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Abstract

The discovery of topological insulators had a large impact on condensed matter physics
as several potential applications have been suggested, and a deep understanding of many
aspects is already achieved. However, how topological effects are influenced by many-
body effects is still not clear, even new topological phases are proposed once correlations
come into play. A bottleneck of several theoretical methods is the necessary correct
treatment of spin-orbit coupling (SOC), which only recently became accessible for many
methods designed to capture strong correlations. The goal of the present thesis is to
analyze the interplay of SOC with strong correlations, with a focus on topological prop-
erties.

The influence of SOC onto the quasiparticle renormalization is analyzed by means
of a three-band model with semicircular density of states using the dynamical mean-
field theory (DMFT). It is shown that the impact of the SOC strongly depends on the
filling. While for one and five electrons in the three bands the correlations are increased,
they are decreased at half filling. The Hund’s metal regime at a filling of two electrons
is suppressed by the SOC. Furthermore, it is demonstrated that the effective SOC is
enhanced by the correlations.

Regarding the topological aspects, topological insulators on the honeycomb lattice
including interactions are analyzed. The phase diagram of the Kane-Mele-Hubbard
Hamiltonian with an inversion-symmetry breaking term is calculated using the dynam-
ical impurity approximation (DIA) and the topological Hamiltonian. Correlations sta-
bilize the topological phase, until an antiferromagnetic moment destroys the topological
distinctness. The results are compared to DIA calculations of a ribbon. There, gapless
edge states are supposed to exist, but already small interactions lead to local antiferro-
magnetic moments that gap the edge states.

In physical realizations of the Kane-Mele model, the SOC is small. In order to describe
a realistic topological insulator with a large gap, a two-orbital model of bismuthene
on a substrate is used. Introducing correlations there, it is again demonstrated using
DMFT that correlations increase the topological gap and thus stabilize the topological
nontriviality, as long as no magnetic moment is present.
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Kurzfassung

Die Entdeckung von topologischen Isolatoren hatte einen großen Einfluss auf die Physik
der kondensierten Materie, da dadurch mehrere mögliche Anwendungen vorgeschlagen
wurden und ein tiefes Verständnis vieler Aspekte erreicht werden konnte. Wie topologi-
sche Effekte jedoch durch Vielteilcheneffekte beeinflusst werden, ist noch nicht geklärt;
es werden sogar neue topologische Phasen vorgeschlagen, wenn Korrelationen ins Spiel
kommen. Ein problematischer Punkt mehrerer theoretischer Methoden ist die notwen-
dige korrekte Behandlung der Spin-Bahn-Kopplung (SOC), die erst kürzlich für viele
Methoden zugänglich wurde, die starke Korrelationen behandeln können. Das Ziel der
vorliegenden Arbeit ist es, das Zusammenspiel von SOC mit starken Korrelationen zu
analysieren, wobei der Fokus auf den topologischen Eigenschaften liegt.

Der Einfluss von SOC auf die Renormierung von Quasiteilchen wird mittels eines
Dreibandmodells mit halbkreisförmiger Zustandsdichte mithilfe der Dynamischen Mole-
kularfeldtheorie (DMFT) analysiert. Es wird gezeigt, dass der Einfluss der SOC stark
von der Füllung abhängt. Während für ein und fünf Elektronen in den drei Bändern die
Korrelationen erhöht sind, sind sie bei Halbfüllung verringert. Das Hund-Metall-Regime
bei einer Füllung von zwei Elektronen wird durch die SOC unterdrückt. Darüber hinaus
wird gezeigt, dass die effektive SOC durch die Korrelationen verstärkt wird.

In Bezug auf die topologischen Aspekte werden topologische Isolatoren auf dem Wa-
bengitter einschließlich der Wechselwirkungen analysiert. Das Phasendiagramm des Kane-
Mele-Hubbard-Modells, mit einem die Inversionssymmetrie brechenden Term, wird un-
ter Verwendung der dynamischen Störstellenannäherung (DIA) und des topologischen
Hamilton-Operators berechnet. Korrelationen stabilisieren die topologische Phase, bis
ein antiferromagnetisches Moment die Topologie zerstört. Die Ergebnisse werden mit
DIA-Berechnungen eines Streifens verglichen. Dort sollten zwar Randzustände ohne
Bandlücke existieren, aber schon kleine Wechselwirkungen führen zu lokalen antifer-
romagnetischen Momenten, welche eine Bandlücke in den Randzuständen verursachen.

In physikalischen Realisierungen des Kane-Mele-Modells ist die SOC klein. Um einen
realistischen topologischen Isolator mit einer großen Bandlücke zu beschreiben, wird ein
Zweiorbitalmodell von Bismuthen auf einem Substrat verwendet. Indem man dort Korre-
lationen einführt, wird mit DMFT erneut gezeigt, dass diese die topologische Bandlücke
vergrößern und somit die topologische Nichttrivalität stabilisieren, solange kein magne-
tisches Moment vorhanden ist.
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1 Introduction

The goal of condensed matter physics is to understand the properties of existing ma-
terials, to capture the essential physical principals behind them, and, finally, to use
the knowledge to produce new devices useful for the progress of mankind. Regarding
the physical principles, the picture is clear: The only known fundamental interaction
relevant for material science is the electromagnetic interaction, hence quantum electro-
dynamics is the theoretical framework that should, in principle, cover all physical effects
of condensed matter. This theory exists since the 1940s and is still not proven wrong,
hence the fundamental rules of material science are clearly set.

However, physics is not that easy, since it is impossible to treat all particles in a
macroscopic object within quantum electrodynamics, or even with the usually chosen
approximation, the Schrödinger equation. Depending on the scales one is looking at,
different phenomena may emerge [1]. Once the sum is more than its parts, it is difficult
to predict collective behavior. For the observation of new physical phenomena, usually,
a good cooperation between many theoretical and experimental methods is necessary
for success. In the last decades, this cooperation led to the discovery of a large variety
of physical phenomena. Prominent examples of breakthroughs that even made the step
to industry are the fabrication of the first transistor and the discovery of the giant
magnetoresistance [2].

From a theorist’s point of view, it is clear that capturing emergent phenomena is
a goal that led to a plethora of theoretical and computational methods. From most
general ab initio methods up to sophisticated models with the only intention to show
a certain effect, and from one-electron hoppings up to continuous current densities –
the toolbox in theoretical condensed matter physics is large, and often many viewpoints
are needed to get a complete picture. The methods that might be useful to describe a
certain phenomenon depends on its nature.

An interesting phenomenon are strong correlations of electrons. While the principle
is simple – two electrons will repel each other – a detailed theoretical description is
challenging. Since the movement of one electron influences all the other electrons around,
correlations are the reason for many collective emergent phenomena, such as charge-
density waves, magnetic order, or even superconductivity. One manifestation of strong
correlations is the Mott insulator, which originates from a blocking of hoppings due to
the electron repulsion.

While all theories based on bands fail to describe the Mott insulator, the dynamical
mean-field theory (DMFT) [3–7] is well suited to describe the mass enhancement of the
electrons due to correlations and also gives a correct description of the insulating regime.
After applications to model systems such as the Hubbard model, it was later combined
with the band-based density functional theory (DFT) [8, 9]. This is a nice example that
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the combination of several approaches is sometimes important, in this case even a direct
merge instead of interpreting two complementary methods. While DFT works well do
describe the band structure of weakly-correlated real materials but fails to capture Mott
physics, DMFT is well suited for the Mott transition but needs the noninteracting band
structure as an input. The combined DFT+DMFT method shows therefore good results
for transport properties of correlated materials.

Another special kind of insulators are topological insulators [10–12]. The mathematical
key concept is a nontrivial structure of the eigenfunctions in the Brillouin zone due to
a band inversion. An important physical reason for a potential band inversion is the
spin-orbit coupling (SOC), which is responsible for a nontrivial gap opening and spin-
dependent edge channels. Thus topological insulators are closer related to ordinary band
insulators than Mott insulators, but they were only discovered in 2005 [13–16], showing
that also nowadays surprises in condensed matter physics are possible. Topological
insulators are, due to the edge states, candidates for spintronic applications. Since the
topological nature is encoded in the band structure, the search for interesting materials
is mostly based on the DFT, leading to a classification of many materials into newly
found topological classes, such as strong topological insulators or Weyl semimetals.

Once interactions are included, the understanding of different topological phases is
not that detailed. In general, analyzing correlations in materials with strong SOC only
recently gained importance, and already led to some interesting results. For example,
correlated spin-orbital models are characterized by unusual exchange and are argued
to lead to exotic phases such as spin-liquid ground states [17–23]. Another interesting
example is the layered iridate Sr2IrO4,where the interplay of SOC and correlations lead
to an electronic structure similar to the one of layered cuprates and is argued to lead to
high-temperature superconductivity [24–26]. Regarding topology, the strong correlations
are supposed to lead to new topological phases [27, 28].

The goal of the present thesis is to further investigate the interplay of strong corre-
lations and SOC, with a focus on topological insulators. In the chapters 2, 3, and 4,
the basic concepts of strong correlations, SOC, and topological insulators are introduced.
Since in case of many DFT+DMFT calculations an analytic continuation is necessary, the
maximum entropy method and a generalization to offdiagonal spectral functions needed
for many spin-orbit coupled materials is discussed in chapter 5. Chapter 6 focuses on
the changes of the correlation strength in a three orbital model for all integer fillings
as the SOC increases. It is shown that the interplay of Hund’s rule coupling and SOC
depends on the filling. For example, the Hund’s tail present in case of a two electrons
is suppressed by the SOC. The remainder of the thesis focuses on topological insulators
on a honeycomb lattice. In chapter 7, the noninteracting models of graphene-like struc-
tures are introduced. The model for pz orbitals including SOC, known as Kane-Mele
model [13, 14], is the prototypical example of a topological insulator. The influence of
correlations onto the magnetic and topological properties is analyzed in chapter 8. It
turns out that the edge states, which would be topologically protected without magnetic
moments, are gapped due to local spontaneous symmetry breaking. Finally, chapter 9
briefly discusses the physically more relevant model of a topological insulator based on
the px and py orbitals.
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2 Modeling of strongly correlated materials

The basic concept of ab initio electronic structure calculations is to solve the time-
independent Schrödinger equation

H |ψ〉 = E |ψ〉 (2.1)

with the full Hamiltonian containing both nuclei (with Greek indices) and electrons (with
Latin indices) that reads in in real-space coordinates

H =− ~2

2me

∑
i

∇2
i −

∑
α

~2

2mα
∇2
α +

∑
i 6=j

e2

8πε0 |ri − rj |

−
∑
i,α

Zαe
2

4πε0 |ri − rα|
+
∑
α 6=β

ZαZβe
2

8πε0 |rα − rβ|
.

(2.2)

This problem is not solvable directly, as the dimensionality of the Hilbert space is too
large for real materials. A reduction of the number of parameters is achieved by fixing
the position of the nuclei, which is the so-called Born-Oppenheimer approximation. This
is justified as the relative weight of nucleons and electrons is about 1823, causing a lot
faster movement of the electrons.

With this approximation, the dimensionality of the problem is reduced to the electronic
degrees of freedom only, as the Hamiltonian can be rewritten as

H = T + V + U = − ~2

2me

∑
i

∇2
i +

∑
i

v(ri) +
∑
i 6=j

u(ri, rj) (2.3)

The exponential wall is, however, still present due to the interaction of the electrons. For
example, a single bismuth atom with 83 electrons has 83× 3 = 249 degrees of freedom.
A many-body wave function depending on 249 variables is already impossible to store,
solving the coupled differential equations cannot be considered. Further approximations
are needed in order to achieve good results.

2.1 Weakly interacting models

2.1.1 Density functional theory

The most important method to calculate the electronic structure of real materials is the
density functional theory (DFT). The Schrödinger equation solved in this framework
contains no full electron-electron interaction term, but treats this effect via an effective
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one-particle potential. The only quantity of interest in order to determine this effective
potential is the total electron density n(r), which depends on only three variables, and
not on 3 × N , where N is the total number of electrons, as the full many-body wave
function Ψ(r1, . . . , rN ). The density can be calculated from the wave function via

n(r) =

∫ N∏
i=2

d3riΨ
∗(r, r2, . . . , rN )Ψ(r, r2, . . . , rN ) (2.4)

The theoretical backbone of the DFT are two theorems, called the Hohenberg-Kohn
theorems. The first shows that the external potential v(r) is a unique functional of the
density n(r), apart from a trivial constant [8]. As the external potential is the only
variable input of the Schrödinger equation (2.1) with Hamiltonian (2.3) since the kinetic
energy part is p2/2m and u(ri, rj) is always given by the Coulomb repulsion, it also
determines the many-body wave function of the ground state. Therefore, the functional
F [n] = T [n] + U [n] is a universal functional of the density that does not depend on the
external potential. With that, one can define a functional

Ev[n] =

∫
d3r v(r)n(r) + F [n]. (2.5)

The second theorem shows that the ground-state density n0(r) minimizes Ev[n], its value
at n0 is the ground-state energy of the total system [8].

As the exact form of F [n] is unknown, the theory does, so far, not provide the ground
state energy and the corresponding electron density. This can be achieved by map-
ping the interacting electron gas onto a noninteracting one, as proposed by Kohn and
Sham [9], providing a set of equations that need to be solved self-consistently. The in-
dependent variables are then the non-interacting Kohn-Sham orbitals |ψi〉. Within this
framework, the exact functional F [n] is rewritten as [9]

F [n] = T [n] + U [n] = Ts[n] +
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′| + Exc[n]. (2.6)

The first term, Ts[n], is the kinetic energy of the non-interacting Kohn-Sham particles.
The second term is the Hartree part of the correlation energy of the electrons. The last
term, Exc[n], is the so-called exchange-correlation part of the functional, that is defined
to cover all correlation effects except for the Hartree energy. The density is then the
sum of one-particle densities of the Kohn-Sham orbitals, i.e.,

n(r) = ns(r) =
∑
i

|ψi(r)| . (2.7)

A variation of the functional F [n[ψi, ψ
∗
i ]] with respect to ψ∗i yields the Kohn-Sham

equations {
−~2∇2

2me
+ v(r) + e2

∫
d3r′

n(r′)

|r − r′| +
δExc[n(r)]

δn(r)

}
ψi = εiψi. (2.8)
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Equations (2.7) and (2.8) need to be solved self-consistently in order to obtain the
electron density.

So far, the formalism is exact, and would yield the correct ground-state density and
the correct ground state energy, if the exact exchange-correlation functional was known.
However, the exact exchange-correlation functional is not known, and approximations
are needed in order to evaluate it. A popular choice is the local-density approxima-
tion (LDA) that depends only on the density via ELDA

xc [n(r)] =
∫

d3r εxc[n(r)]n(r),
where εxc[n(r)] is the exchange-correlation energy per electron in a homogeneous elec-
tron gas. Another choice are flavors of the generalized-gradient approximation, where
εxc[n(r),∇n(r)] depends on both the density as well as its gradient.

In the present thesis, only periodic crystals are considered. Since the translation op-
erator commutes with the Hamiltonian and the momentum operator is the generator of
translation, the momentum k/~ is a good quantum number. The Kohn-Sham Hamilto-
nian, which is the expression in the braces in Eq. (2.8), is therefore block diagonal in k
with Bloch Hamiltonians hk, and the Kohn-Sham functions can be labeled by k and a
band index ν. According to Bloch’s theorem, they obey the relation

ψkν(r) = eik·rukν(r), (2.9)

where ukν(r) are lattice-periodic functions. They are updated in every step of the loop
until self consistency is reached. Within DFT codes, it is important to express ukν in a
convenient basis to achieve a good precision in an affordable time. At the self-consistent
point, the Bloch Hamiltonian hk does not change with the iterations any more, and the
final Kohn-Sham equation

hk |ukν〉 = εkν |ukν〉 (2.10)

provides an effective one-particle Hamiltonian hk and its associated bands εkν . Band
structures obtained with DFT codes in such a way are nowadays a standard tool to
analyze electronic properties of materials.

2.1.2 Wannier functions

Because of the periodicity of ukν(r), the Bloch states |ψkν〉 are fully delocalized in real
space, in accordance with the fact that they are as localized as possible in reciprocal
space. If one wants to visualize the atomic orbitals, a local, equivalent, basis has to be
used. The most prominent local basis set are Wannier functions, that are defined as the
Fourier transform of Bloch functions. This definition is, however, not unique, since any
unitary transformation of the Bloch states does not change the space spanned by them.
The general definition of a Wannier function at the real-space lattice vector Ri is thus

|wRin〉 =
∑
k

eik·Ri
∑
ν

Unνk |ψkν〉 . (2.11)

Due to the orthogonality of the Bloch functions 〈ψkν | ψk′ν′〉 = δνν′δkk′ the Wannier
functions are orthogonal as well,

〈
wRin

∣∣ wRjn′
〉

= δijδnn′ .
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The freedom to choose the matrices Uk can be used to find the transformation that
gives maximally localized Wannier functions, where the spread of the Wannier function
at the origin Ri = 0, defined as

Ω =
∑
n

[〈
w0n

∣∣ r2
∣∣w0n

〉
− 〈w0n| r |w0n〉2

]
, (2.12)

is minimized [29]. Here, r is the position operator. One program package that is able to
calculate maximally localized Wannier functions is Wannier90, interfacing with many
different DFT codes [30].

An alternative to maximally localized Wannier functions are projective Wannier func-
tions [31–33]. Within this approach, the Bloch functions are projected onto local, usually
atomic-like, functions |χασn 〉. Here, n denotes the orbital, α the atom and σ the spin.
An expansion of these orbitals in terms of some Bloch functions within a selected energy
window W reads

|χ̃ασkn〉 =
∑
ν∈W
〈ψkν | χασn 〉 |ψkν〉 . (2.13)

Note that the states |χ̃ασkn〉 are not orthogonal because the selection of an energy window
truncates the Hilbert space. However, they can be orthonormalized via

|wασkn〉 =
∑
α′n′

Sαα
′

nn′

∣∣∣χ̃α′σkn′

〉
, (2.14)

where S ≡ O(k, σ)−1/2 and Oαα
′

nn′ (k, σ) =
〈
χ̃ασkn

∣∣∣ χ̃α′σkn′

〉
. Detailed information on the in-

fluence of the orthogonalization can be found in the PhD thesis of Gernot Kraberger [34].
The projective functions |wασkn〉 can be transformed to real-space Wannier functions by
a Fourier transformation |wασkn〉 =

∑
R e

ik·R |wασRn〉. In practice, it is useful to define
projection operators

Pασ(k) =
∑
n

|wασkn〉 〈wασkn | (2.15)

to transform objects from the Bloch basis to the Wannier basis. Their matrix elements
are given by

Pασnν (k) =
∑
n′α′

Sαα
′

nn′

〈
χ̃α
′σ
n′

∣∣∣ ψkν

〉
. (2.16)

For example, the Hamiltonian in reciprocal space reads in the projected Wannier basis

Hασ
nn′(k) =

∑
ν∈W

Pασnν εkνP
ασ ∗
n′ν . (2.17)

The so-called hopping HamiltonianHασ
nn′(R) is then obtained by a Fourier transformation

of this Hamiltonian. Projecting the Bloch energies as in Eq. (2.17) works well for unitary
projectors, but in case the number of local orbitals (index n) is smaller than the number
of bands (index ν), the projector matrices Pασ are not quadratic, and the eigenenergies
of Hασ do not represent the electronic energies.
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2.2 Interaction Hamiltonians

In the previous section, Wannier functions
∣∣wσRin

〉
have been introduced as a conve-

nient basis for localized wave functions. In this basis, the noninteracting part of the
Hamiltonian of a crystal is easily expressed in second quantization as

H0 =
∑

ij,nm,σ

tnmij c
†
inσcjmσ =

∑
k,nm,σ

εnmk c†knσckmσ, (2.18)

where c†inσ creates an electron in the Wannier orbital
∣∣wσRin

〉
, and c†knσ is its Fourier

transform. The elements tnmij express a hopping amplitude from orbital m of an atom
at Rj to the orbital n of the atom at Ri. Due to translation symmetry, its Fourier
transform εnmk is diagonal in the reciprocal lattice number k. Diagonalizing the matrix
εk results again in the Bloch eigenenergies εkν .

To obtain correlation effects beyond the effective one-particle picture, the repulsion
of two electrons has to be included explicitly. A direct evaluation of the two-electron
interaction in Eq. (2.2) in atomic units in the Wannier basis yealds an interaction Hamil-
tonian [35]

Hint =
∑
ijkl
mnop
σσ′

(Ubare)
σσ′
ijkl,
mnop

c†imσc
†
jnσ′clpσ′ckoσ, (2.19)

where

(Ubare)
σσ′
ijkl,
mnop

=

∫
d3r

∫
d3r′wσ∗im(r)wσ

′∗
jn (r′)

1

|r − r′|w
σ′
lp (r′)wσko(r). (2.20)

Here, the abbreviation wσim(r) ≡
〈
r
∣∣ wσRim

〉
is used. So far, the screening of the elec-

tronic interactions has not been considered yet. Doing so, the bare Coulomb interaction
V (r, r′) ∝ 1/ |r − r′| is reduced by the dielectric function ε and has thus to be replaced
by the screened interaction

W (r, r′, ω) =
V (r, r′)

ε(r, r′, ω)
. (2.21)

Note that the interaction parameters U become frequency dependent due to the screen-
ing.

With the interaction Hamiltonian Hint, the dimensionality of the Hamiltonian grows
again exponentially with system size, since a Fourier transformation to reciprocal space
as in Eq. (2.18) does not lead to a block structure with block sizes of single unit cells any
more. Therefore, approximations are needed in order to obtain solutions. An important
approximation is to assume locality of the interaction term, i.e., Uijkl ∝ δijδikδil. This
assumption is especially valid in systems with a strong screening. The local interaction
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that has to be calculated is thus

Uσσ
′

mnop(ω) =

∫
d3r

∫
d3r′wσ∗m (r)wσ

′∗
n (r′)W (r, r′, ω)wσ

′
p (r′)wσo (r). (2.22)

There are ways to calculate these interactions from band theory, for example, the con-
strained random phase approximation (cRPA) [36, 37] or the constrained local density
approximation (cLDA) [38]. In this thesis, the screening is assumed to be constant and
the interaction terms Uσσ

′
mnop rather seen as parameters instead of definite values that

are a posteriori compared to experiments in order to see the validity of the chosen pa-
rameters. There are, however, symmetry reasons leading to constraints when choosing
the entries of the tensor Uσσ

′
mnop. Usually, also additional symmetries, which are not ful-

filled exactly by the crystal, are assumed in order to simplify the parametrization of the
interaction tensor.

An important choice for Uσσ
′

mnop is the Slater parametrization, that follows from the
assumption of spherical symmetry. In that case, radial and angular parts of the atomic
eigenfunctions separate, and the eigenfunctions are of the form

ψnlml(r, θ, φ) = Rnl(r)Y
ml
l (θ, φ),

where Y ml
l are the spherical harmonics. In other words, the assumption is that the

angular dependence is the same as in an atom, but the radial dependence may not. For
a given shell with angular momentum quantum number l, it is then easy to parametrize
the interaction tensor in the spherical basis (orbital indices mnop account for different
ml) in terms of Slater integrals [39, 40]

F k =

∫
r2dr

∫
r′2dr′

min(r, r′)k

max(r, r′)k+1
R2(r)R2(r′). (2.23)

It reads then

Umnop =

2l∑
k=0

akl(m,n, o, p)F
k, (2.24)

with the Racah-Wigner numbers [34]

akl(m,n, o, p) = (2l + 1)2

(
l k l
0 0 0

)2

×

k∑
q=0

(−1)m+n+q

(
l k l
−m q o

)(
l k l
−n −q p

)
.

(2.25)

When the spherical symmetry is lifted, also the symmetries of the interaction tensor
are reduced, and the parametrization of the interaction tensor in the spherical basis
in terms of Slater integrals as in Eq. (2.24) is not valid any more (even though often
assumed, since it serves as a good approximation). If the localized Wannier orbitals have
a cubic surrounding, it is more convenient to express the interaction Hamiltonian in a
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cubic basis rather than in the spherical basis. Since there is only one s orbital (l = 0),
the transformation is trivial. For p orbitals (l = 1), a possible choice is

px = Y 0
1

py =
1√
2

(
Y −1

1 − Y 1
1

)
pz = − i√

2

(
Y −1

1 + Y 1
1

)
,

(2.26)

for d orbitals (l = 2) we can choose [40]

dz2 = Y 0
2

dxz =
1√
2

(
Y −1

2 − Y 1
2

)
dyz =

i√
2

(
Y −1

2 + Y 1
2

)
dxy =

i√
2

(
Y −2

2 − Y 2
2

)
dx2−y2 =

1√
2

(
Y −2

2 + Y 2
2

)
.

(2.27)

In a spherical environment, all Y ml
l are degenerate for the same l. Therefore, also

the cubic harmonics are degenerate. They are, however, advantageous in a cubic (or
octahedral) environment, since the crystal field possibly breaks the degeneracies. The
cubic harmonics are in this case still eigenfunctions, whereas the spherical harmonics are
not. For example, cubic symmetry splits the five d orbitals to two degenerate eg and
three degenerate t2g orbitals. The two eg orbitals are dz2 and dx2−y2 , the other three
belong to the t2g manifold.

When the one-particle basis is changed with respect to a transformation matrix T ,
as for example from spherical to cubic, the interaction tensor has to be transformed
according to

Ũm′n′o′p′ =
∑
mnop

UmnopT
∗
m′mT

∗
n′nToo′Tpp′ , (2.28)

The actual numbers in this tensor thus depend on the choice of the basis. Note that
this is also true for the density-density entries. For example, one can assume that
the interaction parameters behave as in a spherical surrounding to calculate the tensor
entries in the spherical basis using the Slater parametrization (2.24), and transform the
tensor then to the cubic basis. In the following, it will be discussed what the symmetries
of the interaction tensor are for a given quantum number l in a cubic environment, and
how the parametrization is related to the Slater form.

In case of an s orbital, the only unitary transformation in orbital space is a multipli-
cation with a phase. The only entry in the interaction tensor is U0000 = F 0

s = U . The
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local interaction Hamiltonian has therefore always the form

Hint = Un↑n↓. (2.29)

The total interaction Hamiltonian is the sum over all local ones. The full Hamiltonian
modeling a one-orbital material also includes the hopping (2.18), so that it has the
famous Hubbard form [41]

H =
∑
ij

tijc
†
icj + U

∑
i

ni↑ni↓. (2.30)

For p electrons in a cubic basis (px, py, pz), the three orbitals are equivalent since they
are connected by a rotation in real space that is an element of the cubic group. Therefore,
the three orbitals are degenerate; the cubic environment does not break degeneracies. As
a consequence, the Slater parametrization is still valid. Looking at the interaction tensor
in the cubic basis, there are only three different entries, namely Ummmm = F 0

p +4/25F 2
p ,

Umnmn = F 0
p−2/25F 2

p , and Umnnm = 3/25F 2
p for m 6= n. Instead of parametrizing these

three values by the Slater integrals F 0
p and F 2

p , one can also define directly the Coulomb
interaction U ≡ Ummmm and the exchange interaction JH ≡ Umnnm as parameters of
the Slater Hamiltonian. With that, one finds U ′ ≡ Umnmn = U − 2JH. The Slater
Hamiltonian for p orbitals has then the Kanamori form

Hint = U
∑
m

nm↑nm↓ + U ′
∑
m 6=n

nm↑nn↓ + (U ′ − JH)
∑
m<n,σ

nmσnnσ

+ JH

∑
m6=n

c†m↑c
†
n↓cm↓cn↑ + JH

∑
m6=n

c†m↑c
†
m↓cn↓cn↑.

(2.31)

The first three terms are density-density interactions, the latter two are spin-flip and
pair-hopping terms, respectively. Note that the definition of U and JH here follow the
Kanamori notation in cubic systems. As mentioned earlier, these values change in basis
transformations. Another popular definition is the Slater parametrization suited for
the rotationally invariant Hamiltonian (2.24). There, the definition of the interaction
strength US and the Hund’s coupling JS

H differ from the Kanamori values U and JH.
The interaction strength is defined as US ≡ F 0; the definition of the other parameters,
as for example JS

H, depends on the magnetic quantum number l. In case of p orbitals
one defines JS

Hp ≡ 1/5F 2
p [35]. Therefore, the relations between Slater and Kanamori

parameters are JS
Hp = 5/3 JH and US

p = U − 4/3 JH.

In case of d orbitals in a cubic basis (dxy, dxz, dyz, dz2 , dx2−y2), the five orbitals are not
equivalent, but the three t2g orbitals are. If one only considers these three t2g orbitals,
this part of the Slater Hamiltonian has again the Kanamori structure (2.31), but with
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the interaction parameters [42]

U = F 0
d +

4

49
F 2
d +

4

49
F 4
d

JH =
3

49
F 2
d +

20

441
F 4
d

U ′ = F 0
d −

2

49
F 2
d −

4

441
F 4
d = U − 2JH

(2.32)

The Slater parameters of the d shell are usually chosen as US
d = F 0

d , JS
Hd = 1/14 (F 2

d +
F 4
d ), and F 4

d = 0.625F 2
d [35]. Together with Eq. (2.32), relations between the Kanamori

and Slater parameters of the t2g subsystem can be obtained. Interestingly, also the
two-orbital Hamiltonian of isolated eg orbitals has a Kanamori form. The Coulomb
term U is the same as in case of the t2g (2.32), but the Hund’s coupling is given by
JH,eg = 4/49F 2

d + 15/441F 4
d .

So far, spherical symmetry was assumed in order to use the Slater form of the t2g and
the eg part of the interaction Hamiltonian of d orbitals. Both of them are of Kanamori
type with U ′ = U − 2JH. The respective interaction parameters U and JH of the two
Hamiltonians are related through the Slater integrals F 0

d , F 2
d , and F 4

d . These three, in
principle independent, parameters are the only needed for a spherically symmetric d shell.
If the symmetry is lowered by a cubic crystal field splitting called 10Dq, 10 independent
parameters are required to describe the full interaction Hamiltonian [40]. Looking now
at the t2g part of the Hamiltonian, it is still of Kanamori form (2.31), but with 3 instead
of 2 independent parameters. As a consequence, U ′, U , and JH are independent, when
spherical symmetry is not required. In contrast, only two independent parameters are
needed to describe the eg Hamiltonian. Therefore, U ′ = U − 2JH is still required in
this case [40, 42]. The remaining 10 − 3 − 2 = 5 independent parameters describe the
coupling between eg and t2g orbitals.

Since the Kanamori Hamiltonian (2.31) represents the correct Hamiltonian for p, t2g,
and eg orbitals in case of large 10Dq, this model is further investigated here. Even
though it is the most general form in a cubic surrounding, in some other models, as for
example when a large spin-orbit coupling is involved (see Chapter 6), it is helpful to
consider a generalization of the multi-orbital Kanamori Hamiltonian, where not only U ,
U ′ and Hund’s coupling JH are independent, but also the spin-flip and the pair-hopping
amplitudes JSF and JPH. It reads then [42]

HGK = U
∑
m

nm↑nm↓ + U ′
∑
m 6=n

nm↑nn↓ + (U ′ − JH)
∑
m<n,σ

nmσnnσ

+ JSF

∑
m 6=n

c†m↑c
†
n↓cm↓cn↑ + JPH

∑
m 6=n

c†m↑c
†
m↓cn↓cn↑.

(2.33)

For a further interpretation of this Hamiltonian, it is helpful to rewrite it in terms of
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total charge N , total spin S, and total orbital isospin. The first two are given by

N =
∑
mσ

nmσ, S =
∑
m,σσ′

c†mσsσσ′cmσ′ , (2.34)

where s is the vector of the matrix representation of a single spin-1/2 electron. Usually,
the prefactor ~ is absorbed in the energy units and the conventional spin basis is chosen,
so that the representation reads s = σ/2, with Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.35)

The definition of the total orbital isospin depends on the number of considered orbitals,
which makes a distinction necessary.

First, consider the case of two orbitals, where the isospin T is defined in analogy to
the physical spin, just exchanging spin and orbital indices

T =
1

2

∑
σ,mn

c†mσσmncnσ. (2.36)

The two-orbital generalized Kanamori Hamiltonian can then be rewritten as [42]

HGK =
(
U + U ′ − JH + JSF

) N(N − 1)

4
−
(
U − U ′ − JH + 3JSF

) N
4

+ (JSF + JPH)T 2
x + (JSF − JPH)T 2

y + (U − U ′)T 2
z

+ (JSF − JH)S2
z .

(2.37)

This Hamiltonian has the maximum charge, spin, and orbital symmetry U(1)C⊗SU(2)S⊗
SU(2)O only if the parameters obey JPH = 0, JSF = JH and U ′ = U − JH, resulting
in [42] (

U − 1

2
JH

)
N(N − 1)

2
− 3

4
JHN + JHT

2

=

(
U − 3

2
JH

)
N(N − 1)

2
+

3

4
JHN − JHS

2.

(2.38)

This Hamiltonian maximizes the total spin S according to Hund’s first rule and was orig-
inally introduced to describe magnetic impurities [42, 43]. It is, however, not compatible
with the two-orbital Kanamori Hamiltonian (2.31) usually used to describe two p or d
orbitals in a cubic environment. As mentioned before, for eg orbitals, JSF = JPH = JH

and U ′ = U − 2JH are required. Hamiltonian (2.37) reads in this case

Heg = (U − JH)
N(N − 1)

2
− JHN + 2JH

(
T 2 − T 2

y

)
, (2.39)

which is due to the Ty term not invariant under rotations in orbital space.
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Table 2.1: Eigenenergies of the three-orbital Kanamori Hamiltonian (2.43) sorted by
their quantum numbers. Fillings larger than N = 3 are added in brackets.
The degeneracies are given by (2S + 1)(2L+ 1).

N S L Degeneracy Energy

0 [6] 0 0 1 0 [15U − 30JH]

1 [5] 1/2 1 6 0 [10U − 20JH]

2 [4] 1 1 9 U − 3JH [6U − 13JH]
2 [4] 0 2 5 U − JH [6U − 11JH]
2 [4] 0 0 1 U + 2JH [6U − 8JH]

3 3/2 0 4 3U − 9JH

3 1/2 2 10 3U − 6JH

3 1/2 1 6 3U − 4JH

In case of three orbitals, an orbital isospin can be defined as

Lm = i
∑
σ,no

εmnoc
†
nσcoσ. (2.40)

With this definition, the generalized Kanamori reads [42]

HGK =
(
3U ′ − U

) N(N − 1)

4
+
(
U − U ′ − JH

) N
4

+
(
U ′ − U

)
S2

+
1

2

(
U ′ − U + JH

)
L2 + (JSF − JH)

∑
m 6=n

c†m↑c
†
n↓cm↓cn↑

+
(
U ′ − U + JH + JPH

) ∑
m6=n

c†m↑c
†
m↓cn↓cn↑

(2.41)

For a full U(1)C ⊗ SU(2)S ⊗ SO(3)O symmetry, the last two terms have to vanish, i.e.,
JSF = JH and JPH = U − U ′ − JH, so that U , JH, and U ′ are still free parameters. For
example, the highly-symmetric solution with U ′ = U − JH (corresponding to JPH = 0)
yields (

U − 3

2
JH

)
N(N − 1)

2
− JHS

2, (2.42)

equivalent to the highly symmetric version of the two-orbital generalized Kanamori (2.38).
The fact that the choice U ′ = U − JH and JPH = 0 leads to a highly symmetric Hamil-
tonian that only depends on N2, N , and S2 can be generalized to an arbitrary number
of orbitals [42]. A vanishing pair hopping, however, is not possible for a physical t2g
Hamiltonian, which requires JPH = JSF = JH. In that case, U ′ = U−2JH is required (as
in the Slater parametrization) in order to obtain the full symmetry. The t2g Hamiltonian
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is then

Ht2g = (U − 3JH)
N(N − 1)

2
+

5

2
JHN − 2JHS

2 − JH

2
L2. (2.43)

In case U ′ differs from the symmetric value by Υ ≡ U ′ − U + 2JH, the prefactors of
the operators are modified, and an additional pair hopping term Υ

∑
m6=n c

†
m↑c

†
m↓cn↓cn↑

that breaks the symmetry is added. From Eq. (2.43), one can immediately read off the
eigenenergies for a given filling N , once the eigenvalues of S2 and L2 are known. The
first operator, S2, is by definition (2.34) the square of the total spin and has therefore
the eigenvalue S(S+ 1) where the possible values of S are given by the rules of coupling
N different s = 1/2 particles. For example, in case of N = 2 one finds S = 0, 1.
The second operator, L2, is equivalent to the sum of angular momenta with l = 1 and
has eigenvalues L(L + 1) [40, 42]. This is expected since the three-orbital Kanamori
Hamiltonian represents the interactions in p orbitals. It is, however, interesting, that
this Hamiltonian is also a good choice for the t2g subspace of the d orbitals that actually
have l = 2. A closer look at this relation is given in section 3.3. With the eigenvalues
of S2 and L2, the eigenenergies are known and displayed in table 2.1. Note that not all
combinations of L and S are possible due to Pauli principle. From the eigenvalues, one
sees that the Kanamori Hamiltonian intrinsically captures the first two Hund’s rules,
namely that first the total spin has to be maximized, then the total angular momentum.
If U ′ 6= U − 2JH, some energies are shifted, but only the L = 2 levels split into 2 levels
each, since the symmetry breaking additional pair hopping only acts in this subspace.

2.3 Dynamical mean-field theory

This section provides a basic introduction to the dynamical mean-field theory (DMFT),
which is the most-used numerical method for obtaining the results of this thesis. Most
derivations are left out here for the sake of brevity; they can be found, for example, in
Ref. [5].

The goal of the DMFT is to solve model Hamiltonians of localized Wannier orbitals
H = H0+Hint consisting of a noninteracting hopping part H0 (see Eq. (2.18)) and a local
interaction Hamiltonian Hint as introduced in the previous section. The basic idea is to
map the full Hamiltonian H self-consistently onto an Anderson impurity model (AIM),
which consists of a strongly correlated impurity coupled to a noninteracting bath. The
Hamiltonian of the AIM is

HAIM =
∑
nm,σ

εnmloc c
†
nσcmσ +Hint +

∑
p,σ

εpbathb
†
pσbpσ

+
∑
np,σ

(
Vnpc

†
nσbpσ + V ∗npb

†
pσcnσ

)
.

(2.44)

The first term describes the local noninteracting Hamiltonian on the impurity and is
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determined by the original hopping problem via

εnmloc =
1

Nk

∑
k

εnmk , (2.45)

the second term is the interacting part. The third term is the Hamiltonian of the bath
(b† creates a particle in the bath), the last term couples the bath to the impurity. Note
that the noninteracting part of the AIM described here does not contain terms that
couple different spin species like c†nσcmσ′ . Such terms are, in general, needed if the SOC
is included. However, for simplicity, it is assumed in this section that the spin species
are not coupled and that they are identical.

The full noninteracting Hamilton matrix HAIM
0 consists of both impurity and bath, the

impurity block and the bath block are coupled by the elements Vnp. The noninteracting
Green’s function is given by

GAIM
0 (z) =

(
z −HAIM

0

)−1
, (2.46)

where z is a complex frequency that is typically z = ω + i0+ for the retarded Green’s
function, and z = iωn for the Matsubara Green’s function with fermionic Matsubara
frequencies ωn = (2n + 1)π/β at inverse temperature β with n ∈ N. Since HAIM

0 is
not block diagonal, the impurity block and the bath block of GAIM

0 (z) are coupled as
well. However, it is possible to effectively integrate out the bath. The impurity part of
GAIM

0 (z), called G0(z), can then be written as

G0(z) = (z − εloc −∆(z))−1 , (2.47)

with a hybridization function matrix ∆(z), whose elements are

∆nm(z) =
∑
p

V ∗npVmp

z − εpbath

(2.48)

Note that the inversion is a matrix inversion in the multi-orbital case since εloc and ∆(z)
are matrices then. Given G0(z) and Hint, an impurity solver can be used to calculate
the interacting impurity Green’s function Gimp(z). The self-energy Σ(z) is related to
the Green’s functions via the Dyson equation

G−1
imp(z) = G−1

0 (z)− Σ(z). (2.49)

The correlation effects of Hint are thus encoded in Σ(z).

The noninteracting Green’s function of the full lattice model one originally wants to
solve is

Glatt, 0(k, z) = (z − εnmk + µ)−1 , (2.50)

where the chemical potential µ has to be adjusted such that the interacting Green’s
function has the correct filling. Using the Dyson equation on the lattice, the interacting
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Green’s function is given by

Glatt(k, z) = (z − εnmk + µ− Σ(k, z))−1 , (2.51)

Within DMFT, the self-energy Σ(k, z) is approximated by the local self-energy Σ(z) of
the AIM. However, the hybridization function ∆(z) optimally approximating the physical
problem is not determined yet. Therefore, an additional constraint is needed in order to
obtain the best ∆(z). In DMFT, the constraint is that the local Green’s function Gloc

has to be identical to the impurity Green’s function

Gloc(z) =
1

Nk

∑
k

Glatt(k, z) = Gimp(z). (2.52)

This equation is called DMFT self-consistency condition and determines implicitly the
AIM noninteracting Green’s function and the hybridization function.

In practice, the self-consistency condition is solved in an iterative procedure. One
starts with some initial self-energy and calculates the initialGlatt andGloc using Eqs. (2.51)
and (2.52). Using the self-consistency condition and the Dyson equation (2.49), G0(z) is
obtained. The AIM with this noninteracting Green’s function is solved, yielding an im-
purity Green’s function Gimp(z) and an updated self-energy Σ(z). With the new Σ, the
next iteration can be started. The procedure is converged when Σ(z) does not change
with the iteration any more and when Gloc = Gimp.

2.3.1 DFT + DMFT

In case of real-material calculations, the noninteracting Hamiltonian has to be chosen
realistically. Usually, this is done by a DFT calculation, followed by a Wannier projection
onto a subset of orbitals that is believed to show interesting correlation physics. The
interaction Hamiltonian is then defined in this Wannier basis and acts only on the subset
of correlated orbitals. However, the correlations are also included to some extend in the
exchange-correlation functional of DFT. Due to this so-called double counting of the
correlation energy, the energy of the correlated orbitals has to be lowered by a double-
counting correction to compensate for this effect.

Two important Wannier bases are maximally localized Wannier functions and projec-
tive Wannier functions, which are both explained in Sec. 2.1.2. Here, a way to combine
DFT + DMFT is shown by means of the projection formalism, following Ref. [32]. In
this case, the information how the correlated orbitals are related to the uncorrelated
bands is encoded in the projectors Pασnν (k). With them, one can transform quantities
from the band basis to the basis of localized orbitals. Instead of performing the DMFT
cycle in the Wannier basis with the downfolded Hamiltonian (2.17), one can rather stay
in the Bloch basis and upfold the self-energy to the Bloch space

Σσ
νν′(k, z) =

∑
α

∑
nn′

Pασ∗nν (k)
[
Σασ
nn′(z)− Σdc, ασ

nn′

]
Pασn′ν′(k), (2.53)
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where the double-counting correction Σdc is already subtracted. This upfolded self-
energy as well as the Bloch energies εkν are used to calculate the lattice Green’s function
with Eq. (2.51), which reads in the Bloch basis

Gσ,νν
′

latt (k, z) = [(z − εkν + µ) δνν′ − Σσ
νν′(k, z)]

−1 . (2.54)

Since the local Green’s function in the local Wannier basis is needed for the self-
consistency cycle, the lattice Green’s function has to be downfolded, which leads to
the local Green’s function

Gασ,nn
′

loc (z) =
∑
k

∑
νν′

Pασnν (k)Gσ,νν
′

latt (k, z)Pασ∗n′ν′ (k). (2.55)

Using this local Green’s function, the other DMFT steps can be performed. The chemical
potential µ has to be adjusted such that the electron filling in the Bloch basis is correct.
The double-counting correction Σdc, ασ

nn′ should rectify the part of the correlation strength
that is present in both DFT and DMFT. Many different approaches have been presented
in literature, the method of choice depends on the problem [44–48].

2.3.2 Impurity solvers

How to solve the impurity model, i.e., calculate Gimp(z) given HAIM, has not been
discussed so far. Since this step is usually the most involved and time consuming part
in a DMFT calculation, a short introduction is given here.

The first DMFT calculations [4] used the iterative perturbation theory [5, 49–54] as
a solver, which is a computationally inexpensive, but approximate approach. Another
approach that is frequently used is exact diagonalization [5, 55]. There, the AIM is
restricted to a finite number of bath sites, such that the dimesion of HAIM small enough
that it can be diagonalized. Due to the truncation of the AIM, not all hybridization
functions ∆(z) can be displayed. Usually, the parameters of the truncated AIM are cho-
sen by a fit of ∆, leading to a systematic error due to the discretization. An advantage
of this method is the access to real-frequency properties without analytic continuation.
This is also true for methods based on the density matrix renormalization group and
tensor networks [56–58], which can achieve a lot better spectral resolution than exact
diagonlization, since more bath sites are included in the AIM. Other approaches in-
clude the non-crossing approximation [59], slave bosons [60], numerical renormalization
group [61], and Quantum Monte Carlo methods. The Quantum Monte Carlo methods
are a large class of important impurity solvers that need to be discussed in more detail.
For DMFT calculations, the Hirsch-Fye algorithm [62] was the first method used [63–
65]. A drawback of this method is the discretization of imaginary time steps, consti-
tuting a systematic error. This error can be avoided by another class of algorithms,
called Continuous Time Quantum Monte Carlo (CTQMC) [66], which does not rely on
a discretization of imaginary time τ . CTQMC is based on an expansion of the parti-
tion function Z = Tr e−βH . For this reason, the Hamiltonian of the AIM is split into
two parts HAIM = HA + HB, and Z is then expanded in powers of HB. The choice of
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HB marks different flavors of CTQMC, prominent examples are the interaction expan-
sion (CTINT) [67] and the hybridization expansion (CTHYB) [68, 69], which is briefly
discussed here, since it is extensively used in this thesis.

Continuous-time Quantum Monte Carlo in hybridization expansion (CTHYB)

The following discussion on the CTHYB solver is based on Emanuel Gull’s thesis [70]
and review paper [66].

In the hybridization expansion, the part the partition function is expanded in is the
hybridization term of the AIM HB = Hhyb. The static part HA is the rest, consisting
of the local Hamiltonian of the impurity including the interaction terms, and the local
Hamiltonian of the bath. Therefore, this Hamiltonian is called here Hlb. The partition
function can then be written as

Z = Tr e−βHAIM = Tr
[
e−βHlbTτe

−
∫ β
0 dτ Hhyb(τ)

]
, (2.56)

where Tτ is the imaginary time-ordering operator and

Hhyb(τ) = eτHlbHhybe
−τHlb (2.57)

the time-dependent hybridization Hamiltonian in interaction representation. Expansion
in a power series in Hhyb yields

Z =
∞∑
q=0

∫ β

0
dτ1 · · ·

∫ β

τq−1
dτq Tr

[
e−βHlbHhyb(τq) · · ·Hhyb(τ1)

]
. (2.58)

One can then write the Hamiltonians explicitly as their creation and annihilation oper-
ators and split off the parts containing only operators that act on the bath. The bath
partition function can be calculated exactly, and one obtains

Z =Zbath

∞∑
q=0

∫
dτ1dτ ′1 · · · dτqdτ ′q

× Trimp

[
e−HlocTτ c(τq)c

†(τ ′q) · · · c(τ1)c†(τ ′1)
]

det ∆.

(2.59)

Thus, all the information about the influence of the bath onto the impurity is encoded
in the determinant of the hybridization function. In CTHYB, Eq. (2.59) is estimated
using importance sampling. Each set of imaginary times τ1, . . . , τq, τ

′
1, . . . , τ

′
q defines a

configuration; within this configuration space, a Markov chain Monte Carlo is performed.
As in other flavors of Quantum Monte Carlo, it cannot be guarantied that each con-

tribution to the partition function is positive, hindering to interpret the contributions
as probabilities, which is needed for the Monte Carlo. This is the so-called sign problem,
leading to worse statistics. In some cases, it is not possible to perform the Monte Carlo
in sizable time.
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3 Spin-orbit coupling

3.1 Basics of relativistic quantum mechanics

So far, non-relativistic quantum mechanics has been used, so that all results are based on
the Schrödinger equation. The energy-momentum relation of the Schrödinger equation,
however, E = p2/2m, whereas the correct relation from Einstein’s special theory of
relativity is

E2 = m2c4 + c2p2. (3.1)

The fact that the relation is quadratic in E was causing difficulties in the physical
interpretation in the early days of quantum mechanics. Paul Dirac had the idea to write
down a relation that is linear in the operators, i.e., E = cα · p + βmc2, leading to the
Dirac equation

i~
∂ψ

∂t
= −ic

∑
i

αi
∂ψ

∂xi
ψ + βmc2 = Hψ. (3.2)

The correct dispersion (3.1) is only fulfilled if the quantities αi and β obey the relations

αiαj + αjαi = 2δij

αiβ + βαi = 0

β2 = 1

(3.3)

Obviously, αi and β cannot be ordinary numbers since they would not anticommute. It
it possible to represent them as matrices, though, where 4 × 4 objects are the smallest
possible. One frequently used representation is the Dirac representation

αi =

(
0 σi
σi 0

)
β =

(
1 0
0 −1

)
, (3.4)

where σi are the Pauli matrices (2.35), and 1 is the 2× 2 unit matrix.

How the Dirac equation is related to the Schrödinger equation and how its four com-
ponents can be interpreted is best seen in the non-relativistic limit. This paragraph
presents important results from Ref. [71], leaving out many steps of the actual calcu-
lation. Considering the Dirac equation with an electromagnetic potential Aµ = (Φ,A),
the momentum has to be replaced by pµ → pµ− e/cAµ, so that the Dirac equation (3.2)
reads

i~
∂ψ

∂t
=
[
cα ·

(
p− e

c
A
)

+ βmc2 + eΦ
]
ψ (3.5)

In the non-relativistic limit, it is convenient to write the four-component vector ψ as two

19



two-component vectors φ and χ via

ψ = e−imc
2

~ t

(
φ
χ

)
, (3.6)

since then the approximation

χ ≈ σ · (p− (e/c)A)

2mc
φ (3.7)

holds. The so-called small component χ is thus by a factor ∼ v/c smaller than the large
component φ. With that, one finally arrives at the Pauli equation

i~
∂φ

∂t
=

[
(p− (e/c)A)2

2m
− e~

2mc
σ ·B + eΦ

]
φ (3.8)

describing the physics of the large component.

To interpret the result, it is helpful to analyze the pysical meaning of σ by calculating
some commutation relation, as done for example in [72]. With l = r × p, one finds

[H, lz] = −i~c(−α1py + α2px) = −i~c(α× p)z. (3.9)

The orbital angular momentum is thus not a conserved quantity in the Dirac equation,
in contrast to non-relativistic quantum mechanics. Defining the operators

si ≡
~
2

(
σi 0
0 σi

)
, (3.10)

the commutators are
[si, sj ] = i~εijksk (3.11)

and the eigenvalues of s2 are 3/4 ~2 = s(s + 1)~2. Therefore, s is the smallest possible
angular momentum with s = 1/2. The commutator with the Dirac Hamiltonian H is

[H, sz] = i~c(−α1py + α2px) = i~c(α× p)z. (3.12)

Combining equations (3.9) and (3.12) and defining jz = lz + sz, one finds [H, jz] = 0. In
analogy, one can get the same results for jx and jy, yielding

[H, ji] = [H, j2] = 0 (3.13)

for an angular momentum j = l + s. The interpretation of these results is that j is
the total relativistic angular momentum, which is conserved. The angular momentum
s does not originate from the movement of the electron and is therefore an intrinsic
angular momentum called spin.

With the definition of the angular momenta l and s, the Pauli equation (3.8) can be
reduced by assuming a weak uniform magnetic field B, where only first order terms are
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kept, to

i~
∂φ

∂t
=

[
p2

2m
− e

2mc
(l+ 2s) ·B

]
φ. (3.14)

This equation is similar to its nonrelativistic equivalent, with the difference that the
magnetic field also couples to an intrinsically appearing spin by (e/2mc)gss with a
Landé factor of gs = 2. To conclude, we have seen that the Dirac equation allows in the
non-relativistic limit within the standard Dirac representation (3.4) to interpret the four
components as the spin-up and spin-down components of a large and and a small part,
respectively. Note that the assignment might be different in other representations. The
spin quantities that pop up have to be treated with the Pauli equation (3.8) and are not
explainable from non-relativistic quantum mechanics.

3.2 Relativistic origin of the spin-orbit coupling

3.2.1 The weakly relativistic limit

In the last section, the relativistic appearance of spin has been discussed. In the non-
relativistic limit, this spin-components enter physically only as a Zeemann splitting (3.14)
when a magnetic field is present. In this section it is shown that relaxing the limit to
a weakly relativistic approximation will lead to a coupling of the internal spin with the
orbital angular momentum, next to some shifts of energy levels.

Starting point is again the Dirac equation (3.5), but for simplicity this time only the
static form Hψ = Eψ is considered. Furthermore, the vector potential A is assumed to
be zero and the scalar potential to be of the form eΦ = v(r) ∝ 1/r. The Dirac equation
is then

Hψ =
[
cα · p+ βmc2 + v(r)

]
ψ = Ẽψ (3.15)

As in the non-relativistic approximation, it is useful to split the four-index object ψ into
a large and a small component via

ψ =

(
φ
χ

)
. (3.16)

Note that the time dependence present in (3.6) is dropped since we are interested in the
time-independent solution. The resulting two coupled equations are

c (σ · p)χ = [E − v(r)]φ

c (σ · p)φ = [E − v(r) + 2mc2]χ,
(3.17)

where we defined E = Ẽ −mc2, the energy on top of the rest energy mc2. Substituting
one equation into the other yields

1

2m
(σ · p)K(σ · p)φ+ v(r)φ = Eφ (3.18)
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for the large component, with

K ≡
[
1 +

E − v(r)

2mc2

]−1

. (3.19)

Note that the momenta pi do not commute with K, as it depends on position r. The
entries of the Pauli matrices, however, are numbers and commute, therefore, with K
and pi. Using the relation σiσj = δij1 + iεijkσk and the Einstein sum convention, one
obtains

(σ · p)K(σ · p) = σipiKσjpj = piKσiσjpj = piKpi1 + iσkεijkpiKpj ,

hence Eq. (3.18) can be rewritten as[
1

2m
pK · p+

i

2m
σ · (pK × p) + v(r)

]
φ = Eφ (3.20)

The first term is the so-called scalar relativistic term since it is proportional to the unit
matrix and hence not spin-dependent, whereas the second is the spin-orbit coupling
(SOC).

In most applications, K (defined in Eq. (3.19)) is approximated. It is, however, not
necessary to use the same approximation at both appearances of K in Eq. (3.20). For
example, most DFT codes leave out the SOC, but keep a scalar relativist term since
modifications in that part do not increase the complexity significantly. Here, we want
to treat both on equal footing. Since mc2 � E − v(r), K can be expanded in E−v(r)

2mc2
.

The crudest approximation is zeroth order, so that K ≈ 1. This is equivalent to the
non-relativistic limit that led to the Pauli equation (3.8) in the previous section. Since
we are dealing here with the time-independent Dirac equation without an external vector
potential, Eq. (3.20) reduces in this limit to the ordinary Schrödinger equation[

p2

2m
+ v(r)

]
φ = Eφ.

Note that the SOC vanishes completely because of p × p = 0. In order to obtain an
effect of the SOC, K needs to be different from 1. Therefore, K has to be expanded at
least to first order

K =

[
1 +

E − v(r)

2mc2

]−1

≈ 1− E − v(r)

2mc2
. (3.21)

In this weakly relativistic approximation, the eigenvalue equation (3.20) reads[
p2

2m
− 1

4m2c2
[p(E − v(r)) · p] +

i

4m2c2
σ · (pv(r)× p)

]
φ = [E − v(r)]φ (3.22)

Note that the energy E still appears in this Hamiltonian. The equation can be solved
iteratively when replacing E − v(r) with the whole operator on the left. Neglecting
all terms ∝ 1/c4 or higher, the series ends after the first iteration and we can use
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E − v(r) ≈ p2/2m on the left hand side of the equation. However, the commutator
[p, v(r)] = −i~∇v(r) 6= 0, so it does make a difference if E − v(r) is replaced by p2/2m
in a term p(E − v(r)) · p, or (E − v(r))p · p, or p · p(E − v(r)). Here, we symmetrize
the term before replacing it, i.e.,

p(E − v(r)) · p =
1

2
[p · p(E − v(r)) + i~p · ∇v + (E − v(r))p · p+ i~∇v · p]

≈ p4

2m
+

i~
2

[∇v,p] =
p4

2m
− ~2

2
∇2v(r)

Using the commutation relations also in the SOC term, equation (3.22) is of the form[
p2

2m
+ v(r)− p4

8m3c2
+

~2

8m2c2
∇2v(r) +

~
4m2c2

σ · (∇v(r)× p)

]
φ = Eφ (3.23)

3.2.2 Fine structure levels of the hydrogen-like atom

In an hydrogen-like atom, the potential is of the special form v(r) = Z~cαF/r. As in
all spherically symmetric potentials v(r) = v(r), one can rewrite Eq. (3.23) in terms of
spin s = σ~/2 and orbital angular momentum l = r×p. With a fine structure constant
αF = e2/(4πε0~c), it reads then[

p2

2m
+
Z~cαF

r
− p4

8m3c2
+
ZαFπ~3

2m2c
δ(r) +

ZαF~
2m2c

1

r3
(l · s)

]
φ = Eφ. (3.24)

The first two terms correspond again to the Schrödinger equation. The third term
proportional to p4 is called mass term and is easily understood from an expansion of the
relativistic energy momentum relation E(p). The fourth term is the Darwin correction.
Since it is proportional to δ(r), it only affects the s orbitals. For all other orbitals,
φ(0) = 0 holds and the Darwin contribution vanishes. The last term is the SOC.

Without the relativistic corrections, the Hamiltonian commutes with the components
of the orbital angular momentum l. Therefore, the eigenfunctions in real space separate
into a radial and an orbital part

〈r| φ〉 = φ(r) = Rnl(r)Y
ml
l (θ, ϕ) = 〈r, θ, ϕ| n, l,ml〉 ,

and the eigenfunctions can be labeled by a radial (principal) quantum number n and
two orbital quantum numbers, l and ml, obeying l2 |n, l,ml〉 = ~2l(l + 1) |n, l,ml〉 and
lz |n, l,ml〉 = ml |n, l,ml〉. Because of the conservation of the angular momentum, the
eigenenergies cannot depend on ml. Due to an additional conserved quantity of the 1/r
potential, called Runge-Lenz vector, also the different l are degenerate. The eigenvalues
are

En = −Z
2α2

Fmc
2

2n2
. (3.25)

In this considerations, the spin does not appear. To get from Schrödinger to Pauli
equation, it has to be included ad hoc. The eigenvalues are known from the usual
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Figure 3.1: Fine-structure levels of the third shell (n = 3) of hydrogen. The energy is
given in eV and relative to the non-relativistic level.

relations of angular momentum, i.e, s2 |s,ms〉 = ~2s(s + 1) |s,ms〉 and sz |s,ms〉 =
~ms |s,ms〉 with s = 1/2 and ms = ±1/2. The total eigenfunctions of the hydrogen-like
atom without relativistic corrections are then |n, l,ml〉 ⊗ |s,ms〉 with eigenvalues given
by Eq. (3.25).

Including the weakly relativistic corrections, the energy levels shift because of scalar
relativistic mass and Darwin terms. The SOC leads to and additional splitting. Now,
the strength of the splitting is considered. The spin-orbit term is of the form

HSO = λ(r)l · s, (3.26)

with a coupling parameter that is for a hydrogen-like Hamiltonian of the form

λ(r) =
~2

2m2c2

1

r

dv

dr
=
ZαF~
2m2c

1

r3
, (3.27)

where the first expression is true for a general spherically symmetric potential and the
second in the special case of a hydrogen-like atom. Due to its dependence on r it will
change the atomic eigenfunctions. However, a good approximation of the energy shift

24



can be found in perturbation theory by calculating the expectation value [73, 74]〈
1

r3

〉
=

〈
nlml

∣∣∣∣ 1

r3

∣∣∣∣nlml

〉
=

∫
dr r2R2

nl(r)
1

r3
=

(
ZmcαF

n~

)3 1

l
(
l + 1

2

)
(l + 1)

, (3.28)

which is valid for all l 6= 0. The expectation value of l ·s can be evaluated using the total
angular momentum j. In section 3.1 it was shown that the total angular momentum
j = l + s commutes with the Dirac Hamiltonian. The eigenvalues ~2j(j + 1) of j2 are
thus good quantum numbers, where j can take the values l±1/2. The expectation value
is therefore [74]

〈l · s〉 =
1

2

〈
j2 − l2 − s2

〉
=

~2

2

[
j(j + 1)− l(l + 1)− 3

4

]
(3.29)

for l 6= 0 and 〈l · s〉 = 0 for l = 0. Hence, the eigenvalues of the spin-orbit operator are
in first order perturbation theory [74]

〈HSO〉 =
Z4α4

Fmc
2

4n3

j(j + 1)− l(l + 1)− 3/4

l(l + 1/2)(l + 1)
. (3.30)

Notably, it grows with the fourth power of the atom number Z and is thus strong for
heavy elements. If the two scalar relativistic terms are included as well, one obtains a
simple expression for the fine structure correction that is valid for all quantum numbers
n, j, and l, where j = 1/2 for l = 0 and j = l ± 1/2 else:

〈Hmass +HDarwin +HSO〉 = −Z
4α4

Fmc
2

2n3

(
1

j + 1
2

− 3

4n

)
. (3.31)

This energy corrections are shown for hydrogen (Z = 1) in Fig. 3.1.

To obtain the correct fine structure, one can also solve the Dirac equation exactly,
which is a bit more involved than the weakly relativistic approximation used here. The
resulting atomic energies are

Enj = −mc2

1−

1 +

 ZαF

n− j − 1
2 +

√(
j + 1

2

)2 − Z2α2
F

2−1/2
 . (3.32)

Expanding this expression in ZαF yields in zeroth order the nonrelativistic eigenener-
gies (3.25) and in first order the correction (3.31).
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3.3 SOC in p and d orbitals

In the last section, it has been shown that the relativistic effects can be approximated
by scalar shifts in the energy and an additional spin-orbit coupling

HSO = λ l · s = λ (lxsx + lysy + lzsz) . (3.33)

The si operators act only on spin space, whereas the li act only in orbital space, so
lisi may also be written as li ⊗ si. Since both li and si are single-particle operators,
their direct product is one as well. The operators can therefore be expanded as l =∑

nm c
†
nlnmcm, where n and m are orbital indices, and s =

∑
σσ′ c

†
σsσσ′c

′
σ, where σ and

σ′ are spin indices. Note that the same symbols l and s, respectively, are used for both
the operators as well as their matrix representations.

The irreducible representations of the spin operators are of dimension 2 and are in-
dependent of l. They are chosen here as s = ~σ/2, where σ are the usual Pauli matri-
ces (2.35). As mentioned in the previous section, the spin-orbit coupling is only present
for l ≥ 1. A possible representation of the l = 1 orbitals in the spherical basis (ml = −1,
ml = 0, ml = 1) is easily obtained from the well-known relations

lz |l,ml〉 = ~ml |l,ml〉
l± |l,ml〉 = ~

√
l(l + 1)−ml(ml ± 1) |l,ml ± 1〉 ,

(3.34)

where l± = lx ± ily are the so-called ladder operators. The matrices read

lx =
~√
2

0 1 0
1 0 1
0 1 0

 ly =
~√
2

 0 i 0
−i 0 i
0 −i 0

 lz = ~

−1 0 0
0 0 0
0 0 1

 . (3.35)

This representation can be transformed to a cubic basis (px, py, pz) using transforma-
tion (2.26),

lx = ~

0 0 0
0 0 −i
0 i 0

 ly = ~

 0 0 i
0 0 0
−i 0 0

 lz = ~

0 −i 0
i 0 0
0 0 0

 . (3.36)

The spin-orbit operator of p orbitals in a cubic basis (p↑x, p↑y, p
↑
z, p
↓
x, p↓y, p

↓
z) is therefore

l · s =
~2

2



0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 (3.37)

From now on, the prefactor ~ will be dropped, since it just scales every angular momen-
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tum operator. This corresponds to a change to atomic units. As described in detail in the
sections 3.1 and 3.2.2, the components of the total angular momentum j = l+s commute
with the full Dirac Hamiltonian, and, hence, also with the spin-orbit operator. There-
fore, using the eigenfunctions of j2 and jz with eigenvalues j2 |j,mj〉 = j(j + 1) |j,mj〉
and jz |j,mj〉 = mj |j,mj〉 as basis functions, HSO has to be diagonal. This basis is called
j basis. The relation between |j,mj〉 and the cubic basis vectors |l,ml〉 ⊗ |s,ms〉 are ob-
tained from the usual rules of adding angular momenta, leading to the Clebsch-Gordan
coefficients∣∣∣∣j =

3

2
,mj =

3

2

〉
=

∣∣∣∣ml = 1,ms =
1

2

〉
∣∣∣∣j =

3

2
,mj =

1

2

〉
=

√
1

3

∣∣∣∣ml = 1,ms = −1

2

〉
+

√
2

3

∣∣∣∣ml = 0,ms =
1

2

〉
∣∣∣∣j =

1

2
,mj =

1

2

〉
=

√
2

3

∣∣∣∣ml = 1,ms = −1

2

〉
−
√

1

3

∣∣∣∣ml = 0,ms =
1

2

〉
∣∣∣∣j =

3

2
,mj = −3

2

〉
=

∣∣∣∣ml = −1,ms = −1

2

〉
∣∣∣∣j =

3

2
,mj = −1

2

〉
=

√
1

3

∣∣∣∣ml = −1,ms =
1

2

〉
+

√
2

3

∣∣∣∣ml = 0,ms = −1

2

〉
∣∣∣∣j =

1

2
,mj = −1

2

〉
=

√
2

3

∣∣∣∣ml = −1,ms =
1

2

〉
−
√

1

3

∣∣∣∣ml = 0,ms = −1

2

〉

(3.38)

Here, l = 1 and s = 1/2 is not written explicitly for brevity. Using transformation (2.26),
the l = 1 orbitals can be expressed in terms of the cubic harmonics. For convenience,
arrows are used to label ms = ±1/2.∣∣∣∣j =

3

2
,mj =

3

2

〉
= − 1√

2

∣∣∣p↑x〉+
i√
2

∣∣∣p↑y〉∣∣∣∣j =
3

2
,mj =

1

2

〉
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2√
6
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6
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i√
6
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2
,mj =
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2

〉
= − 1√
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3
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3
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2
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2

〉
=

2√
6

∣∣∣p↓z〉+
1√
6

∣∣∣p↑x〉+
i√
6

∣∣∣p↑y〉∣∣∣∣j =
1

2
,mj = −1

2

〉
=

1√
3

∣∣∣p↓z〉− 1√
3

∣∣∣p↑x〉− i√
3

∣∣∣p↑y〉∣∣∣∣j =
3

2
,mj = −3

2

〉
=

1√
2

∣∣∣p↓x〉+
i√
2

∣∣∣p↓y〉

(3.39)

With this transformation, the spin-orbit matrix (3.37) is brought from the cubic p basis
to j basis. It is then diagonal with elements 1/2 for the four j = 3/2 orbitals and −1 in
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case of the two j = 1/2 orbitals, since

l · s =
1

2

(
j2 − l2 − s2

)
=

1

2

(
j(j + 1)− 2− 3

4

)
. (3.40)

Therefore, the SOC splits the (including spin) six p orbitals by an energy ∆ESO = 3/2 λ
into two j = 1/2 orbitals lower in energy and four j = 3/2 orbitals.

Similarly, using relations (3.34) for l = 2 and the transformation (2.27), one obtains a
matrix representation of the angular momentum operators for d orbitals in a cubic basis
(dyz, dxz, dxy, dz2 , dx2−y2) [40]

lx =


0 0 0 −

√
3i −i

0 0 i 0 0
0 −i 0 0 0√
3i 0 0 0 0
i 0 0 0 0



ly =


0 0 −i 0 0

0 0 0
√

3i −i
i 0 0 0 0

0 −
√

3i 0 0 0
0 i 0 0 0



lz =


0 i 0 0 0
−i 0 0 0 0
0 0 0 0 2i

0 0 0 0 0
0 0 −2i 0 0

 .

(3.41)

The lines indicate the blocks of t2g and eg orbitals. With that, the matrix of the SOC is
found, that can again be transformed to j basis. Here, j can take the values j = 3/2 and
j = 5/2. The eigenenergies of HSO = λ l · s are then −3/2 λ (j = 3/2) and λ (j = 5/2).

If a cubic crystal field is applied, the t2g and eg orbitals are split by 10Dq. In that
case, the Hamiltonian has three distinct energy levels. The diagonalization is easily done
in the limit 10Dq � λ, since then the eg and t2g blocks can be considered as decoupled.
The eg blocks of the angular momentum operators (3.41) have no entries. Therefore,
the SOC does not influence the two eg orbitals in this limit, the angular momentum
is completely quenched. The t2g blocks, on the other hand, have in our chosen basis
ordering exactly the same form as the matrix representations of l of the p orbitals; they
differ only by a minus sign. Therefore,

l(t2g) =̂ −l(p), (3.42)

which is called T-P correspondence [40]. As a consequence, the t2g orbitals have an
effective angular momentum of leff = 1 due to a partially quenching of the l = 2 orbitals.
Since the spin-orbit operator is linear in the orbital angular momentum, it also acquires
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a minus sign, but is the same apart from that, HSO(t2g) = λ leff ·s =̂ −λ lp ·s = −HSO(p).

Its matrix representation in the basis (d↑yz, d
↑
xz, d

↑
xy, d

↓
yz, d

↓
xz, d

↓
xy) and its eigenvectors

can therefore be copied from Eqs. (3.37) and (3.39) and read

leff · s =
1

2



0 i 0 0 0 −1
−i 0 0 0 0 i
0 0 0 1 −i 0
0 0 1 0 −i 0
0 0 i i 0 0
−1 −i 0 0 0 0

 (3.43)
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(3.44)

The subscript “eff” is used here to denote that the functions are only related to effective
angular momenta. As a consequence of the minus sign in the T-P equivalence, the
jeff = 3/2 orbitals are lower in energy with an eigenvalue of −λ/2, the eigenenergy of
the jeff = 1/2 orbitals is λ.

3.4 LS (Russel-Saunders) and jj coupling

According to Hund’s first two rules, the ground state of an atom is determined by 1.)
maximization of the total spin S and 2.) maximization of the total angular momentum
L. This behavior is encoded in the respective interaction Hamiltonian. In this thesis,
the focus is on the t2g orbitals, where the interaction can be described by a Kanamori
Hamiltonian. Its properties as well as the eigenenergies depending on S and L are
discussed in section 2.2. In this section, a Kanamori Hamiltonian with U ′ = U − 2JH is
again assumed. When SOC is present, the one-particle energy levels split, hence some
degeneracies are lifted. Furthermore, S and L do not commute with the Hamiltonian any
more, hence, their eigenvalues are not good quantum numbers. Only the total angular
momentum J , which is the sum of spin and orbital angular momenta of all electrons,
commutes with the Hamiltonian, so only J and MJ are suited to label eigenstates.
Because of the conservation of angular momentum, eigenstates with different MJ have
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to be degenerate if the number of electrons N and J are the same. The actual eigenvalues
and eigenvectors can be calculated numerically by diagonalizing the total Hamiltonian

H = HI +HSO, (3.45)

where, in the cubic basis, HI is the Kanamori Hamiltonian (2.31) consisting of two-
particle terms, and HSO the one-particle spin-orbit coupling

HSO = λ
∑
αβ

(leff · s)αβc†αcβ. (3.46)

Here, α and β are combined indices containing both spin and orbital index α = (m,σ),
and (leff · s)αβ are the matrix elements written explicitly in Eq. (3.43). For p orbitals,
the Hamiltonian looks exactly the same when λ is replaced by −λ.

In the limit of small and large SOC, approximate solutions can be found. In atomic
physics, these limits are usually viewed as different ways to couple the angular momenta
si and li. If the SOC λ is small compared to Hund’s coupling JH, there is a strong
tendency that the spins of different electrons are aligned, since the total spin has to be
maximized first (Hund’s rules). Therefore, it is assumed that the spins of the individual
atoms couple first to a total spin S =

∑
i si, and the orbital angular momenta couple

to a total angular momentum L =
∑

i li, just as in the case without SOC described in
section 2.2. The total angular momentum is in this picture then obtained by coupling
these two as J = L + S. Therefore, this coupling scheme is called LS coupling or
Russel-Saunders coupling. If the SOC is large, i.e., λ� JH, the coupling of intrinsic and
orbital angular momenta of the respective electrons is dominant. Therefore, first they
couple to an angular momentum ji of electron i, which then couple to a total angular
momentum J =

∑
i ji. This regime is hence called jj coupling.

Let us first discuss the limit of a small SOC, i.e., the LS coupling regime. Since
the coupling of the spins S =

∑
i si and the coupling of the orbital angular momenta

L =
∑

i li is dominant, S and L are still good quantum numbers. Additional atomic
quantum numbers are MS and ML (note that all of them are degenerate without SOC),
but they are not good quantum numbers if SOC is present. In first order perturbation
theory, the energy correction of a state with N electrons, spin S and angular momentum
L due to SOC is calculated by diagonalizing

HSL
MSML,M

′
SM
′
L

=

〈
NSLMSML

∣∣∣∣∣
N∑
i=1

λ li · si
∣∣∣∣∣NSLM ′SM ′L

〉
. (3.47)

To calculate how the one-particle operator li·si acts on the many-body state |NSLMSML〉,
one can express the latter as linear combinations of direct products of one-electron func-
tions with spin si = 1/2 and li = 1 via Clebsch-Gordan coefficients. Finally, products
of one-particle terms 〈l = 1,ml| l |l = 1,m′l〉 and 〈s = 1/2,ms| s |s = 1/2,m′s〉 need to be
evaluated; their values are given in (3.35) and (2.35). Since the total angular momen-
tum J = S + L commutes with the full Hamiltonian, the matrix (3.47) is diagonal
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when moving from the basis |NSLMSML〉 to the J basis |NSLJMJ〉 via another set of
Clebsch-Gordan coefficients. Following this procedure, it turns out that it is possible to
give for each filling N a closed expression depending on L and S that is usually used to
formulate the SOC in the LS coupling regime,

HSO ≈ ζ(N)L · S. (3.48)

Note that the LS coupling constant ζ depends on the number of electrons. A detailled,
more general derivation of this expression using elements of group theory and the Wigner-
Eckart theorem can be found in Ref. [40]. In case of t2g orbitals, the LS coupling
constants are ζ(N = 1) = λ and ζ(N = 2) = λ/2. Replacing electrons with holes, one
has ζ(N = 5) = −λ and ζ(N = 3) = −λ/2. For N = 3, the linear term vanishes. In case
of p orbitals, an additional minus sign appears due to the minus in the T-P equivalence.
To calculate the energies, L·S is evaluated using the total angular momentum J = S+L
via

L · S =
1

2

(
J2 −L2 − S2

)
=

1

2
(J(J + 1)− L(L+ 1)− S(S + 1)) , (3.49)

where J can take the values J = L+ S,L+ S − 1, . . . , |L− S|.

In the jj coupling regime, where the SOC is large compared to Hund’s coupling,
the Kanamori Hamiltonian (2.43) except the term depending on U can be viewed as
the perturbation. The unperturbed eigenstates are then the Slater determinants of the
eigenfunctions of the operator l · s given in equation (3.44). The coarse structure of the
energy levels is then given by the number of particles in the j = 3/2 orbitals N3/2 and
the number of electrons in the j = 1/2 orbitals N1/2 = N −N3/2. The energy splitting
of this is then calculated from diagonalizing〈

j1mj1, . . . , jNmjN

∣∣∣∣− 2JHS
2 − JH

2
L2

∣∣∣∣j1m′j1, . . . , jNm′jN〉 . (3.50)

The Slater determinants |j1mj1, j2mj2, . . . , jNmjN 〉 consist of direct products⊗N
i=1 |ji, (mj)i〉, that can be further decoupled to terms |li, (ml)i〉 ⊗ |si, (ms)i〉, using

the Clebsch-Gordan coefficients of Eq. (3.38). Using S2 = (
∑

i si)
2 and L2 = (

∑
i li)

2,
one finally arrives again at simple one-particle matrix elements of s and l. Again,
knowing that J and MJ are good quantum numbers, the matrix is diagonal in the basis
|J,MJ , j1, . . . , jN 〉. Another way to calculate the splitting is to transform the interaction
Hamiltonian HI into the one-particle j basis in which HSO is diagonal. The energy
splitting for a given particle distribution N3/2 and N1/2 can then be found by looking
at the respective particle sectors of HI. For two electrons in t2g orbitals, for example,
both of them will occupy j = 3/2 orbitals, hence all terms in HI containing a creation
or annihilation operator in the j = 1/2 orbitals can be dropped, and only a half filled
j = 3/2 Hamiltonian needs to be considered. This special case is analyzed in detail in
Chapter 6.
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3.5 Spin-orbit coupling in DFT+DMFT

3.5.1 Spin-orbit coupling in crystals

In the previous sections, the spin-orbit Hamiltonian was assumed to be of the form λ l ·s
with a constant λ. In case of a hydrogen-like atom, the parameter can be calculated from
Eqs. (3.27) and (3.28). For a more general atom, the appearance of many electrons may
be modeled with an effective, screened potential v(r) that differs from the 1/r potential
of the hydrogen-like atom, but still preserves radial symmetry. In this case, the first
equality of Eq. (3.27) is still valid, and λ can be calculated approximately from

〈
1
r

dv
dr

〉
.

For atoms, the SOC is thus well captured by a constant prefactor λ. Its value for many
atoms can be found in Ref. [75].

In crystals, however, is the local potential v(r) not radially symmetric any more. As
a result, the possible splitting of the bands due to the SOC will depend on k, the SOC
is not a purely local effect. However, the bands will still be two-fold degenerate, if the
crystal has a center of inversion [73, 76–79], as explained in the following. The weakly
relativistic Hamiltonian (3.23) commutes with the time-reversal operator Θ. Due to
Kramer’s theorem, the time-reversed Bloch functions have the same energy, i.e., Eσ(k) =
E−σ(−k). In case of an inversion center, one has Eσ(k) = Eσ(−k). Hence, if both time-
reversal symmetry and inversion symmetry are present, the relation Eσ(k) = E−σ(k)
holds. Thus, the SOC may break some degeneracies of the bands since it is a k-dependent
energy correction, but the spin degeneracy is still present. If inversion symmetry is
broken in the bulk crystal, the resulting splitting of the bands of different spin is called
Dresselhaus splitting. Furthermore, also the surface or any other confining potential
breaks the inversion symmetry. The symmetry breaking part of the potential (e.g. the
surface potential) can be written in first approximation as an electric field e r ·E. The
resulting correction of the Hamiltonian due to the SOC is the Rashba Hamiltonian [73,
80]

HR =
αR

~
σ · (k ×E) (3.51)

with a Rashba coupling αR. The according splitting of the bands is called Rashba split-
ting.

In addition to the non-locality of the spin-orbit effects, also the basis of the local
functions has to be kept in mind when a DMFT calculation is set up. When using a
Wannier basis, the matrix representation of the SOC in that basis is, in general, not
known. In an LDA+DMFT calculation, one thus has to be careful at which stage of the
calculation the SOC is included, since after the construction of Wannier orbitals, it is
not obvious how the SOC is represented best.

3.5.2 Implementation of the spin-orbit coupling in Wien2k

One way to circumvent this problem is to include the SOC already in the DFT calcu-
lation, since then no additional term has to be introduced in the (already relativistic)
Wannier basis. The all-electron code Wien2k [81], for example, includes the scalar rel-
ativistic terms by default, and allows to include the SOC on top of that. The latter is
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done using the so-called second variational treatment [82–84]. Within this perturbative
approach, the SOC operator is evaluated in the scalar-relativistic basis, where spin is
still a good quantum number, and subsequently diagonalized. The advantage of this
approximation is that the matrix dimension is kept small, as only a limited number of
the low lying eigenfunctions is usually used [83].

3.5.3 Introducing the spin-orbit coupling in the Wannier basis

For a physical interpretation of DMFT results, it is often helpful to reduce the Hamil-
tonian to a minimal model capturing the basic effects. In case of the SOC, the minimal
model is the atomic term HSO = λ l · s, which is legitimate to assume if the quantum
number l of the local basis is known, since the SOC is of atomic origin. The value of λ
for a compound can be estimated in first approximation by its atomic value. In order
to account for the lattice effects, a DFT calculation including the SOC can be used (see
last section). To obtain the local parameter λ, one can, for instance, use the splitting of
the bands at the Γ point. The way chosen in this thesis is to fit the local Hamiltonian
Hloc: First, the DFT code Wien2k [81] is used to calculate the band structure with
and without the SOC. Second, a maximally localized Wannier basis is constructed for
both DFT calculations using Wannier90 [30]. In the Wannier basis, the local Hamilto-
nian is calculated. Third, λ is obtained by fitting the local Hamiltonian with SOC, i.e.,
minimizing ∑

αβ

[∣∣∣(Hwith SOC
loc )αβ

∣∣∣− ∣∣∣(Hwithout SOC
loc )αβ + λ(l · s)αβ

∣∣∣]2
, (3.52)

where (·)αβ denotes the matrix representation with combined spin-orbital indices α and
β, and Hloc =

∑
kH(k)/Nk. If the projection is only onto orbitals of a certain quantum

number l, the operator l · s is well defined. However, for this approach, not only the
operator, but also its matrix representation in the Wannier basis has to be known. Here,
it is assumed that it is identical to the matrix representation in the basis of the atomic
orbitals that are used as a seed for the Wannier optimization. This assumption can only
be justified a posteriori in case the fit is a good approximation to Hwith SOC

loc . Since it is
always possible to acquire a phase in the process of maximal localization, the absolute
value of the respective local Hamiltonians is taken in Eq. (3.52). An example for the
t2g orbitals of Sr2RuO4 is shown in Fig. 3.2. In this material, the spherical symmetry
is broken into an eg and a t2g block by an octahedral crystal field. The t2g orbitals
are further split by both a tetragonal crystal field and the SOC. To obtain the matrix
representation of the l · s operator, the T-P correspondence is used (see Eq. (3.43) and
Sec. 3.3). Since the band structure in Fig. 3.2 shows that the bands are approximated
well, this example shows that both T-P correspondence and the fit method are suited
to describe the SOC in Sr2RuO4.
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Figure 3.2: Bandstructure of Sr2RuO4, λ = 94 meV
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4 Topological Insulators

4.1 Mathematical basics of topology

The usual picture shown in talks when topological insulators are introduced, is a mug
that transforms into a doughnut. These continuous deformations are indeed key for a
physical understanding of topological insulators, but in order to put it on a more rigorous
footing, first, the basic mathematical concepts are introduced, starting with the meaning
of the word “topology”.

Definition [85, 86]: Let X be any set and T = {Ui|i ∈ I} a collection, finite or infinite,
of subsets of X. The pair (X, T) is a topological space if T satisfies the following relations:

• ∅ ∈ T, X ∈ T

• Any finite or infinite subcollection {Uj |j ∈ J}, where J is a part of the index set
I, satisfies

⋃
j∈J Uj ∈ T

• Any finite subcollection {Uk|k ∈ K}, where K is a finite part of the index set I,
satisfies

⋂
k∈K Uk ∈ T

The members Ui of T are called open sets, and collection T is said to give a topology to
X. Often, one uses only X to denote the topological space and does not explicitly write
T, but implicitly adds it to the symbol X.

Examples that trivially fulfill these three constraints are T = {∅, X}, called trivial
topology, and if T is a collection of all subsets, called the discrete topology. Another
important example is the usual topology of the real numbers X = R, where the open
sets Ui are open intervals (a, b) and their unions [85]. The definition of a topological
space given here is very general, since it does not have to be continuous or equipped
with a metric. In order to classify now geometrical objects, for example, one needs some
equivalence relation to say whether or not two objects are equal or different from each
other. Various equivalence relations appear in many fields of mathematics. In case of
Euclidean geometry, for example, similarity serves as an equivalence relation, so that two
triangles are similar if the corresponding angles are the same. In the field of topology, a
not so stringent definition is chosen, so that a mug and a doughnut are still equivalent,
as mentioned in the example before. The way to go is via smooth transformations, since
a surface can be smoothly changed as long as no hole is teared into it or closed. In
a mathematical language, one needs two more definitions to rigorously describe that
behavior.

Definition [85]: X and Y are topological spaces. A map f : X → Y is continuous if
the inverse image of an open set in Y is an open set in X.
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This definition reduces to the usual definitions of continuity for real valued functions
f : R→ R if the usual topology is used [85, 86]. In order that two objects are equivalent,
this mapping needs to be invertible, leading to the definition of homeomorphisms

Definition [85]: X and Y are topological spaces. A map f : X → Y is a homeomor-
phism if it is continuous and if it has an inverse f−1 : Y → X that is also continuous. If
a homeomorphism between X and Y exists, these two topological spaces are said to be
homeomorphic.

The homeomorphism relation fulfills the rules of a general equivalence relation [85]
and serves here as a formal way to classify topological spaces. Topological invariants
are numbers related to topological spaces that do not change under a homeomorphism.
Therefore, they are a useful tool to distinguish different equivalence classes. However,
from its definition follows that two topological spaces with different topological invariants
are for sure in different equivalence classes, but not that two topological spaces with the
same topological invariant belong to the same equivalence class since a mapping may
not exist.

A famous topological invariant is the Euler characteristics χ. It is defined for a poly-
hedron K as

χ(K) = (number of vertices in K)− (number of edges in K)

+ (number of faces in K).
(4.1)

For a cube, it is χ = 8 − 12 + 6 = 2. Imagine now to insert another vertex in the
middle of some face. One generates then one additional vertex, four new edges, and
four faces, whereas one face gets removed. Therefore, the change in the Euler charac-
teristics is ∆χ = 1 − 4 + 3 = 0. This is quite general, since inserting a vertex in a face
surrounded by Ne edges changes the number of vertices by +1, the number of edges
by Ne and the number of faces by Ne − 1. In analogy, removing one vertex does not
change χ, hence removing or inserting any number of vertices leaves the Euler charac-
teristics invariant. With this argument it is plausible, even though no explicit proof is
given here, that any convex polyhedron has the Euler characteristics χ = 2. This is
known as Euler’s polyhedron formula. The Euler characteristics can be generalized to
any compact, connected 3D object X, meaning that in contrast to a polyhedron K it
may also have curved elements in its surface. If a polyhedron K is homeomorphic to X,
one defines χ(X) = χ(K). The question now may arise if this definition is unique, or
if it is possible that there are polyhedrons K1 and K2 with different χ, which are both
homeomorphic to χ. The answer is given by the theorem of Poincaré-Alexander, stating
that χ(X) is independent of K as long as K is homeomorphic to X [85]. This theorem
is a generalization of Euler’s theorem and shows that the Euler characteristics serves as
a topological invariant to classify the homeotopy classes of 3D geometrical objects. For
example, a sphere has χ = 2, a torus χ = 0. Mug and doughnut from the introductory
example are homeomorphic to a torus, and have, therefore, also the Euler characteristics
χ = 2.
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4.2 Geometry in curved space

As tearing a hole or closing one are the only non-homeomorphic transformations, the
Euler characteristics is also related to the number of holes. In order to give a solid
definition of the number of holes, usually the 2D surface of the 3D object is considered.
A geometric quantity for the number of holes of a connected, orientable surface is the
genus g, which is defined as the maximum number of cuttings along non-intersecting
closed simple curves that leave the surface still connected. It is related to the Euler
characteristics via

χ = 2− 2g. (4.2)

By introducing the 2D surface of the 3D object, already a next important step in the
mathematical description of objects has been taken. Note that the surface covers already
the whole topological information. Without looking at the 3D object globally, it should
thus be possible to calculate the genus from the local properties of all points of the 2D
surface. However, when doing so, one needs the surface to be smooth at every point,
so that one knows how neighboring points on the surface are related. Mathematically,
one defines for this purpose the manifold. The correct definition is given for example in
Refs. [85, 86], but for the purpose here it is enough to view it as a topological space that
is locally at every point Euclidean, or in other words, there exists a local environment of
every point within the n-dimensional manifold that is homeomorphic to the Euclidean
space Rn. A cube does not fulfill these requirements because of the edges, but a sphere
and a torus, for example, do. In this sense, one can look at closed surfaces like a torus
or a sphere as two-dimensional differentiable manifolds without any boundary.

The question is now if the information of all local quantities such as derivatives at
every point are enough to determine global quantities such as the genus. This question
is answered in the wide field of Riemannian geometry, where a metric gµν is defined
on the manifold. The concepts of Riemannian geometry are important in many fields
of physics, from field theories in curved geometry, as for example electrodynamics in a
toroidal geometry, up to the theory of general relativity. With the metric tensor, also
the line element ds2 =

∑
µν gµνdxµdxν is defined and distances can be measured. It

also provides the rules how a vector is parallely transported along the surface. In R2,
the coordinates of a vector simply do not change during a parallel transport, but as
soon as the manifold is curved, this is not the case. In general, the connection specifies
how tensors are transported along a curve [85]. For example, if a vector is moved on a
sphere, the direction of the vector changes, depending on the chosen path. The curvature
calculated from the connection is a measure how much the manifold differs from Rn,
and measures the differences of a vector that is parallely transported on two different
infinitesimal paths [85]. In general, curvatures are tensorial object, but in the case of a
2D surface embedded in R3 considered here, a suitable curvature is the scalar Gaussian
curvature K. It can be calculated by K = κ1κ2 with the principal curvatures κ1 and
κ2, which in turn are best visualized as the inverse radii of ellipsoids or hyperboloids
locally approximating the manifold. In case of a sphere with radius R, for example, one
has κ1 = κ2 = 1/R and K = 1/R2. Going back to the question raised at the beginning
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Figure 4.1: The winding number of curve C around point p is given by the number
it travels counterclockwise around it. Here, W (C) = 2. Graphic taken
from [87].

of this paragraph whether local quantities are enough to determine global invariants, it
can now be answered by the Gauß-Bonnet theorem, which reads for smooth closed 2D
manifolds embedded in a 3D space [86]∫

M
KdA = 2πχ(M). (4.3)

Thus, one can indeed obtain the topological information from a 3D object (number of
holes) from local properties of the 2D surface (curvature). The integral is quantized,
any smooth deformation does not change its value. When a hole is created or closed,
i.e., the genus changes by one, the curvature diverges at this point and the integral is
not defined. Hence, only a non-continuous transformation can change the invariants χ
and g, so they are suited to label the homeomorphic classes.

4.3 Winding numbers and Skyrmions

4.3.1 Theory

In the previous sections, the Euler invariant and its relation to curvature has been
introduced. Another famous example to determine a global, integer topological invariant
is the winding number of a closed 1D curve embedded in a 2D space R2. For any closed,
smooth curve C (a 1D differential manifold) parametriced in cartesian coordinates x(t)
and y(t), one can intuitively determine how often it winds around the origin using the

38



polar angle ϕ,

W (C) =
1

2π
∆ϕ =

1

2π

∫
C

dϕ =
1

2π

∫
C

dt

(
∂ϕ

∂x

dx

dt
+
∂ϕ

∂y

dy

dt

)
=

1

2π

∫
C

dt
1

x2 + y2
(xẏ − yẋ) .

(4.4)

The winding number is integer, since for closed curves the change of the angle ∆ϕ has to
be a multiple of 2π. An example is given in Fig. 4.1. In case of smooth transformations
of the curve, the winding number only changes when the curve is moved over the origin,
so when there is a t such that x(t) = O. In this case, the denominator becomes 0, the
integrand diverges and the winding number is not defined. If one normalizes the radius
of the curve C(x = [x, y]), i.e., projects it to the unit circle S1 via

x(t)

|x(t)| = u
(
e2πit

)
,

then one simply has

W (C) =
1

2π

∫
C

dt (u1u̇2 − u2u̇1) . (4.5)

Note that by writing the winding number in this way it only depends on the mapping
u(t), which is actually a circle map u : S1 → S1. In this view, the winding number
is equivalent to the so-called degree of a map deg(u) = W (C). The degree can be
generalized from smooth mappings of one dimensional circles S1 to smooth mappings
of n dimensional spheres Sn, i.e., u : Sn → Sn. Within this generalization, it can be
viewed as [88]

deg(u) =
oriented area of u(Sn)

area of Sn , (4.6)

and takes the simple form [88]

deg(u) =
1

area of Sn
∫
Sn

dN t det
(
u
∣∣∣ ∂u
∂t1

∣∣∣ . . . ∣∣∣ ∂u
∂tn

)
. (4.7)

Therefore, only the determinant of a matrix with column vectors u and its derivatives is
important for the degree. In case of a one dimensional mapping from a circle to a circle,
it obviously reduces to Eq. (4.5), in case of a two dimensional mapping it reads

deg(u) =
1

4π

∫
d2t u ·

(
∂u

∂t1
× ∂u

∂t2

)
. (4.8)

To give an example, assume that the surface of the sphere is parametrized by the usual
spherical coordinates t = (θ, ϕ). In case of the identity mapping, which reads in karthe-
sian coordinates u1(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ), the integrand of Eq. (4.8) is
1, wherefore also deg(u1) = 1 follows. This makes sense since the identitiy mapping
u1(θ, ϕ) covers the whole sphere once, wherefore the oriented area of u1 is identical to the
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one of the sphere. If one chooses the mapping u2(θ, ϕ) = (sin θ cos 2ϕ, sin θ sin 2ϕ, cos θ),
the whole sphere is covered twice and deg(u2) = 2. In case of another mapping
u3(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, (cos θ)2), only the upper hemisphere is covered twice,
but the orientation of the surface is different for θ < π and θ > π, so that the wind-
ing number is deg(u3) = 0. In general, since the mapping u is smooth, u(θ, ϕ) =
u(θ + 2π, ϕ) = u(θ, ϕ+ 2π). Therefore, when u is tracked on the sphere, it always has
to come back to the same point, which means that it is not possible to cover only parts
of the sphere with only positive orientation. As a consequence, either the whole sphere
is covered or nothing of it, hence the degree has to be integer, similar to the winding
number in 1D. To conclude, for 1D and 2D, the degree has been geometrically argued to
be integer valued. Altough it is not obvious from Eq. (4.7), one can indeed algebraically
proof that the degree is an integer for all dimensions n [89]. This integer is a topological
invariant since it cannot be changed by a smooth transformation. For example, in case
of n = 1, it was mentioned before that the winding number only changes when the
curve moves through the origin. When the curve is projected to the unit circle, this
corresponds to a discontinuity in u; hence for two functions u1 and u2 with different
degrees, no continuous transformation exists. In fact, this is generalized to degrees of all
dimensions, and can furthermore be inverted in a sense that if the degree is the same,
the functions belong to the same equivalence class

u1 ∼ u2 ⇔ deg(u1) = deg(u2). (4.9)

This statement is known as Hopf theorem [88].

4.3.2 Magnetic topological defects

Physical examples of winding numbers can be found in magnetic structures, where many
different topological defects can be found. One example that became famous due to a
Nobel price in Physics in 2016 are vortices in the xy model. Kosterlitz and Thouless
got the prize for the discovery of the topological phase transition in this model together
with Haldane, who got it for his work on the model named after him that is described
in section 4.7.1. A vortex is a point-like topological defect in a 2D vector field on a
2D manifold. When the vectors are normalized on each point, they are characterized
by their polar angle θ(x). If the field is continuous everywhere except at the point-like
defect that acts as a singularity in the field, the change of θ along a closed curve has to
be a multiple on 2π. In fact, it is a winding number as described previously. Due to the
continuity of θ, the actual integration path is not important, as long as it is a continuous
curve around the singularity. In physics, this kind of winding number is called vortex
number v defined by

v ≡W (C) =
1

2π

∮
C
∇θ · dx. (4.10)

Note that the definition is identical to the winding number in Eq. (4.5). A singularity
with a vortex number v = 1 is called vortex, one with a vortex number v = −1 antivortex.
The vortex number is topologically protected, the total vortex number within a region

40



Figure 4.2: The vector field of two, two-dimensional magnetic skyrmions: a) a hedgehog
skyrmion and b) a spiral skyrmion [90]

in space cannot change as long as no singularity leaves or enters the region. Locally, a
vortex number can only change when two singularities combine at some point or if one
point splits into two singularities. One example for the former case is the annihilation of
a vortex and an antivortex. Since the xy model is a model of classical angular momenta
on a lattice, the continuum model of a vortex is only an approximation. It can then
be defined for the plaquette i, j as the sum of the changes ∆θ of the angels of the four
vectors at the corners of the plaquette. Note that this numerical vortex number is not
strictly quantized. If the energy fluctuations are large enough, a vortex or antivortex
could be created or annihilated.

A second important topological defect is the skyrmion. It was originally proposed by
Tony Skyrme as a model for nucleons [91], and became popular in solid state physics as
certain geometries of 3D magnetic moments on a 2D surface. Note that these magnetic
skyrmions are in contrast to vortices not point-like singularities, but extended objects.
Examples are shown in Fig. 4.2. In case of a 3D vector field of normalized magnetic
moments m(x) on a 2D plane R2, the skyrmion number w can be defined by mapping
the plane R2 onto a sphere S2 via a stereographic projection, since then the degree of
m is defined as [92]

w ≡ deg(m) =
1

4π

∫
d2xm ·

(
∂m

∂x1
× ∂m

∂x2

)
. (4.11)
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Since the degree is quantized, the skyrmion number w is a topologically protected integer.
Similar as a vortex, in can only change if two non-trivial objects merge. Again, it should
be noted that in solids, the vector field is not continuous, but the magnetic moments
are arranged on a lattice. Therefore, the skyrmion number is not exactly quantized and
skyrmions may form and disappear due to thermal fluctuations.

4.4 Bundles

The last concept needed to give a glance onto the mathematical backbone of topological
insulators are fiber bundles. The correct definition is rather lengthy and technical since
it involves various terms that need to be defined. However, the concept of bundles is
important for the foundation of topology and also interesting for physicist in order to get
a deeper view beyond the applications. Therefore, the terminology is introduced here
on the basis of the Möbius strip. A geometrical interpretation of the Möbius strip is
as follows: If one takes a rectangular shaped strip of paper and glues the ends together
without twisting, such that it has the shape of the side area of a cylinder, it is called
trivial strip. It is an oriented surface with an inner and an outer side. If one twists the
paper strip once before gluing the ends, one gets the topologically non-trivial Möbius
strip. It has only one side, and one has to go around the circle twice in order to reach
a point again (see Fig. 4.3). The topology of the strip is analyzed by the way the strip
is mapped onto a circle. In this context, the paper strip is called total space. Each
horizontal line segment is a fiber, and the circle is the base space. The projection Π maps
each fiber in the total space to a point in the base space (see Fig. 4.3). The fiber bundle
is the whole object, including the total space, the base space, the fiber, the mapping,
and some structure group that is left out here [86]. The point is now that in case of
an ordinary strip, it is possible to smoothly map each fiber to a point on the circle and
invert the mapping as well. In case of the Möbius strip, on the other hand, one can
define such a map in the open interval (0, 2π) on the circle, but when one moves across
the point 0 = 2π the fiber is inverted, with the consequence that the function is not
smooth at this point. In other words, the ordinary strip is a direct product of the circle
S1 with a line segment L, i.e., T = S1 ⊗ L. In case of the Möbius strip, this is not
possible. Note that each segment of the Möbius strip is a direct product of a segment of
the circle, but as soon as the circle closes, the product breaks down. So far, the bundle
has been introduced on the example of paper strips with periodic boundary conditions,
where the strip itself is the total space, a circle is the base space, and horizontal line
segments are the fibers. The name “fiber” induces that it has to be some onedimensional
segment, but this is not true. The concept of a fiber bundle is a lot more general. A
prominent example of a bundle, where the fiber is a whole vectorspace (called vector
bundle), is the tangent space of a manifold. The base space is then some differentiable
n dimensional manifold (e.g. a sphere, then n = 2). The fibers are the tangent spaces,
i.e., the n dimensional vector spaces spanned by the tangent vectors at each point of the
manifold (e.g. a tangent plane attached to some point of the sphere). The total space
is the unity of all tangent spaces.
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Figure 4.3: Trivial paper strip (left) and nontrivial Möbius strip (right) as an example
for fiber bundles. The base space is in both cases a circle. Each line segment
(the fiber) is mapped onto a point of the circle.

In physics, eigenstates are a nice example for bundles. Let H(a) be a Hamiltonian
that depends on some parameters ai. The nth eigenstate of H is called |n,a〉 and is
assumed not to be degenerate for any parameters a, which means that level crossings
are prohibited. Then, an eigenstate |n,a〉 cannot be distinguished from another state
eiφ |n,a〉 that differs from the original state by a phase φ. Hence, at each point a in
parameter space, the nth eigenstate has a U(1) degree of freedom. For a given n, all of
these eigenstates form a bundle. The base space is the parameter space a, the fiber at
some point a0 of it is the one-dimensional space eiφ |n,a0〉, and the total space is the
unity of all those fibers for all parameters a.

For a certain kind of bundles, the principal bundles1, one can define a connection
and a curvature, similar to the connection and the curvature of a Riemannian manifold
described in section 4.2. In case of a manifold M , the connection basically describes how
the tangent space changes when one moves from point P ∈ M to P ′ along a curve γ.
It describes, therefore, the geometry of the manifold. The connection of the bundle P
may not be confused with the geometrical, Riemannian connection of its base manifold
M , since it does not describe the local topology of the surface, but the local topology of
the bundle living on top of it. For example, in case of the eigenstates with the freedom
of the phase φ, the connection of the bundle describes how the phase φ changes as the
parameters a change, and not how the different points a are related.

1For a definition see, e.g, [85]. An example for a principle bundle is the eigenstate bundle eiφ |n,a〉.
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4.5 Berry phase

In the previous section, it has been mentioned that eigenstates are the bundles relevant in
quantum mechanics, with the phase as a fiber. In order to derive the related connection
and curvature, changes of the phase have to be analyzed once the parameters vary
within the base manifold. Historically, it was common believe in early times of quantum
mechanics, that the phase of states has no physical meaning. However, Berry has shown
in 1984 that a geometric phase, which may has observable effects, appears if a system is
transformed adiabatically in a cyclical manner [93].

The derivation given here is following the review of Yoichi Ando [11] and the lecture
notes of Yuriy Mokrousov [94]. Given a Hamiltonian H that depends on a set of pa-
rameters a changing cyclically over time t, the equation for the eigenvectors |n,a(t)〉
reads

H[a(t)] |n,a(t)〉 = En[a(t)] |n,a(t)〉 . (4.12)

The focus here is on the time evolution of a certain state |ψn(t)〉, which is an eigenstate
at time t = 0, i.e., |ψn(t = 0)〉 ≡ |n,a(0)〉. It is assumed that it is at no point a in
the manifold degenerate with another eigenstate. The state evolves in time obeying the
time-dependent Schrödinger equation

H[a(t)] |ψn(t)〉 = i~
∂

∂t
|ψn(t)〉 . (4.13)

In case the Hamiltonians at different times commute, |ψn(t)〉 remains an eigenstate and
only picks up a trivial phase called dynamical phase factor

θn(t) = −1

~

∫ t

0
dt′ En[a(t′)]. (4.14)

If the Hamiltonians at different times do not commute, |ψn(t)〉 is not an eigenstate any
more and has, in principle, to be expanded in the eigenstates at time t,

|ψn(t)〉 =
∑
m

cnm(t) |m,a(t)〉 . (4.15)

However, for states well separated in energy and a Hamiltonian that varies slowly com-
pared to the internal time scales, the adiabatic approximation is valid, stating that the
overlap to other states is suppressed and cnm(t) ∝ δnm holds [94]. Therefore, the solu-
tion can be expressed just in terms of the nth eigenstate of the explicitly time dependent
Hamiltonian in equation (4.12)

|ψn(t)〉 = exp

{
i

~

∫ t

0
dt′
(
i~ ȧ(t′)

〈
n,a(t′)

∣∣∇a

∣∣n,a(t′)
〉
− En[a(t′)]

)}
|n,a(t)〉 (4.16)

which can be shown by inserting the solution (4.16) in the Schrödinger equation (4.13) [11].

Thus, if the parameters a change adiabatically, a phase factor consisting of two terms
appears. The second term gives the expected dynamical phase factor θn (see Eq. (4.14)).
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The first phase in equation (4.16) is nontrivial and is called Berry phase γn, if the
parameters a describe a closed path C as time evolves from 0 to a period T :

γn[C] ≡ i

∫ T

0
dt ȧ(t) · 〈n,a(t)| ∇a |n,a(t)〉

= i

∮
C

da · 〈n,a| ∇a |n,a〉 = i

∮
C

da ·An(a) = i

∮
C
An(a)

(4.17)

where we introduced the Berry connection

An(a) ≡ 〈n,a| ∇a |n,a〉 (4.18)

and its connection form2

An(a) ≡ da ·An(a) =
∑
i

Ani (a) dai (4.19)

The Berry phase is a phase factor additional to the dynamical one accumulated by
following a closed path in parameter space a. It is important to note that it does not
change by a simple gauge transformation

|n,a〉 → |n,a〉′ = eiφn(a) |n,a〉 , (4.20)

as shown easily. The corresponding connection is

A′n = An −∇aφ, A′n = An − dφ (4.21)

Thus, the change of the Berry phase is
∮

dφ = 0, since the path is closed. Note the
similarities between the Berry connection and the vector potential in electrodynamics,
which behaves similarly under a gauge transformation. Furthermore, just as the elec-
tromagnetic field tensor is defined as the exterior derivative of the vector potential, the
Berry curvature is defined as the exterior derivative of the Berry connection form3

Fn(a) ≡ dAn(a) =
1

2

∑
ij

Fnij dai ∧ daj (4.22)

with components [94]

Fnij(a) ≡
∂Anj
∂ai
− ∂Ani
∂aj

= −2Im

〈
∂

∂ai
(n,a)

∣∣∣∣ ∂

∂aj
(n,a)

〉
(4.23)

2Sometimes, the Berry connection form is also just called Berry connection. For a mathematical
definition of a form, or, more generally, an n-form, see, e.g, [85].

3A few remarks on mathematical details taken from Ref. [85]: Fn is a two-form, where the wedge
product dai ∧ daj is the totally antisymmetric tensor dai ∧ daj = dai ⊗ daj − daj ⊗ dai. The Berry
curvature is actually a field strength and not a curvature, but can be derived from a closely related
curvature.
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Using the generalized Stoke’s theorem, the Berry phase can be written in terms of the
curvature

γn[C] = i

∮
C
An = i

∫
S

dAn = i

∫
S
Fn, (4.24)

where S is a surface with boundary C. In physics, the manifold M is often part of R3

(or R2). The curvature tensor can then be expressed as a curvature vector F n with
components [94]

(F n)i ≡
1

2

∑
jk

εijkF
n
jk, (4.25)

which is related to the connection via

F n = ∇a ×An (4.26)

In this special case, Stoke’s theorem reads

γn[C] = i

∮
C

da ·An(a) = i

∫
S

d2a · F n(a). (4.27)

In electrodynamics, the equivalent to the curvature vector is the magnetic field. There-
fore, the Berry phase is formally related to a magnetic flux through a surface S.

If the eigenstates with eigenenergy En are not separated, but N -fold degenerate at
some point a, i.e., the N different states |n, α,a〉 have the same eigenenergy, they do not
only have the U(1) phase freedom, but the freedom of any U(N) unitary transformation
UN . Possible gauge transformations are then

|n, α,a〉 → |n, α,a〉′ =
∑
β

UNαβ |n, β,a〉 . (4.28)

As a consequence, the Berry phase is no longer only a phase, but matrix valued, with a
matrix valued Berry connection

[An(a)]αβ ≡ 〈n, α,a| ∇a |n, β,a〉 . (4.29)

Since the elements of the connection Ani are now matrices, they do not commute. There-
fore, it is a non-abelian connection. The non-abelian Berry curvature is then

Fn(a) ≡ dAn(a) +An(a) ∧An(a) =
1

2

∑
ij

Fnij dai ∧ daj (4.30)

with elements

Fnij(a) ≡
∂Anj
∂ai
− ∂Ani
∂aj

+
[
Ani , A

n
j

]
. (4.31)

In the abelian case, the commutator and the wedge produce An ∧ An vanish, and
Eqs. (4.22) and (4.23) are restored.
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4.6 Chern numbers

A very important quantity in the field of topological insulators is the Chern number.
This concept is very general; in fact, Chern numbers can be defined for any complex
vector bundle. The total Chern class of a complex vector bundle with field stregth F
(e.g. the Berry curvature) is [85]

c(F ) ≡ det

(
1 +

iF

2π

)
=
∑
j

cj(F ). (4.32)

The term cj(F ) is the jth Chern class and is obtained by ordering the terms in Eq. (4.32)
by degree – it is of degree 2j. Note that in an D-dimensional manifold M , all Chern
classes with 2j > D vanish [85]. In general, the first three Chern classes are [85, 89]

c0(F ) = 1

c1(F ) =
i

2π
TrF

c2(F ) = − 1

8π2
[TrF ∧ TrF − Tr(F ∧ F )] .

(4.33)

In the special case when the base manifold M is an oriented compact manifold of even
dimension D = 2j, one can integrate the Chern class over the whole manifold to obtain
the Chern number [89]

C =

∫
M
cj(F ) (4.34)

One important example is the Berry phase of the U(1) bundle of the nth non-degenerate
eigenstate discussed before, when the manifold of the parameter space is a two-dimensional
surface. Using Eqs. (4.24) and (4.33), the first Chern number is

C =

∫
M
c1(F ) =

i

2π

∫
M
Fn =

1

2π
γn (4.35)

Therefore, the first Chern number is directly related to the Berry phase. Since the
integral is over the full manifold, the Berry phase has to be a multiple of 2π, and the
Chern number is therefore integer.

4.7 Invariants describing topological insulators

4.7.1 First Chern number and the quantum Hall effect

In the band structure theory, the eigenstates are the Bloch functions |unk〉, which are
parametrized by the momentum k. Therefore, the base space manifold is the Brillouin
zone. For a two-dimensional system, it has the topology of a torus, which is an oriented
surface. Therefore, for a band n without degeneracies, a first Chern number as intro-
duced in the last section is defined (cf. Eqs. (4.27) and (4.35)), called in this context

47



Chern topological invariant, via

Cn ≡
1

2π
i

∫
BZ

d2k · F n(k) =
1

2π
i

∮
∂BZ

dk ·An(k), (4.36)

with the Berry connection An(k) = 〈unk| ∇k |unk〉 and the Berry curvature vector
F n(k) = ∇k ×An(k). The simplest physical models consist of two bands, one occupied
and one unoccupied band separated by a gap, described by a two-by-two Bloch Hamilto-
nian H(k). Any matrix of dimension two can be expanded in the Pauli matrices (2.35)
and the unit matrix as

H(k) = ε(k)1 + h(k) · σ, (4.37)

where σ is the vector of Pauli matrices. It can be shown that the Chern number Cn
defined by Eq. (4.36) of the lower band of a Hamiltonian (4.37) can be calculated easily
via [95, 96]

Cn =
1

4π

∫
d2k

[
∂ĥ(k)

∂kx
× ∂ĥ(k)

∂ky

]
· ĥ(k). (4.38)

The hat denotes the normalized vector ĥ = h/ |h|. The right hand side of this expression
is a two-dimensional winding number as defined in Eq. (4.8). According to Hopf theorem
explained in Sec. 4.3.1, it can thus be used as an invariant to distinguish the equivalence
classes, and any smooth transformation of ĥ(k) does not change Cn. The only way to
change the winding number by a smooth transformation of h(k) is therefore in case
h(k) = 0 at some point in the Brillouin zone, since then ĥ(k) is not defined. For a
Hamiltonian (4.37), this corresponds to a crossing of the bands. If one assumes that
the minimum of the upper band is larger than or equal to the maximum of the lower
band for all k, the lower band is totally occupied, whereas the upper is empty. Then,
the Chern number (4.38) is the total Chern number of the occupied states, and a band
crossing is equivalent to a closing of the gap. Therefore, for a single band of an insulator,
the Chern topological invariant is, mathematically speaking, both a first Chern number,
as well as a winding number. It can only change when the gap to some other band is
closed.

In case of many occupied bands that are possibly degenerate, the non-abelian Berry
curvature (4.31) has to be used in principle. The Chern class is proportional to TrF
(see Eq. (4.32)), where the trace is over all occupied bands in order to obtain the Chern
number of the electrons. However, since the trace of the commutator vanishes, it does
not matter whether the non-abelian or the abelian curvature (4.23) is used to calculate
the total Chern invariant. Therefore, one can formally still use this definition (4.38) of
the Chern invariant for each band n with the abelian Berry curvature independent of
degeneracies, but it is not necessarily uniquely defined, as it can depend on gauge. The
trace corresponding to the total Chern invariant is then the sum of Chern invariants
related to occupied bands

C =
∑

n occupied

Cn. (4.39)
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and is a uniquely defined integer if the gap between filled and empty bands remains
finite [10, 97],

The first physical appearence of this invariant was in Ref. [98], where Thouless,
Kohmoto, Nightingale, and den Nijs showed theoretically that the Hall conductance
is quantized as

σxy = p
e2

h
(4.40)

with an integer-valued TKNN invariant p, after it has been observed experimentally two
years before [99]. The TKNN invariant is now understood as the Chern invariant of the
occupied bands, i.e., p = C [11, 100]. The physical origin of the nontrivial topology in
case of the quantum Hall effect is the large magnetic field. However, it is also possible
to obtain a nontrivial Chern invariant from the intrinsic structure of the bands, which is
called anomalous quantum Hall effect. An insulator showing this effect is called a Chern
insulator, since its total Chern number is different from zero. The most prominent
example of a Chern insulator is the Haldane model, where the magnetic flux of the
ordinary quantum Hall effect is mimicked by a complex nearest neighbor hopping on a
spinless honeycomb lattice [101] (see also chapter 7).

4.7.2 Z2 classifications of time-reversal symmetry breaking topological
insulators

Both magnetic flux and complex hopping, which are needed in the examples above in
order to obtain a nontrivial Chern number, break time-reversal symmetry. In fact, for
time-reversal symmetric systems, the first Chern number is always zero [100]. It is,
however, still possible in the symmetric case to classify nontrivial topology, but different
topological invariants have to be used. In case of time-reversal symmetry breaking 2D
quantum Hall states, the total first Chern number C ∈ Z is the relevant invariant. In
contrast, for time-reversal symmetric 2D systems, another invariant ν ∈ Z2 is usually
used. In the following, the most important approaches to define the Z2 invariant are
described.

One rather simple way to generalize the approach described so far is to define a Chern
invariant for each spin. This is only possible when spin is a good quantum number,
so that each band can be classified as ↑ or ↓ band. The total Chern number is then
C = C↑ + C↓, and a spin Chern number can be defined as [12, 102, 103]

CS = (C↑ − C↓)/2. (4.41)

With that, the Z2 invariant is defined as νS = CS mod 2, and takes on the values 0,1 [10,
12]. The only constraint for this definition is that the spin-up and the spin-down block are
not coupled. If this constraint is fulfilled, C↑ and C↓ are, in principle, independent, hence
also C and CS can take any value. If furthermore time-reversal symmetry is obeyed,
C↑ = −C↓, so that CS is the only possibility for nontriviality. Since the spin Chern
number is related to the spin Hall conductivity σs

xy = (σ↑xy−σ↓xy)/2, systems with trivial
Chern number C, but nontrivial Z2 invariant νS are called quantum spin Hall insulators.
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Prominent examples are the Kane-Mele model without Rashba coupling [13, 14], which
basically consists of one Haldane model for each spin species, and the BHZ model [15]
for the HgTe/CdTe quantum well, which led to the first experimental observation of the
quantum spin Hall effect [16].

In case the spin species are coupled, the spin Chern number is not well defined and
other definitions have to be used. The definition of the Z2 invariant for 2D systmes by
Fu and Kane [104] is directly based on the time-reversal symmetry, which is reviewed
here briefly. Starting point in this approach is the charge polarization of a 1D system

Pρ ≡
∑
n

〈w0n|X |w0n〉 =
i

2π

∑
n

∫ π

−π
dk

〈
unk

∣∣∣∣ ∂∂k
∣∣∣∣unk〉 (4.42)

with the Bloch functions |unk〉 (see Eq. (2.9)) and Wannier functions |wxn〉 (see Eq. (2.11)).
Note that the integrand is the 1D Berry connection. While Bloch and Wannier functions
depend on the gauge, the charge polarization is invariant up to a lattice constant. If
the system is time-reversal symmetric and no degeneracies are present except for the
Kramers degeneracy forced by the time-reversal symmetry, the 2N eigenstates may be
divided into N Kramers pairs related via∣∣uI

−kα
〉

= −eiχkαΘ
∣∣uII
kα

〉∣∣uII
−kα
〉

= eiχ−kαΘ
∣∣uI
kα

〉
,

(4.43)

where Θ is the time-reversal operator, α = 1, . . . , N , and χkα some phase relating the
Kramers partners. Similar as the Chern number is split into a spin-up and a spin-down
part in the last paragraph, one can split the charge polarization into a part I and a part
II, i.e., Pρ = P I +P II. The difference between these two is the time-reversal polarization

Pθ = P I − P II (4.44)

To obtain a 2D Z2 invariant, the Hamiltonian needs to depend continuously on a periodic
pumping parameter t with the constraints

H[t+ T ] = H[t]

H[−t] = ΘH[t]Θ−1.
(4.45)

With the second constraint, it is assured that the Hamiltonian is time reversal invariant
at two distinct points t1 = 0 and t2 = T/2. Therefore, the time-reversal polarization is
defined at these two points. It is not gauge invariant, but the difference is, and serves
as the invariant

ν ≡ Pθ(T/2)− Pθ(0) mod 2. (4.46)

The Z2 invariant can be calculated using the U(2N) matrix relating time-reversed wave
functions

Mmn(k) ≡ 〈u−km|Θ |ukn〉 . (4.47)

Note that the matrix elements are gauge dependent. Because of Eq. (4.43), M is an
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antisymmetric matrix at the time-reversal invariant momenta k = 0 and k = π, hence a
Pfaffian is defined. The time-reversal polarization can be written as

(−1)Pθ =

√
detM(0)

PfM(0)

√
detM(π)

PfM(π)
. (4.48)

In case of a 2D topological insulator with rectangular unit cell, kx is the momentum k
of the 1D system, whereas ky serves as the pumping parameter t (or vice versa). Using
Eqs. (4.46) and (4.48), the Fu-Kane invariant can be written as

(−1)ν =
4∏
i=1

√
detM(Γi)

PfM(Γi)
, (4.49)

where Γi are the four time-reversal invariant momenta (TRIM) Γ1 = (0, 0), Γ2 = (0, π),
Γ3 = (π, 0), and Γ4 = (π, π). In contrast to the spin Chern number, this invariant
can be trivially generalized to 3D topological insulators, where the strong topological Z2

invariant ν0 is the product of the eight TRIM. Note that even though Eq. (4.49) suggests
that information about the Bloch functions is only needed at the TRIM, the gauge at
the points in between the TRIM is also of importance since the branches of the square
root needs to be chosen such that

√
detM(k) evolves continuously. The correct gauge

is only redundant in case of an inversion-symmetric unit cell, because then√
detM(Γi)

PfM(Γi)
=

N∏
m=1

ξ2m(Γi), (4.50)

where ξ2m(Γi) is the eigenvalue of the parity operator of the 2mth occupied band. It has
the same value as its Kramers degenerate partner ξ2m−1(Γi) [105]. In all other cases, the
evolution of the square root has to be done carefully. One way to find a smooth gauge
is to use maximally localized Wannier funcions [29, 106]. Details of this approach are
explained in the author’s master’s thesis [107].

4.7.3 Second Chern number and dimensional reduction

In the investigation of the Fu-Kane invariant for 2D topological insulators, a 1D system
is the starting point, and the second dimension is created by a pumping parameter. The
3D topological insulators can be classified by a generalization of the 2D case. However,
it is also possible to obtain 2D and 3D invariants from a 4D topological insulator by
reducing the number of parameters, as sketched in the following. A detailed description
can be found in Ref. [108]. In case of a 4D insulator, the relevant Chern number is the
second Chern number C2 ∈ Z, which is the integral over the second Chern class, see
Sec. 4.6. The integral over the four-dimensional Brillouin zone is

C2 =
1

32π2

∫
d4k

∑
ijkl

εijkl Tr [FijFkl] (4.51)
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with the non-abelian Berry curvature matrices

Fij(k) =
∂Aj
∂ki
− ∂Ai
∂kj

+ i [Ai, Aj ] , (4.52)

where the Berry connection matrices Ai have the elements

Amni (k) = −i

〈
umk

∣∣∣∣ ∂

∂ki

∣∣∣∣unk〉 . (4.53)

The trace is over all occupied bands4. In contrast to the 2D quantum Hall stated
described by the first Chern number, breaking time-reversal symmetry is not required
for a nontrivial second Chern number. Therefore, the 4D topological insulator is the
fundamental time-reversal invariant insulator.

The invariants from time-reversal invariant Hamiltonians of lower dimension can be
obtained by dimensional reduction, which means that the parameters ki that are not
needed are replaced by nonphysical parameters θi. In case of a 3D Bloch Hamiltonians,
a topological classification is possible by interpolating between two Hamiltonians H1(k)
and H2(k) using an additional parameter θ, satisfying

H(k, θ = 0) = H(k, θ = 2π)

H(k, θ = 0) = H1(k)

H(k, θ = π) = H2(k)

Θ†H(−k,−θ)Θ = HT(k, θ)

(4.54)

Furthermore, H(k, θ) needs to be gapped for any θ. Since the interpolation is periodic, a
second Chern number in the (k, θ) space is defined. One can show [108] that the relative
second Chern parity

N3[H1(k), H2(k)] = (−1)C2[H(k,θ)] (4.55)

is well defined for gapped, time-reversal invariant HamiltoniansH1 andH2. The topology
is then defined by comparing to the vacuum Hamiltonian H0. If N3[H(k), H0] = 1, then
H(k) is trivial, if N3[H(k), H0] = −1, it is nontrivial. Therefore, the Chern parity is a
Z2 classification. Physically, the second Chern parity is related to the magnetoelectric
polarization [100, 108, 109]

P3 =
1

16π2

∫
d3k

∑
ijk

εijk Tr

{[
Fij −

2

3
iAiAj

]
Ak

}
. (4.56)

If P3 = 0, the insulator is trivial, if P3 = 1/2, it is nontrivial [108]. The relation between
the second Chern number of a 4D insulator and the magnetoelectric polarization of a

4Note that a matrix product occurs in the trace. Thus, the commutator [Ai, Aj ] influences the result,
and the non-abelian curvature has to be used. Therefore, in contrast to the first Chern number (see
Eqs. (4.36) and (4.39)), it is not possible to write the second Chern number as a sum of terms that
only depend on the connection of one single band.
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3D insulator is analogous to the relation of the first Chern number of a 2D insulator
and the charge polarization (4.42) of a 1D insulator. In Ref. [109], it is shown that
the classification of a 3D insulator using P3 is equivalent to the Fu-Kane classification
of a strong topological insulator. Thus, the Z2 index ν0 is related to the dimensional
reduction of the second Chern number. The Z2 invariant of a 2D topological insulator
is obtained by another dimensional reduction [108].

4.7.4 Topology in interacting systems

In the previous section, several topological invariants are introduced. Due to dimensional
reduction, also the Z2 invariants are related to either first or second Chern number,
meaning that these quantities are key for a topological classification of insulators. Their
definitions (4.36), (4.39), and (4.51) are based on the Berry connection, which in turn is
calculated using the Bloch functions |unk〉. Therefore, the definitions cannot be used for
interacting systems, since then one-electron wave functions are not defined. However,
the Chern numbers can also be formulated in terms of Green’s functions [110–114]. The
first Chern number reads in terms of the Matsubara Green’s function [114]

C =
1

24π2

∫
dk0

∫
d2k

3∑
µ,ν,ρ=0

εµνρ Tr

[
G
∂G−1

∂kµ
G
∂G−1

∂kν
G
∂G−1

∂kρ

]
, (4.57)

where k0 is the Matsubara frequency k0 ≡ iωn. A similar expression is also possible
for the second Chern number by just increasing the number of dimensions from two to
four [114]

C2 =
1

480π3

∫
dk0

∫
d4k

3∑
µ,ν,ρ,σ,τ=0

εµνρστ

× Tr

[
G
∂G−1

∂kµ
G
∂G−1

∂kν
G
∂G−1

∂kρ
G
∂G−1

∂kσ
G
∂G−1

∂kτ

]
.

(4.58)

For noninteracting systems, the two expressions (4.57) and (4.58) reduce to the first and
second Chern numbers (4.39) and (4.51) of the Bloch vector bundle. However, since the
definitions (4.57) and (4.58) are based on Green’s functions, they can also be used as
a generalization to interacting systems. The question is, whether these two expressions
are still Chern numbers of a vector bundle in the mathematical sense, and if so, what
the bundle is. Zhong Wang and his coworkers showed that C and C2 defined above in
terms of Green’s functions are indeed Chern numbers [115–117]. The associated vector
bundle is the set of eigenvectors of the Green’s function at zero frequency

G−1(ω = 0,k) |α(ω = 0,k)〉 = µα(ω = 0,k) |α(ω = 0,k)〉 . (4.59)

For a noninteracting system, G−1(ω = 0,k) = H(k), hence |α(ω = 0,k)〉 = |unk〉, and
the Chern numbers are those of an ordinary Bloch bundle. Therefore, the Green’s
function approach serves indeed as a generalization to the Chern numbers calculated
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from Bloch bands, with the bundle |α(ω = 0,k)〉.
Hence, the topological properties of an interacting system are the same as for an

artificial noninteracting Bloch Hamiltonian that is minus the inverse Green’s function
at ω = 0. This defines the so called topological Hamiltonian [117]

Ht(k) = −G−1(ω = 0,k). (4.60)

Thus, all topological properties are encoded in an artificial system. Since this is inter-
actionless, all methods described in the previous sections can be used to calculate both
Chern invariants as well as Z2 invariants, since they are related to the Chern numbers
by dimensional reduction. However, it is prudent to mention that only the topological
properties are encoded in Ht(k), it is not suitable to use it for estimates of any other
quantities.
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5 The maximum entropy method for
distributions with positive and negative
values

Within many methods, as for example CTQMC (see Sec. 2.3.2), the Green’s function is
calculated on the imaginary frequency axis, whereas results on the real axis are needed
for many physical interpretations. However, since the Green’s function is analytic in the
whole complex plane except for the poles, G(ω) can be obtained from its Matsubara
counterpart G(iωn) via analytic continuation. For all complex arguments z, the Green’s
function can be expressed in terms of the spectral function A(ω) via

G(z) =

∫
dω′

A(ω′)

z − ω′ . (5.1)

This relation is also valid in the multi-orbital case, when G and A are matrices. In
this chapter, an element-wise view is used, so that G and A denote a certain element
(either diagonal or off-diagonal) of the respective matrices. Because of Eq. (5.1), the
Matsubara Green’s function (z = iωn) as well as the retarded Green’s function (z =
ω + i0+) can be calculated easily once the spectral function is known. The inverse
operation, i.e., calculating A(ω) from G(iωn), is not straight forward, as can be seen by
the following considerations. Using a Fourier transformation, the relation between the
spectral function and the Green’s function of imaginary time G(τ) is

G(τ) =

∫
dω

e−ωτ

1 + e−ωβ
A(ω). (5.2)

For discrete ω and τ meshes, this equation is a matrix multiplication

G = KA (5.3)

with the elements Gi = G(τi), Aj = A(ωj), and a Kernel

Kij =
e−ωjτi

1 + e−ωjβ
∆ωj .

Due to the exponential behavior of the Kernel, the condition number of the matrix K
is large. Thus, calculating directly the inverse A = K−1G is an ill-posed problem and
therefore numerically challenging or even impossible.

The task of an analytic continuation under these ill-posed conditions is to find an
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approximate spectral function A with a reconstruction G̃ = KA that captures the
physically relevant features, but does not follow the noise. In case of non-negative spec-
tral functions A(ω), several methods exist to perform that task, as for example series
expansions (e.g. the Padé method [118–120]), information-theoretical approaches such
as the maximum entropy method (MEM) [121–124] and stochastic methods [125–129].
However, the Green’s function is, in general, matrix valued, and when the SOC is in-
cluded, finite off-diagonal elements persist. The norm of off-diagonal elements

∫
dωA(ω)

is zero, hence A(ω) is negative at some frequencies.
Gernot Kraberger, Manuel Zingl, Markus Aichhorn, and the author published a gen-

eralization to the MEM, working for matrix-valued Green’s functions and self-energies
[130]. Gernot Kraberger devised the idea of the positive-negative entropy, which was
further developed by the author and put on a probabilistic footing. This theoretical
investigation is described in this chapter. It should be noted that the positive-negative
entropy has been also carried out in the field of astrophysics [131, 132]. However, some
aspects, such as the parametrization in the singular-value basis, are not considered in
these publications, and other aspects, such as the derivation of the integration measure
when using the positive-negative entropy, are done in a different fashion. Therefore, the
full investigation is summarized here.

5.1 Theoretical basics of the maximum entropy method

The probability density of a certain spectral function A given G is

p(A|G) =
1

Z
p(G|A)p(A) (5.4)

with a normalization Z. To express the likelihood, the uncertainty of G(τ) has to be
known. If, as usual, a Gaussian distribution is assumed, one has

p(G|A) ∝ e−χ2/2 (5.5)

with a misfit

χ2 =
∑
i

(
G̃i −Gi

)2

σ2
i

, (5.6)

and the reconstruction G̃ = KA. The parameters σ2
i are variances of the probability

distributions of G at the points τi. If the values of the Green’s function at different values
of τ are correlated, the misfit has to be generalized to χ2 = (KA−G)TC−1(KA−G)
with a covariance matrix C.

The difficult part is to assign a prior distribution p(A). John Skilling showed in
his famous work [133] that, based on some general axioms, the prior for non-negative
spectral functions maximizes the entropy

S(A,D) =

∫
dω

(
A(ω)−D(ω)−A(ω) log

A(ω)

D(ω)

)
, (5.7)

56



with a so-called default model D(ω) that includes the knowledge one has about the
spectral function. In case no information is present, it has to be chosen constant within
a frequency range. The full form of p(A) is still missing, though, as well as the integration
measure m(A) for integrals over A, needed to calculate the probability that A is in some
domain I via

P (A ∈ I) =

∫
I

dNωA m(A) p(A), (5.8)

where dNωA is the volume element in the space of spectral functions with a dimension
equal to the number of ω points Nω. In Ref. [133], Skilling also showed how these
quantities look like by using a special example, which is also described here in the
following, since it helps to visualize the origin of the entropic term (5.7). Next to the
already introduced discretization of the ω axis ω → ωi, the A axis is discretized as well:

A(ωi) ≡ Ai → ni with Ai ≈ ni∆A (5.9)

and ni ∈ N. The assumption is now that units of ∆A are randomly distributed on the
different slots ωi with the constraint that on average µi units are placed. Usually, an
imaginary monkey is instructed to fulfill that task. The distribution for that process is
a Poisson distribution

P (ni|µi) =
µnii
ni!

e−µi . (5.10)

Since the process is independent for each slot, the total probability is the product of the
individual probabilities. Using Stirling’s formula ni! ≈

√
2πnin

ni
i e

ni valid for large ni,
one obtains

P (n|µ) =
1∏

i

√
2πni

e
∑
i ni−µi−ni log(ni/µi) (5.11)

Resubstituting ni = Ai/∆A and µi = Di/∆A leads to

P (A|D,∆A) =

(
∆A

2π

)Nω/2 1∏
i

√
Ai

e
1

∆A

∑
i Ai−Di−Ai log

Ai
Di , (5.12)

where Nω is the number of ω points. This is the probability of a spectrum A, where
each Ai is discretized in units of ∆A. In order to write it for continuous Ai, one cannot
formulate a probability of a certain function, but has to look at the probability that the
function is within some domain I.

P (A ∈ I|D,∆A) =
∑
A∈I

P (A|D,∆A) ≈
∫
I

dNωA

∆ANω
P (A|D,∆A)

=

∫
I

dNωA

∆ANω

(
∆A

2π

)Nω/2 1∏
j

√
Aj

e
1

∆A

∑
i Ai−Di−Ai log

Ai
Di

=
1

(2π∆A)Nω/2

∫
I

dNωA∏
j

√
Aj

e
1

∆A
S

(5.13)
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with

S =
∑
i

Si =
∑
i

Ai −Di −Ai log
Ai
Di
. (5.14)

Writing the entropy in the continuous form, this entropy coincides, up to a factor ∆ω,
to the entropy in Eq. (5.7). Hence, the exponential part of P (A|D,∆A) fulfills the
properties the universal prior has to fulfill. However, also a prefactor 1/

√
Ai appears. In

Ref. [133], the conclusion of this result is that the only consistent way is to put it into
the measure, so that

m(A) =
1∏

j

√
Aj
. (5.15)

The probability distribution function reads then

p(A|D,∆A) =
1

(2π∆A)Nω/2
e

1
∆A

S . (5.16)

Since the factor 1/∆A in front of S in the exponential is not defined, it is a so-called
hyper parameter that needs to be adjusted correctly. Usually, it is dubbed α ≡ 1/∆A.
Using Eqs. (5.4), (5.5), and (5.16), the probability distribution of a spectrum A for given
α, data G, and default model D is

p(A|G, α,D) =
1

Z(α)
e−

1
2
χ2(A,G)+αS(A,D), (5.17)

according probabilities are obtained from integrals of the form

P (A ∈ I|G, α,D) =

∫
I

dNωA∏
j

√
Aj

p(A|G, α,D) (5.18)

The highest probability for a given α is thus achieved by a maximization of

Q = −1

2
χ2 + αS. (5.19)

Step one of all MEM is thus to maximize Q as a function of α. Step two is to use that
information to obtain a final spectrum. The way to do that is one of the key decisions
of a maximum entropy calculation.

5.2 Entropy of two independent variables

In the previous section, a positive distribution is assumed. Offdiagonal elements of
spectral functions do not have this constraint. To get a more general function out of
positive functions, one could subtract two positive functions which are independent,
or one can consider the phase and the absolute value as independent. All of these
are just assumptions, since no rigorous way is known to derive a general entropy as
Skilling did. However, there is an argument for subtracting two positive functions: If
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a spectral function has no offdiagonal elements, one could create some by a unitary
transformation. In this special case, the offdiagonal elements are linear combinations of
independent positive functions A(ω) =

∑
n anAn(ω). If two positive functions A1 and

A2 are added, the resulting function A′ = A1 +A2 is again positive. The entropy of the
resulting sum A′ of the independent positive functions should thus have the same entropy
S(A′) given in Eq. (5.7). If two positive functions are subtracted, i.e., A′′ = A1 − A2,
the resulting entropy is different, since A′′ is possibly negative for some frequencies. For
the example of the linear combination of positive functions A =

∑
n anAn, one can,

therefore, just sum up all parts with positive coefficients A+ =
∑

an>0 anAn and with
negative coefficients A− = −∑an<0 anAn. The entropies S(A+) and S(A−) are then
the usual entropies of Eq. (5.7). The entropy of A = A+ − A−, though, is the entropy
of a function that originates from the subtraction of two positive functions, which will
be derived in the following. Here, only this approach is considered.

5.2.1 Probabilities with several monkeys

The previous section, the MEM is introduced using a monkey putting balls of size ∆A
into boxes. If a linear combination of positive functions is considered, this is equivalent to
several monkeys putting different types of balls into boxes. Each monkey corresponds to
one spectral function An. Here, the focus is on two special cases of linear combinations:
adding and subtracting two functions. As the probability distributions for all boxes i
are equivalent, the index is not written here explicitly. Consider first two monkeys with
balls of the same sign and mean values µ1 and µ2, which corresponds to adding two
positive functions. The according probabilities for each monkey to put n balls into the
slot are P1(n1|µ1) and P2(n2|µ2), where both are Poisson distributions (5.10). Several
different numbers of balls n1 thrown in by monkey 1 and numbers of balls n2 thrown in
by monkey 2 lead to the same sum N = n1 + n2. The probability that in total N balls
are in a slot is

P (N |µ1, µ2) =
∑
n

P1(n|µ1)P2(N − n|µ2). (5.20)

This is the convolution of two Poisson distributions and is again a Poisson distribution
with mean value µ = µ1 + µ2, as easy to show. This is consistent with the previously
mentioned statement that the sum of two positive functions is again a positive function,
wherefore the probability distribution has to be of the same form. In case of two monkeys
with balls of opposite sign, one obtains

P±(N |µ1, µ2) =
∑
n

P1(n|µ1)P2(n−N |µ2). (5.21)

This distribution is called Skellam distribution [134] and is the one that should be used
for functions that can be both positive and negative [132].
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5.2.2 Entropies for sums and differences of non-negative functions

Looking at probabilities has the problem that it is not obvious which part of P is put into
the measure, and which into the probability density has to be optimized (see Eq.(5.20)).
The strategy chosen here is simply to add two entropies, since entropies are extrinsic
quantities [135, 136]. The idea is to describe a function that is given by the difference of
two non-negative functions A+(ω) and A−(ω), i.e., A(ω) = A+(ω) − A−(ω). However,
it is also interesting to look at the sum of these two functions B = A+ +A−, especially
for consistency reasons, since B is again a non-negative function, for which the ordinary
entropy should be correct. The probabilities and entropies of A+ and A− are assumed
to be independent. The entropy of one lattice point i is thus, dropping again the indices,
the sum of the entropies of A+ and A−,

S(A+, A−) = S(A+) + S(A−)

= A+ −D+ −A+ log
A+

D+
+A− −D− −A− log

A−

D−
.

(5.22)

The total entropy for vectors A+, A− is the sum of the entropies at each ω point, i.e.,
S(A+,A−) =

∑
i S(A+

i , A
−
i ). This entropy has two parameters, A+ and A−, that have

to be optimized instead of only one, which is the case in ordinary MEM. Note that
also two default models are needed here. Next to the entropy corresponding to the
prior distribution, also a misfit χ2(A+, A−) needs to be given. The maximum entropy
solution is then to maximize Q(A+, A−) = −χ2/2 + αS with respect to both A+ and
A−. However, if one has some χ2 that depends on one parameter only, for example
on B = A+ + A− or A = A+ − A−, the maximization of Q with respect to the other
parameter is trivial, since it is equivalent to maximize the entropy only, which can be
done analytically.

The cases where the relevant parameter is either B = A+ +A− or A = A+ −A− can
be treated simultaneously by the coordinate transformation of S(A+, A−) to S(A,B)

B = A+ +A− A = A+ −A−
A+ = (B +A)/2 A− = (B −A)/2,

(5.23)

leading to

S(A,B) = B − (D+ +D−)− B +A

2
log

B +A

2D+
− B −A

2
log

B −A
2D−

. (5.24)

The entropy for a function B, which originates from adding two positive functions, is
denote here as S+(B). It is obtained from the condition ∂S

∂A = 0, which leads to

A+D− = A−D+ ⇔ A = B
D+ −D−
D+ +D−

, (5.25)

S+(B) = B − (D+ +D−)−B log
B

D+ +D−
. (5.26)
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This is the same expression as for a single distribution, with the sum of D+ and D− as
default model S+(B,D+, D−) = S(B,D = D++D−). This is expected, since convolving
two Poisson distributions with mean values µ1 and µ2 gives another Poisson distribution
with mean value µ = µ1 + µ2 (see last section). Default model and mean value are
related via D = µ∆A. Thus, it is proved that maximum entropy is consistent regarding
the decomposition of a non-negative function into many non-negative functions. The
entropy for a function A, which originates from the difference of two positive functions,
is called S±(A). It is obtained from the condition ∂S±

∂B = 0, which leads to

A+A− = D+D− ⇔ B =
√
A2 + 4D+D− (5.27)

S±(A) =
√
A2 + 4D+D− − (D+ +D−)−A log

√
A2 + 4D+D− +A

2D+
(5.28)

This entropy is qualitatively different to the ordinary entropy (5.7) that is also valid for
the sum of two positive functions. The entropy S± is symmetric around zero if D+ = D−

and is thus suited for spectral functions that are possibly positive and negative in some
frequency intervals [130–132]. If D− = 0 is chosen, it reduces to the ordinary entropy,
since this corresponds to a spectrum that cannot be negative.

Given now the misfit χ2(A) and the entropy S(A) or S±(A) (depending on whether
the spectral function A is strictly non-negative or possibly both positive and negative),
two tasks have to be done in order to get the optimal spectrum: First, optimize Q for
given values of α with respect to the spectral function, and second, determine the best
hyper parameter α.

5.3 Optimization of Q

The condition for maximizing Q given α is ∂Q/∂Ai = 0, or, equivalently, α∂S/∂Ai =
1
2∂χ

2/∂Ai. For the ordinary entropy S(A) = S+(A) =
∑

i

(
Ai −Di −Ai log Ai

Di

)
and

the misfit χ2 =
∑

j(G̃j −Gj)2/σ2
j (with the reconstruction G̃j =

∑
iKjiAi), the deriva-

tives read [137]

∂S

∂Ai
=− log

Ai
Di

∂χ2

∂Ai
=
∑
j

∂χ2

∂G̃j

∂G̃j
∂Ai

=
∑
j

∂χ2

∂G̃j
Kji

(5.29)

The stationarity condition is thus in vector notation

− 2α log
A

D
= KT∂χ

2

∂G̃
(5.30)
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Bryan suggested to reduce the space by a singular value decomposition (SVD) of the
Kernel K = UΞV T via the ansatz [137]

Ai = Die
∑
j Vijuj , (5.31)

which is in vector notation
A = DeV u. (5.32)

Plugging this into the maximization condition, the matrix V stands on the very left
on both sides of the equal sign. Therefore, the condition is already fulfilled in the much
smaller singular space when dropping the matrix V on both sides:

− 2αu = ΞUT∂χ
2

∂G̃
(5.33)

This equation has to be solved numerically. The advantage of parametrization (5.31)
is that the equation, which has to be solved, is in the space of relevant singular values,
which is much smaller than the original space, where every point of the ω grid constitutes
a dimension.

In case of the entropy S±(A), another parametrization is needed to reduce the space.
The derivative of the entropy is

∂S±

∂Ai
= − log

Ai +
√
A2
i + 4D+

i D
−
i

2D+
i

= − log
A+
i

D+
i

,

so that the maximization condition becomes in vector notation

− 2α log
A+

D+
= KT∂χ

2

∂G̃
(5.34)

The left hand side of the last expression is written as a function of A+, the right hand
side is a function of A since usually χ2 = (KA−G)TC−1(KA−G). However, due to
equation (5.27), one of the three quantities A+,A−,A is enough to determine the other
two:

A−i =
D+
i D
−
i

A+
i

(5.35)

Ai =A+
i −A−i = A+

i −
D+
i D
−
i

A+
i

(5.36)

A+
i =

√
A2
i + 4D+

i D
−
i +Ai

2
(5.37)

A−i =

√
A2
i + 4D+

i D
−
i −Ai

2
(5.38)

If one wants to do the optimization in the smaller SVD space, one of the three quantities
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has to be expressed in terms of some parameters u. Due to equation (5.34) – notice here
the similarity to equation (5.30) – one can take

A+ =D+eV u (5.39)

A− =D−e−V u (5.40)

A =D+eV u −D−e−V u (5.41)

With that, the maximization condition takes the same form as in case of the usual
entropy

− 2αu = ΞUT∂χ
2

∂G̃
. (5.42)

5.4 Probability of α

Many methods exist to determine the best value of α once the functionsA∗α that optimize
Qα(A) have been found. One possibility is the so-called classic MEM, which is based on
the probabilistic picture [138]. In case of the usual entropy S(A), the correct probability
density for α is obtained by a marginalization over the spectrum, using its probability
density (5.17) and the measure (5.15)

p(α|G) =
p(G|α)p(α)

p(G)
∝
∫

dNωA∏
j

√
Aj

p(G|A, α)p(A|α)p(α)

=

∫
dNωA∏
j

√
Aj

Z−1
χ2 e

− 1
2
χ2(G,A) Z−1

S eαS(A)p(α)

=
p(α)

Zχ2ZS(α)

∫
dNωA∏
j

√
Aj

e−
1
2
χ2(G,A)+αS(A)

=
p(α)ZQ(α)

Zχ2ZS(α)

(5.43)

Note that ZS(α) depends on α but Zχ2 does not. Therefore, it is important to calculate
the former properly when looking for the maximum of p(α|G), whereas the latter is just
a normalization constant. For the prior distribution p(α), usually Jeffrey’s prior 1/α
is assumed, as α is scale invariant. What is missing to evaluate p(α|G) are the two
integrals

ZS(α) =

∫
dNωA∏
j

√
Aj

eαS(A) (5.44)

ZQ(α) =

∫
dNωA∏
j

√
Aj

e−
1
2
χ2(G,A)+αS(A) (5.45)
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The integrals over A can be approximated by expanding the exponents to second order
in A around their maxima (called steepest decent approximation):∫

dNx eΦ(x)µ(x) ≈ µ(x∗)eΦ(x∗)(2π)N/2|H|−1/2 (5.46)

where x∗ maximizes Φ(x),

Hij =
∂2

∂xi∂xj
Φ
∣∣∣
x∗

(5.47)

is the Hessian at this point, and |H| its determinant. In case of ZS ,

∂2S

∂Ai∂Aj
= − 1

Ai
δij . (5.48)

Note that the measure is identical to the square root of the Hessian. The approximative
value of the integral is thus [138]

ZS(α) =

(
2π

α

)Nω/2
(5.49)

The same normalization has been obtained by writing the discrete sum of the Poisson
distribution as an integral (5.13), since both the discretization and steepest descent
approximation are exact in the limit of large α. With the second derivative of Q,

Hij = − ∂2Q

∂Ai∂Aj

∣∣∣
A∗

= (KTC−1K)ij +
α

A∗i
δij , (5.50)

the second integral reads [138]

ZQ(α) = |H|−1/2 (2π)Nω/2∏
i

√
A∗i

e−
1
2
χ2(A∗)+αS(A∗). (5.51)

A∗ is the spectrum that optimizes Q = −χ2/2 + αS for a given value of α.

In case of the positive-negative entropy S±, the according measure m±(A) needs to
be calculated. In Ref. [132], this is done by approximating the Skellam distribution.
Here, the measure of A+ and A− are used, as well as a steepest decent approximation.
Since A+ and A− are independent functions, one has to marginalize over both in order
to obtain the correct probability distribution for α.

ZQ =

∫
dNωA+∏
i

√
A+
i

dNωA−∏
j

√
A−j

e−
1
2
χ2+αS

=

∫
dNωA dNωB∏
i

√
B2
i −A2

i

e−
1
2
χ2+αS

(5.52)
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First, the case that χ2 only depends on B = A+ +A− is analyzed, which is used in this
chapter to show the consistency of assuming two independent spectral functions that can
be added or subtracted. For S(A,B) it has already been mentioned that the maximum

is at A∗i = Bi
D+
i −D

−
i

D+
i +D−i

(Eq. (5.25)) and that S±(A∗,B) = S+(B). The second derivative

is
∂2S(A,B)

∂Ai∂Aj
= − Bi

B2
i −A2

i

δij (5.53)

Using the steepest decent approximation for the integral over A, one obtains therefore

ZQ =

(
2π

α

)Nω/2 ∫ dNωB∏
i

√
Bi

e−
1
2
χ2(B)+αS+(B) (5.54)

The integral has the same form as ZQ for the ordinary entropy S(B) (Eq. (5.45)), except
for the prefactor, which cancels with ZS . Therefore, assuming that the spectral function
B is a sum of two independent spectral functions gives the same distribution p(α|G) as
in the ordinary case, when B is just assumed to be a non-negative function, showing
again the consistency of the splitting into two functions. If, on the other hand, a misfit
χ2 is assumed that only depends on A = A+ − A−, the entropy is maximized for

B∗i =
√
A2
i +D+

i D
−
i (Eq. (5.27)) and its second derivative is

∂2S(A,B)

∂Bi∂Bj
= − Ai

A2
i −B2

i

δij , (5.55)

so that the integral becomes in the steepest decent approximation

ZQ =

(
2π

α

)Nω/2 ∫ dNωA∏
i

√
B∗i

e−
1
2
χ2(A)+αS(A,B∗)

=

(
2π

α

)Nω/2 ∫ dNωA∏
i

4

√
A2
i + 4D+

i D
−
i

e−
1
2
χ2(A)+αS±(A)

(5.56)

The expression looks similar as the one for the sum B, but with a different entropy S±

instead of the ordinary entropy S, and with a different measure

m±(A) =
1∏

i
4

√
A2
i + 4D+

i D
−
i

. (5.57)

Note that the metric tensor is again the second derivative of the entropy. In contrast to
the ordinary metric, it does depend on the default models. For D−i = 0, which forces
the spectral function to be non-negative at this frequency, the measure reduces to the
ordinary measure. When the integral (5.56) is evaluated again in the steepest decent
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approximation, one obtains

Z±Q(α) = |H±|−1/2 (2π)Nω/2∏
i

4

√
A∗2i + 4D+

i D
−
i

e−
1
2
χ2(A∗)+αS±(A∗), (5.58)

with

H±ij = − ∂2Q±

∂Ai∂Aj

∣∣∣
A∗

= (KTC−1K)ij +
α√

A∗2i + 4D+
i D
−
i

δij , (5.59)

and A∗ maximizing Q± = −χ2/2 + αS± for a given value of α.
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6 Interplay of spin-orbit coupling and strong
correlations in multi-orbital systems

This chapter originates from a project with Jernej Mravlje, Markus Aichhorn, Gernot
Kraberger, and the author, with the aim to understand the influence of spin-orbit cou-
pling onto the correlation strength. The collaboration led to a publication, which is
in preparation. In order to allow for a self-contained description, the whole paper is
included here in its entirety.

Abstract

We investigate the influence of spin-orbit coupling λ in strongly-correlated
multi-orbital systems that we describe by a three-orbital Hubbard-Kanamori
model on a Bethe lattice. We solve the problem at all integer fillings N
with the dynamical mean-field theory using the continuous-time hybridiza-
tion expansion Monte Carlo solver. We investigate how the quasiparticle
renormalization Z varies with the strength of spin-orbit coupling. For all
fillings except N = 2, the behavior of Z on λ can be understood in terms of
the atomic Hamiltonian (the atomic charge gap) and the spin-orbit induced
changes of orbital degeneracies and polarizations in the j-basis. At N = 2,
λ increases Z at small U but suppresses it at large U , thus eliminating the
characteristic Hund’s metal tail in Z(U). We also compare the effects of the
spin-orbit coupling to the effects of a tetragonal crystal field. Although this
crystal field also lifts the orbital degeneracy, its effects are different, which can
be understood in terms of the different form of the interaction Hamiltonian
expressed in the respective diagonal single-particle bases.

6.1 Introduction

Strongly-correlated electronic systems with sizable spin-orbit coupling (SOC) are a sub-
ject of intense current interest. We stress a few aspects: (i) In the limit of strong
interactions, the associated “spin” models are characterized by unusual exchange and
are argued to lead to exotic phases such as spin-liquid ground states [17–23, 139–143].
(ii) The electronic structure of layered iridate Sr2IrO4, which features both SOC and
sizeable electronic repulsion, is (at low energies) similar to the one of layered cuprates
and is argued to lead to high-temperature superconductivity [24–26]. (iii) In Sr2RuO4,
a compound in which the correlations are driven by the Hund’s rule coupling, the SOC
affects the Fermi surface [144, 145]. Furthermore, the SOC plays a key role in the on-
going discussion on the superconducting order parameter [146, 147]. (iv) Last, but not
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least, the development and improvement of multi-orbital dynamical mean-field theory
(DMFT) techniques (also driven by the interest in multi-orbital compounds following the
discovery of superconductivity in pnictides) has lead to a detailed and to a large extent
even quantitative understanding of several correlated multi-orbital materials. Particular
emphasis has been put to the importance of the Hund’s rule coupling for electronic cor-
relations [42, 148, 149]. A question, that is imminent in this respect, is how this picture
is affected by the SOC.

Let us first summarize the key results for the three-orbital models without SOC. The
overall behavior was in part understood in terms of the atomic criterion, comparing
the atomic charge gap ∆at to the kinetic energy. This criterion failed for occupancy
N = 2, where the additional suppression of the coherence scale is important [42, 148,
149]. This suppression coincides with the slowing down of the spin fluctuations [150]
and was explained from the perspective of the impurity model that is influenced by
a reduction of the spin-spin Kondo coupling due to virtual fluctuations to a high-spin
multiplet at half-filling [151–154]. The occurrence of strong correlations at N = 2 for
moderate interactions was also interpreted (in the context of iron-based superconductors)
as a consequence of the proximity to a half-filled (in our case N = 3) Mott insulating
state [155–158], for which the critical interaction is very small due to the Hund’s rule
coupling. The compounds characterized by the behavior discussed above were dubbed
Hund’s metals.

In each case, the SOC modifies all aspects of this picture. First, the local Hamiltonian
changes, and as a result also the atomic charge gap changes. Second, the SOC reduces the
ground state degeneracy and hence the kinetic energy. Therefore, both the qualitative
picture inferred from the atomic criterion, as well as quantitative results, can be expected
to be strongly affected by the SOC.

In this work, we use multi-orbital DMFT to investigate the role of SOC in a three-
orbital model with semicircular non-interacting density of states and Kanamori interac-
tions. We are particularly interested in the electronic correlations, and aim to establish
the key properties that control their strength, similarly to what has been achieved for
the materials without SOC in earlier work. For this purpose, we calculate the quasipar-
ticle residue Z and investigate its behavior as a function of interaction parameters and
SOC for different electron occupancies. We find rich behavior where depending on the
occupancy and the interaction strength the SOC increases or suppresses Z. Partly, this
is understood in terms of the influence of the SOC on the atomic charge gap ∆at and the
associated critical Hubbard interaction for the metal to insulator transition [149]. In the
Hund’s metals regime, where the SOC leads to a disappearance of characteristic Hund’s
metal tail, this criterion fails. We interpret the behavior in terms of the suppression of
the half-filled Mott insulating state in the phase diagram instead.

Earlier DMFT work investigated some aspects of the SOC, for instance different mag-
netic ground states at certain electron fillings [159–161]. Zhang et al. successfully applied
DMFT to Sr2RuO4 and pointed out an increase of the effective SOC by correlations [144],
discussed also in LDA+U [162] and slave-boson/Gutzwiller approaches [163, 164]. Kim et
al. also investigated Sr2RuO4 and reconciled the Hund’s metal picture with the presence
of SOC in this compound [145, 165]. Finally, in an important work Kim et al. looked
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at the semicircular model, as in the present work, but did not systematically investigate
the evolution of the quasiparticle residue [166].

This paper is structured as follows. In Sec. 6.2, we start by describing the model and
methods. In Sec. 6.3 we give a qualitative discussion of the expected behavior in terms
of the atomic problem. In Sec. 6.4 we show the results of the DMFT calculations, and
put them into context of real materials. We end with our conclusions in Sec. 6.5.

6.2 Model and method

We consider a three-orbital problem with the (non-interacting) semicircular density of
states ρ(ε) = 2

πD2

√
D2 − ε2. We use the half-bandwidth D as the energy unit. The

atomic interaction is described in terms of the Kanamori Hamiltonian,

HI =
∑
i

Uni↑ni↓ + U ′
∑
i 6=j

ni↑nj↓ + (U ′ − JH)
∑
i<j,σ

niσnjσ

+ JH

∑
i 6=j

c†i↑c
†
j↓ci↓cj↑ + JH

∑
i 6=j

c†i↑c
†
i↓cj↓cj↑,

(6.1)

where c†iσ creates an electron in orbital i with spin σ. We set U ′ = U − 2JH to make
the Hamiltonian rotationally invariant in orbital space. One can express HI in terms of
the total number of electrons N =

∑
iσ niσ, the total spin S = 1

2

∑
i

∑
σσ′ c

†
iστ σσ′ciσ′ ,

where τ is the vector of Pauli matrices, and the total orbital isospin L with components
Li = i

∑
jkσ εijkc

†
jσckσ,

HI = (U − 3JH)
N(N − 1)

2
+

5

2
JHN − 2JHS

2 − JH

2
L2. (6.2)

The first two Hund’s rules are manifest in this form. The effects of spin-orbit coupling
are, in general, described by the one-particle operator Hλ = λ l · s =

∑
i li ⊗ si, where

l and s are the orbital angular momentum and the spin of the respective electron. Our
three-orbital model is motivated by cases where the eg-t2g crystal-field splitting within
the d-manifold of a material is strong. Therefore, one retains only the three t2g orbitals.
The matrix representations of the l = 2 operators lx, ly, and lz in the cubic basis within
the t2g subspace are up to a sign equal to the ones for the l = 1 operators in cubic basis,
which is called TP-correspondence [40, 167]. Therefore, the SOC operator reads

Hλ = λ l t2g · s = −λ lp · s = −λ/2(j2
eff − l2p − s2), (6.3)

where lp are generators of the l = 1 orbital angular momentum and jeff is the effective
total one-particle angular momentum jeff = lp + s. In order to keep the notation light,
we will drop the index “eff” in the following, and denote the total angular momentum
by j. With the eigenvalues lp = 1 and s = 1/2 (~ = 1), j can be 1/2 or 3/2 and
mj = −j,−j + 1, . . . ,+j. The eigenvalues of Hλ are thus −λ/2 for j = 3/2 and λ for
j = 1/2, leading to a spin-orbit splitting of 3

2λ. Note that in contrast to p orbitals, the
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j = 3/2 band is lower in energy because of the minus sign in the TP-correspondence.
Therefore, the non-interacting electronic structure consists of four degenerate j = 3/2
bands and two degenerate j = 1/2 bands, the latter higher in energy.

The full problem is solved by the DMFT [3, 5] method, where the Hamiltonian is
mapped self-consistently to an Anderson impurity model, assuming a local self-energy
Σ. This impurity problem is solved by the continuous-time quantum Monte Carlo hy-
bridization expansion method [68]. We performed the calculations using the TRIQS
package [168, 169]. In the j-basis, which is defined to diagonalize the local Hamiltonian
Hλ, also the hybridization is diagonal, hence one can use real-valued imaginary-time
Green’s functions for the calculations. This is convenient because it reduces the fermionic
sign problem and makes the calculations feasible [159, 166]. However, the sign problem
still remains a limiting factor for large Hund’s couplings and small temperatures. All
results reported in this paper were calculated at an inverse temperature βD = 80.

All calculations are done in the paramagnetic state, as we focus on the effect of the
SOC in the correlated metallic regime. Note that different kinds of insulating states
occur because antiferromagnetic and excitonic order parameters do not vanish in some
parameter regimes [22, 160, 170–172].

6.3 Crystal field analogy and the atomic problem

In the j-basis, the non-interacting density of states consist of two semicircular parts split
by 3

2λ, where the j = 3/2 part is four-fold, the j = 1/2 part two-fold degenerate. Such
a density of states also arises in the case of a tetragonal crystal field, but, obviously, the
eigenstates differ in the two situations; the SOC and tetragonal crystal field cannot be
simultaneously diagonalized.

It is instructive to rewrite the Kanamori Hamiltonian to the j-basis,

HI =
∑
ijkl

Uijklc
†
ic
†
jclck =

∑
αβγδ

Ũαβγδd
†
αd
†
βdδdγ (6.4)

with
Ũαβγδ =

∑
ijkl

UijklA
∗
αiA

∗
βjAkγAlδ, (6.5)

where A is the unitary transformation between the cubic t2g and the j-basis [173]. The
Latin indices are combined indices of orbital and spin, the Greek indices are combined
indices of j and mj . As the Kanamori Hamiltonian is invariant under this transformation
for JH = 0 (seen easily from Eq. (6.2)), the result of the crystal-field splitting and the
SOC is identical in this case.

On the other hand, for a finite Hund’s coupling the crystal field and SOC lead to
different results. The transformed Hamiltonian in j-basis differs from its form in cubic
basis (6.1). We can split it into a pure j = 1/2 part, a pure j = 3/2 part, and a part
that mixes the j = 1/2 and j = 3/2 parts,

HI = Hj= 1
2

+Hj= 3
2

+Hmix. (6.6)
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The first two terms read

Hj= 1
2

=

(
U − 4

3
JH

)
n 1

2
, 1
2
n 1

2
,− 1

2
, (6.7)

Hj= 3
2

= (U − JH)
(
n 3

2
, 3
2
n 3

2
,− 3

2
+ n 3

2
, 1
2
n 3

2
,− 1

2

)
+

(
U − 7

3
JH

)(
n 3

2
,− 3

2
n 3

2
,− 1

2
+ n 3

2
, 3
2
n 3

2
, 1
2

)
+

(
U − 7

3
JH

)(
n 3

2
,− 3

2
n 3

2
, 1
2

+ n 3
2
, 3
2
n 3

2
,− 1

2

)
+

4

3
JH

(
d†3

2
,− 3

2

d†3
2
, 3
2

d 3
2
,− 1

2
d 3

2
, 1
2

+ d†3
2
,− 1

2

d†3
2
, 1
2

d 3
2
,− 3

2
d 3

2
, 3
2

)
,

(6.8)

the density-density part of Hmix is

Hmix, dd =

(
U − 5

3
JH

)(
n 1

2
, 1
2
n 3

2
, 3
2

+ n 1
2
,− 1

2
n 3

2
,− 3

2

)
+ (U − 2JH)

(
n 1

2
, 1
2
n 3

2
, 1
2

+ n 1
2
,− 1

2
n 3

2
,− 1

2

)
+

(
U − 7

3
JH

)(
n 1

2
, 1
2
n 3

2
,− 1

2
+ n 1

2
,− 1

2
n 3

2
, 1
2

)
+

(
U − 8

3
JH

)(
n 1

2
, 1
2
n 3

2
,− 3

2
+ n 1

2
,− 1

2
n 3

2
, 3
2

)
.

Hmix contains 30 more terms that are not shown here. The convention is that n 1
2
, 1
2
, for

example, means nj= 1
2
,mj=

1
2
. Hj= 1

2
is a one-band Hubbard Hamiltonian with an effective

interaction Ueff = U − 4/3 JH. For the density-density part of Hj= 3
2
, one observes that

the terms with the same |mj |’s have prefactors U − JH, terms with different |mj |’s have
prefactor U − 7/3JH. If one uses |mj | as the orbital index and the sign of mj as the
spin, the density-density part of this Hamiltonian is similar to the density-density part
of a two-band Kanamori Hamiltonian, but with different prefactors. Importantly, there
is only one kind of prefactor for inter-orbital interactions, namely U − 7/3JH, instead of
U − 2J and U − 3J in Eq. (6.1). This influences the electronic correlations, as we will
see below in the case of N = 2. Following this interpretation of the mj ’s, the last two
terms are pair-hopping like expressions with an effective strength of 4/3 JH. A detailed
analysis of this Hamiltonian can be found in Sec. 6.6.

The atomic Hamiltonian Hloc = HI + Hλ can be used to estimate the correlation
strength by calculating the atomic charge gap

∆at = E0(N + 1) + E0(N − 1)− 2E0(N), (6.9)

where E0(N) is the ground state of a system with N electrons [42]. According to the
Mott-Hubbard criterion, the metal-insulator transition takes place at a critical Hubbard
interaction U = Uc when the charge gap equals the kinetic energy.
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Table 6.1: Comparison of the atomic charge gap ∆at obtained from a spin-orbit coupling
λ or a tetragonal crystal-field splitting ∆cf in the limit λ,∆cf � JH.

N SOC crystal field

1 U − 3JH + 1/2λ U − 3JH

2 U − 3JH + 1/2λ U − 3JH + 3/2 ∆cf

3 U + 2JH − 3/2λ U + 2JH − 3/2 ∆cf

4 U − 3JH + λ U − 3JH

5 U − 3JH + λ U − 3JH + 3/2 ∆cf

Table 6.2: Comparison of the atomic charge gap ∆at obtained from a spin-orbit coupling
λ or a tetragonal crystal-field splitting ∆cf in the limit λ,∆cf � JH.

N SOC crystal field

1 U − 7/3 JH U − 3JH

2 U − JH U + JH

3 U − 7/3 JH U − 3JH

4 U − 3JH + 3/2λ U − 5JH + 3/2 ∆cf

5 U − 4/3 JH U

The ground state energies and the atomic charge gaps for a Kanamori Hamiltonian
with spin-orbit coupling have been already analyzed in the supplementary material of
Ref. [166]. Here, we briefly recapitulate certain limits and compare them to the case of
a tetragonal crystal field splitting. The SOC lowers the energy of the j = 3/2 bands by
λ/2 and increases the energy of the j = 1/2 orbitals by λ. Therefore, the crystal-field
splitting parameter ∆cf is chosen such that it increases the on-site energy of one orbital
by ∆cf, and that it lowers the energy of the other two by ∆cf/2 in accordance with the
effect of λ. Physically, this crystal field corresponds to a tetragonal tensile distortion in z
direction. Both λ and ∆cf are supposed to be positive; a negative sign would correspond
to a particle-hole transformation.

We start with a discussion of the crystal-field splitting [174–177]. For fillings N = 1,
2, and 5, the ground state does not change with the crystal-field splitting. For N = 3
and N = 4, there is a level crossing with a transition from a high-spin to a low-spin state
(e.g., from |↑, ↑, ↑〉 to |↑↓, ↑, 0〉), which is responsible for differences in the atomic charge
gap for small and large ∆cf. The respective values for the charge gap in the limits of
small and large ∆cf are listed in tables 6.1 and 6.2. Note that in the large ∆cf limit, the
relevant Hamiltonian is a two-orbital one for fillings N = 1, 2, and 3, and a one-orbital
one for N = 5. For the Kanamori Hamiltonian with ν orbitals, the charge gap depends
on the relative filling; at half-filling it is ∆at = U + (ν − 1)JH, otherwise U − 3JH.
The filling N = 4 is special as an electron can only be added by paying additionally
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crystal-field splitting energy.

We now turn to the discussion of SOC. Note that the limits λ � JH and λ � JH

correspond to the LS and jj coupling scheme, respectively. A look at tables 6.1, 6.2
reveals that practically all entries are different from the corresponding crystal-field ones.
The values for a large SOC can be obtained from the Hamiltonian expressed in the j-
basis discussed above. For N = 5, where the effective model is a single-orbital model,
the interaction parameter is U − 4

3JH, as seen from Eq. (6.7), in contrast to the crystal
field result, where one obtains simply U . In case of N = 2, it is interesting to note that
the dependence of the charge gap on JH is different in sign for SOC and crystal field.
This follows from Eq. (6.8), which does not favor the alignment of the angular momenta
jz of the respective orbitals (see also Sec. 6.6) . This opposite behavior is also reflected
in the full DMFT solution, as we discuss below. We will see that for N = 2, there are
parameter regimes, where the correlation strength increases with crystal-field splitting,
but decreases with SOC.

6.4 DMFT results

We now turn to the DMFT results. We focus on the interplay between the SOC and
electronic correlations, which we follow by calculating the Matsubara self-energies. Due
to the symmetry, the Green’s functions and the self-energies are diagonal in the j-basis
with two independent components Σ1/2 and Σ3/2.

Fig. 6.1 displays the calculated self-energies for the case of one electron. One can see
that due to the SOC |ImΣ3/2| is larger and its slope at low energies that determines the
quasiparticle residue

Zν = lim
iωn→0

[
1− ∂ImΣν(iωn)

∂iωn

]−1

. (6.10)

is larger. The origin of that is discussed below, where we investigate the evolution of Zν
with λ for all integer occupancies, but let us first discuss the other part of the interplay,
namely the influence of the electronic correlations on the SOC.

6.4.1 Influence of electronic correlations on the SOC

For this purpose it is convenient to introduce the average self-energy

Σa =
2

3
Σ 3

2
+

1

3
Σ 1

2
(6.11)

and the difference
Σd = Σ 1

2
− Σ 3

2
. (6.12)

In terms of Σa,d the self-energy matrix can be written in the form

Σ = Σa1 +
2

3
Σdl · s, (6.13)
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which holds in any basis (see Sec. 6.7). This form is also convenient as one can directly
see that Σd determines the influence of electronic correlations on the physics of SOC. In
particular, the real part ReΣd(ω) can be used to define the effective spin-orbit constant

λeff(ω) = λ+
2

3
Σd(ω). (6.14)

For all cases we looked at, we find that the real part of Σd(iωn) is positive for all ωn
as long as both orbitals are metallic, thus correlations always increase the SOC. This is
discussed further in Sec. 6.7.

6.4.2 Influence of SOC on electronic correlations: One and five electrons

In the remainder of the paper we investigate how the SOC influences the electronic cor-
relations, which is followed by calculating the j-orbital occupations and the quasiparticle
residues Zν . These are calculated by fitting six lowest frequency points of Matsubara
self-energies to a 4th order polynomial.

Without SOC, one electron and one hole (five electrons) in the system are equivalent
due to the particle-hole symmetry, but the SOC breaks this symmetry. For large λ,
only the j = 3/2 (j = 1/2) orbitals are partially occupied for N = 1 (N = 5). Hence,
these are more interesting regarding electronic correlations. In Fig. 6.2, we show how the
fillings and the quasiparticle weights of these orbitals change when the SOC is increased.
Furthermore, the atomic charge gap is plotted.

The change in orbital polarization influences the correlation strength. This is best seen
for JH = 0, since then the effective repulsion is simply U , independent of the SOC. The
quasiparticle weight of the relevant orbitals is reduced by the SOC as the polarization
increases, which is shown in Fig. 6.2 for U = 3 (circles). The reduction is weak for N = 1
but strong for N = 5, which is due to the lower kinetic energy of one hole in one j = 1/2
orbital compared to the energy of one electron in two j = 3/2 orbitals. In the case of
U = 3 and JH = 0 displayed in Fig. 6.2, even a metal-insulator transition takes place.

The Hund’s coupling reduces the correlation strength (stars, crosses). This happens
for two reasons: JH reduces the polarization, and it decreases the atomic charge gap.
The latter is expected for N = 1, where the effective number of orbitals reduces with
increasing λ from three to two. In this case, a finite exchange interaction JH leads to a
reduction of the repulsion between electrons in different orbitals.

Interestingly, JH also decreases the strength of correlations for N = 5 in the limit
of large λ, altough the effective number of orbitals is one and inter-orbital effects are
thus suppressed. However, the transformation from the cubic Kanamori Hamiltonian
to its j-basis equivalent mixes inter- and intra-orbital interactions, so that the effective
j = 1/2 interaction strength is U − 4/3 JH, as explained in Sec. 6.3. In contrast, in case
of a large tetragonal crystal-field splitting, the atomic charge gap is indeed simply given
by U for N = 5.
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Figure 6.1: Real (top) and imaginary (bottom) part of the self-energy for the parameters
N = 1, λ = 0.1, U = 3, and JH = 0.1U . The green squares display the results
without SOC for comparison. The lines show a polynomial fit of degree four
through the first six Matsubara frequencies.
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Figure 6.2: Influence of the spin-orbit coupling for a filling of N = 1 (right column) and
N = 5 (left column) for U = 3. The top panel shows for N = 1 the electron
density of the j = 3/2 orbital, for N = 5 the hole density of the j = 1/2
orbital to allow for a better comparability. The green dotted line displays the
repective noninteracing results. The middle panel shows the quasi-particle
weight Z of the respective orbitals, and the bottom panel the atomic charge
gap ∆at.
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Figure 6.3: Quasiparticle weight Z of the j = 3/2 orbital as a function of U for JH =
0.1U and a total filling of N = 3.

6.4.3 Half filling

In Fig. 6.3 we display the quasiparticle weight of the j = 3/2 orbitals (again, the j = 1/2
are emptied out with SOC and are therefore not discussed here) at N = 3 for several
λ. One can see that λ strongly increases Uc and changes the behavior drastically. To
understand why this occurs, first recall that at λ = 0, Hund’s coupling strongly reduces
the kinetic energy since it enforces the high-spin ground state [148]. Hence, the Hund’s
coupling leads to a drastic reduction of the critical interaction strength [149]. This causes
a steep descent of Z as a function of U when the critical U is approached (see Fig. 6.3
for λ = 0 and JH = 0.1U).

As λ is large, this physics does not apply any more. The filling of the j = 3/2 orbitals
increase to three electrons in two orbitals. Since the Hamiltonian of the j = 3/2 orbitals
alone is particle-hole symmetric, this large λ limit shows identical physics to the large
λ limit in case of N = 1. As described above in section 6.4.2, this λ → ∞ system is
characterized by an increase of Z with increasing JH. This is opposite to the half-filled
N = 3 case at λ = 0, where Z decreases with JH.

In Fig. 6.4, we show how the polarization, the quasiparticle weight, and the atomic
charge gap vary with λ. We find that Z increases for physically relevant Hund’s couplings
(e.g., JH = 0.1U , JH = 0.2U). Furthermore, the qualitative difference of the small and
large λ limits discussed above results in crossings of the Z(λ) curves for different Hund’s
couplings (see middle panel of Fig. 6.4). These crossings are already expected from the
atomic charge gap, which is U + 2JH for λ = 0 and drops to U − 7/3JH for λ → ∞, as
shown in the tables 6.1 and 6.2 as well as in the lower panel of Fig. 6.4.

The results in Fig. 6.4 show SOC can strongly modify the correlation strength. One
needs to notice, though, that these changes occur over a quite large range of λ, for
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Figure 6.4: Filling of the j = 3/2 orbital, quasi-particle weight of the electrons in this
orbital, and the atomic charge gap as a function of spin-orbit coupling λ for
N = 3 and U = 2.
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Figure 6.5: Quasiparticle weight Z of the j = 3/2 orbital as a function of U for JH =
0.2U and N = 2. The dashed line shows the corresponding Z of the dxz
orbital in case of an infinite tetragonal crystal field splitting.

instance, full polarization is reached at λ ≈ 1, whereas it occurs at λ ≈ 0.3 in the case
of N = 1 and U = 3 (compare Fig. 6.4 with Fig. 6.2).

6.4.4 Two electrons

We now discuss the interesting case of two electrons. In absence of SOC, this is the case
of a Hund’s metal. Fig. 6.5 shows the dependence of Z on U for several values of λ and
JH/U = 0.2. The data at small λ exhibit a tail with small Z, which is characteristic for
the Hund’s metal regime. The SOC has a drastic effect here; increasing λ suppresses the
Hund’s metal behavior and leads to a featureless, almost linear, approach of Z towards
0 with increasing U . Interestingly, the influence of λ on Z is opposite at small U where
increasing λ increases Z, thus making the system less correlated, and at a high U , where
Z diminishes with λ and hence correlations become stronger.

The latter behavior is easy to understand. A strong SOC reduces the number of
relevant orbitals from three to two, and leads to the increase of the atomic charge gap
from U − 3JH to U − JH (see Fig. 6.7 and Sec. 6.3). Both the reduction of the kinetic
energy due to the reduced degeneracy and the increase of the atomic charge gap with λ
contribute to a smaller critical U , which is indeed seen on the plot. We want to note here
that the reduction of the critical U is even stronger for the crystal-field case (shown as
a dashed line in the figure), since there the corresponding atomic gap is larger (U + JH,
see Sec. 6.3).

We turn now to the small-U regime where the SOC reduces the electronic correlations.
One can rationalize this from a scenario that pictures Hund’s metals as doped Mott
insulators at half filling [155–158]. Fig. 6.6 presents the values of U where a Mott

79



0 1 2 3 4 5 6
N

0

2

4

6

8

10
U

λ = 0
0 1 2 3 4 5 6

N

0

2

4

6

8

10

λ = ∞

Figure 6.6: The Mott insulator occurs for values of U indicated by bars for a Hund’s
coupling of JH = 0.2U . The left picture shows the case without SOC, the
right with an infinite SOC. Note that in the latter case no Mott insulator
occurs for N = 4 since this case is a band insulator. The critical values for
λ = 0 are taken from Ref. [149]. The red crosses indicate the critical U in
case a tetragonal crystal field is applied instead of the SOC. For N = 2, the
value can also be extracted from Fig. 6.5.
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insulator occurs. In this picture, the correlations for small interactions at N = 2 are due
to proximity to a half-filled insulating state. For interaction parameters U and JH that
lead to a Mott insulator at half filling, doping with holes leads to a metallic state with low
quasiparticle weight. This low-Z region lasts to doping concentrations of more than one
hole per atom, as can be seen from Fig. 2 in Ref. [149]. As a result, for an interaction U
in between the critical values for two and three electrons Uc(N = 2) < U < Uc(N = 3),
the quasiparticle weight is small, but not zero. As one increases λ, the critical U at
N = 3 increases strongly, and the insulating state appears only for large values of U .
Consequently, the N = 2 state cannot be viewed as a doped N = 3 Mott insulator any
more. In fact, for a large SOC, the critical interaction strength Uc for a Hund’s coupling
of JH/U = 0.2 is lowest for N = 2, as displayed in Fig. 6.6. As a consequence, the Hund’s
tail disappears, as highlighted in Fig. 6.5, and the quasiparticle weight increases with
SOC in case of a small U and large Hund’s couplings (see middle panel of Fig. 6.7). In
passing we note that the DMFT self-consistency is essential to account for the increase
of Z in the small U regime. Calculations for an impurity model found a suppression of
the Kondo temperature (and hence suppression of Z) with increased λ [165], which is
different from what we find in the DMFT results here.

In Fig. 6.7, we also compare the SOC to a tetragonal crystal field. One sees that the
crystal field always increases the correlation strength. To understand this it is convenient
to recall that atomic gaps are different, and as a result, also the critical U ’s are different.
For an infinite crystal field, they are marked with crosses in Fig. 6.6. In particular, the
critical interaction at N = 2 in case of an infinite crystal field is only slightly larger
than the critical interaction at N = 3 without any splitting. Therefore, Hund’s metals
with interactions in the range Uc(N = 2) < U < Uc(N = 3) become insulating as ∆cf

increases, in contrast to the SOC case. Another difference is the ground state degeneracy,
which is three for the S = 1 ground state of the two-orbital Kanamori and five in case of
the J = 2 ground state of Hj=3/2, see Sec. 6.6, which also points to a weaker correlations
in the SOC case.

Another interesting observation from Fig. 6.7 is that the quasiparticle weight is almost
independent of Hund’s coupling in the limit of large λ for U = 2. In Fig. 6.8, we show
that the weak dependence on JH is also apparent for other values of U , and only becomes
significant when the Hund’s coupling is exceeding JH > 0.2U . However, since the atomic
gap does depend on JH, the position of the Hubbard bands are different, even though Z
is the same, as shown in the inset of Fig. 6.8.

6.4.5 Four electrons

The filling of four electrons is special because strong SOC leads to a band insulator with
fully occupied j = 3/2 orbitals and empty j = 1/2 orbitals, with no renormalization
Z = 1 for both orbitals in the large λ regime.

The second panel of Fig. 6.9 shows the quasiparticle renormalization of both orbitals
in the metallic phase as a function of λ. One can see that Z3/2 is hardly affected, and
Z1/2 increases only slightly for the given parameters U = 2 and JH = 0.2U , indicating
that the orbital polarization has only a weak influence onto the correlation strength,
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unless in close vicinity to the metal-insulator transition.

A comparison to the crystal-field results shows two major differences: First, the orbital
polarization is smaller in the case of the crystal field, as compared to the SOC case, and
a larger value of crystal field splitting is needed to reach a band insulator. The reason for
this is a larger atomic gap in the SOC case (see lower panel in Fig. 6.9 and Tab. 6.1, 6.2).
Second, the quasiparticle renormalization of the dxy orbital is lowest when its filling is
around 1/2. This enhancement of correlation effects at half filling is absent for the
j = 1/2 orbital.

6.4.6 Discussion

It is interesting to discuss our results in the context of real materials and consider which
parameter regimes are realized (see also Refs. [166, 167]). One can first recall the atomic
values ξ for the SOC that roughly increases with the fourth power of the atomic number.
ξ takes small values in 3d (Mn: 0.04 eV, Co: 0.07 eV), intermediate values in 4d (Ru:
0.13 eV, Rh: 0.16 eV) and reaches considerable strength in 5d (Os: 0.42 eV, Ir: 0.48 eV)
atoms [75]. These atomic values are representative also for the values of SOC found in
corresponding oxides. Roughly, one can take that JH/U = 0.1, and values of U that
diminish from 4 eV(in 3d), 3 eV (4d), 2 eV (5d). Finally, the bandwidth will vary from
case to case, since it depends the most on structural details among all the microscopic
parameters. As a rule of thumb, however, it increases giving values of half-bandwidth
from D=1 eV(3d), 1.5 eV(4d), 2 eV(5d). These all are of course only rough estimates,
meant to indicate trends.

The clear-cut case with strong influence of SOC are 5d oxides at N = 5. In iridates,
λ/D ranges from 0.26 in Sr2IrO3 up to 2.0 in Na2IrO3 due to the small bandwidth in this
compound [166]. Inspecting now Fig. 6.2, one sees that the SOC leads to a strong orbital
polarization and strongly affects the correlations at those values of λ/D. Actually, the
sensitivity to SOC at N = 5 is so strong that one can expect significant impact also in
4d5 compounds, like rhodates, too, although λ is by a factor of 3 smaller there. Indeed,
the enhancement of correlations has been observed in a material-realistic DMFT study of
Sr2RhO4 [167, 181]. Rather small SOC leads also to a large polarization in the particle-
hole transformed counterpart N = 1 (with potentially important consequences for the
magnetic ordering [182]), but the increase of the quasiparticle renormalization is weak,
see Fig. 6.2.

Opposite to the N = 1 and N = 5 cases, the SOC at N = 3 makes the electronic
correlations weaker. Also in contrast to the former two cases, the effect of SOC on
polarization and quasiparticle renormalization becomes pronounced only at larger values
of λ. From Fig. 6.4 we can infer that for full polarization λ/D > 0.5 is necessary. As a
consequence, for λ/D smaller than 0.2, which would be the case for many 4d materials,
the effect of SOC on correlations is rather small. However, for larger values, such as in
double perovskites (e.g. Sr2ScOsO6), quite a substantial reduction of correlations can
occur with SOC [183].

For the filling N = 2, we show in Fig. 6.5 a systematic suppression of the Janus-faced
behavior with SOC, making the Hund’s tail disappear.

84



0.0

0.2

0.4

0.6

0.8

1.0

n

j = 3/2, spin-orbit coupling

j = 1/2, spin-orbit coupling

dxz ,dyz, crystal field splitting

dxy, crystal field splitting

noninteracting

0.0

0.2

0.4

0.6

0.8

1.0

Z

0.00 0.25 0.50 0.75 1.00 1.25 1.50
λ, ∆cf

0

1

2

3

∆
at

Figure 6.9: Filling, quasiparticle renormalization, and atomic charge gap of the orbitals
as a function of spin-orbit coupling (full lines) and crystal field splitting
(dashed lines) for N = 4, U = 2, JH = 0.2U . Full dots indicate insulating
phases. In case of SOC, all calculations with λ ≥ 0.7 are insulating, whereas
in case of a crystal field only the last point shown (∆cf = 1.5) is insulating.
The green dotted lines shows the orbital fillings in the noninteracting case.
Then, crystal field and SOC are equivalent.
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This effect is already sizable for λ/D ≈ 0.5 and should, hence, be present in many 5d
systems. Indeed, it has been seen in calculations for the 5d2 compound Sr2MgOsO6 [183].
For a smaller SOC of λ/D ≈ 0.1, which is a good estimate for many 4d materials, we do
not find a substantial change of Z (see, for example, Fig. 6.7). Therefore, we think the
SOC only weakly affects the correlation strength in materials with 4d2 configuration,
such as Sr2MoO4 [184–186].

ForN = 4, our model calculations predict that the SOC affects the correlation strength
only a little provided it is small enough to remain in the metallic phase. If it exceeds a
certain magnitude, though, a metal-insulator transition occurs. The critical λ decreases
with increasing U . Examples for this behavior are on the one hand Sr2RuO4 (λ =
0.10 eV), where the quasiparticle renormalization hardly changes as the SOC is turned
on [145], and, on the other hand, NaIrO3 (λ = 0.33 eV), where the interplay of SOC and
U leads to an insulating state [187].

6.5 Conclusion

In this paper we investigated the influence of the SOC on the quasiparticle renormal-
ization Z in a three-orbital model on a Bethe lattice within DMFT. Depending on the
filling of the orbitals (and for N = 2 also the interaction strength), the SOC can decrease
or increase the strength of correlations. The behavior can be understood in terms of the
SOC induced changes of the effective degeneracy, the fillings of the relevant orbitals, and
the interaction matrix elements in the low energy subspace.

The spin-orbital polarization leads to an increase of correlation strength for N = 1, 5
with particularly strong effect in for N = 5 where a half-filled single band problem is
realized, relevant for iridate compounds. For the nominally half-filled case N = 3, the
opposite trend is observed. Here, turning on SOC makes the system less correlated, and
the critical interaction strength Uc for a Mott transition is reduced. For the N = 2
Hund’s metallic phase, the influence of SOC is more involved. We find there are two
regimes as function of U with opposite effect of SOC. For small U , the inclusion of SOC
increase Z, whereas for large U it decreases Z, and in turn also the critical interaction Uc

decreases. As a result, the so-called Hund’s tail with small quasi-particle renormalization
for a large region of interaction values, disappears.

We also considered the effects of the electronic correlations on SOC and found that in
cases where the system remains metallic, correlations always enhance the effective SOC.

6.6 Atomic Hamiltonian in the limit of small and large
spin-orbit couplings

The full local Hamiltonian reads (see also Eq. (6.2))

Hloc = HI +Hλ +Hε

= (U − 3JH)
N(N − 1)

2
+

(
5

2
JH + ε

)
N − 2JHS

2 − JH

2
L2 + λ lt2g · s

(6.15)
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Table 6.3: Eigenenergies of the Hamiltonian Hj= 3
2

of the j = 3/2 orbitals, Eq. (6.8)

N J Ej=3/2

0 0 0
1 3/2 ε
2 2 2ε+ U − 7/3 JH

2 0 2ε+ U + 1/3 JH

3 3/2 3ε+ 3U − 17/3 JH

4 0 4ε+ 6U − 34/3 JH

with an SOC λ and an on-site energy ε. Note that this Hamiltonian contains both two-
particle terms like N2, L2, and S2, as well as one-particle terms like N and lt2g · s. For
λ = 0, the total spin S and the total orbital angular momentum L are good quantum
numbers and determine together with the total number of electrons N the eigenenergies.
As λ is finite, the energy levels split according to their total angular momentum J . For
example, the nine-fold degenerate S = 1, L = 1 ground state in the N = 2 sector splits
into a J = 2, a J = 1, and a J = 0 sector. The respective degeneracies are 2J + 1. The
total angular momentum J is for all values of λ a good quantum number, in contrast to
the total spin S and the total orbital angular momentum L.

For a small SOC (λ � JH), one can use first-order perturbation theory in order to
calculate the level splitting due to the SOC. In this approximation, the spin-orbit term
is approximated by CλL ·S. The constant C depends on the number of electrons and is
C=1,1/2 for 1 and 2 electrons, and C=-1,-1/2 for one and two holes. For three electrons,
L =0, and the first-order perturbation theory gives no energy correction. Since the total
angular momentum is approximated by J = L+S, this regime is known as LS-coupling
regime.

In the limit of large SOC (λ � JH), the spin-orbit term is the dominant term that
is solved exactly, whereas S2 and L2 may be treated perturbatively. The many-body
eigenstates of the unperturbed system are then the Slater determinants of j = 1/2 and
j = 3/2 one-electron states. Following Eq. (6.3), the matrix elements of λ lt2g · s depend
in this unperturbed eigenbasis only on the number of electrons in the j = 3/2 and the
j = 1/2 orbitals. The total angular momentum is J =

∑
i ji, therefore, this regime is

the jj-coupling regime. For fillings N ≤ 4, only the j = 3/2 orbitals are occupied in the
ground state. The spin-orbit term is then proportional to the particle number N and
can be absorbed in the one-electron energy ε.

Calculating the matrix elements of S2 and L2 for Slater determinants with different N
and J using Clebsch-Gordan coefficients, one can find the eigenenergies of the Hamilto-
nian in the jj coupling regime. This approach is equivalent to looking for the eigenvalues
of Hj= 3

2
presented in Eq. (6.8) in the main text, where all contributions of the j = 1/2

orbitals are neglected. The eigenenergies of Hj= 3
2
, including an on-site energy ε, are

shown in table 6.3.

form if one assigns the absolute value of mj as orbitals and its sign as spin, e.g.,
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Table 6.4: Full list of quantum numbers and eigenenergies in the two-particle sector of
a two-orbital system. We compare energies Eeg of an ordinary Kanamori
Hamiltonian for eg orbitals with energies Ej=3/2 for the effective j = 3/2

Hamiltonian stemming from a large SOC in t2g orbitals.

N T Ty S̃ S̃z Eeg Ej=3/2

2 0 0 1 -1 U − 3JH U − 7/3 JH

2 0 0 1 0 U − 3JH U − 7/3 JH

2 0 0 1 1 U − 3JH U − 7/3 JH

2 1 -1 0 0 U − JH U − 7/3 JH

2 1 0 0 0 U + JH U + 1/3 JH

2 1 1 0 0 U − JH U − 7/3 JH

d 3
2
, 1
2
7→ c1↑ and d 3

2
,− 3

2
7→ c2↓. It reads then

Hj= 3
2

=

(
U − 5

3
JH

)
N(N − 1)

2
− 1

3
JHN +

4

3
JH

(
T 2 − 2T 2

y

)
(6.16)

with a total spin

S̃ =
1

2

∑
i

∑
σσ′

c†iστ σσ′ciσ′ (6.17)

and the two-orbital isospin

T =
1

2

∑
σ

∑
ij

c†iστ ijcjσ (6.18)

Note that S̃ is not a physical spin, since it stems from mapping the sign of mj to an
artificial spin.

Hamiltonian (6.16) has the structure of a generalized Kanamori Hamiltonian, where
the spin-flip and pair-hopping parameters JSF and JPH are not restricted to be equal to
the Hund’s coupling JH as in the ordinary Kanamori Hamiltonian (6.1). It terms of T
and S̃, the generalized Kanamori Hamiltonian reads [42]

HGK =
(
U + U ′ − JH + JSF

) N(N − 1)

4
−
(
U − U ′ − JH + 3JSF

) N
4

+ (JSF + JPH)T 2
x + (JSF − JPH)T 2

y + (U − U ′)T 2
z + (JSF − JH) S̃2

z .

(6.19)

In order that Hj= 3
2

fits the structure of the generalized Hamiltonian, one has to replace

the parameters of HGK by U 7→ U − JH, JH 7→ 0, JSF 7→ 0, JPH 7→ 4
3JH, and U ′ 7→

U − 7
3JH.

Hamiltonian (6.19) with the parameters of the usual Kanamori Hamiltonian, U ′ =
U−2JH, JSF = JPH = JH, is the symmetric form of the two-band Hamiltonian describing
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eg bands [42]

Heg = (U − JH)
N(N − 1)

2
− JHN + 2JH

(
T 2 − T 2

y

)
. (6.20)

While Hj= 3
2

is the Hamiltonian relevant for the two j = 3/2 orbitals of a three orbital

system with infinite SOC, Heg is its counterpart describing the dxz and dyx orbitals
when the tetragonal crystal field splitting is infinite. The difference between these two
operators is thus responsible for the qualitative different behavior of crystal field and
SOC in case of a filling of N = 2 (see Sec. 6.4.4). The operators (6.16) and (6.16) are of
similar form, but have different prefactors.

A complete set of commuting operators for both Hamiltonians is N , T 2, Ty, S̃
2 and

S̃z. The full list of quantum numbers and the eigenenergies of the two operators is shown
in Tab. 6.4 for N = 2. For the j = 3/2 orbitals, one sees that due to the prefactors,
the S̃ = 1 ground state is degenerate with two S̃ = 0 states. This is related to the fact
that spin-flip and Hund’s coupling terms vanish in the related generalized Kanamori
Hamiltonian so that the relative orientation of pseudo-spins of two electrons in different
orbitals has no influence on the energy. The physical reason for this is that all five states
belong to the J = 2 ground state manifold that is found in the picture of jj coupling
and therefore have to be degenerate. As a consequence, charge fluctuations to different
values of pseudospin S are for large Hund’s couplings still possible, in contrast to an
ordinary Kanamori Hamiltonian, where JH splits energy levels of different spin.

6.7 Effective spin-orbit coupling

The operator of the SOC (6.3) leads to off-diagonal elements in the noninteracting Hamil-
tonian in the cubic basis. If both interactions and SOC are present, the self-energy will
have off-diagonal elements as well, changing the effective strength λeff of the SOC.

The structure of the off-diagonal elements can be understood in case of our degenerate
three-orbital model system using simple analytical considerations. In the j-basis, both
the local Hamiltonian and the hybridization function are diagonal, hence Σ is diagonal
as well, with different values for the j = 3/2 and the j = 1/2 orbitals. This diagonal
matrix can be split into a term proportional to the unit matrix and a term proportional
to the matrix representation of the l t2g · s operator, which is diagonal in j-basis with
elements −0.5 in case of j = 3/2, and 1 in case of j = 1/2. Therefore,

Σ = Σa1 +
2

3
Σdlt2g · s (6.21)

with an average self-energy

Σa =
2

3
Σ 3

2
+

1

3
Σ 1

2
(6.22)

and the difference
Σd = Σ 1

2
− Σ 3

2
. (6.23)
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The effective SOC is thus

λeff(ω) = λ+
2

3
Σd(ω) (6.24)

and is, in principle, dependent on the frequency. In the cubic basis, the diagonal elements
of the self-energy are given by Σa, the off-diagonal elements up to a phase by 2/3 Σd.

For large frequencies, the values of Σd are given by the Hartree-Fock values. Using
Eq. (6.6), the Hartree-Fock values in j-basis are

ΣHF
1
2

=

〈
∂HI

∂n 1
2
, 1
2

〉
=

(
U − 4

3
JH

)
n 1

2
+

(
4U − 26

3
JH

)
n 3

2
(6.25)

ΣHF
3
2

=

〈
∂HI

∂n 3
2
, 3
2

〉
=

(
2U − 13

3
JH

)
n 1

2
+

(
3U − 17

3
JH

)
n 3

2
, (6.26)

hence the at ω →∞
ΣHF

d = (U − 3JH)
(
n 3

2
− n 1

2

)
(6.27)

The effective SOC for large frequencies is therefore determined by an effective correlation
strength U−3JH and the orbital polarization. Since the j = 3/2 orbital is lower in energy,
its occupation is higher, and ΣHF

d is always positive as long as the effective interaction
is repulsive. As a consequence, the correlations always enhance the correlation strength
at large frequencies.

At low frequencies and temperatures, assuming a metal, the values of Σ are related
to electronic occupancies, too. Namely, j = 1/2 and j = 3/2 problems are independent
and the corresponding Fermi surface must, by Luttinger theorem, contain the correct
number of electrons. At the Fermi surface, µ + εk − Σ = 0, which can be used to
relate the difference of εk to the difference of Σ. Assuming that the electronic density
of states is a constant ρ independent of energy (square shaped function), the result is
Σd(0) = 1/ρ

(
n3/2 − n1/2

)
− 3/2λ. In general, Σd(0) depends on the density of states,

the SOC, and the orbital polarization, but not explicitly on the interaction parameters
U and JH. Since the Hartree-Fock value does depend on the interaction parameters,
the large frequency and small frequency values of Σd can be quite different, as shown in
Fig. 6.10. In contrast to the Hartree-Fock value valid at large frequencies, Σd(ω = 0)
cannot be calculated exactly. However, in all metallic DMFT calculation performed, we
verified numerically that Σd(ω = 0) is positive, hence the effective SOC is also increased
for low frequencies [163]. The results for U = 2, JH = 0.1U are shown in Fig. 6.11.

In the case of Sr2RuO4, the DMFT work of Ref. [145] and Ref. [144] found that the
real part of Σd was to a good approximation a constant and the imaginary part to a
good approximation 0 (strictly, there are additional complications, as the system only
has cubic symmetry). We reproduce this result in a DMFT calculation with parameters
N = 4, U = 2, JH = 0.2U , and λ = 0.1, which correspond approximately to the vales in
Sr2RuO4. However, if the parameters are changed, for example to a Hund’s coupling of
JH = 0.1U , the off-diagonal elements of Σ start to show a more pronounced frequency
dependence, as shown in Fig. 6.10. The reason for this is the strong direct dependence
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Figure 6.10: Difference of the self-energies Σd = Σ 1
2
−Σ 3

2
for N = 4, λ = 0.1, and U = 2.

Subplots (a) and (b) show Σd as a function of Matsubara frequencies ωn
for Hund’s couplings JH = 0.2U and JH = 0.1U , respectively. The dashed
lines are the respective Hartree-Fock values. Subplot (c) shows the Hartree-
Fock values corresponding to Σd(iωn →∞) (dashed) and Σd(iωn → 0) (full
line) as a function of JH. While the Hartree-Fock value strongly decreases
with JH, Σd(iω → 0) is hardly influenced.
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Figure 6.11: Increase of the first Matsubara self-energy Σd(iω0) ≈ Σd(ω = 0) with the
SOC for U = 2, JH = 0.1U , and all integer fillings. For N = 3 and λ < 0.3,
the system is a Mott insulator, and for N = 4 and λ > 0.3 a band insulator.
The data points are not shown for these parameters, since the chemical
potential (and with that Σ(ω = 0)) is not well defined.

of λeff on the interaction parameters in the Hartree-Fock limit, which is not present at
low frequencies. It the lower panel of Fig. 6.10, one sees that the Hartree-Fock value
strongly decreases with the Hund’s coupling, whereas static value at ω = 0 only changes
slightly.
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7 Topological insulators on the honeycomb
lattice

The first example for a phase transition from a topologically trivial to a non-trivial
band insulator without external magnetic field as described in section 4.7.1 was found
by Haldane, wherefore he received the Nobel prize together with Kosterlitz and Thouless
(see section 4.3.2). The Haldane model is based on a one-band honeycomb lattice with a
nearest neighbor hopping, which is equivalent to the most simplistic tight-binding model
of graphene. The topological transition to a Chern insulator comes now into play via a
complex next-nearest neighbor hopping that introduces local magnetic fluxes and thus
breaks time-reversal symmetry (c.f. Sec. 4.7.1). Furthermore, Haldane considered an
energy difference between the two sublattices A and B of the honeycomb lattice. The
total Hamiltonian reads [101]

HHaldane = −t
∑
〈i,j〉

c†icj − t′
∑
〈〈i,j〉〉

eiνijφc†icj + λν
∑
i

ξic
†
ici, (7.1)

where 〈·, ·〉 denotes nearest neighbor sites and 〈〈·, ·〉〉 next-nearest neighbor sites, and
ξi = 1 for i ∈ A and ξi = −1 for i ∈ B. The prefactor νij of the phase φ is defined such
that it is νij = −1 if a left turn is performed when hopping to the next-nearest neighbor,
and νij = 1 in case of a right turn. Details to this Hamiltonian as well as the full phase
diagram can be found, for example, in the master’s thesis of the author [107].

7.1 Band structure of graphene-like structures

The tight-binding model on the honeycomb lattice shows Dirac cones in the dispersion
relation, which are crucial for the topological characteristic of the Haldane model. The
bands around the Fermi level forming the Dirac cones in graphene stem from the pz
orbitals, but it is also possible to obtain a Dirac cone from the px and py orbitals when
the pz orbitals are shifted in energy. Furthermore, the px and py orbitals are strongly
hybridized with the s orbitals. Therefore, in the tight-binding model for graphene pre-
sented here, all orbitals of the 2s and 2p shell are included.

On the level of molecular orbitals, the energy levels of graphene can be understood in
terms of hybrid orbitals. A linear combination of the 2s orbital with various numbers
of 2p orbitals leads to different geometrical structures. Combining it with one p orbital
results in the sp1 hybrid orbital linear in shape, a combination with two to the sp2 hybrid
orbitals with a triangular shape, and a combination with all three to the tetragonal sp3

orbitals. In case of planar graphene, the sp2 hybridization is the relevant one. The
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parametrization of the hybrid orbitals in terms of the cubic harmonics is given by [188]

∣∣sp2
1

〉
=

1√
3
|2s〉 −

√
2

3
|2py〉

∣∣sp2
2

〉
=

1√
3
|2s〉+

√
2

3

(√
3

2
|2px〉+

1

2
|2py〉

)
∣∣sp2

3

〉
= − 1√

3
|2s〉+

√
2

3

(
−
√

3

2
|2px〉+

1

2
|2py〉

) (7.2)

The lobes of the three orbitals are separated by an angle of 120 degrees, leading to
a maximal overlap with the hybrid orbitals of the neighboring atoms in a triangular
geometry. This is the reason why the honeycomb lattice is the optimal geometry for
two-dimensional carbon. Due to the overlap, the atomic hybrid orbitals form a bonding
σ and an antibonding σ∗ molecular orbital. The remaining pz orbitals do not hybridize
with the s orbitals, they form a delocalized bonding π and an antibonding π∗ orbital.
Since the overlap of the pz orbitals sticking out of the plane is a lot smaller then the
overlap of the hybrid sp2 orbitals, the energy splitting of the π and π∗ orbitals is smaller
than the energy splitting of the σ and σ∗ orbitals. Due to the four electrons of carbon
in the second shell, the bonding σ orbital is filled by three electrons, and the remaining
electron in the conjugated π system determines the physics near the Fermi energy.

From this simple atomic/molecular picture it is clear that the pz orbital is the most
important one for the low energy physics. They are, however, surrounded by the σ bands
from the hybrid sp2 orbitals. A better description including a k-dependence is achieved
by a tight-binding approximation. As a basis, the cubic 2s, 2px, 2py, 2pz basis is usually
chosen. Note that the honeycomb lattice has two atoms in the unit cell, each belonging
to one of the sublattices A and B. The Bloch Hamiltonian has therefore for each spin
species the block structure

H↑↑(k) = H↓↓(k) =

(
HAA HAB

HBA HBB

)
, (7.3)

with HAA = HBB in graphene due to the symmetry of A and B sites. Since all the
nearest neighbors of an atom in sublattice A are in sublattice B, the matrices HAA and
HBB contain only the on-site energies of the respective orbitals in the simplest nearest
neighbor tight-binding approximations. In pure graphene, the on-site levels of the p
orbitals are degenerate. Setting the energy zero-point to this level, the matrices simply
read HAA = HBB = diag(εs, 0, 0, 0). For the block HAB, symmetry considerations can
be used to determine its structure. Since the pz orbital is antisymmetric in z and all
other orbitals are symmetric, the full Bloch Hamiltonian spits into a π and a σ block.
If one furthermore uses the fact that the s orbitals are even and the p orbitals odd, the
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total Bloch Hamiltonian has the form

HAB(k) =


hss hsx hsy 0
−hsx hxx hxy 0
−hsy hxy hyy 0

0 0 0 hzz

 (7.4)

If the unit cell is defined such that the reciprocal lattice vectors are b1 = (2π, 2π/
√

3)
and b2 = (0, 4π/

√
3), the matrix elements are given by [188–191]

hss(k) = Vs

[
exp

(
−i

ky√
3

)
+ 2 exp

(
i
ky

2
√

3

)
cos

(
kx
2

)]
hsx(k) = Vsp i

√
3 exp

(
i
ky

2
√

3

)
sin

(
kx
2

)
hsy(k) = Vsp

[
exp

(
−i

ky√
3

)
− exp

(
i
ky

2
√

3

)
cos

(
kx
2

)]
hxx(k) = Vpπ exp

(
−i

ky√
3

)
+

1

2
(−3Vpσ + Vpπ) exp

(
i
ky

2
√

3

)
cos

(
kx
2

)
hyy(k) = −Vpσ exp

(
−i

ky√
3

)
+

1

2
(3Vpπ − Vpσ) exp

(
i
ky

2
√

3

)
cos

(
kx
2

)
hxy(k) =

i
√

3

2
(Vpσ + Vpπ) exp

(
i
ky

2
√

3

)
sin

(
kx
2

)
hzz(k) = Vpπ

[
exp

(
−i

ky√
3

)
+ 2 exp

(
i
ky

2
√

3

)
cos

(
kx
2

)]

(7.5)

The hopping parameters needed are the hopping strength of the s orbitals Vs, the hopping
in the p orbitals for both σ and π bonds Vpσ and Vpπ, and the hybridization of s and p
orbitals Vsp. If one also considers that the orbitals on different site have a finite overlap
Sij = 〈ψi| ψj〉 6= 0 so that the overlap matrix S is not the unit matrix, also the strength of
the overlaps Ws, Wpσ and Wpπ, and Wsp have to be considered. The matrix elements Sij
have the same k-dependence as the matrix elements of Hamiltonian (7.5), but different
prefactors Wi instead of Vi. The full parameter list for graphene is given in table 7.1
(see also [189]). The band energies are obtained via the general eigenvalue equation
H(k) |ψ〉 = E(k)S |ψ〉, and are plotted for the parameters in table 7.1 in Fig. 7.1. The
hybrid orbitals form three filled σ orbitals and three empty σ∗ orbitals, separated by a
gap of about 6 eV. The π and π∗ bands stemming from the pz orbitals, on the other
hand, do not open a gap, but form a Dirac cone. They are therefore determining the
transport properties.

7.2 Spin-orbit coupling

Including a local, atomic spin-orbit coupling (SOC) of the form λ l · s as introduced in
chapter 3, the local blocks of the Hamiltonian, i.e., HAA and HBB, are affected. The
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Figure 7.1: Tight-binding band structure of graphene using the parameters of Tab. 7.1

Table 7.1: Parameters of the tight-binding model in of graphene in eV taken from
Ref. [189].

Vs = −6.769 Ws = 0.212
Vsp = −5.580 Wsp = 0.102
Vpσ = −5.037 Wpσ = 0.146
Vpπ = −3.033 Wpπ = 0.129
εs = −8.868
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matrix elements for the s orbital are all zero, the matrix elements for the three p orbitals
are given by Eq. (3.37). Note that the local blocks will also acquire terms like H↑↓AA
that couple the two spin species. Furthermore, since the SOC has non-vanishing matrix
elements between pz and px, py, the σ and π orbitals are coupled as well. Therefore,
including the SOC, both the spin and the orbital block structure are destroyed.

For a description of the transport properties of graphene-like structures, it is sufficient
to study only the Dirac cone stemming from the pz orbitals. From Eq. (3.37) it is clear
that the pz matrix elements of the local l · s operator vanish. Hence, when only the
pz orbitals are considered, the local SOC is quenched, just as the case of eg orbitals
discussed in Sec. 3.3. However, a non-local dispersive part of the SOC may persist. It
can be shown that in second order perturbation theory, a next-nearest neighbor hopping
of the strength

λSO =
|εs|

18V 2
sp

λ2 (7.6)

exists [192]. It can be visualized as hopping sequences of the form [191]∣∣∣p↑z,A〉 SOC−→
∣∣∣p↓x,A〉 Vsp−→

∣∣∣s↓B〉 Vsp−→
∣∣∣p↓x,A〉 SOC−→

∣∣∣p↑z,A〉 . (7.7)

This next-nearest neighbor hopping is purely imaginary. It changes its sign under both
spatial inversion and spin inversion and preserves thus time-reversal symmetry.

This second-order SOC on a honeycomb lattice with a nearest neighbor hopping is
they key ingredient of the Kane-Mele model [13, 14]. It is responsible for the non-trivial
gap opening, making it a quantum spin Hall insulator (see section 4.7.2). The full model
also includes an on-site energy difference between A and B sites, and a Rashba coupling,
and reads [14]

HKM = −t
∑
〈i,j〉

c†icj + iλSO

∑
〈〈i,j〉〉

νijc
†
iσ
zcj + λν

∑
i

ξic
†
icj + iλR

∑
〈i,j〉

c†i (σ × d̂ij)zcj . (7.8)

Here, c†i is the creation operator of a spinor
(
c†i↑, c

†
i↓

)
, 〈·〉 denotes nearest neighbors,

and 〈〈·〉〉 next-nearest neighbors. The first term is the tight-binding nearest neighbor
hopping term. Since the spinors model the pz orbitals of a graphene-like structure, the
hopping parameter t corresponds to Vπ in table 7.1. The second is the intrinsic spin-
orbit coupling, leading to the quantum spin Hall topological insulating state as it opens
a gap [13, 14, 103]. The third term is a staggered on-site potential. The coefficients
νij and ξi are defined as for the Haldane model (7.1). In fact, these three terms of the
Kane-Mele model are equivalent to two time-reversed copies of the Haldane model (one
for each spin species). The last term in Eq. (7.8) is the Rashba coupling, where d̂ij
denotes a unit vector pointing from site i so site j.
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8 Phase diagram of the
Kane-Mele-Hubbard Hamiltonian

The content displayed in this chapter was published by the author and his supervisor
in Ref. [193], which shows many new results that have been achieved during the PhD
studies of the author. However, the foundations of this work were already laid while the
master’s thesis of the author was written [107], wherefore a detailed declaration of the
new content is given here.

The paper analyzes the phase diagram of the KMH model

HKMH = HKM + U
∑
i

ni↑ni↓, (8.1)

where HKM is given by Eq. (7.8). The Rashba coupling λR is set to zero, but the on-
site energy difference is kept in order to break spatial inversion symmetry. The Green’s
function is calculated using a two-site dynamical impurity approximation (DIA). The
topological properties of the phases were analyzed using the topological Hamiltonian
(see Sec. 4.7.4), as well as by calculating the Green’s function of a finite-sized ribbon
using again a DIA. Furthermore, comparisons to a mean-field approach are made.

The calculation of the topological properties was a main aspect of the author’s master’s
thesis and is fully described therein. The DIA for the bulk is also explained there, but
for the results, only an antiferromagnetic Weiss field was used. The second Weiss field
enabling unequal electron densities on the two sublattices was first published in the paper
[193]. This improvement is important to obtain the phase boundaries shown in Fig. 8.4.
The DIA of the ribbon was fully implemented during the PhD studies of the author and
the corresponding results were first published in the paper. Mean-field results with the
z axis as a decoupling axis are shown already in the master’s thesis, the physically more
relevant results with an in-plane magnetisation were first shown in the paper.

Since all the physically relevant phase diagrams discussed in the paper (DIA for bulk
and ribbon including both Weiss fields, mean-field with physical in-plane decoupling
axis) were obtained while the PhD studies of the author and are, hence, not shown
in his master’s thesis, the paper constitutes an important content of this PhD thesis.
Therefore, most parts of the paper are included here just as published [193], in order
to allow for a self-contained depiction of the results. However, the sections in [193]
entitled “Kane-Mele-Hubbard model” and “Calculation of topological invariants” are
left out, since the content is already explained in detail in the author’s master’s thesis
and reviewed in the sections 4.7 and 7.2.
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Abstract

We study the Kane-Mele-Hubbard model with an additional inversion-sym-
metry-breaking term. Using the topological Hamiltonian approach, we calcu-
late the Z2 invariant of the system as function of spin-orbit coupling, Hubbard
interaction U , and inversion-symmetry-breaking on-site potential. The phase
diagram calculated in that way shows that, on the one hand, a large term of
the latter kind destroys the topological non-trivial state. On the other hand,
however, this inversion-symmetry-breaking field can enhance the topological
state, since for moderate values the transition from the non-trivial topologi-
cal to the trivial Mott insulator is pushed to larger values of interaction U .
This feature of an enhanced topological state is also found on honeycomb
ribbons. With inversion symmetry, the edge of the zigzag ribbon is magnetic
for any value of U . This magnetic moment destroys the gapless edge mode.
Lifting inversion symmetry allows for a finite region in interaction strength
U below which gapless edge modes exist.

8.1 Introduction

Since topological insulators have been theoretically predicted 10 years ago [13, 14], the
understanding of topological phases has progressed enormously. Topological Hamiltoni-
ans are classified by the tenfold way [194–196], various experiments have been performed
showing the practical relevance of the theoretical considerations [10, 16, 197–202], and
several groups already succeeded in a next step which is predicting and realizing Weyl
semimetals [203–210].

However, the influence of interactions onto the topological classification is still not
fully understood. Just recently, new phase transitions in strongly correlated topological
insulators have been reported [27, 28]. The most used quantity to characterize topologi-
cal order, namely the Z2 invariant introduced by Fu, Kane, and Mele [13, 104, 105, 211],
relies on defined Bloch bands and is thus not directly applicable for interacting systems.
A generalization is possible using the so-called topological Hamiltonian [115–117], an
artificially noninteracting system determined by the Green’s function.

The Kane-Mele-Hubbard (KMH) model [13, 14, 212] combines a topological model
Hamiltonian with strong interactions and is therefore frequently used to explore corre-
lation effects in topological insulators [12, 212–225]. Within the framework of the topo-
logical Hamiltonian, the calculation of the Z2 invariant is straight forward as long as
inversion symmetry is obeyed, since only the time-reversal-invariant momenta (TRIMs)
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have to be considered [105, 116]. In case of the bare KMH model, it can thus be used
since inversion symmetry is respected [12, 219, 220].

Determining the topological phase becomes more difficult if an inversion-symmetry-
breaking term such as a staggered on-site potential [13, 224], a Rashba coupling [13, 220],
or site-dependent hoppings [217, 223] are included. A possibility to analyze topological
phases is to calculate the spin Chern number CS [103, 217, 223–226]. This approach
requires spin to be a good quantum number and has the drawback that due to numeri-
cal artifacts a good quantization of CS is not given close to phase transitions. Another
approach is to look directly for gapless edge states and use bulk-boundary correspon-
dence [218, 220–222].

In this paper, we calculate the Z2 invariant of the KMH model with an inversion-
symmetry-breaking on-site potential by combining the topological Hamiltonian with a
method introduced by Soluyanov and Vanderbilt [106, 227] that is based on maximally
localized Wannier charge centers (WCC) [29]. This enables a precise calculation of invari-
ants without restricting the systems to certain symmetries. Furthermore, we investigate
bulk-boundary correspondence by calculating the spectral functions of a zigzag ribbon.
We show that bulk-boundary correspondence has to be treated with care in strongly in-
teracting systems since time-reversal symmetry might be lifted locally at the edges due
to spontaneous symmetry breaking. The Green’s functions in our approach are obtained
by a two-site dynamical impurity approximation [228–232].

8.2 Variational cluster approach

The one-electron Green’s function is needed to determine the topological Hamiltonian.
Since an exact solution of the full many-body problem is not possible, an approximative
method has to be chosen. Here we apply the variational cluster approach (VCA) [228,
230], because the Kane-Mele-Hubbard model is known to have an antiferromagnetic mo-
ment [12, 212–215, 219, 220] which can efficiently be treated by the VCA with symmetry-
breaking Weiss fields [231, 232].

The VCA is based on the self-energy functional approach, which uses the fact that
the grand potential of an arbitrary interacting system H = H0(t) +H1(U) has to be a
stationary point of the self-energy functional

Ωt[Σ] ≡ Tr log
(
−(G−1

0 − Σ)−1
)

+ F [Σ], (8.2)

where F [Σ] denotes the Legendre transform of the Luttinger-Ward functional Φ[G] [228,
233]. The approximation of this method is to restrict the space of self-energies Σ. This
subset S of self-energies is spanned by all Σ(t′) that are the exact self-energies of a
so-called reference system H ′ = H0(t′) +H1(U). The interaction parameters U are the
same as in the original system, but H and H ′ can differ in the one-particle parameters.
The one-particle parameters t′ of the reference system H ′ are chosen such that the self-
energy of the reference system can be calculated exactly. To obtain the approximative
physical self-energy Σ ∈ S, a stationary point of Ωt[Σ(t′)] has to be found as t′ is varied.
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Figure 8.1: The left plot shows the full system, the right the reference system. Full sym-
bols denote sublattice A, open symbols sublattice B. The bath sites (squares)
are characterized only by an on-site energy. The impurity sites (circles),
on which the Hubbard U is acting, can additionally carry the symmetry-
breaking Weiss fields.

The parametrized functional can be reduced to

Ωt[Σ(t′)] = Ω′(t′) + Tr log
(
−
(
G−1

0 (t)− Σ(t′)
)−1
)

−Tr log
(
−
(
G−1

0 (t′)− Σ(t′)
)−1
)

(8.3)

and can thus be calculated if the Green’s function of the reference system is known.
Quite generally, reference systems in the VCA are clusters of finite size, which can be
treated by exact diagonalization techniques [228, 230, 231].

In case of the KMH model, several cluster sizes have already been analyzed [218–220].
However, the tiling of the lattice into clusters of finite sizes breaks artificially some sym-
metries, which can change the topological phase diagram [234]. That is why we choose
as a reference system for VCA single-site clusters, which are coupled to one additional
bath site by a hopping V . This rather simple approach, called two-site dynamical im-
purity approximation (DIA) [229], has two advantages. First, despite its simplicity, it
gives accurate results for the transition towards an antiferromagnetic insulator for two-
dimensional Hubbard models [229]. Second, which is even more important, the lattice
symmetries are trivially satisfied. A drawback of this method is the locality of the self-
energy. We will show below, however, that for known cases we get very good agreement
with existing results obtained by numerically much more expensive methods.

Since the honeycomb lattice has two distinct sites, the unit cell is tiled by two clus-
ters, which are coupled by the noninteracting part of the Hamiltonian, as shown in Fig.
8.1. On-site energies on both impurity and bath site, as well as the connecting hop-
ping between them, give in total three variational parameters per cluster. However, in
the inversion-symmetric case (λν = 0), the on-site energies are fixed by particle-hole
symmetry and only one parameter remains.

In order to capture symmetry breaking necessary for the emerging antiferromagnetic
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moment, a Weiss field

HAF =
∑
i

c†i (hi · σ) ci (8.4)

has to be added [232]. Without any symmetry considerations, these fields on both A and
B sites give in total 6 variational parameters. Due to the inversion-symmetry breaking
on-site potential λν , a second Weiss field

H∆ = ∆
∑
i

ξic
†
ici (8.5)

is used to enable unequal electron densities on the two sublattices. As in Eq. (7.8),
ξi = ±1, depending on the sublattice. This Weiss field is basically a renormalisation of
λν in the reference system, which is caused by the interplay of the sublattice potential
and Hubbard interaction.

The method described so far considers bulk properties. Introducing an edge destroys
translational symmetry and influences therefore local magnetization. As known from
field theoretical investigations, mean-field approximation gives a finite magnetization on
the zigzag edge for every finite interaction strength [213]. This could lead to a breakdown
of the bulk-boundary correspondence and may cause problems for calculating topological
invariants using the existence of gapless edge states as a proof for nontrivial topology,
which has so far been used in some cases of interacting systems without inversion sym-
metry [218, 220, 222]. Vice versa, a nontrivial topological invariant in the bulk may
not result in gapless edge states due to locally broken time-reversal symmetry caused
by spontaneous symmetry breaking. Therefore, we additionally implemented the DIA
on the zigzag ribbon in order to compare the topological invariants defined by the bulk
Green’s function to the existence of gapless edge states. The ribbon is translationally
invariant in the x direction, whereas the sites along the width of the ribbon are distinct.
If a unit cell contains N pairs of A and B sites, 2N clusters containing each a bath and
an impurity site have to be solved and effectively coupled by the noninteracting part of
the Hamiltonian (see Fig. 8.2). In order to keep the number of parameters manageable,
the on-site energies and hybridizations are chosen to be constant along the ribbon. To
allow for edge magnetization, the antiferromagnetic Weiss fields for each pair of sites A
and B is varied independently, only assuming a mirror symmetry y 7→ −y.

8.3 Results

8.3.1 Bulk

As mentioned above, the hopping to the bath sites, the magnetic Weiss fields, and the
sublattice potential Weiss field have to be determined in the VCA. For all stationary
points, the ferromagnetic part of the Weiss field vanishes, hence only an antiferromag-
netic ordering hA = −hB is possible. Without spin-orbit coupling, the system has
full SU(2) symmetry, so only the absolute value of the Weiss field has to be deter-
mined. When spin-orbit coupling is included, only the xy-plane is still degenerate, but
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Figure 8.2: Unit cell of the zigzag ribbon and the according reference system. The re-
spective two-site clusters are identical, except for a different AF Weiss field.

the degeneracy of the z direction is lifted. This means that we have to deal with two
antiferromagnetic Weiss fields, hz and hx. To analyze the direction of the antiferro-
magnetic moment, we calculate a two-dimensional surface of the self-energy functional
Ω(hz, hx), where all other variational parameters are optimized for each set of variables
(hz, hx). The stationary points, i.e. extrema and saddle points, of this two-dimensional
surfaces are physical solutions, where the stable solution is the one with lowest potential
Ω. Fig. 8.3 shows the value of the self-energy functional as a function of both in-plane
and out-of-plane AF symmetry-breaking field. Depending on the KMH model parame-
ters, up to three different stationary points exist: A saddle point of Ω if h points in z
direction; a minimum if it is in the xy plane; the nonmagnetic solution, which can be
both maximum or minimum, depending on the parameters. This is consistent with the
results of other cluster geometries [218, 220]. The local minimum h ‖ ẑ is never the
physically realized solution with the lowest grand potential Ω for all sets of parameters
considered here. Hence, only one variational quantity is needed for the AF Weiss field,
namely the in-plane antiferromagnetic component. As mentioned above, the on-site en-
ergy levels of both impurity and bath are fixed by particle hole symmetry and the given
chemical potential. Therefore, in total three cluster parameters have to be optimized:
The hopping V between impurity and bath, the in-plane antiferromagnetic Weiss field
hx, and the potential difference between the two sublattices ∆.

Directly from the two-site DIA one can distinguish two phases, the antiferromagnetic
insulator for large U and the nonmagnetic insulator for small U . The system reduces
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Figure 8.3: Self-energy functional as a function of the antiferromagnetic Weiss fields hz
and hx for λSO = 0.1, λν = 0 and U = 5. The hybridization of the bath sites
has been optimized for each grid point individually. The global minimum
around hx ≈ 1 and hz = 0 can clearly be seen.

to the ordinary Hubbard model on the honeycomb lattice if λSO = 0 and λν = 0. In
this case, the magnetization direction is not important since SU(2) symmetry is not
broken. The mean-field critical interaction is Uc = 2.23 [212, 235], which is lower as
compared to more accurate methods. Quantum Monte Carlo simulations show that it
is actually slightly above 4 [12, 214–216, 235]. The two-site DIA considered in this
work is expected to give similar results as other variational methods. VCA gives critical
interactions between 2.4 and 4, depending on the cluster geometries [218–220], which
coincides with our DIA results of Uc = 3.7, where we observe a second-order phase
transition. With increasing λSO, all methods show that Uc increases as well. Mean-
field [212], however, overestimates here the slope in comparison with the more elaborate
methods [12, 214–216, 218–220]. The reason for that is analyzed in the Sec. 8.5. Our
results show a similar behaviour as VCA with different cluster geometries [220]. To sum
up, in the inversion-symmetric case the two-site DIA is in good agreement with other
methods. We can therefore expect that the method is suitable to explore the model
when inversion symmetry is broken.

Using the topological Hamiltonian defined in Eq. (4.60) in combination with the
Soluyanov-Vanderbilt method, information on the topological properties can be ob-
tained in addition to the magnetic ordering. In the noninteracting case, a topological
phase transition occurs at λν = 3

√
3λSO, as known from the original work by Kane and

Mele [13, 14]. Including a Hubbard interaction U , the topological Hamiltonian has the
same structure as the noninteracting Hamiltonian, as long as the antiferromagnetic mo-
ment vanishes. However, both self-energy and staggered on-site Weiss field renormalize
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Figure 8.4: Phase diagram of the KMH model obtained from two-site DIA, as a func-
tion of the Hubbard interaction and the sublattice potential for a spin-orbit
coupling of λSO = 0.1.

the energy scales. The interplay of interaction and on-site energy can be seen as follows:
Without interaction, the sublattice with the lower on-site energy has a higher double
occupancy. A finite Hubbard U punishes double occupancies, and reduces as a result
the double occupancy on the sublattice with lower on-site energy. Hence, the sublattice
potential λν is effectively lowered in case of a finite U , stabilizing the topological phase,
and shifting the critical λν to higher values. The resulting phase diagram is shown in
Fig. 8.4. This stabilization effect is also captured in mean-field, although with quantita-
tive differences [224]. We want to note that we cross-checked the validity of our Wannier
charge center (WCC) approach by calculating the spin Chern number CS directly from
Eqs. (4.41) and (4.57) for the selected value of U = 1. We found perfect quantitative
agreement.

This reasoning for the stabilisation of the topological phase is only valid in case of
weak interactions where the antiferromagnetic Weiss field is zero. In the strongly inter-
acting regime, the non-vanishing Weiss field causes a time-reversal symmetry breaking
term proportional to σx ⊗ τz (σ acts in spin space, τ in sublattice space) in the topo-
logical Hamiltonian. As a consequence, the topological invariant in the sense of Fu and
Kane [105] is not defined. This can also be seen in the WCC, where the lifted Kramer’s
degeneracy does not enforce the two WCCs to be identical at half the period of the
pumping parameter. Examples of the WCCs are shown in Fig. 8.5. In this regime, not
just quantitative, but also qualitative differences compared to a standard Hartree-Fock
mean-field arise, as discussed in Sec. 8.5. To sum up, three phases exist for a given spin-
orbit coupling: (i) a topological insulator continuously connected to the quantum spin
Hall phases of the non-interacting KM-model if both λν and U are small enough; (ii)
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Figure 8.5: Wannier charge centers x̄(ky) of the topological Hamiltonian for λSO =
0.1, λν = 0.25, and U = 3 (left) and U = 4 (right).

a trivial band insulator if λν is large; (iii) an antiferromagnetic insulator with in-plane
magnetization for large U . The phase boundaries are shown in Fig. 8.4. Interestingly,
similar results of an enhanced topological phase have been reported for the Kane-Mele
model including long-ranged Coulomb interactions [236]. There, the Coulomb inter-
action induces charge-density-wave fluctuations, while our model shows static charge
ordering through staggered potentials.

8.3.2 Ribbon

In order to analyze the robustness of the topological phases presented in the last section
and to investigate the bulk-boundary correspondence, we calculate directly the edge
properties on a zigzag ribbon of finite width.

We first consider the inversion-symmetric case, λν = 0. Mean-field results have shown
different magnetizations at the edge than in the middle of the ribbon [213]. This agrees
with our results, and an example of the structure of the Weiss fields across the ribbon
profile is shown in the inset of Fig. 8.6. The larger field at the edges decays quickly
to the bulk value. The optimized values of both edge and midpoint antiferromagnetic
fields as a function of U are shown in Fig. 8.6 for λSO = 0.1. At the edges, any finite U
results in a finite antiferromagnetic field. Sites that are not at the edges have a Weiss
field comparable to the bulk values. Just below the bulk magnetic transition at U ≈ 3.8
they become finite, though small, which is a finite-size effect caused by the increasing
correlation length as the magnetic transition is approached. The main consequence of
the non-vanishing Weiss field is that the finite magnetization at the edges breaks time-
reversal symmetry for any U and gaps therefore the edge states. As the interaction is
below the critical value for the bulk magnetic transition, topological analysis of the bulk
suggests a topological insulator with gapless edge states, but a local symmetry breaking
at the edges causes the edge states to gap. This local effect, namely that local time-
reversal symmetry breaking by a magnetic field causes states to gap, cannot be captured
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(solid) and in the middle of the ribbon (dashed) as a function of U for
λSO = 0.1, λν = 0 and N = 16 pairs of sites. The inset shows how the
moment at the edge decays across the ribbon to the midpoint for U = 2.

within a topological invariant of the two-dimensional (2D) system. However, at what
point in the phase diagram this local symmetry breaking occurs, depends both on the
specific model and also on the edge geometry. For example, for the armchair ribbon,
there is a region at small U with vanishing edge magnetization and therefore gapless
edge states, even in the inversion-symmetric case λν = 0.

In the last paragraph it is demonstrated that gapless edge states are impossible on
a zigzag ribbon for any finite U , as long as λν = 0. This picture changes if inversion
symmetry is broken. From the bulk calculations we know that λν tends to suppress
magnetic ordering, where it increases the critical value of interaction Uc for the magnetic
transition (Fig. 8.4). The same principle is observed looking at the edge magnetization
as a function of λν . For given U and λSO, the Weiss field at the edges changes only
marginally as λν is increased, and the edge is magnetic. However, at a critical value λc

ν ,
the magnetic moment drops to 0 in a first-order phase transition. This critical value λc

ν

strongly depends on U . For λSO = 0.1, for example, we get λc
ν = 0.006 as U = 1, and it

raises by an order of magnitude to λc
ν = 0.07 for U = 2 and to λc

ν = 0.35 for U = 3.

This argument can of course be turned around. Fixing the sublattice potential λν
and varying the interaction strength U , one finds a critical value Uc for the magnetic
transition with finite magnetic moment only for U > Uc. This critical value Uc raises
continuously with increasing sublattice potential λν , starting from Uc = 0 at λν = 0.

Exemplary spectral functions are shown in Fig. 8.7, where we use spin-orbit coupling
strength λSO = 0.1 and interaction strength U = 2.5. If the sublattice potential λν is
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Figure 8.7: Spectral functions of the KMH zigzag ribbon with parameters U = 2.5,
λSO = 0.1, and N = 16. Left panel: λν = 0.1 leads to a magnetic solution
with a Weiss field of about hAFx = 0.4, gapping the edge states. Right panel:
λν = 0.2, with a vanishing Weiss field and gapless edge states.

below the critical value, as in the left panel of Fig. 8.7, the edge is magnetic and the
edge states are gapped. For λν > λc

ν there is no magnetization at the edge, and gapless
states occur. We want to stress again that gapless edge states do not occur at any finite
U in the inversion-symmetric case. To sum up, an inversion-symmetry-breaking term
can stabilize the gapless edge state.

8.4 Conclusion and Discussion

We have investigated the topological properties of the Kane-Mele-Hubbard model, com-
paring cases with and without inversion symmetry. For the calculation of the topological
invariants we apply a combination of the topological Hamiltonian approach and the Wan-
nier charge center method. This approach allowed to calculate the phase diagram of the
KMH model in the U -λν plane. The inversion-symmetry-breaking term λν has a two-fold
effect. First, for large values the topological order is destroyed and a trivial insulator
obtained. Second, in combination with interactions the topological order is enhanced,
pushing the phase boundaries towards the antiferromagnetic insulator to larger critical
values of U .

This effect can also be seen in the surface properties of the honeycomb lattice. In
agreement with previous studies, our calculations on the zigzag-ribbon geometry have
shown that with inversion symmetry any finite value of U results in a finite edge magneti-
zation, which in turn produces a finite gap in the edge states. Introducing an inversion-
symmetry-breaking field, this critical value Uc is shifted to finite values, below which
the whole ribbon including the edge is nonmagnetic, and a gapless surface state exists.
As a result, one can find gapless edge states on the zigzag ribbon only when inversion
symmetry is lifted and the interaction strength U is small enough, such that no ordered
magnetic moments can form.

Our study is based on the Kane-Mele Hamiltonian, which was introduced as the low-
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energy Hamiltonian for graphene. Since the bulk gap in graphene is minute, the effects
that we propose here are difficult to see in this material. However, there is increasing
interest in artificial honeycomb systems using heavy atoms, such as bismuthene on SiC
substrate [190]. Since these systems are grown artificially, it might be possible to modify
their structure such that inversion symmetry is broken and the influence of this symmetry
breaking on the topological properties can be studied.

8.5 Discussion - Comparison to mean-field

As mentioned in Sec. 8.3.1, the basic structures of the topological Hamiltonian could
also be found in a mean-field approximation since the self-energy is diagonal. Usually,
the z axis is chosen as the axis of mean-field decomposition [212]. The resulting matrix
is then qualitatively different from the topological Hamiltonian of the DIA, since the
mean-field magnetic moment points in the z direction. In order to respect that the easy
axis is in-plane, we did a mean-field decoupling in the x direction

ni↑ni↓ ≈ (〈ni←〉ni→ + 〈ni→〉ni← − 〈ni←〉〈ni→〉) , (8.6)

where |→←〉 = 1/
√

2 (|↑〉 ± |↓〉). Within this framework, the same phases as in the DIA
appear, where the mean-field one-electron Bloch Hamiltonian corresponds to the topo-
logical Hamiltonian. The phase boundaries, however, will shift since a bare mean-field
approach does not capture quantum dynamics as the DIA.

In case of the Hubbard model on a honeycomb lattice λSO = λν = 0, the magnetization
direction is not important since SU(2) symmetry is not broken. The mean-field critical
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interaction for any quantization axis is Uc = 2.23 [212, 235]. If λSO 6= 0, the difference
between the two mean-field methods is important. Since the in-plane magnetic moment is
always favorable, a restriction of the magnetization direction to be out-of-plane requires
stronger interactions for the stability of the antiferromagnetic solution. This is the case
in a conventional mean-field theory [212, 224], hence, Uc is overestimated in comparison
with an in-plane mean-field approach (8.6). Consequently, the slope of the Uc-λSO phase
boundary is higher if z is used as a quantization axis.

In addition to the magnetic transition considered so far, using Wannier charge centers
as an analytical tool allows again to extract topological information. The DIA results
are described in the previous sections, showing the phase diagram of three different
phases in Fig. 8.4. As mentioned above, the mean-field decoupling in the x direction
gives qualitatively the same phases since the MF Bloch Hamiltonian has the same struc-
ture as the DIA topological Hamiltonian, but underestimates Uc. New phases appear,
however, in the standard Hartree-Fock approach where the z axis is the quantization di-
rection. The Hamiltonian splits into spin up and spin down parts, which are decoupled
if neither Rashba coupling nor in-plane magnetization are present. Hence, even though
time-reversal symmetry is broken in the presence of an antiferromagnetic moment, a Z2

invariant can be defined using the spin Chern number νS = CS mod 2, CS = (C↑−C↓)/2
as introduced by Sheng et al. [103] (see Sec. 4.7.2). The Chern numbers of the two spin
categories are determined with the Wannier charge centers: Because of the conservation
of Sz, the two WCC can be labeled by their spin. The Chern number CS is then given
by the difference of the WCCs x̄↑ and x̄↓ as they evolve continuously from 0 to 2π.

In the inversion-symmetric case, the only mean-field parameter that has to be de-
termined self-consistently is the antiferromagnetic moment MAF = 〈nA↑〉 − 〈nB↑〉 =
〈nB↓〉 − 〈nA↓〉. A change of both Chern numbers C↑ and C↓ occurs when the gap closes
at a critical moment M c

AF = 12
√

3/U , which follows from diagonalizing the mean-field
Bloch Hamiltonian. Since MAF rises continuously from 0 as U is increased, magnetic
and topological transition do not coincide, leading to an antiferromagnetic quantum spin
Hall phase between the two transitions.

If additionally inversion symmetry is broken, both on-site energy and occupation of
A and B sites are different. Together with the magnetic order, this leads to different
M c

AF for spin up and spin down electrons. If C↑ = 0 and C↓ = 1 or vice versa, the
total Chern number C = C↑ + C↓ is nontrivial. Hence, for a certain parameter range,
an antiferromagnetic Chern insulator is realized (see Fig. 8.8). Both Chern insulator
and antiferromagnetic quantum spin Hall insulator have also been found recently for
cases where the symmetry breaking is not due to an on-site potential, but due to a spin-
dependent hopping [225]. These phases are stable since for certain parameter regions
the out-of-plane magnetization is energetically favorable.

The topological properties of the Chern insulator are not bound to time-reversal sym-
metry but related to the spin structure only. The number of edge states is directly
determined by the Chern numbers of spin up and spin down electrons. As an example,
the bands of a zigzag ribbon in the Chern insulator phase with only one edge state
are shown in Fig. 8.8. Hence, bulk boundary correspondence is fully satisfied if the
antiferromagnetic moment is in the z direction, but not if it is in-plane.
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9 px-py model of bismuthene

9.1 Introduction

The Kane-Mele model discussed in the last two chapters is a nice toy model to study
topological properties on the honeycomb lattice. However, in real materials, the gap
induced by SOC will always be below room temperature, since it originates from second
order perturbation theory (see Sec. 7.2). Therefore, possible practical applications for
example in spintronics are limited. Only the direct, local SOC term λ l · s can open
a topological gap larger than room temperature. In case of graphene-like structures,
this is only possible when the px and py orbitals have major contributions in the bands
around the Fermi energy since the local SOC of the pz orbitals is quenched, as described
in section 7.2. Furthermore, the pz orbitals do no hybridize with the px and py orbitals
due to the planar structure. Hence, in order to obtain bands around the Fermi energy
that are sizably affected by the SOC, the pz orbitals need to be shifted by some chemical
modification of the graphene-like structure. One way proposed by Liu et al. is to
passivate a bismuthene layer with hydrogen [191]. Reis et al., on the other hand, realized
a large topological band gap by putting a bismuthene layer on a SiC substrate [190].

For a minimal model of such an insulator, the pz orbitals can be neglected, as they
are assumed to be completely filled. Furthermore, the s orbitals are lower in energy
and have a smaller band width as compared to graphene (parameters and bands shown
in Tab. 7.1 and Fig. 7.1), so that the hybridization between s orbitals and px and py
orbitals is reduced. Therefore, such a system can be modeled by using only the px and
the py orbitals.

9.2 Band structure including spin-orbit coupling

When only the in-plane orbitals px and py are considered, a finite local SOC persists.
However, also here an important part of matrix elements vanishes: From Eq. (3.36),
one sees that the px, py block of both lx and ly have no entries. Hence, the spin-orbit
operator has in this case the special form l · s = lz ⊗ sz, and is thus diagonal in spin.
Even though a local SOC is present, spin remains a good quantum number. Setting the
on-site energy of the px and py elements to zero, the spin-up and spin-down parts of the
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tight-binding Hamiltonian read [190, 191]1

H↑↑/↓↓(k) =


0 ∓iλ/2 hxx hxy

±iλ/2 0 hyx hyy
h∗xx h∗yx 0 ∓iλ/2

h∗xy h∗yy ±iλ/2 0

 , (9.1)

with matrix elements given by (7.5). The spin-coupling parts H↑↓ and H↓↑ are zero.
However, an additional Rashba coupling originating from breaking the mirror symmetry
in z direction (e.g. by putting the layer on a substrate) leads to a coupling of the spins.
The resulting k-dependent matrix elements can be found in the supplementary material
of Ref. [190]. The band structure without Rashba coupling is shown in Fig. 9.1. The
bandgap stems from the SOC and is of topological nature.

9.3 Introducing interactions

So far, the px-py model describes a noninteracting topological insulator. Similar to the
Kane-Mele-Hubbard Hamiltonian analyzed in chapter 8, one can generalize this model
by including an interaction Hamiltonian. The most general Hamiltonian for two p or-
bitals is a two-band Kanamori Hamiltonian 2.31, with U ′ = U − 2JH (see Sec. 2.2). In
chapter 6, the interplay of SOC and correlations is analyzed by means of the correlation
strength of a metallic model. Here, the focus is on the topological properties of an in-
sulator. The tools used to do so are DMFT in order to obtain the correlated Green’s
function, and the topological Hamiltonian (4.60) to describe topological properties. The
non-interacting model is the nearest neighbor tight-binding model for bismuthene (9.1)
including SOC. Since the DMFT self-energy is independent of the momentum, the topo-
logical Hamiltonian is given by

Ht(k) = −G−1(k, ω = 0) = H(k)− µ1 + Σ(ω = 0). (9.2)

Therefore, the self-energy at zero frequency is the DMFT output relevant for the topology
and needs further discussion.

In order to obtain the self-energy, DMFT calculations were performed for Vpσ =
−2.0 eV, Vpσ = −0.3 eV, and different values of λ, U , and JH at an inverse temperature
β = 40 eV−1 using TRIQS [168], DFTTools [33], and the CTHYB solver [169]. For
the experimental value λ = 0.870 eV and test interaction parameters U = 5 eV and
JH = 0.5 eV, the resulting self-energy is shown in Fig. 9.2. The chosen basis was the
cubic basis, since no significant sign problem occurred. However, it is still insightful
to switch to the basis where the local Hamiltonian is diagonal. The local Hamiltonian

1Note that the definition of λ in Ref. [190] corresponds to λ/2 here.
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Figure 9.1: Tight-binding band structure of the tight-binding model of bismuthene (9.1)
using Vpσ = −2.0 eV, Vpσ = −0.3 eV, and λ = 0.870 eV.
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consists, except for a chemical potential, only of the SOC

Hloc =
λ

2

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 . (9.3)

The eigenbasis is ∣∣∣p↑±〉 =
1√
2

(∣∣∣p↑x〉± i
∣∣∣p↑y〉)∣∣∣p↓±〉 =

1√
2

(∣∣∣p↓x〉± i
∣∣∣p↓y〉) , (9.4)

where
∣∣∣p↑+〉 and

∣∣∣p↓−〉 have the eigenvalue λ/2, the other two the eigenvalue −λ/2. In

this basis, self-energy of the px-py model is diagonal. Due to the different sign of λ in

the two spin blocks of the local Hamiltonian, Σ↑+ = Σ↓− and Σ↑− = Σ↓+ as long as the
system is nonmagnetic. One can expand the self-energy matrix in terms of l · s and the
unit matrix, similar as in section 6, via

Σ =
1

2

(
Σ↑+ + Σ↑−

)
1 +

(
Σ↑+ − Σ↑−

)
l · s. (9.5)

Therefore, the strength of the effective SOC is determined by the difference of the two
self-energies

λeff = λ(ω) + Σ↑+(ω)− Σ↑−(ω). (9.6)

Using the topological Hamiltonian (9.2) with the self-energy (9.5) and keeping in mind
that the parts proportional to the unit matrix have no influence on the topology, the only
topological effect of the paramagnetic DMFT calculation is that λ changes to its effective
value given by (9.6). The real part of Σ↑+ − Σ↑− is equivalent to the imaginary part of
Σyx in the cubic basis, which is displayed in the lower panel of Fig. 9.2. One sees that it
is positive for all Matsubara frequencies iωn, hence the SOC is enhanced by correlations.
This is also true for other sets of parameters that were calculated. Since λeff(ω = 0) is
the relevant parameter according to the topological Hamiltonian, interactions stabilize
the topological phase.
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Figure 9.2: Self-energy as a function of Matsubara frequencies ωn of the tight-binding
model of bismuthene (9.1) using Vpσ = −2.0 eV, Vpσ = −0.3 eV, and λ =
0.870 eV, with a Kanamori interaction using artificial interaction parameters
U = 5 eV and JH = 0.5 eV. The upper panel shows the imaginary part of the
diagonal elements ImΣ↑xx = ImΣ↑yy = ImΣ↓xx = ImΣ↓yy, the lower panel the

imaginary part of the off-diagonal elements ImΣ↑yx = −ImΣ↑xy = ImΣ↓xy =

−ImΣ↓yx. The real parts are all constant in iωn.
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171. Kuneř, J. Excitonic condensation in systems of strongly correlated electrons. Jour-
nal of Physics: Condensed Matter 27, 333201 (2015) (cit. on p. 70).

172. Akbari, A. & Khaliullin, G. Magnetic excitations in a spin-orbit-coupled d4 Mott
insulator on the square lattice. Phys. Rev. B 90, 035137 (2014) (cit. on p. 70).

173. Du, L., Huang, L. & Dai, X. Metal-insulator transition in three-band Hubbard
model with strong spin-orbit interaction. The European Physical Journal B 86,
94 (2013) (cit. on p. 70).

174. Werner, P. & Millis, A. J. High-Spin to Low-Spin and Orbital Polarization Tran-
sitions in Multiorbital Mott Systems. Phys. Rev. Lett. 99. (2007) (cit. on p. 72).

175. Werner, P., Gull, E. & Millis, A. J. Metal-insulator phase diagram and orbital
selectivity in three-orbital models with rotationally invariant Hund coupling. Phys.
Rev. B 79. (2009) (cit. on p. 72).

176. Kita, T., Ohashi, T. & Kawakami, N. Mott transition in three-orbital Hubbard
model with orbital splitting. Phys. Rev. B 84. (2011) (cit. on p. 72).

130



177. Kita, T., Ohashi, T. & Kawakami, N. Orbital-Selective Mott Transition in Multi-
orbital Hubbard Model with Orbital Degeneracy Lifting. Journal of the Physical
Society of Japan 80, SA142 (2011) (cit. on p. 72).

178. Jarrell, M. & Gubernatis, J. Bayesian inference and the analytic continuation of
imaginary-time quantum Monte Carlo data. Physics Reports 269, 133–195 (1996)
(cit. on p. 83).

179. Von der Linden, W., Preuss, R. & Dose, V. The Prior-Predictive Value: A Paradigm
of Nasty Multi-Dimensional Integrals in Maximum Entropy and Bayesian Meth-
ods (eds von der Linden, W., Dose, V., Fischer, R. & Preuss, R.) 319–326 (Kluwer
Academic Publishers, Dortrecht, 1999) (cit. on p. 83).

180. Skilling, J. Fundamentals of MaxEnt in data analysis in Maximum Entropy in
Action (eds Buck, B. & Macaulay, V. A.) 19–40 (Clarendon Press, Oxford, 1991)
(cit. on p. 83).

181. Martins, C., Aichhorn, M., Vaugier, L. & Biermann, S. Reduced Effective Spin-
Orbital Degeneracy and Spin-Orbital Ordering in Paramagnetic Transition-Metal
Oxides: Sr2IrO4 versus Sr2RhO4. Phys. Rev. Lett. 107, 266404 (2011) (cit. on
p. 84).

182. Lee, K.-W. & Pickett, W. E. Orbital-quenching–induced magnetism in Ba 2 NaOsO
6. EPL (Europhysics Letters) 80, 37008 (2007) (cit. on p. 84).

183. Giovannetti, G. The influence of Coulomb Correlations and Spin-Orbit Coupling
in the electronic structure of double perovskites Sr2XOsO6 (X=Sc, Mg). arXiv
preprint arXiv:1611.06482. (2016) (cit. on pp. 84, 86).

184. Ikeda, S.-I., Shirakawa, N., Bando, H. & Ootuka, Y. Orbital-Degenerate Para-
magnetic Metal Sr2MoO4: An Electronic Analogue to Sr2RuO4. Journal of the
Physical Society of Japan 69, 3162–3165 (2000) (cit. on p. 86).

185. Nagai, I., Shirakawa, N., Ikeda, S.-i., Iwasaki, R., Nishimura, H. & Kosaka, M.
Highest conductivity oxide SrMoO3 grown by a floating-zone method under ul-
tralow oxygen partial pressure. Applied Physics Letters 87, 024105 (2005) (cit. on
p. 86).

186. Wadati, H., Mravlje, J., Yoshimatsu, K., Kumigashira, H., Oshima, M., Sugiyama,
T., Ikenaga, E., Fujimori, A., Georges, A., Radetinac, A., Takahashi, K. S., Kawasaki,
M. & Tokura, Y. Photoemission and DMFT study of electronic correlations in
SrMoO3: Effects of Hund’s rule coupling and possible plasmonic sideband. Phys.
Rev. B 90, 205131 (2014) (cit. on p. 86).

187. Du, L., Sheng, X., Weng, H. & Dai, X. The electronic structure of NaIrO3 , Mott
insulator or band insulator? EPL (Europhysics Letters) 101, 27003 (2013) (cit. on
p. 86).

188. Gharekhanlou, B. & Khorasani, S. An overview of tight-binding method for two-
dimensional carbon structure in Graphene: Properties, Synthesis, and Applications
(ed Xu, Z.) (Nova Science Publishers, 2012). (Cit. on pp. 94, 95).

131



189. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon
Nanotubes (Imperial College Press, 203 Electrical Engineering Building, Imperial
College, London SW7 2BT, UK, 1998) (cit. on pp. 95, 96).

190. Reis, F., Li, G., Dudy, L., Bauernfeind, M., Glass, S., Hanke, W., Thomale, R.,
Schäfer, J. & Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-
temperature quantum spin Hall material. Science 357, 287–290 (2017) (cit. on
pp. 95, 110, 113, 114).

191. Liu, C.-C., Guan, S., Song, Z., Yang, S. A., Yang, J. & Yao, Y. Low-energy ef-
fective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb X-
hydride/halide (X = N−Bi) monolayers. Phys. Rev. B 90, 085431 (2014) (cit. on
pp. 95, 97, 113, 114).

192. Min, H., Hill, J. E., Sinitsyn, N. A., Sahu, B. R., Kleinman, L. & MacDonald,
A. H. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev.
B 74, 165310 (2006) (cit. on p. 97).

193. Triebl, R. & Aichhorn, M. Topological insulator on honeycomb lattices and ribbons
without inversion symmetry. Phys. Rev. B 94, 165169 (2016) (cit. on p. 99).

194. Kitaev, A. Periodic table for topological insulators and superconductors in AIP
Conference Proceedings 1134 (2009), 22–30. (Cit. on p. 100).

195. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of
topological insulators and superconductors in three spatial dimensions. Phys. Rev.
B 78, 195125 (2008) (cit. on p. 100).

196. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insula-
tors and superconductors: tenfold way and dimensional hierarchy. New Journal of
Physics 12, 065010 (2010) (cit. on p. 100).
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