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ABSTRACT: Error-related potentials (ErrPs) can be used
to improve BCIs’ performance but its use is often with-
held by long calibration periods. We recorded EEG data
of 15 participants while controlling a robotic arm towards
a target. In 30 % of the trials, the protocol prompted an
error during the trial in order to trigger ErrPs in the partic-
ipants. For each participant, we trained an ErrP classifier
using the data of the remaining 14 participants. Each of
these classifiers was tested asynchronously on the data of
the selected participant. The threshold that maximized
the product of the average true positive rate (TPR) and
the average true negative rate (TNR) was τ = 0.7. For this
threshold, the average TPR was 53.6 % and the average
TNR was 82.0 %. These results hint at the feasibility of
transferring ErrPs between participants as a reliable strat-
egy to reduce or even remove the calibration period when
training ErrP classifiers to be used in an asynchronous
manner.

INTRODUCTION

Brain-computer interfaces (BCIs) are a suitable tool to
help restoring some autonomy to people with severe mo-
tor disabilities [1,2,3]. Most BCIs rely on converting
modulated brain activity of a user (often measured us-
ing electroencephalography (EEG)) into commands of an
external device, such as a robot. Nevertheless, the perfor-
mance of most BCIs is not optimal and, occasionally, the
interface misinterprets the intention of its user and thus
a wrong command is executed. The user’s awareness of
the committed mistake is associated with a neural pattern
named error-related (ErrP), which is also measurable by
EEG [4] .
Incorporating ErrPs’ detection in a BCI can help to im-
prove its performance [5, 6]. A main barrier to its
widespread use is the calibration time necessary to train
ErrP classifiers: many trials are needed to train a clas-
sifier and errors should not occur too often to still be
perceived as so. Two main approaches have been pro-
posed to reduce the training duration of ErrP classifiers,
based on either transferring information between differ-
ent tasks or transferring information between different
participants. Iturrate and colleagues studied the use of
classifiers trained with ErrPs from one observation task
and tested in ErrPs from another observation task, using
latency correction [7,8]. Kim and colleagues studied the

use of an ErrP classifier trained with ErrPs from an ob-
servation task and tested with ErrPs from an interaction
task (and vice-versa) [9,10]. Nevertheless, Ehrlich and
colleagues, did not recommend re-using ErrP classifiers
across different experimental tasks [11]. Kim and col-
leagues also studied the use of an ErrP classifier trained
with ErrPs from several subjects and tested in ErrPs from
another subject [9]. These studies suggest that transfer-
ability of ErrPs is viable in the context of discrete BCIs
(in which all events occur in a discrete way).
Recently, an effort has been made to develop BCI
paradigms that promote a smoother and more intuitive in-
teraction with their users, by relying on continuous con-
trol or actions - continuous BCIs [12,13,14]. In this con-
text, the user’s error awareness can occur at any moment
and is not, necessarily, time-locked to specific events, re-
quiring an asynchronous detection of ErrPs. The exis-
tence of ErrPs in continuous contexts as well as its asyn-
chronous detection has been established [15, 16, 17,18].
Another approach to improve BCIs consists in developing
BCIs that closer resemble end-user applications, in which
users interact with or observe robots [10,19,20,21,22].
In this work, we developed a paradigm in which the user
has continuous control over a robotic arm in a task in
which errors are triggered by the paradigm. We studied
the electrophysiological signature of the ErrPs in this task
and, additionally, investigated the feasibility of using a
generic ErrP classifier trained on the ErrPs of 14 partic-
ipants by testing it asynchronously with data of another
participant.

MATERIALS AND METHODS

EEG recording: We recorded EEG and EOG data at a
sampling frequency of 500 Hz, using BrainAmp ampli-
fiers (Brain Products, Munich, Germany). We used 61
EEG electrodes and 3 EOG electrodes. The EEG elec-
trodes were placed at positions Fp1, Fp2, AF3, AF4, F7,
F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4,
C6, T8, TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
TP8, TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO9,
PO7, PO3, POz, PO4, PO8, PO10, O1, Oz, and O2. The
ground electrode was placed at position AFz and the ref-
erence electrode was placed on the right mastoid. The
electrodes were placed above the nasion and below the
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outer canthi of the eyes.
Participants: We recorded 15 right-handed healthy

volunteers (5 female). The participants were, on aver-
age, 23.4±2.5 years old (mean ± std). Participants were
paid 7.50 C per hour and, before the experiment, read
and signed an informed consent form that was previously
accepted by the local ethical committee.

Experiment layout: Figure 1 depicts the layout of the
experiment. Participants sat in front of a table, with their
right hand lying flat on the table, covered by a wooden
structure. On the ceiling of this structure was a Leap Mo-
tion device that tracked their right hand movements (Leap
Motion, San Francisco, USA). On the right of the partici-
pants was a robotic arm (Jaco Assistive robotic arm - Ki-
nova Robotics, Bonn, Germany). On top of the wooden
structure were two violet boxes representing the physi-
cal targets, centred in relation to the home position of the
robot’s hand. Behind the wooden structure was a moni-
tor that displayed information regarding the experiment.
During the trials, the participants could control the posi-
tion of the robot’s hand on an approximately horizontal
plan, by moving their right hand on the table. We consid-
ered robot’s hand displacement to be three times bigger
than the participants’ hand displacement, to reduce the
range of the participants’ movements.

Figure 1: Experimental setup during the pre-trial period. In
this image, the robot is at its home position. The squares on
the screen indicate that, in the next trial, the participant should
move the robot’s hand towards the right target (purple box) on
the wooden structure. The screen also shows the home position
for the participant’s hand (rectangle on the bottom part of the
screen). The text on the screen (not readable in the picture)
states ’Bring your hand to the home position’.

Experiment overview: The experiment consisted of 8
blocks of 30 trials each. Each block contained 21 correct
trials and 9 error trials (70% and 30%, respectively). The
position of the error trials within the block was randomly
generated, using an uniform distribution.

Pre-trial period: During this period, on the upper part
of the screen were displayed two squares, representing
the two targets on the wooden structure. One of the
squares was filled in white, representing the selected tar-
get for the next trial, and the other had no fill. On the
bottom part of the screen was a rectangle representing

Figure 2: Experimental protocol. During the pre-trial period,
the participants can rest for as long as they wish. The pre-trial
period ends and a trial starts, when the participant brings his/her
right hand to its home position (the bottom rectangle). During
the trials, the screen is black. The participants were instructed
to bring the robot’s hand to the selected target (indicated by the
white square). A trial finishes either when the robot reaches the
target or after 6 seconds (if the target was not reached). Af-
terwards (post-trial), the squares reappear on the screen for 1.5
seconds and give feedback regarding hitting the target (a green
square indicates that the target was hit and a red square indi-
cates that the target was not hit). Then the screen turns black
and the robot automatically returns to its home position and a
new pre-trial period starts.

the home position for the participants’ hand. The partic-
ipants’ hand was represented by a dot on the screen. A
new trial started when the participants’ hand entered its
home position. The participants could use the pre-trial
period to rest for as long as they needed. Participants
were instructed to bring their hand to below the home po-
sition, to fixate their gaze on the selected physical target
and to enter the home position when they felt ready to
start a new trial. Participants were also instructed not to
move their gaze during the entire trial duration, in order
to minimize eye movements.

Trials: The aim of each trial was to move the robot’s
hand to the selected target. During the trials, the screen
was black. A trial finished when the robot’s hand was
above the target (hit) or after 6 seconds (no hit). After-
wards, as shown in Figure 2, the two squares from the
pre-trial period reappeared on the screen for 1.5 seconds
and the previously filled square was now filled in either
green (hit) or red (no hit). Then, the screen would turn
black, the robot’s hand would automatically move to its
home position and a new pre-trial period would start.

Error trials: In these trials, the paradigm triggered an
error during the trial. The error consisted on halting
the participant’s control of the robot and adding a 5 cm
upwards displacement to the robot’s hand.The errors oc-
curred randomly when the robot’s hand was within 25 %
to 65 % of the minimal forward displacement necessary
for the robot to hit the target. Participants perceived the
error by noticing the robot stopping and lifting. After
the error happened, the participants could not control the
robot until the trial ended. Participants were instructed to
remain still. The error trials lasted 6 seconds.

Correct trials: In these trials, no error was triggered by
the paradigm. The participants reached the selected target
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in 99.7±0.5 % (mean ± std) of the correct trials. Correct
trials lasted, on average, 2.06± 0.17 seconds (mean ±
std).

Preprocessing the data: The eye movements and
blinks were removed from the EEG data, using the arte-
fact subspace subtraction algorithm [23]. The EEG data
was then filtered between 1 and 10 Hz with a Butterworth
causal filter of order 4.

Electrophysiological analysis: For the electrophysio-
logical analysis, we cut the EEG data in 1.5 s epochs. For
the error trials, we considered the interval [-0.5, 1]s time-
locked to the error onset (0 s). Since correct trials have
no intrinsic onset, we defined a virtual onset, occurring
one second after the start of the trial (at a time-point in
which errors could already occur). For the correct trials
we considered the interval [−0.5,1]s, time-locked to the
virtual onset (0 s).

Asynchronous ErrP classification with a generic clas-
sifier: For every participant we trained an ErrP classi-
fier with two classes (correct and error) using the data
from the remaining 14 participants. In order to train each
of these classifiers, we considered as features for the er-
ror class the amplitudes of all EEG channels at all time
points within the window [0.30,0.75]s after the error on-
set. Similarly, we considered as features for the correct
class the amplitudes of all EEG channels at all time points
within the window [0.30,0.75]s after the virtual onset.
Afterwards, in order to reduce the number of features, we
applied principal component analysis (PCA) to the fea-
ture matrix and kept the components that preserved 99 %
of the data variance. These components were used to train
a shrinkage LDA classifier [24]. Each of these classifiers
was tested asynchronously in the data of the participant
not used for training. For that, we slid a 450 ms window
through the trials, obtaining an output from the classifier
every 18 ms.
For every fixed threshold τ (τ from 0 to 1 in steps of
0.025), we considered an error detection when the classi-
fier’s probability for the error class (pe) was greater or
equal to the threshold τ for two consecutive windows
(pe ≥ τ). As an evaluation metric for the asynchronous
classification, we defined as true negative trials (TN tri-
als) the correct trials in which no error detection occurred.
We defined as true positive trials (TP trials), the error tri-
als in which no error detection occurred before the error
onset and at least one error detection occurred within 1.5
seconds after the error onset. We considered the group
performance to be optimal for the threshold that maxi-
mized the product of the average TPR and the average
TNR.

RESULTS

Figure 3 displays the grand average correct and error sig-
nals at channel FCz (green and red solid lines respec-
tively). The 95 % confidence interval for the average
curves are represented by the shaded green and red areas.
The time-regions in which correct and error signals were
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Figure 3: Grand average correct and error signal at channel FCz
(green and red solid lines, respectively). The shaded areas rep-
resent the 95 % confidence interval for the average signals. The
grey regions represent the time-regions in which correct and er-
ror signals were significantly different (Wilcoxon signed-rank
tests, p < 0.01, Bonferroni corrected).The topoplots for the cor-
rect and error grand average signals are displayed for t =0.354 s
and t = 0.568 s. The time point t = 0 represents the error onset
of error trials and the virtual onset of correct trials

significantly different are represented by grey shaded ar-
eas (Wilcoxon signed-rank tests, p < 0.01, Bonferroni
corrected). Figure 3 displays also the topoplots for the
correct and error grand average signals at the peaks of the
grand average error signal (t =0.354 s and t = 0.568 s).
Figure 4 shows the average true negative rate (TNR) and
the average true positive rate (TPR) (represented with
green and red solid lines, respectively), for all the tested
thresholds in the asynchronous ErrP classification with a
generic classifier. The chance-level TNR and TPR were
calculated by performing the same classification proce-
dure with shuffled training labels. The 95 % confidence
intervals for the average curves are represented by shaded
areas. The threshold that maximized the group perfor-
mance was τ = 0.700. For this threshold, the average
TNR was 82.0 % and the average TPR was 53.6 %.
Figure 5 depicts the individual TNR and TPR of each
participant. It depicts also the threshold that maximizes
group performance (τ = 0.700, grey dashed lines) and
the thresholds that maximizes the individual performance
(blue dashed lines).

DISCUSSION

We developed an experimental task relying on continu-
ous control of a robot towards a target. In 30 % of the tri-
als (error trials), an error was triggered by the paradigm,
causing the participants to loose control over the robot
during the trial. We then studied the electrophysiologi-
cal features associated with the error trials. The peaks
of the error signal occurred at t =0.354 s and t =0.568 s.
Our results are not directly comparable with state-of-the-
art literature because we processed the EEG signal with
a causal filter, causing the N200 component of the ErrP
to shift to around 600 ms. We decided to keep the causal
filter because it depicts the ErrP’s shape in the scenario
of an online ErrP decoder, bringing awareness to the fact
that ERP shapes can be influenced by the filter used to
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Figure 4: Average TNR and average TPR (green and red solid
lines, respectively) for the different thresholds tested in the
asynchronous ErrP classification with a generic classifier. The
chance-level TNR and TPR are depicted with green and red
dashed lines. The shadowed areas represent the 95 % confi-
dence intervals for the average curves. The threshold that maxi-
mizes the group performance is represented with a grey vertical
dashed line.

process the signal.
Afterwards, we evaluated the feasibility of transferring
ErrP information across participants, by training a clas-
sifier with the data from 14 participants and testing it
with the data of the remaining participant in an asyn-
chronous manner (generic classifier). From Figure 4, we
observe that the average TPR is above chance-level for
all the thresholds and that the average TNR is increasing
with the threshold. This points to the feasibility of using
such classifiers as a starting point for an adaptive BCI. In
Figure 5, it is possible to compare the individual perfor-
mance of every participant with the generic classifier. We
observe that participants with higher individual threshold
present minor or negligible drops in performance with the
use of a generic classifier tuned to the group performance
(e.g. participants 1, 2 and 3). On the other hand, partic-
ipants with lower individual threshold can present major
performance drops (e.g. participants 5 and 8). This in-
dicates that the performance of such classifier is still de-
termined by individual characteristics of the participants.
Nevertheless it seemed a suitable option for the majority
of the participants.

CONCLUSION

In this work we showed the feasibility of transferring
ErrP information across participants, by training a clas-
sifier with the data from 14 participants and testing it
with the data of the remaining participant in an asyn-
chronous manner. We then showed that, although the
performance of such classifiers is still dependent on indi-
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Figure 5: Individual TNR and TPR (green and red solid lines,
respectively) for the different thresholds tested in the asyn-
chronous ErrP classification with a generic classifier. The
threshold that maximizes the group performance is represented
with a grey dashed line (τ = 0.7). The threshold that maximizes
the individual performance is represented with a blue dashed
line.

vidual characteristics of the participants, the majority of
them would benefit from such generic approach. There-
fore, we believe that transferring ErrP information across
participants is a viable alternative to reduce the calibra-
tion period in a scenario of asynchronous ErrP classifica-
tion, as a starting point for an adaptive BCI.
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