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Abstract

Cryptographic algorithms offer black-box security, i.e., just observing their inputs
and outputs does not reveal the key. Electronic devices that execute these
algorithms, however, do not fulfill the definition of a black box. Their physical
properties, e.g., power consumption or timing behavior, can reveal sensitive
information processed by the device. So-called side-channel attacks exploit this
fact. To provide comprehensive protection against them, a deep understanding
of attack vectors is necessary. Exactly this understanding is challenged by the
constant evolution of cryptography and advancements in device design. In this
thesis, we address this problem by analyzing implementations of lattice-based
cryptography and by presenting the first side-channel attack capable of bridging
the gap in multi-CPU systems.

First, we focus on lattice-based cryptography, which has gained a lot of
traction in recent years. It boasts security against quantum computing and is
thus a promising replacement of currently used public-key primitives. Despite its
proven practicality, however, the implementation-security aspect is still largely
unexplored. We tackle this and present some of the first side-channel and fault
attacks targeting lattice-based cryptography. Our first attack targets the BLISS
lattice-based signature scheme and offers several improvements over previous
proposals, such as the ability to target an improved BLISS variant. Second,
we analyze and circumvent a countermeasure aimed at preventing the previous
attack. And third, by mounting fault attacks on deterministic lattice signatures
we show that some countermeasures can have adverse side effects. All these
attacks make use of algorithmic and algebraic features typical to this family of
schemes, thereby highlighting the importance of dedicated analysis.

After lattices, we target multi-processor systems, which are becoming ubiqui-
tous especially in cloud environments. Previous microarchitectural exploits, such
as cache attacks, were cross-core but not able to bridge the gap between multiple
physical CPUs. We show how DRAM can be exploited as a side-channel source
not bound to this restriction. After reverse-engineering undisclosed mapping
functions, we craft attacks breaking many isolation boundaries including that of
different physical CPUs. This makes them a threat especially in shared systems,
such as multi-tenant cloud machines.
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1
Introduction

Implementation attacks are a significant threat to electronic devices handling
secrets such as cryptographic keys or sensitive user input. These attacks do
not treat a device as a black box performing unobservable computations before
returning a result, but instead, consider it in its entirety and use all information
that the device offers (intentionally or unintentionally). That is, they exploit
physical side channels, e.g., power consumption, electromagnetic emanations, and
timing behavior, or manipulate the device to inject computational faults using, for
instance, glitches on inputs or targeted bombardment with EM pulses. Initially,
most such attacks required either the possession of or at least proximity to the
attacked device. While this can often be achieved, in many cases even legitimately,
it is still a hurdle. This hurdle, however, can be overcome by many timing-based
remote attacks. Hence, devices ranging from servers of cloud providers all the
way down to one-time-use electronic tickets are potential targets.

The danger of implementation attacks is well known and its discovery not
recent. Seminal research uncovering possibilities to attack cryptographic imple-
mentations is more than two decades old [Koc96; BDL97; KJJ99]. Cryptography
is the main tool for securing communication, thus recovering the key used to
protect the sensitive information is a prime attack goal. Still, the actual secret,
such as the plaintext, can also be targeted. Earliest reports of such (more general)
side-channel attacks even date back to World War II [NSA72]. This might sound
like enough time to fix this problem, but in reality, there are numerous challenges
and the problem is far from being solved.

One reason is that the landscape of cryptography itself is in constant evolu-
tion. The first papers presenting side-channel attacks on symmetric cryptography
targeted the now long obsolete Data Encryption Standard (DES) [KJJ99]. Since
then, cryptographers have shown their love for competitions. The AES compe-
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2 Chapter 1. Introduction

tition [NISa] looked for a successor to DES, eSTREAM [ECR] for new stream
ciphers, the SHA-3 competition [NISd] for new hash functions, the still ongoing
CAESAR contest [Ber] for ciphers offering authenticated encryption, and very
recently NIST announced a call for lightweight ciphers [NISb]. Each such compe-
tition brings a swath of new algorithms and thus a constant stream of challenges
for secure implementation.

These challenges get amplified when algorithms break new ground, which is
the case for so-called post-quantum cryptography. This term refers to schemes
that are secure even if large-scale quantum computers exist. Currently used
public-key schemes, such as RSA and ECC, do not have this property and
succumb to Shor’s algorithm [Sho99]. They are thus up for replacement; the
search for alternatives has gained high traction throughout the recent years.
Fittingly, NIST currently runs a post-quantum cryptography standardization
process [NISc], i.e., another competition (although NIST is reluctant in calling it
that [Moo17]).

There exist several families of post-quantum-secure schemes, for a comprehen-
sive overview we refer to Bernstein and Lange [BL17]. One family in particular,
namely lattice-based cryptography, offers good security guarantees, very com-
pelling performance, and has already seen first real-world tests [Bra16; Lan16].
The implementation security aspect, however, is pretty much unexplored. Unpro-
tected implementations will undoubtedly be vulnerable against already known
attack, but the mathematical structure underlying lattice-based primitives might
open up many new exploitation paths and could be utilized for efficient side-
channel attacks and subsequent analytic key recovery. If this is truly the case is
an open question and thus, to say it in quantum speak and to invoke a famous
cat, neither true nor false until analyzed.

However, not only (cryptographic) algorithms are changing, the devices we
run them on are evolving as well. One recent trend is to outsource computations
to someone else’s machines, i.e., to the so-called cloud. There, multiple tenants
are often co-located on a single machine; this makes enforcing isolation boundaries
crucial. Microarchitectural attacks, such as cache attacks that exploit timing
differences stemming from access patterns to the CPU cache [Tsu+03; Ber05;
YF14], can cross some of the boundaries by exploiting hardware sharing. However,
while they do allow cross-core attacks due to shared caches, they cannot bridge the
gap between physical CPUs in multi-processor systems. Exactly such machines
are becoming increasingly ubiquitous in the cloud. Thus, cache attacks could be
trivially mitigated by simply assigning dedicated physical CPUs to each tenant.
However, further analysis needs to determine if this offers protection against the
full range of microarchitectural attacks.
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1.1 Contribution and Outline

In the course of this thesis, we make progress in both these directions. That
is, we show (1) efficient side-channel exploitation techniques for lattice-based
cryptography and (2) a new microarchitectural side channel allowing cross-CPU
attacks. This leads to the following outline of this thesis.

Chapter 2 provides a brief introduction to side-channel attacks, including
power analysis and fault attacks as well as microarchitectural exploits such as
cache attacks and the Rowhammer bug.

Side-Channel Attacks on Lattice-Based Cryptography

Chapter 3 describes the need for post-quantum cryptography in more depth
and then goes on to explain one category of algorithms, namely lattice-based
cryptography, in more detail. Apart from theoretical groundwork, we recall a
concrete scheme with BLISS, discuss techniques for efficient implementation, and
finally deal with previous and concurrent works on implementation security.

Chapter 4 describes a new side-channel attack on BLISS. Our method does
not have restrictions of an earlier attack, as we can also target the improved
BLISS-B scheme and perform the attack in a more realistic scenario. We achieve
this by combining multiple techniques such as parity learning, statistical methods,
integer programming, and lattice-basis reduction. This combination allows us
to recover the key from the real-world BLISS-B implementation included in the
strongSwan IPsec-based VPN suite.

Chapter 5 analyzes one potential mitigation technique against the attack
discussed in Chapter 4. Concretely, shuffling was proposed as a protection
technique for the Gaussian sampling component, which is the primary target of
the described attacks. We analyze two concrete variants of this countermeasure
and show that the simpler one cannot significantly improve security. The second
one can also be circumvented, albeit at the cost of requiring significantly more
side-channel measurements, which shows that this version is somewhat effective.

Chapter 6 steps away from BLISS and has a look at the more recent alterna-
tives qTESLA and Dilithium, both of which have been submitted to the NIST call.
The proposals already have implementation security in mind. They thus refrain
from using Gaussian samplers and are deterministic, with the latter aiming to
protect against nonce reuse. We show that this determinism opens the gates for
differential fault attacks, where a single injected fault can already lead to full key
recovery. We analyze the effects of the used abortion technique and demonstrate
that the fault position has a high influence on the success probability.
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Side-Channel Attacks on Multi-Processor Systems

Chapter 7 identifies DRAM, i.e., main memory of PCs, as a powerful side-
channel source that is even shared across physical CPUs. DRAM contains
so-called row buffers, which are required electrical components that exhibit some
cache-like behavior. Namely, read and write timings depend on the previously
accessed addresses. Before exploiting this, however, one needs to know how
physical addresses are mapped to the used row buffer. This mapping is undisclosed,
which is why we present two methods to reverse engineer it. We also demonstrate
that the reverse-engineered functions improve previous microarchitectural attacks
such as Rowhammer.

Chapter 8 shows how the timing differences can be used to build high-speed
covert channels and mount low-noise side-channel attacks capable of crossing
software (cross-VM) and physical (cross-CPU) boundaries. We dub our attack
DRAMA (for DRAM Addressing), and demonstrate its capabilities by trans-
mitting up to 2 Mbps across in our cross-core cross-CPU covert channel and by
spying on keystroke timings using our side-channel attack.

Chapter 9 finally concludes this thesis.



2
Side-Channel Attacks

The idea of using side channels, i.e., information inadvertently leaked over a
channel not intended for communication, to recover some secret is not particularly
new. When talking to other people, we not only listen to their words but also
instinctively interpret subtle and unintentional signals, such as the inability to
look into one’s eyes or sweating. From this, we infer whether someone is lying.

This type of “side-channel attack” obviously belongs to the realm of psychology,
but attacks on electronic cryptographic devices also have a long and rich history.
Already in 1943, a researcher at a Bell laboratory noticed that their then-used
encryption machines send out parasitic electric signals which, when measured
with an oscilloscope, can be used to recover the plaintext. This and other similar
observations lead to the introduction of stringent shielding requirements for
military encryption devices [NSA72].

The current understanding of the term side-channel attack is coined by the
works of Paul Kocher. He showed that information such as timing [Koc96] or
power consumption [KJJ99] of a cryptographic device can be used to recover
the key. Fault injection has also proved to be an efficient attack technique. We
discuss all these techniques in Section 2.1.

More recently, it was shown that microarchitectural optimizations of CPUs
can introduce side-channel vulnerabilities. This opens up new attack vectors. Pre-
vious implementation attacks typically required physical access and thus targeted
mostly embedded and smaller devices, such as smart cards. Microarchitectural
attacks target larger systems, such as servers, and allow fully software-based
exploitation. Thus, physical access is not needed anymore and remote attacks
are a real possibility. Cache attacks, where timing differences between accesses to
cache and RAM are exploited, are the most prominent example of a microarchi-
tectural attack. Additionally, the Rowhammer bug demonstrates that aggressive

5
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optimization can even lead to exploitable faults. We give an overview of such
microarchitectural attacks in Section 2.2.

2.1 Taxonomy and Overview

Implementation attacks can be grouped into two main categories. A passive
adversary records and exploits available side-channel leakage, but does not disturb
the computation. In contrast, an active attacker induces some error into the
computation and then uses the faulty outcome to derive some secret.

2.1.1 Passive Attacks

Apart from the already mentioned timing and power leakage, other already
exploited sources of side-channel information are, e.g., electromagnetic emana-
tion [GMO01; QS01] (ranging from highly localized on-chip measurements to
antennas placed several meters from the device [GS15]), acoustic signals [GST14],
and heat [HS13]. The recording and required pre-processing of measurements
(traces) can vastly differ for all these side-channel sources. The next steps in
an attack, however, often use the same statistical techniques regardless of the
underlying side-channel source.

Any passive attack exploits the fact that the side-channel information, such
as the power consumption, depends on the data processed by the device. The
side-channel information not only depends on the values of intermediate variables
in an algorithm but also on the instruction being executed. We now describe two
more concrete exploitation techniques, for a much more thorough explanation of
passive side-channel attacks we refer to Mangard et al. [MOP07].

Differential Power Analysis. In a Differential Power Analysis (DPA) [KJJ99],
one executes the same cryptographic operation, e.g., an encryption, many times.
Each invocation uses the same secret key and some known but varying input
or output, such as the ciphertext. One also records the instantaneous power
consumption of the device for all executed operations. The key is then recovered
by analyzing the difference in power consumption across the different executions.
This coins the term Differential Power Analysis.

Trace analysis and key recovery involve several steps. First, one guesses a small
part of the key (a subkey). Second, an intermediate is picked that depends both
on the subkey and a known but varying input; the value of this intermediate is
predicted for each possible value of the subkey and each measurement. Third, the
power consumption caused by the intermediate is predicted. For this prediction,
one typically uses power models such as the Hamming-weight model, which
counts the bits set to one. Fourth and finally, the predicted power consumption
is compared with the measured one using statistical methods; a popular tool is
the Pearson correlation coefficient. The key candidate achieving the best match
is then picked.
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DPA requires little assumptions on the device and the exact implementation of
the cryptographic primitive. The same power model can often be used for a large
range of very different devices. An exact description of the power characteristics
is thus not needed. What’s more, DPA does not require knowing how and when
exactly the targeted intermediate is manipulated, as the analysis is simply run for
all points in the trace. However, DPA cannot be applied when the prerequisites
are not met, e.g., if no fixed key is involved or if only a single measurement is
possible. This prevents attacks on schemes which frequently change keys, but
also on subroutines involving only ephemeral secrets. The latter is an integral
part of many asymmetric primitives, thus leaving large parts unexploitable by
DPA.

Simple Power Analysis and Template Attacks. The counterpart to DPA
is commonly dubbed Simple Power Analysis (SPA). According to Kocher [KJJ99],
it involves “a direct interpretation of power consumption measurements”. This
is not a tight definition. Techniques ranging from truly simple visual inspection
of traces to much more involved template attacks are grouped into this category.
The first allows recovery of chosen code paths, whereas the latter is seen as the
(information theoretically) optimal attack.

In a template attack [CRR02], one first profiles the power consumption
characteristic of a device. That is, one determines the typical consumption
profiles for, e.g., different executed instructions or possible data values. This
requires that the attacker can query the attacked device, or at least a very similar
one, with known inputs, including the key. The computed profiles are called
templates, often involve more than a single sample in the trace (Points of Interest
POI), and are typically modeled as a multivariate Gaussian distribution. In
the following template matching phase, the measured power consumption of the
device-under-attack is then compared with the templates. One can then, e.g.,
assign a probability to each possibly processed value.

The term SPA is sometimes used synonymously with “single-trace attack”,
but please note this is not necessarily the case. One can use multiple traces in
a template attack by using, e.g., Bayes theorem. Alternatively, one can also
combine the outcome of many traces using algebraic methods, which is in fact
done in Chapter 4 and Chapter 5.

2.1.2 Active Attacks

In contrast to a passive attack, an active adversary directly influences the device
by injecting a computational fault. Such faults can be induced by, for instance,
inserting glitches into the supply lines or external clock signals, electromagnetic
pulses, or lasers [Bar+06].

Differential fault attacks are one powerful example of fault exploitation. There,
one lets the device compute the same operation twice, but injects a fault during
one of the invocations. The difference in the outcome can then be used to recover
the key (or parts thereof). The seminal “Bellcore” attack [BDL97] demonstrated
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that this method allows recovering an RSA key using a single fault injection.
Symmetric cryptography can also succumb to differential faults, as shown by
Piret and Quisquater [PQ03].

Many cryptographic protocols prohibit running a primitive twice with the
same input. This mitigates differential fault attacks, but other classes of attacks
are still applicable. Statistical fault attacks [Fuh+13; Dob+16; Dob+18b] re-
quire more than a single fault but are unhindered by most algorithm-level fault
countermeasures [Dob+18a].

2.2 Microarchitectural Side Channels

The above side-channel and fault attacks require possession of (or at least
proximity to) the targeted device. Microarchitectural side-channels attacks are
usually not bound to this restriction. They are made possible by the many
performance optimizations such as caching, branch prediction, and out-of-order
execution found in many modern CPUs. These optimizations can lead to data-
dependent timing differences, which can be measured in software. What’s more,
the attacks allow to cross isolation boundaries and to attack, e.g., co-located
tenants on a shared cloud server and PCs with sandboxed JavaScript executed
by a browser. Recently, the microarchitectural attacks dubbed Spectre [Koc+18]
and Meltdown [Lip+18] even brought widespread media attention to this topic.

We now describe two microarchitectural side-channels relevant for this work,
namely cache attacks and the Rowhammer bug. For an in-depth survey of such
attacks, see Ge et al. [Ge+18].

2.2.1 Cache Attacks

To bridge the speed gap between the faster processor and the slower memory,
modern processor architectures employ multiple levels of caches, which store
data that the processor predicts a program might use in the future. While
the cache does not change the logical behavior of programs, it does affect their
execution time. For the past 15 years, it has been known that timing variations
due to the cache state can leak secret information about the execution of the
program [Tsu+03; Ber05; OST06]. Over the years, many attacks that exploit
the cache state have been designed, we now give one concrete technique.

The Flush+Reload Attack. The Flush+Reload attack [YF14] exploits read-
only memory sharing, which is commonly used for sharing library code in modern
operating systems. The attack consists of two phases. In the flush phase, the
attacker evicts the contents of a monitored address from the cache. On Intel
processors, this is typically achieved using the clflush instruction. The attacker
then waits a bit before performing the reload phase of the attack. In the reload
phase, the attacker reads the contents of the monitored memory address, while
measuring the time it takes to perform the read. If the victim has accessed the
monitored memory between the flush and the reload phases, the contents of
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the address will be cached and the attacker’s read will be fast. Otherwise, the
memory address will not be in the cache and the read will be slow.

By repeatedly interleaving the flush and the reload phases of multiple locations,
the attacker can create a trace of the victim’s uses of the monitored locations over
time. When the victim access patterns depend on secret data, the attacker can use
the trace to recover the data. Flush+Reload has been used to attack RSA [YF14],
AES [Ira+14], ECDSA [YB14; Ben+14; PSY15], as well as non-cryptographic
software [Zha+14; Ore+15].

Side-Channel Amplification. Because Flush+Reload only monitors victim
accesses between the flush and the reload phases, accesses that occur during these
phases may be missed, resulting in false negatives. The timing of victim accesses
is mostly independent of the attacker’s activity. Consequently, increasing the
wait between these phases reduces the probability of false negatives, albeit at
the cost of reduced temporal resolution. To mitigate the effects of the reduced
temporal resolution, Allan et al. [All+16] suggest slowing down the victim. They
demonstrate that by repeatedly evicting frequently-used code from the cache,
they are able to slow programs down by a factor of up to 150. The combination
of Flush+Reload and the Allen et al. attack has been used for attacks on
ECDSA [All+16; PB17] and DSA [PBY16]

2.2.2 Rowhammer

The so-called Rowhammer bug [Kim+14; Hua+12; Par+14] crosses the gap be-
tween otherwise passive microarchitectural side-channels and active fault attacks.
It allows corrupting data in main memory (RAM) using only software and thus
can be seen as a remote fault attack.

It is caused by increasing the DRAM density, which has led to physically
smaller DRAM cells that can thus store smaller charges. As a result, the cells
have a lower noise margin, and the level of parasitic electrical interaction is
potentially higher. This can be used to corrupt data, not in DRAM rows that are
directly accessed, but rather in adjacent ones. When performing random memory
accesses, the probability for such faults is virtually zero. However, it drastically
increases when performing accesses in a certain pattern. Namely, flips can be
caused by frequent activation (hammering) of adjacent rows. As data needs to be
served from DRAM and not the cache, an attack needs to either flush data from
the cache using the clflush instruction in native environments [Kim+14] or use
cache eviction in other more restrictive environments, e.g., JavaScript [GMM16].

Seaborn [Sea15a] implemented two attacks that exploit the Rowhammer bug,
showing the severity of faulting single bits for security. The first exploit is a
kernel privilege escalation on a Linux system, caused by a bit flip in a page table
entry. The second one is an escape of the Native Client sandbox caused by a bit
flip in an instruction sequence for indirect jumps.
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In this first part of the thesis, we present some of the first side-channel attacks
and fault attacks targeting implementations of lattice-based cryptography. After
covering the basics of lattices in Chapter 3, we present an attack on the BLISS-B
signature scheme in Chapter 4, analyze a proposed countermeasure in Chapter 5,
and perform a fault attack on the more recent Dilithium scheme in Chapter 6.

Publications and Contribution

This part is based on the following publications.

I Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. “To BLISS-B
or not to be: Attacking strongSwan’s Implementation of Post-Quantum
Signatures.” In: CCS. ACM, 2017, pp. 1843–1855. [PGY17]

is the main basis for Chapter 4. The reported improvements to the attack
on shuffling appear in Chapter 5.
Contribution: I am the first author and contributed the main ideas and
corresponding attack code. Leon Groot Bruinderink developed the integer-
programming twos-recovery method; the practical attack as well as the
simulated experiments were joint work. Yuval Yarom performed all cache
measurements.

I Peter Pessl and Stefan Mangard. “Enhancing Side-Channel Analysis of
Binary-Field Multiplication with Bit Reliability.” In: CT-RSA. vol. 9610.
LNCS. Springer, 2016, pp. 255–270. [PM16]

originally targeted symmetric cryptography, but was later re-used in context
of lattice-based cryptography. The relevant parts appear in Chapter 4.
Contribution: I am the main author and provided all technical contribu-
tions.

I Peter Pessl. “Analyzing the Shuffling Side-Channel Countermeasure for
Lattice-Based Signatures.” In: INDOCRYPT. vol. 10095. LNCS. 2016,
pp. 153–170. [Pes16]

is the basis for Chapter 5.
Contribution: I am the sole author.

I Leon Groot Bruinderink and Peter Pessl. “Differential Fault Attacks on
Deterministic Lattice Signatures.” In: TCHES 2018.3 (2018), pp. 21–43.
[GP18]

is used in Chapter 6.
Contribution: This is joint work with Leon Groot Bruinderink, who
contributed the initial idea and developed the partial reuse scenario, which
is why this latter part is not included in this thesis. I implemented the other
attack scenarios, developed the modified signing algorithm, performed the
practical evaluation, and wrote the discussion on countermeasures.



3
Lattice-Based Cryptography

An Overview

Quantum computers are a serious threat to a majority of currently in-use public-
key cryptosystems which rely on the difficulty of factoring large integers (RSA)
and finding discrete logarithms (DH, ECC). Shor’s algorithm [Sho99], however,
can solve both these problems in polynomial time on such a quantum device.

It is uncertain when large-enough quantum computers will see the light of
day, or even if they will do it at all. An estimate made in 2014 [Mar14] states
that quantum computers able to factor currently-used RSA moduli could be
available as early as 2030. Other predictions are less optimistic [Sha16]. Still,
there is steady and undeniable progress as, e.g., shown by the recent unveiling of
a 72-qubit machine [Kel18] and their beginning public accessibility [Kni17].

This outlook causes serious concerns and has, for instance, already led to
official recommendations from government bodies. The NSA [NSA16; Sch15]
recommends to skip ECC if it is not already adopted, and instead wait for suitable
quantum resistant algorithms. The search for such quantum-secure alternatives
is already in full swing and draws a lot of attention. This is demonstrated by
the high interest in the currently ongoing NIST Post-Quantum Cryptography
standardization process1 [NISc]. At the late-2017 deadline, NIST received 69
proper submissions. This trumps the submission count for previous cryptographic
competitions, such as for AES and SHA-3, by far. Apart from these mostly aca-
demic efforts, modern post-quantum cryptography has also already seen (limited)
real-world evaluation, e.g., Google experimented with the NewHope [Alk+16]
key-exchange in their Chrome browser [Bra16; Lan16].

1NIST repeatedly stated that this process is not supposed to be a competition [Moo17].

13



14 Chapter 3. Lattice-Based Cryptography

Apart from the black-box security of all these new proposals2, efficiency both
in terms of computational complexity and communication overhead (key and
ciphertext sizes) are another important aspect. In this regard, schemes based
on the hardness of certain lattice problems reign supreme and offer a favorable
trade-off. Maybe for this very reason, they form the largest group in terms of
submissions to the NIST call, outnumbering other contenders such as code-based,
hash-based, supersingular isogeny, or multivariate cryptography.

Keys and ciphertexts for lattice-based primitives are somewhat larger than
current RSA moduli, but still acceptably so. Regarding runtime, lattice-based
schemes can even outperform RSA and ECC. This is clearly shown by an ever-
growing body of work targeting their efficient implementation. These implemen-
tations target a wide set of different platforms, ranging from desktop PCs with
vector instructions (e.g., the optimized reference implementations of Kyber and
Dilithium [Ava+17; Lyu+17]) over microcontrollers [OPG14; Liu+15b; POG15]
and FPGAs [Roy+14b; PDG14; How+18] to re-purposed RSA/ECC processors
available on contemporary smart cards [Alb+18]. Please note that this list is by
no means exhaustive.

In contrast to all these advancements, the implementation security aspect is
just now starting to gain some traction and was almost entirely unexplored when
the work on this thesis started. The structure and used implementation techniques
for lattice-based cryptosystems differ drastically from that of RSA/ECC-based
ones. Thus, their susceptibility to this form of attack has to be analyzed. New
algebraic constructs, efficient algorithms, and implementation techniques can
open up a swath of new vulnerabilities. Also, standard countermeasures used for
ECC do not apply.

Outline. Before we can dive into the intricacies of implementing and attacking
lattice-based cryptography, some groundwork has to be done first. For this
reason, in Section 3.1 we give a brief introduction to lattices as such and also
discuss computational problems forming the basis of many reductionist security
arguments. In Section 3.2, we describe one concrete lattice-based primitive,
namely the BLISS signature scheme. A crucial component of BLISS and many
other proposals is Gaussian sampling, which is why we also discuss some sampler
architectures. Finally, in Section 3.3 we recall previous and concurrent work on
implementation security of lattice-based schemes.

3.1 Lattices

A lattice Λ is a discrete subgroup of Rn. When given m linearly independent
vectors b1, . . . ,bm ∈ Rn, the lattice Λ(b1, . . . ,bm) contains all of the points that

2Official forum for the NIST standardization process at https://groups.google.com/a/
list.nist.gov/forum/#!forum/pqc-forum

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
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are integer linear combinations of the basis vectors:

Λ(b1, . . . ,bm) =

{
m∑
i=1

bixi|xi ∈ Z

}

We call B = (b1, . . . ,bm) the basis matrix of the lattice, with n the dimension
and m the rank of the lattice. Lattice bases are not unique: for each full-rank
basis B ∈ Rn×n of Λ, one can apply a unimodular matrix U ∈ Zn×n, such that
UB is also a basis of Λ. There exist lattice-basis reduction algorithms that are
aimed at finding a good basis, which consists of short and nearly orthogonal
vectors. The most important of these algorithms are the LLL [LLL82] as well
as BKZ and its improved versions [CN11]. These algorithms output a new
basis B′ which satisfies certain conditions. Besides outputting B′, LLL and
BKZ implementations (such as those provided by the libraries NTL [Sho] and
fplll [tea16]) can also output U such that B′ = UB.

For cryptographic purposes one typically uses q-ary lattices. In this type it
holds that for any vector v ∈ Λ, all vectors u with u ≡ v mod q are also in the
lattice. Two hard hard problems using such q-ary lattices and forming the base of
lattice-based cryptography are the Learning with Errors (LWE) problem [Reg05]
and the Short Integer Solution (SIS) problem [Ajt96]. For LWE, one samples
a uniformly random matrix A ∈ Zm×nq and two vectors s1 ∈ Znq , s2 ∈ Zmq from
some narrow distribution, such as a discrete Gaussian (cf. Section 3.2.2) with low
standard deviation. The adversary is then given the target t = As1 + s2 mod q
and is tasked to recover (s1, s2). For SIS, an attacker has to find a short but
nonzero vector s ∈ Znq such that As ≡ 0 mod q.

Cryptographic constructions based on LWE or SIS require storing large matri-
ces and computing matrix-vector products. In order to save memory and decrease
execution time, the most efficient lattice-based cryptographic constructions intro-
duce additional structure into their underlying lattice problems. That is, they
work with the polynomial ring Rq = Zq[x]/(xn + 1), with q being a prime and
n a power of 2. An element a ∈ Rq can be described by its coefficient vector
a = (a0, . . . , an−1). Note that we will use bold-face to interchangeably denote
polynomials and their coefficient vectors. Addition of two polynomials a,b is
simply the component-wise addition mod q. Multiplication of two polynomials
a,b ∈ Rq will be denoted by a · b, and can be represented as a matrix-vector
product, i.e., a ·b = aB = bA, where the columns of A,B ∈ Zn×nq are negacyclic
rotations of a and b, respectively. The computation of the i-th coefficient of the
product a · b can be written as 〈a,bi〉, with bi the i-th column of matrix B.

The versions of LWE and SIS using such an additional structure are aptly
named Ring-LWE and Ring-SIS [LPR13]. From the above descriptions, it is
easy to see that in the ring-setting the (n× n) matrix A can be replaced with
the polynomial a; the attacker is now given t = a · s1 + s2. What’s more, the
parameters n and q are usually chosen such that polynomial multiplication can be
efficiently computed using the Number Theoretic Transform (NTT). In essence,
the NTT is a Fast-Fourier Transform over Zq instead of over the complex numbers
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and allows to compute a polynomial multiplication in O(n log n) time, instead of
the O(n2) required for the matrix-vector multiplication of standard LWE.

Module-LWE/Module-SIS are further generalizations of Ring-LWE/Ring-
SIS, respectively. There, one uses matrices and vectors of polynomials. More
concretely, the problems are defined over Rk×`q for some positive integers k, ` > 1:

given a matrix A ∈ Rk×`q and a vector t ∈ Rkq , find two short elements s1 ∈
R`q, s2 ∈ R

k
q such that t ≡ A · s1 + s2 mod q.

3.2 BLISS and Gaussian Samplers

We now give a brief description of one concrete lattice-based primitive, namely the
BLISS [Duc+13] signature scheme and its improved variant BLISS-B [Duc14]. A
crucial component of BLISS, and many other lattice-based schemes, is sampling
from a discrete Gaussian distribution. For this reason we will describe this
distribution and also methods to sample from it.

Notation. With = we denote deterministic assignments (and also comparisons
in cases where the meaning is clear). With ← we refer to probabilistic sampling
from either some distribution or uniformly from a set. We denote the probability
of an event e as Pr(e). The `2 norm of a vector/polynomial w ∈ Rq is defined as

‖w‖2 = ‖w‖ =
√∑n−1

i=0 w
2
i , with wi ∈ [−(q − 1)/2, . . . ,−1, 0, 1, . . . , (q − 1)/2].

3.2.1 Bimodal Lattice Signature Scheme (BLISS)

The most efficient instantiation of BLISS works with polynomials over the ring
Rq = Zq[x]/(xn+1) and thus allows working with efficient polynomial arithmetic.

Key generation for the improved version BLISS-B is shown in Algorithm 3.1.
Apart from an additional rejection step, this algorithm is identical for the original
BLISS scheme. During key generation, two polynomials f ,g with exactly d1 = δ1n
coefficients in {±1}, d2 = δ2n coefficients in {±2}, and all remaining elements
being 0, are sampled. n, δ1, δ2, and q are part of the parameter set.

Algorithm 3.1 BLISS-B Key Generation Algorithm

Output: Public key A ∈ R2
2q, private key S ∈ R2

2q

1: Choose random polynomials f ,g with d1 entries in {±1} and d2 entries in
{±2} until f is invertible

2: S = (s1, s2) = (f , 2g + 1)
3: aq = s2/s1 mod q
4: return (A,S), with A = (2aq, q − 2) mod 2q

Signature generation is described in Algorithm 3.2. It takes as input a message
µ, a public key A, and a private key S = (s1, s2). First, two noise polynomials
y1,y2 are sampled from a discrete Gaussian distribution Dσ. The intermediate
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u is hashed together with the message, where the hash function H outputs a bit
vector c of length n and (small) hamming weight κ. Depending on a random
and secret bit b, the products s1c and s2c are then either added to or subtracted
from the noise polynomials y1 and y2, respectively. BLISS is based on the Fiat-
Shamir with Aborts Framework [Lyu09]. Simply speaking, in this framework a
signature σ is rejected and signing restarted if z does (statistically) not follow
the distribution of y. This rejection sampling done in Line 7 hides any secret
information in the signature and thus provides the zero-knowledge property.
Parameters ζ, d, and p are used for signature compression.

Algorithm 3.2 BLISS Signature Algorithm

Input: Message µ, public key A = (a1, q − 2), private key S = (s1, s2)

Output: A signature (z1, z
†
2, c)

1: y1 ← Dn
σ , y2 ← Dn

σ

2: u = ζ · a1y1 + y2 mod 2q
3: c = H(bued mod p||µ)
4: b← {0, 1}
5: z1 = y1 + (−1)bs1c
6: z2 = y2 + (−1)bs2c

7: Continue with probability
(
M exp

(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))−1
, else restart

8: z†2 = (bued − bu− z2ed)
9: return (z1, z

†
2, c)

The signing procedure of the improved BLISS-B variant is given in Algo-
rithm 3.3. It differs from the original version by replacing the direct multiplication
of Sc with GreedySC (Algorithm 3.4). It computes the product Sc′ for some
ternary vector c′ (this means c′ ∈ {−1, 0,+1}n) that satisfies c′ ≡ c mod 2.
This c′ is chosen such that ‖Sc′‖ is (heuristically) minimized, which in turn
lowers the repetition rate and thus gives on average a performance improvement.
The concrete speed-up depends on the used parameter set, it ranges from a
factor of 1.2 to at most 2.8 [Duc14]. Note that for the specific BLISS input
S = (s1, s2) ∈ R2

2q in GreedySC, we have m = 2n and si = S1i for 0 ≤ i < n and
si = S2i for n ≤ i < 2n where S1i and S2i are the negacyclic rotations of s1 and
s2, respectively. The generated c′ contains information on the secret key; hence
it is kept secret and not output as part of the signature.

For completeness, we also present the verification algorithm in Algorithm 3.5.
The verification algorithm is the same for both BLISS and BLISS-B. For a more
detailed explanation, we refer to the original publications [Duc+13; Duc14].

Ducas et al. [Duc+13] propose several parameter sets for different security
levels. These remain unchanged for BLISS-B. We give the proposed parameters
in Table 3.1.
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Algorithm 3.3 BLISS-B Signature Algorithm

Input: Message µ, public key A = (a1, q − 2), private key S = (s1, s2)

Output: A signature (z1, z
†
2, c)

1: y1 ← Dn
σ , y2 ← Dn

σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c = H(bued mod p||µ)
4: (v1,v2) = GreedySC(S, c)
5: b← {0, 1}
6: (z1, z2) = (y1,y2) + (−1)b(v1,v2)

7: Continue with probability
(
M exp

(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))−1
, else restart

8: z†2 = (bued − bu− z2ed) mod p

9: return (z1, z
†
2, c)

Algorithm 3.4 GreedySC

Input: a matrix S ∈ Zm×n and a binary vector c ∈ Zn
Output: v = Sc′ for some c′ ≡ c mod 2

1: v = 0 ∈ Zn
2: for i ∈ Ic do
3: ζi = sgn(〈v, si〉)
4: v = v − ζisi
5: return v

Algorithm 3.5 BLISS Verification Algorithm

Input: Message µ, public key A = (a1, q − 2) ∈ R2
2q, signature (z1, z

†
2, c)

Output: Accept or reject the signature
1: if z1, z

†
2 violate certain bounds (details in [Duc+13]) then reject

2: accept iff c = H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p, µ)

Table 3.1: BLISS Parameter Sets

Parameter Set n q σ δ1 δ2 κ

BLISS-0 (Toy) 256 7681 100 0.55 0.15 12

BLISS-I 512 12289 215 0.3 0 23

BLISS-II 512 12289 107 0.3 0 23

BLISS-III 512 12289 250 0.42 0.03 30

BLISS-IV 512 12289 271 0.45 0.03 39
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3.2.2 Discrete Gaussians

BLISS, just like many other lattice-based schemes, requires (high-precision)
sampling from the so-called discrete Gaussian distribution. We denote such a
distribution having standard deviation σ and mean zero by Dσ. When writing
y ← Dσ, we have that a variable y is sampled from this distribution Dσ. The
probability of sampling a value x is given by Dσ(x) = ρσ(x)/ρσ(Z), with ρσ(x) =
exp(−x2/(2σ2)) and the normalization constant ρσ(Z) =

∑∞
k=−∞ ρσ(k). Dn

σ

denotes an n-dimensional vector with elements independently sampled from Dσ.
The emergence of lattice-based cryptography and its reliance on such discrete

Gaussian noise led to an increased interest in efficient samplers and a large number
of proposed sampler architectures. Apart from generic methods like rejection
sampling and inversion sampling, these also include, e.g., the Knuth-Yao random
walk [DG14], the Ziggurat method [Buc+13], and arithmetic coding [Saa18].

Compared to lattice-based public-key encryption [LP11], the standard devia-
tion required for BLISS and similar signature schemes is relatively high. This
makes samplers requiring large precomputed tables less attractive, especially for
constrained devices and their usually low storage capacities. A high-precision
evaluation of transcendental functions, as required for straight-forward rejection
samplers, is also not a viable option. For these reasons, specialized samplers were
constructed, two of which we will now present.

Efficient CDT sampling. Pöppelmann et al. [PDG14] proposed an optimized
sampler which is based on the inversion method. For generic inversion sampling,
one first precomputes a cumulative distribution table (CDT), i.e., a table T [y] =
Pr(x < y|x ← D+

σ ) for y ∈ [0, τσ]. Here, τ denotes the tail-cut factor which
is required due to the infinite support of Dσ. Thanks to the symmetry of Dσ,
sampling can be easily reduced to sampling from the one-sided distribution D+

σ

with support [0, τσ] followed by multiplication with a random sign bit. For
actual sampling, one generates a uniformly random r ∈ [0, 1) and returns the y
satisfying T [y] ≤ r < T [y + 1] (using a binary search in T ).

As the statistical distance to a true discrete Gaussian must be kept low, a
straight-forward implementation of the above approach requires that the entries
of T are stored with very high precision, e.g., 128 bits. To reduce the table size
and speed up sampling, Pöppelmann et al. propose the following optimizations.
First, they save memory by using Gaussian convolution. They set k = 11,
σ′ = σ/

√
1 + k2 ≈ 19.53 and sample two values y′, y′′ ← Dσ′ . They then combine

them to y ← Dσ by setting y = ky′+y′′. And second, they speed up sampling by
using a byte-oriented guide table I. Each entry I[r0] stores the smallest interval
(minr0 ,maxr0) with T [minr0 ] ≤ r0/256 and T [maxr0 ] ≥ (r0 + 1)/256. By using
this table, the range for the following binary search can be immediately reduced
to the interval [minr0 ,maxr0).

The detailed sampling procedure is given in Algorithm 3.6. It uses a byte-
wise approach, where Tj [i] denotes the j-th byte of T [i]. To save memory, the
table T is stored in floating-point representation, using a mantissa table M and
an exponent table E. For efficiency reasons Pöppelmann et al. actually store
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T [y] = Pr(x ≥ y|x← D+
σ ), i.e., T [0] = 1 and T [y] > T [y + 1]. This is accounted

for in the binary-search part. For further explanations, we refer to [PDG14].

Algorithm 3.6 CDT Sampler using Guide Tables [PDG14]

Input: Guide table I, mantissa table M , exponent table E
Output: A value y′ sampled according to Dσ′

1: r0 ← {0, 1}8
2: [min,max] = I[r0]
3: i = (min + max)/2, j = 0, k = 0
4: while max-min > 1 do
5: t = Tj [i], with Tj [i] = Mj−E[i][i] or 0
6: if t > rj then
7: min = i, i = (i+ max)/2, j = 0
8: else if t < rj then
9: max = i, i = (min + i)/2, j = 0

10: else
11: j = j + 1
12: if k < j then
13: rj ← {0, 1}8, k = j

14: s← {0, 1}
15: if s then return −i
16: else return i

Bernoulli rejection sampler. Rejection sampling is a generic method to
sample from one distribution f(x) when only having access to samples from
another distribution g(x). For sampling, one draws a value y ← g(x), and then
accepts this value with a probability of f(y)/(M · g(y)), where M is a constant
satisfying f(x) ≤ M · g(x) for all x. If the sample is rejected, then sampling
simply restarts.

In our case f(x) = Dσ(x); g(x) is typically some easy-to-sample-from distribu-
tion, e.g., uniform. Hence, y ∈ [−τσ, τσ], which is then accepted with probability
ρσ(y)/ρσ(0). For this, a uniformly random value r ∈ [0, 1) is sampled and y is
accepted if r ≤ ρσ(y)/ρσ(0). A naive implementation of this method requires
a high-precision evaluation of transcendental functions and is slow due to high
rejection rates.

For this reason, Ducas et al. [Duc+13] introduce a more efficient method
called Bernoulli sampler, which is tailored for BLISS and its high standard
deviation. It uses the subroutine described in Algorithm 3.7 to sample a bit b
from B(exp(−x/f)), i.e., the Bernoulli distribution B parametrized such that
Pr(b = 1) = exp(−x/f). The constant f depends on the standard deviation σ,
while x varies. Pseudocode for the Bernoulli sampler appears in Algorithm 3.8.
For a more detailed description, we refer to [Duc+13].
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Algorithm 3.7 Sampling a bit from B(exp(−x/(2σ2))) for x ∈ [0, 2`)

Input: x ∈ [0, 2`) an integer in binary form x = x`−1 . . . x0. Precomputed table
E with E[i] = exp(−2i/(2σ2)) for 0 ≤ i < `

Output: A bit b from B(exp(−x/(2σ2)))
1: for i = `− 1 downto 0 do
2: if xi = 1 then
3: Ai ∈ {0, 1} ← B(E[i])
4: if Ai = 0 then return 0

5: return 1

Algorithm 3.8 Bernoulli Sampler

Input: Standard deviation σ, integer K = b σσ2
+ 1c with σ2

2 = 1
2 ln 2

Output: A value y′ sampled according to Dσ

1: x ∈ Z← D+
σ2

(details in [Duc+13])
2: z ∈ Z← {0, . . . ,K − 1}
3: Set y = Kx+ z
4: b ∈ {0, 1} ← B(exp(−z(z + 2Kx)/(2σ2))) using Algorithm 3.7
5: if b = 0 then restart
6: if y = 0 then restart with probability 1/2

7: s← {0, 1} and return (−1)sy

3.3 Implementation Security of Lattice-Based
Cryptography

Since lattice-based cryptography has gained traction in recent years, interest in
its implementation-security aspect is also increasing. For the case of passive side-
channel attacks, previous and concurrent works showed, e.g., the applicability of
cache attacks to lattice-based signatures [Gro+16; Bin+17b; SZM17], specialized
power analysis of lattice-based cryptography [PPM17], and cold boot attacks
adapted specifically for lattices [ADP18].

Active implementation attacks on lattice-based cryptography also received
some attention. Two concurrent works [BBK16; Esp+16] investigated fault
attacks on the lattice-based signature schemes BLISS [Duc+13], GLP [GLP12],
PASSSign [Hof+14], and ring-TESLA [Akl+16]. Espitau et al. [Esp+16] investi-
gated loop-abort faults in the generation of the noise-polynomial y.

These attacks make the need for appropriate countermeasures evident. In
fact, many of the reference implementations submitted to the NIST call come
with a basic countermeasure, namely constant (read: key-independent) runtime
and control flow. This measure prohibits timing and cache attacks, but cannot
protect against adversaries having physical access to the device and performing,
e.g., power measurements. For such cases, more in-depth protection mechanisms
such as masked implementations [Bar+18; Ode+18; Rep+15] as well as shuffling
and other randomization techniques [Ode+18; Saa18] were proposed.
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3.3.1 Security of Gaussian Samplers

Gaussian samplers are an integral part of many lattice-based primitives, but also
an interesting side-channel target. As will later be shown, learning the sampled
value via side-channel information enables key recovery. However, implementing
thoroughly secured samplers seems to be a difficult task. Due to their complex
structure, implementing them both correctly and efficiently is challenging and
error-prone already, even without considering implementation security.

In fact, there already are side-channel attacks [Gro+16; Esp+17] which exploit
the non-constant time nature of some samplers. Additionally, the use of Gaussians
can lead to complex rejection conditions. For BLISS, it requires the evaluation
of an exponential and a hyperbolic cosine (Line 7 of Algorithm 3.2). The BLISS
authors do present methods to perform rejection efficiently and without the
need of running high-precision floating-point arithmetic, but do not address the
implementation security issue. However, non-constant time rejection was also
already exploited in previous work [Esp+17].

Countermeasures. There do already exist first approaches to implementing
discrete Gaussian samplers securely [Bos+15; MW17; HLS18; Kar+18]. Some of
these approaches, however, can incur a large performance penalty [Bos+15] or
might not be suitable for the large standard deviations required by lattice-based
signatures [Kar+18].

An intermediate approach is to use an unprotected, or only somewhat pro-
tected, sampler and then shuffle, i.e., randomly permute, the entries in the
generated noise vector [Saa18]. In Chapter 5, this countermeasure will be ana-
lyzed in detail.

Finally, the problem of securely implementing Gaussian samplers can be
entirely sidestepped by not using discrete Gaussians at all. Instead, a different and
easy to sample from distribution can be used. The lattice-based encryption/key
exchange schemes NewHope [Alk+16] and Kyber [Ava+17], for instance, make
use of the binomial distribution with single-trial success probability p = 0.5 and a
small number of trials n. Samples from this distribution can be trivially generated
by simply counting the number of set bits, i.e., computing the Hamming weight,
of a uniformly random variable with fixed bit-length n.

For signatures, this distribution is not well suited, which is why schemes like
GLP [GLP12], Dilithium [Lyu+17], and qTESLA [Bin+17a] use the uniform
distribution over the integers in some fixed range instead. For the used parameters,
constant-time sampling is trivial. Furthermore, this choice also drastically
simplifies the rejection sampling present in all these schemes. Instead of evaluating
transcendental functions, it is sufficient to simply test if the signature output
is in the same range. A downside of using the uniform distribution is that
signatures become slightly larger. Compared to a Gaussian-based instantiation
of Dilithium described in [Duc+17], signatures of the uniform version are larger
by approximately 10 %.
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3.3.2 A Cache Attack on BLISS

At CHES 2016, Groot Bruinderink et al. [Gro+16] presented the first side-channel
attack on BLISS and with that the first implementation attack targeting a lattice-
based signature scheme. Since this attack will be often referenced (Chapter 4
and Chapter 5), we now give a more detailed explanation.

Their attack targets the Gaussian sampler and can thus stand as an example
for the attacks mentioned in the previous section. As their side channel they use
cache timing, i.e., they observe and exploit timing differences caused by the CPU
cache (cf. Section 2.2.1). They use this information to infer some elements of
the noise vector y.

They then focus on Line 5 of Algorithm 3.2, i.e., z1 = y1 + (−1)bs1c. As their
attack targets the original BLISS variant, the c ∈ {0, 1}n used in this equation is
output as part of the signature. Due to the rounding used for compression and
the resulting loss of linearity they cannot use the second part of the signature z†2
and solely use z1. Thus, for the sake of simplicity we will from now on omit the
index 1 of z1,y1, and s1, and always imply it, if not mentioned otherwise.

For each recovered Gaussian sample, an attacker can create an equation of
form

zji = yji + (−1)bj 〈s1, cji〉. (3.1)

Here, i denotes the index of the recovered Gaussian sample in the signature. The
values zji and yji are the i-th coefficients of z1 and y1 in the j-th signature; cji
denotes the i-th column of Cj , which is the matrix used in the matrix-vector
representation of polynomial multiplication. After gathering enough of these
equations over the course of multiple signing operations, they then recover the
secret key s1 using linear algebra or a lattice reduction. s2 can then be trivially
reconstructed by using the connection between public and private key.

Groot Bruinderink et al. apply this technique to two different Gaussian sam-
plers, namely a CDT-based sampler similar to the one described in Algorithm 3.6
and the Bernoulli rejection sampler described in Algorithm 3.8.3 For both, they
performed an evaluation using ideal adversaries and practical experiments using
the Flush+Reload attack technique. We now describe their attacks on the two
samplers in detail.

Attacking the CDT sampler. The CDT sampler (Algorithm 3.6) uses two
tables (CDT table T and interval table I). Accessing these tables can leak the
accessed cache-line. This information, in turn, leaks a range of possible values
for yi. Groot Bruinderink et al. describe two approaches to estimate yi more
precisely than naively using these leaked ranges. The first approach is to intersect
the ranges of possible values learned from each table. The second approach is to
track down the binary search steps done in the sampling procedure by looking at
multiple accesses in table T .

As the search step in table T is a binary search, one of two adjacent values
is returned after the last table-lookup. This means that a sample yji can only

3Further sampler architectures are discussed in the full version of [Gro+16].
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be determined up to an uncertainty of ±1. However, there is generally a bias
in the value that is returned, as the targeted distribution is a discrete Gaussian
and not uniform. If this bias is large enough, Groot Bruinderink et al. guess the
returned value to be the more likely one.

Another obstacle is that they do not get the sign of yji, but only know
|yji| from the accessed cache-lines. However, they use the knowledge of the
corresponding coefficient zji of the signature vector z. It is possible to derive the
sign from zji, as 〈s, cji〉 is small and thus the sign of yji will most likely be the
sign of zji.

After the above procedure, they have approximate knowledge of yji. However,
bit b of the signature is still unknown. Instead of guessing or recovering the
value of this bit for each signature, they only use samples where, with a high
probability, zji = yji. In these samples one has that 〈s, cji〉 = 0 which makes
the value of b irrelevant. After collecting enough samples, they use the challenge
vectors cji that satisfy the above restrictions to construct a matrix L such that
sL ≈ 0 is a small vector in the lattice spanned by L. They then use the LLL
lattice-reduction algorithm [LLL82] on L to find a small lattice basis. With a
high probability, the secret key s is part of the unimodular transformation matrix
retrieved from LLL. The correctness of the key can be verified by matching
against the known public key.

Attacking the Bernoulli sampler. The Bernoulli sampler (Algorithm 3.8)
uses the table E which stores (high precision) exponential values required to do
rejection steps. As this table is only accessed for every set bit of input x (Line
2 in Algorithm 3.7), no table access is done in the case that input x = 0. This
only happens when input z to the Bernoulli sampler (Line 4 in Algorithm 3.8)
is zero, leading to a small subset of possible values yji ∈ {0,±K,±2K, . . .}. As
K is in general large, this can lead to a complete retrieval of yji by also using
knowledge of the corresponding signature coefficient zji. By again restricting to
the cases when yji = zji, Groot Bruinderink et al. used the challenge vectors cji
to construct a matrix L such that sL = 0. The secret vector s can then be found
by calculating the (integer left) kernel of L.



4
Attacking StrongSwan’s Implementation

of BLISS-B

The side-channel attack on BLISS by Groot Bruinderink et al. [Gro+16] de-
scribed on the previous pages breaks new ground and offers the first insights into
implementation security of lattice-based cryptography. Nevertheless, their attack
has some limitations.

First, in their proof-of-concept cache attack, they target the “research-oriented”
reference implementation1 of BLISS. They also modified its code to achieve perfect
synchronization of the attacker with the calls to the sampler. While this method
demonstrates the existence and exploitability of the side-channel, it is not a
realistic and practical setting. Second, and maybe more importantly, their attack
does not apply to the improved BLISS-B. Due to its better performance, this
newer variant is used per default in the first real-world adoption of BLISS, namely
in the production-grade implementation deployed by the strongSwan IPsec-based
VPN suite [str].

The attack target. An important operation in BLISS is the computation
z = y + (−1)b(s · c). Using the recovered values of y over many signatures,
Groot Bruinderink et al. construct a lattice from the challenge vectors such that
s is part of the solution to the shortest vector problem in that lattice. This short
vector is found using a lattice-basis reduction (cf. Section 3.3.2).

In BLISS-B, however, the secret s is multiplied with a ternary polynomial
c′ ∈ {−1, 0, 1}n for which c′ ≡ c mod 2. Still, only the binary version c is part of
the signature and c′ is undisclosed. Thus, the signs of the coefficients of the used

1The reference implementation is available at http://bliss.di.ens.fr/
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challenge vectors are unknown and constructing the appropriate lattice to find
s is infeasible for secure parameters. Note that this problem (or similar ones)
are also present in other works on implementation attacks on the original BLISS,
both for side-channel attacks [Esp+17] as well as fault attacks [BBK16; Esp+16].
Hence, one might be tempted to think of BLISS-B as a “free” side-channel
countermeasure.

Contribution. In this chapter, we show that this is not the case. First, we
present a new key-recovery attack that can, given side-channel information on
the Gaussian samples in y, recover the secret key s. Apart from applying to
BLISS-B, this new key-recovery approach can also increase the efficiency (in the
number of required side-channel measurements) of earlier attacks on the original
BLISS [Gro+16]. Second, we use this new key-recovery approach to mount an
asynchronous cache attack on the BLISS implementation provided by strongSwan.
Hence, we attack a real-world implementation under realistic settings.

Our key-recovery method consists of four steps:

� In the first step, we use side channels to gather information on the noise
vector. We use these leaked values, together with known challenge vector
elements, to construct a linear system of equations. However, the signs in
this system are unknown. (Section 4.2.1)

� In the second step, we solve the above system. We circumnavigate the
problem of unknown signs by using the fact that −1 ≡ 1 mod 2. That
is, we first solve the linear system over the bits, i.e., in GF(2), instead of
over the integers. Due to errors in the side channel, the linear system may
include some errors. Solving such a system is known as the Learning Parity
with Noise (LPN) problem. We present a tweaked LPN solving algorithm
in Section 4.6 and use it to learn the parity of the secret key elements, i.e.,
to find s mod 2 (Section 4.2.2).

� In some parameter sets (cf. Section 3.2.1), the key s ∈ {0,±1}n and thus
the above already uniquely determines the magnitude of the coefficients.
In others, however, the secret key can also have some coefficients with
±2, which have parity zero. In the third step, we employ one of two
heuristics (depending on the parameter set) to identify those, both exploit
the magnitude of the coefficients of s · c′. The first heuristic uses an Integer
Programming solver. The second uses a Maximum Likelihood estimate.
(Section 4.2.3)

� At this stage, we know the magnitude of each of the coefficients of the
secret key s. In the fourth step, we finalize the attack and extract s. We
construct a Shortest Vector Problem (SVP) based on the public key and
the known information about the secret key. We solve this problem using
the BKZ lattice-reduction algorithm. (Section 4.2.4)
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When using the idealized cache-attack presented by Groot Bruinderink et
al. [Gro+16] and the BLISS-I parameter set, our new method can reduce the
number of required signatures from 450 to 325.

We then perform a cache attack on the BLISS-B implementation which is
deployed as part of the strongSwan VPN software. We recover the secret signing
key after observing roughly 6 000 signature generations. Unlike Groot Bruinderink
et al., our adversary is asynchronous and runs in a different process than the victim.
The adversary uses the Flush+Reload attack by Yarom and Falkner [YF14],
combined with the amplification attack of Allan et al. [All+16]. Furthermore,
we target a real-world implementation and not a research-oriented reference
implementation. Consequently, our attack scenario is much more realistic. While
strongSwan does not claim any side-channel security, our results still show that
practical attacks on the BLISS family are feasible.

Outline. In Section 4.1 we give some additional background, namely a quick
introduction to LPN and a closer look at limitations of earlier attacks on BLISS.
We then show our improved key-recovery attack in Section 4.2. We evaluate
our new method in Section 4.3 by comparing it to earlier work. In Section 4.4,
we perform a full attack on the BLISS implementation provided by strongSwan.
We briefly discuss countermeasures in Section 4.5. As the used error correction
technique is only one step in key recovery, but requires a more in-depth explanation
and additional background, we defer its detailed description to Section 4.6.

4.1 Preliminaries

In this section, we give some additional preliminaries required for this chapter.
First we recap the LPN problem. Then we further describe some limitations of a
previous side-channel attack on BLISS.

4.1.1 Learning Parity with Noise (LPN)

We now recall the Learning Parity with Noise (LPN) problem, whose search
version appears in Definition 1.

Definition 1 (Learning Parity with Noise). Let k ∈ GF(2n) and ε ∈ (0, 0.5) be
a constant noise rate. Then, given ν vectors ai ∈ GF(2n) and noisy observations
bi = 〈ai,k〉+ ei, the ai sampled uniformly, and the ei sampled from the Bernoulli
distribution with parameter ε, find k.

The most efficient algorithms aimed at solving this problem are based on the
work of Blum et al. [BKW03]. Later work then modified and improved the BKW
algorithm [LF06; GJL14]. While these algorithms run in sub-exponential time,
they tend to require a large number of LPN samples as well as a lot of memory.
A different approach is to view LPN as decoding a random linear code over the
binary field GF(2). While this second approach runs in exponential time, it
typically offers a negligible memory consumption and lower sample requirements.
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LPN is a well-researched problem and is used as a basis for cryptographic
constructions [Pie12]. Furthermore, LPN solving algorithms have also been used
in side-channel attacks on binary-field multiplication [Bel+15; BFG14; PM16].
The extension of this problem from the binary field GF(2) to a prime field GF(q)
is known as Learning with Errors (LWE) [Reg05] and is a major cornerstone in
lattice-based cryptography.

4.1.2 Limitations of Previous Attacks

The side-channel attack on BLISS described in Section 3.3.2 has certain limitations
and caveats. Due to the unknown bit b, which is potentially different for each
signature, Groot Bruinderink et al. [Gro+16] only use samples where zji = yji
and thus 〈s, cji〉 = 0 (with high probability). This, however, only holds in roughly
15 % of all samples (cf. Figure 4.3) and thus a lot of information is discarded.
By finding a method to use all samples for the attack, the number of required
signatures could drop drastically.

A second and more severe limitation is that the previous attack does not
apply to the improved BLISS-B signature scheme. Groot Bruinderink et al.
recover the key by solving a (possibly erroneous) linear system sL ≈ 0, where
L consists of the used challenge vectors cji. However, the GreedySC algorithm
(Algorithm 3.4), which was added with BLISS-B, performs a multiplication of
s with some unknown ternary c′ ≡ c mod 2, with c′ ∈ {−1, 0, 1}n. In simple
terms, the signs of the coefficients in c′ (and thus also in the resulting lattice basis
L′) are unknown. Hence, a straight-forward solving of sL′ ≈ 0 is not possible
anymore.

A third limitation of the attack of Groot Bruinderink et al. is the question of
practicality. The attack targets an academic implementation that is not used in
any “real-world” applications. Furthermore, the attack is synchronous. To achieve
this, Groot Bruinderink et al. modify the code of the BLISS implementation to
interleave the phases of the Flush+Reload attack with the Gaussian sampler. In
practice, it is not clear if an attacker can achieve such a level of synchronization
without modifying the source, and an adversary that can modify the source can
access the secret key directly without needing to resort to side-channel attacks.
Consequently, while Groot Bruinderink et al. show the exploitation potential
and a proof-of-concept, their attack falls short of being practical.

We now present a new key-recovery technique that resolves the issues discussed
in this section. That is, it works even for BLISS-B and can reduce the number of
required signatures by using all recovered samples. Furthermore, in Section 4.4
we give results on our improvements on the practicality of the previous attack.
That is, we present the asynchronous attack on strongSwan’s implementation of
BLISS-B.
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4.2 An Improved Side-Channel Key-Recovery
Technique

In this section, we present our new and improved side-channel attack on BLISS,
which also works for BLISS-B. Our method consists of four main steps, each step
reveals additional information on the secret signing key s.

The first step is equivalent to previous works. That is, the attacker performs
a side-channel attack, e.g., a cache attack or power analysis, on the Gaussian-
sampler component to recover some of the drawn samples yi of y. With this
information we can construct a (possibly erroneous) system of linear equations
over the integers, using knowledge on zi − yi = (−1)b(s · c′). (Section 4.2.1)

Due to the previously mentioned sign-uncertainty in BLISS-B (the recovered
terms s · c′ instead of s · c), the solution cannot be found with simple linear
algebra in Z. Instead, in Step 2 we solve this system over the bits, i.e., in GF(2).
For error correction, we employ an LPN algorithm that is based on a decoding
approach and can incorporate differing error probabilities. (Section 4.2.2)

This does not give us the full key, but instead s∗ = s mod 2. For some
parameter sets however, there are some coefficients ±2 (i.e., BLISS-0, BLISS-III
and BLISS-IV have δ2 > 0). In Step 3, we retrieve their positions. We use the
current knowledge on the secret key s∗ to derive 〈s∗, cji〉, and compare this with
zji − yji = 〈s, c′ji〉 (obtained from the side channel). Based on that, we give two
different methods in Section 4.2.3 to determine the positions of the ±2 coefficients
and derive |s| ∈ {0, 1, 2}n.

In the fourth step, we finally recover the full signing key. We use |s| to reduce
the size of the public key. We then perform a lattice reduction and search for s2
as a short vector in the lattice spanned by this reduced key. Linear algebra then
allows recovery of the full private key (s1, s2) (Section 4.2.4).

We now give a more detailed description of these steps.

4.2.1 Step 1: Gathering Samples

Akin to previous attacks (cf. Section 3.3.2), we need to observe the generation of
multiple signatures and use a side-channel to infer some of the elements of the
corresponding noise vector y = y1. In other works, the exploited side channels
were cache timings (in [Gro+16]) or power consumption (in [Pes16]).

Side-channel analysis has to deal with noise and other uncertainties. Due to
these effects a recovered sample yji might not be correct. In our scenario, the
probability ε of such an error is known (or can be estimated to a certain extent)
and can be different for each sample. We will later use these probabilities to
optimize our attack.

For each recovered sample yji, we can write an equation zji = yji+(−1)b〈s, c′ji〉,
which holds with probability 1− ε. As the signs of coefficients of c′ji are unknown,

we can simply ignore the multiplication with (−1)b and instead implicitly include
this factor into c′ji. Unlike Groot Bruinderink et al., we do not require that
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〈s1, cji〉 = 0 and thus can use all recovered samples. We compute the difference
tji = zji − yji and rearrange all gathered c′ji into a matrix L′ to get sL′ = t.

This system is defined over Z. However, due to the unknown signs in the c′ it
cannot be directly solved using straight-forward linear algebra, even in the case
that all recovered samples are correct. Instead, a different technique is required.

4.2.2 Step 2: Finding s1 mod 2

In the second attack step, we solve the above system by using the following
observation. Line 6 of Algorithm 3.3, i.e., z1 = y1 + s1 · c′, is defined over Z.
That is, there is no reduction mod q involved2. Such an equivalence relation in
Z obviously also holds mod 2, i.e., in GF(2), whereas the reverse is not true.

In GF(2), we have that −1 ≡ 1 mod 2. This resolves the uncertainty in L′

and we can, at least when assuming no errors in the recovered samples, solve
the system s∗L′ = t∗ in GF(2). Here s∗ and t∗ denote s mod 2 and t mod 2,
respectively. In the BLISS-I parameter set (Table 3.1), we have that δ2 = 0.
Thus, s∗ reveals the position of all dδ1ne = 154 nonzero, i.e., (±1), coefficients.
However, a simple enumeration of all 2154 possibilities for s is still not feasible.
Before we discuss a method to recover the signs of s and thus the full key, we
show how errors in t∗ can be corrected.

Error Correction mod 2. As stated in Section 4.2.1, a recovered Gaussian
sample yji might not be correct. Hence, the right-hand-side of the system
s∗L′ = t∗ is possibly erroneous. For instance, in the cache attack on CDT
sampling algorithm of Groot Bruinderink et al., errors cannot be avoided. Hence,
the capability of error correction is crucial.

We can rewrite the above equations in GF(2) as s∗L′ = t∗ + e. Here, t∗ is
errorless and the error is instead modeled as vector e. Solving this system is
exactly the LPN problem described in Section 4.1.1, thus we employ an LPN
solving algorithm to recover s∗. The most time-efficient algorithms to solve LPN
are based on the work of Blum et al. [BKW03]. A caveat of this and improved
versions [LF06; GJL14] are large memory and LPN-sample requirements. For
instance, with n = 512 and an error probability ε of just 0.01, the often quoted
LF1 algorithm by Levieil et al. [LF06] requires 252 bytes of memory. Thus,
for BLISS and the already somewhat high dimension of n = 512 this class of
algorithms is not ideal for the problem at hand.

Also, note that in the definition of the LPN problem (Definition 1) the error
probability ε is constant for all samples. This, however, does not reflect the
reality of our side-channel attack. There, each recovered Gaussian sample can
be assigned a potentially different error probability εi. By making use of this
additional knowledge, the solving process can potentially be sped up.

We use a new LPN-solving algorithm that can make use of such differing
probabilities and that does not require an extensive amount of memory. First, we

2In fact, due to the parameter choices and the tailcut required by a real Gaussian sampler,
|y1 + s1 · c′| can never exceed q.
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perform filtering, i.e., only keep the samples with the lowest error probabilities.
All other samples are discarded. Then we use a decoding approach, i.e., solving
LPN by decoding a random linear code, on the remaining samples. We tweaked
Stern’s decoding algorithm [Ste88] such that it can incorporate varying error
probabilities. As a detailed description of the algorithm requires additional
background, we defer it to Section 4.6. This method was originally proposed in
the context of a side-channel attack on polynomial multiplication in GF(2) [PM16],
but the algorithmic problem is identical.

It is easy to see that due to the initial filtering of highly reliable equations,
there exists a possible trade-off between gathered samples and computational
runtime. That is, with more equations one can expect a lower error probability of
the few best samples, which decreases the runtime of decoding. We will explore
this trade-off in Section 4.3.

Determining error probabilities. Thus far, we did not discuss how the error
probabilities of the samples are computed. They mainly depend on the used
side-channel attack. Groot Bruinderink et al. [Gro+16] attack two different
samplers using a cache attack. In their (idealized) attack on a Bernoulli sampler,
they can recover samples perfectly. Hence, no error correction is required. The
attack on a CDT sampler, however, cannot exclude errors. There, the error
probability depends on the used cache weakness3.

4.2.3 Step 3: Recovering the Position of Twos

After the above second attack step, we know s∗ ≡ s mod 2. If we have d2 = δ2n >
0 (i.e., in BLISS-0, BLISS-III or BLISS-IV), we denote s ∈ {0, 1}n the vector
with si = 1 whenever si = ±2, i.e. this vector is non-zero at each coefficient
where vector s has coefficient ±2.

In the third attack step, we use one of two methods to recover s, one based
on integer programming and the other based on a maximum likelihood test.
Both make use of the fact that the weight κ of the challenge vector c (and
hence also c′) is relatively small. Thus, in any inner product 〈s, c′i〉, only a
small number of coefficients in s are relevant. From the knowledge of s∗, we
can immediately derive how many of the selected coefficients are ±1. We define
this quantity as η1 = 〈s∗, |ci|〉. The other κ − η1 are then either 0 or ±2. We
define the (unknown) number of twos as η2 = 〈s, |ci|〉; this number is bound by
0 ≤ η2 ≤ min(d2, κ− η1).

Both methods then compare the output of the side-channel analysis, i.e.,
|zji − yji| = |〈s, c′ji〉|, to η1 and use this to derive information on η2. We will
now discuss both methods.

Integer Programming Method. Our first method recovers s by formulating
it into an Integer Program. First, suppose we perfectly retrieved yji from a

3The error probabilities are specified in Appendix B of the full version of [Gro+16].
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side-channel. If

|zji − yji| = |〈s, c′ji〉| > η1 + 1,

we know that η2 > 0, i.e. there has to be at least one ±2 involved making up for
the difference in the above inequality. We save all |cji| for which the above is
true in a list M. Then, we need to find a solution r for the following constraints:

Mr ≥ 1.

We also add another constraint stating that a solution must satisfy ||r||1 = δ2n,
so that we end up with the correct number of coefficients in the solution.

Finding the solution s can be seen as a minimal-set-cover problem. Here, the
indices of Mi form sets and r a cover. We find the smallest solution for this
problem using an Integer Program solver, namely GLPK [Pro]. Note that by
adding more constraints, i.e., more rows in M, the probability that the solver
finds the correct solution increases.

The above method cannot be used if the errors in the recovered samples
y exceed ±2. Such errors could break the Integer Program due to conflicting
constraints. However, it is possible to deal with ±1 errors, as the difference
between |zji− yji| and η1 needs to be at least 2. Samples with an error of ±1 can
be detected an discarded, simply due knowing the correct parity. Note that in
the work of Groot Bruinderink et al. [Gro+16], an (idealized) adversary targeting
the CDT sampling algorithm only makes errors of ±1. Hence, this method can
be used for this scenario.

Statistical Approach. We now give a second approach that can recover the
position of twos in s1. It differs from the first as we use a statistical approach
rather than integer programming. Thus, it can withstand errors more easily.

We use the following observation. The probability that a certain zi − yi is
observed clearly depends on η1 and η2. If η2 = 0, then the probability density
function is essentially a binomial distribution picking from {±1} instead of the
usual {0, 1}. If η2 6= 0 but η1 = 0, the same goes with {±2}. We compute the
joint distribution for all possible combinations of η1 and η2

We then perform a standard hypothesis testing. That is, for every recovered
sample we compute Pr(Z − Y = zi − yi|H1 = η1,H2 = η2) for the correct η1 and
for all 0 ≤ η2 ≤ min(d2, κ− η1). Note that all distributions, and thus also the
joint one, are symmetric. Thus, the actual sign of zi − yi is not relevant. Then,
we apply Bayes’ Theorem to get every Pr(H2 = η2|Z − Y = zi − yi), compute
the expected value of H2, and divide this number by min(d2, κ− η1). This gives
us the probability that any one of the min(d2, κ− η1) unknown but involved key
coefficients is 2.

Finally, we perform a log-likelihood test. For each unknown coefficient sk
in s1, we compute the mean of the logarithm of the above probability, over the
recovered samples where cji is 1 at index k. We then set the d2 coefficients with
the highest score to 2.
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4.2.4 Step 4: Recovering s1 with the Public Key

After the above 3 steps we have recovered |s|. In the fourth and final step, we
recover the signs of all its nonzero coefficients and thereby the full signing key s.

We do so by combining all knowledge on |s| = |s1| with the public key.
Key generation (Algorithm 3.1) computes a public key A = {2aq, q − 2}, with
aq = s2/s1 = (2g + 1)/f in the ring Rq. In the BLISS-I and BLISS-II parameter
sets (Table 3.1), both f ,g have dδ1ne = 154 entries in {±1}, while all other
elements are zero. Thus, both these vectors are small.

When writing s1 ·aq = s2, it is easy to see that s2 = 2g+1 is a short vector in
the q-ary lattice generated by aq (or more correctly, the rows of Aq). Obviously,
the parameters of BLISS were chosen in such a way such a straight-forward
lattice-basis reduction approach is not feasible. However, knowledge of |s| allows
a reduction of the problem size and thus the ability to recover the key.

With matrix-vector notation, i.e., s1Aq = s2, it becomes evident that all
rows of Aq at indices where the coefficients of |s| (and thus s1) are zero can be
simply ignored. Thus, we discard these rows and generate a matrix A?

q with size
(dδ1ne × n), i.e., (154× 512) for parameter sets BLISS-I and BLISS-II). Hence,
the rank of the lattice, i.e., the number of basis vectors, is decreased.

We further transform the key-recovery problem as follows. First, we do not
search for s2 directly, but instead search for the even shorter g used in the
key-generation process. We have that f · aq = 2g + 1, thus f · aq · 2−1 = g + 2−1

and we simply multiply all elements of A?
q with 2−1 mod q. We discard the

computation of the first coefficient, which contains the added 2−1 mod q, and
thus reduce the dimension of the lattice to n− 1.

Second, we reduce the lattice dimension further to some d with δ1n < d < n−1
by discarding the upper n−1−d coefficients. Hence, we do not search for the full
g but for the d-dimensional sub-vector g?. If, on the one hand, this dimension d
is too low, then g? is not the shortest vector in the q-ary lattice spanned by the
now (dδ1ne × n) matrix A?

q . If, on the other hand, d is chosen too large, then
a lattice-reduction algorithm might not be able to find the short g?. For our
experiments with parameter sets BLISS-I and BLISS-II, we set d = 250.

Finally, we feed the basis of the q-ary lattice generated by the columns of A?
q

into a basis-reduction, i.e, the BKZ algorithm. The returned shortest-vector is
the sought-after g?. We then solve f?A?

q = g? for f? ∈ Zdδ1ne. This f? will only
consist of elements in ±1, which are the signs of the non-zero coefficients of the
full f . By putting the elements of f? into the nonzero coefficients of s′1, we can
fully recover the first part of the signing key f = s1. Finally, the second part of
the key is s2 = aq · s1. Thus, the full signing key is now recovered.

4.3 Evaluation of Key Recovery

In this section, we give an evaluation of our new key-recovery technique. That is,
we analyze its performance and compare it to the attack of Groot Bruinderink
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et al. [Gro+16] on original BLISS. Recall, however, that all previous work was
unable to perform key-recovery for BLISS-B.

In order to allow a fair comparison, we reuse the modeled and idealized
adversaries of earlier work. Concretely, we look at the idealized cache-adversary
targeting the CDT sampling algorithm of Groot Bruinderink et al.. Thus, for
the evaluation our Step 1 is identical to theirs.

We analyze the performance of the following steps in our key recovery. We
analyze the key recovery mod 2, i.e., the LPN solving approach (Step 2). Then,
we evaluate the success rate of both two-recovery approaches (Step 3). Finally,
we state figures for the full-key recovery using a lattice reduction (Step 4).

4.3.1 Step 2: Key-Recovery mod 2

For evaluation of the second attack step, i.e., mod-2 key recovery, we only consider
the BLISS-I parameter set.

Our used LPN approach utilizes differing error probabilities of samples. Its
first step is to filter samples, i.e., keep only those with lowest error probability.
Evidently, this means that the success probability increases with the number
of gathered LPN samples. Thus, we tested the performance for a broad set of
observed signatures. For each test, we ran decoding on all 16 hyperthreads of a
Xeon E5-2630v3 CPU running at 2.4 GHz. If this does not find a solution after
at most 10 minutes, then we abort and say that the experiment has failed.

Cache attack on CDT sampling. Figure 4.1 shows the results of the ideal-
ized cache-attack on a CDT sampler by Groot Bruinderink et al. [Gro+16]. We
did not perceive any significant differences between BLISS and BLISS-B here,
so we performed experiments for both versions and give the average. We reach
a success rate of about 0.9 when using 325 signatures. This is roughly 28 %
less than the 450 signatures required in previous work. These savings can be
explained as follows. We can now use all recovered samples, and not only those
where z = y. However, this is somewhat offset by the fact that our LPN-based
approach is not as error-tolerant as their lattice-based method which is not
applicable in our setting.
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Figure 4.1: Success rate of LPN decoding for an idealized attack on CDT sampling
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4.3.2 Step 3: Recovery of Twos

For evaluation of the third attack step, we analyzed the success rate of both
twos-recovery procedures (Section 4.2.3) with the idealized CDT adversary. We
consider all parameter sets with δ2 > 0, i.e., BLISS-0, BLISS-III, and BLISS-IV.

We show the success rate as a function of the number of recovered samples in
Figure 4.2. Please note that this is not equal to the number of required signatures
(see [Gro+16]). As seen in Figure 4.2a, the linear-programming approach requires
30 000 samples for BLISS-0 and 400 000 samples for BLISS-III, respectively. Here
we did not evaluate the performance with BLISS-IV due to even higher sample
requirements. The second approach, which is based on statistical methods,
requires more samples for BLISS-0 (45 000) but performs better for BLISS-III
(35 000) and BLISS-IV (130 000).
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Figure 4.2: Success rate for Twos recovery

4.3.3 Step 4: Key-Recovery using Lattice Reduction

In the last step, i.e., recovery of the full signing key s from |s| (Section 4.2.4), we
use the BKZ lattice-reduction algorithm. Concretely, we use the implementation
provided by Shoup’s Number Theory Library (NTL) [Sho]. We set the BKZ
block size to 25 and abort the reduction algorithm as soon as a fitting, i.e., short
enough, candidate for the d-dimensional vector g? is found. Such a candidate
vector must have a Hamming weight of at most dδ1ne and must consist solely of
elements in {±1}.

We evaluated the correctness and performance of this method by running over
250 key-recovery experiments for both BLISS-I and BLISS-BI. In each experiment,
we generated a new key, performed a key recovery mod 2 (assuming a perfect
and errorless side-channel), and finally performed a lattice reduction. All our
experiments were successful, hence we can assume that once s∗ = s1 mod 2 is
known, the full signing key can always be recovered. The average runtime of
lattice reduction (with early abort) was roughly 4–5 minutes on an Intel Xeon
E5-2660 v3 running at 2.6 GHz.

Other parameter sets. For parameter sets BLISS-0, BLISS-III, and BLISS-
IV, we were not able to perform full key-recovery using the above method. In
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case of BLISS-I and BLISS-II, the Hamming weight of s1 and hence the rank
of the reduced q-ary lattice is δ1n = 154. For BLISS-III and BLISS-IV, this
quantity increases to 232 and 262, respectively. Due to the resulting increased
rank of the lattice, we were not able to recover the key using BKZ.

4.4 Attacking strongSwan’s BLISS-B

In this section, we perform a cache attack on the BLISS-B implementation of
the strongSwan IPsec-based VPN suite [str]. Concretely, we use the parameter
set BLISS-I. We describe the setup and the execution of the cache attack in
Section 4.4.1. Our adversary is not synchronized with the victim, thus we perform
synchronization based on the signature output (Section 4.4.2). This corresponds
to the first step of our key-recovery method. Finally, we apply the other three
steps and describe the outcome.

4.4.1 Asynchronous Cache Attack

We carry out the experiment on a server featuring an 8-core Intel Xeon E5-2618L
v3 2.3 GHz processor and 8 GB of memory, running a CentOS 6.8 Linux, with
gcc 4.4.7. We use strongSwan version 5.5.2, which was the current version at
the time of running the experiments. We build strongSwan from the sources
with BLISS enabled and with C compile options -g -falign-functions=64. To
validate the side-channel results against the ground-truth, we collect a trace of
key operations executed as part of the signature generation. The trace only has
a negligible effect on the timing behavior of the code and is not used for key
extraction.

For the side-channel attack, we use the FR-trace tool of the Mastik toolkit
version 0.02 [Yar16]. FR-trace is a command-line utility that allows mounting
the Flush+Reload attack with amplification. We set FR-trace to perform the
Flush+Reload attack every 30000 cycles. We describe the locations we monitor
below. We set an amplification attack against the function pos binary, which is
used as part of Line 1 of Algorithm 3.8. This slows the average running time of
the function from 500 to 233000 cycles, creating a temporal separation between
calls to Algorithm 3.8. However, this slowdown is not uniform and 26 % of the
calls take less than 30000 cycles, i.e. below the temporal resolution of our attack.

The BLISS implementation included in strongSwan uses the Bernoulli-sampling
approach described in Section 3.2.2. Thus, we reuse the exploit of Groot Bruin-
derink et al. [Gro+16] and detect if the input to Algorithm 3.7 was 0. Our cache
adversary is asynchronous. Thus, to detect the zero input we have to keep track
of several events. First, we detect calls to the Gaussian sampler (Algorithm 3.8).
Second, strongSwan interleaves the sampling of the two noise vectors y1 and
y2, i.e., it calls the sampler twice in each of the 512 iterations of a loop. As we
only target the generation of y1, we detect the end of each iteration and only
use the first call to the Gaussian sampler in each iteration. Third, we track the
entry to Algorithm 3.7 and only use the last entry per sampled value. Other
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calls to this function correspond to rejections (Lines 5 and 6 of Algorithm 3.8)
and thus cannot be used. Finally, if we detect that Line 3 of Algorithm 3.7 was
not executed, we know that x = 0. In this case, the sampled value y is a multiple
of K = 254.

For BLISS-I, the above events, which we will dub zero events from now on,
happen on average twice per signature. In order to minimize the error rate, we
apply aggressive filtering. Also, we found that possibly due to prefetching, access
to Line 3 of Algorithm 3.7 is often detected although x = 0. As a result, we
detect zero events on average 0.74 times per signature. 92 % of these detections
were correct, the other 8 % were false positives in which the access to Line 3 was
missed by the cache attack.

4.4.2 Resynchronization

Even though zero events can be detected by an adversary, due to the asynchronous
nature of the attack it is not obvious which of the 512 samples corresponds to
this detection. In other words, we can detect (with high probability) that there
exists a sample y ∈ {0,±K,±2K, . . .}, but we do not know which sample.

We recover the index i of a detected zero event as follows. First, we locate
the first and the last call to the Gaussian sampler in the cache trace. We then
estimate the positions of the other 510 calls by placing them evenly in between.
Note that Algorithm 3.8 does not run in constant time, hence this can only give
a rough approximation. However, we found that run-time differences average out
and that the estimated positions are relatively close to the real calls. In fact, this
method gives better results than counting the calls to Algorithm 3.8 in the trace,
as some calls are missed and counting errors accumulate. We also found that the
error, i.e., the difference from the estimated index of an event to its real index in
the signature, roughly follows a Gaussian distribution with a standard deviation
of 3.5. We then compute the time span between the detected event and the
estimated calls to the sampler, match it against the above Gaussian distribution,
and then apply Bayes theorem to derive the probability that the detected call to
the Gaussian sampler corresponds to each index 0. . . 511 in the signature.

This alone, however, does not allow a sufficient resynchronization. We use
the signature output z in order to further narrow down the index i. For each
coefficient in z, we compute the distance d to the closest multiple of parameter
K used in Algorithm 3.8. Then we look up the prior-probability that the sample
y corresponding to any signature coefficient z was a multiple of K, this is simply
the probability that a coefficient of s1 · c′ is equal to d. We estimated this
distribution using a histogram approach, it is shown in Figure 4.3 (for BLISS-I).
As K = 254 and the coefficient-wise probability distribution of s1 · c′ is narrow,
many elements of the unknown y have a zero or very small probability of being
a multiple of K. Note that this approach is somewhat similar to the attack on
the shuffling countermeasure described in Section 5.2.

Finally, we combine the prior-probabilities derived from the signature output
z with the matching of the trace, which we do by applying Bayes theorem
once more. We then use only these zero events that can be reassigned to a
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Figure 4.3: Coefficient-wise probability distribution of s1 · c′

single signature index with high probability, i.e., > 0.975, and where the prior-
probability Pr(〈s1, c′i〉 = d) is also high, i.e., d < 3.

Roughly 1/3 of detected zero events fulfill both criteria. Out of these, 95 %
are correct, i.e., they correspond to a real zero event and were reassigned to the
correct index. Recall that our key-recovery approach only requires the value of
zi − yi mod 2. Thus, 97.5 % of all recovered samples are correct in GF(2).

4.4.3 LPN and Results

For LPN-decoding (Section 4.2.2) we set the code length to 1024. With the above
detection rates, we require on average 6 000 signatures in order to collect this
number of samples. Note that for the selection of used samples we again made
use of probabilities. For instance, we use only zero events that can be reassigned
to a single sample with high probability. Unlike in the case of the attack on the
CDT sampling algorithm, however, we were not able to accurately determine any
differing error probabilities within the selected 1024 samples. Thus, we used a
non-modified algorithm for decoding the random linear code. Our used decoding
algorithm is based on the descriptions in [BLP08].

We performed 100 decoding experiments using the error distribution obtained
from the previous step. In the 1024 used samples we encountered between 26 and
36 errors. We ran decoding using 64 threads on two Xeon E5-2699 v4 running at
2.2 GHz. Similar to Section 4.3.1, we abort decoding after 10 minutes and then
consider it to have failed. 98 experiments were successful, 82 of them finished
within the first minute.

As we used the parameter set BLISS-I and thus have s ∈ {0,±1}, the third
attack step is not required. The fourth attack step, lattice reduction, then finally
returns the secret signing key. The runtime of this step was already stated in
Section 4.3.3.

4.5 Countermeasures

To protect against the side-channel attack described in this paper, it is vital that
Algorithm 3.7 is implemented in constant time and without secret-dependent
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branching. More specifically, the handling of rejections and table look-ups should
not depend on the input. As shown in Algorithm 4.1, this can be done by
performing all ` steps in the loop and always sample an Ai. The return value v
is then updated according to the values of Ai and xi in constant time. We use
C-style bitwise-logic operations to describe this update.

Algorithm 4.1 Sampling a bit from B(exp(−x/(2σ2))) for x ∈ [0, 2`), constant-
time version

Input: x ∈ [0, 2`) an integer in binary form x = x`−1 . . . x0. Precomputed table
E with E[i] = exp(−2i/(2σ2)) for 0 ≤ i < `

Output: A bit b from B(exp(−x/(2σ2)))
1: v = 1
2: for i = `− 1 downto 0 do
3: Ai ∈ {0, 1} ← B(E[i])
4: v = v & (Ai | ∼xi)
5: return v

Note that while this ad-hoc countermeasure can fix the exploited leak in
this specific implementation, different attack techniques and side-channels might
still allow key recovery. Thus, high-precision Gaussian samplers will likely stay
a prime target for attacking lattice-based schemes. Some cryptographers and
implementers seem to have noted this problem, as there already exist approaches
at thoroughly secure sampling. These include different sampler architectures as
well as other and more easy to sample from noise distributions (cf. Section 3.3.1).

4.6 A Closer Look at the Error Correction

In Section 4.2.2, we used a tweaked LPN algorithm to recover s1 mod 2 from
possibly erroneous noise samples y. Previously we only gave the basic intuition
of this error-correction approach, but did not discuss its details. We now make
up for this and give an in-depth description.

Notation. For a random variable X, we use E(X) to denote its mean. We use
side-channel leakage to derive the probability that a bit b is set to 1. We write
pb = Pr(b = 1). We use τb as the respective bias, i.e., τb = |pb − 1/2|. When
performing a classification, we set b = bpbe, with b·e the rounding operator. This
classification has an error probability εi = 1/2− τi.

The above is exactly the Bernoulli distribution with parameter pb, we denote
it as B(pb). We also make use of the so-called Poisson binomial distribution. This
distribution describes the sum of N independent Bernoulli trials, where each trial
has a possibly different Bernoulli parameter pk. Given the vector (p1, . . . , pN ), the
respective density function can be computed by using the closed-form expression
by Fernandez and Williams [FW10].
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4.6.1 LPN and Decoding

In this section, we explore the connection between LPN (Definition 1) and coding
theory. Then we give approaches for decoding random linear codes.

Connection to random linear codes. The LPN problem (Definition 1)
can be restated as decoding a random linear code over GF(2) [Pie12]. Let
A = [ai]0≤i<ν be the matrix whose rows are the ai. Further, let b and e be
row vectors of the bi and ei, respectively, Then, one can think of A as generator
matrix of a random linear code. Decoding requires to find the message k given a
noisy word b = kA + e, which is exactly LPN.

Linear codes are characterized by the three main parameters [n, k, d], with n
the code length, k the code dimension, and d the minimum Hamming distance
between any two valid codewords. In the case of LPN, the dimension k is equal to
the size of the secret. For random linear codes, the obtained code rate R = k/n
is, with very high probability, close to the Gilbert-Varshamov bound [CG90].
That is, R ≈ 1−H(d/n), with H the binary entropy function. The code length n
is chosen according to this bound, with d/n ≈ ε.

The fastest algorithms for decoding random linear codes rely on Information-
Set Decoding (ISD). First proposed by Prange in 1962 [Pra62], these algorithms
have quite a long history, with probably the most notable version being Stern’s
algorithm [Ste88].

Syndrome decoding. Before discussing decoding algorithms in detail, we
briefly describe syndrome decoding. For a (k×n) generator matrix G in standard
form, i.e., G = (Ik|Q), the so-called parity-check matrix H is given as H =
(−QT |In−k), with Q a (k × (n− k)) matrix. The set of valid codewords C forms
the kernel of the check matrix, i.e., Hc = 0,∀c ∈ C. For a noisy word y = c + e,
we have Hy = He = s. s is called the syndrome, it only depends on the error e.

For decoding, we now want to find an error term e with some maximum
weight w such that He = s. In other words, we are searching for at most w
columns of H summing up to s.

Stern’s attack (and improvements). We now review Stern’s algorithm.
This algorithm takes as input a check matrix H, a syndrome s, and a maximum
error weight w.

In a first step, Stern partitions the n columns of the parity-check matrix H
into two distinct sets I,Q. I is made up of (n− k) randomly selected columns
which must form an invertible subset. Q is comprised of the remaining k columns.
For simplicity, we assume that the columns of the check matrix are permuted
such that H′ = (Q|I). Note that such a permutation also affects the syndrome
and the position of error bits.

Next, he selects a size ` subset Z of I, where ` is an algorithm parameter. Q
is randomly split into two size k/2 subsets X ,Y. The second part of H′ is then
transformed into identity form by applying elementary row operations. Stern
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then searches for (permuted) error terms e with a maximum weight w having
exactly p nonzero bits in X , p nonzero bits in Y, no nonzero bits in Z, and at
most w − 2p in the remaining columns. This is visualized in (4.1). This search
uses a collision technique. If it fails, then the algorithm is restarted by selecting
new Q and I. For more details on the algorithm we refer to [BLP08].

H′ = (Q|I) =



k/2: p err.︷ ︸︸ ︷
1 0 0 · · ·

k/2: p err.︷ ︸︸ ︷
· · · 0 1 0

1 1 0 · · · · · · 0 0 0
0 1 1 · · · · · · 1 1 1

...
...

0 1 1 · · · · · · 1 0 1

∣∣∣∣∣∣∣∣∣∣∣

`: 0 err.︷ ︸︸ ︷
1

1
1

. . .

1

 (4.1)

Canteaut and Chabaud [CC98] proposed an improvement of this algorithm,
which was later refined by Bernstein, Lange, and Peters [BLP08]. Instead of
choosing Q, I randomly at each iteration and spending considerable time to
transform H′ to the desired form, one can use a simple column swapping. In each
iteration, c elements of Q are exchanged with c from I, where c is an algorithm
parameter.

Stern and reliability. The possibility of enhancing the performance of Stern’s
algorithm by using reliability information was briefly mentioned by Valem-
bois [Val00]. However, thus far it was not used in a cryptographic or side-channel
context. Also, it lacks proper description and an in-depth runtime analysis.

We will now explain our new algorithm and thus show how reliability infor-
mation can be leveraged to reduce the computation time. First however, we
introduce a new version of LPN which better describes the problem at hand.

4.6.2 LPVN: A new LPN Variant

In standard LPN (Definition 1), the error probability ε is constant for all samples.
This, however, does not reflect the reality of the side-channel information, where
every LPN sample can be assigned a possibly different error probability. We
formalize this by introducing a new problem dubbed Learning Parity with Variable
Noise (LPVN).

Definition 2 (Learning Parity with Variable Noise). Let k ∈ GF(2n) and ψ
be a probability distribution over [0, 0.5]. Then, given ν vectors ai ∈ GF(2n), v
error probabilities εi, and noisy observations bi = 〈ai,k〉 + ei, the ai sampled
uniformly, the εi sampled from ψ4, and the ei sampled from B(εi), find k.

Casting LPVN to LPN is possible by simply setting ε = E(εi). However, the
additional information in the form of the εi allows designing more efficient algo-
rithms. Also, it is easy to see that with a non-zero meta-probability distribution
ψ in close vicinity of 0, the problem becomes trivial given enough samples.
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4.6.3 Filtering

In the context of side-channel analysis, the overall average error rate E(εi) can be
expected to be high, i.e., beyond 0.25. The resulting large code length n might
lead to excruciating decoding runtimes.

In order to cut this time down drastically, we perform filtering of the samples.
When given a certain number ν of LPVN samples, only those n with the lowest
error probability are kept. All other samples are simply discarded.

The number of available samples ν plays a crucial role in the expected attack
runtime. By increasing ν, the quality of the best samples is also expected to
rise. This in turn decreases the required code length n and the runtime of the
decoding algorithm. Hence, a trade-off between the number of samples ν and
computational complexity is possible. This is in stark contrast to standard LPN,
where the decoding runtime is mostly independent of the number of samples.

4.6.4 Using Reliability in Stern’s Attack

After filtering, the n remaining samples are used as input for Stern’s algorithm.
More concretely, we use the improved version given in [BLP08]. This algorithm
does not directly cope with reliability information. Hence, by setting bi = bpie a
classification is performed.

Instead of discarding the reliability information at this point, we use it to
further speed up the decoding process. Recall that Stern’s algorithm involves a
column-swapping step. We now tweak the algorithm by replacing the uniform
selection of the swapped columns with a reliability-guided one. The goal is to
minimize the expected error in Q, while still assuring high randomness in the
chosen columns.

Column-swapping procedure. The probability that a column t ∈ Q is
deselected in the next step is set to be directly proportional to its error probability
εt, i.e., Pr(t) = εt/

∑
t∗∈Q εt∗ . Analogously, we use the squared bias to select the

new column, i.e., for every u ∈ I, Pr(u) = τ2u/
∑
u∗∈I τ

2
u∗ . Experimentally we

found that this combination gives the best performance.

We use rejection sampling in order to sample from these continuously chang-
ing probability density functions. Concretely, we sample a t ∈ Q and a
u ∈ [0,max0≤i<n(εi)] uniformly and accept t if u < εt. Note that computa-
tion of the normalized probabilities Pr(t) is not required for this method.

The impact of inaccurate probabilities. It might not always be possible to
derive accurate probabilities for all samples. For instance, when using a template
attack, the leakage characteristic of the profiling device can slightly differ from
that of the attacked device. As long as the error in probability is not too large,
the attack will still work. However, the algorithm runtime and its analysis might
suffer from inaccuracies.
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4.6.5 Runtime Analysis of the Tweaked Algorithm

In this section, we present the method used for runtime estimation of our
tweaked information-set decoding algorithm. This analysis follows along the lines
of [BLP08].

The runtime of ISD algorithms is typically measured in the number of required
bit operations. As the amount of bit operations per iteration of Stern’s algorithm
is essentially unchanged when using our tweak, we refer to [BLP08] for the
calculation of this quantity. The number of required iterations however is
expected to decrease. We now detail the estimation of this quantity.

Probability that a column is part of Q. In a first step, for each column t of
the initial parity-check matrix we retrieve Pr(t ∈ Q), i.e., the average probability
of t being part of Q when using the replacement rules given in Section 4.6.4.
This is done by using a method similar to a Markov-chain analysis.

We define s = (s0, s1, . . . , sn−1) as the vector containing these probabilities
(the state). This vector is initialized uniformly, i.e., si = 512/n, 0 ≤ i ≤ n (for
BLISS-I). Then we construct a transition matrix A which depends on the current
state. A column in this matrix corresponds to the event that the respective
column of the check matrix is drawn in the uniform-sampling step of the rejection-
sampling procedure. The main diagonal of A contains the probability that this
selection is rejected, which is 2τ in our case. The remaining entries contain the
swapping probabilities, i.e., the probability that column j ∈ Q is exchanged with
column i /∈ Q. Note that these depend on the current state, as columns already
part of Q can not be swapped into it. Thus, we have

Ai,j,i 6=j = (1− 2τj)
(1− si)τ2i∑

j∗ 6=j(1− s∗j )τ2j∗
and Ai,i = 2τi.

Finally, we update s = As. The recalculation of A and updating is repeated
until the probability vector s reaches a steady state.

Error-count density function. In the subsequent step, we compute the
probability density function for the error count for both Q and I. For that we
acquire the Poisson binomial PDF with Bernoulli probabilities εt · Pr(t ∈ Q)
and εt · (1− Pr(t ∈ Q)), respectively. We use the closed-form expression of the
Poisson binomial PDF as provided by Fernandez and Williams [FW10].

The resulting quantities are then used to compute the conditional probabilities
of selecting or deselecting an erroneous column into Q, depending on the current
number of errors in this set. This then directly gives us the probability to increase
or decrease the number of errors in Q for each swapping step.

Final Markov-chain analysis. Finally, a Markov-chain analysis akin to
[BLP08] is used to estimate the number of expected iterations. Here we simply
use our increase/decrease probabilities from above instead of the one given in
[BLP08].





5
Analyzing the Shuffling Side-Channel

Countermeasure for Lattice Signatures

The previous chapter, alongside other work such as [Gro+16; Esp+17], clearly
demonstrates the need to protect Gaussian samplers against side channels. Still,
countermeasures should be affordable regarding runtime. This is especially true
for embedded devices and the typically already high cost of running asymmetric
primitives on such platforms.

In this regard, an interesting proposal by Saarinen [Saa18] is to simply use an
unprotected (or somewhat protected) sampler to generate a vector of n samples
and then randomly permute this vector. Such a shuffling is easy to implement
and has a low runtime overhead. However, the concrete security gains achieved
by shuffling have thus far never been analyzed. As a consequence, convincing
security arguments are still sorely lacking.

Contribution. In this chapter, we tackle the above problem and present an
in-depth analysis of shuffling in the context of lattice-based signatures. Our
analysis consists of two main parts, a side-channel analysis and a new attack on
shuffling.

In the first part, we perform a side-channel attack on a Gaussian sampler
implementation running on an ARM microcontroller. Our attack combines two
methods. First, we recover the control flow of the sampling procedure. As many
samplers, including the one used by us, require data-dependent branches and are
not inherently constant runtime, this already allows to narrow down the possible
samples. And second, we use templates to uniquely identify the sampled value.

45
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While this attack is not able to identify all samples, it can recover certain values
with very high confidence.

In the second part of our shuffling analysis, we present a new attack on
the countermeasure. We perform an un-shuffling, i.e., reassign some recovered
samples to the corresponding part of the signature output. After having collected
enough matching pairs over multiple signatures, we can recover the private signing
key. We stress that we do not attack the shuffling algorithm as such, we do
not even consider its leakage in our analysis. Instead, we exploit the difference
in distributions of Gaussian samples (high standard deviation) and a specific
key-dependent intermediate (low standard deviation).

As we aim for a broad analysis, we evaluate this attack given several modeled
side-channel adversaries. They are largely based on the previous side-channel
analysis, but to test the theoretical boundaries of the countermeasure we also
include an ideal attacker who can recover all samples. We also consider two
different versions of the shuffling countermeasure. Our analysis shows that the
simpler variant does not provide a noteworthy increase in side-channel security.
Our ideal attacker succeeds using only 40 signatures. With 7 000 signatures, the
modeled adversary who is closest to our side-channel analysis can also easily
recover the key. However, the second shuffling version, which uses Gaussian
convolution and shuffles twice, can increase the number of observed signatures
required for an attack significantly. Nevertheless, with around 70 000 to 90 000
signatures (and some additional processing time for error correction) an attack is
still practical and possible.

Finally, note that while we focus on BLISS, Gaussian sampling is required
for many lattice-based schemes. Thus, the shuffling countermeasure and also our
attack could be used for a wide range of implementations.

Outline. First, in Section 5.1, we describe the countermeasure in more detail.
Then, we evaluate the side-channel leakage of a concrete Gaussian sampler
implementation in Section 5.2. Using the results of this side-channel analysis, we
present an attack on the shuffling countermeasure and also discuss its outcome
in Section 5.3. Finally, we conclude this chapter in Section 5.4.

5.1 The Shuffling Countermeasure

Instead of protecting the sampler itself, one could also simply use an unprotected
(or somewhat protected) sampler implementation to generate n samples and
then randomly permute them. This breaks the connection between time of
sampling and index in the signature and thus makes attacks more difficult. This
shuffling countermeasure was first proposed by Roy et al. [Roy+14a], albeit in the
context of lattice-based public-key encryption. More recently, Saarinen [Saa18]
proposed a variant that uses shuffling multiple times (in conjunction with Gaussian
convolution) for use in BLISS. For m stages, he sets σ′ = σ/

√
m, then samples

yi ← Dn
σ′ for i = 1 . . .m and computes y =

∑
i Shuffle(yi). However, neither
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Roy nor Saarinen provided an analysis of this countermeasure. Thus, its true
effectiveness has still been unknown.

In this chapter, we will investigate the security of two versions of shuffling.
First, we have a look at simple shuffling in combination with the sampler of
Pöppelmann et al. [PDG14]. Second, we will analyze an instantiation of multi-
stage shuffling that was concretely proposed by Saarinen [Saa18]. He suggests
combining two stages of shuffling with the Gaussian-convolution parameters of
Pöppelmann et al.. Below we describe both versions.

Single-Stage Shuffling: y′,y′′ ← Dn
σ′ , y = Shuffle(ky′ + y′′)

Two-Stage Shuffling: y′,y′′ ← Dn
σ′ , y = k · Shuffle(y′) + Shuffle(y′′)

5.2 A Side-Channel Attack on a Gaussian
Sampler

Before evaluating the shuffling countermeasure, it is crucial to understand how
much information on Gaussian samples a side-channel attacker can realistically
expect. For this reason, we now present a side-channel analysis of a sampler
implementation. Recall that Gaussian sampling is a random process that does
not involve any keying material. Also, its output is typically used only once.
Hence, we are limited to single-trace SPA-style attacks.

5.2.1 Implementation and Measurement Setup

For our experiments, we implemented the Gaussian sampling procedure proposed
by Pöppelmann et al. [PDG14] (cf. Section 3.2.2) in software. The contents
of all required lookup-tables are directly taken from their open-sourced BLISS
FPGA implementation. Note that our analysis focuses solely on sampling from
Dσ′ (Algorithm 3.6), i.e., we do not use any leakage stemming from the Gaussian
convolution step. Whats more, for this chapter we exclusively use BLISS-I (cf.
Table 3.1), thus we have a fixed σ ≈ 215 and corresponding lookup-table contents.

As a target platform, we chose a Texas Instruments MSP432 (ARM Cortex-
M4F) microcontroller on an MSP432P401R LaunchPad development board1.
For pseudo-random number generation, we used the on-chip hardware AES
accelerator in counter mode. While this setup is likely susceptible to DPA attacks
[Jaf07; MH15], we do not use any leakage of the AES execution.

In our attack, we exploit the EM side channel. As shown in Figure 5.1, we
placed a Langer RF-B 3-2 near-field probe in proximity to the external core-
voltage regulation circuitry. Note that for this setup, no spatial profiling of on-chip
EM leakage is required. Also, we expect the results of power measurements to
be somewhat similar. For our evaluation, we use a dedicated trigger that signals
the start of a sampling procedure. Real-world attackers do not have this option
and need to detect the 1024 calls to Algorithm 3.6 required for sampling y1.

1The design files of this development board are available online [Tex].
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Figure 5.1: Measurement setup. The EM probe is placed directly to the left of the
external core-voltage regulation circuitry.

Such adversaries can use, e.g., trace alignment in combination with the methods
described in the next section.

5.2.2 Reconstructing the Control Flow

When analyzing Algorithm 3.6, it becomes obvious that the data-dependent
branches offer much information on the sampled value. In fact, the return value
can be uniquely determined by the first random byte r0 and the control flow.

We recover the control flow using a trace-matching approach. For each
possible conditional jump, we record a reference trace by computing the mean of
multiple profiling traces at select points in time (in some cases just a single point)
near the first occurrence of this branch. During the attack, we then compare
these references to the attack trace by computing the mean of squared differences.
Figure 5.2 illustrates that for some branches, the most information lies within
a time shift of subsequent operations. In these cases, we use a single reference
and match them at both locations. We then use the case with the lowest score.
We repeat this matching process until the algorithm exits. The position of the
respective next matching process is determined on the basis of the previously
taken branches. The final branch detection then also reveals the sign of the
sampled value.

With the described method, we can reconstruct the control flow with perfect
accuracy. This should not be surprising, when, e.g., observing the huge trace
differences illustrated in Figure 5.2.

Note that, while we use device profiling for deriving the reference traces, there
exist non-profiled alternatives. An attacker could, e.g., build the references on
the fly after a visual inspection of a limited number of traces. Alternatively, he
could use a clustering approach for determining the branches.

5.2.3 Determining the Sampled Values via Templates

To uniquely determine the sampled value, we recover the value of r0 using a
template attack [CRR02]. For each possible control flow (up to a certain depth),
we built templates for each value of r0 that can potentially result in this flow.
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Figure 5.2: Demonstration of a timing difference stemming from a branch inside the
first loop iteration. After around cycle 420, the trace for T1[i] > r1 (blue,
solid) trails by 8 clock cycles.

The points-of-interest for the attack were determined using a t-test, as proposed
by Gierlichs et al. [GLP06]. We limited the maximum number of used points to
8.

The outcome of the template attack is depicted in Figure 5.3. There we show
a histogram of the maximum classification probabilities. In our implementation,
the guide-table lookup already yields the final sample for 206 values of r0. As
seen in Figure 5.3a, we cannot determine the correct samples with high confidence
in these cases. As our later analysis on the shuffling countermeasure requires
such a high confidence, we have to discard these samples. This situation changes
in cases that require a single comparison step in the binary-search algorithm.
Figure 5.3b shows that 6.5 % of these samples can be determined with probability
close to 1.

If more than a single comparison is required, then the template attack can
recover the sampled value almost perfectly. The overall success rate here is 99.5 %.
If we discard the 1 % of samples whose probability is lower than 0.90, then the
success rate reaches 99.9 %.
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(a) No comparisons
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(b) 1 comparison

Figure 5.3: Results of the template attacks for no or 1 comparison
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5.3 An Analysis of the Shuffling Countermeasure

In this section, we give an in-depth analysis of the shuffling countermeasure. First,
we give a brief discussion on its cost. Afterwards, we present an attack that can
circumvent this countermeasure, albeit at the cost of requiring a higher number
of recorded signatures. We state the performance of this attack with regards to
several modeled side-channel adversaries and variations of the countermeasure.

Please note that we focus on the original BLISS variant in this chapter. Thus
any mention of BLISS refers to this version unless stated otherwise.

5.3.1 Cost

We evaluated the cost of shuffling by implementing the Fisher-Yates shuffling
algorithm [Knu98]. When running at 48 MHz, which is the maximum for our
MSP432 evaluation platform, shuffling a vector of n = 512 entries took 1.5 ms.
For comparison, sampling an element from Dn

σ′ , which requires 512 calls to
Algorithm 3.6, needs about 2.5 ms. For creating a single signature, 4 elements of
Dn
σ′ need to be sampled. The shuffling operation is called either 2 or 4 times,

depending on whether single-stage or two-stage shuffling is used. In the latter
case, the total runtime of sampling is increased by 57 %, which is still relatively
little when it comes to SCA countermeasures.

5.3.2 Considered Attackers

In order to allow a broad analysis of the shuffling countermeasure and to achieve
easier reproducibility, we do not directly use the outcome of the attack described
in Section 5.2. Instead, we use the results as a basis to model three side-channel
adversaries. Each one is based on a different assumption on his capabilities. Note
that all following descriptions are in the context of sampling from the ”small” Dσ′

and thus Algorithm 3.6, which is called 2048 times during signature generation.
We do not use any leakage from the multiplication with k, the addition needed
for Gaussian convolution, and even the shuffling algorithm itself. We do so to
keep the analysis as generic and implementation-independent as possible.

A1 - perfect SCA adversary. This attacker can recover all generated samples.
We use this adversary to evaluate the theoretical limits of the shuffling
countermeasure.

A2 - profiled SCA adversary. This attacker can profile the device and per-
form a template attack. We assume that the attacker can correctly deter-
mine the entire control flow and is able to correctly classify all samples
which required at least 2 comparisons in the binary-search step. For the
analysis, we make a further simplification and only use samples with ab-
solute above a certain threshold. This threshold is set so that all samples
larger than it require at least 2 comparisons. All samples at and below the
threshold are considered to be unknown.



5.3. An Analysis of the Shuffling Countermeasure 51

A3 - non-profiled SCA adversary. This attacker is not able to profile and
thus cannot perform a template attack. However, he is still able to recon-
struct the control flow. All samples which are not uniquely determined by
the control flow are considered to be unknown.

Adversary A2 is closest to the side-channel analysis given in the previous
section. However, he does not use any potentially classified samples which used
only a single comparison (cf. Figure 5.3b) or the small portion of samples
requiring 2 comparisons but being below the threshold. In return, we also ignore
the tiny error probability and assume that all reconstructed samples are correct.

For our particular BLISS parameter set and sampler implementation, we have
the following concrete implications. For A2, the mentioned threshold is 47, i.e.,
we say that the adversary can correctly classify all samples with an absolute
value larger than 47. Approximately 1.5 % of the samples from Dσ′ meet this
restriction. The adversary A3 can correctly classify all samples with an absolute
value larger than 54, which amounts to only 0.53 % of all samples.

5.3.3 Attack without Shuffling

For key recovery, we use the relation also exploited by Groot Bruinderink et al.
(cf. Section 3.3.2). We gather equations of form zji = yji + (−1)bj 〈s1, cji〉 and
then solve the resulting linear system. We do not consider error correction and
require that these equations are correct.

If the entire y1 is known, which is the case for adversary A1, and no shuffling
is used, then key recovery is trivial and requires only a single signature. s1 (or
−s1) can be computed by solving the linear system given as z1 − y1 = (−1)bs1c
for any value of b. Attackers A2 and A3 require multiple signatures in order to
recover the key, even in the non-shuffled scenario. As our sampling procedure
combines two samples y′, y′′ ← Dσ′ to y = ky′ + y′′, we can only recover samples
y where the side-channel information reveals both y′ and y′′. Hence, A2 can
recover a portion of 0.0152 ≈ 2.2·10−4 of all samples, whereas for A3 this quantity
decreases to 2.2 · 10−5.

We need to combine n = 512 equations of form zji = yji + (−1)bj 〈s1, cji〉
into a system. If the bj are recoverable by using side-channel information and
the original BLISS variant is used, then this system can trivially be solved for
s1. If the bj are not known, or BLISS-B is used (where s1 is multiplied with the
unknown c′), then the approach presented in Chapter 4 can be used. That is, the
system can be solved over GF(2) to learn the parity of s1, which is then further
used to mount a lattice attack resulting in the full s1.

The expected number of signatures required to gather n = 512 classified
samples and corresponding signature values is roughly 4 400 for A2 and 36 000 for
A3. Note that in this non-shuffled scenario, the differences between A2 and the
SCA from Section 5.2, i.e., not using all classifiable samples, have a significant
impact. Including them reduces the attack cost to only around 1 000 signatures.
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Figure 5.4: Comparison of the coefficient-wise distribution of s1c (Xsc) and y (Dn
σ)

5.3.4 An Attack on Shuffling - Basic Concept

If the elements of y1 are shuffled after sampling, then the above attack is not
directly applicable. To still use it, we first need to do an un-shuffling, i.e., we
need to re-assign recovered Gaussian samples to their respective index in the
signature and thus to the correct zi ∈ z1.

We do that by exploiting the differing (coefficient-wise) distributions of s1c
and y1; they are shown in Figure 5.4. The distribution of s1c, which we denote
with Xsc, was estimated using a histogram approach, whereas y1 follows Dn

σ .
Observe that the standard deviation of y1 is much larger than that of s1c. Thus,
we can say that z1 ≈ y1.

We use this observation as the basis of our attack. If we know one particular
coefficient y of y1 but not its position due to shuffling, then we can test all
coefficients of the public z1 for proximity to y. If only a single zi ∈ z1 is ”close”
to y, then we can assign y to the position of zi and compute zi− y to retrieve the
value of (−1)b〈s1, ci〉. As actual metric for closeness, we use Xsc(zi−y). Observe
that this approach is expected to succeed mostly for large absolute values of y
and thus zi, i.e., in the tail of Dσ. Due to the high dimension n = 512, there will
be many similar values of y and zi near the center; thus a unique assignment will
not be possible in those cases.

5.3.5 Attack Details

The previous description of our attack is relatively informal; we now give a more
in-depth explanation. For now, consider the case of single-stage shuffling, we
adapt the approach to the two-stage variant later on.

Given two values zi and y, we define zi ∼ y as the event that zi and y belong
to the same index i in the signature. Without considering knowledge of other
processed values, we have a likelihood Pr(zi ∼ y) = Xsc(zi − y).

When now given the public z1 and a single sample y of y1, we can compute,
for each zi ∈ z1, Pr(zi ∼ y|z1). We do that by using Bayes’ theorem with uniform
prior, i.e., Pr(zi ∼ y|z1) = Pr(zi−y)/

∑
zj∈z1

Pr(zj−y). Analogously, for a single

zi and a fully reconstructed but shuffled y1, we can compute Pr(zi ∼ yj |y1).
We perform this analysis on every possible combination of y and zi. Thus,

we compute a likelihood matrix L ∈ (n × n), with Li,j = Xsc(zi − yj). Af-
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terwards, we apply the Bayesian step to both the columns and the rows of
this matrix in order to derive the aforementioned conditional probabilities.
Then, we combine both normalized matrices by taking their maximum, i.e.,
we set Pr(zi ∼ yj) = max(Pr(zi ∼ yj |z1),Pr(zi ∼ yj |y1)). In other words, we
both search for zi that fit to only one y, and y that fit to only one zi. Finally, for
each zi ∈ z1, we pick the most likely y as argmaxyj Pr(zi ∼ yj). This shuffling
analysis is repeated for each recorded signature.

The straight-forward key-recovery algorithm described in Section 5.3.3 just
involves linear algebra and hence requires errorless information. Thus, we keep
only pairs (zi, y) that match with very high probability; we set the threshold to
0.99. Error correction can be achieved by employing the methods presented in
Chapter 4; we will discuss this later for the two-stage approach.

Merging equal y. For key recovery, we compute zi− y for each recovered pair
(zi, y). Here, the actual index of y is irrelevant, only the value of y needs to be
correct. Consequently, if y1 contains multiple copies of the same value, then they
can be treated as a single entity.

We use this observation as follows. We create a vector u which contains
the unique elements of y1. We then compute Pr(zi ∼ uj |u). For that, we use
the number of times each uj appears in u as prior probabilities (instead of the
uniform distribution). For y← Dσ, the average number of unique elements in
y is 377. For y′ ← Dσ′ only 92 elements are unique on average. Especially in
the latter case, the merging of equal y′ increases the rate of matches and also
decreases the computation time of the subsequent analysis. From now on, we
will always use this optimization implicitly.

Note that merging equal values of z1 is not useful. As already hinted by
always using subscripts, each zi is coupled to one specific ci, i.e., a negacyclic
rotation of the signature part c.

Results on single-stage shuffling. We evaluated our described attack against
(single-stage) shuffling by running it with 220 signatures. The results for A1 are
shown in Figure 5.5. 2.5 % of all samples match with a probability of at least 0.99.
With this number, only 40 signatures are required to gather n = 512 equations.
As expected, the successfully matched y are in the tail of D′σ (Figure 5.5b).

For A2 and A3, we do not know the entire y1 and so did not compute
Pr(zi ∼ yj |y1). When only using Pr(zi ∼ y|z1), we can match a proportion of
1.4 ·10−4 (A2) and 2.2 ·10−5 (A3) of all samples. This translates to requiring 7 000
and 46 000 signatures, respectively. The number of expected errors in n = 512
equations is well below 1 for all considered adversaries.

When compared to the signature requirements without shuffling, one can
observe only a marginal increase. All numbers are well low enough to be practical,
thus shuffling once is not an effective countermeasure.
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Figure 5.5: Result for the attack on single-stage shuffling, attacker A1

5.3.6 Adaptation to Two-Stage Shuffling

For two-stage shuffling, the y′,y′′ are independently permuted. Thus, we cannot
compute any elements of y1 in a straight-forward manner which makes the above
attack not directly applicable. A similar one, however, is still possible; we now
state the required modifications. As the sampling (and shuffling) process proceeds
in two steps, we also adapt a two-stage approach in the attack.

Assume we are given z1 and the shuffled y′,y′′, with y1 = ky′+y′′ and hence
z1 = ky′ + y′′ + (−1)bs1c. We first aim at finding matching pairs for elements
of z1 and y′. Afterwards, for each pair (zi, y

′), we compute zi − ky′ and then
match this difference with the elements of the second vector y′′. We now explain
the details of this process.

First stage. The first part differs from the previous attack; we now test the
proximity of elements of z1 to those of ky′. As z1 − ky′ = y′′ + (−1)bs1c, we
cannot test proximity with regards to Xsc. Instead, we could use the distribution
of an x = x1 + x2, with x1 ← Dσ′ and x2 ← Xsc. We denote it as Xsc+Dσ′ .
However, as the attacker has (at least partial) knowledge on y′′, this would be
suboptimal. Hence, we set (with some abuse of notation) x2 ← y′′, i.e., randomly
chosen elements from y′′. We call the resulting distribution Xsc+y′′ and use it to
fill our likelihood matrix L with Li,j = Xsc+y′′(zi − ky′j). The remainder of the
analysis, i.e., the Bayesian steps and picking the maximum, are then the same.
Finally, all samples matched with probability greater than 0.99 are fed to the
second stage of the recovery.

For A2 and A3, we require additional modifications. First, we cannot compute
Xsc+y′′ , as y′′ is only partially known. Instead, we construct a hybrid distribution
that merges Dσ′ (for all unknown samples up to the threshold of 47 and 54,
respectively) and the known samples of y′′. Then, unlike in the single-stage
attack, we would also like to compute (or rather estimate) Pr(zi ∼ y′j |y′) despite
not having the full y′. We do so by introducing a dummy sample y′d, which
represents all (unknown) samples below the model threshold. Thus, we test if zi
matches with any of the known y′j or with any element below the threshold. We
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set the likelihood of y′d as in (5.1), the remaining steps are then equivalent to
those of A1.

Pr(zi ∼ y′d) =

threshold∑
y=−threshold

Xsc+Dσ′ (zi − y) (5.1)

Second stage. In the second stage, we test each pair (zi, y
′
i) found in the

previous stage with the elements of y′′. We do so by computing zi − ky′i and
then testing for proximity to the elements of y′′ with regards to Xsc.

Even for A1, the expected number of matched pairs per signature in the first
stage is relatively small. Thus, we cannot compute Pr((zi − ky′i) ∼ y′′j |(z1 − ky′))
and are left with Pr((zi − ky′i) ∼ y′′j |y′′). Like in the first stage, A2 and A3 only
have partial knowledge of y′′. We use the same trick as above and introduce a
dummy sample y′′d representing all elements below the modeled threshold of 47
and 55, respectively. Here we use (5.2) and then again perform the Bayesian step
and filtering of the most probable matches.

Pr((zi − ky′i) ∼ y′′d ) =

threshold∑
y=−threshold

Xsc(zi − ky′i − y) (5.2)

Results on two-stage shuffling. Like earlier, we evaluated our described
attack against two-stage shuffling by running it with 220 signatures. For our ideal
adversary A1, we can match 0.26 % of samples in the first stage (with probability
greater than 0.99). Out of the found pairs, 0.15 % can also be matched in the
second stage. This results in requiring 260 000 signatures in order to find n = 512
equations.

Interestingly, the losses incurred by the restrictions of A2 are relatively small.
We can match 0.25 % in the first and 0.15 % of samples in the second stage. With
285 000, the number of required signatures is virtually identical to the previous
case. As to be expected, A3 performs slightly worse. The matching rates decrease
to 0.18 % and 0.10 %, respectively. This results in requiring 575 000 signatures

Error Correction and BLISS-B. Up until now, we required that all reas-
signments are correct. This, of course, requires aggressive filtering and in turn a
high number of observed signature generations. When using the decoding-based
error correction discussed in Section 4.2.2 and Section 4.6, samples with some-
what lower confidence can also be admitted, thus allowing a trade-off between
computational effort (for decoding) and number of side-channel measurements.

Even without error correction, shuffling once cannot significantly increase secu-
rity. For this reason, we evaluate error correction only for the two-stage approach.
For our performance evaluation, we used the same setup as in Section 4.3.1.

Recall that the attack of Chapter 4 solves a system over GF(2) and uses
probabilities in the decoding process. This can be used for unshuffling, as now we
only require knowledge of Pr(zji − y ≡ 0 mod 2) instead of Pr(zji − y) Assume
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for now that the adversary is in possession of the full, but shuffled, y. This y
contains two large elements of values, for example values 1498 and 1502, and
there is one signature coefficient that is large, for example one element z = 1500.
Only one of the two elements of y belong to this z, and both elements have a
probability of 50 %. However, the probability that the difference of z − y is even
is Pr(zi − y ≡ 0 mod 2) = 1. In general, if given full (or parts of) shuffled y, all
these probabilities can be easily computed as:

Pr(zi − y ≡ 0 mod 2) =
∑

yj∈y:zi−yj≡0 mod 2

Pr(zi ∼ yj)

Thus, the error probability for computation over GF(2) at least as small as over
Z, and in most cases significantly smaller. Thus, fewer signatures are required to
gather enough samples with low-enough error probability.

Figure 5.6 finally gives the outcome of this process. We give results for BLISS-
I (Figure 5.6a) and BLISS-BI (Figure 5.6b) separately, as the introduction of
the GreedySC algorithm leads to different results and slightly better performance
for BLISS-B2. For A1, one needs approximately 70 000 signatures to achieve a
success rate larger than 0.9. A2 needs 90 000 signatures, A3 200 000. Thus, error
correction can cut the number of required signatures by a factor of around 3.

Finally, note that this error-correction approach could also be used to relax
the restriction on errorless samples. That is, samples that were not correctly
recovered by the side-channel analysis (Section 5.2) would not break the attack.
The final error probabilities could be computed as the product of reassignment
probability and the probabilities as output by the template attack. We do not
follow this approach here and stay with modeled adversaries.
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Figure 5.6: Success rate of LPN decoding for the attack on shuffling

Discussion. Unlike single-stage shuffling, two-stage shuffling can increase the
number of required signatures for an attack significantly and thus can be consid-
ered an effective countermeasure, at least against the presented attack. However,

2GreedySC aims at minimizing the norm of s · c′; thus the difference z − y is, on average,
smaller. The attack on shuffling benefits from this, as it tests this difference.
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while the given numbers are high, they are still within reach for a dedicated
attacker (especially when using error correction).

The large difference between the shuffling variants could be explained as
follows. For single-stage shuffling, we tested elements from Dσ, with σ ≈ 215,
against a distance of Xsc. For the two-stage attack, the ratio of the matched
standard deviations is much smaller. In the second stage, for instance, we match
elements from Dσ′ , with σ′ ≈ 19.5, against the same Xsc. As a result, the
matchable samples are even further out in the tail of Dσ′ and so less frequent
than was the case for single-stage shuffling. This also explains the compared to
A1 maybe surprisingly small losses of A2 and A3. These adversaries can only
recover a small number of samples, but the ones they can find are already in tail
Dσ′ and thus more likely to be usable. Obviously, the attack degradation caused
by the smaller difference of deviations is amplified by requiring two matching
steps. So, we can only rewind shuffling for indices i where both y′i and y′′i are
outliers.

5.4 Conclusion

Our work shows that shuffling is, at least if done correctly, an effective and cheap
countermeasure in the context of lattice-based signatures. However, while it
can drastically increase the attack complexity, relying on two-stage shuffling
alone might not be enough to protect against attacks on Gaussian samplers.
The reported signature requirements for attacks are still practical, especially
when using the error correction techniques from Chapter 4. In this regard,
recall that we did not use leakage from either multiplication with k and addition
of two samples in the Gaussian convolution, the shuffling itself, or from the
PRNG. This information can be used to further decrease the number of required
signatures. Thus, a mix of countermeasures and reducing the leakage of the
sampling algorithm itself is necessary for sufficient protection. Increasing the
number of sampling (and shuffling) stages as well as the use of different convolution
parameters might also offer better protection.





6
Differential Fault Attacks on

Deterministic Lattice Signatures

The previous chapters show that the advantages of using the discrete Gaussian
distribution, namely small signature and key sizes, come at the cost of challeng-
ing implementation and protection thereof. For this very reason, more recent
proposals such as Dilithium [Lyu+17] and qTESLA [Bin+17a] (both submitted
to the NIST call) use samples from the uniform distribution instead.

In addition, both these schemes also add measures aimed at countering
implementation errors. They make use of the Fiat-Shamir with Aborts framework
of Lyubashevsky [Lyu09]. A well known caveat of signature schemes using the
(plain) Fiat-Shamir transform, such as ECDSA, is that signing requires a nonce.
Reusing that nonce for different messages leads to trivial key recovery. This
requirement was sometimes violated in the past, as, e.g., shown by the infamous
attack on the PlayStation3 console [Bye+10]. In order to sidestep this problem,
the signature scheme can be made entirely deterministic. That is, the nonce is
derived by hashing the message and the key, which leads to each input having
a unique signature. Both Dilithium and qTESLA1 use this approach and thus
follow in the footsteps of proposals such as EdDSA [Ber+11] and deterministic
ECDSA [Por13].

This solution, however, creates problems when it comes to fault attacks.
An attacker can let a victim sign the same message twice, but introduce a

1Following the initial publication of [GP18], which is the basis for this chapter, a very recent
update of the qTESLA specification added a mandatory countermeasure which makes the
algorithm non-deterministic and prohibits our attacks. We refer to the originally submitted
version of qTESLA for the remainder of this chapter, and discuss the countermeasure and
update in Section 6.5
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computational fault in one of the signature computations. This results in different
signatures using the same nonce and thus in a key recovery. In fact, recent
work [BP16; Amb+18; Pod+17; SB18] explored the vulnerability of elliptic-curve
signatures against such differential fault attacks, including Rowhammer-induced
faults [Pod+17].

The vulnerability of lattice-based deterministic signatures, however, is less
clear. The possibility of such differential attacks was already hinted at [Lyu+17;
Bin+17a], yet many questions remain open. Concretely, the abortion technique
introduced by Lyubashevsky and used by both qTESLA and Dilithium may
hamper the attack. Furthermore, the different algebraic structure might open
up new attack venues. Understanding the possibilities of such fault attacks is
relevant in the standardization process and possible deployment of these schemes.

Contribution. In this chapter, we show the applicability of differential fault
attacks on deterministic lattice-based signature schemes. We mainly focus on
Dilithium, but all our attacks apply to qTESLA as well. We explore how
and where these schemes are vulnerable to single random faults and show how
fault-induced nonce reuse allows extracting the secret key.

Dilithium and qTESLA are somewhat similar to BLISS, all these schemes
are based on Fiat-Shamir with Aborts and compute a signature vector of form
z = y + cs out of a challenge c, a secret element s, and a nonce/noise y. Unlike
BLISS, however, nonce generation is deterministic in Dilithium and qTESLA. Our
attack is focused on faulting the computation of challenge c, leaving the nonce y
untouched and thus creating a nonce reuse scenario. By carefully examining two
signatures of the same message yet with a (due to a fault) different challenge c, s
can be extracted using linear algebra. We identify multiple operations inside the
Dilithium signing algorithm that are vulnerable, i.e., where a random fault can
lead to nonce reuse. We say ”can”, as the use of the Fiat-Shamir with Aborts
framework leads to not all faults being exploitable. We determine the success
probabilities for all fault scenarios, they range from 14 % to 91 %. In addition
to these scenarios, we also explore fault-induced partial nonce reuse. There,
the fault attack is specifically focused on the computation of nonce y, but in
such a way that only a portion of the computation is different. We exploit this
by transforming key recovery into a unique shortest-vector problem, and show
how to solve it using the BKZ lattice-reduction algorithm. While previous work
already exploited such partial reuse scenarios for ECC [Amb+18], our attacks
are much less restrictive regarding injected faults.

Successful extraction of s alone, however, does not directly allow to run the
signing algorithm. This is due to Dilithium’s public-key compression, which
causes that some additional elements of the secret key cannot be computed from
just s. Thus, we show a tweaked signature algorithm that can still sign any new
message despite lacking some parts of the key.

We verified the vulnerabilities by performing clock glitching on an ARM
Cortex-M4 microcontroller. In particular, we induced random faults during
polynomial multiplication and in the SHAKE extendable output function. We



6.1. Background 61

show that an attacker with detailed knowledge of the executed code can easily
inject faults at correct locations despite some non-constant time behavior. Still,
an unprofiled attacker who injects a fault anywhere during the signing process
still has a high chance of succeeding. Up to 65.2 % of the execution time of
Dilithium is vulnerable to our attacks.

We finally give a discussion on generic countermeasures against the attacks
and reason about their applicability and implementation costs. We conclude that
probably the simplest yet most effective countermeasure is a rerandomization of
deterministic sampling, which, however, is not covered by the tight variant of
the security proof of Dilithium.

Outline. In Section 6.1, we give some additional background required for this
chapter. In Section 6.2, we explore the possibilities of differential fault attacks on
Dilithium. In Section 6.3, we show how to modify the signature algorithm such
that the secret key element extracted by our attacks suffices to compute valid
signatures for any message. In Section 6.4 we verify the vulnerabilities with real
experiments on an ARM Cortex-M4 microcontroller. In Section 6.5 we conclude
this chapter with a discussion on countermeasures.

6.1 Background

In this section, we introduce both the Dilithium and the qTESLA signature
schemes. We also discuss previous attacks on deterministic elliptic-curve signa-
tures, such as EdDSA and deterministic ECDSA.

Changed and additional notation. Please note that in this chapter we use
slightly different notation for polynomials and their coefficients. That is, we now
use plain letters, e,g., f , for polynomials in Rq. Bold-face is now reserved for
vectors a and matrices A comprised of multiple polynomials. This change in
notation is done to keep consistency with the original descriptions of qTESLA
and Dilithium. Also, the introduction of yet another dedicated notation for
vectors and matrices is likely more distracting than this change.

Apart from the standard `2 norm, Dilithium also makes use of the `∞ norm
defined as ‖w‖∞ = max{|w0|, |w1|, . . . , |wn−1|}, where all wi are represented by
an element in the interval [− q−12 , q−12 ]. This definition can be naturally expanded
to vectors of polynomials. Sη denotes the subset of Rq that includes all elements
w that satisfy ‖w‖∞ ≤ η.

6.1.1 Deterministic Lattice Signatures

We now describe the two deterministic lattice-based signature schemes
Dilithium [Lyu+17] and qTESLA [Bin+17a], both of which were submitted
to the NIST call. For design rationale, associated security proofs, and more
details (e.g., on various subroutines) we refer to the respective submission docu-
ments.
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Algorithm 6.1 Dilithium Key Generation

Output: Keypair (pk , sk)
1: ρ← {0, 1}256,K ← {0, 1}256
2: (s1, s2)← Slη × Skη
3: A ∈ Rk×`q = ExpandA(ρ)
4: t = As1 + s2
5: (t1, t0) = Power2Roundd(t)
6: tr ∈ {0, 1}384 = CRH(ρ||t1)
7: return (pk = (ρ, t1), sk = (ρ,K, tr , s1, s2, t0))

Dilithium. In this chapter we focus mainly on Dilithium, which is why we give
a more in-depth description of this scheme. Dilithium is based on the Module-
LWE/SIS assumption. It operates over the fixed base ring Rq = Zq[x]/(x256 +
1), q = 8380417 and allows for flexibility by allowing different module parameters
(k, `). This means that code used for arithmetic in Rq can be reused for any

module Rk×`q , which makes an adaptation to other security levels easier.

Key generation is given in Algorithm 6.1. First, two random seeds ρ, K, and
two key elements s1, s2 are sampled. The function ExpandA deterministically
expands the seed ρ into a matrix A ∈ Rk×`q using the extendable-output function
(XOF) SHAKE128. This is done to minimize public and private key sizes as
only ρ needs to be stored instead of the full A. The public key t = As1 + s2
is compressed by feeding it into the Power2Roundq function, which computes a
pair (t1, t0) such that t = t1 · 2d + t0. Only the upper part t1 is published. The
lower bits t0 and a hash of the public key tr = CRH(ρ||t1) are included in the
private key sk . CRH is shorthand for Collision Resistant Hash, Dilithium uses
SHAKE256 with an output length of 384 bits.

Just like BLISS, Dilithium is based on the Fiat-Shamir with Aborts Frame-
work [Lyu09]. The structure of rejection sampling can be easily seen in Algo-
rithm 6.2, which shows a slightly simplified2 version of the Dilithium signature
algorithm. The comments in Algorithm 6.2 refer to our attack scenarios and can
be ignored for now.

Signature generation starts off by recomputing A and hashing the message
M together with the hashed public key tr . The abort loop starts off by using
the function DeterministicSample to generate the noise y ∈ S`γ1−1. The product
w = Ay is compressed to w1 using HighBits. The hint h later allows the verifier
to recompute this w1. The hash function H instantiates the random oracle
needed in the proof. It returns a sparse ternary polynomial c ∈ B60, i.e., a
polynomial with Hamming weight 60 and all non-zero coefficients in ±1. The
function Decompose returns both HighBits and LowBits of its input. Finally,
several checks are performed that determine if the current signature is accepted
or rejected.

2Some additional checks and constant subroutine arguments are omitted.
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Algorithm 6.2 Dilithium Sign (simplified2)

Input: Message M , private key sk = (ρ,K, tr , s1, s2, t0)
Output: Signature σ = (z,h, c)

1: A ∈ Rk×`q = ExpandA(ρ) . fAρ, fAE

2: µ ∈ {0, 1}384 = CRH(tr ||M)
3: κ = 0, (z,h) = ⊥
4: while (z,h) = ⊥ do
5: y ∈ Slγ1−1 = DeterministicSample(K||µ||κ) . fY
6: w = Ay . fW
7: w1 = HighBits(w)
8: c ∈ B60 = H(µ||w1) . fH
9: z = y + cs1

10: h = MakeHint(−ct0,w − cs2 + ct0)
11: (r1, r0) = Decompose(w − cs2)
12: if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1 then (z,h) = ⊥
13: κ = κ+ 1

14: return σ = (z,h, c)

Algorithm 6.3 Dilithium Verify (simplified2)

Input: Public key pk = (ρ, t1), message M , signature σ = (z,h, c)
1: A ∈ Rk×`q = ExpandA(ρ)
2: µ ∈ {0, 1}384 = CRH(CRH(ρ||t1)||M)
3: w1 = UseHint(h,Az− ct1)
4: accept iff c = H(µ||w1)

Note that all operations in Algorithm 6.2 are completely deterministic and
thus generate a unique signature for message M3. This property is also used in
the proof of Dilithium in the Quantum Random Oracle Model (QROM) [KLS18].
The proof does allow a non-deterministic version, albeit at the cost of tightness
and a loss in security proportional to the number of distinct signatures an
adversary can observe per message.

For completeness, we also provide a simplified version of the verification
procedure (Algorithm 6.3). All specified parameter sets for Dilithium are given in
Table 6.1. Throughout this chapter we use the recommended Dilithium parameter
set III. It claims 128 bits of security against a quantum adversary. The other sets
mainly differ in the used (k, `), so our later attacks are possible for all proposed
sets.

3A previous Dilithium description [Duc+17] is probabilistic, but did not include a proof in
the QROM.
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Table 6.1: Dilithium Parameter Sets

I II III IV

weak medium recommended high

n 256 256 256 256

q 8380417 8380417 8380417 8380417

d 14 14 14 14

weight(c) 60 60 60 60

γ1 523776 523776 523776 523776

γ2 261888 261888 261888 261888

(k, `) (3, 2) (4, 3) (5, 4) (6, 5)

η 7 6 5 3

β 375 325 275 175

ω 64 80 96 120

qTESLA. Structurally, the signature scheme qTESLA [Bin+17a] is very similar
to Dilithium. It also uses a variant of the Fiat-Shamir with Aborts framework
and is deterministic. Unlike Dilithium, its proof in the QROM model [Alk+17]
allows for a non-deterministic version as well (without losing tightness). The main
difference however is that qTESLA is based on the Ring-LWE/SIS assumptions
instead of the module counterparts. Thus, it operates on Rq = Zq[x]/(xn + 1)
(so k = ` = 1) with n ≥ 1024.

We now restate the qTESLA algorithms, but please note that we give the
version originally submitted to the NIST call. Following the initial publication
of [GP18], in an update of the qTESLA specification a countermeasure was
added which makes qTESLA probabilistic again. Hence the attacks presented
in this chapter are no longer applicable. We will discuss the countermeasure in
Section 6.5. As [GP18] is a potential reason for these changes and is cited in the
update, we still describe the attacks.

In Algorithms 6.4, 6.5, and 6.6, we give slightly simplified versions of key
generation, signing, and verification, respectively. The proposed parameter sets
are given in Table 6.2. Note the similarity of qTESLA and Dilithium, we highlight
this by stating the corresponding variable and function names in Table 6.3. The
main difference between Dilithium and qTESLA is that the latter is based on
Ring-LWE and thus operates on polynomials in Zq[x]/(xn + 1) with n ≥ 1024.
Dilithium is based on the Module-LWE assumption and uses vectors/matrices of
polynomials in a fixed base ring Zq[x]/(x256 + 1).
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Algorithm 6.4 qTESLA Key Generation

Output: Keypair (pk , sk)
1: seeda ← {0, 1}256, seedy ← {0, 1}256
2: a ∈ Rq = GenA(seeda)
3: repeat
4: s ∈ Rq ← Dσ, e ∈ Rq ← Dσ

5: while s and e do not fulfill certain criteria
6: t = as+ e mod q
7: return (pk = (seeda, t), sk = (s, e, seedy, seeda)

Algorithm 6.5 qTESLA Sign (simplified)

Input: Message M , private key sk = (s, e, seedy, seeda)
Output: Signature σ = (c, z)

1: a ∈ Rq = GenA(seeda)
2: counter = 0
3: rand = PRF1(seedy,M)
4: repeat
5: y = PRF2(rand, counter)
6: v = ay mod q
7: c = H(Round(v),M)
8: z = y + sc
9: counter = counter + 1

10: while Reject(z, v, c, sk)
11: return σ = (c, z)

Algorithm 6.6 qTESLA Verify (simplified)

Input: Public key pk = (seeda, t), message M , signature σ = (c, z))
1: a ∈ Rq = GenA(seeda)
2: w = az − tc mod q
3: return c = H(Round(w),M)
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Table 6.2: qTESLA Parameter Sets

qTESLA-128 qTESLA-192 qTESLA-256

n 1024 2048 2048

q 8058881 12681217 27627521

σ 8.5 8.5 8.5

weight(c) 36 50 72

B 220 − 1 221 − 1 22 − 1

d 21 22 23

LE 798 1117 1534

LS 758 1138 1516

Table 6.3: Comparison of variable/parameter names and function names for Dilithium
and qTESLA. Only differing names are listed.

Variables:

Dilithium ρ K s1 s2 κ µ w

qTESLA seeda seedy s e counter rand v

Functions:

Dilithium ExpandA CRH DeterministicSample HighBits

qTESLA GenA PRF1 PRF2 Round
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6.1.2 Differential Fault Attacks on ECC

In this chapter we concentrate on differential fault attacks, in which the difference
between a faulty and a correct output is used to determine information about the
secret key. Previous work [BP16; Amb+18; Pod+17; SB18] explored such attacks
on two deterministic elliptic curve signature schemes: EdDSA and deterministic
ECDSA. Both of these signature schemes use the Fiat-Shamir transform, thus
requiring the usage of a unique nonce per message. The fault attacks mainly
focus on achieving nonce reuse, as this leads to a very efficient key-recovery.

Concretely, Poddebniak et al. [Pod+17] exploit the fact that the message is
hashed twice in EdDSA. By manipulating the message in between these hashing
operations with Rowhammer, they can induce a nonce reuse and thus recover
the key. Ambrose et al. [Amb+18] inspect a wider range of scenarios. They show
that even random faults in certain operations can allow attacks. Additionally,
they show that faults affecting the nonce itself are also usable. However, for this
they require a very restrictive fault model. They need that the resulting error
is limited to a few bits, as an exhaustive search is required to find the exact
difference between the faulty and correct nonce.

6.2 Differential Faults on Deterministic Lattice
Signatures

In this section, we present our differential fault attacks on Dilithium. As previously
mentioned, these attacks apply to qTESLA as well, as we provide the attacks
for general `, k. First, we briefly describe our fault model. Then we explain the
main intuition of our attacks. We identified multiple vulnerable operations, for
each of them we finally describe how faulting can lead to key recovery. We also
discuss additional properties, such as ease of fault injection, for the scenarios.

Fault Model. We assume the possibility of injection a single random fault.
These can encompass instruction skips, arithmetic faults, glitches in storage, and
more. The faults are not restricted to specific operations but can be applied
during a large section of execution time. This model is also used for some of the
previously mentioned attacks on EdDSA [Amb+18] (some scenarios require a
more restrictive fault model). In contrast, previous active attacks on lattice-based
signatures required more control, such as the ability to abort a loop [Esp+16].

6.2.1 Intuition

The intuition behind our fault attacks is as follows. We let the signer sign
the same message M twice. In the first invocation we do not inject any fault
and receive a valid and proper signature σ = (z,h, c). We inject a fault in
the second run; we use ′, e.g., z′, to denote variables in this faulted invocation.
More concretely, we inject a fault such that y′ is undisturbed and due to the
determinism equal to y, yet c′ 6= c and thus z′ = y + c′s1.
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Table 6.4: Fault scenarios discussed in this chapter

Name Section Description

fAρ 6.2.4 Corrupt ρ during import of sk

fAE 6.2.4 Random fault in expansion A = ExpandA(ρ)

fY 6.2.5 Random fault in sampling y = DeterministicSample(·)
fW 6.2.3 Random fault in polynomial multiplication w = Ay

fH 6.2.2 Random fault in call to H

Thus, the fault induces a nonce-reuse scenario. When defining ∆z = z− z′

(and ∆c,∆y analogously), we have ∆z = ∆y + ∆c · s1 = ∆c · s1. Thus, under
the requirement that ∆c is invertible, which is true with very high probability,
then s1 = (∆c)−1 ·∆z.

The Fiat-Shamir with Abort structure, however, introduces an additional
hurdle. We require that both the valid as well as the faulty signature computation
terminate in the same iteration of the abortion loop. In other words, when using
κf to denote the final value of the loop counter κ, we need that ∆κf = κf−κ′f = 0.
Observe that in Algorithm 6.2, the loop counter κ is input to DeterministicSample.
Hence, to achieve y = y′ we have the requirement that ∆κf = 0. Due to
faulty intermediates and the influence of the rejection tests, this is obviously not
guaranteed.

In the remainder of this section we discuss concrete fault scenarios. That is, we
explain which operations in Algorithm 6.2 can be faulted such that key-recovery
is possible. For each scenario we will give the exploitation technique as well as
state its success probability, i.e., the chance that it terminates in the same loop
iteration and thus ∆κf = 0. This probability was estimated using at least 10 000
fault simulations per scenario. An overview of the scenarios is given in Table 6.4,
they are listed in order of appearance in Algorithm 6.2. The order of description
will be different.

6.2.2 Scenario: fH

Probably the most intuitive way to achieve a nonce-reuse is the fH scenario,
where a random fault is injected into the computation c ∈ B60 = H(µ||w1). This
can be achieved by either manipulating one of the inputs µ,w1 immediately
before they are being used in H, or by directly injecting a fault into the hash
function H itself.

We will show in Section 6.4.1 that it is a very reasonable assumption that
an attacker can inject a fault in the correct iteration κf , i.e., the last one in the
non-faulty computation. If the rejection step is then passed with the different c′,
secret element s1 can be recovered as described in Section 6.2.1.

Since c is a sparse ternary polynomial and s1 ∈ Slη has small coefficients, their
product is also small. We depict its coefficient-wise probability distribution in
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Figure 6.1, it can be approximated with a (discretized) Gaussian distribution
having zero mean and σ ≈ 24.3. As ‖cs‖2 � ‖y‖2, ‖w‖2, the rejection conditions
for z and r0 are likely to hold for a different c as well. This results in a high
success probability of over 90 %.
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0
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Figure 6.1: Coefficient-wise probability distribution of cs

Determining Success. There are two ways to test if ∆κf = 0 and thus key
recovery is successful. The first method is to simply recover s1 and then test if it
is small, i.e., s1 ∈ Slη. If ∆y 6= 0 then the recovered key will be a random vector

in R`q which will not fulfill the bound on the `∞ norm. Alternatively, one can
also exploit the small norm of cs by computing ‖∆z‖2 (or also ‖∆z‖∞) and test
if it is below a certain threshold. Again, ∆y 6= 0 will lead to a very large value
of ‖∆z‖2.

Apart from ∆κf = 0, we also require that ∆c is invertible. This is true
with very high probability. The fraction of invertible polynomials in Rq is
(1− 1/q)n [LPR13], which is about 1− 2−15 for the Dilithium parameters. We
experimentally verified that this fraction also holds for the polynomials described
by ∆c (i.e. the difference of two random sparse ternary polynomials c, c′ ∈ B60).
We test for invertibility and consider the attack to have failed in the rare case
that ∆c is not invertible.

6.2.3 Scenario: fW

Instead of directly faulting the hash function H, it is also possible to alter
c = H(µ||w1) by manipulating the computation of its inputs µ,w1. The mes-
sage/public key hash µ is also used as seed for DeterministicSample, hence faults
in the computation µ = CRH(tr ||M) are not exploitable.

Faults in the computation of w = Ay which lead to an incorrect w1, however,
can be exploited. The required polynomial multiplications in Rq can be efficiently
implemented using the Number Theoretic Transform (NTT). Still, the runtime of
multiplication is higher than that of hashing, thus it can be a more viable target
for fault attacks. An NTT is essentially an FFT-like transform over a prime
field and uses similar implementation techniques, i.e., butterfly networks. Due
to these techniques, the number of coefficients in w affected by a single random
fault can range from 1 to all n · k.
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As unaffected coefficients of w clearly pass rejection and a single altered
one is sufficient to achieve ∆c 6= 0, minimizing the number of faulty coefficients
increases the success probability. Thus, unlike in our other scenarios the concrete
fault position has a much stronger impact. To give a sense of possible success
probabilities, we evaluated the two most extreme cases. First, we inject a fault
in the forward-NTT of y. Such a fault spreads to all n · k coefficients of w and
thus leads to a low success probability (25.3 %). Second, we fault the inverse-
NTT applied to w such that only two coefficients are affected. With a success
probability of over 90 %, this sub-scenario is similar to directly faulting H. Note
that while single-coefficient faults are also possible, they are slightly less likely
to lead to a successful key-recovery. This is due to the chance that a faulty
coefficient w′ still rounds to the correct w′1 = w1, which results in ∆c = 0 and
the fault not being exploitable.

6.2.4 Scenarios: fAρ, fAE

Another possibility to achieve a faulty w = Ay is to manipulate the expansion of
seed ρ into the matrix A. As seen in Algorithm 6.2, this is done before entering
the abort loop and is thus always executed at the same time. Furthermore,
ExpandA is a major contributor to overall runtime (cf. Section 6.4.2). Both these
properties drastically simplify fault injection for this scenario. Also, A has a
larger footprint (20 kB in Dilithium-III) than other variables and is potentially
kept in memory for a prolonged time, i.e., by caching it, one does not need to re-
run ExpandA for every singing operation. These properties make A a particularly
interesting target for memory-based faults, such as Rowhammer.

When focusing on more traditional faulting techniques, then differences in
A can be achieved by either manipulating the seed ρ, e.g., during loading
of the private key (scenario fAρ), or by inserting a glitch into the expansion

A ∈ Rk×`q = ExpandA(ρ) (scenario fAE). On first glance these scenarios might
seem identical. There are, however, some major differences. Observe that in
Algorithm 6.7, which sketches the method for expanding ρ into A, the k · `
polynomials comprising A are generated using independent calls to SHAKE.
Thus, any single fault in the SHAKE permutation leads to just one corrupted
polynomial. Consequently, after the matrix-vector multiplication Ay we have n
differing coefficients of w. This leads to a success probability of approximately
54 %.

Directly faulting ρ, either during import or in storage, obviously results in an
all different A and thus w. This decreases the success probability to just 14 %.
However, this type of fault has a major advantage when it comes to defeating
countermeasures. It is potentially (semi-)permanent and can thus, at least
under certain circumstances, not be detected by the generic double-computation
countermeasure. In Section 6.5 we discuss this in more detail.
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Algorithm 6.7 ExpandA(ρ)

Input: Seed ρ
Output: uniform A ∈ Rk×`q

1: for i = 0 . . . k − 1 do
2: for j = 0 . . . `− 1 do
3: Ai,j = SamplePoly(ρ||i||j)
4: return A

5: function SamplePoly(s)
6: t ∈ {0, 1}5·SHAKErate = SHAKE128(s)
7: u = 0
8: while u < n do
9: v = next dlog2 qe bits of t

10: if v < q then
11: ai = v
12: u = u+ 1

13: return a

6.2.5 Scenario: fY

So far, we have only discussed fault-induced nonce-reuse scenarios, i.e. the
case where y′ = y. In [GP18], a method to also exploit partial nonce-reuse is
presented. It uses the observation that in DeterministicSample (Algorithm 6.8)
the elements in y are sampled sequentially, and that injecting a fault in just one
of the calls to SHAKE does not affect the `− 1 other nonce polynomials. Whats
more, when faulting one of the later invocations of the Keccak-f permutations
inside SHAKE, only last few coefficients of the affected y′ are different, i.e., most
but not the entire nonce is reused. As y′ is close to y, one can use techniques
originally proposed for loop-abort faults [Esp+16] and cast key recovery to solving
a closest-vector problem in a lattice.

An important advantage of this scenario is that even faulted signatures will be
valid, thus the attack is not detectable with a subsequent signature verification.
This attack scenario was developed by Groot Bruinderink, which is why we do
not give a detailed description of this approach here and instead refer to [GP18].

6.2.6 Summary of Scenarios

We now give a summary of the different fault scenarios. In Table 6.5 we restate
the success probability of all fault scenarios. Recall that in scenario fW a large
number of outcomes is possible, but we analyzed the best and worst possible
outcomes. For scenarios fY, fH, and fW we assume that the fault is injected in
the last iteration κf .

fH is the most intuitive scenario and also achieves the highest success prob-
ability. However, it is also the smallest of all targets (cf. Section 6.4.2). The
lowest success probability is achieved for fAρ, yet with the huge advantage of
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Algorithm 6.8 DeterministicSampleγ1−1(s) (simplified4)

Input: Seed s
Output: y ∈ S`γ1−1

1: for u = 0 . . . `− 1 do . Sample ` nonce polynomials
2: t ∈ {0, 1}5·SHAKErate = SHAKE256(s||u)
3: v = 0
4: while v < n do . Rejection sampling
5: r = next 2dlog2 γ1e bits of t
6: if r ≤ 2(γ1 − 1) then
7: (y

u
)v = q + γ1 − 1− r

8: v = v + 1

9: return y

Table 6.5: Fault-attack success probability in percent

fAρ fAE fY fW fH

14.3 54.4 24.4 25.4 - 90.3 91.0

being potentially permanent. Faulting the expansion of A offers both a large
and fixed-time target. Finally, scenario fY leads to valid yet still exploitable
signatures.

6.2.7 Attacking qTESLA

All attacks for Dilithium described in this section can easily be adapted to
the original deterministic version of qTESLA, with obviously differing success
probabilities due to different parameter sets, rejection conditions, and algebraic
structure. In particular, the major fault scenario (a random fault in SHAKE)
would be the same: SHAKE is used in qTESLA in a similar way to build the
functions described in Table 6.3. After faulting, key recovery is exactly the same,
i.e., computing s = ∆c−1 ·∆z.

A subtle difference however is that Dilithium samples multiple smaller poly-
nomials, e.g., y ∈ R`q, using independent calls to SHAKE, whereas qTESLA uses
just one call to SHAKE to sample a single but larger polynomial. This affects
success rates and also the available time for fault injection. For instance, in
scenario fY in Dilithium one can inject a fault in the last 2 permutations in
any one of the ` independent SHAKE calls, whereas in qTESLA only the last
permutations of the single SHAKE call can be faulted.

4For example, with very small probability the 5 ·SHAKErate bits are not enough to generate
enough values for any yi. In that case, another call to SHAKE and more rejection sampling is
done.
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6.3 Signing with the Recovered Key

In the previous sections we showed how to recover s1 after a successful fault injec-
tion. However, s1 is only one component of the private key sk = (ρ,K, tr , s1, s2, t0).
The seed ρ, which is used for generating the matrix A, is also part of the public
key. The value tr can be trivially recomputed as CRH(ρ||t1) (cf. Algorithm 6.1).
K is used as a secret input to the deterministic sampler and cannot be recovered
with our attack. However, an attacker can just choose any random K and still
produce valid signatures. The only downside here is that the owner of the full
private key can test whether or not a signature is forged by simply running the
signature algorithm and testing for equivalence. A new K will obviously result
in a different yet still valid signature.

The situation for the two remaining components, namely s2 and t0, is less
clear. Recall that t = As1 +s2 (cf. Algorithm 6.1). If t is known, then recovering
s2 boils down to simple linear algebra. However, for compression one computes a
pair (t1, t0) satisfying t1 · 2d + t0 = t and includes only the upper part t1 in the
public key. Thus, the equation t1 · 2d + t0 = As1 + s2 cannot be directly solved.

Note also that during signature computation s2 and t0 are only used for hint
generation and rejection purposes. Thus, there are no simple equations that
can be exploited for recovering this part of the private key. This obviously does
not imply that there is no information on s2 present. For instance, in a valid
signature we have that ‖r0‖∞ < γ2− β, with (r1, r0) = Decompose(w− cs2). As
w is recoverable since s1 is already known, an attacker will get constraints for
the possible values for s2. A large number of such constraints could result in
a fully determined s2. However, we expect that a very large number of valid
signatures and high computational effort is needed to perform such a recovery.

Instead, we now present a modified signing procedure (Algorithm 6.9) that
does not require knowledge of s2. Thus, the property that only a single valid/faulty
signature pair is needed for the attack is preserved. Algorithm 6.9 starts off by
recomputing tr and sampling a random K, as described earlier. Then we compute
u = As1 − t1 · 2d, which is exactly the difference of the unknown quantities,
i.e., u = t0 − s2. Signature generation then continues as usual up until the
computation of the hint h.

In the original signing algorithm we have h = MakeHint(−ct0,w− cs2 + ct0).
The second argument to MakeHint can be trivially rewritten as w − cs2 + ct0 =
w + cu. The first argument −ct0 cannot be computed without knowledge of t0.
We get around this by exploiting the fact that t0 is vastly larger than s2, with
coefficients in the intervals [±2d−1] and [±η], respectively. Thus, we have that
u = t0 − s0 ≈ t0 and simply substitute −ct0 with −cu.

We then skip all rejection conditions that cannot be tested without knowing
s2 or t0. Essentially, we just test that if ‖z‖∞ ≥ γ1 − β and reject the signature
if this is the case. Finally, we perform a verification of the signature to catch the
very improbable case that MakeHint(−cu,w + cu) 6= MakeHint(−ct0,w + cu).

Due to the removal of rejection conditions, this modified signing algorithm
potentially leaks secret information. Thus, anyone being aware of the fact that
signatures are computed by our modified algorithm could maybe also recover the
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Algorithm 6.9 Dilithium Sign with Recovered Key s1

Input: Message M , private key part s1, public key pk = (ρ, t1)
Output: Signature σ = (z,h, c)

1: tr ∈ {0, 1}384 = CRH(ρ||t1) . Recompute tr from public information
2: K ← {0, 1}256 . Sample a random seed
3: u = As1 − t1 · 2d . As1 − t1 · 2d = t0 − s2
4: A ∈ Rk×`q = ExpandA(ρ)
5: µ ∈ {0, 1}384 = CRH(tr ||M)
6: κ = 0, (z,h) = ⊥
7: while (z,h) = ⊥ do
8: y ∈ Slγ1−1 = DeterministicSample(K||µ||κ)
9: w = Ay

10: w1 = HighBits(w)
11: c ∈ B60 = H(µ||w1)
12: z = y + cs1
13: h = MakeHint(−cu,w + cu) . MakeHint(−c(s2 − t0, ),w − cs2 + ct0)
14: if ‖z‖∞ ≥ γ1 − β then . Remove rejection conditions
15: (z,h) = ⊥
16: else
17: if not Verify(pk ,M, (z,h, c)) then (z,h) = ⊥ . Test for correctness

18: κ = κ+ 1

19: return σ = (z,h, c)

secret key. Since all produced signatures are valid, there is no trivial way to test
for this condition (without already knowing the key, as explained earlier).

The case of qTESLA. As a side note, observe that in qTESLA the public
key t is not compressed, thus recovering e (which corresponds to s2 in Dilithium)
is trivial as soon as s (corresponding to s1) is known. No adapted signature
algorithm is needed.

6.4 Experimental Verification

In this section, we back up our previous theoretical expositions and simulations
by running our attack on an actual device. After discussing our platform, we
show how an attacker can inject a fault in the iteration κf without determining
the concrete value. This requires at least some knowledge of the implementation.
For this reason, we also demonstrate that a random fault anywhere during the
signing procedure has a high chance of being exploitable.

Platform. For our experiments, we use an STM32F405 microcontroller (ARM
Cortex-M4F) running on a ChipWhisperer CW308 side-channel evaluation board.
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We run the Dilithium C reference implementation5 (compiled with -O3) and
clock our device at 30 MHz. For attack evaluation, we signal the start and end of
signing with a trigger pin. As faulting method we make use of clock glitches.

We mounted attacks for all scenarios except fAρ, all with success. For the
scenarios targeting the SHAKE XOF, i.e., fAE, fY, and fH, the ability to precisely
time clock glitches and thus to attack very specific instructions is not needed.
A single such permutation takes approximately 40 000 clock cycles and we only
require that its output is different, thus any random fault suffices. In fact,
we did not determine the exact location or effect of the fault. Attacks on the
polynomial multiplication (scenario fW) can benefit from more precise fault
injection (see Section 6.2.3). However, even random faults yield a high success
rate (Section 6.4.2).

6.4.1 Injecting a Fault in the Correct Iteration

Recall that a fault is only exploitable if both the faulted and the non-faulted
execution of the signing algorithm terminate in the same iteration of the abort
loop, i.e., ∆κf = 0. Clearly, in the scenarios fY, fW, and fH, an attacker can
maximize the success probability by injecting the fault in this last iteration κf .

The Dilithium reference implementation is constant (read: key-independent)
time. The individual rejection conditions (line 12 of Algorithm 6.2) are still
tested as soon as possible. This minimizes the runtime of failed iterations but
does not leak sensitive information on the key. Quite on the contrary, this
non-constant-time behavior somewhat complicates the fault attack. Even an
attacker knowing κf cannot exactly pinpoint the time of execution of vulnerable
operations and thus the best time to inject a fault.

We get around this by using the observation that the last loop iteration κf is,
unlike the previous ones, constant time. Only there all operations are guaranteed
to be performed and apart from the rejections the code is constant time. Thus,
we determine the time of execution of vulnerable operations as follows. First,
we perform the undisturbed signing and measure its runtime. And second, we
simply subtract a fixed offset (depending on the to-be-faulted operation) from
this overall runtime. We used this method for our attacks in the scenarios fY,
fH, and fW, and were successful for any κf .

6.4.2 Unprofiled Attacks

The above method is highly accurate, yet requires some device/code profiling.
Concretely, an attacker needs to determine the time offsets (either from the
start or finish of the signing operation) of the vulnerable code. This might not
always be a realistic assumption. For this reason, we now show that an attacker
injecting a random fault anywhere in the signing process still has a high chance
of succeeding. We do so by measuring the runtime (in cycles) of the vulnerable
code and relating it to the overall execution time (Table 6.6).

5Reference implementation available at https://pq-crystals.org/dilithium/
software.shtml

https://pq-crystals.org/dilithium/software.shtml
https://pq-crystals.org/dilithium/software.shtml
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Table 6.6: Runtime-percentage of vulnerable code

fAE fY fW fH Sum

κf = 1 47.4 3.8 11.2 2.9 65.2

Overall 24.3 2.0 5.7 1.5 33.5

In the best-case scenario for such an attacker, the signing algorithm terminates
in the first iteration (κf = 1). In this case, 65.2 % of execution time are vulnerable.
In the general case (no restriction to κf = 1), the success probability goes down
to one-third of the total execution time.

In both cases, sampling of the matrix A takes by far the most time. Ad-
ditionally, it is performed at a fixed time in the execution, shortly after the
invocation of the signing algorithm. Thus, in reality an unprofiled attacker
faulting somewhere in this region has a much higher chance of hitting ExpandA
than stated in Table 6.6.

In Figure 6.2, we further visualize the general case and compare runtime
to success probability for different scenarios. Recall that depending on the
concrete fault position, the success probability of scenario fW varies drastically
(see Table 6.5). For the case of the unprofiled attacker, we narrowed down this
probability by performing 1000 fault attacks on our target device, with faults at
random positions inside fW. Approximately 62 % of these faults were exploitable.
Faulting the call to H yields the highest success probability (Table 6.5), but also
has the smallest footprint. As discussed in Section 6.2.5, 40 % of the time spent on
the SHAKE call by DeterministicSample is vulnerable to the attack. This makes
it a slightly larger target compared to fH, but also with a much lower success
probability. In total, a fault inside the vulnerable portions can be exploited with
a probability of 56 %. These cover 33.5 % of execution time, thus approximately
19 % of random faults anywhere during signing lead to key recovery.

6.5 Countermeasures

When presenting new attacks, a discussion on potential countermeasures should
never be missing. For this reason, we present the applicability and effectiveness
of three generic countermeasures against the fault attacks described in this work.
For each of these methods, we give the runtime costs and state which fault
scenarios will be mitigated by it. A summary of the latter is shown in Table 6.7.

Double computation. While determinism leads to the applicability of differ-
ential fault attacks in the first place, it can also be used as a countermeasure
against such attacks. Concretely, many faults can be detected by running the
signature algorithm twice and testing the output for equality. This obviously
doubles execution time. The countermeasure can be defeated by either injecting
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Figure 6.2: Comparison of scenarios regarding runtime as portion of total signing
time (from Table 6.6) vs. success probability (from Table 6.5). Lines of
constant product are drawn in solid gray.

an identical fault twice, which can be challenging, or by using a permanent fault,
e.g., in scenario fAρ with the seed ρ.

Verification-after-sign. Many of the presented attack scenarios lead to sig-
natures being invalid. Thus, performing signature verification after signing is an
effective countermeasure. As runtime costs of verification are less than one-third
of signing (see [Lyu+17]), this option is also much more efficient than double
computation. As a downside, however, it cannot detect faults injected into the
sampling of y as this yields valid signatures.

Additional randomness. A final and very simple countermeasure is to re-
randomize the deterministic sampling of the noise y. One can simply sample a
random r ← {0, 1}256 and then invoke y = DeterministicSample(K||µ||κ||r). This
effectively mitigates the differential fault attack as the faulted call to the signing
algorithm uses different y and thus ∆y 6= 0.

Whats more, this method might also hamper further side-channel attacks
coming as side-effects of determinism. As observed by Seuschek et al. [SHS16]
and Samwell et al. [Sam+18], mixing the known message µ with the secret seed
K in a hash function (in Dilithium this is SHAKE in DeterministicSample) opens
the gates for DPA-like attacks. Hash functions are hard to protect against such
attacks; using an additional random input can be a cheap alternative. How r
needs to be introduced to maximize the protection while keeping the necessary
size of r small likely depends on the used hash function, further investigations
are needed to answer this question for the case of SHAKE.

The added protection against implementation attacks does not negate the
protection against incorrect implementation and resulting nonce reuse (using the
same y for different messages). For instance, using a constant r effectively reverts
signing to its deterministic version. Additional upsides of this countermeasure
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Table 6.7: Applicable countermeasures

fAρ fAE fY fW fH

Double computation 7 3 3 3 3

Verification-after-sign 3 3 7 3 3

Additional randomness� 3 3 3 3 3

� Not covered by proof of Dilithium [KLS18].

are its simplicity and negligible runtime overhead. Furthermore, unlike straight-
forward implementations of the two previous countermeasures, it is single-pass
and so does not require to keep a copy of the message in memory. Note that
this countermeasure was already proposed in the context of EdDSA [Amb+18;
Sam+18], but it can also be applied to lattice-based signatures. In fact, a very
recent update of the qTESLA specification made use of this countermeasure
mandatory and cites the presented attacks as reason.

There are, however, also considerable downsides of this countermeasure. First,
unlike the two previous countermeasures, this countermeasure is probabilistic
and requires some source of entropy, i.e., a true random number generator. Such
a generator might not be available on all devices, especially low-resource ones.
And second, this countermeasure violates the security proof of Dilithium. Kiltz,
Lyubashevksy, and Schaffner [KLS18] present a tight proof in the quantum
random oracle model (QROM) based on the hardness of MLWE, MSIS, and a
new problem called SelfTargetMSIS. They require the signature scheme to be
deterministic. They do give an alternative proof for a probabilistic version of
Dilithium, yet it is not tight and loses security linearly in the number of observed
unique signatures per message.

Thus, introducing this countermeasure voids provable security guarantees,
albeit no concrete attack is known. The Dilithium authors ”still recommend
using deterministic signatures except in environments that may be vulnerable
to the aforementioned side-channel attacks” [Lyu+17]. However, determining
whether or not an environment is vulnerable is not easy, as clearly shown by the
Rowhammer bug.
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In this second part of the thesis, we present microarchitectural side-channel
attacks capable of attacking multi-processor systems. In Chapter 7, we identify
DRAM as a suitable shared resource and reverse engineer the mapping from
physical addresses to DRAM banks. Then, we propose our concrete attacks in
Chapter 8.

Publications and Contribution

This part is based on the following publication.

I Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks.” In: USENIX Security Symposium. USENIX Association, 2016,
pp. 565–581. [Pes+16]

forms the base for Chapter 7 and Chapter 8.
Contribution: I am the first author and contributed the physical probing
and covert channel concept/implementation. The software-based reverse
engineering is due to Michael Schwarz, Daniel Gruss developed the template
side-channel attack.



7
Reverse-Engineering DRAM Addressing

Due to the popularity of cloud services, multiple tenants sharing the same physical
server through different virtual machines (VMs) is now a common situation. In
such settings, a major requirement is that no sensitive information is leaked
between tenants, therefore proper isolation mechanisms are crucial to the security
of these environments. While software isolation is enforced by hypervisors,
shared hardware presents risks of information leakage between tenants. Previous
research shows that microarchitectural attacks can leak secrets of victim processes,
e.g., by clever analysis of data-dependent timing differences. Such side-channel
measurements allow the extraction of information like cryptographic keys or
enable communication over isolation boundaries via covert channels.

Cloud providers can deploy different hardware configurations; however, multi-
processor systems are becoming ubiquitous due to their numerous advantages.
They offer high peak performance for parallelized tasks while enabling sharing of
other hardware resources such as the DRAM. They also simplify load balancing
while still keeping the area and cost footprint low. Additionally, cloud providers
now commonly disable memory deduplication, i.e., merging of memory pages
having identical content, between VMs for security reasons.

To attack such configurations, successful and practical attacks must comply
with the following requirements:

1. Work across processors: As these configurations are now ubiquitous, an
attack that does not work across processors is severely limited and can be
trivially mitigated by, e.g., exclusively assigning processors to tenants.

2. Work without any shared memory: With memory deduplication disabled,
shared memory is not available between VMs. All attacks that require
shared memory are thus completely mitigated in cross-VM settings with
such configurations.

81
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In the last years, the most prominent and well-studied example of shared-
hardware exploits is that of cache attacks (cf. Section 2.2.1). They use the
processor-integrated cache and were shown to be effective in a multitude of set-
tings, such as cross-VM key-recovery attacks [Ris+09; Ira+14; Zha+12; Inc+15],
including attacks across cores [YF14; Liu+15a; Mau+15a; Gru+16]. However,
due to the cache being local to the processor, these attacks do not work across
processors and thus violate requirement 1. Note that Irazoqui et al. [IES16]
presented a cross-CPU cache attack which exploits cache coherency mechanisms
in multi-processor systems. However, their approach requires shared memory
and thus violates requirement 2. The whole class of cache attacks is therefore
not applicable in multi-processor systems without any shared memory.

Other attacks leverage the main memory that is a shared resource even in
multi-processor systems. Xiao et al. [Xia+13] presented a covert channel that
exploits memory deduplication. This covert channel has a low capacity and
requires the availability of shared memory, thus violating requirement 2. Wu et
al. [WXW15] presented a covert channel exploiting the locking mechanism of
the memory bus. While this attack works across processors, the capacity of the
covert channel is orders of magnitude lower than that of current cache covert
channels.

Therefore, none of the above allows efficient attacks with the two previously
mentioned requirements. However, we now go on to show that attacks are still
possible in this restricted setting.

Contribution. We identify the DRAM row buffer as a resource shared even
across CPUs. Before exploiting this resource, however, one needs to know how
physical memory addresses map to DRAM channels, ranks, and banks, i.e., to
the used row buffer. This mapping is undocumented; therefore we present two
methods to reverse engineer it. The first method retrieves the correct addressing
functions by performing physical probing of the memory bus. The second method
is entirely software-based, fully automatic, and relies only on timing differences.1

Thus, it can be executed remotely and enables finding DRAM address mappings
even in VMs in the cloud. We reverse engineered the addressing functions on a
variety of processors and memory configurations. Besides consumer-grade PCs,
we also analyzed a dual-CPU server system – similar to those found in cloud
setups – and multiple recent smartphones.

We then show how the reverse-engineered mapping can be used to improve
existing attacks. Existing Flush+Reload cache attacks use an incorrect cache-
miss threshold, introducing noise and reducing the spatial accuracy. Knowledge
of the DRAM address mapping also enables practical Rowhammer attacks on
DDR4.

1The source code of this reverse-engineering tool and exemplary DRAMA attacks can be
found at https://github.com/IAIK/drama.

https://github.com/IAIK/drama
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Outline. The remainder of the chapter is organized as follows. In Section 7.1,
we describe some of the inner workings of DRAM. In Section 7.2, we provide
definitions that we use throughout the chapter. In Section 7.3, we describe our
two approaches to reverse engineer the DRAM addressing and we provide the
reverse-engineered functions. In Section 7.4, we show how knowledge of the
DRAM addressing improves cache attacks like Flush+Reload and we show how
it makes Rowhammer attacks practical on DDR4 and more efficient on DDR3.

7.1 DRAM Organization

Modern DRAM is organized in a hierarchy of channels, DIMMs, ranks, and banks.
A system can have one or more channels, which are physical links between the
DRAM modules and the memory controller. Channels are independent and can
be accessed in parallel. This allows distribution of the memory traffic, increasing
the bandwidth, and reducing the latency in many cases. Multiple Dual Inline
Memory Modules (DIMMs), which are the physical memory modules attached to
the mainboard, can be connected to each channel. A DIMM typically has one or
two ranks, which often correspond to the front and back of the physical module.
Each rank is composed of banks, typically 8 on DDR3 DRAM and 16 on DDR4
DRAM. In the case of DDR4, banks are additionally grouped into bank groups,
e.g., 4 bank groups with 4 banks each. Banks finally contain the actual memory
arrays which are organized in rows (typically 214 to 217) and columns (often 210).
On PCs, the DRAM word size (bus width) is 64 bits, resulting in a typical row
size of 8 KB. As channel, rank, and bank form a hierarchy, two addresses can
only be physically adjacent in the DRAM chip if they are in the same channel,
DIMM, rank, and bank. In this case we just use the term same bank.

The memory controller, which is integrated into modern processors, trans-
lates physical addresses to channels, DIMMs, ranks, and banks. AMD publicly
documents the addressing function used by its products (see, e.g., [Adv13, p.
345]), however to the best of our knowledge Intel does not. The mapping for
one Intel Sandy Bridge machine in one memory configuration has been reverse
engineered by Seaborn [Sea15b]. However, Intel has changed the mapping used
in its more recent microarchitectures. Also, the mapping necessarily differs when
using other memory configurations, e.g., a different number of DIMMs.

The row buffer. Apart from the memory array, each bank also features a
row buffer between the DRAM cells and the memory bus. From a high-level
perspective, it behaves like a directly-mapped cache and stores an entire DRAM
row. Requests to addresses in the currently active row are served directly from
this buffer. If a different row needs to be accessed, then the currently active row
is first closed (with a pre-charge command) and then the new row is fetched
(with a row-activate command). We call such an event a row conflict. Naturally,
such a conflict leads to significantly higher access times compared to requests to
the active row. This timing difference will later serve as the basis for our attacks
and the software-based reverse-engineering method. Note that after each refresh
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operation, a bank is already in the pre-charged state. In this case, no row is
currently activated.

Independently of our work, Hassan et al. [HKP15] also proposed algorithms
to reverse engineer DRAM functions based on timing differences. However, their
approach requires customized hardware performance-monitoring units. Thus,
they tested their approach only in a simulated environment and not on real
systems. Concurrently to our work, Xiao et al. [Xia+16] proposed a method to
reverse engineer DRAM functions based on the timing differences caused by row
conflicts. Although their method is similar to ours, their focus is different, as
they used the functions to perform Rowhammer attacks across VMs.

DRAM organization for multi-CPU systems. In modern multi-CPU
server systems, each CPU features a dedicated memory controller and attached
memory. The DRAM is still organized in one single address space and is ac-
cessible by all processors. Requests for memory attached to other CPUs are
sent over the CPU interconnect, e.g., Intel’s QuickPath Interconnect (QPI). This
memory design is called Non-Uniform Memory Access (NUMA), as the access
time depends on the memory location.

On our dual Haswell-EP setup, the organization of this single address space
can be configured for the expected workload. In interleaved mode, the memory is
split into small slices which are spliced together in an alternating fashion. In non-
interleaved mode, each CPUs memory is kept in one contiguous physical-address
block. For instance, the lower half of the address space is mapped to the first
CPUs memory, whereas the upper half is mapped to the second CPUs memory.

7.2 Definitions

In this section we provide definitions for the terms row hit and row conflict.
These definitions provide the basis for our reverse engineering as well as the
covert and side-channel attacks.

Every physical memory location maps to one out of many rows in one out
of several banks in the DRAM. Considering a single access to a row i in a bank
there are two major possible cases:

1. The row i is already opened in the row buffer. We call this case a row hit.
2. A different row j 6= i in the same bank is opened. We call this case a row

conflict.
Considering frequent alternating accesses to two (or more) addresses we

distinguish three cases:
1. The addresses map to different banks. In this case the accesses are indepen-

dent and whether the addresses have the same row indices has no influence
on the timing. Row hits are likely to occur for the accesses, i.e., access
times are low.

2. The addresses map to the same row i in the same bank. The probability
that the row stays open in between accesses is high, i.e., access times are
low.
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Figure 7.1: Histogram for cache hits and cache misses divided into row hits and row
conflicts on the Ivy Bridge i5 test system. Measurements were performed
after a short idle period to simulate non-overlapping accesses by victim
and spy. From 180 to 216 cycles row hits occur, but no row conflicts.

3. The addresses map to the different rows i 6= j in the same bank. Each
access to an address in row i will close row j and vice versa. Thus, row
conflicts occur for the accesses, i.e., access times are high.

For measuring the timing differences of row hits and row conflicts, data has to
be flushed from the cache. Figure 7.1 shows a comparison of standard histograms
of access times for cache hits and cache misses. Cache misses are further divided
into row hits and row conflicts. For this purpose an unrelated address in the
same row was accessed to cause a row hit and an unrelated address in the same
bank but in a different row was accessed to cause a row conflict. We see that
from 180 to 216 cycles row hits occur, but no row conflicts (cf. highlighted area
in Figure 7.1). In the remainder, we build different attacks that are based on
this timing difference between row hits and row conflicts.

7.3 Reverse Engineering DRAM Addressing

In this section, we present our reverse engineering of the DRAM address mapping.
We discuss two approaches, the first one is based on physical probing, whereas
the second one is entirely software-based and fully automated. Finally, we present
the outcome of our analysis, i.e., the reverse-engineered mapping functions. In
the remainder of this chapter, we denote by a a physical memory address. ai
denotes the i-th bit of an address.

7.3.1 Linearity of Functions

The DRAM addressing functions are reverse engineered in two phases. First, a
measuring phase and second, a subsequent solving phase. Our solving approaches
require that the addressing functions are linear, i.e., they are XORs of physical-
address bits.
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Figure 7.2: Physical probing of the DIMM slot.

In fact, Intel used such functions in earlier microarchitectures. For instance,
Seaborn [Sea15b] reports that on his Sandy Bridge setup the bank address is
computed by XORing the bits a14..a16 with the lower bits of the row number
(a18..a20) (cf. Figure 7.4a). This is done in order to minimize the number of row
conflicts during runtime. Intel also uses linear functions for CPU-cache addressing.
Maurice et al. [Mau+15b] showed that the complex addressing function, which is
used to select cache slices, is an XOR of many physical-address bits.

As it turns out, linearity holds on all our tested configurations. However, there
are setups in which it might be violated, such as triple-channel configurations.
We did not test such systems and leave a reverse engineering to future work.

7.3.2 Reverse Engineering Using Physical Probing

Our first approach to reverse engineer the DRAM mapping is to physically probe
the memory bus and to directly read the control signals. As shown in Figure 7.2,
we use a standard passive probe to establish contact with the pin at the DIMM
slot. We then repeatedly accessed a selected physical address2 and used a high-
bandwidth oscilloscope to measure the voltage and subsequently deduce the logic
value of the contacted pin. Note that due to the repeated access to a single
address, neither a timely location of specific memory requests nor distinguishing
accesses to the chosen address from other random ones are required.

We repeated this experiment for many selected addresses and for all pins of
interest, namely the bank-address bits (BA0, BA1, BA2 for DDR3 and BG0,
BG1, BA0, BA1 for DDR4) for one DIMM and the chip select CS for half the
DIMMs.

For the solving phase we use the following approach. Starting from the top-
layer (channel or CPU addressing) and drilling down, for each DRAM addressing
function we create an over-defined system of linear equations in the physical
address bits. The left-hand side of this system is made up of the relevant tested

2Resolving virtual to physical addresses requires root privileges in Linux. Given that we
need physical access to the internals of the system, this is a very mild prerequisite.
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physical addresses. For instance, for determining the bank functions we only
use addresses that map to the contacted DIMMs channel. The right-hand side
of the system of equations are the previously measured logic values for the
respective address and the searched-for function. The logic values for CPU and
channel addressing are computed by simply ORing all respective values for the
chip-select pins. We then solve this system using linear algebra. The solution is
the corresponding DRAM addressing function.

Obviously, this reverse-engineering approach has some drawbacks. First,
expensive measurement equipment is needed. Second, it requires physical access
to the internals of the tested machine. However, it has the big advantage that the
address mapping can be reconstructed for each control signal individually and
exactly. Thus, we can determine the exact individual functions for the bus pins.
Furthermore, every platform only needs to be measured only once in order to
learn the addressing functions. Thus, an attacker does not need physical access
to the concrete attacked system if the measurements are performed on a similar
machine.

7.3.3 Fully Automated Reverse Engineering

For our second approach to reverse engineer the DRAM mapping we exploit the
fact that row conflicts lead to higher memory access times. We use the resulting
timing differences to find sets of addresses that map to the same bank but to
a different row. Subsequently, we determine the addressing functions based on
these sets. The entire process is fully automated and runs in unprivileged and
possibly restricted environments.

Timing analysis. In the first step, we aim to find same-bank addresses in
a large array mapped into the attackers’ address space. For this purpose, we
perform repeated alternating access to two addresses and measure the average
access time. We use clflush to ensure that each access is served from DRAM
and not from the CPU cache. As shown in Figure 7.3, for some address pairs the
access time is significantly higher than for most others. These pairs belong to
the same bank but to different rows. The alternating access causes frequent row
conflicts and consequently the high latency.

The tested pairs are drawn from an address pool, which is built by selecting
random addresses from a large array. A small subset of addresses in this pool is
tested against all others in the pool. The addresses are subsequently grouped
into sets having the same channel, DIMM, rank, and bank. We try to identify as
many such sets as possible in order to reconstruct the addressing functions.

Function reconstruction. In the second phase, we use the identified address
sets to reconstruct the addressing functions. This reconstruction requires (at least
partial) resolution of the tested virtual addresses to physical ones. Similar as later
in Section 8.2.1, one can use either the availability of 2 MB pages, 1 GB pages, or
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Figure 7.3: Histogram of average memory access times for random address pairs on
our Haswell test system. A clear gap separates the majority of address
pairs causing no row conflict (lower access times), because they map to
different banks, from the few address pairs causing a row conflict (higher
access times), because they map to different rows in the same bank.

privileged information such as the virtual-to-physical address translation that
can be obtained through /proc/pid/pagemap in Linux systems.

In the case of 2 MB pages we can recover all partial functions up to bit a20, as
the lowest 21 bit of virtual and physical address are identical. On many systems
the DRAM addressing functions do not use bits above a20 or only a few of them,
providing sufficient information to mount covert and side-channel attacks later on.
In the case of 1 GB pages we can recover all partial functions up to bit a30. This
is sufficient to recover the full DRAM addressing functions on all our test systems.
If we have full access to physical address information we will still ignore bits
a30 and upwards. These bits are typically only used for DRAM row addressing
and they are very unlikely to play any role in bank addressing. Additionally, we
ignore bits (a0..a5) as they are used for addressing within a cache line, which
makes it unlikely that they are used for bank addressing.

The search space is then small enough to perform a brute-force search of
linear functions within seconds. For this, we generate all linear functions that
use exactly n bits as coefficients and then apply them to all addresses in one
randomly selected set. We start with n = 1 and increment n subsequently to
find all functions. Only if the function has the same result for all addresses in a
set, we test this potential function on all other sets. However, in this case we
only pick one address per set and test whether the function is constant over all
sets. If so, the function is discarded. We obtain a list of possible addressing
functions that also contains linear combinations of the actual DRAM addressing
functions. We prioritize functions with a lower number of coefficients, i.e., we
remove higher-order functions which are linear combinations of lower-order ones.
Depending on the random address selection, we now have a complete set of
correct addressing functions. We verify the correctness either by comparing it
to the results from the physical probing, or by performing a software-based test.
One option to perform the latter is to verify the timing differences on a larger
set of addresses. Another option is to perform Rowhammer tests, where usage of
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Table 7.1: Experimental setups.

CPU / SoC Microarch. Mem.

i5-2540M Sandy Bridge DDR3
i5-3230M Ivy Bridge DDR3
i7-3630QM Ivy Bridge DDR3
i7-4790 Haswell DDR3
i7-6700K Skylake DDR4
2x Xeon E5-2630 v3 Haswell-EP DDR4
Qualcomm Snapdragon S4 Pro ARMv7 LPDDR2
Samsung Exynos 5 Dual ARMv7 LDDDR3
Qualcomm Snapdragon 800 ARMv7 LPDDR3
Qualcomm Snapdragon 820 ARMv8-A LPDDR3
Samsung Exynos 7420 ARMv8-A LPDDR4

the addressing functions should increase the number of bit flips per second by a
factor that is the number of sets we found.

Compared to the probing approach, this purely software-based method has
significant advantages. It does not require any additional measurement equipment
and can be executed on a remote system. We can identify the functions even
from within VMs or sandboxed processes if 2 MB or 1 GB pages are available.
Furthermore, even with only 4 KB pages we can group addresses into sets that
can be directly used for covert or side-channel attacks. This software-based
approach also allows reverse engineering in settings where probing is not easily
possible anymore, such as on mobile devices with hard-wired ball-grid packages.
Thus, it allowed us to reverse engineer the mapping on current ARM processors.

One downside of the software-based approach is that it cannot recover the
exact labels (BG0, BA0, ...) of the functions. Thus, we can only guess whether
the reconstructed function computes a bank address bit, rank bit, or channel bit.
Note that assigning the correct labels to functions is not required for any of our
attacks.

7.3.4 Results

We now present the reverse-engineered mappings for all our experimental setups.
We analyzed a variety of systems (Table 7.1), including a dual-CPU Xeon system,
that can often be found in cloud systems, and multiple current smartphones.
Where possible, we used both presented reverse-engineering methods and cross-
validated the results.

We found that the basic scheme is always as follows. On PCs, the memory
bus is 64 bits wide, yet the smallest addressable unit is a byte. Thus, the three
lower bits (a0..a2) of the physical address are used as byte index into a 64-bit
(8-byte) memory word and they are never transmitted on the memory bus. Then,
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Figure 7.4: Reverse engineered dual channel mapping (1 DIMM per channel) for
different architectures.

the next bits are used for column selection. One bit in between is used for
channel addressing. The following bits are responsible for bank, rank, and DIMM
addressing. The remaining upper bits are used for row selection.

The detailed mapping, however, differs for each setup. To give a quick
overview of the main differences, we show the mapping of one selected memory
configuration for multiple Intel microarchitectures and ARM-based SoCs in
Figure 7.4. Here we chose a configuration with two equally sized DIMMs in
dual-channel configuration, as it is found in many off-the-shelf consumer PCs.
All our setups use dual-rank DIMMs and use 10 bits for column addressing.
Figure 7.4a shows the mapping on the Sandy Bridge platform, as reported by
Seaborn [Sea15b]. Here, only a6 is used to select the memory channel, a17 is
used for rank selection. The bank-address bits are computed by XORing bits
a14..a16 with the lower bits of the row index (a18..a20).

The channel selection function changed with later microarchitectures, such as
Ivy Bridge and Haswell. As shown in Figure 7.4b, the channel-selection bit is
now computed by XORing seven bits of the physical address. Further analysis
showed that bit a7 is used exclusively, i.e., it is not used as part of the row- or
column address. Additionally, rank selection is now similar to bank addressing
and also uses XORs.

Our Skylake test system uses DDR4 instead of DDR3. Due to DDR4’s
introduction of bank grouping and the doubling of the available banks (now 16),
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the addressing function necessarily changed again. As shown in Figure 7.4c, a7
is not used for channel selection anymore, but for bank addressing instead.

Figure 7.4e depicts the memory mapping of a dual-CPU Haswell-EP system
equipped with DDR4 memory. It uses 2 modules in dual-channel configuration
per CPU (4 DIMMs in total). In interleaved mode (cf. Section 7.1), the chosen
CPU is determined as a7 ⊕ a17. Apart from the different channel function, there
is also a difference in the bank addressing, i.e., bank addressing bits are shifted.
The range of bits used for row indexing is now split into address bits (a17..a19)
and a23 upwards.

The mapping used on one of our mobile platforms, a Samsung Galaxy S6
with an Exynos 7420 ARMv8-A SoC and LPDDR4 memory, is much simpler (cf.
Figure 7.4d). Here physical address bits are mapped directly to bank address
bits. Rank and channel are computed with XORs of only two bits each. The
bus width of LPDDR4 is 32 bits, so only the two lowest bits are used for byte
indexing in a memory word.

Table 7.2 shows a comprehensive overview of all platforms and memory
configurations we analyzed. As all found functions are linear, we simply list the
index of the physical address bits that are XORed together. With the example
of the Haswell microarchitecture, one can clearly see that the indices are shifted
to accommodate for the different memory setups. For instance, in single-channel
configurations a7 is used for column instead of channel selection, which is why
bank addressing starts with a13 instead of a14.

7.4 Improving Attacks

In this section, we describe how the DRAM addressing functions can be used to
improve the accuracy, efficiency, and success rate of existing attacks.

Flush+Reload. The first step when performing Flush+Reload attacks is to
compute a cache-hit threshold, based on a histogram of cache hits and cache
misses (memory accesses). However, as we have shown (cf. Figure 7.1) row hits
have a slightly lower access time than row conflicts. To get the best performance
in a Flush+Reload attack it is necessary to take row hits and conflicts into
account. Otherwise, if a process accesses any memory location in the same row, a
row hit will be misclassified as a cache hit. This introduces a significant amount
of noise as the spatial accuracy of a cache hit is 64 bytes and the one of a row hit
can be as low as 8 KB, depending on how actively the corresponding pages of the
row are used. We found that even after a call to sched yield and thus at least
two context switches, a row hit is still observed in 2 % of the cases on a Linux
system that is mostly idle. In a Flush+Reload attack the victim computes in
parallel and thus the probability then is even higher than 2 %. This introduces a
significant amount of noise especially for Flush+Reload attacks on low-frequency
events. Thus, the accuracy of Flush+Reload attacks can be improved significantly
taking row hits into account for the cache hit threshold computation.
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Rowhammer. In a Rowhammer attack, an adversary tries to trigger bit flips
in DRAM by provoking a high number of row switches. The success rate and
efficiency of this attack benefit greatly from knowing the DRAM mapping, as we
now demonstrate.

In order to cause row conflicts, one must alternately access addresses belonging
to the same bank, but different row. The probability that 2 random addresses
fulfill this criterion is 2−B , where B is the total number of bank-addressing bits
(this includes all bits for channel, rank, etc.). For instance, with the dual-channel
DDR4 configuration shown in Figure 7.4c this probability is only 2−6 = 1/64.
By hammering a larger set of addresses, the probability of having at least two
targeting the same bank increases. However, so does the time in between row
switches, thus the success rate decreases.

The most efficient way of performing the Rowhammer attack is double-sided
hammering. Here, one tries to cause bit flips in row n by alternatingly accessing
the adjacent rows n− 1 and n+ 1, which are most likely also adjacent in physical
memory. The most commonly referenced implementation of the Rowhammer
attack, by Seaborn and Dullien [SD15], performs double-sided hammering by
making assumptions on, e.g., the position of the row-index bits. If these are not
met, then their implementation does not find any bit flips. Also, it needs to
test multiple address combinations as it does not use knowledge of the DRAM
addressing functions. We tested their implementation on a Skylake machine
featuring G.SKILL F4-3200C16D-16GTZB DDR4 memory at the highest possible
refresh interval, yet even after 4 days of nonstop hammering, we did not detect
any bit flips.

By using the DRAM addressing functions we can immediately determine
whether two addresses map to the same bank. Also, we can very efficiently search
for pairs allowing double-sided hammering. After taking the reverse-engineered
addressing functions into account, we successfully caused bit flips on the same
Skylake setup within minutes. Running the same attack on a Crucial DDR4-2133
memory module running at the default refresh interval, we observed the first bit
flip after 16 seconds and subsequently observed on average one bit flip every 12
seconds.

One possible countermeasure against Rowhammer attacks is target row refresh
(TRR), where rows with many accesses to its neighbors are selectively refreshed.
Although the LPDDR4 standard includes TRR, the DDR4 standard does not.
Still, some manufacturers include it in their products as a non-standard feature.
For both DDR4 and LPDDR4, both the memory controller and the DRAM
must support this feature in order to provide any protection. To the best of our
knowledge, both our Haswell-EP test system and the Crucial DDR4-2133 memory
module, with Micron DRAM chips, support TRR [Mic14; Int15]. However, we
are still able to reproducibly trigger bit flips in this configuration.





8
Exploiting DRAM Addressing for

Cross-CPU Attacks

The previous chapter shows that there is a clear and measurable timing difference
between row hits and row conflicts. In fact, this difference is the basis for the
software-based reverse-engineering approach.

As demonstrated by cache attacks, such a microarchitectural timing behavior
can have powerful adversarial use. Unlike caches, however, DRAM and thus row
buffers are shared even across physical CPUs. This potentially allows attacks in
even more restrictive settings.

Contribution. In this chapter, we prove that this is indeed the case by present-
ing DRAMA attacks, a novel class of attacks that exploit the DRAM Addressing.
In particular, they leverage that DRAM row buffers are a shared component
even in multi-processor systems. Our attacks require that at least one memory
module is shared between the attacker and the victim, which is the case even
in the most restrictive settings. In these settings, attacker and victim cannot
access the same memory cells, i.e., we do not circumvent system-level memory
isolation. We do not make any assumptions on the cache, nor on the location
of executing cores, nor on the availability of shared memory such as cross-VM
memory deduplication.

First, we build a covert channel that achieves transmission rates of up to
2 Mbps, which is three to four orders of magnitude faster than previously presented
memory-bus based channels. Second, we build a side-channel attack that allows
to automatically locate and monitor memory accesses, e.g., user input or server
requests, by performing template attacks.

95
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Outline. In Section 8.1, we provide background information and performance
figures of previously reported side channels on shared hardware. In Section 8.2,
we build a high-speed cross-CPU DRAMA covert channel. In Section 8.3, we
build a highly accurate cross-CPU DRAMA side-channel attack. We discuss
countermeasures against our attack in Section 8.4. We conclude in Section 8.5.

8.1 Previous Shared-Hardware Exploits

Attacks exploiting hardware sharing can be grouped into two categories. In side-
channel attacks, an attacker spies on a victim and extracts sensitive information
such as cryptographic keys. In covert channels however, sender and receiver are
actively cooperating to exchange information in a setting where they are not
allowed to, e.g., across isolation boundaries.

Cache attacks. Covert and side channels using the CPU cache exploit the fact
that cache hits are faster than cache misses. The methods Prime+Probe [Per05;
Mau+15a; Liu+15a] and Flush+Reload [YF14; Ira+14; Ben+14] have been
presented to either build covert channels or run side-channel attacks. The two
methods work at a different granularity: Prime+Probe can spy on cache sets,
while Flush+Reload has the finer granularity of a cache line but requires shared
memory, such as shared libraries or memory deduplication.

Attacks targeting the last-level cache are cross-core, but require the sender
and receiver to run on the same physical CPU. Gruss et al. [Gru+16] implemented
cross-core covert channels using Prime+Probe and Flush+Reload as well as a new
one, Flush+Flush, with the same protocol to normalize the results. The covert
channel using Prime+Probe achieves 536 Kbps, Flush+Reload 2.3 Mbps, and
Flush+Flush 3.8 Mbps. The cross-CPU cache attack by Irazoqui et al. [IES16]
exploits cache coherency mechanisms and works across processors. It however
requires shared memory.

An undocumented function maps physical addresses to the slices of the last-
level cache. However, this function has been reverse engineered in previous
work [Mau+15b; Inc+15; Yar+15], enhancing existing attacks and enabling
attacks in new environments.

Memory and memory bus. Xiao et al. [Xia+13] presented a covert channel
between VMs that exploits memory deduplication. In order to save memory,
the hypervisor searches for identical pages in physical memory and merges them
across VMs to a single read-only physical page. Writing to this page triggers a
copy-on-write page fault, incurring a significantly higher latency than a regular
write access. The authors built a covert channel that achieves up to 90 bps, and
40 bps on a system under memory pressure. Wu et al. [WXW15] proposed a bus-
contention-based covert channel, which uses atomic memory operations locking
the memory bus. This covert channel achieves a raw bandwidth of 38 Kbps
between two VMs, with an effective capacity of 747 bps with error correction.
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Row Buffer

Receiver Receiver

Receiver Receiver

Sender Sender

SenderSender

Figure 8.1: The sender occupies rows in a bank to trigger row conflicts. The receiver
occupies rows in the same bank to observe these row conflicts.

8.2 A High-Speed Cross-CPU Covert Channel

In this section, we present a first DRAMA attack, namely a high-speed cross-CPU
covert channel that does not require shared memory. Our channel exploits the
row buffer, which behaves like a directly-mapped cache. Unlike cache attacks,
the only prerequisite is that two communicating processes have access to the
same memory module.

8.2.1 Basic Concept

Our covert channel exploits timing differences caused by row conflicts. Sender and
receiver occupy different rows in the same bank as illustrated in Figure 8.1. The
receiver process continuously accesses a chosen physical address in the DRAM
and measures the average access time over a few accesses. If the sender process
now continuously accesses a different address in the same bank but in a different
row, a row conflict occurs. This leads to higher average access times in the
receiver process. Bits can be transmitted by switching the activity of the sender
process in the targeted bank on and off. This timing difference is illustrated
in Figure 8.2, an exemplary transmission is shown in Figure 8.3. The receiver
process distinguishes the two values based on the mean access time. We assign a
logic value of 0 to low access times (the sender is inactive) and a value of 1 to
high access times (the sender is active).

Each (CPU, channel, DIMM, rank, bank) tuple can be used as a separate
transmission channel. However, a high number of parallel channels leads to
increased noise. Also, there is a strict limit on the usable bank parallelism. Thus,
optimal performance is achieved when using only a subset of available tuples.
Transmission channels are unidirectional, but the direction can be chosen for
each one independently. Thus, two-way communication is possible.

To evaluate the performance of this new covert channel, we created a proof-of-
concept implementation. We restrict ourselves to unidirectional communication,
i.e., we have one dedicated sender and one dedicated receiver.
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(b) Sender active on bank: sending a 1.

Figure 8.2: Timing differences between active and non-active sender (on one bank),
measured on the Haswell i7 test system.

The memory access time is measured using rdtsc. The memory accesses are
performed using volatile pointers. In order to cause a DRAM access for each
request, data has to be flushed from the cache using clflush.

Determining channel, rank, and bank address. In an agreement phase,
all parties need to agree on the set of (channel, DIMM, rank, bank) tuples that
are used for communication. This set needs to be chosen only once, all subsequent
communication can use the same set. Next, both the sender and the receiver
need to find at least one address in their respective address space for each tuple.
Note that some operating systems allow unprivileged resolution of virtual to
physical addresses. In this case, finding such addresses is trivial.
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Figure 8.3: Covert channel transmission on one bank, cross-CPU and cross-VM on a
Haswell-EP server. The time frame for one bit is 50µs.
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However, on Linux, which we used on our testing setup, unprivileged address
resolution is not possible. Thus, we use the following approach. As observed
in previous work [GBM15; GMM16], system libraries and the operating system
assign 2 MB pages for arrays which are significantly larger than 2 MB. On these
pages, the 21 lowest bits of the virtual address and the physical address are
identical. Depending on the hardware setup, these bits can already be sufficient
to fully determine bank, rank, and channel address. For this purpose, both
processes request a large array. The start of this array is not necessarily aligned
with a 2 MB border. Memory before such a border is allocated using 4 KB pages.
We skip to the next 2 MB page border by choosing the next virtual address
having the 21 lowest bits set to zero.

On systems that also use higher bits, an attacker can use the following
approach, which we explain on the example of the mapping shown in Figure 7.4b.
There an attacker cannot determine the BA2 bit by just using 2 MB pages. Thus,
the receiving process selects addresses with chosen BA0, BA1, rank, and channel,
but an unknown BA2 bit. The sender now accesses addresses for both possibilities
of BA2, e.g., by toggling a17 between consecutive reads. Thus, only each second
access in the sending process targets the correct bank. Due to bank parallelism
this does not cause a notable performance decrease. Note however that this
approach might not work if the number of unknown bank-address bits is too
high.

In a virtualized environment, even a privileged attacker can retrieve only the
guest physical address, which is further translated into the real physical address
by the memory management unit. However, if the host system uses 1 GB pages
for the second-level address translation (to improve efficiency), then the lowest
30 bits of the guest physical address are identical to the real physical address.
Knowledge of these bits is sufficient on all systems we analyzed to use the full
DRAM addressing functions.

Finally, the covert channel could also be built without actually reconstructing
the DRAM addressing functions. Instead of determining the exact bank address, it
can rely solely on the same-bank sets retrieved in Section 7.3.3. In an initialization
phase, both sender and receiver perform the timing analysis and use it to build
sets of same-bank addresses. Subsequently, the communicating parties need
to synchronize their sets, i.e., they need to agree on which of them is used for
transmission. This is done by sending predefined patterns over the channel. After
that, the channel is ready for transmission. Thus, it can be established without
having any information on the mapping function nor on the physical addresses.

Synchronization. In our proof-of-concept implementation, one set of bits (a
data block) is transmitted for a fixed time span which is agreed upon before
starting communication. Decreasing this period increases the raw bitrate, but it
also increases the error rate, as shown in Figure 8.4.

For synchronizing the start of these blocks we employ two different mecha-
nisms. If sender and receiver run natively, we use the wall clock as means of
synchronization. Here blocks start at fixed points in time. If, however, sender
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and receiver run in two different VMs, then a common (or perfectly synchronized)
wall clock is typically not available. In this case, the sender uses one of the
transmission channels to transmit a clock signal which toggles at the beginning
of each block. The receiver then recovers this clock and can thus synchronize
with the sender.

We employ multiple threads for both the sender and receiver processes to
achieve optimal usage of the memory bus. Thus, memory accesses are performed
in parallel, increasing the performance of the covert channel.

8.2.2 Evaluation

We evaluated the performance of our covert-channel implementation on two
systems. First, we performed tests on a standard desktop PC featuring an Intel
i7-4790 CPU with Haswell microarchitecture. It was equipped with 2 Kingston
DDR3 KVR16N11/8 dual-rank 8 GB DIMMs in dual-channel configuration.
The system was mostly idle during the tests, i.e., no other tasks were causing
significant load on the system. The DRAM clock was set to its default of 800 MHz
(DDR3-1600).

Furthermore, we also tested the capability of cross-CPU transmission on a
server system. Our setup has two Intel Xeon E5-2630 v3 (Haswell-EP microar-
chitecture). It was equipped with a total of 4 Samsung M393A2G40DB0-CPB
DDR4 registered ECC DIMMs. Each CPU was connected to two DIMMs in
dual-channel configuration and NUMA was set to interleaved mode. The DRAM
frequency was set to its maximum supported value (DDR4-1866).

For both systems, we evaluated the performance in both a native scenario,
i.e., both processes run natively, and in a cross-VM scenario. We transmit 8
bits per block (use 8 (CPU, channel, DIMM, rank, bank) tuples) in the covert
channel and run 2 threads in both the sender and the receiver process. Every
thread is scheduled to run on different CPU cores, and in the case of the Xeon
system, sender and receiver run on different physical CPUs.

We tested our implementation with a large range of measurement intervals.
For each one, we measure the raw channel capacity and the bit error probability.
While the raw channel capacity increases proportionally to the reduction of the
measurement time, the bit error rate increases significantly if the measurement
time is too short. In order to find the best transmission rate, we use the channel
capacity as our metric. When using the binary symmetric channel model, this
metric is computed by multiplying the raw bitrate with 1− H(e), with e the bit
error probability and H(e) = −e · log2(e)− (1− e) · log2(1− e) the binary entropy
function.

Figure 8.4 shows the error rate depending on the raw bitrate for the case
that both sender and receiver run natively. On our desktop setup (Figure 8.4a),
the error probability stays below 1 % for bitrates of up to 2 Mbps. The channel
capacity reaches up to 2.1 Mbps (raw bitrate of 2.4 Mbps, error probability of
1.8 %). Beyond this peak, the increasing error probability causes a decrease
in the effective capacity. On our server setup (Figure 8.4b) the cross-CPU
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(b) Server setup, cross-CPU (Haswell-EP)

Figure 8.4: Performance of our covert channel implementation (native).

communication achieves 1.2 Mbps with a 1 % error rate. The maximum capacity
is 1.6 Mbps (raw 2.6 Mbps, 8.7 % error probability).

For the cross-core cross-VM scenario, we deployed two VMs which were
configured to use 1 GB pages for second-stage address translation. We reach a
maximum capacity of 309 kbps (raw 411 kbps, 4.1 % error probability) on our
desktop system. The server setup (cross-CPU cross-VM) performs much better,
we achieved a bitrate of 596 kbps with an error probability of just 0.4 %.

8.2.3 Comparison with State of the Art

We compare the bitrate of our DRAM covert channel with the normalized
implementation of three cache covert channels by Gruss et al. [Gru+16]. For an
error rate that is less than 1 %, the covert channel using Prime+Probe obtains
536 Kbps, the one using Flush+Reload 2.3 Mbps and the one using Flush+Flush
3.8 Mbps. With a capacity of up to 2 Mbps, our covert channel is within the
same order of magnitude of current cache-based channels. However, unlike
Flush+Reload and Flush+Flush, it does not require shared memory. Moreover,
in contrast to our attack, these cache covert channels do not allow cross-CPU
communication.

The work of Irazoqui et al. [IES16] focuses on cross-CPU cache-based side-
channel attacks. They did not implement a covert channel, thus we cannot
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compare our performance with their cache attack. However, their approach also
requires shared memory and thus it would not work in our attack setting.

The covert channel by Xiao et al. [Xia+13] using memory deduplication
achieves up to 90 bps. However, due to security concerns, memory deduplication
has been disabled in many cloud environments. The covert channel of Wu
et al. [WXW15] using the memory bus achieves 746 bps with error correction.
Our covert channel is therefore three to four orders of magnitude faster than
state-of-the-art memory-based covert channels.

8.3 A Low-Noise Cross-CPU Side Channel

In this section, we present a second DRAMA attack, a highly accurate side-
channel attack using DRAM addressing information. We again exploit the row
buffer and its behavior similar to a directly-mapped cache. In this attack, the spy
and the victim can run on separate CPUs and do not share memory, i.e., no access
to shared libraries and no page deduplication between VMs. We mainly consider
a local attack scenario where Flush+Reload cache attacks are not applicable due
to the lack of shared memory. However, our side-channel attacks can also be
applied in a cloud scenario with multi-tenant machines. There, one malicious user
spies on other users through this side channel. The side channel achieves a timing
accuracy that is comparable to Flush+Reload and a higher spatial accuracy
than Prime+Probe. Thus, it can be used as a highly accurate alternative to
Prime+Probe cache attacks in cross-core scenarios without shared memory.

8.3.1 Basic Concept

For the covert channel, an active sender caused row conflicts. In the side-channel
attack, we infer the activity of a victim process by detecting row hits and row
conflicts following our definitions from Section 7.2. For the attack to succeed,
spy and victim need to have access to the same row in a bank, as illustrated in
Figure 8.5. This is possible without shared memory due to the DRAM addressing
functions.

Depending on the addressing functions, a single 4 KB page can map to multiple
DRAM rows. As illustrated in Figure 8.6, in our Haswell-EP system the contents
of a page are split over 8 DRAM rows (with the same row index, but different
bank address). Conversely, a DRAM row contains content of at least two 4 KB
pages, as the typical row size is 8 KB. More specifically, in our Haswell-EP setup a
single row stores content for 16 different 4 KB pages, as again shown in Figure 8.6.
The amount of memory mapping from one page to one specific row, e.g., 512
bytes in the previous case, is the achievable spatial accuracy of our attack. If
none of the DRAM addressing functions uses low address bits (a0 − a11), the
spatial accuracy is 4 KB, which is the worst case. However, if DRAM addressing
functions (such as channel, BG0, CPU) use low address bits, better accuracy can
be achieved, such as the 512 B for the server setup. On systems where 6 or more
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Victim Spy

SpySpy

Figure 8.5: Victim and spy have memory allocated in the same DRAM row. By
accessing this memory, the spy can determine whether the victim just
accessed it.

low address bits are used, the spatial accuracy of the attack is 64 B and thus as
accurate as a Flush+Reload cache side-channel attack.

Assuming that an attacker occupies at least one other 4 KB page that maps
(in part) to the same bank and row, the attacker has established a situation as
illustrated in Figure 8.5.

To run the side-channel attack on a private memory address t in a victim
process, the attacker allocates a memory address p that maps to the same bank
and the same row as the target address t. As shown in Figure 8.6, although t
and p map to the same DRAM row, they belong to different 4 KB pages (i.e., no
shared memory). The attacker also allocates a row conflict address p̄ that maps
to the same bank but a different row.

The side-channel attack then works in three steps:

1. Access the row conflict address p̄
2. Wait for the victim to compute
3. Measure the access time on the targeted address p

If the measured timing is below a row-hit threshold (cf. the highlighted “row
hit” region in Figure 7.1), the victim has just accessed t or another address in
the target row. Thus, we can accurately determine when a specific non-shared
memory location is accessed by a process running on another core or CPU. As p
and p̄ are on separate private 4 KB pages, they will not be prefetched and we
can measure row hits without any false positives. By allocating all but one of
the pages that map to a row, the attacker maximizes the spatial accuracy.

Based on this attack principle, we build a fully automated template attack
(similar to cache template attacks [GSM15]) that triggers an event in the victim
process running on the other core or CPU (e.g., by sending requests to a web
interface or triggering user-interface events). For this attack we do not need to
reconstruct the full addressing functions nor determine the exact bank address.
Instead, we exploit the timing difference between row hits and row conflicts as
shown in Figure 7.1.

To perform a DRAMA template attack, the attacker allocates a large fraction
of memory, ideally in 4 KB pages. This ensures that some of the allocated
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Figure 8.6: Mapping between a 4 KB page and an 8 KB DRAM row in the Haswell-EP
setup. Banks are numbered 0 − 7, pages are numbered A − P . Every
eighth 64-byte region of a 4 KB page maps to the same bank in DRAM.
In total 8 out of 64 regions (= 512B) map to the same bank. Thus, the
memory of each row is divided among 16 different pages (A − P ) that
use memory from the same row. Occupying one of the pages B − P is
sufficient to spy on the eight 64-byte regions of page A in the same bank.

pages are placed in a row together with pages used by the victim. The attacker
then profiles the entire allocated memory and records the row-hit ratio for each
address.

False-positive detections are eliminated by running the profiling phase with
different events. If an address has a high row-hit ratio for a single event, it
can be used to monitor that event in the exploitation phase. After such an
address has been found, all other remaining memory pages will be released and
the exploitation phase is started.

8.3.2 Evaluation

We evaluated the performance of our side-channel attack in several tests. These
tests were performed on a dual-core laptop with an Ivy Bridge Intel i5-3230M
CPU with 2 Samsung DDR3-1600 dual-rank 4 GB DIMMs in dual-channel
configuration.

The first test was a DRAMA template attack. The attack ran without any
shared memory in an unprivileged user program. In this template attack we
profiled access times on a private memory buffer while triggering keystrokes in
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Figure 8.7: A DRAM template of the system memory with and without triggering
keystrokes in the Firefox address bar. 1136 sets had row hits after a
keystroke, 59 sets had false positive row hits (row hits without a keystroke),
measured on our Ivy Bridge i5 test system.

the Firefox address bar. Figure 8.7 shows the template attack profile with and
without keystrokes being triggered. While scanning a total of 7 GB of allocated
memory, we found 1195 addresses that showed at least one row hit during the
tests. 59 of these addresses had row hits independent of the event (false positives),
i.e., these 59 addresses cannot be used to monitor keystroke events. For the
remaining 1136 addresses we only had row hits after triggering a keystroke in the
Firefox address bar. Out of these addresses, 360 addresses had more than 20 row
hits. Any of these 360 addresses can be used to monitor keystrokes reliably. The
time to find an exploitable address varies between a few seconds and multiple
minutes. Sometimes the profiling phase does not find any exploitable address,
for instance if there is no memory in one row with victim memory. In this case
the attacker has to restart the profiling phase.

After automatically switching to the exploitation phase we can monitor the
exact timestamp of every keystroke in the address bar (but not the concretely
pressed key). We verified empirically that row hits can be measured on the found
addresses after keystrokes by triggering keystrokes by hand. Figure 8.8 shows
an access time trace for an address found in a DRAMA template attack, while
typing in the Firefox address bar. For every key the user presses, a low access
time is measured. We found this address after less than 2 seconds. Over 80
seconds we measured no false positive row hits and when pressing 40 keys we
measured no false negatives. During this test the system was entirely idle apart
from the attack and the user typing in Firefox. In a real attack noise would
introduce false negatives.

Comparison with cache template attacks. To compare DRAMA template
attacks with cache template attacks, we performed two attacks on gedit. The
first uses the result from a cache template attack in a DRAMA exploitation
phase. The second is a modified cache template attack that uses the DRAMA
side channel. Both attacks use shared memory to be able to compare them with
cache template attacks. However, the DRAMA side-channel attack takes no
advantage of shared memory in any attack.
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Figure 8.8: Exploitation phase on non-shared memory in a DRAMA template attack
on our Ivy Bridge i5 test system. A low access time is measured when the
user presses a key in the Firefox address bar. The typing gaps illustrate
the low noise level.

In the first attack on gedit, we target tab open and tab close events. In
an experiment over 120 seconds we opened a new tab and closed the new tab
50 times. The exploitable address in the shared library was found in a cache
template attack. We computed the physical address and thus bank and row of the
exploitable address using privileged operating services. Then we allocated large
arrays to obtain memory that maps to the same row (and bank). This allows
us to perform an attack that has only minimal differences to a Flush+Reload
attack.

During this attack, our spy tool detected 1 false positive row hit and 1 false
negative row hit. Running stress -m 1 in parallel, which allocates and accesses
large memory buffers, causes a high number of cache misses, but did not introduce
a significant amount of noise. In this experiment the spy tool detected no false
positive row hits and 4 false negative row hits. Running stress -m 2 in parallel
(i.e., the attacker’s core is under stress) made any measurements impossible.
While no false positive detections occurred, only 9 events were correctly detected.
Thus, our attack is susceptible to noise especially if the attacker only gets a
fraction of CPU time on its core.

In the second attack we compared the cache side channel and the DRAM side
channel in a template attack on keystrokes in gedit. Figure 8.9 shows the number
of cache hits and row hits over the virtual memory where the gedit binary is
mapped. Row hits occur in spatial proximity to the cache hits and at shifted
offsets due to the DRAM address mappings.

8.3.3 Comparison with State of the Art

We now compare DRAMA side-channel attacks with same-CPU cache attacks
such as Flush+Reload and Prime+Probe, as well as with cross-CPU cache
attacks [IES16]. Our attack is the first to enable monitoring non-shared memory
cross-CPU with a reasonably high spatial accuracy and a timing accuracy that is
comparable to Flush+Reload. This allows the development of new attacks on
programs using dynamically allocated or private memory.
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Figure 8.9: Comparison of a cache hits and row hits over the virtual memory where
the gedit binary is mapped, measured on our Ivy Bridge i5 test system.

The spatial accuracy of the DRAMA side-channel attack is significantly
higher than that of a Prime+Probe attack, which also does not necessitate shared
memory, and only slightly lower than that of a Flush+Reload attack in most
cases. Our Ivy Bridge i5 system has 8 GB DRAM and a 3 MB L3 cache that is
organized in 2 cache slices with 2048 cache sets each. Thus, in a Prime+Probe
attack 32768 memory lines map to the same cache set, whereas in our DRAMA
side-channel attack, on the same system, only 32 memory lines map to the same
row. The spatial accuracy strongly depends on the system. On our Haswell-EP
system only 8 memory lines map to the same row whereas still 32768 memory
lines map to the same cache set. Thus, on the Haswell-EP system the advantage
of DRAMA side-channel attacks over Prime+Probe is even more significant.

For allocating memory lines that are in the same row as victim memory lines,
it is necessary to allocate significantly larger memory buffers than in a cache
attack like Prime+Probe. This is a clear disadvantage of DRAMA side-channel
attacks. However, DRAMA side-channel attacks have a very low probability
of false positive row hit detections, whereas Prime+Probe is highly susceptible
to noise. Due to this noise, monitoring singular events using Prime+Probe is
extremely difficult.

Irazoqui et al. [IES16] presented cache-based cross-CPU side-channel attacks.
However, their work requires shared memory. Our approach works without
shared memory. Not only does this allow cross-CPU attacks in highly restricted
environments, but it also allows to perform a new kind of cross-core attack within
one system.

8.4 Countermeasures

Defending against row buffer attacks is a difficult task. Making the corresponding
DRAM operations constant time might introduce unacceptable performance
degradation. However, as long as the timing difference exists and can be measured,
the side channel cannot be closed.

Our attack implementations use the unprivileged clflush instruction in order
to cause a DRAM access with every memory request. Thus, one countermeasure
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might be to restrict said operation. However, this requires architectural changes
and an attacker can still use eviction as a replacement. The additional memory
accesses caused by eviction could make our row-buffer covert channel impractical.
However, other attacks such as the fully automated reverse engineering or our
row-hit side-channel attack are still possible. Restricting the rdtsc instruction
would also not prevent an attack as other timing sources can be used as a
replacement.

To prevent cross-VM attacks on multi-CPU cloud systems, the cloud provider
could schedule each VM on a dedicated physical CPU and only allow access
to CPU-local DRAM. This can be achieved by using a non-interleaved NUMA
configuration and assigning pages to VMs carefully. This approach essentially
splits a multi-CPU machine into independent single-CPU systems, which leads
to a loss of many of its advantages.

Saltaformaggio et al. [SXZ13] presented a countermeasure to the memory
bus-based covert channel of Wu et al. It intercepts atomic instructions that are
responsible for this covert channel, so that only cores belonging to the attacker’s
VM are locked, instead of the whole machine. This countermeasure is not effective
against our attacks as they do not rely on atomic instructions.

Finally, our attack could be detected due to the high number of cache misses.
However, it is unclear whether it is possible to distinguish our attacks from
non-malicious applications.

8.5 Conclusion

In this chapter, we presented two methods to reverse engineer the mapping of
physical memory addresses to DRAM channels, ranks, and banks. One uses
physical probing of the memory bus, the other runs entirely in software and is
fully automated. We ran our method on a wide range of architectures, including
desktop, server, and mobile platforms.

Based on the reverse-engineered functions, we demonstrated DRAMA (DRAM
addressing) attacks. This novel class of attacks exploits the DRAM row buffer
that is a shared resource in single and multi-processor systems. This allows
our attacks to work in the most restrictive environments, i.e., across processors
and without any shared memory. We built a covert channel with a capacity of
2 Mbps, which is three to four orders of magnitude faster than memory-bus-based
channels in the same setting. We demonstrated a side-channel template attack
automatically locating and monitoring memory accesses, e.g., user input, server
requests. This side-channel attack is as accurate as recent cache attacks like
Flush+Reload, while requiring no shared memory between the victim and the spy.
Finally, we show how to use the reverse-engineered DRAM addressing functions
to improve existing attacks, such as Flush+Reload and Rowhammer. Our work
enables practical Rowhammer attacks on DDR4.

We emphasize the importance of reverse engineering microarchitectural com-
ponents for security reasons. Before we reverse engineered the DRAM address
mapping, the DRAM row buffer was transparent to the operating system and
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other software. Only by reverse engineering we made this shared resource visible
and were able to identify it as a powerful side channel.





9
Conclusions

Side-channel attacks aim at moving targets. Cryptographic algorithms as well as
(general-purpose) hardware never stop evolving, which creates a constant influx
of new challenges for both attackers and defenders. In this thesis, we extended
the understanding of possible attacks in two main directions.

First, we showed new side-channel attacks on lattice-based cryptography,
which is a possible contender for replacing current public-key cryptosystems.
A common theme in all proposed attacks is the exploitation of some algebraic
structure or feature not seen in more classic and established constructions.
Lattice basis reductions allow to combine public information (the public key)
with side-channel leakage and inferred partial knowledge of the private key.
We further exploited the difficulty in high-precision sampling from Gaussian
distributions, the sparsity of private keys, and vastly different distributions
of certain intermediate variables. Another key point is the linearity of many
involved operations allowing efficient gathering and combination of side-channel
information across multiple algorithm invocations. Finally, many of the attacks
target key-independent subroutines; thus Differential Power Analysis (DPA)
is not applicable there. All this clearly shows that defending solely against
“classic” side-channel techniques such as DPA is not enough and that new attack
techniques enabled by novel algorithms and their algebraic structures have to be
considered and to be understood.

Second, we presented a new microarchitectural side-channel attack capable of
targeting even multi-processor systems, a common class of machines for cloud and
server applications. Our DRAMA techniques highlight the dangers of hardware
sharing and that disabling it after the fact, e.g., by assigning physical CPUs
exclusively, is not trivial and can leave open other attack paths.
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Outlook

While this thesis uncovers new attack paths for multi-processor systems and im-
plementations of lattice-based cryptography, there are still many open questions
and further potential for side-channel attacks. Especially the recent rapid devel-
opment of post-quantum cryptography, driven by the NIST call for proposals, has
lead to an increased need for side-channel evaluations and secure implementation
techniques. We now give some more concrete examples of possible future research
directions in this field.

Single-trace attacks on lattice-based cryptography. Many lattice-based
key-exchange schemes use only ephemeral, i.e., one-time use, secrets. This prop-
erty makes them a challenging target for side-channel attacks, as multi-trace
attacks like DPA, but also the attack presented in Chapter 4 are inherently pre-
vented. However, single-trace attacks still have to be considered, as demonstrated
by Primas et al. [PPM17]. This attack targets the number-theoretic transform
(NTT) and combines side-channel leakage across the entire algorithm using belief
propagation. However, it requires a powerful attacker capable of building a large
number of side-channel templates. An interesting question is if this attack can be
made more practical and can be mounted by less powerful adversaries. Some very
recent work [GRO18; GGS18] using belief propagation in side-channel attacks,
albeit in the context of AES, gives potential directions for improvements.

More general fault attacks. The fault attack presented in Chapter 6 targets
deterministic signature schemes and furthermore requires that the same message
is signed twice. The susceptibility of non-deterministic signatures to certain
fault models was also already analyzed by Bindel et al. [BBK16]. Extending the
applicability of fault attacks to key-exchange schemes (those that use long-term
secrets) is an interesting open problem. One way to achieve practical attacks
might be the adaptation of statistical fault attacks [Fuh+13; Dob+18a] to the
lattice scenario.

Analysis of new schemes. Due to the ongoing NIST call, there is no shortage
of new schemes and implementation techniques to be analyzed for side-channel
vulnerabilities. Many features, such as the use of the NTT, are common to many
proposals. Hence, advances in this direction can be applied to a large number of
schemes.

Some other techniques are unique to a small number of schemes, but can still
make for interesting targets. Noteworthy examples are the complex trapdoor
sampling employed by the Falcon signature scheme [Fou+17] or the use of the
Learning with Rounding problem in, e.g., Round5 [Bha+18].



Bibliography

[ADP18] Martin R. Albrecht, Amit Deo, and Kenneth G. Paterson. Cold
Boot Attacks on Ring and Module LWE Keys Under the NTT.
Cryptology ePrint Archive, Report 2018/672. To appear at CHES
2018. 2018.

[Adv13] Advanced Micro Devices. BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 00h-0Fh Processors. http:
//support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf.
2013.

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems.” In:
Electronic Colloquium on Computational Complexity (ECCC) 3.7
(1996).

[Akl+16] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane
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“Post-quantum Key Exchange – A New Hope.” In: USENIX Security
Symposium. USENIX Association, 2016, pp. 327–343.

[Alk+17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagde-
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