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ABSTRACT: Timeflux is an open-source framework for
the acquisition and near real-time processing of signal
streams. It can be used to build any kind of brain-
computer interface and neurofeedback application, al-
lowing high performance for both quick prototyping and
final product development. Timeflux has been designed
to be lightweight, easy to use, scalable, and extensible.
It equally suits researchers, companies and neurotechnol-
ogy enthusiasts. Timeflux is developed in Python and re-
leased under the permissive and flexible MIT license. It
is available at https://timeflux.io.

INTRODUCTION

Research on brain-computer interfaces (BCIs) has been
carried out for about half a century, but has been experi-
encing momentum only recently [1]. It is now attracting
researchers—not only in neurosciences, but also in di-
verse disciplines such as engineering and informatics—
as well as private companies and individuals interested in
exploring the frontiers of information technology such as
hackers [2]. For a long time, advances in BCIs have been
hindered by a lack of standardization of data acquisition
protocols, data format and data processing. The poor
availability of large public databases is another factor that
has slowed progress [3]. In Europe, the necessity of in-
troducing standards and sharing data has been pointed out
by several consortia of European projects. For instance,
the integrative project BNCI Horizon 2020 has created
and promoted the first comprehensive repository of pub-
lic BCI databases [4]. Coupling with this, the Mother
of All BCI Benchmarks (MOABB) [5] allows to test the
accuracy of BCI decoders on all available databases in
an objective and easily reproducible way (e.g., see [6] in
these proceedings).
Another factor slowing the progress in BCI research is
the lack of a standard framework for online data acqui-
sition and processing, that is, the software at the very
heart of actual BCI systems. For such a framework sev-
eral characteristics are desirable: it should be easy-to-use,
lightweight, efficient, scalable and extensible. Moreover,
it should encourage exploration, allowing quick prototyp-
ing and testing as well as facilitating the integration with
relevant existing code libraries and external tools, with-

out sacrificing adequacy with the development of reliable
products for the public. In this way, it may suit all actors
of BCI research and development, both within academic
institutions and private companies, allowing global col-
laboration.
Several frameworks for acquisition and real-time pro-
cessing of signal streams have been developed (Tab. 1),
however none of them satisfy all these criteria. Existing
frameworks are either domain-specific—that is, they ap-
ply only to specific neuroimaging modalities— or are dif-
ficult to extend, or else are made available under a restric-
tive license that does not favor at the same time free and
commercial development. For these reasons we hereby
present a new framework, named Timeflux.
Timeflux has been developed in Python, which has be-
come the programming language of choice in the data
science and machine learning communities, thus already
offering a wide panel of code libraries. Python is an ex-
tensible and cross-platform language, characteristics that
have proved essential for its massive adoption. Time-
flux is open-source and is released under the MIT license,
which is very flexible. It is not specific to neuroimaging
or bioelectrical signals, thus it can be used in the more
general context of IoT, as well as in geoscience, control
engineering, algorithmic trading, and more.

DESIGN PRINCIPLES

Based on the considerations above, the following set of
rules has guided the development of Timeflux:

Simplicity of use: The framework should be easy to
learn, to use, and to extend. This implies a clear docu-
mentation, a simple descriptive syntax for pipelines, and
a minimal effort requirement for writing new plugins.

Lightness: In order to ensure stability and friction-
less maintenance, the core should maintain a small foot-
print. Only the essential features belong to the core, ev-
erything else is moved to plugins. This leads to a code-
base that is easy to apprehend.

Agnosticism: The user should not be locked into
a specific paradigm or set of tools. From acquisition
through processing to recording, every step is config-
urable and replaceable.
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Extensibility: The architecture should be based on
plugins. This allows custom node development, integra-
tion with specialized libraries and hardware, and encour-
ages external contributions without depending on base
code merges. In Timeflux, plugins are ordinary Python
modules, with only one required method to implement.

Reusability: Resources should not be wasted by
rewriting common algorithms and structures. Timeflux
relies on industry standards such as SciPy [7] and Numpy
[8] for scientific computing, Pandas [9] for tabular data,
Xarray [10] for multidimensional data, Scikit-learn [11]
for machine learning, and NetworkX [12] for graph pro-
cessing. These tools are well maintained, and many sci-
entists are already familiar with them.

Scalability: Parallelism and concurrency should be
automatically enforced when applicable. Timeflux dis-
tributes computing across CPU cores, threads, and even
hosts.

Efficiency: High-level interfacing should not sacrifice
performance. Sensible choices and careful memory man-
agement allow near real-time processing.

THEORY OF OPERATION

Timeflux is a framework to create pipelines, called appli-
cations. It does not matter if they are mere acquisition
units, signal processing prototypes or complex BCI and
biofeedback solutions. Applications are defined by a set
of processing steps, called nodes, which are linked to-
gether using a simple YAML syntax.
In order to be valid, an application must satisfy the re-
quirements of a directed acyclic graph (DAG) [13, 14],
that is, a set of nodes connected by edges, where infor-
mation flows in a given direction, with no internal loop
(Fig. 1). Multiple DAGs are authorized within the same
application, optionally communicating with each other
using one of the available network protocols. DAGs run
simultaneously at their own adjustable rate. Within each
DAG, nodes are executed sequentially according to the
topological sorting of the graph [15].

Figure 1: An example directed acyclic graph (DAG), arranged
in topological order. Circles represent nodes, arrows are edges.
The connection points between nodes and edges are called
ports. Information flows from left to right, at a frequency de-
fined by the graph rate.

Nodes may expect one or more inputs and may provide
any number of outputs. These I/O, called ports, have two
main properties. The data property is either a datetime-
indexed Pandas DataFrame, or an Xarray structure with at
least two dimensions: time and space. The meta property
is a dictionary containing arbitrary keys, which can be
used for example to declare a stream rate or to describe
the context associated with an event.

AVAILABLE NODES

Timeflux comes with a growing collection of nodes, either
available in core or as plugins.

LSL: The Lab Streaming Layer [16] is a transport and
synchronization library compatible with a large range of
EEG equipment. Timeflux is able to handle both input and
output streams.

Publish/Subscribe: The publish/subscribe pattern al-
lows asynchronous messaging between DAGs and/or be-
tween external components. Subscribers express interest
in topics, and receive data matching these topics. There
can be more than one publisher per topic. This protocol
is implemented using the ZeroMQ library [17].

OSC: The Open Sound Control protocol [18] is com-
monly used in media applications. It is useful to create
rich interactive environments.

Epoching and windowing: Several nodes to extract
epochs or to accumulate data from streams are included.

HDF5: The Hierarchical Data Format [19] is a stable
and powerful data storage and query solution. Nodes for
recording and playback are incorporated.

Queries and expressions: A small set of nodes are
available to extract data matching specific criteria and to
execute arbitrary arithmetic operations.

Web User Interface: Visualizing data and sending
events is possible directly within a browser. Fig. 2 is a
screenshot of a typical session. The current implemen-
tation uses the HTML5 canvas object, which runs in the
main thread. A new version taking advantage of the We-
bGL technology is underway. Preliminary tests show that
over a million points can be plotted per second.

Figure 2: Data stream visualization in a web browser (electroen-
cephalographic data in this example).

Digital Signal Processing: Common signal processing
algorithms are already available (for instance, filtering,
FFT, covariance matrix estimation, etc.).

Dejittering: A signal periodicity can deviate from its
nominal rate, or data may be acquired in chunks. Several
mitigating methods are provided.
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Machine Learning: Models can be fitted on epoched
data, and then used to classify or transform new data.
This is made possible by the scikit-learn library.

Branches: The same processing pipelines are often
reused from project to project. Timeflux will provide a
method to define sub-graphs as simple nodes. At the time
of writing, this is still a work in progress.

Device drivers: Plugins for direct integration with pop-
ular open-source hardware, such as OpenBCI [20] and
BITalino [21], as well as proprietary hardware, have been
developed and more will be released in the upcoming
months.

PERFORMANCES

Good practices: Python is a high-level programming
language. While this offers several advantages, it also
implies some trade-offs in terms of efficiency. This is-
sue is mitigated in several ways. Special attention is
paid to avoid memory copy unless absolutely required.
When dealing with numpy-based structures, vectorized
functions (written in C) are used whenever possible. At
the very least, the Pandas apply() function benefits
from low-level optimization. These simple measures help
maintaining good performances for most applications. In
extreme cases, it is possible to speed execution time by
rewriting a node’s critical functions in Cython [22] or by
using Numba [23].

Architecture: Timeflux takes advantage of modern
CPU architecture and distributes the execution of DAGs
across cores. Nodes that require an infinite loop (i.e., de-
vice drivers) run parts of their code into a separate thread,
so the whole graph is not penalized. Demanding applica-
tions can further be optimized by running synchronized
Timeflux instances on multiple computers.

Real-time: Hard real-time is when missed deadlines
are unacceptable and result in system failure [24]. In
most cases, hard real-time is not required, and soft real-
time (also known as near real-time) is sufficient. Timeflux
allows a few tens of milliseconds latency (the latter be-
ing modulated by the graph rate), as long as the incoming
data is timestamped at the point of origin. Time offset
correction is achieved either by using a dedicated com-
munication protocol such as LSL, or by repeatedly syn-
chronizing Timeflux instances using an algorithm similar
to the Network Time Protocol [25], thus ensuring sub-
millisecond precision.

EXAMPLE

As an example we illustrate a simple alpha-
neurofeedback application, which is schematically
represented in Fig. 3. The application consists of three
graphs. In the main one, we assume that the EEG data is
acquired through a LSL inlet. Data is accumulated into
a rolling window, on which the classical Welch’s method
is applied with default parameters [26]. The frequency
bands are then extracted from the periodogram. Finally,

Figure 3: Schematic representation of a basic neurofeedback
application. The three blue boxes constitute the Timeflux appli-
cation. The white boxes are core nodes. The green boxes are
plugin nodes. Yellow boxes indicate external components.

the relative alpha power is sent to an OSC outlet. An
external application receives this data and plays a sound
when the feedback signal crosses a defined threshold.
The other two graphs are not strictly required, but illus-
trate some important principles. The graph containing
the Broker node acts as a proxy. It receives data from
publishers (in our example, the raw EEG stream and
the computed frequency bands) and redistributes it to
subscribers. In the last graph, these two data streams are
aggregated and saved to a HDF5 file.
The whole application is expressed in YAML as follows:
graphs:

# The publish/subscribe broker graph
- id: PubSubBroker

nodes:
# Allow communication between graphs
- id: Broker

module: timeflux.nodes.zmq
class: Broker

# The main processing graph
- id: Processing

nodes:
# Receive EEG signal from the network
- id: LSL

module: timeflux.nodes.lsl
class: Receive
params:

name: signal
# Continuously buffer the signal
- id: Rolling

module: timeflux.nodes.window
class: Window
params:

length: 1.5
step: 0.5

# Compute the power spectral density
- id: Welch
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module: timeflux_dsp.nodes.spectral
class: Welch

# Average the power over band frequencies
- id: Bands

module: timeflux_dsp.nodes.spectral
class: Bands

# Send to an external application
- id: OSC

module: timeflux.nodes.osc
class: Client
params:

address: /alpha
# Publish the raw EEG signal
- id: PublisherRaw

module: timeflux.nodes.zmq
class: Pub
params:

topic: raw
# Publish the frequency bands
- id: PublisherBands

module: timeflux.nodes.zmq
class: Pub
params:

topic: bands
# Connect nodes
edges:

- source: LSL
target: Rolling

- source: Rolling
target: Welch

- source: Welch
target: Bands

- source: Bands:alpha
target: OSC

- source: LSL
target: PublisherRaw

- source: Bands
target: PublisherBands

# Run this graph 25 times per second
rate: 25

# The recorder graph
- id: SaveToFile

nodes:
# Receive data streams from the broker
- id: Subscriber

module: timeflux.nodes.zmq
class: Sub
params:

topics:
- raw
- bands

# Record to file
- id: Recorder

module: timeflux.nodes.hdf5
class: Save

# Connect nodes
edges:

- source: Subscriber:raw
target: Recorder:eeg_raw

- source: Subscriber:bands
target: Recorder:eeg_bands

# Update file every second
rate: 1

COMPARISON WITH SIMILAR SOFTWARE

Several frameworks are currently available for the on-
line analysis of bioelectrical signals (Tab. 1). Choosing
one is a difficult task since it often requires a balance
among a variety of criteria, such as desired character-
istics, performances, extensibility, license, and ease of
use. The characteristics are generally oriented towards
specific applications (e.g., BCI using electroencephalog-
raphy) thus only a few frameworks are versatile enough
to be used with heterogeneous time series and in more
general contexts. The performance is hard to evaluate
without a comprehensive benchmark using comparable

objective metrics and a thorough knowledge of the soft-
ware inner functioning. Regarding extensibility, all open-
source solutions are extensible by nature, but the effort
required to do so varies according to the architecture and
coding experience. Concerning the license, while com-
mercial licensing may incur financial costs and vendor
lock-ins, GPL-derived licenses can in some cases also be
treacherous since they require derivative works to be dis-
tributed under the same copyleft license. The MIT and
BSD licenses—and to some extent, the Apache licence—
are much more permissive instead. In fine, much of these
criteria are intrinsically subjective or difficult to evaluate
objectively.
Timeflux is a modern framework for real-time process-
ing of signal streams. According to the aforementioned
principles we have followed for development, it brings a
well-balanced set of features, delivered under a very flex-
ible license.

DISCUSSION

Although Timeflux is mature enough to be used in produc-
tion, there is still room for improvement. Our roadmap
foresees significant updates in the following areas:

Performances: Extensive benchmarks will be system-
atized to identify bottlenecks.

Scalability: For large projects involving many in-
stances spreading over multiple hosts, mechanisms al-
lowing automatic discovery, load-balancing, fail-over,
and seamless synchronization (possibly using the Preci-
sion Time Protocol [50]), will be implemented.

General usage: We aim for a comprehensive documen-
tation and better development tools. We also intend to
provide turnkey BCI paradigms to accelerate prototyp-
ing.

User Interface: The web interface is currently being
rewritten to significantly increase the number of points
that can be plotted per second, and to introduce special-
ized widgets. In the future, it will be possible to design
pipelines directly from a browser. A JavaScript API for
stimulation presentation will also be available.

Integration: Nodes are being developed to integrate
with more data acquisition devices, stimulation presen-
tation software, and alternative storage solutions.

CONCLUSION

We have presented Timeflux, an open, highly flexible and
actively developed solution that is meant to accelerate the
creation of applications and standardize them. It is natu-
rally suitable for BCI and biofeedback applications.
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Table 1: Comparable frameworks
Name Release year Language License Main domain

BCI++ [27] 2008 C/C++ GPL Closed loop neuroscience
BCI2000 [28] 2001 C++ GPL Closed loop neuroscience

BCILAB [29, 30] 2010 Matlab GPLv2 Closed loop neuroscience
BioEra [31] 2004 Java Commercial Closed loop neuroscience

BioSig [32, 33] 2003 C++ GPLv3 Closed loop neuroscience
BrainBay [34] 2014 Python GPL Closed loop neuroscience

CloudBrain [35] 2007 Python AGPLv3 Acquisition
Falcon [36] 2017 C++ GPLv3 Closed loop neuroscience

Fieldtrip [37] 2003 Matlab GPLv2 Closed loop neuroscience
Gumpy [38, 39] 2018 Python MIT Closed loop neuroscience

Midas [40] 2014 Python MIT Barebone
Neuromore [41] 2015 C++ Commercial Closed loop neuroscience
Neuropype [42] 2014 Python Commercial Closed loop neuroscience

Nipype [43] 2010 Python Apache Neuroimaging
Open Ephys GUI [44, 45] 2011 C++ GPLv3 Extracellular electrophysiology

OpenVibe [46, 47] 2009 C++ AGPLv3 Closed loop neuroscience
PyAcq [48] 2015 Python BSD 3-clause Acquisition

Timeflux [49] 2019 Python MIT Generic time series
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