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Abstract

Multivariate graphs are commonplace in many application domains, such as social sci-

ences, transport, and molecular biology. The analysis of such graphs can be challenging

due to large quantities of data, the complexity of relationships, and data heterogeneity.

However, visualization can help humans to gain insights into this complex data. In this

thesis, we introduce four novel visualization techniques for multivariate graphs: EnRoute,

Entourage, Pathfinder, and ConTour. Paths play a primary role in all four visualization

techniques. Either, paths are utilized to alleviate graph exploration, or the analysis of

paths is the designated goal. EnRoute is a scalable visualization for the investigation of

graph attributes, where paths can be interactively extracted from a graph to show them

side-by-side with large amounts of heterogeneous attributes. Entourage allows users to

investigate multiple graph partitions simultaneously by showing one partition in detail,

while showing only contextually relevant paths for other partitions. Pathfinder is a query-

driven technique that uses ranking and alternative path representations for the analysis of

multiple paths in large graphs. Finally, ConTour allows users to investigate path relation-

ships in heterogeneous linked datasets in a list-based interface. While the core concepts

of all proposed visualization techniques are domain-agnostic, the visualizations were pri-

marily developed to help experts to investigate multivariate graphs in molecular biology

and drug discovery. Therefore, our techniques are evaluated in case studies and usage

scenarios that illustrate their fitness to support domain experts with their analysis tasks.
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Kurzfassung

Multivariate Graphen findet man heute in vielen Anwendungsbereichen wie den Sozialwis-

senschaften, dem Transportwesen und der Molekularbiologie. Die Analyse solcher Graphen

ist in vielen Fällen aufgrund großer Datenmengen, der Komplexität von Beziehungen und

der Datenheterogenität schwierig. Visualisierung kann jedoch helfen, diese komplexen

Daten für Menschen leichter verständlich zu machen. In dieser Arbeit stellen wir vier

neuartige Visualisierungstechniken für multivariate Graphen vor: EnRoute, Entourage,

Pathfinder und ConTour. In all unseren Visualisierungstechniken spielen Pfade eine zen-

trale Rolle. Entweder werden Pfade verwendet, um die Graphexploration zu erleichtern,

oder das Hauptaugenmerk liegt auf der Analyse von Pfaden selbst. EnRoute ist eine

skalierbare Visualisierung für die Analyse von Graphattributen, bei der Pfade interak-

tiv aus einem Graphen extrahiert werden können, um sie zusammen mit großen Men-

gen heterogener Attribute darzustellen. Entourage ermöglicht es Benutzern, mehrere

Partitionen eines Graphen gleichzeitig zu untersuchen, indem eine Partition im Detail

angezeigt wird, während nur kontextrelevante Pfade für andere Partitionen angezeigt

werden. Pathfinder ist eine auf Abfragen basierende Visualisierungstechnik, die Rank-

ing und alternative Pfaddarstellungen für die Analyse von multiplen Pfaden in großen

Graphen verwendet. Unsere letzte Visualisierungstechnik, ConTour, ermöglicht die Un-

tersuchung von Pfadbeziehungen in verknüpften Datensätzen mithilfe einer auf Listen

basierenden Benutzerschnittstelle. Obwohl die Kernkonzepte unserer Visualisierungstech-

niken domänenunabhängig sind, wurden die Visualisierungen in erster Linie entwickelt,

um Experten bei der Untersuchung von multivariaten Graphen in der Molekularbiologie

und der Wirkstoffforschung zu unterstützen. Daher werden unsere Visualisierungstech-

niken großteils in Fallstudien und Nutzungsszenarien evaluiert, die ihre Eignung zur Un-

terstützung von Domänenexperten bei ihren Analyseaufgaben veranschaulichen.
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Introduction

Contents

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement and Contributions . . . . . . . . . . . . . . . 3

1.3 Collaboration Statement . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . 5

Linked data and graphs are prevalent in various application domains. For example, such

data is found in the form of social networks that connect people through friendship rela-

tionships, or business data, where customers are linked to products via transactions. In

biology, networks depict interactions between biomolecules and represent existing knowl-

edge about biological processes in cells and whole organisms. To gain a deeper understand-

ing of these processes, various kinds of data, such as measurements about the activity of

genes or the responses of cells to drug treatment are analyzed in context of these biolog-

ical networks. The impact of insights gained in this domain is potentially high, as they

can ultimately lead to development of more effective drugs, improved diagnostics, or more

targeted treatment of patients. However, due to the large amounts and diversity of data,

the analysis of networks in molecular biology is challenging.

Visualization has proven to be a powerful approach to data analysis. The idea behind

data visualization is to use good visual encodings that exploit the capabilities of humans

to easily recognize patterns in images. Proper data visualization can facilitate and speed

up sense-making, when compared to typical raw data representations, such as large tables

containing numbers. Finding intuitive ways of interacting with visualizations is of equal

importance when dealing with large amounts of data that cannot be shown simultaneously.

Another common approach to data analysis is to use statistics and automated methods

that algorithmically extract valuable information. These methods typically scale well to

large amounts of data and are good at answering specific questions. However, they are

less suited to exploratory analysis, where it is not clear what to look for in advance.
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2 Chapter 1. Introduction

Therefore, visualization and automated methods are often used in conjunction to exploit

the strengths and compensate the weaknesses of each approach. To support effective visual

data analysis, many factors need to be considered, including the data at hand, analysis

goals, and domain-specific requirements. In this thesis, we focus on the visual analysis

of graphs, mainly for the application domain of molecular biology. In the following, we

will introduce basic concepts in graph theory and explain the problems addressed in this

thesis in further detail.

1.1 Preliminaries

In the literature, many different terms have been established to refer to certain concepts in

graph theory, but their usage is often inconsistent. In this section, we introduce relevant

terms and concepts and explain how they are used within this thesis.

A graph describes relationships between objects. These objects are referred to as

nodes or vertices, and the relationships are called edges or links. The terms graph

and network are often used interchangeably in the literature. Here, we use the term

graph when we refer to the mathematical concept or data structure and network when we

talk about concrete instances of graphs, such as biological networks or coauthor networks.

In a graph, an edge typically connects a pair of nodes. However, in hyper-graphs, a

hyper-edge can connect an arbitrary number of nodes. An edge is called directed when

the represented relationship has a designated source and target. Otherwise, an edge is

called undirected. An edge can be associated with a weight, which typically defines the

cost of choosing an edge to get from one node to another. In multivariate graphs, both

nodes and edges may be associated with multiple attributes that can be of any data

type, including textual, numerical, and categorical (ordinal or nominal) data. In real-

world applications, these attributes are often drawn from tabular experimental datasets

and mapped to the nodes.

Many graphs, such as biological networks, are divided into partitions, which define

subsets of nodes and edges. In a bipartite graph, the nodes can be partitioned into

two disjunct sets, such that no edge directly connects nodes within a set. A k-partite

graph is the generalization of this concept, where the nodes can be partitioned into k

disjunct sets. Linked tabular datasets that are typically stored in relational databases can

be considered as a k-partite graph, with table entries as nodes and foreign key relationships

as the edges.

A tree is a connected and acyclic graph. In many cases, trees depict hierarchical

structures, where a root node is defined. The tree is then called rooted. In a tree, any

two nodes are connected by a unique path. A path is an ordered sequence of nodes that

are connected by edges. In this thesis, we mainly consider simple paths, where no duplicate

nodes are allowed.
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1.2 Problem Statement and Contributions

Graph analysis poses a multitude of challenges for visualization. Many of them are asso-

ciated with scalability. The number of nodes and edges in real-world graphs often exceeds

the amount of information that can be presented using conventional graph layouts with-

out overwhelming the user and creating clutter. To alleviate scalability issues, graphs

are sometimes divided into smaller partitions. Nevertheless, the analysis of multiple par-

titions still poses challenges with respect to scalability. Additional scalability problems

are introduced by integrating large amounts of attribute data for nodes and edges. Data

heterogeneity represents another challenge for visualization, as different data types, char-

acteristics, and semantics require individual adaptation in terms of visual encoding and

interaction. All of these challenges are to be faced in molecular biology: Large biolog-

ical networks are partitioned into pathways modeling cellular processes and need to be

analyzed in context of large cohorts of heterogeneous attribute data in order to gain new

insights.

In the analysis of graphs and any sort of linked data, an important class of tasks is

concerned with paths. Learning about how two suspects are connected in a criminal case

or understanding why two genes are co-regulated are examples for important domain tasks

that can be abstracted to path analysis tasks. However, due to the complexity of large

networks, such path analysis is challenging.

In this thesis, we introduce contributions toward addressing these graph analysis chal-

lenges. While assuming underlying graphs of non-trivial size, we particularly want to

address scalability issues along three dimensions: the number of graph attributes, the

number of partitions, and the number of paths. Dealing with data heterogeneity in

graph visualization is another important aspect of this thesis. We contribute visualization

techniques where paths play a crucial role in addressing these issues: On the one hand, we

contribute techniques that use the sensible sub-setting of graphs to paths as a vehicle to

achieve scalability with respect to the number of graph attributes and partitions. On the

other hand, we contribute techniques that define the analysis of path relationships as the

primary goal and thus focus on the scalable visual exploration of multiple path relation-

ships in graphs and linked datasets. Our techniques are primarily presented in context

of the molecular biology domain and evaluated in comprehensive case studies. Table 1.1

gives an overview of the techniques and their primary analysis goals.

Technique Primary Analysis Goal

EnRoute (Chapter 4) Multiple heterogeneous graph attributes
Entourage (Chapter 5) Multiple graph partitions
Pathfinder (Chapter 6) Multiple paths
ConTour (Chapter 7) Multiple paths in heterogeneous linked datasets

Table 1.1: Overview of visualization techniques and their primary goals.
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Visual analysis of multiple heterogeneous graph attributes. In order to ad-

dress issues regarding scalability and heterogeneity of graph attributes, we propose the

EnRoute visualization technique in Chapter 4. It enables users to interactively extract

single paths from a node-link representation of a graph. An extracted path is displayed

in another view, juxtaposed with large amounts of heterogeneous attributes that map to

the nodes of the path. This dual view approach enables users to both explore the graph

topology and investigate associated attributes of a selected path in detail. EnRoute is

presented in context of pathway graphs and genomic attribute data.

Visual analysis of multiple graph partitions. Effective visual analysis of large

graphs requires to limit the amount of displayed elements in order to avoid overwhelming

the user and creating clutter. Thus, we propose Entourage in Chapter 5, a focus+context

technique for the visual analysis of large graphs that alleviates scalability issues by con-

necting multiple graph partitions. The core idea is to display one partition as node-link

diagram at full scale, while only showing contextually relevant paths for other partitions.

We indicate relationships between partitions by displaying glyphs on shared nodes that

can be expanded to connecting links. To facilitate the exploration of attributes of in-

dividual paths in such large partitioned graphs, we combine Entourage with EnRoute.

We demonstrate this technique with a biological network that is partitioned into multiple

pathways.

Visual analysis of multiple paths. To support the simultaneous investigation of mul-

tiple alternative paths and their relationships, we introduce Pathfinder in Chapter 6.

As the manual selection of possibly hundreds of paths in large graphs is not feasible,

Pathfinder is based on queries that can be constrained in various ways. The resulting

paths are shown in two complementing representations: a list that displays paths to-

gether with attributes, and a node-link diagram that gives an overview of the topology of

paths. Query refinements through direct manipulation, ranking of paths by various scores,

and visual means for path comparison are employed to quickly identify the most relevant

paths for a given task. Pathfinder is demonstrated with a coauthor network and biological

pathways.

Visual analysis of multiple paths in heterogeneous linked datasets. Finally, in

Chapter 7, we propose ConTour, a visualization technique for the exploration of path

relationships in k-partite graphs formed from heterogeneous linked datasets as they are

found in relational databases. The analysis of relationships between different types of

nodes is the primary focus of this technique. ConTour lists all nodes of each type in a

column. Relationships can be explored through a combination of interactive highlighting,

sorting, filtering, and nesting of columns. In contrast to Pathfinder, ConTour does not

display whole paths with intermediate nodes, but rather indicates their existence between
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two endpoints. In this way, more path relationships can be considered simultaneously.

ConTour is presented in context of various datasets that are used in drug discovery.

1.3 Collaboration Statement

This section provides an overview of colleagues and collaborators, who contributed to the

work described in this thesis and without whom this thesis would not have been possible.

• Prof. Dieter Schmalstieg is the supervisor of this thesis and contributed to all

publications in the conception phase and helped with paper writing.

• Prof. Alexander Lex is a co-supervisor of this thesis contributed significantly to all

publications in terms of conception, evaluation, and paper writing. For the EnRoute,

Entourage, and ConTour visualization techniques, he also made contributions to the

implementation.

• Prof. Marc Streit is also a co-supervisor of this thesis and contributed to the

concept and write-up in all publications.

• Prof. Hanspeter Pfister was involved in the conception and paper writing of

Entourage, ConTour, and Pathfinder.

• Dr. Denis Kalkofen helped with the implementation and conception of the En-

Route and Entourage visualization techniques, and supported paper writing of re-

lated publications.

• Dr. Samuel Gratzl significantly contributed to the implementation of Pathfinder

and also made contributions to the implementation of Entourage. He also provided

paper writing support for related publications.

• Dr. Hendrik Strobelt made contributions to the implementation and write-up of

ConTour.

• The Institute of Pathology at Medical University of Graz, and a research

group at Novartis were our collaboration partners from the domain of molecular

biology. They provided domain-specific requirements, use cases, background in-

formation in molecular biology, data, and feedback for our visualizations. At the

Institute of Pathology our main contact was Dr. Karl Kashofer, and at Novartis

the main contact was Dr. Anne Mai Wassermann.

1.4 Related Publications

The content of this thesis is based on the following peer-reviewed publications, which are

listed in chronological order. For all of them, the author made significant contributions
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at all stages of the publication process, including conception, implementation, evaluation,

and paper writing.

• Christian Partl, Alexander Lex, Marc Streit, Denis Kalkofen, Karl Kashofer, and

Dieter Schmalstieg. enRoute: Dynamic Path Extraction from Biological Pathway

Maps for In-Depth Experimental Data Analysis. In Proceedings of the IEEE Sym-

posium on Biological Data Visualization (BioVis ’12), 2012. [131]

This paper describes the EnRoute visualization technique. It is the source for the

ideas presented in Chapter 4.

• Christian Partl, Alexander Lex, Marc Streit, Denis Kalkofen, Karl Kashofer, and

Dieter Schmalstieg. enRoute: Dynamic Path Extraction from Biological Pathway

Maps for Exploring Heterogeneous Experimental Datasets. BMC Bioinformatics,

2013. [132]

This paper is an extended version of the original BioVis paper describing the enRoute

visualization technique and is targeted at the Bioinformatics community. Chapter 4

is based on this paper.

• Alexander Lex, Christian Partl, Denis Kalkofen, Marc Streit, Samuel Gratzl, Anne

Mai Wassermann, Dieter Schmalstieg, and Hanspeter Pfister. Entourage: Visual-

izing Relationships between Biological Pathways using Contextual Subsets. IEEE

Transactions on Visualization and Computer Graphics (InfoVis ’13), 2013. [111]

This paper describes the Entourage visualization technique and is the main source

of Chapter 5.

• Christian Partl, Alexander Lex, Marc Streit, Hendrik Strobelt, Anne Mai Wasser-

mann, Hanspeter Pfister, and Dieter Schmalstieg. ConTour: Data-Driven Explo-

ration of Multi-Relational Datasets for Drug Discovery. IEEE Transactions on Vi-

sualization and Computer Graphics (VAST ’14), 2014. [133]

This paper describes the ConTour visualization technique and is the main source of

Chapter 7.

• Christian Partl, Samuel Gratzl, Marc Streit, Anne Mai Wassermann, Hanspeter

Pfister, Dieter Schmalstieg, and Alexander Lex. Pathfinder: Visual Analysis of

Paths in Graphs. Computer Graphics Forum (EuroVis ’16), 2016. [130]

This paper describes the Pathfinder visualization technique and is the main source

of Chapter 6.
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Background in Molecular Biology
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Molecular biology is a sub-domain of biology that deals with the functions and interactions

of biomolecules within cells. It is closely related to domains such as genetics, biochemistry,

and pharmacology. This chapter provides background information on molecular biology

and introduces data and analysis challenges from biological research, which are addressed

by the visualization techniques described in this thesis.

2.1 Gene Expression and Genomic Variation

The heredity information of all living species is stored in long double-stranded polymer

chains called deoxyribonucleic acid (DNA) [6, p. 2ff]. The information is encoded in long

sequences of four types of nucleotides that differ from each other in their base, which

can be either, thymine, guanine, cytosine, or adenine. A strand of DNA can be used

as template for self-replication and also for the synthesis of proteins. Both of these

functions are important for cell division. Proteins are synthesized in the two successive

steps of transcription and translation. In the first step, parts of the DNA are transcribed

into very similar molecules called ribonucleic acid (RNA). In the second and more complex

step of translation, RNA transcripts, which serve as messenger RNA (mRNA), guide the

synthesis of proteins. The proteins are formed by stringing together up to 20 different

types of amino acids according to the ”blueprint” of mRNA. A gene is referred to as the

segments of the DNA that code for a protein or other functional molecules. The human

DNA contains about 25,000 genes [6, p. 206]. Gene expression is the synthesis of

7



8 Chapter 2. Background in Molecular Biology

coded proteins or other gene products. Proteins have several functions in the cell, such as

maintaining structures, or acting as enzymes to catalyze reactions [6, p. 6]. In multicellular

organisms, different cell types are created by synthesizing different sets of proteins and

RNA molecules [6, p. 411]. The amount of proteins produced is determined by different

regulatory mechanisms, such as proteins binding to short non-coding fragments of the

DNA, i.e., regulatory DNA. Generally, the determination of how much of which protein is

produced is referred to as gene expression regulation.

Mutations are permanent changes to the DNA that can affect the structure and

function of synthesized proteins [6, p. 263ff]. While some mutations account for normal

phenotypic variations, others are considered harmful and can lead to, for example, tumor

growth. The most frequent genomic variations are single nucleotide polymorphisms [163],

where individual nucleotides at a given position in the sequence are changed. Structural

variations of the genetic sequence include insertions, deletions, and inversions. Deletions

and insertions of large scale that affect one kilobase or more are commonly referred to

as copy number variations [54]. Copy number variations can result in an increased or

decreased number of copies of genes in the affected regions of the genome, which in turn

may severely affect the levels of gene expression.

2.2 Biological Networks and Pathways

All living organisms can be considered as highly complex networks of biomolecules (genes,

gene products, and metabolites) and biochemical reactions. It is the sum of tightly con-

trolled and regulated interactions between these components that determines an organ-

ism’s form and function. To capture these interactions and biochemical processes, biolog-

ical networks are constructed. They are derived from experiments and existing knowledge

extracted from the literature. Lopez et al. [174] give an overview of methods for the con-

struction of these networks. Various types of biological networks are assembled to focus on

different kinds of entities and/or interactions. The following network types play a crucial

role in the study of cellular processes [7, 39]:

• Metabolic networks describe conversions of metabolites, i.e., chemical compounds,

in chemical reactions, which are catalyzed by enzymes. In these reactions, sets of

metabolites (substrates) are converted into sets of different metabolites (products).

The products of one reaction may be the substrates for another reaction and vice

versa. When regarding metabolites as nodes and reactions as edges, metabolic net-

works are directed hyper-graphs. However, these networks are often modelled as

bipartite graphs with two types of nodes: metabolites and reactions.

• Gene regulatory and signaling networks convey information flow. Gene ex-

pression regulation captures regulatory influences of proteins on the expression of

other proteins or functional RNA. Signal transduction describes any kinds of pro-

cesses that transport internal or external stimuli to certain cell compartments and

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian



2.2. Biological Networks and Pathways 9

trigger a cell response, such as gene expression regulation. Typically, signaling in-

formation is passed in a cascade from one protein to another. Thus, the nodes in

these networks represent genes, gene products and possibly other molecules, while

edges represent different types of directed information flow.

• Protein interaction networks model physical interactions, i.e., bindings, between

proteins. While the nodes in such networks represent proteins or sets of proteins, the

typically undirected edges represent different types of interactions with very different

time spans, ranging from very short and transient processes to permanent formation

of complex protein assemblies.

In the study of biological networks, the series of actions among biomolecules that lead

to specific biological effects are commonly described as biological pathways. In other

words, a pathway is a meaningful subset of biomolecules and reactions whose interplay

fulfills a function in a cell or organism. Some pathways describe metabolic processes. For

example, the Citrate cycle pathway describes the final steps of the oxidation of carbohy-

drates and fatty acids. Other pathways, cover signal transduction, such as the MAPK

signaling pathway. This pathway represents a well-studied signaling cascade leading from

an activated cell surface receptor through a cascade of several proteins to the activation

of DNA binding complexes, which regulate transcription of genes involved in the prolif-

eration of cells and thus enable the cell to react to growth stimuli from its environment.

Moreover, some pathways also highlight the processes involved in a particular disease, such

as the Glioma pathway, which describes the molecular mechanisms dysregulated in brain

cancers.

Several initiatives, such as KEGG [93], Wikipathways [96], or Reactome[49], create

pathway maps and make them available to the scientific community. A comprehensive list

of resources for pathway maps and biological networks is provided at http://pathguide.

org. Most pathway databases provide manually curated pathway maps that present the

molecular interactions in visually appealing node-link diagrams following specific drawing

conventions. Figure 2.1 shows the Citrate cycle pathway and the MAPK signaling pathway

from the KEGG and Wikipathways databases, respectively. In Figure 2.1(a) circular nodes

represent metabolites, whereas rectangular nodes indicate enzyme-catalyzed reactions. In

Figure 2.1(b), rectangular protein nodes are annotated using the gene names from which

these proteins are transcribed. Different types of interaction are indicated by drawing links

and arrows in different styles. To provide orientation, pathway maps sometimes include

information about the spatial organization of the cell by drawing, for example, the cell

wall (see Figure 2.1(b) left) or the cell nucleus. Many pathway maps also indicate related

processes by including references to other pathways.

http://pathguide.org
http://pathguide.org
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10 Chapter 2. Background in Molecular Biology

(a)

(b)

Figure 2.1: Hand-crafted pathway maps. (a) The KEGG Citrate cycle pathway and (b) the
MAPK signaling pathway from Wikipathways. Available at http: // www. genome. jp/ kegg/ and
http: // www. wikipathways. org .

http://www.genome.jp/kegg/
http://www.wikipathways.org
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2.3 Analysis Challenges

With the rise of high-throughput technologies, such as next-generation sequencing [147],

biological data is generated at a previously unmatched scale and efficiency, thus having

the potential to dramatically accelerate research. Using these technologies, large amounts

of diverse datasets are generated. Insights gained from analyzing these datasets lead to

a better understanding of biological mechanisms and processes and, furthermore, may

result in the development of more effective drugs, improved diagnostics, and more tar-

geted treatment of patients. However, several challenges are to be faced in biological and

pharmacological research when analyzing such large cohorts of complex and heterogeneous

data. In this thesis, we provide several visual analysis solutions to alleviate the analysis

process. We developed these solutions in close collaboration with experts from the Insti-

tute of Pathology at the Medical University of Graz, and with drug discovery researchers

from the pharmaceutical company Novartis. In the following, we elaborate on analysis

challenges these experts face in their research.

2.3.1 Analysis of Pathways and Genomic Profiling Data

Pathway maps are an important tool for studying biomolecular processes. As mentioned

earlier, a wide variety of pathway maps is available that model interactions of proteins,

chemical reactions and their catalyzing enzymes, as well as cellular signaling processes.

As pathways represent consensus knowledge for processes in healthy organisms or specific

diseases, they are often activated or inactivated in particular conditions, as diseases or

other influences change the processes within the cells.

A common approach to study specific influences on cellular processes is to concurrently

analyze genomic profiling data. Genomic profiling data refers to datasets that measure the

activity or structural variation of genes. An example of genomic activity is the previously

discussed gene expression (or mRNA expression), which indicates how much of a functional

gene product, such as a protein, is produced. Two common forms of structural variation

data are copy-number variation data, which records large-scale duplications or deletions

of genes and thus indicates the number of present copies for each gene, and mutation

data, which captures smaller changes within individual genes. Genomic profiling data

is often captured for multiple conditions. A condition in this sense describes a group

of measurements that are semantically homogeneous. Examples for this homogeneity

criterion are samples taken from one species in a multi-species analysis, or samples of

patients belonging to a subtype of a form of cancer.

Bringing together pathway maps and genomic profiling data is beneficial for their

correct interpretation. The contextual knowledge contained in pathways about how

biomolecules interact allows analysts to reason about effects observed in the genomic

profiling data. Also, considering genomic profiling data may influence the interpretation

of pathways. It can tell analysts that, for example, branches of a graph are inactive for a
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12 Chapter 2. Background in Molecular Biology

given condition. Examples of such observations are omnipresent in the literature. For

instance, the gene PTEN is known to regulate the phosphoinositide 3-kinase signaling

pathway [28], which is relevant for the regulation of cell-growth . If PTEN is mutated,

the pathway becomes deactivated, leading to unchecked cell division and tumor growth.

Jointly analyzing experimental data and pathways can help in reasoning about and

predicting such effects for different conditions. Knowledge about how pathways are

modulated by the genetic profile of groups or individual samples can help improving

prognosis, treatment, and patient well-being. In Chapter 4, we introduce visual methods

to alleviate the analysis of large-scale genomic profiling data in the context of pathways.

2.3.2 Analysis of Multiple Pathways

Biological networks are subdivided into pathways, which consist of biomolecules and reac-

tions whose interplay fulfills a function in a cell or organism. This subdivion is, however,

largely artificial, with the goal of reducing the complexity so that it can easily be com-

prehended by humans. While this approach in general is very successful, it also has its

drawbacks. By focusing only on those components that are immediately relevant to a

biological process under study, other interaction partners that might only become relevant

under specific circumstances, e.g., the treatment of a disease, are left out. For example,

cancer is often caused by defects in multiple genes and pathways. In these cases, the

identification of genes that are shared between dysregulated pathways is of high relevance,

because their products constitute prime targets for modulation by compounds, i.e., chang-

ing their activity using drugs. Furthermore, many drugs do not only bind to one target,

but exhibit activity against multiple gene products. For example, Dovitinib (TKI258) is a

drug that targets, among others, the products of the genes EGFR, FGFR1, and PDGFR-

beta, which are well-known proto-onco genes (normal genes that, if mutated or highly

expressed, can potentially cause cancer). In such cases, the study of all affected genes and

pathways in a common reference framework is highly desirable to better understand the

drug’s effects. In particular, our collaborators at the pharmaceutical company Novartis

were interested in addressing the following domain goals in drug discovery:

• Judge side effects and safety of drugs. Although drugs are often designed

to modulate only one particular biological pathway, their action on the cell and

the organism as a whole must be considered in their development to better assess

their safety. Being able to analyze cross-talk between pathways can help in judging

the potential risks associated with a compound early on in the drug development

process [175].

• Identify potential for repositioning of drugs. Two alternative routes are usu-

ally taken in drug discovery: (1) developing new chemical entities and (2) finding

new uses for already existing or previously failed drugs that have shown an adequate

clinical safety profile [12]. The second route is usually more efficient, as such drugs

can be approved quicker. As more and more knowledge about biological interactions
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2.3. Analysis Challenges 13

and refined pathway maps become available, it is quite possible that existing drugs

can be repurposed for a broader spectrum of therapeutic indications. Inter-pathway

analysis can help to identify potential new therapeutic uses for approved drugs.

• Understand a drug’s mechanism of action and drug sensitivities of cell

lines. The targets of established drugs are typically known. In many cases, such

drugs inhibit one or multiple gene products. However, there are fluctuations on

how cell lines (cell cultures) with distinct genomic profiles respond to the drugs [16].

Finding out why, for example, some cancer cells are killed by the drugs, while others

survive, is one objective.

The data to be analyzed in order to achieve these goals can be classified into three cate-

gories: pathway data, genomic profiling data, and pharmacological profiling data. Phar-

macologic profiling data essentially measures how cells react to compound exposure. A

common measure is the half maximal inhibitory concentration (IC50), which reports the

concentration at which a drug achieves 50% inhibition, e.g., the drug concentration that is

required to kill half of the treated tumor cells. The lower the concentration, the more ef-

fective the drug is and the more sensitive the cell line under study is to the drug treatment.

Pharmacological and genomic profiling data are commonly jointly analyzed to, for exam-

ple, identify reasons for the differential response that cell lines show to drug treatment.

Integrating multiple pathways into such an analysis can make it much more targeted, since

it allows analysts to focus on the processes influenced by the considered compounds and

to explore related processes.

In Chapter 5, we introduce a novel visualization technique to facilitate the analysis of

multiple pathways and their relationships. By combining this technique with the method

described in Chapter 4, we also support the integration of genomic and pharmacological

profiling data. Cross-pathway analysis is also picked up in Chapter 6, where we provide

means to identify and investigate paths of interaction between biomolecules that stretch

across multiple pathways.

2.3.3 Analysis of Biological Fingerprints and Related Data

For many years, drug discovery has focused on finding the “magic bullet”, i.e., the iden-

tification of a drug that selectively interacts with a disease-causing or pathology-relevant

protein target [155]. However, with more and more data describing how drugs interact with

biomolecules (bioactivity) and a better understanding of the biological network, evidence

accumulates that this strategy employs an overly simplistic view of human disease and

drug-target relationships. Indeed, existing bioactivity data suggests that approved drugs

interact on average with seven different protein targets [125]. Furthermore, one protein

target can be involved in many different biological processes. Therefore, its modulation

by a compound can influence multiple, seemingly unrelated phenotypic traits, i.e., have

multiple observable effects on the organism, both on a cellular and whole organism level.

However, the same phenotype can be induced by compounds that interact with different
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14 Chapter 2. Background in Molecular Biology

protein targets, e.g., if the proteins are part of the same signaling pathway. Given this

complexity of the biological system, classical structure-activity relationship analyses that

study the effect of a compound set against one particular protein need to be complemented

by techniques that allow for a more holistic view on the effects that a compound has on

a biological network. In the pharmaceutical industry, historical experimental data can be

leveraged and combined to generate so-called biological fingerprints that report the activ-

ity of a compound across dozens of experiments that were designed to monitor different

cellular processes. In particular, the compounds studied by our collaborators have been

profiled in at least 50 different cell-based screens at the pharmaceutical company Novar-

tis [134]. These screens were tested for compound activities against a panel of diverse

targets, pathways, and organisms. In each screen, all compounds were tested at a single

concentration, and compound activities were reported in form of Z-scores, i.e., the num-

ber of standard deviations that a compound’s effect in a screen differed from the mean

response of all compounds tested in the screen. For each compound under study, its Z-

scores were combined into a vector (the “fingerprint”), where each position was associated

with a specific assay. In essence, the fingerprints represent a numerical characterization

of different experimentally measured phenotypes. They are thus numerical descriptions of

the observable effect of a drug on a cell or organism and provide a more comprehensive

view on the manifold biological actions of a compound than simple protein-compound

interaction data.

Comparison and clustering of compounds based on their biological fingerprints can lead

to the detection of novel compound-target or compound-disease relationships. Therefore,

our collaborators used a correlation-based similarity measure [177] to calculate a similarity

matrix between all compounds, which was then used as input for hierarchical clustering.

The resulting fingerprint clusters provided the basis for their data analysis, which has the

following main goals:

• Identify a drug’s mechanism of action. If a compound with an unknown

mechanism-of-action falls into a cluster where all other cluster members are known

to modulate the same protein target, it is conceivable that the compound also binds

to this target.

• Identify the biological process a drug modulates. If compounds that bind to

different targets cluster together, one can hypothesize that these targets are involved

in the same biological process.

• Identify new drugs for specific therapeutic indications. A compound that

clusters together with drugs for a particular therapeutic indication could be a novel

candidate drug for this therapy, with potentially advantageous properties.

Although the biological fingerprints and clusters are at the core of the analysis, a large

variety of data needs to be integrated in order to achieve these goals and paint a holistic

picture. First of all, our collaborators considered meta-data of compounds in the form
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2.4. Biological Datasets 15

of activities against protein targets. These activities describe whether there is a known

interaction for a particular compound-protein pair. Compounds typically interact with

multiple proteins, and proteins also interact with multiple compounds. The dataset studied

by our collaborators distinguishes between three types of interactions: target activation,

inhibition, and binding. That means that compounds can in- or decrease the activity, i.e.,

the functional effect, of a protein. If, based on the reported bioactivity data, the direction

of the interaction cannot be inferred, it is reported as a binding event. In addition, these

activities report AC50 values, which are similar to the previously discussed IC50 values.

They refer to the concentration of the drug at which 50% of the maximal response was

achieved. For example, for a compound that inhibits an enzyme that cleaves other proteins,

the AC50 value is the compound concentration at which the observed cleavage is reduced

by 50%. AC50 values thus characterize the potency of a drug; the lower the value, the

more potent the drug. As many of the compounds under study are approved drugs or

clinical candidates, they were also classified into several therapeutic groups according to

their indication. Finally, pathways can be used to study the biological roles of protein

targets in the human organism.

In summary, our collaborators aim to discover relationships between various kinds of

pharmacological and biological data. In Chapter 7, we present a visualization technique

that facilitates untangling this complex network of compounds, biological fingerprints,

clusters, activities, proteins, pathways, and therapeutic groups.

2.4 Biological Datasets

We demonstrate our visual analysis solutions with biological data from various sources.

We use pathway data from KEGG [93] and Wikipathways [96], which contain hundreds

of manually curated pathway maps for different species.

The used genomic profiling data is from three different sources: The Broad-Novartis

Cancer Cell Line Encyclopedia (CCLE)1 [16] is our first data source. It provides genomic

profiling data for more than 500 cell lines, i.e., cultures of cells, from 23 different cancer

tissues in addition to pharmacological data that records responses of each of these cell lines

to a set of 24 approved cancer drugs or drug candidates. The second source is The Cancer

Genome Atlas (TCGA) project2 [164]. It collects genomic profiling data for more than

10,000 cancer patients for the molecular characterization of over 30 different cancer types.

Finally, our third genomic profiling data source is a gene expression dataset generated by

our collaborators at Medical University of Graz [94].

The pharmacological datasets used in Chapter 7 include about 1,100 compounds

that have been extracted from the public bioactivity databases ChEMBL [58] and Drug-

Bank [108]. For the generation of corresponding biological fingerprints, Z-scores from 105

different assays were considered. The hierarchical clustering of the fingerprints resulted

1http://www.broadinstitute.org/ccle/home
2http://cancergenome.nih.gov

http://www.broadinstitute.org/ccle/home
http://cancergenome.nih.gov
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16 Chapter 2. Background in Molecular Biology

in a dendrogram that was divided into 100 distinct clusters. All compounds were anno-

tated with about 7,000 activities against protein targets that were extracted from the data

repositories ChEMBL and GVK 3. The about 1,100 considered proteins were mapped to

their corresponding genes. Finally, the Prous Integrity database4 was used to classify the

compounds into about 400 therapeutic groups.

3http://www.gostardb.com/
4https://integrity.thomson-pharma.com/integrity/xmlxsl/
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Primarily driven by data analysis challenges in molecular biology, we developed several

visual analysis solutions in the context of this thesis. These solutions touch upon various

topics in multivariate graph visualization. In this chapter, we discuss existing concepts,

approaches, and techniques that are related to our solutions or inspired them. We begin

with an introduction of general concepts in graph visualization, including classifications

of tasks performed on graphs and common graph representations. We follow up with a

discussion of approaches to make graph visualizations scalable and related work in more

specific domains that are especially close to our own. These include the representation

of graph attributes, techniques for biological pathway visualization, the visual analysis of

paths, and the visualization of k-partite graphs. Finally, we introduce the frameworks

that were used to implement our visualization prototypes.

3.1 Basic Considerations in Graph Visualization

Data forming graph structures is present in various application domains, such as business,

transport, social sciences, and biology. In the visualization community, a lot of effort is

dedicated to provide support in the analysis and ultimately the comprehension of this

complex data. A myriad amount of graph visualization techniques and approaches were
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developed addressing different problems. Some of them are general-purpose techniques,

whereas others are specific to certain domains. Some are supposed to alleviate certain

task, while others make visual graph analysis work with ever-growing datasets. In the

following, we describe tasks associated with graph analysis and discuss common ways to

represent graphs.

3.1.1 Tasks

The tasks a user needs to perform ideally guide the design choices with respect to vi-

sual representation and interaction when developing new visualizations. Throughout this

thesis, we base the requirements for our visualizations on tasks. As user tasks are often

formulated in a domain-specific way, they are translated into more abstract tasks to make

them comparable across domains. In the literature, many frameworks and taxonomies for

abstract visualization tasks are proposed [135]. For example, Amar et al. [10] defines ten

low-level tasks that may be used as base units to construct more complex tasks. These

low-level tasks are retrieve value, filter, compute derived value, find extremum, sort, deter-

mine range, characterize distribution, find anomalies, cluster and correlate. An alternative

taxonomy, which also considers different levels of tasks, is proposed by Valiati et al. [168].

They distinguish between the operational tasks visualize and configure, the analytical tasks

identify, determine, locate and compare, and the cognitive task infer. Tasks performed on

graphs are of particular interest in the context of this thesis. Lee et al. [110] propose four

main categories of graph tasks:

• Topology-based tasks focus on the structure of the graph. Examples of this

category are finding the nodes adjacent to a given one, finding the shortest path

between two nodes and finding the nodes that are accessible from a given node

within a specified distance.

• Attribute-based tasks focus on the attributes of nodes and edges. Examples

include finding nodes with specific attribute values and finding nodes connected by

a particular edge type.

• Browsing tasks refer to tasks like following a specified path, or returning to a

priviously visited node.

• Overview tasks allow to get quick estimates of the graph, such as determining its

approximate size.

Lee et al. also illustrate how tasks from their classes can be decomposed into an extended

set of the low-level tasks by Amar et al. Using the taxonomy by Lee et al. as basis,

Pretorius et al. [135] suggest an alternative decomposition that is based on the tasks

proposed by Valiati et al. and also provide a more thorough description of graph tasks.
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3.1. Basic Considerations in Graph Visualization 19

3.1.2 Visual Representation

Many factors can influence the choice of visual graph representation, such as the graph class

(e.g., bipartite graph vs. tree), tasks to be performed, user preferences, and application

domain. Although various different graph visualizations are proposed in the literature,

most of them can be categorized into node-link, matrix or implicit representations, or are

hybrids of these representations [142, pp. 9-13].

Node-link diagrams are probably the most common way to visualize graphs. In a

node-link diagram, nodes are depicted as points, rectangles or other objects, and edges

are represented as lines or arcs that connect the nodes. There are several aesthetic criteria

for readable and visually pleasing node-link diagrams [37, pp. 3, 7]. These include, for

example, the avoidance of edge-crossings, the use of uniform edge-lengths, and the uni-

form distribution of nodes. However, these criteria are often contradictory, and trying to

optimize even a single criterion is NP-hard in many cases [37, p. 8]. Thus, many graph

layouts are obtained using heuristics [98].

Force-directed methods represent an important class of graph drawing algorithms.

These methods use functions that map the layout to an energy value. Low energy reflects

layouts with adjacent nodes being placed at a predefined distance and non-adjacent nodes

being farther apart. A layout is obtained by finding a (often local) minimum of the

energy function [102]. A prominent example of these algorithms is Peter Eades’ spring-

embedder [46]. It uses a physical analogy of steel rings representing nodes, which exert

repulsive forces on each other, and springs representing edges, which exert attractive forces

between adjacent nodes. Kamada and Kawai [92] propose another important method that

uses the analogy of springs. Especially their notion that distances between nodes in the

layout should reflect their graph-theoretic distances, i.e., the shortest paths, was adopted

by many other approaches. Kobourov [102] gives a comprehensive overview of force-

directed approaches, which provide several improvements over aforementioned methods in

terms of layout quality, scalability and stability.

Several layout methods for node-link diagrams put certain constraints on the place-

ment of nodes or the routing of edges. Linear layouts [33] show nodes in a sequence and

connecting edges as arcs, which is used, for example, to highlight repetitive patterns in

sequential data like text or music [178]. Layered layouts arrange nodes in multiple con-

nected layers. They are frequently used to represent directed acyclic graphs due to their

suitability to be shown with a uniform orientation, e.g., top-down or from left to right.

Layered graph drawing was probably most influenced by Sugiyama et al. [160]. They

generate a layered layout in several steps, including the temporal removal of cycles, the

assignment of nodes to layers, the minimization of edge crossings between layers and the

straightening of edges. Several algorithms built upon this method and provide alterna-

tive solutions for the different steps. An in-depth discussion of algorithms and problems

concerning layered layouts is provided by Healy and Nikolov [73]. In grid layouts, line
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20 Chapter 3. Related Work

(a) (b)

Figure 3.1: (a) A grid layout [26]. (b) A force-directed layout with constraints for downward-
pointing edges and drawing cycles as circles [44].

segments of edges are drawn predominantly horizontally or vertically, which is considered

aesthetically pleasing [42] and has been shown to have a positive effect on memorabil-

ity [121]. They are often used in very large scale integration (VLSI) design, due to similar

wire routing, and in pathway drawing. An example is shown in Figure 3.1(a). Several

force-directed methods, such as the approaches by Dwyer [44] or Wang et al. [176], also

include constraints. Examples are fixing the position of certain nodes, which is especially

valuable in interactive visualization, choosing orientation according to edge direction, or

showing cycles in the graph as circles. The latter two are illustrated in Figure 3.1(b).

In summary, there is a myriad amount of methods to layout node-link diagrams. An

exhaustive overview is provided by Tamassia [161].

Matrix representations show the adjacency matrix of a graph. The nodes of the graph

are represented as rows and columns, and a mark in the corresponding cell indicates

the presence of an edge. In directed graphs, rows and columns represent source- and

target-nodes, respectively. It has been shown that matrix representations perform well for

simple tasks such determining whether two nodes are connected or finding the node with

most connections [63, 97]. As matrices per definition do not suffer from clutter caused

by edge crossings or node overlaps, they are a viable alternative to node-link diagrams

when the number of nodes or density of the graph increases. However, compared to

node-link diagrams, they are not well-suited for path-related tasks, especially on smaller

graphs [63, 97]. Also, the readability of a matrix is strongly depends on the order of rows

and columns [23, pp. 36, 254, 255]. Therefore, various matrix reordering algorithms were

developed. Behrisch et al. [20] provide a comprehensive overview of these algorithms.
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3.2. Exploration of Large Graphs 21

Implicit representations omit the drawing of edges, but implicitly indicate them

through relative positioning, such as inclusion, overlap and adjacency. Implicit

representations are mainly used for the visualization of trees. For example, Treemaps [87]

draw a rectangle for the root node and subdivide its area it into smaller rectangles

for each child node. This subdivision is repeated recursively for each level of the

hierarchy. Beamtrees [172] show nodes as horizontal and vertical beams. Parent-child

relationships are indicated by drawing the child node on the top of the parent node,

but with different orientation. Icicle plots [104] show the nodes of each hierarchy

level from top to bottom. Each node is depicted as a rectangle and its child nodes

are placed right below it within the width of their parent node. Of course, variants

with a different overall orientation, e.g., left to right, also exist. Further examples and

an exhaustive discussion of implicit tree representations are provided by Schulz et al. [143].

Due to their intuitive representation of a graph and suitability for path-related tasks,

we make extensive use of node-link diagrams throughout this thesis. While we mostly

use pathway maps curated by humans in Chapter 4, 5 and 7, we also use layered and

force-directed layouts for the path topology view in Chapter 6.

3.2 Exploration of Large Graphs

There are several limiting factors when trying to display and understand large amounts

of data. These include the limitations of visual acuity, cognitive limits, computational

limits and limits of the display [86]. Attempting to visualize the whole graph exceeds these

limits in many real-world applications. Therefore, strategies must be employed to limit the

amount of displayed information, while at the same time being able to explore the whole

graph. Jankun-Kelly et al. [86] discriminate between strategies for data transformation

and reduction, visual mapping and view transformation, which complement each other.

3.2.1 Data Transformation and Reduction

Strategies for data transformation and reduction aim to alleviate scalability issues at data

level. Oliveira and Levkowitz [50] distinguish between the following methods:

• Dimensionality Reduction. These methods transform data from a

high-dimensional space to a space with fewer dimensions, while trying to preserve

overall data characteristics. Examples of these methods include Principal

Component Analysis [82] and Multidimensional Scaling [184]. Van den Elzen et

al. [169], for example, use dimensionality reduction methods to map the state of

a whole network at different points in time to two-dimensional points. This way,

similar states of the network a represented by points that are closer together, while

dissimilar states are farther apart.
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22 Chapter 3. Related Work

• Subsetting. Subsetting methods are used to reduce the data by selecting certain

parts of it. This can be done using queries or filters, or with sampling methods such

as random sampling [40]. Many graph visualization frameworks such as Jigsaw [151],

Ploceus [117], Orion [75] or GUESS [3] support subsetting methods.

• Segmentation. Segmentation techniques produce multiple subsets of data that are

based on data properties. For example, the partitioning of biological networks into

pathways can be regarded as segmentation. Automated methods such as clustering,

which generate groups of similar data, also falls into this category. In the context

of graphs, clustering of nodes is typically based structural proximity, similarity of

attributes or both [86]. An overview of clustering methods is given, for example, by

Fortunato [53] and Berkhin [22].

• Aggregation. Aggregation methods produce aggregate representations of underly-

ing data based on their properties or structure. Therefore, dimensionality reduction

can also be regarded as special kind of aggregation. In the context of graphs, ag-

gregation typically means to create a structurally more coarse representation of the

original graph, where the number of nodes and edges is reduced [86]. In many cases,

clustering is used for this purpose. In aggregated representations, nodes that summa-

rize a subset of the original graph are referred to as super-nodes. Graph aggregation

is employed in a wide range of general-purpose graph visualization frameworks, such

as Tulip [14] or CGV [165].

3.2.2 Visual Mapping

A significant factor that can impact scalability besides data transformation and reduction

methods is the choice of the visual mapping [86]. Some visual encodings scale better than

others, while typically giving up some quality at the same time. For example, node-link

diagrams are probably the most natural way to present networks that is easily understood

by most people. However, in dense graphs, they tend to produce clutter, which makes

them hard to understand. In contrast, matrix representations do not suffer from clutter.

Advantages of different representations can be exploited by showing the data in mul-

tiple views [15]. For example, Dwyer et al. [45] implement the well-known paradigm of

overview+detail for graphs. They show a coarse graph representation in an overview, while

displaying a smaller portion of the graph in full detail in another view. Some techniques

also take advantage of representing multiple subsets of the data using different encodings.

For example, NodeTrix [80] tries to exploit the benefits of both node-link and matrix

representations. In NodeTrix, the base representation is a node-link diagram, but dense

subsets of the graph can be shown as embedded matrix representations that do not suffer

from clutter. The basic concept of portals [128], where local regions within a visualization

show a different view on the area they cover is adopted for graphs by Hadlak et al. [69].

They show aggregated graph in a node-link diagram as base-representation and allow the
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3.2. Exploration of Large Graphs 23

user to embed various more detailed visualizations of subgraphs on top on demand. Indi-

vidual subset visualization is also used for non-graph data. For example, VisBricks [112]

partitions numerical datasets into subsets and show each subset with the visualization

technique most suitable for the contained data and task. We adopt this general idea of

flexible subset visualization in the visualization technique introduced Chapter 5. It adapts

the amount of detail shown for subsets based on the current focus of the user and available

display space.

3.2.3 View Transformation

As not all information can be displayed at once, a user needs to be able to interactively

navigate to different parts or show different aspects of the data. View transformations refer

to interactive strategies to change the current view on the data [86]. Graph data can be

explored interactively, for example, by using basic navigation concepts like zoom and pan,

or more sophisticated methods, like edge-based travelling [166], where the camera is moved

from the source to the destination of a selected edge. Many well-known visualization

concepts also heavily rely on interactively changing the view to explore the data. For

instance, in multiple coordinated views, interactions with one view also affect the display

of other views. Corresponding elements are highlighted or movements in one view are

propagated to another [15]. Focus+context techniques, where elements in focus are shown

in detail, while other elements provide contextual information, also rely on interactive

focus selection to explore the data. For example, Sarkar and Brown [141] use a fisheye

lens to magnify the parts of a graph in focus and use mouse-dragging to change the focus.

(a) (b)

Figure 3.2: (a) PivotPaths [41] shows a query result set of publications at the center. Connected
authors and keywords are shown above and below, respectively. (b) A visual query by Haag et al. [68]
that retrieves all books with an author who has won an award and whose language is English.
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24 Chapter 3. Related Work

A common way to express the current interest in a subset of a graph or any data is

to use queries or filters. Facetted search is a popular and interactive method to query

for data, which is implemented in many online shopping platforms such as Amazon1. In

facetted search, the search space is typically divided into a single result set and multiple

facets, which are displayed in different areas. For example, products represent the result

set, and properties of the product like vendor or price represent facets. The result set is

filtered by selecting a facet value, for example, a specific vendor. Changes to the result

set are propagated to all facets to only show valid facet values for the current result set.

Flamenco [74] was one of the first systems to implement facetted search in this form.

It uses uses a hierarchical organization of facets for the exploration of images. Yee et

al. [181] showed that users preferred Flamenco’s facetted search approach over keyword-

based search. PivotPaths [41] is an approach that should encourage casual exploration of

facetted datasets. As illustrated in Figure 3.2(a), it shows explicit connections between

the result set in the center and facet values at the top and the bottom. PivotPaths uses

animation to smoothly blend between filter states upon facet selection. A limitation of this

approach is that only two facets can be shown. Heim et al. [77] introduced a more general

method, where every facet can take the role of the result set. Both, the current result set

and facets are shown as list-nodes in a node-link diagram. Starting from a node for the

current result set, related entities can be added as facet nodes on demand. New facet nodes

may be added to existing facet nodes as well. Links indicate the semantic relationships

between nodes. Like in any facetted search, filters set by selecting entries from facet lists

are reflected in the current result set and other facet nodes. An alternative approach to

browse facetted data is taken in PivotSlice [186]. It displays all publications of a citation

network as points in a two-dimensional area. Filters are defined by adding facet values

to the left and bottom of that area, which partitions the area. Depending on whether

publications comply with the filters, they are assigned to the corresponding partition.

Our technique proposed in Chapter 7 is also closely related to facetted search approaches

in the way it enables drill down into a complex dataset. However, our approach does

not differentiate between facets and result sets. A technique that also does not draw this

distinction is GraphTrail [43]. When drilling down into a large heterogeneous network, the

exploration in GraphTrail starts with an initial chart that shows the nodes of a particular

type. Applying filters based on node selection or attributes generates a new chart, which

can either show the filtered nodes with the same type as the original chart, or related

nodes with a different type. This chart generation can be repeated iteratively to drill

down further into the data, which creates a visual history of the exploration process.

Another expressive way to formulate powerful queries for graphs is the usage of dedi-

cated graph query languages, such as SPARQL2 or Cypher for the Neo4j 3 graph database.

However, writing such queries can be tedious and error-prone. Also, in most cases it can-

1https://www.amazon.com/
2https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
3https://neo4j.com/

https://www.amazon.com/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://neo4j.com/
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3.2. Exploration of Large Graphs 25

not be expected from users to know graph query languages. Visual interfaces for building

queries alleviate these issues. For example, Haag et al. [68] provide a visual query builder

for SPARQL that is based on the flow/filter model [183]. Figure 3.2(b) illustrates the

method by Haag et al., where filters are applied in a consecutive manner from top to bot-

tom. Different types of nodes represent item types, filters based on attributes, or filters

based on relationships between entries. Links between the nodes indicate the flow of items

with their width encoding the number of items. In Chapter 6, we also introduce a simple

visual query builder that allows to specify constraints for a path search.

3.2.4 Graph Exploration Strategies

Described strategies for data transformation and reduction, for visual mapping and for

view transformation are combined in graph visualizations in order to deal with large

graphs. Overall, we roughly distinguish between top-down and bottom-up strategies for

graph exploration.

Top-down approaches start by showing an overview using aggregation or sampling

methods, and support drilling down into regions of interest. Overall, these approaches

go along with Shneiderman’s information seeking mantra [148] “Overview first, zoom

and filter, then details on demand”. For example, the KEGG Atlas [93] combines all

metabolic pathways in a single overview, which supports zoom and pan navigation. In-

dividual pathways can be shown in detail on demand. Similarly, the Reactome Pathway

Browser [49] uses a hierarchical organization of pathways that follows the gene ontology

(GO) biological process hierarchy[13, 60]. The hierarchies are represented in a circular

node-link diagram, where pathways are shown as abstract nodes while edges represent

either a hierarchical is-a relationship or indicate that pathways are shared between differ-

ent hierarchies. Like in KEGG Atlas, individual pathways can be shown at full scale on

demand. AVOCADO [119, 154] employ hierarchical and motif-based aggregation to show

large provenance graphs in a layered node-link layout. Sub-graphs can be expanded on

demand to show further details.

In bottom-up approaches, the exploration starts with a small subset of a graph that

can then be expanded. For example, in Treeplus [109], graph exploration starts with a

seed node. The graph can be then continuously expanded in a flexible tree layout by

adding the neighbors of a selected node. Ham and Perer [171] summarize their graph

exploration approach with “search, show context, expand on demand”. They start with

an initial textual search for nodes. The user then picks a node from the result set to show

its neighborhood. An adapted version of Furnas’ degree of interest function [55], which

calculates the overall importance of each node in the graph from its a priori interest and

the distance to the current focus node, is used to determine which nodes are displayed

in this subgraph. This degree of interest function is reused to expand the subgraph on

demand by selecting a new focus node. Abello et al. [2] also use degree of interest functions

to select and expand graph subsets. They propose a modular specification for the degree
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26 Chapter 3. Related Work

of interest, which allows users flexibly express what is important for the exploration of

time-varying networks.

In many cases, there is no clear cut between top-down and bottom-up approaches, as

visualizations combine various exploration methods. This is also true for the approaches

proposed in this thesis. However, overall, the approach described in Chapter 4 fits into the

top-down category, as we display aggregated attribute data on a pathway, which can be

shown in further detail on demand for selected subsets. The approach of Chapter 7 also

fits this category, as we start by showing all items of a dataset that can be continuously

narrowed down to items of interest. Our approaches in Chapter 5 and 6 can be overall

regarded as bottom-up. In the former case, we start by selecting an initial pathway and

iteratively add related pathways, while in the latter case, we start by querying a large

graph for paths and continue the analysis based on this result set.

3.3 Visualization of Graph Attributes

Besides the representation of the graph topology, an important aspect of multivariate

graph visualization is the visualization of attributes. Generally, visualization methods for

multivariate data can be used for this purpose. Jusufi [90, p. 24] categorizes these methods

into projection-based approaches, coordinate axis-based approaches, icon-based approaches

and pixel-based approaches. Projection-based approaches, such as scatterplots, map at-

tribute values into two- or three-dimensional space. Scatterplot matrices [29] overcome

the scatterplot’s limitation of being able to show only up to three attributes. The rows

and columns of a scatterplot matrix represent attributes, and 2D scatterplots are dis-

played in the cells, showing all combinations of attribute pairs. In coordinate axis-based

approaches, attribute values are shown on multiple axes. A prominent example of this

category are Parallel Coordinates [83], where a sequence of parallel axes is drawn, each

axis representing one attribute. Each data item is represented by a poly-line that inter-

sects the axes according to its attribute values. Icon-based approaches encode attributes

in various glyph properties. For example, Chernoff Faces [32] draw one face for each data

item and encode its attributes as properties of the face, such as the size of the eyes or

curvature of the mouth. Finally, pixel-based approaches show attribute values within very

little display space such as single pixels. Heatmaps, for example, are frequently used for

the display of gene expression data [47] in the domain of molecular biology. A heatmap is

essentially a matrix that displays items as rows and attributes as columns or vice versa.

Attribute values are color-coded in the cells of the matrix.

A major challenge in multivariate graph visualization is to visualize both, the topology

of a graph and its attributes. We distinguish between three major approaches for graph

attribute visualizations, which is similar to the classification by Jusufi [90, pp. 25-33].

Integrated approaches show both the graph topology and attributes in a single, integrated

view. The graph information can also be distributed in multiple coordinated views. Finally,

the topology can also be shown using an attribute-based layout. In the following, we provide
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3.3. Visualization of Graph Attributes 27

examples for each of these classes. Due to their relevance in the context of this thesis,

we will focus on examples from biological network visualization and the visualization of

node attributes. Showing attributes in the form of mapped experimental data is a critical

requirement and open challenge in biological network visualization [7, 140].

(a) (b)

Figure 3.3: (a) Cutout from a metabolic network shown with the VANTED system [89]. Attribute
data is shown with bar charts embedded in the nodes. (b) Attribute visualization using two coor-
dinated views [145]. Parallel coordinates on the left show attribute values of selected nodes in the
topology view on the right.

3.3.1 Integrated Approaches

The most primitive way of showing node or edge attributes in an integrated way is to

encode them in visual properties of nodes and edges, such as size, shape or color. On-

node mapping has been widely used to associate experimental data with corresponding

nodes in biological networks. For example, colored rectangles representing the values

of single experiments or an aggregation of multiple experiments are frequently used to

augment the nodes of manually curated pathway maps [116, 127, 156]. When the base

representation of the graph layout is not fixed, the amount of shown attributes can be

increased by embedding small visualizations such as bar charts or line charts within the

nodes [89, 179]. Figure 3.3(a) shows an example with embedded bar charts. An overview

of further examples for on-node mapping in biological networks is given by Gehlenborg et

al. [59].

Overall, integrated approaches associate attributes with nodes and edges in a very

intuitive, straight-forward way. The amount of attributes that can be shown effectively is

rather limited though.

3.3.2 Multiple Coordinated Views

The most common setup of multiple coordinated views to show multivariate graphs is that

at least one view shows the network topology, while other views show attributes. The views
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28 Chapter 3. Related Work

are usually linked by means of synchronized highlighting, filtering or other methods. If,

for instance, a user selects a node in the topology view, the corresponding attribute values

are highlighted in other views, and vice versa. As illustrated in Figure 3.3(b), Shannon et

al. [145] use a parallel coordinates plot to show attribute data, which is linked to a topology

view of the graph. Parallel coordinates plots are also employed in Cerebral [17] for the

visualization of experimental data in context of biological networks. Streit et al. [158]

use heat maps in addition to parallel coordinates to show experimental data related to

pathways.

A major benefit of using multiple coordinated views is that the amount of attributes

that can be displayed is rather large. However, as separate views require interaction to

show relationships between a single node and its associated data, the joint analysis of the

topology and attributes is hindered, especially compared to integrated approaches.

3.3.3 Attribute-Based Layout

An example of a method that uses attribute-based layouts is GraphDice by Bezerianos

et al. [24]. This method positions the nodes purely based on their node attributes in a

2D scatterplot, while still drawing the edges between them. In order to show more than

two attributes, they adopt the metaphor of interactively rolling a dice horizontally or

vertically in a scatterplot matrix and showing the scatterplot at the dice’s position. Tran-

sitions between different scatterplots are animated using 3D rotations. Van den Elzen and

van Wijk [170] also employ the strategy of positioning nodes according to configurable at-

tributes to uncover, for example, geographical patterns by assigning longitude and latitude

to the x- and y-axes in geo-referenced data. Instead of positioning the nodes according

to individual attributes, Martins et al. [122] want to uncover overall similarities in node

attributes. Therefore, they use multidimensional projection methods to determine the

nodes’ positions.

With attribute-based layouts, only a very limited amount of attribute values can be

displayed at the same time. Also, as the layout is completely determined by attributes, the

identification of structural properties of the graph can be severely hampered. However, in

cases where the focus is on analyzing a limited set of attributes rather than on the graph

topology, attribute-based layouts might be a good choice.

3.3.4 Hybrid Approaches

Hybrid approaches combine two or more of the previously discussed approaches. An

example that combines multiple coordinated views with integrated approaches are small

multiples [167, pp. 170-175]. Small multiples show the same configuration of a plot

multiple times while changing one variable. Applying this concept to multivariate graphs

means to use multiple instances that show the graph topology, each using an on-node

mapping that shows different attributes. This principle is employed by Cerebral [17],

which shows multiple instances of pathways with experimental data mapped to the node

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian

Christian
Notiz
Marked festgelegt von Christian



3.3. Visualization of Graph Attributes 29

Figure 3.4: The Pathline visualization technique [126] shows a pathway in a linearized form using
special encodings on the left. Nodes are positioned horizontally according to aggregated attribute
values. The Curvemap on the right shows time-series data for nodes selected in the pathway as
line charts. Columns represent selected nodes, rows different species.

color. Lex et al. [114] also use small multiples to show differences between experimental

data associated with cancer subtypes on top of KEGG pathways. Using small multiples,

the number of attributes that can effectively be shown at the same time mainly depends on

the display space required to show the graph topology. Also, identifying all attributes of a

single node across the multiples might take some time. However, synchronized highlighting

of nodes alleviates this problem.

Pathline by Meyer et al. [126] is a tool for pathway analysis that combines multiple

coordinated views with attribute-based layouts. As shown in Figure 3.4 on the left, Path-

line displays a linearized version of a pathway, where branches and cycles are conveyed

using special visual encodings. The horizontal position of the nodes is determined by an

aggregated value of associated experimental data. The linearized view of the pathways

helps comparing the node positions. Right next to the pathway, the system shows the

Curvemap view, which displays experimental time series data across different species for

selected nodes. As shown in Figure 3.4 on the right, columns represent selected nodes,
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30 Chapter 3. Related Work

while rows represent species. As with many multiple-view approaches, the visualization

scales well with the number of shown attributes. The linearized pathway view also helps to

quickly compare aggregated node values, but can hinder understanding the graph topol-

ogy. However, the authors argue that this was not of primary interest to the users of

Pathline.

3.3.5 Discussion

Multiple coordinated views can achieve the best scalability with respect the number of

simultaneously shown attributes, since dedicated visualizations for multivariate data may

be used. However, the association of the graph topology with attributes relies heavily

on interaction and highlighting. With integrated approaches, the association between

attributes and topology is straight-forward and typically does not interfere with the iden-

tification of structural properties, as attribute-based layouts do. However, the number of

attributes that can be displayed is rather limited.

In Chapter 4, we introduce a hybrid method using multiple coordinated views and

on-node mapping, which scales well with the number of attributes, while also addressing

the issue of associating the graph topology with attributes. We do this in two ways. First,

we show aggregated attributes on top of nodes in a graph topology view. Second, we allow

users to extract a focus portion of the topology, i.e., a path, and, inspired by the overall

idea of Pathline [126], display it linearized next to a detailed visualization of attributes.

This helps to directly associate attributes with the path, while also having contextual

information of the rest of the graph in the topology view. The general idea of displaying

attribute data next to linear paths is also picked up in Chapter 6.

3.4 Visualization of Biological Pathways

As described in Section 2.2, many initiatives such as KEGG or Wikipathways use hand-

crafted node-link diagrams that follow certain drawing conventions for the representation

of individual pathway maps. However, automatic layouts are also applied to pathways.

For example, Cytoscape [150], a platform for biological network analysis, provides several

layouts, including force-directed, layered and grid layouts. As illustrated in Figure 3.5(a),

some layout algorithms also incorporate drawing conventions, such as representing cycles

as circles or using orthogonal edges [106]. The explicit goal of the recently introduced

method HOLA by Kieffer et al. [100] is to produce layouts that have a quality comparable

to layouts created by humans. By comparing several manually curated layouts in a user

study, they identified relevant aesthetic criteria that they incorporated in a multi-step

algorithm. The resulting layout of a pathway graph is shown in Figure 3.5(b).

One challenge, but, at the same time, a critical requirement in pathway analysis, is

the visualization of relationships between multiple pathways [7, 140]. We identified two

major classes of visualizations that show relationships between pathways. The first merges
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3.4. Visualization of Biological Pathways 31

(a) (b)

Figure 3.5: (a) Automatic layout of multiple pathways by Lambert et al. [106] with one pathway
highlighted. (b) Automatic orthogonal layout of a pathway with HOLA [100].

the pathways into a single network. The second shows multiple pathways and visualizes

relationships between them. In the following, we discuss examples from each of these

classes.

3.4.1 Single Network Approaches

As an example of a single network approach, KEGG [93] provides the KEGG Atlas. As

shown in Figure 3.6(a), it gives a high-level overview of the metabolic network that lets

analysts drill down into individual pathways. Other tools, like iPath [180] or Pathway

Projector [103] use the same underlying data, but improve the interaction with the atlas.

While the original KEGG Atlas and iPath both use hyperlinks to replace the network

overview with pathway maps on demand, Pathway Projector embeds node information

directly on the all-encompassing map, thereby relying wholly on zooming and panning for

navigation. Pathway Projector differs from the other two also in respect to how it repre-

sents gene/protein nodes. The KEGG Atlas and iPath both represent genes and embedded

pathways only as edges between the metabolites, while the Pathway Projector actually

shows nodes for genes, enzymes, and metabolites, which allows for on-node mapping of

experimental data.

All of these techniques show an incredibly large amount of data on a single screen. For

example, the KEGG Atlas for E. coli, a comparatively simple organism, summarizes 1365

genes/proteins, 1813 enzymes, and 1572 metabolites. In order to handle all this data, these
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32 Chapter 3. Related Work

(a)

(b)

Figure 3.6: (a) The metabolic network of the KEGG Atlas [93] summarizes information of several
pathways. (b) Extended Line Sets [100] allow users to interactively add and remove nodes to the
network. Pathway membership of nodes and edges is indicated by color.

techniques rely on selecting a focus, either by zooming and panning, or by changing into a

different view altogether. This makes it very hard to identify interrelations to parts of the

network outside of the currently visible area. As these examples rely on a static layout,

using layout-adapting methods to alleviate the problem, such as the layout lens [165],

which pulls connected nodes into focus, is not possible.

The automatic layout algorithm by Lambert et al. [106] may also include multiple

pathway maps in a single network. They added constraints to keep nodes that belong to

a pathway as close together as possible. As nodes may be shared by multiple pathways,

this can be challenging, which is why they also make use of node duplication. As shown
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3.4. Visualization of Biological Pathways 33

in Figure 3.5(a), individual pathways may be highlighted within the overall network.

The Extended Line Sets approach [129] allows users to interactively add and remove

elements to the overall network. Starting by adding initial nodes with a keyword search,

the immediate neighbors of nodes can be added and removed interactively. As shown

in Figure 3.6(b), pathway membership of nodes and edges is indicated by color coding.

Although the set of pathway information that is of particular interest can be defined very

precisely using this method, the addition and removal of information on a node-by-node

basis might be cumbersome, as, for example, there is no way to directly add all nodes of

a particular pathway. Also, the produced layout also does not adhere to typical biological

drawing conventions.

(a) (b)

Figure 3.7: (a) Klukas and Schreiber [101] preserve the original KEGG layout for individual
pathway maps, arrange them in a circle and draw links for shared nodes. (b) The grid layout by
Rohrschneider et al. [138] shows three pathways in detail and other pathways as collapsed super-
nodes. Relationships between pathways are indicated using links.

3.4.2 Multiple Pathway Maps Approaches

The approach of showing multiple pathways and visualizing relationships among them is

taken in earlier versions of the Caleydo system [158], for example, in the Jukebox [156] and

the Bucket [113] techniques. Both of them arrange multiple pathways in a 2.5D layout,

while one of the pathways serves as focus. Visual links are used to connect related nodes

on demand. Additionally, other related pathways are displayed as thumbnails and can be

added to the 2.5D layout on demand. The number of relationships that can be shown at

a time is limited to one for both approaches.
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34 Chapter 3. Related Work

Similar to the Caleydo techniques, Jusufi et al. extended the VANTED system to show

one full-size pathway in focus, while arranging multiple pathways shown as thumbnails

around it [91]. They use navigation glyphs that show whether individual nodes of the

pathway in focus are connected to other pathways. A glyph has one petal for each possible

link to other pathway groups. The direction of the petal corresponds approximately to

the location of the associated pathway thumbnail and the length of the petal encodes

whether there is a link or not. These petals can be used to navigate to other pathways.

The system, however, does not show relationships on a node level in the pathways that

are not in focus.

Several approaches embed multiple pathways in a single layout and show links connect-

ing shared nodes. Additionally, they employ the concept of super-nodes, where pathways

can be collapsed into single nodes and expanded on demand. An example is the approach

by Klukas and Schreiber [101]. It uses either a force-directed or a circular graph layout

of abstracted pathway nodes and their relationships. Each abstract pathway node can

interactively be expanded to show all the nodes of the corresponding pathway in detail.

As shown in Figure 3.7(a), these nodes are arranged using the original layout of KEGG

pathway maps. They show all cross-pathway connections of individual nodes for multiple

pathways at the same time. While this approach is reasonable for a limited set of path-

ways, the addition of more pathways continuously introduces clutter and reduces node

size when trying to view all pathways.

A similar super-node approach is taken by Gerasch et al. [61], who also rely on KEGG

layouts for the representation individual pathways. However, they make slight modifica-

tions to these layouts as they remove non-species-specific elements, which are not impor-

tant in species-specific analyses, in order to reduce the overall amount of data shown.

Rohrschneider et al. [138] show multiple pathways at the same time, but use a grid-

based automatic layout for representing an overall metabolic network, as illustrated in

Figure 3.7(b). Their navigation approach is of particular interest, because they use the

table-lens metaphor to switch between pathway super-nodes and detailed renderings of the

pathway, which increases/reduces the space allocated for columns and rows of a particular

cell. One particular issue in this layout is that links between nodes of different pathways

tend to be quite long and have several bends, which makes tracing them rather difficult.

3.4.3 Discussion

A major concern in most of the discussed approaches is that the amount of data that

needs to be displayed to investigate relationships between multiple pathways increases

very quickly. This can lead to a cluttered and overwhelming visualization. It also requires

the user to use a zoomed out view in order to see all relationships, where details such as

labels of individual nodes are no longer legible. The introduction of super-nodes alleviates

the problem as pathways that are not currently in focus of the analysis can simply be

collapsed. However, expanding whole pathways, which might consist of more than 50
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3.5. Visualization of Paths 35

nodes in larger pathways, already increases the amount of data that needs to be shown

quite a lot. We argue that the additional information of subsets of pathways is enough in

many cases, which increases the amount of pathways that can be simultaneously analyzed.

In Chapter 5, we introduce a method for visualization of relationships between multiple

pathways that relies on presenting only subsets of pathways that are currently not in the

focus of the analysis, but contextually relevant.

3.5 Visualization of Paths

When visualizing paths in a graph, the first step is to specify the paths of interest. In

principle, this can be done manually by the user by selecting relevant nodes and edges.

However, especially in large networks, this approach is not feasible. Therefore, relevant

paths are typically determined by path search algorithms. In many applications, for

example, when searching for a route between two locations, the most important paths are

the shortest paths between two nodes. The simplest shortest path algorithm is breadth-

first search. It determines the shortest path between two nodes with respect to the number

of hops. When the shortest path with respect to costs, i.e., the sum of weights of taken

edges, should be found, Dijkstra’s algorithm [38] is a popular choice for non-negative

edges. The A* algorithm [70] may perform better, when the costs of the shortest path

can be estimated for each node. The Bellman-Ford algorithm [21] may consider negative

edge weights, and the Floyd-Warshall algorithm [52] determines the costs between all

pairs of nodes in a graph. In cases where the investigation of multiple alternative paths

between two nodes is important, k-shortest path algorithms, for example, by Yen [182] or

Eppstein [48], may be used.

Path search and path visualization are very common in route-planning or geographic

information system applications. These tools provide users with multiple alternative paths

to choose from. The routes differ in terms of time to reach the destination (fastest route),

distance between source and destination (shortest route), but can also vary between alter-

nate modes of transport (e.g., biking, driving, or public transport). While in commercial

systems, such as Google Maps4, overlays on top of the road-network without distortions

dominate, there is work on visual simplification for these paths to make them resemble

hand-drawn maps [5, 36]. Of course, visualizing paths for the purpose of directing people

on a map is very different from visualizing paths in general graphs. Here, we focus on the

visualization of paths in abstract graphs that have no physical mapping. We identified

four major approaches for path visualization: highlighting paths in node-link diagrams,

displaying paths as node-link diagrams, showing path lists and displaying paths in matrix

representations. An overview of the approaches is given in Figure 3.8. In the following,

we discuss these approaches and concrete examples in further detail.

4https://maps.google.com/

https://maps.google.com/
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Figure 3.8: Four ways of visualizing paths in a graph, connecting the nodes A and D: (a) high-
lighting in a node-link diagram, (b) drawing only the subset of the graph connecting node A and D,
(c) drawing a path list, (d) enumerating edges in a matrix.

3.5.1 Path Highlights in Node-Link Diagrams

Highlighting paths in node-link diagrams, as shown in Figure 3.8 (a), is probably the most

common path visualization method. Many tools support highlighting the shortest path

between two nodes. For example, computing frameworks such as MATLAB5, R6 and

Mathematica7 support plotting static node-link diagrams with highlighted paths. Graph

visualization frameworks and their plugins typically allow to interactively query for the

shortest path by selecting source- and target-nodes within the node-link diagram or by

using dedicated query interfaces. Examples are the two popular graph visualization tools

Cytoscape [150] and Gephi [19]. TimeArcTrees [67] also highlight multiple shortest paths

in a small multiples arrangement of node-link diagrams, each representing a different point

in time.

When multiple paths are highlighted in the same way, it might be difficult to discrimi-

5https://www.mathworks.com/products/matlab.html
6https://www.r-project.org/
7https://www.wolfram.com/mathematica/

https://www.mathworks.com/products/matlab.html
https://www.r-project.org/
https://www.wolfram.com/mathematica/
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3.5. Visualization of Paths 37

nate individual paths due to shared nodes and edges. Interaction methods for highlighting

one path at a time can mitigate the issue. Alternatively, multiple paths can be shown at

the same time by using different highlights, such as by varying colors. However, the num-

ber of paths that can be shown in this way is limited by the number of discriminable

highlights, which is about seven or slightly more when using color [72]. An advantage of

the highlighting approach is that the topology of the graph can be perceived well. How-

ever, this approach only works well for smaller networks that can be displayed on the

screen without introducing clutter, especially when details such as node labels should be

legible.

Figure 3.9: RelFinder [78] shows paths that connect Albert Einstein and Isaac Newton. The
query interface is on the left and the resulting paths are shown as node-link diagram on the right.
Paths that contain Keith Lewin are highlighted.

3.5.2 Paths as Node-Link Diagram

Displaying paths as node-link diagrams, as shown in Figure 3.8 (b), is similar to the

previous approach, with the critical difference that only nodes and edges of the paths are

rendered. Typically, a dedicated query interface is used for path retrieval. RelFinder [78]

is an example of such a technique for semantic web networks. It supports queries for

paths between nodes and allows users to dynamically refine their queries or filter the

result set based on different properties, such as path length or connection type. As shown

in Figure 3.9, the start and end nodes of the paths use a fixed position on the left and right

of the display, respectively. Other nodes are positioned using a force-directed algorithm.

Edge types are indicated using labels in the node-link diagram, and detailed information

about individual nodes can be accessed on demand in a different view. Selecting individual

nodes highlights the paths that contain them. Tekusova and Kohlhammer [162] show paths

connecting two nodes (companies in that case), but, in contrast to RelFinder, they also

include important nodes that are not part of the paths.
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38 Chapter 3. Related Work

As a consequence of only showing paths, approaches in this category scale better with

respect to the number of paths than highlighting methods. However, topological analysis

is limited to the paths as well. Moreover, in order to disambiguate individual paths,

methods such as interactive highlighting need to be employed.

Figure 3.10: Explass [31] shows paths between Albert Einstein and Isaac Newton as a grouped
list. Different groups are defined by certain patterns of entity and relationship types in paths.

3.5.3 Path Lists

Path lists, as illustrated in Figure 3.8 (c), are also mostly based on queries. Each path

is visualized in a separate row as part of a list, which causes nodes and edges that occur

in multiple paths to be duplicated. An important aspect in paths lists is path ranking,

as the most important paths should be displayed on top. Aleman et al. [8] ranks path as

a weighted combination of properties, such as path length, trust, popularity and a user’s

interest in entity types. SemRank [11] computes a semantic score for each path, which

specifies whether the path describes a rather expected or unexpected relationship. Users

may specify their preference in expected or unexpected results for the ranking.

To give a better overview in large result-sets of paths, some approaches group simi-

lar paths together. For example, Explass [31] groups paths based on patterns that use

similar entity or relationship types. Figure 3.10 shows an example where the first group

summarizes two-hop paths between Albert Einstein and Isaac Newton with some scientist

being the second node. Explass also supports filtering paths based on entity types, rela-

tionship types and path lenght. RelClus [185] uses a similar approach, but groups paths

hierarchically.

Even though the amount of displayed information in path lists is larger than when

displaying paths in a node-link diagram due to node and edge duplication, we argue that
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3.5. Visualization of Paths 39

lists scale better with respect to the number of paths, as more paths only affect the

list’s length and not the legibility of paths. Ranking also helps to easily discover the

most important paths. Another advantage over the display in node-link layouts is that

individual paths can be discriminated easily without interaction. However, topological

features are very hard to track.

3.5.4 Paths in Matrix Representations

As discussed in Section 3.1.2, matrices without extensions are considered ill-suited for path-

related tasks and, consequently, are rarely used to visualize paths. There is, however, an

extension by Henry and Fekete, Matlink [79], which supplements a matrix with explicit

links drawn as arcs between the rows and columns, respectively, which is reminiscent

to sequential node-link layouts. MatLink also automatically calculates the shortest paths

between two selected nodes and highlights corresponding links. The authors compare path

finding tasks in MatLink with a node-link diagram and a matrix that uses highlighting for

shortest paths similar to Figure 3.8 (d). The authors found that users performed best on

finding shortest path tasks with MatLink. Shen and Ma introduce an augmentation for

matrices that visualizes multiple paths as links on top of a matrix [146], with the goal of

combining the benefits of matrix layouts with good path-finding performance. However,

their approach works well for only a limited number of paths.

Graffinity [99] is a visualization technique that focuses on giving an overview of paths

between multiple different start and end nodes. To do so, Graffinity uses a connectivity

matrix, where columns represent start nodes and rows represent end nodes. The color of

cells indicates the number of connecting paths. Additionally, an intermediate node table

gives an overview of in how many paths an intermediate node takes a certain position. In

this table, rows show intermediate nodes, while columns show the position relative to the

start node. Again, the colored cells indicate the number of paths.

In summary, none of the discussed methods use matrix representations directly to show

paths. Either they augment a matrix representation with a node-link representation to

show the paths, or the matrices actually do not show the paths themselves, but give a

path overview.

3.5.5 Discussion

As matrix-based visualizations introduce node-link diagrams to enable path analysis, we

argue that these approaches are not the right choice, when path analysis is in the focus.

For the other approaches, important aspects are scalability and perception of the graph

topology. While the latter is best in path highlighting methods, they can show the fewest

paths. With path lists, many paths can be shown, but topological information is lost.

Displaying paths as node-link diagrams is somewhere in the middle with regard to both

aspects.
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40 Chapter 3. Related Work

In Chapter 4, we resort to path highlighting, as the graph to be analyzed fits the

screen and only few alternative paths between selected nodes need to be shown. However,

in Chapter 6, we introduce a visualization technique to particularly address the challenge

of scalable path analysis. It makes use of a path list display and a node-link diagram

to show the results of path queries. Synchronized highlighting is employed to identify

corresponding paths in the respective views. A key aspect to make the node-link diagram

scalable is to show only the currently top-ranked and therefore most important paths in

the path list. As the importance of paths may change during an analysis, we employ a

flexible, extensible and interactive ranking of paths, which is missing in many path list

approaches. As a holistic path analysis also includes the examination of path attributes,

we incorporate the display of rich attribute data for paths, which is either completely

neglected or limited to on-demand display for individual nodes in discussed approaches.

Figure 3.11: The Jigsaw list view [151] shows places, persons, and organizations in separate lists.
When an item is selected, related items are indicated with highlights and connecting links.

3.6 Visualization of k-partite Graphs

Linked datasets that contain different types of data items are common in many application

domains. Such datasets can be regarded as k-partite graphs, where each item represents

a node and each partition represents the set of items of a particular type.

When visualizing k-partite graphs, different colors or shapes can be used to indicate the

partition of a node in a node-link diagram. However, to make the association to partition

even more obvious, and to put an emphasis on the fact that relationships are between

node partitions, visualization techniques for k-partite graphs typically divide the screen

space into separate areas, each showing the nodes of a single partition. For example, as

illustrated in Figure 3.11, Jigsaw’s list view [64, 151] shows different types of items in

separate lists. Selecting an item highlights related items in the other lists and also draws

links between adjacent lists. Schulz et al. [144] describe a similar table-based approach to

visualizing bipartite biological networks. In contrast to Jigsaw’s list view, each partition
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3.7. Visualization Frameworks 41

of the network is drawn in a table, which can be sorted based on various attributes.

The two partitions are connected with links. Both tools visualize attributes within the

cells. Ghani et al. [62] conducted a design study on multimodal social network analysis

and developed parallel node-link bands, which are also similar to Jigsaw’s list view. The

evaluation of Ghani et al. shows that the parallel division of items into multiple columns

was easy to understand and worked well for the domain experts in social network analysis.

All the discussed methods use visible links to associate items of the individual lists. This

is useful, when all list items fit on the screen, but less helpful, when the targets of links

are not in the viewport. An approach that does not use lists to represent the partitions

of a graph was proposed by Lieberman et al. [115]. They employ the semantic substrates

concept [149] of visualizing connections between different semantic partitions of a network.

Each partition is represented by items from different biomedical databases, such as a gene

database, the PubMed document database, and the OMIM disease database. The items

of a partition are displayed in a scatterplot and explicit links are drawn between them. An

advantage of this approach over the list-based approaches is, that all items are displayed

within the viewport. However, items with similar attributes might be displayed very close

or even on top of each other, which can make disambiguation difficult.

In Chapter 7 we introduce a method for the exploration of linked data used in drug

discovery, which also represents a k-partite graph. We use a list-based visual representa-

tion to show the graph, due to its clean layout and easy to understand visual metaphor.

However, in contrast to discussed list-based techniques, we refrain from drawing explicit

links in order to save screen space and reduce the visual complexity. Instead, we rely on

interactive highlighting and reordering of items, and nesting of lists to uncover relation-

ships.

3.7 Visualization Frameworks

When it comes down to visualizing data at hand, there are multiple ways to do so. For

many people, using office software such as Microsoft Excel is the most straightforward way

to go. However, the charting capabilities of these tools are limited to basic visualizations

like static bar and pie charts. For a much more advanced and interactive visual data anal-

ysis, general purpose visualization software like Tableau8, TIBCO Spotfire9, PowerBI 10,

or Qlik11 may be consulted. For the analysis of graphs, there are more specialized tools

like Cytoscape [150], Gephi [19], or Graphviz [57]. Although these tools are very powerful,

they often still lack certain capabilities to effectively or efficiently deal with the special

requirements of real-world data analysis problems. Therefore, there is a demand for the

development of customized solutions for such cases.

8https://www.tableau.com/
9http://spotfire.tibco.com/

10https://powerbi.microsoft.com/
11https://www.qlik.com/us/

https://www.tableau.com/
http://spotfire.tibco.com/
https://powerbi.microsoft.com/
https://www.qlik.com/us/
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Most analysis problems described in this thesis originate from the domain of molec-

ular biology and required the implementation of customized solutions. To avoid re-

implementation of basic concepts such as data loading or synchronized highlighting and

also to make use of synergistic effects when combining multiple solutions, all of the visual-

ization prototypes proposed in this thesis are integrated in one of our research frameworks:

Caleydo and Phovea.

3.7.1 Caleydo

Caleydo [158] is an open source visualization framework that was developed over several

years. It is mainly aimed at data analysis in molecular biology. Caleydo integrates several

visualizations in a multiple view system. These visualizations include EnRoute (see Chap-

ter 4), Entourage (see Chapter 5), ConTour (see Chapter 7), and other visualizations not

discussed within this thesis, such as StratomeX [114, 157], a visualization for the identifi-

cation of cancer subtypes based on grouped patient data, or LineUp [66], a visualization

for the interactive ranking of data items based on multiple criteria. Besides these more

advanced visualizations, Caleydo also provides rather basic visualizations, which are of-

ten embedded within advanced techniques. Examples are a texture-based pathway viewer

for the display of pathway images from KEGG and Wikipathways, or heatmaps [47] and

parallel coordinates [83] for viewing tabular data like gene expression data.

Caleydo is implemented in the Java programming language for easy cross-platform

development and deployment. It uses the Rich Client Platform (RCP)12, a set of plu-

gins to build rich client applications. The Standard Widget Toolkit (SWT)13 is part of

RCP and provides several user interface components and widgets with native look and

feel. To build complex visualizations that cannot be assembled from the SWT widgets,

Caleydo uses JOGL14, a lightweight wrapper library that grants Java programs to access

OpenGL15 for rendering. The framework provides several facilities to alleviate rapid de-

velopment of visualizations. They include, amongst others, support for loading tabular

and pathway data, handling and propagating selections and other events across multiple

views, basic statistical calculations, mapping between different biological identifiers, and

color-schemes based on Colorbrewer [27]. The plugin-based architecture of the framework

ensures extensibility. For example, a new visualization may be integrated by adding a

view plugin.

3.7.2 Phovea

Phovea, formerly known as Caleydo Web [65], can be considered as a web-based suc-

cessor of Caleydo. It is an open source framework for building client-server web applica-

12https://wiki.eclipse.org/Rich_Client_Platform
13http://www.eclipse.org/swt/
14https://jogamp.org/jogl/www/
15https://www.opengl.org/
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tions, whose development started recently. Visualizations like StratomeX and LineUp were

ported to this framework. The Pathfinder visualization technique presented in Chapter 6

was also developed using Phovea. One main benefit of Phovea is that the visualizations

may be accessed from any computer without requiring a local installation as they run in

the web-browser.

Phovea is based on a plugin architecture on the client and server. Therefore, visualiza-

tions developed for Phovea are essentially web applications that consist of client and server

plugins. Client plugins are implemented with HTML, CSS, JavaScript, and TypeScript.

Currently, most visualizations developed for Phovea use D3 16 for vector graphic-based

display. However, other rendering technologies like WebGL17 are also feasible. The server

side is implemented with Python and uses the Flask18 framework. Client and server com-

municate via REST and Websocket interfaces. To ease the development of web-based

visualizations, Phovea provides support in several areas like data handling, selection man-

agement, provenance tracking, and client-server communication.

16http://d3js.org
17https://www.khronos.org/webgl/
18http://flask.pocoo.org/

http://d3js.org
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4
Visualizing Attributes in Graphs

Contents

4.1 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 The EnRoute Visualization Technique . . . . . . . . . . . . . . . 48

4.3 Implementation and Scalability . . . . . . . . . . . . . . . . . . . 59

4.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Many real-world applications require the combined analysis of graphs and heterogeneous

multi-dimensional data. In molecular biology, large amounts of experimental data are

collected for different biomolecules. As discussed in Section 2.3.1, pathway graphs model

interactions between these biomolecules and are consulted as contextual information to

understand patterns and correlations within the data. Thus, from a more general point

of view, large amounts of node attributes need to be analyzed in context of the graph

topology. However, in most existing visualization techniques for displaying attributes in

graphs, only a very limited amount of attributes can be shown, or it is hard to intuitively

associate the graph topology with attributes.

In this chapter, we introduce EnRoute, an interactive visualization technique to

show large amounts of heterogeneous attribute data, while preserving topological infor-

mation. This is achieved using a dual-view approach and interactive selection of paths:

Figure 4.1(a) shows the graph as a node-link diagram augmented with abstractions of

attributes mapped onto the nodes. The selected path highlighted in orange is extracted

and displayed top-down, juxtaposed with detailed representations of attribute data for

the nodes, as shown in Figure 4.1(b). While this concept is domain-agnostic, EnRoute

was specifically developed to address issues in the analysis of pathways in context of ge-

nomic profiling data. In the following, we first analyze the requirements for the domain of

molecular biology, then introduce the EnRoute visualization technique and demonstrate

EnRoute in two case studies.

45
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(a)

(b)

Figure 4.1: The dual-view setup of the EnRoute visualization technique. (a) The ErbB signaling
pathway from the Wikipathways database is augmented to show abstract experimental data and
a selected path (orange). (b) The selected path is extracted and displayed top-down along with
associated experimental data from a TCGA glioblastoma multiforme dataset.

4.1 Requirement Analysis

In collaboration with our partners from the Medical University of Graz, we have elicited the

challenges experts face when analyzing individual pathways and associated experimental

data. From this analysis we derived five requirements that must be met by a visualization

system to successfully support the joint analysis of pathways and experimental data.

A I: The Scale Requirement – A common challenge in any type of visualization is

scalability. When analyzing individual pathways, the scale of the graph is hardly a prob-

lem. The problem of scale is primarily concerned with the large number of experiments

and experimental conditions. Scaling to dozens of experimental conditions or groups and

hundreds of experiments is a requirement for integrated pathway analysis.

A II: The Heterogeneity Requirement – Modern biological studies often include

a wide array of complementary, but heterogeneous experimental datasets. While, for

example, mRNA expression data are direct measures of the gene activity, copy number or

mutation data are used to reason about the causes of deviating expression values. These
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heterogeneous datasets need to be presented using different visualization techniques, as

they differ in terms of data type. For example, mRNA expression data is numerical, copy

number data is a hybrid categorical/numerical dataset, which is often binned into ordinal

(ordered categorical) data, and mutation status data is nominal (unordered categorical).

In order to analyze these different kinds of data in context of pathways, the visualization

system needs to handle all of them simultaneously and also represent each of them using

suitable visual encodings.

A III: The Multi-Mapping Requirement – Many nodes in pathway maps are gene

products summarizing various entities such as RNA, enzymes, proteins, etc., which have

complex relationships. One gene can be the template for multiple proteins with slightly

distinct domain compositions called isoforms. In some cases, pathways also summarize a

whole gene family into a single node, where different genes produce functionally similar

proteins. This is what we call a multi-mapping: One node in a pathway actually repre-

sents multiple entities, and, therefore, multiple entries of an experimental dataset can be

associated with this node. As understanding this complexity is essential for judging effects

of experimental data on a pathway, it is critical to convey multi-mappings adequately.

A IV: The Layout Constraint Requirement – The layout of pathways is either

produced manually by experts, or automatically. Manual pathway layouts follow biological

drawing conventions, by, for example, drawing cycles in circles or using pseudo-orthogonal

edges. Also, these carefully hand-crafted layouts contain rich meta-data and annotations

that indicate, for example, the cell compartments in which specific processes occur. As

discussed in Section 3.4, automatic layouts either try to respect these conventions, or

optimize global layout properties using, for example, algorithms for force-directed layouts.

We observed that domain experts prefer manually created layouts or, at least, layouts that

adhere to biological drawing conventions. A reason for this might be that biologists are

often intimately familiar with the layout of particular pathways and are reluctant to see

it changed, as this requires additional effort on their side. While showing experimental

data is easier in automatically generated layouts, as the layout can be adapted to suit

the representation, a good visualization technique for joint analysis of experimental data

and pathways also needs to work with the large baseline of existing, manually produced

pathways.

A V: The Topology-Attribute Coexistence Requirement – Analyzing experimen-

tal data in the context of cellular processes can be described as tasks on a graph. We

distinguish between two main types of tasks conducted on pathways: tasks that are based

on the topology of the underlying graph, and tasks that are based on the node or edge

attributes of the graph [110]. As discussed in Section 3.1.1, topology-based tasks are

concerned with the structure of the graph, e.g., which nodes can be reached from a given

node, or what the articulation points of a graph are. An example for a topology-based

task in pathway analysis is to find all processes that are influenced by a receptor at the cell

surface. Attribute-based tasks are concerned with analyzing node or edge attributes.

Edge attributes in pathways commonly describe the type of a relationship between two
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nodes, such as transcriptional activation or inhibition, while mapped experimental data

represents the majority of node attributes. An example for an attribute-based task for

pathway analysis is to find all genes in a pathway that are mutated in a large number of

the mapping samples. Visualization techniques for graphs are usually optimized for either

topology-based task or for attribute-based tasks, but are rarely suitable for both at the

same time. When analyzing pathways and experimental data, however, both types of tasks

need to be addressed simultaneously. The two central questions an analyst is trying to an-

swer when analyzing both pathways and experimental data are (a) how the experimental

data for particular experimental conditions or groups of samples influences the topology

of the graph and (b) how effects observed in the experimental data can be explained using

the topology of the pathways. Consequently, an effective visualization technique has to

enable both: an in-depth analysis of the topology and the pathway attributes.

Figure 4.2: The EnRoute visualization technique with its two basic building blocks: the pathway
view and the EnRoute view. The pathway view shows the pathway map in its original layout. In
the example shown, a path from node A to E is selected, which is extracted and shown on the right
in the EnRoute view. Due to the linear layout of the extracted path, the associated experimental
data can be visualized next to it. The data can originate from different datasets and can be grouped.

4.2 The EnRoute Visualization Technique

The overall goal of the EnRoute visualization technique is to jointly visualize experimental

data and pathways in a way that addresses all five requirements discussed. We identify the

topology-attribute coexistence requirement (A V ) as the most critical requirement to ad-

dress, as current techniques usually either support only topology-based or attribute-based
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tasks. Only small-multiples and direct on-node mapping are able to address requirement

A V, however, both do not scale to many experiments (A I ). Our solution to this problem

makes use of an observation we made in discussions with our collaborators: They usually

reason about and analyze experimental data associated with a single path at any given

time in detail, while the rest of the network merely informs them about the context of

this path. However, the path of interest might change through the course of the analysis.

This temporal separation of high-level topology-based tasks and low-level attribute-based

tasks allowed us to create a solution that meets all five requirements. In our approach,

an analyst starts by investigating the pathway in its standard layout as taken from one

of the major databases in the pathway view (A IV ). She then selects a concrete path

for which she wants to investigate experimental data. The chosen path is then shown

in the EnRoute view in a linear form. Next to the nodes, we now have space available

to concurrently show all mapped experimental data in a tabular format (A I and A II ).

Due to the linear arrangement of the nodes from top to bottom, it is possible to encode

multi-mappings (A III ) by giving them more vertical space. This dual-view concept is

depicted in Figure 4.2. The pathway view provides the complete topological information

as well as an overview of the experimental data, while the enRoute view contains the linear

path and the experimental data visualization. The elaborate interplay of all these systems

can solve the critical Topology-Attribute Coexistence Requirement (A V): The topological

information for the whole pathway is preserved in the pathway view, while the topological

information for a path and the experimental data is shown in the EnRoute view. Overall,

our approach of displaying linearized topology information next to attribute information

was inspired by Pathline [126], which uses special encodings to show whole pathways in

a linearized fashion. However, it suffers from its unconventional layout that can hinder

understanding the graph topology. Additionally, it currently requires manual creation of

the linearized pathways. Also, the association of nodes and attributes is less obvious. In

the following sections, we discuss the components of our approach and their interplay in

more detail.

4.2.1 Pathway View

In our approach, the pathway view serves two main purposes: First, it is the primary

view for conducting topology based tasks, as the whole pathway map is shown. Second,

it is used to interactively select the path to be shown in the accompanying EnRoute view

along with associated experimental data. To facilitate identifying interesting paths, the

pathway view shows abstract summaries of the mapped experimental datasets. In this

section, we provide details about the design of the pathway view and its features.

Visualizing Experimental Data on Pathways. As discussed previously, directly

mapping experimental data on pathway nodes using color-coding does not scale to more

than a few experimental values, due to the small size of the nodes in the pathway maps. De-
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(a)

(b)

Figure 4.3: Averages of mapped samples for different data types of the TCGA glioblastoma dataset
are overlaid as color codes on nodes of the KEGG glioma pathway. Bars at the bottom of the nodes
encode the standard deviation across the mapped samples. (a) mRNA data, using a blue-gray-red
color map, where blue corresponds to under-, gray to regular, and red corresponds to overexpression.
(b) Copy number data, also on a blue-gray-red color map, where blue corresponds to deletions, gray
to a regular copy number, and red to increased copies of the gene.

spite this limitation, direct on-node mapping is valuable in two scenarios: First, mapping

summarized data allows analysts to gain an overview of the main trends in the pathway,

which can be helpful when deciding which paths to choose for detailed investigation. Sec-

ond, analysts want to investigate a condition, i.e., a group of samples, or even a single

sample in its high-level topological context. This allows analysts to consider experimental

data associated with nodes that are not in the currently extracted path. For this purpose,

the pathway view can be configured to show only the mapping of selected samples.

To get a rough indicator of mapped experimental data, we calculate the average of all
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experimental sample values and multi-mappings, if applicable, and color-code the nodes

accordingly. If multiple datasets are available, the analyst can choose which of them should

be mapped in the data configuration view described in Section 4.2.3. Figure 4.3(a) shows

the Glioma pathway with on-node mappings of mRNA data, while Figure 4.3(b) shows

the same pathway overlaid with copy number data. For encoding numerical and ordinal

data that diverges from a neutral center value, we avoid the red-black-green color map

that is commonly used in the biological domain, but is problematic for many color blind

people, and use a blue-gray-red color map instead. For example, for copy number data,

gray is used for the normal status, while red indicates amplifications and blue indicates

deletions. A two-color gray-red color map is used for non-diverging numerical data and

nominal data with two categories, such as mutation status data. To indicate cases where

experimental data is missing, we show a small rectangle in the lower left corner of the

node, as can be seen, for example, in the mTOR node in the lower right part of Figure

4.3(b). Since the aggregation of all samples and possible multi-mappings into an average

value hides all variation, we additionally provide the standard deviation encoded as a

bar below each node. This indication of variance is very valuable for the overview task.

High variation, which corresponds to longer bars, is an indicator for potentially interesting

experimental data that is worth to be investigated in detail using the EnRoute view. In

order to point out interesting nodes with respect to all present experimental datasets,

rather than only for the currently mapped dataset, we also added exclamation marks to

indicate that the standard deviation in a dataset is higher than a given threshold. The

color of the exclamation mark encodes the dataset where the high standard deviation was

observed. For example, the brown exclamation mark mapped onto the PDGF node in

Figure 4.3(a) indicates high variance in the copy number dataset. If multiple datasets

exhibit a high variance, we encode only the largest.

Selecting and Visualizing the Path As the EnRoute visualization technique builds

upon the idea of providing experimental data along a path in the pathway, the user-driven

selection of the path and its visualization in the pathway view is a critical step in the overall

process. While selected paths are commonly indicated by highlighting edges in node-link

diagrams, we opted for a slightly modified version of the Bubble Sets technique [34], as

shown, for example, in Figure 4.1(a). Compared to simple edge highlighting, the contour-

based Bubble Sets are more salient and can therefore be perceived faster. Furthermore,

due to their curve-shaped outline, Bubble Sets can be easily discriminated from the mainly

orthogonal structures in the pathway maps [81]. Also, the precise routing information of

edges is often not available for pathway maps, and one would have to resort to drawing

not-exactly matching edges. As the original Bubble Sets technique is meant for visualizing

a set of items, we modified it for our purposes of highlighting a path. Thus, instead of

allowing arbitrary branching between the nodes within a Bubble Set, we connect only

those nodes that are connected by an edge in the pathway.

For path selection, analysts can choose between two approaches: the iterative approach
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(a)

(b)

(c)

Figure 4.4: Multiple differently colored Bubble Sets, each visualizing an alternative path between
two user-selected nodes. (a) The analyst has selected IFG-1 as a start and Ras as end node. (b)
The path is extended to also include the PI3K gene. (c) This results in a newly added alternative
path, which is finally selected by the analyst.

and the start-stop approach. In the iterative approach, the analyst can directly select a

series of nodes that should be part of the path of interest. After selecting an initial node,

the analyst can interactively extend the path in both directions by holding the control
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key, while clicking on connected nodes. In the start-stop approach, the analyst picks a

start and an end node. We then calculate all paths between them using a variant of

the Bellman-Ford algorithm [21]. All path alternatives are indicated with Bubble Sets,

with the currently selected path highlighted in orange and using thicker outlines. The

shortest path is selected by default, but analysts may switch to alternative paths by either

using the mouse wheel or by directly clicking on the Bubble Sets of other paths. The

path selection process is illustrated in Figure 4.4: In Figure 4.4(a) the system shows two

possible paths between two genes that were selected using the start-stop approach. The

analyst extends the currently selected path in Figure 4.4(b) and switches to an alternative

path in Figure 4.4(c).

Both of our supported selection approaches have benefits and drawbacks. While the

iterative approach allows analysts to determine paths that cover various kinds of topo-

logical structures, like, for instance, cycles, the start-stop approach makes it possible to

investigate multiple alternative paths between nodes without the need to find and select

the route by hand. Additionally, the start-stop approach is more efficient for selecting

longer paths.

However, pathway maps are often very complex, and, sometimes, it is not obvious

which other nodes can be reached from a given node. Therefore, we provide an interactive

preview mode for selecting paths on user request. Starting at the end of the current

selection, we highlight possible extensions. For example, in Figure 4.5(a), all possible

path extensions for the end of the current selection at PDGFR are highlighted.

In some cases, the information of pathway maps is not complete or simply outdated.

As a consequence, they may not correctly reflect the actual underlying biological process,

especially not for all experimental conditions. Additionally, pathway databases can also

contain errors that users are aware of. In order to cope with such incomplete or outdated

pathway descriptions, we enable analysts to extend paths to arbitrary nodes within the

pathway map. In this way, the analyst can consider missing edges during path selection.

For example, in in Figure 4.5(b), a path is selected where the second to last edge does not

exist.

4.2.2 EnRoute View

Once a path has been selected in the pathway view, it can be analyzed in detail in context

of experimental data in the EnRoute view. The path is displayed in a linear, top-down

layout, which is ideally suited to show rows of experimental data (data rows) right next

to the associated nodes. As a node can have multiple mapped data rows, we adapt the

spacing between nodes of the path so that all rows can be shown with a uniform height.

Such multi-mappings or the occurrence of complex nodes (nodes that consist of multiple

subnodes) in the path make it very hard, if not impossible, to determine which data row

belongs to which node using their position alone. Therefore, we connect each node with

corresponding data rows using ribbons, as shown in Figure 4.2. To make the association
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(a)

(b)

Figure 4.5: Support for path selection. (a) All possible extensions of a path are shown using the
preview mode. Here, all paths continuing after PDGFR are highlighted. (b) Considering edges that
do not exist in the original pathway. Notice that no edge is shown between Bid and IAP in the
original pathway map, but is introduced during path selection.

between data rows and nodes even more obvious, we alternate the shade of gray in the

data rows’ backgrounds for each node. Figure 4.11(b) illustrates an example where these

alternating shades of gray allow us to disambiguate the mappings of multiple subnodes of

a complex node to corresponding data rows.

Following the divide-and-conquer visualization strategy [112], we group experimental

data in the EnRoute view based on a homogeneity criterion. For example, experiments

can be grouped by the species they belong to (homogeneity with respect to semantics),

or a grouping can be obtained by clustering (homogeneity with respect to statistics).

As illustrated in Figure 4.2, the groups are depicted as columns resulting in an overall

tabular layout. We address the heterogeneity requirement (A II) by allowing the individual

groups to originate from different datasets. However, all experiments within a group must
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originate from a single dataset.

(a) (b) (c)

Figure 4.6: Path representation and branch switching in the EnRoute view. (a) The extracted
path from the node EGFR to MTOR is shown top-down along with branches on the left. (b)
Expanding the abstract node for leaving branches of EGFR reveals the individual branch nodes
PLCG1 and SHC2, which show previews of associated experimental data. (c) By selecting SHC2,
the associated branch replaces all path nodes below EGFR. All nodes of the branch are added up
to the point where the branch is no longer unambiguous. In this case, HRAS represents the end
point, as it has two leaving branches.

Visualizing the Path In addition to showing the extracted path top-down in the En-

Route view, we also display branches that join or leave the path in order to preserve some

of the topological information present in the pathway maps. We indicate a branch by

showing its first node relative to the node where the branching occurs in the extracted

path. In order to maintain a compact path representation, multiple branches that join

or leave a single node of the path are abstracted into expandable nodes, one for all join-

ing and one for all leaving branches, as shown in Figure 4.6(a). These abstract branch

nodes indicate the number of branches they represent and also show labels for them, if

sufficient space is available. Abstract branch nodes can be expanded on demand to reveal

the individual branch nodes. When a node is expanded, all other branches are grayed out,

and the expanded nodes are rendered on top of them. Expanded nodes show a preview

for their associated experimental data, as illustrated in Figure 4.6(b). This facilitates

the identification of potentially interesting branches. An analyst can interactively switch

to a branch by selecting the corresponding branch node, as shown in Figure 4.6(c). A

selected branch replaces all nodes in the extracted path above or below the node where

the branching occurs, depending on whether it is a joining or leaving branch. All nodes

of the branch are added to the path, until either a new branch or a dead end is reached.

As the EnRoute visualization technique synchronizes all corresponding elements among

its components, any changes to the path caused by branch switching are propagated back
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to the pathway view, thus keeping the highlights of the selected path up-to-date. Also,

the synchronization of node highlights facilitates the association of branches shown in the

EnRoute view with corresponding branches in the pathway maps.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Eight visual encodings for different types of experimental data. (a) One vertical bar is
shown for each numerical data value. (b) A summary representation of a group of numerical data
values that consists of one horizontal bar with whiskers. (c) A box plot as summary representation
of a group of numerical data values. (d) Copy number values are redundantly encoded using color
and length. Red bars pointing upwards indicate an increased number of copies, whereas reduced
copy numbers are shown as blue bars pointing downwards. (e) A group of copy number values are
abstracted into a histogram. (f) Mutation status data encoded as colored bars. Red bars indicate
samples with a mutated gene. (g) More compact matrix visualization of mutation status data. (h)
Histogram summarizes mutation status data by displaying the number of samples with and without
mutations.

Visualizing Experimental Data Being able to display large amounts of heterogeneous

experimental data is an integral part of the EnRoute visualization technique (see require-

ments A I and A II ). EnRoute supports the visualization of quantitative, ordinal, and

binary categorical data. As previously mentioned, we organize experimental data in rows

and columns. Each row shows data that maps to a certain node in the path, and columns

group the data by a homogeneity criterion. Different groups may also have overlapping

experiments. The captions of the individual groups are displayed at the top and at the

bottom of the corresponding columns. Their background color indicates the dataset they

belong to. For example, in Figure 4.1(b), the background of groups showing mRNA ex-

pression data is turquoise, whereas the background of copy number data groups is blue,

and the background for mutation data is light violet.

In molecular biology, heatmaps are the standard way to visualize quantitative and

ordinal data. However, it is well known that hue or value are inferior to other encodings

with respect to communicating changes in the data. For both quantitative and ordinal

data, encodings in position are a better choice and for quantitative data, length encodings

are also superior [120]. Meyer et al. [126] showed that a mirroring effect in expression

data was much more apparent when it was visualized using line plots compared to when

using heat maps. Heatmaps or any other pixel-based visualization techniques are superior

in terms of space efficiency and therefore scalability. EnRoute, however, only requires
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the visualization to be scalable with respect to experiments, since the number of genes is

typically small, as it is limited by the number of nodes in the path. Therefore, we prefer

bar charts over heat maps for the representation of quantitative data as well as for ordinal

data.

In the bar charts used for quantitative data, each bar represents one value of a single

experiment, as shown in Figure 4.7(a). In order to make the borders of adjacent bars

apparent without having to waste space for drawing outlines, we color the bars using a

gradient from left to right. As shown in Figure 4.1(b), tooltips are used to show the

numerical values of the underlying data. In some cases, it might be desirable to see an

abstract and more compact visualization of a group of quantitative data. For this purpose,

we use one horizontally aligned bar that represents the mean value of a group together with

whiskers encoding the standard deviation, as shown in Figure 4.7(b). In a later iteration

of EnRoute, we replaced this representation with box plots [123] as shown in Figure

4.7(c), which provide more information about the underlying value distribution: The box

ranges from the first (Q1) to the third quartile (Q3) of the distribution, representing the

interquartile range (IQR). The white line within the box indicates the median value. The

left whisker shows the smallest value within Q1−1.5·IQR and the right whisker the largest

value within Q3+1.5·IQR. More extreme outliers below and above are shown as individual

dots. The exact values of median, quartiles etc. are accessible via tooltips. In contrast

to the detailed representations, where the width adapts to the number of experiments

in the group and available display space, the width of abstract group representations is

fixed. This constant width and the horizontal alignment of the abstract bars and box

plots, respectively, allows analysts to compare values of the same group across rows along

the path more easily. However, for tasks that require comparisons across multiple groups,

the detailed representation with vertical bars are preferable.

As copy number data commonly occurs either in ordinal or quantitative form, we use

an optimized encoding that can deal with both of them. Ordinal copy number data is often

categorized into high and low increase of gene copies, a normal copy number, deletion on

one allele, and deletion on both alleles. As shown in Figure 4.7(d), our encoding of this

data redundantly uses the length, color, and orientation of bars. For highly increased

copy numbers, we show long, dark red bars pointing upwards from a base line. For low

increases, we use shorter, light red bars. Similarly, deletions are represented by dark and

light blue bars pointing downwards. No bar is shown for normal copy numbers. The

same encoding can be used for quantitative copy number data. The higher the increase in

copies, the longer and darker the red bar is. The same concept applies to deletions. Just

like for general quantitative data, we also employ an abstract representation for groups

of copy number values. As shown in Figure 4.7(e), we use a horizontal histogram, which

makes use of the same color coding as the detailed copy number representation.

For binary categorical data, such as data on whether a gene is mutated or not, we

provide two alternative representations: In the first representation shown in Figure 4.7(f),

we use equally sized colored bars, where each bar corresponds to one sample value. For the
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mutation status example, we color samples that are mutated in red, while non-mutated

samples are shown in the background color. The same color-coding is employed in our

second representation, which displays each sample value as a cell in a matrix visualization,

as shown in Figure 4.7(g). This representation is significantly more space-efficient, which is

important for mutation data, since mutated genes are scarce in many datasets. However,

the matrix representation deviates from the convention of placing samples side-by-side,

which makes tracing of individual samples along the path more difficult. Similarly to the

abstract summary representation of copy number data, we use a histogram to summarize

mutation data, as illustrated in Figure 4.7(h).

The previously mentioned data previews that are shown on demand for branch nodes

use an encoding similar to the abstract data representations, as can be seen in Figure

4.6(b). For each group of mRNA data, one bar indicating the group’s mean value is

drawn. For copy number and mutation data, we show one stacked histogram per group.

The EnRoute visualization technique makes use of synchronized highlighting of corre-

sponding elements across all its components, but also within all components. The latter

case is especially useful in the experimental data display. By highlighting a set of experi-

ments in one group, we allow analysts to identify these experiments in other groups, even

for different data types. For example, in Figure 4.10(b), all cell lines with an increased

copy number are highlighted, which allows analysts to relate the increase in copy number

with mRNA expression. As evident in this figure, scattered selections make it difficult to

quantify the number of selected experiments. To alleviate this problem, we add tooltips to

the groups’ captions showing the total number of experiments and the number of currently

selected experiments of each group.

Figure 4.8: The data configuration view. It is used to specify the datasets and stratifications
of samples shown in the pathway and EnRoute view. Available datasets are displayed on the left,
stratifications at the center. The individual groups of a selected stratification are listed on the right.

4.2.3 Data Configuration View

Up to this point, we have assumed that decisions on which datasets and which groupings of

the datasets to show are already made. However, given a large set of datasets and a variety

of alternative groupings to choose from, this presumably easy task is, in fact, not trivial.

To support analysts in the task of selecting datasets and groupings and assigning them to

the pathway view and the EnRoute view, we provide a dedicated data configuration view.
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As illustrated in Figure 4.8, the view consists of three major parts for the selection of

datasets, groupings, and individual groups. On the far left, all datasets eligible for display

with the EnRoute visualization technique are listed. In the shown example, these are copy

number variation, mRNA expression, and mutation status datasets from CCLE. Analysts

may choose which dataset to map onto the pathway nodes using the radio buttons, and

which datasets to show in the EnRoute view using colored check boxes. All available

stratifications of samples are displayed in the list at the center of the configuration view.

A stratification determines into which groups the samples are partitioned. By selecting a

stratification, its grouping of samples is applied to all datasets displayed in the EnRoute

view. In Figure 4.8, the stratification ”Site Primary“ is selected, which specifies groups

according to the origin of the samples, such as ”bone“ or ”breast“. All groups of a selected

stratification are listed on the far right, and each group can be added or removed from

the EnRoute view by checking or unchecking them.

(a) (b)

Figure 4.9: Re-routing of Bubble Sets for path highlights. (a) As the pathway description does
not provide information about the routes used to connect the nodes, a collision of the path leading
from CASP9 to CASP3 with the unrelated node CASP7 occurs. (b) To avoid this, we redirect the
path around the node.

4.3 Implementation and Scalability

EnRoute is implemented as a view plugin for the Caleydo framework. Our current imple-

mentation builds upon the well-established KEGG and Wikipathways databases, which

provide information about pathways as image data in combination with an XML-based

descriptions of the graph. The description includes the topological information as well

as the position and the size of nodes. We use this information to render the various

augmentations described on top of the pathways.

In order to highlight selected paths, we make use of a free implementation of the Bubble

Sets technique1 that we integrated into the Caleydo framework. Since pathway databases

1http://github.com/JosuaKrause/Bubble-Sets

http://github.com/JosuaKrause/Bubble-Sets
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such as KEGG do not provide information about how edges are routed in the images,

directly connecting nodes in a path using straight edges can lead to overlaps between the

Bubbe Sets overlay and nodes that are not part of the path. In Figure 4.9(a), for example,

the edge highlight between node CASP9 and CASP3 collides with the representation of

node CASP7, which is not a member of the selected path. In such cases, we route edges

around nodes to avoid overlaps. Figure 4.9(b) shows the Bubble Set with a refined route

from CASP9 to CASP3.

The Bubble Sets algorithm renders the overlays semi-transparent on the top of an exist-

ing base representation. However, if the base representation uses color-coding, overlaying

colored Bubble Sets can lead to a wrong interpretation of the encoded information, as the

colors of the Bubble Sets interfere with the color of the augmented content. Additionally,

blending decreases the legibility of the original content. To avoid this problem, we cut the

area of nodes out of the Bubble Sets.

EnRoute scales to hundreds of experiments covering extensive TCGA and CCLE

datasets. For example, Figure 4.10 shows public mRNA and copy number datasets that

contain data values for about 350 samples and ∼20,000 genes. In theory, a width of

one pixel is enough to encode one sample. Thus, the maximum number of displayable

experiments is very much dependent on display resolution. However, larger amounts of

experiments can be coped with by showing summary representations or selecting only

those groups of data for display that are in the current focus of the analysis. If the length

of the path exceeds the available screen space, we use scroll-bars to navigate to the off-

screen parts. We found this to be reasonable due to the linear nature of the exploration

process along the path.

4.4 Case Studies

We developed the EnRoute visualization technique in close collaboration with an expert

from the Medical University of Graz. To evaluate the utility of the EnRoute visualization

technique, we conducted two case studies using different datasets together with this expert.

The first dataset is taken from the Broad-Novartis Cancer Cell Line Encyclopedia, which

contains the genetic and pharmacologic characterization of a large panel of human cancer

cell lines. The second is a gene expression dataset from a model of hepatocellular carcinoma

collected at the Medical University of Graz.

4.4.1 Apoptosis Regulation in Cancer Cell Lines

The first case study investigates the difference in regulation of the apoptosis pathway in

different human tumor cell lines from various organs. Apoptosis is the programmed death

of a cell due to internal damage or as a consequence of external stimuli and involves a

signaling cascade, which is not mediated by phosphorylation, but by targeted degradation

of proteins through enzymes called caspases. To initiate apoptosis in a cell, a ligand called
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(a)

(b)

Figure 4.10: Analysis of CCLE experimental data in context of apoptosis. (a) Different paths
between the nodes TRAIL and DEF40 are highlighted in the Apoptosis pathway map. The orange
Bubble Set shows the chosen path. (b) The selected path is shown in context of associated mRNA
expression, copy number, and mutation status data from the CCLE dataset with about 350 samples
each. As indicated by the arrows, highlighting all samples with an increased copy number of TN-
FSF10 reveals the correlation with increased expression levels in the ovary cell lines. Notice that,
while the labels shown in the EnRoute view are not identical to the labels in the pathway view, the
labels are homologous and deviate, since pathway databases use one of many aliases for genes or
proteins.

TRAIL or TNFa binds to receptors on the outer cell surface. This leads to activation

of receptor associated death domain containing proteins, which activate the first of a

cascade of caspases, which, in turn, eventually leads to the cleavage of proteins in the cell

subsequently triggering apoptosis. During apoptosis the cell shrinks in volume, exhibits

nuclear fragmentation, chromosomal DNA fragmentation, and release of Cytochrome c

from the mitochondria, which eventually leads to cell death.

As first step of the analysis, the Apoptosis pathway of the KEGG database is loaded

into the pathway view. The researcher selects TRAIL as the starting point and DEF40 as



62 Chapter 4. Visualizing Attributes in Graphs

the endpoint of the signaling cascade to be investigated. As shown in Figure 4.10(a), the

system automatically highlights all possible paths from TRAIL to DEF40 and allows to

switch between these alternative paths. The selected path is extracted and displayed in a

linear layout in the EnRoute view, which shows detailed CCLE mRNA expression, copy

number variation, and mutation status data for the genes that map to the nodes of the

path, as can be seen in Figure 4.10(b). In this example, the grouping of the experimental

data reflects the source organ of origin of the cell lines. The analyst can now easily identify

differences in the copy number variation, gene expression, and mutation status for these

groups and relate them immediately to the stages of the linearized path, which would

not be possible using other techniques. As indicated by the upward pointing bars for the

copy number data, there is a clear amplification of TNFSF10 (an alias for TRAIL) for

cell lines originating from ovary, lung, or breast tissue. By selecting all samples with an

increased copy number of TNFSF10 in the histogram, the system also highlights these

cell lines in the mRNA expression plots, as indicated by the arrows in Figure 4.10(b). The

analyst can now confirm that ovary cell lines with a higher copy number of this gene also

show a higher expression of TNFSF10 in the mRNA expression plots. Based on this data,

one could interpret that these cell lines should be prone to apoptosis, as they have high

amounts of the cytokine triggering the cell death. However, given the nature of these cell

lines, which are derived from human tumors and are by definition resistant to apoptosis,

this conclusion would be misleading. An explanation for this seemingly strange behavior

can be found by looking at the copy numbers of the genes TNFRSF10A to TNFRSF10D,

which are receptors for TNFSF10 cytokine, further downstream in the path. Here, it

quickly becomes evident that these genes exhibit a frequent loss of copies, which is easy to

see when looking at the many blue bars pointing downwards for these genes. This explains

how these cells can still form a tumor, as the loss of the receptor makes the cells immune

to the stimulus by the TNFSF10 cytokine, thus preventing apoptosis initiation.

In summary, EnRoute enabled the analyst to study copy number variation, gene ex-

pression, and mutation status of a large number of samples in parallel in a clearly visualized

and linearized sub-path of the complex network initiating apoptosis. The researcher stated

that the linearization of the signaling cascade and the clear association of the other data

entities to the individual steps of this cascade are very intuitive and greatly facilitated

the interpretation of the data and the deduction of a biological interpretation from the

dataset.

4.4.2 HCC Xenograft Models

The second use case demonstrates the ability of the EnRoute path extraction feature to

aid in a common problem when interpreting pathway maps. In biological reaction systems,

enzymatic reactions are often carried out not by a single gene or protein, but by a family of

proteins encoded by several genes. Additionally, enzymatic reactions are often not specific

to a single protein family, but can be substituted by other enzymes, which, however,
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(a)

(b)

Figure 4.11: Resolving multi-mappings in the KEGG pathway map Retinol Metabolism. (a)
A path that contains a complex node with many multi-mappings is selected. (b) This path is
shown in the EnRoute view, together with gene expression data for normal liver (NNL), cirrhosis
(Cirr), hepatocellular carcinoma (HCC), and three cell line models, Hep3B, HUH7, and SK-Hep
in the conditions Hep3B tissue culture (H3T), Hep3B subcutaneous graft (H3S), Hep3B orthotopic
graft (H3O), HUH7 tissue culture (H7T), HUH7 subcutaneous graft (H7S), SK-Hep tissue culture
(SKT), and SK-Hep subcutaneous graft (SKS). CYP2C18 (yellow) is highly expressed in the Hep3B
model and CYP1A1 (orange) is upregulated in HUH7.
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often work with different efficiency. This biological diversity leads to functional nodes in

pathways that contain a multitude of genes with historically designated gene names often

not indicative of the real function of these genes. It is extremely difficult for the researcher

to keep in mind which genes are behind a single node of a pathway and thus understand

the mapped biological data. Cross-referencing of expression levels to genes and functional

nodes can thus only be achieved by resolving the multi-mapping in a node to gene names,

which can then be mapped to the individual gene expression levels. In EnRoute, the

researcher can select nodes upstream and downstream of the enzymatic reaction, which

is then resolved in a linearized representation of all genes involved. An example is the

conversion of all-trans-Retinoate to all-trans-18-Hydroxy retinoic acid, which is a reaction

contained in the Retinol (Vitamin A) metabolism pathway shown in Figure 4.11(a). The

single node that represents this reaction contains 16 different proteins or genes that are

involved. As depicted in Figure 4.11(b), EnRoute resolves this node into a convenient

map of genes, thus making it possible to map the gene expression of each individual gene

in all experimental conditions of this experiment. The dataset mapped onto the Retinol

pathway was generated by gene expression profiling of normal and cirrhotic human liver,

hepatocellular carcinoma, and grafts of three human tumor cell lines (Hep3B, HUH7,

and SK-Hep) into immunodeficient mice. Expression was measured in liver samples from

patients and in samples from tumor cells grown in culture (TC), as subcutaneous grafts

(SC), or as orthotopic grafts (Ortho) in the liver of experimental animals. The task was to

find out how well the cell line models correlate to the human disease, with special focus on

drug metabolism and oxidative stress. The response of tumors to anticancer treatments

is closely linked to the activity of cytochrome p450 enzymes, which metabolize drugs and

mediate oxidative stress. When studying the aforementioned conversion of retinoate to

retinoic acid by cytochrome p450 enzymes, it can now be seen that the node CYP2A6

actually contains members of the whole CYP2 family of genes and that the expression of

these genes is uniform in normal liver and cirrhosis, but very variable in HCC, dividing

these cases into a low expressing and a high expressing group. It is immediately visible

that the xenograft models are only representative of the low CYP2 expressing group of

HCCs. Decomposition of the complex nodes allows the identification and investigation of

the individual expression patterns of genes contained in the complex node. It becomes

obvious that the expression of CYP2C18 (highlighted in yellow), contained in the node

labeled CYP2A6, is higher in the Hep3B model than in the other cell lines.

Additionally, it can be detected that CYP1A1 is highly expressed in HUH7 tissue cul-

ture cells. All this information was not visible to the researcher using conventional on-node

mapping approaches and was successfully visualized using EnRoute. Node decomposition

is an integral feature of the EnRoute path extraction and thus makes the association of

many mapped nodes and their corresponding experimental data readily available to the

researcher.
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4.5 Summary

In this chapter, we introduced EnRoute, a visualization technique for the analysis of large

amounts of heterogeneous experimental data in the context of pathways. While we tackle

several domain-specific issues with EnRoute, we also address the generic problem of the

joint analysis of graph topology and heterogeneous node attributes in a scalable way. The

key concept behind this is sub-setting. In particular, we allow users to select a path in the

graph for which detailed attributes shall be shown. We exploit the sequential nature of

paths and display it top-down, which enables us to conveniently visualize large amounts

of attributes in a tabular display right next to the path. The practical applicability of this

approach is confirmed in case studies from Molecular Biology, where analysts were able to

detect correlations in mRNA and copy number data along a path and to resolve data as-

sociations in nodes with excessive multi-mappings. In summary, we conclude that flexible

sub-setting to paths represents an effective and scalable way to investigate attributes in a

graph.

Up to now, we considered the analysis of only single pathway maps in EnRoute. Al-

though EnRoute scales well with the number of node attributes, it requires the size of the

graph to be rather small in order to enable users to select paths in the node-link representa-

tion. Thus, to make the EnRoute concept work with larger graphs, intelligent sub-setting

is required. In the next Chapter, we introduce a focus+context technique that enables

the analysis of a larger biological network by simultaneously considering multiple path-

way maps. Combining of this technique with EnRoute allows for a scalable cross-pathway

analysis of attributes.
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The visualization of large graphs is challenging. A key aspect for making the visual analysis

of such graphs possible is finding ways to reduce the data that needs to be displayed to

a manageable amount. The partitioning of biological networks into pathways can be

regarded as meaningful way of data reduction, as, in many cases, only information about

a single biological process, which is captured by a pathway, is required. However, as

discussed in Section 2.3.2, the consideration of only single pathways is not enough in drug

discovery, as drugs can potentially affect multiple biological processes. Therefore, a more

holistic analysis of the biological network that involves multiple pathways is required.

In this chapter, we introduce Entourage, a bottom-up focus+context technique for the

visual analysis of large partitioned graphs, in particular, biological networks. Entourage

exploits the existing partitioning of biological networks into pathways and combines it with

intelligent sub-setting: As shown in Figure 5.1, it displays one pathway that is in focus

of the analysis at full scale, while only showing contextually relevant subsets in the form

of paths for other pathways. The technique allows users quickly change what is displayed

in focus and context. To indicate relationships between pathways, stubs are attached

to shared nodes, which can be expanded to full links connecting the nodes on demand.

Entourage was developed to support inter-pathway analysis in drug discovery, which also

requires the investigation of experimental data in context of pathways. Therefore, we

combined Entourage with the EnRoute visualization technique introduced in the previous

67
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chapter. This combination overcomes the limitation of EnRoute to single pathways and

allows for inter-pathway attribute visualization.

In the remainder of this chapter, we analyze the requirements of the visual analysis

of multiple pathways for drug discovery and follow up by describing the Entourage visu-

alization technique and also its combination with EnRoute. Finally, we demonstrate the

use of Entourage and the combination with EnRoute in case studies from drug discovery.

Figure 5.1: Entourage showing the Glioma pathway in detail and contextual information of
multiple related pathways.

5.1 Requirement Analysis

All of the domain goals described in Section 2.3.2 have pathway analysis as pivotal part of

them. Together with our collaborators, we elicited the analysis tasks to be carried out and

derived requirements for the Entourage visualization technique accordingly. We classify

the detailed requirements into two categories, the Pathway Interconnectivity requirements

and the Pathway-Experimental Data Linking requirements.

The Pathway Interconnectivity requirements deal with finding pathways related to each

other and analyzing the relationships between pathways. The requirements are:

B I: Show related pathways. While an initial pathway is typically known for the stated

goals, it is important to easily find related pathways, as cross-talk and other interdepen-

dencies are more likely between highly related pathways. We consider two pathways as

related when they either share one or multiple genes (nodes), have an edge crossing from

one pathway to the other, or if one is contained or referenced in the other.

B II: Show high-level relationships of pathways. When related pathways are found,

it is also important to see how they are related. For example, it is interesting to see

whether the same sub-process is contained in both pathways, or whether one pathway is
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contained or referenced within the other pathway.

B III: Identify a gene’s role in multiple pathways. Identifying the role of a gene

in multiple pathways is important to determine the different cellular processes that a

gene is involved in. This represents valuable knowledge, for example, when assessing the

suitability of a gene as a drug target.

B IV: Find path intersections. A change in gene activity, e.g., caused through a

mutation or modulation by a drug, can influence the activity of subsequent genes in a

path. Consequently, it is important to not only look for the role of the originally altered

gene, but also to explore the role of genes that might be influenced by it. This can be

done by exploring the relationships of the nodes downstream of the original gene, i.e., by

finding pathways that intersect the path of a changed gene.

The Pathway-Experimental Data Linking requirements are equally important to

achieve the goals stated above. Only experimental data can give insight into the effects a

change, either naturally occurring or introduced by drug treatment, has on the whole

cell or organism. In the previous chapter, we introduced the EnRoute visualization

technique, which addresses several requirements involved in linking pathways and

genomic experimental data. These requirements also hold for the analysis in drug

discovery. However, with the addition of non-genomic experimental data, the following

requirement is not yet covered by EnRoute:

B V: Show relationships between cell line responses to drug treatment and

genomic data. Our collaborators would like to find out why certain cell lines react

differently to the same compound treatment. These differences typically have genetic

causes. Joint analysis of all the aforementioned data types can reveal the reasons for such

differential behavior. This knowledge could in turn be used for targeted therapy, i.e., the

identification of patients that are most likely to respond to a specific drug treatment.

5.2 The Entourage Visualization Technique

The main goal of Entourage is to enable the Pathway Interconnectivity tasks, which re-

quires a joint analysis of multiple pathways. However, current pathway visualization tech-

niques (see Chapter 3) lack the flexibility required for exploring interdependencies across

pathway boundaries. The main problem one must address is scale. Current approaches

either cannot show individual nodes sufficiently large or cannot show relationships between

multiple pathways. Here, we introduce the concept of contextual subsets to remedy this

issue.

Figure 5.2 illustrates the difference between a traditional multiple pathway analysis and

the contextual subsets method. The traditional approach depicted in Figure 5.2(a) shows

all nodes for all pathways. The pathways in this example share several nodes. We refer

to such shared nodes as portals, as they allow us to jump from one pathway to another.

Figure 5.2(b) illustrates the same set of pathways using the contextual subsets technique.

Instead of showing all pathways in detail, we distinguish between focus pathways, shown
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at full scale (PW 1 in Figure 5.2(b)), and context pathways, which are smaller and show

only a contextually relevant subset of their graph (PW 2 and 3 in Figure 5.2(b)). What is

contextually relevant is driven by a user-selected focus node (A, purple in Figure 5.2(b)).

The context pathways only show limited subsets of their network that also contain node

A. In the example shown in Figure 5.2(b), the most important path is shown for each

occurrence of the focus node, while other branches are only indicated, as is evident in

Pathway 2.

This simple, yet effective principle makes use of the observation that analysts want

to see all the details of one pathway map (their focus pathway), but do not need to see

all the intricate details of other potentially involved processes (the context pathways) to

judge interdependencies to their focus pathway. Entourage utilizes the observation that

the focus of attention shifts serially to optimize the visible content to what is currently

relevant to the analyst. The challenge we have to address is the continuous change of

attention, the adaption of the analysis focus in the process of an exploration. Entourage

employs a series of visual encodings and interaction techniques to make these changes as

convenient and transparent as possible.

(a) Traditional Multi-Pathway Visualization

(b) Pathways as Contextual Subsets

Figure 5.2: Comparison of a traditional multi-pathway approach and contextual subsets. (a)
All pathways are shown at the same scale competing for display space. (b) The contextual subset
technique showing one focus pathway (PW 1) and two context pathways (PW 2, PW 3). The
context pathways only show paths that contain the focus node A.
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Portals with StubsFocus Pathway
Window Stub

Focus Node

Context 
Pathways
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Figure 5.3: The major components of Entourage. The focus pathway shows all details while
the context pathways only show what is relevant in the context of the focus node. The insets
at the top show how we indicate connections between pathways.

5.2.1 Overview

Figure 5.3 shows Entourage’s main components. The focus pathway takes up the majority

of the space, while the context pathways are shown at the side. In this example, E2F was

selected as the focus node, and the context pathways show their paths related to this

node. Details on how context paths are selected are explained in Section 5.2.2, as are our

methods to find relevant pathways.

Changes in focus are driven by user selections. However, choosing a meaningful focus

is not always easy. Sometimes analysts will need to understand high-level relationships of

pathways before they can set a sensible focus. Visualization is ideally suited to convey such

high-level relationships. Relationships between pathways are largely driven by portals, as

they connect two pathways. Showing portals and where they link to is therefore the most

important aspect of showing high-level relationships between pathways. Figure 5.3 shows

our approach for visualizing portals. We use a combination of stubs, which are shown for

all portals at the same time, and visual links, i.e., visible edges, which are shown on request.

These visual encodings efficiently convey high-level relationships between pathways and

enable an analyst to set good focus points. Our visual encodings for showing relationships

are explained in Section 5.2.3.

Finally, we need to address how to efficiently manage display space, as multiple focus
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and context elements compete for the limited screen real estate. We use an intelligent ar-

rangement of pathways as well as multiple levels of detail for context pathways to optimize

the display space, which are described in Section 5.2.4.

5.2.2 Determining Context Paths and Pathways

As discussed before, contextual subsets are based on showing contextual information for

a user-chosen focus, i.e., a focus node of a pathway. This can help to quickly identify

the role of the focus node in multiple pathways (B III). Which context information is

eventually displayed depends on two factors: which paths in a pathway contain a focus

node and which pathways are considered in the first place. Although potentially any

subset of a pathway could be shown, we opted for paths due to their linear structure,

which is favorable for layouting, and due to the high relevance of cascades of signals or

reactions in pathways.

Determining Context Paths Context paths are selected by searching the graph for

occurrences of the focus node or for immediately related nodes. Related nodes are, for

example, nodes belonging to the same gene family. As it is common in nature that several

distinct genes can fulfill the same role, albeit often with varying efficiency, pathway maps

use both, a single label for the whole family or individual label for each of the family

members. We consider these multi-mappings in our choices of relevant paths. This is the

reason why occasionally differently labeled nodes are connected in Entourage.

Paths can either be unambiguous, as is the case in Pathway 3 of Figure 5.2(b), or con-

tain branches, as in Pathway 2. If a path contains branches, we automatically determine

the branch that is likely to be most interesting by calculating the most variable branch in

terms of the underlying experimental data. We do so by calculating the standard deviation

across all experiments for each of the mapped datasets and for every possible branch, and

ultimately choose the branch that exhibits the highest deviation. The visual representa-

tion of context paths is essentially a more compact version of the path representation in

EnRoute (see Section 4.2.2): We preserve as much of the topology in the vicinity of a path

as possible. Incoming and outgoing branches are collapsed into abstract nodes to save

space, but can be extended to full-size nodes and switched in to replace the main branch

on demand. We decided against more complex attempts of linearizing larger portions of

the network and including branches and cycles [126], to make the paths easy to understand

for the analyst. Furthermore, we limit the length of automatically determined paths to

what fits conveniently in the available space constraints, but give analysts the ability to

extend the paths manually.

Determining Pathways Entourage shows pathway maps and context paths, respec-

tively, only for pathways that were manually selected and added to the workspace. In

order to quickly find relevant pathways, Entourage can suggest relevant pathways that are
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related to a given pathway or contain a selected focus node (B I). Figure 5.1 shows a list of

pathways on the left side. This list shows all pathways that contain the currently selected

focus node, or a node of the same gene family. The pathways in the list are ranked by their

similarity to the current focus pathway. We calculate a similarity score for each pathway

by computing the number of nodes shared with the focus pathway and normalize it by its

size. The score is shown as a bar next to the pathway name. To quickly determine which

pathways have already been added to the workspace, we mark loaded pathways using a

dark gray background. In some situations analysts are interested in pathways that are

generally similar to a selected pathway, without choosing a focus node. We use a similar

algorithm to calculate scores of pathways in this scenario.

An alternative to the automatic, similarity-based list is an alphabetic list, which can be

searched using keywords or regular expressions. This is especially helpful to find an entry

point of an analysis. Finally, since pathway maps often embed related pathways, we enable

the adding of such pathways to the workspace by clicking on embedded pathway nodes.

The Melanoma focus pathway shown in Figure 5.3, for example, contains six embedded

pathways indicating that these pathways play an important role in the context of the focus

pathway. One of them (Cell cycle) is also a current context pathway, which is indicated

by its purple border.

5.2.3 Visualizing Connections

To identify high-level relationships (B II) and find path intersections (B IV), we need

to visually communicate which portal nodes connect two pathways. This requires visual

encodings to (a) convey that a node (either in a focus or in a context pathway) is a portal

and to (b) tell the analyst to which other portals it can be connected to.

Since related pathways often contain a substantial quantity of portal nodes, obvious

approaches, such as color-coding or drawing visible edges, may easily fail. Even though

objective (a) could be addressed by using a color-based highlighting of portal nodes, objec-

tive (b) would potentially require assigning many different colors to a single node. Visual

links (i.e., visible edges), on the other hand, can connect a node to many others, but can

result in significant clutter, given the many nodes and the dense layout of pathway maps,

even if they were intelligently routed [153]. Therefore, we have chosen to primarily use

stubs to encode relationships between nodes. Stubs were shown to be effective for indi-

cating a connection without cluttering the display [35]. Figure 5.3 illustrates our stubs

implementation. The two insets at the top show them in detail. For each pair of related

portal nodes, we render a pair of stubs pointing at each other. The direction of a stub thus

indicates the location of its target. We attach the stubs to the side of the node closest to

the target, and quickly let them fade while they are converging to a point. We also show

portals only with respect to the “active” pathway, i.e., stubs only point to and from the

pathway on which the mouse pointer rests. This reduces the set of portals, minimizing

clutter and ambiguities, while showing all relevant connections.
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As context pathways only show a subset of nodes, potential portals might not be

displayed. Nevertheless, we also want to communicate the presence of hidden portals. To

achieve this, we show that a pathway has a relationship to the active pathway through

one or multiple hidden portals by placing a stub on its window’s title bar, as shown in

Figure 5.3 (labeled window stub).

As is evident from the figures in this chapter, stubs are excellent at indicating con-

nections between many portal nodes without introducing a high amount of visual clutter.

However, they can be ambiguous at times, especially when the angle between two stubs

attached to the same node is small. To resolve potential ambiguities, we show the exact

connections out of a portal node by using visual links when the mouse hovers over the

portal (labeled portal links in Figure 5.3).

Notice that while relationships between portals are generally indicated by gray stubs,

the recurring focus nodes in the different pathways are emphasized by using purple stubs

or links. This combination of gray and purple stubs and on-demand visual links results in a

clean visualization showing cross-connections between pathways in a minimally obtrusive

way. These visual encodings also work well for comparing two focus pathways. What

remains to be discussed is how we can make good use of the limited screen space.

5.2.4 View Management

Using contextual subsets significantly reduces the number of elements that need to be

displayed, yet preserves the relevant context. Nevertheless it is prudent to make good use

of the available screen space. Here we describe how we optimize the arrangement, size,

and amount of data shown in the various pathways under analysis.

When optimizing a layout for pathway analysis, one is confronted with a range of

partially conflicting goals. The first and most obvious goal is to maximize the amount

of relevant content shown. This often conflicts with the goal to ensure legibility of all

elements. Following the contextual subsets concept, we always use at least one focus

pathway, for which we comply with the legibility goal, thus limiting the remaining space

for contextual information. To deal with the varying amounts of space, we promote and

demote pathways to various levels of detail and optimize the pathway layout.

Levels of Detail Our approach to efficiently layout pathways requires us to change

their size. We achieve this by introducing three levels of detail for context pathways, high,

medium, and low, which are illustrated in Figure 5.4. The thumbnail used in the highest

level is typically large enough to convey a sense of the overall topology of the pathway. In

order to aid orientation, we highlight the route of the context path(s) in the thumbnail,

as shown in the inset of Figure 5.4. However, we consider this topological information less

relevant than the actual context, which is why we omit the thumbnail, if space is limited.

In situations where there is not enough space to show any context paths, we resort to

showing only the pathway titles. While this is not ideal, it is better than removing the
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Medium

High Low
Figure 5.4: The three different levels of detail of a context pathway. The highest level shows
context paths plus a thumbnail of the overall pathway. Notice that the thumbnail also highlights
the context paths. The medium level only shows the context paths, and the lowest level reduces the
pathway to its title.

pathway, since it can be conveniently brought back into focus or another level of detail, and

it still indicates whether there is context information to be shown. Promotion or demotion

of pathways between these levels of detail and the focus can be triggered manually, but is

also done automatically. Automatic actions can be disabled for individual pathways. This

also makes a high-level comparison of two focus-pathways possible.

Layout Optimization We decided to use a rigid column-based layout to arrange path-

ways as opposed to a free layout, since matrix-like layouts are more space efficient when it

comes to layouting rectangular shaped objects like pathway maps. Also, a column-based

layout is well suited to reflect the history of the analysis process by sorting the pathways

by age. Entourage can accommodate as many columns as are reasonable for a given screen

resolution, but always enforces at least one context column as well as a minimum width

for each column.

Our initial implementation followed the goals outlined above, always aiming to max-

imize the visible context information while ensuring legibility. Early feedback, however,

triggered the realization that another factor is essential: layout stability. Even though we
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were using animated transitions, which have been shown to be advantageous for tracing

changes [76], we observed that our collaborators were irritated by larger changes in the

pathway layout. As a consequence, we added the goal of minimizing layout changes. We

also found that changing the size of a particular pathway is much less irritating than

changing its position, either within or between columns. Consequently, our layout algo-

rithm now prohibits position changes, unless the focus pathway is exchanged, but permits

resizing and switching between levels of detail of context pathways.

Within a context column, we maximize the vertical space between individual pathway

windows. While this might not be as aesthetically pleasing as stacking them on top of

each other, this strategy serves a purpose: It helps to avoid ambiguities of stubs pointing

to the pathways by increasing the angle between stubs.

To fulfill our goal of maximizing the amount of displayed content we promote and

demote pathways intelligently. Automatic demotion of pathways is triggered when the

horizontal or vertical display space is insufficient for displaying all elements at a reasonable

size, while automatic promotion is triggered as space becomes available. An important

decision in this regard is which pathways to demote or promote. This primarily depends

on the causes of the space change. For example, if the vertical space is exceeded by the

pathways in a context column, only pathways within that column have to be considered for

demotion. In contrast, if there is too little horizontal space, the demotion of any pathway

can potentially free up space.

To ultimately decide which of the pathways to demote or promote, we consider three

properties with different priorities. The highest priority is given to pathways that contain

a user-selected path (see Section 5.3). The second-highest priority is given to pathways

that currently contain context paths. Finally, pathway “age” is considered as the lowest

priority, where “young” pathways, i.e., those that were recently in focus, are given priority.

We calculate a ranking of the candidate pathways based on these attributes and eventually

demote the pathway with the lowest priority.

Overall, our layout considerations guarantee a stable and predictable management of

many pathways. Together with showing the vicinity of a selected focus node in multiple

context pathways, the possibility to bring any pathway into focus on demand helps to

quickly determine the role of a node in multiple pathways (B III).

The techniques and encodings discussed in this section allow analysts to take a detailed

look at one pathway, while always keeping an eye open for cross-connections to other

pathways. By showing only the information relevant to the current analysis, the important

parts of the data can be shown at full scale. We thus provide an analyst with the necessary

tools to address the Pathway Interconnectivity requirements.

5.3 Combining Entourage with EnRoute

So far, we have focused on how to visualize relationships between pathways considering

only the pathways and the underlying network. To address the Pathway-Experimental
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Data Linking requirements, we combine Entourage with the EnRoute visualization tech-

nique, which was introduced in the previous chapter.

For easy identification of subsets of pathways that warrant detailed investigation, we

employ the minimalistic on-node mapping introduced for EnRoute: On demand, we color

the nodes according the average value of samples in a selected dataset and add a bar to

indicate the variance in these samples. We also add exclamation marks to indicate high

variance in samples of other datasets. The color of these exclamation marks encodes the

associated dataset. As shown in Figure 5.5, we employ this on-node mapping in pathway

maps and context paths.

To inspect experimental data in detail, we employ and also extend the path extrac-

tion strategy of EnRoute. Paths are still selected by selecting start and end nodes and

iteratively extending a path. However, while doing so, portal nodes can be used to cross

pathway borders, as shown in Figure 5.1. This allows for path-based inter-pathway anal-

ysis of attributes. To highlight a path within a pathway, we make use of Bubble Sets, but

chose not to extend them across pathways. Instead, we use the visual links we also use

for portals, as the connecting portal nodes are in fact the same node.

As illustrated in Figure 5.1, the extracted path is displayed in a separate EnRoute

view on the far right and also uses labels and horizontal lines to indicate pathway border

crossings. By default, only the path is shown to grant space for the analysis of pathway

relationships. However, this view can be expanded to show associated experimental data,

as demonstrated in Figure 5.10. Depending on the current focus of the analysis, the

amount of display space granted to the EnRoute view can be varied, ranging from none

to full-screen.

Finally, to address the requirement to show relationships between cell line responses

to drug treatment and genomic data (B V), we extended EnRoute to show contextual

data that is not associated with genes. Such data is shown above the gene-associated

data and uses the same ordering of samples. Figure 5.6 shows the compound sensitivity

of ovary CCLE cancer cell lines to the drug AEW541 on top of the expression (on the

left) and copy number values (on the right) associated with the RAF gene family (BRAF,

ARAF, RAF1 ). Here, low bars indicate high sensitivity, i.e., low IC50 values. Note

that the samples are sorted with respect to their sensitivity to the compound. This is a

simple yet effective way to facilitate the identification of relationships between genomic

and pharmacologic data. Moreover, since for the small set of compounds, the targeted

processes and genes are known, it is easy to identify paths where interesting relationships

between genomic and pharmacological data occur.

5.4 Implementation and Scalability

Entourage is implemented as a view plugin for the Caleydo framework and currently

works with pathway maps from KEGG and Wikipathways databases. Although we use

the layouts provided by these databases in our current implementation, our technique



78 Chapter 5. Connecting Graph Partitions

(a) (b)

Figure 5.5: On-node data mapping in (a) pathway maps and (b) context paths. The node color
in this example encodes the average copy number of mapped samples, while the red bars indicate
the standard deviation. The exclamation marks indicate that the mapped experimental data varies
considerably. The color of the exclamation marks and the standard deviation bars encodes the
dataset in which the variation occurs. In this example, blue marks signal variation in mutation
data.

Figure 5.6: Juxtaposition of pharmacological (on top) and genomic data. The pharmacological
data captures the sensitivity of cell lines to drugs. The genomic data shown is mRNA expression
(green, on the left) and copy number variation data (red, on the right). Orange bars are highlighted.
Note that the samples are sorted by the magnitude of their responses to the drug AEW541.

is not limited to those and can equally be applied to automatically generated pathway

layouts.

Depending on the size of the current focus pathway, Entourage can display up to about

ten pathways simultaneously, where one pathway is the focus pathway, while the other

pathways are at least in “medium” level of detail on a full-HD display (see Figure 5.7).

On larger, higher resolution screens, this number increases. The space for pathways can

be increased by hiding currently unused views, such as the pathway list and the EnRoute

view shown in Figure 5.1. Feedback from our collaborators indicates that this number of
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simultaneously explorable pathways is sufficient in all but the rarest cases and superior to

other systems. We believe that our visual encodings are also suitable to point at inter-

esting relationships outside an analyst’s primary field of view, making it suitable for the

increasingly large displays that are becoming commonplace. On conventional displays, we

typically limit the number of focus pathways to one in order to guarantee readability. This

number, however, can be temporarily increased if detail about the structural relationship

of pathways should be shown.

Figure 5.7: Entourage with one focus pathway and ten context pathways with a detail level of at
least “medium”. The pathway list and the EnRoute view are hidden to grant more space for the
display of pathways.

5.5 Case Studies

Entourage was developed in a user-centered design process including weekly meetings be-

tween the visualization developers and multiple domain experts. As a result of these

meetings, we have established previously discussed domain goals and requirements. We

deployed various iterations of Entourage and our primary contact, a chemical biologist,

used Entourage over a period of four weeks. During this period, we were in constant con-

tact with her and refined various aspects of the system. The case studies presented here

report on her observations. Prior to the deployment of Entourage, the team was using

conventional pathway tools and had to resolve any questions concerning pathway relation-

ships manually. For visualization of experimental data they mainly relied on tools like

TIBCO Spotfire1, whereas interactions between biomolecules were analyzed with network

1http://spotfire.tibco.com/

http://spotfire.tibco.com/
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visualization tools like Cytoscape [150] or the KEGG web interface. Hence, the combi-

nation of Entourage and EnRoute allowed them to integrate two analysis steps that were

previously carried out separately into one single task.

In the following, we describe case studies that demonstrate Entourage for judging

drug side-effects, identifying potential for drug repositioning, and understanding drugs’

mechanisms of action. The case studies either describe a novel observation or clearly

demonstrate how a known effect can be rationalized with Entourage.

Figure 5.8: Imatinib is a drug that is used in cancer treatment and inhibits c-Kit. However,
Imatinib has side effects such as loss of skin color and bleeding problems. Setting c-Kit as the focus
node reveals that it is involved in only four pathways, but two of them, the Melanogenesis and the
Hematopoietic cell lineage pathway can be related to the side-effects observed.

5.5.1 Rationalizing Imatinib-Associated Side-Effects

Kinases are enzymes that transfer phosphate groups to substrates, thereby communicating

signals in the cell. Imatinib is a drug acting as a kinase inhibitor that was developed to

specifically target the BCR-Abl kinase, a fusion protein that results from a chromosome

translocation. This protein is exclusively expressed in specific cancer cells, in particular in

Philadelphia chromosome-positive chronic myelogenous leukemia (CML) [4]. However, it

was later found that Imatinib is less specific than originally assumed and also targets other

protein kinases, such as c-Kit, PDGFRalpha, and PDGFRbeta. Hence, c-kit expressing

gastrointestinal tumors are now the primary indication for this drug.

Side effects that have been observed in Imatinib-treated patients are hypopigmentation,
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Figure 5.9: TNF-alpha (the focus node) was originally explored as a target for the Graft-Versus-
Host Disease (GVHD, top-right pathway). However, when tested in clinical trials, TNF-alpha
inhibiting compounds were not effective against GVHD, but could later be repositioned for the
treatment of Rheumatoid Arthritis (focus pathway). Entourage shows Rheumatoid Arthritis as
closely related to the GVHD pathway (see pathway list on the left). Entourage also reveals seemingly
contradictory roles of TNF-alpha. It is involved in cell death (Apoptosis) and also in cancer (i.e.,
uncontrolled cell growth) through the MAPK signaling pathway.

i.e., loss of skin color, and myelosuppression, i.e., reduced blood cell and platelet formation,

which can lead to frequent infections and severe bleeding problems [71]. Our collaborator

wanted to find out whether these side-effects of the drug can be rationalized using inter-

pathway analysis. She started by opening the Pathways in cancer map, since she knew

that it would contain all targets of Imatinib. From there, she queried for all pathways

in which the targets of Imatinib are involved. She found that only four other pathways

contain c-Kit, but that two of them seem related to the observed side-effects. The first

one is the Hematopoietic cell lineage pathway, which highlights the role of c-Kit in early

hematopoiesis, i.e., blood formation, whereas the second one is the Melanogenesis pathway,

which shows that c-Kit is involved in the development of melanocytes, which are the cells

that are responsible for skin pigmentation. Figure 5.8 highlights the role of c-Kit, the

focus node in the figure, in these pathways. Our collaborator stated that, by making use

of the visualization of pathway interconnectivity, she was able to find possible reasons for

the adverse effects caused by inhibiting c-Kit, which would not have been possible if the

pathway map showing the role of c-Kit in cancer had been studied in isolation.

5.5.2 Rationalizing Successful Drug Repositioning

Graft-versus-host disease (GVHD) is frequently observed after tissue or organ transplan-

tation and is caused by immune cells that originate from the donor and were transplanted
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with the tissue. These immune cells perceive tissue of the recipient as foreign and attack

it, thereby causing damage. The Graft-versus-host disease pathway identifies TNF-alpha,

a gene involved in inflammation, as an important player in the disease. Accordingly,

molecules counter-acting (inhibiting) the effect of TNF-alpha have been evaluated for

preventing GVHD in transplantation patients, with no success. However, the roles of

TNF-alpha in the organism are manifold, as our collaborator was able to demonstrate

using Entourage, when she chose TNF-alpha as her focus node, revealing all associated

pathways. She found that one of the highest scoring and therefore most similar pathway

to the Graft-versus-host disease map is the Rheumatoid arthritis pathway, shown as the

focus pathway in Figure 5.9. Indeed, as clinical safety for TNF-alpha inhibitors had been

proven in the initial trials for GVHD patients, the molecules were revisited and tested

for their efficacy in patients suffering from rheumatoid arthritis. In this case, anti-TNF

alpha therapy showed the desired clinical effect, and, today, TNF inhibitors are part of

the standard treatment of rheumatoid arthritis. The domain expert pointed out that En-

tourage also ranks the Apoptosis, MAPK signaling, and NF-kappa B signaling pathways,

which explain the controversial role of TNF-alpha in cancer. While the Apoptosis pathway

shows the process by which TNF-alpha leads to cell death, the other two pathways point

out how TNF-alpha contributes to cell survival. Accordingly, the benefit of TNF-alpha in-

hibitors in anti-cancer treatment remains an open question, and clinical trials are awaited

to further explore the potential use of these molecules in malignancies.

5.5.3 Relating Genomic Features to Compound Sensitivity

To explain different compound sensitivities of cell lines, our collaborator used the pre-

viously introduced CCLE dataset. This dataset contains data on the inhibitory effects

of 24 drugs against roughly 500 cell lines from different cancer tissues and genomic data.

Ideally, a drug completely inhibits the growth of these cell lines at minimal concentrations.

First, she wanted to investigate factors that sensitize cell lines to the drugs Lapatinib and

Erlotinib that inhibit members of the ErbB gene family and are used in cancer treatment.

The ErbB family is a family of epidermal growth factor receptors that are known to play

an important role in tumor growth. The drug Lapatinib is a dual inhibitor of EGFR and

ErbB2, while Erlotinib is a known inhibitor of only EGFR, all of which belong to the

aforementioned family. Due to its immediate relevance, the expert started by loading the

ErbB signaling pathway into Entourage. By searching for related pathways, she found sev-

eral cancer-specific pathway maps. The pathways Glioma and Non-small cell lung cancer

ranked among the top on the list (see Figure 5.10). She commented that this indicates that

the ErbB signaling pathway is a key player in these diseases. For the ErbB pathway map,

our collaboration partner was interested in the experimental data for the genes in the path

that leads from ErbB receptors to Myc, a gene known to regulate cell growth. She also

noticed that ErbB2 was highlighted with a red exclamation mark indicating high variance

in the copy number data. She thus selected the genes of this path for an in-depth analysis.
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Under-expressed

Over-expressed

Not sensitive

Figure 5.10: The ErbB signaling pathway (the focus pathway) is a target of the drugs Lapatinib
and Erlotinib, which are used for cancer treatment. As shown in the pathway list on the left, which
results from a query for similar pathways, the ErbB signaling pathway is related to many cancer
pathways. A signaling cascade from ErbB2 to Ras is selected. The integrated EnRoute view shows
copy number and mRNA expression data for breast cancer cell lines. The sensitivity of the different
cell lines to Lapatinib and Erlotinib is reported at the top. For the shown cell lines, increased copy
numbers of ErB2 (high red bars in the ErbB2 row) result in over-expression of this gene (high
blue bars). Furthermore, there is a strong relation between ErbB2 over-expression and sensitivity
to Lapatinib (high blue bars for gene over-expression in the ErbB2 row coincide with low bars in
the Lapatinib row). This means that Lapatinib is effective, if ErbB2 is highly expressed. There
are, however, two exceptions - the highlighted cell lines (yellow and orange), for which an under-
expression in Ras downstream in the pathway is observed, likely causing Lapatinib to be ineffective
in these cases. While this observation was made for breast cancer tissue, exploring the related
context pathways by setting the focus node to Ras reveals that the same signaling cascade (i.e.,
path) is also contained in the non-small cell lung cancer pathway. Thus, it would be interesting to
explore the transferability of the observed resistance pattern to this tissue type.

She then looked at this path’s gene expression data in the embedded EnRoute view and

combined it with sensitivities to Erlotinib and Lapatinib. For the analysis, cell lines were

grouped by their tissue of origin (e.g., breast, ovary, liver, etc.) and sorted by sensitiv-

ity to Lapatinib. Her first observation when looking at the experimental data was that

the two drugs displayed inhibitory activities across cell lines from many different tissues.

The cell lines from lung, breast and three other tissues were in general most responsive.

The set of cell lines that were responsive to Erlotinib and Lapatinib largely overlapped,

although Lapatinib showed a broader spectrum of activity than Erlotinib. She found a

strong co-occurrence between ErbB2 mRNA over-expression and sensitivity to Lapatinib

in lung and breast cancer cell lines, a trend that was less apparent or not observed at all

for other responsive cell lines.

She then chose to focus on cell lines from breast and also investigated copy number

variation for these cell lines. For most breast cancer cell lines that over-expressed ErbB2,
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high copy numbers of this gene were found, i.e., the increased expression could generally

be traced back to an increased copy number. Interestingly, only two breast cancer cell

lines that showed strong over-expression of ErbB2 did not respond to Lapatinib treatment.

The columns of these two cell lines are highlighted yellow and orange in Figure 5.10. She

then tried to find the cause for this effect and examined the expression of downstream

genes in the pathway. She found that for these two cell lines, the gene Ras was strongly

under-expressed (also shown in Figure 5.10).

It is straightforward to assume that this under-expression further down the path coun-

teracts the over-activation of the pathway by increased ErbB2 expression, explaining the

resistance to Lapatinib treatment that reduces the effects of ErbB2 expression. Our col-

laborator stated that this highlights the importance of being able to analyze genomic data

in a pathway context, because compound sensitivities can often only be explained by the

interplay of multiple genomic features.

Based on this observation, she started to investigate whether other cancer-related

pathways contain the same signaling cascade, i.e., path. She selected Ras as the focus

node of her analysis, which revealed several other pathways that contain the same ErbB

signaling cascade. Figure 5.10 shows an example where it is obvious due to the many

parallel stubs that the cascade is indeed identical. Our collaborator commented that

it would be interesting to investigate in the future whether a similar gene expression

pattern in these cancer types would also entail resistance to Lapatinib.

Overall, our collaboration partners were excited about the analytical capabili-

ties of Entourage and its combination with EnRoute. They mentioned that they

perceived a significant improvement over their previous tool-chain. While, for example,

the KEGG interface could be used to conduct an analysis similar to the one described in

the second case study, doing so would be very tedious, as KEGG provides no support for

analyzing relationships of pathways. They highly valued the ability to immediately see

all relevant related processes for a pathway and being able to compare them easily and

to see experimental data in the context of pathways.

5.6 Summary

In this chapter we introduced Entourage, a visual analysis technique for the exploration

of biological networks by connecting multiple pathways. From a visualization point of

view, Entourage addresses two main challenges: how to visualize multiple pathways in a

scalable way and how to indicate the potentially large amounts of relationships between

them. The former challenge is addressed by the use of contextual subsets: one pathway is

shown in full detail, but only contextually relevant paths are displayed for other pathways.

As the focus of the analysis changes over time, users may flexibly adapt what is displayed

in focus and context. To address the latter challenge, we use visual links that connect the

nodes of different pathways. To avoid clutter, we only show stubs by default, but they
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can be expanded to links on demand.

In addition to introducing Entourage, we also we also discussed how EnRoute can

complement Entourage in order to address scalability with respect to both graph size and

attributes: While multiple pathways and their relationships can be analyzed with En-

tourage, EnRoute allows for the detailed inspection of associated experimental data. We

developed Entourage and combined it with EnRoute to specifically support pharmacolog-

ical research. Therefore, their utility was demonstrated in case studies reflecting goals in

drug discovery, i.e., the judgment of side-effects, the identification of potential for drug

repositioning, and the understanding of drugs’ mechanisms of action.

Although Entourage was specifically designed to address issues in drug discovery, we

argue that its concept can be applied to any partitioned graph, provided that each in-

dividual partition is small enough to be fully displayed. Also, in the case of pathways,

the partitioning of the biological network is non-exclusive. Thus, nodes are shared by

multiple partitions and these shared nodes represent the relationships between pathways.

However, edges are equally conceivable to represent relationships between partitions when

the partitioning is exclusive and there are no shared nodes.

The employment of contextual subsets, i.e., the flexible sub-setting of whole pathways

to context paths, is the core concept of Entourage to achieve scalability. Although other

forms of graph subsets are conceivable, we found the space-efficiency and flexibility of

layouting paths particularly advantageous.

Up to this point, we introduced techniques that use paths as subsets to deal with

scalability problems in graphs with regards to graph size and attributes. In the next

chapter, we shift the focus from a more general exploration of graphs to the analysis of

multiple paths and their relationships.
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The analysis of paths in graphs is highly relevant in many domains. For example, learning

about how two suspects are connected in a criminal case or how one protein influences

another are examples of important domain tasks that can be abstracted to path analysis

tasks. In many scenarios, short or cheap paths between two nodes need to be identified. As

discussed in Chapter 3, shortest paths can be computed with, for example, breadth-first

search (BFS) or, when considering edge weights, with Dijkstra’s algorithm. In practice,

however, the shortest path might not be the best path, as other factors such as node or

edge attributes or contextual knowledge play a role in identifying important paths. Also,

in many cases, defining a cost-function to find the cheapest path is not straightforward

and requires human judgment. Thus, visually exploring multiple candidate paths, which

can be computed with k-shortest path algorithms, is important. In practice, such a visual

exploration is difficult, due to the sheer size of the underlying graph, large amounts of at-

tributes that are important for judging the paths, and also the potentially large number of

path alternatives. In the previous chapter, we discussed the combination of the Entourage

and EnRoute visualization techniques to deal with large partitioned graphs and also large

numbers of attributes. However, this combination allows for a detailed inspection of only

one single path at a time.

In this chapter, we introduce Pathfinder, a visual analysis technique for the investi-

gation of multiple paths. To make Pathfinder scale to large graphs with tens of thousands
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of nodes and edges, our approach is based on queries: We provide visual methods to query

for paths, while considering various constraints. As illustrated in Figure 6.1, the set of

paths that matches a query is visualized in both a list and as a node-link diagram. To

be able to judge paths based on attributes, the list displays both paths and associated

attributes in a way that is reminiscent of the path representation in EnRoute. As the

resulting paths can be numerous, they can be ranked to quickly identify relevant paths.

The ranking can be based on various criteria, such as path length, average node degree,

or scores derived from attributes. To explore relationships between different paths, we

also employ various aids for path comparison. The node-link diagram complements the

path list by showing the topology of paths and providing an overview. Overall, Pathfinder

allows for an iterative analysis approach: Starting from an initial query for potentially

interesting paths, these paths are ranked by user-defined criteria to identify most relevant

paths. More detailed investigation of the paths with respect to attributes and topology

might lead to refinements of the query, or re-ranking of paths.

Throughout this chapter, we illustrate Pathfinder with data from a coauthor network

and biological pathways. In the following, we discuss requirements for effective multi-path

analysis, introduce and discuss the Pathfinder visualization technique, and demonstrate

Pathfinder in a pathway analysis case study.

Figure 6.1: Pathfinder visualizes multiple paths of a coauthor graph connecting Hanspeter Pfister
and Ben Shneiderman. The paths are shown in a ranked list together with associated sets and
attributes on the left (path list view). To its right, a node-link diagram shows the topology of the
paths (path topology view). The path statistics view on the far right shows an overview of the
properties of the paths.
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6.1 Requirement Analysis

The main objective of Pathfinder is to support the investigation of multiple path relation-

ships. Thus, we introduce a set of requirements for a multi-path visualization technique.

In our requirement analysis, we focus on path investigation in large, static networks that

are highly multivariate, i.e., nodes and edges can be associated with rich attributes. Also,

sets may be defined that capture additional relationships between the nodes. Our choice

of requirements is based on discussions with potential end-users, our analysis of the lit-

erature on path visualization, and the task taxonomy for general graph visualization by

Lee et al. [110]. As discussed in Section 3.1.1, Lee at al. distinguish topology-based tasks

and attribute-based task, as well as browsing and overview tasks. The browsing tasks

are related to topology (follow path and revisit), and the overview task is concerned with

analyzing general properties of the graph, such as estimating the overall size. For our

requirements, we assume an underlying fundamental task of exploring paths. Thus, some

of the tasks introduced by Lee et al., especially regarding general connectivity (identifying

clusters, connected components, bridges, and articulation points), cannot be addressed

with a pure path-based approach.

C I: Query for paths. Users should be able to easily query for paths that adhere to

some criteria. A simple query searches for the paths connecting two nodes. Other

criteria, such as querying based on sets (find short paths that connect node A with

any node in set S) or topological restrictions (find short paths from A to C that do

not go through B), must also be supported. It should be easy to refine an existing

query, as analysts often can identify restrictions once they see results matching their

initial query.

C II: Visualize attributes. Many networks contain rich and heterogeneous attributes

for nodes and edges. Understanding these attributes is often critical for judging

paths. In a gene regulatory network, for example, low values for associated experi-

mental data can tell analysts that the path is inactive for the given samples.

C III: Visualize group structures in paths. Group structures, such as set relation-

ships and clusters, provide additional information about relationships between nodes.

For example, they are important when judging the relevance of an edge in a path.

If two connected genes occur in many pathways, for example, it is likely that their

relationship is important.

C IV: Rank paths. A common goal of users querying for paths is to find “good” paths,

according to some criteria. These criteria sometimes are as simple as finding the

shortest path, but can also involve a more intricate combination of topological fea-

tures and attributes. A path visualization technique should allow its users to dy-

namically define these criteria and rank paths according to them.

C V: Visualize topology context. The relevance of a path for an analysis can be in-

fluenced by its surrounding topology properties. For example, in a gene-regulatory
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network, feedback cycles are common, and it is important to know whether a path

is involved in one of these cycles.

C VI: Compare paths. Comparing paths is important to evaluate similarity or dis-

similarity between paths. As for path ranking, comparison can be based on many

criteria, such as shared nodes, common set relationships, or similar attribute values.

These similarities and differences are often not easy to spot, so a path visualization

technique should make this comparison easier.

C VII: Group paths. It is common that many paths match a specific query, but multi-

ple paths will be only slight variations of each other. Ideally, a system should convey

which groups of paths are similar and provide an overview of the main path classes,

as this can reveal important paths that do not rank at the very top based on other

criteria.

In addition to these specific requirements, a path visualization system must be scalable,

as the costs of using and learning a sophisticated path visualization technique mainly pay

off for large graphs. Finally, the system also should follow best practices of conventional

graph visualization, such as overview (e.g., graph statistics) and details on demand (e.g.,

full information about sets or nodes).

6.2 The Pathfinder Visualization Technique

Our goal was to develop a method for path analysis that is very scalable and addresses

the requirements introduced in Section 6.1. The key to achieve scalability is path

queries: we introduce a rich query interface that can cover a wide range of questions

relevant to path analysis (C I). The visual representation of the graph is manifested in the

path list view, the path topology view, and the path statistics view. These views

are part of a multiple coordinated view setup that supports synchronized highlighting

of paths and their elements. The path list is ideally suited to visualize attributes and

sets (C II, C III) due to the linear layout of the individual paths, which allows us to

juxtapose the nodes and edges with plots of the attributes. It is also a perfect match to

dynamically rank paths and explore those rankings [66] (C IV). Additionally, the path list

can be used to compare paths (C VI), especially with respect to attributes and sets. The

shortcomings of the path list are addressed by the path topology view, which provides

the topological context (C V) and covers the aspects of comparison with respect to topol-

ogy (C VI). Also, the topology view is beneficial for an overview and for initial orientation.

In the following sections, we introduce the various components of Pathfinder in detail.

We use two networks to illustrate Pathfinder. The first is a coauthor network that we

created from extracting all ACM CHI and IEEE TVCG papers from the DBLP computer

science library1. We treat authors as nodes and add an edge if two authors have coauthored

1http://dblp.uni-trier.de/

http://dblp.uni-trier.de/
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a publication. We also consider individual papers as sets, i.e., a paper is a set that contains

all its authors. As attributes in this network, we provide node degrees, paper counts for

each venue, and the number of citations to the visualization papers, which we extracted

from the Visualization Publication Dataset [84]. This network contains about 34,000

nodes, 45,000 edges, and 13,000 sets.

The second network is a biological network extracted from the KEGG pathway

database. We treat pathways as sets of nodes and supplement the network data with

gene expression and copy number data from the CCLE dataset. In total, this network

contains about 11,000 nodes, 71,000 edges, and 300 sets (pathways).

6.2.1 Path Queries

As queries are at the heart of the Pathfinder technique, we introduce a sophisticated

graphical interface for querying, paired with choices of algorithms and concepts that make

the analysis and querying process efficient. The most basic query in Pathfinder is for paths

that connect two nodes. To make this simple use case as smooth as possible our default

query interface consists of two input fields only: one for the start, and one for the end

node.

Once such a query is triggered, we run a k-shortest path algorithm based on breadth-

first search (BFS) to retrieve the shortest paths between two nodes. While BFS cannot

consider edge weights, it is faster than other approaches and response time is critical for

interactive analysis systems. Also, we can consider weights later in the analysis process

through interactive rankings on the resulting set of paths.

Another method to improve scalability is incremental results. Incremental and approx-

imate results have been shown to accelerate and open up the query process [51]. Conse-

quently, we visualize each path and all its attributes, as soon as it becomes available, even

if the search process is still ongoing.

We retrieve new paths, until we reach a fixed threshold of k paths. Once we have

passed this number, we continue to fetch all paths that are of equal length l to the last

path fetched. Using this approach, we can guarantee that we consider all paths of length

l in the subsequent analysis. However, in rare cases, the resulting number of paths can be

very large. To avoid excessive computation, we also define a maximum threshold on the

number of paths, which is significantly larger than k. As shown in Figure 6.1, the fields to

the right of the query interface give an overview of how many paths of which length are

in the current result set.

We also support queries between sets of start and end nodes, which can be useful, for

example, to find out how an author is connected to the authors of a paper of interest. In

addition to the simple query interface, Pathfinder also provides an advanced interface for

specifying more complex queries that consider topological restrictions, logical combinations

of nodes, and node and edge properties. Topological restrictions can be used to consider,

for example, only paths that go through a certain node, or contain a sequence of certain
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Figure 6.2: The advanced query interface showing a query where the start node is either Hanspeter
Pfister or Jarke van Wijk, the paths must not contain Jean-Daniel Fekete, and the last node is Ben
Shneiderman or an author of the NodeTrix paper.

nodes. Logical restrictions can combine nodes and sets through Boolean operations (AND,

OR, NOT ). Also, Pathfinder can treat set relationships as edges, if desired. Figure 6.2

shows a complex query example for a coauthor network, with an OR combination at

both the start and the end node and a topological restriction to exclude all paths that go

through the node between them.

Queries can be expressed either in the query interface or by interacting with elements

in any of the views. For example, a user can exclude all paths through a certain node via

its context menu in the path list view, which simplifies query refinement (C I).

Any change to the query acts as an immediate filter for the current set of paths, which

guarantees rapid feedback. This is often sufficient for queries that restrict the result set,

but queries that expand or change the result set have to be run against the whole network

to produce reliable results.

Besides path queries, Pathfinder also supports querying for individual nodes and their

neighbors. In this way, the network can be explored by iteratively expanding the shown

subset in the topology view.

6.2.2 Path List View

As shown in Figure 6.1, Pathfinder’s main view displays all paths that match a query

in a ranked and paginated list of paths. Each path is displayed as a sequence of nodes

and edges. For example, Figure 6.3 shows the path from Jean-Daniel Fekete to Ben

Shneiderman in the coauthor network. A key benefit of this linear layout is that it allows

us to easily show attributes associated with the nodes and edges (C II) and sets connecting

the nodes below the path (C III). Conceptually, this display of paths is similar to the path

representation in EnRoute, but as multiple paths are displayed in a list, the orientation of

paths and attributes differ. Also, aggregation of attributes and sets and showing details

on demand is more relevant, as the display of multiple paths exacerbates scalability issues.

Additionally, attributes and sets can be hidden on demand, which allows analysts to focus

on the paths exclusively.

Set-memberships of a node are indicated by a circle below the node. If two successive
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nodes are within the same set, the circles are connected by a line. As shown in red

in Figure 6.3, tracing set relationships, such as common publications of authors in a

coauthor network, is easy. To save space, the sets can be aggregated by type. These

aggregated relationships are scaled according to the number of represented sets: Thicker

lines and larger circles represent more sets. Figure 6.3, for example, shows that Enrico

Bertini coauthored only a few CHI publications (blue) with Catherine Plaisant, but she

coauthored many papers with Ben Shneiderman. By default, we show only sets that

connect nodes. However, all available sets can be shown on demand.

When visualizing attributes, we can show either bar charts, as illustrated in Figure 6.3,

or box plots, as shown in Figure 6.7. However, other representations, depending on the

data type, the number, and the structure of the associated data, are equally conceivable.

Attributes can be aggregated hierarchically. The box plots in Figure 6.7, for example,

summarize hundreds of mRNA and copy number data values, either for the whole dataset,

or for individual groups of samples taken from different tissue types.

By default, we assign colors to set types and attribute types, in order to facilitate

identification across different views. However, coloring can be disabled on demand.

Taken together, the visual encodings that are made possible by the linear representa-

tion allow us to efficiently visualize group structures and attributes in graphs, which are

both considered challenging at scale [98, 173].

Aggregated SetsExpanded Sets

Node Attributes
Figure 6.3: A path from the coauthor network connecting Jean-Daniel Fekete and Ben Shneider-
man. The coauthored papers are treated as sets and visualized below the path. The CHI papers are
aggregated — the strength of lines and size of circles indicates the amount of papers. We see that
Catherine Plaisant is highly connected with Ben Shneiderman via CHI papers. The TVCG papers
show details: We can see who has coauthored which papers. Below the sets, numerical attributes,
such as the number of publications in each venue, are shown for each node.
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Reference Path

Rank-Columns

Figure 6.4: Path comparison and ranking. The second path (violet) is the reference path. Icons
next to the nodes and sets in all paths indicate whether they are shared with the reference path.
For example, the third path shares two CHI papers, one TVCG paper, and four authors. The rank
columns on the right show different scores by which the paths are ranked. Their order indicates
score priority: First, paths are ranked by whether they contain Krzysztof Z. Gajos, second, by
length, and third, by the average node degree.

Path Ranking. A core aspect of our method is the dynamic ranking of paths (C IV).

In concert with query refinement, dynamic ranking allows us to utilize human intelligence,

contextual knowledge, and individual judgment for path analysis. It enables us to consider

paths based not only on their topological properties or simple attributes, such as edge

weights, but based on complex relationships of attributes, topology, and group structures.

By default, paths are ranked by their length, i.e., number of edges, but other rankings

based on node attributes (e.g., minimum, maximum, average value across a path), the

number of connecting sets, etc., are easily accessible. In addition, we empower users

to write custom scoring functions using a script editor, which enables complex, targeted

rankings as they are often desirable in advanced analysis cases.

Pathfinder also supports multiple scores for each path. Each score is represented by

a rank-column displayed on the right of the paths. Figure 6.1, for example, shows two

scores: The first score is the length of the path (represented by numbers), and the second

score is based on set connection strength (average number of connecting sets, represented

by bars). The second score is used to break ties. In this example, the ranking is first driven

by the length, then by the connection strength score. An arbitrary number of scores is

possible. In the example shown in Figure 6.4, paths are ranked on top, if they contain the

selected node Krzysztof Z. Gajos, have a short length, and a high average node degree.

Path Comparison Being able to compare and judge the similarity of paths is an im-

portant task in path analysis (C VI). The path list view provides a variety of methods
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E HA B DC

A B D

A B C D

(a) Align pivot node

E HA B DC

A B D

A B C D

(b) Align all

Figure 6.5: Node-alignments that support path comparison. (a) All paths are aligned around a
selected pivot node. (b) A layout that strives to put re-occurring nodes at the same horizontal
position.

that enable path comparison. Nodes shared between adjacent paths are connected with a

gray line in the background. When a node is contained in a nonadjacent path, we draw a

line-stub pointing in its direction. We also support different modes for node alignment to

make shared nodes evident. By default, paths are drawn as compactly as possible, from

left to right. On demand, paths can be aligned based on a selected pivot node or based

on an optimized global alignment, as illustrated in Figure 6.5, which makes it easy to spot

re-occurring nodes. A drawback of these layouts is that they are less compact than the

default, left-aligned layout.

Pathfinder also introduces methods to compare a selected reference path to other

paths. Figure 6.4 shows an example where the second path is the reference path; all

other paths show icons next to nodes and sets indicating whether they are shared or not.

Shared nodes also indicate their position relative to the same node in the reference path.

To make these differences and similarities pop out, we disable the coloring of sets and

attributes when a reference path is selected. The reference path can also be considered in

path ranking: Instead of absolute scores, each score can be computed as a difference to the

reference path. As a result, the reference path will be displayed first, followed by paths

with decreasing similarity. Of course, more complex similarity calculations in ranking are

possible by providing custom scoring functions.

6.2.3 Path Topology View

The path topology view complements the path list view by showing the topology of the

nodes in the paths, which addresses the requirement of judging the topology and its

context (C V), and providing an overview. By default, we use a layered layout that makes

it easy to trace paths from their start at the left to their end at the right, as illustrated

in Figure 6.1. When working with many paths, the topology view suffers from scalability

issues. Zooming and panning helps to reveal details, but we can also show only the paths

on the active page of the path list. This addresses the scalability issues and still shows

the topology for the top-ranked paths.

To judge the path topology in the context of attributes, a user can select individual

node attributes to be mapped onto the nodes. However, when there are many homogeneous
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attributes, an on-node mapping of average and variance similar to the mapping used in

EnRoute is also conceivable.

Some usage scenarios demand contextual topological information that goes beyond

the topology of the path result set (C V). Pathfinder provides two ways to add additional

topological information: First, the links that connect a node to other nodes in the path

result set, but are not covered by the paths, can be shown on demand. Second, the

user may add all neighbors of a selected node, even if they are not in the set of paths,

as shown in Figure 6.6. This can be done repeatedly with neighbors to enable a simple

node-by-node graph exploration, which is especially desirable when only querying for start

nodes. To better support this approach to graph exploration, Pathfinder also provides a

force-directed layout.

6.2.4 Path Statistics View

The path statistics view provides basic statistics and gives an overview of the most impor-

tant nodes and sets. For paths, nodes, edges, and sets, it displays the total numbers in the

result-set, and the numbers considering active filters. To make the most important nodes

and sets apparent, we show them in ranked lists. The nodes and sets are ranked by the

number of paths of which they are part of, which is displayed in bar charts. Details about

all these entities can be accessed by following links to external web-sites (if available),

which can be accessed using the context menu.

Figure 6.1 shows an example where Hanspeter Pfister and Ben Shneiderman are ranked

at the top, which is not surprising, as they are the start and end nodes, respectively, and

thus occur in all paths. However, the highly ranked authors Krzysztof Z. Gajos and Desney

S. Tan also play a key role in connecting these authors, as they are part of about half

of the paths. In this example, the sets are grouped into TVCG and CHI publications,

listing the top publications that connect nodes in the paths. Like in the list view, the path

statistics view either shows only connecting sets or all sets present in the paths.

6.3 Implementation and Scalability

Pathfinder is implemented as a client-server web-application using Caleydo Web. We

use D3 2 for the visualization components and D3’s force-directed graph layout, which

is based on Dwyer’s algorithm [44], in the topology view. The layered graph layout is

computed using the dagre library3. Dagre attempts to balance computation performance

and quality of results by using a combination of different algorithms [18, 25, 56, 88, 139].

On the back-end, we store the graph data in a Neo4j graph database4. We use a custom

Neo4j plugin written in Java for the k-shortest path search. It uses the built-in Neo4j BFS

2http://d3js.org
3https://github.com/cpettitt/dagre
4http://neo4j.org

http://d3js.org
https://github.com/cpettitt/dagre
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Figure 6.6: The path topology view showing a force-directed layout to ease neighbor exploration.
All neighbors of Tim Berners-Lee were added and are shown in white, indicating that they are not
part of any path. Links to those nodes are stippled to distinguish them from links that occur in the
path list.

algorithms, streams intermediate results via WebSocket, and computes virtual edges for

set relationships on-the-fly.

We tested Pathfinder for graphs with more than 30,000 nodes and more than 70,000

edges and found no significant scalability problems. Queries on our example datasets

typically return results within a few seconds. Query performance is influenced by the

server’s computing power, but also by caching: Paths through frequently used nodes are

retrieved faster. Pathfinder can handle at least 600 paths without problems, with the

exception of the overview mode of the topology view, which can become cluttered, as

any node-link diagram. The maximum length of paths that can be conveniently shown

depends on both screen resolution and the node size configured by the user. On full-HD
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displays, paths of length 6-12 can be shown conveniently, but longer paths may require

scrolling. However, we found that the paths we consider are rarely longer than 6-8 hops.

The number of paths that can be shown at the same time in the list view largely depends

on the amount of displayed attributes and sets. When all attributes and sets are hidden,

up to 20 paths fit on a typical full-HD display. Especially combined with path ranking,

which puts the most relevant paths for a specific question at the top of the list, we argue

that this number accommodates most tasks.

6.4 Case Study

Up to this point, examples were given mainly on the coauthor network. Here, we also

demonstrate Pathfinder’s value for an intricate analysis of biological pathways. This case

study was conducted by a chemical biologist, who is a researcher at a large pharmaceutical

company. Pathfinder was developed with constant feedback from this researcher and other

domain experts.

Our collaborator used Pathfinder to analyze biological signaling cascades driving cell

proliferation and cancer formation. These signaling cascades consist of proteins that are

encoded by genes. For simplicity, we use the terms protein and gene interchangeably. A

well-known signaling cascade in biology is the so-called ERK-MAPK pathway [137], which

transduces signals from the cell membrane to the cell nucleus. In the nucleus, these sig-

nals influence gene expression and can induce changes in the cell leading to cell division.

Uncontrolled cell division, in turn, causes tumors. The gene RAS is the starting point of

the ERK-MAPK pathway ; RAS is attached to the cell membrane, where it is switched

on by incoming signals. The end point of the signaling pathway is the gene ERK, which

activates proteins that bind to the DNA and change gene expression. Accordingly, our col-

laborator queried for paths that connect KRAS (one representative member of the RAS

gene family) and MAPK3 (a member of the ERK family) in Pathfinder. As shown in

Figure 6.7, she ranked the 149 paths that were returned by their average set connection

strength. She chose this score because she was interested in paths that occur in many

KEGG pathway maps. The top-ranked path was KRAS-RAF1-MAP2K1-MAPK3, which

corresponds exactly to the ERK-MAPK pathway. Thus, Pathfinder was able to identify

correctly the most important communication path between RAS and ERK. Expanding

the set of associated pathways revealed that this path is present in many cancer pathways:

Colorectal cancer, pancreatic cancer, glioma, prostate cancer, and non-small cell lung can-

cer, to name just a few. Similarly, the importance of this path was emphasized by the

gene expression box plots showing data from cancer cell lines. As illustrated in Figure

6.7, the box plots revealed that these four genes are ubiquitously expressed across diverse

tissues, which indicates that this signaling cascade is active in many different cell types.

Another important pathway involved in the formation of cancer is the so-called mTOR

pathway [107]. Our collaborator used Pathfinder to detect cross-talk between these two

pathways, i.e., she explored how one signal transduction pathway could affect the other.
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Figure 6.7: The query result in Pathfinder for paths connecting KRAS and MAPK3. The paths
are ranked by set connection strength, which places the path KRAS-RAF1-MAP2K1-MAPK3 on
top (notice the thick lines for the aggregated pathways). This path corresponds to the ERK-MAPK
signaling cascade. Associated copy number and mRNA expression data are shown as box plots. The
expression dataset is expanded to investigate the expression across different tissue types in detail.
The box plots show that the four genes are expressed in all displayed tissues, which emphasizes the
importance of this path.

For this purpose, she defined an advanced query, searching for connections between the

four genes mentioned above and the five genes MTOR, AKT1, TSC1, TSC2, and MLST8,

which are part of the mTOR pathway. She again ranked the paths by their average

connection strength, which is illustrated in Figure 6.8. The resulting path topology view

highlighted that the ERK-MAPK pathway can modulate the mTOR pathway through the

gene PI3K, which in turn modulates AKT1. Note that there are different subtypes for

this gene, which are all shown in the topology view. Furthermore, the top-ranked path

revealed a second route for regulation of the mTOR pathway by the ERK-MAPK pathway :

MAPK3 can modulate TSC2. To learn more about this regulation, our collaborator

chose the path MAP2K1-MAPK3-TSC2 as reference path and sorted all other paths by

their similarity to the reference path, as shown in Figure 6.9. This ranking revealed an
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PI3K Family

Figure 6.8: To investigate whether there is any cross-talk between the ERK-MAPK pathway
and the mTOR signaling cascade, which are both well-known cancer-related pathways, the analyst
defines a complex query between multiple nodes of each path. The query is composed of several OR
queries for the start and end, i.e., from (KRAS or RAF1 or MAP2K1 or MAPK3) to (MTOR
or TSC1 or TSC2 or MLST8 or AKT1). The paths in the result set are ranked by set connection
strength. The topology view reveals that the mTOR pathway can be influenced via the gene PI3K.
In this case, the gene is represented by various subtypes (PIK3*). The mTOR pathway, specifically
its node TSC2, can also be modulated via MAPK3, as shown by the path highlighted in orange.

additional, indirect way for MAPK3 to regulate TSC2 : via RPS6K. Our collaborator

was excited that Pathfinder was able to demonstrate the complexity of biological pathway

regulation: The ERK-MAPK pathway can either modulate the mTOR pathway through

PIK3CA or through TSC2 [124]. Understanding cross-talk between signaling cascades

is important for the development of cancer therapeutics, because they can contribute to

drug resistance.
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Figure 6.9: To learn more about paths similar to the MAPK3 path, the analyst selects it as a
reference. The list is ranked by the number of shared nodes, which reveals another way to modulate
TSC2: via RPS6K. This gene is represented by various subtypes (RPS6K*). The corresponding
paths are highlighted in orange.

In summary, the feedback from our collaborator was very positive. She claimed that the

analysis of multiple paths across pathways would have been difficult or even impossible

with standard tools such as the KEGG web interface, especially when also considering

experimental data.

6.5 Discussion

When developing Pathfinder, we set out to address two major goals: scalability with

respect to the number of nodes and edges, and scalability with respect to associated

sets and attributes. We deal with them in a number of ways. Foremost, the query-based

approach reduces the complexity of analyzing the whole graph to analyzing resulting paths.

Of equal importance is the list-based path view, which enables us to show ranked paths

and rich attribute and set data that can be aggregated on demand. The computationally

expensive and time-consuming path query process is mitigated by showing intermediate
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results, i.e., a path matching the query is shown as soon as it is found. As the resulting

paths can be numerous, easily accessible methods to refine the query help narrow down

the result-set, and path ranking helps to quickly identify relevant paths. The ranked list

representation of paths scales very well to large numbers of paths. The pagination of the

list helps to improve rendering performance and also defines meaningful subsets of the

ranked paths to be explored in the topology view.

Besides scalability, a major strength of our approach is that it can be extended and

customized to comply with requirements in different use cases without changing the overall

workings of the technique. Complex scores can easily be added to support customized path

rankings, and the sequential layout of nodes makes adding visualizations of attribute data

easy.

In our design, we employ the most effective visual channels for the most important

aspects of the data. For example, position, the strongest visual variable, is used to en-

code path rank, and connectedness is used to encode relationships. Also, all attribute

visualizations use a position/size encoding (bar charts, box plots); color is used only as a

redundant channel or for highlighting.

In the path list view, some information is duplicated — for example, the start and

end nodes, and their associated attributes, occur in every path. Although this wastes

space, we argue that the benefits of the linear representations (easy to rank, excellent for

attribute visualization) outweigh the cost of non-optimal space usage.

Limitations We distinguish limitations of the technique from limitations of our imple-

mentation. Our technique addresses all requirements discussed in Section 6.1 save one:

the exploration of path classes (C VII). Aggregating similar paths and showing their basic

structure could give analysts a better overview of the variation of paths. Combined with

revealing details on demand, this could be an alternative approach to ranking for tackling

large lists of paths. Aggregations could also be driven by a user-defined combination of

properties, such as topology, attributes, and sets.

Apart from the exploration of path classes, we argue that Pathfinder supports path-

related tasks well. A wide range of other tasks discussed by Lee et al. [110] can be addressed

by using the topology view and its capability to dynamically extend the network, as il-

lustrated in Figure 6.6. Specifically, the topology view allows us to also support most

adjacency, accessibility, common connection, and connectivity tasks, with the exceptions

of finding clusters, connected components, bridges, and articulation points, i.e., tasks that

are related to an overview of the graph. To support these tasks, we envision integrat-

ing Pathfinder with a general purpose, query-based graph visualization system such as

Orion [75].

A limitation of the current implementation is the expressiveness of the query interface.

For example, attributes of nodes and edges cannot be considered in the query. Also, the

visual and interaction design of the advanced query interface could be improved. Another

limitation is that we currently do not visualize edge attributes and edge types. The
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display of both, however, is straightforward, as they can be shown in the same way as

node attributes: by adding dedicated rows below the paths in the path list view.

6.6 Summary

In this chapter, we presented Pathfinder, a technique for the visual analysis of multiple

paths in large multivariate graphs. The query-based approach allows users to search for

paths between a specified start and end. The immediate display of intermediate results

allows for early query refinements and speeds up the analysis process. By showing paths

in both a list and a node-link diagram, they can be judged and ranked holistically, taking

topology, attributes, and grouping structures into account. Again, the linear visualization

of paths proved to be useful: While attributes can be easily mapped to nodes and edges like

in EnRoute, it also allows for the ranked display of multiple paths in a list. We showcased

Pathfinder in context of a coauthor graph and a biological network, but we are confident

that this technique can be useful for the analysis of networks from other domains, such as

social or computer networks. In summary, Pathfinder is a viable technique for the analysis

of multiple paths that is characterized by its iterative approach of querying, ranking, and

detailed investigation of paths with respect to both attributes and topology.

Up to this point, our proposed visualization techniques mainly considered networks

that feature many heterogeneous attributes, but rather few different types of nodes or

items. In the next chapter, we introduce a visualization technique that focuses on the

exploration of path relationships between different types of items.
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The need to investigate multiple heterogeneous linked datasets is common in many ap-

plication domains. Up to now, we regarded heterogeneous datasets mainly as attributes

that all map to one specific type of item in a graph; i.e., experimental datasets such as

mRNA expression or copy number variation datasets were all mapped to genes. However,

in many cases the datasets refer to different types of items. These items often exhibit

complex relationships. For example, a drug can modulate multiple proteins, and a protein

can be modulated by multiple drugs. Also, a protein is part of multiple pathways, and a

pathway contains multiple proteins. Such kind of linked data is typically captured in re-

lational databases. Analyzing path relationships that span across different types of items

is essential to get a holistic understanding of all involved data.

In this chapter, we introduce ConTour, a visual analysis technique for the explo-

ration of path relationships across heterogeneous datasets. ConTour is designed to tell

whether items of different types are connected by paths rather than showing all connect-

ing paths in detail like Pathfinder. In this way, many path relationships can be indicated

simultaneously. For simplicity, we will mainly use the term “relationship” instead of path

relationship and call path relationships with one hop “direct relationships”, and path

relationships with multiple hops “indirect relationships” hereafter.

105
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Figure 7.1: ConTour shows a multitude of heterogeneous data items in several columns in the
relationship view (bottom). The detail views display a selected pathway and selected chemical struc-
tures of compounds (top).

Figure 7.1 shows the interface of ConTour: At the bottom, the relationship view lists all

items of each type in separate columns. Relationships between items in different columns

are revealed through interaction: selecting one or multiple items in one column highlights

and re-sorts the items in other columns. Filters based on relationships enable drilling down

into the large data space. Additionally, we support the interactive nesting of columns to

show the related items of a child column for each item in the parent column. To identify

interesting items in the first place, columns can be individually sorted based on attributes

or connectivity to items of different types. Details about items can be either investigated

within the columns, if enough space is available to show them, or on demand in distinct

views at the top, as illustrated in Figure 7.1.

Although the concept of ConTour is domain-agnostic, it was developed in collabo-

ration with domain experts to specifically support pharmaceutical research. Learning

about the effects of chemical compounds, i.e., drugs or drug candidates, on cells or the

whole organism relies on the generation of huge amounts of data in various experiments

and the analysis of this data. Different visualization methods were developed to support

structure-activity relationship analyses. For example, HiTSEE [159] helps finding correla-

tions between the structure of chemical compounds and their activity in reactions with a

single biological target, and Lounkine et al. [118] classify compounds based on their struc-



107

ture and visualize their interactions with pathway nodes. In addition to the data sources

used in classical structure-activity relationship analyses, ConTour integrates various other

data in order to provide a more holistic view on the effects that a compound has on a

biological network. The overall goal of ConTour is to allow for a visual investigation of

the inter-dependencies of all involved data in order to speed up and facilitate the analysis

process.

Pathways Genes Activities

Fingerprints Clusters

Compounds
Therapeutic 

Groups

m:n 1:n 1:1

Figure 7.2: Overview of pharmacological and biological datasets that are analyzed using Con-
Tour. The edges of this graph indicate direct relationships between data items and the cardinality
of these relationships. A pathway contains multiple genes and one gene can be part of multiple
pathways. Activities connect genes and compounds. Compounds represent drugs, drug candidates,
or other small molecules and are classified into therapeutic groups. Fingerprints describe biolog-
ical properties of compounds. Fingerprint clusters can reveal biologically relevant similarities of
compounds.

As introduced in Section 2.3.3, our collaborators investigate data about chemical

compounds, their biological fingerprints, fingerprint clusters, activity data of compounds

against their protein targets, proteins, pathways that capture the biological roles of pro-

teins, and therapeutic groups that classify the compounds. Note that proteins are mapped

to their corresponding genes and we use the terms interchangeably hereafter. The struc-

ture of the available data can be described as a k-partite graph, where sets of items, such

as pathways, genes, compounds etc., represent the partitions of the graph. This implies

that the items within a set have no defined relationship, but that relationships are defined

between items of different sets. As illustrated in Figure 7.2, the graph describing the set

relationships is connected and acyclic, i.e., there are no sets that are not related to others,

and there is exactly one path connecting any two sets. The relationships between the

items of the sets can be of arbitrary cardinality (1:1, 1:n, or n:m). Though this graph

only shows direct relationships, ConTour is designed to also consider indirect relation-

ships via intermediate sets and items. Pathways, for example, are indirectly connected

to compounds via genes and activities. Note that we only consider shortest path rela-

tionships between items, i.e., each item type must not occur more than once in a path.

Otherwise, all items of the graph, with the exception of disconnected components, would

be considered as related.

In the following, we first discuss the requirements for the visual analysis of relationships

in heterogeneous pharmacological data. We then introduce the ConTour visualization
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technique on a conceptual level and its realization specifically for the drug discovery use

case. Finally, we demonstrate ConTour in three drug discovery case studies.

7.1 Requirement Analysis

In repeated consultations with multiple domain experts over half a year we elicited a set

of tasks an analyst has to perform to achieve the domain goals described in Section 2.3.3.

From these tasks, we derived more general requirements for the ConTour visualization

technique:

D I: Find and show related items. Given an item of type A, find all items of type B

that are directly or indirectly related. A concrete example is to identify all pathways

that contain a specific gene (direct), or all compounds that influence a pathway

(indirect).

D II: Find and show items that share a relationship with a set of items.

Given a set of items, find all items that are connected to all of the input items. In

other words, identify the items that all of the input items are related to. The input

items can be from the same set or from different sets. An example is to identify all

genes that are shared between two pathways, or to identify all compounds that are

connected to a specific cluster and that are also related to a specific pathway.

D III: Support network enrichment analysis. In highly relational datasets, many

items are connected, directly or indirectly, to many others, which can lead to un-

specific relationships. Our collaborators, however, are interested to identify the

connections that are very specific. For example, they want to identify clusters of

compounds where all compounds interact with only one specific pathway. More gen-

erally, for items of type A and B that are not directly related, one might want to

judge how closely they are connected by considering items in the path between them.

D IV: Rank items. Being able to rank items is crucial to reveal the most important

items out of a long list. Rankings can be based on item attributes or on derived

measures such as network enrichment.

D V: Filter items. Analysts want to filter items, either based on attribute values or

based on relationships. An example for the former is that an analyst might want to

only consider activities that activate their interaction partner, and ignore inhibiting

or binding drugs. The latter case depends on D I and D II - items that are not

related to a specific selection of items should be filtered out.

D VI: Show items in detail. The relevance of data items can often only be judged by

exploring their attributes. While some items are simple, such as activities, which

only consist of the interaction type and the AC50 value, others, such as pathways

or compounds, are complex entities. A central task is to investigate these complex

entities in detail. Therefore, for example, a pathway should be viewable in all its

complexity, or the chemical structure of compounds should be displayable.
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7.2 The ConTour Visualization Technique

The tasks that need to be performed by our collaborators describe an analysis process that

is highly exploratory in nature, rather than a rigid step-by-step process with well-defined

starting, intermediate, and end points. To enable such an analysis for different item sets,

a visual analysis technique needs to allow analysts to flexibly gain access to information

encoded by items or item relationships at virtually any point during the analysis.

Data
Genes 
Fingerprints 
Activities 
Clusterings

Pathways
Metadata

Data Graph
generate

nest, rank,  
select, filter

query  
result

new experiments, new clustering,  
calibrate fingerprinting

Insight
Visual Interface

a

b

e
f

f

i
j
k
l

a b k

Detail Views
interaction

Relationship 
View

Figure 7.3: The overall visual analysis process in ConTour. Data from internal or external
(public) sources make up the data graph. The data graph is the underlying data structure for the
visual interface and responds to its queries (e.g., nesting, ranking, etc.). Through interaction with
the visual interface, domain experts generate insights. These insights can be of value on their
own, or can lead to refined biochemical experiments, new ideas for clusterings and groupings, or to
calibrated fingerprint algorithms, thus generating new data.

Our approach to this problem is illustrated in Figure 7.3. The data graph component

contains all data items, their relationships, as well as associated data present in the sys-

tem. The items of this graph are presented to the user in the visual interface. The main

component of this visual interface is the relationship view, which consists of a collection

of columns, each listing the item set of a particular type. A second important compo-

nent of the visual interface are detail views, which display detailed item information using

representations specifically tailored to the item type. Based on individual items or whole

item sets, several operations, such as selecting, filtering, or nesting, can interactively be

triggered from the visual interface. Using graph information of the data structure, these
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operations are propagated to related items in other item sets, updating their representa-

tions in the relationship view and the detail views, e.g., by highlighting, hiding, showing,

or reordering items. The tight interplay of the data graph and the visual interface re-

alizes a highly interactive data-driven exploration of item relationships. In the following

sections, we will discuss the components of the visual interface in more detail.

7.2.1 Relationship view

The relationship view is composed of several freely arrangeable columns that represent one

item set each. Individual columns can be scrolled, sorted, and filtered independently. The

layout is designed to enable arbitrary entry points into the analysis: every item in every

column can be a starting point. The column’s header displays relevant summary informa-

tion, while the body displays the items. Items show either a label, or relevant attribute

information in built-in visualizations, or both. Columns can be added, duplicated, and

removed at any time. From a visual point of view, the relationship view is reminiscent of

Jigsaw’s list view [64, 151] and parallel node-link bands [62]. However, these techniques

are restricted to text representations within the columns and explicitly draw links to indi-

cate relationships between items in different columns. We refrain from drawing such links

to avoid clutter and save horizontal space. Instead, we provide a rich set of operations that

can be performed on individual items or whole columns to explore potentially thousands

of items and relationships effectively. These operations are discussed in the following.

Item selection and highlighting. One simple yet effective method to find related

items (D I) is highlighting. Selecting an item highlights all of its related items. We dis-

tinguish between two selection methods: Hovering over an item just highlights all related

items, whereas clicking on an item also moves all related items in all columns to the

top. As this reordering might be undesirable in some cases, for instance, if the items of

a column use a meaningful sorting, it can be disabled. When selecting multiple items

of a type, we employ one of two different modes, which are illustrated in Figure 7.4, to

combine the highlights: In union mode, all items that are related to any selected item

are highlighted. In intersection mode, only those items that are related to all selected

items are highlighted.

Selection-based filters. Selection-based filters allow to reduce the whole data space

to those items that are related to selected items (D I, D V). Applying multiple filters in

succession gradually narrows down the data space. In essence, each newly applied filter is

combined with the result of all previous filters using a Boolean and operation. However,

after the data space is narrowed down, it might be desirable to expand it again. Therefore,

we provide the possibility to add related items that have previously been filtered out. This

additional operation can be regarded as a filter that is combined with the result of all

previous filters using a Boolean or. The different selection modes (union, intersection)
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Figure 7.4: Illustration of the two highlight modes. In union mode, selecting items a and b
highlights all items related to either of them, i.e., items i, j, and k. In intersection mode, only
items related to both a and b are highlighted, which is item j in this case.

affect the filtering behavior. The data space gets reduced to the union or intersection of

related items, respectively, and the union or intersection of related items is added.

Nesting. Nesting is an effective method to directly associate multiple related items of

different sets. Columns can be nested to create parent-child relationships. Nesting two

columns has the effect that for each item in the parent column, all related items of the

child column are shown right next to it, as shown in Figure 7.5(a). Nesting a gene column

within the pathway column, for example, displays all genes that a pathway contains next

to the pathways. In contrast to highlighting, nesting always unambiguously shows what

items are related, even if multiple items are selected. The downside of nesting is that

it is less space efficient, as it results in redundant items. To remedy this, children can

be collapsed, so that the relationships are shown only on demand. When child items are

collapsed, a summary representation allows the analyst to gain an overview of these items,

as shown on the right of Figure 7.5(a). This representation can show a simple count of

the children or summary statistics about the children’s attributes.

An interesting possibility is to use summary values of the children to sort the parent,

opening up new opportunities to identify relevant items. To easily identify items with many

relationships, for instance, the number of child items can be used as sorting criterion.

Nesting is a powerful way to investigate direct and indirect relationships between dif-

ferent items (D I), as items of a child column may be intuitively associated with their

parents for multiple items of the parent column at once. ConTour also allows to nest mul-

tiple columns. Thus, child columns can be siblings or be nested recursively, as illustrated

in Figure 7.5(b). However, a recursively nested item is only considered as a child, if it

is related to all of its parent items in the chain of parent columns. This makes recur-

sive nesting equivalent to a filter chain applied to the items of the nested columns, with

the filters being defined over the relationships to the parent items. Recursive nesting of

columns is an effective way for identifying items that are commonly related among items

from different sets (D II). For example, in Figure 7.5(b) on the right, item b and f do have

j and l in common.
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Figure 7.5: Nesting. (a) On the left, direct relationships between the items of columns A and B
are indicated as connecting lines. In the center, column B is nested in column A, placing related
child items of column B right next to their parent item of column A. For example, items e and f
are related to item a and are therefore displayed as its children. As item f is also related to b, it is
shown next to both parents. On the right, the child items of a and b are collapsed into summary
representations. (b) On the left, the direct relationships between items of column A and C and
columns B and C are displayed. The items of columns A and B are indirectly related via items
of column C. On the right, the columns are recursively nested. Column B is nested in A, and C
is nested in B. This recursive nesting helps to find items in C that are commonly related among
items in A and B. For example, items a and g are commonly related to item k, whereas items b
and f are related to items j and l.

Ranking and sorting. Ranking and sorting items in a column (D IV) is a simple

method to identify the most interesting items quickly. The sorting criteria can be manifold.

For example, items can be sorted alphabetically or by some numerical attribute. Rankings

can also be based on scores (D III) that quantify certain network properties. Sorted

items can easily be compared, if their representation reflects the sorting criterion, such as

attribute values.
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Column-based filters. Applying filters to columns (D V) is a simple method to remove

uninteresting or irrelevant items. Similar to sorting, filters can be based on several criteria.

For instance, attribute-based filters may define the value range for numerical attributes

or filter items based on associated categories. A simple example is to remove all activities

that are above a threshold in their AC50 values, which indicates that they are not potent.

Filters may be applied locally or globally. Local filters only affect the item set of their

column. Global filters affect all item sets by removing the items that are not connected

to one of the remaining items in the source column. Global filters are efficient at reducing

the complexity of the whole data space.

7.2.2 Detail views

Triggered from the relationship view, detail views show one or several items using suitable

visualizations (D VI). Detail views are tailored to item types. Some may show all items,

some a subset of items, and others may show only one item at a time. For example, the

detail view for fingerprints shows all of them in one large parallel coordinates view. An

example for a detail view that shows only selected items is the compound view, where only

the selected compound structures are shown. Detail views can also integrate multiple item

types. Our pathway view, for example, shows a pathway together with genes, compounds,

and fingerprint clusters.

7.3 Detailed Design

We developed the prototype of ConTour in close cooperation with our collaborators, who

gave feedback on a weekly basis. In this section, we describe the design decisions we made

to represent the data, which algorithms we implemented to satisfy the analytical needs of

our collaborators, and what additional tools we added to support the analysts in the data

exploration process.

7.3.1 Relationship View

How we represent the various types of data items in the relationship view mainly depends

on the amount of information held by each item. If an item has no additional data

associated, we display its name or ID, which is the case for genes, clusters, and therapeutic

groups. Also, if there is too much information available to fit in the columns, like in the case

of pathways and compounds, we also only show their names or IDs. Although fingerprint

items come with over 100 numerical values, it is still possible to visualize them in a compact

way. To achieve this, we use centered bar charts with bars pointing up and down, as shown

in Figure 7.6(d). This compact representation provides a good overview of the parameters

and can be effectively used for comparative tasks. Fingerprints contain many missing

values, which we encode by leaving the area empty, while adding a gray background for

parameters that have a value. Activity items consist of only two parameters. The first one
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item status bar (f)

highlighted item (i) uncollapse all nesting (h)
activity for MAOB (b)

boxplot for nested items (c)
column toolbar (g)

recursive nesting (a)
history view (m)

filter view (n)

selected item (j)

aggregated finger-
prints (e)

fingerprint vis (d) ranking score (k)

Figure 7.6: Overview of visual components in the relationship view. Several different data items
are listed in columns. (a) These columns can be nested recursively. The visual representations
differ depending on the item type. By default items are represented as text. (b) Attributes of
activity items are shown with bars and icons. (c) Box plots are used to summarize nested activity
items. (d) Numerical fingerprint vectors show their data in bar charts. (e) Line charts summarize
the median values of the fingerprints in child columns. (f) Composite bars in each column header
show the number of all items (light gray), items not filtered out (dark gray), and selected items
(orange) of a column. (g) The column toolbar is shown on demand and contains buttons to sort,
filter, duplicate, and remove the column. (h) The items of a child column can be collapsed and
expanded using the buttons in the column headers and next to the items. Highlighted items (i)
indicate relationships to the selection source (j). (k) Columns that are ranked by enrichment scores
represent the scores as bars right next to the items. (m) The history view records every analysis
step and also shows snapshots taken. (n) The filter view displays the sequence of currently applied
filters.

is a categorical parameter, which describes the binding type of the associated compound

to the associated gene. As shown in Figure 7.6(b), we visualize the three categories,

activation, inhibition, and binding, by icons that show an arrow pointing up, down, and

a horizontal double arrow, respectively. The second parameter describing the compound

activity is the numerical AC50 value, which is encoded by a horizontal bar.

Nesting is a crucial concept in ConTour. To summarize nested items, we employ

different encodings. The default summary representation that is available for any type of

item provides an overview of children by indicating the number of child items using three

bars that are drawn on top of each other. The light gray bar indicates the total number

of children of a parent item, not considering any filters. The dark gray bar takes filters

into account, indicating the number of children that will be shown if the user expands the

summary representation. Finally, the orange bar indicates the number of children that are

currently highlighted by selection. As illustrated in Figure 7.6(f), the same representation
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is used to give an overview of all the items in each column. As activity data is tightly

coupled with genes and compounds, they are usually nested within these columns. Our

collaborators emphasized that it is important to enable analysts to get a quick overview

of all activity values associated with a gene or compound. To address this, we provide an

additional summary view that encodes the activity value distribution of child items using

two box plots, as illustrated in Figure 7.6(c). The box plots drawn in light gray show the

distribution for all child items, not considering any filters, whereas the dark gray box plots

show the distribution for only those child items that were not filtered out. As clusters

are based on fingerprints, they are typically nested within the cluster column. In order

to represent the characteristics of a cluster, the fingerprints are aggregated into a line

plot that encodes the median values for the fingerprints’ parameters, as shown in Figure

7.6(e). We decided to employ a line plot instead of a bar chart, to make the summary

representation distinguishable from the representation of individual fingerprints.

7.3.2 Detail Views

As it is not possible to show all data associated with several item types in the relationship

view, we provide a number of detail views to make this information accessible. As previ-

ously discussed, all detail views are tightly linked with the relationship view and also with

each other. Thus, selections or filter operations are propagated to all other views.

Pathway view. The pathway view, shown in Figure 7.1, displays a selected pathway

and its contained genes using a texture from one of the supported pathway databases.

In addition, the pathway view also displays compounds that interact with at least one

of its genes, as well as the fingerprint clusters the compounds are associated with. The

pathway view is designed to support two analysis goals: identify which compounds interact

with which genes within their cellular context, and identify which compounds and clusters

are specific to a pathway. As previously mentioned, specificity is an important quality

measure for the domain experts. The more specific a cluster is to a pathway, i.e., the

more compounds of the cluster interact with the pathway, the more likely the compounds-

pathway interaction is biologically relevant. Clusters are encoded as bars on the left and

right of the pathway. The height of the bar encodes how many compounds of the cluster

interact with the pathway. Its saturation indicates how specific a cluster is—highly specific

clusters are dark blue, while unspecific clusters are white. Next to the clusters, smaller

rectangles represent the compounds. By hovering or selecting a compound or cluster, all

interaction partners within the pathway are highlighted, enabling analysts to identify the

exact binding partners of each compound. The nodes in the pathway are shaded in yellow,

if no compound interacts with them. Nodes with a white shading bind to one compound,

whereas saturated purple nodes bind to many compounds. The compounds optionally

adhere to the system-wide filters, which allows the domain expert to quickly assess the

relevance of a pathway for the remaining items.
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Compound view. Being able to access the chemical properties of compounds is im-

portant to our collaborators, as it provides crucial information when reasoning about, for

example, why compounds fall into the same cluster, or why they bind to similar targets.

To realize this, the compound view, which is shown in Figure 7.1, displays the chemical

structures for multiple compounds together with their names.

Parallel coordinates view. Analysts can make use of the parallel coordinates view

to visualize any kind of multi-dimensional data. In the context of the available data,

only activity data and fingerprint data fall into this category. As activity data is already

displayed in full detail in the relationship view, the parallel coordinates view is mainly

used to display fingerprint data. By default the view shows all fingerprints, but can be

toggled to respect applied filters.

7.3.3 Support Views

Two support views provide orientation and more flexibility during the data exploration.

History view. Every step taken in the exploration of items and their relationships is

based on decisions made by the analyst. However, in some cases, the path taken might

lead to a dead end, or the analyst just wants to explore the data in multiple directions

without starting the analysis from scratch. As shown in Figure 7.6(m), we provide a

history view to address this issue. The history view records every step taken during the

analysis and allows the analyst to go back and forth within the analysis path as desired.

Each step taken adds a new element to the history view; information about the step is

shown on demand as a tooltip. Selecting an element reverts the system to the state when

the element was recorded. In addition, analysts can take snapshots of the current state,

which they can return to at any time.

Filter view. Filtering is an operation that is executed very frequently. However, keeping

track of filters without support is hard. Therefore, ConTour tracks all applied filters in

the filter view. As illustrated in Figure 7.6(n), every filter is represented by an element,

which displays the name of the item set the filter was applied on. We use two symbols to

indicate whether the data space was reduced by the filter, or items were added. A more

detailed description of the filters is shown in a tooltip. Filters can be removed from the

filter view on demand.

7.3.4 Enrichment Score

One crucial task of our collaborators is judging how specific two types of items are related

considering a third item type. For example, they want to know what clusters show an

enrichment in compounds that modulate a specific pathway. Abstracted to general set

terms, they want to know for an item i of set I (clusters) the enrichment of items of set
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Figure 7.7: Enrichment for i in j via K: si,j(K) = (1/2)/(2/4) = 1

K (compounds) that reach one item j in set J (pathways). To answer this question, our

collaborators use an enrichment score, which is defined as follows: Let Ki be the set of

items in item set K that are related to i and Kj be the set of items in K that are related

to j. For a pair of items (i, j), we calculate the enrichment score si,j(K) by

si,j(K) =
|Ki

⋂
Kj |/|Kj |

|Ki|/|K|
(7.1)

This is also illustrated in Figure 7.7. The numerator of this term describes how specific

j is related to i via K. To account for the fact that items in I that are related to many

items in K are more likely to also have common items with items in J , we divide by the

given denominator. In the end, this score expresses the similarity of sets Ki and Kj and

accounts for set sizes and total number of items. Alternative measures, such as overlap

disproportionality [9], might also be feasible in this case.

As small overlaps of one or two items were generally not interesting for our collabo-

rators, we include a threshold for the minimum number of common items. The enrich-

ment score is calculated for all pairs (i, j), which in turn can be used to rank columns

in the relationship view. However, a column only shows items of a single type, al-

though the score is defined for pairs. Therefore, we use the maximum score, given by

ri,K,J = max∀j∈J(si,j(K)) to determine the rank of every item i in its column. We display

this score as a horizontal bar next to the item. To see the item pairs, the paired columns

can be nested, as shown in Figure 7.6. While the parent items show the maximum score,

the child items indicate the scores achieved with their parent.

7.4 Implementation and Scalability

Like EnRoute and Entourage, the prototype of the ConTour visualization technique is

developed as a plugin for the Caleydo visualization framework. The chemical compound

structures are rendered using the Chemistry Development Kit (CDK) [152], an open-source

Java library for structural chemo- and bioinformatics.

As a tool for exploring multi-relational data, ConTour needs to scale with respect to the

number of columns, the number of items inside the columns, the number of nested columns,

and the number of detail views it can handle effectively. ConTour can comfortably deal

with about a dozen columns. Depending on the kind of data, we observed a limit of
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about 20 columns on a full-HD display. To even further increase the upper limit for the

number of displayable columns, it would be possible to add a level-of-detail approach

that lets the user manage larger number of columns. In terms of scalability of items, we

have successfully worked with multiple columns containing up to 14,000 items. However,

conceptually the column-based approach in combination with our task-dependent sorting

of items scales to datasets with many more items. Regarding the recursive nesting of

columns, we found that more than four levels of nesting are rarely used in practice. Our

current implementation supports about as many levels of recursions as columns for 1:1

relationships between datasets (i.e., about 20), while this number shrinks to about five for

the n:m case. Of course, this heavily depends on the amount of items and relationships

between them. The number of detail views that can be shown simultaneously depends on

the nature and size of the data and the used visualization. For compounds, we observed

up to eight simultaneously used views, while pathways were limited to one.

7.5 Case Studies

ConTour is the result of a user-centered development process, which included regular

meetings with our collaborators to iteratively develop and refine the system according to

their needs. Together with one of our collaborators, who are all chemical biologists, we

conducted case studies to illustrate the applicability of ConTour on real-world problems.

The overall goal of these case studies was to find out whether the biological fingerprints

that were used as descriptors for compounds are able to detect meaningful biological

similarities between compounds and reflect their effect on the cell and, ultimately, on

the organism as a whole. If they prove to capture a compound’s biological actions in a

comprehensive manner, they can be used as a connecting module to identify relationships

between compounds, targets, pathways, and diseases. In the following, we describe how

our collaborators used ConTour to explore heterogeneous pharmaceutical and biological

data and report on the gained insights.

7.5.1 Investigating Phosphodiesterase 4 Inhibitors and their Cluster

Neighbors

A straightforward way to explore the ability of the used descriptors to group compounds

in a biologically meaningful way is to analyze the fingerprints of compounds that are

known to modulate the same protein target. Therefore, the expert started by focusing

on a particular protein target, the enzyme phosphodiesterase 4 (PDE4), which is repre-

sented by multiple different enzyme subtypes (PDE4A-D) in the dataset. She added a

selection-based filter to limit all displayed items to those related to PDE4A-D. By ap-

plying an attribute filter to the activity data, our collaborator set an upper threshold for

AC50 values of one µM , which resulted in ten different compounds that inhibit PDE4.

Encouragingly, the fingerprints of four of the ten compounds belonged to cluster 56, prov-
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Figure 7.8: The gene column on the left shows protein targets ranked by the enrichment of
Cluster 56. The selected (orange frame) enzyme subtypes of phosphodiesterase 4 (PDE4A-D) and
beta-adrenergic receptors (ADRB1, ADRB2) rank among the top. The highlights in the compound
column, which is nested within the fingerprint and cluster columns, reveal that compounds binding
to these targets fall into the same fingerprint cluster, Cluster 56. Differences in the chemical
structures between compounds binding to ADRB1-2 and those binding to PDE4A-D can be seen in
the detail view. When looking at the compound column nested within the therapeutic groups column,
the highlights indicate that four out of the seven compounds that modulate ADRB or PDE4 map
to the group bronchodilators. This group refers to compounds that are used for the treatment of
breathing difficulties. Thus, the common bronchodilatory effects of compounds modulating these
two target classes might be the reason why their fingerprints cluster together.

ing that their shared target activity was reflected by similar fingerprint activity patterns.

She was then interested what other compounds were found in Cluster 56. Therefore, she

added all items related to Cluster 56. Overall, the cluster consisted of ten compounds. By

ranking the protein targets by their enrichment of Cluster 56, she learned that two of the

newly added compounds bind to beta-adrenergic receptors (ADRB1, ADRB2), which are

evolutionary unrelated to PDE4. Also, when she displayed the compound structures, she

saw that these compounds were structurally very distinct from the PDE4 inhibitors. At

first glance, it seemed surprising that structurally diverse compounds binding to different



120 Chapter 7. Resolving Path Relationships in Linked Datasets

proteins have similar biological fingerprints and cluster together. However, this obser-

vation became better understandable when she integrated the therapeutic group column

into the analysis. As shown in Figure 7.8, five compounds from Cluster 56, among them

modulators of both PDE4 and adrenergic receptors, are mapped to the group bronchodila-

tors, which refers to compounds that are used for the treatment of breathing difficulties.

Indeed, it is known that both phosphodiesterases and adrenergic receptors are protein

targets that are involved in airway diseases [1, 136]. Hence, as hoped for by the expert,

the biological descriptor, i.e., the clustered fingerprints were able to find therapeutic effect

similarities between compounds. In summary, ConTour helped to reveal complex rela-

tionships between compounds, their evolutionary unrelated targets, and diseases, and it

supported the hypothesis that compounds in Cluster 56 induced therapeutically relevant,

similar cellular phenotypes. Based on this finding, it would be straightforward to suggest

experiments that test the other compounds in the cluster for their bronchodilatory effects

and their use for treating airway diseases.

7.5.2 Exploring Overrepresentation of Compounds with the same Ther-

apeutic Effect

The previous case study has shown that compounds used for the treatment of airway

diseases cluster together. To find out whether this observation could also be made for

other therapeutic groups, our collaborator defined an enrichment score to systematically

calculate the enrichment of therapeutic groups in the fingerprint clusters. By setting a

minimum overlap threshold, she constrained the results to only contain therapeutic groups

that are related to at least three different compounds in a cluster. The ranking of ther-

apeutic groups by the enrichment score revealed that many different therapeutic groups

were overrepresented in individual clusters. For example, seven therapeutic groups showed

a strong, more than 20-fold enrichment in at least one cluster. Thus, the observation made

for airway diseases was not a singular case, but clustering of compounds that are admin-

istered for the same therapeutic indication is generally observed across the data set.

The highest enrichment score (87.9) was obtained for the group hormone replacement

therapy. Of eight compounds mapping to this therapeutic group, seven fell into Cluster

25 and were grouped together with four more compounds, of which two were annotated

for hormone-related therapies. In accordance with the therapeutic role of the compounds,

known targets that were enriched in this cluster were progesterone, androgen, and estrogen

(sex hormone) receptors. Furthermore, displaying chemical structures revealed that all

eleven compounds were chemically very similar steroids, as evident in Figure 7.9. Hence,

in this case, the chemical similarity of compounds correlates very well with their biological

similarity.
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Figure 7.9: To find out whether similarities in the fingerprints of compounds correlated with
the compounds’ classification in therapeutic groups, an enrichment score was used to calculate the
enrichment of therapeutic groups in the fingerprint clusters. The highest score was achieved by
Cluster 25 and the group hormone replacement therapy (selected item with orange frame), which
was thus ranked on top of the therapeutic group column. As indicated by the highlight, this group
and Cluster 25 have 7 compounds in common. The detail view of these compounds reveals that
they are also structurally similar.

7.5.3 Explaining Cluster Compositions by Pathways

Finally, our collaborator wanted to find out whether compounds modulating different

targets in the same biological pathway had similar biological fingerprints and thus cluster

together. This could be expected considering that all targets in a pathway work together

and that modulations of different targets in the same signaling cascade of a pathway

should be propagated, ultimately leading to similar cellular phenotypes. Our collaborator

started the analysis by selecting the important JAK-STAT signaling pathway shown in

Figure 7.10. This pathway is evolutionary conserved across many different species and

plays a role in the regulation of the immune system. When she opened the pathway in the

detail view, she found four clusters that contained at least two compounds mapping onto

the pathway. Interestingly, for all four clusters, it could be observed that their compounds

modulated different targets in the pathway. The most prominent example was Cluster

69, in which six of overall 17 compounds in the cluster modulated one or more targets in

the pathway. Of the six compounds, four inhibited different members of a protein family
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known as kinases, i.e., Janus kinases (JAKs) and the Pim-1 kinase, in the pathway. The

other two compounds modulated the pathway by inhibiting the signal transducer STAT

and the protein BCL that regulates transcription, i.e., gene expression. The collaborator

confirmed that, without pathway information, clustering of compounds with diverse target

activities is often difficult to reconcile. However, ConTour makes it possible to explain

similar biological fingerprints of compounds with diverse target activities by showing that

their targets act in a concerted manner in the cell by contributing to the same signaling

event.

Figure 7.10: The detail view shows the JAK-STAT signaling pathway. Selecting the block of
Cluster 69 on the top left shows that the compounds of this cluster map to several different targets
(graph nodes highlighted with an orange frame) in the pathway. The selection also highlights the
genes and compounds in the relationship view. The (recursive) nesting of the gene column within
the compound column displays the exact compound-target mappings and reveals that the compounds
bind to different targets. This observation suggests that despite the compounds binding to different
targets, their fingerprints clustered together, because their targets are part of the same pathway.
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7.6 Discussion

By using ConTour, our collaborators gained several insights that support the hypothesis

that biological fingerprints indeed reflect similarities among compounds and their biolog-

ical effects on both the target protein and pathway level. By observing our collaborator

during the analyses, we found that she picked up ConTour’s concepts quickly. She used

selections to identify relationships of individual items and filters to focus on the data of

interest. The expert excessively used nesting, as she argued it helped understanding re-

lationships of multiple items much better when she had to identify relationships across

columns. To our surprise, she used nesting not in a static “set up once” approach, but

constantly refined, removed, and added nestings to answer specific questions. We observed

that she continuously used a combination of reasoning based on visualization and refine-

ment using analytical processes and queries. For example, she relied on ranking by various

scores and filtering to identify interesting items, but then refined her queries and adjusted

her next steps based on the visual representations.

The combination of the query-driven relationship view and the various detail views

proved highly valuable to our collaborators. Especially the compound detail view was

frequently used to reason about whether observations made for compounds may be caused

by their chemical properties, but also the pathway view was employed to contextualize the

findings. In summary, the case studies confirm that the interplay of ConTour’s building

blocks is an effective approach for exploring data relationships in drug discovery.

7.7 Summary

In this chapter, we introduced ConTour, a visual analysis technique designed to facilitate

the exploration of path relationships in large cohorts of biological and pharmacological

data. The main interface of ConTour displays items of diverse datasets in a simple, yet

effective column-based layout. We indicate the presence of path relationships between

items of different sets through interactive selection and highlighting, filtering, and careful

alignment of items in nested columns. As we do not display the whole paths, large amounts

of relationships between multiple item sets can be indicated simultaneously. However,

whole path relationships may also be resolved, for example, by repeated nesting or filtering.

Ranking and sorting of items allow for quick identification of relevant relationships and

items, which can be investigated in detail in tightly interlinked views. Case studies in

drug discovery confirmed the practical applicability of our technique: Using ConTour, our

collaborators detected correlations between fingerprint clusters and therapeutic groups and

were able to explain the composition of fingerprint clusters by common targets in pathways.

These findings are valuable indicators in support of our collaborators’ hypothesis that

biological fingerprints can be used to detect meaningful compound similarities and that

fingerprints also reflect the effect of compounds on the cell or organism.

Although we have designed ConTour specifically for the requirements in drug discovery,
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the underlying concept is very generic, such that the approach can be applied to both

other biological and non-biological domains, if the data is structured similarly. Besides

customizing the representation of items accordingly, providing an overview of how sets are

related, for example, in the form of entity-relationship diagrams [30], might be necessary

when users are not as intrinsically familiar with the data structure as our collaborators.

In conclusion, ConTour represents an effective visualization technique for the analysis

of heterogeneous linked data. Similarly to Pathfinder, the main concept to deal with

large amounts of related data items is iterative querying (through selection, filtering, and

nesting) ranking of items, and detailed inspection of individual items on demand.
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Conclusion and Future Directions

The analysis of graphs and linked data is a long-studied, but rich research domain in

visualization, which is relevant to many application domains. In molecular biology, large

amounts of heterogeneous data are generated and analyzed to get an understanding of

biological processes in cells or whole organisms, which may ultimately lead to, for example,

the development of more effective drugs, more accurate diagnoses, and more targeted

therapies. From a visualization point of view the main challenges to be faced are the large

amounts of data, their complex relationships, and data heterogeneity.

In this thesis, we contributed four visualization techniques for the analysis of paths

and the path-based exploration of graphs. These techniques were primarily developed to

support data analysis in molecular biology. More specifically, with EnRoute, we enable

the investigation of pathways in context of large amounts of heterogeneous genomic data,

which helps reasoning about observed effects in this data. Entourage supports the simulta-

neous analysis of multiple pathways and their relationships, which is particularly useful for

judging side-effects of drugs or finding potential for drug repositioning. Pathfinder allows

for the detailed analysis of relationships between biomolecules by supporting the inspection

of multiple alternative paths with associated genomic data. With ConTour, we support

uncovering relationships in a network of diverse types of biomolecular and pharmacolog-

ical data to identify the mechanism of action of drugs and their therapeutic indications.

Our visualization techniques were evaluated in case studies that demonstrated how they

were used by domain experts for data analysis. We chose case studies to evaluate our

techniques, as they are particularly suitable to determine how well visualizations support

visual data analysis and reasoning, and frequently used in visualization research [85, 105].

When regarding our proposed visualization techniques from a domain-independent

point of view, we make two primary observations:

1. We have shown that paths can effectively be used as subsets of graphs to achieve

scalability in graph visualization. With EnRoute, we address scalability and also

heterogeneity with respect to graph attributes. We enable users to interactively

select individual paths in a node-link diagram, extract them, and visualize them

125
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side-by-side with large amounts of heterogeneous attributes. With Entourage, we

address scalability in terms of graph size. We introduced the concept of contextual

subsets, which allows us to simultaneously show multiple partitions of a graph by

reducing them to contextually relevant paths. We believe that paths are especially

well-suited for sub-setting due to two main reasons: First, paths are highly relevant

in graph analysis, as many tasks that are related to connectivity can be broken down

to the analysis of paths. Second, due to the sequential nature of paths, they can

be laid out flexibly. Especially the linear layout proved to be advantageous, as it is

very space-efficient when aligned horizontally or vertically, and allows for intuitive

juxtaposition of node and edge attributes. Additionally, as illustrated in Pathfinder,

linear path representations can be efficiently displayed in a list, which in turn can

be reordered to reflect path rankings.

2. We have shown that iterative querying, ranking, and detailed investigation is a vi-

able strategy for the visual exploration of multiple paths and data items connected

by path relationships. This strategy was successfully applied in both Pathfinder and

ConTour. Pathfinder supports the analysis of whole paths in graphs with rather

few different node types, whereas ConTour indicates only the presence of path re-

lationships between data items, but for many different types of items at the same

time. The key to quickly identify relevant information in both approaches is to en-

able users to flexibly express their interest by means of user-driven querying, which

reduces the whole data space to a smaller, but potentially still large result set, and

user-driven ranking in order to identify the most important elements in this result

set. The visualization of details on demand allows users to further judge the results

and plan next analysis steps. Overall, this exploration strategy can be regarded as an

instance of Keim’s Visual Analytics Mantra [95]: Users analyze first by formulating

an initial query. Initial results show the important. Repeated application of ranking

and query refinement allow users to zoom, filter, and analyze further. Eventually,

we reveal details on demand.

In summary, our visualization techniques proved to be valuable for the analysis of complex

biomolecular data. However, as the underlying concepts of these techniques are generic,

we argue that they can be equally applied in many other domains to deal with large

partitioned graphs, large amounts of attributes, and to conduct comprehensive analyses

of multiple paths.

Future Directions In the future, we consider to further combine our visualization tech-

niques to widen the coverage of analysis tasks. Besides the already discussed combination

of EnRoute and Entourage, Pathfinder might be combined with Entourage as well: En-

tourage could serve as query interface for Pathfinder, where start- and end nodes can be

specified in the node-link diagrams. Furthermore, Entourage could also serve as pathway

detail view for ConTour that is capable of showing multiple pathways simultaneously.



127

When it comes to improving individual techniques, we believe that Pathfinder would

benefit from an overview of similar paths. Pathfinder currently gives an overview of all

paths in the topology view and also provides various methods to judge the similarity

of individual paths. The identification of similar paths would be greatly alleviated by

providing an overview with respect to path similarity that can be parameterized with

different distance measures. Such an overview could be generated by clustering paths

into similar groups, which show a summary representation of contained paths in the path

list that can be expanded on demand. Alternatively, dimensionality reduction techniques

such as multidimensional scaling could be used to reduce paths to points in a scatterplot,

similar to the approach by van den Elzen [169]. Similar paths would then be shown as

points that are in close proximity, whereas points of dissimilar paths are further apart.

The current realization of ConTour focuses on the exploration of relationships between

items of different types. Considering connections between items of the same type would

severely increase the analytical capabilities of ConTour. For example, the judgment of

indirect effects of drugs can be facilitated by including relationships among their binding

partners, i.e., proteins.

Although the exploration of paths is an important part of graph analysis, many tasks

cannot be performed by only considering paths. For example, branches or backward

links may influence signaling cascades in biological networks, but are hard to cover by

path-centric exploration, like in Pathfinder. Consequently, it is desirable to complement

Pathfinder with methods that allow users to query for more complex graph structures that

are eventually added to the topology view. Such structures might also be considered as

contextual subsets of pathways in Entourage. As the display of these structures as node-

link diagrams is less space efficient than paths, an alternative display of focus and context

pathways, where they are merged into a single node-link diagram, might be conceivable.

Approaches like Extended Line Sets [129] or other set visualization techniques could be

adopted to identify individual pathways. Especially with the availability of algorithms

that produce layouts reminiscent of manually curated pathway maps [100], we believe

that interactive (sub-)pathway merging could be interesting research direction.

Finally, we intend to integrate statistical analysis methods. Although humans are good

at recognizing patterns in visualizations, judging whether an observation is an actual effect

in the data or just an artifact due to chance is difficult. Tight integration of statistics in

the visual analysis process allows users to immediately quantify their observations and

thus gives them confidence about their findings.
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