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Abstract

In this work we describe space–time boundary element methods for the numerical solu-
tion of the time-dependent heat equation. Solutions of initial boundary value problems can
be expressed in terms of the boundary and initial data. Unknown boundary data can be
determined by solving appropriate boundary integral equations. For the numerical approx-
imation we consider a discretization which is done with respect to a space–time decompo-
sition of the boundary of the space–time domain. Besides the widely used tensor product
approach we also consider an arbitrary decomposition of the space–time boundary into
boundary elements, allowing us to apply adaptive refinement in space and time simultane-
ously. In addition to the analysis of the boundary integral operators and the formulation of
boundary element methods for a variety of different boundary value problems, we state a
priori error estimates of the approximations and comment on non-symmetric FEM–BEM
coupling methods for parabolic transmission problems.

The space–time discretization technique allows us to parallelize the computation of the
global solution of the whole space–time system. We introduce a parallel solver for space–
time boundary integral equations. The boundary mesh is decomposed into a given number
of submeshes. Pairs of the submeshes represent dense blocks in the system matrices, which
are distributed among computational nodes by an algorithm based on a cyclic decompo-
sition of complete graphs, ensuring load balance. Additionally, we employ threading and
vectorization in shared memory to ensure intra-node efficiency. All levels of parallelism
allow us to tackle large problems and lead to an almost optimal speedup.

In order to obtain an efficient space–time solver for the global linear system, the application
of robust preconditioners is required. We present a preconditioning strategy which is based
on using boundary integral operators of opposite order, known as operator preconditioning,
and extend the introduced parallel solver to the preconditioned system.

We present numerous numerical experiments to confirm the theoretical findings and to
evaluate the performance of the proposed parallelization and preconditioning techniques.



Zusammenfassung

In dieser Arbeit wird die Randelementmethode zur Diskretisierung von zeitabhängigen
Anfangsrandwertproblemen am Modell der Wärmeleitungsgleichung beschrieben. Die
Lösungen der betrachteten Anfangsrandwertprobleme sind durch die Vorgabe der zuge-
hörigen Rand- und Anfangsdaten eindeutig bestimmt. Die noch unbekannten Randdaten
können durch Lösen von entsprechenden Randintegralgleichungen berechnet werden. An-
ders als bei klassischen Zeitschrittverfahren betrachten wir eine globale Zerlegung des
Randes des Raum–Zeit-Gebiets für die numerische Approximation des Problems. Neben
dem weitverbreiteten Tensorprodukt-Ansatz wird auch eine beliebige Zerlegung (Trian-
gulierung) des Randes im Raum–Zeit-Bereich analysiert. Eine solche Zerlegung erlaubt
das Anwenden von adaptiven Verfeinerungsstrategien bezüglich des gesamten Raum–Zeit-
Bereichs. Neben der Analysis der Randintegraloperatoren und Randintegralgleichungen,
und der Herleitung von Randelementmethoden für verschiedene Randwertprobleme wer-
den auch a priori Fehlerabschätzungen der Näherungslösungen angegeben. Ebenso wird
die nichtsymmetrische FEM–BEM Kopplung für parabolische Transmissionsprobleme dis-
kutiert.

Eine Raum–Zeit-Diskretisierung bietet zudem die Möglichkeit, iterative Lösungsverfah-
ren bezüglich des gesamten Raum–Zeit-Systems zu parallelisieren. In der vorliegenden
Arbeit wird eine passende parallele Lösungsmethode beschrieben. Das aus der Zerle-
gung des Randes entstehende Netz wird in eine vorgegebene Anzahl von Teilnetzen zer-
legt. Paare dieser Teilnetze stellen dichtbesetzte Blöcke in den aus der Diskretisierung der
Randintegralgleichungen entstehenden Matrizen dar. Diese Blöcke werden dann anhand
eines Algorithmus basierend auf einer zyklischen Zerlegung von vollständigen Graphen
auf Rechenknoten verteilt, was einen Ausgleich der Rechenlast zwischen den Knoten mit
sich bringt. An den Rechnern selbst wird zudem Threading und Vektorisierung zur Per-
formancesteigerung eingesetzt. Alle verfügbaren Level an Parallelisierungsmöglichkeiten
erlauben es, große Probleme, insbesondere Raum–Zeit-Systeme, zu lösen und haben eine
nahezu optimale Skalierbarkeit zur Folge.

Um ein effizientes Lösen des globalen linearen Gleichungssystems zu gewährleisten, ist
die Anwendung von passenden Vorkonditionierern notwendig. Ein Teil dieser Arbeit be-
fasst sich deshalb mit der Erweiterung der sogenannten Operator-Vorkonditionierung auf
Randelementmethoden im Raum–Zeit-Bereich. Diese Strategie verwendet Randintegral-
operatoren entgegengesetzter Ordnung. Der beschriebene parallele Löser wird anschlie-
ßend auf das vorkonditionierte System ausgeweitet.

Die Richtigkeit der erarbeiteten theoretischen Aussagen als auch die Effizienz der Par-
allelisierung und Vorkonditionierung werden anhand numerischer Experimente demon-
striert.
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1 INTRODUCTION

There exists a variety of numerical methods in order to compute an approximate solution
of time-dependent initial boundary value problems. Standard techniques for parabolic evo-
lution problems are based on semi-discretizations, see, e.g., [69]. These methods typically
lead to a scheme where the structure of the discrete system is based on some tensor product
of space–time elements. The basic idea behind space–time methods is to think of the time
variable as an additional spatial dimension and discretize the whole space–time domain at
once, see, e.g., [1, 32, 42, 56, 63]. Space–time discretization methods in general are gain-
ing in popularity due to their ability to drive adaptivity in space and time simultaneously
[5,44] and to use parallel iterative solution strategies for time-dependent problems [20,43].
Besides space–time finite element methods one can also use boundary element methods to
obtain an approximate solution of parabolic intial boundary value problems, assuming that
the underlying structure of the partial differential equation allows for an application of
this discretization technique. In this work we will focus on space–time boundary element
methods for the numerical solution of the time-dependent heat equation [3, 10, 66].

Let Ω ⊂ Rn (n = 1,2,3) be a bounded domain with, for n = 2,3, Lipschitz boundary
Γ := ∂Ω , T ∈ R some time horizon with T > 0, and α ∈ R a fixed heat capacity constant
with α > 0. We consider the initial boundary value problem for the heat equation

α∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q := Ω × (0,T ),
u(x,0) = u0(x) for x ∈Ω

(1.1)

with given source term f , initial datum u0 and appropriate boundary conditions on the
space–time boundary Σ := Γ × (0,T ), e.g. Dirichlet or Neumann boundary conditions.
Unique solvability of problem (1.1) with Dirichlet or Neumann boundary conditions in
the setting of anisotropic Sobolev spaces [35] was shown in, e.g., [10, 19, 65]. An explicit
formula describing the solution of problem (1.1) is given by the so-called representation
formula for the heat equation, see, e.g., [3], i.e. for (x, t) ∈ Q we have

u(x, t) =
1
α

∫

Σ

U?(x− y, t− τ)γ int
1 u(y,τ)dsy dτ− 1

α

∫

Σ

∂nyU
?(x− y, t− τ)γ int

0 u(y,τ)dsy dτ

+
∫

Ω

U?(x− y, t)u0(y)dy+
1
α

∫

Q

U?(x− y, t− τ) f (y,τ)dydτ, (1.2)

where

U?(x− y, t− τ) =





(
α

4π(t− τ)

)n/2

exp
(−α|x− y|2

4(t− τ)

)
, x,y ∈ Rn,0≤ τ < t,

0 , else

1



2 1 Introduction

denotes the fundamental solution of the heat equation [18]. Here, γ int
0 u and γ int

1 u denote the
Dirichlet and Neumann trace of the solution u on the space–time boundary Σ , respectively.
Due to this representation of the solution it suffices to determine the unknown Cauchy
data on Σ in order to compute the solution u of problem (1.1), e.g. for given Dirichlet
boundary conditions γ int

0 u = g we have to compute the unknown Neumann datum γ int
1 u

on Σ , whereas for given Neumann boundary conditions γ int
1 u = w the computation of the

unknown Dirichlet datum γ int
0 u on Σ is required. Hence the problem is reduced to the

boundary Σ of the space–time domain Q. We can determine the unknown Cauchy data by
applying the Dirichlet and Neumann trace operator to the representation formula (1.2) and
solving related space–time boundary integral equations. The approximation of the solu-
tion only requires a decomposition of the space–time boundary Σ into boundary elements.
Thus, in the case of space–time boundary element methods, the dimension of the problem
is reduced to n compared to n+ 1 for space–time finite elements methods discussed in,
e.g., [63, 65].

Boundary integral equations and corresponding boundary element methods for the approx-
imation of the solution of initial boundary value problems for the heat equation (1.1) have
been studied for a long time [3, 4, 10, 26]. Besides well known time-stepping methods [7],
the convolution quadrature method [36] or the Nyström method [67, 68], one can use the
Galerkin approach [10, 22, 39–41, 45] for the discretization of the global space–time inte-
gral equation. However, in order to get a competitive space–time solver compared to, e.g.,
time-stepping schemes, an efficient iterative solution technique for the global space–time
system is necessary, i.e. the solution requires an application of suitable preconditioners
and parallel space–time solvers.

In this work we analyze the heat potentials in (1.2) and the arising boundary integral op-
erators and discuss the solvability of related space–time boundary integral equations. The
analysis of the boundary integral operators and equations is mainly based on [3,4,10]. We
start with a discussion of the domain variational formulation of (1.1) with given Dirichlet
boundary conditions, see [65], and derive the mapping properties of the related boundary
integral operators as well as the ellipticity of the single layer and hypersingular boundary
integral operator. Moreover, we discuss two different space–time discretization methods
in order to compute an approximation of the unknown Cauchy data on Σ . The first one
is the so-called tensor product approach [40, 45], originating from a separate decomposi-
tion of the boundary Γ and the time interval (0,T ). In this case we use space–time tensor
product spaces for the discretization of the boundary integral equations. The second ap-
proach is using boundary element spaces which are defined with respect to a shape-regular
triangulation of the whole space–time boundary Σ into boundary elements. This approach
additionally allows for an application of adaptive refinement in space and time simulta-
neously while maintaining the regularity of the boundary element mesh. We also present
some numerical experiments to confirm the theoretical results.

For the solution of the discretized boundary integral equations we use a preconditioned



3

GMRES method. We establish a robust preconditioning strategy which is based on bound-
ary integral operators of opposite order. This preconditioning technique, also referred to
as Calderón preconditioning or operator preconditioning, was introduced and analyzed
in [64] in the case of the Laplace equation, where the involved integral operators are in
general self adjoint, and extended to a more general setting in [23]. Here we extend this
method to space–time integral equations, see also [11, 13].

The matrices related to the discretized space–time integral equations are dense and their
dimension is much higher than in the case of stationary problems. Even with fast methods,
see, e.g. [40,41], the computational times and the memory requirements of the huge space–
time system are demanding. Thus, the solution of even moderately sized problems requires
the use of computer clusters. Although there is a simple parallelization by OpenMP in the
FMM code of [39], parallelization of boundary element methods for the heat equation in
HPC environments has not been closely investigated yet. In this work we concentrate on
hybrid parallelization in shared and distributed memory. The global space–time nature
of the system matrices leads to improved parallel scalability in distributed memory sys-
tems in contrast to time-stepping methods, where the parallelization is usually limited to
spatial dimensions. For this reason, parallel-in-time algorithms have been considered suit-
able for tackling the problems of the upcoming exascale era when more than 100 million
way concurrency will be required [15, 16, 58]. Methods such as parareal [33] or space–
time parallel multigrid [20] are gaining in popularity. While time-stepping may be more
tractable on smaller parallel architectures, here we focus on the parallelization for large
scale systems and thus, aim to exploit the global space–time matrices, see also [11, 14].

An advantage of boundary element methods is the natural handling of problems in exterior,
unbounded domains. Thus, boundary element methods are a popular choice when solv-
ing transmission problems. The introduced domain variational formulation in [65] in the
setting of anisotropic Sobolev spaces allows us to establish symmetric and non-symmetric
FEM–BEM coupling methods in an appropriate functional framework. In this work we
will discuss both BEM and FEM discretizations of the interior problem of parabolic trans-
mission problems and present numerical experiments.

The structure of the thesis is as follows. In Chapter 2 we give a short overview of the func-
tional framework for the numerical analysis of problem (1.1), i.e. introducing anisotropic
Sobolev spaces on the space–time domain Q as well as anisotropic Sobolev spaces on
the space–time boundary Σ [34, 35]. In Chapter 3 we recall existence and uniqueness re-
sults [19, 32, 65] for the domain variational formulation of problem (1.1) with Dirichlet
boundary conditions. This domain variational formulation is later on used to prove the el-
lipticity of the single layer and hypersingular boundary integral operators. Chapters 4 and
5 are devoted to the analysis of the arising heat potentials, boundary integral operators and
boundary integral equations. In Chapter 6 we introduce the already mentioned space–time
decomposition techniques, define suitable boundary element spaces and derive approxi-
mation properties of related L2 projection operators. The space–time trial and test spaces
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are then used for the discretization of boundary integral equations in Chapter 7, where we
also derive a priori error estimates for Galerkin approximations of the unknown Cauchy
data for different types of boundary value problems and provide numerical experiments
validating the introduced discretization techniques. Chapter 8 is devoted to the extension
of the well known operator preconditioning strategy [23, 64] to the space–time setting.
Parallelization in distributed and shared memory is discussed in Chapter 9. In Chapter
10 we briefly motivate the non-symmetric space–time FEM–BEM coupling method for
parabolic transmission problems with respect to the introduced functional framework, and
we conclude with a brief summary and outlook in Chapter 11.



2 FUNCTIONAL FRAMEWORK

The analysis of problem (1.1) is done in the setting of anisotropic Sobolev spaces which
are introduced and discussed in this chapter. Under certain conditions we can define trace
operators acting on those spaces and therefore provide conditions for the Dirichlet datum
u|Σ and the Neumann datum ∂nxu|Σ of the solution, resulting in existence and uniqueness
theorems for solutions of the model problem (1.1). The definitions and results in this chap-
ter are mainly based on [12, 34, 35, 65, 72]. We start with the definition of fractional order
Sobolev spaces on the time interval (0,T ) in Section 2.1 and use the results to introduce
anisotropic Sobolev spaces on the space–time domain Q = Ω × (0,T ) in Section 2.2. The
extension of the anisotropic setting to the space–time boundary Σ =Γ ×(0,T ) is discussed
in Section 2.3.

2.1 Sobolev Spaces on the Time Interval (0,T )

Let H1(0,T ) denote the standard Sobolev space on the time interval (0,T ). The norm of a
function u ∈ H1(0,T ) is given by

‖u‖2
H1(0,T ) := ‖u‖2

L2(0,T )+‖∂tu‖2
L2(0,T ) .

Moreover, we define the space of functions in H1(0,T ) with homogeneous initial condi-
tions as

H1
0,(0,T ) :=

{
v ∈ H1(0,T ) : v(0) = 0

}

with norm
‖u‖H1

0,(0,T )
:= ‖∂tu‖L2(0,T ) .

Analogously we define H1
,0(0,T ) to be the space of functions in H1(0,T ) vanishing at the

time horizon T . Fractional order Sobolev spaces on (0,T ) are introduced as corresponding
interpolation spaces [6, 34, 35], i.e. for s ∈ (0,1) we set

Hs(0,T ) :=
[
L2(0,T ),H1(0,T )

]
s ,

Hs
0,(0,T ) :=

[
L2(0,T ),H1

0,(0,T )
]

s ,

Hs
,0(0,T ) :=

[
L2(0,T ),H1

,0(0,T )
]

s .

Note that for s ∈ (0,1/2) we have Hs(0,T ) = Hs
0,(0,T ) = Hs

,0(0,T ), i.e. the homogeneous
initial and final conditions are not seen by the interpolation spaces [32]. The interpolation
norm of a function u ∈ Hs(0,T ) for s ∈ (0,1) is equivalent to the norm

‖u‖2
Hs(0,T ) := ‖u‖2

L2(0,T )+ |u|2Hs(0,T ),

5



6 2 Functional Framework

where

|u|2Hs(0,T ) :=
T∫

0

T∫

0

[u(t)−u(τ)]2

|t− τ|1+2s dτ dt.

The space H1/2
0, (0,T ) in particular will be important in the analysis of the domain varia-

tional formulation of problem (1.1). The Sobolev space H1/2
0, (0,T ) is a dense subspace of

H1/2(0,T ), see, e.g., [71], and its interpolation norm is equivalent to the norm

‖u‖2
H1/2

0, (0,T )
:= ‖u‖2

L2(0,T )+ |u|2H1/2(0,T )+ |u|
2
H1/2

0, (0,T )

with

|u|2
H1/2

0, (0,T )
:=

T∫

0

[u(t)]2

t
dt.

Similarly, a norm of a function u ∈ H1/2
,0 (0,T ) is given by

‖u‖2
H1/2
,0 (0,T )

:= ‖u‖2
L2(0,T )+ |u|2H1/2(0,T )+ |u|

2
H1/2
,0 (0,T )

with

|u|2
H1/2
,0 (0,T )

:=
T∫

0

[u(t)]2

T − t
dt.

A more detailed discussion of the space H1/2
0, (0,T ) and its importance for the analysis of

problem (1.1) in the anisotropic setting can be found in [32, 65]. For s > 1 with s = k+κ ,
k ∈ N and κ ∈ (0,1), we define

Hs(0,T ) :=
{

u ∈ Hk(0,T ) : |∂ k
t u|Hκ (0,T ) < ∞

}

where Hk(0,T ) denotes the standard Sobolev space of order k with norm

‖u‖2
Hk(0,T ) :=

k

∑̀
=0

∥∥∥∂ `
t u
∥∥∥

2

L2(0,T )
.

The corresponding Sobolev spaces of functions with homogeneous initial or final condi-
tions are then defined as

Hs
0,(0,T ) := Hs(0,T )∩H1

0,(0,T ), Hs
,0(0,T ) := Hs(0,T )∩H1

,0(0,T ).

Moreover, Sobolev spaces on (0,T ) with negative order s < 0 are given by

Hs
,0(0,T ) := [H−s

0, (0,T )]
′, Hs

0,(0,T ) := [H−s
,0 (0,T )]′, H̃s(0,T ) :=

[
H−s(0,T )

]′
.
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2.2 Anisotropic Sobolev Spaces on the Space–Time Domain Q

Let Hr(Ω) and Hr
0(Ω) for 0 ≤ r ∈ R denote the standard Sobolev spaces on Ω , see, e.g.,

[38, 62]. The anisotropic Sobolev space Hr,s(Q) for r ≥ 0 and s≥ 0 is defined as

Hr,s(Q) := L2(0,T ;Hr(Ω))∩Hs(0,T ;L2(Ω)),

where [34, 35]

Hs(0,T ;L2(Ω)) :=
{

u ∈ L2(Q) : |u|Hs(0,T ;L2(Ω)) < ∞
}

with
|u|2Hs(0,T ;L2(Ω)) :=

∫

Ω

‖u(x, ·)‖2
Hs(0,T ) dx.

The space L2(0,T ;Hr(Ω)) denotes the Bochner space as introduced in, e.g., [72, Section
23.2]. The analysis of the model problem (1.1) is done in the space H1,1/2(Q) and there-
fore we are interested in the properties of this specific anisotropic setting. The norm of a
function u ∈ H1,1/2(Q) is given by

‖u‖2
H1,1/2(Q) := ‖u‖2

L2(Q)+‖∇xu‖2
L2(Q)+ |u|2H1/2(0,T ;L2(Ω)) .

Moreover, we define the space of functions in H1,1/2(Q) with homogeneous initial condi-
tions

H1,1/2
;0, (Q) :=

{
u ∈ H1,1/2(Q) : |u|

H1/2
0, (0,T ;L2(Ω))

< ∞
}
,

where
|u|2

H1/2
0, (0,T ;L2(Ω))

:=
∫

Ω

|u(x, ·)|2
H1/2

0, (0,T )
dx (2.1)

and
‖u‖2

H1,1/2
;0, (Q)

:= ‖u‖2
H1,1/2(Q)+ |u|

2
H1/2

0, (0,T ;L2(Ω))
.

We write H1,1/2
;0, (Q) = L2(0,T ;H1(Ω))∩H1/2

0, (0,T ;L2(Ω)) with

H1/2
0, (0,T ;L2(Ω)) :=

{
u ∈ H1/2(0,T ;L2(Ω)) : |u|

H1/2
0, (0,T ;L2(Ω))

< ∞
}
.

The space of functions in H1,1/2
;0, (Q) with homogeneous boundary conditions is defined

as
H1,1/2

0;0, (Q) := L2(0,T ;H1
0 (Ω))∩H1/2

0, (0,T ;L2(Ω))

and is equipped with the norm

‖u‖2
H1,1/2

0;0, (Q)
:= ‖∇xu‖2

L2(Q)+ |u|2H1/2(0,T,L2(Ω))+ |u|
2
H1/2

0, (0,T ;L2(Ω))
.
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In the same way we introduce the space of functions in H1,1/2(Q) vanishing at the time
horizon T , i.e.

H1,1/2
;,0 (Q) := L2(0,T ;H1(Ω))∩H1/2

,0 (0,T ;L2(Ω))

and
H1,1/2

0;,0 (Q) := L2(0,T ;H1
0 (Ω))∩H1/2

,0 (0,T ;L2(Ω)).

In this case, the semi-norm (2.1) is replaced by

|u|2
H1/2
,0 (0,T ;L2(Ω))

:=
∫

Ω

|u(x, ·)|2
H1/2
,0 (0,T )

dx.

Moreover, we define the space

H1,1/2
;0, (Q,L) :=

{
u ∈ H1,1/2

;0, (Q) : Lu ∈ L2(Q)
}
,

where L := α∂t−∆x denotes the differential operator of the heat equation. The norm of a
function u ∈ H1,1/2

;0, (Q,L) is then given by

‖u‖2
H1,1/2

;0, (Q,L)
:= ‖u‖2

H1,1/2
;0, (Q)

+‖Lu‖2
L2(Q) .

The definition of the space H1,1/2
;,0 (Q,L′), where L′ :=−α∂t −∆x denotes the operator of

the adjoint heat equation, follows the same path. Analogously we define the spaces

H1,1/2(Q,L) :=
{

u ∈ H1,1/2(Q) : Lu ∈ L2(Q)
}

and
H1,1/2(Q,L′) :=

{
u ∈ H1,1/2(Q) : L′u ∈ L2(Q)

}
.

2.3 Anisotropic Sobolev Spaces on the Space–Time Boundary Σ

Let Hr(Γ ) for 0≤ r ∈ R denote the standard Sobolev spaces on Γ , see, e.g., [38, 62]. For
a smooth lateral boundary Γ the space Hr(Γ ) is defined for arbitrary r ≥ 0. However, for
a general Lipschitz boundary Γ the definition is only valid for 0≤ r ≤ 1. The anisotropic
Sobolev spaces Hr,s(Σ) for r,s ≥ 0 are defined in a similar way as Hr,s(Q) described in
Section 2.2, see [35]. We set

Hr,s(Σ) := L2(0,T ;Hr(Γ ))∩Hs(0,T ;L2(Γ )),

where
Hs(0,T ;L2(Γ )) :=

{
u ∈ L2(Σ) : |u|Hs(0,T ;L2(Γ )) < ∞

}
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with
|u|2Hs(0,T ;L2(Γ )) :=

∫

Γ

‖u(x, ·)‖2
Hs(0,T ) dsx.

Again, the space L2(0,T ;Hr(Γ )) denotes the Bochner space as introduced in, e.g., [72,
Section 23.2]. For r,s ∈ (0,1) a norm is given by

‖u‖2
Hr,s(Σ) :=‖u‖2

L2(Σ)+ |u|2L2(0,T ;Hr(Γ ))+ |u|2Hs(0,T ;L2(Γ ))

with

|u|2L2(0,T ;Hr(Γ )) :=
∫

Γ

∫

Γ

‖u(x, ·)−u(y, ·)‖2
L2(0,T )

|x− y|n−1+2r dsy dsx

and

|u|2Hs(0,T ;L2(Γ )) :=
T∫

0

T∫

0

‖u(·, t)−u(·,τ)‖2
L2(Γ )

|t− τ|1+2s dτ dt.

The following lemma is essential for the numerical analysis of the approximation prop-
erties of L2 projections on boundary element spaces which are defined with respect to an
arbitrary triangulation of the space–time boundary Σ . Since we will work with shape reg-
ular elements, the lemma basically implies that we can use the approximation properties
in standard Sobolev spaces Hs(Σ) for s ≥ 0, see, e.g., [38, 62], to obtain the convergence
results with respect to the anisotropic setting.

Lemma 2.1. For r,s ∈ [0,1] the continuous embeddings

Hmax(r,s)(Σ) ↪→ Hr,s(Σ) ↪→ Hmin(r,s)(Σ)

hold.

Proof. Let u ∈ Hr,s(Σ) for r,s ∈ [0,1] and define m := min(r,s), M := max(r,s). Since
Hr(Γ ) ↪→ Hm(Γ ) [27, Theorem 4.2.2] and Hs(0,T ) ↪→ Hm(0,T ), we have

‖u‖2
Hm,m(Σ)

∼= ‖u‖2
Hm,0(Σ)+‖u‖2

H0,m(Σ) ≤ c
(
‖u‖2

Hr,0(Σ)+‖u‖2
H0,s(Σ)

)

≤ c‖u‖2
Hr,s(Σ) ,

(2.2)

and therefore Hr,s(Σ) ↪→ Hm,m(Σ). According to [38, Theorem B.11 ff.] and [34, 35], and
since H1(Σ)∼= H1,1(Σ), we have

Hm,m(Σ) =
[
L2(Σ),H1,1(Σ)

]
m
∼=
[
L2(Σ),H1(Σ)

]
m = Hm(Σ). (2.3)

Hence ‖u‖Hm,m(Σ)
∼= ‖u‖Hm(Σ) and therefore Hr,s(Σ) ↪→ Hm(Σ). The proof of the first

equality in (2.3) follows the same path as described in [35, Proposition 2.1] in the case of
anisotropic Sobolev spaces on Q.
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To prove the continuous embedding HM(Σ) ↪→ Hr,s(Σ), we use HM(Γ ) ↪→ Hr(Γ ) and
HM(0,T ) ↪→Hs(0,T ). Analogously to estimate (2.2) and relation (2.3) we obtain HM(Σ)∼=
HM,M(Σ) and ‖u‖2

Hr,s(Σ)≤ c‖u‖2
HM,M(Σ), and therefore conclude the continuous embedding

HM(Σ) ↪→ Hr,s(Σ).

Let us now introduce the spaces

Hr,s
;0,(Σ) := L2(0,T ;Hr(Γ ))∩Hs

0,(0,T ;L2(Γ )),

Hr,s
;,0(Σ) := L2(0,T ;Hr(Γ ))∩Hs

,0(0,T ;L2(Γ )),

which are the closures in Hr,s(Σ) of the subspaces of functions vanishing in a neighborhood
of t = 0 and t = T , respectively. Anisotropic Sobolev spaces on Σ with negative order
r,s < 0 are defined as

Hr,s
;,0(Σ) :=

[
H−r,−s

;0, (Σ)
]′
, Hr,s

;0,(Σ) :=
[
H−r,−s

;,0 (Σ)
]′
, H̃r,s(Σ) :=

[
H−r,−s(Σ)

]′
.

For convenience we additionally set H−r,−s(Σ) := H−r,−s
;,0 (Σ) and H̃r,s(Σ) := Hr,s

;0,(Σ) for
r,s≥ 0.

Remark 2.1. For r≥ 0 and 0≤ s < 1
2 we have Hr,s(Σ) = Hr,s

;0,(Σ) = Hr,s
;,0(Σ) and therefore

H−r,−s
;0, (Σ) = H−r,−s

;,0 (Σ) = H̃−r,−s(Σ).

For a function u ∈C(Q) we define the interior Dirichlet trace as

γ int
0 u(x, t) := lim

Ω3x̃→x∈Γ
u(x̃, t) for (x, t) ∈ Σ .

Hence γ int
0 u coincides with the restriction of u to the space–time boundary Σ , i.e. we have

γ int
0 u = u|Σ . This operator can be extended to the anisotropic Sobolev space H1,1/2(Q).

Theorem 2.2 (Trace Theorem, [35, Theorem 2.1] and [10]). The interior Dirichlet trace
operator

γ int
0 : H1,1/2(Q)→ H1/2,1/4(Σ)

is linear and bounded, satisfying
∥∥γ int

0 u
∥∥

H1/2,1/4(Σ)
≤ cT ‖u‖H1,1/2(Q) for all u ∈ H1,1/2(Q).

Lemma 2.3 ([10, Lemma 2.4]). The interior Dirichlet trace operator γ int
0 is bounded and

surjective from H1,1/2
;0, (Q) to H1/2,1/4(Σ).
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Theorem 2.4 (Inverse Trace Theorem). The interior Dirichlet trace operator

γ int
0 : H1,1/2

;0, (Q)→ H1/2,1/4(Σ)

has a continuous right inverse operator

E0 : H1/2,1/4(Σ)→ H1,1/2
;0, (Q)

satisfying γ int
0 E0v = v for all v ∈ H1/2,1/4(Σ), i.e. there exists a constant cIT > 0 such that

‖E0v‖
H1,1/2

;0, (Q)
≤ cIT ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

Proof. The proof is similar to [19, Theorem 4.9]. See also [10].

Piecewise Smooth Functions on Σ

For a closed, piecewise smooth boundary Γ =
⋃J

j=1 Γ j with Γi∩Γj = /0 for i 6= j, where Γj
are open parts of the boundary Γ , we set Σ j := Γj× (0,T ) for j = 1, ...,J. We then have
Σ =

⋃J
j=1 Σ j. For r ≥ 0 and s ≥ 0 we define the anisotropic Sobolev space on the open

part Σ j of the space–time boundary Σ

Hr,s(Σ j) :=
{

v = ṽ|Σ j : ṽ ∈ Hr,s(Σ)
}

and the space of piecewise smooth functions on Σ

Hr,s
pw(Σ) :=

{
v ∈ L2(Σ) : v|Σ j ∈ Hr,s(Σ j) for j = 1, ...,J

}

with norm

‖v‖Hr,s
pw(Σ) :=

(
J

∑
j=1

∥∥∥v|Σ j

∥∥∥
2

Hr,s(Σ j)

)1/2

.

For r,s < 0 the anisotropic Sobolev space on Σ j is defined as the corresponding dual
space

H̃r,s(Σ j) :=
[
H−r,−s(Σ j)

]′
.

The space of piecewise smooth functions on Σ with negative order is then given by

Hr,s
pw(Σ) :=

J

∏
j=1

H̃r,s(Σ j)

with norm

‖w‖Hr,s
pw(Σ) :=

J

∑
j=1

∥∥∥w|Σ j

∥∥∥
H̃r,s(Σ j)

.
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Lemma 2.5. For r,s < 0 and w ∈ Hr,s
pw(Σ) there holds

‖w‖H̃r,s(Σ) ≤ ‖w‖Hr,s
pw(Σ) .

Proof. Let w ∈ Hr,s
pw(Σ). By duality we conclude

‖w‖H̃r,s(Σ) = sup
06=v∈H−r,−s(Σ)

|〈w,v〉Σ |
‖v‖H−r,−s(Σ)

≤ sup
06=v∈H−r,−s(Σ)

J

∑
j=1

|〈w,v〉Σ j |
‖v‖H−r,−s(Σ)

≤ sup
06=v∈H−r,−s(Σ)

J

∑
j=1

|〈w|Σ j ,v|Σ j〉Σ j |∥∥∥v|Σ j

∥∥∥
H−r,−s(Σ j)

≤
J

∑
j=1

sup
06=v j∈H−r,−s(Σ j)

|〈w|Σ j ,v j〉Σ j |∥∥v j
∥∥

H−r,−s(Σ j)

= ‖w‖Hr,s
pw(Σ) .

Note that for a general Lipschitz boundary Γ we have to assume |r| ≤ 1 to keep the validity
of the statements above.



3 DOMAIN VARIATIONAL FORMULATION

In this chapter we introduce and analyze the domain variational formulation of problem
(1.1) with given Dirichlet boundary conditions in the setting of anisotropic Sobolev spaces.
In Sections 3.1 - 3.2 we recall existence and uniqueness results for the solution of the vari-
ational formulation of the model problem with Dirichlet boundary conditions and homo-
geneous initial conditions and introduce a transformation operator HT in order to obtain
an equivalent Galerkin–Bubnov variational formulation, which is important for the stabil-
ity of the discretized space–time system [65]. In Section 3.3 we define and analyze the
Neumann trace of solutions of initial Dirichlet boundary value problems, and we derive
Green’s identities for the heat equation in Section 3.4. The unique solvability of problem
(1.1) with given initial datum and homogeneous Dirichlet boundary conditions is discussed
in Section 3.5. The presented results are based on [12, 65, 71, 72].

3.1 Homogeneous Initial Datum

In the following section we discuss the unique solvability of problem (1.1) with given
Dirichlet datum and homogeneous initial conditions based on [65,71]. Let f ∈ [H1,1/2

0;,0 (Q)]′

and g ∈H1/2,1/4(Σ) be given. We consider the initial Dirichlet boundary value problem

α∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q,

u(x, t) = g(x, t) for (x, t) ∈ Σ ,

u(x,0) = 0 for x ∈Ω .

(3.1)

The variational formulation of problem (3.1) is to find u ∈ H1,1/2
;0, (Q) with u|Σ = g such

that
a(u,v) = 〈 f ,v〉Q for all v ∈ H1,1/2

0;,0 (Q) (3.2)

with the bilinear form

a(u,v) := α〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q) (3.3)

for u∈H1,1/2
;0, (Q) and v∈H1,1/2

;,0 (Q). Here we have to ensure that the term 〈∂tu,v〉Q is well
defined. In [65] it was shown that the bilinear form 〈∂tu,v〉Q can be extended to functions
u ∈ H1,1/2

;0, (Q) and v ∈ H1,1/2
;,0 (Q), and that there exists a constant c > 0 such that

〈∂tu,v〉Q ≤ c‖u‖
H1,1/2

;0, (Q)
‖v‖

H1,1/2
;,0 (Q)

for all u ∈ H1,1/2
;0, (Q),v ∈ H1,1/2

;,0 (Q).

The bilinear form 〈·, ·〉Q in (3.2) denotes the duality pairing on [H1,1/2
0;,0 (Q)]′×H1,1/2

0;,0 (Q) as
extension of the inner product in L2(Q).

13
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Hence
a(·, ·) : H1,1/2

;0, (Q)×H1,1/2
;,0 (Q)→ R

is bounded, i.e. there exists a constant cA
2 > 0 such that

|a(u,v)| ≤ cA
2 ‖u‖H1,1/2

;0, (Q)
‖v‖

H1,1/2
;,0 (Q)

for all u ∈ H1,1/2
;0, (Q),v ∈ H1,1/2

;,0 (Q).

For the given Dirichlet datum g ∈H1/2,1/4(Σ) we consider the decomposition u := ū+ ũg,
where ũg := E0g is an extension of the boundary datum g to the space–time domain Q
satisfying γ int

0 ũg = g. The boundedness of E0 : H1/2,1/4(Σ)→ H1,1/2
;0, (Q) then implies

∥∥ũg
∥∥

H1,1/2
;0, (Q)

≤ cIT ‖g‖H1/2,1/4(Σ) . (3.4)

Hence the variational formulation (3.2) changes to: Find ū ∈ H1,1/2
0;0, (Q) such that

a(ū,v) = 〈 f ,v〉Q−a(ũg,v) for all v ∈ H1,1/2
0;,0 (Q). (3.5)

Theorem 3.1 (Existence and uniqueness [65, Theorem 3.2]). The variational formulation
(3.5) implies an isomorphism

L : H1,1/2
0;0, (Q)→ [H1,1/2

0;,0 (Q)]′

satisfying
‖ū‖

H1,1/2
0;0, (Q)

≤ 2‖Lū‖
[H1,1/2

0;,0 (Q)]′
for all ū ∈ H1,1/2

0;0, (Q).

Hence we conclude that the variational problem (3.5) is uniquely solvable and therefore
u = ū+ ũg is the unique solution of the variational problem (3.2). A direct consequence of
Theorem 3.1 is the stability estimate

1
2
‖ū‖

H1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;,0 (Q)

a(ū,v)
‖v‖

H1,1/2
0;,0 (Q)

for all ū ∈ H1,1/2
0;0, (Q). (3.6)

Theorem 3.2. For f ∈ [H1,1/2
0;,0 (Q)]′ and g ∈ H1/2,1/4(Σ) there exists a unique solution

u ∈ H1,1/2
;0, (Q) of the variational problem (3.2) satisfying

‖u‖
H1,1/2

;0, (Q)
≤ cR ‖ f‖

[H1,1/2
0;,0 (Q)]′

+ cB ‖g‖H1/2,1/4(Σ) .
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Proof. Unique solvability is a result of Theorem 3.1. The stability condition (3.6) and the
boundedness of the bilinear form a(·, ·) imply

1
2
‖ū‖

H1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;,0 (Q)

a(ū,v)
‖v‖

H1,1/2
0;,0 (Q)

= sup
0 6=v∈H1,1/2

0;,0 (Q)

〈 f ,v〉Q−a(ũg,v)
‖v‖

H1,1/2
0;,0 (Q)

≤ ‖ f‖
[H1,1/2

0;,0 (Q)]′
+ c
∥∥ũg
∥∥

H1,1/2
;0, (Q)

.

The assertion follows by using the triangle inequality for u = ū+ ũg, the Poincaré inequal-
ity, and the stability (3.4) of the inverse trace operator.

Note that (3.5) is a Galerkin–Petrov variational formulation with different trial and test
spaces. In order to obtain an equivalent Galerkin–Bubnov variational formulation, which
is important for the stability of the discretized space–time system when using conforming
finite element spaces, we have to establish some suitable bijective transformation operator
HT : H1,1/2

;0, (Q)→ H1,1/2
;,0 (Q).

3.2 The Transformation OperatorHT

The definition and analysis of the transformation operator in the following section is based
on [65]. Here we only recall the main results. Let us consider the eigenvalue problem

−∂ttu(t) = λu(t) for t ∈ (0,T ), u(0) = 0, ∂tu(T ) = 0. (3.7)

The eigenfunctions {vk}k∈N0
with eigenvalues {λk}k∈N0

of (3.7) are given as

vk(t) = sin
((π

2
+ kπ

) t
T

)
, λk =

1
T 2

(π
2
+ kπ

)2
, k ∈ N0 (3.8)

and form an orthogonal basis in L2(0,T ) satisfying

T∫

0

vk(t)vl(t)d t =
T
2

δkl.

Hence, for u ∈ L2(0,T ) we may consider the representation

u(t) =
∞

∑
k=0

uk sin
((π

2
+ kπ

) t
T

)

with

uk =
2
T

T∫

0

u(t)sin
((π

2
+ kπ

) t
T

)
d t, k ∈ N0.



16 3 Domain Variational Formulation

By Parseval’s identity we have

‖u‖2
L2(0,T ) =

T
2

∞

∑
k=0

u2
k

and for u ∈ H1
0,(0,T ) we further obtain

‖∂tu‖2
L2(0,T ) =

1
2T

∞

∑
k=0

(π
2
+ kπ

)2
u2

k .

Hence, using interpolation, we can define an equivalent norm in H1/2
0, (0,T ) by

‖u‖2
H1/2

0, (0,T )
=

1
2

∞

∑
k=0

(π
2
+ kπ

)
u2

k ,

as well as an inner product

〈u,v〉
H1/2

0, (0,T )
=

1
2

∞

∑
k=0

(π
2
+ kπ

)
ukvk.

The operatorHT : L2(0,T )→ L2(0,T ) is then defined by

(HT u)(t) :=
∞

∑
k=0

uk cos
((π

2
+ kπ

) t
T

)
for u ∈ L2(0,T ).

The transformation operatorHT : L2(0,T )→ L2(0,T ) as well as the restriction

HT : H1/2
0, (0,T )→ H1/2

,0 (0,T )

define isometric isomorphisms, i.e. we have

‖HT u‖L2(0,T ) = ‖u‖L2(0,T ) for all u ∈ L2(0,T )

and
‖HT u‖

H1/2
,0 (0,T )

= ‖u‖
H1/2

0, (0,T )
for all u ∈ H1/2

0, (0,T ).

For u ∈ L2(Q) we consider the representation

u(x, t) =
∞

∑
i=1

Ui(t)φi(x), Ui(t) =
∞

∑
k=0

ui,kvk(t) (3.9)

where φi ∈ H1
0 (Ω) are the orthonormal eigenfunctions of the spatial Dirichlet eigenvalue

problem
−∆φ = µφ in Ω , φ = 0 on Γ , ‖φ‖L2(Ω) = 1 (3.10)
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and vk ∈ H1
0,(0,T ) are given by (3.8). The coefficients in (3.9) are given by

ui,k =
2
T

T∫

0

∫

Ω

u(x, t)vk(t)φi(x)dxdt .

ThenHT u for u ∈ L2(Q) is defined as

(HT u)(x, t) =
∞

∑
i=1

(HTUi)(t)φi(x) for (x, t) ∈ Q.

Again, the transformation operatorHT : L2(Q)→ L2(Q) and its restriction

HT : H1,1/2
;0, (Q)→ H1,1/2

;,0 (Q)

define isometric isomorphisms, i.e. we have

‖HT u‖L2(Q) = ‖u‖L2(Q) for all u ∈ L2(Q)

and
‖HT u‖

H1,1/2
;,0 (Q)

= ‖u‖
H1,1/2

;0, (Q)
for all u ∈ H1,1/2

;0, (Q).

As mentioned before, a detailed analysis of the operatorHT is given in [65].

By using the transformation operator HT we obtain an equivalent Galerkin–Bubnov vari-
ational formulation: Find ū ∈ H1,1/2

0;0, (Q) such that

a(ū,HT v) = 〈 f ,HT v〉Q−a(ũg,HT v) for all v ∈ H1,1/2
0;0, (Q). (3.11)

This Galerkin–Bubnov variational formulation is uniquely solvable as well.

For a given conforming space–time finite element space Vh ⊂H1,1/2
0;0, (Q) the Galerkin vari-

ational formulation of (3.11) is to find uh ∈ Vh such that

a(uh,HT vh) = 〈 f ,HT vh〉Q−a(ũg,HT vh) for all vh ∈ Vh. (3.12)

The related finite element stiffness matrix is positive definite and therefore unique solvabil-
ity of (3.12) follows for any conforming choice of Vh. Related numerical experiments for
the discretization of the variational problem (3.11) in the spatially one-dimensional case
can be found in [65, 71].
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3.3 Neumann Trace Operator

For a function u ∈C1(Q) we define the interior Neumann trace

γ int
1 u(x, t) := lim

Ω3x̃→x∈Γ
nx ·∇x̃u(x̃, t) for (x, t) ∈ Σ ,

which coincides with the normal derivative of u on Σ , i.e. we have γ int
1 u = ∂nxu|Σ . The def-

inition of the interior Neumann trace operator can be extended to the anisotropic Sobolev
space H1,1/2(Q,L) and to functions u ∈ H1,1/2

;0, (Q) with Lu ∈ [H1,1/2
;,0 (Q)]′.

Lemma 3.3 ([10, Proposition 2.18]). The interior Neumann trace operator

γ int
1 : H1,1/2(Q,L)→ H−1/2,−1/4(Σ)

is linear and bounded satisfying
∥∥γ int

1 u
∥∥

H−1/2,−1/4(Σ)
≤ cNT ‖u‖H1,1/2(Q,L) for all u ∈ H1,1/2(Q,L).

For u ∈C2(Q) we have γ int
1 u = ∂nxu|Σ in the distributional sense.

Note that the continuity of the mapping γ int
1 : H1,1/2(Q,L′)→H−1/2,−1/4(Σ) can be shown

in the same way, only with respect to the differential operator of the adjoint heat equa-
tion.

Recall that the mapping L : H1,1/2
0;0, (Q)→ [H1,1/2

0;,0 (Q)]′ defines an isomorphism, see Theo-
rem 3.1. The corresponding proof in [65] utilizes a Fourier series expansion of functions
u ∈H1,1/2

0;0, (Q) as in 3.9 with eigenfunctions φi ∈H1
0 (Ω) of the spatial Dirichlet eigenvalue

problem for the Laplacian (3.10). In the same way, by considering a series expansion of
u ∈ H1,1/2

;0, (Q) with eigenfunctions φi ∈ H1(Ω) of the spatial Neumann eigenvalue prob-
lem

−∆φ = λφ in Ω , ∂nφ = 0 on Γ ,

one can show that
L : H1,1/2

;0, (Q)→ [H1,1/2
;,0 (Q)]′

and consequently
L′ : H1,1/2

;,0 (Q)→ [H1,1/2
;0, (Q)]′

define isomorphisms as well.

For functions u∈H1,1/2
;0, (Q) withLu∈ [H1,1/2

;,0 (Q)]′ we can determine the associated conor-
mal derivative γ int

1 u ∈ H−1/2,−1/4(Σ) as the solution of the variational problem

〈γ int
1 u,z〉Σ = a(u,ET z)−〈Lu,ET z〉Q for all z ∈ H1/2,1/4(Σ) (3.13)
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where ET := HTE0 : H1/2,1/4(Σ)→ H1,1/2
;,0 (Q) and a(·, ·) is given by (3.3). Here and in

the following chapters 〈·, ·〉Q denotes the duality pairing on [H1,1/2
;,0 (Q)]′×H1,1/2

;,0 (Q) or

H1,1/2
;0, (Q)× [H1,1/2

;0, (Q)]′ as extension of the inner product in L2(Q), whereas 〈·, ·〉Σ denotes
the duality pairing on H−1/2,−1/4(Σ)×H1/2,1/4(Σ) as extension of the inner product in
L2(Σ). The stability condition

‖w‖H−1/2,−1/4(Σ) = sup
06=z∈H1/2,1/4(Σ)

〈w,z〉Σ
‖z‖H1/2,1/4(Σ)

for all w ∈ H−1/2,−1/4(Σ)

ensures unique solvability of (3.13) and thus, we obtain the following stability estimate for
the Neumann trace.

Theorem 3.4. Let u∈H1,1/2
;0, (Q) with Lu∈ [H1,1/2

;,0 (Q)]′. Then the interior Neumann trace
γ int

1 u ∈ H−1/2,−1/4(Σ) satisfies the stability estimate

∥∥γ int
1 u
∥∥

H−1/2,−1/4(Σ)
≤ cIT

(
cA

2 ‖u‖H1,1/2
;0, (Q)

+‖Lu‖
[H1,1/2

;,0 (Q)]′

)
.

Proof. Let u ∈H1,1/2
;0, (Q). Using the definition of the Neumann trace (3.13), the bounded-

ness of the bilinear form a(·, ·) and the boundedness of the operator ET yields

∥∥∥γ int
1 u
∥∥∥

H−1/2,−1/4(Σ)
= sup

06=z∈H1/2,1/4(Σ)

〈γ int
1 u,z〉Σ

‖z‖H1/2,1/4(Σ)

= sup
06=z∈H1/2,1/4(Σ)

a(u,ET z)−〈Lu,ET z〉Q
‖z‖H1/2,1/4(Σ)

≤ cIT

(
cA

2 ‖u‖H1,1/2
;0, (Q)

+‖Lu‖
[H1,1/2

;,0 (Q)]′

)
.

In particular, for the solution u∈H1,1/2
;0, (Q) of the initial Dirichlet boundary value problem

(3.1) with homogeneous source term, i.e. f ≡ 0, we get
∥∥∥γ int

1 u
∥∥∥

H−1/2,−1/4(Σ)
≤ cIT cA

2 ‖u‖H1,1/2
;0, (Q)

.

The definition of the Neumann trace for functions v ∈ H1,1/2
;,0 (Q) with L′u ∈ [H1,1/2

;0, (Q)]′

follows the same path, only with respect to the differential operator of the adjoint heat
equation and the corresponding bilinear form.



20 3 Domain Variational Formulation

3.4 Green’s Identities for the Heat Equation

This section is devoted to the derivation of Green’s first and second identity for the heat
equation with respect to the previously introduced anisotropic setting. These formulas are
later on used to derive the representation formula for the heat equation and for the analysis
of related boundary integral operators, see Chapter 4. Recall that Ω ⊂Rn is assumed to be
a bounded domain with, for n = 2,3, Lipschitz boundary Γ = ∂Ω .

Theorem 3.5 ([2, Corollary 7.8]). Let u ∈C2(Ω)∩C1(Ω). Then there holds the classical
Green’s formula, i.e.

∫

Ω

[
∆u(x)v(x)+∇u(x) ·∇v(x)

]
dx =

∫

Γ

∂nu(x)v(x)dsx

for all v ∈C1(Ω)∩C(Ω).

Now consider u ∈C2(Q). By applying Theorem 3.5 we get

T∫

0

∫

Ω

[
α∂tu(x, t)−∆xu(x, t)

]
v(x, t)dxdt =−

T∫

0

∫

Γ

∂nxu(x, t)v(x, t)dsx dt

+

T∫

0

∫

Ω

[
α ∂tu(x, t)v(x, t)+∇xu(x, t) ·∇xv(x, t)

]
dxdt .

(3.14)

This equation is the so-called Green’s first identity for the heat equation. Using integration
by parts on the first term on the right hand side and rearranging the terms yields

α
∫

Ω

u(x,T )v(x,T )dx = α
∫

Ω

u(x,0)v(x,0)dx

+

T∫

0

∫

Ω

[
α∂tu(x, t)−∆xu(x, t)

]
v(x, t)dxdt +

T∫

0

∫

Γ

∂nxu(x, t)v(x, t)dsx dt

+

T∫

0

∫

Ω

[
α u(x, t)∂tv(x, t)−∇xu(x, t) ·∇xv(x, t)

]
dxdt .
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Again, by applying Theorem 3.5 we get

α
∫

Ω

u(x,T )v(x,T )dx = α
∫

Ω

u(x,0)v(x,0)dy

+

T∫

0

∫

Ω

[
α∂tu(x, t)−∆xu(x, t)

]
v(x, t)dxdt +

T∫

0

∫

Γ

∂nxu(x, t)v(x, t)dsx dt

−
T∫

0

∫

Ω

[
−α∂tv(x, t)−∆xv(x, t)

]
u(x, t)dxdt−

T∫

0

∫

Γ

∂nxv(x, t)u(x, t)dsx dt .

(3.15)

This equation is the so-called Green’s second identity for the heat equation. Our aim is to
extend these identities to the more general case of functions in H1,1/2(Q). To do so, we
use the following density results.

Lemma 3.6 ([10, Lemma 2.22]). Let C∞
0 (Ω × (0,T ]) denote the space of functions in

C∞
0 (Rn× (0,∞)) restricted to Q. Then C∞

0 (Ω × (0,T ]) is dense in the anisotropic Sobolev
spaces H1,1/2

;0, (Q) and H1,1/2
;0, (Q,L).

Analogously we obtain the following result, where C∞
0 (Ω× [0,T )) is the space of functions

in C∞
0 (Rn× (−∞,T )) restricted to Q.

Corollary 3.7. The space C∞
0 (Ω × [0,T )) is dense in H1,1/2

;,0 (Q) and H1,1/2
;,0 (Q,L′).

The following lemma is essential for the derivation of the jump conditions of the boundary
integral operators in Chapter 4.

Lemma 3.8 ([10, Lemma 2.23]). The combined trace map

(γ int
0 ,γ int

1 ) : u 7→ (γ int
0 u,γ int

1 u)

maps C∞
0 (Ω × (0,T ]) onto a dense subspace of H1/2,1/4(Σ)×H−1/2,−1/4(Σ).

Remark 3.1. Lemma 3.8 is also valid if we replace the space C∞
0 (Ω × (0,T ]) with its

counterpart C∞
0 (Ω × [0,T )).

Recall that 〈∂t ·, ·〉Q denotes the bounded bilinear form on H1,1/2
;0, (Q)×H1,1/2

;,0 (Q) intro-
duced in Section 3.1.

Theorem 3.9 (Green’s first identity). For u ∈ H1,1/2
;0, (Q,L) and v ∈ H1,1/2

;,0 (Q) there holds

α〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q) = 〈γ int
1 u,γ int

0 v〉Σ + 〈Lu,v〉L2(Q).
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Proof. Let u ∈C∞
0 (Ω × (0,T ]). According to (3.14) there holds

〈Lu,v〉L2(Q) = α〈∂tu,v〉L2(Q)+ 〈∇xu,∇xv〉L2(Q)−〈∂nxu,v〉L2(Σ) (3.16)

for all v ∈C∞
0 (Ω × [0,T )). All the terms are continuous with respect to v in the H1,1/2

;,0 (Q)-

norm. Hence we can extend (3.16) by continuity to v ∈ H1,1/2
;,0 (Q). Whereas for a fixed

function v ∈ H1,1/2
;,0 (Q) all the terms are continuous with respect to u in the H1,1/2

;0, (Q,L)-
norm. Hence, by applying Lemma 3.6, we can extend (3.16) to u ∈ H1,1/2

;0, (Q,L) which
concludes the proof.

Note that Green’s first identity remains valid for u ∈H1,1/2
;0, (Q) with Lu ∈ [H1,1/2

;,0 (Q)]′ and

v∈H1,1/2
;,0 (Q), see the definiton of the Neumann trace in Section 3.3. The L2 scalar product

〈Lu,v〉L2(Q) in Theorem 3.9 is then extended to the duality product 〈Lu,v〉Q.

Theorem 3.10 (Green’s second identity). For u∈H1,1/2
;0, (Q,L) and v∈H1,1/2

;,0 (Q,L′) there
holds

〈Lu,v〉L2(Q)−〈u,L′v〉L2(Q) =−〈γ int
1 u,γ int

0 v〉Σ + 〈γ int
0 u,γ int

1 v〉Σ . (3.17)

Proof. For u ∈C∞
0 (Ω × (0,T ]) and v ∈C∞

0 (Ω × [0,T )) we have

〈Lu,v〉L2(Q)−〈u,L′v〉L2(Q) =−〈γ int
1 u,γ int

0 v〉L2(Σ)+ 〈γ int
0 u,γ int

1 v〉L2(Σ).

Similar as in the proof of Theorem 3.9 we can extend this formula to u ∈H1,1/2
;0, (Q,L) and

v ∈ H1,1/2
;,0 (Q,L′) by applying Lemma 3.6 and Corollary 3.7.

Again, Green’s second identity remains valid for u∈H1,1/2
;0, (Q) with Lu∈ [H1,1/2

;,0 (Q)]′ and

v∈H1,1/2
;,0 (Q) withL′v∈ [H1,1/2

;0, (Q)]′. The L2 scalar products 〈Lu,v〉L2(Q) and 〈u,L′v〉L2(Q)

in Theorem 3.10 are then extended to the duality products 〈Lu,v〉Q and 〈u,L′v〉Q, respec-
tively.

3.5 Non-Homogeneous Initial Datum

The following analysis in the case of a given initial datum and homogeneous Dirichlet
boundary conditions is based on [72, Chapter 23] and [12]. In this section we only recall
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the main results. Let u0 ∈ L2(Ω) be given. We consider the initial Dirichlet boundary
value problem

α∂tu(x, t)−∆xu(x, t) = 0 for (x, t) ∈ Q,

u(x, t) = 0 for (x, t) ∈ Σ ,

u(x,0) = u0(x) for x ∈Ω .

(3.18)

The analysis of problem (3.18) is done in the space V0(Q) defined as [72]

V0(Q) := L2(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω)).

The norm of a function u ∈ V0(Q) is given by

‖u‖2
V0(Q) := ‖u‖2

L2(0,T ;H1
0 (Ω))+‖α∂tu‖2

L2(0,T ;H−1(Ω)) ,

where
‖u‖L2(0,T ;H1

0 (Ω)) := ‖∇xu‖L2(Q)

and

‖α∂tu‖L2(0,T ;H−1(Ω)) := sup
0 6=v∈L2(0,T ;H1

0 (Ω))

〈α∂tu,v〉Q
‖v‖L2(0,T ;H1

0 (Ω))

.

Here, 〈·, ·〉Q denotes the duality pairing on L2(0,T ;H−1(Ω))×L2(0,T ;H1
0 (Ω)) as exten-

sion of the inner product in L2(Q). Analogously we define the space V(Q) of functions
with non-homogeneous Dirichlet boundary conditions, i.e.

V(Q) := L2(0,T ;H1(Ω))∩H1(0,T ;H−1(Ω))

with norm
‖u‖2

V(Q) := ‖u‖2
L2(Q)+‖u‖2

V0(Q) .

Theorem 3.11 ([72, Theorem 23.A]). For a given initial datum u0 ∈ L2(Ω) there exists a
unique solution u ∈ V0(Q) of problem (3.18) satisfying the stability estimate

‖u‖V0(Q) ≤ cI ‖u0‖L2(Ω) .

The spaces V(Q) and V0(Q) are dense subspaces of H1,1/2(Q) and H1,1/2
0;, (Q), respectively

[10, 34]. Moreover, the following norm equivalence holds.

Lemma 3.12. For u ∈ V(Q) with Lu = 0 in Q the norms of V(Q) and H1,1/2(Q) are
equivalent, i.e. there exist constants c1,c2 > 0 such that

‖u‖V(Q) ≤ c1 ‖u‖H1,1/2(Q) ≤ c2 ‖u‖V(Q) .

Proof. Follows the lines of [10, Lemma 2.15].
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Additionally, if u ∈ V0(Q), i.e. u vanishes on the boundary Σ , we immediately conclude
that there exist constants c̃1, c̃2 > 0 such that

‖u‖V0(Q) ≤ c̃1 ‖u‖H1,1/2
0;, (Q)

≤ c̃2 ‖u‖V0(Q) . (3.19)

This follows by using the Poincaré inequality and Lemma 3.12.

An important property of functions u ∈ V(Q) is the continuity in time [72], i.e. we have

u ∈C([0,T ];L2(Ω)). (3.20)

Hence the initial trace τ0u := u|t=0 ∈ L2(Ω) of the solution u of problem (3.18) is well
defined.

The unique solution u ∈ H1,1/2(Q) of the fully non-homogeneous initial boundary value
problem (1.1) with Dirichlet boundary conditions u|Σ = g is then given as u = ūg + ū0,

where ūg ∈ H1,1/2
;0, (Q) is the unique solution of problem (3.1) with homogeneous initial

conditions and ū0 ∈ V0(Q) is the unique solution of problem (3.18). By applying the
stability estimate of Theorem 3.2, the Poincaré inequality, estimate (3.19), and Theorem
3.11, we obtain the following stability estimate for the solution u ∈ H1,1/2(Q),

‖u‖H1,1/2(Q) ≤ cR ‖ f‖
[H1,1/2

0;,0 (Q)]′
+ cB ‖g‖H1/2,1/4(Σ)+ c‖u0‖L2(Ω) .

The initial trace of solutions u ∈ H1,1/2(Q) of problem (1.1) with Dirichlet boundary con-
ditions is well defined due to the decomposition u = ūg + ū0 with ūg ∈ H1,1/2

;0, (Q) and
ū0 ∈ V0(Q). We set τ0u := τ0ū0 ∈ L2(Ω) according to (3.20).
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In order to express the solution of the initial boundary value problem (1.1) by means of
heat potentials as in (1.2), the existence of a fundamental solution is essential. In Section
4.1 we derive the fundamental solution of the heat equation and the related representation
formula. In Sections 4.2 - 4.7 we introduce and analyze the heat potentials as well as the
resulting (boundary) integral operators. The presented analysis is based on [12].

4.1 Representation Formula for the Heat Equation

In the following section we derive the representation formula (1.2) for the heat equation.
Therefore, we consider Green’s second identity (3.15) for u ∈C2(Q). We want the fourth
integral on the right hand side to be zero, i.e. we search for a function v which is a solution
of the adjoint homogeneous heat equation

−α∂τv(y,τ)−∆yv(y,τ) = 0 for (y,τ) ∈ Q.

Since we want to find a representation of the solution u = u(x, t) of the model problem
(1.1), we define v as

v(y,τ) :=U(y− x, t− τ),

where (x, t) ∈ Q is fixed. In this case we have

∂τv(y,τ) = ∂τU(y− x, t− τ) =−∂θU(y− x,θ),

where θ = t− τ . Thus

α∂θU(y− x,θ)−∆yU(y− x,θ) = 0 for (y,θ) ∈ Q.

We assume the function U to be spherically symmetric, i.e. U(y− x,θ) = Ũ(r,θ) with
r = |y− x|. For r 6= 0 we get

α∂θŨ(r,θ)−∂rrŨ(r,θ)− (n−1)
1
r

∂rŨ(r,θ) = 0. (4.1)

With
Ũ(r,θ) = θ γg(z), z =

r√
θ
, γ ∈ R, θ = t− τ > 0, τ < t,

we get

∂θŨ(r,θ) = γθ γ−1g(z)− 1
2

θ γ−1zg′(z),

∂rŨ(r,θ) = g′(z)θ γ− 1
2 ,

∂rrŨ(r,θ) = g′′(z)θ γ−1,

25
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and therefore equation (4.1) becomes

α
[

γθ γ−1g(z)− 1
2

θ γ−1zg′(z)
]
−g′′(z)θ γ−1− (n−1)

1
r

g′(z)θ γ− 1
2 = 0,

which is equivalent to

α
[

γg(z)− 1
2

zg′(z)
]
−g′′(z)− (n−1)

1
z

g′(z) = 0. (4.2)

It remains to solve this ordinary differential equation. First, we consider the one-dimensional
case n = 1, i.e. we have

αγg(z)−α
1
2

zg′(z)−g′′(z) = 0

which can be written as

α
[

γ +
1
2

]
g(z)− d

dz

[
α

1
2

zg(z)+g′(z)
]
= 0.

By choosing γ =−1
2 we get

d
dz

[
α

1
2

zg(z)+g′(z)
]
= 0,

and hence
α

1
2

zg(z)+g′(z) = c0 ∈ R

follows. In particular for c0 = 0 and by using separation of variables we obtain

lng =−α
1
4

z2 + c1, c1 ∈ R,

and for c1 = 0 we conclude
g(z) = exp

(
−α

4
z2
)

(4.3)

which is a solution of the differential equation (4.2) for n = 1. Inserting (4.3) into (4.2) for
general n yields

0 = α
[
γ exp

(
−α

4
z2
)
+

α
4

z2 exp
(
−α

4
z2
)]

+
α
2

exp
(
−α

4
z2
)

− α2

4
z2 exp

(
−α

4
z2
)
+(n−1)

α
2

exp
(
−α

4
z2
)

= exp
(
−α

4
z2
)

α
[
γ +

n
2

]
.
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Thus, (4.3) is also a solution in the two- and three-dimensional case if γ =−n
2 . Using the

definitions of the functions U and Ũ leads to

U(y− x, t− τ) = (t− τ)−n/2 exp
(
−α|y− x|2

4(t− τ)

)
for τ < t.

Due to the singularity of the function U at (x, t) = (y,τ) we consider the space–time-
cylinder Qt−ε := Ω × (0, t− ε) with 0 < ε < t. Analogously to (3.15) we get

α
∫

Ω

u(y, t− ε)v(y, t− ε)dy = α
∫

Ω

u(y,0)v(y,0)dy

+

t−ε∫

0

∫

Ω

[
α∂τu(y,τ)−∆yu(y,τ)

]
v(y,τ)dydτ +

t−ε∫

0

∫

Γ

∂nyu(y,τ)v(y,τ)dsy dτ

−
t−ε∫

0

∫

Ω

[
−α∂τv(y,τ)−∆yv(y,τ)

]
u(y,τ)dydτ−

t−ε∫

0

∫

Γ

∂nyv(y,τ)u(y,τ)dsy dτ.

With v(y,τ) =U(y− x, t− τ) we now obtain

α
∫

Ω

u(y, t− ε)U(y− x,ε)dy = α
∫

Ω

u(y,0)U(y− x, t)dy

+

t−ε∫

0

∫

Ω

[
α∂τu(y,τ)−∆yu(y,τ)

]
U(y− x, t− τ)dydτ

+

t−ε∫

0

∫

Γ

∂nyu(y,τ)U(y− x, t− τ)dsy dτ−
t−ε∫

0

∫

Γ

∂nyU(y− x, t− τ)u(y,τ)dsy dτ.

(4.4)
Let us consider the integral on the left hand side, i.e.

α
∫

Ω

u(y, t− ε)U(y− x,ε)dy = α
∫

Ω

ε−n/2u(y, t− ε)exp
(
−α|y− x|2

4ε

)
dy.

By using the Taylor expansion

u(y, t− ε) = u(x, t)+(y− x)>∇xu(ξx,ξt)− ε∂tu(ξx,ξt)

with (
ξx
ξt

)
=

(
x+σ(y− x)

t−σε

)
, σ ∈ (0,1),
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we get

α
εn/2

∫

Ω

u(y, t− ε)exp
(
−α|y− x|2

4ε

)
dy = u(x, t)

α
εn/2

∫

Ω

exp
(
−α|y− x|2

4ε

)
dy

+
α

εn/2

∫

Ω

(y− x)T ∇xu(ξx,ξt)exp
(
−α|y− x|2

4ε

)
dy

− α
εn/2−1

∫

Ω

∂tu(ξx,ξt)exp
(
−α|y− x|2

4ε

)
dy.

(4.5)

Next we show the convergence of the first integral on the right hand side. First, we consider
the spatially one-dimensional case n = 1, i.e. Ω = (a,b) with a,b ∈ R and x ∈ (a,b). We
have

Aε :=
α

ε1/2

b∫

a

exp
(
−α(y− x)2

4ε

)
dy

=
α

ε1/2

x∫

a

exp
(
−α(y− x)2

4ε

)
dy+

α
ε1/2

b∫

x

exp
(
−α(y− x)2

4ε

)
dy.

By using the substitution z = x−y
x−a for the first integral and z = y−x

b−x for the second one we
get

Aε =
α

ε1/2 (x−a)
1∫

0

exp
(
−α(x−a)2z2

4ε

)
dz

+
α

ε1/2 (b− x)
1∫

0

exp
(
−α(b− x)2z2

4ε

)
dz.

The substitution α(x−a)2z2

4ε =η2 for the first and α(b−x)2z2

4ε =η2 for the second integral leads
to

Aε = 2
√

α

(x−a)
2

√α
ε∫

0

exp
(
−η2)dη +2

√
α

(b−x)
2

√α
ε∫

0

exp
(
−η2)dη ,

and we finally obtain

lim
ε→0

Aε = 4
√

α
∞∫

0

exp
(
−η2)dη = 2

√
απ .

In the two-dimensional case we choose R > 0 such that BR(x)⊂Ω and consider

Aε :=
α
ε

∫

BR(x)

exp
(
−α|y− x|2

4ε

)
dy.
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The integral over Ω \BR(x) vanishes as ε → 0, since

α
ε

exp
(
−α|y− x|2

4ε

)
ε→0−−→ 0 for y 6= x.

By using polar coordinates we get

Aε =
α
ε

R∫

0

2π∫

0

exp
(
−αr2

4ε

)
r dϕ dr =

2πα
ε

R∫

0

exp
(
−αr2

4ε

)
r dr

= 4π
[

1− exp
(
−αR2

4ε

)]
ε→0−−→ 4π.

In the three-dimensional case we also choose R > 0 such that BR(x)⊂Ω and consider

Aε :=
α

ε3/2

∫

BR(x)

exp
(
−α|y− x|2

4ε

)
dy.

As in the two-dimensional case the integral over Ω \BR(x) vanishes. By using spherical
coordinates we obtain

Aε =
α

ε3/2

R∫

0

2π∫

0

π∫

0

exp
(
−αr2

4ε

)
r2 sinθ dθ dϕ dr

=
4πα
ε3/2

R∫

0

exp
(
−αr2

4ε

)
r2 dr.

The substitution η2 = αr2

4ε leads to

Aε =
32π√

α

√ α
4ε R∫

0

exp
(
−η2)η2 dη ε→0−−→ 32π√

α

∞∫

0

exp
(
−η2)η2 dη =

8π3/2
√

α
.

The other two integrals in (4.5) vanish as ε → 0 due to the boundedness of ∇xu and ∂tu.
We finally get the representation formula by taking the limit ε→ 0 in (4.4), i.e. we have

u(x, t) =
∫

Ω

u(y,0)U?(x− y, t)dy+
1
α

∫

Q

(Lu)(y,τ)U?(x− y, t− τ)dydτ

+
1
α

∫

Σ

∂nyu(y,τ)U
?(x− y, t− τ)dsy dτ

− 1
α

∫

Σ

u(y,τ)∂nyU
?(x− y, t− τ)dsy dτ,
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where

U?(x− y, t− τ) =
(

α
4π(t− τ)

)n/2

exp
(−α|x− y|2

4(t− τ)

)
for τ < t.

The function

U?(x, t) =





( α
4πt

)n/2
exp
(−α|x|2

4 t

)
, (x, t) ∈ Rn× (0,∞),

0 , else,
(4.6)

is called fundamental solution of the heat equation and due to construction, U? is a solution
of the homogeneous heat equation in Rn× (0,∞), see, e.g., [18], i.e.

[α∂t−∆x]U?(x, t) = 0 for (x, t) ∈ Rn× (0,∞).

Additionally, the fundamental solution has the following properties.

Lemma 4.1. For t > 0 there holds
∫

Rn

U?(x, t)dx = 1.

Proof. Let t > 0. Then

∫

Rn

U?(x, t)dx =
( α

4πt

)n/2 ∫

Rn

exp
(−α|x|2

4 t

)
dx = π−n/2

∫

Rn

exp
(
−|z|2

)
dz

= π−n/2
n

∏
i=1

∫

R

exp
(
−z2

i
)

dzi = 1.

Lemma 4.2. Let u ∈C(Ω)∩L∞(Ω). For x ∈Ω there holds

lim
t→0

∫

Ω

U?(x− y, t)u(y)dy = u(x).

Proof. Let ε > 0 and u ∈C(Ω)∩L∞(Ω). We define the function ũ as

ũ(x) =

{
u(x) for x ∈Ω ,

0 else.
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Moreover, let (x, t) ∈Ω × (0,∞). Due to Lemma 4.1 and since U? > 0 on Rn× (0,∞), we
have ∣∣∣∣∣∣

∫

Ω

U?(x− y, t)u(y)dy−u(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Rn

U?(x− y, t)[ũ(y)− ũ(x)]dy

∣∣∣∣∣∣

≤
∫

Rn

U?(x− y, t) |ũ(y)− ũ(x)| dy.

Since u ist continuous on Ω and since x ∈ Ω , there exists a constant δ > 0 such that
|ũ(y)− ũ(x)|< ε/2 if |y− x|< δ . Thus, we write the last integral as

∫

Rn

U?(x− y, t) |ũ(y)− ũ(x)| dy =
∫

Rn\Bδ (x)

U?(x− y, t) |ũ(y)− ũ(x)| dy

+
∫

Bδ (x)

U?(x− y, t) |ũ(y)− ũ(x)| dy.

The second integral can be estimated by
∫

Bδ (x)

U?(x− y, t) |ũ(y)− ũ(x)|︸ ︷︷ ︸
<ε/2

dy <
ε
2

∫

Rn

U?(x− y, t)dy =
ε
2
.

For the first integral we obtain, since u ∈ L∞(Ω),
∫

Rn\Bδ (x)

U?(x− y, t) |ũ(y)− ũ(x)| dy≤ 2‖u‖L∞(Ω)

∫

Rn\Bδ (x)

U?(x− y, t)dy.

The substitution z = x− y yields
∫

Rn\Bδ (x)

U?(x− y, t)dy =
∫

Rn\Bδ (0)

U?(z, t)dz

=
( α

4πt

)n/2 ∫

Rn\Bδ (0)

exp
(−|z|2α

4t

)
dz,

and by using polar coordinates we get

∫

Rn\Bδ (x)

U?(x− y, t)dy≤Ct−n/2
∞∫

δ

rn−1 exp
(−r2α

4t

)
dr

=C′
∞∫

at−1/2

ρn−1 exp
(
−ρ2)dρ



32 4 Boundary Integral Operators

with suitable constants C,C′ > 0 and a = δ
(α

4

)1/2. The last integral vanishes as t→ 0, i.e.
for t small enough there holds

∫

Rn\Bδ (x)

U?(x− y, t) |ũ(y)− ũ(x)| dy < ε/2.

Altogether we obtain ∣∣∣∣∣∣

∫

Ω

U?(x− y, t)u(y)dy−u(x)

∣∣∣∣∣∣
< ε

for t small enough which concludes the proof.

One can show that for sufficient regular data f ,γ int
0 u,γ int

1 u and u0, the solution of the initial
boundary value problem (1.1) is given by the representation formula, i.e. for (x, t) ∈ Q we
have

u(x, t) =
∫

Ω

U?(x− y, t)u0(y)dy+
1
α

∫

Q

U?(x− y, t− τ) f (y,τ)dydτ

+
1
α

∫

Σ

U?(x− y, t− τ)γ int
1 u(y,τ)dsy dτ

− 1
α

∫

Σ

∂nyU
?(x− y, t− τ)γ int

0 u(y,τ)dsy dτ.

(4.7)

Due to the given representation (4.7) for the solution of problem (1.1) it suffices to de-
termine, depending on the already given boundary conditions, the unknown Cauchy data
to compute the solution in the space–time domain Q. This can be done by applying the
trace operators to (4.7) and solving a related boundary integral equation on the space–time
boundary Σ . The following sections are devoted to the analysis of the heat potentials in
(4.7) and the resulting boundary integral operators.

4.2 Initial Potential

Let u0 ∈ L2(Ω). The function

(M̃0u0)(x, t) :=
∫

Ω

U?(x− y, t)u0(y)dy for (x, t) ∈ Rn× (0,T )

is called initial potential of the heat equation with initial condition u0.

Lemma 4.3. For u0 ∈ L2(Ω) the initial potential M̃0u0 satisfies the homogeneous heat
equation, i.e.

[
α∂t−∆x

]
(M̃0u0)(x, t) = 0 for all (x, t) ∈ Rn× (0,T ).
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Proof. For (x, t) ∈ Rn× (0,T ) there exists a compact neighbourhood O of (x, t) such that
O ⊂ Rn× (0,T ). The restriction of U?(x− y, t) to (x, t) ∈ O and y ∈ Ω is bounded and
differentiable on O for y ∈ Ω . Moreover, U?(x− ·, t) is integrable over Ω . The Leibniz
integral rule then implies, that we can interchange differentiation and integration and we
obtain [

α∂t−∆x
]
(M̃0u0)(x, t) =

∫

Ω

[
α∂t−∆x

]
U?(x− y, t)u0(y)dy.

The assertion now follows by using
[
α∂t−∆x

]
U?(x− y, t) = 0

for (x, t) ∈ Rn× (0,T ) and y ∈Ω .

Theorem 4.4. The initial potential M̃0 : L2(Ω)→V(Q)⊂H1,1/2(Q) is linear and bounded,
i.e. there exists a constant c > 0 such that

∥∥∥M̃0u0

∥∥∥
V(Q)
≤ c‖u0‖L2(Ω) for all u0 ∈ L2(Ω).

Proof. Follows the lines of the proof of [45, Lemma 7.10] with a restriction to the space
V(Q) at the end.

Due to Lemma 4.3 and the norm equivalence in Lemma 3.12 we conclude that there exists
a constant cM

2 > 0 such that
∥∥∥M̃0u0

∥∥∥
H1,1/2(Q)

≤ cM
2 ‖u0‖L2(Ω) for all u0 ∈ L2(Ω).

Lemma 4.3 additionally implies M̃0u0 ∈H1,1/2(Q,L) for u0 ∈ L2(Ω). An important prop-
erty of the initial potential is the continuity in time, i.e. due to (3.20) and Theorem 4.4
we have M̃0u0 ∈ C([0,T ];L2(Ω)). Together with Lemma 4.2 this immediately implies
(M̃0u0)(x,0) = u0(x) almost everywhere in Ω . Hence the initial potential satisfies the
initial condition.

Due to the mapping properties of the trace operators and Lemma 4.3 we finally conclude
that the integral operators

M0 := γ int
0 M̃0 : L2(Ω)→ H1/2,1/4(Σ),

M1 := γ int
1 M̃0 : L2(Ω)→ H−1/2,−1/4(Σ)

are linear and bounded.
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4.3 Newton Potential

The Newton potential for a given source term f defined in the space–time domain Q and
(x, t) ∈ Rn× (0,T ) is defined as

(Ñ0 f )(x, t) :=
1
α

t∫

0

∫

Ω

U?(x− y, t− τ) f (y,τ)dydτ.

Lemma 4.5. The function u(x, t) = (Ñ0 f )(x, t) for (x, t) ∈ Rn× (0,T ) is a generalized
solution of the heat equation

[
α∂t−∆x

]
u(x, t) =

{
f (x, t), for (x, t) ∈ Q,

0, else.

Proof. First, let (x, t) ∈Ω × (0,T ). Then

[
α∂t−∆x

]
(Ñ0 f )(x, t) =

[
α∂t−∆x

]

 lim

ε→0

1
α

t−ε∫

0

∫

Ω

U?(x− y, t− τ) f (y,τ)dydτ


 .

For some fixed ε > 0 an application of the Leibniz integral rule yields

[
α∂t−∆x

] 1
α

t−ε∫

0

∫

Ω

U?(x− y, t− τ) f (y,τ)dydτ

=

t−ε∫

0

∫

Ω

∂tU?(x− y, t− τ) f (y,τ)dydτ +
∫

Ω

U?(x− y,ε) f (y, t− ε)dy

− 1
α

t−ε∫

0

∫

Ω

∆xU?(x− y, t− τ) f (y,τ)dydτ

=
1
α

t−ε∫

0

∫

Ω

[α∂t−∆x]U?(x− y, t− τ) f (y,τ)dydτ

+
∫

Ω

U?(x− y,ε) f (y, t− ε)dy.

Since U?(·−y, ·−τ) for (y,τ)∈Ω×(0, t−ε) is a solution of the homogeneous heat equa-
tion, the first integral on the right hand side vanishes. Additionally, Lemma 4.2 implies

∫

Ω

U?(x− y,ε) f (y, t− ε)dy ε→0−−→ f (x, t).
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Note that [α∂t−∆x]u(x, t) = 0 for x ∈Ω ext := Rn \Ω follows analogously by considering
a ball BR⊂Rn with radius R > 0 such that Ω ∪{x}⊂ BR, and by choosing a zero extension
of f in BR \Ω .

The following theorem is essential in order to derive the mapping properties of the Newton
potential and subsequently of the single and double layer potentials in Sections 4.4 and 4.6.
The theorem provides the mapping properties of the convolution with the fundamental
solution of the heat equation, see [10, Section 3] and [50, 51].

Theorem 4.6. The convolution with the fundamental solution U?

A : H̃r,r/2
comp(Rn× (0,T ))→ H̃r+2,r/2+1

loc (Rn× (0,T ))
f 7→U? ∗ f

is linear and continuous for any r ∈ R.

Here, H̃r,r/2
comp(Rn× (0,T )) denotes the space of functions with compact support in space,

whereas the subscript ‘loc’ refers to the local behaviour in the spatial variables, see [10]
for a definition of the anisotropic spaces in Theorem 4.6. Hence we immediately get the
continuity of the Newton potential

Ñ0 : [H1,1/2
;,0 (Q)]′→ H̃1,1/2

loc (Rn× (0,T )),

and by restriction we obtain the following mapping properties.

Theorem 4.7. The Newton potential Ñ0 : [H1,1/2
;,0 (Q)]′→H1,1/2

;0, (Q) is linear and bounded,
i.e. there exists a constant cN

2 > 0 such that
∥∥∥Ñ0 f

∥∥∥
H1,1/2

;0, (Q)
≤ cN

2 ‖ f‖
[H1,1/2

;,0 (Q)]′
for all f ∈ [H1,1/2

;,0 (Q)]′.

Proof. Follows by applying Theorem 4.6 with r =−1 and by restriction to the space–time
domain Q.

The application of the interior Dirichlet trace operator to the Newton potential defines a
linear bounded operator

N0 := γ int
0 Ñ0 : [H1,1/2

;,0 (Q)]′→ H1/2,1/4(Σ)

satisfying

‖N0 f‖H1/2,1/4(Σ) ≤ cN0
2 ‖ f‖

[H1,1/2
;,0 (Q)]′

for all f ∈ [H1,1/2
;,0 (Q)]′
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with some constant cN0
2 > 0. Moreover, according to the definition of the Neumann trace

in Section 3.3 and Lemma 4.5, the application of the Neumann trace operator yields the
bounded operator

N1 := γ int
1 Ñ0 : [H1,1/2

;,0 (Q)]′→ H−1/2,−1/4(Σ),

i.e. there exists a constant cN1
2 > 0 such that

‖N1 f‖H−1/2,−1/4(Σ) ≤ cN1
2 ‖ f‖

[H1,1/2
;,0 (Q)]′

for all f ∈ [H1,1/2
;,0 (Q)]′.

4.4 Single Layer Potential

We introduce the single layer potential with density w ∈ L1(Σ) as

(Ṽ w)(x, t) :=
1
α

t∫

0

∫

Γ

U?(x− y, t− τ)w(y,τ)dsy dτ for (x, t) ∈ DΓ , (4.8)

where DΓ := (Rn \Γ )× (0,T ). The fundamental solution U?(x−·, t−·) is smooth on Σ
for (x, t) ∈ DΓ , and thus, the single layer potential is well defined for w ∈ L1(Σ).

Theorem 4.8. For w∈ L1(Σ) the single layer potential Ṽ w satisfies the homogeneous heat
equation, i.e. [

α∂t−∆x
]
(Ṽ w)(x, t) = 0 for all (x, t) ∈ DΓ .

Proof. Let (x, t) ∈ DΓ . Then

[
α∂t−∆x

]
(Ṽ w)(x, t) =

[
α∂t−∆x

]

 lim

ε→0

1
α

t−ε∫

0

∫

Γ

U?(x− y, t− τ)w(y,τ)dsy dτ


 .

Since (x, t) ∈ DΓ , there exists a compact neighbourhood O of (x, t) such that O ⊂ DΓ ,
and thus, dist(O,Σ) > 0. Therefore, the restriction of U?(x− y, t − τ) to (x, t) ∈ O and
(y,τ) ∈ Σ is bounded and differentiable on O for (y,τ) ∈ Σ . Moreover, U? is integrable
over Σ for (x, t) ∈ O. Hence we can apply the Leibniz integral rule and get

[
α∂t−∆x

]
(Ṽ w)(x, t) =

1
α

t∫

0

∫

Γ

[
α∂t−∆x

]
U?(x− y, t− τ)w(y,τ)dsy dτ

+ lim
ε→0

∫

Γ

U?(x− y,ε)w(y, t− ε)dsy.
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We then use [α∂t−∆x]U?(x−y, t−τ) = 0 for (x, t)∈DΓ and (y,τ)∈ Σ , and the dominated
convergence theorem to conclude

[
α∂t−∆x

]
(Ṽ w)(x, t) = lim

ε→0

∫

Γ

U?(x− y,ε)w(y, t− ε)dsy = 0.

The explicit representation (4.8) of the operator Ṽ is only suited for w ∈ L1(Σ). However,
the domain of the single layer potential can be extended by using the previously defined
convolution operator A in Theorem 4.6. We define the linear and bounded operator

γ ′0 : H−1/2,−1/4(Σ)→ H̃−1,−1/2
comp (Rn× (0,T ))

by
〈γ ′0w,v〉= 〈w,γ int

0 v〉Σ for all v ∈ [H̃−1,−1/2
comp (Rn× (0,T ))]′.

The single layer potential is then given as

Ṽ := Aγ ′0 : H−1/2,−1/4(Σ)→ H̃1,1/2
loc (Rn× (0,T )). (4.9)

Since A and γ ′0 are bounded, the single layer operator Ṽ : H−1/2,−1/4(Σ)→ H1,1/2
;0, (Q) is,

by restriction, bounded as well, i.e. there exists a constant cṼ
2 > 0 such that

∥∥∥Ṽ w
∥∥∥

H1,1/2
;0, (Q)

≤ cṼ
2 ‖w‖H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ).

Recall that due to construction the single layer potential is a solution of the homogeneous
heat equation in DΓ , i.e. for w ∈ H−1/2,−1/4(Σ) we have

[
α∂t−∆x

]
Ṽ w = 0 in DΓ .

Hence Ṽ w ∈ H1,1/2
;0, (Q,L) for w ∈ H−1/2,−1/4(Σ) and therefore the Dirichlet trace as well

as the Neumann trace of the single layer potential are well defined. In order to show the
jump relations we proceed as follows. Let BR ⊂ Rn be a ball with radius R > 0 such that
Ω ⊂ BR and set Ω c := BR \Ω . Moreover, Qc := Ω c× (0,T ). As before we obtain the
continuity of the mapping

Ṽ : H−1/2,−1/4(Σ)→ H1,1/2
;0, (Qc,L).

Thus, the Dirichlet and Neumann traces are defined from both sides of Σ . Let γext
0 and

γext
1 denote the exterior Dirichlet trace operator and the exterior Neumann trace operator,

respectively. Then the jumps on Σ are defined as

[γ0u] := γext
0 u− γ int

0 u,

[γ1u] := γext
1 u− γ int

1 u.
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Theorem 4.9. The single layer potential Ṽ w satisfies the jump relations
[
γ0Ṽ w

]
= 0,

[
γ1Ṽ w

]
=−w, for all w ∈ H−1/2,−1/4(Σ).

Proof. For a given density w∈H−1/2,−1/4(Σ) we have u := Ṽ w∈H1,1/2
;0, (BR×(0,T )) and

therefore γ int
0 u = γext

0 u. Moreover, we have [α∂t −∆x]u = 0 in Q∪Qc. By using Green’s
second identity (3.17) with a test function ϕ ∈C∞

0 (BR× [0,T )) we obtain

−〈u, [−α∂t−∆x]ϕ〉L2(Q) = 〈γ int
0 u,γ int

1 ϕ〉Σ −〈γ int
1 u,γ int

0 ϕ〉Σ ,
−〈u, [−α∂t−∆x]ϕ〉L2(Qc) =−〈γext

0 u,γext
1 ϕ〉Σ + 〈γext

1 u,γext
0 ϕ〉Σ .

Adding both equations and using γ int
0 ϕ = γext

0 ϕ as well as γ int
1 ϕ = γext

1 ϕ yields

−〈u, [−α∂t−∆x]ϕ〉L2(BR×(0,T )) =−〈[γ0u],γ int
1 ϕ〉Σ + 〈[γ1u],γ int

0 ϕ〉Σ .

Since [γ0u] = 0, we conclude

−〈u, [−α∂t−∆x]ϕ〉L2(BR×(0,T )) = 〈[γ1u],γ int
0 ϕ〉Σ . (4.10)

From the representation (4.9) of the single layer potential Ṽ follows that [10]

[α∂t−∆x]Ṽ w = [α∂t−∆x]Aγ ′0w = γ ′0w

holds in BR× (0,T ) in the distributional sense. Hence we obtain

〈u, [−α∂t−∆x]ϕ〉L2(BR×(0,T )) = 〈[α∂t−∆x]u,ϕ〉BR×(0,T )

= 〈[α∂t−∆x]Ṽ w,ϕ〉BR×(0,T )
= 〈γ ′0w,ϕ〉BR×(0,T ) = 〈w,γ int

0 ϕ〉Σ .

In combination with (4.10) we get

〈[γ1Ṽ w],γ int
0 ϕ〉Σ =−〈w,γ int

0 ϕ〉Σ .

The assertion follows since γ int
0 C∞

0 (BR× [0,T )) is dense in H1/2,1/4(Σ).

The continuity of Ṽ and γ int
0 imply that the single layer boundary integral operator

V := γ int
0 Ṽ : H−1/2,−1/4(Σ)→ H1/2,1/4(Σ)

is linear and bounded, i.e. there exists a constant cV
2 > 0 such that

‖V w‖H1/2,1/4(Σ) ≤ cV
2 ‖w‖H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ).
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4.5 Adjoint Double Layer Potential

The adjoint double layer potential K′w with density w ∈ H−1/2,−1/4(Σ) is defined as

K′w :=
1
2

(
γ int

1 Ṽ w+ γext
1 Ṽ w

)
.

Due to the boundedness of the single layer operator Ṽ and the Neumann trace operators,
the operator K′ : H−1/2,−1/4(Σ)→ H−1/2,−1/4(Σ) is bounded as well, i.e. there exists a
constant cK′

2 > 0 such that

∥∥K′w
∥∥

H−1/2,−1/4(Σ)
≤ cK′

2 ‖w‖H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ).

For a sufficiently smooth density w we have the representation

(K′w)(x, t) =
1
α

t∫

0

∫

Γ

∂nxU
?(x− y, t− τ)w(y,τ)dsy dτ

for (x, t) ∈ Σ and Γ smooth in x ∈ Γ .

4.6 Double Layer Potential

We introduce the double layer potential with density v ∈ L1(Σ) as

(Wv)(x, t) :=
1
α

t∫

0

∫

Γ

∂nyU
?(x− y, t− τ)v(y,τ)dsy dτ for (x, t) ∈ DΓ . (4.11)

The fundamental solution U?(x− ·, t − ·) is smooth on Σ for (x, t) ∈ DΓ , and thus, the
double layer potential potential is well defined for v ∈ L1(Σ).

Theorem 4.10. For v ∈ L1(Σ) the double layer potential Wv satisfies the homogeneous
heat equation, i.e.

[
α∂t−∆x

]
(Wv)(x, t) = 0 for all (x, t) ∈ DΓ .

Proof. Let (x, t) ∈ DΓ . Then

[
α∂t−∆x

]
(Wv)(x, t) =

[
α∂t−∆x

]

 lim

ε→0

1
α

t−ε∫

0

∫

Γ

∂nyU
?(x− y, t− τ)v(y,τ)dsy dτ


 .
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Since (x, t) ∈DΓ , there exists a compact neighbourhood O of (x, t) such that O⊂DΓ , and
thus, dist(O,Σ)> 0. Therefore, the restriction of ∂nyU

?(x−y, t−s) to (x, t)∈O and (y,s)∈
Σ is bounded and differentiable on O for (y,s) ∈ Σ . Moreover, ∂nyU

? is integrable over Σ
for (x, t) ∈ O. Hence we can apply the Leibniz integral rule and additionally interchange
the operators α∂t−∆x and ∂ny under the integral sign to obtain

[
α∂t−∆x

]
(Wv)(x, t) =

1
α

t∫

0

∫

Γ

∂ny

[
α∂t−∆x

]
U?(x− y, t− τ)v(y,τ)dsy dτ

+ lim
ε→0

∫

Γ

∂nyU
?(x− y,ε)v(y, t− ε)dsy.

We then use [α∂t−∆x]U?(x−y, t−τ) = 0 for (x, t)∈DΓ and (y,τ)∈ Σ and the dominated
convergence theorem to conclude

[α∂t−∆x](Wv)(x, t) = lim
ε→0

∫

Γ

∂nyU
?(x− y,ε)v(y, t− ε)dsy = 0.

As in the case of the single layer potential Ṽ , the representation (4.11) is only valid for
v ∈ L1(Σ), and again, we can extend the domain of the double layer operator W by using
the properties of the convolution operator A in Theorem 4.6. For v ∈ H1/2,1/4(Σ) we have
the representation Wv = Aγ ′1v. Here, γ ′1v is the distribution defined by

〈γ ′1v,ϕ〉= 〈v,γ int
1 ϕ〉Σ for all ϕ ∈C∞

0 (Rn×R).

The proof of the continuity of the operator

W : H1/2,1/4(Σ)→ H1,1/2
;0, (Q)

follows the lines of [10, Proposition 3.3]. We conclude that there exists a constant cW
2 > 0

such that
‖Wv‖

H1,1/2
;0, (Q)

≤ cW
2 ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

The double layer potential Wv for v ∈ H1/2,1/4(Σ) is a solution of the homogeneous heat
equation in DΓ , i.e. we have

[α∂t−∆x]Wv = 0 in DΓ .

Hence Wv ∈ H1,1/2
;0, (Q,L) for v ∈ H1/2,1/4(Σ) and therefore the traces are well defined.

Analogously as in the case of the single layer potential, see Section 4.4, we can define the
interior and exterior Dirichlet and Neumann traces of Wv and obtain the following jump
relations.
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Theorem 4.11. The double layer potential Wv satisfies the jump relations

[γ0Wv] = v, [γ1Wv] = 0, for all v ∈ H1/2,1/4(Σ).

Proof. For a given density v ∈H1/2,1/4(Σ) we define u :=Wv and thus, [α∂t−∆x]u = 0 in
Q∪Qc. By using Green’s second identity (3.17) with a test function ϕ ∈C∞

0 (BR× [0,T ))
we get

−〈u, [−α∂t−∆x]ϕ〉L2(BR×(0,T )) =−〈[γ0u],γ int
1 ϕ〉Σ + 〈[γ1u],γ int

0 ϕ〉Σ .

From the definition of the double layer potential W follows that [10]

[α∂t−∆x]Wv = γ ′1v

holds in BR× (0,T ) in the distributional sense. Hence we obtain

〈u, [−α∂t−∆x]ϕ〉L2(BR×(0,T )) = 〈[α∂t−∆x]u,ϕ〉BR×(0,T )
= 〈[α∂t−∆x]Wv,ϕ〉BR×(0,T )
= 〈γ ′1v,ϕ〉BR×(0,T ) = 〈v,γ int

1 ϕ〉Σ

and conclude
〈[γ1Wv],γ int

0 ϕ〉Σ = 〈[γ0Wv]− v,γ int
1 ϕ〉Σ . (4.12)

Remark 3.1 then implies that each side in (4.12) has to be zero, i.e. [γ1Wv] = 0 and
[γ0Wv] = v.

The double layer boundary integral operator K for v ∈ H1/2,1/4(Σ) is defined as

Kv :=
1
2

(
γ int

0 Wv+ γext
0 Wv

)
.

Due to the boundedness of the double layer potential W and the Dirichlet trace operators,
the operator K : H1/2,1/4(Σ)→ H1/2,1/4(Σ) is bounded as well, i.e. there exists a constant
cK

2 > 0 such that

‖Kv‖H1/2,1/4(Σ) ≤ cK
2 ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

4.7 Hypersingular Boundary Integral Operator

The hypersingular operator D defined as

D :=−γ int
1 W : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ)
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is linear and bounded satisfying

‖Dv‖H−1/2,−1/4(Σ) ≤ cD
2 ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ)

with some constant cD
2 > 0. For a sufficiently smooth density v we have the representa-

tion

(Dv)(x, t) =− 1
α

γ int
1,x

t∫

0

∫

Γ

γ int
1,yU

?(x− y, t− τ)v(y,τ)dsy dτ

for (x, t) ∈ Σ . If we assume that the boundary Γ , for n = 2,3, is piecewise smooth, we can
derive an alternative representation of the bilinear form which is induced by the hypersin-
gular boundary integral operator D, i.e.

〈Du,v〉Σ =− 1
α

∫

Σ

v(x, t)γ int
1,x

∫

Σ

γ int
1,yU

?(x− y, t− τ)u(y,τ)dsy dτ dsx dt.

In this case the bilinear form can be written by means of the single layer boundary integral
operator V , i.e. we have weakly singular representations. For n= 2, see, e.g., [10, Theorem
6.1], we obtain

〈Du,v〉Σ =
1
α

∫

Σ

curlΓ v(x, t)
∫

Σ

U?(x− y, t− τ)curlΓ u(y,τ)dsy dτ dsx dt

−
∫

Σ

nT(x)v(x, t)
∫

Σ

∂τU?(x− y, t− τ)n(y)u(y,τ)dsy dτ dsx dt,
(4.13)

where

curlΓ v(x, t) := n1(x)
∂

∂x2
v(x, t)−n2(x)

∂
∂x1

v(x, t) for (x, t) ∈ Σ .

Whereas for n = 3 we have the representation [41, Theorem 2.1]

〈Du,v〉Σ =
1
α

∫

Σ

curlTΓ v(x, t)
∫

Σ

U?(x− y, t− τ)curlΓ u(y,τ)dsy dτ dsx dt

−
∫

Σ

nT(x)v(x, t)
∫

Σ

∂τU?(x− y, t− τ)n(y)u(y,τ)dsy dτ dsx dt,
(4.14)

with curlΓ v(x, t) := n(x)×∇xv(x, t) for (x, t) ∈ Σ .



5 BOUNDARY INTEGRAL EQUATIONS

In the following chapter we introduce the Calderón projection operator and deduce related
properties of the boundary integral operators defined in the previous chapter, including
the definition of the Steklov–Poincaré operator in Section 5.1. In Sections 5.2 - 5.3 we
discuss the unique solvability of the model problem (1.1) with different types of boundary
conditions by means of analyzing related boundary integral equations. The analysis of
exterior boundary value problems and transmission problems is done in Section 5.4 and
Section 5.5, respectively. The results in this chapter are mainly based on [10, 12].

The solution u ∈ H1,1/2(Q) of problem (1.1) with initial datum u0 ∈ L2(Ω) and source
term f ∈ [H1,1/2

;,0 (Q)]′ is given by the representation formula for the heat equation, i.e. for
(x, t) ∈ Q we have

u(x, t) = (Ṽ γ int
1 u)(x, t)− (Wγ int

0 u)(x, t)+(M̃0u0)(x, t)+(Ñ0 f )(x, t). (5.1)

By applying the Dirichlet trace operator to (5.1) and by using the jump relations of the heat
potentials we obtain the first boundary integral equation

γ int
0 u =V γ int

1 u+
1
2

γ int
0 u−Kγ int

0 u+M0u0 +N0 f on Σ .

The application of the Neumann trace operator to (5.1) yields the second boundary integral
equation

γ int
1 u =

1
2

γ int
1 u+K′γ int

1 u+Dγ int
0 u+M1u0 +N1 f on Σ . (5.2)

Together, these equations lead to the so-called Calderón system of boundary integral equa-
tions. We have

(
γ int

0 u
γ int

1 u

)
=

(1
2 I−K V

D 1
2 I +K′

)

︸ ︷︷ ︸
=: C

(
γ int

0 u
γ int

1 u

)
+

(
M0u0
M1u0

)
+

(
N0 f
N1 f

)
.

(5.3)

The operator C is called the Calderón projection operator.

Lemma 5.1. C is a projection, i.e. C = C2.

Proof. Let (ψ,ϕ) ∈ H−1/2,−1/4(Σ)×H1/2,1/4(Σ). Then the function

u := Ṽ ψ−Wϕ

43
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is a solution of the homogeneous heat equation. By applying the trace operators we get the
boundary integral equations

γ int
0 u =V ψ +(

1
2

I−K)ϕ,

γ int
1 u = (

1
2

I +K′)ψ +Dϕ.
(5.4)

Additionally, u is a solution of the homogeneous heat equation with Cauchy data γ int
0 u,γ int

1 u
and inital condition u0 ≡ 0, i.e. we have

(
γ int

0 u
γ int

1 u

)
=

(1
2 I−K V

D 1
2 I +K′

)(
γ int

0 u
γ int

1 u

)
.

Inserting (5.4) yields

(1
2 I−K V

D 1
2 I +K′

)(
ψ
ϕ

)
=

(1
2 I−K V

D 1
2 I +K′

)2(ψ
ϕ

)
.

Since the functions ψ,ϕ were arbitrarily chosen, we conclude C = C2.

As a consequence of the projection property of the Calderón operator C we obtain the
following relations.

Corollary 5.2. The boundary integral operators satisfy

V D =

(
1
2

I +K
)(

1
2

I−K
)
,

DV =

(
1
2

I +K′
)(

1
2

I−K′
)
,

V K′ = KV,
K′D = DK.

Proof. Follows from C = C2.

Now we state the main theorem of this chapter.

Theorem 5.3 ([10, Corollary 3.10, Theorem 3.11]). The operator

A : H1/2,1/4(Σ)×H−1/2,−1/4(Σ)→ H1/2,1/4(Σ)×H−1/2,−1/4(Σ)

defined as

A :=
(
−K V
D K′

)
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is an isomorphism and there exists a constant c1 > 0 such that
〈(

ψ
ϕ

)
,

(
V −K
K′ D

)(
ψ
ϕ

)〉

Σ×Σ
≥ c1

(
‖ψ‖2

H−1/2,−1/4(Σ)+‖ϕ‖
2
H1/2,1/4(Σ)

)

for all (ψ,ϕ) ∈ H−1/2,−1/4(Σ)×H1/2,1/4(Σ).

The ellipticity of the operator in Theorem 5.3 then immediately implies the ellipticity of
the single layer boundary integral operator V and the hypersingular operator D.

Lemma 5.4. The single layer boundary integral operator V defines an isomorphism and
there exists a constant cV

1 > 0 such that

〈V w,w〉Σ ≥ cV
1 ‖w‖2

H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ).

Proof. Follows from Theorem 5.3 with ϕ = 0.

Lemma 5.5. The hypersingular operator D defines an isomorphism and there exists a
constant cD

1 > 0 such that

〈Dv,v〉Σ ≥ cD
1 ‖v‖2

H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

Proof. Follows from Theorem 5.3 with ψ = 0.

5.1 Steklov–Poincaré Operator

We consider the system of boundary integral equations (5.3) with source term f ≡ 0 and
with homogeneous initial conditions, i.e. u0 ≡ 0. Hence

(
γ int

0 u
γ int

1 u

)
=

(1
2 I−K V

D 1
2 I +K′

)(
γ int

0 u
γ int

1 u

)
.

By using the first integral equation we can define the Dirichlet to Neumann map

γ int
1 u =V−1(

1
2

I +K)γ int
0 u. (5.5)

The operator

S :=V−1(
1
2

I +K) : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ)
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is called Steklov–Poincaré operator for the heat equation. Insertion of (5.5) into the second
boundary integral equation yields

γ int
1 u =

[
D+(

1
2

I +K′)V−1(
1
2

I +K)

]
γ int

0 u.

Hence we get a symmetric representation of the Steklov–Poincaré operator, i.e.

S = D+(
1
2

I +K′)V−1(
1
2

I +K).

Due to the boundedness of the operators K,K′,D and V−1, the operator S is bounded as
well.

Lemma 5.6. The Steklov–Poincaré operator S is elliptic, i.e. there exists a constant cS
1 > 0

such that
〈Sv,v〉Σ ≥ cS

1 ‖v‖2
H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

Proof. For v ∈ H1/2,1/4(Σ) we define ψ :=V−1 (1
2 I +K

)
v ∈ H−1/2,−1/4(Σ) and get

〈(
ψ
v

)
,

(
V −K
K′ D

)(
ψ
v

)〉

Σ×Σ

=
1
2
〈V−1(

1
2

I +K)v,v〉Σ + 〈v,K′V−1(
1
2

I +K)v+Dv〉Σ

= 〈v,(1
2

I +K′)V−1(
1
2

I +K)v+Dv〉Σ
= 〈v,Sv〉Σ .

The assertion now follows by applying Theorem 5.3.

5.2 Dirichlet Boundary Value Problem

We consider the initial boundary value problem (1.1) with Dirichlet boundary conditions
g ∈ H1/2,1/4(Σ), source term f ∈ [H1,1/2

;,0 (Q)]′, and initial datum u0 ∈ L2(Ω), i.e.

α∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q,

γ int
0 u(x, t) = g(x, t) for (x, t) ∈ Σ ,

u(x,0) = u0(x) for x ∈Ω .

(5.6)

The solution of (5.6) is given by the representation formula

u(x, t) = (Ṽ γ int
1 u)(x, t)− (Wg)(x, t)+(M̃0u0)(x, t)+(Ñ0 f )(x, t) for (x, t) ∈ Q.
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It remains to determine the unknown conormal derivative γ int
1 u ∈ H−1/2,−1/4(Σ). This

can be done by solving the first boundary integral equation in (5.3). We have to find
γ int

1 u ∈ H−1/2,−1/4(Σ) such that

V γ int
1 u = (

1
2

I +K)g−M0u0−N0 f on Σ .

The corresponding variational formulation is to find γ int
1 u ∈ H−1/2,−1/4(Σ) such that

〈V γ int
1 u,τ〉Σ = 〈(1

2
I +K)g−M0u0−N0 f ,τ〉Σ for all τ ∈ H−1/2,−1/4(Σ). (5.7)

Since the boundary integral operators K, M0, N0 and V are bounded and V is elliptic, there
exists a unique solution γ int

1 u ∈ H−1/2,−1/4(Σ) according to the Lax–Milgram theorem
[62, Theorem 3.4]. The solution γ int

1 u then satisfies

∥∥∥γ int
1 u
∥∥∥

H−1/2,−1/4(Σ)
≤ 1

cV
1

∥∥∥∥(
1
2

I +K)g−M0u0−N0 f
∥∥∥∥

H1/2,1/4(Σ)

≤ 1
cV

1

(
c̃W

2 ‖g‖H1/2,1/4(Σ)+ cM0
2 ‖u0‖L2(Ω)+ cN0

2 ‖ f‖
[H1,1/2

;,0 (Q)]′

)
.

Another approach is using an indirect formulation with the single layer potential Ṽ . A
solution of the heat equation with source term f and initial condition u0 is given by

u(x, t) = (Ṽ w)(x, t)+(M̃0u0)(x, t)+(Ñ0 f )(x, t) for (x, t) ∈ Q (5.8)

with an unknown density w ∈ H−1/2,−1/4(Σ) to be determined. By applying the Dirichlet
trace operator to (5.8) we obtain

g =V w+M0u0 +N0 f on Σ .

Thus, we have to find w ∈ H−1/2,−1/4(Σ) such that

V w = g−M0u0−N0 f on Σ .

The corresponding variational formulation is to find w ∈ H−1/2,−1/4(Σ) such that

〈V w,τ〉Σ = 〈g−M0u0−N0 f ,τ〉Σ for all τ ∈ H−1/2,−1/4(Σ). (5.9)

As in the case of the direct formulation with the first boundary integral equation, the unique
solvability follows with the Lax–Milgram theorem [62, Theorem 3.4].
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5.3 Neumann Boundary Value Problem

In this section we consider the initial boundary value problem (1.1) with given Neumann
boundary conditions w ∈ H−1/2,−1/4(Σ), source term f ∈ [H1,1/2

;,0 (Q)]′, and initial datum
u0 ∈ L2(Ω), i.e.

α∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q,

γ int
1 u(x, t) = w(x, t) for (x, t) ∈ Σ ,

u(x,0) = u0(x) for x ∈Ω .

(5.10)

The solution of (5.10) is given by

u(x, t) = (Ṽ w)(x, t)− (Wγ int
0 u)(x, t)+(M̃0u0)(x, t)+(Ñ0 f )(x, t) for (x, t) ∈ Q.

It remains to determine the unknown Dirichlet datum γ int
0 u ∈ H1/2,1/4(Σ). This can be

done by solving the second boundary integral equation in (5.3). We have to find γ int
0 u ∈

H1/2,1/4(Σ) such that

Dγ int
0 u = (

1
2

I−K′)w−M1u0−N1 f on Σ .

The corresponding variational formulation is to find γ int
0 u ∈ H1/2,1/4(Σ) such that

〈Dγ int
0 u,v〉Σ = 〈(1

2
I−K′)w−M1u0−N1 f ,v〉Σ for all v ∈ H1/2,1/4(Σ). (5.11)

Since the boundary integral operators K′, M1, N1 and D are bounded and D is elliptic,
there exists a unique solution γ int

0 u ∈ H1/2,1/4(Σ) according to the Lax–Milgram theorem
[62, Theorem 3.4]. The solution γ int

0 u then satisfies

∥∥∥γ int
0 u
∥∥∥

H1/2,1/4(Σ)
≤ 1

cD
1

∥∥∥∥(
1
2

I−K′)w−M1u0−N1 f
∥∥∥∥

H−1/2,−1/4(Σ)

≤ 1
cD

1

(
c̃Ṽ

2 ‖w‖H−1/2,−1/4(Σ)+ cM1
2 ‖u0‖L2(Ω)+ cN1

2 ‖ f‖
[H1,1/2

;,0 (Q)]′

)
.

Another approach is using an indirect formulation with the double layer potential W . A
solution of the heat equation with source term f and initial condition u0 is given by

u(x, t) =−(Wg)(x, t)+(M̃1u0)(x, t)+(M̃0 f )(x, t) for (x, t) ∈ Q (5.12)

with an unknown density g ∈ H1/2,1/4(Σ) to be determined. By applying the Neumann
trace operator to (5.12) we obtain

w = Dg+M1u0 +N1 f on Σ .
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Thus, we have to find g ∈ H1/2,1/4(Σ) such that

Dg = w−M1u0−N1 f on Σ .

The corresponding variational formulation is to find g ∈ H1/2,1/4(Σ) such that

〈Dg,v〉Σ = 〈w−M1u0−N1 f ,v〉Σ for all v ∈ H1/2,1/4(Σ). (5.13)

Again, the unique solvability follows with the Lax–Milgram theorem [62, Theorem 3.4].

5.4 Exterior Boundary Value Problem

One advantage of boundary element methods is the natural handling of boundary value
problems in the exterior domain Qext := Ω ext× (0,T ) with Ω ext := Rn \Ω . We consider
the exterior Dirichlet boundary value problem for the heat equation with Dirichlet datum
g ∈ H1/2,1/4(Σ), source term f ≡ 0 and initial datum u0 ≡ 0, i.e.

α∂tu(x, t)−∆xu(x, t) = 0 for (x, t) ∈ Qext,

γext
0 u(x, t) = g(x, t) for (x, t) ∈ Σ ,

u(x,0) = 0 for x ∈Ω ext
(5.14)

together with an appropriate radiation condition.

Let y0 ∈Ω and BR(y0) denote a ball with center y0 and radius R> 0, satisfying Ω ⊂BR(y0).
Using the representation formula (4.7) for x ∈ BR(y0)\Ω and t ∈ (0,T ) yields

u(x, t) =− 1
α

∫

Σ

U?(x− y, t− τ)γext
1 u(y,τ)dsy dτ

+
1
α

∫

Σ

γext
1,yU?(x− y, t− τ)γext

0 u(y,τ)dsy dτ

+
1
α

T∫

0

∫

∂BR(y0)

U?(x− y, t− τ)γ int
1 u(y,τ)dsy dτ

− 1
α

T∫

0

∫

∂BR(y0)

γ int
1,yU

?(x− y, t− τ)γ int
0 u(y,τ)dsy dτ.
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By taking the limit R→∞ and by using the radiation condition we obtain the representation
formula for the exterior boundary value problem, i.e. for (x, t) ∈ Qext we have

u(x, t) =− 1
α

∫

Σ

U?(x− y, t− τ)γext
1 u(y,τ)dsy dτ

+
1
α

∫

Σ

γext
1,yU?(x− y, t− τ)γext

0 u(y,τ)dsy dτ.
(5.15)

To find the unknown Cauchy data we proceed as follows. The application of the exterior
Dirichlet trace operator yields

γext
0 u =−V γext

1 u+
1
2

γext
0 u+Kγext

0 u on Σ ,

while the application of the exterior Neumann trace operator leads to

γext
1 u =

1
2

γext
1 u−K′γext

1 u−Dγext
0 u on Σ .

Together, we obtain the Calderón system of boundary integral equations for the exterior
problem, i.e. (

γext
0 u

γext
1 u

)
=

(1
2 I +K −V
−D 1

2 I−K′

)(
γext

0 u
γext

1 u

)
.

These boundary integral equations can be used to solve exterior boundary value problems
with different boundary conditions. For the Dirichlet boundary value problem (5.14) we
can find the unknown Neumann datum γext

1 u∈H−1/2,−1/4(Σ) by solving the first boundary
integral equation for the exterior problem

V γext
1 u =−1

2
g+Kg on Σ .

Analogously to the interior problem, the unique solvability of the corresponding variational
formulation follows from the ellipticity of the operator V : H−1/2,−1/4(Σ)→H1/2,1/4(Σ).

5.5 Transmission Problem

Let β0 ∈ H1/2,1/4(Σ) and β1 ∈ H−1/2,−1/4(Σ). We consider the transmission problem

α∂tu(x, t)−∆xu(x, t) = 0 for (x, t) ∈ Q,

∂tu(x, t)−∆xu(x, t) = 0 for (x, t) ∈ Qext,

u(x,0) = 0 for x ∈ Rn
(5.16)
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with transmission conditions

γ int
0 u(x, t)− γext

0 u(x, t) = β0(x, t) for (x, t) ∈ Σ ,

γ int
1 u(x, t)− γext

1 u(x, t) = β1(x, t) for (x, t) ∈ Σ
(5.17)

and assume that the solution satisfies an appropriate radiation condition as |x| → ∞ and
t ∈ (0,T ). We define

ui := Ṽαγ int
1 ui−Wαγ int

0 ui,

ue :=−Ṽ γext
1 ue +Wγext

0 ue

with u|Q = ui, u|Qext = ue. Here, the subscript α refers to the integral operators correspond-
ing to the interior problem. Inserting the transmission conditions (5.17) in the second
equation yields

ue :=−Ṽ (γ int
1 ui−β1)+W (γ int

0 ui−β0).

As in (5.3), we obtain the system of boundary integral equations for the interior problem
(

γ int
0 ui

γ int
1 ui

)
=

(1
2 I−Kα Vα

Dα
1
2 I +K′α

)(
γ int

0 ui
γ int

1 ui

)
(5.18)

For the exterior problem we get
(

γext
0 ue

γext
1 ue

)
=

(1
2 I +K −V
−D 1

2 I−K′

)(
γext

0 ue
γext

1 ue

)
. (5.19)

By combining (5.18) and (5.19), and by using the transmission conditions (5.17) we finally
obtain the system of boundary integral equations for the transmission problem

(
Vα +V −Kα −K
K′α +K′ Dα +D

)

︸ ︷︷ ︸
=:A

(
γ int

1 ui
γ int

0 ui

)
=

(
Vα

1
2 I−Kα

1
2 I +K′α Dα

)

︸ ︷︷ ︸
=:B

(
β1
β0

)

(5.20)

The variational formulation of (5.20) is to find

(γ int
1 ui,γ int

0 ui) ∈ H−1/2,−1/4(Σ)×H1/2,1/4(Σ)

such that 〈
A
(

γ int
1 ui

γ int
0 ui

)
,

(
τ
v

)〉

Σ
=

〈
B
(

β1
β0

)
,

(
τ
v

)〉

Σ
(5.21)

for all (τ,v) ∈H−1/2,−1/4(Σ)×H1/2,1/4(Σ). Due to the ellipticity and boundedness of the
operator A, see Theorem 5.3, and due to the boundedness of the operator B, the variational
problem (5.21) is uniquely solvable according to the Lax–Milgram theorem [62, Theorem
3.4].
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The coupling of boundary integral equations of different domains represents the basis of
so-called multi-trace formulations which are based on the decomposition of the domain
into subdomains, e.g. for piecewise constant media, in order to develop domain decom-
position solvers or preconditioners, see, e.g., [8, 9, 24] in the case of acoustic and elec-
tromagnetic scattering. In the context of multi-trace formulations the ellipticity of related
Calderón projection operators as in Theorem 5.3 in the case of the heat equation plays an
important role.



6 SPACE–TIME BOUNDARY ELEMENTS

In this chapter we discuss two different space–time discretization techniques in order to
compute an approximation of the unknown Cauchy data and derive approximation proper-
ties of related space–time boundary element spaces [12]. The first one is the so-called ten-
sor product approach, where we consider separate decompositions of the lateral boundary
Γ and the time interval (0,T ) and use space–time tensor product spaces to define suitable
trial spaces. The second one is using boundary element spaces which are defined with
respect to a shape regular triangulation of the whole space–time boundary Σ = Γ × (0,T )
into boundary elements, allowing us to apply adaptive refinement in space and time simul-
taneously while maintaining the regularity of the boundary element mesh.

We assume, for n = 2,3, that the spatial Lipschitz boundary Γ = ∂Ω is piecewise smooth
with Γ =

⋃J
j=1 Γ j. With Σ j := Γj× (0,T ), j = 1, ...,J, we then obtain Σ =

⋃J
j=1 Σ j. In

order to define trial spaces for the Galerkin boundary element discretizations of the vari-
ational formulations discussed in Chapter 5 we consider a family {ΣN}N∈N of decompo-
sitions ΣN := {σ`}N

`=1 of the space–time boundary Σ into boundary elements σ`, i.e. we
have

Σ =
N⋃

`=1

σ ` . (6.1)

In the following sections we provide information on how to define suitable space–time
boundary decompositions in order to obtain ΣN .

6.1 Decomposition of the Time Interval (0,T )

Let {INt}Nt∈N be a family of decompositions INt := {τk}Nt
k=1 of the time interval I = (0,T )

into line segments τk, i.e. we have

[0,T ] =
Nt⋃

k=1

τk. (6.2)

The local mesh size of an element τk = (tk1 , tk2) is then given by hk,t := tk2 − tk1 , whereas
the global mesh size is defined as ht := maxk=1,...,Nt hk,t . The family {INt}Nt∈N of decom-
positions is said to be globally quasi-uniform if there exists a constant cG,t ≥ 1 independent
of INt such that

ht,max

ht,min
≤ cG,t .

53
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Trial Spaces

Let S0
h(INt ) be the space of piecewise constant basis functions which is defined with respect

to the decomposition INt . Moreover, S1
h(INt ) denotes the space of piecewise linear and

globally continuous basis functions on INt . For p ∈ {0,1} we define the L2 projection
Qp

I u ∈ Sp
h(INt ) of u ∈ L2(0,T ) as the unique solution of the variational problem

〈Qp
I u,vh〉L2(0,T ) = 〈u,vh〉L2(0,T ) for all vh ∈ Sp

h(INt ). (6.3)

The operators Qp
I : L2(0,T )→ L2(0,T ) satisfy the trivial stability estimate

∥∥Qp
I u
∥∥

L2(0,T ) ≤ ‖u‖L2(0,T ) for all u ∈ L2(0,T ).

By using standard arguments, see, e.g., [10, 17, 45] and the references therein, we obtain
the following well known a priori error estimates for the L2 projections Qp

I u.

Theorem 6.1 ([45, Section 7.1]). Let u∈Hs(0,T ) for some s∈ [0, p+1]. Then there holds
the error estimate ∥∥u−Qp

I u
∥∥

L2(0,T ) ≤ chs|u|Hs(0,T ).

Lemma 6.2. Let u ∈Hs(0,T ) for some s ∈ [0, p+1]. For µ ∈ [−(p+1),0] there holds the
error estimate ∥∥u−Qp

I u
∥∥

H̃µ (0,T ) ≤ chs−µ |u|Hs(0,T ).

Proof. Follows by applying a duality argument and Theorem 6.1.

Lemma 6.3 ([45, Section 7.1]). Let µ ∈ [0,1/2) and u∈Hs(0,T ) for some s∈ [µ,1]. Then
there holds the error estimate

∥∥u−Q0
I u
∥∥

Hµ (0,T ) ≤ chs−µ ‖u‖Hs(0,T ) .

Lemma 6.4. Assume the temporal decomposition (6.2) to be globally quasi-uniform. Let
µ ∈ [0,1] and u ∈ Hs(0,T ) for some s ∈ [µ,2]. Then there holds the error estimate

∥∥u−Q1
I u
∥∥

Hµ (0,T ) ≤ chs−µ ‖u‖Hs(0,T ) .

Proof. Follows by using [17, Proposition 1.134] and an interpolation argument. See also
[45, Estimate 7.1 ff.] and the references therein.

Lemma 6.5 (Global inverse inequality [45, Section 7.1]). Assume that the temporal de-
composition (6.2) is globally quasi-uniform. For µ ∈ [−1,0] there holds the inverse in-
equality

‖τh‖L2(0,T ) ≤ chµ ‖τh‖H̃µ (0,T ) for all τh ∈ S0
h(INt ).
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6.2 Decomposition of the Lateral Boundary Γ in 2D and 3D

Let {ΓNx}Nx∈N be, for n = 2,3, a family of admissible decompositions ΓNx := {γ`}Nx
`=1 of

the boundary Γ into boundary elements γ`, i.e. we have

Γ =
Nx⋃

`=1

γ`. (6.4)

We assume that there are no curved elements and that there is no approximation of the
boundary Γ . The boundary elements γ` are line segments for n = 2 and plane triangles
for n = 3. For each boundary element γ` there exists j ∈ {1, ...,J} such that γ` ⊂ Γj. The
boundary elements γ` can be described as γ` = χ`(γ), where γ is some reference element
in Rn−1. For each boundary element γ` we define its volume

∆` :=
∫

γ`

dsx,

and its local mesh size
h`,x := ∆ 1/(n−1)

` .

The global mesh size is then given by

hx := max
`=1,...,Nx

h`,x.

Moreover, we define the diameter of the element γ` as

d`,x := sup
x,y∈γ`

|x− y| .

The family {ΓNx}Nx∈N of decompositions is said to be globally quasi-uniform if there exists
a constant cG,x ≥ 1 independent of ΓNx such that

hx,max

hx,min
≤ cG,x.

We assume that the boundary elements γ` are shape regular, i.e. there exists a constant cB
independent of ΓNx such that

d`,x ≤ cB h`,x for `= 1, ...,Nx.
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Trial Spaces

Let S0
h(ΓNx) be the space of piecewise constant basis functions which is defined with respect

to the decomposition ΓNx . Moreover, S1
h(ΓNx) denotes the space of piecewise linear and

globally continuous basis functions on ΓNx . For p ∈ {0,1} we define the L2 projection
Qp

Γ u ∈ Sp
h(ΓNx) of u ∈ L2(Γ ) as the unique solution of the variational problem

〈Qp
Γ u,vh〉L2(Γ ) = 〈u,vh〉L2(Γ ) for all vh ∈ Sp

h(ΓNx). (6.5)

The operators Qp
Γ : L2(Γ )→ L2(Γ ) satisfy the trivial stability estimate

∥∥Qp
Γ u
∥∥

L2(Γ )
≤ ‖u‖L2(Γ ) for all u ∈ L2(Γ ).

We then obtain the following approximation properties of the L2 projection operators Qp
Γ ,

see, e.g., [10, 62].

Theorem 6.6 ([62, Theorem 10.2 and Lemma 10.8 ff.]). Let u ∈Hs(Γ ) with s ∈ [0, p+1].
Then there holds the error estimate

∥∥u−Qp
Γ u
∥∥

L2(Γ )
≤ chs|u|Hs(Γ ).

Lemma 6.7. Let u ∈ Hs(Γ ) for some s ∈ [0, p+1]. For σ ∈ [−(p+1),0] there holds the
error estimate ∥∥u−Qp

Γ u
∥∥

Hσ (Γ )
≤ chs−σ |u|Hs(Γ ).

Proof. Follows by using a duality argument and Theorem 6.6.

Lemma 6.8 (Global inverse inequality [62, Lemma 10.10]). Assume that the boundary
decomposition (6.4) is globally quasi-uniform. For σ ∈ [−1,0] there holds the inverse
inequality

‖τh‖L2(Γ ) ≤ chσ ‖τh‖Hσ (Γ ) for all τh ∈ S0
h(ΓNx).

The inverse inequality in [62] was shown for σ = −1/2. However, the proof utilizes an
interpolation argument and can be extended to arbitrary σ ∈ [−1,0].

Additionally, we assume that for σ ∈ [0,1] and u ∈ Hs(Γ ) with s ∈ [σ ,2] the error esti-
mate ∥∥u−Q1

Γ u
∥∥

Hσ (Γ )
≤ chs−σ ‖u‖Hs(Γ )

holds, which is, e.g., well known for spatial domains Ω with sufficiently smooth boundary
Γ , see [10, Section 5] and [45, Chapter 5] and the references therein.
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6.3 Decomposition of the Space–Time Boundary Σ

In this section we define suitable boundary decompositions of Σ in order to obtain (6.1),
define space–time boundary element spaces and provide approximation properties of re-
lated L2 projection operators.

6.3.1 One-Dimensional Problem

In the spatially one-dimensional case we have Ω = (a,b)⊂R with constants b > a. Thus,
Γ = {a,b}, inducing that Σ = Σa ∪ Σb with Σa = {a}× (0,T ) and Σb = {b}× (0,T ).
Hence the boundary elements σ` are line segments in temporal dimension with fixed spatial
coordinate x` ∈ {a,b} as shown in Figure 6.1.

Ω× (0,T )

x

t

Figure 6.1: Sample BE mesh. We consider an arbitrary decomposition of the space–time
boundary Σ . Note that there is no time-stepping scheme involved.

The space–time boundary decomposition (6.1) can be seen as the union of two different
decompositions of the time interval (0,T ) as described in Section 6.1, one for each bound-
ary point {a,b}. Note that there is no time-stepping involved, since the decompositions of
Σa and Σb may be different. Let (x`, t`1) and (x`, t`2) be the nodes of the boundary element
σ`. The local mesh size is then given as h` := |t`2 − t`1| while h := max`=1,...,N h` is the
global mesh size. The family {ΣN}N∈N is said to be globally quasi-uniform if there exists
a constant cG ≥ 1 independet of ΣN such that

hmax

hmin
≤ cG.

Remark 6.1. In the one-dimensional case the spatial component of the space–time bound-
ary Σ collapses to the points {a,b}, assuming Ω = (a,b), and therefore we can identify
the anisotropic Sobolev spaces Hr,s(Σ) with the isotropic version Hs(Σ).
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Trial Spaces

Let S0
h(ΣN) and S1

h(ΣN) denote the boundary element spaces of piecewise constant and
piecewise linear and globally continuous basis functions, respectively, and Qp

Σ u ∈ Sp
h(ΣN)

for u ∈ L2(Σ) the corresponding L2 projections defined analogously to Qp
I in Section 6.1,

but for both boundary parts Σa and Σb. Due to the temporal structure of the space–
time decomposition in the spatially one-dimensional case we obtain the same approxi-
mation properties for the L2 projection operators Qp

Σ : L2(Σ)→ Sp
h(ΣN) ⊂ L2(Σ) as for

Qp
I : L2(0,T )→ Sp

h(INt )⊂ L2(0,T ) given in Section 6.1.

6.3.2 Two- and Three-Dimensional Problem

As already mentioned, we consider two different space–time decomposition approaches.
The first one is a separate decomposition of the spatial boundary Γ and the time interval
(0,T ) also employed in, e.g., [21,39,45,49]. We use the resulting tensor product structure
to define space–time boundary element spaces, and we derive a priori error estimates for
related L2 projection operators simply by combining the approximation properties of the
spatial and temporal discretizations given in Sections 6.1 and 6.2. The second approach is
considering an arbitrary triangulation of the full space–time boundary Σ = Γ × (0,T ) into
boundary elements.

Space–Time Tensor Product Decomposition

In order to define space–time tensor product spaces we use the already given decompo-
sitions INt = {τk}Nt

k=1 and ΓNx = {γ`}Nx
`=1 introduced in Sections 6.1 and 6.2, respectively.

The set ΣN = {σ`}N
l=1 of boundary elements σ` in (6.1) is defined as

ΣN :=
{

σ = γi× τ j, i ∈ {1, ...,Nx} , j ∈ {1, ...,Nt}
}

(6.6)

with N = NxNt . The resulting space–time boundary elements are rectangles for n = 2
and triangular prisms for n = 3. A sample decomposition of the space–time boundary of
Q = (0,1)3 is shown in Figure 6.2 (a).

Trial Spaces

Let px, pt ∈ {0,1} denote the polynomial degrees of the basis functions in space and time,
respectively. Then the boundary element spaces are given as

X px,pt
hx,ht

(ΣN) := Spx
hx
(ΓNx)⊗Spt

ht
(INt ),
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(a) Tensor product decomposition. (b) Triangulation.

Figure 6.2: Sample space–time boundary decompositions of Q = (0,1)3.

where the subscripts hx and ht denote the spatial and temporal mesh sizes, respectively.
The L2 projection Qpx,pt

Σ u ∈ X px,pt
hx,ht

(ΣN) of u ∈ L2(Σ) is defined as the unique solution of
the variational problem

〈Qpx,pt
Σ u,vh〉L2(Σ) = 〈u,vh〉L2(Σ) for all vh ∈ X px,pt

hx,ht
(ΣN). (6.7)

The L2 projection operator Qpx,pt
Σ : L2(Σ)→ X px,pt

hx,ht
(ΣN) ⊂ L2(Σ) has the representation

Qpx,pt
Σ = Qpx,·

Σ Q·,pt
Σ = Q·,pt

Σ Qpx,·
Σ with

(Qpx,·
Σ u)(x, t) := (Qpx

Γ u(·, t))(x),
(Q·,pt

Σ u)(x, t) := (Qpt
I u(x, ·))(t) (6.8)

for u ∈ L2(Σ). Hence we can use the already known approximation properties of the
operators Qpx

Γ and Qpt
I to derive estimates for the L2 projection Qpx,pt

Σ u of u ∈ L2(Σ). The
operator Qpx,pt

Σ satisfies the trivial stability estimate
∥∥Qpx,pt

Σ u
∥∥

L2(Σ)
≤ ‖u‖L2(Σ) for all u ∈ L2(Σ)

and we obtain the following approximation properties.

Theorem 6.9. Let u ∈ Hr,s(Σ) for some r ∈ [0, px + 1], s ∈ [0, pt + 1]. Moreover, let
Qpx,pt

Σ u ∈ X px,pt
hx,ht

(ΣN) be the L2 projection of u. Then there holds the error estimate
∥∥u−Qpx,pt

Σ u
∥∥

L2(Σ)
≤ c(hr

x +hs
t )‖u‖Hr,s(Σ) .

Proof. Let u∈Hr,s(Σ). Inserting intermediate functions and applying the triangle inequal-
ity yields

∥∥u−Qpx,pt
Σ u

∥∥
L2(Σ)

≤
∥∥u−Qpx,·

Σ u
∥∥

L2(Σ)
+
∥∥Qpx,·

Σ (u−Q·,pt
Σ u)

∥∥
L2(Σ)
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and the assertion follows by using the definitions (6.8) of the projection operators and by
applying the stability of the operator Qpx

Γ : L2(Γ )→ L2(Γ ), Theorem 6.1 and Theorem
6.6.

Lemma 6.10. Let u ∈ Hr,s(Σ) for some r ∈ [0, px + 1] and s ∈ [0, pt + 1]. Moreover, let
σ ∈ [−(px +1),0] and µ ∈ [−(pt +1),0]. Then there holds the error estimate

∥∥u−Qpx,pt
Σ u

∥∥
H̃σ ,µ (Σ)

≤ c
(

h−σ
x +h−µ

t

)
(hr

x +hs
t )‖u‖Hr,s(Σ) .

Proof. Let u ∈ Hr,s(Σ). By duality and by using (6.7) we obtain

∥∥u−Qpx,pt
Σ u

∥∥
H̃σ ,µ (Σ)

= sup
0 6=v∈H−σ ,−µ (Σ)

〈u−Qpx,pt
Σ u,v〉L2(Σ)

‖v‖H−σ ,−µ (Σ)

= sup
06=v∈H−σ ,−µ (Σ)

〈u−Qpx,pt
Σ u,v−Qpx,pt

Σ v〉L2(Σ)

‖v‖H−σ ,−µ (Σ)

.

An application of the Cauchy–Schwarz inequality and using Theorem 6.9 yields

∥∥u−Qpx,pt
Σ u

∥∥
H̃σ ,µ (Σ)

≤
∥∥u−Qpx,pt

Σ u
∥∥

L2(Σ)
sup

06=v∈H−σ ,−µ (Σ)

∥∥v−Qpx,pt
Σ v

∥∥
L2(Σ)

‖v‖H−σ ,−µ (Σ)

≤ c
(

h−σ
x +h−µ

t

)
(hr

x +hs
t )‖u‖Hr,s(Σ) .

The following two error estimates in anisotropic Sobolev spaces are to be found in the
proof of [10, Proposition 5.3].

Lemma 6.11. Let σ ∈ [0,1], µ ∈ [0,1/2) and u ∈Hr,s(Σ) for some r ∈ [σ ,2] and s∈ [µ,1].
Then there holds the error estimate

∥∥∥u−Q1,0
Σ u
∥∥∥

Hσ ,µ (Σ)
≤ c
(

hβ1(r,s,σ ,µ)
x +hβ2(r,s,σ ,µ)

t

)
‖u‖Hr,s(Σ)

with

β1(r,s,σ ,µ) := min(r−σ ,r−µ
r
s
), β2(r,s,σ ,µ) := min(s−µ,s−σ

s
r
). (6.9)

Note that for r µ = sσ we obtain the estimate
∥∥∥u−Q1,0

Σ u
∥∥∥

Hσ ,µ (Σ)
≤ c
(

hr−σ
x +hs−µ

t

)
‖u‖Hr,s(Σ) .
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Lemma 6.12 ([10, Proposition 5.3]). Let σ ∈ [0,1], µ ∈ [0,1] and u ∈ Hr,s(Σ) for some
r ∈ [σ ,2] and s ∈ [µ,2]. Then there holds the error estimate

∥∥∥u−Q1,1
Σ u
∥∥∥

Hσ ,µ (Σ)
≤ c
(

hβ1(r,s,σ ,µ)
x +hβ2(r,s,σ ,µ)

t

)
‖u‖Hr,s(Σ)

with β1, β2 given by (6.9).

For the setting r µ = sσ we conclude the error estimate
∥∥∥u−Q1,1

Σ u
∥∥∥

Hσ ,µ (Σ)
≤ c
(

hr−σ
x +hs−µ

t

)
‖u‖Hr,s(Σ) .

The following inverse inequality is necessary in order to derive an L2(Σ)-error estimate
for the Galerkin approximation of the unknown Neumann datum w of the initial Dirichlet
boundary value problem (5.6).

Lemma 6.13 (Global inverse inequality). Assume that the decompositions ΓNx and INt are
globally quasi-uniform. For r ∈ [0,1) there holds the global inverse inequality

‖τh‖L2(Σ) ≤ c
(

h−r
x +h−r/2

t

)
‖τh‖H̃−r,−r/2(Σ) for all τh ∈ X0,0

hx,ht
(ΣN).

Proof. Let τh ∈ X0,0
hx,ht

(ΣN) and 0≤ r < 1
2 . By applying the standard inverse inequalitiy in

spatial and temporal dimension [21] we get

‖τh‖2
Hr,r/2(Σ) ≤ c

∫

Γ

‖τh(x, ·)‖2
Hr/2(0,T ) dsx + c

T∫

0

‖τh(·, t)‖2
Hr(Γ ) dt

≤ ch−r
t

∫

Γ

‖τh(x, ·)‖2
L2(0,T ) dsx + ch−2r

x

T∫

0

‖τh(·, t)‖2
L2(Γ ) dt

≤ c
(
h−2r

x +h−r
t
)
‖τh‖2

L2(Σ) .

This estimate then yields

‖τh‖2
L2(Σ) = 〈τh,τh〉L2(Σ) ≤ ‖τh‖Hr,r/2(Σ) ‖τh‖H̃−r,−r/2(Σ)

≤ c
(

h−r
x +h−r/2

t

)
‖τh‖L2(Σ) ‖τh‖H̃−r,−r/2(Σ) ,

and we conclude

‖τh‖L2(Σ) ≤ c
(

h−r
x +h−r/2

t

)
‖τh‖H̃−r,−r/2(Σ) for all τh ∈ X0,0

hx,ht
(ΣN).
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It remains to prove the estimate for r ∈ [1
2 ,1). For τh ∈ X0,0

hx,ht
(ΣN) we have

‖τh‖L2(Σ) ≤ c
(

h−r/2
x +h−r/4

t

)
‖τh‖H̃−r/2,−r/4(Σ) . (6.10)

By using interpolation results, see, e.g., [34, 35], we get

‖τh‖2
H̃−r/2,−r/4(Σ)

≤ c‖τh‖L2(Σ) ‖τh‖H̃−r,−r/2(Σ)

≤ c
(

h−r/2
x +h−r/4

t

)
‖τh‖H̃−r/2,−r/4(Σ) ‖τh‖H̃−r,−r/2(Σ) ,

and together with (6.10) we conclude

‖τh‖L2(Σ) ≤ c
(

h−r
x +h−r/2

t

)
‖τh‖H̃−r,−r/2(Σ) for all τh ∈ X0,0

hx,ht
(ΣN).

Space–Time Triangulation

Let {ΣN}N∈N be a family of admissible triangulations of the full space–time boundary
Σ into boundary elements σ` given by (6.1). Again, we assume that there are no curved
elements and that there is no approximation of the boundary Σ . For each boundary element
σ` there exists exactly one j ∈ {1, ...,J} such that σ` ⊂ Σ j. The boundary elements σ` can
be described as σ` = χ`(σ), where σ is some reference element in Rn. The elements σ`

are plane triangles for n = 2 and tetrahedra for n = 3. For each boundary element σ` we
define its volume

∆` :=
∫

σ`

dsx dt

and its local mesh size h` := ∆ 1/n
` . The global mesh size is given by h := max`=1,...,N h`.

The family {ΣN}N∈N of triangulations is said to be globally quasi-uniform if there exists a
constant cG ≥ 1 independent of ΣN such that

hmax

hmin
≤ cG.

We consider shape regular boundary elements only, i.e. there exists a constant cB indepen-
dent of the boundary decomposition ΣN such that

d` ≤ cB h` for `= 1, ...,N

with diameter d` given by

d` := sup
(x,t),(y,s)∈σ`

|(x, t)− (x,s)|.

A sample triangulation of the boundary Σ of the space–time domain Q = (0,1)3 is shown
in Figure 6.2 (b).
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Trial Spaces

Let S0
h(ΣN) and S1

h(ΣN) denote the spaces of piecewise constant and piecewise linear and
globally continuous basis functions, respectively, which are defined with respect to the
triangulation ΣN . The L2 projection Qp

Σ u ∈ Sp
h(ΣN) of u ∈ L2(Σ), for p ∈ {0,1}, is defined

as the unique solution of the variational problem

〈Qp
Σ u,vh〉L2(Σ) = 〈u,vh〉L2(Σ) for all vh ∈ Sp

h(ΣN). (6.11)

The operators Qp
Σ : L2(Σ)→ L2(Σ) satisfy the trivial stability estimate

∥∥Qp
Σ u
∥∥

L2(Σ)
≤ ‖u‖L2(Σ) for all u ∈ L2(Σ).

By using Lemma 2.1 and the well known approximation properties in standard Sobolev
spaces, see, e.g., [62], we immediately obtain the following approximation results.

Theorem 6.14. Let u ∈ Hr,s(Σ) for some r,s ∈ [0,1]. Then there hold the error estimates
∥∥u−Qp

Σ u
∥∥

L2(Σ)
≤ ‖u‖L2(Σ) ,∥∥u−Qp

Σ u
∥∥

L2(Σ)
≤ chmin(r,s) ‖u‖Hr,s(Σ) .

Proof. First, let u ∈ L2(Σ). By using

〈u−Qp
Σ u,vh〉L2(Σ) = 0 for all vh ∈ S0

h(Σ)

we obtain
∥∥u−Qp

Σ u
∥∥2

L2(Σ)
= 〈u−Qp

Σ u,u−Qp
Σ u〉L2(Σ) = 〈u−Qp

Σ u,u〉L2(Σ)

≤
∥∥u−Qp

Σ u
∥∥

L2(Σ)
‖u‖L2(Σ)

and we conclude the first error estimate. For u∈Hr,s(Σ) with r,s∈ [0,1] and m :=min(r,s)
we argue as follows. Analogously to [62, Theorem 10.2 and Estimate 10.12] we get

∥∥u−Qp
Σ u
∥∥

L2(Σ)
≤ chm ‖u‖Hm(Σ) . (6.12)

According to Lemma 2.1 we have Hr,s(Σ) ↪→ Hm(Σ) and we therefore conclude
∥∥u−Qp

Σ u
∥∥

L2(Σ)
≤ chm ‖u‖Hr,s(Σ) .

Note that estimate (6.12) in the proof of Theorem 6.14 is also valid for m ∈ (1,2], i.e.
r,s ∈ (1,2], and p = 1. However, the embedding Hr,s(Σ) ↪→ Hm(Σ) does not hold for that
particular choice of r and s and therefore it is not possible to extend the result in Theorem
6.14 to r,s ∈ (1,2] and p = 1.



64 6 Space–Time Boundary Elements

Lemma 6.15. Let u ∈ Hr,s(Σ) for some r,s ∈ [0,1] and σ ,µ ∈ [−1,0]. Then there holds
the error estimate

∥∥u−Qp
Σ u
∥∥

H̃σ ,µ (Σ)
≤ chmin(r,s)+min(−σ ,−µ) ‖u‖Hr,s(Σ) .

Proof. Let u ∈ Hr,s(Σ). Using (6.11) yields

∥∥u−Qp
Σ u
∥∥

H̃σ ,µ (Σ)
= sup

06=v∈H−σ ,−µ (Σ)

〈u−Qp
Σ u,v〉L2(Σ)

‖v‖H−σ ,−µ (Σ)

= sup
06=v∈H−σ ,−µ (Σ)

〈u−Qp
Σ u,v−Qp

Σ v〉L2(Σ)

‖v‖H−σ ,−µ (Σ)

.

By applying the Cauchy–Schwarz inequality and Theorem 6.14 we obtain

∥∥u−Qp
Σ u
∥∥

H̃σ ,µ (Σ)
≤
∥∥u−Qp

Σ u
∥∥

L2(Σ)
sup

06=v∈H−σ ,−µ (Σ)

∥∥v−Qp
Σ v
∥∥

L2(Σ)

‖v‖H−σ ,−µ (Σ)

≤ chmin(r,s)hmin(−σ ,−µ) ‖u‖Hr,s(Σ) .

Since we consider shape regular boundary elements, the following inverse inequality holds.

Lemma 6.16 (Global inverse inequality). For a globally quasi-uniform boundary decom-
position ΣN and σ ,µ ∈ [0,1] there holds

‖τh‖L2(Σ) ≤ ch−max(σ ,µ) ‖τh‖H̃−σ ,−µ (Σ) for all τh ∈ S0
h(ΣN).

Proof. Let τh ∈ S0
h(ΣN). Application of the standard inverse inequality [62, Section 10.2]

yields
‖τh‖L2(Σ) ≤ ch−max(σ ,µ) ‖τh‖H̃−max(σ ,µ)(Σ) . (6.13)

Since Hmax(σ ,µ)(Σ) ↪→ Hσ ,µ(Σ), see Lemma 2.1, we obtain

‖τh‖H̃−max(σ ,µ)(Σ) = sup
0 6=v∈Hmax(σ ,µ)(Σ)

〈τh,v〉Σ
‖v‖Hmax(σ ,µ)(Σ)

≤ c sup
06=v∈Hσ ,µ (Σ)

〈τh,v〉Σ
‖v‖Hσ ,µ (Σ)

= c‖τh‖H̃−σ ,−µ (Σ) ,

(6.14)

and the assertion follows from combining (6.13) and (6.14).
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Note that for σ = 1/2 and µ = 1/4 we have H̃−1/2,−1/4(Σ) = H−1/2,−1/4(Σ) and there-
fore

‖τh‖L2(Σ) ≤ ch−1/2 ‖τh‖H−1/2,−1/4(Σ) for all τh ∈ S0
h(ΣN).

For σ ∈ [0,1] we define the Hσ (Σ)-projection Q1,σ
Σ u∈ S1

h(ΣN) of u∈Hσ (Σ) as the unique
solution of the variational problem

〈Q1,σ
Σ u,vh〉Hσ (Σ) = 〈u,vh〉Hσ (Σ) for all vh ∈ S1

h(ΣN)

and obtain the following error estimate for functions u with additional regularity, see, e.g.,
[62, Section 9.3 and Section 10.2]. For σ ∈ [0,1] and u∈Hr(Σ) with r ∈ [σ ,2] there holds
the error estimate ∥∥∥u−Q1,σ

Σ u
∥∥∥

Hσ (Σ)
≤ chr−σ ‖u‖Hr(Σ) . (6.15)

We therefore conclude the following approximation properties in anisotropic Sobolev spaces.

Corollary 6.17. Let σ ,µ ∈ [0,1] and u ∈ Hr(Σ) for some r ∈ [ν ,2] with ν := max(σ ,µ).
Then there holds the error estimate

∥∥∥u−Q1,ν
Σ u
∥∥∥

Hσ ,µ (Σ)
≤ chr−ν ‖u‖Hr(Σ) .

Proof. Let u ∈ Hr(Σ) and define ν := max(σ ,µ). According to Lemma 2.1 we have
Hν(Σ) ↪→ Hσ ,µ(Σ) and therefore

∥∥∥u−Q1,ν
Σ u
∥∥∥

Hσ ,µ (Σ)
≤ c
∥∥∥u−Q1,ν

Σ u
∥∥∥

Hν (Σ)
.

The assertion then follows by applying estimate (6.15).

As already mentioned, the extension of Corollary 6.17 to functions u ∈ Hr,s(Σ) with r,s ∈
[1,2] is in general not possible, see the remarks after Theorem 6.14. However, if u ∈
Hr,s(Σ) for some r,s ∈ [ν ,1] with ν := max(σ ,µ) we obtain the estimate

∥∥∥u−Q1,ν
Σ u
∥∥∥

Hσ ,µ (Σ)
≤ chmin(r,s)−ν ‖u‖Hr,s(Σ) , (6.16)

which is a direct consequence of Corollary 6.17 and Lemma 2.1.
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7 BOUNDARY ELEMENT METHODS

In this chapter we discuss Galerkin discretizations of space–time integral equations related
to the model problem (1.1) with different types of boundary conditions, see Chapter 5, and
we derive a priori error estimates for the Galerkin approximations of the unknown Cauchy
data [12].

Here and in the following chapters, Xh and Yh denote conforming boundary element spaces
of H−1/2,−1/4(Σ) and H1/2,1/4(Σ), respectively, which were introduced in the previous
chapter. We only consider shape regular boundary element meshes ΣN , both for an arbi-
trary triangulation of Σ as well as for a tensor product decomposition, since we want to
compare the theoretical and practical results of the two discretization techniques. In the
following, h denotes the mesh size of the space–time boundary elements of ΣN . Hence
for the tensor product approach we choose h ∼ ht ∼ hx. A priori error estimates and nu-
merical experiments for a different refinement strategy, e.g. ht ∼ h2

x , can be found in, e.g.,
[10, 45].

7.1 Dirichlet Boundary Value Problem

In this section we discretize the variational formulation (5.7) in order to compute an ap-
proximation of the unknown Neumann datum w = γ int

1 u ∈ H−1/2,−1/4(Σ) by using the
previously introduced boundary element spaces and derive a priori error estimates for the
Galerkin approximation, see Subsection 7.1.1. The numerical analysis of the discretized
indirect formulation (5.9) follows exactly the same path. In Subsection 7.1.2 we prove
error estimates for the related approximation of the solution u in the space–time domain
Q, and we provide numerical experiments in order to evaluate the theoretical findings in
Subsection 7.1.3. The numerical analysis in this section is based on [12].

For the discretization of the variational formulation (5.7) we consider the space of piece-
wise constant basis functions Xh ∈

{
X0,0

h,h (ΣN),S0
h(ΣN)

}
which is defined with respect to

a shape regular boundary element mesh ΣN as introduced in Chapter 6. The Galerkin–
Bubnov variational formulation of (5.7) is to find wh ∈ Xh such that

〈V wh,τh〉Σ = 〈(1
2

I +K)g−M0u0−N0 f ,τh〉Σ for all τh ∈ Xh. (7.1)

Due to the ellipticity of the single layer boundary integral operator V and the boundedness
of the integral operators, problem (7.1) admits a unique solution.
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7.1.1 Error Estimates

Let w ∈ H−1/2,−1/4(Σ) be the unique solution of the variational problem (5.7). Since
the operator V is elliptic and bounded, we can apply Cea’s Lemma [62, Theorem 8.1] to
conclude quasi-optimality of the Galerkin approximation wh ∈ Xh, i.e. we have

‖w−wh‖H−1/2,−1/4(Σ) ≤
cV

2
cV

1
inf

τh∈Xh
‖w− τh‖H−1/2,−1/4(Σ) .

Hence we can use the approximation properties of the boundary element space Xh to derive
error estimates for the solution wh of (7.1). Recall that Γ is assumed to be piecewise
smooth, i.e. we have the representation Σ =

⋃J
j=1 Σ j with Σ j = Γj× (0,T ) for j = 1, ...,J.

Due to the local definition of the trial space Xh and by applying Lemma 2.5 we obtain

‖w−wh‖H−1/2,−1/4(Σ) ≤
cV

2
cV

1

J

∑
j=1

inf
τ j

h∈Xh|Σ j

∥∥∥w|Σ j − τ j
h

∥∥∥
H̃−1/2,−1/4(Σ j)

. (7.2)

Note that all the approximation properties shown in the previous chapter also hold for an
open part Σ j ⊂ Σ of the space–time boundary Σ , i.e. we can replace the space Hr,s(Σ)
with the larger space Hr,s

pw(Σ) and we still get the same error estimates in the appropriate
norms.

One-Dimensional Problem

Recall that in the one-dimensional case we identify the Sobolev spaces Hr,s(Σ) with Hs(Σ).
Moreover, we have Σ = Σa∪Σb.

Theorem 7.1. Let wh ∈ S0
h(ΣN) be the unique solution of the Galerkin variational problem

(7.1). For w ∈ Hs
pw(Σ) with s ∈ [0,1] there holds the error estimate

‖w−wh‖H−1/4(Σ) ≤ chs+1/4|w|Hs
pw(Σ).

Proof. Follows by applying Lemma 6.2 for p = 0 in (7.2) for both boundary parts Σa and
Σb.

Moreover, we can derive an error estimate in the L2(Σ)-norm, assuming that the family of
boundary decompositions {ΣN}N∈N is globally quasi-uniform.

Theorem 7.2. Let wh ∈ S0
h(ΣN) be the unique solution of the Galerkin variational problem

(7.1). For w ∈ Hs
pw(Σ) with s ∈ [0,1] there holds

‖w−wh‖L2(Σ) ≤ chs|w|Hs
pw(Σ).
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Proof. By using the triangle inequality, Theorem 6.1 and Lemma 6.5 we get

‖w−wh‖L2(Σ) ≤
∥∥w−Q0

Σ w
∥∥

L2(Σ)
+
∥∥Q0

Σ w−wh
∥∥

L2(Σ)

≤ chs|w|Hs
pw(Σ)+ ch−1/4∥∥Q0

Σ w−wh
∥∥

H−1/4(Σ)
.

The assertion follows with
∥∥Q0

Σ w−wh
∥∥

H−1/4(Σ)
≤
∥∥Q0

Σ w−w
∥∥

H−1/4(Σ)
+‖w−wh‖H−1/4(Σ) ,

Theorem 7.1 and Lemma 6.2 with p = 0.

Two- and Three-Dimensional Problem

Theorem 7.3. Let wh ∈ Xh be the unique solution of the Galerkin–Bubnov variational
formulation (7.1). For w ∈ Hr,s

pw(Σ) with r,s ∈ [0,1] there holds

‖w−wh‖H−1/2,−1/4(Σ) ≤ chmin(r,s)+1/4 ‖w‖Hr,s
pw(Σ) .

Proof. The assertion follows by applying Lemma 6.10 with px = pt = 0 for Xh =X0,0
h,h (ΣN),

and Lemma 6.15 with p = 0 for Xh = S0
h(ΣN) in (7.2).

Theorem 7.4. Assume that the boundary decomposition ΣN is globally quasi-uniform. Let
wh ∈ Xh be the unique solution of the Galerkin–Bubnov variational problem (7.1). For
w ∈ Hr,s

pw(Σ) with r,s ∈ [1/4,1] there holds

‖w−wh‖L2(Σ) ≤ chmin(r,s)−1/4 ‖w‖Hr,s
pw(Σ) .

Proof. By using the triangle inequality, Theorem 6.9 with px = pt = 0 and Lemma 6.13
for Xh = X0,0

h,h (ΣN), Theorem 6.14 with p = 0 and Lemma 6.16 for Xh = S0
h(ΣN), we get

‖w−wh‖L2(Σ) ≤ ‖w−QΣ w‖L2(Σ)+‖QΣ w−wh‖L2(Σ)

≤ chmin(r,s) ‖w‖Hr,s
pw(Σ)+ ch−1/2 ‖QΣ w−wh‖H−1/2,−1/4(Σ) .

Here, QΣ is either the L2 projection onto X0,0
h,h (ΣN) or S0

h(ΣN). The assertion follows with

‖QΣ w−wh‖H−1/2,−1/4(Σ) ≤ ‖QΣ w−w‖H−1/2,−1/4(Σ)+‖w−wh‖H−1/2,−1/4(Σ) ,

Theorem 7.3, Lemma 6.10 with px = pt = 0 for Xh = X0,0
h,h (ΣN), and Lemma 6.15 with

p = 0 for Xh = S0
h(ΣN).
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Hence we can prove the same convergence rates for Xh = X0,0
h,h (ΣN) and Xh = S0

h(ΣN) of
the Galerkin approximation wh in the energy norm as well as in the L2(Σ)-norm, assuming
that the boundary element mesh ΣN is shape regular. However, the numerical results in
Subsection 7.1.3 show that the L2(Σ)-error estimate in Theorem 7.4 is not optimal. This
is due to the application of the inverse inequality in Theorem 7.4. One possible way to
show an optimal L2(Σ)-error estimate for the Galerkin approximation wh is to consider the
integral equation in H1,1/2(Σ) and prove a related discrete stability condition which then
immediately implies an L2(Σ)-error estimate.

7.1.2 Domain Error Estimates

Let wh ∈ Xh be the unique solution of the Galerkin variational problem (7.1). We obtain
an approximate solution of the initial Dirichlet boundary value problem (5.6) by using the
representation formula (5.1) with the approximation wh, i.e for (x, t) ∈ Q we have

ũ(x, t) = (Ṽ wh)(x, t)− (Wg)(x, t)+(M̃0u0)(x, t)+(Ñ0 f )(x, t).

For the related error we obtain for (x, t) ∈ Q

|u(x, t)− ũ(x, t)|=
∣∣∣(Ṽ (w−wh))(x, t)

∣∣∣

=
1
α

∣∣∣∣∣∣

∫

Σ

U?(x− y, t− τ)(w−wh)(y,τ)dsy dτ

∣∣∣∣∣∣
.

Since (x, t) ∈ Q, the fundamental solution U?(x−·, t−·) is smooth for (y,τ) ∈ Σ and we
therefore conclude U?(x−·, t−·) ∈ H−σ ,−σ/2(Σ) for any σ ∈ R. Hence

|u(x, t)− ũ(x, t)| ≤ 1
α
‖U?(x−·, t−·)‖H−σ ,−σ/2(Σ) ‖w−wh‖H̃σ ,σ/2(Σ) . (7.3)

Thus, in order to derive an error estimate for the pointwise error |u(x, t)− ũ(x, t)|, (x, t)∈Q,
we need an error estimate for ‖w−wh‖H̃σ ,σ/2(Σ) where σ ∈R is minimal. In the following,
QΣ : L2(Σ)→ Xh ⊂ L2(Σ) denotes the L2 projection onto the space Xh.

Theorem 7.5 (Aubin–Nitsche Trick). Let w ∈ Hr,s
pw(Σ) for some r,s ∈ [0,1] be the unique

solution of (5.7), and let wh ∈Xh be the unique solution of the Galerkin variational problem
(7.1). Assume that the adjoint single layer operator

V ∗ : H−1−σ ,−1/2−µ(Σ)→ H−σ ,−µ(Σ)

is continuous and bijective for some −2 ≤ σ ≤ −1 and µ = σ/2. Then there holds the
error estimate

‖w−wh‖H̃σ ,µ (Σ) ≤ chmin(r,s)−µ ‖w‖Hr,s
pw(Σ) .
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Proof. For σ ≤−1 and µ = σ/2 we have

‖w−wh‖H̃σ ,µ (Σ) = sup
0 6=v∈H−σ ,−µ (Σ)

〈w−wh,v〉Σ
‖v‖H−σ ,−µ (Σ)

.

By assumption, the adjoint single layer operator

V ∗ : H−1−σ ,−1/2−µ(Σ)→ H−σ ,−µ(Σ)

is continuous and bijective. Hence for v ∈ H−σ ,−µ(Σ) there exists a unique density
z ∈ H−1−σ ,−1/2−µ(Σ) such that v = V ∗z. Therefore, and by applying the Galerkin or-
thogonality

〈V (w−wh),τh〉Σ = 0 for all τh ∈ Xh,

we obtain

‖w−wh‖H̃σ ,µ (Σ) = sup
0 6=z∈H−1−σ ,−1/2−µ (Σ)

〈w−wh,V ∗z〉Σ
‖V ∗z‖H−σ ,−µ (Σ)

= sup
06=z∈H−1−σ ,−1/2−µ (Σ)

〈V (w−wh),z−QΣ z〉Σ
‖V ∗z‖H−σ ,−µ (Σ)

.

Since V ∗ is bijective, there exists a constant c > 0 such that [17, Lemma A.40]

‖V ∗z‖H−σ ,−µ (Σ) ≥ c‖z‖H−1−σ ,−1/2−µ (Σ) for all z ∈ H−1−σ ,−1/2−µ(Σ).

Thus, by using the boundedness of the operator V : H−1/2,−1/4(Σ)→H1/2,1/4(Σ) we con-
clude

‖w−wh‖H̃σ ,µ (Σ)

≤ c̃‖w−wh‖H−1/2,−1/4(Σ) sup
06=z∈H−1−σ ,−1/2−µ (Σ)

‖z−QΣ z‖H−1/2,−1/4(Σ)

‖z‖H−1−σ ,−1/2−µ (Σ)

.

When considering −1−σ ≤ 1, i.e. σ ≥−2, we obtain from the approximation properties
of the operator QΣ the error estimate

‖w−wh‖H̃σ ,µ (Σ) ≤ ĉ h−1/4−µ ‖w−wh‖H−1/2,−1/4(Σ) ,

and the assertion follows by applying the error estimate for the Galerkin approximation wh
in the energy norm.

Hence in the one-dimensional case we obtain the optimal error estimate

‖w−wh‖H̃µ (Σ) ≤ chs−µ ‖w‖Hs
pw(Σ)
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for w ∈ Hs(Σ) with s ∈ [0,1] and −1≤ µ ≤−1/2.

Note that the estimate in Theorem 7.5 may be extended to −1 ≤ σ ≤ −1/2. The proof
follows exactly the same path but utilizes approximation properties of the L2 projection
operators for functions w ∈ H̃r,s(Σ) with r,s < 0, see [10, 45, 62].

Now assume that the solution w of the variational formulation (5.7) is sufficiently smooth,
i.e. w ∈ H1,1

pw (Σ). From estimate (7.3) and by choosing σ =−2 in Theorem (7.5) we get,
for (x, t) ∈ Q, the optimal pointwise error estimate

|u(x, t)− ũ(x, t)| ≤ c̃‖U?(x−·, t−·)‖H2,1(Σ) ‖w−wh‖H̃−2,−1(Σ)

≤ ch2 ‖U?(x−·, t−·)‖H2,1(Σ) ‖w‖H1,1
pw (Σ)

.
(7.4)

Next we consider problem (3.1) with source term f ≡ 0. To estimate the global error
‖u− ũ‖

H1,1/2
;0, (Q)

we proceed as follows. We first consider the Dirichlet trace of the dis-

cretized representation formula (7.17), i.e. we have

ĝ :=V wh +
1
2

g−Kg.

Moreover, the first boundary integral equation in (5.3) gives

g =V w+
1
2

g−Kg,

and we therefore conclude the relation

g− ĝ =V (w−wh). (7.5)

Theorem 7.6 (Domain error estimate). Let u ∈ H1,1/2
;0, (Q) be the unique solution of the

Dirichlet boundary value problem (3.1) with source term f ≡ 0, and let ũ ∈ H1,1/2
;0, (Q) be

the corresponding approximation given by (7.17) with f ≡ 0 and u0 ≡ 0. Then there holds
the error estimate

‖u− ũ‖
H1,1/2

;0, (Q)
≤ c‖w−wh‖H−1/2,−1/4(Σ) .

Proof. The solution u = ū+E0g ∈ H1,1/2
;0, (Q) of problem (3.1) with homogeneous source

term is given as the unique solution of the variational problem

a(ū,v) =−a(E0g,v) for all v ∈ H1,1/2
0;,0 (Q).

For the approximation ũ we consider the decomposition ũ = û+ E0ĝ ∈ H1,1/2
;0, (Q) which

satisfies
a(û,v) =−a(E0ĝ,v) for all v ∈ H1,1/2

0;,0 (Q).
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By subtracting the last two equations we obtain

a(ū− û,v) = a(E0(ĝ−g),v) for all v ∈ H1,1/2
0;,0 (Q).

Since ū− û ∈ H1,1/2
0;0, (Q), we can apply the stability estimate (3.6) to get

1
2
‖ū− û‖

H1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;,0 (Q)

a(ū− û,v)
‖v‖

H1,1/2
0;,0 (Q)

= sup
06=v∈H1,1/2

0;,0 (Q)

a(E0(ĝ−g),v)
‖v‖

H1,1/2
0;,0 (Q)

≤ c‖E0(ĝ−g)‖
H1,1/2

;0, (Q)
.

Hence, by using the triangle inequality, the Poincaré inequality and the boundedness of the
inverse trace operator E0, we obtain

‖u− ũ‖
H1,1/2

;0, (Q)
≤ ‖ū− û‖

H1,1/2
;0, (Q)

+‖E0(ĝ−g)‖
H1,1/2

;0, (Q)

≤ c̃‖ū− û‖
H1,1/2

0;0, (Q)
+‖E0(ĝ−g)‖

H1,1/2
;0, (Q)

≤ ĉ‖E0(ĝ−g)‖
H1,1/2

;0, (Q)
≤ c̄‖ĝ−g‖H1/2,1/4(Σ) ,

and the assertion follows with the relation (7.5).

Note that for w ∈ H1,1
pw (Σ) we finally conclude the optimal error estimate

‖u− ũ‖
H1,1/2

;0, (Q)
≤ ch5/4 ‖w‖H1,1

pw (Σ)
.

7.1.3 Numerical Results

We consider the initial Dirichlet boundary value problem (5.6) with boundary conditions
g ∈ H1/2,1/4(Σ), homogeneous source term f ≡ 0, time horizon T = 1, and with the heat
capacity constant α = 10. We present examples for the spatially one- and two-dimensional
case and compare the tensor product decomposition with a triangulation of the space–time
boundary Σ . All of the following examples refer to a shape regular boundary decomposi-
tion ΣN .

The Galerkin boundary element discretization of the variational formulation (5.7) is done
by using piecewise constant basis functions Xh = span

{
ϕ0
`

}N
`=1, defined with respect to the

boundary decomposition ΣN . For the approximation of the Dirichlet datum g we consider
a conforming boundary element space Yh = span{ψi}MΣ

i=1 ⊂ H1/2,1/4(Σ) introduced in the
previous chapter, while the initial datum u0 is discretized by using the space of piecewise
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linear and globally continuous functions S1
h(ΩNΩ ) = span

{
ϕ1

j

}MΩ

j=1
, which is defined with

respect to a given triangulation ΩNΩ := {ωi}NΩ
i=1 of the domain Ω . This leads to the system

of linear equations

Vhwww = (
1
2
Mh +Kh)ggg−M0

huuu0 (7.6)

where
Vh[`,k] :=

1
α

∫

σ`

∫

σk

U?(x− y, t− τ)dsy dτ dsx dt, (7.7)

Kh[`, i] :=
1
α

∫

σ`

∫

Σ

∂nyU
?(x− y, t− τ)ψi(y,τ)dsy dτ dsx dt, (7.8)

M0
h[`, j] :=

∫

σ`

∫

Ω

U?(x− y, t)ϕ1
j (y)dydsx dt, (7.9)

and
Mh[`, i] :=

∫

σ`

∫

Σ

ψi(y,τ)dsy dτ dsx dt. (7.10)

The vectors www ∈ RN , ggg ∈ RMΣ and uuu0 ∈ RMΩ in (7.6) represent the coefficients of the
trial function wh := ∑N

`=1 w`ϕ0
` , and the given approximations gh := ∑MΣ

i=1 giψi and u0
h :=

∑MΩ
i=1 u0

i ϕ1
i of the Dirichlet datum g and the initial datum u0, respectively. Due to the

ellipticity of the single layer operator V , the matrix Vh is positive definite and therefore
(7.6) is uniquely solvable. The system is solved by using the GMRES method with a
relative accuracy of 10−8 as stopping criteria.

By using the representation formula (5.1) with the approximations wh, gh and u0
h we can

compute an approximation ũ of u, i.e. for (x, t) ∈ Q we obtain

ũ(x, t) =
MΩ

∑
i=1

u0
i (M̃0ϕ1

i )(x, t)+
N

∑̀
=1

w`(Ṽ ϕ0
` )(x, t)−

MΣ

∑
i=1

gi(Wψi)(x, t). (7.11)

Computation of Matrix Entries

In this paragraph we comment on the stable computation of the matrix entries (7.7),
(7.8),(7.9) and (7.10), and on the stable evaluation of the representation formula (7.11)
based on [14]. Due to the singularity of the fundamental solution at (x, t) = (y,s) we have
to deal with weakly singular integrands. For the assembly of the boundary element ma-
trices Vh, Kh and M0

h we use an element-based strategy, i.e. we loop over all pairs of
boundary elements for Vh and Kh, and over boundary elements and finite elements of the
initial mesh Ωh for M0

h. Depending on the mutual position of the two elements we use
different integration routines.
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In the one-dimensional case we can compute all matrix entries analytically and therefore
we skip the discussion of the 1D problem. The situation is different in the two-dimensional
case. In what follows, we will discuss the integration routines for a tensor product decom-
position of Σ , i.e. we choose Xh = X0,0

hx,ht
(ΣN) and Yh ∈

{
X1,0

hx,ht
(ΣN),X

1,1
hx,ht

(ΣN)
}

. The
results can be extended to boundary element spaces defined with respect to a triangulation
of the space–time boundary Σ with just a few slight modifications.

Let us first consider the matrix Vh. In Fig. 7.1a the integration routines for the computa-
tion of the matrix entries Vh[`, ·] are shown. The grid represents a part of the space–time
boundary element mesh ΣN . The element σ` is fixed and depending on where the element
σk is located, we distinguish between the following integration routines:

A – analytic integration,

N – fully numerical integration,

S – semi-analytic integration, i.e. numerical in space and analytical in time,

T – transformation of the integral to get rid of the weak singularity.

We give a sketch of the overall situation in Fig. 7.1a. For the computation of the matrix
entries corresponding to the elements marked with N, i.e. if two elements σ` and σk are
well separated, we use numerical integration in space and time. The computation of these
entries takes most of the computational time, but the evaluation of these integrals can
be vectorized [14]. The integrands corresponding to the elements marked with T have
a singularity at the shared space-vertex. In these cases we transform the integrals with
respect to the spatial dimensions to get rid of the weak singularity [25, 53] and then apply
semi-analytic integration, i.e. numerical integration in space and analytical integration in
time [57]. If the element σk is located above the element σ`, the value of the integral is
zero due to the causality of the fundamental solution (4.6).

The situation is quite the same for the matrix Kh. The only difference is that the value of the
integral is zero if the elements σ` and σk share the same spatial element γ , see Fig. 7.1b.

For the computation of the matrix entries of M0
h, where we assemble a local matrix corre-

sponding to a boundary element and a triangular element of the initial mesh, we proceed
as follows. For the integral over the triangle we use the seven-point rule [52], and for the
integral over the boundary element we apply semi-analytic integration, i.e. analytical in
time and numerical in space. In this case we do not have to handle weakly singular inte-
grands separately. The sparse matrix Mh can be assembled from local mass matrices in a
standard way.

Similar integration techniques are used for the evaluation of the representation formula
(7.11). However, since we evaluate (7.11) for (x, t) ∈ Q, we do not have to handle weakly
singular integrands.
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N N N N N

S T+S A T+S S

S T+S A T+S S
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(a) Computation of Vh.

N N 0 N N

S T+S 0 T+S S

S T+S 0 T+S S

0 0 0 0 0

σ`

Space

Ti
m

e

(b) Computation of Kh.

Figure 7.1: Computation of the matrix entries Vh[`, ·] and Kh[`, ·] for a fixed boundary ele-
ment σ` and varying element σk.

One-Dimensional problem

First we provide numerical experiments for the simple one-dimensional problem. We con-
sider the spatial domain Ω = (0,1) and homogeneous Dirichlet conditions g ≡ 0. Recall
that the boundary elements are line segments in temporal dimension.

Uniform Refinement. The first example corresponds to the initial datum

u0(x) = sin(2πx) for x ∈Ω = (0,1)

and a globally uniform boundary element mesh of mesh size h = 2−L. Table 7.1 shows
the error ‖w−wh‖L2(Σ) and the estimated order of convergence (eoc), which is linear as
expected according to Theorem 7.2, assuming that w ∈ H1

pw(Σ). Moreover, the iteration
numbers of the GMRES method are given.

Adaptive Refinement. For the second example we consider the initial datum

u0(x) = 5exp(−10x)sin(πx) for x ∈Ω = (0,1),

which motivates the use of a locally quasi-uniform boundary element mesh resulting from
some adaptive refinement strategy. The Galerkin approximation wh is shown in Figure
7.2. In Figure 7.3 the convergence history of the approximation for uniform and adaptive
refinement is given.
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L N ‖w−wh‖L2(Σ) eoc It.

5 64 7.950 ·10−2 1.01 31
6 128 3.959 ·10−2 1.01 41
7 256 1.976 ·10−2 1.00 50
8 512 9.872 ·10−3 1.00 59
9 1 024 4.929 ·10−3 1.00 70

10 2 048 2.468 ·10−3 1.00 82
11 4 096 1.233 ·10−3 1.00 96

Table 7.1: L2(Σ)-error and convergence rate of the Galerkin approximation wh, and itera-
tion numbers of the GMRES method (It.) in the case of uniform refinement in
1D. The parameter N denotes the number of boundary elements on level L.
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Figure 7.2: Galerkin approximation wh on the two boundary parts Σ0 and Σ1 in the case of
adaptive refinement in 1D.

Two-Dimensional Problem

For the numerical experiments for the spatially two-dimensional problem we choose the
spatial domain Ω = (0,1)2, i.e. Q = (0,1)3.

Uniform Refinement. We consider the exact solution

u(x, t) = exp
(
− t

α

)
sin
(

x1 cos
π
8
+ x2 sin

π
8

)
for (x, t) = (x1,x2, t) ∈ Q,
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Figure 7.3: Convergence history of the Galerkin approximation wh for uniform and adap-
tive refinement in 1D.

and determine the Dirichlet datum g and the initial datum u0 accordingly. We use a glob-
ally quasi-uniform boundary element mesh with mesh size h =O(2−L), both for the tensor
product approach as well as for a triangulation of the space–time boundary Σ . Table 7.2
and Table 7.3 show the error ‖w−wh‖L2(Σ) of the Galerkin approximation wh as well as
the pointwise error |(u− ũ)(x, t)| in x = (0.5,0.5), t = 0.5, and the corresponding conver-
gence rates (eoc). Additionally, the iteration numbers of the GMRES method are listed.
While the convergence rate of the pointwise error is quadratic and therefore in line with
the theoretical findings (7.4), we obtain linear convergence of the Galerkin approximation
wh in the L2(Σ)-norm, which is, according to Theorem 7.4, better than expected, see the
discussion at the end of Subsection 7.1.1.

As already mentioned before, we consider shape regular boundary elements only, i.e. in
case of the tensor product approach we choose hx ∼ ht . Although the relation ht ∼ h2

x is
recommended in order to obtain optimal convergence results of the Galerkin approxima-
tion wh in the energy norm [10,45], we get linear convergence of the approximation in the
L2(Σ)-norm in our experiments. Note that numerical results in [10, Section 6] indicate that
the relation ht ∼ h2

x is not necessary for an optimal convergence rate in the L2(Σ)-norm.

Adaptive Refinement. As a second example we consider the initial datum

u0(x1,x2) = 40 exp(−10(x1 + x2))sin(πx1)sin(πx2) for (x1,x2) ∈Ω ,

see Figure 7.4, and we use a globally quasi-uniform as well as a locally quasi-uniform
triangulation of the space–time boundary resulting from some adaptive refinement strat-
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L N ‖w−wh‖L2(Σ) eoc |(u− ũ)(x, t)| eoc It.

0 4 2.795 ·10−1 - 2.598 ·10−2 - 2
1 16 1.413 ·10−1 0.98 5.544 ·10−3 2.23 9
2 64 6.882 ·10−2 1.04 9.146 ·10−4 2.60 14
3 256 3.353 ·10−2 1.04 2.485 ·10−4 1.88 18
4 1 024 1.650 ·10−2 1.02 6.315 ·10−5 1.98 24
5 4 096 8.172 ·10−3 1.01 1.563 ·10−5 2.01 35
6 16 384 4.066 ·10−3 1.01 3.748 ·10−6 2.06 50
7 65 536 2.030 ·10−3 1.00 8.468 ·10−7 2.15 67

Table 7.2: Error and convergence rates of the Galerkin approximation wh and of the ap-
proximated solution ũ in the interior, and iteration numbers of the GMRES
method (It.) in the case of uniform refinement for a tensor product decom-
position of Σ in 2D. The parameter N denotes the number of boundary elements
on level L.

L N ‖w−wh‖L2(Σ) eoc |(u− ũ)(x, t)| eoc It.

0 16 1.588 ·10−1 - 2.046 ·10−2 - 9
1 64 6.326 ·10−2 1.33 5.395 ·10−3 1.92 16
2 256 2.502 ·10−2 1.34 1.337 ·10−3 2.01 23
3 1 024 1.084 ·10−2 1.21 3.336 ·10−4 2.00 32
4 4 096 5.040 ·10−3 1.11 8.348 ·10−5 2.00 44
5 16 384 2.447 ·10−3 1.04 2.093 ·10−5 2.00 62
6 65 536 1.233 ·10−3 0.99 5.265 ·10−6 1.99 85

Table 7.3: Error and convergence rates of the Galerkin approximation wh and of the ap-
proximated solution ũ in the interior, and iteration numbers of the GMRES
method (It.) in the case of uniform refinement for a triangulation of Σ in 2D.
The parameter N denotes the number of boundary elements on level L.

egy. In Figure 7.6 the convergence history of the approximation for uniform and adaptive
refinement is given, while the resulting boundary element mesh is shown in Figure 7.5.
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Figure 7.4: Initial datum u0 for the sample Dirichlet boundary value problem in 2D.

Figure 7.5: Triangular boundary element mesh in the case of adaptive refinement in 2D.

7.2 Neumann Boundary Value Problem

In this section we discretize the variational formulation (5.11) in order to compute an
approximation of the unknown Dirichlet datum g = γ int

0 u ∈ H1/2,1/4(Σ) by using the in-
troduced space–time boundary element spaces and derive a priori error estimates for the
Galerkin approximation in Subsection 7.2.1. The numerical analysis of the discretized in-
direct formulation (5.13) follows exactly the same path. In Subsection 7.2.2 we prove error
estimates for the related approximation of the solution u in the space–time domain Q, and
we provide numerical experiments in Subsection 7.2.3.
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Figure 7.6: Convergence of the Galerkin approximation wh for uniform and adaptive re-
finement in 2D.

For the discretization of the variational formulation (5.11) we consider a conforming
boundary element space Yh⊂H1/2,1/4(Σ) defined with respect to a shape regular boundary
element mesh ΣN as introduced in Chapter 6. The Galerkin–Bubnov variational formula-
tion of (5.11) is to find gh ∈ Yh such that

〈Dgh,vh〉Σ = 〈(1
2

I−K′)w−M1u0−N1 f ,vh〉Σ for all vh ∈ Yh. (7.12)

Due to the ellipticity of the hypersingular integral operator D and the boundedness of the
integral operators, problem (7.12) is uniquely solvable.

7.2.1 Error Estimates

Let g ∈H1/2,1/4(Σ) be the unique solution of the variational problem (5.11). Since the op-
erator D is elliptic and bounded we can apply Cea’s Lemma [62, Theorem 8.1] to conclude
quasi-optimality of the Galerkin approximation gh ∈ Yh, i.e. we have

‖g−gh‖H1/2,1/4(Σ) ≤
cD

2
cD

1
inf

vh∈Yh
‖g− vh‖H1/2,1/4(Σ) . (7.13)

Hence we can use the approximation properties of the boundary element space Yh to derive
error estimates for the discrete solution gh of (7.12).
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One-Dimensional Problem

Recall that in the one-dimensional case we have Σ = Σa∪Σb. Moreover, we can identify
the Sobolev spaces Hr,s(Σ) with Hs(Σ). Therefore, we can either use S0

h(ΣN) or S1
h(ΣN)

for the approximation of g, since Sp
h(ΣN)⊂ H1/4(Σ) for p ∈ {0,1}.

Theorem 7.7. Let gh ∈ Sp
h(ΣN) be the unique solution of the Galerkin variational problem

(7.12). For g ∈ Hs(Σ) with s ∈ [1/4, p+1] there holds the error estimate

‖g−gh‖H1/4(Σ) ≤ chs−1/4 ‖g‖Hs(Σ) .

Proof. Follows by applying Lemma 6.3 for p = 0 and Lemma 6.4 for p = 1 in (7.13) for
both boundary parts Σa and Σb.

Moreover, we can derive an error estimate in weaker norms by using the Aubin–Nitsche
Trick.

Theorem 7.8 (Aubin–Nitsche Trick). Let g∈Hs(Σ) for some s∈ [1/4, p+1] be the unique
solution of the variational problem (5.11), and let gh ∈ Sp

h(ΣN) be the unique solution of the
Galerkin variational problem (7.12). Assume that the adjoint hypersingular layer operator

D∗ : H1/2−µ(Σ)→ H−µ(Σ)

is continuous and bijective for some−1/2≤ µ ≤ 1/4. Then there holds the error estimate

‖g−gh‖H̃µ (Σ) ≤ chs−µ ‖g‖Hs(Σ) .

Proof. For −1/2≤ µ ≤ 1/4 we have

‖g−gh‖H̃µ (Σ) = sup
06=v∈H−µ (Σ)

〈g−gh,v〉Σ
‖v‖H−µ (Σ)

.

By assumption, the adjoint hypersingular operator

D∗ : H1/2−µ(Σ)→ H−µ(Σ)

is continuous and bijective. Hence for v ∈ H−µ(Σ) there exists a unique z ∈ H1/2−µ(Σ)
such that v = D∗z. Therefore, and by applying the Galerkin orthogonality

〈D(g−gh),vh〉Σ = 0 for all vh ∈ Sp
h(ΣN),

we obtain

‖g−gh‖H̃µ (Σ) = sup
06=z∈H1/2−µ (Σ)

〈g−gh,D∗z〉Σ
‖D∗z‖H−µ (Σ)

= sup
06=z∈H1/2−µ (Σ)

〈D(g−gh),z−Qp
Σ z〉Σ

‖D∗z‖H−µ (Σ)

.
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Since D∗ is bijective, there exists a constant c > 0 such that [17, Lemma A.40]

‖D∗z‖H−µ (Σ) ≥ c‖z‖H1/2−µ (Σ) for all z ∈ H1/2−µ(Σ).

Thus, by using the boundedness of the operator D : H1/4(Σ)→ H−1/4(Σ) we conclude

‖g−gh‖H̃µ (Σ) ≤ c̃‖g−gh‖H1/4(Σ) sup
0 6=z∈H1/2−µ (Σ)

∥∥z−Qp
Σ z
∥∥

H1/4(Σ)

‖z‖H1/2−µ (Σ)

.

From the approximation properties of the operator Qp
Σ we obtain the error estimate

‖g−gh‖H̃µ (Σ) ≤ ĉ h1/4−µ ‖g−gh‖H1/4(Σ) ,

and the assertion follows by applying the error estimate for the Galerkin approximation gh
in the energy norm.

By using Theorem 7.8 with µ = 0 we conclude the optimal L2(Σ)-error estimate

‖g−gh‖L2(Σ) ≤ chs ‖g‖Hs(Σ) .

for the Galerkin approximation gh ∈ Sp
h(ΣN) of g ∈Hs(Σ) with s ∈ [1/4, p+1]. Hence for

a sufficiently smooth Dirichlet datum, i.e. g ∈ H p+1(Σ), we obtain

‖g−gh‖L2(Σ) ≤ chp+1 ‖g‖H p+1(Σ) . (7.14)

Two- and Three-Dimensional Problem

Here we have to distinguish between the boundary element spaces Yh = X1,pt
h,h (ΣN) and

Yh = S1
h(ΣN) due to the different regularity assumptions that are necessary in order to

obtain the approximation properties of the related L2 projection operators, see Chapter 6.
In the following, pt denotes the polynomial degree of the tensor product boundary element
spaces in temporal dimension.

Theorem 7.9. Let gh ∈ X1,pt
h,h (ΣN) be the unique solution of the Galerkin–Bubnov varia-

tional formulation (7.12). For g∈Hr,s(Σ) with r ∈ [1/2,2] and s∈ [1/4, pt +1] there holds
the error estimate

‖g−gh‖H1/2,1/4(Σ) ≤ chβ (r,s) ‖g‖Hr,s(Σ)

with
β (r,s) := min(β1(r,s,1/2,1/4),β2(r,s,1/2,1/4)) (7.15)

and β1,β2 given by (6.9).
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Proof. Follows by applying Lemma 6.11 for pt = 0 and Lemma 6.12 for pt = 1 in (7.13).

For a triangulation of the boundary Σ we conclude the following convergence rates of the
Galerkin approximation gh.

Theorem 7.10. Let gh ∈ S1
h(ΣN) be the unique solution of the Galerkin–Bubnov variational

formulation (7.12). For g ∈ Hr(Σ) with r ∈ [1/2,2] there holds

‖g−gh‖H1/2,1/4(Σ) ≤ chr−1/2 ‖g‖Hr(Σ) .

Proof. The assertion follows by applying Corollary 6.17 in (7.13).

Moreover, for u ∈ Hr,s(Σ) with r,s ∈ [1/2,1] estimate (6.16) yields

‖g−gh‖H1/2,1/4(Σ) ≤ chmin(r,s)−1/2 ‖g‖Hr,s(Σ) .

Again, we can derive error estimates in weaker norms by using the Aubin–Nitsche Trick
in the case of the tensor product approach.

Theorem 7.11 (Aubin–Nitsche Trick). Let g ∈ Hr,s(Σ) for some r ∈ [1/2,2] and some
s ∈ [1/4, pt + 1] be the unique solution of the variational problem (5.11), and let gh ∈
X1,pt

h,h (ΣN) be the unique solution of the Galerkin variational problem (7.12). Assume that
the adjoint hypersingular operator

D∗ : H1−σ ,1/2−µ(Σ)→ H−σ ,−µ(Σ)

is continuous and bijective for some −1 ≤ σ ≤ 1/2 and µ = σ/2. Then there holds the
error estimate

‖g−gh‖H̃σ ,µ (Σ) ≤ chβ (r,s)+1/4−µ ‖g‖Hr,s(Σ)

with β given by (7.15).

Proof. For −1≤ σ ≤ 1/2 and µ = σ/2 we have

‖g−gh‖H̃σ ,µ (Σ) = sup
0 6=v∈H−σ ,−µ (Σ)

〈g−gh,v〉Σ
‖v‖H−σ ,−µ (Σ)

.

By assumption, the adjoint hypersingular operator

D∗ : H1−σ ,1/2−µ(Σ)→ H−σ ,−µ(Σ)
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is continuous and bijective. Hence for a given function v ∈ H−σ ,−µ(Σ) there exists a
uniquely defined density z∈H1−σ ,1/2−µ(Σ) such that v=D∗z. Therefore, and by applying
the Galerkin orthogonality

〈D(g−gh),vh〉Σ = 0 for all vh ∈ X1,pt
h,h (ΣN),

we obtain

‖g−gh‖H̃σ ,µ (Σ) = sup
06=z∈H1−σ ,1/2−µ (Σ)

〈g−gh,D∗z〉Σ
‖D∗z‖H−σ ,−µ (Σ)

= sup
06=z∈H1−σ ,1/2−µ (Σ)

〈D(g−gh),z−Q1,pt
Σ z〉Σ

‖D∗z‖H−σ ,−µ (Σ)

.

Since D∗ is bijective, there exists a constant c > 0 such that [17, Lemma A.40]

‖D∗z‖H−σ ,−µ (Σ) ≥ c‖z‖H1−σ ,1/2−µ (Σ) for all z ∈ H1−σ ,1/2−µ(Σ).

Thus, by using the boundedness of the operator D : H1/2,1/4(Σ) → H−1/2,−1/4(Σ) we
conclude

‖g−gh‖H̃σ ,µ (Σ) ≤ c̃‖g−gh‖H1/2,1/4(Σ) sup
06=z∈H1−σ ,1/2−µ (Σ)

∥∥∥z−Q1,pt
Σ z

∥∥∥
H1/2,1/4(Σ)

‖z‖H1−σ ,1/2−µ (Σ)

.

When considering 1/2≤ 1−σ ≤ 2, i.e. −1≤ σ ≤ 1/2, we obtain from the approximation
properties of the operator Q1,pt

Σ the error estimate

‖g−gh‖H̃σ ,µ (Σ) ≤ ĉ h1/4−µ ‖g−gh‖H1/2,1/4(Σ) ,

and the assertion follows by applying the error estimate for the Galerkin approximation gh
in the energy norm.

By using Theorem 7.11 with σ = 0 we conclude the L2(Σ)-error estimate

‖g−gh‖L2(Σ) ≤ chβ (r,s)+1/4 ‖g‖Hr,s(Σ) .

for the Galerkin approximation gh ∈ X1,pt
h,h (ΣN) of g ∈ Hr,s(Σ) with regularity r ∈ [1/2,2]

and s ∈ [1/4, pt +1]. Hence for sufficiently smooth Dirichlet data, i.e. g ∈H2,pt+1(Σ), we
obtain

‖g−gh‖L2(Σ) ≤ ch1+3/4 pt ‖g‖H2,pt+1(Σ) . (7.16)

Finally, let gh ∈ S1
h(ΣN) be the unique solution of the Galerkin variational problem (7.12),

i.e. the approximation defined with respect to a triangulation of the space–time boundary
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Σ . Due to the regularity assumption in Corollary 6.17 and the following remarks, Theorem
7.11 is only applicable for g ∈ Hr,s(Σ) with r,s ∈ [1/2,1], σ ∈ [0,1/2] and µ = σ/2.
Analogously to the proof of Theorem 7.11 with an application of estimate 6.16 we obtain

‖g−gh‖H̃σ ,µ (Σ) ≤ chmin(r,s)−1/4−µ ‖g‖Hr,s(Σ) .

Hence for σ = 0 we conclude the error estimate

‖g−gh‖L2(Σ) ≤ chmin(r,s)−1/4 ‖g‖Hr,s(Σ) .

Note that the L2(Σ)-error estimates for the two- and three-dimensional problem are not
optimal. As in the case of the Dirichlet boundary value problem one may consider the
integral equation in a different setting, i.e. in H−1,−1/2(Σ), and derive a related discrete
stability condition in order to prove an optimal L2(Σ)-error estimate.

7.2.2 Domain Error Estimates

Let gh ∈ Yh be the unique solution of the Galerkin variational problem (7.12). We obtain
an approximate solution of the initial Neumann boundary value problem (5.10) by using
the representation formula (5.1) with the approximation gh, i.e. for (x, t) ∈ Q we have

ũ(x, t) = (Ṽ w)(x, t)− (Wgh)(x, t)+(M̃0u0)(x, t)+(Ñ0 f )(x, t). (7.17)

For the related error we obtain for (x, t) ∈ Q

|u(x, t)− ũ(x, t)|= |(W (g−gh))(x, t)|

=
1
α

∣∣∣∣∣∣

∫

Σ

∂nyU
?(x− y, t− τ)(g−gh)(y,τ)dsy dτ

∣∣∣∣∣∣
.

Since (x, t) ∈ Q, the normal derivative of the fundamental solution ∂nyU
?(x− ·, t − ·) is

smooth for (y,τ) ∈ Σ and we therefore conclude ∂nyU
?(x−·, t−·) ∈H−σ ,−σ/2(Σ) for any

σ ∈ R. Hence

|u(x, t)− ũ(x, t)| ≤ 1
α
∥∥∂nyU

?(x−·, t−·)
∥∥

H−σ ,−σ/2(Σ)
‖g−gh‖H̃σ ,σ/2(Σ) .

Thus, we can use the previously shown error estimates for ‖g−gh‖H̃σ ,σ/2(Σ) in order to
derive an error estimate for the pointwise error |u(x, t)− ũ(x, t)|, (x, t) ∈ Q.

In the one-dimensional case we obtain the estimate

|u(x, t)− ũ(x, t)| ≤ chs+1/2 ‖g‖Hs(Σ)
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for (x, t) ∈ Q by using Theorem 7.8 with µ =−1/2 and s ∈ [1/4, p+1], where p denotes
the polynomial degree of the trial space Sp

h(ΣN). Hence for sufficiently smooth data, i.e.
g ∈ H p+1(Σ), we get the estimate

|u(x, t)− ũ(x, t)| ≤ chp+3/2 ‖g‖H p+1(Σ)

for (x, t) ∈ Q.

If the discretization of the variational problem (5.11) in the two- or three-dimensional case
is done with respect to the trial space Yh = X1,pt

h,h (ΣN), we obtain the error estimate

|u(x, t)− ũ(x, t)| ≤ chβ (r,s)+3/4 ‖g‖Hr,s(Σ)

for (x, t) ∈ Q by applying Theorem 7.11 with σ = −1, r ∈ [1/2,2] and s ∈ [1/4, pt + 1].
Hence for (x, t) ∈ Q and sufficiently smooth data, i.e. g ∈ H2,pt+1(Σ), we get

|u(x, t)− ũ(x, t)| ≤ ch3/2+3/4 pt ‖g‖H2,pt+1(Σ) .

7.2.3 Numerical Results

We consider the Neumman boundary value problem (5.10) with given Neumann datum
w ∈ H−1/2,−1/4(Σ), homogeneous source term f ≡ 0, time horizon T = 1, and with the
heat capacity constant α = 10. We present examples for the one- and two-dimensional
case with respect to a shape regular boundary decomposition.

The Galerkin boundary element discretization of the variational formulation (5.11) is done
by using the trial space Yh = S0

h(ΣN) for the spatially one-dimensional problem and Yh =

X1,0
h,h (ΣN) in the two-dimensional case. We write Yh = span{ψi}MΣ

i=1. For the approximation
of the Neumann datum w = γ int

1 u ∈ H−1/2,−1/4(Σ) we consider the space of piecewise
constant basis functions Xh = span

{
ϕ0
`

}N
`=1 ⊂ H−1/2,−1/4(Σ) defined with respect to the

decomposition ΣN , while the initial datum u0 is discretized by using the space of piecewise

linear and globally continuous functions S1
h(ΩNΩ ) = span

{
ϕ1

j

}MΩ

j=1
, which is defined with

respect to a given triangulation ΩNΩ := {ωi}NΩ
i=1 of the domain Ω . This leads to the system

of linear equations

Dhggg = (
1
2
Mh−K′h)www−M1

huuu0 (7.18)

where

Dh[i,k] :=− 1
α

∫

Σ

ψi(x, t)γ int
1,x

∫

Σ

γ int
1,yU

?(x− y, t− τ)ψk(y,τ)dsy dτ dsx dt, (7.19)
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K′h[i, `] :=
1
α

∫

Σ

ψi(x, t)
∫

σ`

∂nxU
?(x− y, t− τ)dsy dτ dsx dt, (7.20)

M1
h[i, j] :=

∫

Σ

ψi(x, t)
∫

Ω

∂nxU
?(x− y, t)ϕ1

j (y)dydsx dt, (7.21)

and
Mh[i, `] :=

∫

Σ

∫

σ`

ψi(x, t)dsy dτ dsx dt. (7.22)

Again, the vectors ggg ∈ RMΣ , www ∈ RN and uuu0 ∈ RMΩ denote the coefficients of the trial
functions gh,wh, and u0

h, respectively, see Subsection 7.1.3. Due to the ellipticity of the
hypersingular operator D, the matrix Dh is positive definite and therefore (7.18) is uniquely
solvable. The system is solved by using the GMRES method with a relative accuracy of
10−8 as stopping criteria. The approximation ũ of the solution u in the space–time domain
Q is given by the discrete representation formula (7.11).

The computation of the matrix entries (7.19), (7.20), (7.21) and (7.22) follows the same
scheme as described in Subsection 7.1.3 for the Dirichlet boundary value problem. For the
assembly of the matrix Dh in the two-dimensional case we use the alternative representa-
tion of the bilinear form (4.13). In the spatially one-dimensional case the matrix entries
were computed analytically.

One-Dimensional Problem

For the numerical experiments in the spatially one-dimensional case we choose the domain
Ω = (0,1). Recall that the boundary elements are line segments in temporal dimension.

We consider the exact solution

u(x, t) = exp
(
−4π2 t

α

)
cos(2πx) for (x, t) ∈ Q,

and determine the Neumann datum w and the initial datum u0 accordingly. We use a
globally uniform boundary element mesh of mesh size h = 2−L and the space of piecewise
constant basis functions S0

h(ΣN) for the discretization of the Dirichlet datum g. Table 7.4
shows the error ‖g−gh‖L2(Σ) and the estimated order of convergence (eoc), which is linear
as expected according to (7.14), assuming that g∈H1(Σ). Moreover, the iteration numbers
of the GMRES method are given.



7.2 Neumann Boundary Value Problem 89

L N ‖g−gh‖L2(Σ) eoc It.

5 64 5.885 ·10−2 0.74 31
6 128 3.077 ·10−2 0.94 44
7 256 1.529 ·10−2 1.01 58
8 512 7.500 ·10−3 1.03 75
9 1 024 3.682 ·10−3 1.03 95

10 2 048 1.815 ·10−3 1.02 120
11 4 096 8.990 ·10−4 1.01 152

Table 7.4: L2(Σ)-error and convergence rate of the Galerkin approximation gh, and itera-
tion numbers of the GMRES method (It.) in the case of uniform refinement in
1D. The parameter N denotes the number of boundary elements on level L.

Two-Dimensional Problem

We choose Ω = (0,1)2, i.e. Q = (0,1)3, and consider the exact solution

u(x, t) = exp
(
− t

α

)
sin
(

x1 cos
π
8
+ x2 sin

π
8

)
for (x, t) = (x1,x2, t) ∈ Q.

We determine the Neumann datum w and the initial datum u0 accordingly. We use a
globally quasi-uniform boundary element mesh with mesh size h =O(2−L) and the tensor
product space X1,0

h,h (ΣN) for the approximation of the Dirichlet datum g = γ int
0 u. Table 7.5

shows the error ‖g−gh‖L2(Σ) of the Galerkin approximation gh as well as the pointwise
error |(u− ũ)(x, t)| in x = (0.5,0.5), t = 0.5, and the corresponding convergence rates
(eoc). Additionally, the iteration numbers of the GMRES method are listed.

We obtain linear convergence of the Galerkin approximation gh in the L2(Σ)-norm, which
is in line with estimate (7.16). For the pointwise error we obtain linear convergence as
well. However, due to the given regularity of the solution we expected a rate of at least
3/2 according to the theoretical findings in Subsection 7.2.2. This gap may be due to
the additional approximation of the right hand side, i.e. we have computed a piecewise
constant approximation wh of the given Neumann datum w. Thus, an application of the
Strang theorem [62, Theorem 8.2] is necessary in order to obtain adjusted convergence
rates.
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L N ‖g−gh‖L2(Σ) eoc |(u− ũ)(x, t)| eoc It.

0 4 1.564 ·10−1 - 3.351 ·10−2 - 3
1 16 8.274 ·10−2 0.92 6.466 ·10−3 2.37 11
2 64 4.325 ·10−2 0.94 2.672 ·10−3 1.27 12
3 256 1.897 ·10−2 1.19 1.330 ·10−3 1.01 14
4 1 024 8.733 ·10−3 1.12 6.021 ·10−4 1.14 22
5 4 096 4.131 ·10−3 1.08 2.740 ·10−4 1.14 36
6 16 384 1.987 ·10−3 1.06 1.282 ·10−4 1.10 54
7 65 536 9.709 ·10−4 1.03 6.143 ·10−5 1.06 80

Table 7.5: Error and convergence rates of the Galerkin approximation gh and the approx-
imated solution ũ in the interior, and iteration numbers of the GMRES method
(It.) in the case of uniform refinement for a tensor product decomposition of Σ
in 2D. The parameter N denotes the number of boundary elements on level L.

7.3 Transmission Problem

In this section we discuss the discretization of the variational formluation (5.21) in order
to find an approximation of the unknown Cauchy data

(w,g) =
(

γ int
1 ui,γ int

0 ui

)
∈ H−1/2,−1/4(Σ)×H1/2,1/4(Σ)

of the transmission problem (5.16). Related error estimates are given in Subsection 7.3.1.
In Subsection 7.3.2 we provide numerical experiments for the spatially two-dimensional
problem.

Let Xh ⊂ H−1/2,−1/4(Σ) and Yh ⊂ H1/2,1/4(Σ) be conforming boundary element spaces
which are defined with respect to a shape regular boundary element mesh ΣN introduced
in Section 6.3. The Galerkin–Bubnov variational formulation of (5.21) is to find (wh,gh)∈
Xh×Yh such that 〈

A
(

wh
gh

)
,

(
τh
vh

)〉

Σ
=

〈
B
(

β1
β0

)
,

(
τh
vh

)〉

Σ
(7.23)

for all (τh,vh) ∈ Xh×Yh. Due to the ellipticity of the operator A and the boundedness of A
and B, problem (7.23) admits a unique solution.

7.3.1 Error Estimates

Let (w,g)∈H−1/2,−1/4(Σ)×H1/2,1/4(Σ) be the unique solution of the variational problem
(5.21). Since the operator A is elliptic and bounded, we can apply Cea’s Lemma [62,
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Theorem 8.1] to obtain an error estimate for the Galerkin approximation (wh,gh)∈Xh×Yh,
i.e. we conclude

‖w−wh‖H−1/2,−1/4(Σ)+‖g−gh‖H1/2,1/4(Σ)

≤ cw inf
τh∈Xh

‖w− τh‖H−1/2,−1/4(Σ)+ cg inf
vh∈Yh
‖g− vh‖H1/2,1/4(Σ)

(7.24)

with some constants cw,cg > 0. Hence we can use the approximation properties of the
boundary element spaces Xh and Yh to derive error estimates for the solution (wh,gh) of
(7.23).

One-Dimensional Problem

For the spatially one-dimensional problem we consider the trial spaces Xh = S0
h(ΣN) and

Yh = Sp
h(ΣN) for the approximation of the Cauchy data (w,g). Recall that we can identify

the Sobolev spaces Hr,s(Σ) with Hs(Σ).

Theorem 7.12. Let (wh,gh) ∈ Xh×Yh be the unique solution of the Galerkin variational
problem (7.23). For (w,g)∈Hs(Σ)×Hν(Σ) with s∈ [0,1] and ν ∈ [1/4, p+1] there holds
the error estimate

‖w−wh‖H−1/4(Σ)+‖g−gh‖H1/4(Σ) ≤ c1 hs+1/4|w|Hs(Σ)+ c2 hν−1/4 ‖g‖Hν (Σ) .

Proof. We use (7.24) and estimate the first term by applying Lemma 2.5 and Lemma 6.2
with p = 0. For the estimation of the error of the Dirichlet datum we apply Lemma 6.3 for
p = 0 and Lemma 6.4 for p = 1.

Two- and Three-Dimensional Problem

Similar to the initial Neumann boundary value problem we distinguish between the tensor
product decomposition and the triangulation of the space–time boundary Σ .

Theorem 7.13. Let (wh,gh)∈ X0,0
h,h (ΣN)×X1,pt

h,h (ΣN) be the unique solution of the Galerkin
variational problem (7.23). For (w,g) ∈ Hr,s

pw(Σ)×Hρ,ν(Σ) with r,s ∈ [0,1], ρ ∈ [1/2,2]
and ν ∈ [1/4, pt +1] there holds the error estimate

‖w−wh‖H−1/2,−1/4(Σ)+‖g−gh‖H1/2,1/4(Σ)

≤ c1 hmin(r,s)+1/4 ‖w‖Hr,s
pw(Σ)+ c2 hβ (ρ,ν) ‖g‖Hρ,µ (Σ)

with β given by (7.15).
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Proof. According to (7.24) we have

‖w−wh‖H−1/2,−1/4(Σ)+‖g−gh‖H1/2,1/4(Σ)

≤ cw

∥∥∥w−Q0,0
Σ w

∥∥∥
H−1/2,−1/4(Σ)

+ cg

∥∥∥g−Q1,pt
Σ g

∥∥∥
H1/2,1/4(Σ)

.

The first term on the right hand side can be estimated by applying Lemma 2.5 and Lemma
6.10 with px = pt = 0. For the estimation of the second term we use Lemma 6.11 for
pt = 0 and Lemma 6.12 for pt = 1.

If the discretization (7.23) is done with respect to a triangulation of the space–time bound-
ary Σ we obtain the following result.

Theorem 7.14. Let (wh,gh) ∈ S0
h(ΣN)× S1

h(ΣN) be the unique solution of the Galerkin
variational problem (7.23). For (w,g) ∈Hr,s

pw(Σ)×Hρ(Σ) with r,s ∈ [0,1] and ρ ∈ [1/2,2]
there holds the error estimate

‖w−wh‖H−1/2,−1/4(Σ)+‖g−gh‖H1/2,1/4(Σ)

≤ c1 hmin(r,s)+1/4 ‖w‖Hr,s
pw(Σ)+ c2 hρ−1/2 ‖g‖Hρ (Σ) .

Proof. According to (7.24) we have

‖w−wh‖H−1/2,−1/4(Σ)+‖g−gh‖H1/2,1/4(Σ)

≤ cw
∥∥w−Q0

Σ w
∥∥

H−1/2,−1/4(Σ)
+ cg

∥∥∥g−Q1,ν
Σ g
∥∥∥

H1/2,1/4(Σ)

with ν = 1/2 and the assertion follows by applying Lemma 6.15 and Corollary 6.17.

7.3.2 Numerical Results

We consider the transmission problem (5.16) with given jump terms β1 ∈ H−1/2,−1/4(Σ)
and β0 ∈ H1/2,1/4(Σ). The Galerkin boundary element discretization of the variational
problem (5.21) is done by using piecewise constant basis functions Xh = span

{
ϕ0
`

}N
`=1 ⊂

H−1/2,−1/4(Σ) for the approximation w and a conforming boundary element space Yh =
span{ψi}M

i=1 ⊂H1/2,1/4(Σ) for the approximation of g, which are defined with respect to a
shape regular decomposition ΣN . The spaces Xh and Yh are also used for the discretization
of the jump terms β1 and β0, respectively. This leads to the system of linear equations

(
Vh,α +Vh −Kh,α −Kh
K′h,α +K′h Dh,α +Dh

)(
www
ggg

)
=

(
Vh

1
2Mh−Kh

1
2M

T
h +K′h Dh

)(
βββ 1
βββ 0

)
(7.25)
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where

Vh,α [`,k] := 〈Vαϕ0
k ,ϕ

0
` 〉Σ , Kh,α [`, i] := 〈Kαψi,ϕ0

` 〉Σ , Mh[`, i] := 〈ψi,ϕ0
` 〉Σ

Dh,α [i, j] := 〈Dαψ j,ψi〉Σ , K′h,α [i, `] := 〈K′αϕ0
` ,ψi〉Σ

for `,k = 1, ...,N and i, j = 1, ...M. The matrices Vh,Dh,Kh,K
′
h for the exterior problem

are defined analogously. For an explicit representation of the matrix entries and for a
discussion of the integration routines used for the assembly of the matrices see Subsection
7.1.3 and Subsection 7.2.3. Here, the vectors www,βββ 1 ∈ RN and ggg,βββ 0 ∈ RM denote the
coefficients of the corresponding trial functions.

In the following numerical experiment we choose the time horizon T = 1 and set the heat
capacity constant in the interior domain to α = 10. The system (7.25) is solved by using
the GMRES method with a relative accuracy of 10−8 as stopping criteria.

We can describe a reference solution of the transmission problem by picking a heat source
point xp ∈ Rn outside the domain Ω and by defining

up(x, t) :=
( α

4π t

)n/2
exp
(
−α|x− xp|2

4 t

)
for (x, t) ∈ Rn× (0,T ).

Then u with u|Q = ui = up|Q and u|Qext = ue = 0 is a solution of the homogeneous heat
equation in the interior and exterior domain. We determine the jump terms according to

β0 := γ int
0 u− γext

0 u = γ int
0 ui = γ int

0 up,

β1 := γ int
1 u− γext

1 u = γ int
1 ui = γ int

1 up.

Two-Dimensional Problem

We consider Q = (0,1)3 and choose a heat source point xp = (1.5,1.6). We use a globally
quasi-uniform, shape regular boundary element mesh with mesh size h =O(2−L) and the
tensor product spaces Xh = X0,0

h,h (ΣN) and Yh = X1,0
h,h (ΣN) for the discretization of the vari-

ational problem (5.21). Table 7.6 shows the errors ‖w−wh‖L2(Σ) and ‖g−gh‖L2(Σ) of the
Galerkin approximations wh and gh, respectively, as well as the corresponding convergence
rates (eoc) and the iteration numbers of the GMRES method. We obtain linear convergence
in the L2(Σ)-norm for both approximations which is reasonable due to the constant approx-
imation in time for both the Neumann and the Dirichlet datum. The observed convergence
rates are also in line with the rates we obtained for the Dirichlet and Neumann boundary
value problem in Subsection 7.1.3 and Subsection 7.2.3, respectively.
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L N ‖w−wh‖L2(Σ) eoc ‖g−gh‖L2(Σ) eoc It.

0 4 1.071 ·10−1 - 4.896 ·10−2 - 6
1 16 8.524 ·10−2 0.33 4.431 ·10−2 0.14 18
2 64 6.550 ·10−2 0.38 3.141 ·10−2 0.50 42
3 256 4.817 ·10−2 0.44 1.365 ·10−2 1.20 83
4 1 024 2.194 ·10−2 1.13 6.648 ·10−3 1.04 171
5 4 096 1.127 ·10−2 0.96 3.427 ·10−3 0.96 345
6 16 384 5.506 ·10−3 1.03 1.706 ·10−3 1.01 701
7 65 536 2.712 ·10−3 1.02 8.591 ·10−4 0.99 1375

Table 7.6: Error and convergence rates of the Galerkin approximations wh and gh, and
iteration numbers of the GMRES method (It.) in the case of uniform refinement
for a tensor product decomposition of Σ in 2D. The parameter N denotes the
number of boundary elements on level L.



8 OPERATOR PRECONDITIONING

In this chapter we describe a space–time preconditioning technique for discretized bound-
ary integral equations of the time-dependent heat equation. The presented strategy is based
on using boundary integral operators of opposite order, referred to as Calderon precon-
ditioning [64] or operator preconditioning [23]. We consider the initial boundary value
problem for the heat equation with given Dirichlet or Neumann datum and determine the
unknown Cauchy datum by solving a related boundary integral equation. Based on the
mapping properties of the single layer boundary integral operator and the hypersingu-
lar boundary integral operator we establish robust preconditioning strategies for the dis-
cretized integral equations. The theoretical results are confirmed by numerical tests for the
spatially one- and two-dimensional problem.

The presented preconditioning strategy was introduced and analyzed in [64] for the Laplace
equation, where the involved integral operators are in general self adjoint. The results were
extended to a more abstract setting in [23]. In the following sections we introduce and an-
alyze this method for space–time integral equations, see also [11, 13].

First we give a brief introduction of the preconditioning strategy based on [23]. Let X and
Y be two reflexive Banach spaces. We consider continuous bilinear forms a : X ×X → R
and b : Y ×Y → R. Moreover, let Xh := span{ϕ`}N

` ⊂ X and Yh := span{ψ`}N
` ⊂ Y be

finite-dimensional subspaces of the same dimension N satisfying

sup
06=τh∈Xh

a(wh,τh)

‖τh‖X
≥ cA ‖wh‖X for all wh ∈ Xh,

sup
0 6=vh∈Yh

b(uh,vh)

‖vh‖Y
≥ cB ‖uh‖Y for all uh ∈ Yh.

(8.1)

We assume that there exists a continuous bilinear form m : X×Y → R such that

sup
06=vh∈Yh

m(wh,vh)

‖vh‖Y
≥ cM ‖wh‖X for all wh ∈ Xh. (8.2)

The corresponding Galerkin matrices are given as

Ah[`,k] := a(ϕk,ϕ`), Bh[`,k] := b(ψk,ψ`), Mh[`,k] := m(ϕk,ψ`) for `,k = 1, . . . ,N.

Note that Yh has the same dimension as the finite-dimensional subspace Xh and thus, Mh is
a square matrix. Additionally, we require the matrix Mh to be invertible. In this case we
obtain the following result.

Theorem 8.1 ([23, Theorem 2.1]). Assume that (8.1) - (8.2) holds. Then

κ(M−1
h BhM

−T
h Ah)≤

‖a‖‖b‖‖m‖2

cAcBc2
M

,

95
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where κ(·) denotes the spectral condition number of a square matrix.

Now let us assume that the bilinear forms a(·, ·) and b(·, ·) are induced by elliptic operators
A : X → X ′ and B : X ′→ X , i.e.

a(u,v) := 〈Au,v〉X ′×X for all u,v ∈ X ,

b(u,v) := 〈Bu,v〉X×X ′ for all u,v ∈ X ′.

Then the stability estimates (8.1) are trivially satisfied for any finite-dimensional subspaces
Xh ⊂ X and Yh ⊂ X ′. Hence, for a given trial space Xh we have to find Yh with the same
dimension N and a continuous bilinear form m : X×X ′→ R such that (8.2) holds.

8.1 Dirichlet Boundary Value Problem

We consider the Dirichlet boundary value problem (5.6) with source term f ∈ [H1,1/2
;,0 (Q)]′,

Dirichlet datum g ∈ H1/2,1/4(Σ) and initial datum u0 ∈ L2(Ω). We use the direct formu-
lation (5.7) in order to compute the unknown Neumann datum w = γ int

1 u ∈ H−1/2,−1/4(Σ)

of the solution u ∈ H1,1/2(Q). Hence we have to find w ∈ H−1/2,−1/4(Σ) such that

〈V w,τ〉Σ = 〈(1
2

I +K)g−M0u0−N0 f ,τ〉Σ for all τ ∈ H−1/2,−1/4(Σ). (8.3)

The ellipticity of the single layer operator V : H−1/2,−1/4(Σ)→H1/2,1/4(Σ) ensures unique
solvability of (8.3).

For the discretization of (8.3) we consider the space of piecewise constant basis functions
Xh = span

{
ϕ0
`

}N
`
⊂ L2(Σ) which is defined with respect to an admissible, shape regular

boundary element mesh ΣN as introduced in Section 6.3. This could either be a tensor
product decomposition or an arbitrary triangulation of Σ . Thus, we obtain the system of
linear equations Vhwww = fff with

Vh[`,k] := 〈V ϕ0
k ,ϕ

0
` 〉Σ , fff [`] := 〈(1

2
I +K)g−M0u0−N0 f ,ϕ0

` 〉Σ for `,k = 1, . . . ,N.

The boundary element discretization is done with respect to the whole space–time bound-
ary Σ and since we want to solve Vhwww= fff without an application of time-stepping schemes
to make use of parallelization in time, we need to develop an efficient iterative solution
technique. The linear system with the positive definite but non-symmetric matrix Vh can
be solved with a preconditioned GMRES method. Here we will apply the previously in-
troduced operator preconditioning technique.
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The single layer boundary integral operator V : H−1/2,−1/4(Σ)→ H1/2,1/4(Σ) and the hy-
persingular operator D : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ) are both elliptic and the composi-
tion DV : H−1/2,−1/4(Σ)→ H−1/2,−1/4(Σ) defines an operator of order zero. Hence the
stability estimates (8.1) are satisfied and thus, the Galerkin discretization of D allows the
construction of a suitable preconditioner for Vh. While the discretization of the single layer
operator V is done with respect to Xh, for the Galerkin discretization of the hypersingu-
lar operator D we need to use a conforming trial space Yh = span{ψ`}N

`=1 ⊂ H1/2,1/4(Σ),
see also [11, 13]. The continuous bilinear form m(·, ·) in (8.2) is chosen to be the duality
product on H−1/2,−1/4(Σ)×H1/2,1/4(Σ) and thus, for subspaces Xh,Yh ⊂ L2(Σ) we have
m(τh,vh) = 〈τh,vh〉L2(Σ), yielding the following theorem.

Theorem 8.2. Assume that the discrete stability condition

sup
0 6=vh∈Yh

〈τh,vh〉L2(Σ)

‖vh‖H1/2,1/4(Σ)

≥ cM
1 ‖τh‖H−1/2,−1/4(Σ) for all τh ∈ Xh (8.4)

holds. Then there exists a constant cκ ≥ 1 such that

κ
(
M−1

h DhM
−>
h Vh

)
≤ cκ

where, for k, `= 1, . . . ,N,

Vh[`,k] = 〈V ϕ0
k ,ϕ

0
` 〉Σ , Dh[`,k] = 〈Dψk,ψ`〉Σ , Mh[`,k] = 〈ϕ0

k ,ψ`〉L2(Σ) .

Proof. Apply Theorem 8.1 with the bilinear forms

a(w,τ) := 〈V w,τ〉Σ , b(u,v) := 〈Du,v〉Σ , m(τ,v) := 〈τ,v〉Σ
for w,τ ∈ H−1/2,−1/4(Σ) and u,v ∈ H1/2,1/4(Σ).

Thus, we can use C−1
V :=M−1

h DhM
−>
h as a preconditioner for Vh. For the computation of

the matrix Dh in the spatially two- and three-dimensional case we use the alternative rep-
resentations (4.13) and (4.14) of the associated bilinear form which is attained by applying
integration by parts. Note that the boundary element space Yh is chosen to have the same
dimension as Xh and thus, Mh is a square matrix. It remains to define a suitable boundary
element space Yh such that the mass matrix Mh is invertible and that the stability condition
(8.4) is satisfied.

In order to prove the stability condition (8.4) we establish the H1/2,1/4(Σ)-stability of the
L2 projection operator QΣ : L2(Σ)→ Yh ⊂ L2(Σ) defined by the variational problem

〈QΣ u,τh〉L2(Σ) = 〈u,τh〉L2(Σ) for all τh ∈ Xh. (8.5)

Depending on the boundary element spaces Xh and Yh this could either be a Galerkin–
Bubnov or a Galerkin–Petrov variational formulation. We assume that the variational
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problem (8.5) is uniquely solvable, i.e. the boundary element spaces Xh and Yh satisfy
the stability condition

sup
06=τh∈Xh

〈vh,τh〉L2(Σ)

‖τh‖L2(Σ)

≥ c‖vh‖L2(Σ) for all vh ∈ Yh (8.6)

which is trivial for Yh = Xh, i.e. in the case of a Galerkin–Bubnov variational problem.
Then the H1/2,1/4(Σ)-stability of the operator QΣ immediately implies the stability condi-
tion (8.4).

Theorem 8.3. Let Xh and Yh be given boundary element spaces satisfying (8.6). Moreover,
let the L2 projection operator QΣ defined by (8.5) be H1/2,1/4(Σ)-stable, i.e. there exists a
constant cS > 0 such that

‖QΣ u‖H1/2,1/4(Σ) ≤ cS ‖u‖H1/2,1/4(Σ) for all u ∈ H1/2,1/4(Σ).

Then the stability condition (8.4) holds.

Proof. Let τh ∈ Xh. By using the definition (8.5) of the operator QΣ and its H1/2,1/4(Σ)-
stability we get by duality

‖τh‖H−1/2,−1/4(Σ) = sup
06=v∈H1/2,1/4(Σ)

〈τh,v〉L2(Σ)

‖v‖H1/2,1/4(Σ)

= sup
06=v∈H1/2,1/4(Σ)

〈τh,QΣ v〉L2(Σ)

‖v‖H1/2,1/4(Σ)

≤ cS sup
06=v∈H1/2,1/4(Σ)

〈τh,QΣ v〉L2(Σ)

‖QΣ v‖H1/2,1/4(Σ)

= cS sup
06=vh∈Yh

〈τh,vh〉L2(Σ)

‖vh‖H1/2,1/4(Σ)

.

Hence, according to Theorem 8.2, the condition number κ(C−1
V Vh) with C−1

V =M−1
h DhM

−>
h

is bounded. In what follows we will discuss possible choices of the boundary element
space Yh for given Xh such that the stability estimate in Theorem 8.3 is satsified.

Note that for a globally quasi-uniform boundary element mesh the H1/2,1/4(Σ)-stability
may follow directly with the approximation properties of related L2 projection operators.
However, this is not applicable for meshes generated by an application of adaptive refine-
ment strategies, e.g. for locally quasi-uniform meshes.

8.1.1 One-Dimensional Problem

Recall that in the spatially one-dimensional case the spatial component of the space–time
boundary Σ collapses to the points {a,b}, assuming Ω = (a,b), and therefore we identify
the Sobolev spaces Hr,s(Σ) with Hs(Σ). We use the space Xh = S0

h(ΣN) of piecewise
constant basis functions for the discretization of the weakly singular integral equation (8.3)
which is defined with respect to an arbitrary decomposition of the space–time boundary
Σ = Σa∪Σb. The decompositions of Σa and Σb may be different as shown in Fig. 6.1.
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Piecewise Constant Basis Functions

Since the boundary element space S0
h(ΣN) also satisfies S0

h(ΣN)⊂H1/4(Σ) in the 1D case,
we can choose Yh = S0

h(ΣN) for the discretization of the hypersingular operator D as well.
Then Mh becomes diagonal and is therefore easily invertible. According to Theorem 8.3
we need to establish the H1/4(Σ)-stability of the L2 projection operator Q0

Σ : L2(Σ)→
S0

h(ΣN)⊂ L2(Σ) defined by

〈Q0
Σ v,τh〉L2(Σ) = 〈v,τh〉L2(Σ) for all τh ∈ S0

h(ΣN) (8.7)

in order to conclude the boundedness of the condition number in Theorem 8.2. Note that
(8.7) is a Galerkin–Bubnov variational formulation and thus, uniquely solvable.

Since Σ = Σa∪Σb with Σa := {a}× (0,T ) and Σb := {b}× (0,T ), it suffices to prove the
stability estimate for the boundary part Σa. W.l.o.g. we choose a = 0. In this case we
can identify Σa with the time interval I = (0,T ) and consider a decomposition INt of I into
line segments τ` = (t`1 , t`2) as given by (6.2). For ` = 1, ...,Nt we define J(`) to be the
index set containing the indices of the element τ` and all its adjacent elements. We assume
the decomposition INt to be locally quasi-uniform, i.e. there exists a constant cL ≥ 1 such
that

1
cL
≤ h`

hk
≤ cL for all k ∈ J(`) and `= 1, ...,Nt .

The L2 projection Q0
I u ∈ S0

h(INt ) for u ∈ L2(0,T ), where S0
h(INt ) = span

{
ϕ0
`

}Nt
`=1 is the

space of piecewise constant basis functions on INT , is defined as the unique solution of the
variational problem

〈Q0
I u,τh〉L2(0,T ) = 〈u,τh〉L2(0,T ) for all τh ∈ S0

h(INt ). (8.8)

For u ∈ L2(0,T ) we have (Q0
I u)(t) = ∑Nt

`=1 u`ϕ0
` (t) with

u` =
1
h`

∫

τ`

u(τ)dτ for `= 1, ...,Nt .

Lemma 8.4. Let the decomposition INt be locally quasi-uniform. Then there exists a con-
stant c0

S > 0 such that
∥∥Q0

I u
∥∥

H1/4(0,T ) ≤ c0
S ‖u‖H1/4(0,T ) for all u ∈ H1/4(0,T ).

Proof. Let u ∈ H1/4(0,T ). Then we have

∥∥Q0
I u
∥∥2

H1/4(0,T ) =
∥∥Q0

I u
∥∥2

L2(0,T )+ |Q
0
I u|2H1/4(0,T )

≤ ‖u‖2
L2(0,T )+ |Q0

I u|2H1/4(0,T ).
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The second term can be written as

|Q0
I u|2H1/4(0,T ) =

T∫

0

T∫

0

[(Q0
I u)(t)− (Q0

I u)(s)]2

|t− s|3/2 dsdt

=
N

∑̀
=1

N

∑
k=1

∫

τ`

∫

τk

[(Q0
I u)(t)− (Q0

I u)(s)]2

|t− s|3/2 dsdt

︸ ︷︷ ︸
=: c`k

.

For `= k we have (Q0
I u)(t) = (Q0

I u)(s) for (t,s) ∈ τ`× τ` and therefore

c`` = 0≤
∫

τ`

∫

τ`

[u(t)−u(s)]2

|t− s|3/2 dsdt.

For ` 6= k we obtain

c`k =
∫

τ`

∫

τk

1
|t− s|3/2


 1

h`

∫

τ`

u(τ)dτ− 1
hk

∫

τk

u(η)dη




2

dsdt

=
1

h2
`h2

k



∫

τ`

∫

τk

1
|t− s|3/2 dsdt




︸ ︷︷ ︸
=: α`k



∫

τ`

∫

τk

u(τ)−u(η)

|τ−η |3/4 |τ−η |3/4dη dτ




2

.

By applying the Cauchy–Schwarz inequality we get

c`k ≤
α`k

h2
`h2

k



∫

τ`

∫

τk

|τ−η |3/2dη dτ




︸ ︷︷ ︸
=: β`k



∫

τ`

∫

τk

[u(τ)−u(η)]2

|τ−η |3/2 dη dτ




and it remains to estimate the coefficients α`k and β`k. First we examine non-adjacent
elements. We write τ` = (t`1, t`2), τk = (tk1 , tk2) and assume w.l.o.g. that tk1 > t`2 . We have

β`k =
∫

τ`

∫

τk

|τ−η |3/2dτ dη ≤
∫

τ`

∫

τk

(tk2− t`1)
3/2dτ dη = (tk2− t`1)

3/2h`hk.

Since |t− s| ≥ tk1− t`2 for (t,s) ∈ τ`× τk, we have

1
|t− s|3/2 ≤

1
(tk1− t`2)

3/2
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and therefore
α`k =

∫

τ`

∫

τk

1
|t− s|3/2 dsdt ≤ 1

(tk1− t`2)
3/2 h`hk.

Together, we obtain

α`kβ`k ≤ h2
`h2

k

(
tk2− t`1

tk1− t`2

)3/2

.

Due to the assumption that the decomposition INt is locally quasi-uniform we have

tk2− t`1

tk1− t`2

=
hk

tk1− t`2

+
h`

tk1− t`2

+1≤ 1+2cL

and conclude

c`k ≤ (1+2cL)
3/2
∫

τ`

∫

τk

[u(τ)−u(η)]2

|τ−η |3/2 dη dτ.

Next we want to find an estimate for adjacent elements τ`, τk. We assume w.l.o.g. that
tk1 = t`2 . Then

α`k =
∫

τ`

∫

τk

1
|t− s|3/2 dsdt = 4

[
(tk2− t`2)

1/2− (tk2− t`1)
1/2 +(t`2− t`1)

1/2
]

= 4
[
h1/2

k − (hk +h`)1/2 +h1/2
`

]

and

β`k =
∫

τ`

∫

τk

|τ−η |3/2dη dτ =
4

35

[
−(tk2− t`2)

7/2 +(tk2− t`1)
7/2− (t`2− t`1)

7/2
]

=
4

35

[
−h7/2

k +(hk +h`)7/2−h7/2
`

]
.

By using the local uniformity of the elements (h` ∼ hk) we get

α`kβ`k ≤ ch4
`

with some constant c > 0 and conclude

c`k ≤ c
∫

τ`

∫

τk

[u(τ)−u(η)]2

|τ−η |3/2 dη dτ.

Altogether we have

|Q0
I u|2H1/4(0,T ) =

N

∑̀
=1

N

∑
k=1

c`k ≤ c̃
N

∑̀
=1

N

∑
k=1

∫

τ`

∫

τk

[u(t)−u(s)]2

|t− s|3/2 dsdt = c̃|u|2H1/4(0,T )

with some constant c̃ > 0 and the assertion follows.
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Figure 8.1: Sample dual mesh on I = (0,T ). The piecewise linear and globally continuous
basis functions ϕ̃1

i are used for the discretization of the hypersingular operator
D, while the single layer operator V is discretized by using piecewise constant
basis functions ϕ0

i .

For the space–time boundary Σ = Σa∪Σb we get the same estimates for the L2 projection
operator Q0

Σ : L2(Σ)→ S0
h(ΣN) ⊂ L2(Σ) defined by (8.7) by applying Lemma 8.4 on the

boundary parts Σa and Σb separately. We therefore conclude that there exists a constant
c0

S > 0 such that

∥∥Q0
Σ u
∥∥

H1/4(Σ)
≤ c0

S ‖u‖H1/4(Σ) for all u ∈ H1/4(Σ).

According to Theorem 8.3 the stability estimate (8.4) holds and thus, the discretization of
the hypersingular operator D with Yh = S0

h(ΣN) yields the boundedness of the condition
number of the preconditioned system matrix C−1

V Vh.

Piecewise Linear Basis Functions defined on a Dual Mesh

As a second approach we consider the space of piecewise linear and globally continuous
basis functions defined with respect to a dual mesh Σ̃Ñ := {σ̃`}Ñ

`=1 [29] for the discretiza-
tion of the hypersingular operator D. Figure 8.1 shows a sample dual mesh of one of the
two boundary parts Σa and Σb and the corresponding basis functions. The stability results
in this paragraph are based on [60]. Note that the proof of related stability estimates in [60]
is done with respect to the Sobolev space Hs(Γ ) where Γ is an open or closed Lipschitz
manifold in Rn. However, we can transfer the results to the Sobolev space Hs(0,T ) if we
identify the time interval I = (0,T ) with an open manifold in R2 and then use the results
in [60] with n = 2.

Let {(xk, tk)}N
k=1 denote the set of all vertices of the dual mesh. Note that the number of

vertices of the dual mesh Σ̃Ñ coincides with the number of boundary elements of ΣN . We
define P(k) to be the index set of all elements σ̃` where (xk, tk) ∈ σ̃`. Moreover, we define
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the nodal mesh size
ĥk :=

1
|P(k)| ∑

`∈P(k)
h` for k = 1, ...,N

and assume that the dual mesh is locally quasi-uniform as well. We define Yh := S1
h(Σ̃Ñ) =

span
{

ϕ̃1
i
}N

i=1 to be the space of piecewise linear and globally continuous basis functions
which is defined with respect to the dual boundary element mesh Σ̃Ñ . Let the L2 projection
Q̃1

Σ u ∈ S1
h(Σ̃Ñ) for u ∈ L2(Σ) be defined as the solution of the variational problem

〈Q̃1
Σ u,τh〉L2(Σ) = 〈u,τh〉L2(Σ) for all τh ∈ S0

h(ΣN).

This Galerkin–Petrov variational formulation is uniquely solvable, since the trial and test
spaces satisfy a related stability condition [60, Lemma 3.1].

Note that in [60] the dual mesh is used for the definition of the piecewise constant basis
functions, while the piecewise linear functions are defined with respect to the primal mesh.
We use the reverse approach. However, in the one-dimensional case this does not affect
the structure and the properties of the boundary element meshes and of the corresponding
trial spaces.

Again, in order to prove the stability condition (8.4) we need to establish the H1/4(Σ)-
stability of the operator Q̃1

Σ . In order to prove the H1/4(Σ)-stability we have to assume
appropriate local mesh conditions: Let σ̃` be an arbitrary boundary element of the dual
mesh Σ̃Ñ . We need to assume that there exists a constant c0 > 0 such that

(H`G`H−1
` xxx`,xxx`)≥ c0(D`xxx`,xxx`) for all xxx` ∈ R|J(`)| (8.9)

where J(`) denotes the index set of all nodes adjacent to the element σ̃` and where the
local matrices are defined as

G`[ j, i] := 〈ϕ0
p(i), ϕ̃

1
p( j)〉L2(σ̃`)

, D` := diagG`, H` := diag(ĥ1/4
p(i)) for i, j = 1, ..., |J(`)|

where p(i) denotes the i-th element in J(`). Then there exists a constant c1
S > 0 such that

[60, Theorem 4.2]
∥∥∥Q̃1

Σ u
∥∥∥

H1/4(Σ)
≤ c1

S ‖u‖H1/4(Σ) for all u ∈ H1/4(Σ).

Explicit conditions for the dual boundary element mesh yielding assumption (8.9) are
given in [60, Section 5].

Hence, Theorem 8.3 implies the stability condition (8.4). Consequently, the discretization
of the hypersingular operator D with Yh = S1

h(Σ̃Ñ) yields the boundedness of the condition
number of the matrix C−1

V Vh with C−1
V =M−1

h DhM
−T
h .
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8.1.2 Two- and Three-Dimensional Problem

We consider a tensor product decomposition of Σ as described in Section 6.3 with given lo-
cally quasi-uniform spatial and temporal decompositions ΓNx = {γ`}Nx

`=1 and INt = {τi}Nt
i=1,

respectively. We use the space Xh := X0,0
hx,ht

(ΣN) = S0
hx
(ΓNx)⊗ S0

ht
(INt ) of piecewise con-

stant basis functions for the discretization of the weakly singular integral equation (8.3)
and set S0

hx
(ΓNx) = span

{
ψ0

i
}Nx

i=1 and S0
ht
(INt ) = span

{
ϕ0
`

}Nt
`=1. Let {xk}Mx

k=1 denote the set
of all vertices of the boundary element mesh ΓNx . We define P(k) to be the index set of all
elements γ` with xk ∈ γ`. Moreover, we define the nodal mesh size

ĥk,x :=
1
|P(k)| ∑

`∈P(k)
h`,x for k = 1, ...,Mx. (8.10)

Since the boundary element mesh ΓNx is assumed to be locally quasi-uniform, there exists
a constant c≥ 1 such that

1
c
≤ ĥk,x

h`,x
≤ c for all ` ∈ P(k), k = 1, ...,Mx.

For the given boundary element mesh ΓNx we construct a dual mesh Γ̃Ñx
:= {γ̃l}Ñx

`=1 ac-
cording to [29, 60] and assume that the dual mesh is locally quasi-uniform as well. With
S1

hx
(Γ̃Ñx

) = span
{

ψ̃1
i
}Nx

i=1 we denote the space of piecewise linear and globally continuous

basis functions defined with respect to the dual mesh Γ̃Ñx
. Note that the number of vertices

of the dual mesh Γ̃Ñx
coincides with the number of boundary elements of ΓNx . For the def-

inition of suitable boundary element spaces for the discretization of the hypersingular op-
erator D we can use the already known results from the discussion of the one-dimensional
problem.

Remark 8.1. Usually the dual mesh is used for the definition of the piecewise constant
basis function, while the piecewise linear and globally continuous basis functions are
defined with respect to the primal mesh . This is especially necessary for the spatially
three-dimensional case, where the dual boundary element mesh is not a triangular mesh
anymore. However, using piecewise constant basis functions on this non-triangular mesh
is still eligible. In this case, the boundary integral equation (8.3) is discretized by using
the dual basis functions, while the boundary element space corresponding to the primal
mesh is used to compute suitable preconditioners.

Piecewise Constant Basis Functions in Time

For the discretization of the operator D we choose

Yh := S1
hx
(Γ̃Ñx

)⊗S0
ht
(INt )⊂ H1/2,1/4(Σ).
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According to Theorem 8.3 we need to establish the H1/2,1/4(Σ)-stability of the L2 projec-
tion operator Q̃1,0

Σ : L2(Σ)→ Yh ⊂ L2(Σ) defined by

〈Q̃1,0
Σ u,τh〉L2(Σ) = 〈u,τh〉L2(Σ) for all τh ∈ Xh (8.11)

in order to conclude the boundedness of the condition number in Theorem 8.2. Note that
(8.11) is a Galerkin–Petrov variational formulation and thus, we need to prove a L2(Σ)-
stability estimate for the given trial spaces.

Lemma 8.5. For the given boundary element spaces Xh and Yh there holds the stability
estimate

c‖vh‖L2(Σ) ≤ sup
0 6=τh∈Xh

〈vh,τh〉L2(Σ)

‖τh‖L2(Σ)

for all vh ∈ Yh

with some constant c > 0.

Proof. The following proof is based on [60, Lemma 3.1]. For

vh =
Nx

∑
i=1

Nt

∑̀
=1

vi` ψ̃1
i ϕ0

` ∈ Yh, τh =
Nx

∑
i=1

Nt

∑̀
=1

τi`ψ0
i ϕ0

` ∈ Xh

we have

‖vh‖2
L2(Σ) '

Nx

∑
i=1

Nt

∑̀
=1

v2
i` hn−1

i,x h`,t , ‖τh‖2
L2(Σ) '

Nx

∑
i=1

Nt

∑̀
=1

τ2
i` hn−1

i,x h`,t .

For vh ∈ Yh we define

τ?h =
Nx

∑
i=1

Nt

∑̀
=1

vi`ψ0
i ϕ0

` ∈ Xh.

Then

‖τ∗h‖L2(Σ) ' ‖vh‖L2(Σ) , |〈vh,τ?h 〉L2(Σ)| '
Nx

∑
i=1

Nt

∑̀
=1

v2
i`h

n−1
i,x h`,t ' ‖vh‖2

L2(Σ)

and the proposed stability estimate follows.

Hence the variational problem (8.11) is uniquely solvable. Let the L2 projection operators
Q·,0Σ : L2(Σ)→ L2(Σ) and Q̃1,·

Σ : L2(Σ)→ L2(Σ) be defined as

(Q·,0Σ u)(x, t) := (Q0
I u(x, ·))(t),

(Q̃1,·
Σ u)(x, t) := (Q̃1

Γ u(·, t))(x)
(8.12)
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where Q0
I : L2(0,T )→ S0

ht
(INt ) ⊂ L2(0,T ) is given by (8.8) and the projection operator

Q̃1
Γ : L2(Γ )→ S1

hx
(Γ̃Ñx

)⊂ L2(Γ ) is defined by

〈Q̃1
Γ u,vh〉L2(Γ ) = 〈u,vh〉L2(Γ ) for all vh ∈ S0

hx
(ΓNx).

This Galerkin–Petrov formulation is uniquely solvable since the trial and test spaces satisfy
a related stability condition [60, Lemma 3.1]. Moreover, we have the representation Q̃1,0

Σ =

Q̃1,·
Σ Q·,0Σ = Q·,0Σ Q̃1,·

Σ .

Let γ̃` be an arbitrary boundary element of the dual mesh Γ̃Ñx
. We assume that there exsists

a constant c0 > 0 such that

(H`G`H
−1
` xxx`,xxx`)≥ c0(D`xxx`,xxx`) for all xxx` ∈ R|J(`)| (8.13)

where J(`) denotes the index set of all nodes adjacent to the element γ̃` and the local
matrices are defined as

G`[ j, i] := 〈ψ0
p(i), ψ̃

1
p( j)〉L2(γ̃`), D` := diagG`, H` := diag(ĥ1/2

p(i),x) for i, j = 1, ..., |J(`)|

where p(i) denotes the i-th element in J(`). Here, the nodal mesh size ĥi,x is defined
analogously to (8.10) but with respect to the dual mesh Γ̃Ñx

. Then there exists a constant
c > 0 such that [60, Theorem 4.2]

∥∥∥Q̃1
Γ u
∥∥∥

H1/2(Γ )
≤ c‖u‖H1/2(Γ ) for all u ∈ H1/2(Γ ). (8.14)

Thus, by combining the stability estimate in Lemma 8.4 and estimate (8.14) we obtain the
following stability result.

Theorem 8.6. Let assumption (8.13) be satisfied. Then there exists a constant c > 0 such
that ∥∥∥Q̃1,0

Σ u
∥∥∥

H1/2,1/4(Σ)
≤ c‖u‖H1/2,1/4(Σ) for all u ∈ H1/2,1/4(Σ).

Proof. For u ∈ H1/2,1/4(Σ) we have

∥∥∥Q̃1,0
Σ u
∥∥∥

2

H1/2,1/4(Σ)
=
∥∥∥Q̃1,0

Σ u
∥∥∥

2

L2(Σ)
+ |Q̃1,0

Σ u|2H1/4(0,T ;L2(Γ ))
+ |Q̃1,0

Σ u|2L2(0,T ;H1/2(Γ ))
.

By using Lemma 8.5 and the definition of the operator Q̃1,0
Σ we can estimate the first term

by

∥∥∥Q̃1,0
Σ u
∥∥∥

L2(Σ)
≤ c sup

06=τh∈Xh

〈Q̃1,0
Σ u,τh〉L2(Σ)

‖τh‖L2(Σ)

= c sup
06=τh∈Xh

〈u,τh〉L2(Σ)

‖τh‖L2(Σ)

≤ c‖u‖L2(Σ) .



8.1 Dirichlet Boundary Value Problem 107

An application of Lemma 8.4, the definition (8.12) of the operators Q̃1,·
Σ and Q·,0Σ , and the

L2(Γ )-stability of Q̃1
Γ [60] yield

|Q̃1,0
Σ u|2H1/4(0,T ;L2(Γ ))

= |Q̃1,·
Σ Q·,0Σ u|2H1/4(0,T ;L2(Γ ))

≤ |Q·,0Σ u|2H1/4(0,T ;L2(Γ ))

≤ c ‖u‖2
H1/4(0,T ;L2(Γ )) .

Similarly, by using estimate (8.14), definition (8.12) and the L2(0,T )-stability of Q0
I we

get
|Q̃1,0

Σ u|2L2(0,T ;H1/2(Γ ))
= |Q·,0Σ Q̃1,·

Σ u|2L2(0,T ;H1/2(Γ ))
≤ |Q̃1,·

Σ u|2L2(0,T ;H1/2(Γ ))

≤ c ‖u‖2
L2(0,T ;H1/2(Γ ))

and finally conclude
∥∥∥Q̃1,0

Σ u
∥∥∥

H1/2,1/4(Σ)
≤ c‖u‖H1/2,1/4(Σ) for all u ∈ H1/2,1/4(Σ).

According to Theorem 8.3 the stability estimate (8.4) holds and thus, the discretization of
the hypersingular operator D with Yh = S1

hx
(Γ̃Ñx

)⊗ S0
ht
(INt ) yields the boundedness of the

condition number of the preconditioned system matrix C−1
V Vh.

Piecewise Linear Basis Functions in Time defined on a Dual Mesh

As a second approach we consider the space

Yh := S1
hx
(Γ̃Ñx

)⊗S1
ht
(ĨÑt

)⊂ H1/2,1/4(Σ)

for the discretization of the operator D. Here, S1
hx
(Γ̃Ñx

) and S1
ht
(ĨÑt

) denote the spaces of
piecewise linear and globally continuous functions defined with respect to the previously
introduced locally quasi-uniform dual meshes Γ̃Ñx

and ĨÑt
, respectively. The temporal dual

mesh ĨÑt
is defined analogously to Σ̃Ñ for the spatially one-dimensional problem in Sub-

section 8.1.1. Let the L2 projection operator Q̃1,1
Σ : L2(Σ)→ Yh ⊂ L2(Σ) be defined by the

variational problem

〈Q̃1,1
Σ u,τh〉L2(Σ) = 〈u,τh〉L2(Σ) for all τh ∈ Xh. (8.15)

As before, (8.15) is a Galerkin–Petrov variational problem and thus, an L2(Σ)-stability
estimate for the given trial spaces is necessary in order to conclude unique solvability.
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Lemma 8.7. For the given boundary element spaces Xh and Yh there holds the stability
estimate

c‖vh‖L2(Σ) ≤ sup
06=τh∈Xh

〈vh,τh〉L2(Σ)

‖τh‖L2(Σ)

for all vh ∈ Yh

with some positive constant c > 0.

Proof. Follows the proof of Lemma 8.5.

Hence the variational problem (8.15) is uniquely solvable and it remains to establish the
H1/2,1/4(Σ)-stability of the operator Q̃1,1

Σ . The proof of the stability estimate is the same
as in the case of Q̃1,0

Σ , i.e. we utilize the stability of the L2 projection operators in space
and time separately.

Theorem 8.8. Let the assumptions (8.9) and (8.13) be satisfied. Then there exists a con-
stant c > 0 such that

∥∥∥Q̃1,1
Σ u
∥∥∥

H1/2,1/4(Σ)
≤ c‖u‖H1/2,1/4(Σ) for all u ∈ H1/2,1/4(Σ).

Proof. Follows the proof of Theorem 8.6.

Theorem 8.3 then yields the stability estimate (8.4).

8.1.3 Numerical Results

For the following numerical experiments we consider the initial Dirichlet boundary value
problem (5.6) with the heat capacity constant α = 10 and time horizon T = 1. We solve
the weakly singular boundary integral equation (5.7) in order to compute the unknown
Neumann datum w = γ int

1 u ∈ H−1/2,−1/4(Σ). The Galerkin boundary element discretiza-
tion is done by using piecewise constant basis functions defined with respect to a given
space–time boundary element mesh ΣN . The resulting system of linear equations Vhwww = fff
is solved by using a preconditioned GMRES method with a relative accuracy of 10−8 as
stopping criteria.

One-Dimensional Problem

We consider the spatial domain Ω = (0,1). For the discretization of the integral equation
we use the space of piecewise constant basis functions S0

h(ΣN). As a preconditioner we use
the discretization of the hypersingular operator D with S0

h(ΣN), denoted by CV,0, as well
as the discretization with piecewise linear and globally continuous basis functions S1

h(Σ̃Ñ)

which are defined with respect to the dual mesh Σ̃Ñ , denoted by CV,1.
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Uniform Refinement. The first example corresponds to the initial datum

u0(x) = sin(2πx) for x ∈Ω = (0,1)

and a globally uniform boundary element mesh with mesh size h = 2−L. Table 8.1 shows
the L2(Σ)-error ‖w−wh‖L2(Σ) and the estimated order of convergence (eoc). Moreover,
the iteration numbers of the non-preconditioned and preconditioned GMRES method are
given, confirming the theoretical findings.

C−1
V = I C−1

V = C−1
V,0 C−1

V = C−1
V,1

L N ‖w−wh‖L2(Σ) eoc κ It. κ It. κ It.

2 8 1.045 ·10−0 1.60 3.98 4 1.49 4 19.95 4
3 16 4.759 ·10−1 1.14 6.24 8 1.60 8 19.57 7
4 32 2.320 ·10−1 1.04 9.15 16 1.65 11 19.56 8
5 64 1.144 ·10−1 1.02 13.09 26 1.66 10 19.56 7
6 128 5.676 ·10−2 1.01 18.57 33 1.66 10 19.56 7
7 256 2.827 ·10−2 1.01 26.28 39 1.66 9 19.56 6
8 512 1.410 ·10−2 1.00 37.18 46 1.66 9 19.56 6
9 1 024 7.043 ·10−3 1.00 52.59 54 1.66 8 19.56 6

10 2 048 3.524 ·10−3 1.00 74.37 63 1.66 8 19.56 5

Table 8.1: L2(Σ)-error and convergence rate of the Galerkin approximation wh, condition
number κ of the system matrix, and iteration number of the GMRES method
(It.) for different preconditioning strategies in the case of uniform refinement in
1D. The parameter N denotes the number of boundary elements on level L.

Adaptive Refinement. For the second example we consider the initial datum

u0(x) = 5exp(−10x)sin(πx) for x ∈Ω = (0,1)

which motivates the use of a locally quasi-uniform boundary element mesh resulting from
some adaptive refinement strategy. The numerical results given in Table 8.2 again confirm
the theoretical findings, in particular the robustness of the proposed preconditioning strate-
gies for adaptive refined meshes which is not the case when using none or only diagonal
preconditioning CV,d = diagVh.

Two-Dimensional Problem

We consider the domain Ω = (0,1)2 and use the space Xh = X0,0
hx,ht

(ΣN) for the Galerkin
discretization of the boundary integral equation. As a preconditioner we use the discretiza-
tion of the hypersingular operator D with Yh = S1

h(Γ̃Ñx
)⊗S0

h(INt ), denoted by CV,10.
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C−1
V = I C−1

V = C−1
V,d C−1

V = C−1
V,0 C−1

V = C−1
V,1

L N ‖w−wh‖L2(Σ) κ It. κ It. κ It. κ It.

6 24 1.204 ·10−1 2.05 ·103 24 5.88 19 1.56 9 19.93 10
7 36 7.356 ·10−2 6.16 ·103 36 7.61 23 1.60 8 20.34 12
8 55 4.518 ·10−2 1.56 ·104 55 9.42 26 1.70 8 23.97 11
9 84 2.840 ·10−2 3.97 ·104 83 12.38 30 1.71 8 24.60 11

10 137 1.695 ·10−2 6.15 ·104 127 15.35 34 1.72 7 24.00 10
11 222 1.034 ·10−2 1.46 ·105 193 20.85 38 1.78 7 19.59 8
12 332 6.937 ·10−3 2.99 ·105 270 25.07 41 1.76 7 24.30 10
13 431 5.429 ·10−3 8.05 ·105 354 29.24 44 1.82 7 23.98 10
14 499 4.772 ·10−3 2.16 ·106 425 31.59 45 1.82 7 24.02 10

Table 8.2: L2(Σ)-error of the Galerkin approximation wh, condition number κ of the sys-
tem matrix, and iteration number of the GMRES method (It.) for different pre-
conditioning strategies in the case of adaptive refinement in 1D. The parameter
N denotes the number of boundary elements on level L.

Uniform Refinement. We consider the exact solution

u(x, t) = exp
(
− t

α

)
sin
(

x1 cos
π
8
+ x2 sin

π
8

)
for (x, t) = (x1,x2, t) ∈ Q

and determine the Dirichlet datum g and the initial datum u0 accordingly. We use a globally
quasi-uniform boundary element mesh with mesh size h = O(2−L). Table 8.3 shows the
L2(Σ)-error ‖w−wh‖L2(Σ) and the estimated order of convergence (eoc), which is linear as
expected. Moreover, the iteration numbers of the non-preconditioned and preconditioned
GMRES method are given, again confirming the theoretical findings. Instead of using
Mh in the preconditioner one may compute a lumped mass matrix. Hence, the matrix
becomes diagonal and the inverse can be applied efficiently. Due to computational costs,
the condition number of the system matrix was not computed for all refinement levels.

Adaptive Refinement. For the second example in the spatially two-dimensional case we
consider the initial datum

u0(x1,x2) = 40exp(−10(x1 + x2))sin(πx1)sin(πx2) for (x1,x2) ∈Ω = (0,1)2

which motivates the use of a boundary element mesh that is locally quasi-uniform in space
and time, resulting from some adaptive refinement strategy. The iteration numbers in Ta-
ble 8.4 confirm the robustness of the introduced space–time preconditioner for locally
quasi-uniform meshes. The condition and iteration numbers when using the diagonal pre-
conditioner CV,d = diagVh are also listed.
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C−1
V = I C−1

V = C−1
V,10

L N ‖w−wh‖L2(Σ) eoc κ It. κ It.

0 4 1.364 ·10−0 - 1.63 1 - -
1 16 1.147 ·10−0 0.25 3.11 2 3.59 4
2 64 6.018 ·10−1 0.93 5.50 8 2.81 11
3 256 3.018 ·10−1 1.00 9.84 14 2.91 12
4 1 024 1.450 ·10−1 1.01 18.47 20 2.99 12
5 4 096 7.460 ·10−2 1.01 35.82 28 3.02 11
6 16 384 4.691 ·10−3 1.00 - 50 - 11
7 65 536 2.341 ·10−3 1.00 - 67 - 10

Table 8.3: L2(Σ)-error and convergence rate of the Galerkin approximation wh, condition
number κ of the system matrix, and iteration number of the GMRES method
(It.) in the case of uniform refinement in 2D. The parameter N denotes the
number of boundary elements on level L.

8.2 Neumann Boundary Value Problem

In the following section we consider the initial Neumann boundary value problem (5.10)
with source term f ∈ [H1,1/2

;,0 (Q)]′, Neumann datum w ∈ H−1/2,−1/4(Σ) and initial datum
u0 ∈ L2(Ω). We use the direct formulation (5.11) in order to compute the unknown Dirich-
let datum g = γ int

0 u ∈ H1/2,1/4(Σ) of the solution u ∈ H1,1/2(Q). Hence we have to find
g ∈ H1/2,1/4(Σ) such that

〈Dg,v〉Σ = 〈(1
2

I−K′)w−M1u0−N1 f ,v〉Σ for all v ∈ H1/2,1/4(Σ). (8.16)

The ellipticity of the hypersingular operator D : H1/2,1/4(Σ) → H−1/2,−1/4(Σ) ensures
unique solvability of (8.16).

For the discretization of (8.16) we consider a conforming trial space Yh = span{ψ`}M
` ⊂

H1/2,1/4(Σ) defined with respect to an admissible boundary element mesh ΣN as intro-
duced in Chapter 6. The space–time discretization leads to the system of linear equations
Dhggg = fff with

Dh[`,k] := 〈Dψk,ψ`〉Σ , fff [`] := 〈(1
2

I−K′)w−M1u0−N1 f ,ψ`〉Σ for `,k = 1, . . . ,M.

For the computation of the matrix Dh in the spatially two- and three-dimensional case we
use the alternative representations (4.13) and (4.14) of the associated bilinear form which
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C−1
V = I C−1

V = C−1
V,d C−1

V = C−1
V,10

L N ‖w−wh‖L2(Σ) κ It. κ It. κ It.

0 16 6.634 ·10−1 3.00 ·100 8 3.11 8 3.59 10
1 30 6.275 ·10−1 1.50 ·101 15 4.11 10 3.51 13
2 48 5.442 ·10−1 1.05 ·102 26 6.76 13 3.61 15
3 80 4.190 ·10−1 8.18 ·102 50 13.14 18 4.10 15
4 156 2.829 ·10−1 6.42 ·103 75 26.10 22 5.16 16
5 266 1.941 ·10−1 4.77 ·104 115 46.73 25 5.88 17
6 528 1.422 ·10−1 3.87 ·105 162 96.93 32 6.42 18
7 1 920 8.076 ·10−2 2.81 ·106 301 185.06 49 4.58 14

Table 8.4: L2(Σ)-error of the Galerkin approximation wh, condition number κ of the sys-
tem matrix, and iteration number of the GMRES method (It.) for different pre-
conditioning strategies in the case of adaptive refinement in 2D. The parameter
N denotes the number of boundary elements on level L.

is attained by applying integration by parts. As in the case of the previously discussed
initial Dirichlet boundary value problem, we want to solve Dhggg = fff without an application
of time-stepping schemes to make use of parallelization in time, e.g. use an operator
preconditioned GMRES method. For the derivation of the theoretical basis of the operator
preconditioning technique for the Neumann problem we can reuse some of the already
proven stability results in Section 8.1.

The hypersingular boundary integral operator D : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ) and the
single layer boundary integral operator V : H−1/2,−1/4(Σ)→H1/2,1/4(Σ) are both elliptic,
and thus, the stability estimates (8.1) for the induced bilinear forms

a(u,v) := 〈Du,v〉Σ for all u,v ∈ H1/2,1/4(Σ),

b(w,τ) := 〈V w,τ〉Σ for all w,τ ∈ H−1/2,−1/4(Σ)
(8.17)

are satisfied. Hence the Galerkin discretization of V allows the construction of a suitable
preconditioner for Dh. While the discretization of the hypersingular operator D is done
with respect to Yh, for the Galerkin discretization of the single layer operator V we need to
use a conforming trial space Xh = span{ϕ`}M

`=1 ⊂ H−1/2,−1/4(Σ) of the same dimension
M. Similar to the Dirichlet boundary value problem, the continuous bilinear form m(·, ·)
in (8.2) is chosen to be the duality product on H1/2,1/4(Σ)×H−1/2,−1/4(Σ) and thus, for
boundary element spaces Yh,Xh ⊂ L2(Σ) we obtain m(vh,τh) = 〈vh,τh〉L2(Σ).

Theorem 8.9. Assume that the discrete stability estimate

sup
06=τh∈Xh

〈vh,τh〉L2(Σ)

‖τh‖H−1/2,−1/4(Σ)

≥ cM
1 ‖vh‖H1/2,1/4(Σ) for all vh ∈ Yh (8.18)
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holds. Then there exists a constant cκ ≥ 1 such that

κ
(
M−1

h VhM
−>
h Dh

)
≤ cκ

where, for k, `= 1, . . . ,M,

Dh[`,k] = 〈Dψk,ψ`〉Σ , Vh[`,k] = 〈V ϕk,ϕ`〉Σ , Mh[`,k] = 〈ψk,ϕ`〉L2(Σ) .

Proof. Application of Theorem 8.1 with the bilinear forms (8.17) and m(v,τ) := 〈v,τ〉Σ
for v ∈ H1/2,1/4(Σ) and τ ∈ H−1/2,−1/4(Σ).

Thus, C−1
D =M−1

h VhM
−>
h turns out to be a robust preconditioner for Dh. Since Xh and Yh

have the same dimension, Mh is a square matrix. It remains to define a suitable boundary
element space Xh such that the mass matrix Mh is invertible and that the stability condition
(8.18) is satisfied.

In order to prove the stability condition (8.18) we can reuse some of the theoretical findings
in the previous section, i.e. the H1/2,1/4(Σ)-stability of the operator QΣ : L2(Σ)→ Yh
defined by the variational problem (8.5), which we assume to be uniquely solvable, see
Section 8.1 for more details.

Theorem 8.10. Let Yh and Xh be such that (8.6) is satisfied. Moreover, let the L2 projection
operator QΣ defined by (8.5) be H1/2,1/4(Σ)-stable, i.e. there exists a constant c > 0 such
that

‖QΣ u‖H1/2,1/4(Σ) ≤ c‖u‖H1/2,1/4(Σ) for all u ∈ H1/2,1/4(Σ).

Then the stability condition (8.18) holds.

Proof. In order to prove the stability estimate (8.18) we introduce the projection operator
ΠΣ : H1/2,1/4(Σ)→ Xh ⊂ L2(Σ) which is defined by the variational problem

〈ΠΣ u,vh〉L2(Σ) = 〈u,vh〉H1/2,1/4(Σ) for all vh ∈ Yh (8.19)

with u ∈H1/2,1/4(Σ). Note that the stiffness matrix of the variational problem (8.19) is the
same as for the projection operator Q∗Σ : L2(Σ)→ Xh ⊂ L2(Σ) defined by

〈Q∗Σ w,vh〉L2(Σ) = 〈w,vh〉L2(Σ) for all vh ∈ Yh (8.20)

with w ∈ L2(Σ). By definition we have

〈Q∗Σ w,v〉L2(Σ) = 〈Q∗Σ w,QΣ v〉L2(Σ) = 〈w,QΣ v〉L2(Σ) for all w,v ∈ L2(Σ).

The stability analysis of (8.20) can be done analogously to QΣ by assuming a related
L2(Σ)-stability condition of the trial spaces Yh and Xh, see Section 8.1 and [61, Section 1.4



114 8 Operator Preconditioning

and Chapter 2]. Thus, unique solvability of (8.20) implies unique solvability of (8.19). Let
u ∈ H1/2,1/4(Σ). By using the H1/2,1/4(Σ)-stability of the operator QΣ we get

‖ΠΣ u‖H−1/2,−1/4(Σ) = sup
0 6=v∈H1/2,1/4(Σ)

〈ΠΣ u,v〉L2(Σ)

‖v‖H1/2,1/4(Σ)

= sup
06=v∈H1/2,1/4(Σ)

〈ΠΣ u,QΣ v〉L2(Σ)

‖v‖H1/2,1/4(Σ)

= sup
06=v∈H1/2,1/4(Σ)

〈u,QΣ v〉H1/2,1/4(Σ)

‖v‖H1/2,1/4(Σ)

≤ ‖u‖H1/2,1/4(Σ) sup
06=v∈H1/2,1/4(Σ)

‖QΣ v‖H1/2,1/4(Σ)

‖v‖H1/2,1/4(Σ)

≤ c‖u‖H1/2,1/4(Σ) .

Hence the projection operator ΠΣ : H1/2,1/4(Σ)→ Xh ⊂ H−1/2,−1/4(Σ) is bounded. For
vh ∈ H1/2,1/4(Σ) we then obtain

sup
06=τh∈Xh

〈vh,τh〉L2(Σ)

‖τh‖H−1/2,−1/4(Σ)

≥
〈vh,ΠΣ vh〉L2(Σ)

‖ΠΣ vh‖H−1/2,−1/4(Σ)

=
‖vh‖2

H1/2,1/4(Σ)

‖ΠΣ vh‖H−1/2,−1/4(Σ)

≥ 1
c
‖vh‖H1/2,1/4(Σ)

which concludes the proof.

Hence, according to Theorem 8.9, the condition number κ(C−1
D Dh) with the preconditioner

C−1
D =M−1

h VhM
−>
h is bounded. It remains to choose, for given Yh⊂H1/2,1/4(Σ), a suitable

boundary element space Xh ⊂ H−1/2,−1/4(Σ) for the discretization of V .

8.2.1 One-Dimensional Problem

In the spatially one-dimensional case we use the space Sp
h(ΣN) for the discretization of the

hypersingular integral equation (8.16) which is defined with respect to an arbitrary decom-
position of the space–time boundary Σ = Σa∪Σb, see Fig. 6.1. Here, p ∈ {0,1} denotes
the polynomial degree of the basis functions. We assume that the boundary element mesh
is locally quasi-uniform.

Since the boundary element space Yh := Sp
h(ΣN) also satisfies Yh ⊂ H−1/4(Σ) we can

choose Xh := Sp
h(ΣN) for the discretization of the single layer operator V as well. Ac-

cording to Theorem 8.10 we need to establish the H1/4(Σ)-stability of the L2 projection
operator Qp

Σ : L2(Σ)→ Sp
h(ΣN)⊂ L2(Σ).

The case p = 0 was already examined in Subsection 8.1.1, see Lemma 8.4.

The setting p = 1 is analysed in [59], where the proof of the stability estimate is done
with respect to the Sobolev space Hs(Ω), where Ω is an open domain in Rn (n = 1,2,3).
Hence we can transfer the results to the Sobolev space Hs(0,T ) if we identify the time
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interval I = (0,T ) with the domain Ω ⊂ R1. For necessary assumptions on the mesh see
[59, Section 3 and Section 4].

Hence there exist constants c̃p
S > 0, p = 0,1, such that

∥∥Qp
I u
∥∥

H1/4(0,T ) ≤ c̃p
S ‖u‖H1/4(0,T ) for all u ∈ H1/4(0,T ), (8.21)

where Qp
I : L2(0,T )→ L2(0,T ) is defined by the variational formulation (6.3). The sta-

bility of the projection operator Qp
Σ then follows by applying (8.21) for each of the two

boundary parts Σa and Σb. We therefore conclude that there exist constants cp
S > 0, p= 0,1,

such that ∥∥Qp
Σ u
∥∥

H1/4(Σ)
≤ cp

S ‖u‖H1/4(Σ) for all u ∈ H1/4(Σ).

According to Theorem 8.10 the stability estimate (8.18) holds and thus, the discretization
of the single layer boundary integral operator V with Xh = Sp

h(ΣN) yields the boundedness
of the condition number of the preconditioned system matrix C−1

D Dh.

As a second approach we could use a discretization of the operator V with the basis func-
tions of the space Sq

h(Σ̃Ñ) which is defined with respect to a dual mesh Σ̃Ñ as introduced
in Subsection 8.1.1. Here, q = (p+ 1) mod 2. The proof of the H1/4(Σ)-stability of the
related L2 projection operator follows the same path as the proof of the H1/4(Σ)-stability
of Q̃1

Σ in Subsection 8.1.1, see also [60, 61].

8.2.2 Two- and Three-Dimensional Problem

As in the case of the Dirichlet boundary value problem we consider a tensor product de-
composition of Σ as described in Section 6.3 with given locally quasi-uniform spatial
and temporal decompositions ΓNx = {γ`}Nx

`=1 and INt = {τi}Nt
i=1, respectively. We use the

space Yh := X1,pt
hx,ht

(ΣN) = S1
hx
(ΓNx)⊗Spt

ht
(INt ) for the discretization of the hypersingular in-

tegral equation (8.16) and set S1
hx
(ΓNX ) = span

{
ψ1

i
}MX

i=1 and Spt
ht
(INT ) = span{ϕ`}MT

`=1. Here,
pt ∈ {0,1} denotes the polynomial degree of the basis functions in the temporal dimen-
sion.

Since Yh ⊂H−1/2,−1/4(Σ), we can choose Xh :=Yh for the discretization of the single layer
operator V as well. According to Theorem 8.10 we need to establish the H1/2,1/4(Σ)-
stability of the L2 projection operator Q1,pt

Σ : L2(Σ)→ Yh ⊂ L2(Σ) which is defined by the
uniquely solvable Galerkin–Bubnov variational problem

〈Q1,pt
Σ u,τh〉L2(Σ) = 〈u,τh〉L2(Σ) for all τh ∈ Xh = Yh
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with u ∈ L2(Σ). Let the operators Q·,pt
Σ : L2(Σ)→ L2(Σ) and Q1,·

Σ : L2(Σ)→ L2(Σ) be
defined as

(Q·,pt
Σ u)(x, t) := (Qpt

I u(x, ·))(t),
(Q1,·

Σ u)(x, t) := (Q1
Γ u(·, t))(x)

(8.22)

where Qpt
I : L2(0,T )→ Spt

ht
(INt ) ⊂ L2(0,T ) is given by (6.3) and the projection operator

Q1
Γ : L2(Γ )→ S1

hx
(ΓNx)⊂ L2(Γ ) is defined by the variational problem (6.5) for p= 1. Then

we have the representation Q1,pt
Σ = Q1,·

Σ Q·,pt
Σ = Q·,pt

Σ Q1,·
Σ .

Let γ` be an arbitrary boundary element of the mesh ΓNx . We assume that there exsists a
constant c0 > 0 such that

(H`G`H
−1
` xxx`,xxx`)≥ c0(D`xxx`,xxx`) for all xxx` ∈ R|J(`)| (8.23)

where J(`) denotes the index set of all nodes adjacent to the element γ` and the local
matrices are defined as

G`[ j, i] := 〈ψp(i),ψp( j)〉L2(γ`), D` := diagG`, H` := diag(ĥ1/2
p(i),x) for i, j = 1, ..., |J(`)|

where p(i) denotes the i-th element in J(`). The nodal mesh size ĥi,x is given by (8.10).
Then there exists a constant c > 0 such that [59, Theorem 3.2]

∥∥Q1
Γ u
∥∥

H1/2(Γ )
≤ c‖u‖H1/2(Γ ) for all u ∈ H1/2(Γ ). (8.24)

Note that in [59] the stability analysis of related L2 projection operators is done with re-
spect to the Sobolev space Hs(Ω) where Ω is a bounded domain in Rn (n = 1,2,3). How-
ever, the stability results are also applicable for Sobolev spaces defined on the boundary
Γ , i.e. for Hs(Γ ) with s ∈ [0,1]. By combining (8.21) and (8.24) we obtain the following
result.

Theorem 8.11. Let assumption (8.23) be satisfied. Then there exists a constant cS > 0
such that ∥∥∥Q1,pt

Σ u
∥∥∥

H1/2,1/4(Σ)
≤ cS ‖u‖H1/2,1/4(Σ) for all u ∈ H1/2,1/4(Σ).

Proof. For u ∈ H1/2,1/4(Σ) we have
∥∥∥Q1,pt

Σ u
∥∥∥

2

H1/2,1/4(Σ)
=
∥∥∥Q1,pt

Σ u
∥∥∥

2

L2(Σ)
+ |Q1,pt

Σ u|2H1/4(0,T ;L2(Γ ))
+ |Q1,pt

Σ u|2L2(0,T ;H1/2(Γ ))
.

The first term on the right hand side can be estimated by employing the standard L2(Σ)-
stability of the projection operator Q1,pt

Σ . An application of estimate (8.21), definition
(8.22) of the operators Q1,·

Σ and Q·,pt
Σ , and the L2(Γ )-stability of Q1

Γ yield

|Q1,pt
Σ u|2H1/4(0,T ;L2(Γ ))

= |Q1,·
Σ Q·,pt

Σ u|2H1/4(0,T ;L2(Γ ))
≤ |Q·,pt

Σ u|2H1/4(0,T ;L2(Γ ))

≤ c ‖u‖2
H1/4(0,T ;L2(Γ )) .
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By using estimate (8.24), definition (8.22) and the L2(0,T )-stability of Qpt
I we get

|Q1,pt
Σ u|2L2(0,T ;H1/2(Γ ))

= |Q·,pt
Σ Q1,·

Σ u|2L2(0,T ;H1/2(Γ ))
≤ |Q1,·

Σ u|2L2(0,T ;H1/2(Γ ))

≤ c ‖u‖2
L2(0,T ;H1/2(Γ )) .

A combination of the estimates yields the desired result.

According to Theorem 8.10 the stability estimate (8.18) holds and thus, the discretization
of the single layer boundary integral operator V with Xh = X1,pt

hx,ht
(ΣN) yields the bounded-

ness of κ(C−1
D Dh).

We could also discretize the single layer operator V by using tensor product spaces which
are defined with respect to a suitable combination of the dual meshes Γ̃Ñx

, ĨÑt
. The stability

analysis then follows the same idea as described for the boundary element spaces intro-
duced in the previous sections by employing the stability of the projections in space and
time separately. E.g. for Yh = X1,0

hx,ht
(ΣN) and Yh = X1,1

hx,ht
(ΣN) we could use the boundary

element spaces Xh = S0
hx
(Γ̃Ñx

)⊗ S0
ht
(INt ) or Xh = S0

hx
(Γ̃Ñx

)⊗ S0
ht
(ĨÑt

) for the discretization
of V , respectively, i.e. piecewise constant basis functions defined with respect to a dual
boundary element mesh.

8.2.3 Numerical Results

For the following numerical experiments we consider the initial Neumann boundary value
problem (5.10) with the heat capacity constant α = 10 and time horizon T = 1. We solve
the hypersingular boundary integral equation (5.11) in order to compute the unknown
Dirichlet datum g = γ int

0 u ∈ H1/2,1/4(Σ). The Galerkin boundary element discretization
is done by using a conforming trial space Yh ⊂ H1/2,1/4(Σ) defined with respect to an ad-
missible space–time boundary element mesh ΣN . The resulting system of linear equations
Dhggg = fff is solved by using a preconditioned GMRES method with a relative accuracy of
10−8 as stopping criteria.

One-Dimensional Problem

For the simple spatially one-dimensional case we choose Ω = (0,1). We consider the
exact solution

u(x, t) = exp
(
−4π2 t

α

)
cos(2πx) for (x, t) ∈ Q = (0,1)2,

and determine the Neumann datum w and the initial datum u0 accordingly. We use a
globally uniform boundary element mesh with mesh size h = 2−L and the space boundary
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element space Yh := S0
h(ΣN) for the approximation of g. As a preconditioner we use the

discretization of the single layer operator V with Xh := Yh, denoted by CD,0.

Table 8.5 shows the L2(Σ)-error ‖g− gh‖L2(Σ) and the estimated order of convergence
(eoc). Moreover, the iteration numbers of the non-preconditioned and preconditioned
GMRES method are given, confirming the theoretical findings, i.e. the robustness of the
operator preconditioning technique for the Neumann problem.

C−1
D = I C−1

D = C−1
D,0

L N ‖g−gh‖L2(Σ) eoc κ It. κ It.

2 8 1.486 ·10−1 0.06 5.62 4 2.22 4
3 16 1.315 ·10−1 0.18 7.92 8 2.45 8
4 32 9.805 ·10−2 0.42 12.86 16 2.17 14
5 64 5.885 ·10−2 0.74 20.40 31 2.06 14
6 128 3.077 ·10−2 0.94 29.51 44 2.06 14
7 256 1.529 ·10−2 1.01 41.88 58 2.06 14
8 512 7.500 ·10−3 1.03 59.34 75 2.06 14
9 1 024 3.682 ·10−3 1.03 84.01 95 2.07 14

10 2 048 1.815 ·10−3 1.02 118.87 120 2.07 14

Table 8.5: L2(Σ)-error and convergence rate of the Galerkin approximation gh, condition
number κ of the system matrix, and iteration number of the GMRES method
(It.) in the case of uniform refinement in 1D. The parameter N denotes the
number of boundary elements on level L.

Two-Dimensional Problem

We consider the domain Ω = (0,1)2 and the exact solution

u(x, t) = exp
(
− t

α

)
sin
(

x1 cos
π
8
+ x2 sin

π
8

)
for (x, t) = (x1,x2, t) ∈ Q = (0,1)3.

We determine the Neumann datum w and the initial datum u0 accordingly. We use a
globally quasi-uniform space–time tensor product boundary element mesh with mesh size
h =O(2−L) and the space Yh := X1,0

h,h (ΣN) for the approximation of g. As a preconditioner
we use the discretization of the single layer boundary integral operator V with Xh := Yh,
denoted by CD,10.

Table 8.6 shows the L2(Σ)-error ‖g−gh‖L2(Σ) and the estimated order of convergence
(eoc) which is linear as expected. Moreover, the iteration numbers of the preconditioned
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and non-preconditioned GMRES method are given, which again confirm the robustness of
the introduced preconditioning strategy.

C−1
D = I C−1

D = C−1
D,10

L N ‖g−gh‖L2(Σ) eoc κ It. κ It.

0 4 1.564 ·10−1 - 2.40 3 1.71 3
1 16 8.274 ·10−2 0.92 4.67 11 5.31 8
2 64 4.325 ·10−2 0.94 6.66 12 6.72 9
3 256 1.897 ·10−2 1.19 8.99 14 8.87 11
4 1 024 8.733 ·10−3 1.12 15.95 22 9.30 14
5 4 096 4.131 ·10−3 1.08 30.16 36 9.32 14
6 16 384 1.987 ·10−3 1.06 - 54 - 14
7 65 536 9.709 ·10−4 1.03 - 80 - 13

Table 8.6: L2(Σ)-error and convergence rate of the Galerkin approximation gh, condition
number κ of the system matrix, and iteration number of the GMRES method
(It.) in the case of uniform refinement in 2D. The parameter N denotes the
number of boundary elements on level L.
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9 PARALLELIZATION

In this chapter we present a method for parallelization of space–time BEM for the heat
equation based on a modification of the approach presented in [30, 37] for spatial prob-
lems. The method is based on a decomposition of the input mesh into submeshes of ap-
proximately the same size and a distribution of corresponding blocks of the system matri-
ces among processors. To ensure proper load balancing during the assembly of the system
matrices and matrix-vector multiplication and to minimize the total number of submeshes
that have to be stored on each compute node, a distribution of matrix blocks based on a
cyclic graph decomposition is used. We modify the original approach to support the spe-
cial structure of the space–time system matrices. In particular, this includes a different
mesh decomposition technique (instead of a spatial domain decomposition we split the
space–time mesh into time slices), modification of the block distribution due to the lower
triangular structure of the matrices, and special treatment of certain blocks in the case of an
even number of processes. In contrast to [30,37] where the matrix blocks are approximated
by applying the fast multipole or adaptive cross approximation methods, here we restrict
ourselves to dense matrices. The presented structure of the parallel solver allows the in-
clusion of matrix approximation techniques to solve even larger problems. The results in
this chapter are based on [11, 14].

Although the BEM matrices have a block Toeplitz structure in the case of uniform time-
stepping, we do not exploit this fact as our final goal is adaptivity in space and time with
non-uniform time-stepping. Moreover, the block triangular Toeplitz structure makes dis-
tributed parallelization rather complicated due to different lengths of (sub)diagonals. Some
of the blocks would have to be replicated on multiple processes in order to keep the matrix-
vector multiplication balanced. For a parallelization scheme exploiting the Toeplitz struc-
ture in the case of the wave equation see, e.g., [70].

Numerical or semi-analytic evaluation of the surface integrals is one of the most time-
consuming parts of space–time BEM. The high computational intensity of the method
makes it well suited for current multi- and many-core processors equipped with wide
SIMD (Single Instruction Multiple Data) registers. Vector instruction set extensions in
modern CPUs (AVX512, AVX2, SSE) support simultaneous operations with up to eight
double precision operands, contributing significantly to the theoretical peak performance
of a processor. While current compilers support automatic vectorization to some extent,
one has to use low level approaches (assembly language, compiler intrinsic functions), ex-
ternal libraries (Vc [31], Intel MKL Vector Mathematical Functions [28], etc.), or OpenMP
pragmas [48] to achieve a reasonable speedup. Some remarks on the implementation of
vectorization in order to compute the matrix entries and related numerical experiments can
be found in [14]. Besides vectorization we also utilize OpenMP for thread parallelization
in shared memory.
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In Section 9.1 we introduce the model problem and the setup of the system of linear
equations which is obtained by a tensor product decomposition of the space–time boundary
Σ as described in Section 6.3. Section 9.2 is devoted to the description of our parallel
implementation of the matrix assembly and to the solution of the system of linear equations
based on OpenMP and MPI. In Section 9.3 we provide scalability experiments validating
the suggested approach.

9.1 Model Problem and Space–Time Discretization

As a model problem we consider the initial Dirichlet boundary value problem for the heat
equation with homogeneous source term and Ω ⊂ Rn (n = 2,3), i.e.

α∂tu(x, t)−∆xu(x, t) = 0 for (x, t) ∈ Q,

γ int
0 u(x, t) = g(x, t) for (x, t) ∈ Σ ,

u(x,0) = u0(x) for x ∈Ω
(9.1)

with the heat capacity constant α > 0, some given boundary datum g ∈ H1/2,1/4(Σ) and
initial datum u0 ∈ L2(Ω). We determine the unknown Neumann datum w := γ int

1 u ∈
H−1/2,−1/4(Σ) by solving the variational formulation of the weakly singular boundary
integral equation, i.e. we have to find w ∈ H−1/2,−1/4(Σ) such that

〈V w,τ〉Σ = 〈(1
2

I +K)g−M0u0,τ〉Σ for all τ ∈ H−1/2,−1/4(Σ), (9.2)

which is uniquely solvable due to the ellipticity of V , see Chapter 5. In order to discretize
the variational problem (9.2) we consider a space–time tensor product decomposition of Σ
as introduced in Section 6.3. For given decompositions ΓNx = {γi}Nx

i=1 and INt =
{

τ j
}Nt

j=1 of
the spatial boundary Γ and the time interval (0,T ), respectively, we define the space–time
boundary element mesh ΣN as in (6.6) with N := NxNt . A sample decomposition of the
space–time boundary of Q = (0,1)3, i.e. for the spatially two-dimensional heat equation,
is shown in Fig. 9.1a.

For the Galerkin discretization of (9.2) we use the space X0,0
hx,ht

(ΣN) = span
{

ϕ0
`

}N
`=1 of

piecewise constant basis functions ϕ0
` , which is defined with respect to the decomposi-

tion ΣN . For the approximation of the Dirichlet datum g we use the space X1,0
hx,ht

(ΣN) =

span
{

ϕ10
i
}MΣ

i=1 of functions that are piecewise linear and globally continuous in space and
piecewise constant in time, while the initial datum u0 is discretized by using the space

of piecewise linear and globally continuous functions S1
h(ΩNΩ ) = span

{
ϕ1

j

}MΩ

j=1
, which is
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(a) Tensor product decomposition. (b) Submeshes.

Figure 9.1: Sample space–time boundary decompositions for Q = (0,1)3.

defined with respect to a given admissible decomposition (triangulation) ΩNΩ := {ωi}NΩ
i=1

of the domain Ω . This leads to the system of linear equations

Vhwww = (
1
2
Mh +Kh)ggg−M0

huuu0 (9.3)

where
Vh[`,k] :=

1
α

∫

σ`

∫

σk

U?(x− y, t− τ)dsy dτ dsx dt, (9.4)

Kh[`, i] :=
1
α

∫

σ`

∫

Σ

∂nyU
?(x− y, t− τ)ϕ10

i (y,τ)dsy dτ dsx dt, (9.5)

M0
h[`, j] :=

∫

σ`

∫

Ω

U?(x− y, t)ϕ1
j (y)dydsx dt, (9.6)

and
Mh[`, i] :=

∫

σ`

∫

Σ

ϕ10
i (y,τ)dsy dτ dsx dt.

The vectors www ∈ RN , ggg ∈ RMΣ and uuu0 ∈ RMΩ in (9.3) represent the coefficients of the
approximations wh, gh and u0

h. Due to the ellipticity of the single layer operator V , the
matrix Vh is positive definite and therefore (9.3) is uniquely solvable.

For the solution of (9.3) we use a preconditioned GMRES method. More precisely, we
apply the operator preconditioning technique described in Section 8.1 to obtain a robust
preconditioner for the system (9.3), i.e. we use a suitable discretization of the hypersin-
gular operator D : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ). Since the discretization of the weakly
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singular integral equation (9.2) is done with respect to X0,0
hx,ht

(ΣN), we choose

X1,0
hx,ht

(Σ̃N) := S1
hx
(Γ̃Ñx

)⊗S0
ht
(INt )⊂ H1/2,1/4(Σ)

for the Galerkin discretization of the hypersingular operator D and thus, we obtain a robust
preconditioner C−1

V = M̃−1
h DhM̃

−T
h , see Section 8.1. Here, M̃h denotes the mass matrix

defined in Theorem 8.2. Moreover, we set X1,0
hx,ht

(Σ̃N) = span
{

ϕ̃10
`

}N
`=1. The Galerkin

matrices for the preconditioner are then given by

Dh[`,k] :=− 1
α

∫

Σ

ϕ̃10
` (x, t)γ int

1,x

∫

Σ

γ int
1,yU

?(x− y, t− τ)ϕ̃10
k (y,τ)dsy dτ dsx dt, (9.7)

M̃h[`,k] :=
∫

Σ

∫

σk

ϕ̃10
` (x, t)dsy dτ dsx dt.

We assume that the elements of INt , referred to as time layers, are sorted from t = 0 to
t = T . Due to the causal behaviour of the fundamental solution (4.6) the matrices Vh, Kh
and Dh are block lower triangular matrices where each block corresponds to one pair of
time layers, see (9.8) in the case of Vh. The structures of Kh and Dh are identical to Vh.

Vh =




V0,0 0 · · · 0
V1,0 V1,1 · · · 0

...
... . . . ...

VNt−1,0 VNt−1,1 · · · VNt−1,Nt−1


 (9.8)

The structure of the initial matrix M0
h is different. The number of its columns depends

on the number of vertices of the initial mesh ΩNΩ , while the number of rows depends on
the number of space–time boundary elements σ . Due to the given sorting of the elements
of INt the matrix can be decomposed into block-rows where each block-row corresponds
to one time layer. For the mass matrices Mh and M̃h we obtain block-diagonal structures
where each diagonal block represents the local mass matrix of one time layer.

By using the representation formula (5.1) with the computed approximations wh, gh and
u0

h, we can compute an approximation ũ of the solution u in the space–time domain Q, i.e.
for (x, t) ∈ Q we obtain

ũ(x, t) =
MΩ

∑
i=1

u0
i (M̃0ϕ1

i )(x, t)+
N

∑̀
=1

w`(Ṽ ϕ0
` )(x, t)−

MΣ

∑
j=1

g`(Wϕ10
j )(x, t). (9.9)

For the evaluation of the discretized representation formula (9.9) in Q we define a specific
set of evaluation points. Let {x`}EΩ

`=1 be a set of nodes in the interior of the domain Ω ,
e.g. the nodes of the already given decomposition ΩNΩ on a specific level. Moreover, let
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{tk}EI
k=1 be an ordered set of time steps distributed on the interval I = (0,T ). The set of

evaluation points is then given as

{(x, t)i}E
i=1 = {(x`, tk) : `= 1, ...,EΩ ;k = 1, ...,EI} (9.10)

with E = EΩ EI . We have to evaluate the integrals in (9.9) for each evaluation point, i.e.
we have to compute

uuuhhh = M̃0
huuu0 + Ṽhwww−Whggg (9.11)

where
M̃0

h[i, j] := (M̃0ϕ1
j )((x, t)i),

Ṽh[i, `] := (Ṽ ϕ0
` )((x, t)i),

Wh[i,k] := (Wϕ10
k )((x, t)i).

(9.12)

Note that we do not have to explicitly assemble the matrices (9.12) in order to compute
uuuhhh and that the matrix representation (9.11) is only used to write the introduced evaluation
of (9.9) in multiple evaluation points in a compact form. Remarks on integration routines
for a stable computation of the matrix entries and for the evaluation of the representation
formula (9.9) are given in Subsection 7.1.3.

9.2 Parallel Implementation

In the following sections we focus on several levels of parallelism. In Subsection 9.2.1 we
modify the method for the distribution of stationary BEM system matrices to support time-
dependent problems. In Subsection 9.2.2 we describe the shared-memory parallelization
of the code. OpenMP vectorization is discussed in [14]. Our aim is to fully utilize the
capabilities of modern clusters equipped with multi- or many-core CPUs with wide SIMD
registers in this way.

9.2.1 MPI Distribution

The original method presented in [37] for spatial problems decomposes the input surface
mesh into P submeshes which splits a system matrix A (the single layer, double layer or
hypersinuglar operator matrix) into P×P blocks

A=




A0,0 A0,1 · · · A0,P−1
A1,0 A1,1 · · · A1,P−1

...
... . . . ...

AP−1,0 AP−1,1 · · · AP−1,P−1



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(b) Spatial problem.
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(c) Space–time problem.

Figure 9.2: Distribution of the system matrix blocks among seven processes.

and distributes these blocks among P processes such that the number of shared mesh parts
is minimal and each process owns a single diagonal block (since these usually include
most of the singular entries). To find the optimal distribution, each matrix block Ai, j is
regarded as an edge (i, j) of a directed complete graph KP with P vertices. Finding a
distribution of the matrix blocks corresponds to a decomposition of KP into P subgraphs.
First, a generator graph G0 ⊂KP is defined such that each oriented edge of G0 corresponds
to a block to be assembled by the process 0. The graphs G1,G2, . . . ,GP−1 correspond to
the remaining processes and are generated by a clock-wise rotation of G0 along vertices
of KP placed on a circle, see Figures 9.2a–9.2b. The main task is to find the generat-
ing graph G0. Optimal generating graphs with a minimal number of vertices are known
for special values of P (P = 3,7,13,21, ...) only and are provided in [37]. Since these
numbers of processes are rather unusual in high performance computing, a heuristic algo-
rithm for finding nearly optimal decompositions for the remaining odd and even numbers
of processes P is described in [30]. Note that for odd numbers of processes the respec-
tive graph is decomposed into smaller undirected generating graphs, therefore the matrix
blocks are distributed symmetrically, i.e. every process owns both blocks (i, j) and ( j, i),
see Figures 9.3a and 9.3b. However, when decomposing graphs for even number of pro-
cesses, some edges have to be oriented and blocks are not distributed symmetrically, see
Figures 9.4a–9.4b. A table with decompositions for P = 2k,k ∈ {1,2, . . . ,10} is presented
in [30]. The described distribution aims at minimizing the number of submeshes shared
among processes. This reduces memory consumption per process and global communica-
tion during the matrix-vector multiplication. To balance the load it is natural to assign each
process a single diagonal block since these usually contain most of the singular entries and
have to be treated with a special care.

Adapting this method for the distribution of the matrices Vh, Kh and Dh given by (9.4),
(9.5) and (9.7), respectively, for the time-dependent problem (9.3) is relatively straightfor-
ward. First, instead of a spatial domain decomposition the space–time mesh is decomposed
into slices in the temporal dimension, see Figure 9.1b. In contrast to spatial problems, the
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(c) Space–time problem.

Figure 9.3: Distribution of the system matrix blocks among five processes.

system matrices are block lower triangular with lower triangular blocks on the main diag-
onal due to the properties of the fundamental solution and the selected discrete spaces, see
(9.8). This justifies the original idea to assign a single diagonal block per process because
of their different computational demands. The distribution of the remaining blocks has to
be modified to take the lower triangular block structure into account . In the case of an
odd number of processes, the remaining blocks below the main diagonal are distributed
according to the original scheme and the distribution of the blocks above the main diago-
nal is ignored, see Figures 9.2c and 9.3c. In the case of an even number of processes, the
original decomposition is not symmetric, therefore some blocks have to be split between
two processes, see Figure 9.4c. The construction of the generating graph ensures that each
process owns exactly one shared block, therefore not influencing the load balancing. All
shared blocks are located on the block subdiagonal starting with a block at the position
(P/2,0).

Let us note that in [30, 37] the submatrices are approximated using the fast multipole or
adaptive cross approximation methods. Here we restrict to the dense format and leave the
data-sparse approximation as a topic of future work.

Next we define a distribution of the initial matrix M0
h given by(9.6) which has a different

structure compared to the matrices Vh, Kh and Dh. The number of its columns depends on
the number of vertices of the initial mesh ΩNΩ , while the number of rows depends on the
number of space–time elements σ`. We distribute whole block-rows of the matrix among
processes, i.e. the initial mesh is not decomposed and for the space–time mesh we use
the same decomposition as for the matrices Vh, Kh and Dh. In particular, each process is
responsible for the block-row corresponding to its first submesh.

The mass matrices Mh and M̃h are block-diagonal where each diagonal block represents the
local mass matrix of one of the generated submeshes. These blocks are distributed among
the processes. Hence each process assembles a single diagonal block corresponding to its
first submesh.



128 9 Parallelization

0

1

2

3

(a) Generating graph.

0 1 2 3

0

1

2

3

rank

0

rank

0

rank

0

rank

2

rank

0

rank

2

rank

2

rank

2

(b) Spatial problem.

0 1 2 3

0

1

2

3

rank

0

rank

0

rank 0

rank

2

rank

2rank 2

(c) Space–time problem.

Figure 9.4: Distribution of the system matrix blocks among four processes.

It remains to establish an efficient scheme for a distributed evaluation of the discretized
representation formula (9.9) in the given set of evaluation points (9.10). In order to reach
a reasonable speedup we have to make the following assumption on the set of evalua-
tions points. Recall that {tk}EI

k=1 is an ordered set of time steps distributed in the interval
I = (0,T ). We assume that each of the given time slices has the same amount of time
steps EI/P. This is necessary in order to balance the computation times between the pro-
cesses.

In order to describe the parallel evaluation of (9.9) in the given set of evaluation points we
consider the matrix representation (9.11). We have to distribute the matrix-vector products
in an appropriate way. Therefore, we split the set of evaluation points into P subsets
according to the already given time slices and we obtain similar block structures for Ṽh,
Wh and M̃0

h as we have had for the BEM matrices Vh, Kh and M0
h. Thus, to distribute the

matrix-vector multiplication we can use exactly the same decomposition as for the system
matrices. Note that, as already mentioned in Section 9.1, we do not have to explicitly
assemble the matrices Ṽh, Wh and M̃0

h.

9.2.2 OpenMP Threading

In this subsection we describe an efficient way of employing OpenMP threading in order to
decrease the computation times of the assembly of the BEM matrices Vh, Kh, Dh and M0

h,
and for the evaluation of the discretized representation formula (9.9). For better readability
we consider the non-distributed system of linear equations (9.3), i.e. without the MPI
distribution presented in Subsection 9.2.1. The developed scheme can be transferred to the
distributed matrices created by the cyclic graph decomposition.

In order to assemble the boundary element matrices Vh, Kh and Dh we use an element-
based strategy, where we loop over all pairs of space–time boundary elements, assemble a
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local matrix and map it to the global matrix, see Listing 9.1 for Vh, Kh. For the assembly of
Dh we use the same strategy as given in Listing 9.1, only with different parameters, i.e. Ñx
instead of Nx. OpenMP threading is employed for the outer loop over the elements. Recall
that due to the given sorting of the elements of INt , the matrices Vh, Kh and Dh are lower
triangular block matrices, see (9.8). Hence the computational complexity is different for
each iteration of the outer loop. Therefore, we apply dynamic scheduling and the outer
loop starts with the elements located in the last time layer Nt−1. The number of iterations
of the inner loop, denoted with N(l) in Listing 9.1, depends on the current outer iteration
variable l since we do not have to assemble the blocks in the upper triangular matrix. The
function N(l) returns the number of boundary elements which are either located in the
same time layer as the element σ` or in one of the time layers in the past. In this way we
ensure that the length of the inner loop is decreasing. This is advantageous for the load
balance.

1 int N(l) { return N_x * (1 + floor(l/N_x)); }
2

3 #pragma omp parallel for schedule(dynamic , 1)
4 for(int l = N-1; l >= 0; --l) {
5 for(int k = 0; k < N(l); ++k) {
6 getLocalMatrix(l, k, localMatrix);
7 globalMatrix.add(l, k, localMatrix);
8 } }

Listing 9.1: Threaded element-based assembly of Vh and Kh.

The structure of the initial matrix M0
h is different, see Section 9.1. In order to assemble

the matrix M0
h we again use the element-based strategy, where we loop over all boundary

elements and elements of the initial mesh ΩNΩ , similarly as in Listing 9.1. Threading is
employed for the outer loop over the boundary elements and dynamic scheduling is used
again. The number of iterations of the inner loop does not depend on the index of the outer
loop, since there are in general no vanishing entries compared to Vh, Kh and Dh.

Since the support of the piecewise constant test functions ϕ0
` is limited to a single boundary

element σ`, no thread-private operations are necessary in the add function for the assembly
of the matrices Vh, Kh and M0

h, whereas for the assembly of Dh an atomic OpenMP clause
is necessary in the add function due to the overlap of the support of the basis functions
ϕ̃10

i used for the discretization of Dh, i.e. functions that are piecewise linear and globally
continuous in space.

A similar strategy is used for the evaluation of the discretized representation formula (9.9).
We iterate over an array of evaluation points which are sorted in the temporal direction and
again use dynamic scheduling, see Listing 9.2.
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1 #pragma omp parallel for schedule(dynamic , 1)
2 for(int i = E-1; i >= 0; --i) {
3 representationFormula(i, result);
4 }

Listing 9.2: Threaded evaluation of the representation formula.

All presented threading strategies can be carried over to the assembly of the blocks gener-
ated by the cyclic graph decomposition presented in Subsection 9.2.1. The main diagonal
blocks of the matrices Vh, Kh and Dh are structured as in (9.8), assuming that the time lay-
ers within the corresponding submesh are sorted appropriately. Thus, we apply the same
threading strategy for the diagonal blocks as already discussed in this subsection. For the
non-diagonal blocks of the matrices Vh, Kh and Dh we use dynamic scheduling as well, but
the number of iterations of the inner loop does not depend on the index of the outer loop
anymore, since all the elements iterated over by the inner loop are located in the past of
the element σ`, and therefore each pair of elements σk and σ` contributes to the block.

The threaded assembly of the block-rows of the initial matrix M0
h and the threaded eval-

uation of the distributed representation formula work exactly the same way as described
before.

9.3 Numerical Results

In this section we evaluate the efficiency of the proposed parallelization techniques for the
spatially two-dimensional problem. The numerical experiments for testing the shared and
distributed memory scalability were executed on the Salomon cluster at IT4Innovations
National Supercomputing Center in Ostrava, Czech Republic. The cluster is equipped with
1008 nodes with two 12-core Intel Xeon E5-2680v3 Haswell processors and 128 GB of
RAM. Nodes of the cluster are interconnected by the InfiniBand 7D enhanced hypercube
network. Vectorization experiments can be found in [14].

All presented examples refer to the initial Dirichlet boundary value problem (9.1) on the
space–time domain Q := (0,1)2× (0,1). We consider the exact solution

u(x, t) := exp
(
− t

α

)
sin
(

x1 cos
π
8
+ x2 sin

π
8

)
for (x, t) = (x1,x2, t) ∈ Q

and determine the Dirichlet datum g and the initial datum u0 accordingly. The heat capacity
constant is set to α = 10. The system of linear equations (9.3) is solved by the operator
preconditioned GMRES method with a relative precision of 10−8. Instead of using M̃h in
the preconditioner we computed a lumped mass matrix. Thus, the matrix becomes diagonal
and the inverse can be applied efficiently.
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L N ‖w−wh‖L2(Σ) eoc It. It. OP

2 64 7.55 ·10−2 1.00 14 17
3 256 3.77 ·10−2 1.00 19 18
4 1 024 1.88 ·10−2 1.00 24 20
5 4 096 9.38 ·10−3 1.00 35 20
6 16 384 4.69 ·10−3 1.00 50 20
7 65 536 2.34 ·10−3 1.00 67 20
8 262 144 1.18 ·10−3 0.99 91 19
9 1 048 576 5.94 ·10−4 0.99 122 19

Table 9.1: L2(Σ)-error of the Galerkin approximation wh and the corresponding order of
convergence. Here, N denotes the number of boundary elements of ΣN on
level L. Additionally, the iteration numbers of the non-preconditioned GMRES
method (It.) and the preconditioned GMRES method (It. OP) are listed.

In order to obtain the boundary element mesh ΣN and the finite element mesh ΩNΩ , which
is used for the discretization of the initial potential and the evaluation of the representation
formula, we decompose the space–time boundary Σ and the domain Ω = (0,1)2 into four
space–time rectangles and four triangles, respectively, and then apply uniform refinement.
The L2(Σ)-error of the computed Galerkin approximation wh and the estimated order of
convergence are given in Table 9.1. In our computations we choose hx = ht , where hx and
ht denote the global mesh sizes of ΓNx and INt , respectively.

9.3.1 Scalability in Distributed Memory

In the first part of the performance experiments we focus on the parallel scalability of the
proposed solver presented in Subsection 9.2.1. We tested the assembly of the BEM ma-
trices Vh, Kh, Dh and M0

h, the related matrix-vector multiplication, and the evaluation of
the discrete representation formula (9.9). Strong scaling of the parallel solver was tested
using a tensor product decomposition of the space–time boundary Σ into 65 536, 262 144,
and 1 048 576 space–time surface elements and the same number of finite elements for the
triangulation of the domain Ω . This corresponds to 512, 1 024, 2 048 spatial boundary ele-
ments and 128, 256, 512 time layers. In order to test the performance of the representation
formula we chose 558 080 evaluation points for all three problem sizes. More precisely,
we used a finite element mesh ΩNΩ of the domain Ω with 545 nodes and computed the
solution in these nodes in 1 024 different time steps, uniformly distributed in the interval
[0,1]. We used up to 256 nodes (6 144 cores) of the Salomon cluster for our computations
and executed two MPI processes per node. Each MPI process used 12 OpenMP threads
for the assembly of the matrix blocks, for the matrix-vector multiplication, and for the
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evaluation of the representation formula. Note that the number of nodes we can use for
our computations is restricted by the number of time layers of our boundary element mesh,
i.e. starting with one element of our temporal decomposition INt at level L = 0 and using
a uniform refinement strategy we end up with 2L time layers at level L. Thus, due to the
structure of the parallel solver presented in Subsection 9.2.1 we can use 2L MPI processes
and therefore 2L−1 nodes at most. Conversely, for fine meshes we need a certain number
of nodes to store the matrices.

Note that if we follow the refinement strategy ht ∼ h2
x , the number of time layers and

therefore the maximum number of MPI processes at level L is 4L.

nodes ↓ Vh assembly [s] Vh speedup Vh efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 138.0 — — 1.0 — — 100.0 — —
2 68.4 — — 2.0 — — 100.9 — —
4 33.9 — — 4.1 — — 101.8 — —
8 17.7 272.0 — 7.8 1.0 — 97.5 100.0 —

16 8.6 141.1 — 16.0 1.9 — 100.3 96.4 —
32 4.5 70.0 — 30.7 3.9 — 95.8 97.1 —
64 2.3 35.0 593.1 60.8 7.8 1.0 95.0 97.1 100.0

128 — 17.7 281.7 — 15.4 2.1 — 96.0 105.3
256 — — 145.9 — — 4.1 — — 101.6

Table 9.2: Assembly of Vh for 65 536, 262 144, and 1 048 576 space–time elements.

nodes ↓ Kh assembly [s] Kh speedup Kh efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 162.5 — — 1.0 — — 100.0 — —
2 80.8 — — 2.0 — — 100.5 — —
4 40.3 — — 4.0 — — 100.8 — —
8 21.8 317.4 — 7.5 1.0 — 93.2 100.0 —

16 10.2 163.4 — 15.9 1.9 — 99.6 97.1 —
32 5.2 81.2 — 31.2 3.9 — 97.6 97.7 —
64 2.6 40.9 673.4 62.5 7.8 1.0 97.6 97.0 100.0

128 — 20.7 325.6 — 15.3 2.1 — 95.8 103.4
256 — — 172.5 — — 3.9 — — 97.6

Table 9.3: Assembly of Kh for 65 536, 262 144, and 1 048 576 space–time elements.

In Tables 9.2–9.6 the assembly and evaluation times including the speedup and efficiency
are listed. We obtain almost optimal parallel scalability of the assembly of the BEM ma-
trices and of the evaluation of the representation formula. Scalability of the matrix-vector
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nodes ↓ Dh assembly [s] Dh speedup Dh efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 184.1 — — 1.0 — — 100.0 — —
2 92.0 — — 2.0 — — 100.1 — —
4 46.8 — — 3.9 — — 98.4 — —
8 23.8 373.6 — 7.7 1.0 — 96.7 100.0 —

16 11.8 186.1 — 15.6 2.0 — 97.3 100.4 —
32 5.9 91.9 — 31.0 4.1 — 96.7 101.7 —
64 3.0 47.0 747.0 60.5 7.9 1.0 94.6 99.3 100.0

128 — 24.0 376.9 — 15.6 2.0 — 97.3 99.1
256 — — 193.5 — — 3.9 — — 96.5

Table 9.4: Assembly of Dh for 65 536, 262 144, and 1 048 576 space–time elements.

nodes ↓ M0
h assembly [s] M0

h speedup M0
h efficiency [%]

mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 163.7 — — 1.0 — — 100.0 — —
2 82.8 — — 2.0 — — 98.9 — —
4 41.0 — — 4.0 — — 99.8 — —
8 20.8 332.0 — 7.9 1.0 — 98.4 100.0 —

16 10.4 167.3 — 15.7 2.0 — 98.4 99.2 —
32 5.3 83.4 — 30.9 4.0 — 96.5 99.5 —
64 2.7 42.5 687.3 60.6 7.8 1.0 94.7 97.6 100.0

128 — 21.5 343.8 — 15.4 2.0 — 96.5 100.0
256 — — 181.4 — — 3.8 — — 94.7

Table 9.5: Assembly of M0
h for 65 536, 262 144, and 1 048 576 space–time elements and

the same number of triangles in ΩNΩ .

multiplication is evaluated in Table 9.7. Since the matrix blocks are distributed, each pro-
cess only multiplies with blocks it is responsible for and exchanges the result with the
remaining processes. For sufficiently large problems the scalability is optimal. In the case
of smaller problems, the efficiency decreases with the increasing number of compute nodes
as the communication starts to dominate over the computation. Nevertheless the efficiency
is still good. The presented times apply to dense matrix-vector products. The efficiency
is expected to decrease to some extent when using matrix approximation methods without
further optimizations.
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nodes ↓ ũ evaluation [s] ũ speedup ũ efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 420.3 — — 1.0 — — 100.0 — —
2 211.2 — — 2.0 — — 99.5 — —
4 110.7 — — 3.8 — — 94.9 — —
8 55.6 219.0 — 7.6 1.0 — 94.5 100.0 —

16 27.6 110.2 — 15.2 2.0 — 95.2 99.4 —
32 13.6 55.1 — 30.9 4.0 — 96.6 99.4 —
64 7.0 28.5 112.9 60.0 7.7 1.0 93.8 96.1 100.0

128 — 14.0 56.0 — 15.6 2.0 — 97.6 100.8
256 — — 30.0 — — 4.0 — — 100.4

Table 9.6: Evaluation of the representation formula ũ for 65 536, 262 144, and 1 048 576
space–time elements in 558 080 evaluation points.

nodes ↓ Vh fff time [s] Vh fff speedup Vh fff efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 41.9 — — 1.0 — — 100.0 — —
2 22.4 — — 1.9 — — 93.5 — —
4 11.3 — — 3.7 — — 92.7 — —
8 5.6 89.8 — 7.5 1.0 — 93.5 100.0 —

16 2.8 45.8 — 15.0 2.0 — 93.5 98.0 —
32 1.5 22.5 — 28.1 4.0 — 87.9 99.9 —
64 0.9 11.5 182.2 46.6 7.8 1.0 72.7 97.6 100.0

128 — 6.5 96.8 — 13.8 1.9 — 86.0 94.1
256 — — 46.0 — — 4.0 — — 99.0

Table 9.7: 250 matrix-vector products Vh fff for 65 536, 262 144, and 1 048 576 space–time
elements.

9.3.2 Scalability in Shared Memory

In the second part we examine the parallel scalability in shared memory, i.e. we test
the performance of the OpenMP threading introduced in Subsection 9.2.2. As before,
we consider both the assembly of the BEM matrices Vh, Kh, Dh and M0

h as well as the
evaluation of the representation formula ũ. The presented computation times refer to a
space–time boundary element mesh ΣN with 16 384 elements and a triangulation ΩNΩ
consisting of 16 384 finite elements. For testing the efficiency of the parallel evaluation of
ũ we used a finite element mesh of Ω with 545 nodes and computed the solution in these
nodes at 30 different times, i.e. in 16 350 points in total. We execute a single process and
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# threads 1 2 4 6 8 10 12

Vh
time [s] 190.9 94.8 51.6 33.2 25.6 20.0 16.9

speedup 1.0 2.0 3.7 5.8 7.5 9.5 11.3

Kh
time [s] 222.2 116.6 56.1 30.0 30.7 23.2 20.4

speedup 1.0 1.9 4.0 7.4 7.2 9.6 10.9

Dh
time [s] 232.7 127.3 60.3 42.3 32.7 26.5 23.2

speedup 1.0 1.8 3.9 5.5 7.1 8.8 10.0

M0
h

time [s] 236.5 121.0 59.4 39.9 30.2 24.1 20.3
speedup 1 2.0 4.0 5.9 7.8 9.8 11.7

ũ
time [s] 81.1 44.5 20.4 14.6 10.2 8.2 7.5

speedup 1.0 1.8 4.0 5.6 8.0 9.9 10.8

Table 9.8: Assembly and representation formula evaluation times for different numbers
of OpenMP threads and a problem with 16 384 space–time surface elements,
16 384 triangles in ΩNΩ , and 16 350 evaluation points.

vary the number of OpenMP threads. In Table 9.8 we provide the assembly and evaluation
times for different numbers of threads. We limit the maximal number of threads to 12 since
this is the number of physical cores on a single socket and in the MPI distributed version
we assign a single process to a socket. On the multi-core Xeon processors of the Salomon
cluster we obtain the almost optimal speedup of 11.3 (10.9, 10.0, 11.7) for the assembly
of the BEM matrices and the speedup of 10.8 for the evaluation of the representation
formula.
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10 FEM–BEM COUPLING

In this chapter we present a non-symmetric FEM–BEM coupling method for the discretiza-
tion of parabolic transmission problems. As in the case of stationary transmission prob-
lems, see, e.g., [46,47], we can derive boundary integral equations for the exterior problem,
see Section 5.4, and use a coupling method to solve the integral equations in combination
with a finite element discretization of the interior problem [65]. Transmission problems
for the heat equation were also analyzed in, e.g., [54], where the problem is discretized by
applying a boundary element method in the interior and exterior domain, and where the
corresponding boundary element discretizations are based on a Galerkin method in space
and convolution quadrature in time. However, for more general parabolic problems in the
interior domain a boundary element discretization is not applicable anymore.

We consider a non-symmetric FEM–BEM coupling method. In addition to the derivation
of the variational formulation for the coupled problem, we present a space–time Galerkin
method in order to discretize the problem and compute an approximation of the overall
solution. However, the numerical analysis of the method is not part of this work.

10.1 Transmission Problem

Let Qext := Ω ext× (0,T ) with Ω ext := Rn \Ω . We consider the transmission problem for
the heat equation

α∂tui(x, t)−divx [A(x, t)∇xui(x, t)] = f (x, t) for (x, t) ∈ Q,

α∂tue(x, t)−∆xue(x, t) = 0 for (x, t) ∈ Qext,

ui(x,0) = 0 for x ∈Ω ,

ue(x,0) = 0 for x ∈Ω ext

(10.1)

with given source term f ∈ [H1,1/2
;,0 (Q)]′ and transmission conditions

ui(x, t) = ue(x, t), nx · [A(x, t)∇xui(x, t)] = ∂nxue(x, t) =: we(x, t) for (x, t) ∈ Σ . (10.2)

We assume that the coefficient matrix A(x, t) ∈ Rn×n is symmetric and uniform positive
definite, i.e. there exists θ > 0 such that

θ |ξ |2 ≤ [A(x, t)ξ ] ·ξ
for all (x, t) ∈ Q and all ξ ∈ Rn. The solution ue of the exterior problem satisfies an
appropriate radiation condition for t ∈ (0,T ) and |x| → ∞. Moreover, ue is given by the
representation formula (5.15), i.e. have

ue(x̃, t) =−(Ṽ γext
1 ue)(x̃, t)+(Wγext

0 ue)(x̃, t) for (x̃, t) ∈ Qext.
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By applying the Dirichlet trace operator we get the weakly singular boundary integral
equation for the exterior problem, see Section 5.4, i.e.

γext
0 ue =−V γext

1 ue +(
1
2

I +K)γext
0 ue on Σ . (10.3)

10.2 Non-Symmetric Coupling

We start with the derivation of the domain variational formulation of (10.1) in Q, i.e. we
consider the initial boundary value problem

α∂tui(x, t)−divx [A(x, t)∇xui(x, t)] = f (x, t) for (x, t) ∈ Q,

ui(x,0) = 0 for x ∈Ω
(10.4)

with f ∈ [H1,1/2
;,0 (Q)]′ and the Neumann boundary condition

nx · [A(x, t)∇xui(x, t)] = wi(x, t) for (x, t) ∈ Σ .

Due to the uniform positivity of the coefficient matrix A(x, t) ∈ Rn×n we can define an
equivalent norm in L2(0,T ;H1

0 (Ω)) given by

‖u‖2
L2(0,T ;H1

0 (Ω)) := 〈A∇xu,∇xu〉L2(Q).

The analysis of (10.1) then follows the same path as described in [65] where the coefficient
matrix A is the identity on Rn, see also [63]. The variational formulation of (10.4) is to
find ui ∈ H1,1/2

;0, (Q) such that

a(ui,v) = 〈 f ,v〉Q + 〈wi,γ int
0 v〉Σ for all v ∈ H1,1/2

;,0 (Q)

with the continuous bilinear form a(·, ·) given by

a(u,v) := α〈∂tui,v〉Q + 〈A∇xui,∇xv〉L2(Q)

for u ∈ H1,1/2
;0, (Q) und v ∈ H1,1/2

;,0 (Q). All the terms on the right hand side are well defined
for the given trial and test spaces, see Section 3.1. The variational formulation of the
boundary integral equation (10.3) is to find we = γext

1 ue ∈ H−1/2,−1/4(Σ) such that

〈V we,τ〉Σ + 〈(1
2

I−K)γext
0 ue,τ〉Σ = 0 for all τ ∈ H−1/2,−1/4(Σ).
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Together with the transmission conditions (10.2), i.e. γ int
0 ui = γext

0 ue and wi = we, we get
the variational formulation of the coupled problem. We have to find ui ∈ H1,1/2

;0, (Q) and
we ∈ H−1/2,−1/4(Σ) such that

a(ui,v)−〈we,γ int
0 v〉Σ = 〈 f ,v〉Q,

〈V we,τ〉Σ + 〈(1
2

I−K)γ int
0 ui,τ〉Σ = 0

for all v ∈H1,1/2
;,0 (Q) and τ ∈H−1/2,−1/4(Σ). By using the transformation operatorHT in-

troduced in Section 3.2 we obtain an equivalent Galerkin–Bubnov variational formulation:
Find ui ∈ H1,1/2

;0, (Q) and we ∈ H−1/2,−1/4(Σ) such that

a(ui,HT v)−〈we,γ int
0 HT v〉Σ = 〈 f ,HT v〉Q,

〈V we,τ〉Σ + 〈(1
2

I−K)γ int
0 ui,τ〉Σ = 0

(10.5)

for all v ∈ H1,1/2
;0, (Q) and τ ∈ H−1/2,−1/4(Σ). The reformulation with the transformation

operatorHT is crucial for the stability of related FEM discretizations in Q [65].

10.3 Space–Time Discretization

For the Galerkin discretization of the variational formulation (10.5) we consider a decom-
position QNQ = {q`}NQ

`=1 of the space–time domain Q into finite elements q` [63, 65]. This
could either be a tensor product decomposition or an abitrary triangulation.

Let {(xk, tk)}MQ
k=1 be the set of nodes of the finite element mesh. We define I0 to be the

index set of nodes which do not belong to Ω ×{0}, and we set M0 := |I0|. Moreover, II is
the index set of nodes which do not belong to Σ ∪

(
Ω ×{0}

)
, and we set MI := |II|. The

nodes are assumed to be sorted in a suitable way. More precisely, we have I0 ⊂ {1, ...,M0}
and II ⊂ {1, ...,MI}. The space–time boundary elements ΣN = {σ`}N

`=1 of the induced
decomposition of Σ are given by

ΣN :=
{

σ ⊂ Σ : ∃ q ∈ QNQ : σ = ∂q∩Σ
}
.

Figure 10.1 shows sample decompositions for the spatially one-dimensional problem.

Let Xh = span
{

ϕ0
k

}N
k=1 ⊂ H−1/2,−1/4(Σ) be the space of piecewise constant basis func-

tions and Yh = span
{

ϕ1
i
}MQ

i=1 ⊂ H1,1/2(Q) be the space of functions that are piecewise
linear and globally continuous, defined with respect to the decompositions ΣN and QNQ ,

respectively. Moreover, we define Yh,0 = Yh∩H1,1/2
;0, (Q) to be the space of functions in Yh
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x

t

(a) Tensor product decomposition.

x

t

QNQ

ΣN
Nodes I0
Nodes II

(b) Triangulation.

Figure 10.1: Sample space–time decompositions of the domain Q and the boundary Σ in
the spatially one-dimensional case.

vanishing on Ω ×{0}. Due to the sorting of the nodes we have Yh,0 = span
{

ϕ1
i
}M0

i=1. We
approximate we and ui by

we,h =
N

∑
k=1

wkϕ0
k ∈ Xh, ui,h =

M0

∑
j=1

u jϕ1
j ∈ Yh,0.

Hence it remains to compute the unknown coefficients wk and u j. The discretized Galerkin–
Bubnov variational formulation of (10.5) is to find ui,h ∈ Yh,0 and we,h ∈ Xh such that

a(ui,h,HT vh)−〈we,h,γ int
0 HT vh〉Σ = 〈 f ,HT vh〉Q,

〈V we,h,τh〉Σ + 〈(1
2

I−K)ui,h,τh〉Σ = 0

for all v ∈ Yh,0 and τh ∈ Xh. This formulation is equivalent to the system of linear equa-
tions 


AQQ AQΣ
AΣQ AΣΣ −M̃T

h
1
2Mh−Kh Vh






uuuQ

uuuΣ

www


=




fff Q

fff Σ

000


 (10.6)

with
A[ j, i] = a(ϕ1

i ,HT ϕ1
j ), fff [ j] = 〈 f ,HT ϕ1

j 〉Q
for i, j = 1, ...,M0, and

Mh[`, i] = 〈ϕ1
MI+i,ϕ

0
` 〉Σ , Kh[`, i] = 〈Kϕ1

MI+i,ϕ
0
` 〉Σ ,

Vh[`,k] = 〈V ϕ0
k ,ϕ

0
` 〉Σ , M̃h[`, i] = 〈HT ϕ1

MI+i,ϕ
0
` 〉Σ

for i = 1, ...,M0−MI and k, `= 1, ...,N.
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Consequently, we can compute the unkown coefficients wk and u j and thus, the corre-
sponding approximations we,h and ui,h. An approximation ue,h of the exterior problem can
be determined by using the representation formula

ue,h(x̃, t) :=−(Ṽ we,h)(x̃, t)+(Wγ int
0 ui,h)(x̃, t) for (x̃, t) ∈ Qext.

10.4 Numerical Results

We consider the transmission problem (10.1) with given source term f ∈ [H1,1/2
;,0 (Q)]′ and

time horizon T = 1. The coefficient matrix A is chosen to be the identity on Rn. The heat
capacity constant is set to α = 1. We present a numerical experiment for the spatially one-
dimensional problem and use a tensor product decomposition of the space–time domain
Q [65] in order to discretize the variational formulation (10.5). The example refers to a
globally quasi-uniform and shape regular finite element mesh with mesh size h =O(2−L),
L denoting the refinement level. The system of linear equations (10.6) is solved by using
the GMRES method with a relative accuracy of 10−8 as stopping criteria.

In order to describe a reference solution of the transmission problem we choose some
function ui ∈ H1,1/2

;0, (Q) and determine the source term f accordingly. Then

ue(x̃, t) =−(Ṽ γ int
1 ui)(x̃, t)+(Wγ int

0 ui)(x̃, t) for (x̃, t) ∈ Qext

defines a solution of the exterior problem satisfying the transmission conditions

γ int
0 ui = γext

0 ue, γ int
1 ui = γext

1 ue on Σ .

Thus, the function u defined as u|Q := ui and u|Qext := ue is a solution of the transmission
problem (10.1).

We choose Ω = (0,1), i.e. Q = (0,1)2, and consider the exact solution ui(x, t) = t sin(πx)
for (x, t) ∈ Q of the interior problem. Thus, the source term is given by

f (x, t) = (Lui)(x, t) = sin(πx)
(
α +π2t

)
for (x, t) ∈ Q.

Table 10.1 shows the errors
∥∥ui−ui,h

∥∥
L2(Q)

and
∥∥we−we,h

∥∥
L2(Σ)

of the Galerkin approx-
imations ui,h and we,h, respectively, and the corresponding convergence rates (eoc). We
obtain quadratic convergence of the finite element solution ui,h, which is in line with the
theoretical findings of the finite element method presented in [65]. For the Galerkin ap-
proximation we,h of the Neumann datum we = γext

1 ue we observe linear convergence, which
is what we expected in view of the proven a priori error estimates for the initial Dirichlet
boundary value problem in Section 7.1.
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L MQ N
∥∥ui−ui,h

∥∥
L2(Q)

eoc
∥∥we−we,h

∥∥
L2(Σ)

eoc

0 4 2 4.082 ·10−1 - 9.162 ·10−1 -
1 9 4 1.333 ·10−1 1.61 5.157 ·10−1 0.83
2 25 8 3.824 ·10−2 1.80 2.737 ·10−1 0.91
3 81 16 9.887 ·10−3 1.95 1.468 ·10−1 0.90
4 289 32 2.492 ·10−3 1.99 7.712 ·10−2 0.93
5 1 089 64 6.244 ·10−4 2.00 3.752 ·10−2 1.04
6 4 225 128 1.562 ·10−4 2.00 1.915 ·10−2 0.97

Table 10.1: Error and convergence rates of the Galerkin approximations ui,h and we,h in the
case of uniform refinement for a tensor product decomposition of Q in 1D. MQ
denotes the number of nodes of the finite element mesh, while N is the number
of boundary elements on level L.
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In this work we have described space–time boundary element discretizations for initial
boundary value problems for the heat equation. After the derivation of the representation
formula for the solution of the model problem (1.1) we have analyzed the heat potentials
and the resulting boundary integral operators as well as the unique solvability of related
boundary integral equations in the setting of anisotropic Sobolev spaces. The unknown
Cauchy data can be determined by solving boundary integral equations. The elliptic-
ity of the single layer boundary integral operator and the hypersingular operator ensure
unique solvability of various boundary value problems. We have compared two differ-
ent space–time discretization techniques in order to compute an approximation of the un-
known Cauchy data, namely a tensor product decomposition and an arbitrary triangulation
of the space–time boundary Σ . Both methods allow us to parallelize the computation of
the global solution of the whole space–time system, which leads to improved parallel scal-
ability in distributed memory systems in contrast to, e.g., time-stepping schemes. One
possible drawback of the tensor product approach is that we can only apply adaptive re-
finement in space and time separately. This can be resolved, e.g., by allowing hanging
nodes in the mesh, which is reasonable if the discretization of the integral equation is done
by using piecewise constant basis functions. However, an arbitrary triangulation of the
space–time boundary Σ allows for adaptive refinement in space and time simultaneously
while maintaining the admissibility of the mesh. We have derived a priori error estimates
for both discretization techniques, and we have provided numerical experiments in order
to evaluate the theoretical findings.

In the numerical experiments we have used the exact solution in order to compute the errors
of the Galerkin approximations and for the application of adaptive refinement. Of course,
in general we do not know the exact solution. Thus, we have to establish a posteriori error
estimators for space–time boundary element methods in order to define suitable adaptive
refinement strategies. One possible approach is the method described in [55] in the case
of the Laplace equation, which is based on an approximation of a second kind Fredholm
integral equation by a Neumann series in order to compute the error. However, this method
utilizes the contraction property of the double layer potential, which is, in the case of the
heat equation, not yet proven for a general Lipschitz domain Ω . The development of a
posteriori error estimators for space–time boundary element methods for the heat equation
is left for future work.

As already mentioned before, one big advantage of space–time discretization methods is
the ability to use parallel iterative solution strategies for time-dependent problems. In
Chapter 9 we have introduced a parallel space–time boundary element solver for the heat
equation. The solver utilizes MPI for distributed memory parallelization, while OpenMP is
used for shared memory parallelization and vectorization. The distribution of the system
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matrices among computational nodes is based on the method presented in [30, 37] for
spatial problems. We have successfully adapted the method to support the time-dependent
problem for the heat equation. A space–time computational mesh is decomposed into
slices which inherently define blocks in the system matrices. These blocks are distributed
among MPI processes by using the graph-decomposition-based scheme. The numerical
experiments show optimal scalability of the global system matrix assembly in distributed
memory and almost optimal scalability of the individual block assembly in shared memory.
An additional performance gain can be obtained by using SIMD vectorization [14]. We
have also demonstrated distributed-memory scalability of the matrix-vector multiplication
and the evaluation of the representation formula.

The presented parallel solver provides opportunities for further research and development
of numerical methods. While in [30, 37] the individual matrix blocks are approximated
using either the adaptive cross approximation or the fast multipole method, we limited
ourselves to classical BEM, leading to dense system matrices. Their data-sparse approxi-
mation is a topic of future work. Together with data-sparse methods, the developed tech-
nology will serve as a base for the development of a parallel fast three-dimensional solver.
The same parallelization techniques in distributed and shared memory can be applied for
solving initial Neumann boundary value problems where the unknown Dirichlet datum
g ∈ H1/2,1/4(Σ) can be determined by solving the hypersingular boundary integral equa-
tion (5.2). We obtain the same matrix structures as described in Section 9.1. The extension
of the parallel solver to an arbitrary triangulation of the space–time boundary, especially
with application of adaptive refinement, is still open. However, for a globally uniform
triangular boundary element mesh the structure of the system matrices is similar as in the
case of a tensor product decomposition and we can utilize the ideas from the presented
approach in order to extend the parallel solver to discretizations based on a triangular
boundary element mesh.

In order to get a competitive space–time solver an efficient iterative solution technique
for the global space–time system is necessary, i.e. the solution requires an application
of space–time preconditioners. A popular preconditioning strategy in boundary element
methods is operator preconditioning [23,64] which is based on boundary integral operators
of opposite order, such as the single layer operator V and the hypersingular operator D, but
which requires a related stability condition for the boundary element spaces used for the
discretization to be satisfied. We have analyzed this robust preconditioning strategy for
the time-dependent heat equation, and we have discussed suitable choices of boundary
element spaces. Moreover, we have extended the parallel solver introduced in Chapter
9 to the preconditioned space–time system. For the spatially two- and three-dimensional
problem we have restricted ourselves to a tensor product decomposition of Σ . Again, the
establishment of related stability conditions for a triangulation of the space–time boundary
is left for future work. One may use the space S1

h(ΣN) of piecewise linear and globally
continuous basis functions for the discretization of V and D, respectively. However, due
to the approximation properties of S1

h(ΣN) such an approach for solving initial Dirichlet
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boundary value problems is restricted to spatial domains Ω with smooth boundary where
the unknown flux is continuous.

The matrices related to the discretized space–time integral equations are dense and thus,
fast methods are necessary in order to tackle large scale problems, especially for space–
time systems. Fast methods for solving boundary integral equations for the heat equations
were introduced in [66, 68]. The parabolic fast multipole method applied to a space–time
Galerkin discretization is discussed in [40] where the discretization is done with respect
to a tensor product decomposition of the space–time boundary. The extension of fast
methods, e.g., adaptive cross approximation or the parabolic fast multipole method, to an
arbitrary triangulation of Σ is still an open problem.

As already mentioned before, one advantage of boundary element methods is the natu-
ral handling of problems in exterior, unbounded domains. The introduced domain varia-
tional formulation (3.11) in the setting of anisotropic Sobolev spaces allows us to establish
symmetric and non-symmetric FEM–BEM coupling methods in an appropriate functional
framework, as we have shown in Chapter 10.
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