
A SIMULATED ENVIRONMENT FOR STUDYING PARTIAL
OBSERVABILITY IN NOVEL ADAPTIVE DEEP BRAIN STIMULATION

Sebastián Castaño-Candamil1, Mara Vaihinger1, Michael Tangermann1,2

1Brain State Decoding Lab, Department of Computer Science,
BrainLinks-BrainTools, University of Freiburg, Germany

2Autonomous Intelligent Systems, Department of Computer Science,
University of Freiburg, Germany

E-mail: sebastian.castano|michael.tangermann@blbt.uni-freiburg.de

ABSTRACT: Adaptive deep brain stimulation (aDBS)
can profit from data-driven approaches developed for
BCIs. These aDBS systems improve upon the constant
DBS in terms of efficiency and side effects amelioration
by taking the ongoing brain state into consideration.
The environment controlled by aDBS is governed by par-
tial observability, rendering classic control strategies sub-
optimal. In this regard, development of novel approaches
is critical for improved aDBS therapy. However, early
stage aDBS development is a difficult endeavor, given the
lack of suitable development platforms.
In our contribution, we present a simulated environment
that allows to modularly embed different surrogates of
key challenges found in the aDBS problem. Specifically,
we will focus on partial observability stemming from
non-stationary dynamics and noisy state representations.
Our simulations are used to analyze representative rein-
forcement learning approaches regarding their ability to
cope with the partial observability.
To allow reproducibility and encourage adoption of our
approach, the source code of our experiments is made
available online.

INTRODUCTION

Deep brain stimulation (DBS) has been established as
standard clinical treatment for movement disorders, such
as Parkinson’s disease (PD) and essential tremor (ET) [1,
2]. In addition, it is investigated to provide symptom re-
lief in several neuropsychiatric diseases such as obsessive
compulsive disorder (OCD) and major depressive disor-
der (MDP) [3, 4].
The stimulation characteristics and thus the efficiency of
DBS treatment can be shaped by a number of param-
eters, e.g., electrode contacts used to deliver the elec-
tric stimulation pulses, the shape, width and amplitude
of pulses and the frequency of these pulses. In a stan-
dard clinical setting, DBS parameters are determined by
a highly trained clinician and are kept constant until the
next consultation. This manual adaptation, performed a
few times per year, will ideally account for initial post-
surgical transient effects and long-term variations caused

by disease progress and DBS-induced plasticity changes.
However, such a constant DBS (cDBS) strategy can not
cope with changes occurring on much shorter timescales.
As a result, patients undergoing cDBS therapy are prone
to acute and chronic motor- and neuropsychiatric side-
effects, such as speech disorders, dysarthria, depression,
emotional disinhibition, and paresthesias [5–7].

Closed loop strategies for DBS: Fortunately, closed-
loop adaptive DBS (aDBS) provides a promising ap-
proach for tackling the shortcomings of cDBS strate-
gies [8, 9]. Closed-loop aDBS systems provide stimu-
lation as a function of symptoms and DBS-induced side-
effects surrogates, extracted directly from brain signals,
and termed neural markers (NMs) [10, 11]. Such NMs,
however, are highly contaminated by background activity
and are co-modulated by multiple brain processes; thus,
providing only a partial representation of the real neu-
ral state of the patient [9]. Furthermore, despite improv-
ing upon cDBS, aDBS systems usually implement con-
trol strategies—such as threshold-based and proportional
control—that neglect time dynamics.
Alternatively, more complex strategies have attempted to
use latent neural dynamics as a potential source of infor-
mation for improving aDBS efficacy [12–15]. While such
dynamics can originate from inherent temporal brain ac-
tivity, others can be explicitly associated with external
factors such as medication intake, activity of daily liv-
ing (ADL), and circadian rhythm. Another major source
of non-stationary dynamics is the so-called DBS washout
effect, describing the persistent clinical effect of DBS af-
ter stimulation withdrawal [16].

Data-driven approaches for dynamics-aware aDBS:
Many of the diseases treated with DBS, as PD and MDP,
are characterized by a remarkably heterogeneous pheno-
type [17, 18], where group studies are unable to deliver
NMs and stimulation strategies that are universally suit-
able. In contrast, data-driven optimization of dynamics-
aware control strategies offers a promising approach for
obtaining effective and efficient aDBS systems. In this
regard, Kumar and colleagues [19] presented a proof-
of-concept in-vitro study using a tabular reinforcement
learning (RL) strategy to control a neural network. Such
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classic RL strategies assume that the underlying con-
trolled system (environment, in RL literature) is Marko-
vian and fully observable, i.e., predictions of future states
of the environment depend solely on the current observa-
tion and this observation should offer a full representation
of the environment’s state. Given that in aDBS both as-
sumptions are not fulfilled, classic RL strategies might
deliver a sub-optimal control strategy (policy).
Strictly speaking, the non-stationary dynamics seen in
aDBS are a consequence of partial observability: if in-
formation about non-stationary sources is included in the
state representation (e.g., medication intake or ADL con-
text), then the environment could be considered station-
ary. However, such information is usually not available.
Consequently, we use the term partial observability to
cover non-stationary dynamics and noisy NMs, hereafter.

Development platforms for aDBS: Working directly
with patients is an expensive and strongly constrained en-
deavor (safety regulations), and in-vitro development pro-
tocols are relatively expensive and may suffer from over-
simplifying assumptions regarding the structure of the
underlying neural network. For these reasons, in-silico
frameworks have been widely utilized in early aDBS de-
velopment stages [20–22].
With our current contribution we introduce a novel in-
silico approach. We adopt a modified version of an
environment used in the standard RL testbench openAI
Gym[23] and show, how partial observability properties
of aDBS can be explicitly embedded into a RL task, thus
making partial observability a benchmarkable challenge.
Finally, we provide a comparison of state-of-the-art RL
algorithms that deliver a more efficient control strategy
than classic aDBS approaches under this partially observ-
able environment.

METHODS

The core concept of RL is to learn how to control
an environment alone from interactions with it. Dur-
ing the learning phase, the decision making agent
continuously improves its control policy based on the
reward it gains by interacting with the—potentially
unknown—environment. In the aDBS context, the
mapping between the RL components can be defined
as: agent↔DBS controller, environment↔neural system,
policy↔stimulation strategy, action↔apply a (parame-
terized) stimulation, and reward↔symptom suppression
/ side effects. This mapping can be formalized by defin-
ing an aDBS system as a Markov decision process, as
follows.

Closed-loop aDBS as a Markov decision process:
A closed-loop aDBS system can be defined as a
Markov decision process M = 〈S ,A ,T,R〉, where
the space S is formed by all possible motor states,
A is the set of possible stimulation parameters,
T : (sk,sk+1,a) 7→ p(sk+1|sk,ak) ∈ [0,1] is the probability
distribution over brain state transitions, such that apply-
ing the stimulation parameter ak ∈ A in the brain state

sk ∈S at time point k leads to a new brain state sk+1 ∈S
at time k + 1, and R : (sk,sk+1) 7→ R(sk,sk+1) ∈ [a,b] is
the reward function (bounded by {a,b} ∈R) obtained by
transitioning from sk to sk+1. In aDBS, a reward may
express, e.g., the amelioration of symptoms or the sup-
pression of DBS-induced side effects.

Partial observability in aDBS:
Noise regimes in NMs: Brain imaging techniques, such
as electrocorticographic recordings or local field poten-
tial recordings from deep brain electrodes, are contami-
nated by measurement noise and background activity and
are co-modulated by several, possibly independent, neu-
ral processes. In PD, the beta-band power of local field
potentials recorded from the subthalamic nucleus (STN)
is a widely used NM. However, it is not only determined
by the symptom state, but is also modulated by motor
preparation and execution[24, 25]—similar to cortical
beta band power—. These characteristics render many
extracted NMs highly noisy and thus they contribute to
partial observability found in aDBS.
Washout-induced non-stationary dynamics: The
washout effect observed in DBS contributes to partial
observability by generating non-stationary dynamics on
multiple timescales. For example in PD, DBS washout
effects w.r.t. axial symptoms that influence gait or speech,
can span from minutes to several hours, whereas washout
w.r.t. rigor, tremor, and bradykinesia, typically lasts sec-
onds only. In the Markov decision process defined above,
a washout phase amounts to state transition distribution T
that not only depends on the current stimulation, but also
on the history thereof.
As some classes of control algorithms have not been de-
signed to cope well with partial observability, it is im-
portant to investigate its effects upon the effectiveness
and efficiency of aDBS control strategies. However, in
in-vivo or in-vitro scenarios, it is difficult to analyze the
specific impact of such dynamics individually. A surro-
gate environment provides the possibility to model those
aDBS-specific challenges explicitly.

The flappingBird environment: We adapted the Flap-
pyBird environment provided in the openAI gym plat-
form to incorporate challenges of aDBS. We term the
adapted environment the continuous FlappyBird (CFB).
An agent’s goal in this environment is to fly through hor-
izontal tunnels that constantly pass by, as a gravity force
pulls the agent downwards.Two main criteria were con-
sidered for selecting CFB as our surrogate environment:
First, dimensionality of the state and action space is simi-
lar to the aDBS problem [26], and second, the model’s
engine provides a computationally inexpensive way of
modifying the environment dynamics.
State representation: The state of the CFB environment
is given by a 7-dimensional signal. It comprises 1) agent
vertical position, 2) agent vertical velocity 3) and 4) bot-
tom and top vertical position of the current tunnel, 5)
agent’s distance to the next tunnel and 6) and 7) bottom
and top position of the next tunnel. The dimensionality
of the CFB state space is similar to that of simple aDBS
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setups: S is usually represented by a small number of
power features extracted from local field potential sig-
nals [27–29]. Assuming that each of the bilaterally im-
planted DBS electrodes has 4 contacts, S results in an
8-dimensional representation.
Actions: The binary action space comprises two actions:
vertical thrust and no vertical thrust. In a simplified ap-
proach to aDBS, stimulus amplitude parameter can also
be defined as binary, i.e., DBS-on/off. Note that in more
advanced setups, the action space might be continuous
(if a continuous amplitude control is desired) or multidi-
mensional (if other DBS parameters like stimulation fre-
quency or stimulating contacts are considered).
Reward signal: Designing a good reward signal is diffi-
cult and problem specific. In aDBS, it requires a trade-
off between at least the amelioration of PD-related symp-
toms and stimulation-induced side effects. In CFB, we
define the reward signal as a function of the proximity
with the center of a tunnel, for each time point k:

R(sk,sk+1) =


0.1 if in sk+1 agent is inside tunnel
−0.4 if in sk+1 agent outside tunnel
−0.9 if in sk+1 top or bottom is hit

Partial observability in the CFB environment:
Noise in the state representation: Noisy state measure-
ments are embedded in the environment by adding zero-
mean Gaussian noise to each feature describing the state.
The standard deviation of each noise source is defined
individually per feature as σ f = ξ · (lu

f − ld
f ), where ξ de-

notes the noise level and the interval [ld
f , l

u
f ] define do-

main of feature f . This modified version of CFB is called
CFB-Nξ in the following.
History dependent action effect: The washout effect is
simulated as a sustained aftereffect of each thrust action,
and termed CFB-H. It is implemented using an action his-
tory which considers (at maximum) the last 100 thrusts.
Specifically, the decaying thrust T d

k at a time point k after
a sequence of Nthrust thrust actions in the last 100 time
steps is defined as: T d

k = T d
k−1−

T
Nthrust/3 , where T repre-

sents the thrust generated by a single thrust action. The
constants selected here for the decaying thrust function
are based on studies reporting ratios between accumu-
lated stimulation Nthrust and washout duration in a range
of 8:1 to 2:1 [30, 31]. The horizon is limited to a his-
tory of 100 time steps to ensure at least a limited level of
controllability in the CFB-H environment.

EXPERIMENTAL SETUP

Choice of RL algorithms: Three model-free RL strate-
gies were chosen as base algorithms, from the three main
method families in RL: Value-function based, policy gra-
dient, and actor critic. The selection of specific meth-
ods involved the following criteria: First, we considered
the reported performance across multiple RL tasks in the
OpenAI benchmark1. Second, we took into account the

1https://github.com/openai/baselines-results

scientific impact of each algorithm within the RL com-
munity, as measured by the number of citations of the
corresponding papers, their publication date, and number
of appearances in review studies. The resulting collection
of representative RL base algorithms, each using a feed-
forward (FF) neural network, comprises: 1) Deep Q-
Learning (DQN) with experience replay and a target net-
work [32], an off-policy value function based method, 2)
Advantage Actor-Critic (A2C), a 1-step advantage actor-
critic method [33], and 3) Proximal Policy Optimization
(PPO), a 1-step advantage actor-critic method focusing
on an improved policy gradient estimate [34].
For comparison, we have also included a simple reac-
tive agent, designed to resemble a threshold-based con-
trol strategy. It applies thrust whenever the agent finds
itself below the center of a tunnel and stops when it is
above the tunnel.
RL approaches to non-stationary MDP: By their de-
sign, the RL base algorithms DQN+FF, A2C+FF and
PPO+FF can not be expected to deal well with partial ob-
servability of non-stationary origin. However, they can
be equipped with the ability to consider a (potentially in-
finite) state (or state-action) history as proposed by [35–
38]. For this reasons we have extended the DQN, A2C,
and PPO models by recurrent networks implemented us-
ing either gated recurrent units (GRUs) or long short term
memory (LSTM) units [39].
As a result, we could benchmark the following
nine RL approaches: DQN+FF, DQN+LSTM,
DQN+GRU, A2C+FF, A2C+LSTM, A2C+GRU,
PPO+FF, PPO+LSTM, and PPO+GRU.

Benchmark design:
Model architectures and hyperparameter optimiza-
tion: For all models, hyperparameters were optimized
using the sequential model-based configuration frame-
work introduced in [40]. The source code including all
parameter details used to optimize and train our agents
and the resulting architectures is provided online2.
Training stage: A population of twenty RL agents per
method was trained, each trained in an individual instance
of the same RL task, but initialized with different random
seeds. All agents were trained over two million interac-
tions in the environments CFB-N and CFB-H. An Adam
optimizer [41] updated a model’s parameters every 64 in-
teractions. The performance of a learning agent during
training is evaluated in an independent test environment
every 300 parameter updates. The performance reported
corresponds to the average reward obtained by each pop-
ulation of agents.
Testing stage: After training, each agent population is
tested in twenty randomly initialized environments dur-
ing 50k interactions. The reported performance corre-
sponds to the average reward for each agent population.

RESULTS

Performance in CFB-H environments:

2https://github.com/mVaihinger/RLAgentsFlappyBird
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The training performance of the different agents in the
CFB-H environments are depicted in Figure 1. Only the
A2C agents consistently achieved a better performance
than the reactive agents. PPO-FF achieved also a simi-
lar performance, however, it was less stable throughout
training. All DQN-based agents had a much slower con-
vergence rate and stayed considerably below the perfor-
mance of the simple reactive agents.

Figure 1: Time courses of training performance over two mil-
lion steps in the CFB-H task.

Consistent with the training stage, Figure 2 shows that
DQN agents yielded the worst performance in the test
stage, whereas agents based on A2C and PPO better than
the reactive agents on average. Overall, agents based on
LSTM units achieved the best performance.

∗∗ p < 0.005
∗p < 0.05

FF

LSTM

GRU

reactive

Figure 2: Boxplot of RL agent’s performance in the unseen
CFB-H test environments. Statistical significance was tested
with the Wilcoxon ranksum using Bonferroni correction.

Performance in CFB-N environments:
Figure 3 shows the training performance of all agents in
CFB-N environments. For the RL-methods, the main dif-
ference elicited by varying noise levels is the final train-
ing performance, while the convergence rate was rather
unaffected by noise. Among all, A2C and PPO agents
showed the greatest sample efficiency, as their perfor-
mance improved the fastest in early stages of training,
with A2C showing the most stable performance through-
out training. While A2C-LSTM showed the best per-
formance, even under strong noise regimes (ξ < 0.5), it
is interesting to see, that A2C+FF could still cope quite
well with the noise, while GRU-based models yielded the
worst performance. These observations also hold during
test stage, shown in Figure 4.

DISCUSSION

We have introduced a simulated environment to support
early development stages of data-driven aDBS strategies

based on RL. Specifically, the environment is designed to
study approaches coping with partial observability prop-
erties. In addition, we have benchmarked representative
RL methods, that have been modified to cope with the
challenges faced by an aDBS system.

Suitability of considered methods for partially observ-
able environments: The comparative analysis presented
was motivated by the hypothesis that models aimed at
capturing long term dependencies yield a higher end per-
formance in partial observable environments, compared
to classic approaches. We have shown that using LSTM-
and GRU-based models does not consistently improve
end performance compared to agents based on classic FF
networks; however, LSTM-based models enable higher
sample efficiency, as proved by the faster convergence of
such models in early stages of training. We have also ob-
served that the major performance difference is caused by
the RL method chosen, and not by the type of recurrent
units used in them.

CFB as a development environment of RL-aDBS: Al-
though it is not possible to establish a one to one cor-
respondence between a real aDBS environment and the
CFB environment used, our framework allows to study
specific characteristics of aDBS in early stages of control
algorithm development, when physiological and func-
tional constraints and clinical interpretability are not crit-
ical. A key feature of our contribution is the flexibility
to explicitly embed key challenges found in aDBS in a
modular fashion. In the present contribution, we have
studied precise non-stationary dynamics caused by DBS
washout, as well as noisy state representations. However,
our framework can easily include other major sources of
partial observability such as circadian rhythm variations,
medication induced changes, among others. The only
prerequisite is an appropriate scaling of time constants,
as we have exemplified with the CFN-H environment.
In conclusion, our framework provides a cost efficient
platform for early stage development of novel aDBS
strategies before accessing more complicated setups, as
physiologically-motivated simulations and, as a final
goal, patients.
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