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Abstract

We currently live in a time where rapid development, integration of the
Industry 4.0, hardware/software co-design, and accurate model predictions
are becoming more prevalent in most companies. An accurate simulation
rises the chances of having a good product in the end. The thesis focuses on
analysing and researching the interaction between an external simulation
and a SystemC model. Primarily, the focus is set on designing, implementing
and finally evaluating a framework for enabling a concurrent interaction be-
tween the different simulation models. To achieve the concurrency, a model
based on the client-server network model is proposed. The Server handles
the communication protocol and simulation evaluation, while the client
runs the actual simulation and presents its results. This system framework
solution is named “SimPar”, a name derived from the simulation and parallel
features. Extensibility, security, and energy efficiency play a major role. To
test the created framework, a power-aware smart sensor model has been
implemented in SystemC. It has been evaluated on functionality, accuracy,
and energy consumption. The final SimPar simulation product offers a state-
of-the-art SystemC simulation environment and provides reusable design
principles and solutions.
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Kurzfassung

Wir leben jetzt in einer Zeit, in der schnelle Entwicklung, Integration von
Industrie 4.0, Hardware/Software Co-Design und genaue Modellvorher-
sagen immer wichtiger in Firmen werden. Eine gute Simulation erhöht die
Chancen, am Ende ein gutes Produkt zu erhalten. Meine Arbeit fokussiert
sich auf das Analysieren und Erforschen der Interaktionen zwischen einer
externen Simulation und einem SystemC Modell. Dabei liegt der Schwer-
punkt vor allem auf dem Designen, Implementieren und schlussendlich
Evaluieren einer Framework, die eine parallele Interaktion mit verschiede-
nen Simulationsmodellen ermöglicht. Um die Nebenläufigkeit zu erreichen,
wurde ein Modell vorgeschlagen, das auf einer Client-Server Netzwerk-
topologie basiert. Der Server übernimmt das Kommunikationsprotokoll und
die Evaluierung der Simulation, während der Client die Simulation selbst
übernimmt und die Ergebnisse veröffentlicht. Diese System-Rahmenstruktur
wird ”SimPar” genannt, ein Name, der von den Simulationseigenschaften
und der Parallelität abgeleitet ist. Erweiterbarkeit, Datensicherheit und
Energieeffizienz spielen dabei eine große Rolle. Zur Evaluierung des er-
stellten Systems wurde ein SystemC Modell eines energiebewussten Smart
Sensors entwickelt. Es werden die funktionale Richtigkeit und der Energie-
verbrauch evaluiert. Das SimPar Simulationsprodukt stellt eine SystemC-
Simulationsumgebung mit wiederverwendbare Designprinzipien und Lösun-
gen zur Verfügung.
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1 Introduction

1 Introduction

With the advancements in the field of Hardware-Software development it
is becoming increasingly apparent that the need arises for faster and more
accurate development of models used in simulations. As it was defined by
Elshamy and Elssamadisy [13], rather than focusing on a large problem
by dividing it into smaller and independent parts with the use of “Divide
and Conquer” methodology, it is necessary to approach the problem from
an analytical standpoint. The thesis primarily focuses on investigating
the methods and principles on which an efficient simulation system can
be set up for simulating hardware devices in a virtual environment. It
then proposes its own model for simulation, as well as a hardware model
which should fulfil the requirements set by modern industry. The collective
solution of methods, principles and technologies used in the aforementioned
project is named SimPar. The name is derived from the “parallel simulation”
aspect and from the SystemC being the primary tool used for modelling
and simulation.

This section will give a brief overview of the main motivation behind this
thesis, will go in depth of the problem source, and it will give proposals for
the theoretical solutions. The thesis was done as a part of a larger IoSense
project1 funded by the European Union and co-worked at the Institute of
Technical Informatics - Hardware/Software Codesign research group of
the Technical University of Graz. The project is aimed at the development
and state-of-the-art research in new appliances and technologies related
to sensor communication, security and energy efficiency, among other ele-
ments. More details can be seen on the official site of the project at IoSense
[22]. Theoretical and scientific hypothesis for the parallel execution of the
SystemC simulations with Gazebo system in the background were based on
the work done by Pieber, Ulz, and Steger [34].

1http://www.iosense.eu/
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1 Introduction

1.1 Motivation

Development of hardware devices was historically generally done inde-
pendently from the software development. One of the reasons was that
both the knowledge and experience of the designers that worked on the
modelling of products were either aimed at hardware or software parts. The
requirement set by the professions influenced such divisions and there was
a certain layer of miscommunication and misunderstanding between the
parties which lead to the situation where the work would generally remain
independent until the need to finalize and test the product. As stated by
Teich [43], the other reason is that the modelling standards in the industry
were not catching up with the changes in technology and tools, still relying
on old, but at least proven methods of development.

Originally, there were not many devices, especially small and portable ones,
which offered or required special need of software attention. That changed
in 70’s of the 20th century when first microcomputers arrived at the market
[27]. Microcomputers generally consisted of a microprocessor, a term that is
sometimes used indistinguishable from the microcomputers. Further devel-
opments resulted in microcontrollers which greatly influenced the ability
to customize own code and functions for portable and smaller hardware
devices, but at the same time still resulted in a more divided community
of developers. Finally, the development of fpga (Field-programmable Gate
Array) and the creation of the general concept of soc (System on a Chip)
lead to the need of creating software tools for the hardware developers.
Today these tools are generally known as the hdl (Hardware Description
Language)s and are used extensively by both the hardware and software
developers [15]. One of the most well know hdl are vhdl (VHSIC Hardware
Description Language) and Verilog.

The objective of the aforementioned hdls was to keep the balance of abstrac-
tions to be understandable to both the hardware and software developers
[26]. The balance shifted in the favour of software developers with the
development of SystemC. Unlike other hdls, SystemC focuses more on mod-
elling and simulating a resulting hardware product rather than making a
synthesizable model of it [7]. These models were generally faster and easier
to develop and test, but the simulations can potentially be slow, especially if

2



1 Introduction

programmed on a lower layer of abstraction. That, and the fact that SystemC
is only intended to be used on a single-core cpu (Central Processing Unit)
meant that increasing the performance by splitting the task was difficult.
Once a simulation has started, its instance cannot be tempered with until it
is finished. This lead to problems, one of them being that if everything is
run on one machine there should be enough storage to save the trace data
for long-running simulations.

Teich [43] states that to remedy the problem it is necessary to try and develop
a system for parallel simulation which would not only be applicable for one
model, but rather to allow an easy integration of any subsequent model
insertion and control. But the hardware developers are not only satisfied
with having a simulation system.
It is necessary to provide a communication protocol between the model
and the simulation system, along with a blueprint for developing efficient
SystemC models for more accurate simulations. These models should be
easy to understand and apply. It is necessary for them to be coherent for
both hardware and software developers. The technical models should also
try to provide simulation results on elements like energy consumption,
functional efficiency and processing time.

1.2 Problem Analysis

The design problem rose from a simulation system which was in devel-
opment for the IoSense project by using the traditional approach with the
SystemC simulation. The approach of the design, as well as the problem
description, were based on the work by Pieber, Ulz, and Steger [34].
The system is divided in two parts:

• Gazebo model - a model used for simulating a robot and its interaction
with the environment
• Smart sensor model - a SystemC model which describes a complex

hardware element composed of a microcontroller and sensors

The gazebo model (the robot) would interact with the smart sensor model by
issuing commands. These commands were part of a larger communication

3



1 Introduction

protocol devised on a XML-like schema, where the data necessary for the
simulation would be transmitted. Each time a new message packet is sent
the simulation has to stop before the packet can be processed. Only after the
new packet is processed, the simulation can carry on from the previously
stopped timestamp. This process is very time consuming and can potentially
create a bottleneck if there are many messages already residing in the buffer.
Figure 1.1 presents this process graphically.

Figure 1.1: Swimline model representation of the original Gazebo - SystemC interaction
concept [34]

The following improvements have been proposed to improve the overall
model:

• Create a new communication model - redefine a communication sys-
tem with the use of network capabilities
• Separation between the simulation models - add abstraction between

the SystemC and the interactive (Gazebo) model
• Redefine a new Smart Sensor SystemC model - model a new smart

sensor with focus on energy efficiency

With the proposed suggestions the design steps would remain focused on
the flexibility and extensibility of the model. It was suggested by Lapalme
et al. [25], that this approach would lead to the creation of an environment
which potentially helps both the hardware-software developers in modelling
a separate sensor models and developers focusing on creating an interactive
command system. That environment would be composed of the collection

4



1 Introduction

of individual solutions which would eventually lead to the creation of an
unified methodology named “SimPar”.

1.2.1 Concurrent Simulation System

A proposition was made, to try and create a system which would take the
advantage of running a simulation model with multiple PCs. Emerging use
of a large number of computer devices without direct need of knowledge
or interaction with them, for the purpose of fulfilling a web service task, is
called cloud computing. As stated by Keane [23], this form of web service
is becoming ever more prevalent in use of modelling and simulations,
since it allows for more and better computational possibilities. But, the
implementation of these systems, by using standard cloud approaches,
can be difficult. That comes from the fact that each simulation must be
identifiable for it to be possible to be evaluated. The identification can be
ensured with the use of a proper communication protocol and master-slave
hierarchy, where client-server topology is one of the most prevalent ones.
Such systems are rarely seen, especially in the domain of using SystemC
for handling simulations. Most approaches tend to either change the core
specification of SystemC to run on multiple cores by force or to simply use
a stronger computer for running one simulation. These approaches are not
always reliable and they might not work the same for every model.

The idea is to finally offer SystemC simulation developers a reliable and
model-independent system for running more complex and parameter-
specific simulations. An example of such simulation can be a model which
tries to emulate a complex sensor network for interaction with a dynamic
device, like a robot through Gazebo toolkit [18]. The robot can change its
behaviour based on the readings from the surrounding environment and
from the sensors. To simulate different behaviour based on the data for a
certain time step, multiple simulations are needed. This can be very resource
and time consuming. The proposed simulation system would then be seen
as a framework which can allow for multiple models to be easily added and
controlled based on the needs of the developer.

5



1 Introduction

1.2.2 SystemC Overview

Development of new hardware products, which can range from small nfc

(Near-field Communication) Antenna to complete Smart Sensors, is handled
through diverse modelling and testing. For more portable, extensible, easier
and complete models, it was decided to use SystemC as the hardware-
description language for any further hardware modelling and simulation.

With SystemC it is possible to create a semi-abstract hardware-software
development framework intended to imitate hardware programming with
software approach. What it actually consists of is a set of different C and
C++ based structures and classes, templates and macros used to create an
event-driven simulation interface. Each structure or class in SystemC is
viewed as a “module”. These modules consist mainly of input and output
ports, inner signals and processes. The processes can either be thread or
method based. They are implemented like functions with a special trigger
signal which indicates when the functions are being called.

Unlike programs written in standard C or C++ where a call to a function is
blocking, in SystemC multiple functions, or threads, can be run in parallel,
as each execution is set to be done in one delta cycle [7]. The number of
delta cycles in a function can be controlled by inputting event or time based
variables. A usual programming approach, which is also applied in this
project, is to define functions as threads and set each thread to run for one
cycle, where different steps of a function are controlled through states by an
fsm (Finite State Machine).

While SystemC models are not intended to be used for direct synthesis (i.e.
fpga hardware mapping), it is possible to do so with a set of specially made
software and hardware tools. A SystemC model should primarily be used to
ease the interaction and communication between the software and hardware
development departments, through fast modelling and simulation, as it
allows for an easier understanding between both parties [24]. It can however
be used together with other hdl for a full development cycle, most notably
vhdl or Verilog. This is shown in Figure 1.2.

6
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Figure 1.2: Modelling and development using SystemC and other HDLs

1.2.3 Client-Server Communication

The main goal behind SimPar is the development of the Server-Client system
model for handling multiple SystemC simulations. Each SystemC simulation
is to be run on a separate Client machine. The server has two tasks:

• handles the connection with the Clients
• provides necessary commands

These commands come from some other simulation, where in the current
testing case, that is the Gazebo model.
The communication between the Client and the Server is handled with Unix-
based Socket communication. Since SystemC is a utility library for the C++
programming language, the whole program was developed primarily in C++
with the Socket communication being done in a separate C file. Python was
used for some additional smaller scripting purposes. The program behind
the communication is developed like a framework, allowing for a simple
insertion of additional different SystemC models, as well as classes.

Figure 1.3 shows the graphical representation of the communication and
callbacks between server and clients. The system designed in this way helps
in removing the mutex call usually set on the whole runtime execution to

7
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Figure 1.3: Swimline model representation of the network Gazebo - SystemC interaction
concept

allow for receiving and interpreting the commands between the interactive
device (i.e. Gazebo) and the sensor. Where previously the whole system
had to be put on stop, the new model expends on this by allowing each
sensor communication to be its own separate entity. That helps not only if
the program is run on multiple machines, but also if it is run from the same
computer, since all different socket connections between the main server
and client will be done through a separate thread, rather than a forked
process, therefore saving time and memory [5].

1.2.4 Smart Sensor Modelling

The second part of the SimPar project implementation required an evalua-
tion of a smart sensor hardware device. The development was divided in
two parts:

1. Modelling and Simulation
2. Hardware implementation

The hardware implementation and real-world energy consumption evalua-
tion was done separately as its own element in the overall IoSense project.
The element which was implemented as part of the SimPar evaluation model
was the modelling and simulation of the hardware (sensor system with a

8
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microcontroller). It essentially consists of developing a SystemC model and
evaluating it through simulation.

Since SystemC allows for a verbose modelling through different layers of
interaction, it was necessary to define which key simulation aspects are to
be handled. It was decided to base the whole model foremost on the three
following aspects:

• Energy consumption - keep track of used energy by summing up the
power output of individual modules over the time of the simulation
• Time accuracy - retain the number of hardware cycles needed to process

certain function
• Functionality accuracy - aim for a robust and correct model representa-

tion

Main source of material for the development of individual modules con-
sisted primarily of the hardware documentation and related sources. Since it
was very difficult to retain the model accuracy of one key aspect compared
to the other, it was generally aimed to try and balance out the settings
of each individual module to fulfil the correct end results, i.e. if certain
functions could not be fully implemented, change the time and energy
consumption accordingly. Work done by Ulz et al. [44] served as one of the
main sources of inspiration for the simulation development of the nfc and
security based smart sensor.

Energy Efficiency and Measurements

An important factor in the development of hardware devices is power
management. Power dissipation depends on individual dissipations of
its modules, being influenced both from the hardware components and
software functionality design.
Before finishing the hardware prototype design it is recommended to test
its potential energy consumption. This is of great importance while working
on sensor or portable systems, since having a system which is dependent
on battery requires it to be better optimized to effectively prolong the
life-duration and cost of the device.

9



1 Introduction

Black et al. [7] state that since SystemC was primarily developed as a general-
purpose hdl focusing on transitional and behavioural system models, for it
to be able to capture the energy consumption it is necessary to implement a
mathematical model. The calculation formulas are based on a simple design.
Generally, every module is described through a certain set of power states.
Each power state outputs the typical current consumption defined by the
real-world measurements and is generally taken either directly from the
documentation or based on the behaviour of other, similar hardware ele-
ments. The current consumptions are then summed and multiplied with
the given voltage. Energy is then calculated directly as the integration of
power dissipation through time:

i(t) =
pStates

∑
k=1

ik(t) (1.1)

E =
∫

u(t) ∗ i(t)dt (1.2)

During the design of the Smart sensor as part of the SimPar evaluation it was
necessary to pick low-consumption hardware elements. These components
are generally found today under the advertising name “ultra-low power”.
They are characterized by a low power consumption which generally ranges
between a few milliamperes to even micro-amperes, and feature one or
several additional low-power (sleep) states.

While most components generally consume energy, some other actively par-
ticipate in the process known as “energy harvesting”. During this action an
additional power is drawn to power the device. El-Sayed et al. [35] mention
that this process is usually done through a special hardware element, in
this case that being an nfc chip. Sometimes the drawn power is sufficient to
operate the whole device instead of a battery.
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1.3 Thesis Contribution

SimPar was developed because of several needs found both in modelling
and simulation of sensor systems. Because of that, it can generally be viewed
as a collection of solutions rather than a single solution. The fields in which
these solutions are applicable are SystemC behavioural modelling and de-
velopment of a system for an environmental simulation of hardware models
(e.g. sensors) and actuators (e.g. robots). Some other ideas found in this the-
sis can also be used for general hdl modelling using some other language,
for building a simulation-based client-server platform, for model creation,
energy monitoring, parameter extraction, and efficiency optimisation.
Even though SystemC is becoming increasingly popular, and is being used
as a hdl for fast modelling and testing, there have not been many standards
and research work done in this field aimed at integrating models created
in SystemC with other models in a larger simulation environment. SimPar
tries to change that by offering a simple to learn framework and commu-
nication protocol which allows for an easy integration and configuration.
Engineers wanting to use this approach can easily model an independent
SystemC model. Afterwards it is only necessary to adapt this model to the
present communication protocol and to define the interactive model of the
environment, which can be run from any other simulation platform. Since
SimPar is build using the client-server topology, it can easily be defined how
many instances of the SystemC models can be run, where each instance can
be independently configured and monitored. This offers a better flexibility
and resource management than most on-the-go2 programmed systems.

1.4 Thesis Structure

For an easier development and handling of the SimPar methodology, the
overall project was split into two main phases as seen in Figure 1.4. The
first phase titled “Server-Client Model” is concerned with the development of
the template framework for SystemC multi-threaded simulation handling.

2simulation systems build for a specific purpose rather than being general

11
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The second phase “SystemC Model” focuses on the modelling and simula-
tion of an actual SystemC model which is then evaluated for the energy
consumption and which results are then compared with the real-world
measurements.

Figure 1.4: Main strategic plan for SimPar development

The thesis consists of the following chapters:

1. Introduction - current chapter, theoretical background and directions
2. Related Work - analysis of similar research work in the field
3. Design - theoretical and practical background behind the SimPar (algo-

rithms, directions, tools, etc.)
4. Implementation - explanation how the end product was finally imple-

mented by using various software tools and techniques
5. Evaluation - analysis of the end results, measurements, etc.
6. Conclusion - final word and future work

While the “Introduction” and “Related Work” are mostly concerned with
the overall theoretical background of the thesis, the other three chapters are
focused on the features of SimPar.

12



2 Related Work

2 Related Work

This chapter inspects the related research work on the elements which
are covered in this thesis. The primary purpose of the related work was
to help in devising a design and subsequent implementation, as well as
to follow the current trends in the state-of-the-art research. Some of these
breakthroughs in SystemC, energy efficiency and smart sensors fields have
been carefully analysed and partially implemented while others have been
used as a guiding model to be build upon.

Most of the related work that has been analysed is indirectly correlated with
the system behind this thesis - SimPar. That is mostly due to the nature
of the SimPar methodology, where the central topic is based upon new
approaches of handling SystemC simulation as its own entity on a higher
abstraction layer in a networked system, something that has been not much
researched on. As seen in the research papers, they are mostly focused
on creating application-specific models and simulation systems based on
the time and place of the research. Because of that, only the most relevant
papers are going to be extracted and elucidated in this section. They are
divided in three subsections, analysing concurrent and parallel running
SystemC models, energy tracking techniques and smart sensor modelling.

2.1 Concurrent SystemC Models and Simulations

In modern times, a big focus in regards to the modelling and simulation is
placed on the concurrent simulation of models. Depending on the practice,
there exist three common approaches to these simulations:

1. Multi-instance one-simulation - instances of different elements in a model
are run parallel inside one occurrence of a simulation

13
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2. One-instance multi-simulation - there is only one instance of interest rep-
resented in a model which can be run parallel in multiple simulations

3. Multi-instance multi-simulation - multiple instances of a model can be
run parallel together with multiple simulations

As it can be seen from the list, there are also different levels of complexity
depending on the concurrent type of simulation run.
The example of the first type can be seen in the research paper titled “Con-
current Simulation Platform for Energy-Aware Smart Metering Systems”
from Park et al. [33]. In this work, a proposal and implementation was
made in which a smart house was designed as a model where each house
appliance of interest (i.e. some object, fan or TV) was defined as a sepa-
rate instance inside the model which could be run concurrently. SystemC
was used in modelling and running the overall simulation. The goal was
primarily tasked with handling energy consumption by monitoring each
individual instance, as can be seen in the Figure 2.1.

Figure 2.1: Various instances of monitoring power dissipation of home appliances (Park
et al. [33])
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While this method proved to be effective in the task that was given, it still
did not provide a solution for running multiple instances of a SystemC
simulation which is regarded as one of the main problems behind this
simulation framework, e.g. defining different smart houses with diverse
power model parameters.

With the development of SoC (System on Chip) devices, so came the de-
velopment of the MPSoC (Multi-Processor System on Chip) which greatly
influenced the research in the field of parallel modelling and simulation.
Schumacher et al. [39] described one of the examples of an architecture
that is developed for the SystemC simulation of MPSoC is parSC. The ar-
chitecture uses different cores of a computer to try and synchronise the
processing behaviour seen by the MPSoC devices. It results in a speed-up
up to 4.4 compared to the classic SystemC implementations with the use of
four cores.

The other important works in this field are work on parallel simulating a
model using both the gpu (Graphics Processing Unit) and cpu interaction,
by Sinha, Prakash, and Patel [41], and work by Huang et al. [21], where a
general solution was proposed to the idea of developing SystemC models
which allow for a parallel simulation execution in embedded systems. The
second article in particular is important, since it defines a foundation on
which many other works are based on. It does that by defining a state
machine approach for handling different SystemC simulation instances.

2.1.1 Concurrency in Relation with SMP Machines

As it is apparent, many conventional SystemC researches have not dwelt
too much into the concurrency in relation to the multi-instance multi-
simulation field. On the contrary, there exist several papers that try to exploit
parallel simulation based on the SystemC models on the smp (Symmetric
Multiprocessing) machines. They do this by trying to exploit the CPUs
present in the smp machines for running multiple threads. In this subsection
two of those research papers are mentioned.

First custom implementations date back to 2009 from Ezudheen et al. [14],
when three researchers from the Intel Corporation published a paper on
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parallelizing SystemC kernel on smp machines. This work focuses primarily
on changing the kernel of the SystemC process handling by programming
techniques and leverage for the parallel execution of multi-core machines.
The changes in the design are presented to be similar to the previously
researched “Distribution Library” which is primarily aimed at tlm (Transac-
tion Level Modelling) rather than the cycle-accurate modelling. The changes
for the low-level handling can be generally exploited by changing the be-
haviour on how the “scheduler” interacts with the running processes.

Figure 2.2: Proposed SystemC Parallel scheduler by Intel (Ezudheen et al. [14])
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In the Figure 2.2 it can be seen how the scheduler behaves. It queues all the
requests as it normally would in the sequential kernel. Afterwards, it creates
the multiple execution environment, which has the information related to
the currently executable threads and processes. The threads are assigned to
each particular cpu (Central Processing Unit), sometimes grouping similar
processes (threads) inside one cpu to allow for better cache and memory
handling. After all runnable processes are executed and finished, the process
proceeds to the update step which is identical to the sequential kernel.
Issues can arise during the last step by updating the process handler. Namely,
the update queue can only accept one request at the time. To counter these
inconsistencies, an implementation using the linked lists was suggested.

The overall results show that it is possible to get much better performance
than with the sequential kernels, ideally going up to the times-n (“n” being
the number of cpus) faster execution time, but in reality, it is usually smaller
due to the synchronisation between processes. Several methods have been
proposed which help in synchronising threads, one of them being Manual
Grouping where each group of processes is assigned separately. This method
shows better overall performance, but when the simulations are too large
(have many processes) and there are many cpus presented by the smp

machine, then it is necessary to use the automatic groupings.

The second researcher paper of interest on the smp machines, done by Aline
et al. [1] from the Laboratorie d’Informatique de Paris 6, takes a similar
approach by presenting their own scheduler engine build upon tlm2.0.
Their scheduler is named “SystemC-SMP” and is build upon the previous
works on the tlm-dt (Transaction Level Modelling with Distributed Time).
The paper claims that they managed to achieve 1.8 speed-up compared to
the sequential simulation.

The architecture takes advantage of the aforementioned tlm-dt for provid-
ing a virtual platform (user defined) for running individual SC THREADs.
The SystemC-SMP works as a kernel scheduler for assigning specific SC
THREADs to the POSIX Threads. The abstract representation of the system
can be seen in the Figure 2.3.
For synchronisation purposes, the architecture takes advantage of the events
from the core SystemC commands. These events cycle through three states:
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Figure 2.3: SMP Parallel SystemC Architecture (Aline et al. [1])

IDLE, WAITING and NOTIFIED. They are controlled with the wait() and
event.notify() commands.

2.2 Energy Consumption and Power Estimation

Energy optimisation is a topic of interest found in many research papers,
especially those focused on hardware simulation development. The reason
comes from the fact that a precisely-developed simulation model can help
in reducing cost and time during the development of real hardware in terms
of predicting the energy consumption and optimizing it beforehand. As it is
a strong point in industry, so it is also in this thesis.

Power measurement is used in the evaluation during the testing of the
concurrent simulation platform, researched by Park et al. [33]. In the paper a
simple, yet effective power model, was used where each device is described
trough certain set of states. Each state needs a specific amount of power to
use during the operation. During the operations the consumed energy is
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calculated as sum between the products of power and time in found states.
An example from the paper can be seen in the Figure 2.4.

Figure 2.4: Power values during different states of a fan (Aline et al. [1])

The previously mentioned model is effective, as it is described in the paper,
because it captures most of the power that such a device would use. In that
process it mainly covers the main operational and standby states. There
exist always additional power leakage which is hard to predict and which
was addressed in the paper. The model resulted in the correlation of 0.973

compared to the real world measurements.
As it is observed, it can be seen that generally, research papers regarding
the SystemC simulation mostly fall in either the tlm, behavioural, or system
level category. Since tlm is of a higher abstraction level, which puts focus
on the communication between modules rather than interworking of ones,
there are not many quality papers that show a good energy-consumption
model. One of the papers that seems to be focused in this field of tlm

power estimation is titled “A Power Estimation Methodology for SystemC
Transaction Level Models”, by Nagu, Ing-Chao, and Vijay [30]. The paper
however goes more into the detail on how the energy model is build around
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constructing a hierarchical representation of a transaction level data, and a
power model interface for mapping augmented power information, rather
than how it would be possible to make a standard approach to energy
estimation with tlm SystemC models.

A common idea among the designers of power models, especially among
the researchers of sensor networks, is the use of power states. As already
mentioned, power states are easy to implement and they generally result
in good accuracy of the results. In the article submitted by Schmidt et al.
[38], power states are separated between the inner states of modules and
transition states. Transition states are the ones associated with transition
between power states for wireless communication.
The formula used for the computation of energy measurement is:

E = ∑
state

Pstate ∗ tstate + ∑
trans

Ptrans ∗ ttrans (2.1)

Figure 2.5: FSM model of a transceiver (Du, Mieyeville, and Navarro [12])

The use of power states is generally controlled through a fsm (Finite State
Machine). In the work of Du, Mieyeville, and Navarro [12] a thorough expla-
nation was given on the inner states and their dynamic, seen in Figure 2.5.
Each given state has different current consumption, where they also tried
to model the different consumption for the transceiver based on the dBm
values, presented in Table 2.1.
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Table 2.1: Current consumption values of the Transceiver model (Du, Mieyeville, and
Navarro [12])

Mode Consumption

Sleep 20 µA

Idle 426 µA

Rx 18.8mA

Tx(0dBm) 17.4 mA

Tx(-5dBm) 13.9 mA

Tx(-10dBm) 11.2 mA

2.3 Breakthroughs in Sensor Modelling

The idea behind modelling sensors is made on the aspect that the virtual
sensors should maintain indistinguishable features compared to the real
world counterparts. There exist different features which can be subjected to
analysis from a sensor model. The main features are the ones directly related
to the functionality of a sensor. As modern sensors themselves can also be
seen as small computer-based machines, a question is stated, can sensors
pass the Turing test? This aspect of sensors is discussed and analysed by
the work of Siegel [40].
In the mentioned work, software agents are proposed which try to fulfil
conditions that the sensor has low level adaptation, analog-to-digital con-
version, linearisation and calibration, as well as network communication
management. These aspects can be difficult to implement, due to the hard-
ware and software constraints and developers time. The scientific work on
Virtual Sensor, done by G. Hoekstra et al. [16], proposes the concept of
modelling sensors to be done at the highest level of abstraction, so that it
enables a sufficiently accurate characterization of the total system behaviour.
The virtual sensors in a system should have an option to be validated.
While the research work concerning this thesis was written with using
SystemC as the main modelling tool, other popular tools include VHDL
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and Verilog. A vhdl model was specifically built for a Smart Sensor and de-
scribed in the paper “vhdl Model of Smart Sensor” by Bagade and Limkar
[4]. This work presents both the economical importance of developing smart
sensors, as well as the vhdl approach for a potential fpga synthesis. The
model and simulation itself are fairly simple, mostly being focused on the
analog-digital converter and the use of the fir (Finite Impulse Response)
filter. They also focus on providing the parallel simulation for the vhdl

model, which showed similarity to the presented SystemC Smart Sensor
model.

A more focused work on specific hardware component was placed on
investigating how to model and simulate rf (Radio Frequency) devices,
like nfc. Several works exist in this field, among others those by Navarro,
Migliato-Marega, and Carrel [31]. Here, a nfc module was built in a special
simulator by using a C# programming interface and tests were conducted
by analysing if the auxiliary devices (microcontroller and a sensor) are able
to fully operate given a certain power input rate from the energy harvesting.
It was concluded that with the presently selected sensor and microcontoller,
it is not possible to fully power the device by a small margin. This is very
important since it shows how significant it is to provide a good model and
simulation results during the development of a smart sensor.

2.4 Relations and Improvements

In the previous sections, short descriptions were given for the individual
related work, many of which can be considered as state-of-the-art in the
field. In this section, a brief overview of the relations and improvements is
given between the SimPar solution presented in this thesis and the ones that
have been researched and analysed.
Table 2.2 showcases general similarities and improvements compared be-
tween the SimPar and the related work listed and described in previous
sections. “Similarities” lists elements which can be found both in the pre-
sented work and the related work, while “Improvements” primarily lists
elements that are implemented or found in the presented work, but not in
the work of the related research paper.
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Table 2.2: Comparison in relation to the related work

Scientific paper Similarities Improvements

“Scalably Distributed
SystemC Simulation for
Embedded Applications”,
Huang et al. [21]

Have a master con-
troller and slaves (sim.
instances) controlled
with a protocol

Proposed a network-
based approach as op-
posed to the local one

“parSC: Synchronous Par-
allel SystemC Simulation
on Multi-Core Host Archi-
tectures”, Schumacher et
al. [39]

Linear speed-up com-
pared to number of
cores (or threads)

Possible use with only
one cpu independent
from the os

“Parallel Simulation of
SystemC TLM 2.0 Com-
pliant MPSoC on SMP
Workstations”, Aline et al.
[1]

Both use the POSIX
Threads

Different approach,
focusing on the
Behaviour and Cycle-
accurate model rather
than tlm

“Battery-less Near Field
Communication Sensor
Tag Energy Study with
ContactLess Simulation”,
Navarro, Migliato-
Marega, and Carrel
[31]

Similar technology and
the nfc chip is from
the same company

Reduced focus on the
analogue rf behaviour,
while more put on
the protocol and digi-
tal handling

“Energy modelling in sen-
sor networks”, Schmidt et
al. [38]

Power states and calcu-
lation methods

Inclusion of more
power states

“Modelling Energy Con-
sumption of Wireless Sen-
sor Networks by Sys-
temC”, Du, Mieyeville,
and Navarro [12]

Use of power states,
modelling similar
hardware

Using newer energy
consumption measure-
ment approaches

23



3 Design

3 Design

For every successful practical implementation it is necessary to research
the theory behind its structure. In this chapter a strong notion is set on the
scientific background behind both the first and the second phase of SimPar.
Algorithms, individual methods, design patterns and methodologies, which
were used and proposed, are analysed.

3.1 Client-Server Model Design

The first phase of the design is focused on envisioning and finally creating
the design plan for the implementation of two applications:

• Server application - for handling the simulations
• Client application - for running the simulations

In general, both applications will contain the same network core, carefully
constructed apis (Application Programming Interfaces) which stay hidden
behind a programming façade. The client application should provide a clear
interface for integration with the SystemC library. The mentioned core
library is not needed on the server side, since the server should operate on
handling instructions through plain messages rather than having a direct
input into the simulation work-flow. In other words, the server can change
and influence which parameters define a particular SystemC instance, when
the simulation starts and when it should end. The client side interprets the
received commands and handles the simulation accordingly.

The application design will follow the principles of program design which
includes class and sequential process design of the uml (Unified Modelling
Language) and the network protocol behaviour.
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3.1.1 Server-side Application Design

The server in SimPar behaves essentially as a stand-alone application de-
signed to handle and instruct clients on how the simulation should be
handled. Because of that, the server application should be able to be either
run on the same machine, together with the client application instances, or
on a separate computer. The server in this case fulfils the basic definition of
a host machine which is able to handle request-response messages from the
clients, as stated by Andrew [2].
The server has two main tasks with the following functionalities:

1. Handle client connections – initial, continuous thread

a) Set up an initial configuration
b) Wait and then connect an incoming client
c) Handle client information
d) Disconnect the client when the connection ends

2. Handle client communication – additional thread, for each client

a) Keep track of the protocol steps
b) Send and receive messages
c) Interpret incoming messages and create own commands

During runtime, the server instance should enter an infinite loop with one
thread or sub-process reserved for connecting and disconnecting hosts.
Generally, it is aimed to make the server application as error-tolerant as
possible, since it is advisable that the application should continue running
even if a problem occurs with one of the client instances.

Handling multiple clients simultaneously

During the run-time of the application, the server keeps the information
related to each individual client. That is done through keeping tab of the
specific state of the client, from opening to finally closing the connection.
Table 3.1 showcases what data is kept in the table for each individual client.
“Client id” represents the unique id (Identification) given to each individual
applicable client machine. “Ip address” and “port number” are unique
identifiers for a socket and only one of those can be open at any given time.
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“Status” is the current active state. “Simulation” is the identifier and label of
the simulation which is currently tied to a client 1, while “Command” is the
current command in the communication protocol.
Each client is uniquely identifiable with the specific socket properties (ip
(Internet Protocol) address and port), but also with the id number.

Table 3.1: Client data on the Server side

Client ID IP Addr. Port Num. Status Simulation Command

1234 127.0.0.1 44380 State 1 Counter sim. output

4652 192.168.3.1 44381 State 3 Smart Sensor sim. start

2564 112.35.4.1 44382 State 2 NFC read comd.

4658 192.168.3.1 44386 State 3 Smart Sensor sim. stop

... ... ... ... ... ...

The communication between a client and the server follows the standard
procedure described by Andrew [2], set by the protocol descriptions in the
tcp/ip (Transmission Control Protocol / Internet Protocol) layer. After the
initial configuration, the server will keep its listening port open and will
wait for a packet which signalizes the start of the handshake procedure.
The problem arises from the need to keep the program going for both the
handling of the client connection and each individual simulation.
To make it possible for the server to, at the same time, listen to the new
connections, but also handles the already established ones, it was necessary
to use one of the following methods:

• Forking - by creating sub-processes for each new client
• Threading - by creating new threads for each new client
• Select - by using an interrupt handler and handling each individual

client as a separate file descriptor

1One client can have multiple SystemC simulation models, but needs to create a new
connection for each one of them

26



3 Design

Forking can be applied by allowing in design to create a new sub-process,
from the main process, each time a new client wants to connect. This new
child process will enter the protocol loop, that is, the part of the code
intended to cover the standard communication between the server and the
specific client. The main process is essentially a loop which is blocking and
is interrupted once a new request for the connection arrives. An advantage
is that this method is easier to implement than other ones, but it can be a
bit difficult to manage, since all created child processes retain the previous
allocated memory during the initial stages of the server, even though they
are not used on later.

Threading is similar to forking in sense that it creates a parallel and com-
pletely independent part of the program. The difference here is that the
inner loop, which handles the new upcoming connections, is actually han-
dled in a thread and thus is not a direct element of the main process.
All new connections are also maintained through threads instead of child
processes.

Select is different from both forking and threading in that it enables han-
dling of multiple clients through the services offered with the C socket api.
It ultimately sets a service which is blocking and which waits for an action
from the socket, it being to read or to write. New clients are received by
creating new sockets and each socket is labelled with an unique identifier.
When a request is received, a function should be put into place which
handles the checking of the unique identifier and handles the response
accordingly.

Each of the described methods has its advantages and disadvantages, but
generally it was decided to stick to the threads for the following reasons:

− Better portability and support between the os

− No significant performance difference between forking and threading,
Hauser et al. [20]

− More flexible than forking, and especially, than the select procedure

Both threading and forking are at an advantage by making it easier to
construct fault-tolerant responses to sudden or planned disconnections,
both by the server and client application.
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Protocol for the communication between Server and a Client

Each potential client connected to the server is viewed as an individual
entity. The main goal of each clients is to successfully connect to the server
and to start a simulation session. But to start this procedure it is necessary
to define a certain communication protocol. As stated by Bonaventure [8], a
protocol defines rules for the communication between two hosts. It helps
in determining the current state2 during the communication, any potential
errors, as well as by adding flexibility in moving between the current,
previous and future states.
The flowchart which presents the communication protocol designed to be
used in SimPar can be seen in the Figure 3.1. The cases written (Case 0, Case
1 ...) encapsulate the entity cases of the execution, but also the switch cases
designed to be used in the actual program implementation.

The message protocol is made of three main steps:

1. Handshake
2. Commands and parameters exchange
3. Simulation handling

The communication session between the server and a client starts with the
server accepting the client request for the connection through the handshake
procedure. To establish the connection it is necessary for the client to send
an appropriate connection code. This code is used to identify the client, but
also to set an appropriate simulation command framework. If the received
code is wrong3, the protocol will immediately terminate. This step also
serves as a security measure.
The connection codes are build upon the following pattern: 1xxx, 2xxx, ...
The first number in the connection code dictates the type of the simulation.
Examples: 1231, 2564, ...

The second phase of the protocol is focused on exchanging messages be-
tween the client and the server concerning various commands and param-
eters. Each packet contains a certain command message. The commands

2a state refers to both the status of the current message to be anticipated and the one to
be sent

3not beforehand registered on the server
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Figure 3.1: Message protocol used between the server and a client in the SimPar solution
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depend on the simulation model and have to be defined by the designer,
but more than often they consist of various values used for the parameter
definitions. This step consists of Case 2 and will continue until a special
command is given. For each iteration, the client sends a command, the
server interprets it, and sends back an acknowledgement message.

Finally, after the initial parameters and other command inputs have been
received, the client will send a special command to start the simulation.
This is indicated through the Case 3 as seen in Figure 3.1. Any command
received during the run-time of the simulation will not be registered. Only
when the simulation is finished will the server notify the client. Afterwards
the client can either repeat the second state of the protocol by sending
additional commands or it can send a special command to terminate the
communication, ending the protocol session.

3.1.2 Client-side Application Design

The Client is designed as a host which handles the simulation. It contains
one (or several) SystemC model(s) which runs and configures the simulation
based on the commands that was received on input.
The Simulations are independent and handled by the factory method based
classes during run-time. That is done through the standardized approach
of configuring the simulation and the trace file (signal tracing). Each Client
needs first to connect to a running Server with the correct ip address, port
number and its own connection code. After the connection is successfully es-
tablished, the protocol handles the communication and simulation running
on both sides. Figure 3.2 illustrates that graphically.

The focus was kept on developing the same interface for all simulations.
That includes setting up the connection, reading commands and passing
them to the simulation. The framework, around which the client application
is designed, is based on a similar principle like the server framework, with
some additional simplifications and changes.

The client application would consist of implementation classes grouped
in three categories: socket communication, model and simulation, and
extra tools. The socket communication classes would be very similar, some
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Figure 3.2: Client host initialization and communication

identical, to the server application classes, since they use the same template.
The main difference would be in how the client behaves by setting up a
connection.
The following steps are taken when setting up a new client host process:

1. Set up a network address through the initial configuration
2. Define the socket interface by connecting to the already known server

address (ip address and the port number)
3. Call the “socket handler”, which is essentially a class which offers the

services for setting up and maintaining the connectivity to the server

Before the network initialization commences, the client should set up the
appropriate simulation. That is already predefined by the input code given
to the start of the client application. Based on this code, the server will also
automatically known which current SystemC model is being run on the
client side.
After the simulation ends (SystemC model ends its session), both the simu-
lation objects (object model, trace files, etc.), as well as the network objects
should be handled and closed accordingly4.

4Necessary both for memory deallocation since it is a C++ application, but also for
safely saving the results
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SystemC model integration handling

The handling of individual SystemC models has been designed in the
following way. Each separate model should be easy to include. All the
necessary simulation files would be contained inside one source folder.
Inside this folder it should be possible to insert any number of additional
sub-folders, each dedicated to one individual SystemC model. A model can
be developed independently from the client application and when it is done
and ready, it can easily be integrated into the whole framework.
The integration of new SystemC models should heed the following steps:

1. Create a new sub-folder inside the main “simulation” folder and
copy the whole source SystemC model code inside the newly created
sub-folder

2. Create a new C++ “Handler” class inside the predefined “sim handler”
sub-folder which should inherit the general simulation virtual class
for implementing the necessary functions

3. (optional) Add any additional functions or signals to the newly created
simulation class. The class should consist of the signals and macro-
modules which are able to be interacted with during the client-server
session for parameter modification and changes

4. Create the “Top” class for calling and handling the SystemC simulation.
This class inserts a virtual class named “Simulation” for defining the
necessary members and functions

5. Extend the factory simulation function by adding a new code for the
newly created simulation identification, as well as the protocol for
message handling and control

Adding new simulation handlers is simple, but it creates a new layer of com-
plexity by introducing new designs and protocol definitions for individual
simulations every time a new simulation is introduced. That has to be done,
since SystemC models can be developed in various ways and introducing
one standard can be very limiting. It is possible however to develop a Sys-
temC model which would follow the guidelines of the simulation handling
from one of the already integrated models and thus reducing the time and
effort needed to adapt new simulations.
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3.1.3 Design Patterns

The program build behind the client-server interaction follows a specific
coding standard. Many of the elements were adapted to be easily read
and further extended if the need arises. That was done for the purpose of
allowing other developers to use the given template of SimPar and apply it
to their own models.
To fulfil this goal, the design of the system follows two main principles:

• Adding extensibility to the system through the use of design patterns
• Making the system portable by handling the cases of different operating

systems

Since the system optimisation for making it runnable under different os is
seen more as an implementation problem, in design only the specifications
of the used design patterns are going to be mentioned.
What are design patterns and why were they used? There exist many
definitions, but in general they represent a blueprint used as an over-layer
for a general construction model. They can be used in many different
fields, from psychology to architecture, but in this thesis they are generally
associated with the software. As stated in the work of Gamma et al. [17],
each design pattern consists of four elements: pattern name, problem, solution
and consequences.
In this section, each design pattern applied during the development of the
client and server applications of the SimPar system are explained.

Wrapper Façade

The program was designed and implemented using extensively the wrapper
façade design pattern. First described and standardised in posa2 (Pattern-
Oriented Software Architecture) in Schmidt et al. [37], this pattern is used
to describe the encapsulation of the functions and data provided by existing
non-object-oriented apis (Application-Programming Interface) with a more
object-oriented, extensible, robust, portable and maintainable interface.
Since both the server and the client side use the sockets for in-between
communication, the actual development of socket functionalities follow
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Unix-based C functions. Because the programming language C is not object-
oriented, to make the use of the functions more robust and open to multiple
classes and uses, an approach was needed to make this development easier.
General guidelines were followed set in the paper Schmidt [36], which
describes the implementation of the wrapper façade in the general C++
object-oriented environment.

Figure 3.3: Initializing socket connection through a wrapper façade design

The way how this design pattern is used can be best seen in the Figure 3.3,
which is an abstract representation of an example design of the used Socket
class and the C api interaction. Essentially, C Socket functions are all placed
and implemented in a separate file. This file can be manipulated and up-
dated with new functions independent from the rest of the application. The
functions which are implemented follow the C programming guidelines.
Separately, individual classes are implemented in C++. Each of these classes
can be used to fulfil a different Socket protocol role, from establishing the
connection to sending and receiving data. Classes also consist of own func-
tions which in turn call the C api functions. By following this approach, the
user who uses the classes to initiate the objects in his code does not need to
know, or even make direct interaction with the C api classes. That allows
for an easier development and understanding of the code, as well as inner-
correlation between individual programs written in different programming
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languages (in this case those being C and C++).

Wrapper façade was also used to enable certain classes to be independent
from the operating system in use. The examples are threads and classes
which provide functions that are independent of the programming platform.
In this way, an user extending his own program with program written for
different os can easily call a function or initiate an object without explicitly
stating how the code should be called and run. That is done by specifying
different code segments of the code which are dependent on the os that
they are run and compiled during the compile-time. An example on how
this approach is defined, which has also been used during the development
of SimPar, can be seen in the work of Schmidt [36].

Singleton

First stated in the primer book of the design patterns commonly known as
GoF (Gang of Four, Gamma et al. [17]), singleton is described as a creational
design pattern.
It is a simple pattern used primarily for two purposes:

• Ensure that a class only has one instance and a global access to it
• The defined instance should be initialized on the first use

Figure 3.4: Thread Handler class designed as a singleton class

In terms of the overall design, singleton was designed to be used on several
occasions, primarily to allow global access of functions and variables used
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by all different dependent and independent classes. Singleton was also
heavily used to enable the use of the global functionality of service and
tools. Table 3.2 shows different use-cases of the potential singleton classes
and for which application side (server or client) they were designed, while
Figure 3.4 presents a concrete design solution used for a class designed to
handle thread creation based on different operating systems5.

Table 3.2: Design of the singleton design pattern in SimPar

Class Description Application
side

Message handler Used for checking client connection
code and message protocol

Server

Stylist Terminal colour log printing (multi-
platform)

Client & Server

Thread handler For thread creation, only one instance
allowed

Server

Hash Map handler Creation and handling of the hash
maps used for client connections

Server

While singleton design pattern offers a good quick solution for otherwise
closed object-oriented problems, it also comes with its own critiques and
issues. Many considered this design pattern to be actually an anti-pattern.
As described in Bhardwaj [6], singleton can be easily misused, since global
initialization is worse on the performance and unit testing, and program
flow control can be more difficult to set.

Strategy Pattern

To further increase the extensibility and make an easier use on the user
side of the application, a design proposal was made to incorporate strategy

5Between Windows and Linux solution and Solaris solution
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pattern as well. This design pattern is build on the principle which allows
the user to call and use a specific algorithm, but with hiding the imple-
mentation details. Programs set in this way are open for extension, but not
for modifications. As stated through the general definitions found in the
work by Gamma et al. [17], the strategy design pattern is used when there
exist closely based implementations of the same general action. In this case
the user is only concerned with running an appropriate function and not
with the type and implementation of that function on the other side of the
program.

Figure 3.5: UML class diagram of the strategy design pattern used for the design of server
client handler

In the context of the SimPar project, the strategy pattern was applied dur-
ing the design of the network socket handling of users on the server-side
application. To allow for a parallel and simultaneously multiple-handling
of clients, several of the implementations techniques were open to be imple-
mented. As mentioned previously, two main techniques were implemented
and those were forking and threading.
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To allow the program to be independent of the os
6 and to allow for a differ-

ent performance evaluation, a central function for handling the client was
implemented, where the approach used is determined during the run-time.
This is done generally through the command line and can be changed any
time the server application is run again. By using this approach, a certain
level of flexibility and usability is added, where any changes done to the
main user-handling module are independent of the handling techniques
being used (in this case, forking of threading). Figure 3.5 shows the design
of the class diagram that was used in the project.

Factory Method

The design of both the server-side and client-side applications were aimed
at creating a development environment which would allow for an easier
use of different functions and their instantiation through objects. One of the
design patterns aimed at fulfilling these requirements is the factory method.

Listing 3.1: Initiating correct simulation object using the factory method function

simc : : Simulat ion ∗sim = factoryMethodSimulation ( connCode ) ;
sim−>i n i t i a l i z e S i m u l a t i o n ( ) ;
sim−>setTraceName ( connCode ) ;
sim−>processTraceOptions ( ) ;

The factory pattern is used in several occasions, mostly to provide different
object handling, e.g. different SystemC model instantiation. Client-side
application uses the benefits of the factory method in its design. Each
simulation model has its own handler and a different set of messages
used in its protocol. The instantiation of the simulation object happens
during the run-time, where it is only necessary to provide the code for the
specific simulation. In fact, based on the simulation code, the application
will automatically initialize the correct object and assign all the required
functionalities to it. A snippet of that code can be seen in Listing 3.1. The
full class design is presented in Figure 3.6. Here, two different simulation

6Primarily Windows, Linux or some other Unix-based system
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Figure 3.6: UML class diagram of the factory method design pattern used for the handler
of different simulations

handlers were initialized, one for the “Counter” and one for the “Smart
Sensor” simulation model. Due to the flexible nature of the design, it is
possible to easily add additional SystemC models by attaching new handlers
to the factory method class named “Simulation Handler”.

Scoped Locking Idiom

Scoped locking is a software idiom primarily used to ensure that the allo-
cated resources set for a specific action during the run-time (like mutex)
that is synchronisation-dependant, are also released once the hold on that
action ends7.
While the definition of the context, problem and solution is similar to the
concept of design patterns, idioms are different in the way that they are con-
fined to a smaller context, usually under certain constrains and more than
often, tied to a specific programming language. The definition of idioms

7i.e. once the mutex is released
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was first introduced in the GoF book (Gamma et al. [17]) where examples
are presented with the use of the C++ programming languages.
An extension to the Scoped Locking Idiom is called the “Guard idiom”. As
stated in Crahen [9], this idiom is very similar to the scoped locking in
nature and definition with the main difference being that the guard idiom
is designed to allow for “Guards”8, to cooperate with one another by in-
troducing more flexibility. The flexibility is achieved by allowing locking
scopes to not only be tied with the creation and destruction of an single
object, but also trough other means.

Listing 3.2: Guard class inside the Server-side application

template <c l a s s LOCK>
c l a s s Guard
{
public :

Guard (LOCK &l c k ) : lock ( l c k ) {
lock . acquire ( ) ;

}
˜ Guard ( ) {

lock . r e l e a s e ( ) ;
}

private :
LOCK &lock ;

} ;

Scoped locking idiom, or more precisely, a simpler design of the Guard
idiom was designed to be used in conjunction with the threads for an easier
maintenance of the mutex allocations. The design code template which is
used in the server-side application is shown in the listing 3.2. Guard idiom
adds a certain layer of flexibility, where the mutex lock is automatically
released when the object associated with it goes out of scope. By using this
approach, it is not necessary to always implicitly specify when the lock
needs to be released, but rather, that is done automatically.

8classes and objects designed with the Guard idiom

40



3 Design

3.2 SystemC Smart Sensor Model Design

The implementation and construction of a real-world hardware device is
generally being preceded with a hardware model design. For the purpose
of showcasing the rapid development introduced by the idea of SimPar, a
“Smart Sensor” has been designed. A smart sensor represents a solution
for the new sensor designs used in industry, designed to provide multi-
functional, energy-efficient and autonomous working environment. With
these goals set, it is not a simple matter to assemble such a device due to the
manufacturing cost. As stated by Yong et al. [45], it is generally advisable
to also provide a software model for simulation purposes, where different
ideas and modifications can be put into place.
This chapter will go more into the detail on the proposed design of a smart
sensor which is composed of multiple parts and hardware elements.

As part of the project, the proposal for the general model design has been
made which suggest that the designed smart sensor should fulfil the follow-
ing conditions:

◦ Energy-efficiency - all hardware elements should either adhere to the
low-power, or to the more modern, ultra low-power energy consump-
tion design

◦ Security - the smart sensor should provide security functions for
handling data

◦ Wireless communication - provided with the nfc technology

◦ Port extensions - allow for the option to add custom sensors through
the extensible ports

By respecting the constraints given from the projects, a design was drafted
consisting of the following main hardware components: a microcontroller,
nfc tag, security chip, fram (Ferroelectric Random Access Memory) chip,
and two extension ports. The interconnection between individual parts can
be seen in Figure 3.7.
The microcontroller was added to ensure the programmable support for
the smart sensor device, while the fram is there for further support in
case a large amount of data is needed to be stored. Currently, it has been
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proposed that all devices should communicate internally by using the
i2c (Inter-Integrated Circuit) bus technology. Additionally, since the smart
sensor is being designed to offer service independent of the actual sensor in
use, potential devices connected to the external ports will not be actually
designed.

Figure 3.7: Overview of the hardware elements of the smart sensor and their inter-
connections

Table 3.3 shows the list of the hardware elements and chips decided to be
used as a reference model for the SystemC model. By using concrete elements
with technical documentations, it is possible to make easier predictions
for the overall system behaviour and energy consumption. For the most
part, the SystemC model should be independent of the construction compo-
nents. They are only used to provide a general validation for the functional
accuracy and real-world device behaviour.

To fulfil the quality and the functional accuracy of the model, a set of test
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Table 3.3: Hardware components used as a reference during the modelling of the smart
sensor

Hardware Reference
Component

Description

Microcontroller Apollo2 One of the best mcu (Micro Controller
Unit) in terms of the ulp (Ultra Low
Power) capabilities

fram MB85RC1MT Non-volatile memory, low power con-
sumption, fast, i2c

nfc Tag ST25DV64K Inner memory, i2c, low power con-
sumption

Security Chip Optiga TrustX Wide range of security functions, easy
to integrate

benches was proposed to be designed and implemented. The test benches
should be designed in a similar approach like the corresponding interactive
module for the specific design module. An example would be the test
bench for the nfc tag module. This test bench tries to mimic both the
complementary parts of the microcontroller, which uses the i2c (Inter-
Integrated Circuit) technology, and with an external nfc card reader device
for the rf communication. Each test bench would include a number of
specific test scripts for different evaluations, but primarily for the functional-
accuracy, time-accuracy and energy consumption.
Test benches are implemented for each individual macro module. More
on them, as well as on the particular tests, can be read in the “Evaluation”
chapter.
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3.2.1 Design Methodologies

This subsection is devised as a counterpart to the “Design Patterns” subsec-
tion of the previous phase I design analysis. Since SystemC is described as
a hdl utility, many of the design patterns used generally with the program-
ming languages can also be applied here. There are however differences and
the only design pattern used, which is also found in the “Gang of Four”
book, is the singleton design pattern. Other approaches used in defining the
design of the SystemC program can be described as common methodologies
used in this field.
Two main methodologies used in designing the SystemC model in SimPar
are:

• Hierarchical module definition
• Defining the complex functionalities at a more abstract layer

Hierarchical module connections

This approach is used to represent the modules of a SystemC model as
a tree. The root of the tree is essentially a module known as the “Top”
module, while the nodes are main modules. The children of these nodes
are sub-modules of the according parent module, a notion described by
De Graaf [10]. This topology helps in tracking down potential issues that can
arise during the development and testing phases, and in helping extending
the SystemC model, especially once it gets more complex.
Figure 3.8 shows how the modules are interconnected in the SimPar SystemC
model. Each macro-module (the module which comes directly after the top
module) is described as its own chip and can easily be developed separately
compared to the other modules.

As already described, the top module is defined as the root of the tree
representation. Usually, this module only has one port which is the input
clock signal. This clock signal, which originates from the calling sc main
function, represents the reference clock signal on which other input signals
are defined. The other elements found inside the top module are primitive
signal channels and instances of modules which are connected in between.
The modules represented at the top level are called “macro modules” since
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they are the main construction blocks of the SystemC model. Each sub-
module that is defined inside the macro modules is a child to its parent.
These leafs can contain additional sub-modules which would, also in this
case, only be dependant on the upper parent module.

Figure 3.8: Design of the module hierarchical dependencies using a tree-like structure

There are generally no drawbacks in using the hierarchical approach com-
pared to some other approaches, except for the fact that additional com-
plexity can arise when one or more changes are needed to be done on the
macro-level. Additionally, there is a delay of one delta cycle through the
signal transmission between the modules which has to be taken into the
consideration during the development.
Adding or removing a macro-modules is not difficult, but making changes
either with the connections (signals) or functions can lead to the subsequent
change for adaptation to every child module.
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Function distribution among the different layers of abstraction

Each SystemC module is a representation of a real-world hardware element.
Many of these elements are already grouped into one structure known as
chip. Hardware chips can contain both a complex design and a complex
functionality. Integrating all the different functions and behaviours of a chip
inside a SystemC module can prove to be difficult. It is almost necessary
to divide the functions among those which can potentially be emulated
and those which are only going to be represented through a black box, by
providing input values and expecting specific outputs.
How the black box is represented depends on the overall design. SystemC
allows for an easy extension through standard C++ classes and structures.
Each module can have a specific class dedicated with supplying different
functionality options. Input values would be inserted through the parame-
ters of function, while the function would return values either through the
standard return value or through references.
As mentioned in Doucet and K. Gupta [11], by following this design ap-
proach, a SystemC module which describes a complex function would only
need to call and manipulate the function on the right execution step, while
still maintaining the important simulation parameters (execution time and
energy consumption among others) and the overall hardware structure.

The implementation of individual functionalities during the development
of SimPar was considered as part of the macro-modules. Since the fram

module is modelled as a full hardware emulation, it was not necessary
to make any additional functionality extensions. On the other hand, the
nfc module was designed with an additional memory class to hold and
work with memory data on the pure application abstraction layer. Similar
changes have also be done for the microcontroller module, and especially
the Security chip module since it itself had a very abstract documentation.
The security module should host a separate interface to the functional
part and the memory part. With this approach, it makes it easier to divide
between the data that is saved and that is in operation (being worked on).
Further, it offers extensibility by presenting an easier access to individual
code modifications in case they are necessary to be implemented in the
future. The microcontroller follows a similar principle, but the main focus is
still kept on the SystemC elements, rather than the C++ extension classes.
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Table 3.4: Functionality extensions of the abstract layer in SimPar design

Macro-module Application

fram No direct use

nfc Tag Memory handling & Frame operations

Security Chip Memory handling & Security operations

Microcontroller Program representation & modules interaction

Table 3.4 shows an overview of where individual application functional-
ity extensions have been applied. A more detailed analysis of individual
elements can be found in following subsections of the “Design” and module-
focused “Implementation” sections.

3.2.2 Memory Management

For the purpose of storing data over longer periods of time, a permanent
memory service was proposed. This is achieved by using fram technology.
This type of memory is non-volatile, meaning that it makes it possible to
store data even when the power is turned off from the energy source9. The
design is based on the “MB85RC1MT” chip, where the specifications taken
for building the SystemC model are explained in the Table 3.5.
The module is to be implemented on the system level, meaning that it is
aimed to provide time/cycle accuracy, as well as the hardware functional
accuracy. That is primarily done through the i2c function, which is to be
completely implemented as a SystemC thread and controlled via the input
scl signal. Each state changes on the clock change and usually consists of
an operation on the bit level. That includes sending, receiving data bits, and
special ack bits as well.

9i.e. the power coming out from the battery or other sources
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Table 3.5: Listing of the target features for the fram SystemC module

Feature Values Handling

Operating frequency 3.4MHz,
1MHz, 100kHz

Operating clock for the read/write
functions of the i2c protocol

Bit configuration 131,072 words
x 8 bits

Defined array of fixed length for stor-
ing data

Communication i2c with scl &
sda pins

As thread functions defined on a
multi fsm principle

Operating voltage 1.8V to 3.6V An “enable” signal which controls
the on/off state of the module

Current consumption 0.71mA to
1.2mA

Consumption during the active state

Figure 3.9: FRAM design of the SystemC module

Figure 3.9 indicates which signals are to be implemented in the fram design,
as well which functions (i.e. threads) should handle the functional part of
the module throughout the signal interactions.
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The fram module consists of the following input/output signals:

� A1 - First bit used for the identification of the unique fram chip
� A2 - Second bit used for the identification of the unique fram chip
� WP - Control bit for the writing process
� E - Enable signal, for operation control
� SDA - Input signal from the master device of the i2c process
� SCL - Clock input signal of the i2c process
� SDA - Output signal to the master device of the i2c process
� EN - Current energy output, for measurements

Threads/functions designed to be run as part of the fram module:

− I2C() - main i2c process which emulates and offers read/write capa-
bilities of between the master (microcontroller) and slave (fram)

− Energ Out() - calculates and outputs through the en signal the current
output based on the ongoing energy state

fram is primarily used in conjunction with the microcontroller module.
The connection is maintained through a separate i2c protocol, where the
microcontroller plays the role of the master and the fram module of the
slave. The current consumption is calculated through the energy states
which are defined as part of an abstract functionality design layer.

3.2.3 NFC Communication Device

The nfc design is based on the specifications set by the energy-efficient nfc

chip tag from STMicroelectronics, as described from ST25DV64K [42]. It is
capable of communicating with other devices using the rf communication
based on the iso (International Standard for Organization) 15693 standard,
as well as the communication using the i2c protocol. In both cases they
include the behaviour of the nfc tag as a slave, where the communication
would be performed with the microcontrollers through the use of the i2c

protocol and rf with any other device (to be designed separately). Closer
inspection of the specifications can be seen in Table 3.6; where the proposed
SystemC model is seen in Figure 3.10.
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Table 3.6: Listing of the target features for the nfc SystemC module

Feature Values Handling

Operating frequency i2c 1MHz, 100kHz Operating clock for the read/write
functions of the i2c protocol

Operating rate rf up to 53KBit/s Data rate for the read/write func-
tions of the rf

eeprom 64KBit (8KBit
for imp.)

Memory which can be used for stor-
ing user data

Write time 5ms time needed to write new data per
block or byte

Mailbox 256bytes used for the fast data transfer be-
tween i2c and myacroRF interfaces

Energy Harvesting Pin based Used to supply analogue voltage
and current

Operating voltage 1.8V to 5.5V An “enable” signal which controls
the on/off state of the module

Current consumption 0.1uA to 0.5uA Consumption during the active state

nfc module consists out of the following input/output signals:

� SDA - Input signal from the master device of the i2c process
� SCL - Clock input signal of the i2c process
� E - Enable signal for operation control
� RFI - Input clock signal for the incoming radio frequency data rate
� RFO - Input clock signal for the outgoing radio frequency data rate
� RFE - Enable signal for rf communication
� ANI - Input data in bits from the rf antenna
� SDA - Output signal to the master device of the i2c process
� GPO - Special interrupt signal
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� VEH - Voltage output towards the connected device10 during energy
harvesting

� RFE - rf enable signal during the process of sending data
� ANO - Output data in bits from the rf antenna
� EN1 - Current energy output for measurements, from the i2c based

processes
� EN2 - Current energy output for measurements, from the rf based

processes

Figure 3.10: NFC design of the SystemC module

Threads/functions designed to be run as part of the nfc module:

− I2C() - main i2c process which emulates and offers read/write capa-
bilities between the master (microcontroller) and slave (nfc)

− RF Rec() - rf handling thread processed on the incoming frame

10in the overall design, a microcontroller
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− RF Sen() - myacroRF handling thread processed on the outgoing
frame

− Energ Out() - calculates and outputs through the en signal the current
output based on the ongoing energy state

The design, similar to that of the fram chip, is based on the system behaviour
of the model. That means that a certain level of emulation is introduced into
the model design by trying to replicate the time and functional accuracy.
This is done through both the accurate representation of the i2c protocol
handling and the rf handling, by using correct transmission cycles, time
delays between messages, and to a certain degree, accurate representation
of the inner data processing time.
The module is supposed to offer the following main functionalities and
services with:

1. Direct transfer - Though the use of the Mailbox between the devices
using i2c and rf communication, up to 256 bytes

2. Memory capabilities - Saving data as the user memory for a certain
period of time

3. Energy harvesting - Supply both itself and optionally other devices
through the energy harvesting principals using the nfc technology

Since the nfc module is capable of providing different memory capabilities
(mailbox, user memory, system and dynamic memory), it is necessary
to provide a clear design based on the functional abstract programming
approach during its implementation. The same principal is to be upheld
as well during the care of the rf communication protocol, since it contains
special rules of handling.

3.2.4 Security Handling

The proposed Smart Sensor design was build upon an idea of offering
fast, reliable, energy-efficient, and among others, secure solution for the
data processing. In modern hardware design, security is primarily handled
by a separate security chip. A chip like that can offer several security
functionalities, it being independent of the data and process for what the
overall hardware is designed for.
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The design which is to be implemented using SystemC is based on the
proposed characteristics of the “Optiga TrustX” security chip, described
in Optiga manual [32]. Table 3.7 shows main adapted features. Since the
chip presents a complex hardware design, one that is difficult to implement
using a system approach, it has been suggested to design the security
module to be cycle-accurate on the communication level, while the time and
functional accuracy of the security processes should be kept at an abstract
level. The memory capabilities of the chip are also to be designed on an
abstract level, offering only basic functionality capabilities through a C++
class extension.

Table 3.7: Listing of the target features for the Security Chip SystemC module

Feature Values Handling

Operating frequency 1MHz, 100kHz Operating clock for the read/write
functions of the i2c protocol

User memory 10kBits Handling permanent and non-
permanent data

Communication i2c with scl &
sda pins

As thread functions defined on a
multi fsm principle

Security functions Crypto tool-
box

Offers different security functions
based on hashing, signatures, etc.

Operating voltage 1.6V to 5.5V An “enable” signal which controls
the on/off state of the module

Current consumption 20mA Typical active state

Since the documentation provided for the specified hardware chip does
not clarify how the security aspect of the functions is being handled, a
special protocol is proposed to be implemented. That protocol should offer
command interpretation from the data received through the i2c protocol.
A special process should handle the command and the security aspect.
Representation of the signals and inner processes can be seen in Figure 3.11.

53



3 Design

Figure 3.11: Security Chip design of the SystemC module

The following input/output signals are defined:

� SDA - Input signal from the master device of the i2c process
� SCL - Clock input signal of the i2c process
� E - Enable signal, for operation control
� OP - Control signal, for signalling if there is enough power for the

device to operate
� SDA - Output signal to the master device of the i2c process
� EN - Current energy output, for measurements

Threads/functions designed to be run as part of the Security chip module:

− I2C() - main i2c process which emulates and offers read/write capa-
bilities between master (microcontroller) and slave (security chip)

− Sec Handl() - Functional handling of the security functions
− Energ Out() - calculates and outputs through the en signal the current

output based on the ongoing energy state

The security chip offers thirteen different operations ranging from simple
hashing to signature creation and verification. These operations are mostly
of no concern for the target simulation and they are to be implemented
in a simplistic way. That is primarily to be handled though a black box,
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where the output is independent from the input and is only composed of a
random stream of values.

3.2.5 Main Control Unit

The central element of the Smart Sensor is a mcu. For the design of an
ultra-low power mcu, a mcu from the “Ambiq Micro” company was chosen,
named Apollo2 [3]. The key features integrated in the design can be seen in
the table 3.8.

Table 3.8: Listing of the target features for the Microcontroller SystemC module

Feature Values Handling

Operating frequency 48MHz, 1MHz Operating clock for general mcu pur-
poses

sram 1MB(1KB) Handling volatile process data

Communication i2c with scl &
sda pins

As thread functions defined on a
multi fsm principle

Operating voltage 1.1V to 5.5V An “enable” signal which controls
the on/off state of the module

Current consumption 10uA Typical active state

The mcu is designed to contain three main i2c threads/processes, one
for each of the individual connected module. In every case, the respective
modules function as slaves11, while the mcu takes the role of the master.
Other processes designed to be implemented are:

− SCL Gen() - Generates the scl signal for the individual modules in
the i2c communication

− Prog Contr() - fsm implementation and control of the mcu program
− Energ Out() - used current in the mcu used for the energy calculation

11Only masters can initiate and control the communication, slaves only respond
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Figure 3.12: MCU design of the SystemC module
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The microcontroller is designed to contain only one signal directly associated
with this module, and that is the main clock signal. This signal has the
highest frequency among different clock signals and is used for dividing
and controlling other i2c scl signals. Additional signals showcased in the
Figure 3.12 are also present and separated based to which other module
they are connected to.
There are three groups of signals:

• Security chip group - positioned on the upper part in the Figure, it
composes primarily only the i2c used for that particular communica-
tion
• fram group - positioned on the lower part in the Figure, it consists out

of identification and control signals, as well the i2c communication
signals
• nfc group - on the right side in the Figure, it contains the gpo inter-

rupt signals, veh energy harvesting analogue output and other i2c

communication signals

Since a mcu hardware device is very complex, the designed model is made
to follow the principles of a finite-state machine. Essentially, the communica-
tion processes run with the i2c interface are kept on the system level, while
the main program will be implemented as an abstract behavioural system.
The program run should offer the possibility to read the data and interact
with the nfc module, interact through the security module and to write the
end results to the fram. Data which is being processed with the mcu has to
be saved and read from the inner ram (Random Access Memory).

3.2.6 Clock Signal Control

Smart Sensor is made of individual modules, each operating at a different
frequency. To control the various frequencies, a set of modules was designed
with main intention of functioning as the “frequency dividers”. They are
named Quartz modules and they operate on a simple formula as seen and
defined by Miller [28]:

fout =
fin
n

(3.1)
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The input frequency is usually the main input simulation frequency. It is the
highest frequency based on which the other smaller frequencies are divided
from and defined. In the case of equation, the value “n” is an integer finite
value. The Modules in SystemC are designed in a similar way, with the main
thread/process being used to count the passed cycles for each calling of
the main input frequency and when a certain count is reached, the output
frequency (the divided one) changes its period. A practical showcase of the
signals used for the system quartz can be seen in Figure 3.13.

Figure 3.13: Signal wave of the input and output signals of the system quartz module

The main input clock signal for the simulation can vary, but it is by default
set to be 1GHz. That means that any other clock frequency is essentially
smaller and will be controlled through this main frequency. The designed
quartz systems to be used in the model are:

• System Quartz - for defining the main clock signal of the mcu. For
48MHz, the input signal will have to tick about 21 times before the
period of the microcontroller signal can change.
• NFC RF Quartz - used for the rf communication, more accurately

defined as a data rate.
• I2C Quartz - defines the frequency of the main operating scl signal

used in the i2c communication

Each module is connected as a macro-module being part of the top-module.
They consist of the input frequency signal, which is the input signal to the
specified top-model. Additionally, they consist of an enable signal which
controls the operation and an output signal, which in this case is the reduced
clock signal. There exists an additional process inside the microcontroller
used to construct the scl for the i2c with individual modules (fram, nfc

and security module).
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3.2.7 Measurement Approach for the Energy Consumption

Energy measurement is derived from the sum of the individual energy
consumptions at module level. It is calculated through first calculating the
power consumption and then multiplying it with the passed simulation time.
Since power is not consistent and it changes with the voltage and current
value, all power is first sampled on each individual clock step, later averaged
and then multiplied with the total time.

Each module operates with different power states. They are mainly idle and
active states with few in-between. The current values of each individual
state and their trigger conditions are taken directly from the documentation
of individual modules.

The power states and current values are to be implemented as following12:

• fram power states

– active standard freq. = 0.04mA
– active fast freq. = 0.24mA
– active high op. freq. = 0.71mA
– idle = 0.015mA
– sleep = 0.004mA

• nfc power states

– active e2 read i2c = 0.22mA
– active mb read i2c = 0.22mA
– active e2 write i2c = 0.11mA
– active mb write i2c = 0.28mA
– idle rf = 0.02mA
– idle i2c = 0.08mA
– active rf = 2.5mA

• Security chip power states

– active state = 20mA
– idle state = 20mA
– sleep state = 0.07mA

12All elec. current values are displayed based on the 3.3V supply voltage
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• Microcontroller power states

– active state = 0.0128mA/MHz
– sleep state = 0.101mA
– deep sleep state = 0.0064mA

Additionally, for certain modules dynamic power change was designed to be
implemented. This functionality offers the change of the current consump-
tion based on the change of the supply voltage.
For the microcontroller, the following formulas were derived, where “X”
represents the current voltage and “curr” the calculated current:

active = (3.3/X) ∗ curr− [1.31 ∗ (3.3− X)] (3.2)

sleep = (3.3/X) ∗ 0.101− [0.0388 ∗ (3.3− X)] (3.3)

deepSleep = (3.3/X) ∗ 0.0064− [0.00402 ∗ (3.3− X)] (3.4)

It is to be expected that a more precise model results in giving more accurate
energy consumption readings. This assumption is based on the derivation of
more exact time readings. Essentially, it is safe to assume that proportionally,
a higher error rate on number of cycles needed for a specific process will
result in a higher error on the final energy calculation. Because of that,
special care is taken when implementing individual models, aiming at
lowering abstraction and increasing the functional and time accuracy.
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4 Implementation

The design of every system is followed by its test implementation. For a
better understanding how a system works in a near/full real-world environ-
ment, it is necessary to provide a practical model. A program like that can
be used to simulate the system, improve upon the input data, parameters,
and to give a good overview on what will the final cost and performance
look like.

4.1 Development Environment

The SimPar project was devised to be implemented in two parts, but three
applications:

1. Client - server system

• Server C++ application
• Client C++ (with SystemC) application

2. Smart sensor simulation

• Smart sensor SystemC model

The applications were developed using C and C++ programming languages.
The Smart sensor was implemented with using the SystemC utility library,
but the core programming is still that of the C++. All three applications
were developed using a Debian Virtual Machine, i.e. it was done on a Linux
os. Partial development was also done on Windows 10, but that was mainly
to test if the corresponding functions and implementations also work under
the Windows os in the way that they were devised. Eclipse was the main ide

(Integrated Development Environment) used during the development.
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One of the criteria set for the implementation of SimPar was the backwards
capability and simplicity. By following this principle, the result code would
be easily maintainable and portable. For that reason, only the official techni-
cal standard of C++03 was used for the programming definition. Inclusion
of external libraries was kept at a minimum. All libraries which have been
used are standard libraries, except for the “SystemC” and “Pthread” library.
Other libraries which are heavily used in the development of both the server
and client applications, as well as the smart sensor, are:

• iostream
• stdio & stdint
• string (and string-related libraries, like sstream)
• ctime
• iterator
• cstddef
• vector & queue

In addition to the listed libraries, there are also others used to provide the
socket toolbox, both for the Linux and the Windows systems, but these are
listed and explained in a separate section. It should also be noted that the
inclusion of the SystemC library automatically includes additional libraries
and namespaces as well. E.g., the “std” namespace is included by default.
That can potentially be dangerous, since the inclusion of namespaces with
the same name can make conflicts, as well as inclusion of libraries which
were already previously included. For those reasons, a special care was
taken during the development of the applications to avoid any further
errors.

4.1.1 Application Structure

All three individual applications share a similar file structure. It was impor-
tant to make the file and folder structure readable and understandable. That
is achieved by using a hierarchical representation of folders, clear naming
conventions and reducing unnecessary files, but also separating bundled
up functions. The following are listings of the organised structures of most
files (mainly C++ classes) and folders of the finished programs.

62



4 Implementation

Server application “src” folder structure:

� Socket Classes

� strategy
• FORKAction.h & FORKAction.cpp
• MessageHandler.h & MessageHandler.cpp
• SOCKETActivity.h & SOCKETActivity.cpp
• THREADAction.h & THREADAction.cpp

• NETAddr.h & NETAddr.cpp

• SOCKETHandler.h & SOCKETHandler.cpp

• SOCKETConnection.h & SOCKETConnection.cpp

• SOCKETCommunication.h & SOCKETCommunication.cpp

• SocketAPI.h & SocketAPI.cpp

� tools

• HelperFunctions.h & HelperFunctions.cpp

• SimplePacket.h & SimplePacket.cpp

• Stylist.h & Stylist.cpp

• HashMap.h & HashMap.cpp

• HashMapHandler.h & HashMapHandler.cpp

• Server Service.cpp
• Guard.h
• MutexThread.h & MutexThread.cpp
• ThreadHandler.h & ThreadHandler.cpp
• Documentation.h
• Includes.h

The main execution file is “Server Service.cpp”. It contains the main() func-
tion trough which other objects are instantiated. There is a certain scope
transparency. That means that certain classes are only visible through other
selected classes, to make the program more readable. The “tools” folder con-
tains general singleton classes for services used throughout the program.
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Client application “src” folder structure:

� Socket Classes

• NETAddr.h & NETAddr.cpp

• SOCKETHandler.h & SOCKETHandler.cpp

• SOCKETLine.h & SOCKETLine.cpp

• SocketAPI.h & SocketAPI.cpp

� simulation

� counter
• *SystemC simulation model files*

� sim handler
• CounterHandler.h & CounterHandler.cpp
• SmartSensorHandler.h & SmartSensorHandler.cpp
• SimulationHandler.h & SimulationHandler.cpp

� smart sensor
• *SystemC simulation model files*

• CounterTop.h & CounterTop.cpp

• Simulation.h & Simulation.cpp

• SmartSensorTop.h & SmartSensorTop.cpp

� tools

• HelperFunctions.h & HelperFunctions.cpp

• SimplePacket.h & SimplePacket.cpp

• Stylist.h & Stylist.cpp

• Client Service.cpp
• Documentation.h
• Includes.h

The client application is build in a similar manner like the server. Socket
classes are similar, but the connection and communication classes of the
server were replicated with a single “Socket Line” class. Additionally, a
folder was added in which the SystemC models are kept, along with the
simulation handlers.
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Smart Sensor application “src” folder structure:

� general

• *Contains mainly C++ singleton service and configuration classes*

� modules

� battery

� fram

� microcontroller

� nfc

� quartz

� rf scanner

� security

• *Contains also Include file and Top modules*

• Project Smart Sensor.cpp

The list of the Smart Sensor application has mostly been dismissed for the
reason that each folder contains modules, test benches, sub-modules, C++
functional classes, etc. Listing of each individual class would take too much
space.

Most classes of all three applications include the specially constructed
“Include” header file. This header file offers the following services:

− Include global and often used libraries
− Offer access to constant and static variables
− Service functions which do not belong to any class

The client and the server applications also contain a “Documentation.h” file
which contains general text used by the Doxygen1 documentation tool. The
programming files (C++ classes) of these applications are also commented
out accordingly based on the Doxygen documentation. The SystemC smart
sensor model is documented as well, but without the use of the Doxygen
platform.

1Doxygen is a tool and standard used for documenting and generating code documen-
tation, with an html (HyperText Markup Language) option
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4.2 Integration and Implementation of the Client
and Server Applications

The system is constructed with two programs. One handles the client and
the other the server side. Both are independent, but they do share some
similarities in the implementation. A graphical representation of the main
functionalities can be seen in Figure 4.1. This figure showcases the different
functionalities with the use of a Venn diagram, where it can easily be seen
which parts of the applications potentially share similar or even identical
code. The parts on which the server and client application are analogous
are primarily around the socket handling.

Figure 4.1: Venn diagram showcasing server and client functionalities

Since the Socket functions belong to both the client and the Server side,
one shareable Socket api is implemented which is then copied and used on
both the client and the server application. Apart from that detail, the overall
folder structure and programming style is kept for both applications. The
style follows the agenda of design patterns by focusing program handling
on objects, leaving the code and operations in the main function to be simple
and understandable.
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4.2.1 Implementation of a Simple Socket Communication

The socket communication was implemented based on the standard unix

socket programming principles. The style is based on the famous Beej’s
guide to network programming defined in Hall [19]. Since most of the
guides imply that the socket programming is to be done in C, a certain level
of flexibility is lost when developing larger applications. For that reason,
C functions are programmed in their own independent api and C++ is
used to develop classes to handle individual aspects and steps of the socket
programming.

4.2.2 Server Communication Handling

The server first establishes its own configuration (host, port, type han-
dling. . . ) and then continues with the following steps:

1. Server is waiting and afterwards, accepting a connection
2. Server is waiting for the response of the client to set the connection
3. It then sends a request for an unique “code”
4. It receives the code from the client and checks. If it is wrong, end the

connection. If it is good, proceed with following actions
5. Client is then connected to a specific command vector and thread (in

a larger environment, also to channels)
6. Server proceeds with sending the messages with commands, each time

waiting for a correct status message from the Client telling the Server
that it is ready again to receive a new message

7. The previous step is repeated (step 6) until a message to start the
simulation is sent

8. Server is waiting for the simulation to end on the client side and
confirms by receiving a message of confirmation

9. Server can ask for results or proceed with new commands or end the
simulation altogether. If it repeats, it jumps back to the step 6

10. In case the simulation cycle is completely done by the server, the server
sends a message to end the connection to the client and then it ends
its own. The client also has the ability to end the connection at any
point
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The server handles each client individually, concurrently. The way in which
that is done is set through the command line when calling the program
as the third parameter. Both forking and threading is implemented, but the
work focuses on threads, as threading is the only approach that works on
Windows.
Figure 4.2 shows the sequence diagram of the communication between the
server and a client for a particular simulation session. To note here is that no
actions are showed which include premature disconnection from the client
side, as well as other errors or alternative actions. Some smaller steps and
messages transmissions have also been omitted to save on the visual space
representation.

4.2.3 Control of the Client SystemC Simulation

The idea on the client side was to develop the same interface for all sim-
ulations. That includes setting up the connection, reading commands and
passing them to the simulation. The framework around which client is build
is set around the server framework with specific simplifications and changes.
For the development purposes, generally two SystemC models have been
integrated:

1. Counter simulation - A one simple SystemC module described as a
counter; Done primarily to test the work-flow of the communication
and to gain the understanding of the primary (universal) message
parameters

2. Proto Smart Sensor simulation - Run a previously implemented Smart
Sensor SystemC simulation with already predefined commands for
testing

The so-called Proto Smart Sensor model is essentially a model build previ-
ously from other team members of the IoSense project and only adapted to
be run on this client site. Because of that, the actual implementation of both
the Counter and the Proto Smart Sensor module will not be presented in
this work, rather the description of the implementation will remain more
focused on the SimPar version of the Smart Sensor. The approach which is
introduced can also be applied to any subsequent SystemC simulations.
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Figure 4.2: Sequence diagram of the communication between Server and Client
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4.2.4 Communication Packet Composition

Currently, for simplicity purposes, a system composed of a simple packet
structure is proposed and implemented. To streamline it additionally, it
is not necessary to create structures and then send them via a binary
representation, but rather it can also be done though a character array
(string).
The packets are represented in an xml (EXtensible Markup Language)
format with two main elements, header (type) and body (data), set with:

• <t></t>: type of the message; can be status, code, command, etc.
• <d></d>: data inside the message; depends on the type

Primary commands used in the communication are described in Table
4.1. The commands are universal among different simulation models and
each SystemC module implemented on the client side should also adjust
its simulation run-time based on the pre-defined protocol. That should
not be difficult, since the main difference between the simulations should
only be in the commands that are sent during the initialization step of the
simulation. The handshake step, as well as the step concerned with the
simulation handling is to remain the same for all the models as to reduce
the complexity.
It should be noted that the packet structure follows the xml text structure.
The commands sent inside the data part ( <d></d>) also adhere to this
style.

To synchronize the communication of a session between Server and Client
an instruction counter is proposed. The reason is that the server will always
wait for the message from the client to respond with an appropriate action
(request – response method). In case the client also waits for the next step (is
currently idle) it will simply send a message where it says that it is ready and
then wait for a response from the server. Initially, the instruction counter was
thought to be set through the client, but for the communication purposes,
it was decided to be set on the server. The instruction counter follows the
cases set by the design in Figure 3.1, where the overall communication goes
by principle seen from the sequence diagram shown in Figure 4.2.
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Table 4.1: Main commands used in the packet structure of the communication protocol

Command Description Case

<t>status</t>
<d>ready</d>

General client status signal stating
that it is ready to accept the next mes-
sage in the protocol

0-2

<t>status</t>
<d>code request</d>

Response from the server asking for
the code validation

0

<t>code</t>
<d>*some code*</d>

Code sent from the client side 1

<t>status</t>
<d>code passed</d>

Server response if the code has suc-
ceeded

1

<t>status</t>
<d>code failed</d>

Server response if the code has failed 1

<t>command</t>
<d>*command*</d>

Command sent from server to the
client

2

<t>status</t>
<d>waiting</d>

After the commands have been sent,
server waits for a response from the
client

2

<t>status</t>
<d>sim started</d>

Client responds to server that the sim-
ulation has started

2

<t>status</t>
<d>sim status</d>

Server asks client for the status of the
simulation

2

<t>status</t>
<d>sim finished</d>

Client responds that the simulation
has finished

2

<t>status</t>
<d>sim received</d>

Server acknowledges the end of the
current simulation run

2

<t>command</t>
<d>0</d>

Server responds with closing the com-
plete simulation session

3
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Configuring the packet handling inside the application

Handling the packet content on the client side is done through the special
“Handler” classes. For each added SystemC simulation, a separate class
needs to be constructed. These classes are located inside the “sim handler”
folder. In this folder, a special class is located called the SimulationHandler.
It essentially servers as a template for providing access to the already
implemented functions, which are associated with the simulation handler,
and to set the need to implement specific virtual functions2.

Listing 4.1: Simulation Handler Super Class Header

namespace simc {
c l a s s SimulationHandler
{
public :
SimulationHandler ( ) ;
v i r t u a l ˜ SimulationHandler ( ) ;

const char∗ messageSetter ( const i n t instCounter
, const u i n t 1 6 t connCode = 0 ) ;
i n t messageInterpre ter ( char∗ message ) ;
void se tS imula t ion ( Simulat ion ∗sim ) ;

v i r t u a l i n t applySimulationCommands ( std : : s t r i n g data ) = 0 ;
v i r t u a l void s t a r t S i m u l a t i o n ( ) = 0 ;

S imulat ion ∗sim ;
} ;

}

Code listing 4.1 displays how the header file of the main simulation handler
super-class is implemented. Two important virtual functions: “applySim-
ulationCommands” and “startSimulation” should be implemented by the
user. These functions specify how the simulation commands are interpreted

2virtual functions must be implemented, serving as a good program control
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and how the simulation is started respectively. User is also able to add any
additional custom functions exclusive to his simulation, which was also
the case in the SimPar test cases with the two simulation instances of the
Counter and the Smart Sensor simulations.

SystemC simulations are highly dependent on the server control, in which
case, the client cannot start or stop a simulation before the approval of the
server. This relationship can be described as a master/slave communica-
tion.

4.2.5 Cross-platform Support

Client and server applications were developed in mind to handle both Linux
and Windows operating systems. Some additional changes on the Linux
system have been made to support other unix based systems (e.g. Solaris).
The end result is that the server side is partially able to be run also on
Windows, but with certain constrains that have not been cleared until the end
of the project (could be left for the future work). The client application is able
to be run on both operating systems, but the actual implementation depends
on the additional code, which is the SystemC simulation. If the handling
of the simulation uses some Linux-specific libraries, it can create problems
while trying to run the application on Windows. Runnable application is
handled independently from the system and is only defined accordingly via
a compiler.

During the implementation, special care was taken when defining how
the socket communication should be integrated. While in terms of the
naming conventions and even the functions in general, there is very little
difference between Windows and Linux, except for exclusive libraries which
have been used. This was handled inside the “Include.h” file where all
external libraries are being included. The proof action is done using the
#if defined(...) ... #else ... statement. This approach was also used to control
the code before the compilation process for other critical statements. An
additional example can be found with the mutex handler, which is differently
done on all three os of interest3.

3Linux, Windows and Solaris
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4.3 Implementation of the SystemC Smart Sensor

The implementation of the main simulation model was performed through
different phases. For each phase, a separate module was implemented and
viewed as an individual component. Afterwards, a test bench is set to test
the functionality and accuracy of the developed module, such that the
module can safely be inserted in conjunction with other simulation parts.
Since the smart sensor model is very large and consists of several elements
with thousands of lines of code defining them, only the most significant
algorithms and techniques applied will be presented in this section.

4.3.1 Memory Representation

The memory module is implemented as the fram chip, previously specified
in the design step by Figure 3.9. Two main functions are constantly being
run in a process loop, the communication and working functions named
i2c and the function/process dedicated to calculating the output current
(energy consumption).

The memory module was used as a building block for setting the i2c

communication protocol used also by the other modules. The principle
on which the i2c communication is defined is the same as the one used
for implementing the communication framework inside the nfc and the
security module, with small exceptions.
Figure 4.3 presents the diagram of steps taken during the standard session
of an i2c interaction. Each communication step begins by first analysing
if the received device address is correct. If it is, then the second step can
proceed in which the address is first being read and then the appropriate
operation is conducted. The operation can either be read or write, depending
what was defined in the first 8 bits sent as the device address 4. The i2c

communication protocol has special start, stop and ack/noack sequences.
Since they require special properties of the analogue signals, they have been
actually implemented with the use of an additional enable signal.

4the lsb (Least Significant Bit) in the device address byte determines this operation
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Figure 4.3: I2C process diagram used as a main template for this type of communication

The memory module works in three different states. While it waits for an
enable signal it remains in the idle state. Upon starting the i2c session it
will go into the active state. A special sequence of command has to be sent
(partially through the device address) from master to memory (slave) for it
to be able to go to the sleep state.The memory can only go from sleep back
to idle through an another interrupt by the master system.

4.3.2 NFC Communication Handling

The nfc tag has seen an emulated implementation (similar to the memory
module) through very complex communication and functionality handling.
The nfc tag on its own has a memory sub-class which contains separately
the user memory, dynamic and system memory. They are all implemented
as static arrays, but the interaction with writing and reading from memory
positions is independent. All functional handling is being done through a
careful interaction with the registers, which are usually either associated to
the dynamic or the static memory. These functionalities usually range from
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sending and saving a value to the nfc user memory, using the mailbox to
transfer data between rf and the i2c or to activate the energy harvesting
capability. Since this communication algorithms plays such a vital role, its
implementation is inspected separately.

I2C Communication

The i2c communication protocol by the nfc module follows the same
principles set by Section 3.2.3, and is also found with the memory module.
There are some minor differences unique to this module:

• The sleep state is triggered internally, rather by an instruction from
the master
• The device address is different, with a special bit being used to sepa-

rate memory interaction between dynamic, and user from the static
memory
• The i2c protocol is two stepped, meaning that it is first necessary to

send a write command during the reading process, with the actual
reading being followed during the second start signal

RF Communication

While the i2c communication generally works on frequencies around 1MHz,
the transfer rate for the rf is much smaller, being opted at 26KBits. Aside
from that, the rf interface communicates with frames rather than with
simple bytes. Each frame consists of several bytes, each indicating a different
purpose. A showcase of a used frame can be seen in Figure 4.4.

Figure 4.4: RF request frame format
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The RF communication is made of both similar, yet different, request and
response frames. For each frame a command is sent, next to additional
information and an obligatory crc (Cycle Redundancy Check) 16-bit value.
Since every command requires a different and complex handling, a set of
inheritance classes was designed. Each class represents a different command,
with the main request class “RFFrameRequest” being the super class with
general methods. All request classes are located inside the “request data”
folder and they include all the commands that the referenced nfc tag also
includes. The principle of implementation is based on the strategy pattern.

Mailbox Fast Transfer

One of the main functionalities and purposes of the nfc tag in this case is
the use of the “mailbox” function. This function allows a very fast transfer
between an rf external device and some other end device through the nfc

tag. One of the steps (step 5) is shown in code listing 4.2.
This process was implemented in the following way:

1. Set the mb mode (static register 0x0D) to 1

2. Get the b3 and b2 values of the eh ctrl dyn (Dynamic 0x02) and
check if the condition matches (vcc and rf are ON)

3. Read mb ctrl dyn (Dynamic 0x06) and check that the value should
be 0x00 (mailbox is reset)

4. Read first message length and then the message (both should be 0)
5. Write in mb ctrl dyn to enable the mailbox
6. Send the command to write to the mailbox and update the correspond-

ing registers (status and length registers)

Listing 4.2: Simulation Handler Super Class Header

NFCFrame : : i n s t a n c e ()−>writeDynamicCommand ( rfValues ,
0x40 , 0x06 , 0x01 ) ;

r fWri te = t rue ;
waitForTheResponse = t rue ;
waitForAction ( ) ;
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4.3.3 Security Module Operation Execution

The security module design is very abstract as it is not well defined how
the inner workings of the logic is made concerning the handling of the
various security functions. Because of that reason, the implementation of the
security module follows an improvised approach based on the experience
from modelling other modules and simulations, as well as taking notes from
the implementation of some other security chips.
The security module uses a specific execution protocol, that is exclusively
developed and then implemented for this module. A single session follows
these steps:

1. Indicate that the process to write in the working memory is activated
2. Start sending data from master to the security module (standard i2c

protocol)
3. Check if there were any errors during the process. Resend the data up

to 3 times in case an error is detected
4. Send indication to stop writing inside the working memory
5. Inform that the module should start a security process
6. The microcontroller (the master) checks periodically (every 20ms) if

the process is finished
7. After the process is finished, the microcontroller gets notified and then

an error check is forwarded
8. The microcontroller indicates to work with the working memory
9. The security module sends the newly created data to the microcon-

troller (after applying a security function)

The implementation of the security module differs from the one of the
fram chip and the nfc tag in terms of the abstraction implementation
layers. Where the two mentioned modules were designed to fulfil both
the functional and the execution-time constraints, the security module
makes assumptions when it comes to the accurate timing. The functions
implemented are also focused only in giving the random value output,
rather than doing the actual security process. This is done for the reason
that the purpose of each function is not important in the overall energy
consumption analysis of the smart sensor, since the security module must
keep a constant consumption regardless which security function is used.
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4.3.4 Tracking the Energy Consumption and Harvesting

The consumed power of the whole smart sensor is calculated by first acquir-
ing the total current consumption and then multiplying it with the present
battery output voltage level. Each module outputs one electrical current
value on each clock trigger, where the signal is usually named and defined
in the following convention: sc out<double>currentOutI2C. Only the nfc

module consists of two different current outputs, from the i2c and from the
rf element. The setting of the appropriate power states and current value is
done from a separate thread/process for all modules. The used naming con-
vention for individual modules is the following: void outputCurrentI2C().

Table 4.2: Energy harvesting current output in mA based on the magnetic field strength

Modulation 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

10% 0.1 0.3 0.7 0.9 1.1 1.3 1.5 2.1 3.3 4.5 4.9

100% 0.7 0.7 0.7 0.7 0.9 0.9 1.3 1.7 1.9 2.3 2.7

Energy Harvesting has been implemented as a feature to be used through
the nfc module. It gives the possibility to power other devices, but also to
charge the battery. The amount of current and voltage drawn depends on
the proximity of the rf device which powers it, as well as the strength of
the signal. Table 4.2 displays different input current values from the energy
harvesting process. They are set in a ordering position and dependent on
the H value5, which in this case ranges from 0.5 to 5.5, and the new value is
taken with the step of 0.5. Appropriate functions have been implemented to
carry both the energy harvesting control process and the current drawn in a
separate process.
To active the energy harvesting process it is necessary to set the special
register value of the eh mode to be 0x00 of the 0x02 dynamic address. The
nfc module contains a special running process which periodically checks if
that value has been changed.

5Magnetic field strength
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Handling Dynamic Energy Consumption

The energy Consumption is handled dynamically with two approaches:

1. Calculating the power output with the dynamic voltage
2. Using the power states to change the current consumption

Battery dynamic voltage is a direct result of the battery model. This model
is build on a simple principle of calculating the current charge of the battery
and determining the current voltage output, the same one used to power
the rest of the devices.
The Battery charge formulas are displayed with 4.1 and 4.2 , and discharge
with 4.3 , respectively:

Voltage = Charge Coe f f ∗Max Battery Voltage (4.1)

Max Current =
(Charge Coe f f ∗Max Battery Voltage)− ( Charge

Battery Capacity )

Battery Resistance
(4.2)

Voltage = (
Charge

Battery Capacity
)− Current Load ∗ Battery Resistance (4.3)

The values “Battery Capacity” and “Battery Resistance” are given at the
compile time and they are constant. Essentially, the are used to describe
the main parameters of the specific battery. The voltage is dynamic, as
well as the current load which is read. Equation 4.2 displays the maximum
current that the battery can take in case the load is higher during the
charging process. The value of the battery voltage is used by each cycle step
to calculate the power. That is done by multiplying it with the captured
current at a specific time input.

Energy states are usually triggered and therefore changed by a certain set
of conditions. One of these conditions is usually setting the energy state to
be proportional to the working inner state of the module, or in case of idle
and sleep states, changing to this state in case of a longer inactivity.
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5 Evaluation

To better understand and improve a system, it is necessary to perform tests
intended for performance, functionality, and fault-tolerance evaluations.
From the implementation’s perspective, the SimPar system can be evaluated
on the following points:

• Server and client SystemC simulation model handling

– server response by interacting with multiple clients in terms
of handling faults (sudden errors), functionality precision and
performance (execution time)

– client response to specific communication messages, handling of
the commands relative to the simulation and performance impact

– network stability and conduction from both the server and client
applications

• Smart Sensor SystemC simulation

– performance of the simulation, run-time and resource handling
– actual simulation parameters influencing the time and functional

accuracy of individual modules
– fault tolerance (signal errors, delays, wrong commands, etc.)
– energy consumption measurement and analysis of the energy

efficiency (including the energy harvesting capabilities)

Since the client and the server applications have been developed to function
as a framework rather than an end solution for the desired simulation use,
the main evaluation points will be focused on the smart sensor application.
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5.1 Server and Client Application Evaluation

The system can be executed through two compiled programs, where each
program can be run on a separate machine. Considering how the system was
implemented, the server can be run on a Linux1 and a Windows machine.
The client depends on the SystemC models with which it interacts. That is
for the reason that specific models used in the testing phase use exclusive
Linux commands and therefore, could not be run on a Windows machine.
A simple ui (User Interface) was implemented to handle initial configuration
2 on both the server and the client side. Additional help windows are also
provided to guide the user in executing the program. Most of the actions
are done automatically and independently which was one of the main goals
of the developed model.

A stylized terminal interface is provided if the program is run through the
command terminal, both for Windows and Linux, with legacy support3.
Figure 5.1 shows the program execution run on the same machine with the
server first running the initial setup and then accepting and maintaining
the connection with two clients. Even if the client applications are being run
in parallel (in two different processes), the server manages to display the
messages and to handle them accordingly.

The results of several test-runs show no issues with handling a large number
of clients, due to the optimization principles which were applied. Fault tol-
erance was also tested, in which case, even if the communication is abruptly
broken between one client and the server, the process which runs on other
clients, continues normally. Sending and handling commands showed no
issues as well. The client tracing works as expected. Small issues are detected
with the protocol handling in case of failures and random messages, with
the solutions being currently designed and planned for the future work.
The system was not tested on a real network, but rather on a small inter-
connected lan (Local Area Network). The application is not intended to
be used as it is on a larger network, because the server ip address must be
known in advance.

1Potentially also some other UNIX-based os, such as Solaris
2setting up the IP address, port number, handling type, simulation type, etc.
3support for the previous versions of the cmd, i.e. it changed with Windows 10
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5.2 Smart Sensor Model Evaluation

The main focus of the evaluation is set on the smart sensor. The model of
the smart sensor is easier to analyse and adjust. This is unlike the server
and client applications, where the framework is not adjustable to affect the
changes to the performance of the system. Rather, the performance of the
system is mainly dependant on the SystemC simulation which is being run.
Several critical points have been taken into the consideration while devel-
oping and implementing the model of the smart sensor to enable an easier
evaluation at a later period in time. It was also necessary to provide an
effective framework where the parameters of the SystemC model can be
changed during the execution time, rather than the compile time.

Alongside the developed application a configuration file was created named
“config.cfg” and placed inside the root of the application structure. This
configuration file is essential in running the simulation since it gives instruc-
tions and values for each individual model parameters. Each parameter has
a trailing comment providing the explanation and the default values. It is
absolutely necessary to follow the instructions since a falsely given value
can sometimes result in the simulation behaving unintentionally, or it might
become completely defective, as not all faults are caught4.
The power and energy values are saved in a column/row style, with two
intended columns. One column is dedicated to the time-stamp for when
the value is taken, and the other is for the power taken at that time point.
The energy consumption is calculated afterwards from these values using
the standard formula. Since the main clock measures the power on every
nanosecond, the size of the output evaluation file can result in several giga-
bytes. Because of that reason, aggregation is used by calculating an arithmetic
mean for every one thousand values (or for every millisecond).

The chapter is organized in two main sections. The first section deals with
evaluating the functional accuracy of each individual model while at the
same time also presenting a rough estimation of the consumed energy. The
second section is more focused on the full-program execution including
the devised microcontroller programs, displaying the power and energy
overviews.

4to most parameters a default value will be assigned in case of unexpected inputs

84



5 Evaluation

5.2.1 Evaluation of Functionality accuracy and Energy
Consumption for Individual Modules

For each individual module, a test bench was implemented. These test
benches are modelled as separate modules, containing the functions and
signals used to control and work with the assigned main working modules.
In other words, they try to replicate the master side of the communication,
in this case that being the microcontroller5. Next to the standard functions
which are used for the communication and protocol handling, the test
benches also contain a special function which lists the corresponding test
instances. Each instance contains a list of commands and steps used to test
a specific functionality of the corresponding module.

The tests which are being run are controlled through the configuration
file. Each session of the simulation is only able to run one test. Most of
the tests also contain some form of standard output, thanks to which the
log information can be read and analysed to see, if the module functions
properly. The power consumption is also saved in a power trace file in a
“[time stamp][ts metric], [power][pow. metric]” format. Additionally, a signal
trace file(vcd, Value Change Dump) is created. The signals, which are traced,
are set inside the aforementioned configuration file.
The next sub-sections give a brief summary of each individually created
tests, mean power and energy consumption for the duration of the 100ms,
which is used for every test simulation.

FRAM Test Bench

The first developed module was the fram. A total of five tests were realized.
Two are focused on the writing capabilities, one only on read of multiple
values, one for testing the sleep functionality and one interconnects all the
functions that this memory module provides.
The test cases can be seen in the table 5.1. It should be noted that since the
execution of the specific tasks can be relatively fast, the modules mostly
remain in the sleep state. Also, the mean power which is displayed alongside

5since the microcontroller is the central element which communicates with all others
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the calculated energy consumption, is derived from other modules as well
and not only from the fram chip. Since these modules are not active, they
mostly remain in either the idle or the sleep state.

Table 5.1: Memory module test cases

Test Case Brief Test Explanation Power Energy

Write 1 val. Send and write a single value 0.643mW 0.064mJ

Write n val. Send and write 3500 inc. values 0.877mW 0.087mJ

Read n val. Send a request and read 3500 val-
ues from the memory

0.877mW 0.087mJ

Set sleep Set the memory module to the
sleep state for 50ms, then write
3500 values

0.859mW 0.085mJ

Complex func. Set the sleep state for 25ms, write
1500 values, set again to sleep for
25ms, read written values

0.827mW 0.082mJ

From the presented power and energy values it can be seen that the energy
dissipated during the process of reading and of writing is the same. That
is due to the nature of the fram technology, and theoretically, there is no
difference between them. In a real world environment however, some other
elements could influence the change in the results.

Figure 5.2: FRAM trace VCD during the writing process

The output results are also saved in a vcd file showcasing the signals. One
of those results of the process can be seen in Figure 5.2. The first signal
represents the i2c scl signal, the second input sda signal and the third sda

output signal.
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NFC Test Bench

The nfc tag module received the most elaborate and diverse collection
of test cases, mainly for the reason of its complex implementation. Since
the module consists of two types of separate operation modes, i2c and rf

communication, test cases have been divided in three main groups: i2c

based test cases (Table 5.2), rf based test cases (Table 5.3) and the inter-
combination of two modes (Table 5.4).

Table 5.2: NFC tag module I2C test cases

Test Case Brief Test Explanation Power Energy

Write 1 val. Send and write a single value 0.643mW 0.064mJ

Write n val. Send and write 3500 inc. values 0.877mW 0.087mJ

Write & Read 1 Write and then read 1500 values 0.719mW 0.071mJ

Write & Read 2 Complex set of write and read func. 0.643mW 0.064mJ

System mem. Write and read from the system
memory

0.643mW 0.064mJ

Dynamic mem. Write and read from the dynamic
memory

0.643mW 0.064mJ

It can be noticed from the analysis presented in Table 5.2 that the values
of the power and energy consumption are identical to the ones presented
in the fram analysis in Table 5.1. This is the result of the similar power-
aware technology used for the construction of the respective i2c protocol.
However, there are differences between these two modules and tests over
longer periods of time would eventually lead to more significant distinctions.
The tests focused on reading and writing to the dynamic memory show
equal results to the write command of the user memory values. The reason
for this behaviour is that for the system/dynamic memory tests, only the
changes in one value have been tracked. The tests were focused more on
the functionality accuracy rather than the energy consumption analysis.
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Table 5.3: NFC tag module RF test cases

Inventory Command to check the inventory
status

0.851mW 0.084mJ

Read a block Command to read one block (4
bytes)

0.821mW 0.082mJ

Write a block Command to write one block (4
bytes)

0.936mW 0.093mJ

Read n blocks Command to read multiple blocks
(n*4 bytes)

0.851mW 0.084mJ

Write n blocks Command to write multiple blocks
(n*4 bytes)

1.077mW 0.107mJ

Read config Command to read a specific config-
uration

0.827mW 0.082mJ

Write config Command to write to a specific con-
figuration

0.879mW 0.087mJ

Read dynamic Command to read a specific dy-
namic mem. pos.

0.827mW 0.082mJ

Write dynamic Command to write to a specific dy-
namic mem. pos.

0.879mW 0.087mJ

Write message Command to use the fast message
system

2.214mW 0.220mJ

Read msg. length Command to read the current mes-
sage length

0.827mW 0.082mJ

Read message Command to read the current mes-
sage

0.827mW 0.082mJ
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Table 5.4: NFC tag module RF and I2C test cases

Mailbox 1 Series of commands for sending the
message from a rf to the i2c system

5.235mW 0.522mJ

Mailbox 2 Series of commands for sending the
message from a i2c to a rf system

1.646mW 0.164mJ

Energ. harvesting Turn on the energ. harv. followed
by the mailbox 2 test

-19.2mW -1.91mJ

The implemented nfc module offers the use of the standard nfc rf set
functions which can be seen listed in the Table 5.3. These were for the
simulation the most critical functions, among others, which have been
implemented and thereafter tested. rf commands generally take much
longer time for a similar execution than the i2c counterparts for the reason
of the much slower bit transfer. This type of the operation modes also draws
more energy. There are also some other more significant differences, one of
them being that the writing operation takes more time mainly because of
the so-called write cycle which takes additional time compared to the read
operation.
Table 5.4 lists the three most complex tests regarding the nfc tag module,
since all three tests are run by using both the i2c and the rf operation
modes. In both cases of the mailbox tests, a sequence of 32 values was sent.
The energy harvesting test is focused first on declaring a set of sequence of
commands for turning on the energy harvesting mode, followed with the
“Mailbox 2” test case. The negative values for the power and energy results
indicate that during this operation, a part of the energy was used to charge
the battery.

Security Chip Test Bench

Unlike the tests previously made with the other modules, the security chip
is set differently in that it is implemented on a higher abstraction layer. That
can also be seen with the config. values from the security handling seen in
Table 3.7, where the current in active state is very high compared to other
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processes. The same current consumption is also kept in idle state for the
security reasons. Table 5.5 displays nine different tests, each separated on
writing and reading from the user memory, system memory, and running
the general security tests from the main functions.

Table 5.5: Security chip module test cases

Test Case Brief Test Explanation Power Energy

Write 1 val. Send and write a single value 0.668mW 0.066mJ

Write n val. Send and write 4 random values 0.685mW 0.068mJ

Read n val. Read 5 specific values 0.700mW 0.069mJ

Write & Read Complex set of write and read func. 0.845mW 0.084mJ

System mem. 1 Write changes to the data in the sys-
tem memory placed on the position
0x01

0.722mW 0.072mJ

System mem. 2 Tries to access memory address not
existing, operation fails

0.722mW 0.072mJ

Security 1 Tests the security function 1 (Mu-
tual Authentication using dtls)

20.88mW 2.084mJ

Security 2 Tests the security function 2 (One
Way Authentication) first, followed
by 3 (Crypto Toolbox)

53.58mW 5.356mJ

Security 3 Tries to access a non-existing secu-
rity function

1.201mW 0.120mJ

The test cases named “Security 1” and “Security 2” show considerable
higher energy input than other tests. That is mainly due to how the security
algorithm works. It takes a fixed amount of time for one session to end,
where each different session can take somewhere between 30 and 70 ms.
The final test, “Security 3”, tests the function error-handling.
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5.2.2 Microcontroller Program Testing

The last element which was designed and then integrated into the overall
system was the microcontroller. This module functions as a combination
step between all different modules and is used in controlling the whole
process. Because of that reason, most of the processes implemented inside
the microcontroller are actually based on the control elements from the test
benches. The main difference is that the microcontroller rises the complexity
of integration. Additionally, programs were put into place for actually
running the individual processes. Two main programs were developed:

1. Basic nfc ->fram - Data is received from a RF card, send to the
microcontroller and then saved permanently inside the fram

2. Advanced nfc ->Security ->fram - Similar as before, the main differ-
ence being that a security function is called before the data is saved to
the fram

The testing of the individual programs had three goals; to test how the
smart sensor functions as a finished simulation model, does each individual
module fulfils the basic modelled functions and how does the power and
energy consumption behave under the set parameters.

Microcontroller Program Definition

One process/thread was defined inside the microcontroller with two addi-
tional functions. The thread is used to control the values and the execution
of the individual microcontroller programs. These programs are defined as
the functions and are called on each clock step. Each of the two programs is
implemented through the use of the fsm principle. The microcontroller will
be denoted as uc for the rest of this section.

Basic program

1. rf scanner card starts a protocol of sending arbitrary data to the nfc

tag mailbox
2. uc receives the signal that new data is present in the nfc tag
3. uc checks the size of the message inside the mailbox
4. Using the i2c communication, the uc reads the data from the nfc
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5. The data is saved inside the uc ram

6. uc signals the fram and starts sending the data to be saved
7. Program ends and reset is initialized

Advanced program

1. Steps 1 - 5 are repeated from the basic program
2. The uc starts the security protocol

� Prepare the data from ram to be sent
� Set the appropriate security function
� Wait and respond on corresponding steps

3. After the security function is done, the chip sends back the new data
to the uc

4. Steps 5 - 7 are repeated from the basic program

Energy Consumption

The following section showcases the analysis of the energy consumption of
the two aforementioned programs. Both programs have been individually
evaluated. From the parameter list it was set that for the both programs a
total number of 32 values is to be worked with (from the rf scanner tag
to all other processes). Additionally, the second advanced program used
the first function (Mutual Authentication using dtls) as the security basis.
Both simulations run for a total of 100ms and only one session of data
transmission is initialized.
The power and energy consumption of the basic program are shown in
Figures 5.3 and 5.4, and from the advanced program in Figure 5.5 and 5.6
respectively. By the basic program, most power is spent during the rf first
step, up until 37ms, afterwards until 42ms very little power is used. From
42ms onwards the whole device is in sleep state. The advanced program
shows similar results except for action in-between 38ms and 65ms. There is a
large increase in power due to the high current consumption of the security
chip active state. The total energy consumption of the basic program has
been measured at 0.34mJ, while advanced program showed a much larger
consumption of 2.43mJ.
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Figure 5.3: Power consumption during the run of the basic microcontroller application

Figure 5.4: Energy consumption traced for the basic microcontroller application
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Figure 5.5: Power consumption during the run of the advanced microcontroller application

Figure 5.6: Energy consumption traced for the advanced microcontroller application
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6 Conclusion and Future Work

In this thesis a solution titled “SimPar” was discussed. The main principle is
envisioned as a set of tools and frameworks designed to help in modelling
SystemC simulations to be run in a parallel environment. For that reason,
a client-server methodology was recommended. The system is primarily
intended to work for simulations by which runtime is highly dependant on
the input parameters. These simulations generally include modern smart
sensors. To that extent, the second phase of the thesis discusses a full design
and implementation of one of the smart sensors. The key points established
are security, dependability, and power awareness.
The goal which was set during the realization of this project was to create
an usable concept which could be applied on independent SystemC simu-
lations. The main challenge was in creating a protocol which can be easily
used and implemented from the side of different developers. That was
partially fulfilled, but the question remains how approachable this design is
and should it be geared more in the direction of reducing the design or the
implementation time of a potential simulation.
As a guideline for a possible simulation model, a smart sensor was de-
veloped and evaluated on the energy performance. The SystemC design
methodology was aimed at functional and energy accuracy. The described
approach is accurate, but time consuming. The development also followed
a real-world physical implementation. In current time and especially in
the near future, design approaches aimed more towards a higher abstract
representation of the hardware (i.e. tml design) will be more and more
prevalent. In this scenario, it would also be necessary to ensure that the
parallel system model of the SimPar can also support different simulation
designs.
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6.1 Future Work

Since SimPar was developed as a project which could be viewed indepen-
dently from the point of the two-phase development (simulation handling
and the smart-sensor model), so are the revisions generally seen as improve-
ments for either the client-server system, the smart-sensor model or the
interconnection between these two phases.

Proposals for the improvement of the client-server system model:

• Add a gui (Graphical User Interface) for real-time observations
• Make the model more dynamic by adding user or admin interaction

during the run-time of the simulation
• Adapt the system with a better protocol and simulation handling

On the other hand, some proposals for the smart-sensor SystemC model
include:

• Add a higher and lower abstraction layer representation
• Change the simulation environment for an easier interface for testing

and running purposes
• Implement real tests for SystemC model interaction with an environ-

ment model (e.g. Gazebo model)

Some of the mentioned proposals for the future work have already been
analysed and are being researched. These ideas are further more discussed
in their own respective sub-chapters.

6.1.1 Real-time Signal Plotting using a GUI

The main goal of the proposal is to enable “real-time” simulation data
reading (from specific signals of a SystemC simulation) during its run-
time. The idea behind comes from the fact that the data from a SystemC
simulation is only able to be read when the simulation ends its run-time
cycle. Depending on the time needed, sometimes it is of use that the data
is read during its execution, to make for an easier analysis. Since the main
system is programmed primarily in C++ (with SystemC) and partially C
language, graphical options are limited and hard to exploit. For that reason
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Python has been recommended for use.
The main reasons why Python is recommended to be used above other
languages are:

• It allows for a good portability - between different os

• It is easy to use and maintain - code is simple to write and combine
• It has a good support for inner workings with C-based programming

languages
• It has support for many graph and gui oriented libraries

The main technical challenge is trying to find the best approach for the
communication between C++ main program and Python script, by still
maintaining good performance, time accuracy and reliability. Two main
approaches regarding the communication have been proposed. They can be
tested using a separate program with a simple SystemC model and using
the strategy design pattern. The ideas are:

1. Define through file

+ Python updates its script as an animation (“read-time” update
definition)

+ Stable and extensible 1

+ Able to store data and track them individually

+ Portable 2

− Less efficient in execution than standard output communication
(uses files)

− Possible issues (not tested) with providing the setup to the GUI
program in Python, time synchronization, or setting multiple
runs

2. Define with “Named Pipes” by Munagekar [29]

+ More conventional and efficient approach (use a memory location
and redirect the output, no need for saving the data on disk)

1by adding additional signals, make changes independent on the operating system, . . .
2between Unix systems and Windows
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+ Easier synchronization between C++ and Python (better than
conventional pipes, since one program will wait until the other
comes to a specific command)

− Not cross-platform 3

− Does not directly save values

It is possible that for the gui extension, other possible solutions might be
suggested, among which is the use of qt library for the C++ or even Node.js
for a higher abstract programming.

6.1.2 Handle Terminal User Interaction

This improvement is mainly proposed on the client-server system side, since
it concerns how the environmental simulation supervision is to be handled.
Currently, the system is implemented to handle the client handshake request
and subsequent simulation requests automatically. While that proves to
handle most of the tasks efficiently and also helps in reducing the direct
user involvement, it does not leave much room open for improvements.
It would also be helpful if there was a better error-handling schema with
status monitoring from both the server and partially from the client side.

The work in this field is suggested to be done with the implementation of ad-
ditional terminal commands and connections. The following is the proposal
for which the server would be able to directly send commands to a client
via the user interaction (as a precursors to the “Dynamic Simulations”):

− Create a “special client” which works as a Telnet protocol system,
taking inputs and giving outputs from that terminal.

− The server would receive this messages in a separate thread from the
special client and would put them in a queue in a global variable. The
reason for a global variable is that it is one of the ways to enable the
threads to take values from the main process.

3UNIX-based, but there are ways to make it on Windows
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− Variables are still separate vectors of strings, hence currently, there is
no additional need for semaphores or mutex (although depending on
the performance issues, it could be rearranged).

− The special client would also be able to use commands to list all the
connected clients and similar options to allow him for an easier control.
Before sending a command, an appropriate “code” would have to be
written in front of the message. That code is used by the Server to find
the correct client.

A potential issue with this proposal is that the simulation clients work on a
protocol principle and always send their messages first. It can be blocking
in regards to server handling 4. A solution for this problem would include
timeouts, allowing for a double-sided connection and changing the protocol
to be controlled on the server side rather than on the client side.

6.1.3 Smart Sensor SystemC Model Improvements

The developed smart sensor simulation model fulfils most of the set require-
ments, but it is always open for improvements. One of those include a more
accurate handling of the clock signal. While the model was developed to
handle the different frequencies of the i2c protocol, an issue eventually was
shown where it was difficult to accurately synchronise different processes
without impacting the overall simulation by a large margin. Currently, all
i2c clock signals run at 1MHz, but some modules support also a smaller
frequency for a higher energy efficiency.
Additionally, a better battery module can be implemented with more accu-
rate readings and statuses. This is especially evident with the charge routine,
which currently automatically charges the battery.
An important feature would be the extension of the error and the status
handling by the RF functionality of the RF Scanner and Tag, to make it a
proper emulated NFC chip. While this feature would not give better energy
readings or the end results, the mentioned potential implementation would
effectively cover most of the hardware functional options on the software
level, rounding up the emulation design approach.

4“recv function” of the socket functions is blocking
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