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Abstract

Subdivision schemes are iterative refinement rules used to generate smooth geometric
objects, such as curves or surfaces.

In the first part of this thesis, we deal with nonlinear subdivision schemes, i.e., refine-
ment algorithms applied to data lying in nonlinear spaces. Literature already provides
a number of different approaches to transfer linear subdivision to nonlinear geometries.
We use the so-called Riemannian analogue of a linear subdivision rule which is obtained
from a linear rule by replacing affine averages by weighted geodesic averages and show
that it is well defined on Cartan-Hadamard manifolds (i.e., simply connected, complete
manifolds with nonpositive sectional curvature). Up to now, most convergence results
for nonlinear analogues of linear schemes are limited to dense enough input data. In this
thesis, we provide convergence results for Riemannian analogues of linear schemes on
Cartan-Hadamard manifolds which are valid for all input data. In particular, we prove
that if a linear subdivision scheme converges uniformly, then its Riemannian analogue on
Cartan-Hadamard manifolds does so, too. Additionally, we analyse the Holder continuity
of the resulting limit functions.

On positively-curved Riemannian manifolds, the situation is appreciably different.
This essentially follows from two points: The Riemannian analogue is no longer glo-
bally well defined and certain distance estimates on Cartan-Hadamard manifolds are not
valid on positively-curved manifolds. As a first approach, we therefore restrict our ana-
lysis to the unit sphere and provide a strategy for showing convergence results for the
Riemannian analogue of a linear subdivision scheme.

In the second part of this thesis, we focus on Hermite subdivision schemes and their
ability of polynomial reproduction. In contrast to standard scalar subdivision schemes,
a Hermite scheme operates on vector-valued input data, which is interpreted as func-
tion and its consecutive derivative values. A convergent subdivision scheme is said to
reproduce polynomials if sampling the initial data from a polynomial yields the same
polynomial in the limit. We provide algebraic conditions on the Hermite scheme, which
fully characterise its ability to reproduce polynomials. This generalises similar conditions
known from scalar subdivision. As a start, we consider schemes reproducing function va-
lues and first derivatives, afterwards we show an extension of this result to schemes of
any order, i.e., we consider higher derivatives as well.
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1 Introduction

Subdivision rules are algorithms which produce limit curves by iteratively refining initial
control polygons. De Rham first mentioned the idea in [18|. In the context of computer
graphics the procedure was rediscovered in the 1970s by Chaikin [3]. Subdivision al-
gorithms have become of interest in computer aided geometric design due to their local
structure (which makes them easy to implement) and their capability to generate smooth
curves [25]. For example the Lane-Riesenfeld algorithm can be used to compute B-spline
curves |54, 25].

Subdivision algorithms are not limited to curve design, but are also used to generate
smooth surfaces from data attached to control nets with irregular combinatorics. The
Doo-Sabin scheme [29], the Catmull-Clark scheme [1] and the Loop scheme [56| are early
contributions to subdivision with irregular meshes. We refer to the textbook [69] for a
comprehensive overview on this topic.

Subdivision rules play an important role in geometric modelling |3, 30] and very much
in computer graphics [69]. They are used to construct wavelets and find applications
in multiresolution analysis [6, 17] as well as in approximation and interpolation theory
[26, 19].

A linear refinement rule maps a sequence (x;);czs, s > 1, in a linear space to a sequence
(Sx;)iezs where the new points Sz; = ZjeZS a;—2;xj, © € Z, are given as affine linear
combinations of finitely many old ones. The repeated application of this refinement rule
determines a subdivision scheme S. The coefficients (a;);ezs are called the mask of the
scheme.

In this thesis, all schemes are assumed to be univariate, i.e., s = 1, but the multivariate
case is studied intensively, too [2, 38, 59|.

We denote by S*, k € N, the repeated application of the refinement rule and call a
linear subdivision scheme S convergent if there exist piecewise linear functions fj with
fr (2%) = (Skac)z which converge, uniformly on compact sets, to a limit.

For initial data lying in linear spaces subdivision rules are well studied regarding their
properties of convergence and smoothness of the resulting limit curves, see for example
[2, 25]. In this respect, relating the convergence of a subdivision scheme to algebraic
conditions of the symbol of its mask, i.e., the Laurent polynomial a(z) = Z]EZ a2,
was crucial [2]. Furthermore, the derived scheme which operates on divided differences
of input data became another important tool in the study of refinement algorithms and
their convergence [25, 28].

One might vary the coefficients of the mask in each iteration step which makes the
subdivision rule level-dependent, see [30] for an introduction. Those schemes are also
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called non-stationary as opposed to stationary schemes which keep the same refinement
rule throughout the whole subdivision process.

A well-known class of subdivision rules are interpolatory schemes which are charac-
terised by the fact that they always preserve the data of the previous refinement level.
For curve design we mention the 4-point scheme [26] and the 6-point Dubuc-Deslauriers
scheme [19]. Their convergence and approximation order are well studied and the smooth-
ness of resulting limit curves has been analysed. The Butterfly scheme was the first
interpolatory scheme used on a triangular grid to generate surfaces [27].

Another interesting question is the following: If the initial data is sampled from a
function, does a scheme reproduce the same function in the limit? Linear schemes repro-
ducing polynomials are characterised in [9]. For exponential polynomials this question
was considered for example in [31, 11]. Even if the function is not fully reproduced in the
limit, one can study the approximation order of the subdivision scheme, for stationary
[55] as well as for level-dependent schemes [13].

In this thesis, we contribute new results to two different areas within the wide field of
subdivision schemes. The first part of the thesis focuses on the convergence analysis of
subdivision rules applied to nonlinear data while the second part deals with the property
of polynomial reproduction by Hermite subdivision schemes.

Introduction to the first part of this thesis

We are interested in the convergence analysis of nonlinear subdivision schemes which
are obtained by adapting linear refinement rules to nonlinear geometries. Since data
often comes from nonlinear geometries this has become an active field of research in the
last years [21, 77, 40, 63, 34, 38]. For example, one can consider initial data lying in
symmetric spaces, Lie groups or arbitrary Riemannian manifolds instead of only linear
spaces. In particular, different methods to transfer linear subdivision schemes to non-
linear geometries have been introduced: the log-exp-analogue [70, 21], the projection
analogue [82] and binary geodesic averaging [77]. After adapting linear schemes to a
wider class of geometries, questions of their properties arise.

Before we discuss the convergence of nonlinear analogues of linear schemes in detail,
we summarise some results on nonlinear refinement algorithms (assuming their conver-
gence). They have been analysed regarding their approximation order and stability, see
for example (47, 41, 39]|. Furthermore, the smoothness of the limit curves of nonlinear
analogues of linear schemes has been studied in many works, see for example |75, 42, 78|.
However, it requires specific ways of transferring linear schemes to nonlinear geometries
to show that the nonlinear limit is as least as smooth as its linear counterpart, see for
example [83, 40].

If we assume that the nonlinear analogue of a linear scheme is convergent, then the
smoothness of the resulting limit curves is fully studied. The situation for the convergence



analysis of nonlinear schemes itself, however, is different and therefore still an active
field of research. In [77]| the so-called proximity conditions have been introduced to
obtain convergence results for nonlinear analogues which are obtained from linear schemes
by replacing binary averages by geodesic averages. Unfortunately, this procedure is in
general not unique and the convergence results are limited to only ‘dense enough’ input
data. However, there are results which apply to all input data if only special classes of
subdivision schemes are considered, for example interpolatory schemes [76]. Furthermore,
for special schemes convergence results could be proven for all input data by the repeated
application of binary geodesic averaging [32, 33, 73|. As an example where geodesic
subdivision has been used, we mention [67]. The author studied corner cutting schemes
and a variation of the 4-point scheme on the sphere by an iterative computation of
geodesic midpoints.

In this thesis we adapt linear schemes to Riemannian manifolds by replacing affine
averages by the Riemannian center of mass. This method is known as the Riemannian
analogue of a linear scheme, see [40]. It is said to be convergent if the subdivision rule
considered in coordinate charts of the manifold converges. In [79] the convergence of
the Riemannian analogue of a linear subdivision rule with nonnegative mask has been
studied on Cartan-Hadamard manifolds (i.e., simply connected, complete Riemannian
manifolds with nonpositive sectional curvature). More generally, convergence results
have been obtained on Cartan-Hadamard spaces with the help of stochastic methods by
interpreting the coefficients of the mask as probabilities [34, 35].

We present a convergence result for the Riemannian analogue which is valid for all
affine invariant subdivision schemes with arbitrary mask on Cartan-Hadamard manifolds.
Therefore, we prove an existence and uniqueness result of the Riemannian center of
mass on Cartan-Hadamard manifolds. The existence and uniqueness analysis of the
Riemannian center of mass, however, is not only important in the field of refinement
algorithms and approximation theory but also in stochastics on manifolds, see for example
[68].

In order to generalise further, we are interested in convergence results for all input data
on positively-curved manifolds. Since the Riemannian center of mass is in general not
globally well defined on positively-curved spaces and the estimate of distances cannot be
directly transferred from Cartan-Hadamard manifolds, we need a new strategy to obtain
convergence results. Therefore, we start by analysing subdivision schemes on a concrete
positively-curved manifold, namely the unit sphere. It turns out that already on this
elementary manifold the above mentioned difficulties become visible.

We aim for convergence results for the Riemannian analogues of linear subdivision
schemes on the unit sphere without any sign restrictions on the mask. Therefore, the
knowledge of explicit formulas for the gradient and the Hessian of the squared distance
function on the sphere are important tools. As a first approach towards a general conver-
gence analysis, we show that the Riemannian analogues of some well-known subdivision
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schemes such as the cubic Lane-Riesenfeld algorithm and the 4-point scheme converge
on the unit sphere. Furthermore, we apply our strategy to a non-interpolatory scheme
whose mask contains negative coefficients.

Introduction to the second part of this thesis

It is an active field of research to study subdivision schemes refining vector-valued
sequences, rather than only scalar schemes whose input data consists of point sequences
[61, 63, 59]. Therefore, the scalar coefficients of the mask are replaced by a matrix-valued
sequence. Literature provides many results on the convergence of wvector subdivision
and the smoothness of the limit curves in the univariate case [61, 62] as well as in the
multivariate case [5].

In the second part of this thesis, we focus on Hermite subdivision schemes. They are
a special class of vector subdivision, as they are considered to refine vector-valued data
consisting of function and its consecutive derivative values. The dimension of the vectors,
i.e., the function value plus the number of considered derivatives, is called the order of the
scheme. First analysed in [57], Hermite schemes nowadays find applications in various
areas, for example approximation theory [4, 14, 44, 45, 71|, Hermite-type multiwavelets
[16, 51| and biomedical imaging [12, 74].

Hermite schemes due to the special structure of their input data include the smoothness
analysis of the limit curve already in its convergence analysis. However, due to the
interpretation of the vector entries as function and derivative values, they naturally
become mildly level-dependent, in the sense that the matrix-valued mask is multiplied
by so-called dilation matrices in each subdivision step.

To analyse the convergence of Hermite schemes the so-called spectral condition (or
equivalently the sum rule |43, 45|) was introduced [23]. A Hermite scheme satisfying this
condition admits a Taylor factorisation which links it to a stationary scheme and whose
contractivity leads to a convergence criterion [59, 23|. Since it turns out that not all
convergent Hermite subdivision schemes satisfy the spectral condition, further concepts
such as the generalised Taylor operator have been introduced [58]. Quite recently spec-
tral conditions have been extended to a wider approach, namely spectral chains. It is
conjectured in [60] that spectral chains provide a necessary condition for the convergence
of a Hermite subdivision scheme. Additionally, this concept is used to construct Hermite
schemes of any regularity. Subdivision rules of Hermite type have been transferred to
nonlinear geometries and analysed regarding their smoothness [63, 64].

A convergent Hermite scheme is said to reproduce polynomials, if sampling input data
from a polynomial results in the same polynomial in the limit. In particular, the capa-
bility of polynomial reproduction implies that the scheme fulfils the spectral condition
and therefore can be analysed regarding its convergence [59]. In [65] an overview of the
relation between polynomial reproduction, the spectral condition and the sum rule is
provided. Furthermore, polynomial reproduction is closely related to the approximation
order of the scheme, in the linear situation [13] as well as for Hermite data [49].



Moreover, it has become of interest to study the capability of Hermite schemes to
reproduce not only polynomials but also exponentials [12, 74|. Factorisations of Hermite
schemes with respect to reproduction of exponential polynomials are studied in |7, 15].
The results are used for the convergence analysis, too [8, 50].

In the case of linear subdivision schemes, the question of polynomial reproduction
is fully answered by providing algebraic conditions on the symbol of the scheme [9].
We extend those results to Hermite schemes and give purely algebraic conditions which
fully characterise polynomial reproduction. We start by analysing schemes of order two,
meaning we consider input data consisting of function values and first derivatives. With
the help of this result we then give a characterisation for schemes of any order. The
number of algebraic conditions needed only depends on the degree of the polynomials.
Additionally, we demonstrate how to use our result to construct Hermite schemes that
reproduce polynomials of a certain degree by only slightly increasing its support (i.e., the
number of non-zero mask elements).

Organisation of the thesis

We start with an introduction of the basic concepts of linear subdivision. Then, we
define the Riemannian analogue of a linear scheme and show its well-definedness on
Cartan-Hadamard manifolds (i.e., simple connected, complete manifolds with nonpositive
sectional curvature). We continue by proving that a Riemannian analogue of a linear
scheme converges to a continuous limit function if the norm of the derived (resp. iterated
derived) scheme is bounded from above by its dilation factor. We analyse the Holder
continuity of the resulting limit curves and show how to drop the assumption of simple
connectivity of the underlying manifold.

In the next section, we analyse the convergence of the Riemannian analogue of a
linear scheme on the unit sphere. To do so, we first deal with the question of well-
definedness of the Riemannian center of mass on the unit sphere. Secondly, we introduce
a strategy to estimate distances of refined data on the sphere using a second order Taylor
approximation.

We continue with an introduction to Hermite subdivision schemes. Then, we define
certain classes of polynomials and study their properties. These auxiliary polynomials
are required to give purely algebraic conditions on the symbol of a Hermite scheme which
characterise their property of polynomial reproduction. We first consider Hermite data
consisting only of function values and first derivatives and then, in the last part, we
extend the results to schemes of any order.

The first and the last part of this thesis consists of the following three publications
with only small modifications:

e S. Hiining, J. Wallner, Convergence of subdivision schemes on Riemannian mani-
folds with nonpositive sectional curvature, Advances in Computational Mathema-
tics, published online May 2019, D01:10.1007 /s10444-019-09693-x.



1 Introduction

e C. Conti, S. Hiining, An algebraic approach to polynomial reproduction of Hermite
subdivision schemes, Journal of Computational and Applied Mathematics, 349,
302-315, 2019, pO1:10.1016/j.cam.2018.08.009.

e S. Hiining, Polynomial reproduction of Hermite subdivision schemes of any order,
submitted, 2019.

The results of Section 2.3 (convergence analysis of subdivision rules on the unit sphere)
are not yet published.

The research leading to this thesis was supported by the Austrian Science Fund (FWF):
W1230.



2 Subdivision in nonlinear geometries

2.1 Introduction

We introduce linear subdivision schemes as well as the notation used throughout the
section. An overview how to transfer linear refinement algorithms to nonlinear geometries
is provided. Our main focus is on the so-called Riemannian analogue of a linear scheme.

This chapter is based on the results presented in the publication

S. Hiining, J. Wallner, Convergence of subdivision schemes on Riemannian manifolds
with nonpositive sectional curvature, Advances in Computational Mathematics, published
online May 2019, p01:10.1007/s10444-019-09693-x.

2.1.1 Linear subdivision

A linear subdivision scheme S maps a sequence of points (x;);cz lying in a linear space
to a new sequence of points (Sz;);ez using the rule

S$i == Zai_Nj.Zj.
JET
Here N € N is the dilation factor. We require N > 2, but the usual case is N = 2.
Throughout the paper we assume that the sequence ay, £ € Z, called the mask of the
subdivision rule, has compact support. This means that a; # 0 only for finitely many ¢.
It turns out that the condition

> ai_nj=1 foralli (2.1)
JEZ

(affine invariance) is necessary for the convergence of linear subdivision schemes, see
[33] and [2]| for an overview. From now on, we make the assumption that all subdivision
schemes are affine invariant.

To simplify notation, we initially consider only binary subdivision rules, i.e., rules with
dilation factor N = 2. Then we can write the refinement rule in the following way:

m+1 m+1
(Sx)2; = Z jriy; and  (Sz)2i41 = Z BjTit, (2.2)
j=—m j=—m
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with m € N and coefficients «;, 3; such that

m+1 m+1
Y aj= > Bi=1 (2.3)
j=-—m j=-m
For example Chaikin’s algorithm [3], which is given by the mask (a_2,...,a1) = (%, %, %, %),
can be written as
3 1 1 3
(SSU)QZ = zxz + ZxH_l and (S$)2i+1 = le + Z:Ei_H. (2.4)

Subdivision schemes satisfying (Sx)2; = z; are called interpolatory. For example the
well-known 4-point scheme is defined by

1 1
(Sl’)gz =x; and (S$)2i+1 = —Wxi—1 + <§ + w) x; + <§ + w) Tit1l — WTit9, (2.5)

for some parameter w, see [26]. The next example will be our main example throughout
the section.

Example 2.1. We consider a non-interpolatory subdivision scheme with negative mask.
Taking averages of the 4-point scheme with parameter w = 1—16 and Chaikin’s scheme
yields

1 21 13 1
(Sz)9; = ~gg¥i-1 + 358 + 33Tl T g5 T2,
1 13 21 1
(Sz)2it1 = ~ggvi-1 + 350 + 3g %+l T o2

2.1.2 Adaption of subdivision to nonlinear geometries

In the last years, different ways to transfer linear schemes to nonlinear geometries have
been studied [21, 33, 40]. Various methods to apply subdivision rules to data lying in
Lie groups, symmetric spaces or Riemannian manifolds were introduced, an overview of
concepts can be found in [40]. We shortly present some of them.

The log-ezp-analogue of a linear scheme uses the intrinsic geometry of a Riemannian
manifold. The idea is to lift the nonlinear data to suitable tangent spaces of the manifold
by applying the inverse of the exponential map. Since the tangent spaces are linear spaces
themselves, the refinement algorithm can be applied. Afterwards, using the exponential
map, the refined data is dropped back down to the manifold, see [21, 70]. This method
has been extended to Hermite subdivision schemes, too [63, 64].

Applying a geodesic averaging process instead of a linear one leads to convergence
results for subdivision schemes on manifolds for all input data as shown in [32, 33].

Another well-studied and extrinsic method is the projection analogue. The main idea
is to restrict the problem to surfaces which can be embedded in Euclidean spaces and
use their linear structure [83, 37].

Our main focus, however, is on the so-called Riemannian analogue of a linear scheme
which is introduced next.



2.2 Subdivision schemes on Cartan-Hadamard manifolds

Riemannian center of mass

We recall the extension of a linear subdivision scheme to manifold-valued data with the
help of the Riemannian center of mass as shown in [40]|. This generalisation of the concept
of affine average is quite natural in the sense that we only replace the Euclidean distance
by the Riemannian distance. The construction requires to introduce some notation. We
denote the Riemannian inner product by (-,-) = |-|* on a Riemannian manifold M. The
Riemannian distance dist(x,y) between two points x,y € M is given by

b
dist(z,y) := inf/ |%(t)| dt,
7 Ja

where 7y : [a,b] — M is a curve connecting points y(a) = x and ~(b) = y. Consider the
weighted affine average

n
*— . .
T = E 0T
J=0

of points x; € R? w.r.t. weights a; € R, satisfying ) o = 1. It can be characterised as
the unique minimum of the function

n
2
gal®) = ajlz— .
=0

We transfer this definition to Riemannian manifolds by replacing the Euclidean distance
by the Riemannian distance. Let

falz) = z”: a; dist(x, ;)%
=0

We call the minimiser of this function the Riemannian center of mass and denote it by
*

¥ =av(a, ).

Note that in general the Riemannian center of mass is only locally well defined. It will
be one of the aims of this work to identify settings where the average is globally well
defined. We extend the linear refinement rule (2.2) to manifold-valued data by defining

(Tz)2 = av(a,x) and  (Tx)41 = av(p, ). (2.6)

Definition 2.2. We call T the Riemannian analogue of the linear subdivision scheme S.

2.2 Subdivision schemes on Cartan-Hadamard manifolds

A Cartan-Hadamard manifold is a complete, simply connected Riemannian manifold
with nonpositive sectional curvature K < 0. In this section we prove a convergence
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result for Riemannian analogues of linear schemes on Cartan-Hadamard manifolds which
can be applied to all input data. We study the Hélder continuity of the resulting limit
curves and continue by showing how to use the universal covering of a manifold to drop
the assumption of simple connectedness of the underlying manifold. We conclude by
providing several examples.

2.2.1 The Riemannian center of mass on Cartan-Hadamard manifolds

We consider the question of the existence and uniqueness of the Riemannian analogue
of a linear subdivision scheme on Cartan-Hadamard manifolds. Before, we recall some
well-known facts about the concept of Jacobi fields since they are an important tool
within in the proofs of this section.

Jacobi fields

We make use of the textbook of do Carmo [20, Section 5| as a guideline to introduce
Jacobi fields here. For further details we refer to [20].

Let M be a Riemannian manifold and ~ : [0,1] — M a geodesic. With Jacobi fields
one can study the relation of geodesics being in a neighbourhood of . Therefore, we
define a 1-parameter family of geodesics by

c:]0,1] x (—e,e) > M
(u, s) — c(u, s)

with ¢(u,0) = v(u). Let é(u,s) == d%c(u, s). Then J(u) = ¢é(u,0) is a Jacobi field
along the geodesic . It is known that Jacobi fields are solutions of the linear 2nd order
differential equation J + R(%,.J)¥ = 0, with R denoting the Riemann curvature tensor.
This differential equation is known as the Jacobi equation. For any given geodesic v,
there is a linear space of Jacobi vector fields (i.e., solutions of the Jacobi equation) whose
dimension is twice the dimension of the manifold M. In particular, the behaviour of
Jacobi fields is guided by the curvature of M.

Existence and Uniqueness

Cartan-Hadamard manifolds, and more generally manifolds with nonpositive sectional
curvature, are a class of geometries where the Riemannian average can be made globally
well defined. Let M be a Cartan-Hadamard manifold, i.e., a simply connected, complete
Riemannian manifold with sectional curvature K < 0. To show well-definedness of
geodesic averages we have to clarify the global existence and uniqueness of a minimiser
of the function

m+1

falz) = Z o dist(z;, )%, with Zaj =1 (2.7)
J

j=—m

10
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and z; € M. A local answer to this question is not difficult, see for example [72|. The
global well-definedness in case o > 0 is shown in [53]. Hanne Hardering gave another
proof of the global existence in [46]. We are mainly interested in the result she gave in
Lemma 2.3. of [46] which we formulate as

Lemma 2.3 (H. Hardering, [46]). The function fq has at least one minimum. Moreover,
there exists r > 0 (depending on the coefficients o and the distances of the points x;
from each other) such that all minima of f, lie inside the compact ball B,(xq).

To prove that the function f, has a unique minimum we generalise a statement of
H. Karcher [52]. It turns out that we can use arguments similar to his by splitting
Z;”:_lm aj dist(x;,7)? into two sums depending on whether the corresponding coefficient
is negative or not. Before we introduce the general notation used throughout the text,

we illustrate the idea by means of Example 2.1.

Example 2.4. Consider the refinement rule defined by the coefficients o; and 3; of
Example 2.1. Define f, according to (2.7) by

2
fal) =Y ajdist(j,2)%,

j=—1
with (a_1,...,a9) = (—3%, %, é—%, —3%) We sort these coefficients in two groups depen-
ding on whether they are positive or not.
It is convenient to define a; = % + :,1)—3 = % and a_ = }—3%‘ + |—3—12‘ = 322. We split

the interval [0, &y 4+ a—_] in four subintervals whose length coincides with the values |a;|
(but in a different order). We define the function o : [0,y + a_] — {—1,0,1,2} by

—1 forte [0, é
o(t) = 2 forte (%, %}
0 forte (%, %}
1 forte (2%, 3%}
and see that
2 > a-toy
falz) = Z oy dist(zj,7)? = — /dist(xa(t),:n)zdt—i— / dist(xg(t),x)th.
j=-1 0 a-

¢

In the general case, we need the following notation to eventually rewrite the function
in (2.7) as the sum of two integrals. We begin to sort our coefficients in two groups by
defining two index sets

IT:={jlo; <0}, If:={jla; >0}

11
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o(t)

o | le=1l} ez ag ai o
I

-1 Q_ a_ + oy

Figure 2.1: Construction of the index selection function o on basis of the sequence
(aj)§:_1 with a_1, a0 <0, ag,a; > 0.

See Figure 2.1 for a schematically description of this procedure. We describe these sets
as

Ig:{j17"'7jn}7 Iiz{jn+17"'7j2m+2}7

with j; < ... <jpand jpi1 < ... < jomgzforn € {1,...,2m+2} and j; € {-m,...,m+
1} If I* =0, we set n =0 and I§ = {—m,...,m+1}. Let

Q= Z Qj, O— = Z |aj|7 Bt = Z ﬁj? B- = Z ’/83‘ (2.8)

jelg jere jerf jer’
Assumption (2.3) implies that
a4y — O :B-F_/B— = 1. (29)

We are now able to rewrite the function f, in terms of two integrals

m+1

a_ a_+ay 9
falz) = Z a; dist(z;,2)* = (_/ +/ )dist (Zor) )" di (2.10)
j:—m 0 (o7
with the function o : [0,y + a_] = {—m,...,m+ 1} given as follows. It is constant in
each of the successive intervals of length |, |, |cv,|, .. ., [0y, | which tile the interval

[0,a4+ + a_]. Its value in the k-th interval is given by the integer ji. The values at
subinterval boundaries are not relevant. For the sake of completeness we give the formal
description of the function o in the next

Remark 2.5. We define the functions

op:{-m,....m+1} =R

t Y |l

1<J
and

o9 : [0, +a_] = {—m,....,m+1}
t — sup{jlo; <t} + 1.

12



2.2 Subdivision schemes on Cartan-Hadamard manifolds

Moreover, let o1(—m — 1) := 0. Then,

ot-0+ % o) for ¢ € [0, |ay, |
J€{i1,-- d2mi2}s
J<iji
o(t=lanl+ X el for t € (o sl | + e |
J€{itdamy2ts
J<jz

A I osl) forte (X Jasla]

JeI*\ {jn} je{]‘lr«"«e.?‘2m+2}’ JEI*\ {jn}

02<t—a,—|— , > |aj|> fort € (a—,a_ +aj,,,]

J<in+2
fort € (a— 4+ aj, .. a- +aj,,, +o ..
02<t—a_ — > o + > |0¢j|)
JEIYN\ {d2m+2} J€{dt:damyals

i<i2m+2

fortG(a_+ > aj,a_—&—our}.
JEI\ {j2m+2}

We note that the first part of the definition of o represents the summands of (2.7) corre-
sponding to coefficients of I* whereas the second half represents the part corresponding

to I_‘f‘_.

Using the representation of the function f, given in (2.10) we can state

Lemma 2.6. On a Cartan-Hadamard manifold the gradient of the function f, is given
by the formula

1 a_ L a_+a4 1
5 grad fa(z) = /0 exXp, To(rdt — /a eXP; " To(r)dt,

where exp denotes the Riemannian exponential map. Furthermore, we have

d2 . .
22 fa(1(5)) = 2{3(5),4(5))

for any geodesic v : [0,1] — M.

The proof of this lemma is mainly based on the proof of Theorem 1.2. in [52].

13



2 Subdivision in nonlinear geometries

Proof. Recall the definition of f, by (2.10). Let ~ : [0,1] — M be a geodesic and
ci(u, s) = exp,,, (u-expg), 7(s))-

For any s the geodesic ¢(-,s) connects z,) with 7(s). Those geodesics exist and
are unique since M is Cartan-Hadamard. Additionally, let ¢j(u,s) := %ct(u, s) and
é(u, s) == d%ct(u,s). By construction, dist (z,(),7(s)) = [|ci(u,s)||. For each t,s the
vector field J(u) = é(u, s) along the geodesic u +— ¢;(u, s) is a Jacobi field. Since

fa(y(5)) = ( - /Oa + /:M+ ) dist(,(r), 7(s))dt
= (— /004 —4—/;—m+ ><c£(u, s), cy(u, s))dt

fa / /a +a+ —cy(u, 8), c(u, s)> dt.

Here Y- 5s denotes the covariant derivative along the curve 7(s). In the following we use

the facts that ||c}(u,s)|| does not depend on s, 8';ct(u s) = avct(u s) and finally that

Bvu ¢;(u, s) = 0 since ¢ is a geodesic. This leads to

/ / - +a+ Ct(“ s), ¢(u, s)> dt
/ /a +°‘*>/ u, 8), Cé(u78)> du, dt
/ /(:‘ h )/ 5t (W 5); Ci(u78)> du dt
_/ 7 +/:‘+°‘+ )/ <Ct u, s). cy(u, s)> du dt.

Since ¢(0, s) = 0 we finally obtain

%%fa(y(s)) _ (_/Oa+/aa+a+)<c't(1,s), cg(1,3)>. (2.11)

Observe that ¢}(1,s) = — eXP;(ls)

4(s) (by construction) are independent of t. Therefore,

1d - +a+
5@]%(’)’(3 / / exp ) ()dt>

we obtain

To(¢) (by definition of the exponential map) and ¢(1, s) =

14



2.2 Subdivision schemes on Cartan-Hadamard manifolds

By the definition of the gradient we conclude that

1 a_ +a+
— grad falz / / expx Ty (g)dt.

Using (2.9) we see that

1 522fa = A —|—/a +a+ <Ct 7' 1,S)> dt
a+a+
[t B
Jl%J’ ) = (3(s),4(s))-

To obtain the inequality above we used the following relations between the Jacobi field
and its derivative

J)E = J)B and  (J(1)%M J(1)) > (J(1)RTm, J(1)), (2.12)

where J®" (resp. J"°'™) denotes the tangential (resp. normal) part of the Jacobi field; see
Appendix A in [52] for more details. Here we used the fact that the sectional curvature
of M is bounded form above by zero. O

Remark 2.7. We note that a direct further differentiation of (2.11) yields

L) = (= [T+ [ N, Jtans).

\val a— +o¢+
953 grad fo (v / / ct(l, s)dt.

This equality is used in the next section.

Thus,

We sum up the results of the two lemmas above to state the main result of this section.

Theorem 2.8. On a Cartan-Hadamard manifold M, the function

m+1

falz) = Z oy dist(z, )

j=—m

(>-aj =1) with x; € M has a unique minimum. This implies that the geodesic average
is globally well defined on Cartan-Hadamard manifolds.

Proof. By Lemma 2.3 there exists a minimum of the function f, and all its minima lie
inside a compact ball. By the second part of Lemma 2.6 the function f, is strictly convex,
so the minimum is unique. O

15



2 Subdivision in nonlinear geometries

2.2.2 Convergence result on Cartan-Hadamard manifolds

In this section, we prove that the Riemannian analogue of a linear subdivision scheme
on a Cartan-Hadamard manifold converges for all input data, if the mask satisfies a
contractivity condition with contractivity factor smaller than 1, see Theorems 2.11 and
2.15. The condition implying convergence involves derived schemes (and iterates of de-
rived schemes) and is analogous to a well-known criterion which applies in the linear
case. This kind of result was previously only known for schemes with nonnegative mask
(see [79, Theorem 5|). It has already been conjectured in [40].

Contractivity condition
We begin by adapting Lemma 3 of [79].

Lemma 2.9. Consider points x], coefficients o, B, for j = —m,...,m+ 1, and their
center of mass x* = av(a, ), ™ = av(p, z) on a Cartan-Hadamard manifold. Moreover,
we assume that (2.3) holds. Then,

m+1
dist(z*, ™) < ( ‘ Zal Bs

Jj=—m i<J

) max dist(zg, xp41).

To prove the next result we make use of the representation of f, (resp. fg) as in (2.10)
in terms of the function o (resp. 7). Before we give the proof of Lemma 2.9 we illustrate
the idea by means of our main example:

Example 2.10. From Example 2.4 we know that

a_ o +oy
falz) = —/ dist(xg(t),x)th +/ dist(xg(t),x)th.
0

Similarly we obtain

with f_ = 32, By = 34 and

—1 fort € [0, 3]
2 forte (3%, 3%]
7(t) = 2 15
0 fOI' t S (@, 3*2]
15 36
fOI' t e (@, 372] .

In order to get the desired result in Lemma 2.9 we estimate the distance between the
gradients of the functions f, and fg at the point z* = av(a,z) (as explained in more

16



2.2 Subdivision schemes on Cartan-Hadamard manifolds

detail in the proof of the Lemma 2.9). To be able to do so, we make use of Lemma 2.6
and convert the resulting four integrals into two. In this case, we get

1
Higrad fa(x™) — fgradfa

5 5
:H— ; €XDypy xy(t+%)dt+ ; €XD. 4 :cl,(t)dtH,

IBJ expx* x] H

with
0 fortel0,
vy =0 forteld sl
1 fort€(32,32]
Note that the construction of the function v is similar to the one of ¢ in (2.10). &

We are now ready to give the proof of Lemma 2.9 which follows the structure in [79]
and the ideas of [52].

Proof of Lemma 2.9. To obtain a lower bound for the absolute value of the gradient of
% fa(x) we make use of Theorem 1.5. in [52] . Let «y be the geodesic starting from x* and
ending in = and let ¢(u,s) = expy (u- exp;gl(t) 7(s)) be the family of geodesics from
To (1) to v(s). We apply the Cauchy-Schwarz inequality and the fact that grad f,(2*) = 0
by definition of x* to obtain

HQgradfa( n[|- [+ H>/Olci<;gradfa(’y(s)), 3(5)) ds.

By Remark 2.7 we conclude

HQgradfa( H H’Y / /a +04+ ; 8vu§9 (1, 8), ct(l,s)> ds dt,

with ¢(u, s) = %ct(u, s). As in the proof of Lemma 2.6 let J(u) = ¢:(u, s) denote the
Jacobi field along the curve u — ¢(u, s). The dependence on s and ¢ is not indicated in
the notation. We have J(1) = 4(s) and J'(1) = %c’t(l, s). Using (2.9) we obtain

|2 e a0 / /0‘ YA
( A(s)

= (J(1), J(1)) = (7(s),7(s))

The last inequality follows in the same way as in the proof of Lemma 2.6. By the
definition of the geodesic v we have ||§(s)|| = dist(x,z*) and conclude that

(J'(1),J(1)) ds dt

1
H5 grad fa(x)H > dist(z, z*). (2.13)

17



2 Subdivision in nonlinear geometries

By definition of * we have grad f,(z*) = 0. Together with Lemma 2.6 we obtain

1 m+1

1
L g 1) = L se") — L 1o

-1
) €XPrx a;JH

We define the sequence § = (6;)j=—m,...m+1 by 6; = a; — B;. Let v be the function
constructed as o in (2.10) with respect to the coefficients 4, i.e., the value of v is constant
in intervals of length |;| and given by the corresponding index. Denote by é_ (resp.
04+) the sum of the absolute values of the negative (resp. nonnegative) coefficients of 4.
Equation (2.3) implies that _ = d;. Asin (2.10) we rewrite the sum above as an integral

5 548y
H Z — Bj) exp,, %H = H —/ exp,, Ty (z)dt +/ expy, %(t)dtH
0 5_

j=—m
o 1 1 o 1 1

= H/ (—expg, Ty + €XPLy Ty(tis.)) dtH < / H €XPry Ty(t+5_) — €XPyy %(t)H dt.
0 0

With the help of (2.13) we conclude that
1 [
dist(z*, z™) < H§ grad fﬁ(fC*)H < /0 H XDy Ty(t46_) — €XDps %(t)H dt

[ 6
< / dist (7 (445> Tu(r))dt < / lv(t+d-) —v(t)] dt- max dist(xg, xp41)-
0 0

To obtain the third inequality above we used the fact that on Cartan-Hadamard mani-
folds, the exponential map does not decrease distances, see for example [53].
It remains to show that

m+1

/0(S o) —vdi= > | ai— g

j=—m i<y

To do that, we split the sequence of coefficients  in two sequences n', n? defined by
?71- — 5j if (5]‘ >0 and 172 — ‘(SJ‘ if 5j <0
J 0 else J 0 else.

Similarly to the construction in the proof of Lemma 3 of |79|, we consider the function
€1 given by

e :[0,0_] = {—m,....m+1}, elt) :zsup{j ] Sk <t}+1

(V]

18



2.2 Subdivision schemes on Cartan-Hadamard manifolds

Analogously, we define ey for the sequence n?. We finally obtain

[ o_
/ |z/(t+5)—1/(t)|dt:/ len(t) — ea(t)] dt
0 0

Z DEDNAE Z > a5

j=—m <] 1< j=—m i<j

This concludes the proof of Lemma 2.9. O

Recall that a linear, binary subdivision scheme S is given by Sz; = ) jez, i—2jT; with
EjeZ a;—2; = 1 for all 4. In order to obtain a convergence result for the Riemannian
analogue T' of S we have to estimate the distance between two consecutive points in the

sequence S¥z. Let uj = > ar—9 and
1<J

r+1)
= E 2.14
rgﬁu;} ‘M] ] ( )

Then, Lemma 2.9 implies that the subdivision rule T" obeys a so-called contractivity
condition

dist(T* 21, TFx;) < P - sup dist(xp, 2441). (2.15)
¢

The factor p is called contractivity factor. In Subsection 2.2.2 we show that the value of
the contractivity factor p in (2.14) is closely related to the norm of the derived scheme.

We make use of the result H. Hardering gave in [46, Lemma 2.3] again. In particular,
she shows that all solutions of the minimisation problem stated in (2.7) lie inside a
compact ball around xg. The radius of this ball only depends on the chosen weights and
the distances of x;, 2 = —m, ..., m, from x. In our setting, this means that the points of
the refined sequence are not too far from the initial points. To be more precise it follows
that there exists a constant C' > 0 such that

dist(Tx9;, ;) < C - supdist(xyp, xp11), @ € Z. (2.16)
¢

Subdivision schemes satisfying inequality (2.16) have been called displacement-safe by
[33]. Together with (2.15) we conclude that

dist(T* o, TF2;) < CuFo with o := sup dist(zy, z441). (2.17)
L

In the linear case (see [25]) a contractivity factor smaller than 1 itself leads to a
convergence result, but this condition is not sufficient in the nonlinear case. Here we
additionally need the fact that our schemes are displacement-safe as shown in [33] for
manifold-valued subdivision schemes based on an averaging process. For interpolatory
subdivision schemes, however, a contractivity factor smaller than 1 entails convergence
of the scheme since (2.16) is satisfied anyway, see 33, 76].

We now state our convergence result which generalises the result of [79].
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2 Subdivision in nonlinear geometries

Theorem 2.11. Consider a linear, binary, affine invariant subdivision scheme S. De-
note by T the Riemannian analogue of S on a Cartan-Hadamard manifold M. Let u be
the contractivity factor defined by (2.14). If u < 1, then T converges to a continuous
limit Tx for all input data x.

Proof. Let J = [a,b] be an interval and denote by C(J, M) the continuous functions
from J to M. We use c|J for the restriction of a map ¢ to an interval J. Denote by
¢t : R — M the broken geodesic which is the union of geodesic segments Ck“%m Z;’Tl]
which connect successive points Tkz; and Tkxzurl. We show that (ck|J ) k>0 is a Cauchy
sequence in C(J, M) for any J. The metric on C(J,M) is given by dist(g,h) :=
maxe s dist(g(t), h(t)). We now proceed as in the proof of Proposition 4 of [79]. Since
T satisfies (2.15) and is displacement-safe it follows from the definition of the geodesics

that

dist(cm, cm1) < op™ + Cop™ + o™+ (2.18)
Therefore,
m _ ,n
dist(cm, cn) < (04 Co+ op) %

for all m < n. Thus, (| J) 50 is a Cauchy sequence in C(.J, M) for any interval J = [a, b].

Completeness of the space C'(J, M) implies existence of the limit function T>°z. O

Example 2.12. We compute the contractivity factor of the subdivision scheme intro-
duced in Example 2.1. Using our previous results we get

28 8 28
= = —{=""c1. 2.1
a max{?,z’ 32} 32 (2.19)
Thus, the Riemannian analogue of the linear scheme converges on Cartan-Hadamard
manifolds for all input data. Figure 2.2 illustrates the action of this subdivision scheme

in the hyperbolic plane. &

Remark 2.13. So far we considered subdivision schemes with dilation factor N = 2. We
note here that one can extend the convergence result given in Theorem 2.11 to subdivision
schemes with arbitrary dilation factor. We still extend a linear subdivision scheme S to
its nonlinear counterpart T by using the Riemannian analogue introduced in Subsection
2.1.2. Analogous to the binary case, we say that T satisfies a contractivity condition
with contractivity factor p if

dist (Tk:ciH,Tk:z:i) < uk - sup dist (:Eg,xg+1), 1 € 7.
l

Also we say that T is displacement-safe if there exists a constant C' > 0 such that

dist ((Ta:)Ni,xi) < C - supdist (Sﬂg,l‘g+1), i € 7.
l

The convergence result now reads as follows.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

Figure 2.2: Subdivision algorithm of Example 2.1 with initial data =9 = (0.6,0.5), z1 =
(0.6,—0.5), xo9 = (—0.6,—0.5) and x5 = (—0.6,0.5) in the hyperbolic plane
represented with the Poincaré disk model. From left to right: initial polygon,
polygon after one refinement step, polygon after 4 refinement steps.

Theorem 2.14. Let T be the Riemannian analogue of the linear subdivision rule S on
a Cartan-Hadamard manifold M. Assume that (2.1) holds. Let ,u = > ar_n; and

1<J

(r+1) 7")
— 2.20
max Z ‘/JJ (2.20)

If p < 1, then T converges to a continuous limit T°x for all input data x.

The convergence proof in the case N > 2 is along the same lines as for N = 2.

Derived scheme

For every linear, affine invariant subdivision scheme S there exists the derived scheme
S* given by the rule S*A = NAS with Az; = x;41 — x4, see for example [40, Sec. 2.1].
In this section we show that the contractivity factor (2.20) is closely related to the norm

87l = _max { > a3}

of the derived scheme S* with mask a*. This result is not surprising since it holds in the
linear case as well as for nonlinear subdivision schemes with nonnegative mask [79].

Theorem 2.15. Let S be a linear, affine invariant subdivision rule with dilation factor N .
Denote its derived scheme by S*. If there exists an integer m > 1 such that N%HS’”*H <
1, then the Riemannian analogue of S™ on a Cartan-Hadamard manifold converges for
all input data.

We can reuse the proof of Theorem 5 of [79] to show Theorem 2.15. We repeat it here
for the reader’s convenience.
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2 Subdivision in nonlinear geometries

Proof. Let a* = (a})jez denote the mask of the derived scheme S*. We consider the
special input data y = (y;);ez given by

1 ifj<0
yj =

0 else.
We obtain
1, 1 . 1, 1,
N“l N Zk aj_ Nk Ykt — yk) = NS (Y41 —y) = NS Ay
= ASy; = Syiy1 — Sy = Zk<0 aj-Nk — Qi+1-Nk, and
1

NarfNj = E k<0 Ar _N(j+k) = Gr+1-N(j+k) = E i< Qr—Ni — Gr41—Nj-

By (2.20) we get
+1 1 * 1 *
sup » \uﬁ-’“) - uﬁ-’" | = y Sup > " lar_n;l = ~ 157
T _] T ]

Since the dilation factor of S™ is N, Theorem 2.14 gives the desired result. O

We have just seen that the contractivity factor (2.20) of the Riemannian analogue of
a linear subdivision scheme S is given by

1
= —|5*|.
b= IS

So in order to obtain a convergence result, it suffices to check if the norm of the derived
scheme S* is smaller than the dilation factor. Even if this is not the case we might get a
convergence result by considering iterates of derived schemes S™*, since the contractivity
factor might decrease, see Subsection 2.2.5.

In [25] it is shown that if we ask for uniform convergence of a linear subdivision
scheme S, the existence of an integer m > 1 such that | S*™|| < 1 is equivalent to
the convergence of the scheme. Thus, Theorem 2.15 states that if the linear subdivision
scheme converges uniformly, so does a certain Riemannian analogue of this scheme on
Cartan-Hadamard manifolds.

2.2.3 Holder continuity

It has been shown in [76] that the limit function of an interpolatory subdivision scheme
for manifold-valued data has Holder continuity — {gg 5. Here 1 is a contractivity factor for
the nonlinear analogue of the linear scheme. It depends only on the mask of the scheme.
In |25] a similar inequality is proven for uniformly convergent subdivision schemes in
linear spaces. We get the following related result.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

Proposition 2.16. Let T be the Riemannian analogue of a binary, affine invariant
subdivision scheme S which has contractivity factor p < 1. Then, the limit curve Tz
satisfies

dist (T*z(t1), T™z(t2)) < Dlta — t1]",
with

log || 5%

Co+ o+ pe +Q>
log 2

D:2-<
L—p

and t=1-—

)

for all t1,ty € R with |t} — ta] < 1 and all input data x, i.e., the limit curve is Holder
continuous with exponent ..

Here the data-dependent constant ¢ is defined by the maximal distance of successive
data points which contribute to the limit curve in the interval under consideration.

Proof. Assume that t1,to € R with |[t; — ta] < 1. Then, there exists an integer k € Z
such that 2781 < |ty — tl\ < 27%. As in the proof of Theorem 2.11 let ¢; be the union
of geodesic segments ck‘ 21” Z;ﬁﬂl] connecting the points T%x; and T*z;, 1. Together with
(2.15) we obtain

dist (Ck-+1(t1),0k+1(t2)) < 2supdist (Tk+1$g+1,Tk+lxg) < 2uft .
V4

Using (2.18) we have

dist (T%°z(t), cxt1(t)) < lim dist (ce(t), ck+1(t))
Co+o+
Z dist (¢;(t), cj41(t)) = %ukﬂ
j=k+1 H
for all t € R. Summarising the previous two observations leads to
dist (T (t1), T™z(t2))
dist (TOOZE(tl), Ck+1(7f1)) + dist (Ck+1(t1), Ck+1(t2)) + dist (Ck—i-l (tg), Tool'(tz))

<
< D/,Lk+1

Since |ty —t1| < 27%, taking the logarithm shows that p#+1 < p=log2(t2=tD)  We conclude
that

—loga (k)
dist (T®z(t1), T®x(t2)) < D(Qlog?(”?_“')) U< Dty — ]
with ¢« = —ﬁgT’Q‘ =1- loig ”gS L. Here the last equality holds because p= %15 O
Example 2.17. For our main Example 2.1 we compute ¢ = flog( )/10g2 ~ 0.19.
This coincides with the result of the previous Proposition, since HS*H T and thus,
L=1— % ~ 0.19. &
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2 Subdivision in nonlinear geometries

For subdivision schemes with arbitrary dilation factor we obtain

Proposition 2.18. Let T' be the Riemannian analogue of a linear subdivision scheme S
on a Cartan-Hadamard manifold M satisfying (2.1). Moreover, we assume that T has
contractivity factor u < 1. Then, the limit curve T*°x satisfies

dist (Tooa?(tl),Tool'(tg)) < D|7f2 — t1|L,
with

D=2

C N -1 log ||.S*
Coto+( e\ Ny and o—1 sllSl
1—p log N
for all t1,ta € R with |t1 — ta] < 1 and all input data x. Here N is the dilation factor
and the data-dependent constant o is defined by the maximal distance of successive data
points which contribute to the limit curve in the interval under consideration.

2.2.4 The case of manifolds which are not simply connected

We explain how to extend our previous results to a complete Riemannian manifold M
with sectional curvature K < 0, i.e., we drop the assumption of simple connectedness.
We use the fact that M has a so-called simply connected covering (universal covering) M.
This is a simply connected manifold which projects onto M in a locally diffeomorphic
way. The Riemannian metric on M is transported to M by declaring the projection
7 : M — M a local isometry. An example is shown by Figure 2.3, where a strip of
infinite length and width 1 wraps around the cylinder of height 1 infinitely many times.
For the general theory of coverings, see for example [48|. Each data point z; in M has a
potentially large number of preimages 7! (x;).

Re-definition of the Riemannian analogue of a linear scheme

So far our initial data always consisted of a sequence of points in M. Now we additionally
choose a path c(t) which connects the data points x; in the correct order: we have
c(tj) = x; for suitable parameter values ... < t; < tj41 < ... . Such a path is not
unique, see Figure 2.3. By well-known properties of the simply connected covering, this
path can be uniquely lifted to a path &(t) in M which projects onto the original path ¢(t),
once a preimage o with m(Zg) = x¢ has been chosen. This means that for all indices j
we have

E(tj) =T, with W(fj) =x;.
We can now simply apply the Riemannian analogue T of the linear scheme S which
operates on data from M, because M is Cartan-Hadamard by construction. Note that
there is no Riemannian analogue of S in M, since M is not simply connected and geodesic

averages are not well defined in general. However, if our input data is a sequence z;
together with a connecting path as described above, we may let

Tz = n(T%) where & arises from z by lifting.

We can still call T a natural Riemannian analogue of the linear subdivision scheme S.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

— T2 Y2
M M
. ° ~/® ° °
~ =l
X1 ° x]_ Y . °
e(t) ) K
5‘/‘2 o .‘." i‘lz ° °

Figure 2.3: Top: initial data on a cylinder M = S* x [0, 1] together with connecting
paths. Bottom: their lift to the universal covering M, which is the strip
(—00,00) x [0,1]. The various possible liftings are mapped onto each other
by a deck transformation ¢.

Lemma 2.19. For any given input data (z;), the refined data (T'z); computed by the
Riemannian analogue T of a linear subdivision scheme S depends only on the homotopy
class of the path c(t) which is used to connect the data points.

Proof. First, we show that Tx does not depend on the choice of the preimage g in
the covering space M: if another preimage Z( is chosen, there is an isometric deck
transformation ¢ : M — M which maps the original lifting to the new one and which
commutes with the covering projection 7. The action of T is invariant under isometries,
so n(T#) = 7(T$p(%)) = 7(¢(T%)) = n(TZ). Further, it is well known that the lifted
location ; of any individual data point x; depends only on the homotopy class of the
path ¢, cf. [48]. O

With this modification of the notion of input data, our main result Theorem 2.15 now
reads as follows.
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2 Subdivision in nonlinear geometries

Figure 2.4: The 4-point scheme with w = % in the hyperbolic plane represented with
the Poincaré disk model. Left to right: initial polygon, polygon after one
refinement step, polygon after 4 refinement steps.

Theorem 2.20. Let M be a complete manifold with K < 0, and let S be a linear, affine
imwvariant subdivision rule with dilation factor N. Denote by S* its derived scheme. If
there exists an integer m > 1 such that 55| S™*|| < 1, then the Riemannian analogue of
S™ on M produces continuous limits for all input data.

2.2.5 Examples

We conclude this section with further examples.

4-point scheme

Consider the general 4-point scheme S introduced in (2.5). We would like to know for
which values of w € (0, 00) the Riemannian analogue T of S converges. The mask of the
derived scheme is given by a*, = a3 = —2w, a*; = a5 = 2w and aj = a] = 1. Thus,
by Theorem 2.11, the contractivity factor is u = 2|w| + % and T converges for arbitrary
input data if —3 <w < 7. For —% < w < 0 this has already been known [34, 35]. In this
case, the mask is nonnegative.

In particular, we obtain a contractivity factor of u = % for the well-studied case of
the 4-point scheme with w = 1—16. By Proposition 2.16 we obtain a Holder exponent of
L =~ 0.6781. Figures 2.4 and 2.5 show an example of the 4-point scheme in the hyperbolic
plane for w = 1—16 resp. w = 0.23.

Now we consider two rounds of the 4-point scheme as one round of a subdivision
scheme with dilation factor N = 4 which for simplicity is again called S. If w =

g, our
refinement rule is then given by

(Sx)s; = L,

(Sx) 4541 = 1(152 (Ii_Q — 18x;—1 + 216x; + 66,41 — 93:i+2),

(Sz)air2 = 162 ( — 16z + 1442, + 144241 — 167442),

(S2)air3 = 162 ( — 9zi1 + 663 + 216741 — 18Ti40  + Tiys).
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2.3 Subdivision on manifolds with positive sectional curvature

S /D /D N\
NN\

Figure 2.5: The 4-point scheme with w = 0.23 in the hyperbolic plane. Left to right:
initial polygon, polygon after one refinement step, polygon after three re-
finement steps and limit curve. The limit curve is Holder continuous with
exponent 0.06.

The contractivity factor is

84 80 84
—, —= ¢ = — ~ 0.3281.
1627 162 } 162
Theorem 2.14 again confirms that a Riemannian analogue converges to a continuous limit
function for all input data. Proposition 2.18 yields a Holder exponent of ¢+ = 0.80.

,u:max{

Cubic Lane-Riesenfeld algorithm and the 4-point scheme

We consider a non-interpolatory subdivision scheme whose mask contains negative coef-
ficients by combining the cubic Lane-Riesenfeld algorithm given by the mask

1 6 1 1
(Sa})gl = gxi_l + gxl + gxi_H and (Sx)gi_H = §$Z + §Ii+1

with the 4-point scheme (2.5) with w = %6. Taking averages of the cubic Lane-Riesenfeld
algorithm and the 4-point scheme yields to the linear scheme

14 1
(Sx)Qz = El‘ifl + El‘l + T6$i+1,
17 17 1
(5T)gi41 = g%t + 3% + 35T+l ~ g5 Tit2
which for simplicity is again called S. We compute a contractivity factor of y = ;1),% for

the Riemannian analogue of S which implies that the nonlinear analogue converges on
complete Riemannian manifolds with nonpositive sectional curvature. We get a Holder
exponent of ¢ ~ 0.83.

2.3 Subdivision on manifolds with positive sectional
curvature

In the previous section, we analysed the Riemannian analogue of a linear subdivision
scheme on Cartan-Hadamard manifolds. A key point in our studies was the assumption
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2 Subdivision in nonlinear geometries

that the considered manifolds have nonpositive sectional curvature. Naturally, the next
question is: What can we say about the convergence of the Riemannian analogue of a
linear subdivision rule on positively-curved manifolds? Earlier works show that already
the well-definedness of the Riemannian center of mass has to be studied carefully, espe-
cially if we do not restrict the mask to be nonnegative [52, 24]. It turns out that it is
advantageous to first consider the well-known unit sphere as an example.

To prove the convergence of Riemannian analogues of linear schemes on the unit sphere
we proceed as follows:

i) In Section 2.3.1, we start with an analysis of the Riemannian center of mass on
positively-curved manifolds. Afterwards, we restrict ourselves to the unit sphere
and provide a setting in which the Riemannian analogue of a linear subdivision
scheme is well defined.

ii) In Section 2.3.2, we introduce a strategy to prove convergence results for the Rie-
mannian analogue of a linear scheme on the unit sphere. The main idea is to
estimate the length of a curve « which joins a so-called reference point of a scheme
with a point of its refined data. It requires technical details involving a second order
Taylor approximation and estimates for the gradient and the Hessian of squared
distance function on the unit sphere to give an upper bound on the length of ~.
Throughout this part the cubic Lane-Riesenfeld algorithm serves as a main example
to illustrate our results.

iii) In Section 2.3.3, we apply our strategy to show that the Riemannian analogues of
some well-known linear subdivision schemes converge on the unit sphere.

2.3.1 Riemannian center of mass on manifolds with positive sectional
curvature

Before we restrict ourselves to the unit sphere, we discuss the difficulties that arise by
studying the Riemannian analogue of a linear subdivision scheme on positively-curved
manifolds. Let M be a complete, simply connected Riemannian manifold with inner
product (-, -) and sectional curvature K > 0. Denote by B,(z) = {y € M|dist (z,y) <}
the geodesic ball of radius r > 0 around x € M where dist again denotes the Riemannian
distance.

Problem setting

To study the convergence of a Riemannian analogue T' of a linear scheme S as given in
Definition 2.2 we have to deal with the question if the function

m+1

falz) = Z o dist (z;,2)%,  with Zaj =1 (2.21)
J

j=—m
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2.3 Subdivision on manifolds with positive sectional curvature

admits a unique minimiser. Here x; € M are fixed points on the manifold and «; are real
coefficients. Later, the points x; correspond to the input data of a subdivision scheme
while the coefficients a; belong to its mask.

In contrast to Cartan-Hadamard manifolds, we cannot hope for global existence and
uniqueness of the Riemannian center of mass. To see this, consider the north pole zx
resp. south pole zg of the sphere and ask for their geodesic midpoint. Clearly, each point
on the equator is a suitable choice and thus, a minimiser of f(z) = % dist (zn, ) +
%dist (zs, x)2. One can show that locally there always exists a unique minimiser while
globally there can be infinitely many.

A substantial number of contributions deals with the question of the effect of the
sectional curvature, the distances between the points z; and the choice of the coefficients
on the existence of a unique minimiser, see for example [52, 24]. In [24]| the authors
provide explicit bounds on the input data (depending on the curvature and the chosen
coefficients) to ensure the existence and uniqueness of a minimiser of (2.21) on manifolds
with positive sectional curvature. In our setting, Corollary 9 of [24| reads as follows.

Lemma 2.21 (Dyer et al., [24]). Let z; € By(z), j = —m,...,m+ 1, for some x € M
and r > 0. Then, the function f, has a unique minimiser in By« (x), if

i) < r* < min{*4f, 4%}, with vy denoting the injectivity radius of M,

ir) r* > (14 2a_)r,

ii) 7 < =1+ (1+ D)L
Here a_ := Z |aj| denotes the sum of the absolute values of the negative coefficients.
Oé]'<0

Besides the fact that this existence and uniqueness result is a local answer compared
to the one on Cartan-Hadamard manifolds, there is another crucial difference. Namely,
the radius 7* (Lemma 2.21, 1)) of the ball in which the unique minimiser lies is larger
than the radius r of the ball containing the input data z;.

So, locally Lemma 2.21 provides a setting in which the Riemannian analogue T of
a linear subdivision scheme S is well defined. But the fact that the radius of the ball
containing the refined data increases, leads to the question of how to control the distance
between points in the sequence (T*z;)icz, k > 1. As seen before, a convergence result
for nonlinear subdivision schemes depends on the capability to control the distances of
points in the sequence (T*z;);cz from each other as well as their distance to the input
data. This can be seen e.g. in (2.15) and (2.17).

The distance estimate of refined data on Cartan-Hadamard manifolds is based on the
fact that the exponential map does not decrease distances (see the proof of Lemma 2.9).
This, however, is in general not true for positively-curved manifolds. We summarise the
observations from above.

On manifolds with positive sectional curvature

i) we cannot hope for a convergence result which is valid for all input data.
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2 Subdivision in nonlinear geometries

ii) we obtain a local setting in which the Riemannian analogue of a linear subdivision
scheme is well defined, see [24].

iii) we have to find a strategy to estimate distances between consecutive points of the
refined data as well as their distance to the input data.

The Riemannian analogue of a linear subdivision scheme on the unit sphere

From now on, we restrict ourselves to the unit sphere, i.e., M = S = {x € R""!|||z|| = 1}
for n > 2. In particular, we have K = 1, and (,-) is the Euclidean inner product. We
provide a setting on the unit sphere in which we can define the Riemannian analogue of
a linear subdivision scheme. Therefore, we choose z; € S", j = —m,...,m + 1, such
that x; € B,(x) for some r > 0 and € S™. Since the sectional curvature K =1 on the
unit sphere and the injectivity radius is §, according to Lemma 2.21 the function f, has
a unique minimiser in B« (x), if

>(142a_)r (2.22)
-1
r* % ( ( )a,) . (2.23)
In the special case of a scheme with only nonnegative coefficients, i.e., a— = 0, these

conditions reduce to: If r < 7, then there exists a radius r* with r < r* < 7 such that
the function f, has a unique minimiser inside B,«(z). If, however, we do have negative
coefficients, due to conditions (2.22) and (2.23), we need to choose denser input data to
ensure the existence of an area in which we have a unique minimiser. We summarise the
results of [24] for our particular setting in

Proposition 2.22. Let T be the Riemannian analogue of a linear subdivision scheme S,
as in Definition 2.2, on the unit sphere S™. We consider two cases:

Case a_ = 0:
Tx; is well defined if the input data points x; contributing to the computation of
Tx; lie within a ball of radius r < 7

Case a— > 0:
Tz; is well defined if the input data points x; contributing to the computation of
Tx; lie within a ball of radius r such that there exists an r* > r satisfying (2.22)
and (2.23).

2.3.2 A strategy to prove convergence for Riemannian analogues of linear
schemes on the unit sphere

First, we recall some facts about the squared distance function on the unit sphere and
state a second order Taylor approximation of the function f, defined in (2.21). After-
wards, we explain a strategy to estimate the distance between consecutive points T'x;
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2.3 Subdivision on manifolds with positive sectional curvature

and T'x;4+1, which belong to the sequence obtained after one refinement step of the Rie-
mannian analogue T of a linear scheme S. Simultaneously, we bound their distance to
the initial data. An iterative use of this method leads to the desired convergence result.

Throughout this part, we assume that the considered minima are well defined and
unique.

The Riemannian distance function on the unit sphere

For the distance estimate we use explicit formulas for the gradient and the Hessian of the
squared distance function dist (',y)2, y € M. They have been computed by X. Pennec
in [68, Supplement A| as an example of a more general analysis of Hessians of squared
distance functions on manifolds. We introduce some notation and state results of [68]
which we later use.

Let T,S™ = {w € R" | (w,z) = 0} denote the tangent space at a point z € S™. For
two points z, y € S™, x # —y, their spherical distance is dist (z,y) = arccos ((z,y)) and
the exponential map at z € S™ is given by

exp, : TpS™ — S"

w — cos ([Jw]]) x +

The inverse of the exponential map at x is well defined for all points on the sphere except
the antipodal point of z. It is

expy ! S\ {~a} = T,S" (2.24)
M — cos (dist (x T
sin (dist (2, 9)) (dist (2, y)) z). (2.25)

Note that we will always tacitly assume that ﬁ means an analytic function which
evaluates to 1 for s = 0. Let w € T,;S™ be a tangent vector. Then, exp,(w) denotes the
point on the manifold which is reached by the geodesic starting in x in direction w after
time 1. We can therefore use the exponential map resp. its inverse to switch between
the manifold and its tangent space at a fixed point x € S™, such that straight lines
through the origin in the tangent space are mapped to geodesics on the sphere through

x preserving the length of the curves. Let
g:S" =R
be a function on the sphere and
g=goexp, :T,5" - R

its composition with the exponential map, for some x € S™. Then, g is a representation of
g with respect to the coordinate chart exp,!. Since the first derivative of the exponential
map is the identity we have

grad (g) (z) = grad (g) (0) (2.26)
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2 Subdivision in nonlinear geometries

for the gradient of g resp. g. In particular, it makes no difference if we consider g or its
composition with exp,. The Hessian of g can be computed since the function is defined
on a linear space, namely the tangent space. We define the Hessian of g by

H(g) (x) := H (9) (0). (2.27)

If we talk about the the gradient and the Hessian of a function on the unit sphere,
according to (2.26) and (2.27), we mean its composition with the exponential map defined
on a linear space.

For any fixed y € M the gradient of the squared distance function is given by

grad (dist(-, y)?)(z) = —2exp; ' (y). (2.28)

Let v := Z’ist;(;(g)), y # x, and I € RDx(+1) he the identity matrix. The Hessian

of dist (~,y)2 in the tangent space (i.e., the Hessian of its coordinate representation as
explained above) has been computed in [68] as

dist (z,y)

H (dist (-,y)2> (x) =2 <UUT + sin (dist (2,3)) cos (dist (z,y)) (I — za? — UUT)> .

(2.29)

Here 27, vT denote the transpose of x resp. v. This formula is valid for y # . If x =y,
we have H (dist (',:):)2> (z) = 2(I — z27) since lim,_,¢ =%~ = 1 and cos (0) = 1.

sin(x)
2 dist(z,y)

The eigenvalues of the Hessian are A\ =0, Ao =2 and A3 = fan(dist (z.9))

By linearity we obtain

m+1
grad (fa) () = =2 Y ajexp; ' (x;), (2:30)

j=—m
resp.
m+1

dist (z, z; .
H(fo)(zx)=2 Z a; <vjva + = (d:s(t (x,azj)) cos (dist (z,z;)) (I — zal — vjva)>

j=—m

(2.31)

exp, ! (z;)

with Uy = dist(z,z;)

Taylor approximation of the squared distance function on the unit sphere

The second order Taylor expansion of the squared distance function helps to find an
upper bound on the distances between the minimiser of f, (as defined in (2.21)) and
some input data z; € S", j = —m,...,m+1. We are interested in such an upper bound
because in the convergence analysis of a Riemannian analogue T of a linear scheme S
their distance represents the distance between initial data x; and refined data Tx;. The
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2.3 Subdivision on manifolds with positive sectional curvature

estimate results in a displacement-safe condition which we have already used for the
convergence analysis of nonlinear schemes on Cartan-Hadamard manifolds, see (2.16).

Let z* € S™ be the unique minimiser of f,. Without loss of generality we choose
coordinates such that z* = [0,...,0,1]7. Then, the first n unit vectors form a basis of
T,.«S™. Now, we consider f, as a function on the tangent space T,~S™ and compute its
Hessian with respect to the chosen coordinate system (actually, as before, its composition
with the inverse of the exponential map, see (2.27)). Due to the particular coordinate
system the gradient of f, consists of the first n entries of the vector given in (2.30). The
Hessian is given by the n x n submatrix of H (f,) (2.31) obtained by deleting the last
column and row. The second order Taylor approximation in z* on the tangent space is
given by

TVA@):ﬁﬂﬂﬁ+(x—wUTgmdUw(ﬂ)+%tt—wﬂTHLM)WW(w—xﬂ-
Differentiation leads to

grad(T'fo)(x) = grad(fa)(z*) + H(fa)(z")z. (2.32)

Since we are looking for minimisers of the function f,, the idea is to consider

grad (f) (2°) + H (fo) (a")2 = 0. (2.33)
If we assume that H (f,) (z*) is invertible, we deduce that
v = —H (fa) (") grad (1) (27). (2.34)

This x is the unique stationary point of the second order Taylor approximation 7T'f,.
We are now in a position to present the main ideas which lead to convergence results
for Riemannian analogues of linear subdivision rules on the unit sphere.

Variable mask

We introduce a parameter ¢ € [0, 1] and vary the coefficients a; of a Riemannian analogue
of a linear scheme such that they linearly depend on ¢. The idea is to choose coefficient
functions a;(t) such that at time ¢t = 0 we exactly know the minimiser of f, ), call it
the reference point z, and at time ¢ = 1 the minimiser of f, () equals z*. Thereby we
assume that

m+1
Z aj(t)=1 forany ¢ € [0,1]. (2.35)

j=—m

Consider the curve y such that v(¢) is the minimiser of f, . Since y then connects # and

x* we have dist (Z, 2*) < fol II7(¢)]] dt. The idea is to estimate ||§(¢)|| in order to find an
upper bound on the distance between T and x*. If, for example, we choose the reference
point Z to be one of our input data points, this strategy helps us to control the distance
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2 Subdivision in nonlinear geometries

between the minimiser x* of f,(1) and the initial data. We will see that the choice of the
reference point is crucial for our approach to work and has to be made individually for
each scheme.

To make the described procedure more visible to the reader we illustrate it by means
of a main example throughout this part of the thesis.

Example 2.23 (cubic Lane-Riesenfeld, part I). We choose an input data sequence
(x;)iez on the sphere and consider the linear cubic Lane-Riesenfeld algorithm defined
as

1 6 1
(Sx)2i = gTi-1 + g + gLitls (2.36)
1 1
(S5@)2i41 = oTi 5Tt (2.37)

for ¢ € Z. Since the mask has nonnegative coefficients, Proposition 2.22 ensures that one
refinement step for the Riemannian version 1" of S is well defined, if
i T
sup dist (:cg,a;gﬂ) < —.
¢ 4
This assumption is even sufficient for the well-definedness of all subdivision steps of T',
if we further can show that

sup dist (Tka, Tk“x”l) < sup dist (Tkxg,TkxgH) , forall k>0.
l J4

We observe that T'xg;41 is the geodesic midpoint of z; and x;4+1. So, its distance to
the input data can be bounded from above by half of the maximal distance of the input
data. The more crucial part is to deal with the distance of the point Tz9; obtained by
(2.36) from x;. Consider

1 6 1
Tz := argmin ( = dist(z,z_1)* + = dist(z, 20)* + < dist(z, z1)? (2.38)
xeSn 8 8 8

for z_1, 29, 71 € S™. Without loss of generality we assume that 2o = [0,...,0,1]7. With
m=1landa_1=a = é, oy = % as well as ag = 0, T’z is the minimiser of f,. Note that
we have to add the zero coefficient as = 0 here only to be compatible with our previous
notation. In fact, it has no influence on the result and we therefore forget about it. We
choose the time dependent coefficient functions as
t t
a_1(t) =aq(t) = 3 and op(t) =1-— 1 (2.39)
for all t € [0,1]. Thus, at time ¢ = 0 the reference point = of f, () equals z¢ while at
time ¢ = 1 the minimiser of f,(1) is exactly the point T'z.
This concludes preparations for the convergence analysis of the nonlinear analogue of
the cubic Lane-Riesenfeld scheme. We continue with this example in 2.25. &
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2.3 Subdivision on manifolds with positive sectional curvature

Estimating the distance to a minimiser

We explain how to estimate the distance between the reference point z (the minimiser
of fo(0)) and the minimiser * of f,(). Recall that z; € S", j = —m,...,m+ 1.

Assumption 1. Assume that
dist (zj,zj41) <7

for some constant r > 0 and all j = —m, ..., m. Further we choose r such that the
minimiser of f,) on the unit sphere is locally well defined for all ¢ € [0, 1].

Assumption 2. Let r > 0 be as in Assumption 1. Assume that
17(0)]] < Co
for some constant Cpy > 0.

Assumption 3. Let » > 0 and C( be as in Assumption 1 resp. 2. Assume that the
following is true: If ||§(t)|| < rCp for all ¢ € [0, 1], then there exists a constant C < Cp
such that [|9(¢)]| < rCy < rCp for all ¢t € [0, 1].

Assumption 1 is necessary for the well-definedness of the Riemannian analogue of a
linear scheme. Assumptions 2 & 3 help to estimate the distance between T and x*.

Lemma 2.24. Assume that Assumptions 1, 2 and 8 are satisfied for an r > 0 and
constants Cy and Cy. Let vy denote the curve which at time t is the minimiser of fu()-
Then,

Y@ < rCy
for all t € [0,1].

Proof. Let t* = sup{t € [0,1] | [|[¥(¢)|| < rC1}. Then,

V()| < 1 ) < .
15(7)] < lim [4(0)] < rCy

Assume that t* < 1. Since [|¥(t)]| is continuous there exists an interval J = (t* — e, t* +

€), € > 0, with ||4(¢)|| < rCi for any t € J. But this is a contradiction to ¢t* being
maximal. O

We illustrate the computation of 4(0) by means of our main example.

Example 2.25 (cubic Lane-Riesenfeld, part IT). The vector 4(0) estimates the direction
pointing from xg towards Tx. First, we compute H ( fa(O)) (o) (this is the Hessian of
the function f, ) composed with the exponential map, see (2.27)). By (2.44) we have
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2 Subdivision in nonlinear geometries

a-1(0) = a1(0) = 0 as well as ap(0) = 1. We observe that lim, o ( g =1 and
cos (dist(xg, x¢)) = 1. Using (2.31) we deduce that

H (fa((])) (z0) = 2ap(0) (vovg + (I — :onOT — UOUOT))
=2]

in the chosen coordinate system. Remember that the second equality is based on the
assumption zg = [0,...,0, 1]T. In particular, the inverse H (fa(O)) (vg)~ ! = %I is well
defined. By (2.30) we have

1

d d _
5| erad (faw) (@o) = 2 Z a;j(t) expy) (z;)
t=0 t= 0]_ 1
= o (L expi@) + texpri(an)
- 8 pxo —1 8 pxo 1
1 _ _
=1 (expx()l (x-1) + expxol(acl)) ,

using the geometric fact expy ! (z9) = 0. We conclude that

: 1 _ _
F(0) = 3 (expmo1 (x—1) + expxo1 (xl)) .
Assuming that dist (2, z;41) < 7 for some 0 < r < § and j = —1,0, the above shows
that
1
KOl < 37

This is a first piece of information needed to establish constants Cy, C7, and eventually
prove convergence of the cubic Lane-Riesenfeld scheme on the unit sphere. &

We briefly summarize what we have seen so far and point out our next steps. Let S
be a linear subdivision scheme and 7' its Riemannian analogue on the unit sphere.

i) We chose coefficient functions «;(t) related to the mask of S and considered the
curve v which joins a reference point z and the minimiser z* of f,(1). Since

dist (z, * fo |5(¢)|| dt we wish to find an upper bound on [|¥(¢)| to estimate
the dlstance between the reference point and the minimiser of fq (1)
ii) We introduced three assumptions:
e Assumption 1 ensures the well-definedness of the Riemannian analogue 7.
e Assumptions 2 & 3 provide a strategy to find an upper bound on ||¥(t)||, see
Lemma 2.24.

iii) We can use Proposition 2.22 to find input data such that Assumption 1 is verified.
As seen in Example 2.25, we can use (2.34) for the verification of Assumption 2.
Thus, it remains to verify Assumption 3.
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2.3 Subdivision on manifolds with positive sectional curvature

The remaining part of this section provides a strategy which helps to find constants
Cy, C1 such that Assumption 3 is satisfied.

Let ¢t € [0,1] be fixed. The following computations are done in the tangent space
T, #)S™ where for simplicity we always assume that v(t) is the north pole [0,...,0, 17
of the sphere. Of course, the coordinates of the x;’s change for different ¢, but since
we only consider distances which are independent of the chosen coordinate system, we
do not indicate the coordinate change in the notation of the input data. The Hessian

H (dist(-,y)?) (7(t)) of the squared distance function in the chosen coordinate system
2dist(y(t),z;)
tan(dist(y(1),2;))’
have dist (y(t), z;) < 5, j = —m,...,m+1, since the radius r* of the ball containing the

input data and the minimiser () is less than 7, see Section 2.3.1. That is why Ay < Ay
as well as 0 < Ao < 2. So, we know that the inverse of the Hessian is well defined.
We compute the Taylor expansion of f,« in 7(¢) as shown in (2.34) and consider the
derivative at time . We obtain

. d -1

V() = (H (fas)) (1)) grad (faw) (v(1)) (2.40)

ds s=t

~ (H (fat) (0) "

has the eigenvalues Ay = 2 and A\ = see Section 2.3.2. In particular, we

» grad (fa(s)) (’Y(t)) :

S=

By definition of the curve v, we conclude that grad (fa(t)) (v(t)) = 0. Thus,

1

§() =~ (H (fa) 00) " 4

tgrad (fa(s)) (V(t)) (241)

S=
In the following two lemmas we estimate the spectral norm of the inverse of the Hessian
and the norm of the derivative of the gradient in order to find an upper bound on ||¥(t)]|.

Lemma 2.26. Let dist (z;,2;41) < r for some r > 0, j = —m,...,m. Assume that
17(t)]] < Cor for Cy >0 and allt € [0,1]. Let {;, j = —m,...,m+ 1, be constants such
that dist (xj,%) < £;. Then,

1 1
I (H (fa) 0O < =z

m—+1
. C()T’t—{—f'

th L(t) = i(t 2—2—— —J
v ®) Z ey (1) ( tan (Cort + ¢;)

j=—m

) for all t € [0,1].

Proof. In order to give an upper bound on the maximal eigenvalue of the inverse of the
Hessian we first bound the eigenvalues of the Hessian itself. We have

m+1

I (o) N = || 32 astor (dist i, ) (200 |
m+1

<2 ) (),

j=—m
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since the maximal eigenvalue of the Hessian of the squared distance function is A\; = 2.
In particular, the norm of any eigenvalue of the Hessian is bounded from above by
25 |aj(t)|. Furthermore, we sce that

Jias
121 H (fugn) (4 u—anaj t) (21 - H (dist (;,)%) (1(1)) |
< ni g (0)l|[21 = H (dist (5,) @) | (242)

Denote by Ag ;(t) the smaller eigenvalue of H ( dist (x;, ’y(t))2>. In fact,

2dist (y(t), ;)

tan (dist ((t),2,)) ~

Agj(t) =

By Assumption 3 and since
we deduce that

W is positive and monotonically decreasing for 0 < s <

rolx

C(]?"t + Ej

() >2—~—J
Azj(t) tan (Cort + ¢5)

for all j = —m,...,m + 1. By (2.42) we therefore obtain

127 = H (fagry) (v(®)) | < L(t)

and the minimal eigenvalue of H (f,)) (¥(t)) is bounded from below by [2—L(t)|. Thus,
the claim for the norm of inverse matrix follows. O

Lemma 2.27. Let dist (z;,2j41) < r for some r > 0, j = —m,...,m. Assume that
17(t)|] < Cor for Co >0 and all t € [0,1]. Let ¢;, j =—m,...,m+1, be constants such
that dist (xj,%) < ¢;. Then,

g (Fae) H Z 6 (1)] (rCot + ;)

j=—m
for allt € [0,1].

Proof. Fix some t € [0,1]. Since dist (y(t),z;) = ||exp;é)(xj)|| and, by assumption,
15 ()| < Cor we deduce that

lexp g ()| < Il explgy ()| + |l expz* (z))
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2.3 Subdivision on manifolds with positive sectional curvature

So,

m+1

grad (fa(e) (1) | <2 0
t i m
]m—l—l

<2 Y Jay(0)] (rCot + ;)

j=—m

7;%($

d _
s I eXp,y(lt) (‘rj) |

I

S=

by (2.30). O
We summarise the results of the previous two lemmas in

Proposition 2.28. Let dist (z;,z41) < r for somer >0, j = —m,...,m. Assume that
17(t)]] < Cor for Cy >0 and allt € [0,1]. Let {;, j = —m,...,m+ 1, be constants such
that dist (xj,%) < £;. Then,

m+41

)l < p_QL(mZm a;(0) (rCot + &) (243
. Al C()T‘t =+ fj
with L(t) = Y Jay(t)] (2 — ztan(cow) for all t € [0,1].

j=—m

Proof. By (2.41) we have

1

O < || (Fai) @)™ 5| arad (fuge) () |

s=t
- d
< || (faw) GO ||| evad (Faw) () |
s=t
for all t € [0,1]. The claim then follows by Lemma 2.26 and Lemma 2.27. O

We illustrate the results of Proposition 2.28 by means of our main example.

Example 2.29 (cubic Lane-Riesenfeld, part I11). Lemma 2.26 shows that

t Cort+1r t Cort
Lt)=-(2—-2——F«~—— 1—- 2—-2——
®) 4 < tan (C’oTt+r)> + ( 4) ( tan (C’ort)>
for all t € [0,1] with £y = 0 and ¢_y = ¢; = r. Since this function is strictly increasing in
the interval [0, 1] we have

1 Cor+r 3 Cor
< = _9_ 0T T e _9_ U7
L) < 4 (2 % tan (Cor + 7’)) 3 <2 % ton (Cm’))
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2 Subdivision in nonlinear geometries

for all ¢ € [0, 1]. We conclude that

_ 1
I (H (faw) )" < e
2- ( T 2tan(Cor+r) §tan(Cor))

1

1 Cor+r + 3 _ Copr
2 tan(Cor+r) 2 tan(Cor)
which is an upper bound on the norm of the inverse of the Hessian which only depends
on Cy and . This estimate is needed for the verification of Assumption 3 of our method.
Remember that we have chosen T = x¢ as well as

oz_l(t):al(t)zé and  ao(t) = —%, te 0,1 (2.44)

Assume that 7 < 7 is such that dist (2, z0) <, for j = —1,1. Since ZJI':_1 la;(t)| = %
Equation (2.43) reads as

2 ) 1
1_Corir n 3 Cor <2041 (t)T + 27’Cot>
2 tan(Cor+r) 2 tan(Cor)

2 1 1
— l Cor+’r‘ + § C()T ZT —|— §T00t (245)
2 tan(Cor+r) 2 tan(Cor)

[e{QIIES

for all ¢ € [0,1]. Thus, we have obtained an upper bound on ||§(¢)|| and we are finally in
a position to estimate the distance between xg and z* as follows.
If we can guarantee that

2 1 1
I _Cytr 3 _Co (47’ + QTCgt) < Cqyr for some Ch < Cy,
2 tan(Cor+r) 2 tan(Cor)

we have

1
z + 5?"0075 dt

1
Cor+r 3 _ Cor /
+ 2 tan(Cor) 0o 4

2 r rCy
= 1 Cor+r + 3 Cor <4 + 4 > . (246)
2 tan(Cor+r) 2 tan(Cor)

1
dist (20, 1) < / 140l dt
0
2
<

1
2 tan(Cor+r)

This is the last piece of preparations needed for our convergence analysis of the cubic
Lane-Riesenfeld scheme on the unit sphere. The final convergence argument, presented
in the next section, consists of specific choices of » > 0, Cy and C4. &
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2.3 Subdivision on manifolds with positive sectional curvature

2.3.3 Convergence results on the unit sphere

We show convergence results for the Riemannian analogues of different linear subdivision
schemes on the unit sphere. They are based on the distance estimates proved in the
previous section.

Example 2.30 (cubic Lane-Riesenfeld, part IV'). We continue with the analysis of our
main example. Before we study the convergence in full generality, we illustrate the idea
for g = i and input data z_1, zg, 1 € S™ such that dist (zg,z_1) < 7o as well as
dist (2o, 21) < ro. Let Cp = 0.52 > 1, then [|§(0)[| < rCp for any 0 < r < 1, see Example
2.25. In particular, Assumption 2 is satisfied for all 0 < r < rg. Computations show that

Corg + 7o Coro

1 3 ~ 1.97
2tan(Corg +r9) 2 tan (Coro) D

Since % is positive and monotonically decreasing for 0 < s < 7, we conclude

2 r  rCy r
T e <4 + 2) < 1.02 (Z + 0.26r) = 0.517
2 tan(Cor+r) 2 tan(Cor)

for any 0 < r < rg. By (2.45) we verified that under the assumption that ||¥(¢)|| < Coro
for all ¢ € [0,1], we have [|¥(t)]] < Cir with C; = 0.51 < Cp for all ¢t € [0,1] and
0 <r < rp, i.e., we verified Assumption 3. By (2.46) we obtain

dist (2o, 2*) < 1.02 (Z + 0.137") = 0.39r

for any 0 < r < ryg.

We are now in a position to analyse the convergence of the Riemannian analogue T
of the linear cubic Lane-Riesenfeld algorithm. Therefore, we choose input data (z;);ez
with

sup dist (z¢, zp41) < 70.
l
Our previous computations together with the fact that the points of the sequence after
one refinement step obtained by (2.37) are the geodesic midpoints of two consecutive
input data points lead to

dist (Tz:, Tarir1) < %0 +0.39r0 = 0.89r0,

dist (TCCQi, CCZ) < 0.397“0

for all © € Z. Note that this conclusion highly depends on the mask and the choice of the
reference point. We have shown that the distance of consecutive points in (Tx;);ez is
less than the maximal distance of consecutive input data points. In fact, we have already
shown a bit more. Namely, for g = % and Cy = 0.52 the following is true:

1
i) [|7(0)]] < Cor for any 0 < r < %.
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2 Subdivision in nonlinear geometries

ii) Under the assumption that ||§(¢)|| < Coro for all t € [0,1], the constant C7 =
0.51 < Cy satisfies ||§(t)|| < Cyr for all ¢ € [0,1] and any 0 < r < 1.

Thus, we can iteratively apply our strategy to estimate distances we so far only used for
the first refinement step. We deduce that

dist (Tkxi, Tk$7;+1) < 0.89%r = 0.89 sup dist (¢, To11)
J4

dist (Txo;, z;) < 0.39sup dist (xp, xp41)
¢

for all £ > 0 and i € Z. The first inequality above implies that T" admits a contractivity
factor u = 0.89 < 1, while the second inequality ensures that T is displacement-safe. We
proceed as in the proof of Theorem 2.11 (which also works on positively-curved manifolds)
and conclude that the Riemannian analogue of the linear cubic Lane-Riesenfeld algorithm
admits a continuous limit on the unit sphere, if the distance of consecutive input data
points is bounded from above by %. Note that we can use the same proof as for Cartan-
Hadamard manifolds here because we restrict ourselves to an area on the unit sphere in
which all geodesics are unique and the Riemannian center of mass are well defined.

The previous paragraph deals with the special case of the fixed assumption on the
input data sup, dist (xg, xp41) < 19 With r¢g = %. Now, we analyse the general case of an
upper bound rg (0 < rg < 7). First, note that the well-definedness of 7" would no longer
be guaranteed, if o > 7, see Proposition 2.22. Furthermore, if Cp > %, Assumption 2 is
satisfied for any 0 < r < rg. Consider the inequalities

2 1 1
Cyrir . 3_Cor <47“ + 27“00) < rCy
2 ta

1
2 tan(Cor+r) n(Cor)

2 11
< 1 _Corir 131Gy <4 + 2CO> < Cop (2.47)
2 tan(Cor+r) ' 2tan(rCo)

and

2 (1 + ! C> <
1_ Cort 3_C g Ty
§tan((gor—rl—r) + itan(OC?’noT) 4 4

2 1 1
= T Cortr n 3 Cor Z + ZCO <
2 tan(Cor+r) 2 tan(Cor)

(2.48)

DN | = N3

We are looking for a constant Cy > i together with the largest possible value for r < 7%
such that (2.47) and (2.48) are both satisfied. Numerical examples show that for 7o = 0.6
and Cy = 0.69 we have

2 1 1
1_ Coro+ro + 3 __1roCo <4 + 200> ~ 0.68 < Co, (2'49)
2 tan(Coro+ro) 2 tan(roCo)
2 <1 1 1
~ 4 Co> ~0.49 < - (2.50)
1 Coro+ 3 _C )
itan(oc”rooroj—oro) + itan(oC:)Om) 4 4 2
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2.3 Subdivision on manifolds with positive sectional curvature

while for rg > 0.6, we do not always find a suitable constant Cy. In particular, this shows
that (2.47) and (2.48) are satisfied for any 0 < r < 0.6, again by the fact that —>— is

tan(s)

positive and monotonically decreasing for 0 < s < 3.

By (2.49) Assumption 3 is satisfied for any 0 < r < 0.6 and by (2.50) T admits a
contractivity factor p ~ 0.99 < 1, i.e., dist (Tkxi, Tk$i+1) < pP sup, dist (24, 2441) for all
it €7Z and k € N. O

We summarize the conclusions of the example of the cubic Lane-Riesenfeld algorithm,
parts I-IV, in the following

Corollary 2.31. Let (z;)icz be a sequence of points on the unit sphere. If

sup dist(zg, x¢41) < 0.6,
¢

then the Riemannian analogue of the linear cubic Lane-Riesenfeld algorithm converges to
a continuous limit function on the unit sphere.

We remark that the constant Cy might be chosen smaller for special input data as seen
at the beginning of the example, but since we are first only interested in a convergence
result, we do not specify the choice here any further.

Example: 4-point scheme

We analyse the 4-point scheme introduced in (2.5) for w = ;. First, we focus on

1 9
Tz := arg min ( — — dist (z,2_1)* + — dist (, 29)* (2.51)
Z‘ES” 16 16

9 1
+ 16 dist (z, 1) — 16 dist (, z)? )
for some x; € S™, j = —1,...,2. Let dist (z;,2;4+1) < ro for an rg > 0 and j = —1,0, 1.
In particular, we have a_ = %. Thus, Conditions (2.22), (2.23) and Proposition 2.22
imply that if rg < % . % ~ 0.31, our input data lies inside a ball of small enough radius
such that the minimiser Tz is well defined.

So, let 7o = 0.31 and denote the geodesic midpoint of xg and z1 by x,,. We use z,,
as the reference point. Observe that due to our restrictions on the input data x,, is well
defined. Let

1t

a_1(t) = as(t) = —1% and ag(t) = arlt) = 5 + = (2.52)

be the coefficient functions for ¢ € [0, 1] and ~ be the curve connecting the minimisers of

Ja(t)-
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2 Subdivision in nonlinear geometries
We see that

S a0 expi ) (@)

grod (1) ) | <2 5|, 2

|
dt

t=0

1 1 1 1
<2 <16 expgwll (x—1) + 16 exp;}l (xo) + 6 exp;Wll (1) + 16 exp;i (x2)>

<223r+2r_21
S\ 2 T162) "

for any 0 < r < rg. Moreover, we deduce that

2t Cort + 3 1t Cort + 1
L= 2 (2o Grt b ) (1LY (5, Crttd
16 tan(Cort + 57) 2 16 tan(Cort + 57)

for a constant Cp, L(t) as in Lemma 2.26 and all ¢ € [0, 1]. In particular,
r
L0)=2—- ———.
© tan (%7“)

Considered as a function in 7, L(0) is positive and monotonically increasing for 0 < r <
rg. Thus,
)

LO)K<2— ————
() tan(%ro)

~ 0.02

2

and 55453 - %7‘ ~ %7‘. Lemma 2.26, together with our previous computations, yields

} 1
15Ol < ;7

for all 0 < r < rg and Assumption 2 is satisfied for any constant Cy > i. We assume that
II7()|| < Cor for some 0 < r < 79 and all ¢ € [0,1]. Again by monotonicity L(t) < L(1)
and by Proposition 2.28 we therefore have

2 2 3 2 r
S < - - (= et i —_
Ol < 51 (16 <rCot+ 27“) o (rCot + 2))
- \22L(1)| (i?‘c’(’” i)

<# }rC —i—lr
Spe-Lm\4 T4

for all ¢ € [0, 1]. This implies that

2 ! 1
dist Tr) < ——— —rCot + —r dt
T < gy f, 1O

2 1 1
- =z (70 77)
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2.3 Subdivision on manifolds with positive sectional curvature

and

dist (zg, Tx) < dist (2, Tx) + g

for any 0 < r < ro. Now, we ask dist (z,,, Tx) + § < r to obtain a contractivity as well
as displacement-safe condition in the end. Thus, we are looking for a constant Cy > i
together with suitable choices for r such that

2 1 1
2 L(1)] (400 * 4) < Co

and

2 1 1 1
— | =Co+ - ) < =.
12— L(1)] (8 0 4> 2
Numerical computations show that if Cy = 0.45, both inequalities are satisfied for any
0 < r < rp =0.31. Thus, the Riemannian analogue T" of the linear 4-point scheme is
displacement-safe and the maximal distance of consecutive points T*xz;, T kxi+1 strictly
decreases, if the iteration depth k goes to infinity. It therefore admits a contractivity
factor less than 1 and we have shown

Corollary 2.32. Let (z;);ez be a sequence of points on the unit sphere. If
sup dist (z¢, zp11) < 0.31,
0

then the Riemannian analogue of the linear 4-point scheme with parameter w = %6 con-
verges to a continuous limit function on the unit sphere.

While we have chosen an input data point as reference point in the first example, we
have now seen that the choice of a geodesic midpoint of two initial data points yields to
a convergence result. So far, we have considered one scheme whose mask contains only
positive coefficients (cubic Lane-Riesenfeld algorithm) and one (4-point scheme) with the
special property of being interpolatory. The next example shows that our strategy works
for non-interpolatory schemes with negative coefficients, too.

Example: Combination of 4-point scheme and Chaikin’s algorithm

We consider the linear scheme

1 21 13 1
(Sz)2; = _ﬁxi_l + ﬁxl + ﬁxi—i-l - 3*2%‘4-2, (2.53)
1 13 21 1
(Sz)2i41 = _ﬁxifl + @xz + ﬁxzﬂrl — §$i+2, (2.54)

1 € Z, introduced in Example 2.1. Because of the symmetry of the two refinement rules
it is sufficient to analyse

1 21
Tz := arg min ( — —dist (z,z_1)* + = dist (z, 29)* (2.55)
LBGS" 32 32

13 . 2 1 . 2
+ 5 dist (z,x1)” — 5 dist (x, z2) )
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2 Subdivision in nonlinear geometries

with m] € S" j=-1,...,2. Let dist (xj,xj41) < ro for some r9 > 0, j = —1,0,1. Since
a_ = 16, Conditions (2.22), (2.23) and Proposition 2.22 imply that if ry < 19'16285 % ~ 0.4,
our input data lies inside a ball of small enough radius such that the minimiser T'x is
well defined. So, let 19 = 0.4. We choose our reference point € S™ to be the weighted
geodesic average of xg and x1 with weights 8y = 0.65 and 51 = 0.35. Define the coefficient
functions as

Oéfl(t) = Oég(t) - —

¢ 65 ¢ 35 9
L =4 ' and () =242 (256
32 =150 160 @4 =15+ 150 (2.56)

for ¢ € [0,1] and let v denote the curve connecting the minimisers of f, ;). Then,

i o (¢) exp;(xj)H

grad (futo) 2) H < 2!\% »>

s
dt|—g
1 1 9 1

cof 1135 +L§ +iﬁ +i@ ~9.0.13
S 32100 " 160100" T 160100 " 32100 ) T

for any 0 < r < rg. Moreover, we deduce that
t Cort + 1.35r Cort 4+ 0.35r
L(t)=— (2-2 )+ (0.65 22
(®) 32 < tan (Cort + 1.357) * 160) < tan (Cort + 0.35r)>
9 Cort + 0.65r t Cort + 1.65r
0.35 2—-2 —(2-2
( T 160 160 ) ( tan(Cort + 0.657")) * 32 < tan(Cort + 1.657"))
for some constant Cp, L(t) as in Lemma 2.26 and all ¢ € [0, 1]. Considered as a function
in r, L(0) is positive an monotonically increasing for 0 < r < ro. Thus, we conclude that

L(0) < 0.02

and 5—553 0 gz - 0.13r = 0.13r. Lemma 2.26 and our previous computations show that

17(0)] < 0.13r

for all 0 < r < rg. So, Assumption 2 is satisfied for any constant Cy > 0.13. We
assume that ||¥(t)|| < Cor for some 0 < r < rp and all ¢ € [0, 1]. Again by monotonicity
L(t) < L(1) and by Proposition 2.28 we therefore deduce that

. 2 1 1
HOI< 5=, (32 (rCot + 1.35v) + Lo (rCot +0.35r)

9 1
+ 1gg (rCot +0.657) + i(rCot+1.65r))
2
12— L(1)|
2 1
<—(=rcp+013
2 L(D) (87" " )

1
<8TCOt + 013T>
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2.4 Conclusion and outlook
for all ¢ € [0, 1]. This implies that

2 1q
dist (z, Tz) < / ZrCot + 0.13r dt
12— L] Jo 8

2 1
= 7‘2 L] <167”C'o + 0.137")

and
dist (zg, Tx) < dist (z, Tz) + 0.35r

for any 0 < r < ro. Now, we ask dist (z,Tz) 4+ 0.35r < & because this yields to a
contractivity as well as displacement-safe condition later. Thus, we are looking for a
constant Cy > 0.13 together with suitable choices for r such that

2

1

and

2 1 c 1 B

m <16 o+ 0.13> < 5 —0.35 =0.15.

If Cyp = 0.16, numerical computations show that both inequalities are satisfied for

any 0 < r < rp = 0.4. The iterative application of the estimate above shows that the

Riemannian analogue 1" admits a contractivity factor less than 1 and is displacement-safe.
Therefore, we have shown

Corollary 2.33. Let (z;)icz be a sequence of points on the unit sphere. If

sup dist (2, zp41) < 0.4,

LEL
then the Riemannian analogue of the linear subdivision scheme defined in (2.53) converges
to a continuous limit function on the unit sphere.

2.4 Conclusion and outlook

Convergence results for the Riemannian analogue of a linear scheme with nonnegative
mask coefficients have been studied on Cartan-Hadamard spaces in the univariate as
well as in the multivariate setting |79, 34, 35]. We have extended the convergence results
of [79] to univariate schemes with arbitrary mask on Cartan-Hadamard manifolds, see
Theorem 2.15.

Less results are known for nonlinear analogues of linear subdivision schemes on mani-
folds with positive sectional curvature. We have introduced a strategy to prove conver-
gence results and have applied it to several examples. Unfortunately, the results depend
on a well chosen reference point which is different for each scheme, see Section 2.3.3.
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2 Subdivision in nonlinear geometries

Future research

48

e Ideally, of course, future research leads to a general convergence result for the

Riemannian analogue of a linear scheme which only depends on the mask and the
bounds on the curvature K of the underlying manifold.

The subdivision schemes we analysed on the unit sphere so far, all have dilation
factor 2. We guess that our strategy works for schemes with higher dilation factor,
too, even so, the choices of reference points might become more crucial.

We studied the convergence of nonlinear analogues of univariate, linear subdivision
schemes with arbitrary mask. We are quite confident that similar results could
be obtained in the multivariate setting where the known results are restricted to
schemes with nonnegative masks, |34, 35|.

Up to now, convergence results for nonlinear subdivision schemes applied to data
on meshes with irregular combinatorics are based on proximity conditions, and
therefore are limited to ‘dense enough’ input data, [80, 81|. It would be of interest
to give convergence criteria which apply to all input data.



3 Polynomial reproduction of Hermite
schemes

In this part of the thesis, we focus on the capability of a Hermite subdivision scheme
to reproduce polynomials. Meaning, we are looking for conditions guaranteeing that
Hermite subdivision schemes applied to initial data sampled from a polynomial function
yield the same polynomial and its derivatives in the limit.

3.1 Hermite schemes of order 2

We present a characterisation of polynomial reproduction of Hermite schemes by means of
algebraic conditions on the subdivision symbol (resp. its derivatives). Those conditions
also provide the correct parametrisation of the scheme and can be used to construct
Hermite schemes producing polynomials up to a certain degree. This work generalises
the results present in [9] where only scalar schemes were considered. In a first step, we
focus on Hermite schemes dealing with function values and first derivatives only.

The presented results are based on the publication

C. Conti, S. Hiining, An algebraic approach to polynomial reproduction of Hermite subdi-
vision schemes, Journal of Computational and Applied Mathematics, 349, 302-315, 2019,
DO01:10.1016/j.cam.2018.08.009.

We begin by introducing our notation and continue with the analysis of certain classes
of polynomials in Section 3.1.2. Then, we state our algebraic conditions in Theorem
3.9. We conclude the section with some examples. In particular, we construct a Hermite
schemes which reproduces polynomials up to degree 5 from a Hermite scheme which
reproduces polynomials up to degree 3 by only slightly increasing the support of its
mask.

3.1.1 Notation and background

A (univariate) Hermite subdivision operator H 4, based on the matriz mask A = {A; €
R*4 [ ¢ 7}, with order d > 2, acts on a sequence of Hermite data f,, = {£,(j), j € Z}
as

D" (i) =Y A9 D(j) Vi€Z, n>0, (3.1)
JEZ
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3 Polynomial reproduction of Hermite schemes

where D = diag (1, %, ""24%1)' The Hermite subdivision scheme, still denoted by
H 4, is the repeated application of H4 when starting with an Hermite-type initial vector
sequence composed of function and derivative values. We associate to H4 the matriz
symbol

A(z) = Z At

lEZ

and sub-symbols

Ac(z) = ZAzzZQZ, Ay(z) = ZA21+122H17
leZ leZ

which are related by the equation

Their derivatives are defined as

k—1
AR () =3"T - r) A,

1eZ r=0

and

k-1 1
AP (2) =) T @ - Anz% AP (2) =) J[@+1-r) Ay 2 F,

l€Z r=0 1eZ r=0

respectively.

We are interested in both primal and dual Hermite schemes. From a geometric point
of view, primal Hermite subdivision schemes are those that at each iteration retain or
modify the given vectors and create a ‘new’ vector in between two ‘old’ ones. Dual
schemes, instead, discard all given vectors after creating two new ones in between any
pair of them. This fact is algebraically connected with the choice of the parameter values
t, @ € Z, to which we attach the vectors generated by the Hermite scheme. More

1

precisely, the primal parametrisation is such that ¢! = 55 while the dual one is given

_1 .
by &I = 12—"2 Therefore, we consider in this paper the parametrisation ¢} = ’;—nt which
includes primal and dual cases. We simply say that 7 is the parametrisation of the scheme

(see [10], for example). See Figure 3.1 for an illustration.

We continue with the notion of reproduction for Hermite schemes.

Definition 3.1. A Hermite subdivision scheme H 4 with parametrisation 7 reproduces a
function g € C*(R) if for any initial vector sequence fo = {fo(j) = [9(j +7),...,9 D +
)T, j € Z} the sequence f, = {£,(j), j € Z} defined by (3.1) is £,(j) = [g((j +
/2", .., gD (G +7)/2M)]" for all n € N and j € Z.
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3.1 Hermite schemes of order 2

« K
Step 0 I I I
0
t ! t?l/ tz—i—l
| | | | | |
Step 1 i 1| | l |1 |
o t2i-1 t; 251
Step 1 I I I I
/+1
to;
Primal: 7=0 Dual: 7 = _%

Figure 3.1: The figure illustrates the attachment of data points CL‘? resp. x%l to parameter
values t¢ € R, £ = 0,1, for the first subdivision step. The primal parametri-
sation is shown in red, the dual one in blue.

3.1.2 Analysis of auxiliary polynomials

We study properties of auxiliary classes of polynomials which are needed to present the
algebraic conditions characterising polynomial reproduction. In case of Hermite schemes
of order d = 2, we need two different classes of polynomials. The first class already
appears in [9]. Having defined the first class, the remaining class is closely related to it.
We denote by [], the set of polynomials up to degree k.

Polynomials ¢

We start by defining the polynomials ¢ € [], as

k—1

wo(z) =1, qp(z):=]J[@z—-r), k>o0. (3.2)
r=0

Obviously, we can write them in terms of the monomial base of [ ], so that
k
qr(—z) = Z Akxz™ for some coefficients ~* € R.
n=0

The reason why we expand qx(—x) instead of gi(x), will become clear later on. By
definition fy,’j = (—1)*¥2*, hence 7,]: # 0 for k > 0, while 4§ = 0 for all k& > 1. For each
1 € 7Z we define the polynomials

. k-1
7 .
@i(@) =1, ai(@) =z + ) = T]}gm ti-r), k>0, (3.3)
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3 Polynomial reproduction of Hermite schemes

which can also be written in terms of the monomial base as

i ( Z Akign for some coefficients 757 € R. (3.4)

Obviously, gro = g and 'y,li’o = n=0,... k.
Example 3.2. Computations show that
qu,i(r) = 2w + 1,
qo.i(x) = 4% 4 (4i — 2)x + % — i,
g3.i(x) = 8% + (120 — 12)2” + (6i* — 12i + 4)x +4° — 3¢% + 2.

¢

In the next lemma we collect some relations between the coefficients of the polynomials
qki-

Lemma 3.3. Let i € Z. For all k > 1 the coefficients of the polynomials qy; in (3.4)
satisfy

ki ) k-1,
Yo = (i— (k- 1))’}’0 )

77’3’——275 V== D) n=1 k1
ki k—1,
Vi = 2V

Proof. For k = 1 the claim is true by definition of the polynomials and its coefficients.
For k > 1 it follows by (3.3) that ¢;;(x) = qx—1,:(z)(2x + i — (k — 1)). We obtain

k k—1
(=Dt =Y (1) e (2m i — (k- 1))
n=0 n=0

_22 n k 1, n+1_~_z _1))%15—1,1'!%71
=2Z<— )"t wuz — D)y
n=1

= 2(—1)F Ik higk Z YA (1) — (k= 1)k )an

+ (= (k=1)g~ N
by using (3.4). Comparison of the coefficients proves the lemma. O

Next, we study the relation of the coefficients of the polynomials g ; (which do depend
oni € 7Z) and those of the polynomials g, defined in (3.2) (which do not depend on i € Z).
Let ( ) denote the binomial coefficient.

(r— n)'n'
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3.1 Hermite schemes of order 2

Lemma 3.4. Fori € Z and k > 0, v = S°F (=) k(M) (L), n = 0,...,k.

r=n
Moreover, vlkm # 0.

Proof. Let ¢ € Z. We have
_ L
a(e+3) = X t(=2-3)
r=0
k r r i\r—n
_ r.k M n
=Sl () ()
r=0 n=0
E K P\ s isrn
k
=S () ()
n=0r=n
By (3.4) a comparison of the coefficients leads to
ki k (T I\T—"n
’yn’l e Z(*l)r—i_n'yy‘ < > (5) 5 n = O7 ceey k (35)
r=n n
Finally, since %l;:,i = ’y,i" and 7,’5 = 0 the proof is complete. 0
We conclude the subsection by stressing an important relation between the coefficients ¥

and the Stirling numbers of the first kind {ﬂ . Those numbers, well studied for example

in [36], count the numbers of ways to arrange k elements into n cycles. From the initial

conditions [8} =1, [g} = [2} = 0, n > 1, they can be computed via the following

SR AR A

Following [36], the Stirling numbers of the first kind can also be described as coefficients

recurrence relation:

k—1 k
k
in th ion of the polynomial z* = —r) since k£ =) (~1)F" "B
in the expansion of the polynomial x r[()(x r) since x ZO( ) K y
r= n=
definition of the polynomials gx(—x) we therefore have

n

Ak = (—1)kon m , n=0,...,k (3.6)

Polynomials ;.

We now define a second class of polynomials which is closely related to the polynomials
qr;- First, we need to introduce the coefficients ay g, for £ = 1,...,k, defined in a
recursive way.

53



3 Polynomial reproduction of Hermite schemes

Definition 3.5. Let k, £ € N, 1 < ¢ < k. We define the sequence of coefficients
{oge, £=1,...,k} as

Qg1 = 2]{3,
k—n
— 1 k—1j
Ok k—n+1 = (_1)k2 i (n’yﬁ - Z(—l)]ak,j%_{) n=k—-1,...,L
=1

For some explicit values of the coefficients, see Table 3.1. Due to (3.6), the recursive
formula for oy, ¢ as given in Definition 3.5 above can be written as

—op |F S [k (3.7)
Ak k—n+1 = 2N n _ZakJ n—11"’ :

J=1

based on which we can prove the following Lemma.

Lemma 3.6. Let k, { € N, 1 <t < k. We have oy = 2(€ — 1)'<IZ> fort=1,... k.

Proof. We prove the statement by induction on ¢. For ¢ = 1, we have oy, = 2(’1“) =2k

which is true by Definition 3.5. For k = 2, we have ag 2 = 2@) = 2 which is also true.
Now, assume that &k > 2 and that the statement is true for some £ — 1. We prove the
statement for ¢. Due to (3.7) we have

k—(k+1-¢)

_ k 1 k—j
ak’€_2(k+1_£)[k+l—£}_ 2 O"w[kﬂ—e—l]
=1

— (k41— 0) [H’;_g} —iz(j— '<""> {Z g] +a(0—1)! <];>

k—1¢
k—1¢

where we use the induction hypothesis and the fact that [ } = 1. It remains to show

that

ool b - fuen() [

Jj=1

Using the fact that B] = (j — 1)! and the following identity, see [36, (6.29)],

1) O -2 R 6)

JEZL
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3.1 Hermite schemes of order 2

10 20 40 60 48
12 30 80 180 288 240
14 42 140 420 1008 1680 1440

14
& 1 2 3 4 ) 6 7
1 2
2 4 2
3 6 6 4
4 8§ 12 16 12
)
6
7

Table 3.1: Values of the coefficients ay o, k=1,...,7, £=1,...,k.

we conclude (in consideration of the terms that are actually equal to zero)

w0l to = ()l —]2: it
o ()E]

7j=1
]

Based on the previous set of coefficients, for i € Z and k > 0, we define g ; € [[,_; as

k
(jO,i =0 > Qk 7, Z ak,an—n,i(x)v k> 07 i € Z. (38)

n=1

As done before, for k > 1, we can write them in the form

i Zryk ig for some coefficients %' € R. (3.9)

Lemma 3.7. We have ’N}/],:’_il = k:fyk # 0 and ¥ ht — Z?;{L(—l)jak,j"yﬁ_j’i, for k € N,
1€Zandn=0,...,k—1.

Proof. By definition of q;” in (3.8), we obtain G ;(—z) = Zfl 1 (=) nGe—ni(—).
Thus, the coefficient 7k 1» which belongs to the 2F=1 term, is given by

ki k=li _ g ki
Vo1~ "% 1Vp1 =KV -
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3 Polynomial reproduction of Hermite schemes

Here the last equality follows by Lemma 3.3. By Lemma 3.4 fy’k“’i # 0. We compute

k—n

K
Gri(—2) =D (D) kv "'
n= 7=0

k—1 /k—j N\
(Z<—l>nak,ﬂ'f—nvz)

n=1

— =

=0
This proves the second part of the lemma. O
We compare the coefficients of the polynomials g ; and gy ; defined in (3.3) and (3.8).

Proposition 3.8. The coefficients of the polynomials gy, ;(x) and i i(x) satisfy the re-
lation v = l’ysfl forallkeN,i€eZ andn=1,... k.

n

Proof. By Lemma 3.7 the claim of this lemma is equivalent to

' 1 k—n+1 ' -
Wi== 3" (-], fori€Zandn=1,...k (3.10)

n “
J=1

First, let n = k. Using Lemma 3.3 and the fact that oz ; = 2k we obtain

ki k—1, 1 k—1,i
T = 2o = TR k-1
This proves (3.23) for n = k and all ¢ € Z. Now, let n € {1,...,k — 1}. We have

k—n

_ ; k—i
Ak k—n+1 = (_1>k2 il <n75 - Z(_lyakdfyn—{)
j=1

by Definition 3.5. Using the fact that 7"~{ = (—1)"~'2""! leads to

k—n
n’ys = (_1)k2n 1ak,k—n+1 + Z(_l)JakJ’yn*jl
7j=1

k—n
_ _ ; k—j
= (D) " Mg p T+ (=1 v
j=1
k—n—+1
. ki
= (1) ok 71
j=1
Next, we show that this implies that (3.23) is true for any i € Z. Let n € {1,...,k}.
From above for any r € {n,...,k} we just saw that

k—r+1
L
=Y (= arvd.
j=1
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3.1 Hermite schemes of order 2

Since r(r_l) = n(;), the latter implies that

n—1
r k—r+1 r—1 N
n(n>fyr E ( 1) Ak, j (TL _ 1)77“1‘

=1

A\T—n
Multiplying by (—1)"*" (%) on both sides and summing up for r from n to k gives

() () - S (v () )

r=n r=n 7j=1
k—1 k—r i —(n—1)
— ( 1)r+n 1( 1)jak,]< 1>7£j <2>
r=n—1 \j=1
k—n+1 k—j ” i\ (1)
=Y (e, ( > e (7 )k (5) )
Jj=1 r=n—1
By (3.5) this implies that
o ket . y
=2 3 (el
j=1
which concludes the proof. O

3.1.3 Polynomial reproduction of Hermite schemes of order d = 2

We are finally in a position to give our algebraic conditions on the mask of a Hermite
subdivision scheme of order d = 2 which ensures polynomial reproduction up to degree
m. The main result is stated below but its proof is split into several Lemmas and
Propositions. Let eg4 denote the s-th canonical vector of R? and 04 € R? the zero
vector.

Theorem 3.9. Let H 4 be a Hermite subdivision scheme with parametrisation 7. Then,
H 4 reproduces constants if and only if

A(—l)eLQ = 02, (3.11)
A(l)em = 26172. (3.12)

Moreover, Hy reproduces polynomials up to degree m > 1 if and only if it reproduces
constants and

k
AR (—1)e o+ Z ke AFD(—1)eys = 0y, (3.13)
(=1
: 20,27 (~ )
AP (Ders + Y ag - A% O (1)egs = [ Ak2r ™S ] : (3.14)
— Qk,ZT(_Q)
forallk=1,...,m with &11”2 = (—1)60%7@, {=1,...,k, and oy as in Definition 3.5.
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3 Polynomial reproduction of Hermite schemes

We prove the first part of Theorem 3.9 by presenting it as a separated Lemma. First,
some important observations are made.

Remark 3.10. It is worthwhile to remark that:

1) Up to the reproduction of linear polynomials the algebraic conditions given in the
theorem above are also given in [66], though presented in a different way.

2) The entries of the right-hand side (3.14) (with the convention Hr_:l() =1) are

k k—n—1

2ar20 () IR (-3) =2 vrat, IT ¢=n.
r=0

n=1 r=0

3) When m = 1 the previous result allows us to identify the correct parametrisation
corresponding to the choice 7 = %(A(I)(l)n —2A0(1)).

Lemma 3.11. A Hermite subdivision scheme H 4 reproduces constants if and only if
(8.11) and (3.12) are satisfied.

Proof. Obviously, the reproduction of constants is equivalent to Z Aj_oje12 = ey for
JEZ
all i € Z. Now, from (3.11) and (3.12) we have

2e19=(A(1) + A(—1))e1s =2) Agyern  and
icZ

2e19=(A(1) — A(-1))e1 2 =2 Z Agiyrer 2,
i€z

which are equivalent to the previous relation specialised for i even and ¢ odd respectively.
O

Note that the reproduction of constants does not depend on the chosen parametrisa-
tion. This is not surprising, since it is so in the scalar situation as well, see [9].

Lemma 3.12. Let m > 1. Then, condition (3.13) is satisfied if and only if

AP (1) e 2+ Z Yoo eA 9(1)egs = %( 1)eio + Z )oou, (AR e)(1)€2,2>,
612+Z Yoo AR (1) ey = %( 612+Z Yoo AR )(1)62,2>,

forallk =1,...,m. Moreover, condition (3.11) is satisfied if and only if

1
Ae(l)el’g = AO(1)6172 = §A(1)61’2.
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3.1 Hermite schemes of order 2

Proof. Let k € {1,...,m}. We have A®)(z) = Aﬁf)( )+A( )( ) and therefore especially
AR 1) =AP (1) + AP (), (3.15)

and

So, condition (3.13) is equivalent to

AP (Ders + Z ) (AF I (1)eg s = AP (1)era + > (1) AT (1)egs.

(3.16)

Now, using (3.15) we write

AP (1)er o + Z Vo A0 (1)es

912+Z ) A0 (1)egn + AP e12+2 ) A0 (1)ey,

which, together with (3.16), proves the first part of the Lemma. Condition (3.11) is
equivalent to A.(l)e;2 = Ay(l)er2 and since A(1) = A (1) + Ay(1), the claim is
proved. ]

In the following we make use of the polynomials g, ; and gy ; introduced in the previous
section. First, we unite them into the vector polynomial

QMW%—Bﬁgﬂ with k>0, i € Z.

Proposition 3.13. Let m > 1. Then, conditions (3.13) and (3.14) are satisfied if and
only if for alli € Z and 7 € R,

ZAiJij,Hzf(—j —-7)= [fllf’if% (12;) ] ., k=1,...,m. (3.17)
iez 54k, i+27 ( 3 )

FEspecially, conditions (3.11) and (3.12) are satisfied if and only if ZjeZ Ai—2;Qo,i(—7) =
e12 for alli € Z.

Proof. Observe that by definition of the class of polynomials in (3.3) we obtain

A1) = " gragon WAz =Y arorrar(—F — T) Az,
JEZ JEZ

AP 1) = gragonr1(D A1 =D ararrare1(—F — 7) As_ 41,
JEZ JEZ
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3 Polynomial reproduction of Hermite schemes

forallt € Z and 7 € R. Let ¢ € 2Z with ¢ = 2s for some s € Z. This observation together
with Lemma 3.12 implies

ZAi—Qij,i+27(_j —T) = Z Ag(s—j)Qr 25127 (=J — 7)

jET jEz
= Z Qr2s+2r(—J — T)Ag(s—jye1,2 + Z Qr,2s+2r(—J — T)Ag(s—j)€2,2
jEL jE
= Grasrar(—F = T)Ass_jer1a+ Y Z ) ke Gh—t 25427 (= — T) An(s_j)€2,2
JEZL JEZ =1

g Leia + Z(—l)eak,zAg—@(l)em

[ka+27( —-T)

qutz+27' ( D) 7—):| ’

showing the claim for ¢ even. Similarly, for odd ¢ € Z, ¢ = 2s + 1, we obtain that

Z Ai 2jQrit2r(—j —T) = Z Ag(s—j)+1Qk 25 +2r41(=J — 7)

jez jEL
= Z Q2s+2r41(—J — T)Az(s—j)+1€1,2 + Z Qr2s+2r+1(—J — T)Ag(s—jy41€2,2
jez €z
= Z A 2s+2r+1(—J — T)Ag(s—j)r1€1,2
jez

+ Z Z(_1>£ak,ZQkfé,2s+27'+1(—j —T)Ag(s—_j)+1€2,2
jez =1

e + Z Yoo, AF ) (1)es
_ 1<A(k)(1)e1 )+ Z(—Ufak A (1)es5)
2 , /=1 , ’

_ |:Qk,z'+27— (=57) }
$akitor (F57)]

The second part of the Proposition follows by Lemma 3.11 and gp; = 1 and ¢p; = 0. [

Note that the right-hand side (3.17) does not depend on i € Z since gy, j1+2, (_iQ_T) =
dk21 (%T) .
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3.1 Hermite schemes of order 2

Proposition 3.14. Let H 4 be a Hermite subdivision scheme with parametrisation T and
m > 0. Then, H 4 satisfies conditions (3.11) — (3.12) and conditions (3.13) — (3.14) for
all k=1,...,m, if and only if

g A gje1p=e12, i€Z,

JEZ
j—i—T) L[ (Gi+n)F B ,
ZAz 2]|: ]+7_) :| = ok |:k’(Z+7')k_1 R k‘—l,...,m, ZGZ, (318)

JEL
with the convention that (3.18) (resp. (3.13) — (3.14)) is empty if m = 0.

Proof. We prove the proposition by induction over m. The case m = 0 follows by Lemma
3.11. Assume that the statement is true for some m — 1 and all k = 1,...,m — 1. The
proof uses the representations of the polynomials g ¢(x) and gy ¢(x) as in (3.4) and (3.9).
For ¢ € Z, using Proposition 3.13 we obtain

[qMHZT (27 )] D Ai2jQmivar(—j—7)

QQn11+2T ( 3 ez

= Z Ai2jGmivor(—J —T)er2 + Z Ai—2jGmit2r(—j — T)e2

jez jez
A m,i+27 .7 + T A ~M,i+2T 0
=2 MJZ 1+ 1232 Gt
JEL JEZ
o myi+27 j + T)m
= Tm’ ]%; Al 2j |:m : T)m—l
+ZA . Z,ymlJrQT J+T +ZA ) Z~mz+2f .
B Y (7 + T)
JEL JEZL
(%)
Note that we used the relation 3" AT — 2T 4 obtain the last equality above, see

Proposition 3.8.
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3 Polynomial reproduction of Hermite schemes

Before we apply the induction hypothesis to (x) we apply Proposition 3.8 again and
get

ZAZ QJZ,yszrZT |:.]+7_ :|+ZA2 2]Z~m1+27|:]f7—)n:|

JEL JEZ
= ’YSMHT Z Ai—gje1
JEZ
m—2
i i 4+ )l - - 0
T Z %ijrzTZAi_Qj [(] O) ] m1+2 ZAZ 2 { . 7-)"]
n=0 JEZ JEZ
m,i+27 m,i+27 (J + T>n+1 :|
= Ai_ojer2 + . i— 24 [ g .
0 ]GZZ =2 Z n+1 ]EZZ 1—2j (n+1)(j +7)"

Now we use the assumption that the scheme reproduces constants for the first part
of the right-hand side and apply the induction hypothesis for £k = 1,...,m — 1 to the
second part. Therefore,

ZAl QJZ,ymH—QT |:]+7' :|+ZA1 2jz~mz+27|:]f7—)n:|

JEZ JEZ

o m 2T m 2T (Z + T)n+1
= €1,2 + Z 2n+1 Tn+1 |:(TL+ 1)(Z +7_)n .

(%)

The next step is to rewrite the sum (#x) by first applying Proposition 3.8 and then using
the definition of the polynomial ¢y, ; (resp. ¢m) as in (3.4) (resp. (3.9)). So,

m 2T m 2T (Z + T)n+1
e+ Z 2n+1 Tn+1 [(n—{— 1)(i +7)"

+ n+1
m,i+27 i+271 7 T - or 7 + T
=%’ ey 2+ E ’Y;Ln.i_zl ( €2+ E n ‘ e2,2

2 z—i-T 1 _mirorfi+T7
— Ym" T(T> 12—57:221 ( B 62,2
2 1+ T 1. 1+ T
="t Tel,2+qm,i+2f(_ 2 )el? gl l+279172+§qm,i+27<_ 2 >e2,2
2 1+ T\™ 1. 42 1+ T\m—1
7:””+T( 2 ) e12 = 57m’1 T( 2 ) €22
i+ T 1. i+T (L ET\™
qu,i+2f(— 5 )e1,2+§Qm,i+27<_ 5 )ezz %"1”“( 5 ) er
1~m,i+27’ t+ T\m-1
() e
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We apply Proposition 3.8 to the right-hand side above to obtain

m,i+271 m J+2T (Z + T)nJrl
Yo 912+Z 2n+1 Tnt1 [(n+1)(i+7’)n
— |:C_Im,i+27' (%) :| ,ymz—l—QT(l)m |: (Z+T)m :|
%dm,i—l—?’r (—12—7) m 9 m(z + 7_)mfl
Summarising our previous computations leads to

S e 3 D] = () [t P

Since v £ (), this is equivalent to
(G+1)™ INm [ (i4+7)™
ZAi—2j . m—1| = (*) : m—1|>
: m(j +7) 2/ |m(i+7)
JEZ
which concludes the induction step. O

Remark 3.15. If m = 1 the sums in the proof above which are not defined are assumed
to be zero. The conclusion of the proposition in this case is still true.

We are finally in a position to prove Theorem 3.9.

Proof of Theorem 3.9. We prove the statement by induction over the degree m of the
polynomials. For m = 0 we refer to Lemma 3.11. So, for m > 1 assume the statement is
true for some m—1and all k = 0,...,m—1 and show that the Hermite subdivision scheme
H 4 reproduces polynomials of degree m. Let p(z) = 2™ + g(x) with g(z) € [[,,_;- By
Definition 3.1 we have to show that for n € N and i € Z,

- [P0 s = [ T)/2”“)} |

p'((i+7)/2") p((i+7)/27)
Let n € N and i € Z. By (3.1) we have
n n T [g((F+71)/2™) ]
R W e IS |

This is equivalent to

2ann+1fn+1 Z A 9
JEZ

(G +7)m N> 4. oy | 90 +7)/2")]
[m (+ >m] i %AD l9/((G +7)/2%)]

Now, we apply Proposition 3.14 to the first summand of the right-hand side above and
the induction hypothesis to the second. We obtain

nmyyn L G@+n)m nmpyn+1 | 9((1 +7)/27+1)
2 D +1fn 1() 2m [ (Z'+T)m—1] +2 D + [5/((i+T)/2”+1):| .
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3 Polynomial reproduction of Hermite schemes

So, we see that

DannH(i) _ [ 2_(”+1)m(i + 7)™ 4 g((i 4 7) /27 }

2= DM (j 4 7)ym=l 4 2= (0 FD g/ (i 7) /20 HT)
This is equivalent to

. @%:[<u+ﬂmwwm+gW+wvw“>]
= L+ ) 2y g ()2 |

proving the claim. O

3.1.4 Examples of Hermite schemes of order d = 2

We give some examples to illustrate how to use the algebraic conditions obtained in
Theorem 3.9. Moreover, we show how to use our results to modify known Hermite
schemes such that they reproduce polynomials of higher degree.

Interpolatory scheme

We start with the interpolatory Hermite subdivision scheme H 4 introduced by Merrien
in [57]. The non-zero coefficients of its mask are given by

I R O B RSt
-l il bl Aty )
It is known that the scheme reproduces polynomials of degree 1 for all A\, u € R. It
reproduces Ils if and only if A = —%. Moreover, it also reproduces polynomials of degree
3, if additionally p = —%.

We check our conditions of Theorem 3.9. Immediately, we get that H 4 satisfies con-
ditions (3.11) and (3.12) and therefore reproduces constants. For the following compu-
tations we use the values of the coefficients «y, ¢ as given in Table 3.1.

For d = k = 1 the equations (3.13) and (3.14) of Theorem 3.9 we get

0 0
A(l)(_l)eLQ +2A(—1)8272 = |:_,u _ 1:| + 2 |:_,u + %:| = 027

0

1 0
A( )(1)81,2 — 2A(1)8272 = [M 1 -2 % 4 % = —26272.
Thus, the scheme reproduces II; for all parameter values A and u. If we consider the

case of quadratic polynomials, we obtain the additional equations

AP (~Derz +4AW (~1)ezs +2A(-1)ez = [_1 - 8/\] 7

0
AP (1)ers —4AW (1)eys + 2A(1)egs = 255,

(3.19)
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3.1 Hermite schemes of order 2

So, by (3.19) and the results of Theorem 3.9, we see that the subdivision scheme H 4
reproduces quadratic polynomials if and only if A = —%. We compute (3.13) and (3.14)
for d = k = 3 and assume that A = —%. We get

AP (=1)e1 2+ 6A) (—1)ezs + 6AM (—1)ey s +4A(~1 wm={49mk

A(S)(l)el,g — 6A(2)(1)62’2 + 6A(1)(1)6272 — 4A(1>62’2 = |:_5 2 2/1,:| .

According to Theorem 3.9, we conclude that the scheme reproduces cubic polynomials if
and only if additionally p = —%. Theorem 3.9 also tells us that the Hermite scheme H 4
does not reproduces polynomials of degree 4 since

AW(—1)e1 s +8A®) (—1)egn + 12AP) (—1)ez
+16AM (—1)egs + 12A(—1)ezs = €19 # 0y.
Next, we use our algebraic conditions to obtain a modified Hermite subdivision scheme

which reproduces polynomials of higher degree by only slightly increasing the support of
the scheme. Consider the interpolatory Hermite subdivision scheme H ; with non-zero

coefficients
7_b1b27_a1a2 7_10
S IR P R
- a1 —a| £ by —bo
R A IR Y
for some real numbers a;,b;, ¢ = 1,...,4. By Theorem 3.9 these coefficients have to

satisfy the following linear system in order to reproduce polynomials up to degree 5

1 1 384 1
T "= Ta0s 1408 M=y
3 1 1 3 1
a3—24b4+9b3+1, a4—17b4f§a375b3, CLQ—*g*?)bQ*le.

Choosing the values b3 = 0 and by = 384 leads to a1 = %, ap = —17/128 ~ —0.13,
az = 135/176 ~ 0.77 and a4 = —189/1408 ~ —0.13. With this choice of coefficients the
non-zero matrices A_q, Ay and A; of the mask of the scheme H 1 are closely related to
the corresponding ones of H 4. See Figure 3.2 for the basic limit functions of the scheme
Hjy.

de Rham transform of a Hermite scheme

We now consider the de Rham transform of the interpolatory Hermite scheme H 4 as

introduced in [10, 22]. This scheme is a dual scheme, meaning that 7 = —%.
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0.8} R 0.05 |-
0.6 -
0.4

0.2 1 —0.05 |-

0.5 |-

Figure 3.2: Left column: Basic limit function and derivative of the interpolatory Hermite
scheme H 7 introduced in Section 3.1.4 for initial data e; 2 at 0 and 02 else.
Right column: Basic limit function and derivative of the interpolatory Her-
mite scheme H z introduced in Section 3.1.4 for initial data ez at 0 and 09
else.

For A\, € R the non-zero matrices of its mask (for simplicity again denoted by A;)
are given by

A2:}'2+4>\(1—u) 4N+ 2\p ]
B 8 |4—2pu—2p% p2+8N1—p)|’
4 1_1'6—4)\(1—;1) 8\ — 2\ }
T8 [4-2p 207 p?—8A(1—p)+2u)’
A071'6—4)\(1—u) -8\ +2A\u ]
8 |—4+2u+2p* p?—8X1—p)+2u]’
A1:1_2—|—4)\(1—,u) —4/\+—2)\,u}
8 |—4+2u+2u2 p2+8A1-p)|"

We see that the scheme reproduces constants since it satisfies (3.11) and (3.12). We
obtain

AW (~1)er s +2A(-1)ezs = 1 {16)\(1 — u)] 42 [—8/\ + SAM] o,

8 0 8 0
1 -8 2 0 —1
(1) _ - = -z =
AT (Dery = 2A(L)e2z = g [—16 +8u+ 8;1?} 8 [4& + 4,[1,:| [—2} '
Since 2q1 2r (—%) = —1 and G2, (—%) = —2 we conclude that the scheme reproduces
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3.2 Hermite schemes of any order

linear polynomials by Theorem 3.9. Next, we check if the scheme also reproduces poly-
nomials of degree 2. By Table 3.1 we have a1 = 4 and ag2 = 2. We compute
2¢2,0-(—%) = 3 and Go2,(—%) = 4. According to Theorem 3.9 we have to check if the

scheme satisfies
AP (~1)er2 +4AM (~1)ezs + 2A(~1)ez 2 = 02,

3
AP (1er s —4AW (1)eys + 2A(1)ez = Lﬂ :

in order to decide whether it reproduces [[, or not. Computations lead to

(2)(_ (1) _ _ 0
A (—1)e1 o +4AY (—1)ez2 +2A(—1)ez [2 2t 16)— 16/\,u] ,
A (1)e; 5 — 4AN (1)ey 5 + 2A(1)ens = F’ * 41”} .
We conclude that the scheme reproduces polynomials up to degree 2 if and only if A = —%.
Similar computations for the case of cubic polynomials show that the choice of y = —%

leads to the reproduction of cubic polynomials.

3.2 Hermite schemes of any order

In this section, we extend Theorem 3.9 to Hermite schemes of any order d, meaning we
use input data consisting of function values and its first d—1 derivatives. The crucial step
to generalise the previous result is to define now d classes of polynomials (generalising
ki, see (3.8)). Therefore, we need suitable coefficients, according to Definition 3.5,
which should be computable explicitly. Otherwise, it would be hard to use the obtained
algebraic conditions in practise.

The new results of this section are based on the publication

S. Hiining, Polynomial reproduction of Hermite subdivision schemes of any order, sub-
mitted, 2019.

We use the same notation as in the previous section with one modification: The
class of polynomials g ; will be denoted by gz ;1 since this notation fits better with the
generalisation. In Section 3.2.1 we define and analyse crucial auxiliary polynomials while
in Section 3.2.2 the algebraic results are presented.

3.2.1 Analysis of auxiliary polynomials

To prove our main Theorem 3.19 we use the same strategy as presented in the previous
section. We briefly recall the definition of the class of polynomials g ; which is along the
same lines as in Section 3.1.
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3 Polynomial reproduction of Hermite schemes

Polynomials gy,
We recall the definition of the polynomials ¢ by

k—1

q(z) =1, q(x):= H(2x —7), k>0.
r=0

In the monomial base we write

qr(—x) = i'yﬁx", for fyﬁ = 2"(—1)k [z] cR.
n=0
Let ¢ € Z. Consider the polynomials
i k—1
q.i(z) =1, qi(z) = qk (fv + 5) = 711—[0(2x +i—r), k>0,

which can also be written in terms of the monomial base as

ki, n

k
qri(—2) = Z’yn z", for some coefficients %]i’i € R.
n=0

Polynomials ¢, ; s—1

This section contains the crucial modifications needed to extend the main result of the
previous section to Hermite schemes of any order. To be precise, we generalise the
definitions of the polynomials gy ;. Therefore, we first define some families of coefficients
o s—1,s—1 which are a direct extension of those given in Definition 3.5. In particular,

O s—1,1 = Ok s—1-
We underline that, throughout this section we let

s,keN with k>s—1, s>2 with i€Z. (3.20)

Definition 3.16. We define

s—2
Af s—1,5—1 =271 H (k - m)a
m=0
s—2 k—n+s—2
_ _ j k—j
Ok k—n+s—1,s—1 = (_1)k2 sl H (TL - m)’Y’I]?L - Z (—1)]04k,j,s—1%_§+1
m=0 j=s—1

form=k—1,...,s—1.

Table 3.2 presents some values of agg2. Since ¥ = 27(—1)F [S] we can write
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3.2 Hermite schemes of any order

80 240 440 400
120 480 1320 2400 2192

14
3 2 3 4 ) 6
2 8
3 24 24
4 48 96 88
5
6

Table 3.2: Values of the coefficients ay, po for k =2,...,6 and £ = 2,... k.

Ak k—n+s—1,5s—1 a8
s—2 k k—n+4s—2 E— i
Ok k—n+s—1,s—1 = 2571 H (n B m) |:n:| - Z Ak,j,s—1 |:n — 3 j_ 1] (3'21>

m=0 j:s—l

form=k—-1,...,s—1.

k
Lemma 3.17. For k, s as in (3.20), we have aggs—1 = 2°71(s —1)! [s f J <€> for all
f=s—1,...,k.

Proof. The proof works by induction on ¢. For ¢/ = s — 1 the statement is true by
Definition 3.16 and the fact that

25 1(5— 1)! E B ﬂ <$ ¥ 1) — sl 1)!<8 b 1) _ 25_111::[20(/@—m).

Assume that the statement is true for some ¢ — 1. We prove it for £. Due to (3.21) we
have

s—2

1 -1 h
apes =2 [J ks —1—L=—m) [k—i-s—l—ﬁ] - 2. oy Lx-e]
m=0 jms—1

s—2
o k
-9 1H(k—|—s—1—€—m){k+s_1_€]

-y e 2] G) p e [ L) ()

j=s—1
where we use the induction hypothesis and the fact that [Z : ﬁ] = 1. We have to prove
that
s—2 l
E\ [k—j
[Ltv+s-1-cm [H _1_5] > - [5_1] ( ) [k Z]
m= Jj=s
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3 Polynomial reproduction of Hermite schemes

We have

s—2
1 k k+s—1—1/ k
(s—1|Hk+S_1 - m)[k+s—1—€]_< s—1 )[k—l—s—l—ﬁ}

-2 L2600

j=s—1

e () =311 )

given for example in 36, (6.29)]. O

using the identity

For k, s as in (3.20), i € N, we introduce the polynomials

k
Ghis—1(T) = D (=1)" Wk 51 Qhn,i(7) (3.22)

n=s—1

and qr;s—1 :=0for all £=0,...,s — 2. In the monomial base we write

k 1
qk,i,s— 1 Z Tn' S "

for some coefficients 'yﬁ hs—1 6 R
Note that the coefficients 'yn * of the previous section correspond to 'yfi 1 now.

Proposition 3.18. The coefficients of the polynomials qy; s—1(x) and gy ;(x) satisfy the

relation an_jo(n — m)fyﬁ’i = 75_’ ss 11 foralli€e Z andn=s—-1,...,k.

Proof. The claim of the proposition is equivalent to

s—2 ) k—n+s—1 . N
H (n —m)yt = Z (_1)jakz,j,s—17§:§i1 forieZandn=s—1,...,k. (3.23)

m=0 j=s—1

To see this, we first use the definition of g, s—1 as in (3.22) and then write g, ; in its
canonical form. This leads to

k k—s+1 / k—j
Qk’i’sfl(_x) - Z (_1)nak7"»8*1q’€*n7i(_1’) = Z ( Z <_1)n04k,n,317]]'§_n’z> .
n=s—1 j=0 \n=s—1

Thus, we have ’yk’l’s 1= Zn . 1( 1)”ak7n15_1’y§€7n’i which proves that (3.23) is equiva-
lent to the clalm of the Proposition. First, let n = k. Using Lemma 3.3 we obtain

ki 1 k—stl
Vi f=(-2)° 1’Yk_ji1 "~
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3.2 Hermite schemes of any order

Moreover, by the definition of oy, s—1s—1 we have

s—2
k—s+14 s—los—1, k—s+1,
O s—1,5—1Vg_gt1 — H(k—m)(—l) P

m=0

This proves (3.23) for n = k and all i € Z.
Now, let n € {s —1,...,k — 1}. Definition 3.16 and the fact that

n—s+1 — (_1)n—5+12n—5+1

’yn—s—l—l
lead to
5s—2 k—n+s—2
k _ k +1 § :
H(n_m)’)/n_( 1) 2nTs O k—n+4s—1,5— 1+ ak,],s I’Yn 5+1
m=0 j=s—1
k—n+s—2
= k—n+s—1 n—s+1
= (=¥ s k—nts—1,5—1 Vn—s+1 T § : ]O‘/wﬁ 1/7n s+1
j=s—1
k—n+s—1
. k—j
= : : (_1)‘]&]{:7]78717’”—8-’-1'
j=s—1

Next, we show that this implies that (3.23) is true for any ¢ € Z. We still have n €

{s=1,...,k}. From above we know that for any r € {n, ..., k} we have
s—2 k—r+s—1
, i
H (r—m)y = Z (1) v 51— 11
m=0 j=s—1
Since

s—2 r k—r+s—1 r s+1
& . — e
H (n —m) <n> Tr = Z (1) g j,s—1 <n s 1> Vr_a1-
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3 Polynomial reproduction of Hermite schemes

Multiplying by the term (—1)"*" (%)T_n on both sides and summing up r from n to k
leads to

e m (7)) (2)

m=0 r=n
k k—r+s—1 N T—T
B n - r—s+1\ k_j )
r=n Jj=s—1

k—s+1 k—r r i r—(n—s+1)
. _1\r+n—s+1+j . k=g [ 2
= 3 | X e (T )0 (5)

r=n—s+1 \j=s—1
knzﬁl ' kz—f r /i r—(n—s+1)
- (_1)30%%871 ( (_1)r+ns+1< )77{6] () ) )
Jj=s—1 r=n—s+1 n—s+l1 2

By Lemma 3.4 this implies that

s—2 k—n+s—1
Y ‘ Y
H (’I’l - m)’Yn’l = Z (_1)jak,j,s—1’)/n7iil)
m=0 j=s—1
which concludes the proof. O

3.2.2 Proof of the main theorem
We use the same proof technics as in the previous section to show our main theorem.

Theorem 3.19. Let Hy denote a Hermite subdivision scheme of order d > 2. Then,
H 4 reproduces constants if and only if

A(-1)e1q = Oq, (3.24)
A(l)elyd = 261711. (3.25)

Moreover, H 4 reproduces polynomials up to degree m > 1 if and only if it reproduces
constants and

d k
AP (“Dera+ ) ( > st A(k_z)(—l)es,d> = 04, (3.26)
=2 \l=s—1
d k
AP (1)e g+ ( > apgat A<”>(1)es,d> = q, (3.27)
5=2 \l=s5—1
forallk=1,...,m with &k ps—1 = (—l)eak,gﬁ,l JAU=s—1,...,k, with agps—1 as in
d
Definition 3.16 and q; = 2D(qk’2T(%‘r)eLd + qugﬁs_l <_27—> es7d).
s=2
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3.2 Hermite schemes of any order

Note that the case d = 2 reduces exactly to Theorem 3.9.

Lemma 3.20. A Hermite subdivision scheme H 4 reproduces constants if and only if
(3.24) and (3.25) are satisfied.

Replacing e 2 by ey 4 in the proof of Lemma 3.11 shows Lemma 3.20.

Lemma 3.21. Let m > 1. Then, condition (3.26) is satisfied if and only if

dk
AP Werg+> > (—Dfones1AF (1) e
s=2(=s—1

d k
- %(A(k)(l)el’d + Z Z (_1)eak,€,s—1A(k_£)(1)68’(1)7

s=2(=s5—1

d k
Agk)(1)€1,d+z Z (—Dfaps—1AF (1) esq
s=2(=s—1
) d &
— §<A(k)(1)el,d—l—z 3 (—1)4%(,5_114%—@(1)es,d),

s=2 f=s—1

forallk =1,...,m. Moreover, condition (5.24) is satisfied if and only if
1
Ae(l)eLd = Ao(l)eljd = §A(1)61’d.

Summing up s from 2 to d, replacing e; 2 by e; 4 and using the proof strategy presented
in Lemma 3.12 show the statement above.
Consider the vector polynomial

d
Qr,i(x) := qu%s,l(l')es,d with k>0, ieZ
s=1

which consists of our previously defined polynomials g ; s—1. To simplify notation we
require Qk,i0 = Qk,i-

Proposition 3.22. Let m > 1. Then, conditions (3.26) and (3.27) are satisfied if and
only if for alli € Z and 7 € R,
) - =T
ZAif2ij,i+2'r(_] —7)= DQk‘,H—QT(T) k=1,....,m.
JEZL

Especially, conditions (3.24) and (3.25) are satisfied if and only if 3 ez Ai-2;Qo,i(—J) =
e1,q for alli € Z.
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3 Polynomial reproduction of Hermite schemes

Proof. We have A((f)(l) = ZjeZ Qr2t12r(—J — T)Ag—j) for all t € Z and 7 € R. Let
i € 27 with ¢ = 2t for some t € Z. With Lemma 3.21 we obtain

> Ai2iQrivar(—j —7)
jez
d
= aroeror(—§ — T Asg_jera + > Y dratrors—1(—j — T)Asg_jesd
JEZ s=2 jEZ
= Gratsor(—j — T)Asu_jyera

JET

d k
+ Z Z Z(_1)éak,€,s—1qk—£,2t+27(—j — T)Ag(t—j)€s,d

s=2(=s—1 j€Z

(A(k eld+Z Z Dearss 1 A0 (1e,q)

s=2f=s—1

= DQiari( 5 7).

For odd ¢ € Z, © = 2t 4+ 1, the proof works analogously. O

Proposition 3.23. Let H4 be a Hermite subdivision scheme of order d > 2 with
parametrisation T and m > 0. Then, H 4 satisfies conditions (3.24) — (3.25) and condi-
tions (3.26) — (3.27) for all k =1,...,m, if and only if

E Aiojerg=eq €L,
jez

ZA’ 2i(j +7) eld+ZZAl 2JH (k=0 +7)te (3.28)

JEZ s=2 jEZ
1 d s—2
= 2—k<(z +1)e g+ Z H(k: —0)(i —i—T)k_SHes,d) k=1,...,m, i€Z,
5=2 (=0

with the convention that (3.28) (resp. (3.26) — (3.27)) is empty if m = 0.

Proof. The proof works by induction on m. The case m = 0 follows by Lemma 3.20.
Assume that the statement is true for some m — 1l and all k=1,...,m — 1.
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3.2 Hermite schemes of any order

For ¢ € Z, using Proposition 3.22 we obtain

DQmJH»QT(_IL; T) = Z Ai2iQmyitor(—j —T)

JEZ
d

=3 Aigjamirer(—j —T)era+ Y > Aigjmitars-1(—j — T)esq

JET s=2 jeZ

m—s—+1

—ZA’L QJZ,YmH—QT]_‘_T e1d+ZZA2 2 Z ,ymz+27—s 1 ]—FT)ne&d

JEZ s= 2]62
_,.)/7Tnnz+2TZAl 9 j—i—T) eld+,ymz+QTZZAZ 2]H m e j+T)m s+1

JEZL s=2 jEL

+ZA’L 2 Z'YmH_ZT]"’T e1d+ZZAZ Y Z,sz—iﬂTs 1 ]"’T)nes,d-

JEZ s=2 jEZ

(%)

Here, we used the relation Hz;g(m — E)%TZ’HQT =" fi; =1 of Proposition 3.18. The
idea now is to rewrite (x) further before making use of the induction hypothesis. First,

note that

d m—s A
SO TIN5 (4 T) e
s=2 n=0 JEZ
d m—1
i+27,5—1 . b—
=> W T Y A (G4 7) T e
s=2 b=s—1 jez
d m—1 s-2 .
=> (n— O 2> " A gy (G + 7)™ esd
s=2n=s—1/4=0 JEZL
d m—2 s—2
2
=3 (n4+ 1= Oy " Ao+ 1) ey
5=2n=s—2 /(=0 JEZL
d m—2s-2
2 ) _
=3 Z H n+ 1= O A (4 ) ey
s=2 n=0 (=0 JEL
Here, the last equality is true because for any n € {0, ..., s — 3} the occurring summand

is 0 because one of the factors in the product Hz;g (n+1—1¢) is for sure 0.
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By Proposition 3.18 we therefore conclude

ZAZ 2]2’7m1+27—]+7— eld+ZZAz 2j Z'szJrQTS 1]+T) €s.d

JEZL s=2 jEL

mi+27 m,i+27 . 1
=% Z Ai_oje1q+ Z Tni1 Z Aigi(j+7)" ey

JEL JEL
d m—2s—2
m,i+27 2
22 1+ 1= 000 3 Avay (G 1) e
s=2 n=0 (=0 JEZ

We use the induction hypothesis for £ = 1,...,m — 1 and the fact that the scheme
reproduces constants to obtain

mz+27’ ZAZ 2j€1.d + Z ry;nJril—i—ZT Z Ai—2j(j + T)n+1e1’d

JEZ JEZ
d m—2s—2
A3 Y T+ 1=0m5 > Ay G+ 7)™ e
s=2 n=0 /=0 JEZ
="y " Aigjera + Z oA ( > Aig(G+7)" erq
JEZ JEZ
d s—2
+> [[n+1-0> Ao+ T)”S“es,d>
5=2 £=0 JEZ
d s—2
= e+ Z T ((z’ +r)Hera+ Y [[(n+1-06+ r)”—s+2es,d) .
s=2 (=0

(%)

Next, we rewrite the sum (%*) and then use the definitions of the polynomial gy, ; resp.
dmi,d—1-
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3.2 Hermite schemes of any order

So,

m—2 d s—2

i+2 2 . . —

W e+ 3 ((z +7)" era+ D [+ 1-0) G+ d>
n=0 s=2 (=0

m—1 . .
. . 1 m
_ myi27 myi+27r [t + 7\t m,i+271 LT
=% €14+ Z Tn+1 ( B — T o €1.d

s—2
n—s+2
+Z Z st L (1= 0) (4 7)o
/=0

s=2n=s—2

m—1 . .
m,i+27 m,i+27 1+ T n+1 m,i+271 L+ T\™
=% erd+ Z Vnt1 ( 5 —Ym’ o ) ©ud
d —2 .
23 1 Q’YTL*S*FZ 2 S,d
n=s—
m,it2 —~  itor (LT "H or (LFT\™
=% TeLd + Z Tn+1 T( 2 ’Y»Z} 2T 2 €14
n=0
m—s+1 . d .
myi+2r,s—1( +T\" 1 myi+27,s—1 (1 + 7\mostl
+ €gd — e
Tn 2 s,d 2571 7m—s+1 2 s,d
s=2

. d .
—i—T 1 —i—T

. ) —s+1
m,i+27 +T\™ E : 1 m,i+271,s—1 +T\™ms

QL

—i—T — =T
= (qm z+27—< )el,d+z 5s—1 dm,i+27,5— 1(T>es,d

d - .
ST T\™ 1 ipor (1 +T\Mmstl
e (Y o= 3o g T (- ) (57) e

—i—T
== DQm,H—QT( 2 )

T 17 +T m—s+1
,yTﬂT"LLHrZT( ) e1q— Z 25 - H (m Z) mz+27'< 5 ) €s.d-

Summarising our computations above shows that (x) is equal to the last term above.
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3 Polynomial reproduction of Hermite schemes

Replacing (*) by this expression leads to

mH_QTZAz 2 j+T) eld_i_,.ymz-&-Q‘rZZAz 2JH m — € j—i—T)m 5+1

JEZ 5=2 ]EZ

ST . 1 1 i+ 7\m—s+l
=yt (T> eld‘f"YmH_Q ZFH(m_€)< 9 ) €s,d

d

1
2m,7777711 z+27’(,L + T)mel,d + mz+27' Z H m— f Z + T)m s+1
s=2 (=0
Since v’ 2T # 0, this concludes the induction step.

O

Proof of Theorem 3.19. We prove the statement by induction on m. For m = 0, see
Lemma 3.20. We choose p(z) = 2™ + g(x) with g(z) a polynomial of degree < m — 1.
By (3.1) we have

d s—2
2ann+1fn+1 ZAz 2321—[ m — é ]+T m S+1esd+ZAz 2_] +7' €1,d
JEZ s=2 (=0 JEZ
+7
+27 3" Ay, D" Z 1) (‘7 Jesa:

JEZ
Applying Proposition 3.23 and the induction hypothesis leads to

n . —(n+1)m m i+T
D", (6) = 27 (G4 1) e1d+9( ) €1.d

on+1
d i+T
+ 2—(n+1)m Z H(m _ f)(’L )m st+1lg i+ Dl Z s—1) ( STl )es,d~
s=2 (=0

O]

3.2.3 Example: Interpolatory scheme of order d = 3

Consider the primal and interpolatory Hermite scheme studied in [10]. The non-zero
matrices of its mask are given by

)\1 )\2 )\3 >\1 _)\2 >\3
Aa=D|u p2 p3|, Ao=D, A1=D|—pm p2 —ps3|,
€1 €2 €3 €1 —€2 €3

with D = diag(l,%, %) and parameters A\, p;,€; € R. It is known that the scheme
reproduces polynomials up to degree 3 if

_1 . _1—/1,1
)\1—2, 61—0, H2 = 2 )
1—62 —1—8)\2 2#1—3
= g = ————~< = . 3.29
€3 5 3 16 y M3 o ( )
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3.2 Hermite schemes of any order

We use our algebraic conditions presented in Theorem 3.19 to verify this fact.

[—2)\ + 1
A(—l)eLg = 0 = 03,
| 2

(201 + 1

A(l)eLg = 0 = 261,3
261

in order to reproduce constants. This gives the first two relations of (3.29). By Table 3.1
we have ay1 = 2. By Theorem 3.19 we see that the scheme has to satisfy

0
AV (—1ei3+2A(-1)eas = |—p1 — 2u2 + 1| = 03,
0

0
A(l)(l)el,g — 2A(1)8273 = | —u1— 2/,L2 -1 = —28273
0

to reproduce linear polynomials. But this is the case if and only if uo =
step further and consider the reproduction of quadratic polynomials. Therefore, observe
that ag 11 =4, ag21 =2 and ag 22 = 8, see Tables 3.1 and 3.2. Moreover, g2 1(— ) =2
and q27,72(—§) = 8. So, we obtain the two conditions

AP (e +4AM (<1)ey3 + 2A(—1)ez 3 + 8A(—1)es 3
[ —2)\; — 8\y — 163

= —p1 — 2p2 +1 =03,
_—%61 — 2€9 —4degz + 2

AW (1)eys +2A(1)ezs + 8A(1)es 3

>
Phng
—
N—
(¢)
G
w

|
i

[ 2X\1 4+ 8)\g + 163 0
= p1+2p2 +1 = |2
_%61 + 2€9 + 4e3 + 2 4
which are satisfied if and only if 5 = 152 and A3 = %68/\2 as given in (3.29). Now,

we consider the algebraic conditions to reproduce polynomials of degree 3. Observe that
o311 =0321=06,a331 =4 and az22 = a3 32 = 24. Therefore, we get

AP (—1)e; 3+6A3 (~1)es s + 6AN (~1)eys +4A(~1)ess

—6A; — 24Xy — 48)3
+24AM (“1)e33 + 24A(—1)es3 = | —3u1 — 10ug — 24u3 + 2| = 03,
—8%¢) —6ey — 1265+ 6
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3 Polynomial reproduction of Hermite schemes

A®(1)e; 3-6APD (1)ezs + 6AM (1)egs — 4A(1)er3

—6A1 — 2409 — 483 0
+24AM (1)e3 3 — 24A(—1)es3 = | —3pu1 — 10pp — 24pz — 2| = | —4
—8€¢1 —6ey — 1265 — 6 —12
which are satisfied if and only if us = 2“22; 3. So, our algebraic conditions coincide

with (3.29).
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