
HETEROGENEOUS REAL-TIME MULTI-CHANNEL TIME-DOMAIN
FEATURE EXTRACTION USING PARALLEL SUM REDUCTION ON GPU

J. Arnin, D. Kahani, H. Lakany, B.A. Conway1

1 Centre of Excellence in Rehabilitation Engineering, Department of Biomedical Engineering,

University of Strathclyde, Glasgow, United Kingdom

E-mail: jetsada.arnin@strath.ac.uk, b.a.conway@strath.ac.uk

ABSTRACT: Online BCI has become a fascinating
field of research nowadays. One of the main challenges
in this field is to reduce the latency caused by the
computational complexity of the signal processing
algorithms. This issue leads to difficulty in processing
real-time data. Usually, a trade-off needs to be
considered between the number of input samples and
precision of the processing algorithms. In this paper,
heterogeneous computing concept is investigated to
alleviate the computational complexity occurred in real-
time processing. An OpenCL was utilized to implement
signal processing algorithms in parallel. Feature
extraction methods including band power and statistical
moments were selected to examine the power of
heterogeneous computing using parallel sum reduction.
As a result, varying the number of work-group sizes
which is an essential parameter of parallel processing
provided dissimilar computing times. Also, running at a
higher sampling rate yielded a higher benchmark ratio
between sequential and parallel. However, system
optimization is still necessary when processing BCI in
real time.

INTRODUCTION

Processing signal in real-time brain-computer interface
(BCI) could usually encounter many difficulties ranging
from hardware level to software level. One of the most
challenging issues is the system latency [1] which may
raise a major problem because this could lead to missing
some important data such as an EEG component or an
event under half-second. To minimize the latency by
only optimizing sequential algorithms to reduce the
processing time may not be enough to capture those
components. The most common solution on the
hardware level is to increase the speed of data
transmission, buffering a sufficient amount of incoming
data, and using fast processing units [2]. This may cost
developer much money and a comprehensive technique.
Nowadays, high-performance computing (HPC)
technology plays an important role in solving complex
computational problems such as simulation, modeling,
and analysis [3-4]. This technology does not only focus
on developing faster hardware but the algorithms also
[5]. According to the HPC, its concept is based on
parallel computing for running application efficiently,
reliably, and quickly [6]. To understand the concept of

parallel computing, any sequential task can be split into
a section which each is run separately on hardware
acceleration. There is a lot of hardware acceleration
available on the market that has a reasonable price such
as consumer graphics processing unit (GPU) and a user-
friendly field-programmable gate array (FPGA) [7].
These hardware units are programmable with their
specific languages that may take much time to learn in a
programming language. To resolve this issue, an open
computing language (OpenCL) has been developed to
overcome cross-platform programming [8]. It means
that any hardware acceleration unit can be executed
with one-time coding. So far, the OpenCL platform has
become an industry standard for programming those
hardware units [9]. In addition, certainly understanding
heterogeneous computing concept which is the use of
parallel processing techniques is essential and required
when programming in OpenCL [10].
To demonstrate the heterogeneous computing concept
for real-time signal processing, implementing in major
processing steps and their bottlenecks was discussed in
this paper. One of the most challenging BCI problems is
running feature extraction algorithms in real time [11].
Since the number of processing channel is always much
more than one or two, some complex features such as
independent component analysis (ICA), autoregressive
(AR) model, and discrete wavelet transform (DWT) are
mostly implemented in an offline BCI [12]. However,
these time-consuming features can be used in real-time
processing with optimization that may limit the
performance of the algorithms [13]. As an advantage of
heterogeneous computing, these algorithms can be
broken down into a smaller part and compute each part
concurrently then concatenate to a final solution.
In this paper, we applied the commercial and open-
source OpenCL technology into real-time signal
processing which time-domain feature extraction
methods including selective band power and statistical
moments were selected to evaluate the computing
performance. The system includes both EEG simulation
and signal processing module. The proposed module
offers up to 32 channels for real-time signal processing
based on the heterogeneous computing concept. The
archive EEG dataset was used to test the computing
performance in real time with different sampling
frequency acquired. The parallel computing time was
compared to sequential processing approach as well.

Proceedings of the
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-33

MATERIALS AND METHODS

 Latency analysis: Regarding the cause of
computational latency in real-time processing, this can
be divided into four categories, i.e., signal acquisition
hardware, data transmission, types of application, and
processing algorithms. Table 1 shows the comparison of
the latency causes in terms of delay and versatility. The
comparison was on the basis of cost-effectiveness and
current technology. According to Table 1, the main
cause of latency in a real-time BCI is computational
complexity of the signal processing algorithms. To
overcome this bottleneck, using different approach such
as parallel processing instead of traditionally sequential
method could more reduce the latency.

Table 1: Delay and versatility in signal processing
Category Delay Versatility
Signal acquisition Low Low
Data transmission Medium Low
Types of application Medium Low
Processing algorithms High High

 EEG dataset: The archive EEG, a collection of 32-
channel data from 14 subjects (7 males, 7 females),
provided by Swartz Center for Computational
Neuroscience [14] was used to evaluate the performance
of our parallel design. According to the data, the
participants were asked to perform a go-nogo
categorization task and a go-no recognition task on
natural photographs displayed every 20 milliseconds.
The experiment ran a total of 2500 trials on each
participant. Note that as the archive data was sampled at
1000 Hz with a specific amplifier but for the purpose of
full usage, the data were regenerated and rectified to
appropriately match with the voltage range of the
analog output device.
 Simulation system: This study was developed based
on Qt platform (Qt 5.12 LTS) using C++ programming
language which can integrate the OpenCL and related
libraries together. The simulation system consists of a
signal generator and signal acquisition. The archive
dataset was generated waveform through the 32-channel
analog output device (NI PCIe-6738) and then fed back
into the 32-channel analog input device (NI PCIe-6343)
using RG58 50-Ohm coaxial cables. For the output
device, each channel was generated at the sampling
frequency of 1kHz according to the dataset. Note that
the output resolution is 16 bits with voltage range of
±10V. For signal acquisition, the sampling rate was
varied, including 128, 256 512, 1024, and 2048 Hertz.
 Heterogeneous signal processing: According to the
general signal processing pipeline, it is frequently
processed in sequential approach. This may result in a
delay when loads of processing steps are added. Using
heterogeneous computing concept in this problem can
decrease the latency dramatically. In this paper, the
calculation part of the feature extraction on each
channel was processed separately and concurrently by
multiple compute units. Fig. 1 demonstrates the overall

system of the heterogeneous feature extraction which
each channel processes simultaneously.

Figure 1: The overall system of heterogeneous feature
extraction for real-time BCI.

 OpenCL initialization: As an advantage of the cross-
platform parallel programming, the graphics card is the
easiest unit to be used with OpenCL. The AMD graphic
cards (Radeon™ Pro WX 7100) were used to deploy the
computation based on the OpenCL 2.0 which the shared
virtual memory technique was introduced [15]. The
shared virtual memory can reduce the latency of
transferring data between the host and devices. Setting
up the number of work items manually split into global
and local to yield the best computing result. Fig. 2
shows an overview of the structure of the OpenCL 2.0
platform used in the study.

Figure 2: The overview of the structure of the OpenCL
2.0 platform.

 Feature extraction: Many familiar feature extraction
methods have been developed for processing BCI such
as discrete Fourier transform (DFT) or power spectral
density (PDS) and wavelet transform (WT) based which
are based on frequency analysis. These methods are
considered to be the most effective techniques for
dealing with time-varying EEG signals. Regarding the
time-domain analysis, the most commonly used method
for EEG feature extraction is selective band power
which is the average power of a signal in a specific
frequency range. In this paper, the band power was used
as a feature for event detection. Besides the band power,
another time-domain method named statistical moments
is also used to evaluate. The statistical moments are
specific quantitative measurements in time domain

Proceedings of the
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-33

analysis. The general formula of the n-th order
statistical moments was described in the literature [16-
17] which mean, variance, skewness, and kurtosis are
mostly used for feature extraction. In this paper, the first
moment and second moment which are mean and
variance were calculated concurrently on each channel.
 Parallel sum reduction: To achieve the highest
performance from the heterogeneous computing
concept, as the calculation of band power and statistical
moments mostly uses a summation, this can be managed
by using a parallel sum reduction technique [18]. This
technique maximizes the performance of compute unit
by copying values from global memory into a local
memory of the same work-group. Then each work-
group processes its local work-item concurrently that is
partitioning the whole summation into a small
summation and finalize when all work-items finished
their own tasks. Fig. 3 shows the concept of parallel
sum reduction which introduces the use of local
memory to store each element concurrently and then
reduce to half by using a stride. Note that in the
OpenCL 2.0 parallel sum reduction is integrated into a
workgroup function so there is no need to write a nested
loop to calculate the summation.

Figure 3: The concept of parallel sum reduction.

 Performance improvement: In order to improve the
computational speed, fine-tuning parameters for parallel
sum reduction is required. As the appropriate number of
input data for sum reduction should be a power of 2, we
decided the local work-item at 16, 32, 64, and 128,
respectively. Conversely, using sum reduction inside the
work-group function of the OpenCL 2.0, the input
number is not necessary to follow the power of 2.
 Benchmarking: The average computation time of a
full command execution running on the GPU each local
work-item are recorded for 100 times and compared to
the result from sequential computing. Note that the full
execution starts from transferring data from host to
device, processing the kernel, and transferring data back
to the host. This study ran on 64-bit Window 10 OS,
with 32-GB DDR4 and Intel Xeon E5-1630 v4.

RESULTS

Feature extraction methods including band power and
statistical moments were examined in real-time signal
processing using the OpenCL platform. The execution
time and benchmarking of sequential processing and
parallel processing approach were reported in this
section. Fig. 4 illustrates the execution time in
microsecond when the band power feature was
performed. Regarding the result, the execution time was
related to the number of a processed sample which
higher number required more processing time. With a
modification of the number of work-group sizes, a large
number of work-group size provided the better
performance which the computing time was reduced. In
addition, Fig. 5 shows the benchmarking of sequential
processing and parallel processing on the same compute
device. The ratio was calculated from the execution
time of the sequential approach divided by the
execution parallel approach. According to the
benchmarking result, the higher the sampling rate set,
the higher the ratio received. Apart from the band
power, using statistical moments also provided likely an
identical result. Fig. 6 presents its execution time at
different numbers of input. Interestingly, adjusting
work-group size had an impacted on speed especially at
256Hz and 512Hz. Fig. 7 also showed the ratio as
explained previously.

Figure 4: Execution time of band power feature.

Figure 5: Benchmarking of band power feature.

Proceedings of the
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-33

Figure 6: Execution time of statistical moments feature.

Figure 7: Benchmarking of statistical moments feature.

DISCUSSION

According to the results, the latency of feature
extraction was relatively small and appropriately
enough for real-time processing. For example, at 1kHz
of the sampling rate, band power feature was about 0.06
milliseconds while the statistical moments method was
roughly 0.25 milliseconds. Fascinatingly, running data
at 2kHz with band power method achieved the
execution time about 0.11 milliseconds which is much
higher than running at 1kHz (nearly double time)
whereas statistical moments method yielded the slightly
identical result at 1kHz. It is to be observed that running
on different processors and environments may yield
different computing times.
Remarkably to the benchmarking results, the reduction
technique provided a higher ratio when the size of the
input was larger. Besides, increasing the number of
work-group size from 16 to 64 provided almost the
higher ratio for both features. While setting a work-
group size at 128, the ratio dropped slightly. This is
because it is allowed enough times for the compute unit
to initiate internal parameters (hardware level) and then
process data continuously and efficiently as discussed in
the previous study [19]. Therefore, a tradeoff between
the number of input samples and the acceptable latency
in the system should be considered. Note that the GPU
used in the study has the maximum work-group size of

256 work-items on each dimension.
Regarding the sum reduction, it can be applied to other
time-consuming algorithms such as frequency-domain
analysis like DFT and WT. These multiple computing
steps can be separated into multiple kernels and directly
execute from device side without any request
commands from the host side as introduced in the new
features of OpenCL 2.0. This technique has also been
implemented into the statistical moments which there
were two kernels, i.e., one for mean calculation and
another for variance calculation, running concurrently
using shared virtual memory. Not only running on the
GPU, by using the same OpenCL program the project
can be run on other systems such as FPGAs. This is
expeditious and required only minor parameters
adjustment.
With regard to the latency analysis, some limitations
can be resolved but have to tradeoff between time- and
cost-effectiveness. Furthermore, an OpenCL library for
signal processing could help researchers to gain the
most benefit from heterogeneous computing because in
this study we have developed all steps from the
beginning including setting up complicated parameters
such as initializing a platform and a context.

CONCLUSION

This study presents the use of heterogeneous computing
technique to implement into BCI processing. As a
result, speeding up the computation by using a parallel
processing scheme is possible and flexible for real-time
computing. To reduce the system latency, optimization
of both hardware and software should be considered
when using in such real-time applications. Lastly, an
OpenCL library could help researchers to reduce the
developing time for the BCI applications which is the
next step of our work.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support
from Scottish Government Health Directorates and the
Royal Thai Government scholarship. The authors
declare that the research was conducted in the absence
of any commercial or financial relationships that could
be construed as a potential conflict of interest.

REFERENCES

[1] Xu R, Jiang N, Lin C, Mrachacz-Kersting N,

Dremstrup K, Farina D. Enhanced low-latency
detection of motor intention from EEG for closed-
loop brain-computer interface applications. IEEE
Transactions on Biomedical Engineering.
2014;61(2):288-96

[2] Oweiss KG. A systems approach for data
compression and latency reduction in cortically
controlled brain machine interfaces. IEEE
Transactions on Biomedical Engineering.
2006;53(7):1364-77

Proceedings of the
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-33

[3] Gulo CA, Sementille AC, Tavares JM. Techniques
of medical image processing and analysis
accelerated by high-performance computing: A
systematic literature review. Journal of Real-Time
Image Processing. 2017;16:1-8

[4] Xu J, Huang E, Chen CH, Lee LH. Simulation
optimization: A review and exploration in the new
era of cloud computing and big data. Asia-Pacific
Journal of Operational Research.
2015;32(03):1550019

[5] Wang T, Kemao Q. Parallel computing in
experimental mechanics and optical measurement: A
review (II). Optics and Lasers in Engineering.
2018;104:181-91

[6] Pratx G, Xing L. GPU computing in medical
physics: A review. Medical physics.
2011;38(5):2685-97

[7] Brodtkorb AR, Hagen TR, Sætra ML. Graphics
processing unit (GPU) programming strategies and
trends in GPU computing. Journal of Parallel and
Distributed Computing. 2013;73(1):4-13

[8] Munshi A, Gaster B, Mattson TG, Ginsburg D.
OpenCL Programming Guide, Pearson Education
(2011)

[9] Stone JE, Gohara D, Shi G. OpenCL: A parallel
programming standard for heterogeneous computing
systems. Computing in science & engineering.
2010;12(3):66

[10] Gaster B, Howes L, Kaeli DR, Mistry P, Schaa D.
Heterogeneous computing with openCL: revised
openCL 1, Newnes (2012)

[11] Tangermann M, et al. Review of the BCI
competition IV. Frontiers in neuroscience.
2012;6:55

[12] Lotte F, et al. A review of classification algorithms
for EEG-based brain–computer interfaces: a 10 year
update. Journal of neural engineering.
2018;15(3):031005

[13] Al-Fahoum AS, Al-Fraihat AA. Methods of EEG
signal features extraction using linear analysis in
frequency and time-frequency domains. ISRN
neuroscience. 2014

[14] Delorme A, Rousselet GA, Mace MJ, Fabre-
Thorpe M. Interaction of top-down and bottom-up
processing in the fast visual analysis of natural
scenes. Brain research Cognitive brain research.
2004;19(2):103-13

[15] Kaeli DR, Mistry P, Schaa D, Zhang DP.
Heterogeneous Computing with OpenCL 2.0,
Morgan Kaufmann (2015)

[16] Soliman SS, Hsue SZ. Signal classification using
statistical moments. IEEE Transactions on
Communications. 1992;40(5):908-16

[17] Hjorth B. EEG analysis based on time domain
properties. Electroencephalography and clinical
neurophysiology. 1970;29(3):306-10

[18] Zaki MJ, Parthasarathy S, Ogihara M, Li W.
Parallel algorithms for discovery of association
rules. Data mining and knowledge discovery.
1997;1(4):343-73

[19] Fang J, Varbanescu AL, Sips H. A comprehensive
performance comparison of CUDA and OpenCL, in
Proc. International Conference on Parallel
Processing, 2011, 216-225

Proceedings of the
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-33

	E-mail: jetsada.arnin@strath.ac.uk, b.a.conway@strath.ac.uk
	INTRODUCTION
	MATERIALS AND METHODS

