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ABSTRACT: Deep neural networks (DNN) have great
success in solving difficult recognition tasks such as
speech and image processing. However, performance de-
pends on the amount of data available for training the
network. In BCI, very large datasets are still missing
and EEG data are particularly complex and noisy. Nev-
ertheless, it is of interest to investigate whether DNN
may prove efficient in this context. We tested 6 differ-
ent deep learning models to accomplish binary classifica-
tion of single-trial ERPs and compared them with Rie-
mannian Geometry based classifiers. Each model im-
plements a different architecture and uses two differ-
ent input formats: an image (2D) or a video (3D). All
models were tested on two different datasets, and under
three different scenarios: within-subject, cross-subject
and cross-experiment classification. Finally, to get in-
sights about the decision process of the most successful
DNN, we visualized the learned features using saliency
maps. This revealed informative and interpretable differ-
ences between the two empirical datasets used for evalu-
ation.

INTRODUCTION

This work focuses on the application of deep learning
methods to EEG recordings for Brain-Computer Inter-
faces (BCIs) [1]. A BCI is a device that allows interaction
with a machine through brain signals, bypassing normal
neuromuscular outputs. For example, the P300 Speller
[2] is a BCI which helps to restore communication with
people who cannot control their muscles anymore (e.g.
patients with Amyotrophic Lateral Sclerosis). The P300
Speller exploits the P300 event-related potential (ERP)
and performs a binary classification task: detecting the
presence or not of a P300 wave. To accomplish this
task, Riemannian Geometry classifier (RGC) and shrink-
age based linear discriminant analysis classifier (sLDA)
seem to be, to date, the current state-of-the-art method
[3].
Deep learning methods have emerged from the connec-
tionism movement in cognitive science that hopes to ex-
plain intellectual abilities using connectionist architec-
tures known as artificial neural networks (ANN [4]).
Connectionist architectures have existed for more than
70 years, but new architectures and graphical processing

units (GPUs) brought them to the forefront of artificial
intelligence. Depending on their architecture, neural net-
works excel at speech and language recognition (RNN,
LSTM [5]) or image and video recognition with convo-
lutional neural networks (CNN [6]). CNN exploit the
local connectivity concept that makes them suitable for
EEG data. Although still few in number, recent studies
have shown that deep learning methods can be effective
in classifying ERP components [7–10].
In the current study, we compare the performance of 6
deep learning network architectures for application to a
P300 Speller [2] (26 subjects) and a RSVP [2] (11 sub-
jects) paradigm, both exploiting the P300 and N200 com-
ponents. This makes it possible to observe the behavior of
deep learning methods in two different paradigms. We in-
troduce different deep learning network architectures and
compare them with state-of-the-art methods that combine
XDAWN algorithm [11] and Riemannian geometry [12].
In order to explore the intra-subject and inter-subject gen-
eralization abilities, we compare the performance of the
classifiers for two different scenarios: Within-Subject
testing and Cross-Subject testing. In addition, the best
model resulting from these scenarios is tested in a cross-
experiment scenario where it is trained with data coming
from one experiment and tested on the other.

MATERIALS AND METHODS

Datasets: Two datasets were used for evaluation
and model comparisons. The first one is denoted as
P300 Speller and implements the P300 speller proto-
col [2]. This protocol consists in displaying a grid of 36
symbols on screen (the 26 letters of the alphabet, the un-
derscore and the 9 digits) and asking the user to focus
attention on the desired item. The flashing of the items
was similar to that reported in [13], i.e., the splotch stim-
ulus presentation. Twelve pre-defined groups of 6 non-
adjacent items are flashed (one at a time) in a pseudo-
random order. Each item belongs to two groups only
and these two groups have only this particular item in
common. A P300 evoked potential is expected when
the desired symbol is flashed. A single pass on all
groups (all symbols twice) is referred to as a repeti-
tion. The P300 Speller dataset is an electroencephalo-
graphic (EEG) collection of 56-channel recorded from
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Table 1: Description of the datasets
Name Rsvp P300 Speller
Type RSVP P300 Speller
Subjects 11 23
Sensor 48 48
Repetitions 10 2 to 4
Sampling Frequency 200 600
Down-sampled to 100 100
Band pass filtered 1Hz-20Hz 1Hz-20Hz
Epoched between 0ms and 600ms 0ms and 600ms

23 healthy subjects during one of our previous studies.
We made the spelling challenging by considering very
short (2 repetition-long) and short (4 repetition-long) tri-
als [14].
The second dataset denoted as Rsvp and available
online [15], was acquired during a Rapid serial visual
presentation (RSVP) task. The RSVP paradigm is a
variant of the P300 speller where all the symbols are
presented one-by-one in a serial manner and in the center
of the screen (on fovea). This dataset is made of data
from 12 healthy subjects but we discarded the data of
subject VPgce because of the use of a different set of
channels. In this experiment, item selection relied on 10
repetitions (see [15] for a thorough description of the
paradigm).

Data formats and pre-processing: Table 1 summarizes
the main characteristics and pre-processing steps for the
two studied datasets. They were preprocessed in the
same manner: for each subject, raw signals were band-
pass filtered between 1Hz and 20Hz and downsampled to
100Hz. Epochs were extracted from 0ms to 600ms af-
ter stimulus onset, resulting in two big matrices (contain-
ing the Target/Non-Target samples) X ∈ RN×C×T with the
number of EEG sensors denoted by C, time samples de-
noted by T and the number of epochs denoted by N. We
selected 48 electrodes common to both datasets (F1-F8-
Fz, FC1-FC6-FCz, T7-T8, C1-C6-Cz, TP7-TP8, CP1-
CP6-CPz, P1-P8-Pz, PO7-PO8-POz, O1-O2).
We considered two different data formats for subsequent
classification with deep learning models. The first one
is the standard method where each sample is a matrix
X ∈ RC×T with the number of EEG sensors denoted
by C and time samples denoted by T . This is more
convenient for an online application where no additional
transformations are needed. But the disadvantage is that
the classifier is dependent on the number of electrodes
on which it has been trained. This format is denoted by
2D from now on. The second format aims at alleviating
the disadvantages of the first format. Considering the X
matrix presented above, it consists of interpolating the
space vector (sensors) into a square matrix (16×16) for
each time sample. It results in a matrix X ∈RH×W×T with
H = 16 and W = 16 which correspond to a topographic
scalp map evolving over time (a video). Therefore we
used a 2D clough tocher (cubic) interpolation [16].
Having a spatial representation (as a pixelized image)
allows better processing of datasets with different EEG

electrode montages. It also makes perfect sense to apply
such a spatial smoothing, because of the blurring effect
of head tissues. Because of their excellent performance
on natural images, we expected convolutional neural
networks to better handle this kind of format [17, 18].
However, we must bear in mind that such a transforma-
tion has a cost (computation time) and can complicate
the real-time pipeline. It also increases the number of
degrees of freedom, hence the complexity and training
time. This format is denoted by 3D from now on.

Models and training procedures: Riemannian geom-
etry based classifiers – We compared our deep learning
models with two classifiers based on Riemannian geom-
etry which outperformed other approaches in BCI com-
petitions. This method is considered as a strong refer-
ence in the field [12]. We used a Riemannian method
based on tangent space mapping which shows overall bet-
ter performance compared with the minimum distance
to mean algorithm. A recommended pipeline is to es-
timate XDAWN covariances and project them into the
tangent space, then classify with logistic regression [12].
We used 2 components to estimate the XDAWN covari-
ances corresponding to the 2 classes (Target/Non-Target).
XDAWN reduces the dimensionality of data, which fa-
cilitates and accelerates training. This pipeline is de-
noted as XDAWN + Riemann. We also used a variant with
no XDAWN filters as XDAWN is not very effective in
transfer learning situations. This pipeline is denoted as
Riemann.

Deep learning classifiers – With the use of the two data
formats, we developed 6 deep learning models that ex-
ploit the temporal and spatial dimensions of the data.
Also, EEG signals are known to have inherent tempo-
ral and spatial smoothness properties. In other words,
close features in space and time dimension are dependent.
Thus, we wanted to test different architectures with dif-
ferent assumptions about local dependencies over space
and time. CNN and GRU (Gated Recurrent Unit) layers
are both strong candidates to accomplish this task. CNN
layers are known to be very effective for the classifica-
tion of image-like data with spatial pixels. As for the
GRU layers, they enable the learning of temporal depen-
dencies. GRU layers are a less resource-intensive alterna-
tive to LSTMs, while maintaining good performance. We
first developed three models that take the 2D format as in-
put. MLP is a multilayer perceptron (MLP) composed of 1
hidden layer. This is the simplest architecture: it does not
take into account the temporal and spatial dependencies
in EEG data. The CNN1D_T2 is composed of a convolu-
tional layer. It is inspired by the proposed EEGNet one
[9] but only one convolution operation was done to learn
both spatial and temporal features in one go. We found
empirically that splitting the operation into two steps does
not improve performance. The learned filters are also
more easily interpretable. This is a 1-dimension convo-
lution because the convolutional filters are moved in only
one direction. The 10 filters of size 48×2 represent a
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time window of' 10ms (2 timesteps at 100Hz). The fea-
ture maps are passed directly to the final LogSoftMax
layer with no additional dense layers in-between (non-
linear activations). This has been proven to work effec-
tively while reducing the number of parameters [19]. The
CNN1D_T2_GRU is the CNN1D_T2 with an additional out-
put GRU layer. A GRU layer is a recurrent layer that al-
lows the learning of temporal dependencies [20]. We then
developed three other models that take the 3D format as
an input: The CNN2D_S3 exploits the 3-dimensional input
format by learning spatial features with a 2-dimensional
convolutional layer applied to the spatial dimension. The
weights of the filters are shared across the spatial di-
mension but not across the temporal dimension. The
CNN2D_S3_T2 is a variant of CNN2D_S3 that shares the
weights of the convolutional filters over the temporal di-
mension. A 3-dimensional convolutional layer is needed
to perform this operation. The CNN2D_S3_T2_GRU is the
CNN2D_S3_T2 with an additional output GRU layer.
All models also include a batch normalization layer that
influences the training by normalizing the data before
they enter the hidden layer and the LogSoftmax layer at
the end, before predicting the output probabilities pertain-
ing to the two classes.
All deep learning models were trained with the RMSProp
optimization algorithm that allows adapting the learning
rate during training. We used an early stopping strategy
during training, meaning that the training was interrupted
as soon as the valid loss started to increase. Precisely,
we train for N epochs (big enough not to fall into an
under-fitting situation) and we go select the epoch with
the smallest valid loss. The learning rate was set to
10−4 or 10−5 depending on the experiment. We set
the batch size to 128 and the optimizer momentum to
0.9 as recommended in [21]. We performed L2-norm
regularization with a weigh decay of 5−4. All deep learn-
ing models terminate with a LogSoftMax layer. The
negative log-likelihood loss was used for our two-class
classification problem (Target/Non-Target). No manual
rescaling weight or over/undersampling methods were
used to balance the samples between the two classes.
The unbalanced dataset is not problematic because of the
final averaging (in a Bayesian fashion, see below).

Evaluation metrics and statistics: In such a BCI pro-
tocol, there are two levels of classification, hence two
levels of accuracy. The first one is the accuracy at the
level of the binary classifier (number of correctly clas-
sified Target/Non-Target trials). The second one is the
accuracy corresponding to the number of correctly clas-
sified (or spelled) symbols in a given sentence. We only
report the latter that corresponds to the one of interest for
BCI use. Initially, all items are assumed to be equiproba-
ble targets. At each new observation (after computing the
probability for the current sample to be a target), this be-
lief is updated following Bayes rule, by optimally com-
bining the data likelihood and prior and by considering
the posterior belief as the prior for the next observation.

In this way, all items of the sentence are predicted. At
the end of the sentence, we compute the final spelling
accuracy (number of correct symbols) with different rep-
etitions. Obviously, better accuracy is expected as rep-
etitions increase. For statistical significance, we used a
one-way ANOVA (III) and post-hoc Tukey Test on the
spelling accuracy.

Evaluation procedures: We evaluated the spelling ac-
curacy of the classifiers with three different scenarios:
within-subject, cross-subjects and cross-experiments.
Within-subject testing – We first explored the intra-
subject generalization. In both datasets, each subject
completed a calibration phase and a test phase. In order
to simulate online classification, we trained our classifiers
using calibration data only and tested on the test phase
data. To avoid overfitting, we perform cross-validation in
a way that the data from the subject’s calibration phase is
split to form the training (80%) and validation (20%) sets.
The dataset’s test phase simply formed the test set. Thus,
N tested subjects lead to N fits composed by a training,
validation and test set.
Cross-subjects testing – Many studies attempt to reduce
the time of the calibration phase. In fact, the calibra-
tion stage is exhausting and demotivating for the subject.
The ideal situation would be to completely free oneself
from it. To assess the ability of the classifiers to gener-
alize from a pool of subject to a new subject, we built
a scenario where each subject is tested with a classifier
which has been trained with the calibration plus test data
of all other subjects. More specifically, the data from
each subject’s calibration and test phase minus the tested
one were merged to form the training and validation sets
(80%/20%). The data from the test phase of the tested
subject simply form the test set. Thus, N tested subjects
lead to N fits composed by a training, validation and test
set.
Cross-experiment testing – To further assess the ability
of the models to generalize across different experiments
involving different subjects but also different protocols,
we chose the model that performed best in the two
previous scenarios and tested it in a cross-experiment
scenario. We trained the chosen model on the calibration
data of the P300 Speller dataset plus the full Rsvp
dataset except tested subject.

Exploring the learned features:
Deep learning models are able to automatically extract
the relevant features for classification, in an unsupervised
manner. Apart from the choice of design and hyperpa-
rameters, no a priori knowledge was injected into the
model to accomplish the classification task. Although
interesting and useful, this property makes it difficult to
apprehend the rationale of the decision process that the
model implemented. Thus, the purpose of this experi-
ment was to reveal the features that the neural networks
identified as most relevant in order to classify a sample
as a target or non-target response. Also, understanding
what neural networks have learned may point to interest-
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Table 2: Number of model parameters and training time
(approximate ratio) on Rsvp dataset.

Classifiers #Params Within Cross
Riemann XDWAN - 1x 1x
Riemann - 12x 150x
MLP 5862 6x 11x
CNN1D_T2 1582 11x 28x
CNN1D_T2_GRU 1662 52x 85x
CNN2D_S3 4242 44x 192x
CNN3D_S3_T2 3287 83x 450x
CNN3D_S3_T2_GRU 2317 152x 780x

ing and unknown neurophysiological phenomena. In im-
age classification, a common approach to understand the
decisions of a classifier is to find regions of an image that
were particularly influential (saliency maps). We chose
a simple technique which allows elucidating the relevant
pixels in the input image [22]. We chose the CNN1D_T2
model to test this method. It takes the 2D format as an
input.

RESULTS

We used PyTorch to build the models. The code to
reproduce the results and a more detailed description
of the models are available online.1 Figure 1 shows the
accuracy performance at 2 repetitions for all classifiers
applied to the two datasets in Within-subject testing and
Cross-subject testing. Accuracies can be interpreted as
online accuracies because only calibration data were
used for training. Table 2 shows the training time for
each classifiers on Rsvp dataset. The number of model
parameters is also reported. The training times are
approximated and have been calculated by multiplying
the time of an iteration by the number of iterations (for
deep learning models). Note that the training time of a
model has been chosen to ensure that the model has been
fully trained. Therefore, the optimal training time of a
model may be less than the one indicated.

Within-Subject testing:
Result 1 – Deep learning classifiers that use the 2D for-
mat as input do as well as Riemann’s classifiers on both
datasets.
Result 2 – Deep learning models that use the 3D input
format are statistically less effective than others on both
datasets (p-value < 0.05).
Result 3 – Training deep learning classifiers took sub-
stantially longer than Riemann ones, at least for the most
complex ones.

Cross-Subject testing:
Result 4 – XDAWN + Riemann is significantly worse than
Riemann (p-value < 0.05).
Result 5 – Overal Cross-Subject testing performance is
significantly worse than the Within-Subject testing (p-
value < 0.05).

1https://git.io/fj317

Result 6 – All classifiers (except CNN3D_S3_T2_GRU) do
as well as Riemann on both datasets (p-value < 0.05).

Cross-Experiment testing: Figures 2 shows the accu-
racy performance for the Cross-Experiment testing.
Result 7 – Cross-Experiment performance is no better
than Cross-Subject performance.

Exploring the learned features: – Figure 3 shows, for
CNN1D_T2 model, the absolute value of the difference be-
tween the mean gradient of the Target samples and the
mean gradient of the Non-Target samples. In other words,
pixels with relatively high gradient values are useful for
distinguishing target from non-target samples.
Result 8 – CNN1D_T2 has learned well known features
on both datasets (N200 around 200ms on P300 Speller
dataset and P300 around 300ms on Rsvp dataset).
Result 9 – CNN1D_T2 focuses on earlier features (around
200ms) when trained on P300 Speller dataset com-
pared to when trained on Rsvp dataset (around 300ms).

DISCUSSION

This study explored the performance of deep neural net-
works for feature extraction and classification in the con-
text of ERP-based BCIs, namely the P300-Speller and
RSVP paradigms. Overall, we showed that deep learning
methods with an appropriate architecture can perform as
well as Riemannian geometry for intra-subject and cross-
subject generalization, on both paradigms.
A surprising result is that the MLP model, a very simple
one, proves able to perform as well as the best models,
even in a transfer learning situation. Keeping in mind that
the raw data are band-pass filtered in the low frequencies
and downsampled, this certainly eases the learning in the
time domain. Besides, we noticed that the Batch Normal-
ization step plays a major role in the convergence of the
models. Hence a MLP could be a strong candidate for
BCIs, since its simplicity implies short training time.
In this study, We also compared two different input for-
mats for EEG data: an image (2D) versus a topographic
video of the scalp (3D). From a practical point of view,
the first one is easy to use and does not require much
computing power but requires that the model is compat-
ible with the montage (the number and position of sen-
sors). Conversely, the latter is convenient for mixing
datasets from different experiments with potentially dif-
ferent setups. However, transforming EEG signals into
a topographic video is time-consuming and can become
challenging in real-time. In terms of performance, we
found that the suggested models that use the 3D format
are no better than those that use the 2D format. Although
it might be that other model architectures might be able
to extract more information for the video format, our re-
sults suggest that despite its flexibility with regard to the
number of channels, it did not yield higher performance
in the tasks we studied.
Note that obviously, these results do not reflect a fully
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Figure 1: Spelling accuracy performance of all classifiers for Within-subject testing and Cross-subject testing on the two datasets, at 2
repetitions.

Figure 2: Accuracy performance of model CNN1D_T2 for
cross-experiment testing. RSVP only (resp. P300 Speller
only) is the performance of the model when trained on the

Rsvp data (resp. P300 Speller data) and tested on the P300
Speller (resp. Rsvp) data. Rsvp / Cross-experiment

refers to the performance of the model when trained on data
samples from the two datasets and tested on the Rsvp dataset.
For comparison Rsvp / Cross-subject is the one obtained

when trained and tested on the Rsvp data only.

Figure 3: Absolute value of the difference between the mean
gradient of the Target samples and the mean gradient of the

Non-Target samples (normalized between 0 and 1).

realistic simulation of an online experiment. These deep
learning models have a well-known limit that could affect
their real-time use: the training time. Although the pro-
posed 2D models (and the MLP) seem applicable using
a laptop computer with few resources, this will probably
not be the case for 3D models. But this will have to be
carefully evaluated in practice, online.
Explaining the decisions of the neural networks is very
interesting, notably to have more confidence in the model
but also to discover new relevant features in the data. Vi-

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-49



sualization techniques can help to tackle this difficulty.
In this aim, we applied a well-known approach com-
ing from image classification in deep learning to visu-
alize the inner space of trained neural networks. Our re-
sults show that, when trained on P300-Speller and Rsvp
data, deep learning models learn well-known discrimi-
nating features such as the N200 and P300 components.
In addition, the models trained on the P300 Speller
dataset seem to focus on the N200 ERP while the mod-
els trained on the Rsvp dataset rather exploit the P300
ERP. This actually fits quite well with the specificity of
these two paradigms. Indeed, in Rsvp, the target and non-
target stimuli are all displayed at the same location on
the screen, and at the center of the fovea, with the same
intensity. This means that only attention related compo-
nents will contribute to the classification, hence mostly
the P300. Conversely, in P300-Speller, only the target
is flashed at the center of the fovea, which implies that
early visual components will also contribute to the clas-
sification.

CONCLUSION

To conclude, we showed that fairly simple Deep learn-
ing models are serious candidates for ERP-based BCI,
showing similar performance as state-of-the-art methods.
In addition, their reasonable calibration times make them
suitable for real-time application. On the other hand, we
have shown that visualization techniques are promising
for explaining the decisions of neural networks and for
identifying possible new electrophysiological markers.
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