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ABSTRACT: An intracortical activity decoding algo-
rithm based on convolutional neural network (CNN) is
proposed for classifying the primate intracortical activity
of motor imagery under a series of movement tasks. An
intracortical brain-computer interface allows the subjects
to continuously drive a mobile robot using its brain activ-
ity from the motor cortex. Under the leave-one-day-out
cross validation, the CNN-based algorithm achieves reli-
able classification performance in all the four movement
tasks, including, Forward, Left, Right, and Stop. Experi-
mental results indicate that the Cohen’s kappa of the two
subjects are both above 0.4. Additionally, the compar-
ison shows that the CNN-based method is significantly
better than the linear discriminant analysis (LDA) which
is a state-of-the-art decoding approach.

INTRODUCTION

Brain–computer interface (BCI), which can provide a
new communication channel to humans, has received in-
creasing attention in recent years [5]. BCI allows one
to control external devices through direct brain activity
recognition by a computer [1]. The use of invasive elec-
trocorticographic (ECoG) signals for BCI applications
draws numerous interests recently [13]. ECoG directly
records signals originating from brain tissues beneath the
electrode surface, thus it has much higher spatial resolu-
tion compared with EEG [18].
Hence, the motor imagery based BCI system is based on
the fact that there will be a change of activation in certain
areas of the brain when a subject imagines movement any
part of their body [9]. For example, when a person imag-
ines moving his/her right arm, there will be a desynchro-
nization of neural activities in the primary motor cortex
of the left brain [12].
In recent years, researchers have increasingly focused on
BCI systems for different practical areas, e.g., brain-wave
controlled robot [6]. Multi-array electrodes implanted in
motor image area can record stable neural activity for
achieving various kinds of objectives in BCI system [8].
With invasive or noninvasive recording method, the BCI
uses the neural activity of the brain to control effectors
such as robotic arm or wheel chair. The core compo-
nents of a BCI system are brain signal acquisition, pre-

processing, feature extraction, classification, translation
and feedback control of external devices [7].
Convolutional neural network (CNN) is a multilayer per-
ceptron with a special topology and contains several hid-
den layers [12]. CNN has been employed to solve certain
computer vision problem, e.g., medical image process-
ing [15]. There is also increasing interest in using deep
CNN for end-to-end neural signal analysis. Brain activity
decoding can be improved by using batch normalization,
dropout and exponential linear units implies which are
generally used in deep learning [14].
In this work, we proposed a CNN-based decoding algo-
rithm classify the intracortical activities in the motor cor-
tex of primate under a series of movement tasks, includ-
ing, “Forward”, “Left”, “Right”, and “Stop”. With the ro-
bust algorithm, the monkey can control the robot in 360
degree using its brain signal. The decoding problem is
transferred into a 4-labels classification problem for an-
notating long-term activity automatically. Since the corti-
cal activity may vary among subjects and the day-to-day
variation may affect the algorithm performance [2], we
constructed a robust subject-specific movement decod-
ing algorithm based on CNN using the leave-one-day-out
strategy.

METHOD

Data acquisition: The dataset used in this work was
collected at A-Star I2R, Singapore, consists of intracor-
tical activities from two healthy monkeys (Macaca Fas-
cicularis) [6]. Figure 1 demonstrates the experimental
procedure. A total of 96-channel multielectrode array
was implanted into the hand/arm region of the left pri-
mary motor cortex. Then, the monkeys were first trained
to control the platform using a joystick. Specific cues
with food stimuli were then given, ordering the monkeys
to move toward a certain direction, which is “Forward”,
“Left”, “Right”, or “Stop”. If the monkey was successful
in the trial, the food would be given as a reward. When
the monkey can handle the robot skillfully to reach the
given targets, the joystick would be disconnected from
the platform. Since the joystick was disconnected, the
monkey can only control the robotic platform using its
intracortical activities. The recorded intracortical activi-
ties were transferred to the computational center for fur-
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Figure 1: Experiment Setup. The implanted array in the hand/arm region records the intracortical activity during the movement
tasks. If the monkey moves in the direction correctly, a food reward will be given. The disconnected joystick is treated as the ground
truth of the moving willing from the monkey.

ther analysis. Only the data of joystick disconnected were
used in the classification problem.
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Figure 2: Examples of the intracortical activities belong to
the four movement tasks.

The intracortical activities were sampled at 12987Hz.
Monkey A provided 6 days’ data with 1-3 sessions in
each day over 10 weeks, depending on how well the mon-
key cooperated with the trainers. Similarly, Monkey B
provided 9 days’ data with 1-3 sessions in each day over
10 weeks. Each session lasted about 350 seconds con-
taining 14-16 moving trials. Figure 2 demonstrates an ex-

ample of the intracortical activity segment for each of the
four movement tasks. Each subfigure is a 500ms single-
channel intracortical activity segment belongs to a certain
movement task. For space sake, only one channel is se-
lected for the illustration.

Preprocessing: The raw data were first filtered through
two FIR filters. From a biophysics perspective, much of
the cortical activity is known as the origins of the local
field potential (LFP). In this work, the intracortical activ-
ity in a low frequency band is treated as the LFP for the
feature extraction.
High-frequency signals have been proved as putative
biomarkers of certain neurological disorder. In BCI sys-
tem, firing rate of the high-frequency brain wave is usu-
ally used as an effective marker for decoding the neu-
ral activity. The intracortical activity in a high frequency
band is used for extracting the firing rate as a component
in the feature matrix.
The features from LFP and high-frequency band are ex-
tracted separately and combine together to construct the
feature matrix. For the CNN-based classification, the fea-
ture matrix is used as the 2D input.
To extract the features from LFP, a 2048-order FIR filter
was used with the pass band at [0.1,128]Hz. To extract
the features from high frequency band, a 256-order FIR
filter was used with the pass band at [300,3000]Hz.
After filtering the signal into low and high frequency
bands, the intracortical activities were divided into multi-
channel segments using a sliding window. The segmenta-
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Figure 3: Segments extracted from long-term multi-channel intracortical activities. The illustration belongs to a “Right” trial.
The time 43.79s is the start cue (cue_start), while the time 49.47s is the end cue of the same trial. The green block is a 500ms slide
window with 400ms overlap. In each step, the slide window will move 100ms while the 96-channel signal inside will be treated as one
intracortical activity segment.

tion process of one “Right” trial is illustrated in Figure 3.
The time 43.79s is the start cue of a right movement task
(cue_start), and the time 49.47s is the end cue of the same
trial. The green block is a 500ms slide window with
400ms overlap. In each step, the slide window moves
100ms while the 96-channel signal inside is chopped as
one cortical activity segment being labelled according to
the movement task. With the same sliding window, all
the trials of the four movement tasks are transferred into
multi-channel intracortical activity segments.

Problem formulation: The purpose of this study
is identifying intracortical activity in motor area trig-
gered by various movement tasks, including, “Forward”,
“Left”, “Right”, and “Stop”.
After the preprocessing, the research problem is trans-
ferred into a 4-label classification problem. Algorithm 1
illustrates the process of the intracortical activity decod-
ing.
In the feature extraction, features based on wavelet
transform and event-related desynchronization
(ERD)/synchronization (ERS) are extracted from
LFP while the firing rate is extracted from the high-
frequency band. Then, the wavelet feature, ERD/ERS,
and firing rate construct the feature matrix.
In the leave-one-day-out cross validation, the feature ma-
trix is treated as a 2D input of the CNN.
Details of feature extraction and CNN-based classifica-
tion will be given in the following subsections.

Wavelet feature: As a powerful time-frequency anal-
ysis toolbox, DWT decomposes a signal into a series of
coefficients and features can be extracted from the coeffi-
cients to represent the properties of the signal. “sym2” is
employed as the mother wavelet here. The decomposition
level is set to 5 producing 5 detail bands and 1 approxi-
mation band. For each band, 9 features as listed below

are extracted to construct the wavelet component in the
feature matrix.

1. Max: the maximum coefficient

2. Min: the minimum coefficient

3. Mean: the average of coefficients

4. STD: the standard deviation of coefficients

5. Skewness: the skewness of coefficients

6. Kurtosis: the Kurtosis of coefficients

7. Energy: the squared sum of coefficients

8. nSTD: normalized STD, ST D
Max−Min

9. nEnergy: normalized energy, Energy
band length

Firing rate: The signals in [300,3000]Hz are used for
spike detection. Spikes are detected using an automated
threshold-crossing criterion selected for each channel.
The threshold (T hr) for spike detection follows the for-
mula [11]:

T hr = 4δn;δn = median{ |x|
0.6745

} (1)

, where x is the filtered signal, and δ is an estimate of the
standard deviation of the background noise.
The spike detection are operated in the negative quad-
rants. Amplitude lower than −T hr will be marked as a
spike. For each channel, the number of spikes is recorded
as the firing rate in the corresponding channel position.

ERD/ERS: An internally or externally paced event re-
sults not only in the generation of an event-related poten-
tial (ERP) but also in a change in the ongoing EEG/MEG
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Algorithm 1 Pseudocode for CNN-based intracortical
activity decoding
Input: Activities of n Days
Output: Cohen’s kappa. precision, recall, f1-score for
each movement task

1: Initialization: Kappa = zeros((n,1)). precisionAll, re-
callAll, f1-scoreAll = zeros((n,4,3)), zeros((n,4,3)),
zeros((n,4,3))

2: Read intracortical activity datasets
3: Filter data into low and high frequency bands
4: slide data in low and high frequency bands into 500

ms segments with 400ms overlap
5: Extract (wavelet, ERD/ERS, firing rate) features .

feature extraction
6: for day in (1 : n) do . leave-one-day-out cross

validation
7: Set up X_train,Y _train,X_test,Y _test for the ith

day
8: batchSize = 128; inputRows, inputCols = 96, 56
9: lossFun = “sparse_categorical_crossentropy”

10: targetNames = [’Forward’, ’Right’, ’Left’,
’Stop’]

11: model = Sequential()
12: model.add(Conv2D(100, (3,3), strides = (1,1),

input_shape = (inputRows, inputCols,1)))
13: model.add(Activation(actiFun))
14: for epoch in (1 : 10) do
15: model.add(Conv2D(100, (3,3), strides =

(1,1), padding = “same”))
16: model.add(Activation(“ReLU”))
17: model.add(MaxPooling2D(pool_size = (2, 2)))
18: model.add(Dropout(0.5))
19: model.add(Flatten())
20: model.add(Dense(56))
21: model.add(Activation(“ReLU”))
22: model.add(Dropout(0.25))
23: model.add(Dense(4))
24: model.add(Activation(“softmax”))
25: model.compile(loss = lossFun, optimizer =

“sgd”, metrics = “accuracy”)
26: model.fit(X_train, Y_train, batch_size = batch-

Size, epochs = 50)
27: Y_predict = model.predict_classes(X_test)
28: Kappa[day] = cohen_kappa_score(Y_test,

Y_predict)
29: precisionAll[day], recallAll[day], f1-

scoreAll[day] = classification_report(Y_test,
Y_predict, target_names = targetNames, output_dict
= True)

30: Cohen’s kappa, precision, recall, f1-score =
mean(Kappa), mean(precisionAll), mean(recallAll),
mean(f1-scoreAll)

31: return Cohen’s kappa, precision, recall, f1-score

in form of an event-related desynchronization (ERD)
or event-related synchronization (ERS). In this work,
ERD/ERS are extracted from the intracortical activity as
one component in the feature matrix for the classification.
The ERD/ERS follows the definition in [10] as

ERD/ERS =
A−R

R
×100% (2)

, where A is the power of signal within the frequency
band of interest, R is the power of signal as the preceding
baseline in the reference period. Here the reference signal
is selected from 2.2 to 0.2 second before each movement
cue.

CNN structure: Deep learning is a promising avenue
for big data analysis. Some state-of-the-art deep learn-
ing algorithms, such as deep neural networks and deep
CNN have been successfully applied to image classifi-
cation [4]. Recently, referenced from previous work in
computer vision, CNN has been increasingly employed
for EEG signal classification [14]. Here we use the deep
CNN as the classifier to decode the intracortical activities
under the 4-label movement tasks.
Keras 2.2.4 (https://keras.io/) is used to construct
the CNN network. Details of the network structure are
shown in Algorithm 1.

Leave-one-day-out cross validation: Previous work
proved that motor intracortical spiking activity under dif-
ferent movement tasks are easily-classified in one day.
However, the problem turns into tricky when facing a
inter-day timeline [17]. The mental state, physiological
state, individual difference, etc, may affect the motor cor-
tical activity of the subject [2]. In the real practice, a
re-calibration for classification on each day will be very
time-consuming. Even if the re-calibration can guaran-
tee the prediction performance, ignoring the pre-recorded
signals will be quite a waste, abandoning valuable pat-
terns may exist across days.
Considering the individual and the day-to-day differ-
ences, the subject-specific leave-one-day-out cross vali-
dation is employed for both monkeys. In each step of the
cross validation, the feature matrix of one day is treated
as the test set, while all the left days construct the training
set.

Classification evaluation: Precision, recall, f1-score,
and Cohen’s kappa are employed for the classification
evaluation. Accuracy is not employed here since in daily
real action, it is impossible to make a perfect data bal-
ance of the 4 movement tasks. The majority of one or
more classes may produce a fake high or low accuracy.
In contrast, Cohen’s kappa are much robust than simple
percent agreement.
The definition of Cohen’s kappa is:

k =
po− pe

1− pe
(3)

, where po is the empirical probability of agreement on
the label assigned to any sample (the observed agreement
ratio), and pe is the expected agreement when both an-
notators assign labels randomly. pe is estimated using a
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Table 1: Decoding Performance of CNN on the Two Monkeys.
Monkey A (k = 0.4077±0.1863) Monkey B (k = 0.4754±0.1297)

precision recall f1-score precision recall f1-score
Forward 0.5471±0.1508 0.5017±0.2814 0.4916±0.1972 0.5732±0.1776 0.4640±0.3280 0.4227±0.2016
Left 0.5401±0.2095 0.4065±0.2863 0.4235±0.2162 0.7499±0.2032 0.6719±0.1852 0.6685±0.1376
Right 0.5962±0.2308 0.6832±0.1445 0.5805±0.0966 0.7236±0.1544 0.5442±0,2799 0.5416±0.2028
Stop 0.8271±0.1564 0.5996±0.3142 0.6025±0.2524 0.7179±0.1287 0.7287±0.2235 0.6925±0.1335
Average 0.6276±0.1869 0.5477±0.2566 0.5245±0.1906 0.6912±0.1660 0.6022±0.2542 0.5813±0.1689

Table 2: Decoding Performance of LDA on the Two Monkeys.
Monkey A (k = 0.3288±0.1374) Monkey B (k = 0.4371±0.1281)

precision recall f1-score precision recall f1-score
Forward 0.3287±0.1436 0.2596±0.1803 0.2719±0.1837 0.5632±0.1372 0.3406±0.2621 0.3646±0.2177
Left 0.5830±0.1743 0.5651±0.3044 0.4780±0.2045 0.7693±0.1813 0.5895±0.2846 0.5987±0.2035
Right 0.6184±0.1185 0.4666±0.1869 0.5058±0.1315 0.6614±0.2130 0.5500±0.2715 0.5032±0.1952
Stop 0.6354±0.1577 0.6732±0.2363 0.5957±0.1144 0.6264±0.1178 0.8001±0.2071 0.6751±0.1044
Average 0.5414±0.1485 0.4912±0.2270 0.4629±0.1585 0.6551±0.1623 0.5700±0.2538 0.5354±0.1802

per-annotator empirical prior over the class labels [3]. If
the raters are in complete agreement then k = 1. If there
is no agreement among the raters other than what would
be expected by chance, k = 0.
In this work, Cohen’s kappa is calculated across days in
the leave-one-day-out cross validation. For each subject,
the performance of CNN in each class is evaluated under
precision, recall, and f1-score. Taking class “Forward”
for instance, suppose all “Forward” segments are treated
as “positive”, then, segments belong to “Left”, “Right”,
and “Stop” are clustered into “negative”. Therefore, the
classifier had 4 possible outcomes: 1. True positive (T P);
2. False positive (FP); 3. True negative (T N); 4. False
negative (FN). The definitions of precision, recall, and
f1-score are as follows:

1. f 1− score = 2T P
2T P+FP+FN ;

2. precision = T P
T P+FP ;

3. recall = T P
T P+FN ;

RESULTS AND DISCUSSION

Here we exhibit the algorithm outcomes and briefly give
some heuristics of using the CNN-based intracortical ac-
tivity decoding algorithm.
Table 1 lists the algorithm performance on the two mon-
keys. Cohen’s kappa is calculated across days in the
leave-one-day-out cross validation. The mean± std of
Cohen’s kappa is in the first line. Results indicate that
the decoding algorithm produces Cohen’s kappa above
0.4 on both monkeys leading to a moderate agreement
between the true and the predicted labels of the test data
set. To zoom in each of the four movement tasks, for each
subject, the performance of CNN is evaluated under pre-
cision, recall, and f1- score. The mean± std of the cross
validation is listed corresponding to “Forward”, “Left”,
“Right”, and “Stop”. The last line in Table 1 is the av-
erage values of precision, recall, and f1-score of the two
monkeys.

All the recalls are much higher above the chance level
(25.00%). In most cases, the precision, recall, and f1-
score are close to or even above 50.00%. The recall in
class “Left” of Monkey A gets the lowest value 40.65%,
meaning the decoding algorithm more occasionally la-
belled the positive segments into negative than it per-
forms in the other cases. The high FN also creates the
relatively lower f1-score, compared with that in the other
three classes. Similarly, the f1-score of class “Forward”
on Monkey B is much lower than that in the other classes.
This indicates that the individual difference may affect
the performance of the CNN-based decoding algorithm.
Furthermore, for each subject, the computational results
in the four classes reflect the class difference when strip-
ping one from the others. Taking Monkey B for example,
the decoding algorithm obviously performs much better
in class “Stop” than in “Forward”, “Left”, or “Right”.
The precision and recall are both above 70.00% while the
f1-score is the highest (69.25%) across all the cases. This
suggests that it is relatively easier for the algorithm to
make a distinction for class “Stop” than the other classes
on Monkey B.
For space sake, we do not illustrate the algorithm perfor-
mance of each day in the leave-one-day-out cross vali-
dation. The standard deviation can partially indicate the
day-to-day difference. Both monkeys produce the stan-
dard deviation above 10.00% in all the four movement
tasks, except the f1-score of class “Right” on Monkey A.
This indicates the existence of high day-to-day difference
of the intracortical activity on both monkeys.
For the comparison with the state-of-art method for motor
imagery decoding, Table 2 illustrates the computational
results under linear discriminant analysis (LDA) [16]. In
the same feature space, the CNN-based decoding algo-
rithm generates better overall output than LDA. For Mon-
key A, the average precision, recall, and f1-score got an
improvement at .0862, .0565, and .0616, respectively.
For Monkey B, the average precision, recall, and f1-score
got an improvement at .0361, .0322, and .0459, respec-
tively.
Overall, on both Monkey A and B, the CNN-based de-
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coding algorithm produced stable classification results.
The average recall is much higher than the chance level
while the precision and f1-score are all above 50.00%.
Since the method generates robust performance in over-
coming the day-to-day and the individual differences, it
might be useful in certain BCI system like, brain-wave
controlled robot/wheelchair. It is worth to mention that
the current precision and recall here are not sufficient for
control of the actuator in real practise which leaves much
space for decoding performance improvement. In our
future work, we will modify the CNN structure and try
other classifiers to improve the decoding accuracy.

CONCLUSION

Using multielectrode array implanted in the motor cor-
tex, the BCI system allows the subject to continuously
drive a mobile robot in four directions with intracortical
activity from the motor cortex. In this work, we present
a CNN-based decoding algorithm for classifying the in-
tracortical activities from the motor cortex under a se-
ries of movement tasks, including, Forward, Left, Right,
and Stop. Considering the individual and the day-to-day
differences, we make use of the leave-one-day-out cross
validation to attain more robust and thus generalizable re-
sults. Experimental results indicate the reliable perfor-
mance of the CNN-based multi-label classifier. The Co-
hen’s kappa of the two subjects are both above 0.4. The
average precision, recall, and f1-score of the 4 classes are
all above 50.00%, where the highest is 69.12% and the
lowest is 52.45%. Compared with LDA, the new decod-
ing algorithm yields better classification results. In our
future work, we will modify the CNN structure and try
other classifiers to further improve the decoding outcome.
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