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ABSTRACT : Neurofeedback (NF) consists in using
electroencephalographic (EEG) measurements to guide
users to perform a cognitive learning using information
coming from their own brain activity, by means of a real-
time sensory feedback (e.g., visual or auditory).
Many NF approaches have been studied to improve atten-
tional abilities, notably for attention deficit hyper activity
disorder. However, to our knowledge, no NF solution has
been proposed to specifically reduce drowsiness. Thus,
we propose an EEG-NF solution to train users to self-
regulate an EEG marker of drowsiness, and evaluate it
with a preliminary study.
Results with five healthy subjects showed that three of
them could learn to self-regulate this EEG marker with
a relatively short number of NF sessions (up to 8 ses-
sions of 40 min). Clinical trials with sleep-deprived sub-
jects should begin in 2019 to study possible cognitive and
clinical benefits of this self-regulation. This NF solution
implementation is available for free, with the OpenViBE
platform, under the AGPL-3.0 license.

INTRODUCTION

Brain-computer interfaces (BCI) and Neurofeedback
(NF) are two inter-related disciplines, that can and should
learn from each other [12]. A substantial part of BCI re-
search is dedicated to train computational models to clas-
sify patterns of brain activity and translate them into com-
mands for a machine [16]. For instance, BCIs are often
used to classify imagined movements of the left and right
hand from brain signals [20]. NF, on the other hand,
mostly focuses on teaching users to self-regulate their
own brain activity to reach a desired state [23], which
may possibly lead to clinical or cognitive benefits. For
instance, the desired state could be an increased attention
level, as measured by an electroencephalographic (EEG)
marker of attention, to treat attention deficit hyperactivity
disorder (ADHD) [18]. NF is thus a form of cognitive
remediation guided by physiology.
One of the main clinical application of EEG-NF is ADHD
rehabilitation [18, 19]. However, while several papers

reported positive clinical benefits with NF, there is cur-
rently a debate in the community about the origin of these
benefits [17, 26], and the level of evidence is still rela-
tively weak [11, 12, 25]. This recently motivated the NF
community to encourage further research into NF with
higher research standards, e.g., by identifying open re-
search challenges or by proposing consensus evaluation
and reporting guidelines [1, 3, 9, 22]. Among the iden-
tified open challenges, exploring innovative psychiatric
applications of NF, other than ADHD rehabilitation, has
been encouraged [4].
To the best of our knowledge, there is no NF approach
that has been studied to reduce excessive daytime sleepi-
ness (EDS) and drowsiness so far. EDS is a common
complaint among young people between 18 and 30 years
of age [10]. EDS leads to increased accident risks. How-
ever, to date, there is no countermeasure to EDS based on
the principles of cognitive remediation such as NF. Al-
though EDS is linked to ADHD [2, 5], sleep disorders are
rarely highlighted in ADHD research. Moreover, EDS
may have a physiological target that can be more easily
identified than attentional markers [7]. NF might thus be
used to train subjects to regulate their EEG activity, and
in particular an EEG marker of drowsiness, in order to
reinforce their ability to stay awake. This could hope-
fully reduce their drowsiness and increasing their cogni-
tive performance.
Therefore, in this paper, we present the design, imple-
mentation and preliminary evaluation of a complete NF
protocol that is designed to train subjects to self regulate
a neurophysiological target related to drowsiness. In this
preliminary evaluation, we aim at validating our NF solu-
tion, i.e., at assessing whether subjects can self-regulate
the identified marker of drowsiness using NF. The objec-
tive quantification of drowsiness, and how it varies with
NF training, is not addressed in the present study. How-
ever, it will naturally be the primary outcome measure of
the future clinical study based on our NF solution that is
now validated.
This paper is organized as follows: first it details, in the
materials and methods section, the different methodolog-
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ical, hardware and software elements used for our solu-
tion. Then, it describes the three main components of this
protocol: the EEG signal processing methods, the train-
ing procedure and the learning evaluation. This section
finishes by describing a preliminary evaluation of our NF
solution with five healthy users. The results section then
reports on the preliminary data obtained with such evalu-
ation. The paper ends with a discussion on these results
and the future clinical studies.

MATERIALS AND METHODS

Overview: Our NF system (see Figure 1) first consists
in measuring and extracting a marker of drowsiness from
EEG signals. Then, it consists in providing subjects with
a visual feedback representing this EEG marker, in order
to train them to self-regulate it. To do so, subjects are
rewarded with an audio feedback if they manage to sub-
stantially reduce this EEG marker of drowsiness. To pre-
vent artifacts from deteriorating this EEG self-regulation
learning, we also need to detect them in order to adapt
the feedback accordingly. In the following, we describe
these various components.

Figure 1: Our NF system: The EEG cap measures brain signals
that the software analyzes to extract a marker of drowsiness.
Then, a visual feedback representing this marker is provided to
subjects. With feedback training, subjects should learn to self-
regulate it and thus, hopefully, to reduce their drowsiness.

Hardware: We used a g.Nautilus (g.tec, Austria) wire-
less EEG acquisition device with 16 g.SAHARA active
dry electrodes localized at Fp1, Fp3, F3, Fz, F4, T7, C3,
Cz, C4, T8, P3, Pz, P4, PO7, PO8 and Oz.

Software: We used OpenViBE [21], a free and open
source software platform for the acquisition, processing,
classification and visualization of brain signals.

Signal Processing: As a neurophysiological target
(EEG marker of drowsiness), we chose the homeostatic
sleep pressure defined in [7] as the power of the spectral
band θ -α (6.25-9Hz) in Cz. In that paper, it was shown
that during sustained wakefulness, the θ -α spectral band
in Cz was the one whose power increased the most over
time.
However, this spectral band power may increase indepen-
dently of the homeostatic sleep pressure, due to a gen-
eral increase of EEG activity for example. In order to

overcome this problem, we used a second spectral band,
also related to drowsiness, to compute a ratio of spectral
band power. This solution is quite common in NF [18].
Some noises and artifacts that may affect the whole sig-
nal will be attenuated (or suppressed) in a ratio of spectral
band power, since we divide one band power by the other.
Inspired by ADHD studies [18], we chose to divide our
main target (i.e., θ -α power in Cz) by the power of the
β (15-30Hz) spectral band, also in Cz. Indeed, this band
is related to vigilance and its power should thus decrease
with drowsiness [18].
Overall, we thus used as neurophysiological NF target
θ -α

β
, which should be related to the subject’s level of

drowsiness. The β band power should indeed decrease
with increasing drowsiness whereas the θ -α band power
should increase with increasing drowsiness. In order to
give subjects a more positive impression of exercising,
we defined their goal during NF training as to increase
their wakefulness. Therefore, we reversed this ratio to
use the β

θ -α ratio as a target that subjects should learn to
up-regulate, i.e., to increase.
To estimate the power of a spectral band, we first band-
pass filtered the EEG signal, here in Cz, in the selected
band (e.g., 15-30Hz) using a fourth order Butterworth fil-
ter [6]. Next, we used a sliding window analysis, with
1s long windows with an interval of 1/16s (0.0625s) be-
tween consecutive windows (with overlap). For each
window, we squared the filtered EEG signals from that
window, and then averaged them over the window dura-
tion to obtain the power of the selected spectral band. We
then log-transformed the data (x′ = log(1+ x)) to make
these spectral band power values more normal-like.
In order to deal with artifacts, we eliminated the only
easily identifiable ones, i.e., those leading to EEG sig-
nal amplitudes greater than 100 µV. These are typically
considered as artifacts due to electrode movements or to
muscular or ocular activities, resulting in larger EEG am-
plitudes. Epochs whose samples exceeded 100 µV were
thus considered as artifacts and marked as such. These
epochs were rejected and no feedback was provided to
participants during them.

Training - sequencing: Regarding the duration and se-
quencing of the NF training, we arranged a NF session as
follows (Figure 2):

• 1 calibration block of 2min.

• 6 work blocks of 5min.

• 1 transfer block of 5min.

• Each block is separated by a break of about 30s.

• Total Time = 2+7× (0.5+5) = 40.5min

The calibration block (baseline) aims at measuring EEG
activity "at rest", without any NF task. This was used
as a reference, with measurements under similar condi-
tions each time. During the work blocks, the subjects
had to perform the various training tasks with feedback:
the subject had to find a mental strategy to increase his
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wakefulness level by using the provided feedback. This
feedback represents the value of the band power ratio de-
scribed above. The last type of block is called a transfer
block and consists in performing a work block without
any feedback, in order to ease the transition between NF
training and everyday life (where there is no feedback).

Training - rewards: Rewards were given to subjects via
a sound (audio feedback) and a score system, when their
wakefulness level, as measured using the EEG marker,
became high enough during 0.25s. These audios rewards
were thus provided when subjects managed to make their
EEG band power ratio exceeds a given threshold. On the
other hand, if subjects’ wakefulness level was judged too
low (i.e., lower than a given threshold), the experimenter
was warned, as he could see the subject’s count of "neg-
ative" points increasing on a visual display. Note that
such negative points were not shown to subjects, who did
not receive any negative feedback when their wakeful-
ness level was too low. In order to deal with EEG sig-
nal non-stationarities, we regularly updated our threshold
values. More precisely, we updated the thresholds every
two work blocks (see Figure 2).

Figure 2: Session sequencing: 1 Calibration block, 3 pairs of
work blocks (the dotted lines indicate the times when the thresh-
old values were updated) and one last transfer block.

Current NF literature usually does not mention how the
reward thresholds are defined, except when this is the pa-
per central topic, see, e.g., [8]. This is however a crucial
point in any NF protocol design. Indeed, such thresh-
olds are used to define the EEG target values that subjects
should reach or avoid. Here, we defined 4 thresholds:

• A theoretical minimum (Sm) and maximum (SM),
used to identify the interval in which the neurophys-
iological target value varies. They are used to create
a standardized color range for the visual feedback.

• A threshold to be reached to receive a reward (SR).

• A threshold to be avoided, not to receive negative
points (SC) (again, these negative points are only
shown to the experimenter).

Visual inspections of our NF target empirical values
showed that it was approximately normally distributed, or
at least normal-like enough so we could define the thresh-
olds according to its mean and variance. The NF target
mean and variance are estimated before blocks 1, 3, 5
and 7 (Figure 2) on all the neurophysiological target val-
ues from the previous block pair (for block 3, 5 and 7), or
from the calibration block (for the first work block).
By estimating the mean µ and variance σ of the NF target
distribution (assuming a Gaussian distribution), we can

then define our 4 thresholds as follows (see Figure 3):

Sm = µ−3×σ SM = µ +3×σ

SC = µ−1.5×σ SR = µ +1.5×σ

Assuming normally distributed data, we can estimate the
probability of a value to belong to a specific interval (Fig-
ure 3) :

P(Sm ≤ x≤ SM)≈ 99.73%
P(SC ≤ x≤ SR)≈ 86.64%

Figure 3: Distribution of thresholds (with σ the standard devia-
tion and an average of 0 for this example).

Training - feedback: The last key element of NF train-
ing is the neurophysiological target visualization, i.e., the
feedback. As a metaphor of the notion of wakefulness,
we displayed as feedback a gray level that goes from
black (low wakefulness) to white (high wakefulness), as
can be seen in Figure 4. The gray color range was de-
limited by our thresholds Sm and SM. Subjects could also
see, at the bottom of the screen, the elapsed time since
the beginning of the block, the time points at which they
received rewards and the time points when artifacts were
detected.

Learning: NF training aims at favoring learning over
sessions, which requires to define the number and fre-
quency of the training sessions. This project is a proof of
concept of NF training in a small number of sessions. We
thus chose to train subjects for a maximum of eight ses-
sions. In order to help subjects to assimilate their training
sessions, to reflect on their strategies and to test them in a
real situation, the training frequency was defined as from
1 to 2 sessions per week. Finally, the 8 sessions had to be
completed in a maximum of 6 weeks.
In addition, to facilitate EEG self-regulation learning,
which is not something humans are used to do con-
sciously, we offered subjects discussion times at the be-
ginning of the protocol, between the work blocks and at
the end of each session. The first discussion explained
subjects the principle of the protocol, to demystify the NF
process. Note that subjects were already provided with
information on NF beforehand, but this allowed them to
ask questions if necessary. This step aimed at preventing
any apprehension with the EEG machine or any suspi-
cion with the overall NF method. The discussions be-
tween work blocks were used to guide subjects to gain
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Figure 4: Work block Feedback for low (top figure) and high
(bottom figure) wakefulness level estimates.

insights about the strategies they used and their effective-
ness. Thus, oriented questions were used to help subjects
becoming aware of what they thought and felt during the
NF training. In addition, when thresholds were changed,
the practitioner indicated to the subjects whether it in-
creased or decreased. At the end of each session, subjects
were shown the different curves representing the EEG
signal, the β

θ -α ratio, the number of rewards received and
the threshold changes over time and blocks.

Preliminary Experimental Validation: As a proof of
concept, in order to assess whether our NF training pro-
tocol could enable subjects to self-regulate the selected
EEG marker of drowsiness, we tested it with five healthy
medical students (two women and three men). They were
able to perform between 4 and 8 NF sessions each, de-
pending on their availability. Each session was held at a
fixed time for each subject (at 10am for S1 and S2 and
2pm for the others) with a minimum of 2 days between
two sessions.

RESULTS

Figure 5 shows the evolution of the average value of the
β

θ -α ratio over sessions, for each subject, while Figure
6 shows the same information averaged across all sub-
jects. Such results suggest a positive evolution of the
neurophysiological target of interest for 3 subjects (S1,
S3, S4). For one subject (S2), there does not seem to be
any subtantial change over time. Moreover, for this sub-
ject, the experimenter could observe that the subject was
bored during the sessions, due to a lack of success with
self-regulating the EEG marker. The last subject (S5) ob-
tained inconclusive results because he obtained rewards

during two sessions by playing with the artifacts detec-
tion system, using micro movements of his jaw.

Figure 5: Evolution of the physiological target ( β

θ -α ratio) dur-
ing the sessions. For each subject, we averaged the value of
the physiological target on each session. We then normalized
these values so that the first session normalized value was 100.
Thus, this gave us a percentage of evolution over the sessions.
The displayed standard deviations represent the variation of the
ratio average value across work blocks.

Figure 6: From Figure 5. Average across subjects, for the ses-
sions in which they participated.

We also analyzed the change of the average target value
during NF blocks as compared to its average value dur-
ing the baseline of each session (see Figure 7), i.e., the
relative increase of EEG marker value with respect to the
baseline. To do so, we estimated the difference of the av-
erage target value during work blocks with its value dur-
ing the baseline, expressed as relative percentage of the
baseline value. Positive values thus indicates that the tar-
get value was higher during the work blocks than during
the baseline of the same session.
Here as well, we observed that the same 3 subjects who
showed a substantial increase in EEG marker absolute
value across sessions, also showed a subtantial increase
of EEG marker relative increase with respect to the base-
line, across sessions. Interestingly enough, the other 2
subjects, who did not reveal any subtantial change of ab-
solute target value across sessions, are the ones with the
weakest intra-session relative target changes. This further
confirmed that these 2 subjects did not succeed to learn to
self-regulate our EEG marker of drowsiness.

Finally, we statistically analyzed these relative EEG
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marker increases, to assess whether learning did occur
across sessions, or whether this was due to chance. To
do so, for each subject, we computed the pearson cor-
relation between the time index of each work block and
the relative EEG marker increase of that block. We ob-
tained correlation of ρ = 0.67 (p < 0.00005), ρ =−0.36
(p = 0.02), ρ = 0.7 (p < 0.000000001), ρ = 0.66 (p <
0.000005) and ρ =−0.13 (p= 0.43), for subjects S1, S2,
S3, S4 and S5 respectively. This confirmed that subjects
S1, S3 and S4 significantly improved across blocks and
sessions, and thus successfully learned to self-regulate
the EEG marker, whereas subjects S2 and S5 did not.

Figure 7: Average value of the physiological target ( β

θ -α ratio)
for each session, evaluated as a relative percentage difference
with the baseline average target value.

DISCUSSION

The results of the preliminary study described above on
five subjects are encouraging, as they show that three of
them could learn to increase the neurophysiological target
across sessions. However, it is still unknown whether this
successful self-regulation could lead to improved vigi-
lance in day-to-day tasks, or whether this could reduce
drowsiness for people affected by EDS. Thus, further
studies are necessary. Accordingly, a clinical trial with
a panel of 20 sleep-deprived subjects should start in the
coming months. Such clinical trial will include clinical
and objective measures of drowsiness and cognitive per-
formances. It will aim at complementing, confirming or
invalidating our results, as well as at assessing this NF
training influence on subjects drowsiness and cognitive
performances.
There are many open questions about the effectiveness of
NF [25], as well as about how to best design relevant NF

protocols. Some of these questions are actually common
with BCI research. Is there a better neurophysiological
target? Here, we used results from neurophysiology re-
search to define the main target of interest according to a
spectral band that was found related to drowsiness. How-
ever, it is likely that the optimal spectral band and EEG
channel may be slightly different depending on the sub-
jects. Another open question is whether we could further
improve learning by exploring different feedback. For
example, could the use of screen brightness in our exper-
iment have a similar influence on performance as tactile
feedback had for motor imagery BCI experiments [14]?
Next, we should evaluate whether learning is effective
in the long term and therefore induces neuroplasticity.
Moreover, as often in NF and BCI experiments, the re-
sults between subjects vary greatly. Thus, research on
identifying predictive variables of learning [13, 15] could
help us to understand the cause of these variations, and
thus possibly help us to reduce them.

CONCLUSION

In this article, we presented a complete NF protocol to
train subjects to self-regulate an EEG marker of drowsi-
ness, with a longer-term objective to reduce drowsiness.
Starting from the neurophysiological target to be ana-
lyzed and the signal processing methods, we have defined
a training program for NF that aims at guiding subjects
to learn to develop strategies to self-regulate their wake-
fulness level. We conducted a preliminary study on five
healthy subjects, that showed that three of them managed
to learn to increase the selected neurophysiological target
across sessions.
The work done during this study allowed us to develop
a set of signal processing algorithms, features, feedback
and scripts for the OpenViBE software. All sources are
available1 under AGPL-3.0 license for later use with or
without modification. In addition, we did our best to re-
port all the parameters of our experiment to favor repro-
ducibility.
A clinical trial is planned in 2019 to validate these pre-
liminary results, and assess possible clinical benefits.
Many of the previously mentioned NF training parame-
ters could be optimized to further improve learning. For
instance, we believe that interviews could be used to rein-
force the insights that subjects have about their strategies.
Pre NF training procedures, as meditation training did to
improve some BCI protocols [24], could also be consid-
ered to improve this NF protocol. Finally, it would also
be interesting to identify the optimal frequency, duration,
and form of training and feedback that would maximize
the subjects’ performance, learning and clinical benefits.
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