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ABSTRACT: P300-based BCI are widely explored for 

item selection but few studies have examined if this 

interface can be used by children... The aim of the current 

study was to evaluate the performance of healthy 

children playing three different calibration-free P300 

BCI games. 19 children played all three games in a 

random order. EEG-based online selection relied on 

template signals derived from a previously acquired 

database. All children performed the task significantly 

well even though all children underwent an inevitable 

drop of performance when comparing offline 

(individual) with online (template based) accuracies. 

Offline analyses revealed no difference in performance 

between games. Transfer learning from one game to the 

others proved possible although one game appeared 

slightly less generalizable. Finally, offline ERP analyses 

revealed differences in the early (visual) components, 

which we relate to each game graphical specificity. In 

contrast, all games did involve a strong contribution of 

the P300 component, which is essential to support high 

attention-based control.  

 

INTRODUCTION 

 
The most well-known P300 BCI is the so-called P300-

speller which allows the user to spell words without using 

the peripheral nervous and muscular pathways. This 

interface has been developed for people with very severe 

neuromuscular disorders, in the aim of enabling them to 

communicate [1]. A good control of this interface is 

partly based on the subject’s ability to elicit well 

distinguishable brain signals after a target and after a 

non-target stimulus, respectively. Discriminating 

between those two classes highly depends upon the 

voluntary engagement of the subject in this selective 

attention task [2]. A way to enhance the motivation is to 

provide a more playful environment. With this in mind, 

P300-based BCI games have been developed [3]. 

Moreover, it seems also possible to increase the 

amplitude of the P300 with training, both in the auditory 

[4] and visual domains [5]. Although these trainings were 

short and have involved very few participants, an 

improvement over practice was reported which was 

concomitant with an increase in the P300 amplitude. 

With the aim of setting up a BCI-based training for 

children with ADHD [6] we decided to develop new 

P300-based games to increase the diversity of the games 

on offer. To propose various games could be essential to 

keep up the motivation over long training periods, and to 

avoid as much as possible the drop out of participants. 

Another particularity of our training is that children do 

not control the BCI based on their own calibration signal. 

Indeed, ADHD children having a diminished P300 

compared to controls [7], the brain response of targets 

and non-targets might not be distinguishable and thus the 

subsequent classification might not be accurate. The 

whole purpose of the training is to restore a proper P300 

signal in those children. Therefore, we decided to build a 

template of the expected electrophysiological responses 

in healthy children and use it as the target 

electrophysiological response for the training of children 

with ADHD [6]. We used covariance matrices as features 

and Riemannian geometry for subsequent online 

classification [8]. Such an approach has shown very good 

results for both classification and generalization [9]. The 

template was built from data of a previous study were 

children played with a P300-based connect 4 (Fig. 1) [6].  

The aim of the present study was first to evaluate the 

classification accuracy with 3 new games and to assess 

whether the difference in game configuration would 

induce differences in electrophysiological responses. 

Finally, we wanted to evaluate the robustness of transfer 

learning between games, and between subjects.  

 

MATERIALS AND METHODS 

 
     Template construction 

The template was built on data from a previous 

experiment conducted in 34 healthy children. They had 

to control a Connect 4 game (Fig. 1a). After a short 

calibration, each child played for about 80 trials. The data 

from 5 children were finally discarded because of 

technical problems or too low performance. We thus 

ended up building template signals on data from 29 
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children (6-16 years old; 14 girls). It consists in two 

covariance matrices, one for the target and one for the 

non-target class. Precisely, the prototype ERP response 

is obtained by averaging the single trial responses from 

the target class. Then each single target trial is 

concatenated with this prototype ERP to create so-called 

super trials. These super trials are used to build 

covariance matrices thanks to the Sample Covariance 

Matrix estimator. These matrices are then averaged using 

the Riemannian mean to obtain the typical target 

covariance matrix. The same procedure applies to obtain 

the typical non-target covariance matrix [9].  

 

     Experimental setup: 19 healthy children (6-16 years 

old; 11 girls) took part in this new experiment. Children 

had never used a BCI before and reported normal or 

corrected-to-normal vision. The study was approved by 

the ethics committee n°2016-013B. EEG signals were 

recorded from 16 channels using an active EEG electrode 

system and a Vamp amplifier (Brain Products, 

Germany). EEG channel locations were Fz, Cz, CP5, 

CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2 and 

PO10 following the international 10-20 system. 

 

     Experimental procedure: The 3 games have been 

designed and implemented by Black Sheep Studio1 using 

Unity 3D [10]. The first one, Connecticut4 (C4) (Fig. 1b) 

is a connect 4 game, whose aim is to align 4 pawns before 

the computer does. For the second game, IceMemory 

(IM) (Fig. 1c), the aim is to memorize and find cards to 

make one’s own character move and grab the opponents. 

The third game named Armageddon (AR) (Fig. 1d), is a 

strategic game where the goal is to protect an island from 

asteroids. In each game, each possible target (7 in C4, 9 

in IM and AR) was visually intensified 6 times in random 

order before a decision was made. Both the flash duration 

and the interstimulus interval (ISI) were set to 100ms. 

Children were instructed to focus their (overt) attention 

onto the target and count the number of times it was 

flashed. To ensure that the children did not suffer from 

attentional disorder, parents filled-up the ADHD rating 

scale. One child has been removed from the analyses 

because of a high inattention score. We used an eye-

tracker (ET, SMI REDn scientific 60Hz) to know about 

the targets chosen by the children. After a short 

calibration of the ET, children could start playing 

directly, thanks to the above-described template. Each 

child played all three games (about 20 trials each). We 

counterbalanced the order of the games over children. 

 

Online processing: EEG data were processed in real-

time within a home designed pipeline coded in Python 

among which Pyacq (https://github.com/pyacq/pyacq). 

Data were sampled and bandpass filtered between 1 and 

20Hz. After each flash, the epoched signal (0-600ms) 

was concatenated with the prototype ERP response (see  

1 Black Sheep Studio is an SME located in Paris, France 

specialized in video games (blacksheep-studio.com). 

 
(a) Connect 4 from the previous study 

 
(b) Connecticut4 

 
(c) IceMemory 

  
(d) Armageddon 

Figure 1: Screenshots of the BCI games, in the absence 

of flashes (left panel) and during one flash (right panel). 

 

template construction section) to build a covariance 

matrix. Using the Riemannian distance, this covariance 

matrix was then compared to the target and non-target 

covariance matrices, respectively. We then used as a 

feature for (probabilistic) classification, the log ratio 

between those two distances. The result of this online 

processing was sent to the BCI-game by TCP using a 

ZeroMQ socket [11]. The true target location was given 

by analyzing the eye-tracking measures. Therefore, 

seven or nine zones, depending on the game, were 

defined on the screen, corresponding to the seven or nine 

potential targets. At each trial we obtained a vector of 

seven or nine values, providing to amount of time the 

child had spent looking at each zone. We considered as 

the target, the area that was looked at the most. 

 

     Electrophysiological offline analyses: The EEG data 

were finely analyzed offline, with the MNE software 

package [12]. EEG data were filtered between 1 and 

20Hz. Then the signal was segmented into epochs of 

800ms (-200ms to 600ms peri-stimuli time) and a 

baseline correction was applied. Epochs with an EEG 

signal above 150 µV or below -150 µV were marked as 

artifactual and discarded. To identify spatio-temporal 

differences between target and non-target epochs, a 

cluster-based permutation test was performed at the 

group level. Then for each spatio-temporal significant 

cluster we computed the averaged amplitude of the 

signal, for each game (C4, IM, AR) and each class 

(Target and Non-Target). We constructed a linear model 

of the averaged amplitude as a function of Games and 

Classes. The between subject variability limits the 

comparison and means that data cannot simply be pooled 

for analysis. Using a linear mixed-effect model (lme4 

package, Linear Mixed Effects version 4) [13] is the best 
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way to deal with such datasets, as they allow for 

correction of systematic variability. We accounted for the 

heterogeneity of accuracy values across subjects by 

defining them as effects with a random intercept, thus 

instructing the model to correct for any systematic 

differences between subjects (interindividual 

variability). We used a binomial distribution to describe 

the model errors. 

We then analyzed the influence of two possible fixed 

effects onto signal amplitude: 

(i) the Game effect (three levels) (ii) the Class effect (two 

levels). We ran a type II analysis of variance. Wald chi-

square tests were used for fixed effects in linear mixed-

effect models. For post-hoc tests we used the Lsmean 

package (Lsmean version 2.20-23) [14] where effects 

were considered as significant when p<0.05 and adjusted 

for multiple comparisons  (Tukey method). All statistical 

analyses were performed using the R Statistical 

Software.  

 

     Self versus template accuracy: To evaluate the 

efficacy of the template, we compared in each child, the 

self-accuracy with the template-based one. The latter 

corresponds to the actual online accuracy experienced by 

the children. 

Self accuracy refers to a (theoretical) offline measured 

performance that is only based on the user data. We 

computed it following a cross-validation procedure. 

Therefore, we splitted each child’s data into a training set 

(75% of the data) and a testing set (the remaining 25%). 

This random split was repeated 500 times to compute an 

estimate of what we refer to as self accuracy. This 

measure was used for comparison with the template 

accuracy.  

It was also used for comparing performance over games 

using a linear model of self accuracy as a function of 

games. Finally, we also evaluated the self accuracy 

within games, following the same computational 

procedure as above, but considering each of the three 

games independently. 

Computing the self accuracy this way does not allow us 

to take in account a potential effect of time. To evaluate 

such a possible additional effect, we used the data of the 

first game presented to the children as the training set and 

tested the performance on the subsequent two games. We 

compared the generalization performance to the second 

and third game using a two-sided t.test.  

 

     Transfer between games: In order to evaluate the 

transfer between games, we computed the target and non-

target covariance matrices with the signal of one game 

and performed the classification on the two other games 

We then constructed a linear model of the accuracy as a 

function of the game used for training. For post hoc tests 

we used the Lsmean package where P-values were 

considered as significant at P<0.05 and adjusted for the 

number of comparisons (Tukey method). 

 

     Relating gaze fixation and BCI accuracy: To have a 

more precise measure of the gaze fixation we computed 

a gaze fixation index G as follows: 

 
where Sobs is the Shannon entropy of the actual gaze 

orientation over possible location and Smax is the 

theoretical maximum entropy used for normalization (it 

corresponds the case where the child would have looked 

at all targets for the same amount of time. A G close to 1 

means a very good gaze fixation on the target. 

Conversely, a G close to 0 corresponds to a trial where 

children had a poor fixation performance. For each child, 

we averaged this index over all trials. We then computed 

the Pearson correlation coefficient between G and self-

accuracy, over subjects. 

 

     Good and poor performers: Relating G and self-

accuracy revealed two sub-groups, one of good 

performers and one of poor performers. We thus decided 

to test the difference between targets and non-targets 

signals for those two groups separately. We constructed 

a linear model for each cluster and each game of the 

average signal amplitude as a function of Classes and 

Performance (good vs. poor performers).  

We then analyzed the influence of two possible fixed 

effects on signal amplitude as in the section: 

Electrophysiological offline analyses. 

 

RESULTS 

 

     Electrophysiological analyses: Over all games and 

subjects, the cluster-based permutation test revealed 4 

significant clusters showing differences between targets 

and non-targets. The first cluster corresponded to the 

P100 component in occipitals areas (Time: 67-98ms; 

sensors: O1 and O2). The second one corresponded to the 

left hemisphere N200 (Time: 160-229ms; sensors: CP5, 

P7 and P3) and the third one to the right hemisphere 

N200 (Time: 194-204; sensor: CP6). These two clusters 

have been combined into one, named further the N200 

cluster (Time: 194-204ms; sensors: CP5, P7, P3 and 

CP6). The last cluster corresponded to the P300 

component (Time: 244-481ms; sensors: CP5, CP6, P7, 

P3, P4, P8, O1 and O2) (Fig. 2). 

 
Figure 2: Spatio-temporal clusters differentiating the 

target and the non-target responses over all three games. 
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 For each of the 3 above clusters, each game and each 

class, we computed the mean amplitude of the ERP. For 

the P100, the 3*2 repeated ANOVA (game*class) 

revealed a main effect of class (p <0.001) and a 

significant interaction. For both the N200 and P300, the 

ANOVAs revealed a main effect of the class only (Fig. 

3). 

 
Figure 3: Averaged amplitude of the ERP for the targets 

and the non-targets on each cluster and for each game. 

There is a main effect of the class for each cluster and a 

significant interaction games*classes for the cluster 1.  

Error bars indicate S.E.M.     

 

 

Evaluation of the games: Whether the learning 

was computed on all games or a single game only, the 

repeated measure ANOVAs showed no significant 

difference between the game classification accuracies. 

We found no difference between the accuracy computed 

on all games and the ones computed on each game 

independently (learning on all the games: mean = 

84.79%; S.E.M = 1.82; learning on one game: mean = 

86.45; S.E.M = 1.8). For subsequent analyses we thus 

considered the self-accuracy computed on all games 

only. Finally, we found no effect of time as we found no 

significant difference between the two classification 

accuracies when learning on the 1st game data 

(generalization to 2nd game: mean = 67.00%, S.E.M. = 

5.34; generalization to 3rd game: mean = 70.33, S.E.M. = 

4.90). 

  

     Transfer between games: To evaluate whether 

transfer is possible between games, we computed 

accuracies where the learning was based on trials from 

one game and the testing was performed on all trials from 

the other two games. The ANOVA showed a significant 

effect game used for learning. Post hoc analyses revealed 

higher accuracy when the learning was based on IM and 

AR trials compared to when it was based on C4 ones. 

Besides, we found a significant decrease of theses 

accuracy (p < 0.001) compared to self-accuracy.  

 

     Template evaluation: To test the possibility of using 

directly the template to control the games and thus get rid 

of the calibration, we compared the self-accuracy 

computed offline to the template-based accuracy. The t-

test showed a significant decrease of accuracy when the 

children played with the template (mean = 0.55; S.E.M = 

0.05). At the individual level, all children obtained a 

lower accuracy when playing with the template 

compared to self-accuracy. However, we observed a 

significant correlation between self-accuracy and 

template-based accuracy (cor = 0.62; p = 0.006). The 

more the children succeed in controlling the games (as 

measured by self-accuracy), the higher their performance 

calculated based on the template. When they played with 

the template all children but one performed above chance 

level. The comparison between the 3 games showed no 

significant difference between games. 

 

     Correlation between gaze fixation and BCI accuracy  

There was a significant correlation between the gaze 

fixation index and the self-accuracy (cor = 0.77; p 

<0.001). Hence BCI accuracy increased with the gaze 

fixation. This correlation also revealed two groups, one 

of 11 children referred to as good performers, with 

accuracy above 85% and a gaze fixation index above 

0.90; and a second of 7 children referred to as poor 

performers, with an accuracy below 85% and a gaze 

fixation index below 0.90 (Fig. 4).     

 

    Good vs. Poor performers: For the P100, the 2*2 

repeated measure ANOVA (good/poor performers * 

classes) we obtained a main effect of class and no effect 

between good and poor performers for all games. For the 

N200, we obtained a main effect of class for C4 and a 

trend for IM (p = 0.061). For AR, the interaction proved 

significant and was driven by the target class: the N200 

amplitude was 

 
Figure 4: Correlation between the self accuracy and the 

gaze fixation index (cor = 0.77; p <0.001) 

 

higher for good performers (p = 0.047). Finally, for the 

P300, we obtained a main effect of class for all three 

games, a main effect of group for IM and an interaction 

effect for C4 and IM, with a significantly higher 

amplitude in good performers compared to poor 

performers for class target (C4: p = 0.05; IM: p = 0.005) 

(Fig. 5). 

 

DISCUSSION 

 

This study had two main aims, first to evaluate the 3 new 

P300-based BCI games and then to test the transfer or 

generalizability between games. As shown in Fig. 1, 

stimulation configurations differ between games. In C4, 

a stimulus corresponds to the flash on one column, so it 

covers the full height of the screen. In IM the flashes are 

much smaller and grouped in the center of the screen. On 

the contrary, in AR the flashes are bigger and cover the  
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Figure 5: Averaged amplitude of the ERP for target and 

non-target, in each cluster and for good (blue) and poor 

(red) performers, respectively. We found a significant 

difference between good and poor performers for class 

target in C4 and IM, in the P300 cluster; and for AR in 

the N200 cluster. Error bars indicate S.E.M.   

   

whole screen altogether. These differences between the 

flash configurations may induce differences in the ERPs. 

The ERPs corresponding to the average over target trials 

from all games, revealed the three components: early 

visual potential P100; the N200 and the P300 [15], [16]. 

To evaluate the implication of these three ERP 

components in differentiating target and non-target 

stimuli, we compared them for the three games, 

respectively. The significant difference between targets 

and non-targets for the three clusters suggests that the 

three components participate to the classification in all 

three games. The interaction between games and classes 

for the first cluster suggests that even if all the games 

elicited a P100, its relative contribution varies between 

games. In AR, the non-targets do not elicit a P100 at all, 

contrary to targets that elicit a high P100. In C4 and IM, 

the non-targets elicit a small P100 and the difference 

between targets and non-targets is less pronounced. 

Visual early potentials (P100 and N200) are larger when 

the stimulus is foveated [17], which may explain the 

larger influence of the P100 in AR, where stimuli are 

large and more far away from each other. Because of this 

configuration, it is easier for the subject to look at one 

flash only and to ignore the other (distracting) ones. This 

explains the absence of P100 for non-targets stimuli in 

AR. In other games, as the flashes are more grouped, it is 

more difficult to ignore the non-relevant flashes, that do 

yield a small P100. 

In contrast, the fact that we observe a large P300 

component in response to target stimuli, regardless of the 

game, indicates that the ability to selectively fixate the 

target is not affected by stimulus size and configuration. 

Indeed, we did not find any difference in self accuracy 

between games. A result in BCI performance that is in 

line with the ERP findings. 

We then tested if transfer learning is possible between 

games. We found a significant difference in performance 

when learning from C4 trials compared to when learning 

for the other two game data. C4 appears less 

generalizable. Reasons for that are not obvious given the 

ERP findings. However, one should not forget that the 

ERP clusters do not exactly match the BCI features used 

online. Covariance matrices are built with the signal of 

all electrodes and a large time window, while the clusters 

are spatially and temporally more limited. Including all 

the electrodes, the design of C4 might induce covariance 

matrices more distant to the covariance matrices of the 

other games. When children played based on the 

template, which was the case online, we obtain a lower 

accuracy compared to the self-accuracy computed offline 

following a cross-validation procedure. However, 

despite this inevitable loss of accuracy when relying on 

template signals obtained in other children and BCI 

conditions [18], [19], all children but one performed 

above chance level online. Many studies have tried to 

reduce the calibration time without impacting the 

classification performance. One possibility is to use a 

subject dependent approach. It consists in using only a 

few epochs of each class from the subject, to tunes a 

template built on other subjects. Adding a small amount 

of data from the new subject seems to be sufficient to 

compensate for the inter-subjects variability [9]. An 

approach that could prove useful in this context too, in 

the near future.  

Interestingly, the positive correlation between self-

accuracy and template-based accuracy suggest that good 

performer behave alike, which fits perfectly with our 

objective to establish a template for the training of 

ADHD children in order to teach them how to produce a 

typical P300, which would be the hallmark of the ability 

to deploy sustained, spatial selective attention. 

We also observed a positive correlation between stability 

in gaze fixation and BCI accuracy. It seems obvious that 

focusing gaze on the target concurs to focusing attention 

onto that target. Conversely, a lower gaze fixation index 

could indicate that children have been distracted by the 

non-target flashes and made saccade towards them, 

hence yielding BCI selection errors and a lower accuracy. 

This correlation also allowed to dissociate two groups: 

good performers (n = 11) showing a good classification 

accuracy and a good gaze fixation, and poor performers 

(n = 7) showing the reverse pattern. This allowed us to 

compare them in terms ERPs which revealed no 

difference in early visual potentials (P100) but mostly a 

difference in the P300 and N200 in a lesser extent. This 

suggest that although gaze fixation was high overall, 

including in poor performers (as testified by a large 

difference in P100), slight instability in gaze fixation is 

accompanied by some instability in attentional focus and 

has a dramatic effect on later, attention related, 

components, especially the P300. Although less reported 

in this context, the N200 is known to underline both 

processes of gaze fixation and attention to the target [20]. 

Altogether, these results emphasize that gaze orientation 

is mandatory for good BCI performance, but not 

sufficient as the most important ERP components are the 

ones related to (covert) sustained attention. A finding that 

supports the idea that P300 based BCI training could be 

efficient in ADHD children. 
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CONCLUSION 

 

We conclude that it is possible to use this kind of 

template to play BCI P300 games without calibration. 

There is an obvious drop of performance compared to an 

individual calibration, but the use of this kind of template 

may prove sufficient in the context of training. We found 

no difference in classification accuracies between games 

but differences in game design yielded differences at the 

physiological level. This should be further investigated 

in the future in order to optimize the training, for instance 

by presenting the games in a specific order. Theses 

results could also allow to guide the design of new games 

to target specific components, toward a more 

individualized approach.  
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