.1046±0.0108 39.20±1.75
MSEabs 4.33±1.21 2.42±0.67 0.9295±0.0211 0.9447±0.0171 0.1048±0.0110 39.32±1.78
MS-SSIM 4.40±1.22 2.47±0.67 0.9301±0.0209 0.9451±0.0170 0.1057±0.0112 39.24±1.78

SSIM σ = 1.5 4.45±1.22 2.47±0.67 0.9312±0.0208 0.9448±0.0171 0.1063±0.0112 39.24±1.78

Table 5.7: Quantitative results for VNs trained with different loss functions for R = 4. The VNs
were trained individually for the coronal contrasts and n = 10 and n = 140, for acceleration R = 4.
The results indicate that the training was successful in most cases and VNs trained with a specific loss
functions get the best score in the same measure for testing.

4. Patch-based: MS-SSIM with standard deviations σ ∈ {0.5, 1, 2, 4}

5.5.2 Results

Table 5.7 illustrates the quantitative results of our experiments. The results show that the

training and testing perform as expected and the quantitative scores are best for the measure

it was trained for. Small exceptions can be observed for a smaller training data size n = 10 for

PDw between SSIM and MS-SSIM and PDw-FS between MSEcomplex and MSEabs. However,

the differences between the quantitative and also qualitative results visualized in Figure 5.29

are marginal. A general trend towards a single loss function is hard to see and varies for the

individual slices. While SSIM and MS-SSIM shows subtle improvements in terms of texture and

visibility of tiny structures as depicted by the green arrow in Figure 5.29, one also observes more

residual undersampling artifacts. The largest quantitative and qualitative difference can be ob-

served between reconstructions trained with MSEcomplex and MSEabs. Reconstructions trained

with MSEabs appear sharper and less blurry than reconstructions trained with MSEcomplex.

5.5.3 Discussion

In this section, we studied the influence of various loss functions for training our VNs. The first

motivation was to compute the loss function on magnitude images instead of complex-valued

images, illustrated in Figure 5.27 and Figure 5.28. Indeed, our results verified our expectations

and the VN trained with MSEabs yields more visually appealing and less blurred results. While

the largest gain was achieved when switching from MSEcomplex to MSEabs as a loss function,

the differences to SSIM and MS-SSIM are subtle. While some regions appear slightly more

textured when training with SSIM, the images also contain more residual artifacts than MSEabs.

Using MS-SSIM as a loss function yields results which appear qualitatively between SSIM and

MSEabs and might be a compromise between these two loss functions. When comparing
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MSEcomplex and SSIM, we definitely see an improvement towards the SSIM as loss function

which is similar to observations in [274]. However, we do not see great differences between

MSEcomplex, SSIM and MS-SSIM as reported by [274] for image denoising. With current loss

functions, one has to weight the importance of slightly more textured images and visibility

of residual artifacts. The proposed MSEabs loss function provides most stable results for

our experiments and is less expensive to compute than SSIM and MS-SSIM. However, more

advanced loss functions should be considered in future work that reflect the human perceptual

system better than currently available loss functions, especially in the case of low SNR data

where the fully-sampled reference itself is noisy. This yields also into the direction if the loss

should be evaluated on better features, e.g., low-level features of the VGG net as suggested

in [149], including an adversarial approach [89, 149] or finding new ways of learning a loss

function.

5.6 Improved Regularization for Accelerated MR Image Recon-

struction

The last sections have shown promising results for MR image reconstruction using a Fields

of Experts (FoE) regularizer that maps convolutions of complex numbers to a real-valued

convolution response Equation (5.3). A first question that might arise is why the convolution

of a complex-valued image maps to the real domain K : C → R. Very early experiments

motivated us to use this setting as there was no obvious advantage to use complex-valued

convolutions in terms of visually improved image quality for one of our first settings. As

training improved due to a more stable architecture and optimization schemes, we resume our

research into the direction of more robust and improved regularizers.

5.6.1 Methods

Indeed, the idea of using complex convolutions and complex activation functions is not new [16,

70, 103, 153, 176, 211, 212, 237] and has also attracted the deep learning community [232,

234]. Indeed, this topic should be noted as phase information might get lost if the complex

information is not treated adequately, although it is important for certain tasks, e.g., speech

processing [222]. Reichert and Serre [201] introduced a biological motivation by neuronal

synchrony that complex-valued networks could be used to build more versatile representations

of data. In our case, we study the influence of complex-valued convolutions for MR image

reconstruction. The complex-valued convolution reads as

x ∗ k = (xre ∗ kre − xim ∗ kim) + j(xim ∗ kre + xre ∗ kim).

Compared to Equation (5.3), it is obvious that the number of parameter stays the same and

the number of convolution operations is doubled, which increases the training time drastically.

As the output of the convolution operation is now complex, the next question is how the
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activation functions φ are modeled. There exists different strategies such as applying the same

real-valued activation functions φre to both real and imaginary part of a complex number

separately [176]

φ(z) := φre(zre) + jφre(zim).

Again, this operation does not require additional parameters. In literature, also other activation

functions were proposed to cope with complex-valued signals. Georgiou and Koutsougeras [70]

introduced an activation function that only influences the magnitude of a complex-valued signal

while keeping the phase of this signal constant. Virtue et al. [242] proposed a similar activation

function that preserves the magnitude while modifying the phase of the complex-valued signal,

termed complex cardioid. In this section, we also study the influence of learning complex-valued

activation functions, which we define as

φ(z) := φre(zre) + jφim(zim).

Here, we apply individual activation functions to the real and imaginary part of z. With this

formulation, the number of parameters increases by Nk ·Nw in each stage t where Nk is the

number of filter kernels and Nw defines the number of RBFs.

The previous modifications of the regularizer are still based on FoE regularizer. Although

the first intuition would be to simply stack more iterations to improve the reconstruction

results, this might not be useful when the operators A and A∗ are expensive to compute.

Hence, further developments consider the structure of the regularizer itself. While the strength

of common deep learning approaches is to extract complex features across a number of layers,

our FoE regularizer acts on a single level. To incorporate more complex features, we extend

the single-level FoE regularizer to a deeper regularizer as described in Section 3.5.

5.6.2 Experimental Setup

We performed experiments with the same data and optimizer settings as in Section 5.5.1. For

the regular VN, we performed T = 10 gradient steps, where in each of these steps Nk = 24 fil-

ter kernels of size 11×11 were learned. To model the activation functions, we used a weighted

combination of Nw = 31 RBFs. To study the influence of complex-valued activations and

convolutions, we performed the following experiments: While the number of parameters does

not change when switching from regular to complex-valued convolutions, additional parame-

ters for the activation function are required when conducting experiments with complex-valued

activations. For complex activations, batch normalization is conducted for the real and imag-

inary filter response separately. However, the number of convolution operations doubles when

performing complex-valued convolutions instead of regular convolutions. For the deep regu-

larization, we use two layers with Nk1 = 24 of size 7× 7 and Nk2 = 48 of size 5× 5. For the

second layer, the results are downsampled using a strided convolution with a Gaussian filter

(σ = 1.8). This setup results in following parameter configurations:
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Dataset Model MSEcomplex in 10−5 MSEabs in 10−5 SSIM in 1 MS-SSIM in 1 NRMSE in 1 PSNR in dB

Coronal PDw
(n = 140)

regular 12.54±3.39 8.10±2.21 0.9688±0.0066 0.9785±0.0047 0.0498±0.0057 42.50±1.33
complex convolution 11.90±3.20 7.73±2.10 0.9704±0.0063 0.9795±0.0046 0.0485±0.0055 42.70±1.32
complex activation 11.90±3.19 7.71±2.08 0.9706±0.0063 0.9795±0.0046 0.0485±0.0055 42.71±1.33

deep 11.08±3.03 7.17±1.95 0.9728±0.0061 0.9807±0.0044 0.0468±0.0053 43.03±1.36

Coronal PDw-FS
(n = 140)

regular 4.33±1.21 2.42±0.67 0.9295±0.0211 0.9447±0.0171 0.1048±0.0110 39.32±1.78
complex convolution 4.23±1.16 2.36±0.64 0.9306±0.0208 0.9458±0.0168 0.1036±0.0109 39.42±1.78
complex activation 4.26±1.20 2.39±0.66 0.9298±0.0210 0.9454±0.0170 0.1039±0.0110 39.38±1.79

deep 4.22±1.15 2.34±0.63 0.9313±0.0208 0.9461±0.0168 0.1035±0.0108 39.47±1.78

Table 5.8: Quantitative results for VNs trained with different regularizers. The VNs were trained
individually for the coronal contrasts from n = 140 cases. Quantitative improvements can be achieved
for other regularization techniques than the regular FoE regularizer.

1. Regular: 6577 parameters / stage

2. Complex convolution: 6577 parameters / stage

3. Complex activation: 7345 parameters / stage

4. Deep regularization: 33457 parameters / stage

5.6.3 Results

The quantitative results are summarized in Table 5.8. The results indicate that when using

other regularizers than the regular single-level FoE regularizer, all quantitative measures can

be improved. While there is a difference between complex-valued convolution and a regular

regularizer, further degrees of freedom in the activation function did not lead to any further

improvements. The largest improvements can be achieved by the deep regularizer. Although

the quantitative improvements appear minor, there is a substantial difference between the

regular and deep regularizer as illustrated in Figure 5.30. The deep regularizer yields a better

artifact suppression than the regular FoE regularizer and results in more homogeneous images

with an increased detectability of details. This figure also shows that the regularizer based on

complex-valued convolutions is slightly improved, however, the difference to the reconstruction

using complex-valued activations is hardly visible. In some regions, the regularizer based on

complex-valued convolutions appear slightly sharper than the regular FoE regularizer.

5.6.4 Discussion

In this section, we gained first insights in using different kinds of regularizers. As MR im-

ages are complex-valued it might be obvious to use either complex-valued convolutions or

complex-valued activations. The results indicated that there is a slight improvement when

using complex-valued convolutions, but no substantial improvement could be observed for

complex-valued activations. However, compared to the regular FoE regularizer, the complex-

valued convolutions require double as many convolution operations which substantially in-

creases training time. For our specific training data using TSE knee sequences and the speci-

fied VN structure, the general impact of these types of regularization is minor, however, they
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might be considered for different MRI applications. The greatest impact on the results showed

the deep regularizer. While the number of parameters is increased, the results appear very

promising in terms of further reduced artifacts and detectability of details. These first results

using deep regularization offer a great potential for further research as more complex features

can be considered.

5.7 Intra-Vendor Reproducibility

All previous experiments were performed on data that were acquired at NYU Langone Health.

One natural question that appears if the results are reproducible across the hardware of the

same vendor: How does the network trained on data from NYU perform on data that were

acquired at Graz University of Technology? To get a first answer to this question, we acquired

both fully-sampled and prospectively undersampled data from a F29 volunteer. A full knee

protocol was acquired on a 3T Siemens Magnetom Skyra and a 15 channel knee coil with

identical sequence parameter settings as described in Table 5.2. The acquired data were

reconstructed using the trained VNs of Section 5.3 for retrospective and prospective Cartesian

undersampling of R = 4. The reconstructed images are depicted in Figure 5.31. We observe

similar behaviour in terms of reconstruction quality as reported in Section 5.3. No obvious

differences in image quality can be observed when reconstructing the images with the same

scanner hardware at a different institution.

5.8 Conclusion and Outlook

In this chapter, we provided an overview of using VNs for static MR image reconstruction. Our

main focus was set on the data design where we intended to stay close to a clinical setting.

We trained our VNs on real clinical data of patients undergoing knee exams. Furthermore, we

proposed the first deep learning-based approach for PI, which is standard for MR acquisitions.

To validate the proposed VN, we did not only perform retrospective experiments but tested it

also on prospectively accelerated data. This data greatly varies in terms of SNR. Our results

indicate that low SNR images are more challenging to reconstruct, because the loss function

favors blurry instead of sharp solutions. Also, the presented loss function variations did not

result in a visual improvement of these data. Hence, an important topic in future work is to

cope with the great variability in SNR.

A question that arises here is: How far can we go with acceleration? In our experiments, we

showed results up to a undersampling factor of R = 4. We did not go further with acceleration

because we intended to stay close to a clinically realistic acceleration potential. The less data

are available, the more likely it is that learning-based approaches invent new structures and can

only make guesses on the missing information. In the worst medical cases, pathologies would

be either missed or invented. This is especially crucial when using GANs. They are known

to produce realistic results, however, there is no guarantee that the results are clinically valid.
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Thaler et al. [230] gained insights on the influence of both necessary data and adversarial loss

functions for a successful reconstruction.

Our presented observations were done for a specific hardware and sequence setting. This

does not mean that these observations are valid for other data, too. The presented experiments

might become more important when dealing with data that are more sensitivity to the phase

information, so they should definitely be considered in future work. When using, e.g., Gradient

Echo (GRE) sequences that are more sensitive to phase than TSE sequences, or for quanti-

tative imaging. Although we expected a greater visual improvement of using complex-valued

convolutions and activations already for our TSE sequences, the impact on GRE sequences

might be larger. However, the quantitative results for complex-valued convolutions and acti-

vations were slightly improved. For our setting, a deep regularizer provides a great potential

to further improve reconstruction results.

The aim of this chapter was not to present a perfectly designed and optimized network

architecture, but to give an overview over potential improvements and pitfalls in data prepa-

ration, network and loss function design. Hence, it should provide a starting point for various

directions in future work. One open question is still robust data normalization. As MR data

has no quantitative meaning, normalization has to be done in either k-space or image space.

To streamline implementations we performed normalization to [0,1] in image domain based on

the zero filling reconstruction slice-by-slice. We believe that more robust, global normalization

might further improve the reconstruction quality. Furthermore, a suitable choice for the net-

work architecture, loss function and optimizer has to be made. Especially choosing a proper

loss function that represents trained radiologist’s eyes will greatly impact the reconstruction

results. We also believe that deeper regularization can better deal with the structured aliasing

artifacts of Cartesian undersampling schemes. However, as training data are limited imposing

structure as presented with our deep regularizer helps keeping the number of network parameter

feasible and provides a way to train networks with limited training data.
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Figure 5.27: Reconstruction errors depending on the number of CG SENSE iterations for different
contrasts at R = 4. The optimal number of iterations differs for the MSEcomplex and MSEabs values,
marked by the red dot.
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Figure 5.28: CG SENSE reconstructions for a different number of iterations for PDw-FS data at
R = 3. The quantitative values for MSEcomplex and MSEabs differ. The result after 3 iterations is
visually more pleasant than the result for 2 iterations, motivating the use of MSEabs.
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6
Variational Networks for Dynamic Magnetic Resonance (MR)

Image Reconstruction

On ne voit bien qu’avec le cœur.

L’essentiel est invisible pour les yeux.

Antoine de Saint-Exupéry

This chapter involves following abstract, which is accepted for ISMRM 2019:

K. Hammernik, M. Schloegl, R. Stollberger, and T. Pock. Dynamic

Multicoil Reconstruction using Variational Networks. In Proceedings of

the International Society of Magnetic Resonance in Medicine, page to appear, 2019
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Recent developments in deep learning for accelerated MR image reconstruction have shown

improved results over Compressed Sensing (CS)-based approaches for both static [84] and

dynamic [100, 193, 213] imaging. However, the acquisition of ground-truth data is the key

ingredient for the success of these approaches. Generation of dynamic MR ground-truth data is

challenging. Cardiac CINE imaging for example requires data acquisition in breath-hold, which

can take around 25 seconds in order to collect fully-sampled data This is already infeasible for

many patients undergoing clinical routine examinations, hence, Parallel Imaging (PI) with a

111



112 Chapter 6. Variational Networks for Dynamic MR Image Reconstruction

two-fold acceleration is used as an essential standard. Cardiac CINE acquisitions are gated by an

Electrocardiography (ECG) signal, which impedes the acquisition of patients with arrhythmia.

Furthermore, a trade-off between temporal resolution and duration of breath-hold has to be

made to acquire fully-sampled ground-truth data. The number of acquisition frames also

depends on the current heart rate of the imaged patient.

In this chapter, we give first insights on how Variational Networks (VNs) can be used for

dynamic CINE imaging. Therefore, we introduce the dynamic forward model and extend the

VN formulation to spatio-temporal regularization. The approach is tested on different sampling

patterns, acceleration factors and contrasts. Furthermore, we shortly discuss the importance

of high-quality ground-truth data for the success of deep learning-based approaches.

6.1 Fundamentals of Accelerated Cardiac MR Image Recon-

struction

The main challenge of dynamic acquisitions is to achieve balanced spatial and temporal resolu-

tion, while avoiding other motion artifacts such as respiratory motion. To achieve this balance,

accelerated data acquisition strategies are advantageous. In dynamic MR, PI with special un-

dersampling strategies allow us to exploit the data redundancy in both spatial and temporal

domain. To account for the different time dimensions, extensions to common image-based

and k-space PI techniques were proposed in [23, 108, 125, 233].

While it is challenging to fulfill the CS requirements in 2D static imaging, such as the in-

coherence of undersampling artifacts in Cartesian sampling, there exist different possibilities to

fulfill these conditions in dynamic Magnetic Resonance Imaging (MRI). The sparsity condition

can be fulfilled by temporal Fourier Transform (FT) [120] or spatio-temporal regularization

based on Wavelets or temporal finite differences [3, 66, 158, 165].

After the seminal work of Candès et al. [30], Low-Rank plus Sparse (L+S) decomposi-

tion [181] became increasingly popular to reconstruct dynamic MR images. In this approach, a

reconstruction problem is formulated that decomposes the reconstruction into a static low-rank

component and a sparse component, containing the dynamics of the image. Image decompo-

sition is also exploited by Infimal Convolution (IC)-type regularization [104], which additionally

allows for a separation of components at various temporal dynamics. Schloegl et al. showed

that Infimal-Convolution-Total-Generalized-Variation (ICTGV) yields robust reconstructions of

various dynamic MRI applications [215].

In contrast to fixed regularization schemes, adaptive learning techniques such as dictionary

learning were proposed in the context of dynamic MRI [26], where local patches are approxi-

mated by dictionary atoms. However, these techniques suffer from a huge memory requirement

and extensive computational demand in the range of several hours for a single single-coil case

which limits the practical applicability. Recent advances in deep learning enable not only to

adapt to the underlying training data but offer also high reconstruction speed. However, most

of current learning-based approaches for dynamic MRI [98, 193, 213] neglect the PI component
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and work only on single-coil data. VNs have shown promising results for multi-coil reconstruc-

tion in static imaging as shown in Chapter 5, hence, we introduce a natural extension of VNs

with spatio-temporal regularization to interact with dynamic multi-coil data.

6.2 Methods

For dynamic imaging, an additional time component is introduced, which makes reconstruction

approaches more computationally demanding as compared to static 2D imaging. This limits

also the design of appropriate network architectures, which should sometimes fit on a single

Graphics Processing Unit (GPU) and be trained in a feasible time window. This section further

provides details on the setup of the proposed VN architecture along with details on the acquired

data and experimental design.

6.2.1 A Variational Network for Dynamic Applications

The basic theory of VNs was described in Chapter 3. There exist different approaches to for-

mulate VNs, ranging from reaction-diffusion processes [46], over Landweber regularization [84]

to an unrolled incremental Gradient Descent (GD) scheme [140]. Let us define here the VN

by an unrolled incremental GD scheme with J components and a fixed number of iterations T

xt = xt−1 −
J∑
j=0

∇hj(xt−1), 1 ≤ t ≤ T

to obtain a spatio-temporal reconstruction x ∈ CNxNyNt of size Nx×Ny ×Nt, where Nx and

Ny denote the resolution in x and y direction and Nt denotes the number of time frames. The

term
J∑
j=0

hj(x
t−1) is defined by a generalized CS model for dynamic MR image reconstruction,

including a data-fidelity

h0(x) =
λ

2
‖Ax− y‖22, (6.1)

where λ > 0, and a regularization term hj(x), j = 1, . . . , J . The data-fidelity h0(x) enforces

consistency of the reconstruction x to the acquired raw data y ∈ CNxNyNtNc for Nc coils. The

dynamic multi-coil forward operator A, i.e.,

A : x = (xnt)nt=1,··· ,Nt → (Ft [cqxnt ])q=1,...,Nc;nt=1,...,Nt ,

involves coil-sensitivity profiles cq, that are assumed to be static in time, and Fourier transforms

with temporally varying sampling masks Ft. For the regularization part, we use a Fields of

Experts (FoE) regularizer that acts on the spatio-temporal 2D+t volume

hj(x) = 〈1, ρj(kj ∗ x)〉, j = 1, . . . , J.
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Figure 6.1: VN for 2D+t multi-coil MR image reconstruction, defined as a sequence of GD steps.
Prior information such as 2D+t filter kernels k, non-linear activation functions φ and data term weights
λ are learned from pairs of undersampled multi-coil raw data y and fully sampled reference images in
an end-to-end manner. x0 is defined by the initial time-averaged solution

Here, kj ∈ Cs×s×st denote spatio-temporal complex-valued filter kernels of size s×s×st and

ρ : CNxNyNt → RNxNyNt model non-linear potential functions. In this work, we define the

convolution operation as

x ∗ k = (xre ∗ kre − xim ∗ kim) + j(xim ∗ kre + xre ∗ kim).

When computing the gradient of the variational model Equation (6.1), we receive the VN

structure as depicted in Figure 6.1. Due to the gradient computation, we now involve the

gradient of potential functions, termed activation functions φ = ρ′ : CNxNyNt → CNxNyNt
which are defined in a complex-valued setting as

φ(z) := φre(zre) + jφre(zim).

While Section 5.6 showed only subtle improvements, initial experiments for dynamic MRI

motivated the use of this kind of regularization here. The input to the VN illustrated in

Figure 6.1 is defined by the temporal average of the zero filled reconstruction.

6.2.2 Data Acquisition

We acquired retrospectively gated CINE cardiac data from five healthy volunteers in breath-

hold using a 3T scanner (Siemens Magnetom Skyra) and a spine-/body-coil. The number

of active coil elements varied for the individual acquisitions between 26-34 channels. The ac-

quired datasets consisted of one two-chamber (2CH), four-chamber (4CH) and Left Ventricular
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Outflow Tract (LVOT)-view as well as four Short Axis (SA) views. The SA scans consisted of

one basal, two mid-ventricular and one apical view. This setup results in a total number of 35

datasets. Two different sequences with a matrix size of 192×192, voxel size 1.8×1.8×6mm3

and temporal resolution ∆t∼50ms were acquired with following acquisition parameters: (1)

FLASH TR/TE/FA=5.8ms/3.16ms/12◦ and (2) bSSFP TR/TE/FA=3.9ms/1.72ms/40◦. The

number of time frames varied for the individual contrasts and volunteers between 17-33 frames.

From the acquired multi-coil data, coil sensitivity maps were estimated using an iterative varia-

tional approach presented in [214]. The gold standard reconstruction is obtained by Sensitivity

Encoding (SENSE) [190] reconstruction of the acquired fully-sampled k-space data. For the

individual experiments, we retrospectively undersampled the fully-sampled k-space data.

6.2.3 Experimental Setup and Evaluation

For our experiments, we investigate the influence of different pseudo-random Cartesian sam-

pling patterns, which were simulated at various acceleration rates R ∈ {4, 8, 12, 16}. A com-

mon sampling pattern for both static and dynamic imaging is Variable Density Random Sam-

pling (VRS) [164], depicted in Figure 6.2a. Although the degree of incoherence is high for

VRS, these patterns suffer from several limitations due to large gaps in the k-space as well as

the reduced sampling density for high frequencies [9], resulting in degraded reconstructions.

In contrast, Variable Density Incoherent Spatio-Temporal Acquisition (VISTA) [9], illustrated

in Figure 6.2b, samples all frequencies in k-space in a more controlled way, leading to an

improved image quality even at high acceleration factors. For training, we generated a pool

of 100 sampling masks for both VRS and VISTA patterns at the different acceleration factors,

which increases the variability of undersampling artifacts and avoids that the VNs are learned

for a specific undersampling pattern. The sampling patterns are chosen randomly at each

training iteration.

We trained individual VNs for each contrast and sampling pattern. The architecture of the

VNs stayed constant for the individual experiments. The VNs consisted of T = 18 gradient

descent steps, where in each of these steps Nk = 24 filters of size 7×7×5 were learned together

with the additional scaling parameter of the batch normalization (decay=0.999, ε = 1e-3)

explained in Section 3.2. The filter kernels were constrained to the unit norm ball and to have

zero-mean. The activation functions consisted of a weighted combination of Nw = 31 Gaussian

radial basis functions (RBFs). Together with the filter kernels and activation functions, the

data term weights λ are learned, which were initialized with λ0 = 2. For training, we used the

Proximal ADAM optimizer with block-preconditioning with the ADAM parameters β1 = 0.9,

β2 = 0.999 and step size ν = 2e-2. The optimizer is described in more detail in Appendix C.2.

We trained the VN for 10000 iterations using a batch size of 1. The update of the means and

standard deviations of the batch normalization is turned off after 1000 iterations. We used

cosine annealing [162] to decrease the learning rate during training. The VNs are initialized with

the time averaged solution. A number of 28 datasets from 4 volunteers were used for training.

During training, the number of time frames is fixed Nt = 17 due to GPU memory constraints.
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R
=
4

R
=
8

R
=
12

R
=
16

(a) Variable density random sampling (VRS) (b) Variable density incoherent spatio-temporal acquistion (VISTA)

Figure 6.2: Different k-t sampling patterns of size 192 × 17 for dynamic MR image reconstruction:
(a) illustrates VRS and (b) illustrates VISTA at different acceleration rates. The sampling in Phase
Encoding (PE) direction is denoted by the horizontal axis, while the sampling in time is represented by
the vertical axis.

The consecutive frames are chosen randomly during training. For testing, we evaluated all

acquired time frames because less GPU memory is required as no gradient calculations are

carried out. We compare our VN results to the combined PI-CS method ICTGV [215], which

showed to outperform L+S [181] for dynamic CINE MR data. The data were reconstructed

with the ICTGV parameters α0/α1 = 1/2, β(t1) = 4, β(t2) = 0.5, γ1,2(s) = 0.5, which

were obtained via grid search. All reconstructions were evaluated quantitatively with respect

to the gold standard by means of the Normalized Root Mean Squared Error (NRMSE), Peak

Signal-To-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) on 7 datasets from

another volunteer, which were not used for training. Evaluation was performed in a region of

124× 124×Nt that contained mainly the moving heart.

6.3 Results

We show the performance of the learned VN on different anatomies and datasets. All figures

illustrate the reconstructions compared to the reference and ICTGV along with the difference

images and the used sampling pattern. Figure 6.3 illustrates the results for a bSSFP 2CH view

for VISTA sampling at R = 8. From a visual perspective, ICTGV and VN perform on similar

lines, while the difference maps show a decreased error for the VN reconstruction. The results

for a FLASH 4CH view based on VISTA sampling at R = 16 are depicted in Figure 6.8. While

we can observe a blocky pattern in the ICTGV result, the VN appears smoother with slightly

less error in the difference maps. For a bSSFP SA scan at R = 12, we compare VISTA sampling

in Figure 6.4 and VRS sampling in Figure 6.5. These images show that VISTA sampling yields

improved results compared to VRS sampling for both ICTGV and VN reconstructions. When

comparing ICTGV and VN reconstructions, we observe a similar behaviour as for the other

results in the spatial domain. In the temporal domain, some regions appear to have higher

error in the VN reconstructions. Similar observations can be made when we compare VISTA

sampling in Figure 6.6 and VRS in Figure 6.7 for a FLASH SA scan at R = 12. Again, the

VN reconstructions appear smoother and less blocky than the ICTGV reconstructions.

Quantitative results for VISTA and VRS sampling at acceleration rates R ∈ {4, 8, 12, 16}



6.4. Discussion 117

Pattern R Model NRMSEcomplex in 1 NRMSEabs in 1 PSNR in dB SSIM in 1

VISTA

4
ICTGV 0.0556±0.0179 0.0399±0.0126 45.13±4.44 0.9710±0.0115
VN 0.0501±0.0107 0.0354±0.0073 45.99±3.78 0.9783±0.0052

8
ICTGV 0.0836±0.0258 0.0626±0.0203 41.23±4.46 0.9450±0.0155
VN 0.0738±0.0125 0.0531±0.0083 42.39±3.43 0.9606±0.0087

12
ICTGV 0.1001±0.0242 0.0754±0.0178 39.46±3.93 0.9298±0.0147
VN 0.0933±0.0118 0.0678±0.0079 40.22±3.09 0.9457±0.0090

16
ICTGV 0.1145±0.0236 0.0866±0.0158 38.18±3.56 0.9183±0.0162
VN 0.1084±0.0147 0.0788±0.0085 38.92±3.04 0.9355±0.0113

VRS

4
ICTGV 0.0783±0.0274 0.0575±0.0194 41.98±4.51 0.9555±0.0176
VN 0.0673±0.0121 0.0483±0.0080 43.23±3.51 0.9680±0.0072

8
ICTGV 0.1053±0.0270 0.0789±0.0189 39.05±3.91 0.9332±0.0164
VN 0.0964±0.0147 0.0697±0.0094 40.00±3.22 0.9475±0.0099

12
ICTGV 0.1231±0.0251 0.0935±0.0178 37.51±3.59 0.9194±0.0158
VN 0.1212±0.0188 0.0890±0.0141 37.90±3.36 0.9320±0.0110

16
ICTGV 0.1452±0.0218 0.1106±0.0141 35.99±2.98 0.9074±0.0165
VN 0.1444±0.0131 0.1065±0.0077 36.27±2.63 0.9116±0.0118

Table 6.1: Quantitative results for the bSSFP dataset for VISTA and VRS at different acceleration
rates R ∈ {4, 8, 12, 16}. The VN outperforms ICTGV in all cases.

are illustrated in Table 6.1 for the bSSFP dataset and in Table 6.2 for the FLASH dataset.

The VN reconstructions outperform the ICTGV reconstruction in all cases for all evaluated

similarity measures. We also observe that VISTA sampling outperforms VRS sampling at the

same acceleration rates.

Besides example reconstruction results, we plot a subset of learned VN parameters in

Figure 6.9. The image shows different learned activation functions φ along with their potential

functions ρ. The potential functions have a shape similar to a log-student-t function in the

first row and a quadratic function in the second row. The filter kernels are based on various

derivatives both in spatial and temporal domain. While the filter kernels in the first row mainly

act in the spatial domain, temporal derivatives are considered by the filter kernels depicted in

the second row.

6.4 Discussion

In this chapter, we presented a first application of VNs to dynamic multi-coil MR data. We

showed the efficiency of the proposed approach compared to a state-of-the-art PI-CS method

ICTGV. In terms of image quality, the differences between ICTGV and VN reconstructions are

hard to see for the bSSFP dataset. The differences between ICTGV and VN reconstructions are

more obvious for the FLASH dataset which has a lower Signal-to-Noise Ratio (SNR) compared

to the bSSFP dataset. Specifically, the ICTGV reconstructions appear blocky, which is a typical
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Pattern R Model NRMSEcomplex in 1 NRMSEabs in 1 PSNR in dB SSIM in 1

VISTA

4
ICTGV 0.0701±0.0139 0.0487±0.0098 40.28±2.76 0.9070±0.0507
VN 0.0560±0.0060 0.0390±0.0040 42.10±2.00 0.9386±0.0198

8
ICTGV 0.0873±0.0161 0.0611±0.0110 38.27±2.55 0.8801±0.0547
VN 0.0746±0.0074 0.0518±0.0054 39.64±1.94 0.9103±0.0272

12
ICTGV 0.0977±0.0140 0.0698±0.0093 37.07±2.22 0.8641±0.0458
VN 0.0868±0.0084 0.0612±0.0061 38.18±1.87 0.8930±0.0304

16
ICTGV 0.1067±0.0129 0.0768±0.0082 36.21±2.03 0.8523±0.0436
VN 0.0990±0.0096 0.0700±0.0066 37.01±1.86 0.8769±0.0328

VRS

4
ICTGV 0.0789±0.0150 0.0555±0.0107 39.12±2.67 0.9008±0.0504
VN 0.0661±0.0062 0.0464±0.0042 40.57±1.89 0.9275±0.0215

8
ICTGV 0.1003±0.0128 0.0723±0.0089 36.76±2.26 0.8704±0.0476
VN 0.0895±0.0086 0.0633±0.0060 37.88±1.87 0.8955±0.0271

12
ICTGV 0.1204±0.0174 0.0891±0.0139 34.97±2.26 0.8494±0.0472
VN 0.1096±0.0132 0.0775±0.0087 36.14±2.01 0.8735±0.0353

16
ICTGV 0.1380±0.0208 0.1036±0.0166 33.69±2.56 0.8354±0.0457
VN 0.1336±0.0208 0.0950±0.0157 34.42±2.08 0.8521±0.0353

Table 6.2: Quantitative results for the FLASH dataset for VISTA and VRS at different acceleration
rates R ∈ {4, 8, 12, 16}. The VN outperforms ICTGV in all cases.

behaviour of this method on low SNR data. In contrast, the FLASH reconstructions with the

VN appear smooth, similar to observations of low SNR data in the static case presented

in Chapter 5. The quantitative values indicate that the VN reconstructions outperform the

ICTGV reconstructions in all cases for all sampling patterns. Our comparison of VISTA and

VRS is similar to observations in [9]. VISTA sampling outperforms VRS due to the controlled

and optimally distributed sampling of high- and low frequency data across time-frames.

While we see improvements of the presented VN approach in terms of image quality, there

also exists an obvious potential in the design of temporal regularization. The cross-sectional

views in the presented figures show a slightly higher error density for VN reconstructions

compared to ICTGV reconstructions in certain regions. Here, different regularization strategies

could be considered to improve the temporal regularization.

Besides improved image quality, the major advantage of using VNs for image reconstruction

is the reduced runtime compared to PI-CS ICTGV. While the reconstruction time for ICTGV

is ∼45s, VN reconstructions can be obtained in ∼7s, which is almost 7× faster than the

considered state-of-the-art approach.

All our experiments were conducted on CINE cardiac MR data of 5 healthy volunteers.

In general, CINE cardiac imaging is an important modality in dynamic multi-coil MR image

reconstruction. However, it poses an interesting challenge for learning-based approaches to

generate high-quality reference data due to limitations in breath-hold capabilities and signal

preparation. For bSSFP data, typical acquisition artifacts such as banding might impact the
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Pattern Diff ICTGV Diff VN

Reference ICTGV VN

Figure 6.3: bSSFP: 2CH view for VISTA sampling at R = 8. The first row shows the reference,
ICTGV and VN reconstruction. The second row illustrates the sampling pattern and difference images
of ICTGV and VN to the reference.

quality of learning. In contrast, FLASH contains less acquisition artifacts, but is characterized

by a poorer SNR, leading to an unnatural behaviour of ICTGV and slightly smoothed results

of the VN. In future work, we want to further explore the impact of low-quality training data

and artifacts in the training data. Furthermore, we will consider more data to train the VNs.

We will also investigate Dynamic Contrast Enhanced (DCE) data or angiography data, where

a major challenge is the acquisition of reference data. Hence, further solutions are required

such as generating artificial, numerical phantoms for training or discovering further solutions

in unsupervised learning.
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Pattern Diff ICTGV Diff VN

Reference ICTGV VN

Figure 6.4: bSSFP: SA view for VISTA sampling at R = 12. The first row shows the reference,
ICTGV and VN reconstruction. The second row illustrates the sampling pattern and difference images
of ICTGV and VN to the reference.
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Pattern Diff ICTGV Diff VN

Reference ICTGV VN

Figure 6.5: bSSFP: SA view for VRS sampling at R = 12. The first row shows the reference, ICTGV
and VN reconstruction. The second row illustrates the sampling pattern and difference images of ICTGV
and VN to the reference.
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Pattern Diff ICTGV Diff VN

Reference ICTGV VN

Figure 6.6: FLASH: SA view for VISTA sampling at R = 12. The first row shows the reference,
ICTGV and VN reconstruction. The second row illustrates the sampling pattern and difference images
of ICTGV and VN to the reference.
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Pattern Diff ICTGV Diff VN

Reference ICTGV VN

Figure 6.7: FLASH: SA view for VRS sampling at R = 12. The first row shows the reference, ICTGV
and VN reconstruction. The second row illustrates the sampling pattern and difference images of ICTGV
and VN to the reference.
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Pattern Diff ICTGV Diff VN

Reference ICTGV VN

Figure 6.8: FLASH: 4CH view for VRS sampling at R = 16. The first row shows the reference,
ICTGV and VN reconstruction. The second row illustrates the sampling pattern and difference images
of ICTGV and VN to the reference.
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Figure 6.9: Learned VN parameters for dynamic CINE MRI.



7
Conclusion and Outlook

Wherever you go, go with all your heart.

Confucius

While machine learning for classification and segmentation has been established for medical

tasks in the last years, the application to medical image reconstruction is rather new. In 2016,

first promising research results started a new era for novel and exciting developments in the

field of medical image reconstruction. During the past two years, many different learning-based

approaches were proposed for medical image reconstruction, even though many Convolutional

Neural Networks (CNNs) architectures were applied for image enhancement, while others con-

sidered the raw measurement data. Based on the mathematical properties of the individual

approaches, we provided a broad overview of the recent developments for image reconstruction

in computer vision and medical imaging. It is noticeable that the network architectures that

regard reconstruction as image enhancement are mainly based on the U-net architecture [205]

containing a huge number of model parameters. Huge model architectures require a great

amount of training data to avoid over-fitting which is hardly feasible in clinical practice. Fur-

thermore, the consistency to the raw measurement data is lost during image enhancement,

which, however, provide important information for the reconstruction procedure. In cases

where the forward model is unknown, a direct mapping from the raw measurement data to the

image might have a great potential. For example, the approaches that learn a direct mapping

might be useful in applications where the forward imaging model is only known with some de-

gree of uncertainty. In contrast, learning a fully iterative approach has several advantages: We

often have prior knowledge about the acquisition process and physics of the model available.

This allows us to incorporate this prior knowledge in the reconstruction process and enforce

data consistency in various variants. As this prior knowledge greatly impacts the reconstruc-

tion process, already small and compact network architectures with a comparably low number

of network parameters results in promising reconstruction results of high quality. This also

reduces the amount of training data and the risk of over-fitting.
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Our mission statement is to use prior knowledge and impose structure to our models. This

led to the concept of Variational Networks (VNs) that combine two successful fields: deep

learning and variational models. Due to the close connection to variational models, we gain

first insights into the meaning of the learned parameters. The learned Fields of Experts (FoE)

regularizer allows us to draw first connections to already known properties of filter kernels and

potential functions. Furthermore, the proposed VN can be seen as a global framework, which

can easily be adapted to various applications for computer vision and medical imaging, ranging

from image enhancement to image reconstruction or segmentation. We believe that by using

structured models, we are able to compete with approaches that consist of potentially too

many parameters, while only requiring little training data.

For our applications, we focused on supervised learning for a variety of medical applications.

Most of these applications have in common that the reconstructions contain characteristic

coherent artifacts which cannot be suppressed by classical iterative methods. In these cases,

learning-based approaches can overcome typical limitations of classical approaches, including

parameter tuning, handcrafted feature engineering and long reconstruction times. Our results

for enhancing limited-angle Computed Tomography (CT) images and Cartesian undersampled

Magnetic Resonance (MR) knee imaging proved to yield high quality results compared to

other state-of-the-art methods. As the coherent artifacts spread over the whole image, more

complex regularizers with an increased perceptive field might be beneficial to further increase

the reconstruction quality and suppress artifacts. The presented deep regularization provides

a promising outlook in this direction and will be investigated further in future work. In the

case of dynamic MR imaging, more emphasis will be given to a more balanced regularization

between spatial and temporal domain, e.g., by using different composite regularizers or Infimal

Convolution (IC)-type regularization.

Major focus was given to design a clinically useful Parallel Imaging (PI) solution using VNs

for MR image reconstruction, i.e., using the raw multi-coil data. In our case, we use an image-

based PI method that requires explicit estimation of coil sensitivity maps, which are currently

pre-computed. To avoid potential errors in this pre-computation step, we might estimate the

coil sensitivities and reconstruction jointly or use setups that are independent of an explicit

estimation of coil sensitivity maps.

In this thesis, we also observed that besides a suitable network architecture and optimizer,

the loss function is a key ingredient for successful, high quality reconstruction. However, most

of the commonly used similarity measures, including but not limited to Normalized Root Mean

Squared Error (NRMSE), Peak Signal-To-Noise Ratio (PSNR) and Structural Similarity Index

(SSIM), reflect the human observations poorly, especially if the reference data itself is noisy.

This observation poses the future challenge to develop novel loss functions that reflect the

radiologists’ eyes and to deal with noisy measurement data and reference data. Adversarial

approaches might provide a starting point to this issue, however, special care should be taken

in the case of medical imaging to verify that no artificial structures are introduced. Hence, a

thorough clinical evaluation is required.

Clinical evaluation is not only required on image quality but also more importantly on diag-
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nostic content. To allow for a potential translation of the proposed VNs, we focused specifically

on providing a clinical useful environment in our experiments. In a first reader study on image

quality for clinical MR knee imaging we experienced improved results for the proposed VN

compared to classical Compressed Sensing (CS) approaches for four times Cartesian under-

sampled data. Although the image quality is reduced compared to the reference images and

some residual artifacts still remain, the open question is if this impacts the diagnostic value of

the learning-based reconstruction compared to a clinically accelerated protocol. This question

directs future research to large-scale clinical reader studies as well as improved quantitative

measures that allow for visually improved image reconstructions. Due to the increased research

in the area of medical image reconstruction, the public availability of databases will be a key

aspect in the future of medical imaging. This will allow for better training of architectures and

also provide a basis for comparing different approaches which was hardly possible because every

institution used its own dataset for evaluation. Training data is still the key to successfully

train all kinds of network architectures based on supervised learning. In some applications such

as dynamic MR imaging it is challenging to acquire suitable training data. This greatly raises

the potential for unsupervised learning methods in future work to learn representations from

only corrupted measurement data.

Even though large benchmarks exist, a major goal should not be to bet benchmarks in

terms of quantitative numbers, but to come up with realistic solutions that can be adopted to

clinical routine exams. However, we often see only the tip of the iceberg as in Figure 7.1 which

are amazingly looking results. Hence, the goal of this thesis was not to provide an highly

optimized network architecture with fine-tuned parameter settings, but to provide a broad

overview over the importance and potential pitfalls of data acquisition, data setup, network as

well as loss function design and optimization.

What we see…

Deep Learning

Generative Adversarial Networks

U-net

Variational Networks

Convolutional Neural Networks

Residual Networks

Recurrent Networks

Variational Autoencoder

Optimization

Data Processing

Data Collection

Reconstruction
Segmentation

Classification

What really happens…

Data Annotation

Tensorflow

PyTorch

Figure 7.1: The iceberg theory of deep learning. Original image by c©Ralph A. Clevenger/CORBIS.
Modified for educational purpose only.
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List of Acronyms

ACL Auto-Calibration Line

ADMM Alternating Direction Method of Multipliers

AI Artificial Intelligence

ALOHA Annihilating Filter-Based Low-Rank Hankel Structured

Matrix Completion Approach

ANN Artificial Neural Network

AUTOMAP Automated Transform by Manifold Approximation

BP Backprojection

CG Conjugate Gradient

CNN Convolutional Neural Network

CPU Central Processing Unit

CS Compressed Sensing

CT Computed Tomography

DCE Dynamic Contrast Enhanced

DDR Digitally Reconstructed Radiograph

DICOM Digital Imaging and Communications in Medicine

DTI Diffusion Tensor Imaging

ECG Electrocardiography

EPI Echo Planar Imaging

FBP Filtered Back-Projection

FE Frequency Encoding

FoE Fields of Experts

FoV Field of View

FSIM Feature Similarity Index

FT Fourier Transform

GAN Generative Adversarial Network

GD Gradient Descent
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GPU Graphics Processing Unit

GRAPPA Generalized Autocalibrating Partially Parallel Acquisi-

tions

GRE Gradient Echo

IC Infimal Convolution

ICTGV Infimal-Convolution-Total-Generalized-Variation

IIPG Inertial Incremental Proximal Gradient

IPALM Inertial Proximal Alternating Linearized Minimization

ISTA Iterative Shrinkage and Thresholding Algorithm

KSAE K-sparse Autoencoder

L+S Low-Rank plus Sparse

L-BFGS Limited-Memory Broyden-Fletcher-Goldfarb-Shanno

l.s.c. lower-semicontinuous

LISTA Learned Iterative Shrinkage and Thresholding Algorithm

LVOT Left Ventricular Outflow Tract

MAE Mean Absolute Error

MAP Maximum-A-Posteriori

MAR Metal Artifact Correction

MD Medical Doctor

MLP Multi Layer Perceptron

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MS-SSIM Multi-Scale Structural Similarity Index

MSE Mean Squared Error

NLM Non-Local Means

NRMSE Normalized Root Mean Squared Error

OMP Orthogonal Matching Pursuit

PAT Photoacoustic Tomography

PD Primal-Dual

PE Phase Encoding

PET Positron Emission Tomography

PG Proximal Gradient

PI Parallel Imaging

PSF Point Spread Function

PSNR Peak Signal-To-Noise Ratio

RBF Gaussian radial basis function

ReLU Rectified Linear Unit

RF Radio Frequency

RMSE Root-Mean-Squared-Error

ROI Region Of Interest

SA Short Axis
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SAR Specific Absorption Rate

SE Spin Echo

SENSE Sensitivity Encoding

SMASH Simultaneous Acquisition of Spatial Harmonics

SNR Signal-to-Noise Ratio

SPECT Single Photon Emission Computed Tomography

SQS Separable Quadratic Surrogate

SSIM Structural Similarity Index

SVD Singular Value Decomposition

TE Echo Time

TGV Total Generalized Variation

TR Repetition Time

TSE Turbo Spin Echo

TV Total Variation

VISTA Variable Density Incoherent Spatio-Temporal Acquisition

VN Variational Network

VRS Variable Density Random Sampling

wGAN Wasserstein Generative Adversarial Network

ZTE Zero Echo Time
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C
Algorithms

For network training, we consider the following optimization problem

min
θ
L
(
xT (θ), xref

)
θ =

(
θ1, . . . , θT

)
, θt =

(
wtij , k

t
i , λ

t
)
, 1 ≤ t ≤ T (C.1)

s.t. θt ∈ C =
{
λt ≥ 0, ξ>kti = 0∀i,

∥∥kti∥∥2
≤ 1 ∀i

}
.

To solve this non-convex training problem, we exploit different first-order optimizers to obtain

parameters updates θt =
(
wtij , k

t
i , λ

t
)

for the mth iteration. To realize additional constraints

on the parameters, we perform the projections during optimization(
λm+1, km+1

)
= projηC

(
λ̃m+1, k̃m+1

)
.

As the constraints do not depend on each other, we can consider the projections independently.

To realize the non-negativity constraint on the data term weights λm+1, the parameter update

λ̃m+1 is clamped at zero

λm+1 = max(0, λ̃m+1).

For the projection onto the filter kernel constraints, we first subtract the means ξ>k̃m+1 from

the current kernel parameter estimates and then project the kernel onto the unit-sphere

k̃m+1
ξ = k̃m+1 − ξ>k̃m+1,

km+1 =
k̃m+1
ξ∥∥∥k̃m+1
ξ

∥∥∥
2

.
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Algorithm 8 Inertial Incremental Proximal Gradient (IIPG)

Input: Split training set S into NB mini batches B such that S =
⋃NB
b=1 Bb

Choose: Step size η, number of epochs NE , initial parameters θ0

for e = 1, . . . , NE do
βe = e−1

e+2
for b = 1, . . . , NB do
m = NB(e− 1) + b // Current iterate

θ̂
m+1

= θm + βe(θ
m − θm−1) // Over-relaxation

gm+1 =
∂L
(
xT (θ̂

m+1
),xref

)
∂θ // Compute gradient on current mini batch Bb

θ̃m+ 1 = θ̂
m+1 − ηgm+1 // Compute gradient step

θm+1 = projηC(θ̃
m+1

) // Compute projections
end for

end for

C.1 Inertial Incremental Proximal Gradient (IIPG)

For our work in [84, 136], we used the Inertial Incremental Proximal Gradient (IIPG) optimizer.

This IIPG variant of projected gradient descent is related to the Inertial Proximal Alternating

Linearized Minimization (IPALM) algorithm [188]. The whole sequence generated by IPALM

is guaranteed to converge to a stationary point in the non-convex non-stochastic case under

certain constraints on the step size and inertial parameters. The analysis for the stochastic

version is left to future research. In the IIPG Algorithm 8, the parameter updates are calculated

on a single mini batch. First, we perform over-relaxation where we set a over-relaxation

constant βe depending on the current epoch e to achieve moderate acceleration. Second, we

compute the gradient with respect to the parameters on the current mini batch which yields

a new parameter update θ̃
m+1

for the current iteration m. Finally, the parameter update is

projected onto the defined constraint if defined.

C.2 Proximal ADAM with Block-Preconditioning

The ADAM optimizer [129] is a popular and stable algorithm for stochastic optimization

and commonly used to solve deep learning problems. It involves first-order and second-order

moment estimates v1 and v2, which are used to scale the effective step size of the individual

parameters. While v1 involves the gradient of the parameters, v2 is computed as the square

of the parameter gradients, which results in a point-wise scaling of the parameters v1/
√
v2.

When observing problem Equation (C.1) we see that we are dealing with different blocks of

parameters that additionally require a proximal mapping of a function G, which are in our case
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Algorithm 9 Proximal ADAM with Block-Preconditioning

Choose: Step size η, number of iterations Nmax, initial parameters θ0

Choose: Exponential decay rates for the moment estimates β1, β2 ∈ [0, 1)
for m = 1, . . . , Nmax do
gm = ∇θL

(
xT (θm−1), xref

)
// Compute gradient on current mini batch

vm1 = β1v
m−1
1 + (1− β1)gm // Update of the biased first moment estimate

Compute block-wise gradient norms to define the scaling gbl according to Equation (C.3)

vm2 = β2v
m−1
2 + (1− β2)gmbl // Update of the second moment estimate

v̂m1 = vm1 /(1− βm1 ) // Bias-correction of the first moment estimate
v̂m2 = vm2 /(1− βm2 ) // Bias-correction of the second moment estimate

θ̂
m

= θm−1 − (ηvm1 )/
(√

v̂m2 + ε
)

// Parameter update

θm = proj
η/(
√
v̂m2 +ε)

C

(
θ̂
m
)

end for

projections, in a defined norm D:

x? ∈ arg min
x∈KNx

G(x) +
1

2
‖x− x̂‖2D (C.2)

Inspired by [187, 188], we aim at performing block-wise scaling of the gradients which therefore

do not influence our projection calculations. Hence, we define the block-wise scaling for B

parameter blocks as

gmbl = diag
(
‖gm1 ‖

2
2 , . . . , ‖g

m
1 ‖

2
2 , ‖g

m
2 ‖

2
2 , . . . , ‖g

m
2 ‖

2
2 , . . . , ‖g

m
B ‖

2
2 , . . . , ‖g

m
B ‖

2
2

)>
(C.3)

where the elements gmbl are repeated according to the size of the bth parameter block. This

results in the proximal ADAM with block-preconditioning algorithm shown in Algorithm 9.





D
Gradient Calculations

D.1 Variational Network Parameters

In every gradient step t, we seek the derivatives with respect to the parameters

θt =
(
wtij , k

t
i , λ

t
)

of a loss function L
(
xT (θ), xref

)
. For simplicity, we drop the dependency

of xT on the parameters θ and the subscript s and show the calculations only for a single

training example. The gradient steps are given as

xt = xt−1 −
Nk∑
i=1

(Kt
i )
>φti(K

t
ix
t−1)− λtA∗(Axt−1 − y), 1 ≤ t ≤ T

The derivatives with respect to the parameters θt are obtained by back-propagation [147]

∂L
(
xT (θ), xref

)
∂θt

=
∂xt

∂θt
· ∂x

t+1

∂xt
. . .

∂xT

∂xT−1
·
∂L
(
xT (θ), xref

)
∂xT︸ ︷︷ ︸

et

.

The reconstruction error of the tth gradient step is given by
∂L(xT (θ),xref)

∂xt = et.

Derivative of the Loss Function. First, we require the gradient of the loss function L with

respect to the reconstruction xT defined as eT . It is computed as

∂L
(
xT (θ), xref

)
∂xT

= eT

Different loss function along with their derivatives are listed in Appendix D.2.
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Derivative of the Data Term Weights λt. The derivative of the reconstruction xT wrt.

to λt ∈ R for the tth gradient step is expressed as:

∂L
(
xT (θ), xref

)
∂λt

=
∂xt

∂λt
∂L
(
xT (θ), xref

)
∂xt

=
〈
−A∗(Axt−1 − y), et

〉
.

Derivative of the Activation Functions φti. A single activation function

φti(z) =
(
φti(z1), . . . , φti(zN )

)
: RN → RN is defined by a weighted combination of Nw

Gaussian radial basis functions (RBFs)

φti(zl) =

Nw∑
j=1

wtij exp

(
−(zl − µj)2

2σ2

)
, l = 1, . . . , N, wtij ∈ R.

This can be rewritten in a matrix-vector notation

φti(z) =

φti(z1)
...

φti(zN )

 =


exp

(
− (z1−µ1)2

2σ2

)
. . . exp

(
− (z1−µNw )2

2σ2

)
...

. . .
...

exp
(
− (zN−µ1)2

2σ2

)
. . . exp

(
− (zN−µNw )2

2σ2

)

 wti1

...

wtiNw

 = M t
i (z)w

t
i .

During training, we learn the weights wti ∈ RNw and express its gradient as

∂L
(
xT (θ), xref

)
∂wti

=
∂xt

∂wti

∂L
(
xT (θ), xref

)
∂xt

=

= − ∂

∂wti

{
(Kt

i )
>M t

i (K
t
ix
t−1)wti

}
et = −

(
M t
i (K

t
ix
t−1)

)>
Kt
ie
t.

Derivative of the Intermediate Reconstructions xt−1. Further gradients with respect to

the reconstructions from intermediate steps are given as

∂xt

∂xt−1
= I −

Nk∑
i=1

(Kt
i )
> diag

(
(φt)′(Kt

ix
t−1)

)
Kt
i − λtA∗A

where I denotes the identity matrix. This also requires the second derivative (φt)′i(z) of the

potential functions ρ(z)t, which is expressed as

(φt)′i(z) =


− (z1−µ1)

σ2 exp
(
− (z1−µ1)2

2σ2

)
. . . − (z1−µNw )

σ2 exp
(
− (z1−µNw )2

2σ2

)
...

. . .
...

− (zN−µ1)
σ2 exp

(
− (zN−µ1)2

2σ2

)
. . . − (zN−µNw )

σ2 exp
(
− (zN−µNw )2

2σ2

)
wti

Derivative of the Filter Kernels kti . To compute the derivative with respect to the filter

kernels kti we have to introduce further relationships between our given parameters. The
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convolution can be defined as matrix-vector multiplication

kti ∗ xt−1 ⇔ Kt
ix
t−1 = Xt−1kti

where the matrix Xt−1 : R2s2 → RN is a suitably shifted representation of the image xt−1 and

kti ∈ R2s2 is the vectorized filter kernel. The gradient step also involves rotated filter kernels

k̄ti due to the transpose operation of the kernel matrix (Kt
i )
>. As we want to calculate the

derivative with respect to kti and not to their rotated version, we introduce a rotation matrix

R : R2s2 → R2s2 that has the same effect as the transpose operation

k̄ti = Rkti .

The convolution can be rewritten as

(Kt
i )
>φti(K

t
ix
t−1) = φ̃ti(K

t
ix
t−1)k̄ti = φ̃ti(K

t
ix
t−1)Rkti

where φ̃ti(K
t
ix
t−1) : RN → R2s2 is a suitable matrix representation of φti(K

t
ix
t−1). Applying

the product rule yields following expression for the kernel derivative

∂(Kt
i )
>φti(K

t
ix
t−1)

∂kti
=
∂φti(K

t
ix
t−1)

∂kti
Kt
i +

∂kti
∂kti

[
φ̃ti(K

t
ix
t−1)R

]>
=

= (Xt−1)> diag (φt)′i(K
t
ix
t−1)Kt

i +R>φ̃ti(K
t
ix
t−1).

The full derivative may be expressed as

∂L
(
xT (θ), xref

)
∂kti

=
∂xt

∂kti

∂L
(
xT (θ), xref

)
∂xt

=

= −
[
(Xt−1)> diag (φt)′i(K

t
ix
t−1)Kt

i +R>φ̃ti(K
t
ix
t−1)

]
et.

D.2 Loss functions

The choice of a proper loss function has high impact on the training performance. We intro-

duced the Mean Squared Error (MSE) as a loss function. We can also use other pixel-wise loss

functions such as the Mean Absolute Error (MAE), or take into account higher-order deriva-

tives. We expect also an improvement of image quality by taking a perceptual model such

as the SSIM or its extension to the Multi-Scale Structural Similarity Index (MS-SSIM). In the

following, we describe loss functions and derive the gradients. These functions can be easily

integrated and evaluated in our variational network. For simplicity, we drop the dependence

on the samples in the definitions of the loss functions.
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MSE. A common loss function is the MSE where we penalize the squared pixel difference

Lmse

(
xT (θ), xref

)
=

1

2N

∥∥xT (θ)− xref
∥∥2

2
.

where N denotes the number of pixels. Its derivative is given as

∂Lmse

(
xT (θ), xref

)
∂xT (θ)

= eT =
1

N

(
xT (θ)− xref

)
.

MAE. Another possibility is to penalize the absolute difference in pixel intensities

Lmae

(
xT (θ), xref

)
=

1

N
|xT (θ)− xref|,

with derivative

∂Lmae

(
xT (θ), xref

)
∂xT (θ)

= eT =
1

N
sgn

(
xT (θ)− xref

)
,

where the sgn function is applied in an element-wise manner.

MSE on ε-smoothed magnitude images (Magnetic Resonance Imaging (MRI) only).

In the presence of complex-valued images as apparent in MRI, we observed that computing

the MSE on magnitude images leads to more visually appealing results. We define this loss as

∂Lmse-abs

(
xT (θ), xref

)
∂xT (θ)

=
1

2N

∥∥|xT (θ)|ε − |xref|ε
∥∥2

2
, |x|ε =

√
x2
re + x2

im + ε,

where | · |ε is understood in a point-wise manner. Its derivative is computed as

∂Lmse-abs

(
xT (θ), xref

)
∂xT (θ)

= eT ⇔ eTl =
xTl
|xTl |ε

(
|xTl |ε − |xref,l|ε

)
, l = 1, . . . , N.

SSIM. Instead of looking at pixel-wise measures introduced above, we can also use perceptual

models as a loss function. One example for a perceptual model is the SSIM which evaluates

patch statistics

Lssim
(
xT (θ), xref

)
= 1− SSIM(xT (θ), xref)

with

SSIM(x, xref) =
1

N

∑
i∈Ω

l(x(i), xref(i))c(x(i), xref(i))

=
1

N

∑
i∈Ω

2µx(i)µxref(i) + c1

µ2
x(i) + µ2

xref(i)
+ c1

2σx(i)σxref(i) + c2

σ2
x(i) + σ2

xref(i)
+ c2

,
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where c1 and c2 are some user-defined constants, N is the total number of pixels. The SSIM

consists of a luminance term l and a contrast term c and involves means µ·(i) and standard

deviations σ·(i) for each patch around the current pixel position i in a given domain Ω. Now,

let us define the SSIM loss over the whole image instead of single patches. We calculate

mean images µxT , µg as Gaussian weighted average images where Kσm : Rn → Rn denotes

the Gaussian convolution operator with standard deviation σm and xT , xref ∈ Rn are images

represented as column vectors

µxT = Kσmx
T , µxref = Kσmxref.

The covariance and variance are represented in a similar way. We also introduce the notation

Dµxref
= diagµxref , Dxref = diag xref, Dµ

xT
= diagµxT , DxT = diag xT and

σxT ,xref = Kσm(xref � xT )− µxref � µxT = KσmDxrefx
T −Dµxref

µxT ,

σ2
xT = Kσm(xT � xT )− µxT � µxT = KσmDxT x

T −Dµ
xT
µxT ,

σ2
xref

= Kσm(xref � xref)− µxref � µxref = KσmDxrefxref −Dµxref
µxref .

The operator � denotes the element-wise multiplications or Hadamard product. We can now

rewrite the loss for the whole image

SSIM(xT , xref) =
1

N
1> [d1 � d2 � d3 � d4] = 1− 1

N
1>
[
D1D

−1
2 D3d

−1
4

]
, (D.1)

where

d1 = (2µxT � µg + 1c1),

d2 = (µxT � µxT + µxref � µxref + 1c1),

d3 = (2σxT ,xref + 1c2),

d4 = (σxT � σxT + σxref � σxref + 1c2).

Hence, the terms for luminance l and contrast c are given as

l = d1 � d2,

c = d3 � d4.

Note that we denote here the element-wise inverse by −1 and � represents element-wise

divisions. Upper case Di denote diagonal matrices Di = diag di. Let us revise diagonal matrix

properties and some basic derivative rules. For diagonal matrices Di it holds that

D1D2 = D2D1,

D>1 = D1.
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For derivatives wrt. to vectors, we need following rules

∂a>y

∂x
=
∂y

∂x
a,

∂Ax

∂x
= AT ,

∂Ay

∂y
=
∂y

∂x
A>,

where y is a vector dependent on x, a is a vector independent of x and A denotes a matrix

independent of x.

Using the chain rule and properties of matrices, we estimate the loss as follows

∂SSIM(xT , xref)

∂xT
=

1

N

[
∂l

∂xT
C +

∂c

∂xT
L

]
1

=
1

N

[
∂d1

∂xT
D−1

2 D3D
−1
4 +

∂d−1
2

∂xT
D1D3D

−1
4 +

∂d3

∂xT
D1D

−1
2 D−1

4 +
∂d−1

4

∂xT
D1D

−1
2 D3

]
1.

We compute now the derivatives for di

∂d1

∂xT
= 2

[
Dµxref

Kσm

]>
= 2K>σmDµxref

,

∂d−1
2

∂xT
=
∂d1

∂u

∂d−1
2

∂d2
= − ∂d2

∂xT
D−2

2 = −2
[
Dµ

xT
Kσm

]>
D−2

2 = −2K>σmDµ
xT
D−2

2 ,

∂d3

∂xT
= 2DxrefK

>
σm − 2K>σmDµxref

,

∂d−1
4

∂xT
= −

(
2DxTK

>
σm − 2K>σmDµ

xT

)
D−2

4 .

Combining these derivatives with (D.1) leads to the final partial derivative of the loss wrt. the

stage outputs xT

∂LSSIM (θ)

∂xT
= eT = − 2

N

[
K>σm

(
Dµxref

D−1
2 D3D

−1
4 −Dµ

xT
D1D

−2
2 D3D

−1
4

−Dµxref
D1D

−1
2 D−1

4 +Dµ
xT
D1D

−1
2 D3D

−2
4 )

+DxrefK
>
σmD1D

−1
2 D−1

4 −DxTK
>
σmD1D

−1
2 D3D

−2
4 ] 1.

MS-SSIM. Once we have obtained the gradients for the SSIM, the gradients for MS-SSIM

can be obtained easily. Similar to SSIM, the MS-SSIM loss is defined as

Lms-ssim

(
xT (θ), xref

)
= 1−MS-SSIM(xT (θ), xref)
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where

MS-SSIM(x, xref) =
1

N

∑
i∈Ω

lM (x(i), xref(i))

M∏
m=1

cm(x(i), xref(i)).

To model multiple scales, we compute the contrast terms for varying standard deviations σm
according to [274]. In our case, we use four different standard deviations σG,m ∈ [0.5, 1, 2, 4].

Again, we view this problem on the whole image lM , cm instead of patches as presented for

SSIM. The capital letters LM , Cm denote the diagonal matrix representation of the vectors

lM , cm. This leads to following derivative for the MS-SSIM wrt. the stage outputs xT

∂Lms-ssim

(
xT (θ), xref

)
∂xT (θ)

= eT = − 1

N

[
∂lM
∂xT

+

M∑
n=0

∂cn
∂xT

C−1
n L

]
M∏
m=1

Cm1.
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