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1 Abstract
The state space model of a system may contain a mathematical description of plant
uncertainties which depend on unknown parameters. Such uncertainties are referred
to as “structured uncertainties”, the uncertainties investigated in this thesis are linear
in unknown constants. An approach to deal with such uncertainties by estimating
the unknown constants and designing an adaptive controller using those estimates to
compensate the uncertainties is investigated for two cases:

• The uncertainty is additive to the actuating variable: A control law for the
nominal system (the system without the uncertainty) is extended by the com-
pensation of the uncertainty. In this case the uncertainty could be perfectly
compensated if the unknown constants were known, such uncertainties are re-
ferred to as “matched uncertainties”.

• The uncertainty and the actuating variable actuate different state variables,
such uncertainties are referred to as “unmatched uncertainties”: A controller
compensating the uncertainty for a second order system is designed using the
backstepping method (“Adaptive Backstepping”).

In both cases the estimation law for the unknown constants can be designed using an
approach which will be referred to as “classical approach”. While this estimation law
compensates the impact of the uncertainties it is not useful as parameter estimator.

In this thesis the use of a relatively recent estimation algorithm called DREM (“Dy-
namic Regressor Extension and Mixing”) for the compensation of structured uncer-
tainties is investigated. While this estimator can be used to compensate the un-
certainty and perfectly estimates the unknown constants under ideal conditions it
does not perform well during a simple real-world experiment (a simple RC-circuit).
Therefore an adapted version of this estimator is designed to resolve those issues. Sev-
eral experiments/simulations are done to investigate the performance of the adapted
estimator.
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2 Compensation of the structured uncertainty
The structure of the investigated uncertainties is given by mT (x)Θ where Θ ∈ Rp

is a vector of unknown constants and m(x) ∈ Rp is a given known function of the
known state vector x ∈ Rn.

2.1 Uncertainty additive to the actuating variable
The structured uncertainty mT (x)Θ is additive to the actuating variable u ∈ R of
a system, i.e. the system dynamics contain the term u + mT (x)Θ. In this case the
uncertainty could be perfectly compensated if Θ was known (assuming that this is
not prevented by bounds of u).

2.1.1 Investigated system class

The investigated system class with a structured uncertainty that is additive to the
actuating variable are single input systems with the dynamics

ẋ = f(x) + g(x)
(
u+ mT (x)Θ

)
. (1)

A controller for the nominal system ẋ = f(x) + g(x)u that causes x to be asymptoti-
cally stable at 0 for u = uR is assumed to be known. Therefore a Lyapunov function
Vx(x) > 0 exists that has a negative definite time derivative

V̇x(x)
∣∣∣
Θ=0, u=uR

= ∂Vx
∂x

ẋ
∣∣∣
Θ=0, u=uR

= ∂Vx
∂x

(f(x) + g(x)uR) < 0. (2)

2.1.2 Compensating the uncertainty

The compensation of the uncertainty is done like in [2, Section 3.1] using the control
law

u = uR −mT (x)Θ̂ (3)

where Θ̂ denotes the estimate of Θ. With the estimation error Θ̃ = Θ̂ − Θ the
dynamics of x in the closed control loop are given by

ẋ = f(x) + g(x)
(
uR −mT (x)Θ̃

)
. (4)

2.1.3 Stability with uncertainty and compensation

The Lyapunov function

V (x, Θ̃) = Vx(x) + 1
2Θ̃TCΘ̃ > 0 (5)

with C =


c1 0

. . .
0 cp

 where ci > 0 ∀i ⇒ C = CT > 0 (6)
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is used to investigate the stability of the system. The time derivative of V (x, Θ̃) is
given by

V̇ (x, Θ̃) = ∂Vx
∂x

ẋ + Θ̃TC ˙̃Θ. (7)

As ˙̃Θ = ˙̂Θ (because Θ is constant) this can be written as

V̇ (x, Θ̃) = ∂Vx
∂x

[
f(x) + g(x)

(
uR −mT (x)Θ̃

)]
+ ˙̂ΘTCΘ̃ (8)

= ∂Vx
∂x

(f(x) + g(x)uR)− ∂Vx
∂x

g(x)mT (x)Θ̃ + ˙̂ΘTCΘ̃

using the closed-loop dynamics from (4). As shown in (2) the first part of this is
negative definite with respect to x, hence

V̇ (x, Θ̃) = ∂Vx
∂x

(f(x) + g(x)uR)︸ ︷︷ ︸
<
x

0

+
(

˙̂ΘTC− ∂Vx
∂x

g(x)mT (x)
)

Θ̃. (9)

The objective now is to find estimator dynamics ˙̂Θ that cause the remaining part to
be negative (semi-)definite with respect to Θ̃.

2.1.4 Classical approach

In the classical approach which is typically applied, see [2], the idea is to set the
second part of (9) to zero so that only the first part which is known to be negative
definite with respect to x remains. This is done by choosing the estimator dynamics

˙̂ΘT = ∂Vx
∂x

g(x)mT (x)C−1. (10)

⇒
(

˙̂ΘTC− ∂Vx
∂x

g(x)mT (x)
)

Θ̃ = 0 (11)

⇒ V̇ (x, Θ̃) = ∂Vx
∂x

(f(x) + g(x)uR) <
x

0 (12)

This approach causes x to be asymptotically stable but has some disadvantages:

• V (x, Θ̃) = Vx(x) + 1
2Θ̃TCΘ̃ decreases until x = 0 ⇔ Vx(x) = 0. The second

part representing the estimation error 1
2Θ̃TCΘ̃ does not necessarily vanish and

can even increase while V̇x(x) < 0. Therefore a good estimation of Θ by Θ̂ can
not be guaranteed.

• The Lyapunov function for the nominal system Vx(x) has to be known as it is
used to calculate ˙̂Θ.
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2.1.5 Approach using a separate estimator

The idea in this approach is to use the estimator dynamics ˙̂Θ of a separate estimator
that causes the second part of (9) to be negative definite with respect to Θ̃. This
second part can be written as sum(

˙̂ΘTC− ∂Vx
∂x

g(x)mT (x)
)

Θ̃ =
p∑
i=1

(
ci

˙̂Θi −
∂Vx
∂x

g(x)mi(x)
)

Θ̃i. (13)

This sum is negative definite with respect to Θ̃ if(
ci

˙̂Θi −
∂Vx
∂x

g(x)mi(x)
)

Θ̃i <
Θ̃i

0 ∀i i = 1, ..., p. (14)

In Section 3 a slightly modified version of the DREM (“Dynamic Regressor Extension
and Mixing”) algorithm will be introduced which has estimator dynamics that can
be written as

˙̂Θi = −|αi(t)|sign(Θ̃i) (15)

where αi(t) is a function which needs to be defined as explained later. The estimator
dynamics of the originally proposed DREM as suggested in [1] are given by

˙̂Θi = −γiφ(t)2Θ̃i (16)

where γi is a positive constant. With

|αi(t)| = γiφ(t)2|Θ̃i| (17)

this can also be written in the same form as in (15). Inserting the dynamics from
(15) in (14) yields(

ci
˙̂Θi −

∂Vx
∂x

g(x)mi(x)
)

Θ̃i =
(
−ci|αi(t)| −

∂Vx
∂x

g(x)mi(x)sign(Θ̃i)
)
|Θ̃i| (18)

which is negative definite with respect to Θ̃i if

ci|αi(t)| >
∣∣∣∂Vx
∂x

g(x)mi(x)
∣∣∣. (19)

For Θ̃i = 0 this condition does not have to be fulfilled as (18) is always zero in this
case as required for negative definiteness. Under the condition that

αi(t) 6= 0 ∀i i = 1, ..., p (20)

finite positive constants ci exist so that (19) is fulfilled for all i = 1, ..., p (as the
Lyapunov function V (x, Θ̃) is only used to investigate the stability but is not used in
the design of the adaptive controller the constants ci are never specified). Therefore
the requirement for(

˙̂ΘTC− ∂Vx
∂x

g(x)mT (x)
)

Θ̃ <
Θ̃

0 (21)
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specified in (14) is fulfilled under this condition. Thus both x = 0 and Θ̃ = 0 are
asymptotically stable as

V̇ (x, Θ̃) = ∂Vx
∂x

(f(x) + g(x)uR)︸ ︷︷ ︸
<
x

0

+
(

˙̂ΘTC− ∂Vx
∂x

g(x)mT (x)
)

Θ̃︸ ︷︷ ︸
<
Θ̃

0

< 0. (22)

2.2 Uncertainty actuating different state variable - controller
design for a second order system

The structured uncertainty is part of the dynamics of x1 and the actuating variable
u ∈ R is part of the dynamics of x2 where x1 and x2 are the state variables of a
second order system. A control law that causes x1 = 0 to be asymptotically stable is
designed using a method similar to the “Adaptive Backstepping” in [2, Chapter 3].
Instead of using x2 as virtual input the desired dynamics of x1 which only depend on
x1 are specified.

2.2.1 Investigated system class

The investigated system class are second order systems with with the following dy-
namics:

ẋ1 = f1(x1, x2) + mT (x1, x2)Θ (23)
ẋ2 = f2(x1, x2) + g(x1, x2)u

which is a slightly different system class than in [2, Chapter 3].

2.2.2 Controller design

The first step is the specification of desired dynamics φ(x1) for x1 as well as a Lya-
punov function V1(x1) > 0 that can be used to show that x1 is asymptotically stable
if ẋ1 = φ(x1):

V̇1(x1)
∣∣∣
f1(x1,x2)=φ(x1)−mT (x1,x2)Θ

= ∂V1

∂x1
ẋ
∣∣∣
f1(x1,x2)=φ(x1)−mT (x1,x2)Θ

= ∂V1

∂x1
φ(x1) < 0

(24)

The difference between the actual and the desired dynamics of x1

ε = ẋ1 − φ(x1) = f1(x1, x2) + mT (x1, x2)Θ− φ(x1) (25)

which contains the unknown vector Θ is estimated by

ε̂ = f1(x1, x2) + mT (x1, x2)Θ̂− φ(x1) (26)

by using the estimate Θ̂ instead of Θ. Rewriting above equation as

f1(x1, x2) = ε̂+ φ(x1)−mT (x1, x2)Θ̂ (27)
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and inserting this in the dynamics of x1 from (23) yields

ẋ1 = ε̂+ φ(x1)−mT (x1, x2)Θ̃ (28)

where Θ̃ = Θ̂ −Θ denotes the estimation error. As ε̂ depends on x1, x2 and Θ̂ its
time derivative is given by

˙̂ε = ∂ε̂

∂x1
ẋ1 + ∂ε̂

∂x2
ẋ2 + ∂ε̂

∂Θ̂
˙̂Θ (29)

= ∂ε̂

∂x1

(
ε̂+ φ(x1)−mT (x1, x2)Θ̃

)
+ ∂ε̂

∂x2
(f2(x1, x2) + g(x1, x2)u) + mT (x1, x2) ˙̂Θ.

The Lyapunov function

V (x1, ε̂, Θ̃) = V1(x1) + 1
2 ε̂

2 + 1
2Θ̃TCΘ̃ > 0 (30)

with C =


c1 0

. . .
0 cp

 where ci > 0 ∀i ⇒ C = CT > 0 (31)

is used to investigate the stability of the system. The time derivative of V (x1, ε̂, Θ̃)
is given by

V̇ (x1, ε̂, Θ̃) =∂V1

∂x1
ẋ1 + ε̂ ˙̂ε+ Θ̃TC ˙̃Θ (32)

=∂V1

∂x1

(
ε̂+ φ−mT Θ̃

)
(33)

+ ε̂

[
∂ε̂

∂x1

(
ε̂+ φ−mT Θ̃

)
+ ∂ε̂

∂x2
(f2 + gu) + mT ˙̂Θ

]
+ ˙̃ΘTCT Θ̃

using ẋ1 from (28) and ˙̂ε from (29). This can be rewritten as

V̇ (x1, ε̂, Θ̃) =∂V1

∂x1
φ+ ε̂

(
∂V1

∂x1
+ ∂ε̂

∂x1
(ε̂+ φ) + mT ˙̂Θ + ∂ε̂

∂x2
(f2 + gu)

)
(34)

+
[

˙̂ΘTC−
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mT

]
Θ̃

as CT = C and ˙̃Θ = ˙̂Θ (because Θ is constant). For the next step two requirements
have to be met by the system and the estimation law for Θ:

• The dynamics of the system can always be influenced by the actuating variable
u:

g(x1, x2)
!
6= 0 ∀t (35)

• The estimated dynamics of x1 can always be influenced by x2:

∂

∂x2
ẋ1

∣∣∣
Θ=Θ̂

= ∂

∂x2

(
f1(x1, x2) + mT (x1, x2)Θ̂

) !
6= 0 ∀t (36)
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As ∂φ(x1)
∂x2

≡ 0 this requirement is equivalent to

∂

∂x2

(
f1(x1, x2) + mT (x1, x2)Θ̂− φ(x1)

)
︸ ︷︷ ︸

=ε̂

= ∂ε̂

∂x2

!
6= 0 ∀t. (37)

If those requirements are met the actuating variable can be set to

u = −1
g

f2 + 1
∂ε̂
∂x2

(
∂V1

∂x1
+ ∂ε̂

∂x1
(ε̂+ φ) + mT ˙̂Θ

)
+ kε̂

 (38)

as 1
g

and 1
∂ε̂
∂x2

always exist. When inserting this in (34) the time derivative of V (x1, ε̂, Θ̃)
becomes

V̇ (x1, ε̂, Θ̃) = ∂V1

∂x1
φ− kε̂2︸ ︷︷ ︸
<
x1,ε̂

0

+
[

˙̂ΘTC−
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mT

]
Θ̃ (39)

where the first part is negative definite with respect to x1 and ε̂. Like in Section 2.1.3
the objective is to find estimator dynamics ˙̂Θ that cause the remaining part to be
negative (semi-)definite with respect to Θ̃.

2.2.3 Classical approach

Like in Section 2.1.4 the asymptotic stability of x1 and ε̂ is guaranteed by setting the
remaining part of (39) to zero. This is done by using the estimator dynamics

˙̂ΘT =
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mTC−1. (40)

⇒
[

˙̂ΘTC−
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mT

]
Θ̃ = 0 (41)

⇒ V̇ (x1, ε̂, Θ̃) = ∂V1

∂x1
φ− kε̂2 <

x1,ε̂
0 (42)

what again has the disadvantage that a good estimation of Θ by Θ̂ can not be
guaranteed.

2.2.4 Approach using a separate estimator

Like in Section 2.1.5 the approach is to show that the second part of (39) is negative
definite with respect to Θ̃ when an estimator with the dynamics

˙̂Θi = −|αi(t)|sign(Θ̃i) (43)

is used where

|αi(t)| > 0 for |Θ̃i| > 0 ∀i i = 1, ..., p. (44)
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The second part of (39) is written as sum[
˙̂ΘTC−

(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mT

]
Θ̃ =

p∑
i=1

[
ci

˙̂Θi −
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mi

]
Θ̃i (45)

which is negative definite with respect to Θ̃ if[
ci

˙̂Θi −
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mi

]
Θ̃i <

Θ̃i
0 ∀i i = 1, ..., p. (46)

Inserting the estimation law from (43) yields[
ci

˙̂Θi −
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mi

]
Θ̃i =

[
−ci|αi(t)| −

(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
misign(Θ̃i)

]
|Θ̃i|

(47)

which is negative definite with respect to Θ̃i if

ci|αi(t)| >
∣∣∣∣∣
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mi

∣∣∣∣∣ for |Θ̃i| > 0. (48)

Under the condition specified in (44) finite positive constants ci exist so that this is
fulfilled for all i = 1, ..., p. Therefore the requirement for[

˙̂ΘTC−
(
∂V1

∂x1
+ ε̂

∂ε̂

∂x1

)
mT

]
Θ̃ <

Θ̃
0 (49)

specified in (45) is fulfilled. Applying this result to (39) shows that x1, ε̂ and Θ̃ are
asymptotically stable under the condition specified in (44) as

V̇ (x1, ε̂, Θ̃) <
x1,ε̂,Θ̃

0. (50)
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3 Parameter estimation using the “Dynamic Re-
gressor Extension and Mixing” algorithm

The method used to show stability in Section 2.1.5 and Section 2.2.4 requires an
estimate Θ̂ for Θ. The DREM algorithm described in [1] can be used for that purpose.

3.1 The “DREM” algorithm
This algorithm is used to estimate the vector of unknown constants Θ ∈ Rp from the
equation y(t) = mT (t)Θ where y(t) and m(t) are known.

3.1.1 Summary

Summarized, the estimation is done by applying the following steps:

1. y(t) and m(t) are both filtered by the same p different linear and stable filters
where p is the number of unknown constants. The output values of the ith filter
are called yfi and mfi, respectively. The suggested filter types are a time delay
or a first order low-pass filter (PT1).

2. As Θ is constant and the filters are linear yfi can be calculated by yfi = mT
fiΘ.

This results in the equation system Ye = MeΘ:
yf1(t)

...
yfp(t)


︸ ︷︷ ︸

=:Ye

=


mT

f1(t)
...

mT
fp(t)


︸ ︷︷ ︸

=:Me

Θ (51)

3. Multiplying the above equation system with the adjoint matrix adj{Me} yields
p decoupled scalar equations:

Y1
...
Yp

 = adj{Me}Ye = adj{Me}Me︸ ︷︷ ︸
=det{Me}=φ(t)

Θ (52)

hence Yi = φ(t)Θi with i = 1, ..., p.

4. The estimation of Θi by Θ̂i is suggested to be done by setting ˙̂Θi to
˙̂Θi = γiφ(t)

(
Yi − φ(t)Θ̂i

)
(53)

where γi is a positive constant. Then the dynamics of the estimation error
Θ̃i = Θ̂i −Θi become

˙̃Θi = ˙̂Θi = γiφ(t)
[
φ(t)Θi − φ(t)Θ̂i

]
= −γiφ2(t)Θ̃i. (54)

As already mentioned in Section 2.2.4 this estimation law can be written as
˙̂Θi = −|αi(t)|sign(Θ̃i) (55)
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as required for the compensation of the structured uncertainty in (15) and (43)
where

|αi(t)| = γiφ
2(t)|Θ̃i|. (56)

However, the additional requirement that

|αi(t)| > 0 for |Θ̃i| > 0 ∀i i = 1, ..., p (57)

is not guaranteed to be fulfilled as φ2(t) can become zero (this is not further
investigated here but a condition for |φ(t)| 6= 0 will be provided for the adapted
DREM algorithm in Section 4).

3.1.2 Modification for finite-time convergence
˙̂Θi is changed to

˙̂Θi = γ̃i(t)sign
[
φ(t)

(
Yi − φ(t)Θ̂i

)]
(58)

so dynamics of the estimation errors Θ̃i = Θ̂i −Θi become
˙̃Θi = ˙̂Θi = γ̃i(t)sign

[
φ(t)

(
Yi − φ(t)Θ̂i

)]
(59)

= γ̃i(t)sign
[
φ(t)

(
φ(t)Θi − φ(t)Θ̂i

)]
= −γ̃i(t)sign

(
φ2(t)

)
sign

(
Θ̃i

)
which has the following properties:

• The influence of |φ(t)| on ˙̃Θi can be reduced compared to equation (54).

• For |φ(t)| 6= 0 and γ̃i(t) > γmin where γmin > 0 is a positive constant the
estimation error Θ̃i becomes zero in finite time.

• For |φ(t)| 6= 0 and γ̃i(t) > 0 the estimation dynamics again have the form
˙̂Θi = −|αi(t)|sign(Θ̃i) (60)

as required in (15) and (43) where

|αi(t)| = γ̃i(t). (61)

Still the additional requirement that

|αi(t)| > 0 for |Θ̃i| > 0 ∀i i = 1, ..., p (62)

is not guaranteed to be fulfilled as |φ(t)| 6= 0 is not guaranteed.

3.2 Simulation: comparison of different estimator dynamics
The compensation of an uncertainty additive to the actuating variable u like in Sec-
tion 2.1 is simulated using a simple example system. The compared estimator dy-
namics are the classical approach from Section 2.1.4 and two different estimation laws
using the DREM as external estimator for the compensation like in Section 2.1.5.
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3.2.1 System

The first order system

ẋ = u+ mT (x)Θ = u+
[
x x2

] [ 1
−0.1

]
(63)

x(0) = x0 = −1 (64)

is used which has the form specified in Section 2.1.1. The nominal system ẋ = u = uR
is asymptotically stable when using the control law

uR = −x (65)

which can be shown with the Lyapunov function

Vx(x) = 1
2x

2 : (66)

V̇x(x)
∣∣∣
Θ=0, u=uR

= ∂Vx
∂x

ẋ
∣∣∣
Θ=0, u=uR

= −x2 < 0 (67)

This Lyapunov function is required for the classical approach. The compensation of
the uncertainty is done like in Section 2.1.2 by setting u = uR −mT (x)Θ̂.

3.2.2 Compared estimator dynamics

• The estimator dynamics using the classical approach are given by

˙̂Θi = 1
ci

∂Vx
∂x

g(x)mi(x). (68)

Choosing c1 = 0.2 and c2 = 2 yields

˙̂Θ1 = 1
c1
· x · 1 · x = 5x2 (69)

˙̂Θ2 = 1
c2
· x · 1 · x2 = 0.5x3 (70)

• For both DREM based estimators the two linear filters used to construct the
equation system Ye = MeΘ are PT1 filters with the time constants T1 = 1s
and T2 = 2s with the transfer functions G1(s) and G2(s), respectively. The
equation system has the form

Ye =
[
yf1(t)
yf2(t)

]
=
[
mT

f1(t)
mT

f2(t)

]
Θ = MeΘ (71)

where yfi(t) = (ẋ− u)fi (t). As ẋ is not known the relation

yfi(t) = (ẋ− u)fi (t) = ẋfi(t)− ufi(t) d t Gi(s)sx(s)−Gi(s)u(s) (72)

is used to obtain yfi by filtering u with Gi(s) and x with

Gi(s)s = 1
1 + Tis

s = s

1 + Tis
(73)
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and then subtracting the outputs of the filters:

yfi = ẋfi − ufi. (74)

The estimation law is given by

˙̂Θi = γ̃i(t)sign
(
φ(t)

(
Yi − φ(t)Θ̂i

))
. (75)

The following two different estimators are used:

– An estimator with constant γ̃i(t): γ̃1(t) = 1, γ̃2(t) = 0.1.
– An estimator where γ̃i(t) depends on φ(t): γ̃1(t) = min [1000 · |φ(t)|, 1],
γ̃2(t) = min [100 · |φ(t)|, 0.1] (which is equivalent to the other estimator
unless |φ(t)| < 10−3 in which case γ̃i(t) is proportional to |φ(t)|).

The three estimators are compared in two simulations where the fixed-step solver
“ode3” with a step width of 1ms is used.

3.2.3 Simulation 1: Comparison under ideal conditions

In the first simulation the system is simulated without any additional noise. Figure 1
shows the state variable x without compensation, with compensation for each of the
three estimation laws as well as for the nominal system. x = 0 is asymptotically
stable when using any of the three estimation laws for compensation. The estimates
for Θ1 = 1 and Θ2 = −0.1 can be seen in Figure 2 and Figure 3.

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0
 

Figure 1: State vector x
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Figure 2: Estimation of Θ1
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Figure 3: Estimation of Θ2

The estimation results using the classical approach show that an exact estimation of
Θ can not be guaranteed with this estimation law as shown in Section 2.1.4. Figure 4
shows that the second part of the Lyapunov function

V (x, Θ̃) = Vx(x) + 1
2Θ̃TCΘ̃ (76)

that is used to show stability in Section 2.1.3 can be larger after the estimates converge
than at the beginning of the estimation when using the classical approach.
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Figure 4: Representation of the estimation error in V (x, Θ̃)

3.2.4 Simulation 2: Comparison with additive measurement noise

In the second simulation uniformly distributed noise in the range of ±0.01 is added
to x as measurement noise. The influence of this noise on the estimation results for
the three estimators can be seen in Figure 5 and Figure 6.

0 20 40 60 80 100
-0.5

0

0.5

1

1.5

2

2.5

Figure 5: Estimation of Θ1
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Figure 6: Estimation of Θ2

While the DREM estimator is very susceptible to noise when using constants for
γ̃i(t) it yields useful results when γ̃i(t) decreases for low values of |φ(t)|. In this case
both γ̃1(t) and γ̃2(t) are proportional to |φ(t)| if |φ(t)| < 10−3 and constant otherwise.

Figure 7 shows |φ(t)| for both DREM estimators. x still converges to 0 for any of the
three estimation laws, Figure 8 shows x without the additive noise.
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Figure 7: |φ| of the DREM estimators
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Figure 8: Evolution of state variable x

3.3 Experiment: Capacitor voltage control for a simple RC
circuit

A real-world experiment is done using a RC circuit as system where the structured
uncertainty is additive to the actuating variable. The compensation is done using the
DREM algorithm.

3.3.1 System

The following RC circuit is used as system:

R1 R2

R3
C uC

u

iCi3
i

Figure 9: System: RC circuit

The single state variable x = uC is the voltage of the capacitor which is measured.
The actuating variable u is the input voltage which is limited to 0V ≤ u ≤ 5V . The
nominal system used to design the controller is the same RC circuit where R2 = 0Ω
and R3 →∞. The experiments and simulations are done using the fixed-step solver
“ode3” with a step size of Ts = 10ms. The dynamics of the nominal system are given
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by

iC = C
duC
dt

= i = u− uC
R1

⇒ u̇C︸︷︷︸
ẋ

= u− uC
CR1

= − uC
CR1︸ ︷︷ ︸
f

+ 1
CR1︸ ︷︷ ︸
g

u. (77)

The dynamics of the system with structured uncertainty are given by

iC = C
duC
dt

= i− i3 = u− uC
R1 +R2

− uC
R3

(78)

u̇C = u− uC
CR1

− u− uC
CR1

+ u− uC
C(R1 +R2) −

uC
CR3

(79)

= u− uC
CR1

+ (u− uC)(R1 − (R1 +R2))
CR1(R1 +R2) − uC

CR3

= − uC
CR1

+ 1
CR1

u+ 1
CR1

(−u) R2

R1 +R2
+ 1
CR1

uC

(
R2

R1 +R2
− R1

R3

)

u̇C︸︷︷︸
ẋ

= − uC
CR1︸ ︷︷ ︸
f

+ 1
CR1︸ ︷︷ ︸
g

u+ (−u)︸ ︷︷ ︸
m1

R2

R1 +R2︸ ︷︷ ︸
Θ1

+ uC︸︷︷︸
m2

(
R2

R1 +R2
− R1

R3

)
︸ ︷︷ ︸

Θ2


︸ ︷︷ ︸

u+mTΘ

which is a system of the class

ẋ = f(x) + g(x)
(
u+ mT (x, u)Θ

)
(80)

investigated in Section 2.1 except that m(x, u) does also depend on u (this has no
impact on the results in Section 2.1 but will have to be considered when calculating
u = uR −mT Θ̂ to compensate the uncertainty).

3.3.2 System parameter identification

The parameters C and R3 are identified, RA := R1 +R2 is set to RA = 10kΩ (a single
resistor with a specified resistance of 10kΩ was used for RA). The identification is
done by minimizing the following cost function:

J(p1, p2) =
N−1∑
n=1

(
uC [n+ 1]− uC [n]

Ts
− (p1(u[n]− uC [n])− p2uC [n]))

)2

(81)

where N is the number of recorded steps, p1 = 1
CRA

and p2 = 1
CR3

. J(p1, p2) is
minimized using the solver fmincon with the constraints p1 ≥ 0 and p2 ≥ 0. This
yields the following parameters: C ≈ 51.75µF and R3 ≈ 839.7kΩ. The experiment
used for the identification and the simulation result using the same input voltage u
and the estimated parameters can be seen in Figure 10.
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Figure 10: Experiment - identification

A different experiment as shown in Figure 11 is used to validate the parameters iden-
tified with the first experiment. The simulation model (which includes the structured
uncertainty) with the identified parameters seems to describe the behaviour of the
system sufficiently well.
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Figure 11: Experiment - validation
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3.3.3 Controller

The following controller is used for the nominal system ẋ = u̇C = u−uC
CR1

≈ −1.932x+
1.932u:

uR = −k(x− r) = −5(x− r) (82)

The compensation is done like in Section 2.1.2. As m also depends on u, the equation
has to be rewritten to explicitly calculate u:

u = uR −mT Θ̂ = uR −
[
−u x

]
Θ̂ (83)(

1− Θ̂1
)
u = uR − xΘ̂2 (84)

u = uR − xΘ̂2

1− Θ̂1
for Θ̂1 6= 1 (85)

The restriction Θ̂1 6= 1 has to be fulfilled by the estimator. This restriction can not
prevent correct estimation because

0 ≤ Θ1 = R2

R1 +R2
< 1 (86)

as R1 > 0Ω and R2 ≥ 0Ω.

3.3.4 Estimator

An estimator using the DREM algorithm with the restriction 0 ≤ Θ̂1 ≤ 0.5 is used.
Therefore R1 ≥ R2 has to be true to allow correct estimation. R2 = 1.8kΩ is chosen
so R1 = RA − R2 = 8.2kΩ > R2. The two linear filters of the estimator used to
construct the equation system Ye = MeΘ are first order low pass filters with the
time constants T1 = 0.5s and T2 = 0.25s.

The first two experiments are done with the modified estimator dynamics

˙̂Θi = γ̃i(t)sign
[
φ(t)

(
Yi − φ(t)Θ̂i

)]
(87)

from Section 3.1.2 so
˙̃Θi = −γ̃i(t)sign

(
φ2(t)

)
sign

(
Θ̃i

)
. (88)

To prevent large estimation errors due to measurement noise like in Section 3.2.4 γ̃1(t)
and γ̃2(t) are set to

γ̃i(t) =


0, |φ(t)| < φmin

γi, |φ(t)| > φmax

γi
|φ(t)|−φmin
φmax−φmin , else

(89)

with γ1 = 0.2, γ2 = 0.1, φmin = 0.01 and φmax = 0.1. Those parameters as well
as the time constants for the low pass filters were set during the first experiment
(the experiment was repeated several times with different parameters, the chosen



Design of adaptive control loops for systems with structured uncertainty 20

parameters provided good results). The third experiment is done with the estimator
dynamics suggested in [1] so

˙̃Θi = −γiφ2(t)Θ̃i (90)

with γ1 = γ2 = 2. For all experiments the capacitor voltage uC and the estimation
results Θ̂ are recorded during the experiments. The input voltage u generated by the
controller during the experiment then is applied to a simulation model containing the
system and the respective estimator. The results of the simulation uC,sim and Θ̂sim

are compared to the results of the experiments.

3.3.5 Experiment 1

Figure 12 shows the capacitor voltages uC recorded during the experiment and the
simulation. As expected from the system identification results in Section 3.3.2 uC of
the real system and the simulation model are almost the same when the same input
voltage u is applied.

Figure 13 shows |φ| recorded during the experiment and |φ|sim from the simulation.
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Figure 12: Voltages
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Figure 13: “Excitation” |φ|

The compared estimation results can be seen in Figure 14 and Figure 15.
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Figure 14: Estimation of Θ1
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Figure 15: Estimation of Θ2

While the real and the simulated system almost behave the same, the estimation
significantly worse for the real system. However, it still could be considered a useful
estimation.

If estimates R̂2 and R̂3 for the resistances R2 and R3 are calculated from Θ̂1 and Θ̂2
by

Θ̂1 = R̂2

R1 + R̂2
⇒ R̂2 = R1Θ̂1

1− Θ̂1
(91)

Θ̂2 = R̂2

R1 + R̂2
− R1

R̂3
= Θ̂1 −

R1

R̂3
⇒ R̂3 = R1

Θ̂1 − Θ̂2
(92)

the results for R̂2, as shown in Figure 16, also could be considered a useful estimation.
The results for R̂3 are shown in Figure 17, those results do not seem useful.
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Figure 16: Estimated resistance R̂2
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Figure 17: Estimated resistance R̂3
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3.3.6 Experiment 2

The results for a second experiment using the same estimator are shown in Figure 18 -
Figure 21.
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Figure 18: Voltages
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Figure 19: “Excitation” |φ|
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Figure 20: Estimation of Θ1
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Figure 21: Estimation of Θ2

Again, the real and the simulated system behave very similar but now the estimation
result for the real system seems no longer useful.
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3.3.7 Experiment 3

Because of the bad estimation results during the second experiment the experiment
is repeated using the estimator dynamics described in [1] instead of the modified
version as described in Section 3.1.2. The results for this third experiment are shown
in Figure 22 - Figure 25.
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Figure 22: Voltages
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Figure 23: “Excitation” |φ|
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Figure 24: Estimation of Θ1
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Figure 25: Estimation of Θ2

This estimator has similar problems when trying to estimate Θ from this experiment
so this issue does not seem to be caused by the modification of the estimator dynamics.
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4 Adaptation of the “Dynamic Regressor Exten-
sion and Mixing” algorithm (least squares ap-
proach)

Because of the problems when using the DREM algorithm for estimation during
the experiments in Section 3.3 a different attempt to set up the equation system
Ye = MeΘ is made.

4.1 Adaptation
As the equation y(t) = mT (t)Θ ∀t where Θ ∈ Rp is constant can not be expected to
be exactly true for real world experiments a noise term w(t) is added, i.e.

y(t) = mT (t)Θ + w(t). (93)

When applying the steps that are used to obtain the decoupled equation system

adj{Me}Ye = det{Me}Θ (94)

in Section 3.1.1 those equations now become

adj{Me}Ye = det{Me}Θ− adj{Me}We (95)

where the ith element of We is wfi(t) (which is w(t) filtered by the ith filter like in
Section 3.1.1).

The influence of the new term adj{Me}We on the estimator performance is difficult
to analyze and is not investigated further here. Instead a similar equation system is
constructed in a way that already takes the additional noise term into account.

Another issue when using the DREM as suggested in [1] for the compensation of
structured uncertainties is that this requires φ(t) = det{Me} 6= 0 for Θ̃ 6= 0. It is
hard to specify conditions under which that requirement is fulfilled.

4.1.1 Equation system based on a least-squares optimization problem

As the noise term w(t) is unknown the estimation Θ̂ will not converge towards Θ but
towards an approximation Θ̂opt(t) which is optimal in the sense that it minimizes the
cost function

J(Θ̂(t)) =
t∫

τ=0

(
y(τ)−mT (τ)Θ̂(t))

)2
h(t− τ)dτ (96)

Θ̂opt(t) = arg min
Θ̂(t)

J(Θ̂(t)). (97)

A similar cost function is used in the “Least-Squares With Exponential Forgetting”
algorithm described in [3, Section 8].

The cost function J(Θ̂(t)) is the integral over the quadratic error weighted by the
function h which has the following properties:



Design of adaptive control loops for systems with structured uncertainty 29

• h(t− τ) ≥ 0 ∀τ ∈ [0, t] so the weighting of the error never becomes negative.

• h(t) is the impulse response of a BIBO stable filter (this filter will be imple-
mented).

• h(t − τ) is monotonic increasing over τ on [0, t]. This is not necessary but
weighting a newer error (small t− τ so large τ as τ ∈ [0, t]) with a smaller value
than an older error usually might not be a good idea.

For example the function h(t − τ) = e
τ−t
T with T > 0 could be used: The weighting

of previous errors exponentially decays and h(t) = e−
t
T is the impulse response of a

PT1 filter, see Figure 26.

J(Θ̂(t)) is written as

J(Θ̂(t)) =
t∫

τ=0

y2(τ)− 2y(τ)mT (τ)Θ̂(t)︸ ︷︷ ︸
=2Θ̂T(t)m(τ)y(τ)

+
(
mT (τ)Θ̂(t)

)2

︸ ︷︷ ︸
=Θ̂T(t)m(τ)mT (τ)Θ̂(t)

h(t− τ)dτ (98)

=
t∫

τ=0

y2(τ)h(t− τ)dτ − 2Θ̂
T(t)

t∫
τ=0

m(τ)y(τ)h(t− τ)dτ

+ Θ̂
T(t)

t∫
τ=0

m(τ)mT (τ)h(t− τ)dτ Θ̂(t)
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Figure 26: Example function h(t) = e−
t
T ⇒ h(t− τ) = e

τ−t
T
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The gradient of J(Θ̂(t)) with respect to Θ̂(t) has to be zero at Θ̂opt(t):

∇Θ̂(t)J(Θ̂(t)) = −2
t∫

τ=0

m(τ)y(τ)h(t− τ)dτ + 2
t∫

τ=0

m(τ)mT (τ)h(t− τ)dτ Θ̂(t) != 0

(99)

This yields an equation of the form Ye = MeΘ̂opt(t):
t∫

τ=0

m(τ)y(τ)h(t− τ)dτ
︸ ︷︷ ︸

=(my∗h)(t)=:Ye

=
t∫

τ=0

m(τ)mT (τ)h(t− τ)dτ
︸ ︷︷ ︸

=(mmT ∗h)(t)=:Me

Θ̂opt(t) (100)

where Me and Ye are both known functions filtered by a BIBO stable filter with
the impulse response h(t). The equation system can again be decoupled like in Sec-
tion 3.1.1:

Y1
...
Yp

 = adj{Me}Ye = adj{Me}Me︸ ︷︷ ︸
=det{Me}=φ(t)

Θ̂opt ⇒ Yi = φ(t)Θ̂opt,i (101)

4.1.2 Estimator dynamics

Like in Section 3.1.2 the dynamics of Θ̂i are set to
˙̂Θi = γ̃i(t)sign

(
φ(t)

(
Yi − φ(t)Θ̂i

))
(102)

φ(t) = det{Me} = 0 is equivalent to “there is no unique solution Θ̂opt(t) that min-
imizes J(Θ̂(t))” because otherwise M−1

e would exist and therefore Θ̂opt = M−1
e Ye

would be the unique solution. Therefore the condition |φ(t)| 6= 0 required for the
compensation of the uncertainty can now be specified as “The least-squares optimiza-
tion problem has a unique solution”.

If φ(t) = 0 then Θ̂ remains constant. If φ(t) 6= 0 the dynamics of the estimation
errors Θ̃i = Θ̂i − Θ̂opt,i (where Θ̂opt,i(t) is not constant in general) become

˙̃Θi = ˙̂Θi −
˙̂Θopt,i = γ̃i(t)sign

(
φ(t)

(
Yi − φ(t)Θ̂i

))
− ˙̂Θopt,i (103)

= γ̃i(t)sign
(
φ(t)

(
φ(t)Θ̂opt,i − φ(t)Θ̂i

))
− ˙̂Θopt,i

= −γ̃i(t)sign
(
φ2(t)

)
sign

(
Θ̃i

)
− ˙̂Θopt,i

= −γ̃i(t)sign
(
Θ̃i

)
− ˙̂Θopt,i

so Θ̃i is asymptotically stable if γ̃i(t) > | ˙̂Θopt,i(t)| and becomes zero within finite time
if γ̃i(t)− | ˙̂Θopt,i(t)| ≥ ε > 0 where ε is a positive constant (γ̃i(t) can be chosen).

If φ 6= 0 then Θ̂opt = M−1
e Ye could also be calculated directly. Simply doing so instead

of using the above estimation dynamics is not a good idea which will be shown in the
following experiment (Θ̂opt will not be a good estimation until the system has been
excited for some time).
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4.2 Experiment: simple RC-circuit - comparison of estima-
tion results

The adapted DREM algorithm using the least squares approach is compared to an
estimator similar to the one used for the first two experiments with the RC circuit
in Section 3.3. The comparison is done by estimating Θ from the voltages u and
uC recorded during previous experiments, once with a DREM estimator that uses
the optimization problem to set up the equation system Ye = MeΘ̂opt and once
with a DREM estimator where the equation system Ye = MeΘ is constructed with
different linear filters. Additionally the estimation results are compared to the directly
calculated least-squares solution Θ̂opt.

4.2.1 New estimator

As the equation

y(t) = mT (t)Θ + w(t) (104)

for the estimator is given by

CR1u̇C + uC − u = −uΘ1 + uCΘ2 + w(t) (105)

for this system it can not be used directly as u̇C is not known. The equation is
approximated by filtering it with a PT1-filter:

CR1u̇C,f + uC,f − uf = −ufΘ1 + uC,fΘ2 + wf (t) (106)

This causes an additional error because the optimal solution Θ̂ minimizes the Integral
over the filtered weighted square error wf instead of w. To keep this error relatively
small a relatively low time constant of Tf = 10 ·Ts = 100ms is used for the PT1-filter.

After setting up the decoupled equation system like in Section 4.1.1 using

h(t) = e−
t
T (107)

with T = 50s the dynamics of the new estimator are set to

˙̂Θi = γ̃i(t)sign
[
φ(t)

(
Yi − φ(t)Θ̂i

)]
(108)

γ̃i(t) =

γi, |φ(t)| > φmax

γi
|φ(t)|
φmax

, else
(109)

where γ1 = 0.2, γ2 = 0.1 and φmax = 10−4. Except for the different equation system
and φmax = 0.1 the other estimator (which uses the different linear filters) is the same
(the only difference of that estimator compared to the one used during the first two
experiments in Section 3.3 is that there no longer is a minimal value φmin for |φ(t)|
below which γ̃i(t) becomes zero).

The Implementation of the new estimator is illustrated in Figure 27 - Figure 29.
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Figure 27: Determine yf and mf from u and uC using PT1-filters

Figure 28: Determine Ye and Me using filters with the impulse response h(t) (also
PT1-filters)

Figure 29: Estimate Θ from Ye and Me

For the comparison with Θ̂opt it is calculated by Θ̂opt = M−1
e Ye if M−1

e exists and
using the result from the previous simulation step otherwise.

4.2.2 Experiment 1

The comparison of the estimation results for Θ for the first experiment can be seen
in Figure 30 and Figure 31 (the estimator using the least-squares approach is referred
to as “new” and the other one as “old”).
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Figure 30: Estimation of Θ1
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Figure 31: Estimation of Θ2

The estimation results are better when the new estimator using the least-squares
approach is used for this experiment. The result for Θ̂opt shows why it is not a good
idea to simply calculate it directly, see Figure 32.
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Figure 32: Optimal solution Θ̂opt

Figure 33 shows |φ| of the estimators. The results of the new estimator are an improve-
ment as φ(t) 6= 0 is required to compensate of the uncertainty like in Section 2.1.5
and Section 2.2.4.
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Figure 33: “Excitation” |φ|
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4.2.3 Experiment 2

The comparison of the estimation results for Θ for the second experiment can be seen
in Figure 34 and Figure 35. While the old estimator does not provide a useful estima-
tion result the new estimator does not seem to have problems with this experiment.
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Figure 34: Estimation of Θ1
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Figure 35: Estimation of Θ2



Design of adaptive control loops for systems with structured uncertainty 36

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9

0.165

0.1652

0.1654

0.1656

0.1658

0.166

0.1662

0.1664

Figure 36: Estimation of Θ2

Because of the sign()-function in the estimator dynamics and the use of a solver
with a fixed sampling time Θ̂i − Θ̂i,opt does not actually become zero, see Figure 36.
Possible estimation laws that do not show this behaviour (other than removing the
sign()-function and thereby loosing the finite-time convergence) are not investigated
here but might use ˙̂Θopt which can also be calculated as Ẏe and Ṁe are known:

0 = d

dt
(I) = d

dt

(
M−1

e Me

)
= Ṁ−1

e Me + M−1
e Ṁe (110)

⇒ Ṁ−1
e = −M−1

e ṀeM−1
e (111)

˙̂Θopt = d

dt

(
M−1

e Ye

)
= Ṁ−1

e Ye + M−1
e Ẏe = −M−1

e ṀeM−1
e Ye + M−1

e Ẏe (112)

Figure 37 shows |φ| of the estimators. The results of the new estimator are again an
improvement similar to the results of the first experiment.
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Figure 37: “Excitation” |φ|

4.3 Experiment: DC motor - friction parameter estimation
The adapted estimator from Section 4 is applied to a small DC motor shown in
Figure 38. No control law is used for this experiment, only the estimator itself is
tested.

Figure 38: DC motor
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4.3.1 System

The DC motor is actuated by its input voltage u, the angle ϕ is measured. The
dynamics

ϕ̇ = ω (113)

ω̇ = 1
J

(Me −Mf ) (114)

where Me is the torque of the DC motor and Mf is the friction torque are used to
describe the mechanical part of the system. As the dynamics of the electrical part of
the system are considered much “faster” than the dynamics of the mechanical part
the static relation

Me = c1u− c2ω c1 > 0, c2 > 0 (115)

is used to describe the relation between voltage and torque. The torque

Mf =

c3ω + c4sign (ω) , ω 6= 0
sign (Me) max {|Me|, c4} , ω = 0

(116)

is used to describe the friction.

In the simulation, the case “ω = 0” at simulation step n is detected by sign (ω[n− 1]) 6=
sign (ω[n]) or |ω[n]| < ωmin = 10−7. ω[n] is acquired using the “state port” of the
integrator in Simulink, the integrator is reset if “ω = 0” is detected.

With x1 = ϕ, x2 = ω and the positive constants k1, k2 and k3 the dynamics of the
system are now given by

ẋ1 = x2 (117)

ẋ2 =

k1u− k2x2 − k3sign (x2) , x2 6= 0
sign (u) max {|k1u| − k3, 0} , x2 = 0

(118)

The experiments/simulations are done using the fixed-step solver “ode4” with a step
size of Ts = 5ms.

4.3.2 System parameter identification

The parameters are first identified using a similar method as for the RC circuit in
Section 3.3.2. The input voltage shown in Figure 39 is applied to the motor, Figure 40
shows the measured angle ϕ compared to the simulation result using the identified
parameters (k1 ≈ 36.35, k2 ≈ 21.03, k3 ≈ 4.105).
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Figure 39: Input voltage u
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Figure 40: Angle ϕ

In Figure 41 the simulation result for the angular velocity ω is compared to an esti-
mation of ω from the measured angle ϕ. This estimation is acquired by smoothing
the measured angle followed by calculating

ωest[n] = ϕs[n+ 1]− ϕs[n]
Ts

(119)

where ϕs is the smoothed angle.
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Figure 41: Angular velocity ω

The parameters identified this way already yield useful simulation results. The sim-
ulation model is further improved by doing the identification using the following
method:

• The parameters identified in the first step are used as initial value.

• The parameters are limited by zero and 25 times the initial parameters.

• Several starting values within this range are used (several solver runs).

• The cost function that has to be minimized is given by

J(k1, k2, k3) =
N∑
n=1

(ϕsim(k1, k2, k3)[n]− ϕmeas[n])2 (120)

where ϕmeas is the recorded angle and ϕsim(k1, k2, k3) is the simulation result
for the same input voltage.

The identification results are k1 ≈ 47.25, k2 ≈ 26.29 and k3 ≈ 10.94. The comparison
of ϕ and ω for the experiment used for the identification can be seen in Figure 42 and
Figure 43.
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Figure 42: Angle ϕ
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Figure 43: Angular velocity ω

To validate the identified parameters the simulation results are compared to the
recorded data for a different experiment, see Figure 44 and Figure 45. The simu-
lation model seems to describe the real system sufficiently well.
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Figure 44: Input voltage u

0 5 10 15
t in s

0

10

20

30

40

50

60

70
measured
simulation

Figure 45: Angle ϕ

4.3.3 Estimator

The system model is simplified for the estimator by ignoring the case “ω = 0”. Using
the friction parameters k2 = Θ1 and k3 = Θ2 as the unknown constants of the
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structured uncertainty mT (x)Θ yields the system dynamics

ẋ1 = x2 (121)

ẋ2 = k1u− k2x2 − k3sign (x2) = k1u+
[
−x2 −sign (x2)

] [Θ1
Θ2

]
︸ ︷︷ ︸

mT (x)Θ

(122)

where x1 = ϕ and x2 = ω = ϕ̇.

During the experiment sign (x2) = sign (ϕ̇) is not known and is approximated by
sign (ϕ[n]− ϕ[n− 1]). This approximation as well as u and ϕ are filtered by two PT1
filters, each with a time constant of 10Ts = 50ms. This is done because the first and
second time derivative of the outputs of the second filters are known. Those are used
to approximate (122) for the estimation.

The DREM algorithm using the least-squares approach from Section 4 is used as
estimator. The impulse response of a low pass filter with a time constant of 60s is
used as h(t). γ̃1(t) and γ̃2(t) are set to

γ̃i(t) =

γi, |φ(t)| > φmax

γi
|φ(t)|
φmax

, else
(123)

with γ1 = γ2 = 50 and φmax = 0.02.

4.3.4 Estimation results

The estimator is applied to the input variable u and the angle ϕ from both the
measurement and the simulation of the experiment used for validation in Section 4.3.2.
Both estimation results for Θ are compared to the identified values, see Figure 46 and
Figure 47. While the estimation is better for the simulation the estimator also seems
to work quite well for the real system. The results for |φ| can be seen in Figure 48.
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Figure 47: Estimation of Θ2 = k3
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Figure 48: “Excitation” |φ|

The same is done for the experiment used for the system identification, the results
are shown in Figure 49, Figure 50 and Figure 51.
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Figure 49: Estimation of Θ1 = k2
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Figure 50: Estimation of Θ2 = k3
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Figure 51: “Excitation” |φ|

While the simulation model which describes the system quite well and the model
used to design the estimator are different (only the simulation model contains static
friction) the estimation results are quite good for both experiments.
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5 Examples
The DREM using the least-squares approach is now used to compensate structured
uncertainties mT (x)Θ.

5.1 Experiment: position control for a hydraulic cylinder
The system used for this experiment is the plant described in [4, Section 2]. The
controller is implemented on a programmable logic device (PLC) with a sampling
time of Ts = 1ms.

5.1.1 Controller

A controller with an inner control loop for the hydraulic force FL and an outer control
loop for the position xp is described in [4, Section 3]. The dynamics of the closed
inner control loop are given by

ḞL = k0 (FL,d − FL) (124)

where FL,d is the desired hydraulic force provided by the outer control loop and the
constant k0 = 125. The hydraulic force is obtained by measuring the pressures pA
and pB in the respective chambers of the piston:

FL = (pA − αpB)Ak (125)

where Ak = 2.0106 · 10−4m2 is the piston ring surface and α = 0.6094 is the piston
cross section ratio. The controller for the outer control loop uses the desired position
xp,d, the desired velocity ẋp,d and the desired acceleration ẍp,d as reference variables:

FL,d = mkẍp,d − kv (x2 − ẋp,d)− kp (x1 − xp,d) + Fext + Fr (126)

with the position x1 = xP , the velocity x2 = ẋp, the piston mass mk = 0.6kg and the
constants kv = 175 and kp = 1.1054 · 104:
• The external force Fext (the piston is attached to a second piston) is measured.

• An estimation of the velocity x2 is provided by a differentiator described in [4,
Section 3.1] which also provides an estimation of the acceleration.

• The friction force Fr is estimated by F̂r = −νx̂2−Fc,0sign(x̂2). Instead of using
the constants ν = 83.3Ns/m and Fc,0 = 20N identified in [4, Section 3.2] those
parameters are estimated using the least-squares DREM.

5.1.2 Estimator

The dynamics of the velocity x2 are given by

−mkẋ2 + FL − Fext︸ ︷︷ ︸
y

=
[
x2 sign(x2)

]
︸ ︷︷ ︸

mT (x)

[
Θ1
Θ2

]
+ w(t) (127)

with the unknown parameters Θ1 = ν and Θ2 = Fc,0 and the error w(t). As the
velocity x2 is not known the estimation provided by the differentiator is used. Two
different approaches for the estimation are used as the dynamics also contain ẋ2:
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1. The estimation for ẋ2 from the differentiator is used. This causes an additional
error through the estimation of ẋ2.

2. F̂L, F̂ext and the estimations for x2 and sign(x2) are filtered by a PT1 filter
with a time constant of 2Ts = 2ms. This causes an additional error as the cost
function for the least-squares approach contains the filtered error w2

f instead of
w2.

The least-squares DREM like in Section 4 is implemented using the following param-
eters:

• h(t) = e−
t
T with T = 300s.

• γ̃i(t) =

γi, |φ(t)| > φmax

γi
|φ(t)|
φmax

, else

with γ1 = 100, γ2 = 50 and φmax = 10−5.

5.1.3 Experiment 1

The friction force is not compensated during the first experiment. The estimation re-
sults of the two DREM estimators are compared to the results of the static estimation
(where the identified constants are used to estimate Fr) for the experiment shown in
Figure 52. A section of the first part of the experiment can be seen in Figure 53.
A section of the second part of the experiment can be seen in Figure 54, the estimation
results for Θ are shown in Figure 55 and Figure 56.
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Figure 52: Position during the whole experiment
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Figure 55: Estimation of Θ1
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Figure 56: Estimation of Θ2

The estimated parameters significantly change after the first part of the experiment.
As both DREM estimators show a very similar behaviour it is not assumed that this
is caused by the use of the estimated acceleration in the one or the PT1 filters of the
other estimator but by the difference between the model and the real system. For
example there is no static friction in the used friction model what is assumed to have
a significant impact on the first part of the experiment where the velocity is (close
to) zero often.
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The resulting estimation of Fr is shown for a section of the first part of the experiment
in Figure 57 and for a section of the second part in Figure 58. The estimated friction
force is almost the same for the two DREM estimators (except for those sections of
the first part where the friction model is considered inaccurate because of the missing
static friction). Only the DREM using the PT1 filter will be used for the following
experiments.
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Figure 57: Friction force during the first part
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Figure 58: Friction force during the second part
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5.1.4 Experiment 2

The second experiment is carried out three times, once using the estimated parameters
from the DREM for compensation, once using the identified constants as parameters
for the compensation (this is referred to as “static compensation”) and once without
compensation. As the experiments are started manually on the running PLC
∆t ≈ t− 30s is used instead of t in some of the plots so the reference values are the
same (not time shifted) during the section of the experiment displayed in those plots.
Figure 59 shows the position for a section of the three experiments, Figure 60 shows
a zoomed part of this section.
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Figure 59: Position xp

1.2 1.4 1.6 1.8 2 2.2
0.098

0.1

0.102

0.104

0.106

0.108

0.11
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The results are clearly worse without compensation. While the results of the other
two experiments are approximately the same the estimated friction force is somewhat
different, see Figure 61. The estimation results for Θ recorded during the experiment
using the DREM are shown in Figure 62. While the value of Θ̂1 becomes much larger
than the constant used for the static compensation the estimation seems to work quite
well.
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Figure 61: Estimated friction force
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Figure 62: Estimation of Θ
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5.1.5 Experiment 3

Except for the different reference value and ∆t ≈ t− 20s this experiment is the same
as the second experiment. Figure 63 shows the position for a section of the three
experiments. This time the estimation using the DREM does not seem to work as
good as for the previous experiment, see Figure 64. The reason for this behaviour
might be the sinusoidal reference value which probably does not excite the system
well for the identification.
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Figure 64: Estimation of Θ
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Figure 65 shows a small section of the position recorded during the experiments.
Because the estimation results close to the end of the experiment are quite different
than at 20s the position when using the DREM is also shown for ∆t ≈ t−55s. While
the estimation does not seem to work very well here this does not cause issues with
the compensation. The friction force estimated using the DREM for ∆t ≈ t− 55s is
still quite similar to the result for ∆t ≈ t − 20s, the difference to the result of the
static approach is much larger, see Figure 66.
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Figure 65: Position xp
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5.2 Simulation: RLC resonant circuit
A controller like in Section 2.2 (the case where actuating variable and uncertainty
actuate different state variables) is used to control the capacitor voltage of a RLC
resonant circuit. The system contains an additional structured uncertainty additive
to the actuating variable which is also compensated.

5.2.1 System

The system is the RLC resonant circuit shown in Figure 67.

R L C

uC
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i

Figure 67: RLC resonant circuit

The parameters R = 30Ω, L = 500mH and C = 100µF are used, the actuating
variable (the input voltage u) is limited by |u| ≤ 2V . With x1 = uC and x2 = i the
dynamics of this system are given by

ẋ1 = 1
C
x2 (128)

ẋ2 = − 1
L

(x1 +Rx2) + 1
L
u. (129)

Instead of the parameters used to simulate the system the parameters R̂ = 35Ω,
L̂ = 400mH and Ĉ = 90µF are used for the design of the controller so the nominal
system dynamics are given by

ẋ1 = 1
Ĉ
x2 (130)

ẋ2 = − 1
L̂

(
x1 + R̂x2

)
+ 1
L̂
u.

The dynamics of the simulated system can be written as

ẋ1 = 1
Ĉ
x2︸ ︷︷ ︸
f1

+ x2

Ĉ︸︷︷︸
m1

Θ1 (131)

ẋ2 = −x1 + R̂x2

L̂︸ ︷︷ ︸
f2

+ 1
L̂︸︷︷︸
g

u+ x2L̂︸︷︷︸
m2

Θ2 +
(
u− x1 − R̂x2

)
︸ ︷︷ ︸

m3

Θ3


with the constants

Θ1 = C̃

C
= −0.1, Θ2 = R̃

L
= 10 and Θ3 = L̃

L
= −0.2 (132)

where R̃ = R̂−R, L̃ = L̂− L and C̃ = Ĉ − C are the parameter errors.
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5.2.2 Controller

First a controller like in Section 2.2 is designed for Θ2 ≡ Θ3 ≡ 0. With the desired
dynamics

ẋ1 = φ(x1) = −k1(x1 − r) (133)

with k1 = 400, the Lyapunov function

V1(x1) = 1
2(x1 − r)2 (134)

to show stability for this case and the resulting estimated difference between actual
and desired dynamics

ε̂ = ẋ1

∣∣∣
Θ1=Θ̂1

− φ(x1) = x2

Ĉ

(
1 + Θ̂1

)
+ k1(x1 − r) (135)

the control law is given by

uR = −L̂
−x1 + R̂x2

L̂
+ Ĉ

1 + Θ̂1

(x1 − r) + k1x2
1 + Θ̂1

Ĉ
+ x2

Ĉ

˙̂Θ1

+ kε̂

 (136)

where k = 10 is chosen. This control law requires 1 + Θ̂1 6= 0 ⇒ Θ̂1 6= −1 which
never prevents correct estimation as

Θ1 = C̃

C
= Ĉ − C

C
= Ĉ

C
− 1 > −1 (137)

because C > 0 and Ĉ > 0.

Now the uncertainty m2Θ2 +m3Θ3 is compensated by u = uR − (m2Θ̂2 +m3Θ̂2) like
in Section 2.1. As m3 contains u this has to be done by

u = uR − x2L̂Θ̂2 −
(
u− x1 − R̂x2

)
Θ̂3 (138)

⇒ u =
uR − x2L̂Θ̂2 +

(
x1 + R̂x2

)
Θ̂3

1 + Θ̂3
(139)

which requires 1 + Θ̂3 6= 0 ⇒ Θ̂3 6= −1 which also never prevents correct estimation
as

Θ3 = L̃

L
= L̂− L

L
= L̂

L
− 1 > −1 (140)

because L > 0 and L̂ > 0.

5.2.3 Estimator

Two DREM estimators are used, one for the estimation of Θ1 from

ẋ1 = 1
Ĉ
x2 + x2

Ĉ
Θ1 (141)
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and one for the estimation of Θ2 and Θ3 from

ẋ2 = −x1 + R̂x2

L̂
+ 1
L̂

[
u+ x2L̂Θ2 +

(
u− x1 − R̂x2

)
Θ3
]

(142)

as ẋ1 and ẋ2 are considered to be unknown u, x1 and x2 are filtered by PT1 filters
with a time constant of 10ms for the estimation (the time derivative of the outputs
of the filters is known). The least-squares DREM like in Section 4 is implemented
using the following parameters:

• h(t) = e−
t
T with T = 60s.

• γ̃i(t) =

γi, |φ(t)| > φmax

γi
|φ(t)|
φmax

, else

with γ1 = 10 and φmax = 1 for the estimation of Θ1 and γ2 = 100, γ3 = 10 and
φmax = 10−14 for the estimation of Θ2 and Θ3.

5.2.4 Implementation in Simulink

The system is simulated using a solver with variable step width (“ode45”), the con-
troller (including the estimation and compensation of the uncertainties) is simulated
using the solver “ode3” with a fixed step width Ts. A first-order hold using Ts as sam-
pling time is applied to the in- and outputs of the controller as shown in Figure 68.

Figure 68: The controller is implemented as separate model using a solver with fixed
step width.

5.2.5 Simulation with different sampling times/step widths

As the controller, the estimator and the compensation of the uncertainties are de-
signed for the continuous time case the influence of the sampling time Ts is inves-
tigated by repeating the same simulation for different values for Ts (1ms, 0.1ms,
0.01ms and 0.001ms). The resulting capacitor voltage is shown in Figure 69.
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Figure 69: Capacitor voltage uC = x1

The control loop is working well except for the largest sampling time of 1ms. The
estimation results are shown in Figure 70, Figure 71 and Figure 72.
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Figure 70: Estimation of Θ1
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Figure 71: Estimation of Θ2
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Figure 72: Estimation of Θ3

The estimation is working almost perfectly with a sampling time of 0.001ms but the
results become worse with increasing sampling time. This can be expected as a lower
sampling time can be considered “closer to the time continuous case”.
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5.2.6 Simulation with measured time derivatives of the state vector

As an additional error is caused by using the PT1 filters in the estimator the results
are compared to an estimator without those filters. This estimator uses the (sampled)
time derivatives ẋ1 and ẋ2 from the simulation as additional inputs. The simulations
are done with a sampling time of 1ms, the controller seems to have similar issues
with the high sampling time, see Figure 73. The estimation results are compared in
Figure 74, Figure 75 and Figure 76.
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Figure 73: Capacitor voltage uC = x1
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Figure 74: Estimation of Θ1
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Figure 75: Estimation of Θ2
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Figure 76: Estimation of Θ3

As expected, the estimation seems to work better with the measured time derivatives.
The impact of the high sampling time still prevents good estimation results, at least
for Θ2.
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5.2.7 Simulation without uncertainties and compensation

As the estimation is not working well for Ts = 1ms simulations without uncertainties
and compensation are made by using the values for R, L and C from the simulation
for the controller design (so Θ = 0) and setting Θ̂ ≡ 0. Additionally the controller
is compared to a controller using the control law

u = −
[
8.83 285

]
x + 10.1r (143)

which is designed for the (continuous) system using LQR with

QLQR =
[
10000 0

0 0.01

]
and RLQR = 100. (144)

The resulting capacitor voltage is shown in Figure 77 for Ts = 0.1ms. The results of
the two controllers are quite similar (without the uncertainties). The controllers are
compared for Ts = 1ms in Figure 77.
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Figure 77: Capacitor voltage uC = x1 for Ts = 0.1ms
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Figure 78: Capacitor voltage uC = x1 for Ts = 1ms

While the controller designed using the backstepping method also does not work well
with Ts = 1ms without uncertainties the results using the other controller are almost
the same as for Ts = 0.1ms. Not only the estimation but also the controller itself
is performing poorly when high sampling times are used. This can be explained
by looking at u shown in Figure 79 and ε̂ shown in Figure 80 recorded during the
simulations in Section 5.2.5 for different sampling times.
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Figure 79: Input voltage u
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Figure 80: Estimated difference between desired and actual dynamics ε̂

The actuating variable does not look good for the larger sampling time (the controller
still did not have issues with Ts = 0.1ms). Because of the larger sampling time the
estimated difference between desired and actual dynamics ε̂ becomes much larger
between two steps, the controller is trying to compensate this difference.
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6 Summary, conclusion and further work

6.1 Summary
An estimator like the DREM (“Dynamic Regressor Extension and Mixing”) algo-
rithm can be used to compensate matched and unmatched structured uncertainties
in adaptive control loops for the investigated system classes. Other than the typically
applied “classical approach” such an estimator is also useful as parameter estimator.
In addition to providing useful estimates of the unknown parameters of the structured
uncertainty this has the following advantages:

• Since the actuating variable u depends on the estimated parameters the be-
haviour of the closed control loop becomes more predictable once the estimates
have converged:

– Under ideal conditions, i.e. the dynamics of the controlled system and
the system model are exactly the same, the estimates converge towards
the true parameters of the uncertainty for any reference r(t) that provides
sufficient excitation.

– The estimates provided by the classical approach can not be guaranteed
to converge towards the same values for different references r(t).

• If the uncertainty depends on the actuating variable u the solution for u might
not exist for certain values of the estimates, for example the controller designed
for the RC circuit in Section 3.3.3 requires Θ̂1 6= 1. If a solution for u exists at
least for all possible values of the unknown parameters the compensation is still
working if the estimates can be restricted to the possible values of the unknown
parameters (which is the case for the controller for the RC circuit). This can
not be guaranteed for the estimates provided by the classical approach.

However, the DREM estimator performed poorly in real-world experiments. This
was resolved by adapting the the originally proposed DREM based on least-squares
optimization. The resulting new estimation algorithm performed well in all carried
out real-world experiments, i.e. the experiments with the RC circuit, the DC motor
and the hydraulic cylinder.

The estimator is designed for the time continuous case but is implemented in discrete
time for the simulations with the RLC resonant circuit. Therefore the estimator does
not perform well in the simulations with high sampling times and solver step widths.

6.2 Conclusion and further work
The least-squares based adapted DREM estimator designed in this thesis performed
well for estimating and compensating structured uncertainties. This estimator did not
only yield significantly better estimation results than the originally proposed DREM
estimator, it also provides a condition under which the requirements for the com-
pensation of structured uncertainties can be guaranteed to be fulfilled. Using this
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estimator for the compensation of structured uncertainties also has several advan-
tages compared to the typically applied classical approach.

However, further work with respect to discrete time implementations of this estima-
tor designed for the time continuous case might be required, especially when high
sampling times are used.
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