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Abstract

In recent years, the development of neuronal networks and the improvement of applica-
tions based on artificial intelligence became a major focus of both industry and research.
The advancement of computational resources enabled deep neural networks to become a
very strong tool for image recognition and speech processing. However, artificial neural
networks need an enormous amount of computing power which prevents the simulation of
larger neural networks, that come close to the complexity of the human brain. Spiking neu-
ral networks would be more efficient in achieving this goal, in particular using specialized
neuromorphic computing chips. The recently developed neuromorphic chip Loihi from
Intel allows for efficient simulations of spiking neural networks. Loihi was examined in
detail and a novel spiking neural network architecture, the long short-term memory spik-
ing neural network, was implemented on the chip. Furthermore, the sequential MNIST
classification task was performed on Loihi. Therefore, a TensorFlow model was adapted
in order to train a network for Loihi with the supervised learning method backpropagation
through time. It was shown that the Loihi implementation achieved results on the sequen-
tial MNIST task that were similar to software simulations of both artificial and spiking
neural networks.
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Zusammenfassung

Die Entwicklung von auf künstlicher Intelligenz basierenden Anwendungen, vor allem
mittels Neuronalen Netzwerken, rückten in den letzten Jahren immer stärker in den Fokus
von Industrie und Forschung. Die steigende Verfügbarkeit von Rechenleistung ermöglichte
den Einsatz von tiefen Neuronalen Netzwerken, die vor allem in der Bilderkennung und
Sprachverarbeitung ihren Einsatz finden. Allerdings benötigen diese Neuronalen Netzw-
erke eine solch enorme Menge an Rechenleistung, dass Simulationen von größeren Net-
zwerken, deren Komplexität der des menschlichen Gehirns nahe kommt, nicht machbar
sind. Eine mögliche Lösung für dieses Problem ist die Verwendung von spikenden neu-
ronalen Netzwerken, vor allem in Kombination mit neuromorpher Hardware. Intel en-
twickelte einen innovativen neuromorphen Chip namens Loihi, welcher für solche Auf-
gaben eingesetzt werden könnte. Im Zuge dieser Arbeit wurde untersucht ob neuartige
Algorithmen für spikende neuronale Netzwerke auch auf dem Loihi Chip von Intel ange-
wandt werden können. Dafür wurde das Long short-term memory spiking neural net-
work Modell auf Loihi umgesetzt und ein Bilderkennungsexperiment, genannt sequen-
tielles MNIST, durchgeführt. Außerdem wurde ein TensorFlow Modell weiterentwickelt,
welches es ermöglicht, das an Loihi angepasste Modell zu simulieren und zu trainieren. Die
auf Loihi erzielten Klassifikationsergebnisse waren ähnlich gut wie jene von in Software
simulierten spikenden Netzwerken und von klassischen künstlichen Neuronalen Netzw-
erken.
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1 Introduction

In recent years Artificial Neural Networks (ANNs) provided the basis for groundbreak-
ing progress in many machine learning applications, from classic applications like object
recognition and speech translation to locomotion of robots [1] and medical diagnosis [2].
Therefore ANNs got a lot of focus from industry and academia to improve the performance
of these deep learning models on established hardware architectures and exploit it for ex-
tremely fast dense matrix multiplications [3]. The easiest and safest way to improve the
performance of a deep neural network is to increase the number of neurons. This however
this leads to two drawbacks: overfitting and dramatically increased use of computational
resources [4]. Stacking up the computational resources might be a solution [5], but cer-
tainly not an efficient one. A more sophisticated solution which copes with both problems,
would be to use sparsely connected ANNs [6, 4, 7]. This might provide a novel solution to
two big problems in machine learning, but hardly anybody uses it, because the frameworks
and infrastructures were optimized for fast dense matrix multiplication, to a point that it
would not make sense to use a sparse neural network [4]. Thus, [4] aimed for an interme-
diate architecture that still could exploit current hardware features.

This raises the question if ignoring the established hardware optimizations and using a
different sparse architecture would be beneficial after all. The brain, as the biggest and
most complex working neural network known so far, heavily relies on sparsity. So sparsity
seems to be a key attribute for an efficient usage of neural networks with higher num-
bers of neurons. Another key attribute of the human brain or brains in general would be
the use of pulses of current or spikes to transfer information between neurons instead of
continues values. Spiking Neural Network (SNN) architectures have been around quite
some time and have in theory already been proven to be as powerful if not more powerful
than present ANNs [8]. A lack of an effective supervised training method and the relative
computationally-intensive simulation on conventional hardware prevented their practical
usage so far.

A human brain consists of roughly 100 billion nerve cells which are interconnected by
100 trillion synapses. It would need a whole lot of resources to simulate it, even with
simplifications and approximations for parts of this very complex machine. Simulating
the human brain or parts of it for various purposes, e.g. new research methods for brain
disorders, network designs and new perspectives on deep learning, have been a big chal-
lenge since the first neuron models were proposed. A simulation of the human brain with
ANNs or SNNs on established hardware was never possible and probably would still need
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2 1 Introduction

more powerful hardware than currently available [9]. As contemporary chip architectures
struggle with efficient calculation of these big, sparse and more complex models a different
approach might provide some solutions - neuromorphic hardware.

In the last decade large-scale neuromorphic hardware has been developed, such as SpiN-
Naker [10], BrainScaleS [11], TrueNorth [12] and most recently Loihi [13] which should
allow for efficient simulations of very large neural networks and practical real time applica-
tions of SNNs. Also effective supervised training algorithms have been recently proposed
[14, 15] or even the conversion of ANNs to SNNs [16]. Thus, developing feasible SNN
applications could finally progress to the same level as with ANNs.

The central question of this thesis was if a neuromorphic hardware implementation of
a SNN could compete with software SNN simulations and ANN implementations on con-
ventional hardware. Therefore a novel SNN architecture, the long short-term memory
spiking neural network (LSNN) [17] was implemented on Intel’s neuromorphic hardware
chip Loihi. As application the sequential MNIST [18, 19] classification task was chosen
which was also performed by [17]. It was shown that LSNNs can achieve similar perfor-
mance to LSTM [20] networks on the sequential MNIST task [17]. In order to train the
LSNN efficiently the LSNN TensorFlow [21] model from [17] was modified to represent
and incorporate the dynamics and constraints of the Loihi chip.

Chapter 2 gives an overview on SNNs, the current status of supervised learning methods
for SNNs and an introduction to neuromorphic hardware. A detailed description of the
Loihi neuromorphic platform can be found in chapter 3 and the implementation of LSNNs
on Loihi is described in chapter 4. The necessary TensorFlow adaptions for the software
model are specified in chapter 5 and the comparison of the results on the sequential MNIST
task chapter are stated in chapter 6. The thesis concludes with a discussion of the found
results in chapter 7 and a concluding statement in chapter 8.



2 Background

2.1 Spiking Neural Networks
Spiking neural networks (SNNs) more closely resemble biological neural networks com-

pared to other ANN models, which are based on highly simplified dynamics [8]. In com-
parison to ANNs, SNNs not only use the neuronal and synaptic state in their models, but
also the concept of time. This means neurons do not propagate their value at a fixed clock
rate, but dependent on their previous inputs and outputs. This event based behavior was
derived from biological neuron models and experiments.

In 1952 Hodgkin and Huxley proposed their popular scientific model of a biological
spiking neuron which incorporates ionic interactions that lead to action potentials [22].
Further on action potentials or spikes are not transmitted directly between the neurons in
biology as it involves synapses [23]. So in order to model the biological behavior the type
of the synapse, which can be electrical or chemical has to be chosen. If it would be a
chemical synapse the exchange of neurotransmitters in the synaptic gap [24] would have
to be modeled. It is also known that even more complex processes throughout the whole
brain affect the synaptic behavior. These are not fully understand yet and topic of ongoing
research. Therefore much simpler models, which require less equations to compute are
widely used for spiking neural networks [25].

The leaky integrate-and-fire (LIF) model is one of these models and was used in the
experiments of this thesis. It is a derivative of the integrate-and-fire model [26] in which
an applied input current increases the membrane potential of a neuron over time until a
certain threshold is reached. If the threshold is reached the neuron ejects a spike as output
and the membrane potential resets to some resting potential. In the LIF model a leak term
is additionally added which decreases the membrane potential over time. This reflects the
diffusion behavior of ions through the membrane if a cell equilibrium is not reached [25].
The LIF model follows Eq. (2.1):

Cm
dVm(t)

dt
= I(t)− Vm(t)

Rm

, (2.1)

where I(t) represents the input current at time t, Vm(t) is the membrane potential at
time t, R is the membrane resistance and Cm is the membrane capacitance. This equation
represents a resistor-capacitor circuit with the time constant RmCm. The integration of
I(t) is due to the capacitor, which is in parallel to the leakage causing resistor. The LIF
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4 2 Background

model does not explicitly model spiking events. If the membrane potential Vm(t) reaches
a certain threshold Vth a spike is generated and Vm is instantly reset to a lower value Vr.
Subsequently the process of Eq. (2.1) starts again with Vm = Vr.

2.2 Backpropagation through time for SNNs

One of the big disadvantages of SNNs was the lack of suitable supervised learning al-
gorithms. The application of error back-propagation [27] in deep artificial neural networks
showed great successes in the past years, especially on recurrent neural networks (RNNs)
[28]. Backpropagation through time (BPTT) is one popular method used to train recurrent
neural networks. The recurrent network is unfolded in time and after that the backpropa-
gation algorithm is applied. Backpropagation is used to calculate gradients in order to use
them for the computation of the weight updates during training of a neural network. An
error is computed at the output layer, which gets propagated backwards through the layers
of the network. A detailed description of the algorithm, its variations as well as its appli-
cations in machine learning is given in [28]. Although, BPTT does not reflect biological
motivated learning models and there is no neurophysiological evidence that BPTT or sim-
ilar techniques are used within the brain [29], it would definitely be a powerful method to
use for training SNNs. The major problem of BPTT in SNNs is that it requires the deriva-
tive of the loss function to be known. This is challenging as the derivative of the membrane
potential, i.e. the neuronal state is non-existent at the time a spike is elicited. Recently, it
was shown that an approximated derivative can be used to address the non-differentiability
of spikes. This was achieved for binary activations in feed forward SNNs [14, 15] as well
as for recurrent SNNs [17]. The used pseudo-derivative continuously increased from 0 to
1 and decayed back to 0, as seen in Eq. (2.2):

dzj(t)

dvj(t)
= max {0, 1− |vj(t)|} , (2.2)

where vj(t) represents the normalized membrane potential and zj(t) denotes the spike
train. The authors of [17] used an additional dampening factor γ < 1 on the amplitude of
the pseudo-derivative in order to stabilize this approach for very deep unrolled recurrent
SNNs:

dzj(t)

dvj(t)
= γmax {0, 1− |vj(t)|} . (2.3)

This approach Eq. (2.3) with a γ = 0.3 was used to train the recurrent SNN models of
the experiments described in this thesis.
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2.3 Neuromorphic Hardware
Traditional CPUs are based on the von Neumann architecture which is over 60 years old

and still dominates, beside minor adaptions, the current development of computing chips.
Two major aspects of the von Neumann model are the distinction of the computing units
and the working memory as well as the data processing on a clock rate basis. Many years
ago the increase of the clock rate was the main improvement point for new CPUs, as a
higher clock rate allowed for more calculations per time unit. Around ten years ago the
increase of the clock rate reached a physical limit due to heat loss and chip sizes. After
that, improvements were mainly achieved by optimizing memory streams and adding more
computing units to the CPUs. These parallel optimization approaches have one big disad-
vantage - bigger CPUs with more computing units need more resources and power. At the
same time the downsizing of transistors is slowly but surely coming to an end. This means
that after 70 years there is a realistic chance that future general purpose CPUs are based on
a different architecture. One possible replacement of the present widely used CPU archi-
tecture could be found in the neuromorphic approach.

This approach of creating digital or analog equivalents of neurons in silicon, which com-
municate in parallel using pulses of electric current without a clocked time could be the
future of computing [30]. The neuro-units of such chips process incoming flows of elec-
tricity in a similar matter as our brain does and also with much higher efficiency com-
pared to contemporary computing units. The neuromorphic TrueNorth chip from IBM for
example consumes only 70 milliwatts of power while having five times more transistors
than a standard Intel processor which uses at least 35 watts [12]. At the same time some
approaches of neuromorphic chips use standard processors for simulating described be-
havior, e.g. SpiNNaker [10] or incorporate analog neurons e.g. BrainScaleS [11]. Most
recently also Intel presented a silicon implementation of a neuromorphic chip named Loihi
[13], which is also very energy efficient and scalable to brain size amounts of neurons and
synapses. A more detailed description of the design and possibilities of Loihi is given in
chapter 3, as Loihi was used to perform the experiments.





3 Loihi

Loihi is a neuromorphic manycore processor which is capable of using on-chip learning
rules [13]. It is a 60-mm2 chip and fabricated in Intel’s 14-nm FinFET process. Loihi has
a fully digital architecture, that approximates the usually continuous time dynamics with
a fixed-size discrete time step model. As the distributed dynamics of the neurons have to
evolve in a well-defined manner all neurons need to maintain a synchronized timestamp
throughout the entire chip. Before the cores advance their time step all spikes need to
reach their destination. After all spikes arrived at their destination a barrier synchronization
message is sent and the cores advance their time step. Therefore the time steps have no
direct relationship to the hardware execution time. The length of a time step depends on
the amount of spikes and amount of updates of the learning engine occur during that time
step [13].

3.1 Architecture

A Loihi chip is composed of 128 neuromorphic cores and three embedded x86 processor
cores. A maximum of 1024 spiking neural units or compartments can be implemented per
neuromorphic core. This compartments share ten architectural memories with their fan-in
and fan-out connectivity, configuration and state variables [13]. This means that densely
connected neuron models need more memory for their fan-in and fan-out information or
synapses, than sparser models. As the memory is limited there is a trade-off between the
maximum amount of compartments which can be configured and their number of synapses
per neuromorphic core. The more compartments are configured in a neuromorphic core the
less synapses can be configured and vice versa. The same concept applies for other state
variables which may be configured. This means that the actual possible amount of neurons
and synapses to configure depend on the complexity of the model.

Loihi uses a variation of the current-based (CUBA) leaky-integrate-and-fire model which
implements the synaptic response current u and the membrane potential v as two internal
state variables. The current u is the sum of filtered and weighted input spikes and an
optional bias current. The membrane potential integrates the current u and generates a
spike when it passes its firing threshold potential. Both state variables are leaky and have
their own time constant describing their exponential decay. The exact equations for u and
v for one compartment can be seen in Eq. (3.1) and Eq. (3.2):
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8 3 Loihi

Table 3.1 Precision of the parameters for the neuronal dynamics on Loihi. Variables with
a preceding u/s are unsigned/signed. The sign is included in the number of bits
specified.

Symbol Precision Description

wgt u8 bit Synaptic weight used for spike accumulation.
wgtExp s4 bit Shared weight exponent used to scale magnitude of weights.
u s24 bit Compartment current.
v s24 bit Compartment membrane potential.
vthreshold u17 bit Membrane threshold for a compartment.
τu u12 bit Shared decay constant for compartment current u.
τv u12 bit Shared decay constant for compartment membrane voltage v.

u(t) =

{[
u(t− 1) · (212 − integer( 1

τu
· 212))

]
>> 12

}
+ 26+wgtExp ·wgt · sin(t) (3.1)

v(t) =

{[
v(t− 1) · (212 − integer( 1

τv
· 212))

]
>> 12

}
+ u(t) + b (3.2)

sout(t) =

{
1, if v(t) > vthreshold · 26

0, otherwise
(3.3)

where τu and τv are the respective time constants for the leak, integer(..) refers to
rounding the value to an integer, the operator >> refers to a right-shift with LSB trun-
cation, wgtExp and wgt refer to the synaptic weight value with the actual weight being
wgt · 26+wgtExp, sin as binary input spike, sout as binary output spike following Eq. (3.3)
and b is an optional additive constant bias voltage. If there is an input spike, sin is one
and the weight value is added to the first decayed old current u. After that the membrane
potential v is also decayed and integrates the new u as well as add an optional bias. If the
membrane potential v reaches the threshold vthreshold · 26 an outgoing spike is generated
and the membrane potential is reset to zero. The maximum precision of the parameters for
the neuronal dynamics on Loihi are shown in Table 3.1.

The biologically inspired internal structure of a neuromorphic core on Loihi is shown in
Figure 3.1. The SYNAPSE unit processes the incoming spikes according to the synaptic
weights and the DENDRITE unit updates the state variable u and v for all the neurons. Out-
going spikes are generated in the AXON unit for each neuron which reaches the threshold
potential and the LEARNING unit updates the synaptic weights according to the imple-
mented learning rule.



3.2 Configuration 9

Figure 3.1 Top-Level Microarchitecture of a neuromorphic core.

3.2 Configuration
Loihi comes with a Python-based API to specify SNN topologies on the chip as well as

a compiler and runtime library for building and executing SNNs on the Loihi chip [31].
This API is called NxAPI and allows to configure the network in the form of specifying
nodes and their connections, similar to models in graph theory. Once the network, input
spikes and output monitors are configured the compiler can build it and send it to the chip
itself in order to run it. The monitored result data can then be inspected in Python again.
The main state variables to monitor are the current u, the membrane potential v as well as
the generated spikes s of the compartments.

There are three depth levels of configuring or programming the chip. The highest level
option is using the NxNet API, which encapsulates the complex register based configu-
rations of the neurons and synapses of the hardware in easy to use methods. Basically it
provides a SNN API that does not require any knowledge about the underlying hardware.
Therefore the NxNet API is similar to other SNN simulators or libraries like Brian [32]
or PyNN [33]. While it is very convenient to use NxNet, it hides away some advanced
configuration possibilities.

The NxCore API is still implemented in python but it requires knowledge of the hard-
ware configuration and therefore it is needed to configure the registers explicitly. Thus,
additional knowledge of the hardware is needed but it also means that registers can be con-
figured in different ways than initially intended which makes the API more flexible. The
third and lowest level to configure Loihi is through C. While it is not a full API, NxNet and
NxCore offer the possibility to program symmetric neural interfacing processes (SNIPs).
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This framework offers to include simple C programs which run on one of the x86 cores of
Loihi. SNIPs offer an even deeper interaction level during the execution of the SNN on the
chip but require also deeper knowledge of the hardware processes.

The experiments involving Loihi in this thesis were first configured solely with the Nx-
Core API and were later ported to an implementation using NxNet and SNIPs. The SNIPs
were used for encoding the input of the SNN directly on the chip rather than process it in
python. To access a Loihi chip a remote connection via SSH to Intel Labs was used, as at
that time the chips were only available there.



4 LSNN on Loihi

4.1 Long short-term memory in networks of spiking
neurons

In ANNs long short-term memory (LSTM) cells made a big breakthrough in recent
years. Due to availability of Big Data and enhanced computing power recurrent LSTM
networks became a very popular architecture for many deep learning models and applica-
tions [34]. As deep in deep learning refers to vast amount of layers through which the data
is transformed, an additional memory is needed to train them with error back-propagation
methods. Otherwise the propagated error would diminish after being passed through a few
layers and the cells in these layers would not change their parameters at all i.e. not learn
anything. Therefore the cells got an explicit memory and information gating which helps
to overcome this problem due to more options of propagating/processing the error signal
over a longer time period. LSTM networks are used today in major application e.g. speech
recognition [35] of smart phones and smart devices [36], chat bots [37], speech translation
[38] or gaming bots which beat human players in various games [39].

It is clear that this long short-term memory is beneficial for RNNs, so the general idea
was also applied to SNNs. [17] developed such a long short-term memory architecture for
spiking neurons, the LSNN. However it is not quite the same as LSTMs. While an LSTM
cell has a non-volatile memory which can be only changed through explicit gates an LSNN
is somewhat simpler. An LSNN consists of a population of regular LIF neurons and a pop-
ulation of adaptive LIF neurons. As a spiking neuron has a threshold, which the membrane
potential needs to reach in order to elicit a spike, adapting this threshold on a time scale of
seconds becomes the memory i.e. holds the additional information.

The adapting LIF neurons differ from a regular LIF neuron in the way, that the adaption
changes the firing threshold of a neuron in response to its own firing, which reduces its ex-
citability. This means that an adapting neuron, which has just fired a spike due to receiving
an input spike train, will be less likely to fire again when receiving the same input spike
train for a certain time period. The adapted threshold decays back to a baseline with some
time constant. This time constant determines then the volatility of the memory. [17] used
a simple model for this adapting neurons:

Ij(t) =
∑
i

W in
ji xi(t− dinji ) +

∑
i

W rec
ji zi(t− drecji ), (4.1)

11



12 4 LSNN on Loihi

Vj(t+ δt) = exp(− δt
τm

)Vj(t) + (1− exp(− δt
τm

))RmIj(t)−Bj(t)zj(t)δt, (4.2)

Bj(t) = b0
j + βbj(t), (4.3)

bj(t+ δt) = exp(− δt

τa,j
)bj(t) + (1− exp(− δt

τa,j
))zj(t). (4.4)

Ij(t) denotes the input current and is the weighted sum of incoming spikes from exter-
nal inputs as well as inputs from other neurons in the network. W in

ji and W rec
ji represent

the input and the recurrent synaptic weights and dinji as well as drecji denote the correspond-
ing synaptic delays. Neuron j fires at time t if the membrane potential Vj(t) is above its
threshold Bj(t) and the neuron is not in refractory state at time t. The refractory period for
neuron j begins after a spike is emitted from neuron j and lasts a set amount of time steps
t. During the refractory period zj(t) is set to 0. The firing threshold Bj(t) of neuron j in-
creases by β

τa,j
each time neuron j spikes and decays back to the baseline threshold b0

j with
the time constant τa,j . zj(t) represents the binary spike train of the neuron j. Bj(t)zj(t)δt
acts as a reset of the membrane voltage Vj(t) after each spike.

4.2 Implementation on Loihi
In order to use an LSNN model on Loihi an implementation of the adapting LIF neu-

ron architecture described in Eq. (4.3) and Eq. (4.4) is needed. Loihi does not provide
an option to arbitrarily change the threshold of a compartment during runtime. The chip
offers a homeostasis feature, which actually changes the threshold depending on the spike
activity, but this feature is sadly not very useful for the purpose of achieving an adapting
neuron. The homeostasis feature is mainly tailored to rate-based approaches and keeps the
spiking activity between lower and upper bounds. It increases the threshold if the spiking
frequency exceeds an upper limit and decreases the threshold if the activity falls below
the lower bound. For an event-based model with low spike activities of the neurons, the
homeostasis feature is not applicable. During the execution Loihi does also not allow arbi-
trary or conditionally changes of other state values, such as the membrane potential, except
using SNIPs. As each adaptive neuron would have to be evaluated within a SNIP, which is
costly, this option was not feasible. Therefore a different approach to achieve an adapting
behavior of the threshold for the configured neurons had to be developed.

One feature of Loihi is the multi-compartment neuron. Compartments can be organized
in a binary dendritic tree structure in which the root compartment is treated as somatic
compartment. All other compartments of such a multi-compartment neuron are denoted
as dendritic compartments. The individual compartments in this tree integrate incoming
spikes as well as input from their leaf compartments and in turn pass their own activation
towards the root compartment. To be specific a somatic compartment can add the mem-
brane potential of a corresponding dendritic compartment to its own membrane potential at



4.2 Implementation on Loihi 13

every time step. The threshold of the neuron cannot be changed, but with a well-configured
mutli-compartment neuron it is possible to change the membrane potential and therefore
change the effective threshold margin. This feature is the key to configure an adaptive LIF
neuron on Loihi.

4.2.1 Three compartment neuron model

An exact implementation of the adaptive LIF neuron from [17] on Loihi can be achieved
with a three compartment neuron model as seen in Figure 4.1. The main neuron gets the
input spikes and handles the regular membrane potential dynamics, but cannot generate
spikes. The output neuron adds the membrane potential of the main neuron and the mem-
brane potential of the decay neuron into its own membrane potential at every time step
and spikes if the threshold is reached. The main neuron and the output neuron represent
a regular LIF neuron. The decay neuron now represents the threshold adaptation. Every
time the output neuron generates a spike, the decay neuron gets it also as input spike with a
negative weight of the magnitude β

τa
. Additionally the decay of the membrane potential of

the decay neuron has the time constant τa which is usually larger than the time constant τv
of the decay of the main neuron. Therefore the decay neuron holds a negative membrane
potential which is equal to the threshold change and this negative value is added to the
regular membrane potential of the main neuron inside the output neuron at every time step.
Thus, the effective threshold margin is increased every time the output neuron spikes.

Figure 4.1 Illustration of the three compartment model to configure an adaptive LIF neu-
ron on Loihi.
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4.2.2 Two compartment neuron model
The major drawback of the three compartment neuron configuration for an adaptive LIF

neuron is that it needs the memory of three neurons to represent one neuron. While this is
no problem for small networks, it would not scale very well. Therefore a different more ef-
ficient model was developed, which needs only two compartments to configure an adaptive
LIF neuron. The tradeoff is that it does not exactly resemble the adapting LIF model from
[17] but has a very similar behavior. Figure 4.2 shows the concept of a two compartment
neuron model to configure an adapting LIF neuron on Loihi.

Figure 4.2 Illustration of the two compartment model to configure an adaptive LIF neuron
on Loihi.

Two compartments are configured to imitate an adaptive threshold of a neuron. The
main neuron is the regular input compartment, which receives external inputs and gener-
ates the output spikes. This compartment has a static threshold and elicit a spike if the
membrane voltage is higher than this threshold. The second compartment is the auxiliary
neuron which is responsible for keeping track of the adaptive threshold and its decay. If
the main neuron spikes, the auxiliary neuron also gets an input spike using an inhibitory
synapse which decreases its membrane potential. The time constant of the auxiliary neuron
τa is usually much larger than the time constant τv of the main neuron. Therefore the mem-
brane potential is decreasing slowly. The main neuron now adds the value of the membrane
potential from the auxiliary neuron at every time step to its own membrane potential. This
leads to an integration of the membrane potential of the auxiliary neuron in the main neu-
ron and decreases its membrane potential. As the gap between the static threshold of the
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main neuron and its membrane potential is increased by the auxiliary neuron, effectively
the threshold is increased.

4.2.3 Analytical comparison
The two compartment concept for an adapting LIF neuron is different to the proposed

model in [17]. Therefore an analytical comparison was made to quantity the differences
and determine the inhibitory synaptic weight for the connection to the auxiliary compart-
ment. It was assumed that the area under the curve of the adaptive threshold trace should
be equal to stay close to the original model. The original model of [17] is described in
Eq. (4.5) to Eq. (4.11).

τuu̇ = −u+Wsin ←→ u(t+ 1) = u(t)(1− δu) +Wsin (4.5)

τ vv̇ = −v + u←→ v(t+ 1) = v(t)(1− δv) + u (4.6)

sin =

{
1, if there is an input spike
0, otherwise

(4.7)

Eq. (4.5) and Eq. (4.6) describe the basic dynamics of a current-based leaky-integrate-
and-fire neuron with one input synapse. The membrane potential or voltage v of a neuron
is driven by the current u. Input spikes are described by the binary value sin andW denotes
the weight of the input synapse. The current as well as the membrane potential decay over
time with their respective time constants τu and τ v. The left side of←→ shows the model
in continuous time and the right side of←→ denotes the discrete time equivalent.

vth = vth0 + ∆vth (4.8)

τ th∆v̇th = −∆vth +Wths
out ←→ τ∆vth(t+ 1) = ∆vth(t)(1− δth) +Wths

out (4.9)

sout =

{
1, if v ≥ vth

0, otherwise
(4.10)

Eq. (4.8) and Eq. (4.9) describe the dynamics of the threshold vth. The baseline threshold
vth0 is increased by the adaptive threshold ∆vth, which varies depending on the spiking
activity of the neuron. The adaptive threshold ∆vth is increased by the weight Wth every
time the neuron generates a spike, i.e., the membrane potential v is greater or equal the
threshold vth. sout is the binary information if the neuron generated a spike. Additionally,
the adaptive threshold decays with a time constant τ th.

ϑA = vth − v = vth0 + ∆vth − v (4.11)

The margin between the membrane potential v and the threshold value vth is described
by Eq. (4.11) and denoted by ϑA.
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Eq. (4.12) to Eq. (4.18) describe the two compartment neuron model on Loihi.

τuu̇1 = −u1 +W1s1 ←→ u1(t+ 1) = u1(t)(1− δu) +W1s1 (4.12)

τ thv̇2 = −v1 +W2s2 ←→ v2(t+ 1) = v2(t)(1− δu) +W2s2 (4.13)

τ vv̇1 = −v1 + u1 + v2 ←→ v1(t+ 1) = v1(t)(1− δv) + u1 + v2 (4.14)

s1 =

{
1, if there is an input spike
0, otherwise

(4.15)

s2 =

{
1, if v1 ≥ vth

0, otherwise
(4.16)

Eq. (4.12) and Eq. (4.16) describe the basic dynamics of two compartment neuron with
one input synapse on Loihi. The membrane potential of the main compartment v1 is driven
by the input current u1 as well as the membrane potential of the auxiliary compartment v2.
Input spikes of the main compartment are described by the binary value s1 and W1 denotes
the weight of the input synapse. The membrane potential of the auxiliary compartment
v2 is increased by the value of W2 if the main compartment generated a spike, which is
described by s2. The current as well as the membrane potentials of the main and the
auxiliary compartment decay over time with their respective time constants τu, τ v and τ th.
Once more the model in continuous time is shown at the left side of ←→ and the at the
right side of←→ the model in discrete time is described.

vth = vth0 (4.17)

Eq. (4.17) describes the dynamics of the threshold vth which is equal to the baseline
threshold vth0 . The adaptive threshold is achieved through the dynamics of the main com-
partment and the auxiliary compartment.

ϑB = vth − v1 = vth0 − v1 (4.18)

The margin between the membrane potential v and the threshold value vth is described
by Eq. (4.18) and denoted by ϑB.

ϑB = vth0 v1
!

= vth0 + ∆vth − v = ϑA (4.19)

−v1
!

= ∆vth − v (4.20)

v(t) =

∫ −∞
t́

e−
t́
τv

∑
i

(t́− ti)Wdt́ (4.21)

∑
i

(t́− ti) ≡ s(t) (4.22)
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v1(t) =

∫ −∞
t́

e−
t́
τv

[∑
i

(t́− ti)W1 +

∫ −∞
t̃

e−
t̃
τth

∑
i

(t̃− ti)W2dt̃

]
dt́ (4.23)

In order to determine the difference between the original model and the Loihi model
ϑA and ϑB are set equal as shown in Eq. (4.19) and substituted throughout Eq. (4.20) to
Eq. (4.23). After transforming the equations into the Laplace space in Eq. (4.24) they can
be solved and the difference between ϑA and ϑB is shown.

V (s) = Av(s)S(s)W1

V1(s) = Av(s)(S(s)W1 + V2(s))

= Av(s)(S(s)W1 + Ath(s) ∗ S(s) ∗W2)

= Av(s)S(s)W1 + Av(s)Ath(s)S(s)W2

∆V th(s) = Ath(s)S(s)Wth

L(ϑA − ϑB) = L(∆vth(t)− v(t) + v(t))
!

= 0

= ∆V th(s)− V (s) + V1(s) =

= Ath(s)S(s)Wth − Av(s)S(s)W1 + Av(s)S(s)W1 + Av(s)Ath(s)S(s)W2
!

= 0

Ath(s)Wth + Av(s)Aaux(s)W2
!

= 0

e−
t

τthWth +

∫ t

0

e−
x
τv e−

t−x
τaux dxW2

!
= 0

e−
t

τthWth + e−
t

τaux

∫ t

0

e−x( 1
τv
− 1
τaux

)dxW2
!

= 0

with γ =
1

τ v
− 1

τaux

e−
t

τthWth + e−
t

τaux (−1

γ
e−xγ

t∣∣
0

)W2
!

= 0

e−
t

τthWth + e−
t

τaux (−1

γ
(e−tγ − 1))W2

!
= 0

e−
t

τthWth −
W2

γ
(e−t(γ+ 1

τaux
) − e−

t
τaux )

!
= 0

e−
t

τthWth −
W2

γ
e−

t
τv − W2

γ
e−

t
τaux

!
= 0

(4.24)
The assumption is that τ v is small compared to τaux and therefore e−

t
τv ≈ 0, which

simplifies Eq. (4.24) to Eq. (4.25):

W2 = −Wthγ if τaux !
= τ th (4.25)

where W2 denotes the weight of the auxiliary synapse i.e. the decrease of the membrane
voltage after the main neuron spiked and Wth denotes the weight of the adaptive threshold
change, i.e. the increase of the threshold after a spike. Under these assumptions the models
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behave similar if the weight W2 is chosen according to Eq. (4.25).

Figure 4.3 shows the original adaptive threshold from [17] and the concept of the two
compartment model on Loihi. The weight parameterW2 was set according to Eq. (4.25). It
can be seen that the dynamics are clearly different, but the principle stays the same. After
a neuron generated a spike, the threshold value is increased for the neuron over a given
time period. As previously mentioned the threshold on the chip cannot be changed during
runtime, thus the membrane potential needs to be modified accordingly. The dynamics
of the implemented version on Loihi can be seen in Figure 4.4. This two compartment
implementation of the adaptive LIF neuron was chosen to be used for developing an LSNN
module on the Loihi chip.

4.3 LSNN module
An LSNN module has been implemented on the Loihi chip in order to easily configure

and use LSNNs. The module consists of python classes and is available on the NxCore
level as well as the NxNet level. Originally the module was developed with the NxCore
API and on this level it manually configures the registers according to certain network pa-
rameters, i.e. number of input, regular LIF, adaptive LIF and output neurons as well as
their connection matrices. The main registers to configure are the compartment register for
the neurons itself as well as the synapse and axon registers for their connections. It is im-
portant that the two compartments of the two compartment neuron model for the adaptive
LIF neurons need to be next to each other in the compartment register. These details are
encapsulated through a convenient interface, which just needs the network parameters and
additional dynamic parameters, e.g., the time constants and thresholds of the neurons. In
the NxNet version of the module the interface is the same, but the register configuration
is done automatically by using NxNet based methods. For example, when configuring a
multi-compartment neuron NxNet takes care of the correct placement of the compartments
in the compartment register.

Listing 4.1 shows the method of the LSNN module to create an LSNN. The LSNN mod-
ule constructs such a network, consisting of an input layer, a layer of recurrently connected
regular and adaptive neurons as well as a linear output layer. The input layer receives input
from a spike generator and the solution is read out from the activity of the output layer
neurons using probes. The user is expected to provide both a stimulus and a set of input,
recurrent and output weight matrices in order to use the module. Listing 4.2 demonstrates
the configuration and execution of the network module, which configures an LSNN on
Loihi.
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(a)

(b)

Figure 4.3 The red dotted line in (a) shows the original adaptive threshold and the red dot-
ted line in (b) shows the effective adaptive threshold of the two compartment
model.



20 4 LSNN on Loihi

Figure 4.4 Dynamics of the implemented two compartment adaptive LIF neuron on
Loihi. The threshold value cannot be changed, but the membrane potential
can be decreased accordingly. The dynamics are equivalent to (b) in Figure
4.3
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def createLSNN ( numInput , numRegular , numAdaptive , numOutput ,
be t a , t a u u , t a u v , t a u a , t h r , r e f r a c =0) :
”””
C r e a t e s a l s n n o b j e c t .

: param numInput : Number o f i n p u t neurons .
: param numRegular : Number o f r e g u l a r neurons .
: param numAdapt ive : Number o f a d a p t i v e neurons .
: param numOutput : Number o f o u t p u t neurons .
: param b e t a : S c a l i n g c o n s t a n t o f a d a p t i v e

t h r e s h o l d .
: param t a u u : Membrane t i m e c o n s t a n t c u r r e n t .
: param t a u v : Membrane t i m e c o n s t a n t v o l t a g e .
: param t a u a : Membrane t i m e c o n s t a n t o f

a d a p t i v e t h r e s h o l d .
: param t h r : B a s e l i n e t h r e s h o l d v a l u e .
: param r e f r a c : R e f r a c t o r y t i m e d e l a y .
: r e t u r n An LSNN o b j e c t
”””

Listing 4.1 Description of the LSNN module.
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## S e t u p LSNN
# D e f i n e l a y e r s i z e s
numOutput = 2

# C re a t e LSSN ne twork
n e t = l s n n . createLSNN ( numInput =2 ,

numRegular =3 ,
numAdaptive =4 ,
numOutput=numOutput ,
b e t a = 1 . 8 ,
t a u u =0 ,
t a u v =20 ,
t a u a =700 ,
t h r =50∗2∗∗6)

## D e f i n e ne twork w e i g h t s and c o n s t r u c t ne twork
# D e f i n e i n p u t , r e c u r r e n t and o u t p u t w e i g h t s
wIn = np . a r r a y ( . . . )
wRec = np . a r r a y ( . . . )
wOut = np . a r r a y ( . . . )

# Load w e i g h t s and c o n s t r u c t ne twork
n e t . l o a d W e i g h t s ( wIn , wRec , wOut )
n e t . c o n s t r u c t N e t w o r k ( )

## D e f i n e s p i k e g e n e r a t o r
n e t . s p i k e G e n e r a t o r ( 1 , s p i k e t i m e s =[10 , 4 0 ] )

## A c t i v a t e ne twork pro be s
f o r n in n e t . ou tpu tNodes :

n . m o n i t o r . a c t i v a t e A l l P r o b e s ( )

## Run LSNN
numSteps = 500
n e t . run ( numSteps )
n e t . d i s c o n n e c t ( )

## V i s u a l i z e ne twork a c t i v i t y
f o r i in range ( 0 , numOutput ) :

n e t . ou tpu tNodes [ i ] . p l o t ( )

Listing 4.2 A small example how the LSNN module could be used.



5 TensorFlow simulation of LSNN-Loihi
In order to train an LSNN model running on Loihi a TensorFlow simulation was cre-

ated. Loihi does not efficiently support supervised learning methods like BPTT. Changing
the weights of the synapses according to some gradient would mean to reload the whole
network on the chip after every iteration. Therefore it is not beneficial right now to use the
chip for training with BPTT. TensorFlow on the other hand offers state of the art machine
learning tools and methods, is well documented and adaptable. Furthermore the original
LSNN model from [17] is implemented in TensorFlow and was used as foundation. So
the TensorFlow framework was a good choice to implement a Loihi based LSNN model,
which can be trained with BPTT. The trained network then could be transferred onto Loihi
to run inference.

The TensorFlow LSNN module was modified to take care of the specific characteristics
of the Loihi chip. Especially the dynamics of the neurons i.e. Eq. (3.1) and Eq. (3.2), the
limited and discretized weight values, the two compartment model for the adaptive thresh-
old, the overflow behavior of the dendritic accumulator and the specific precision of u and
v were implemented. Additionally the training algorithm was adapted to use the finite
precision Loihi model in the forward pass and the full precision model for the backward
pass. After each training update the full precision model was rounded to the finite precision
model to calculate the loss for the update. Figure 5.1 shows the process flow of the forward
and backward pass during training.

5.1 Implementation
The dynamics of the neurons were implemented exactly as described in Eq. (3.1) and

Eq. (3.2). The signs of the values were stored first, then the absolute values were cast and
rounded to 64 bit integers and multiplied before the bit shift operation was applied. Then
the values were cast to 32 bit floats again. As the TensorFlow cast and bit shift operation
do not have gradients, a custom gradient for this calculation of the decay was implemented,
being the gradient of a normal exponential decay with the same values and time constants.

Another important change was the precision of the weight matrix, i.e., the synaptic
weight values. The maximum precision on the Loihi chip for the synaptic weights are
8 bits with fixed sign. Therefore the range is from -255 to 255. In comparison the original
model uses a standard Gaussian weight distribution with mean 0 and standard deviation 1

23
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Figure 5.1 Process flow of the forward and backward pass during training. The forward
path uses quantized values suitable for Loihi and the backward pass uses full
precision values to determine the weight updates.

as initial values, with no further restrictions during updates. As the optimizers also rely on
this distributions to calculate the updates, the backward pass kept the full precision. For the
forward pass and especially the calculation of the loss the weights were quantized between
-255 and 255. A simple ceil rounding as well as the option of stochastic rounding were im-
plemented. Again a custom gradient was assigned to this operation, being the unchanged
gradient (without this custom gradient, the gradient would become zero).

In TensorFlow the two compartment model was implemented by adding an additional
state variable representing the second compartment to the neural cell model. The dynamics
of the auxiliary state variable followed the description of the two compartment model as
seen in the previous chapter 4.2.2. During the update of the membrane potential this addi-
tional negative value was added at every time step, if present.
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Loihi showed an unexpected behavior if many input spikes to one neuron were present.
The expectation was that there would be a limit to the maximum amount of input current
in one time step, but this was not observed. Instead an overflow behavior was found. The
dendritic accumulator had a finite precision of signed 16 bit, i.e., the maximum change of
the current u per time step is 215. If this value was exceeded it got negative, it behaved like
a signed integer. The exact dynamic of the dendritic accumulator is shown in Eq. (5.1):

u(t) =
{[
u(t− 1) + 2n−1 + uinput(t)

]
mod 2n

}
− 2n−1, (5.1)

where u(t) denotes the accumulated current of the dendrite which will be used in the
neuronal dynamics and uinput(t) denotes the the input current from all input spikes and
their respective weights at time step t. The bit precision is described by n and is 16 bit for
the dendritic accumulator on Loihi.

The finite precision of the current u and the membrane potential v was also implemented.
These state variables have signed 24 bit precision on Loihi i.e. a value range between
−(223− 1) to (223− 1). In the TensorFlow model this was achieved by clipping the values
at these limits. In the end an exact representation of the behavior on the Loihi chip in the
TensorFlow simulation was achieved. Thus, this model could be used to train a specific
LSNN example with BPTT and convenient optimizers that TensorFlow offers on arbitrary
hardware as well as take the trained parameters, load them on the chip and execute the
network on Loihi.

5.2 Remarks to the adaptions
Some of the changes impacted the performance of the original model if the hyper-

parameters were chosen poorly. The quantization of the synaptic weights was a major
change and it was important to think about the consequences. For example, if the threshold
of the neurons in the original model was chosen to be somewhere between 0 and 1, it would
be very likely that, after rounding to the finite precision Loihi weights, the threshold would
be in the middle of 0 and 255. This meant essentially that every weight value above the
threshold was wasted, as it would behave exactly the same as any other weight above the
threshold. Therefore the threshold should be chosen to resemble the highest weight of the
quantized range i.e. 255, in order to not waste valuable precision. If the threshold would be
chosen relative to other values, everything could be scaled accordingly to keep similar be-
havior. For the LSNN model in particular the threshold value and the beta hyper-parameter
needed to be treated the same way, when working hyper-parameters of the original model
were converted to the Loihi model.

Another remark concerns the refractory behavior of Loihi compared to the original
LSNN model. In the original LSNN model the membrane potential was also able to change
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due to incoming spikes during the refractory period. This was not possible on Loihi, as the
membrane potential was fixed during a refractory period. Although this was not a problem
to implement in the TensorFlow model, it certainly affected the performance of it. There-
fore the refractory period was changed to one time step, i.e., no refractory period, for the
experiments.



6 Application of LSNN-Loihi on
sequential MNIST

The performance of LSNNs on Loihi was tested on a standard benchmark task. Sequen-
tial MNIST [18, 19] was chosen as task, because it requires the short term memory of the
cells over a long time span in order to reach a high classification rate. It was also chosen to
compare the performance of LSNN-Loihi with the original LSNN results from [17]. The
model was trained off chip with TensorFlow and BPTT using GPUs or Xeon CPUs. After
training, the learned weights were used to configure the LSNN network on Loihi and run
inference on the chip to measure the classification rate.

6.1 Sequential MNIST
MNIST [40] refers to a database of handwritten digits from zero to nine. It has a training

set of 60000 examples and a test set of 10000 examples from approximately 250 writers.
Each digit is mapped on an image with 28x28 pixels and 256 gray levels. Some examples
can be seen in Figure 6.1. Sequential MNIST refers to classification task where the pixels
of the handwritten digits are presented sequentially, pixel by pixel. As an MNIST image
has 784 pixels, this means each digit takes 784 time steps to process.

6.2 Input encoding
The gray values of the pixels from an MNIST image were encoded in spikes. 80 input

neurons were used and each of them was associated with a particular threshold for the
gray value. So there were 79 linear spaced thresholds between 0 and 256. Every second
threshold refereed to an increasing gray value, while the others refereed to a decreasing
gray value. If the gray value changes when switching from one pixel to the next and
the gray value increases, every second input neuron from the last threshold to the next
threshold generates a spike. This principle can be seen in (a) and (b) of Figure 6.2. The
pixels marked red in (a) are the indicator for (b). The transition is four times from lower
gray to higher gray values, which correspond to the steps in (b) and after that a two time
transition to lower gray values. Furthermore the last input neuron becomes active after the
presentation of all 784 pixels for 56 time steps, thus the presentation of one image takes
840 time steps. This last input neuron which generates a spike at every time step after
the image presentation indicates to the network, that the image has ended and an output

27
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Figure 6.1 Sample digits of 3, 5 and 8 from the MNIST handwritten digit database.

classification should happen. The firing of this special input neuron is shown at the top
right of Figure 6.2c. Figure 6.2c also shows the complete input encoding of the MNIST
picture from Figure 6.2a.

6.3 Network

The chosen network structure and size was inspired from [17]. Figure 6.3 shows the
structure of the used network. The regular spiking neurons were divided into excitatory
neurons (75%) and inhibitory neurons (25%). All of the adaptive neurons were excitatory
neurons. 140 regular spiking neurons and 100 adaptive neurons were chosen for the re-
current network. 80 input neurons were chosen to perform an input spike encoding of the
images, and 10 output neurons were chosen corresponding to the 10 classes of the data.
As the network was also trained using DEEP R [6], an overall connectivity of 20% was
chosen. The detailed hyper-parameters which were used to train the Loihi LSNN can be
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(a)

(b)

(c)

Figure 6.2 (a) handwritten MNIST digit, (b) the principle of exceeding and descending
thresholds for the spike encoding and (c) the complete spike encoded MNIST
digit.
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seen in Table 6.1

Figure 6.3 Structure of the Loihi LSNN network. The arrows show the recurrent connec-
tions between the different groups of neurons. The regular spiking neurons R
consisted of 105 excitatory neurons and 35 inhibitory neurons. The adaptive
neurons A were 100 excitatory neurons. The input population X and the out-
put population Y consisted of excitatory and inhibitory neurons, depending on
the training outcome of the network.

To compare the Loihi LSNN with the original model, a millisecond on the original model
corresponds to one time step on Loihi. A more complex calculation was needed to get the
corresponding beta and baseline threshold values for Loihi. This calculation is shown in
Eq. (6.1):

ploihi = porig · 26 · 1

1− exp(− 1
τm

)
· ζ, (6.1)

where ploihi stands for a hyper-parameter of the Loihi model, e.g., the beta value β or
the baseline threshold value b0. The corresponding hyper-parameter of the original model
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Table 6.1 Hyper-parameters of the original LSNN model and the corresponding hyper-
parameters on Loihi.

original LSNN Loihi LSNN

β 1.8 1390000
baseline threshold b0 0.01 8128
refractory steps 5 ms 1
number of delays 10 1
τm 20 ms 20 time steps
τa 700 ms 700 time steps
scaling constant ζ - 620

is denoted by porig. τm describes the time constant of the membrane potential and ζ is a
scaling constant. First, every threshold on Loihi got multiplied by 26, as the input current
got also multiplied by this factor Eq. (3.1). The next factor for the calculation was needed
because a factor for the input current of the original model was removed. The factor was
1 − exp(− 1

τm
). The last factor was the scaling constant ζ , which was used for scaling the

threshold so it corresponds to a certain synaptic weight on Loihi. It should be remembered
that Loihi has finite precision and therefore an exact adoption was not possible, e.g. the
beta value did not follow exactly Eq. (6.1).

6.4 Results
The classification was performed at the last time step i.e. time step 840 of an image

presentation. Each output neuron denoted a digit. The output neuron which had the high-
est membrane potential on this last time step defined the predicted class of the image. The
cross entropy error between the softmax of the output neuron potentials and the target label
was minimized, in order to train the network. ADAM with an initial learning rate of 0.01
was used as optimizer for the training. The learning rate was decayed every 2500 iterations
by a factor of 0.8.

Table 6.2 shows the results for the sequential MNIST task on Loihi. Different mini-
batch sizes and rounding options for the forward/backward pass weight rounding were tried
during training. Figure 6.4 show a comparison of the classification accuracy for different
neural network models.
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Table 6.2 Results on the sequential MNIST task on Loihi.

mini-batch size iterations rounding # runs mean std max

32 100000 ceil 2 76.04% 6.10% 82.09%
512 100000 ceil 2 92.24% 0.25% 92.49%
1024 100000 ceil 3 92.74% 0.26% 93.10%
1024 100000 stochastic 2 84.89% 1.47% 86.35%
1500 35800 ceil 1 - - 94.07%
1500 60000 ceil 1 - - 93.42%
1500 100000 ceil 2 93.59% 0.38% 93.97%
2048 100000 ceil 2 92.05% 1.33% 93.38%

Figure 6.4 Comparison of the classification results for different models of neural net-
works. LIF denotes a normal SNN and LSNN denotes to the original model
from [17]. Loihi shows the results of this thesis, albeit only the results from
Table 6.2 with a batch size greater or equal to 1024 are considered for this
comparison. To compare the results with ANNs, the classification accuracies
of a fully connected RNN and a LSTM network are also shown.



7 Discussion

The results show that a neuromorphic hardware implementation of LSNNs on Loihi is
feasible and yield similar results as a software implementation. Furthermore the results
show that the limitations like quantization due to lower precision and memory restrictions
of the Loihi neuromorphic hardware chip can be overcome. The main performance differ-
ence between the the Loihi LSNN and the original LSNN is that the Loihi LSNN needs
around three times the training time to achieve similar classification rate. Although Table
6.2 shows one experiment which actually yielded one of the highest achieved classification
rates on just 35800 iterations. This is on par with the results of [17] on the same training
duration. Nevertheless, most experiments needed the longer training duration to achieve
similar performance. This might be due to the quantization of the weights and therefore
less options to get to good performing parameters in combination with the hard boundaries
of these parameters. It could also be that for this specific implementation different hyper-
parameters would improve duration of the training.

Additionally the results of Table 6.2 suggest that a bigger mini-batch size is beneficial
for the Loihi LSNN. This could also be associated with the decay of the learning rate in
combination with the longer training duration. As a bigger mini-batch presumably yields
a more accurate gradient, it might be needed to get faster near a local optima before the
learning rate gets too low. Thus, finding an optimal ratio between batch size and learning
rate could improve the training duration. A more general approach of this was actually
investigated in [41]. Although one has to be careful to not forget the idea of stochastic
gradient descent and that it can actually take advantage of small mini-batches.

Stochastic rounding was also tried in order to improve performance. As seen in Ta-
ble 6.2 it did not really do well. It was surprising that the stochastic rounding approach
did not reach the performance of the simple ceiling rounding approach. [42] suggested
that stochastic rounding might be beneficial when dealing with low-precession fixed-point
computations, but it could not be observed during this experiments. It might need an even
longer training duration to improve the classification rate.

The average neuron firing rate in [17] was centered around 20 Hz. Due to the removal of
the refractory period in the Loihi LSNN this firing rate increased to around 50 Hz. A higher
regularization factor, which was introduced in [17] could be used to decrease the average
firing rate. This was not investigated extensively during the experiments, but it seemed that
a higher firing rate was beneficial during training. It might be interesting to introduce a
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34 7 Discussion

growth factor for the regularization of the spiking activity and increase it during training in
a similar manner as the learning rate.

It also has to be noted that the classification was performed differently. In the original
model the values of the output neurons over the last 56 time steps, so the values during
the output cue, were averaged before the highest value and therefore the class label was
determined. In the Loihi LSNN only the value at the last time step was used. Although
the model should be able to learn it just as well, it still could impact the performance. The
trainable bias of the output neurons of the original model was also omitted, due to Loihi not
having an option to directly add an output bias on chip. Once again, the model should not
suffer from this in theory, but it might be worth to investigate the impact of it. Especially,
if more complex tasks should be performed.

The results from Table 6.2 all used the hyper-parameters from Table 6.1. There the
scaling constant ζ actually corresponds to a weight of 127 according to 6.1, which means
that 128 quantization steps were wasted for this experiments. At first this was due to too
high scaling, which yielded in saturation of the membrane potentials of the output neu-
rons. Therefore a smaller value ζ was used which did not saturate the output neurons and
therefore performed better. The mistake of the scaling was fixed at some point, but the ζ
value was not changed. As the experiments took several days on a GPU or even weeks on
a Xeon CPU a complete restart would have exceeded the time period for this thesis. One
experiment, which used the full range was performed and it did not yield better results. At
the end, the Loihi LSNN model nearly reached the performance of the original model.



8 Conclusion
In this thesis a novel neuromorphic hardware architecture was investigated and an in-

ventive software model, the LSNN, was implemented on the actual hardware chip Loihi.
It was shown how certain features of Loihi could be used to overcome architectural lim-
itations without impairing the performance too much. Therefore, a multi-compartment
neuron model on Loihi was developed, which was included in an LSNN module for Loihi.
Furthermore, a TensorFlow simulation of Loihi LSNN was implemented to be able to train
the LSNN module on conventional hardware only and afterwards the trained parameters
were ported on the chip to run the model. Finally, the developed modules were used to
perform a classification task. Sequential MNIST, a standard benchmark task, was used as
application to assess the performance of the Loihi LSNN. The performance was compared
to the original LSNN model and the Loihi LSNN reached similar classification accuracies.
Importantly, this showed that LSNN can be implemented on the neuromorphic hardware
chip Loihi without losing its essential and performance optimizing properties.

This means that there is a good chance that other applications of the LSNN architecture
can be also configured and executed on Loihi. [17] showed that LSNNs are capable of
classifying the TIMIT data set. Therefore LSNNs on Loihi might prove useful for speech
processing, as this is a perfect application field for spiking neural networks, as well as
small, energy efficient hardware chips. Imagine a smart device, like a mobile phone, which
does not need internet access for their virtual assistants, but only an energy efficient neu-
romorphic chip.
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