
Raphael Watschinger, BSc

A Directional Approximation of the Helmholtz Kernel
and its Application to

Fast Matrix-Vector Multiplications

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Assoc. Prof. Dr. G. Of

Institute of Applied Mathematics

Graz, February 2019

Abstract

In this thesis a directional approximation of the Helmholtz kernel and its application
to fast matrix-vector multiplications is considered. An application of this technique
is the solution of boundary value problems for the Helmholtz equation by means of
fast boundary element methods. The oscillating behavior of the Helmholtz kernel for
large wave numbers does not allow for an application of standard methods. Instead
directional methods can be used, which are covered in this thesis.

Directional methods rely on appropriate directional approximations of the Helmholtz
kernel. Such an approximation based on tensor interpolation is defined and analyzed.
This allows for the definition of a fast directional matrix-vector multiplication based
on clustering methods. It is shown, that the storage and time complexity of this fast
matrix-vector multiplication is of quasilinear order in the number of columns and rows
of the matrix under suitable assumptions on the wave number and the geometry. The
algorithm corresponding to the fast directioanl matrix-vector multiplication depends in
particular on two parameters, whose selection has to be investigated. For this purpose
the algorithm is implemented and a parameter study is conducted, whose results are
summarized in a parameter selection strategy.

3

Contents

Introduction 7

1 A Directional Approximation of the Helmholtz Kernel 11
1.1 Polynomial interpolation . 12

1.1.1 Basic definitions and results concerning interpolation 12
1.1.2 A 1D interpolation error estimate 15
1.1.3 Matrix approximation via tensor interpolation 18

1.2 A directional multi-level approximation 19
1.2.1 Derivation of the directional single- and multi-level approximation 19
1.2.2 Directional admissibility conditions 22

1.3 Error analysis of the directional multi-level approximation 26
1.3.1 Error analysis of the directional single-level approximation . . . 29
1.3.2 Estimate of the directional reinterpolation 42

2 Fast Directional Matrix-Vector Multiplication 51
2.1 Matrix partitioning and fast matrix-vector multiplication 52

2.1.1 Box cluster trees . 53
2.1.2 The choice of directions . 56
2.1.3 Matrix partitioning . 67
2.1.4 An efficient matrix-vector multiplication 71

2.2 Implementation details and complexity discussion 79
2.2.1 Implementation details . 79
2.2.2 Complexity analysis . 81

3 Numerical Experiments 95
3.1 Parameter study on the surface of a cube 96

3.1.1 Construction of the point sets 97
3.1.2 Variation of the separation parameter 98
3.1.3 Variation of the number of high frequency levels 105
3.1.4 A parameter selection strategy 108

3.2 Further numerical experiments . 111
3.3 Effect of the compression via ACA . 114

Conclusion and Outlook 117

Bibliography 119

5

Introduction

Many processes in physical and industrial applications are modeled by linear partial
differential equations on suitable domains Ω with appropriate boundary conditions. To
understand these processes one needs to solve the corresponding boundary value prob-
lems. An example is the Dirichlet boundary value problem for the Laplace operator,
which is given by

∆u(x) = f(x), x ∈ Ω, u(x) = h(x), x ∈ ∂Ω,

where ∆ denotes the Laplace operator, ∂Ω the boundary of Ω, f a source term,
and h a Dirichlet datum. In general the solution of such a boundary value problem
cannot be computed exactly, but has to be approximated using numerical discretization
methods. Finite element methods (FEM) are widely used for this purpose. They base
on a decomposition of the domain Ω into small elements – often triangles in 2D or
tetrahedrons in 3D – and the solution of a variational formulation of the boundary
value problem in suitable discrete ansatz spaces. Typically the functions in the test
and trial spaces have local supports, i.e. they are zero on most of the elements of Ω.
The variational formulation can then be written as a matrix equation with a sparsely
populated matrix A which is solved with appropriate direct or iterative solvers.

Boundary element methods (BEM) are another class of methods to solve certain
boundary value problems. If a fundamental solution f of the partial differential equa-
tion is known and there is no source term, then one can represent the solution of the
boundary value problem by means of boundary integral equations. The idea of BEM
is to discretize these boundary integral equations. For the discretization a decompo-
sition of the boundary ∂Ω of Ω into small elements suffices. In particular, the degrees
of freedom are typically much lower for BEM than for FEM. In 3D for example, if h
is the characteristic size of an element of the decomposition of Ω or ∂Ω and n = 1/h,
then the degrees of freedom for FEM are O(n3) while only O(n2) for BEM. However,
the BEM system matrices are in general densely populated. In particular, the required
storage for such a matrix is O(n4) in contrast to O(n3) for sparsely populated FEM
matrices. Similarly, the computation times for the solution of the matrix equations
are considerably higher for BEM than for FEM. This makes the use of classical BEM
prohibitive for large-scale problems.

In the 1980s Rokhlin and Greengard proposed the fast multipole method (FMM)
[20, 22, 34], which allowed to resolve this deficiency of BEM for a large class of bound-
ary value problems. In fact, the FMM allows to reduce the complexity of the appli-
cation of BEM system matrices to an almost linear order, which leads to a significant

7

8 Introduction

speed up of iterative solvers based on matrix-vector multiplications. The FMM re-
lies on a hierarchical partitioning of the considered geometry and the splitting of the
matrix application into a nearfield part, which has to be evaluated directly, and a
farfield part, which can be evaluated efficiently using suitable expansions of the fun-
damental solution. Since then, many other methods for the fast solution of BEM have
been developed, e.g. Panel Clustering [27], Adapative Cross Approximation [1, 3],
Wavelets [12], hierarchical matrices [23, 25], and H2–matrices [26].

A special treatment is required for boundary value problems for the Helmholtz
equation

∆u+ κ2u = 0,

where κ > 0 is the so-called wave number. This equation can be used to model the
propagation of waves and is therefore of particular interest in acoustics and electrody-
namics among other fields. The fundamental solution of the Helmholtz equation in R3

is the Helmholtz kernel f defined by

f(x, y) :=
exp(iκ|x− y|)

4π|x− y| .

For large κ this kernel is highly oscillatory due to the term exp(iκ|x − y|). This os-
cillatory behavior makes standard FMM schemes [11, 18], based for example on the
expansion of the kernel into spherical harmonics, inefficient for large κ. In [21, 35]
a different approach based on diagonal forms of translation operators is considered,
which works good in high frequency regimes, i.e. for large κ, but yields numerically
unstable schemes if applied in low-frequency regimes. In the context of the FMM
there have been several approaches to overcome the problems related to the tranistion
between low and high frequency regime, see e.g. [10, 13, 29]. Cheng et al. [10], for ex-
ample, combine the aforementioned strategies by using spherical harmonic expansions
in the low frequency setting and a transition to diagonal forms of translation opera-
tors, also denoted as farfield signatures in their work, in the high frequency regime.
The corresponding algorithm works accurately in both frequency regimes and has a
runtime complexity of O(N) if low-frequency computations dominate, or O(N log(N))
in the contrary case, where N denotes the number of nodes in the discretization of the
domain. This method is widely used in the context of FMM [9].

Directional methods are another class of methods which overcome the problems of
standard FMM methods in the high frequency regime. These methods are based on
a directional approximation of the Helmholtz kernel. In the setting of fast matrix
operations such approximations were first considered in [8], picked up in [15], and
considered more recently in [2, 5, 6, 7, 30, 31]. The basic idea is that the Helmholtz
kernel f can be smoothened in a cone centered at a direction c by a multiplication
with a plane wave term of the form exp(−iκ〈c, x − y〉), which allows for a low rank
approximation of the kernel locally, for example by polynomial interpolation. With
such an approximation one can proceed similarly as in the case of typical clustering

Introduction 9

methods by constructing a hierarchical partitioning of the geometry and splitting
the computations in nearfield and appropriate farfield parts. The main difference to
standard FMM schemes is that suitable sets of directions have to be considered in the
farfield evaluation in the high frequency regime and that the related partitioning of
the matrix is finer.

In this thesis a directional approximation of the Helmholtz kernel and its application
to fast matrix-vector multiplications is discussed in detail. In Chapter 1 we follow
mainly the lines of [7]. First we recall basic definitions and results concerning univariate
and tensor interpolation. Then we construct a directional single-level approximation
of the kernel f on pairs of axis-parallel boxes X and Y , by multiplicating f with
a plane wave term as described above and interpolating the resulting function on
the boxes X and Y . Directional reinterpolation schemes are used to transform these
single-level approximations into multi-level approximations, which are needed to define
an efficient algorithm in Chapter 2. To ensure a sufficient approximation quality we
introduce three admissibility criteria in Section 1.2.2. One of these criteria is used to
control the distance of boxes in the low frequency regime, another one to control the
distance of boxes in the high frequency regime, and the last to assign suitable directions
to each pair of boxes. These criteria and suitable assumptions on the directions used
for the directional reinterpolation allow us to show exponential convergence of the
approximation errors of the directional single- and multi-level approximations of the
kernel f on appropriate pairs of boxes X and Y . The results which we proof here are
slightly sharper than those in [7].

Chapter 2 is dedicated to the derivation of a fast directional matrix-vector multipli-
cation for a matrix A generated by the Helmholtz kernel (cf. (1.19) for the definition
of such a matrix). We start by constructing box cluster trees, which are used for
the hierarchical partitioning of the considered geometry into axis-parallel boxes sim-
ilarly as in classical FMM. Then we construct appropriate sets of directions for the
directional approximation, similarly as in [15, 30]. For the sake of efficiency the same
directions are used for all boxes on a level of a box cluster tree. We describe how to
assign two boxes a suitable direction from the constructed set of directions and discuss
which directions should be used for the directional reinterpolation. In particular, we
show that the chosen directions are such that the assumptions of the theorems on the
approximation errors in Chapter 1 hold. Such a detailed discussion of the proper-
ties of the constructed sets of directions has not been conducted before in literature,
to our best knowledge. After this section on directions we define block trees, which
are used to find and organize all pairs of boxes in two box cluster trees for which
the admissibility criteria in Section 1.2.2 hold. This will enable us to describe Algo-
rithm 2.42 for the fast directional matrix-vector multiplication, similarly as in [5]. In
the remainder of Chapter 2 we first talk about some details which should be consid-
ered in an implementation of this algorithm to improve its performance. Then we
analyze its complexity. Inspired by the complexity discussion in [5] we show that the

10 Introduction

complexity of our fast directional matrix-vector multiplication is of order O(N log(N))
under suitable assumptions on the wave number κ, the geometry, and the degrees of
freedom N .

In Chapter 3 we present the results of some numerical experiments, for which we
have implemented Algorithm 2.42 in C++. We show the effect of the parameters η2

and `hf on the runtime and accuracy of this algorithm in a detailed parameter study
for points distributed on the surface of a cube. Here, the parameter η2 is a separation
parameter originating from the admissibility criteria in Section 1.2.2 and controls ul-
timately which pairs of boxes are admissible. The parameter `hf is introduced in the
construction of the directions in Section 2.1.2 and controls which boxes are in the high
frequency regime. The observations from this parameter study lead to a parameter se-
lection strategy, which is presented in Section 3.1.4 and applied to the fast directional
matrix-vector multiplication for points distributed on a sphere subsequently. We con-
clude Chapter 3 by presenting computation results which show why one aspect of the
implementation details presented in Chapter 2, namely suitable compression schemes,
are crucial for a good performance of the presented directional method.

1 A Directional Approximation of
the Helmholtz Kernel

Fast methods for the solution of boundary value problems by means of boundary
element methods rely typically on suitable separable approximations of the underlying
fundamental solution. The fundamental solution of the Helmholtz equation

∆u+ κ2u = 0,

with the wave number κ > 0, is given by the Helmholtz kernel

f(x, y) :=
exp (iκ|x− y|)

4π|x− y| . (1.1)

As discussed in the introduction, the oscillations caused by the term exp(iκ|x−y|) for
large κ require special approximation methods. One such method which is suitable for
the approximation of the Helmholtz kernel in all frequency regimes is directional ap-
proximation. We dedicate this chapter to the description and analysis of a directional
approximation of the Helmholtz kernel based on interpolation.

We start by recalling some basic definitions and results of univariate and tensor
polynomial interpolation in Section 1.1. In particular, we discuss a 1D interpolation
error estimate, which can be found in [7] and plays an important rule in the later error
estimates of the directional approximation. We conclude this section with a demon-
stration on how polynomial interpolation can be used for an efficient approximation
of suitable matrices.

Section 1.2 is dedicated to the introduction of a directional approximation of the
Helmholtz kernel f . Here we follow the lines of [7]. We start by defining a directional
single-level approximation of f , which is based on the multiplication of f with a plane
wave term exp(−iκ〈c, x − y〉) for some appropriate direction c satisfying |c| = 1 and
subsequent tensor polynomial interpolation on suitable axis-parallel boxes X and Y .
Then we discuss directional reinterpolation schemes leading to a multi-level approx-
imation of the Helmholtz kernel. The fast directional matrix-vector multiplication
derived in Chapter 2 is based on this multi-level approximation. In the last part of
Section 1.2 we discuss admissibility criteria which the boxes X and Y and the di-
rection c need to fulfill such that the quality of the directional approximation with
direction c on these boxes is sufficiently good. These criteria are again taken from [7].

11

12 1 A Directional Approximation of the Helmholtz Kernel

In Section 1.3 we present error estimates of the directional single- and multi-level
approximations of the Helmholtz kernel f . We show in Theorem 1.15 that the direc-
tional multi-level approximation error converges exponentially to zero with increasing
interpolation degree m. Its proof relies on the exponential decay of the directional
single-level approximation errors, which is proved in Theorem 1.26 in Section 1.3.1,
and an estimate of the norms of the reinterpolation operators, which are used to
transform a single-level approximation into a multi-level approximation. The latter
estimate can be found in Theorem 1.35 in Section 1.3.2. Througout Section 1.3 we
follow the lines of [7]. However, the error estimates of the directional multi-level ap-
proximation of f in Theorem 1.15 and of the directional single-level approximation
of f in Theorem 1.26 are slightly sharper than the corresponding results in [7].

1.1 Polynomial interpolation

The approximation of a function by means of polynomial interpolation plays an im-
portant role in the present work. Hence we devote this section to the discussion of
some of its aspects. First we recall some definitions and motivate why we use the
Chebyshev nodes as interpolation points. Here we follow the lines of [7], but adapt
the notation slightly. Then we discuss a result, which gives us exponential conver-
gence of the interpolation error in the supremum norm. Finally we demonstrate how
polynomial interpolation can be used to approximate matrices generated by smooth
functions.

1.1.1 Basic definitions and results concerning interpolation

Definition 1.1 (Interpolation Operators). Let Πm be the space of all polynomials
of degree m ∈ N0 and let {ξ[a,b],j}mj=0 be m + 1 distinct interpolation points in an
interval [a, b]. Define the interpolation operator

I(m)
[a,b] : C([a, b])→ Πm

by identifying I(m)
[a,b][g] with the unique polynomial of degree m that satisfies

I(m)
[a,b][g](ξ[a,b],j) = g(ξ[a,b],j), for all j ∈ {0, ...,m}.

For an n dimensional, axis-parallel box B = [a1, b1]× ...× [an, bn] consider the set of
interpolation points {ξB,ν}ν∈M , where ξB,ν = (ξ[a1,b1],ν1 , ..., ξ[an,bn],νn) for a multi-index
ν = (ν1, ..., νn) in the set M = {0, ...,m}n. Here {ξ[ak,bk],j}mj=0 are again m+ 1 distinct
interpolation points in [ak, bk] for all k ∈ {1, ..., n}. We consider the tensor product
space

⊗n
k=1 Πm, which consists of all multivariate polynomials π in x1, ...xn of the

form

π(x1, ..., xn) =
m∑

k1=1

...
m∑

kn=1

ck1,...,knx
k1
1 ...x

kn
n .

1.1 Polynomial interpolation 13

The interpolation operator

I(m)
B : C(B)→

n⊗
k=1

Πm

is defined by identifying I(m)
B [g] with the unique polynomial in

⊗n
k=1 Πm that satisfies

I(m)
B [g](ξB,ν) = g(ξB,ν), for all ν ∈M.

Definition 1.2 (Lagrange polynomials). Let {ξ[a,b],j}mj=0 ⊂ [a, b] be m + 1 distinct
interpolation points. We define the one dimensional Lagrange polynomials

L
(m)
[a,b],k(x) :=

m∏
j=0
j 6=k

x− ξ[a,b],j

ξ[a,b],k − ξ[a,b],j

, for all k ∈ {0, ...,m}.

Similarly, for a set of distinct interpolation points {ξB,ν}ν∈M in an axis-parallel box
B = [a1, b1]× ...× [an, bn] we define the n-dimensional Lagrange polynomials

L
(m)
B,ν(x) :=

n∏
j=1

L
(m)
[aj ,bj],νj

(xj), for all ν ∈M = {0, ...,m}n. (1.2)

Remark 1.3. In the notation of the interpolation operators I(m)
[a,b] and I(m)

B as well as the

Lagrange polynomials L
(m)
[a,b],k and L

(m)
B,ν we neglect their dependency on the interpolation

points {ξ[a,b],j}mj=0 and {ξB,ν}ν∈M , respectively. However, in this work we will never
use different interpolation points on the same intervals or boxes simultaneously, and
hence this notation is used to support readability.

With the Lagrange polynomials we can represent I(m)
[a,b][g] and I(m)

B [h] for all functions

g ∈ C([a, b]) and h ∈ C(B), respectively, by

I(m)
[a,b][g] =

m∑
j=0

g(ξ[a,b],j)L
(m)
[a,b],j,

I(m)
B [h] =

∑
ν∈M

h(ξB,ν)L
(m)
B,ν .

Throughout this work we will use the Chebyshev nodes as interpolation points,
which are defined next.

Definition 1.4 (Chebyshev polynomials and Chebyshev nodes). For all m ∈ N0 the
Chebyshev polynomial Tm on the interval [−1, 1] is defined by

Tm(x) = cos(m arccos(x)). (1.3)

14 1 A Directional Approximation of the Helmholtz Kernel

For every m ∈ N0 the m + 1 Chebyshev nodes {ξ[−1,1],j}mj=0 in the interval [−1, 1] are
the roots of Tm+1, which are given by

ξ[−1,1],j = cos

(
2j + 1

2(m+ 1)
π

)
, for all j ∈ {0, ...,m}.

For an arbitrary, non-empty interval [a, b] we define the transformed Chebyshev nodes
{ξ[a,b],j}mj=0 by

ξ[a,b],j = Φ[a,b](ξ[−1,1],j), for all j ∈ {0, ...,m}, (1.4)

where the affine linear mapping Φ[a,b] is defined by

Φ[a,b] : [−1, 1]→ [a, b], x 7→ 1

2
(a+ b+ x(b− a)). (1.5)

The Chebyshev nodes are a particularly good choice for the interpolation points,
which is motivated by the following theorem.

Theorem 1.5 (cf. [16, Theorem 1] and [32, Theorem 1.2]). Let the Lebesgue constant
Λm be defined by

Λm := ‖I(m)
[a,b]‖ = sup

06=g∈C([a,b])

‖I(m)
[a,b][g]‖∞,[a,b]
‖g‖∞,[a,b]

. (1.6)

There exists a constant c > 0 such that

Λm ≥
2

π
log (m+ 1)− c, (1.7)

independently of the choice of the interpolation points. For the special choice of the
transformed Chebyshev interpolation points, there holds

Λm ≤
2

π
log (m+ 1) + 1. (1.8)

Sketch of proof. The case of a general interval [a, b] can be easily deduced from the
case of the interval [−1, 1]. On the interval [−1, 1] one can show that

Λm = ‖λm+1‖∞,[−1,1], where λm+1(x) :=
m∑
j=0

|Lm[−1,1],j(x)|,

holds for an arbitrary choice of interpolation points. Then assertion (1.7) is given in
[16, Theorem 1] and assertion (1.8) in [32, Theorem 1.2].

1.1 Polynomial interpolation 15

1.1.2 A 1D interpolation error estimate

For the error estimate of the directional approximation of the Helmholtz kernel in Sec-
tion 1.3 we need to estimate the error made when replacing a function g ∈ C([−1, 1])

by its interpolant I(m)
[−1,1][g] ∈ Πm. In [7] a useful result is given, which grants expo-

nential convergence of the error in the supremum norm for suitable functions g. We
discuss this result here.

Let us start with some definitions. For the sake of completeness we recall the
definition of a holomorphic function.

Definition 1.6 (Holomorhpic functions). Let U ⊂ C be open. A function g : U → C
is called complex differentiable in a point z0 ∈ U if the limit

g′(z0) = lim
z→z0

g(z)− g(z0)

z − z0

exists. If g is complex differentiable for all points z ∈ U then g is called holomorphic
on U .

For the approximation result we have to deal with holomorphic functions on Bern-
stein elliptic discs, which we define next.

Definition 1.7 ([7, cf. equation (3.22)]). Let ρ ∈ R with ρ > 1 be given. The
Bernstein elliptic disc Dρ is defined by

Dρ :=

{
z = x+ iy : x, y ∈ R,

(
2x

ρ+ ρ−1

)2

+

(
2y

ρ− ρ−1

)2

< 1

}
. (1.9)

These definitions allow us to formulate the following proposition, which is the key
result of this section.

Proposition 1.8 ([7, cf. Lemma 3.11]). Let ρ ∈ R satisfy ρ > 1. Let f : Dρ → C
be holomorphic and Cf := max{|f(z)| : z ∈ Dρ}. Then there exists a polynomial
πm ∈ Πm of degree m such that

‖f − πm‖∞ ≤
2Cf
ρ− 1

ρ−(m+1). (1.10)

Proof. Here we follow [14, cf. Chapter 7; proof of Theorem 8.1]. We define the function

g(t) := f(cos(t)).

This function is obviously even and 2π-periodic. Furthermore it is continuously differ-
entiable for all t ∈ R. This follows immediately from the fact that f is holomorphic on

16 1 A Directional Approximation of the Helmholtz Kernel

Dρ and hence continuously differentiable in (−1− ε, 1+ ε) for an ε > 0 ∈ R sufficiently
small. Therefore we can express g for all t as a Fourier series, i.e.

g(t) =
1

2
a0 +

∞∑
k=1

ak cos(kt), ak =
1

π

∫ π

−π
f(cos(t)) cos(kt) dt.

By the definition of g and the Chebyshev polynomials in (1.3) it follows that

f(x) = g(arccos(x)) =
1

2
a0 +

∞∑
k=1

akTk(x),

i.e. we can expand f on [−1, 1] into a series of Chebyshev polynomials. Let us define

πm(x) =
1

2
a0 +

m∑
k=1

akTk(x).

We want to show that (1.10) holds for this choice of πm. Since |Tk(x)| ≤ 1 for all k ∈ N
and all x ∈ [−1, 1] we get

‖f − πm‖∞ ≤
∞∑

k=m+1

|ak|.

Let us therefore estimate |ak|. By using the substitution z = eit, we rewrite the
defining integral of ak into the line integral

ak =
1

πi

∫
∂B1(0)

f

(
z + z−1

2

)
zk + z−k

2

1

z
dz,

where ∂B1(0) is the circle defined by ∂B1(0) := {z ∈ C : |z| = 1}. We split this
integral into two parts

ak =
1

2πi

∫
∂B1(0)

f

(
z + z−1

2

)
zk−1 dz︸ ︷︷ ︸

:=I1

+
1

2πi

∫
∂B1(0)

f

(
z + z−1

2

)
z−(k+1) dz︸ ︷︷ ︸

:=I2

,

and estimate both parts separately.
Let ∂Bµ(0) := {z ∈ C : |z| = µ} be the circle with radius µ. An easy computation

shows that the mapping Ψ(z) = (z+ z−1)/2 maps the circles ∂Bµ(0) and ∂B1/µ(0) for
all µ > 1 injectively to the boundary ∂Dµ of the Bernstein elliptic discs Dµ and the
circle ∂B1(0) to the interval [−1, 1]. Hence, it maps the annulus

A := {z ∈ C : 1/ρ < |z| < ρ}

to the Bernstein elliptic disc Dµ. As a consequence the function f ◦ Ψ and also
the integrands above are holomorphic on A. This allows us to apply the homotopic

1.1 Polynomial interpolation 17

version of Cauchy’s integral theorem [17, cf. Chapter 4, Theorem 1.3]. For all ρ̂ such
that 1 < ρ̂ < ρ we get

|I1| =
1

2π

∣∣∣∣∫
∂B1(0)

f

(
z + z−1

2

)
zk−1 dz

∣∣∣∣ =
1

2π

∣∣∣∣∣
∫
∂B1/ρ̂(0)

f

(
z + z−1

2

)
zk−1 dz

∣∣∣∣∣
≤ 1

2π

∫
∂B1/ρ̂(0)

∣∣∣∣f (z + z−1

2

)∣∣∣∣ |zk−1| dz ≤ 1

2π
Cf ρ̂

−k+12πρ̂−1 = Cf ρ̂
−k,

and similarly

|I2| =
1

2π

∣∣∣∣∣
∫
∂Bρ̂(0)

f

(
z + z−1

2

)
z−(k+1) dz

∣∣∣∣∣ ≤ Cf ρ̂
−k.

This yields

‖f − πm‖∞ ≤
∞∑

k=m+1

|ak| ≤ 2Cf

∞∑
k=m+1

ρ̂−k =
2Cf
ρ̂− 1

ρ̂−(m+1).

By taking the limit ρ̂→ ρ we get assertion (1.10).

A direct consequence of this proposition is the following theorem, which is the basis
for the error estimate of the directional approximation of the Helmholtz kernel in
Section 1.3.

Theorem 1.9. Let ρ > 1 ∈ R and f : Dρ → C be holomorphic. Let Λm be given
by (1.6) and let Cf := max{|f(z)| : z ∈ Dρ}. Then there holds

‖f − I(m)
[−1,1][f]‖∞,[−1,1] ≤

2Cf
ρ− 1

(Λm + 1)ρ−(m+1). (1.11)

Proof. The proof is a direct consequence of Proposition 1.8 and the projection property
of the interpolation operator I(m)

[−1,1]. In fact we get for πm as in Proposition 1.8

‖f − I(m)
[−1,1][f]‖∞,[−1,1] = ‖f − πm + I(m)

[−1,1][πm]− I(m)
[−1,1][f]‖∞,[−1,1]

≤ ‖f − πm‖∞,[−1,1] + ‖I(m)
[−1,1][πm]− I(m)

[−1,1][f]‖∞,[−1,1]

≤ (1 + Λm)‖f − πm‖∞,[−1,1] ≤
2Cf
ρ− 1

(Λm + 1)ρ−(m+1).

Remark 1.10. By Theorem 1.5 the Lebesgue constant increases only logarithmically
in m if the Chebyshev nodes are chosen as interpolation points. Hence Theorem 1.9
gives us exponential convergence of the interpolation error.

18 1 A Directional Approximation of the Helmholtz Kernel

1.1.3 Matrix approximation via tensor interpolation

Suppose we want to approximate a matrix A ∈ CNX×NY generated by a complex valued
function fA ∈ C(X × Y), i.e.

A[j, k] = fA(xj, yk),

where {xj}NXj=1 and {yk}NYk=1 are points in X ⊂ R3 and Y ⊂ R3, respectively. Assuming
that X and Y are axis parallel boxes we can apply tensor interpolation in X and Y
and get

I(m)
X ⊗ I(m)

Y [fA](x, y) =
∑
α∈M

∑
β∈M

fA(ξX,α, ξY,β)LX,α(x)LY,β(y),

where as in the previous section M is the set {0, ...,m}3, and {ξX,α}α∈M and {ξy,β}β∈M
are some interpolation points in the respective boxes. With this approximation we get

A[j, k] ≈
∑
α∈M

∑
β∈M

fA(ξX,α, ξY,β)LX,α(xj)LY,β(yk).

This can be rewritten in matrix notation as follows. Let the interpolation matrices
LX ∈ CNX×(m+1)3 , LY ∈ CNY ×(m+1)3 and the coupling matrix AX,Y ∈ C(m+1)3×(m+1)3

be defined by

LX [j, k] := LX,αk(xj), j ∈ {1, ..., NX}, k ∈ {1, ..., (m+ 1)3},
LY [j, k] := LY,βk(yj), j ∈ {1, ..., NY }, k ∈ {1, ..., (m+ 1)3},

AX,Y [j, k] := fA(ξX,αj , ξY,βk), j, k ∈ {1, ..., (m+ 1)3}.

Then the matrix A is approximated by

A ≈ LXAX,YL
∗
Y , (1.12)

where we used that all entries of LY are real. This leads to an efficient approximation
of A if (m+1)3 is sufficiently smaller than NX and NY . Indeed, instead of NXNY only

(NX +NY + (m+ 1)3)(m+ 1)3

entries have to be computed and stored.

The quality of the above approximation depends on the interpolation degree m and
the behavior of the function fA in X × Y . Generally, higher interpolation degrees
lead to lower approximation errors but at the same time to higher computational and
storage costs. However, if the function fA is sufficiently smooth in X × Y , a low
interpolation degree m might suffice for a good approximation.

1.2 A directional multi-level approximation 19

1.2 A directional multi-level approximation

In this section we want to discuss how to approximate the Helmholtz kernel f in (1.1)
efficiently on appropriate sets X × Y using tensor interpolation. For general sets this
is not possible. In fact, the singularities of f for x = y and its oscillatory behavior for
large wave numbers κ or large setsX or Y have a negative impact on the approximation
quality. The singular behavior can be overcome with a classical separation criterion
of clustering methods for the sets X and Y . We will introduce such a criterion in
Section 1.2.2. The oscillatory behavior, however, requires a special treatment. In
fact, applying a classical approach that uses only a separation criterion and does not
take the oscillatory behavior into account is limited in a high frequency regime, which
is demonstrated for example in [30, Chapter 3, Example 6]. For this purpose we
introduce a directional multi-level approximation strategy, following the lines of [7].
First we present a single level approximation of f , which forms the basis of the multi-
level approximation. Then we will motivate the necessity of a multi-level scheme and
introduce it. Finally we will introduce necessary admissibility conditions for the sets X
and Y which guarantee a good approximation.

1.2.1 Derivation of the directional single- and multi-level
approximation

We follow an idea which first appeared in [8] and [15] and was later used in [7] and [30]
among other. It states that the oscillatory part exp(iκ|x−y|) of f can be smoothened
by a plane wave term exp(−iκ〈x− y, c〉) in a cone around c. We discuss this in detail
here.

Let c ∈ R3 be a vector with |c| = 1. We can rewrite the Helmholtz kernel f by

f(x, y) = fc(x, y) exp(iκ〈x− y, c〉), (1.13)

where fc is defined by

fc(x, y) := f(x, y) exp(−iκ〈x− y, c〉) =
exp(iκ(|x− y| − 〈x− y, c〉))

4π|x− y| . (1.14)

The modified kernel function fc is somewhat smoother than f on suitable boxes X
and Y due to the additional plane wave term. In fact, if two vectors x and y satisfy
(x − y)/|x − y| ≈ c, then this plane wave term behaves like the reciprocal of the
oscillating factor of f . Therefore it dampens the oscillations locally.

Due to its higher smoothness we interpolate fc instead of f on suitable axis-parallel
boxes X and Y and get

f̃
(m)
c,X,Y (x, y) := I(m)

X ⊗ I(m)
Y [fc](x, y) =

∑
ν∈M

∑
µ∈M

fc(ξX,ν , ξY,µ)L
(m)
X,ν(x)L

(m)
Y,µ (y).

20 1 A Directional Approximation of the Helmholtz Kernel

Here we used the interpolation operators and their representation given in Section 1.1.
Finally we get an approximation of f on the set X × Y by substituting fc in (1.13)

with f̃
(m)
c,X,Y yielding

f̃
(m)
X,Y (x, y) :=

∑
ν∈M

∑
µ∈M

fc(ξX,ν , ξY,µ)L
(m)
X,ν(x)L

(m)
Y,µ (y) exp(iκ〈x− y, c〉)

=
∑
ν∈M

∑
µ∈M

fc(ξX,ν , ξY,µ)
[
L

(m)
X,ν(x) exp(iκ〈x, c〉)

] [
L

(m)
Y,µ exp(−iκ〈y, c〉)

]
.

This leads to the following definiton.

Definition 1.11. Let Z ⊂ R3 be an axis-parallel box. Let c ∈ R3 be a direction
satisfying |c| = 1 and let {L(m)

Z,ν }ν∈M be the Lagrange polynomials corresponding to a
given set of interpolation points. Then the directionally modified Lagrange polynomi-
als L

(m)
Z,c,ν are defined by

L
(m)
Z,c,ν := L

(m)
Z,ν exp (iκ〈·, c〉). (1.15)

Moreover, define the directional interpolation operator by

I(m)
Z,c : C(Z)→ C(Z), I(m)

Z,c [g] := exp(iκ〈·, c〉)I(m)
Z [exp(−iκ〈·, c〉)g], (1.16)

and the directional tensor interpolation operator I(m)
X×Y,c for two boxes X and Y by

I(m)
X×Y,c := I(m)

X,c ⊗ I
(m)
Y,−c. (1.17)

Then the directional single-level approximation f̃
(m)
X,Y of the Helmholtz kernel f on the

set X × Y is defined by

f̃
(m)
X,Y := I(m)

X×Y,c[f] =
∑
ν∈M

∑
µ∈M

fc(ξX,ν , ξY,µ)L
(m)
X,c,ν(x)L

(m)
Y,c,µ. (1.18)

Similarly as in Section 1.1.3 we can use the single-level approximation f̃
(m)
X,Y of f to

approximate a matrix A ∈ CNX×NY with entries

A[j, k] = f(xj, yk) =
exp(iκ|xj − yk|)

4π|xj − yk|
(1.19)

by the matrix Ã with entries

Ã[j, k] = f̃
(m)
X,Y (xj, yk) =

∑
ν∈M

∑
µ∈M

fc(ξX,ν , ξY,µ)L
(m)
X,c,ν(xj)L

(m)
Y,c,µ(yk),

for some points {xj}NXj=1 ⊂ X and {yk}NYk=1 ⊂ Y where X and Y are suitable boxes.
Analogously to (1.12) we can write this in matrix notation, i.e.

Ã = LX,cAc,X,YL
∗
Y,c, (1.20)

1.2 A directional multi-level approximation 21

where we define the coupling matrix Ac,X,Y ∈ C(m+1)3×(m+1)3 by

Ac,X,Y [j, k] := fc(ξX,αj , ξY,βk), j, k ∈ {1, ..., (m+ 1)3}, (1.21)

and the directional interpolation matrices LX,c ∈ CNX×(m+1)3 and LY,c ∈ CNY ×(m+1)3

by

LX,c[j, k] := L
(m)
X,c,αk

(xj), j ∈ {1, ..., NX}, k ∈ {1, ..., (m+ 1)3},
LY,c[j, k] := L

(m)
Y,c,βk

(yj), j ∈ {1, ..., NY }, k ∈ {1, ..., (m+ 1)3}.
(1.22)

In Chapter 2 we describe how to approximate a matrix generated by the Helmholtz
kernel by partitioning it appropriately. For this purpose we will need directional in-
terpolation matrices for a sequence of boxes {Xj}Lj=0 in R3 satisfying X0 ⊃ ... ⊃ XL

and a sequence of directions {cj}Lj=0, where cj+1 is a direction close to cj for all
j ∈ {0, ..., L− 1} in some appropriate sense. Assembling or storing all these matri-
ces directly would not be efficient. Hence we want to find a way to express LXj ,cj by
LXj+1,cj+1

for points in Xj ∩Xj+1. In other words, for all ν ∈ M we want to express

the function L
(m)
Xj ,cj ,ν

on the box Xj+1 by the functions {L(m)
Xj+1,cj+1,ν̃

}ν̃∈M . Again we

follow [7, Section 2.2.2].

Let us rewrite L
(m)
Xj ,cj ,ν

(x) by

L
(m)
Xj ,cj ,ν

(x) = exp(iκ〈x, cj+1〉)
[
exp(iκ〈x, cj − cj+1〉)L(m)

Xj ,ν
(x)
]
.

If cj+1 is sufficiently close to cj the term in square brackets is smooth and we can
interpolate it in the box Xj+1, yielding

exp(iκ〈x, cj − cj+1〉)L(m)
Xj ,ν

(x) ≈
∑
ν̃∈M

exp(iκ〈ξXj+1,ν̃ , cj − cj+1〉)L(m)
Xj ,ν

(ξXj+1,ν̃)L
(m)
Xj+1,ν̃

(x).

Using the definition of L
(m)
Xj+1,cj+1,ν̃

in (1.15) we get the desired result

L
(m)
Xj ,cj ,ν

(x) ≈
∑
ν̃∈M

([
exp(iκ〈ξXj+1,ν̃ , cj − cj+1〉)L(m)

Xj ,ν
(ξXj+1,ν̃)

]
L

(m)
Xj+1,cj+1,ν̃

(x)
)
,

or in short form
L

(m)
Xj ,cj ,ν

|Xj+1
≈ I(m)

Xj+1,cj+1

[
L

(m)
Xj ,cj ,ν

]
, (1.23)

where we make use of the interpolation operator defined in (1.16).
By means of equation (1.23) we can approximate the directional interpolation ma-

trices in the following way. Suppose LXj ,cj |X̂j+1×(m+1)3 is the submatrix of LXj ,cj con-
taining all rows corresponding to the points in Xj+1. Then there holds

LXj ,cj |X̂j+1×(m+1)3 ≈ LXj+1,cj+1
EXj+1,cj , (1.24)

22 1 A Directional Approximation of the Helmholtz Kernel

where the entries of the transfer matrix EXj+1,cj ∈ C(m+1)3×(m+1)3 are defined by

EXj+1,cj [k, `] := exp(iκ〈ξXj+1,νk , cj − cj+1〉)L(m)
Xj ,ν`

(ξXj+1,νk), (1.25)

for all k, ` ∈ {1, ..., (m+ 1)3}.
Finally we can define the directional multi-level approximation of f on a suitable

pair of boxes X × Y by combining (1.18) and (1.23).

Definition 1.12 (Directional multi-level approximation). Let two sequences of boxes
{Xj}Lj=0 and {Yj}Lj=0 be given such that X = X0 ⊃ ... ⊃ XL and Y = Y0 ⊃ ... ⊃ YL.
Let furthermore {cj}Lj=0 be a sequence of directions in R3. Then the directional multi-

level approximation f̂
(m)
X,Y |XL×YL of f on the set XL × YL is defined by

f̂
(m)
X,Y |XL×YL = I(m)

XL×YL,cL ◦ ... ◦ I
(m)
X0×Y0,c0 [f]. (1.26)

1.2.2 Directional admissibility conditions

The question arises under which conditions on the boxes X and Y and the direction c
the approximation (1.26) yields good results. Following [7] we introduce three useful
criteria, which will allow us to prove exponential convergence of the approximation
error in Theorem 1.26.

Definition 1.13 (Directional admissibility [7, cf. Section 3.3]). Let X, Y ⊂ R3 be two
axis-parallel boxes and let a direction c ∈ R3 with |c| = 1 or c = 0 be given. Denote
the midpoints of X and Y by mX and mY , respectively. Let two constants η1 > 0
and η2 > 0 be chosen. Define the diameter diam (X) and the distance dist (X, Y) by

diam (X) = sup
x1,x2∈X

|x1 − x2|,

dist (X, Y) = inf
x∈X,y∈Y

|x− y|.

We say that X and Y are directionally admissible with respect to c if the separation
criterion

max{diam (X) , diam (Y)} ≤ η2 dist (X, Y) , (A1)

and the two cone admissibility criteria

κ

∣∣∣∣ mX −mY

|mX −mY |
− c
∣∣∣∣ ≤ η1

max{diam (X) , diam (Y)} , (A2)

κmax{diam (X) , diam (Y)}2 ≤ η2 dist (X, Y) , (A3)

are satisfied. Criteria (A1) – (A3) are denoted as the directional admissibility criteria.

1.2 A directional multi-level approximation 23

In Theorems 1.15 and 1.26 we will show that the criteria (A1) – (A3) are sufficient
to guarantee exponential convergence of the directional multi-level and single-level ap-
proximation error in the interpolation degree m. However (A1) – (A3) do not hold for
arbitrary boxes X and Y . If we approximate a matrix A as in (1.19) for boxes which
do not satisfy these criteria, we will not get satisfactory results in general. However,
we can partition the matrix and use the directional approximation for suitable sub-
matrices. We discuss this in Chapter 2. Here we continue with the discussion of the
admissibility criteria.

Let us start with (A1). This is a classical separation criterion, which can for example
be found in [24, Section 4.1.3]. It guarantees that the boxes X and Y do not overlap,
which is desirable because for x = y the term 1/|x − y| in the Helmholtz kernel is
singular. This separation of boxes allows for low rank approximations of many kernels
corresponding to fundamental solutions of elliptic partial differential equations, e.g. the
Laplace kernel (4π|x− y|)−1. The exponential term exp(iκ|x− y|), however, prohibits
low rank approximations of the Helmholtz kernel for large boxes and large κ, even if
the boxes satisfy (A1).

Next we discuss (A3). We observe that (A1) and (A3) are closely connected. Both
control the distance of two boxes X and Y . The bound on the distance in (A3),
however, does not only depend on the diameter of the boxes X and Y but also on
the wave number κ. Furthermore we note that (A3) is more restrictive for large box
diameters while (A1) is more restrictive for small diameters. Indeed, (A1) follows
immediately from (A3) if κmax{diam (X) , diam (Y)} > 1. On the other hand (A3)
follows from (A1) if κmax{diam (X) , diam (Y)} ≤ 1.

The criterion (A3) can also be interpreted differently. It can be written in the form

max{diam (X) , diam (Y)}
dist (X, Y)

≤ η2

κmax{diam (X) , diam (Y)} .

As discussed in [5, Section 3] this can be understood as a bound on the angle between
all vectors x− y for x ∈ X and y ∈ Y that shrinks if κ or max{diam (X) , diam (Y)}
increases. Hence, (A3) guarantees that the angle between x − y and a direction c is
small if the angle between the difference of the midpoints mX − mY and c is small,
which we will enforce by (A2).

The effect of (A3) is schematically depicted in 2D in Figure 1.1. For a fixed box X,
a fixed wave number κ > 0 and two parameters η2 we marked all boxes Y such
that X and Y satisfy (A3). We see that for larger η2 the admissibility condition is
less restrictive, i.e. more boxes Y are admissible with respect to X. Visualizing (A1)
would result in a similar figure with slight changes of the allowed distances.

Finally we discuss the criterion (A2). This criterion will be used to assign two
boxes X and Y a suitable direction c from a given set of directions for the direc-
tional approximation. If we only need to compute the directional approximation
LX,cAc,X,YL

∗
Yk,c

of a matrix A as in (1.19) for points in two boxes X and Y we can

24 1 A Directional Approximation of the Helmholtz Kernel

X X

Figure 1.1: Schematic visualization of the admissibility condition (A3): The hatched
boxes are such that (A3) is fulfilled for the given box X and some values
of κ and η2. In the right image η2 is chosen larger.

simply choose the direction c = (mX − mY)/|mX − mY | and do not need the crite-
rion (A2). However, in the setting of Chapter 2 we will have to approximate such
matrices for points in a given box X and several boxes Yk at the same time using
the directional multi-level approximation. Choosing the same direction c for multiple
boxes Yk is then useful, because it enables us to reuse the transfer matrices defined
in (1.25), i.e. we do not need individual transfer matrices for each box Yk. The crite-
rion (A2) tells us if a given direction c is sufficiently close to the normalized difference
of the midpoints (mX −mY)/|mX −mY | such that the directional approximation of
a matrix corresponding to points in the boxes X and Y with the direction c is rea-
sonable. In particular we have to provide a set of directions, such that for each pair
of boxes X and Y there exists a direction c in this set for which (A2) holds. Less
directions are needed for this purpose if the boxes X and Y are small, since the right
hand side of (A2) increases with decreasing diameters of the boxes X and Y .

In Section 2.1.2 we describe a possible strategy to construct suitable sets of direc-
tions. Here we continue with the discussion of (A2). The case

η1

κmax{diam (X) , diam (Y)} > 1, (1.27)

is of special interest. If (1.27) holds, then (A2) is satisfied for c = 0. This means
that no specific direction is needed and we can use standard interpolation instead of
the directional interpolation. The condition (1.27) obviously depends on the boxes X
and Y . This leads to the following definition.

1.2 A directional multi-level approximation 25

Definition 1.14. Let X and Y be two axis-parallel boxes in R3 and η1 > 0. We say
that the pair (X, Y) is in the low frequency regime (with respect to η1) if

η1

κmax{diam (X) , diam (Y)} > 1. (1.28)

Else we say that (X, Y) is in the high frequency regime (with respect to η1).

X X

Figure 1.2: Schematic visualization of the admissibility condition (A2): Both pictures
show a box X, a direction c which is depicted by the diagonal solid line, and
some hatched boxes. These hatched boxes are such that (A2) is fulfilled
for given X and c, and some values of κ and η1. The variable η1 is chosen
larger in the right image. The dashed lines bound the area in which the
midpoints of a box must lie so that (A2) holds.

The effect of criterion (A2) is schematically depicted in Figure 1.2 for the 2D case
and two different choices of η1. We observe that for a fixed box X and a fixed direc-
tion c only those boxes are admissible whose midpoints are contained in a circular arc
around c. In 3D the same holds for cones instead of arcs. In Figure 1.2 it becomes
clear that a larger parameter η1 leads to a larger cone, i.e. in total less directions are
necessary to cover the whole space. However, the approximation quality suffers away
from the central direction c of the cone, in particular for large η1. Indeed we will show
in the analysis of the directional single-level approximation error in Section 1.3.1 that
larger η1 lead to worse constants in the error estimate.

26 1 A Directional Approximation of the Helmholtz Kernel

1.3 Error analysis of the directional multi-level

approximation

Having introduced the directional multi-level approximation in (1.26) in the previous
section, it is now our goal to analyze it. In particular our goal is to estimate the error

‖f − f̂ (m)
X,Y ‖∞,XL×YL . (1.29)

For this purpose we follow again the lines of [7, Sections 3 and 5]. In contrast to this
work, we do not deal with general interpolation points, but choose the Chebyshev
nodes as stated in Section 1.1. Furthermore we simplify some results, for example
the estimate in Theorem 1.35, which corresponds to [7, Theorem 5.7]. For small
interpolation degrees m however, this has no effect on the main result presented in
Theorem 1.15. On the other hand we refine some results, for example the estimate
in Theorem 1.26 concerning the approximation error of the directional single-level
approximation, which is similar to [7, Corollary 3.11]. This leads to a better rate of
convergence of the error in (1.29). Further differences are emphasized throughout this
chapter.

We start the discussion by presenting the main result of this section, which is the
estimate of (1.29). Its proof motivates the necessity of the discussion of the directional
single-level approximation (1.18) in Section 1.3.1 and the directional reinterpolation in
Section 1.3.2. We note that throughout the discussion we assume the wave number κ
to be a positive real number.

Theorem 1.15. Let {Xj}Lj=0 and {Yj}Lj=0 be two sequences of axis-parallel boxes in R3

such that X = X0 ⊃ ... ⊃ XL, Y = Y0 ⊃ ... ⊃ YL and

Xk := [a
(X)
k,1 , b

(X)
k,1]× ...× [a

(X)
k,3 , b

(X)
k,3], Yk := [a

(Y)
k,1 , b

(Y)
k,1]× ...× [a

(Y)
k,3 , b

(Y)
k,3],

for all k ∈ {0, ..., L}. Assume that there exists a q̄ < 1 such that

b
(X)
k,j − a

(X)
k,j

b
(X)
k−1,j − a

(X)
k−1,j

≤ q̄,
b

(Y)
k,j − a

(Y)
k,j

b
(Y)
k−1,j − a

(Y)
k−1,j

≤ q̄, (1.30)

for all k ∈ {1, ..., L} and j ∈ {1, ..., 3}. Let σ < 1 be such that

max {s(Xk), s(Yk)} ≤ σmax{diam (Xk) , diam (Yk)}, (1.31)

for all k ∈ {0, ..., L}, where for an axis parallel box B = [a1, b1]× ...× [a3, b3] we define
by s(B) its longest edge, i.e.

s(B) := max
j∈{1,...,3}

{|bj − aj|}.

1.3 Error analysis of the directional multi-level approximation 27

Let {ck}Lk=0 be a sequence of directions in R3 such that either |ck| = 1 or ck = 0 for
all k ∈ {0, ..., L}. Assume that there exists a γ ∈ R such that

κmax{diam (Xk−1) , diam (Yk−1)}|ck − ck−1| ≤ γ. (1.32)

Assume further, that X, Y , and c0 satisfy the admissibility criteria (A1)–(A3) and that
Xk, Yk and ck satisfy (A2) for all k ∈ {1, ..., L} for some η1 > 0, η2 > 0 independent

of k. Let the directional multi-level approximation f̂
(m)
X,Y of the Helmholtz kernel f on

the set XL × YL be defined by (1.26) and let

ρ̂ := 1 +
2

η2

. (1.33)

Then there exists a constant C depending only on η1, η2, q̄, σ, and L, and an m0 ∈ N
depending only on γ and q̄, such that for all m ≥ m0

‖f − f̂ (m)
X,Y ‖∞,XL×YL ≤

C

dist (X, Y)
ρ̂−(m+1). (1.34)

Remark 1.16. Let us discuss the assumptions of Theorem 1.15.

• In equation (1.30) we require the edges [a
(X)
k,j , b

(X)
k,j] and [a

(Y)
k,j , b

(Y)
k,j] of the boxes Xk

and Yk, respectively, to decrease for increasing k in each step at least by a factor q̄.
In our later application we will focus on boxes in a uniform box cluster tree
(cf. Algorithm 2.3). In Theorem 2.29 we will see that in this setting (1.30) is
always satisfied with q̄ = 1/2.

• Equation (1.31) is satisfied in particular if s(Xk) ≤ σ diam (Xk) as well as
s(Yk) ≤ σ diam (Yk) for all k ∈ {0, ..., L}. Hence one can think of σ as a mea-
sure of the isotropy of the boxes Xk and Yk. It is easy to see that for cubes we
can choose σ = 1/

√
3, while σ has to be chosen close to 1 for boxes where one

edge is considerably larger than the others. This is undesirable as for σ → 1 the
constant C in (1.34) becomes unbounded.

• The directions ck in Theorem 1.15 are allowed to be zero. In fact if the pair
of boxes (Xk, Yk) is in the low frequency regime according to Definition 1.14,
then (A2) holds for ck = 0 as we discussed in Section 1.2.2. In applications there
is typically a k̂ ∈ N such that ck 6= 0 for all k ≤ k̂ and ck = 0 for all k > k̂, since
we require the diameters of Xk and Yk to shrink for increasing k,.

• In equation (1.32) we assure that the directions ck−1 and ck with k ∈ {1, ..., L}
are close to each other, i.e. their difference is bounded. The bound in (1.32) de-
pends on the wave number κ > 0 and the diameters of the boxes Xk−1 and Yk−1.
As these diameters decrease for increasing k due to (1.30), we allow larger differ-
ences of the directions for larger k. In Section 2.1.2 we will introduce some sets
of directions and discuss this assumption further.

28 1 A Directional Approximation of the Helmholtz Kernel

Proof of Theorem 1.15. Let us start by rewriting the difference f − f̂
(m)
X,Y on the set

XL × YL as a telescopic sum. Similarly as in [7, Section 2.2.3] we have

f − f̂ (m)
X,Y = f − I(m)

XL×YL,c` [f]

+
L−1∑
`=0

(
I(m)
XL×YL,cL ◦ ... ◦ I

(m)
X`+1×Y`+1,c`+1

) [
f − I(m)

X`×Y`,c` [f]
]
.

We proceed by applying the triangle inequality and the operator norm inequality to get

‖f−f̂ (m)
X,Y ‖∞,XL×YL‖ ≤ ‖f − I

(m)
XL×YL,cL [f]‖∞,XL×YL+

L−1∑
`=0

‖I(m)
XL×YL,cL ◦ ... ◦ I

(m)
X`+1×Y`+1,c`+1

‖∞,L←`‖f − I(m)
X`×Y`,c` [f]‖∞,X`×Y` ,

(1.35)

where we write ‖ · ‖∞,L←` for the operator norm ‖ · ‖∞,XL×YL←X`×Y` . Therefore, we

need to control the norms of the reinterpolation operators I(m)
XL×YL,cL ◦...◦I

(m)
X`+1×Y`+1,c`+1

as well as the approximation error of the single-level approximations I(m)
X`×Y`,c` [f] for

all ` ∈ {0, ..., L− 1}. We start with the former.
Due to the assumptions on the boxes {Xk}Lk=0, {Yk}Lk=0 and the directions {ck}Lk=0

we can apply Theorem 1.35 and (1.80) to estimate the norm of the reinterpolation
operators for all ` ∈ {0, ..., L− 1} by

‖I(m)
XL×YL,cL ◦ ... ◦ I

(m)
X`+1×Y`+1,c`+1

‖∞,L←` ≤ Λ6
mC(q̄, L)6, (1.36)

for a constant C(q̄, L) depending only on q̄ and L, if m ≥ m0, where m0 depends solely
on γ and q̄.

Next we want to estimate the single-level approximation error. For this purpose
we show that all three admissibility criteria (A1) – (A3) hold for X`, Y` and c`, for
all ` ∈ {0, ..., L}, which allows us to apply Theorem 1.26. By assumption (A2) already
holds for all such `, whereas (A1) and (A3) only hold for ` = 0. However, we observe
that

diam (X`) ≤ diam (X0) , diam (Y`) ≤ diam (Y0) ,

which holds true due to the inclusions X` ⊂ X`−1 and Y` ⊂ Y`−1 for all ` ∈ {1, ..., L}.
Furthermore these inclusions imply

dist (X0, Y0) ≤ dist (X`, Y`) . (1.37)

As (A1) holds for X = X0 and Y = Y0 we get

max{diam (X`) , diam (Y`)} ≤ max{diam (X0) , diam (Y0)}
≤ η2 dist (X0, Y0) ≤ η2 dist (X`, Y`) ,

1.3 Error analysis of the directional multi-level approximation 29

which is (A1) for X` and Y`. Analogously (A3) follows for all ` > 0. Therefore, we
can apply Theorem 1.26 to estimate the single-level approximations

‖f − I(m)
X`×Y`,c` [f]‖∞,X`×Y` ≤

Csl(m,σ, η1, η2)

dist (X`, Y`)
ρ̂−(m+1), (1.38)

where Csl(m,σ, η1, η2) is a function which decays exponentially in m.
Inserting the two estimates (1.36) and (1.38) in (1.35) and using the estimate (1.37)

yields

‖f − f̂ (m)
X,Y ‖∞,XL×YL ≤

Csl(m,σ, η1, η2)

dist (X0, Y0)

(
1 +

L−1∑
`=0

Λ6
mC(q̄, L)6

)
ρ̂−(m+1),

for all m ≥ m0. Due to the exponential decay of Csl in m and the logarithmic behaviour
of Λm seen in (1.8) the supremum

C := sup
m∈N

{
Csl(m,σ, η1, η2)

(
1 + L Λ6

m C(q̄, L)6
)}

is bounded. With this constant C, which depends only on η1, η2, q̄, σ and L, the
assertion follows.

In the following two sections we derive the results concerning the directional single-
level approximation and the directional reinterpolation, which we used in the previous
proof.

1.3.1 Error analysis of the directional single-level
approximation

The estimate of the error (1.34) of the directional multi-level approximation relies on

the estimate of the error of the directional single-level approximation f̃
(m)
X,Y given in

Definition 1.11. In [7, Section 3] an error analysis of this single-level approximation
based on interpolation is given, which we repeat here. The procedure is as follows:
First the error estimate is reduced to a one dimensional interpolation error estimate
of certain functions fdp(t) on [−1, 1]. These functions have a holomorphic extension
on suitable domains, where they can be bounded uniformly, if the boxes X and Y
satisfy the admissibility criteria (A1) – (A3). This allows us to use the results from
Section 1.1.2 to proof Theorem 1.26, which is the main result in this section.

We start our considerations with the following lemma, which relates the tensor
interpolation error and the univariate interpolation error.

Lemma 1.17 ([7, Lemma 3.3]). Let B =
∏6

i=1[ai, bi] be a non-empty box in R6 and
let g ∈ C(B). Define for all j ∈ {1, ..., 6} and x ∈ B the functions

gx,j : [aj, bj]→ C, t 7→ g(x1, ..., xj−1, t, xj+1, ..., x6) (1.39)

30 1 A Directional Approximation of the Helmholtz Kernel

Then

‖g − I(m)
B [g]‖∞,B ≤

6∑
j=1

Λj−1
m sup

x∈B
‖gx,j − I(m)

[aj ,bj]
[gx,j]‖∞,[aj ,bj], (1.40)

where Λm is the Lebesgue constant given in (1.6).

Proof. We start by rewriting the difference g − I(m)
B [g] into the telescopic sum

g − I(m)
B [g] =

((
I − I(m)

[a1,b1]

)
⊗ I ⊗ ...⊗ I

)
[g]

+
6∑
j=2

(
I(m)

[a1,b1] ⊗ ...⊗ I
(m)
[aj−1,bj−1] ⊗

(
I − I(m)

[aj ,bj]

)
⊗ I ⊗ ...⊗ I

)
[g],

where I is the identity on the corresponding sets and we use the multilinearity of the
tensor product.

Next we note, that we can write the norm

‖g‖∞,B = sup
x∈B
|g(x)| = sup

x̂(j)∈B̂j

(
‖g(x1, ..., xj−1, ·, xj+1, ..., x6)‖∞,[aj ,bj]

)
= sup

x∈B
‖gx,j‖∞,[aj ,bj],

(1.41)

for all j ∈ {1, ..., 6}, where x̂(j) := (x1, ..., xj−1, xj+1, ..., x6) for all points x ∈ B

and B̂j :=
∏6

i=1,i 6=j[ai, bi]. An immediate consequence is∥∥∥(I(m)
[a1,b1] ⊗ ...⊗ I

(m)
[aj−1,bj−1] ⊗

(
I − I(m)

[aj ,bj]

)
⊗ I ⊗ ...⊗ I

)
[g]
∥∥∥
∞,B

≤ Λj−1
m

∥∥∥(I ⊗ ...⊗ I ⊗ (I − I(m)
[aj ,bj]

)
⊗ I ⊗ ...⊗ I

)
[g]
∥∥∥
∞,B

= Λj−1
m sup

x∈B
‖gx,j − I(m)

[aj ,bj]
[gx,j]‖∞,[aj ,bj],

(1.42)

which follows by using (1.41) and the operator norm inequality (1.6) for the in-

terpolation operators I(m)
[ak,bk] repeatedly for all k ∈ {1, ..., j − 1}. By estimating

‖g − I(m)
B [g]‖∞,B using the telescopic sum representation, the triangle inequality,

and (1.42) we get (1.40).

With the previous lemma we can proof the following proposition, which reduces the
error estimate of the directional single-level approximation to a class of one dimensional
interpolation error estimates.

Proposition 1.18 ([7, cf. Lemma 3.4]). Let X, Y ⊂ R3 be two axis-parallel boxes such
that

X =
3∏
i=1

[ai, bi], Y =
6∏
i=4

[ai, bi].

1.3 Error analysis of the directional multi-level approximation 31

Let smax be the length of the longest edge of X and Y , i.e.

smax := max{|bi − ai| : i ∈ {1, ..., 6}}. (1.43)

Define the functions fdp for two vectors d, p ∈ R3 by

fdp : [−1, 1]→ C, t 7→ exp(iκ(|d− tp| − 〈d− tp, c〉))
4π|d− tp| . (1.44)

Suppose there exists an ε ≥ 0 in R such that

‖fdp − I(m)
[−1,1][fdp]‖∞,[−1,1] ≤ ε, (1.45)

for all vectors d, p ∈ R3 with p 6= 0 satisfying

2|p| ≤ smax, (1.46a)

d− tp ∈ X − Y = {x− y : x ∈ X, y ∈ Y }, for all t ∈ [−1, 1]. (1.46b)

Then the directional single-level approximation error is bounded by

‖f − f̃ (m)
XY ‖∞,X×Y ≤ 6Λ5

mε. (1.47)

Proof. Note that by definition there holds

f(x, y) = fc(x, y) exp(iκ〈x− y, c〉),
f̃

(m)
XY (x, y) = I(m)

X×Y [fc](x, y) exp(iκ〈x− y, c〉).

Due to | exp(iκ〈x− y, c〉)| = 1 for all x ∈ X and y ∈ Y we get

‖f − f̃ (m)
XY ‖∞,X×Y = ‖fc − I(m)

X×Y [fc]‖∞,X×Y . (1.48)

We apply Lemma 1.17 to estimate this last norm. For this purpose we consider the
six-dimensional box B := X× Y =

∏6
j=1[aj, bj] and think of fc as a function in C(B).

In particular we identify fc(z) = fc(x, y) for all z ∈ B given by z = (x, y). Then
by (1.40) there holds

‖fc − I(m)
X×Y [fc]‖∞,X×Y ≤ Λ5

m

6∑
j=1

sup
z∈B
‖[fc]z,j − I(m)

[aj ,bj]
[[fc]z,j]‖∞,[aj ,bj]. (1.49)

Here we used that Λj
m < Λ5

m for all j ∈ {0, ..., 5}.
Let Φ[aj ,bj] be the affine linear transformation from [−1, 1] to [aj, bj], defined in (1.5).

Suppose we can find a pair d, p ∈ R3 for all z ∈ B and j ∈ {1, ..., 6} such that (1.46a)
and (1.46b) hold and furthermore

[fc]z,j ◦ Φ[aj ,bj] − I(m)
[aj ,bj]

[[fc]z,j] ◦ Φ[aj ,bj] = fdp − I(m)
[−1,1][fdp] (1.50)

32 1 A Directional Approximation of the Helmholtz Kernel

in [−1, 1]. Then assumption (1.45) yields

sup
z∈B
‖[fc]z,j − I(m)

[aj ,bj]
[[fc]z,j]‖∞,[aj ,bj] ≤ ε,

for all j ∈ {1, ..., 6}. Combining this with (1.49) concludes the proof.
Hence, let us construct d, p ∈ R3 for given z = (x, y) ∈ B and j ∈ {1, ..., 6} such

that (1.50) as well as (1.46a) and (1.46b) hold. For j ∈ {1, ..., 3} equation (1.50)
implies

(d− tp)[k] = xk − yk, k 6= j,

(d− tp)[k] =
aj + bj

2
− yj + t

bj − aj
2

k = j,

which immediately gives us d and p. Similarly, for j ∈ {4, ..., 6} we get d and p from

(d− tp)[k] = xk − yk, k 6= j − 3,

(d− tp)[k] = xk −
aj + bj

2
− t bj − aj

2
, k = j − 3.

In both cases (1.46a) and (1.46b) hold for the resulting vectors d and p.

Our next goal is to show (1.45) for all d, p ∈ R3 such that (1.46a) and (1.46b)
hold. As in [7, Sections 3.2 – 3.4] we will show that under these conditions fdp has a
holomorphic extension and use Theorem 1.9 to show the assertion.

In order to find a holomorphic extension of fdp we have to find a suitable extension

of the mapping t 7→ |d − tp| =
√
〈d− tp, d− tp〉R, where 〈x, y〉R =

∑3
k=1 xiyi for two

vectors x and y in C3. For all z = r exp(iϕ) ∈ C we can define the principal branch of
the square root of z by √

z =
√
r exp(iϕ/2).

This square root is holomorphic in C \ R≤0, which can for example be seen by checking
that it satisfies the Cauchy-Riemann equations in polar coordinates. Hence we can
extend t 7→ |d − tp| to the function ndp : z 7→

√
〈d− zp, d− zp〉R, which is holomor-

phic for all z ∈ Udp := {z ∈ C : 〈d − zp, d − zp〉R /∈ R≤0}. The following lemma
characterizes ndp and the set Udp.

Lemma 1.19 ([7, Lemma 3.5]). Let d, p ∈ R3 with p 6= 0. Define

ndp(z) : Udp = {z ∈ C : 〈d− zp, d− zp〉R /∈ R≤0} → C

z 7→
√
〈d− zp, d− zp〉R,

(1.51)

and the complex number w by

w := wr + iwi, wr := 〈d, p〉/|p|2, wi :=
√
|d|2/|p|2 − w2

r .

1.3 Error analysis of the directional multi-level approximation 33

Then ndp is well-defined and holomorphic on Udp and there holds

Udp = C \ {z = wr + iy : y ∈ R, |y| ≥ wi}, (1.52)

ndp(z) = |p|
√

(w − z)(w − z). (1.53)

Sketch of proof. The function ndp is the decomposition of the principal branch of the
square root and the holomorphic mapping

g : C→ C, z 7→ 〈d− zp, d− zp〉R,

which maps Udp to the set C \ R≤0, where the square root is well-defined and holo-
morphic. As a consequence ndp is well-defined and holomorphic.

It remains to show the identities (1.52) and (1.53). A direct computation yields

〈d− zp, d− zp〉R = |p|2(w − z)(w − z), (1.54)

which immediately gives us (1.53). To show the remaining identity we set

S := {z = wr + iy : y ∈ R, |y| ≥ wi}.

It is an easy exercise to show that g(z) ∈ R≤0 holds if and only if z ∈ S. Hence we
get Udp = C \ S, which is (1.52).

Lemma 1.19 allows us to extend the function fdp : [−1, 1] → C defined in (1.44)
holomorphically to the set Udp by substituting |d− tp| by ndp(t) and setting

f̂dp(z) =
exp(iκ(ndp(z)− 〈d− zp, c〉R))

4πndp(z)
. (1.55)

For the sake of readability we will identify fdp with its holomorphic extension f̂dp in
the rest of the section.

For the application of Theorem 1.9 we need that fdp is holomorphic on a Bernstein
elliptic disc Dρ as defined in (1.9) for some suitable ρ. For this purpose we prove the
following lemma.

Lemma 1.20 ([7, Lemmata 3.6 and 3.12]). Let d, p ∈ R3 with p 6= 0 and Udp be defined
as in Lemma 1.19. Let ζ ∈ R be defined by

ζ := min

{ |d− tp|
|p| : t ∈ [−1, 1]

}
. (1.56)

Let r ∈ [0, ζ), ρ :=
√

1 + r2 + r and define

Ur :=

{
z ∈ C : min

t∈[−1,1]
|z − t| ≤ r

}
. (1.57)

Then there holds
Dρ ⊂ Ur ⊂ Udp. (1.58)

34 1 A Directional Approximation of the Helmholtz Kernel

Proof. We start with the inclusion Ur ⊂ Udp. For this purpose we recall that by
defintion C \ Udp = {z = wr + iy : y ∈ R, |y| ≥ wi}, with w defined in Lemma 1.19.
The closest points of this set to the real line interval [−1, 1] are obviously the two
points w and w. For a t ∈ [−1, 1] the distance |w − t| = |w − t| is given by

|w − t|2 = (w − t)(w − t) =
〈d− tp, d− tp〉R

|p|2 =
|d− tp|2
|p|2 , (1.59)

where we used (1.54). Hence the distance of the real line interval [−1, 1] to the
set C \ Udp is given by ζ defined in (1.56). This means that for all r ∈ [0, ζ) and

all t ∈ [−1, 1] the closed balls Br(t) := {z ∈ C : |z − t| ≤ r} are contained in Udp and
therefore also their union Ur ⊂ Udp.

For the second inclusion Dρ ⊂ Ur we follow the lines of [4, Proof of Lemma 4.77].
We want to show that for all z ∈ Dρ there exists a t ∈ [−1, 1] such that |z − t| ≤ r.
For this purpose we first recall, that for z = x+ iy ∈ Dρ, x, y ∈ R there holds(

2x

ρ+ 1/ρ

)2

+

(
2y

ρ− 1/ρ

)2

≤ 1.

By definition of ρ there holds

ρ− 1/ρ

2
=
ρ2 − 1

2ρ
=

1 + r2 + 2r
√

1 + r2 + r2 − 1

2ρ
=

2r(r +
√

1 + r2)

2ρ
= r

and therefore
ρ+ 1/ρ

2
= r +

1

ρ
.

Hence for all z as above we get

|x| ≤ ρ+ 1/ρ

2
= r + 1/ρ, |y| ≤ ρ− 1/ρ

2
= r. (1.60)

Next we distinguish three cases: For x ∈ [−1, 1] we choose t = x. Then there holds
|z − t| = |y| ≤ r by (1.60) and hence z ∈ Ur. For x > 1 we choose t = 1 and get
|z − t| ≤ r due to

1 ≥
(

2x

ρ+ 1/ρ

)2

+

(
2y

ρ− 1/ρ

)2

=
x2

(r + 1/ρ)2
+
y2

r2
>

(x− 1)2

r2
+
y2

r2
=
|z − t|
r2

,

if we can show that
x2

(r + 1/ρ)2
>

(x− 1)2

r2
.

As x > 1 this is equivalent to

xr > (x− 1)(r + 1/ρ),

1.3 Error analysis of the directional multi-level approximation 35

and

r + 1/ρ > x/ρ.

This last equation, however, holds true because ρ > 1 and x ≤ r + 1/ρ due to (1.60).
The case x < −1 is treated analogously, and hence we have z ∈ Ur for all z ∈ Dρ,
which is the desired result.

By Lemma 1.20 fdp is holomorphic in a Bernstein elliptic disc Dρ ⊂ Ur for r ∈ [0, ζ).

This allows us to apply Theorem 1.9 to estimate ‖fdp−I(m)
[−1,1][fdp]‖∞,[−1,1]. The estimate

depends on the maximum of |fdp| in Dρ. The following two lemmata allow us to
estimate this maximum on the superset Ur of Dρ.

Lemma 1.21 (Bound for ndp, [7, cf. Lemma 3.6]). Let d, p ∈ R3 with p 6= 0 and let ndp
be defined as in Lemma 1.19. Furthermore let ζ and Ur for some r ∈ [0, ζ) be defined
as in Lemma 1.20. Then for all z ∈ Ur there holds

|ndp(z)| ≥ |p|(ζ − r). (1.61)

Proof. By Lemma 1.21 we have

ndp(z) = |p|
√

(w − z)(w − z).

Hence it suffices to bound |w − z| and |w − z| for all z ∈ Ur. Let z ∈ Ur be given. By
definition of Ur we can find a t ∈ [−1, 1] satisfying |z − t| ≤ r. Due to (1.59) and the
definition (1.56) of ζ we get

|w − z| = |w − t+ t− z| ≥ |w − t| − |z − t| ≥ ζ − r,
|w − z| ≥ |w − t| − |z − t| = |w − t| − |z − t| ≥ ζ − r,

and finally

|ndp(z)| = |p|
√
|w − z||w − z| ≥ |p|(ζ − r).

Lemma 1.22 (Exponent bound, [7, cf. Lemma 3.8]). Let d, p ∈ R3 with p 6= 0 and let
c ∈ R3 with |c| = 1. Let ζ and Ur for some r ∈ [0, ζ) be defined as in Lemma 1.20.
Then for every z ∈ Ur there exists a t ∈ [−1, 1] such that

|exp(iκ(ndp(z)− 〈d− zp, c〉R))| ≤ exp

(
κ|p|

(∣∣∣∣ d− tp|d− tp| − c
∣∣∣∣ r +

r2

2(ζ − r)

))
. (1.62)

Proof. We observe first that

| exp(iκ(ndp(z)− 〈d− zp, c〉R)))| ≤ exp(κ|=(ndp(z)− 〈d− zp, c〉R)|),

36 1 A Directional Approximation of the Helmholtz Kernel

where we used that κ > 0. Hence it remains to show that

|=(ndp(z)− 〈d− zp, c〉R)| ≤ |p|
(∣∣∣∣ d− tp|d− tp| − c

∣∣∣∣ r +
r2

2(ζ − r)

)
. (1.63)

For this purpose fix z ∈ Ur. Due to the definition of Ur in (1.57) there exists a
t ∈ [−1, 1] such that |t − z| ≤ r. Let γ(s) = t + (z − t)s be the straight line with
endpoints γ(0) = t and γ(1) = z. We will use a Taylor expansion of ndp ◦ γ around 0
to estimate ndp(z)− 〈d− zp, c〉R. For this purpose we compute the derivatives of ndp
defined in (1.51):

n′dp(z) = − 〈p, d− zp〉R
〈d− zp, d− zp〉1/2R

= −〈p, d− zp〉R
ndp(z)

,

n′′dp(z) =
|p|2ndp(z) + n′dp(z)〈p, d− zp〉R

ndp(z)2
=
|p|2ndp(z)2 − 〈p, d− zp〉2R

ndp(z)3
.

Then there holds

ndp(z) = ndp(γ(1)) = ndp(γ(0)) + n′dp(γ(0))γ′(0) +

∫ 1

0

n′′dp(γ(s))(γ′(s))2(1− s) ds

= ndp(t) + n′dp(t)(z − t) + (z − t)2

∫ 1

0

n′′dp(γ(s))(1− s) ds,

where we used that γ′(s) = (z − t) and γ′′(s) = 0. This yields

ndp(z)− 〈d− zp, c〉R

= ndp(t) + n′dp(t)(z − t)− 〈d− zp, c〉R︸ ︷︷ ︸
=:S1

+ (z − t)2

∫ 1

0

n′′dp(γ(s))(1− s) ds︸ ︷︷ ︸
=:S2

. (1.64)

Let us first consider the summand S1. We see for all t ∈ [−1, 1] that

S1 = ndp(t) + n′dp(t)(z − t)− 〈d− zp, c〉R

= |d− tp| − (z − t)〈d− tp, p〉R|d− tp| − 〈d− zp, c〉R

=

〈
d− tp
|d− tp| , d− tp

〉
R
−
〈
d− tp
|d− tp| , zp− tp

〉
R
− 〈d− zp, c〉R

=

〈
d− tp
|d− tp| , d− zp

〉
R
− 〈d− zp, c〉R =

〈
d− tp
|d− tp| − c, d− zp

〉
R
.

By decomposing z = x+ iy, x, y ∈ R, we get

=
(〈

d− tp
|d− tp| − c, d− zp

〉
R

)
= −

〈
d− tp
|d− tp| − c, yp

〉
R
,

1.3 Error analysis of the directional multi-level approximation 37

and furthermore the inequality |y| ≤ |z − t| ≤ r. Hence, with the Cauchy–Schwarz
inequality we get

|=(S1)| =
∣∣∣∣〈 d− tp
|d− tp| − c, yp

〉
R

∣∣∣∣ ≤ |y||p| ∣∣∣∣ d− tp|d− tp| − c
∣∣∣∣ ≤ r|p|

∣∣∣∣ d− tp|d− tp| − c
∣∣∣∣ . (1.65)

Next we want to estimate the summand S2 in (1.64). For this purpose we take a
closer look at the integrand. Due to

|p|2〈d− zp, d− zp〉R − 〈d− zp, p〉2R
= |d|2|p|2 − 2|p|2〈d, zp〉R + z2|p|4 − (〈d, p〉R − z|p|2)2 = |d|2|p|2 − 〈d, p〉2R,

which holds for all z ∈ C, we can bound the numerator of n′′dp(γ(s)) by

|〈d− γ(s)p, d− γ(s)p〉R|p|2 − 〈d− γ(s)p, p〉2R| = ||d|2|p|2 − 〈d, p〉2R| = |d|2|p|2 − 〈d, p〉2R
= |p|2〈d− tp, d− tp〉R − 〈d− tp, p〉2R ≤ |d− tp|2|p|2 = |p|4|w − t|2,

where we used (1.53) for the last equality. On the other hand by using (1.53) we can
estimate |ndp(γ(s))| in the denominator of |n′′dp(γ(s))| for all s ∈ [0, 1] by

|ndp(γ(s))| = |p| |w − γ(s)|1/2|w − γ(s)|1/2

= |p| |w − t− (z − t)s|1/2|w − t− (z − t)s|1/2

≥ |p|(|w − t| − |z − t|s)1/2(|w − t| − |z − t|s))1/2 = |p|(|w − t| − |z − t|s).
Hence, we have with |z − t| ≤ r

|S2| ≤ |z − t|2
∫ 1

0

|n′′dp(γ(s))|(1− s) ds ≤ r2

∫ 1

0

|p||w − t|2(1− s)
(|w − t| − |z − t|s)3

ds. (1.66)

By using a partial fraction decomposition one can show for c1, c2 ∈ R with c2 6= 0 and
c1 6= c2 that∫ 1

0

(1− s)
(c1 − c2s)3

ds =

(
1

c2
2(c1 − c2s)

+
c2 − c1

2c2
2(c1 − c2s)2

) ∣∣∣∣∣
1

0

=
1

2c2
1(c1 − c2)

.

We can combine this with our estimate in (1.66) to get

|S2| ≤ r2|p||w − t|2
∫ 1

0

(1− s)
(|w − t| − |z − t|s)3

ds

=
r2|p||w − t|2

2|w − t|2(|w − t| − r) ≤
|p|r2

2(ζ − r) ,
(1.67)

where we used c1 = |w − t| ≥ ζ > r ≥ |z − t| = c2, which holds by definition (1.56)
of ζ. By combining (1.64), (1.65) and (1.67) we finally have

|=(ndp(z)− 〈d− zp, c〉R)| ≤ |=(S1)|+ |S2| ≤ |p|
(∣∣∣∣ d− tp|d− tp| − c

∣∣∣∣ r +
r2

2(ζ − r)

)
.

38 1 A Directional Approximation of the Helmholtz Kernel

The bounds in Lemmata 1.21 and 1.22 depend on the given vectors d and p and
furthermore on the wave number κ. However, we need a bound of fdp, which is
independent of d and p, to get a uniform interpolation error by Theorem 1.9, which
we need for the application of Proposition 1.18. Furthermore the interpolation error
should not depend on κ. By use of the admissibility criteria in Definition 1.13 we can
overcome these dependencies.

Proposition 1.23 (Uniform bound of fdp [7, cf. Lemma 3.9 and Theorem 3.13]).
Let c ∈ R3 with |c| = 1 or c = 0 and two axis-parallel boxes X, Y ⊂ R3 be given by

X =
3∏
i=1

[ai, bi], Y =
6∏
i=4

[ai, bi].

Let smax be defined by (1.43) and let σ < 1 be such that

smax ≤ σmax{diam (X) , diam (Y)}. (1.68)

Assume that X, Y and c satisfy the admissibility criteria (A1) – (A3) for some η1 > 0
and η2 > 0. Let d, p ∈ R3 with p 6= 0 satisfy (1.46a) and (1.46b). Define

R :=
2

η2

, (1.69)

and let UR be defined as in Lemma 1.20. Then there exists a constant C(σ, η1, η2)
depending only on σ, η1 and η2 such that

|fdp(z)| ≤ C(σ, η1, η2)

dist (X, Y)
, for all z ∈ UR. (1.70)

Proof. We start the proof by showing∣∣∣∣ d− tp|d− tp| − c
∣∣∣∣ ≤ η1 + η2

2κ|p| , for all t ∈ [−1, 1], (1.71)

which is [7, Lemma 3.9]. For this purpose, let q := max{diam (X) , diam (Y)}, let
t ∈ [−1, 1], and let x ∈ X and y ∈ Y be such that (d−tp) = (x−y). Such points x and y
exist due to (1.46b). Therefore we get |d− tp| = |x− y| ≥ dist (X, Y). Obviously also
the midpoints mX and mY of X and Y , respectively, satisfy |mX −mY | ≥ dist (X, Y).
Hence, by (A3) we get

|x− y| ≥ dist (X, Y) ≥ κ

η2

q2, |mX −mY | ≥
κ

η2

q2,

i.e. (x− y) and (mX −mY) lie outside of the ball with radius q2κ/η2 centered at zero.
By means of Lemma 2.12 we see that if we project these two points onto the surface
of this ball we do not increase their distance, which means that

κq2

η2

∣∣∣∣ x− y|x− y| −
mX −mY

|mX −mY |

∣∣∣∣ ≤ |(x− y)− (mX −mY)|.

1.3 Error analysis of the directional multi-level approximation 39

Furthermore there holds

|(x− y)− (mX −mY)| ≤ |x−mX |+ |y −mY | ≤
diam (X)

2
+

diam (Y)

2
≤ q.

By using these two estimates together with (A2) and the estimate 2|p| ≤ smax < q,
which is a consequence of (1.46a), we have∣∣∣∣ d− tp|d− tp| − c

∣∣∣∣ =

∣∣∣∣ x− y|x− y| − c
∣∣∣∣ ≤ ∣∣∣∣ x− y|x− y| −

mX −mY

|mX −mY |

∣∣∣∣+

∣∣∣∣ mX −mY

|mX −mY |
− c
∣∣∣∣

≤ |(x− y)− (mX −mY)| η2

κq2
+
η1

κq
≤ η1 + η2

κq
=
η1 + η2

2κ|p| .

With this result and Lemmata 1.21 and 1.22 we are able to prove (1.70). We start
by estimating the denominator ndp of fdp. For this purpose, we recall the definition
of ζ in Lemma 1.20. We observe that

ζ = min

{ |d− tp|
|p| : t ∈ [−1, 1]

}
≥ dist (X, Y)

|p| .

Due to (1.46a), (1.68) and the admissibility criterion (A1) we can further see that

ζ ≥ 2 dist (X, Y)

smax

≥ 2 dist (X, Y)

σmax{diam (X) , diam (Y)} ≥
2

ση2

=
R

σ
. (1.72)

Combining these estimates with (1.61) yields

|ndp(z)| ≥ |p|(ζ −R) ≥ dist (X, Y) (1−R/ζ) > dist (X, Y) (1− σ), (1.73)

for all z ∈ UR.
For the estimate of the exponential term of fdp we note that due to (1.46a) and the

admissibility criterion (A3) there holds

ζ ≥ 2 dist (X, Y)

smax

≥ 2κmax{diam (X) , diam (Y)}2

η2smax

≥ 2κ

η2

smax >
4κ|p|
η2

.

By applying Lemma 1.22 and using the definition of R in (1.69) as well as (1.71)
and (1.72), we get for all z ∈ UR the estimate

| exp(iκ(ndp(z)− 〈d− zp, c〉R))| ≤ exp

(
κ|p|

(∣∣∣∣ d− tp|d− tp| − c
∣∣∣∣R +

R2

2(ζ −R)

))
≤ exp

(
κ|p|

(
η1 + η2

2κ|p| R +
R2

2ζ(1−R/ζ)

))
≤ exp

(
κ|p|

(
η1 + η2

2κ|p| R +
η2R

2

8κ|p|(1−R/ζ)

))
≤ exp

(
η1 + η2

η2

+
1

2η2(1− σ)

)
.

40 1 A Directional Approximation of the Helmholtz Kernel

We combine this last estimate and (1.73) for all z ∈ UR to end up with

|fdp(z)| = | exp(iκ(ndp(z)− 〈d− zp, c〉R))|
4π|ndp(z)|

≤
exp

(
(η1 + η2)/η2 + 1/(2η2(1− σ))

)
4π(1− σ) dist (X, Y)

=
C(σ, η1, η2)

dist (X, Y)
.

Remark 1.24. In [7, Proof of Theorem 3.13] the authors use that

|fdp(z)| ≤ exp(η1 + η2)

π dist (X, Y)
,

for all points z in Ur̂, where

r̂ := min

{
1,

3

2η2

}
,

to estimate the interpolation error of fdp by means of Theorem 1.9. In comparison
the bound which we have shown in the last proof has the advantage that it is strictly
decreasing for increasing η2. Hence, it seems acceptable to choose larger values of η2

in the admissibility criteria (A1) and (A3). In addition our bound holds on the larger
set UR, which leads to a better convergence rate of the interpolation error. The only
drawback we have is the additional parameter σ which describes the shape of the
boxes X and Y . In fact, the term C(σ, η1, η2) becomes unbounded for σ converging
to 1. However, for rather isotropic boxes X and Y this is not the case.

The estimate of the interpolation error of fdp is a direct consequence of the previous
results. We formulate it in the following proposition.

Proposition 1.25 (Approximation of fdp [7, cf. Theorem 3.13]). Let c, X, Y , d, p
and R be given as in Proposition 1.23. In particular assume that X, Y and c satisfy the
admissibility criteria (A1) – (A3) for some η1 > 0 and η2 > 0. Furthermore let σ < 1
be such that (1.68) holds. Define

ρ :=
√
R2 + 1 +R. (1.74)

Let Λm be the Lebesgue constant defined by (1.6) and let C(σ, η1, η2) be the constant
from Proposition 1.23. Then there holds

‖fdp − I(m)
[−1,1][fdp]‖∞,[−1,1] ≤

2C(σ, η1, η2)

(ρ− 1) dist (X, Y)
(Λm + 1)ρ−(m+1). (1.75)

Proof. It suffices to collect the above results. The function fdp has a holomorphic ex-
tension (1.55) on the set Udp defined in Lemma 1.19. Due to Proposition 1.23 we know
that this extension, which we also denote with fdp, is bounded by C(η1, η2)/ dist (X, Y)
on UR, which is a superset of the Bernstein elliptic disc Dρ and a subset of Udp due to
Lemma 1.20. Hence we can apply Theorem 1.9, which yields the assertion.

1.3 Error analysis of the directional multi-level approximation 41

Finally we come to the main result of this section, the error estimate of the direc-
tional single-level approximation.

Theorem 1.26 (Directional single-level approximation error [7, cf. Corollary 3.14]).
Let c ∈ R3 with |c| = 1 or c = 0 and let X, Y ⊂ R3 be two axis-parallel boxes.
Assume that X, Y and c satisfy the admissibility criteria (A1) – (A3) for some η1 > 0
and η2 > 0. Let smax be defined as in (1.43) and assume that (1.68) holds for σ < 1.
Let furthermore

ρ̂ := 1 +
2

η2

. (1.76)

Then there exists a function Csl(m,σ, η1, η2), which decays exponentially in m such
that

‖f − f̃ (m)
X,Y ‖∞,X×Y ≤

Csl(m,σ, η1, η2)

dist (X, Y)
ρ̂−(m+1). (1.77)

Proof. By Propositions 1.18 and 1.25 we have

‖f − f̃ (m)
X,Y ‖∞,X×Y ≤ 6Λ5

m(Λm + 1)
2C(σ, η1, η2)

(ρ− 1) dist (X, Y)
ρ−(m+1), (1.78)

with ρ =
√
R2 + 1 +R and R = 2/η2. We set ρ = αρ̂, where

α :=
ρ

ρ̂
=

√
1 + 4/η2

2 + 2/η2

1 + 2/η2

> 1.

With this definition we can write (1.78) in the form

‖f − f̃ (m)
X,Y ‖∞,X×Y ≤

Csl(m,σ, η1, η2)

dist (X, Y)
ρ̂−(m+1),

by defining

Csl(m,σ, η1, η2) := 12Λ5
m(Λm + 1)

C(σ, η1, η2)

(ρ− 1)
α−(m+1).

Due to the estimate (1.8) the Lebesgue constant for the Chebyshev nodes increases
only logarithmically. Consequently Csl(m,σ, η1, η2) converges to 0 exponentially if m
goes to infinity due to the exponential decay of α−(m+1).

Remark 1.27. We note that due to the exponential decay of Csl(m,σ, η1, η2) there
exists a constant C depending only on σ, η1, and η2 such that

‖f − f̃ (m)
X,Y ‖∞,X×Y ≤

C

dist (X, Y)
ρ̂−(m+1). (1.79)

However, we need the decaying behavior of Csl in the proof of Theorem 1.15.

42 1 A Directional Approximation of the Helmholtz Kernel

1.3.2 Estimate of the directional reinterpolation

Another key ingredient for the directional multi-level error analysis is the estimate of
the nested operator norms

‖I(m)
XL×YL,cL ◦ ... ◦ I

(m)
X`+1×Y`+1,c`+1

‖∞,XL×YL←X`×Y` ,

where ` ∈ {0, ..., L−1}, {Xk}Lk=0 and {Yk}Lk=0 are two sequences of nested axis-parallel

boxes in R3 and the operators I(m)
Xk×Yk,ck are given in (1.17) for all k ∈ {0, ..., L}. As

before we follow the lines of [7]. We will first show, that this operator norm can
be written as the product of norms of nested operators in one dimension. Then we
will show an appropriate estimate for these nested operators by focusing first on a
single-level and then transfering the obtained result to the multi-level case.

We start by recalling that

I(m)
XL×YL,cL ◦ ...◦I

(m)
X`+1×Y`+1,c`+1

=
(
I(m)
XL,cL

◦ ... ◦ I(m)
X`+1,c`+1

)
⊗
(
I(m)
YL,−cL ◦ ... ◦ I

(m)
Y`+1,−c`+1

)
.

From this definition we directly see that

‖I(m)
XL×YL,cL ◦ ... ◦ I

(m)
X`+1×Y`+1,c`+1

‖∞,XL×YL←X`×Y`
≤ ‖I(m)

XL,cL
◦ ... ◦ I(m)

X`+1,c`+1
‖∞,XL←X`‖I

(m)
YL,−cL ◦ ... ◦ I

(m)
Y`+1,−c`+1

‖∞,YL←Y` .
(1.80)

Similarly the following assertion follows.

Lemma 1.28. Let {Xk}Lk=0 be a sequence of axis-parallel boxes with X0 ⊃ ... ⊃ XL.
In particular let

Xk = [ak,1, bk,1]× ...× [ak,3, bk,3] =: Jk,1 × ...× Jk,3. (1.81)

Let {ck}Lk=0 ⊂ R3 be a sequence of directions satisfying |ck| = 1 or ck = 0 for
all k ∈ {0, ..., L}. Define the one-dimensional directional interpolation operators

I(m)
k,j : C(Jk,j)→ C(Jk,j), u 7→ exp(iκck,j ·)I(m)

Jk,j
[exp(−iκck,j ·)u], (1.82)

for all k ∈ {0, ..., L} and j ∈ {1, ..., 3}. Then there holds

‖I(m)
XL,cL

◦ ... ◦ I(m)
X`+1,c`+1

‖∞,XL←X` ≤
3∏
j=1

‖I(m)
L,j ◦ ... ◦ I

(m)
`+1,j‖∞,JL,j←J`,j . (1.83)

Proof. By construction we have

I(m)
Xk,ck

= I(m)
k,1 ⊗ ...⊗ I

(m)
k,3 ,

for all k ∈ {0, ..., L}. This property transfers to the composed operators

I(m)
XL,cL

◦ ... ◦ I(m)
X`+1,c`+1

=
(
I(m)
L,1 ◦ ... ◦ I

(m)
`+1,1

)
⊗ ...⊗

(
I(m)
L,3 ◦ ... ◦ I

(m)
`+1,3

)
.

As in the proof of Lemma 1.17 the assertion follows by using (1.41).

1.3 Error analysis of the directional multi-level approximation 43

The previous lemma motivates the necessity to estimate

‖I(m)
L,j ◦ ... ◦ I

(m)
`+1,j‖JL,j←J`,j ,

for all j ∈ {1, ..., 3}. We start by considering a single level ` and estimating the
directional interpolation error

‖ exp(iκcl−1·)π − I(m)
` [exp(iκc`−1·)π]‖∞,J` , (1.84)

for all polynomials π ∈ Πm, where one can think of I(m)
` as one of the operators I(m)

`,j .
For this estimate we introduce two technical lemmata.

Lemma 1.29 ([7, Lemma 5.3]). Let [a, b] ⊂ [−1, 1] be a non-empty interval and
h := (b− a)/2. Define for α > 1 the transformed Bernstein elliptic disc

Da,b
α :=

{
z = x+ iy : x, y ∈ R,

(
2(x− (a+ b)/2)

h(α + α−1)

)2

+

(
2y

h(α− α−1)

)2

< 1

}
.

(1.85)
Let ε ∈ (0, 1) be fixed. Then there exists a ρ0 > 1 depending only on ε such that

Da,b
(1−ε)ρ/h ⊂ Dρ, for all ρ > ρ0. (1.86)

Proof. Let us denote by Br(ξ) the open ball around ξ with radius r > 0, i.e.

Br(ξ) = {z ∈ C : |z − ξ| < r} .

By definition of Dρ in (1.9) there holds

B(ρ−1/ρ)/2(0) ⊂ Dρ,

and similarly by (1.85)
Da,b
α ⊂ Bh(α+1/α)/2((a+ b)/2).

Here we consider α = (1− ε)ρ/h. The point (a+ b)/2 satisfies |(a+ b)/2| ≤ 1. Hence,
for all z ∈ Bh(α+1/α)/2((a+ b)/2) we have

|z| ≤
∣∣∣∣z − a+ b

2

∣∣∣∣+

∣∣∣∣a+ b

2

∣∣∣∣ ≤ h(α + 1/α)

2
+ 1,

which means that z ∈ Bh(α+1/α)/2+1(0). Therefore, it suffices to show that

Bh(α+1/α)/2+1(0) ⊂ B(ρ−1/ρ)/2(0),

to proof the assertion of the lemma. This inclusion obviously holds true if and only if

1 +
h(α + 1/α)

2
≤ ρ− 1/ρ

2
. (1.87)

44 1 A Directional Approximation of the Helmholtz Kernel

By inserting the definition of α the left hand side can be written as

1 +
h(α + 1/α)

2
= 1 +

h

2

(
(1− ε)ρ

h
+

h

(1− ε)ρ

)
= 1 +

(1− ε)2ρ2 + h2

2(1− ε)ρ .

Therefore (1.87) is equivalent to

gε(ρ) := ρ2 − 1− 2ρ− (1− ε)ρ2 − h2

1− ε = ερ2 − 2ρ− 1− h2

1− ε ≥ 0.

This condition obviously holds if ρ > ρ̃0, where ρ̃0 is the larger of the two roots of gε,
i.e.

ρ̃0 =
1 +

√
1 + ε(1 + h2/(1− ε))

ε
.

The root ρ̃0 can be bounded by

ρ̃0 < ρ0 :=
1 +

√
1 + ε(1 + 1/(1− ε))

ε
,

because h ∈ (0, 1]. This ρ0 depends only on ε, and by construction for all ρ > ρ0 the
desired inclusion holds.

Lemma 1.30 ([14, Chapter 4, Theorem 2.2]). Let pm ∈ Πm be given by

pm(z) =
m∑
j=0

ajz
j, aj ∈ C.

Assume that
|pm(x)| ≤M, for all x ∈ [−1, 1]. (1.88)

Let Dρ for ρ > 1 denote the Bernstein elliptic disc defined in (1.9). Then there holds

|pm(z)| ≤Mρm, for all z ∈ Dρ with ρ > 1. (1.89)

Proof. The proof is based on the properties of the mapping

Ψ : C \ {0} → C, z 7→ Ψ(z) =
1

2

(
z +

1

z

)
,

and the maximum modulus principle for holomorphic functions [17, cf. Theorem 5.4].
As mentioned in the proof of Proposition 1.8 the function Ψ maps circles ∂B1/ρ(0)

for ρ > 1 to the boundary ∂Dρ of the Bernstein elliptic discs Dρ, and maps ∂B1(0) to
the interval [−1, 1]. Let us consider the function

F (w) := wm(pm ◦Ψ)(w) = wm
m∑
j=0

aj

(
w + 1/w

2

)j
=

m∑
j=0

ajw
m−j

(
w2 + 1

2

)j
,

1.3 Error analysis of the directional multi-level approximation 45

which is a polynomial in w. In particular it is holomorphic on B1(0) and continuous
on B1(0). For w with |w| = 1 there holds (w + 1/w)/2) ∈ [−1, 1] and hence by (1.88)

|F (w)| = |pm
(
w + 1/w

2

)
wm| ≤M. (1.90)

By the maximum modulus principle we get that |F | attains its maximum for some w
with |w| = 1, and hence (1.90) holds for all w ∈ B1(0).

We use this estimate to show the assertion. For an arbitrary z ∈ Dρ, z /∈ [−1, 1]
there exists a µ < ρ such that z ∈ ∂Dµ. Therefore we can find a w with |w| = 1/µ
such that Ψ(w) = z. In particular we get

|pm(z)| = |(pm ◦Ψ)(w)wmw−m| = |F (w)| |w|−m ≤Mµm ≤Mρm.

With these two lemmata we can show the following result, which plays a central
role in the estimate of (1.84).

Lemma 1.31 ([7, cf. Lemma 5.4]). Let J1 ⊂ J0 be two closed intervals. Let q̄ ∈ R be
such that

|J1|/|J0| ≤ q̄ < 1, (1.91)

and denote h0 := |J0|/2, h1 := |J1|/2. Let γ ∈ R and c0, c1 ∈ R satisfy

|κh0(c0 − c1)| ≤ γ. (1.92)

Define q̂ := (1 + q̄)/2. Then there exists an m0 > 0 depending only on q̄ and γ, such
that for all m ∈ N with m ≥ m0 and all polynomials π ∈ Πm there holds

inf
v∈Πm

‖ exp(iκc0·)π − exp(iκc1·)v‖∞,J1 ≤ q̂m‖π‖∞,J0 . (1.93)

Proof. Let Φ be the affine linear mapping from [−1, 1] to J0. Define the interval
Ĵ1 := [a, b] := Φ(−1)(J1) and h := (b − a)/2. Then by construction there holds
h = h1/h0 ≤ q̄. With π̂ := π ◦ Φ and due to | exp(−iκc1·)| = 1 we get

inf
v∈Πm

‖ exp(iκc0·)π − exp(iκc1·)v‖∞,J1 = inf
v̂∈Πm

‖ exp(iκh0(c0 − c1)·)π̂ − v̂‖∞,Ĵ1 . (1.94)

The function exp(iκh0(c0− c1)·)π̂ can be extended holomorphically to the whole com-
plex plain. Hence, the right hand side in (1.94) can be estimated using an analogous
result as in Proposition 1.8 for Da,b

α instead of Dρ and arbitrary α > 1. This yields

inf
v̂∈Πm

‖ exp(iκh0(c0 − c1)·)π̂ − v̂‖∞,Ĵ1 ≤
2α−m

α− 1
‖ exp((iκh0(c0 − c1)·)π̂‖∞,Da,bα

≤ 2α−m

α− 1
exp

(
|κh0(c0 − c1)|

∣∣∣∣hα− 1/α

2

∣∣∣∣) ‖π̂‖∞,Da,bα .

(1.95)

46 1 A Directional Approximation of the Helmholtz Kernel

For the estimate of the exponential term in the last inequality we used that for all
z ∈ Da,b

α there holds |=(z)| ≤ h(α− 1/α)/2. For α := (1− ε)ρ/q̄ ≤ (1− ε)ρ/h we get
by Lemma 1.29 that Da,b

α ⊂ Dρ for all ρ > ρ0, and with Lemma 1.30 it follows that

‖π̂‖∞,Da,bα ≤ ‖π̂‖∞,Dρ ≤ ρm‖π̂‖∞,[−1,1]. (1.96)

The parameter ε in the definition of α is chosen such that ε ∈ (0, 1 − q̄/q̂). For the
subsequent estimates we further introduce a parameter β > 0 such that

q̂ =
q̄

1− ε exp

(
γ(1− ε)β

2

)
.

Such a β exists due to the choice of ε. Finally we set ρ = βm with m ≥ dρ0/βe for ρ
in the definition of α and proceed with the estimate in (1.95).

Due to (1.92) and (1.96) we have

2α−m

α− 1
exp

(
|κh0(c0 − c1)|h(α− 1/α)

2

)
‖π̂‖∞,Da,bα

≤ 2α−m

α− 1
exp

(
γ
h(α− 1/α)

2

)
ρm‖π̂‖∞,[−1,1].

By using h(α− 1/α)/2 = hα(1− 1/α2)/2 ≤ αq̄/2, which holds true as h ≤ q̄ if α > 1,
and the definition of α, ρ and β we have(ρ
α

)m
exp

(
γh
α− 1/α

2

)
≤
(

q̄

1− ε

)m
exp

(γq̄α
2

)
=

(
q̄

1− ε

)m
exp

(
γ(1− ε)βm

2

)
=

(
q̄

1− ε exp

(
γ(1− ε)β

2

))m
= q̂m.

Hence, we can estimate (1.95) further by

inf
v̂∈Πm

‖ exp(iκh0(c0 − c1)·)π̂ − v̂‖∞,Ĵ1 ≤
2

α− 1
q̂m‖π̂‖∞,[−1,1] ≤ q̂m‖π‖∞,J0 , (1.97)

where we used the identity ‖π̂‖∞,[−1,1] = ‖π‖∞,J0 and the condition α ≥ 3 for the last
inequality. This condition and all the above steps hold true if

m ≥ m0 := max

{⌈
ρ0

β

⌉
,

⌈
3q̄

(1− ε)β

⌉}
.

Therefore, combining (1.94) and (1.97) yields the assertion for such m.

Lemma 1.31 allows us to estimate (1.84), which we do in the following lemma.

1.3 Error analysis of the directional multi-level approximation 47

Lemma 1.32 ([7, cf. Lemma 5.5]). Let J0, J1, q̄ and q̂ be as in Lemma 1.31. In
particular let |J1|/|J0| ≤ q̄ < 1. Let furthermore c0, c1 and γ ∈ R be such that (1.92)
holds. Define

I(m)
1 : C(J1)→ C(J1), u 7→ exp(iκc1·)I(m)

J1
[exp(−iκc1·)u], (1.98)

and let Λm be the Lebesgue constant defined in (1.6). Then for m0 as in Lemma 1.31,
for all m ∈ N with m ≥ m0, and for all polynomials π ∈ Πm there holds

‖ exp(iκc0·)π − I(m)
1 [exp(iκc0·)π]‖∞,J1 ≤ (1 + Λm)q̂m‖π‖∞,J0 (1.99)

Proof. We see, that for arbitrary v ∈ Πm there holds

exp(iκc0·)π − I(m)
1 [exp(iκc0·)π] = exp(iκc0·)π − exp(iκc1·)v

− exp(iκc1·)I(m)
J1

[exp(−iκc1·)(exp(iκc0·)π − exp(iκc1·)v)],

where we used, that I(m)
J1

v = v. As a consequence

‖ exp(iκc0·)π − I(m)
1 [exp(iκc0·)π]‖∞,J1 ≤ (1 + Λm)‖ exp(iκc0·)π − exp(iκc1·)v‖∞,J1 .

As this holds for arbitrary v we can take the infimum on the right hand side and by
Lemma 1.31 we get

‖ exp(iκc0·)π − I(m)
1 [exp(iκc0·)π]‖∞,J1

≤ (1 + Λm) inf
v∈Πm

‖ exp(iκc0·)π − exp(iκc1·)v‖∞,J1 ≤ (1 + Λm)q̂m‖π‖∞,J0 .

Finally we are ready to estimate the norms of the nested operators I(m)
L ◦ ... ◦ I(m)

l+1 .

Theorem 1.33 ([7, cf. Theorem 5.6]). Let {Jk}Lk=0 be a sequence of non-empty inter-
vals, such that J0 ⊃ J1 ⊃ ... ⊃ JL. Let q̄ ∈ R be such that

|Jk|/|Jk−1| ≤ q̄ < 1, for all k ∈ {1, ..., L}, (1.100)

and let q̂ = (1 + q̄)/2. Define hk := |Jk|/2 for all k ∈ {0, ..., L}. Let c0, ..., cL ∈ R
and γ ∈ R satisfy

|κhk−1(ck−1 − ck)| ≤ γ for all k ∈ {1, ..., L}. (1.101)

Furthermore, let the operators I(m)
k , k ∈ {0, ..., L} be defined similarly as in (1.98)

for the intervals Jk instead of J1 and ck instead of c1. Then there exists an m0 ∈ N
depending on γ and q̄ only, such that

‖I(m)
L ◦ ... ◦ I(m)

` ‖∞,JL←J`−1
≤ Λm(1 + εm,L−`), (1.102)

εm,L−` := (1 + (1 + Λm)q̂m)L−` − 1, (1.103)

for all m ≥ m0 and ` ∈ {1, ..., L}. In particular there exists a constant C(q̄, L)
depending solely on q̄ and L such that

εm,k + 1 ≤ C(q̄, L) for all m ≥ m0, k ∈ {1, ..., L− 1}. (1.104)

48 1 A Directional Approximation of the Helmholtz Kernel

Proof. We show (1.102) for ` = 1 and general L. For general ` the assertion then
follows by a simple index shift.

Define the operators Ek := I − I(m)
k ◦ ... ◦ I(m)

2 for k > 2 and E2 := (I − I(m)
2). We

start by showing that for arbitrary π ∈ Πm and all k ∈ {2, ..., L} there holds

‖Ek[exp(iκc1·)π]‖∞,Jk ≤ εm,k−1‖π‖∞,J1 , (1.105a)

‖I(m)
k ◦ ... ◦ I(m)

2 [exp(iκc1·)π]‖∞,Jk ≤ (1 + εm,k−1)‖π‖∞,J1 . (1.105b)

This is done by induction over k. Due to Lemma 1.32 we have

‖(I − I(m)
k)[exp(iκck−1·)π]‖∞,Jk ≤ (1 + Λm)q̂m‖π‖∞,Jk−1

(1.106)

for all k ∈ {1, ..., L}. For k = 2 this corresponds to the base case of (1.105a). The
base case of (1.105b) follows immediately from

‖I(m)
2 [exp(iκc1·)π]‖∞,J2 ≤ ‖ exp(iκc1·)π‖∞,J2 + ‖E2[exp(iκc1·)π]‖∞,J2

≤ (1 + εm,1)‖π‖∞,J1 .
(1.107)

Hence, we can assume that (1.105a) and (1.105b) hold for all k up to k = n− 1 < L.
To show these two inequalities for k = n, we observe that we can write En for n > 2
as the telescopic sum

En = (I − I(m)
2) + (I − I(m)

3) ◦ I(m)
2 + ...+ (I − I(m)

n) ◦ I(m)
n−1 ◦ ... ◦ I(m)

2 , (1.108)

and estimate the norms of all the summands. For this purpose we use that for all
k ∈ {2, ..., L} there holds

I(m)
k ◦ ... ◦ I(m)

2 [exp(iκc1·)π] = exp(iκck·)π̂,
for some appropriate π̂ ∈ Πm. Using this equation together with (1.106) yields

‖(I − I(m)
k+1) ◦ I(m)

k ◦ ... ◦ I(m)
2 [exp(iκc1·)π]‖∞,Jk+1

= ‖(I − I(m)
k+1)[exp(iκck·)π̂]‖∞,Jk+1

≤ (1 + Λm)q̂m‖ exp(iκck·)π̂‖∞,Jk = (1 + Λm)q̂m‖I(m)
k ◦ ... ◦ I(m)

2 [exp(iκc1·)π]‖∞,Jk .
This estimate, the representation (1.108) and the induction hypothesis (1.105b) for
k ≤ n− 1 are used to show

‖En[exp(iκc1·)π]‖∞,J` ≤
n−1∑
k=2

‖(I − I(m)
k+1) ◦ I(m)

k ◦ ... ◦ I(m)
2 [exp(iκc1·)π]‖∞,Jk+1

+ ‖(I − I(m)
2)[exp(iκc1·)π]‖∞,J2

≤ (1 + Λm)q̂m

(
‖ exp(iκc1·)π‖∞,J1 +

n−1∑
k=2

‖I(m)
k ◦ ... ◦ I(m)

2 [exp(iκc1·)π]‖∞,Jk

)

≤ (1 + Λm)q̂m
n−1∑
k=1

(1 + εm,k−1)‖π‖∞,J1

= (1 + Λm)q̂m
(1 + (1 + Λm)q̂m)n−1 − 1

(1 + (1 + Λm)q̂m)− 1
‖π‖∞,J1 = εm,n−1‖π‖∞,J1 .

1.3 Error analysis of the directional multi-level approximation 49

The estimate (1.105b) for k = n follows as in the base case (1.107) from (1.105a) by
the triangle inequality. Therefore we have shown, that (1.105a) and (1.105b) hold for
all k ∈ {1, ..., L}.

Let now u be an arbitrary function in C(J1). We define the polynomial π1 by

π1 := I(m)
J1

[exp(−iκc1·)u].

Then by Definition (1.6) of the Lebesgue constant Λm and due to | exp(−iκc1x)| = 1
for all x ∈ R, there holds

‖π1‖∞,J1 ≤ Λm‖u‖∞,J1 .
Using (1.105b) yields

‖I(m)
L ◦ ... ◦ I(m)

1 [u]‖∞,JL = ‖I(m)
L ◦ ... ◦ I(m)

2 [exp(iκc1·)π1]‖∞,JL
≤ (1 + εm,L−1)‖π1‖∞,J1 ≤ (1 + εm,L−1)Λm‖u‖∞,J1 .

This is (1.102) for ` = 1, which we wanted to show.
What remains to show is the boundedness of εm,k for all k ∈ {1, ..., L−1}. Obviously

there holds εm,k + 1 ≤ εm,L−1 + 1 for all k ≤ L − 1. Due to (1.8) and the definition
of q̂ there holds

(1 + Λm)q̂m ≤
(

2 +
π

2
log(m+ 1)

)(1 + q̄

2

)m
→ 0 for m→∞.

Hence, there exists a constant C(q̄) depending only on q̄ such that

(1 + Λm)q̂m ≤ C(q̄), for all m ∈ N.

As a consequence, for all m ∈ N we have

εm,L−1 + 1 ≤ (1 + C(q̄))L−1 = C(q̄, L).

Remark 1.34. In [7] it is shown that εm,L decays exponentially in m. As this behavior
is only observable for sufficiently large m and is not crucial for the further estimate
we have chosen to show only the boundedness of εm,` for ` ∈ {1, ..., L− 1}.

We come to the main result of this section.

Theorem 1.35 ([7, cf. Theorem 5.7]). Let {Xk}Lk=0 be a sequence of axis-parallel
boxes in R3, such that X0 ⊃ ... ⊃ XL and Xk = [ak,1, bk,1] × ... × [ak,3, bk,3] for all
k ∈ {0, ..., L}. Assume that for some q̄ < 1 there holds

bk,j − ak,j
bk−1,j − ak−1,j

≤ q̄, for all k ∈ {1, ..., L} and j ∈ {1, ..., 3}. (1.109)

50 1 A Directional Approximation of the Helmholtz Kernel

Let {ck}Lk=0 ⊂ R3 be a sequence of directions with |ck| = 1 or ck = 0 and let γ ∈ R be
such that

κ diam (Xk−1) |ck−1 − ck| ≤ γ for all k ∈ {1, ..., L}. (1.110)

Let εm,k, C(q̄, l), and m0 be as in Theorem 1.33. Then there holds

‖I(m)
XL,cL

◦ ... ◦ I(m)
X`+1,c`+1

‖∞,XL←X` ≤ Λ3
m(1 + εm,L−`+1)3 ≤ Λ3

mC(q̄, L)3, (1.111)

for all m ≥ m0

Proof. By Lemma 1.28 it suffices to estimate the norms

‖I(m)
L,j ◦ ... ◦ I

(m)
`+1,j‖∞,JL,j←J`,j

for j ∈ {1, ..., 3} where Jk,j = [ak,j, bk,j] and I(m)
k,j is defined as in (1.82). For this

purpose we fix j and define hk := bk,j − ak,j for all k ∈ {0, ..., L}. Due to (1.110) there
holds

κhk−1|ck−1,j − ck,j| ≤ κ diam (Xk−1) |ck−1 − ck| ≤ γ.

Hence by Theorem 1.33 we have

‖I(m)
L,j ◦ ... ◦ I

(m)
`+1,j‖∞,JL,j←J`,j ≤ Λm(1 + εm,L−`) ≤ ΛmC(q̄, L).

As this holds true for all j ∈ {1, ..., 3} the assertion follows from (1.83).

2 Fast Directional Matrix-Vector
Multiplication

In this chapter we present an efficient method for the computation of the matrix-vector
product for a fully populated matrix A ∈ CNX×NY with entries

A[j, k] = f(xj, yk), (2.1)

where f is the Helmholtz kernel defined in (1.1) and PX = {xj}NXj=1 and PY = {yk}NYk=1

are two sets of points in R3. Similar matrices have to be considered in the solution of
boundary value problems for the Helmholtz equation via boundary element methods.
The corresponding matrix equations can be solved with iterative solvers, for which only
matrix-vector products have to be evaluated. However, using standard matrix-vector
multiplication is prohibitive for large NX and NY due to the asymptotic runtime of
order O(NXNY). This motivates the discussion of the fast directional matrix-vector
multiplication in this chapter. This method is based on a hierarchical partitioning
of the sets of points into boxes and the directional multi-level approximation of the
Helmholtz kernel f on suitable pairs of such boxes. Basically, this allows us to approx-
imate suitable subblocks of the matrix A similarly as in (1.20), but in a multi-level
setting.

In Section 2.1 we give a complete description of the fast directional matrix-vector
multiplication. We start with the construction of uniform box cluster trees in Sec-
tion 2.1.1 which provide us with a hierarchical partitioning of the geometry. The
uniformity of the boxes brings benefits which are described later in Section 2.2.1.

In Section 2.1.2 we construct suitable directions {c(`)
j }N`j=1 for the directional ap-

proximation for all boxes at a given level ` of a box cluster tree. This construction is
similar to the construction of the directions in [15, 30]: We choose a level `hf as the first
level for which directions are used and increase the number of directions for decreas-
ing level ` by a hierarchical refinement strategy. After that we define functions dir`
which are used to assign two boxes at level ` in two box cluster trees a suitable direc-
tion in {c(`)

j }N`j=1 which should be used for the directional approximation. Furthermore
we discuss suitable choices of directions for the directional multi-level approximation.
We conclude the section by proving in Corollary 2.17 and Theorem 2.19 that the
assumptions of Theorem 1.15 concerning the directions, i.e. (1.32) and the admissibil-
ity criterion (A2), hold for constants γ and η1 depending only on the product κqhf ,
where qhf is the maximum of the diameters of boxes at level `hf in the corresponding

51

52 2 Fast Directional Matrix-Vector Multiplication

uniform box cluster trees. To our best knowledge, such a detailed discussion of the
suitability of the constructed directions is missing in comparable works.

Section 2.1.3 is dedicated to the partitioning of the matrix A in (2.1). The basic
idea is to find all pairs of boxes in two box cluster trees which satisfy the admissibility
criteria (A1) and (A3) but whose parents do not. The matrix entries corresponding to
the points in such pairs of boxes will then form an admissible block in the partition of
the matrix A. All other matrix entries are grouped in inadmissible blocks. Introducing
block trees similarly as in [5] allows us to construct and organize such a partition.

After all these preparatory sections we discuss the fast directional matrix-vector
multiplication itself in Section 2.1.4. Again we follow [5] for this purpose. We split
the computation of the matrix-vector product in a nearfield and a farfield part. The
nearfield part is computed directly in Algorithm 2.33. The farfield part is computed us-
ing an approximation of the admissible blocks of the matrix A based on the directional
approximation of the Helmholtz kernel, similarly as in (1.20). Algorithm 2.38 shows
how to compute this farfield part efficiently. All necessary steps for the application
of the fast directional matrix-vector multiplication, including the construction of the
underlying tree structures and directions, are finally summarized in Algorithm 2.42.

In Section 2.2 we discuss some implementation details which should be considered
for an efficient implementation of Algorithm 2.42. In particular we discuss how the
uniformity of the box cluster trees can be exploited and talk shortly about possible
compression strategies. Then we analyze the complexity of Algorithm 2.42 in Sec-
tion 2.2.2. Inspired by the complexity analysis in [5] we show that the complexity of
the introduced fast directional matrix-vector multiplication is of order O(N log(N))
under suitable assumptions on the wave number κ, the geometry, and the maximal
number of points N = max{NX , NY }.

2.1 Matrix partitioning and fast matrix-vector

multiplication

In general we cannot approximate the matrix A given in (2.1) directly. Instead we have
to partition it and approximate appropriate subblocks. One strategy to create such a
matrix partition is clustering, which is based on the geometry or rather the position of
the points {xj}NXj and {yk}NYk . The idea is to assign suitable subsets of these points
to axis-parallel boxes, the so-called clusters, and to find pairs of these boxes which
satisfy the admissibility criteria (A1) – (A3). Then we can approximate the related
subblocks of A corresponding to the points in such pairs of admissible boxes. To do
this efficiently we introduce hierarchical structures to organize the boxes and pairs of
boxes appropriately. This idea can be found for example in [24, Section 5.2]. In our
context, however, the directions which have to be introduced due to (A2) are new.
So far we have not talked about a suitable strategy to choose these directions. We

2.1 Matrix partitioning and fast matrix-vector multiplication 53

will devote Section 2.1.2 to this topic, after the discussion of clustering by means of
box cluster trees in Section 2.1.1. The two remaining subsections will deal with the
partitioning of the matrix A and the fast matrix-vector multiplication.

2.1.1 Box cluster trees

The basis of the partitioning of a matrix via clustering are cluster trees. These hierar-
chical structures are used to organize a set of points in suitable sets on several levels.
We define so-called box cluster trees in which these sets correspond to axis-parallel
boxes. Additionally we discuss a possibility to construct a special type of such trees.

Definition 2.1 (Box cluster trees). Let PX = {xj}NXj=1 be a set of pairwise disjoint
points in an axis-parallel box X ⊂ R3. For a box t ⊂ X define the set of points of PX
contained in t by

Pt := {x ∈ PX : x ∈ t}. (2.2)

A box cluster tree TX(PX), or shortly TX , corresponding to PX and X is a tree satis-
fying the following conditions:

• Each vertex t corresponds to an axis-parallel box in R3, which contains at least
one point x ∈ PX .

• The root of the tree is the box X itself.

• For two children t1 and t2 of a vertex t with t1 6= t2 there holds Pt1 ∩ Pt2 = ∅.
• There holds

Pt =
⋃

t′∈child(t)

Pt′ .

For a box t ∈ TX we define the index set

t̂ := {j ∈ {1, ..., NX} : xj ∈ Pt}. (2.3)

We denote the leaves of TX by

LX := {t ∈ TX : child(t) = ∅}. (2.4)

Furthermore we divide the tree TX into levels. For this purpose we define

T (0)
X = {X},
T (`)
X = {t ∈ TX : parent(t) ∈ T (`−1)

X }, for all ` ∈ N.
(2.5)

For a box t ∈ TX we can then define

level(t) := {` ∈ N : t ∈ T (`)
X }. (2.6)

Finally we denote the depth of a box cluster tree by

p(TX) = max{level(t) : t ∈ TX}. (2.7)

54 2 Fast Directional Matrix-Vector Multiplication

Remark 2.2. In regard to Definition 2.1 we note:

• In the literature the nodes of cluster trees are sometimes not geometrical objects
like boxes, but subsets of an index set I, e.g. {1, ..., NX} in our case. We refer to
[24, Definition 5.3.1] for a suitable definition of such cluster trees. The concept
of these cluster trees is more general. However, we prefer to keep the geometric
background in the focus, which motivates our definition of box cluster trees.

• A priori the index set t̂ of the points in a box t in a box cluster tree does not
have to consist of consecutive numbers. However, we prefer such sets of consec-
utive indices when we use box cluster trees for the partitioning of corresponding
matrices, which we do in Section 2.1.3. Hence, we reorder the points in a box
cluster tree suitably in implementations.

There are various possibilities to construct a box cluster tree corresponding to a set
of points PX . We present here the construction of uniform box cluster trees similarly
as in [20, 22], which is also considered in [30, Section 3.1.1].

Algorithm 2.3 (Uniform box cluster tree). Let nmax ∈ N and Lmax ∈ N0. Let PX
be a set of points in R3. Then we construct a uniform box cluster tree TX(PX) in the
following way:

1. Construct a box X = (a1, b1] × ... × (a3, b3] such that all x ∈ PX are contained
in X and bj − aj = 2h0 for an h0 ∈ R and all j ∈ {1, ..., 3}. This means that X
is a cube which contains PX and whose edges have the length 2h0.

2. If NX > nmax and Lmax > 0 we divide X into 8 uniform boxes X1
1 , ..., X1

8

by subdividing the intervals (aj, bj] for all j ∈ {1, ..., 3} into (aj, (aj + bj)/2] and
((aj+bj)/2, bj] and forming the boxes X1

k for k ∈ {1, ..., 8} as all possible products
of such intervals. All formed boxes, which contain at least one point in PX , are
added to the tree TX as children of X.

3. Recursively we subdivide all boxes t ∈ TX analogously as in step 2 until each
leave t ∈ TX contains either at most nmax points or satisfies level(t) = Lmax.

Remark 2.4. Let us comment on the uniform box cluster tree TX(PX) constructed in
Algorithm 2.3:

• TX(PX) is obviously a box cluster tree as defined in Definition 2.1. In particular
for each point x ∈ PX there is a unique leave t ∈ LX such that x ∈ t.
• We choose the initial box X to be a non-closed box only to avoid overlapping

boxes in T (l)
X for all ` ∈ N. In an implementation one can choose X and all its

descendants as closed boxes. Then, however, one needs to clarify to which box a
point x ∈ t1 ∩ t2 with t1, t2 ∈ T (`)

X for some ` > 0 belongs.

• In step 1 of the construction of TX in Algorithm 2.3 we do not explicitly state
how to construct the initial box X. One possibility is to proceed similarly as in

2.1 Matrix partitioning and fast matrix-vector multiplication 55

[30, Section 3.1.1]. For this purpose choose δ > 0 and set

h0 =
1

2
max
j=1,...,3

{
max
x∈PX

xj − min
x∈PX

xj

}
+ δ.

Then a suitable box X is given by

X =
3∏
j=1

(aj, aj + 2h0], aj := min
x∈PX

xj − δ.

If one allows closed boxes one can also choose δ = 0 in the definitions above.

• The boxes in TX(PX) depend mostly on the initial box X and not essentially
on the actual position of the points in PX . Therefore it is possible that for a
level ` in T (`)

X there exist boxes with very few points and at the same time boxes
with a lot of points. In particular the constructed tree can be unbalanced. Other
construction principles for box cluster trees such as bisection [30, cf. balanced
cluster trees in Section 3.1.1] can tailor the tree to the point sets. The resulting
box cluster trees are typically balanced. However, they lack the uniformity of the
constructed boxes.

• The big advantage of a uniform box cluster tree TX is the uniformity of its boxes.
For each level ` all boxes in T (l)

X are identical up to translation. In Section 2.2.1
we describe how to exploit this property to avoid recomputations and reduce
storage costs in the fast matrix-vector multiplication algorithm. Furthermore,
due to this uniformity Definition 2.5 is well-defined.

Definition 2.5. Let TX be a uniform box cluster tree as constructed in Algorithm 2.3.
Let the depth p(TX) be defined as in (2.7). Let ` ∈ {0, ..., p(TX)} and a`, b` ∈ R such

that all boxes t ∈ T (`)
X are identical to the cube [a`, b`]

3 up to translation. Then we
define the half edge length h`(TX) of a box at level ` by

h`(TX) :=
b` − a`

2
(2.8)

and its diameter q`(TX) by

q`(TX) := diam
(
[a`, b`]

3
)

=
√

3(b` − a`). (2.9)

For a matrix A as in (2.1) and two corresponding sets of points PX and PY we con-
struct two uniform box cluster trees TX(PX) and TY (PY). In Section 2.1.3 we describe
how to find suitable pairs of boxes (t, s) with t ∈ TX and s ∈ TY such that the admissi-
bility criteria (A1) – (A3) in Section 1.2.2 hold for t, s, and an appropriate direction c.
This will allow us to partition the matrix A into suitable subblocks which can be
approximated efficiently using the directional single-level approximation in (1.20) or
its multi-level counterpart. First, however, we have to discuss how to choose suitable
directions.

56 2 Fast Directional Matrix-Vector Multiplication

2.1.2 The choice of directions

In the discussion of the admissibility criterion (A2) in Section 1.2.2 we have motivated
why we should only consider a fixed number of directions for the directional approx-
imation. In regard of the box cluster trees considered in Section 2.1.1 it makes sense
to choose the same directions for all boxes t at level ` of a tree. We have already
noted in Section 1.2.2 that less directions are needed for smaller box diameters as the
right-hand side in (A2) gets larger for decreasing diameters. This means that less
directions are needed for higher levels in a box cluster tree.

Below we combine the ideas in [15, Section 4.1], [30, Section 3.3.3], and [5, Section 3]
to construct a set of directions for each level. In the former two works the directions
are generated by subdividing R3 into a set of cones. Starting with six initial cones
for some level `hf these cones are gradually subdivided for lower tree levels. In [5]
the author constructs the directions by splitting the surface of the cube [−1, 1]3 in
suitable squares and choosing their midpoints as directions. In particular it is shown
that this construction method yields suitable directions to satisfy the admissibility
criterion (A2). We elaborate this in Proposition 2.13 similarly .

We will further discuss a suitable choice of directions in the multi-level setting.
In particular we will show that the error estimate in Theorem 1.15 is applicable.
To our best knowledge these properties have not been discussed in detail yet. The
estimate (1.32) will follow rather easily in Corollary 2.17 for a suitable choice of the
constant γ. Finally we will show that the admissibility criterion (A2) holds for all
occuring pairs of boxes in Theorem 2.19 for our choice of directions.

Algorithm 2.6. Let the highest level in the high frequency regime `hf ∈ N0 be chosen
suitably. For each level ` ∈ N0 we construct a set of N` directions {c(`)

j }N`j=1 as follows:

• For low frequency levels ` > `hf we set N` = 1 and the direction c
(`)
1 = 0.

• For ` = `hf we consider the six faces of the cube [−1, 1]3 and denote them by

{E(`hf)
j }6

j=1. We set N`hf = 6 and choose the directions {c(`hf)
j }6

j=1 such that c
(`hf)
j

is the midpoint of E
(`hf)
j .

• For all other high frequency levels ` < `hf we set N` = 6 4`hf−`. For each
j ∈ {1, ..., 6} we divide the face E

(`hf)
j uniformly into 4`hf−` squares E

(`)
k with

k ∈ {(j − 1)4`hf−` + p : p ∈ {1, ..., 4`hf−`}}.

We construct {c(`)
j }N`j=1 by choosing c

(`)
k as the normalized midpoint of E

(`)
k for

each k ∈ {1, ..., N`}.

Remark 2.7. In Algorithm 2.6 we do not explain how to order the directions {c(`)
j } for

` ∈ {0, ..., `hf}. However, a consistent ordering of these directions will be needed for
Definition 2.9, where we define a mapping that will allow us to find for each vector
in R3 a close direction. Hence, let us sketch a consistent ordering strategy.

2.1 Matrix partitioning and fast matrix-vector multiplication 57

First we have to order the six faces E
(`hf)
j of the cube [−1, 1]3. Next we need to

find for each of these faces and all levels ` ∈ {0, ..., `hf − 1} a suitable ordering of the

squares E
(`)
k , in which we subdivide them. This can be done by choosing a fixed

orientation for each of the faces E
(`hf)
j and then enumerating the squares E

(`)
k row by

row. By construction the ordering of these faces E
(`hf)
j leads to an ordering of the

directions.

Example 2.8. To clarify the construction of the directions in Algorithm 2.6 we exem-
plarily compute some of the directions for a given `hf > 0.

For ` = `hf one of the six faces E
(`hf)
j is given by

E = {1} × [−1, 1]× [−1, 1]. (2.10)

Its midpoint c = (1, 0, 0) is one of the six directions {c(`hf)
j }6

j=1 at level `hf .

If ` = `hf − 1 we have to subdivide each of the six faces E
(`hf)
j uniformly into four

squares. For example we divide the face E in (2.10) into the faces

{1} × [−1, 0]× [−1, 0], {1} × [−1, 0]× [0, 1],

{1} × [0, 1]× [−1, 0], {1} × [0, 1]× [0, 1].

The vector c̃ = (1, 1/2, 1/2) is the midpoint of the face {1} × [0, 1] × [0, 1]. By nor-
malizing it we end up with c =

√
2/3 (1, 1/2, 1/2) which is one of the 24 direc-

tions {c(`hf−1)
j }24

j=1.

We proceed by defining for each level ` ∈ N0 a mapping dir(`), which maps a vector

in R3\{0} to one of the directions c
(`)
j . The idea is to select a direction c

(`)
j for each v 6= 0

and each high frequency level ` ≤ `hf such that the intersection point of the ray
{λv : λ > 0} and the surface of the cube [−1, 1]3 lies in the face E

(`)
j , whose normalized

middlepoint is c
(`)
j by construction in Algorithm 2.6. We will use these mappings later

to choose suitable directions for the directional multi-level approximation. There we
will not only need to find a suitable direction for two boxes t and s such that (A2)
holds, but will also have to switch from a direction on a certain level to a close direction
on the next level.

Definition 2.9. Let `hf ∈ N0 and let the directions {c(`)
j } and the faces {E(`)

j } be
constructed as in Algorithm 2.6. We define the mapping

ψQ : R3\{0} → ∂([−1, 1]3), v 7→ 1

max
j∈{1,...,3}

|vj|
v. (2.11)

Furthermore we define the mapping dir(`) : R3 → {c(`)
j }N`j=1 ∪ {0} for each ` ∈ N0 as

follows:

• If ` > `hf we set dir(`)(v) = 0 for all v ∈ R3.

58 2 Fast Directional Matrix-Vector Multiplication

• If ` ≤ `hf then we set dir(`)(0) = 0. For all v ∈ R3\{0} we define

j(v) := min{j : ψQ(v) ∈ E(`)
j },

and set dir(`)(v) = c
(`)
j(v).

Remark 2.10. Let v ∈ R3\{0}. If ψQ(v) ∈ E(0)
j0

for some j0 ∈ {1, ..., N0} then there

exists a sequence {j`}`hf`=0 such that E
(0)
j0
⊂ E

(1)
j1
⊂ ... ⊂ E

(`hf)
j`hf

and ψQ(v) ∈ E
(`)
j`

for

all ` ∈ {0, ..., `hf} due to the nested construction of the squares E
(`)
k in Algorithm 2.6.

Suppose that ψQ(v) does not lie on a corner or edge of E
(0)
j0

. Then the sequence {j(`)}`hf`=0

is unique and dir(`)(v) = c
(`)
j`

, i.e. dir(`) maps v to the normalized midpoint of E
(`)
j`

. In
particular it follows that

dir(`+1)(v) = dir(`+1)(dir(`)(v)) (2.12)

for all ` ∈ N0. Indeed, if ` < `hf then ψQ(c
(`)
j`

) ∈ E(`)
j`
⊂ E

(`+1)
j`+1

which yields

dir(`+1)(dir(`)(v)) = dir(`+1)(c
(`)
j`

) = c
(`+1)
j`+1

= dir(`+1)(v).

If ` ≥ `hf then dir(`+1) maps all vectors in R3 to zero and hence (2.12) holds trivially.

On the other hand, if ψQ(v) lies on a corner or edge of E
(0)
j0

, then the sequence {j`}`hf`=0

is not unique anymore. However, we assume that the ordering of the squares {E(`)
k }N`k=1

is such that (2.12) holds. This can be shown for the ordering sketched in Remark 2.7.
Hence, we can assume from here on that (2.12) holds for all v ∈ R3\{0}.

With the help of the mappings dir(`) we can define for each pair of boxes (t, s) a

direction c`(t, s) in the set of directions {c(`)
j }N`j=1 constructed in Algorithm 2.6, which

is close to the normalized difference (mt −ms)/|mt −ms| of the midpoints of t and s.

Definition 2.11. Let t, s ⊂ R3 be two boxes in R3 and mt and ms their midpoints.
Let mt 6= ms. Then we define for all ` ∈ N0 the direction c(`)(t, s) by

c(`)(t, s) := dir(`)

(
mt −ms

|mt −ms|

)
. (2.13)

The question arises if (A2) is satisfied for two boxes t, s, and the direction c(`)(t, s)
for some ` ∈ N or more precisely how large η1 has to be chosen such that it is satisfied.
We discuss this in Proposition 2.13. First we show that we can estimate the difference
of two directions c1, c2 ∈ R3 with |c1| = |c2| = 1 by the distance of their images on
∂([−1, 1]3) under the mapping ψQ defined in (2.11). This result, which is an immediate
consequence of the following lemma, plays a central role in the proofs of all following
results in this section.

2.1 Matrix partitioning and fast matrix-vector multiplication 59

Lemma 2.12 (Projection [5, Lemma 7]). Let x, y ∈ R3 with |x|, |y| ≥ 1. Then∣∣∣∣ x|x| − y

|y|

∣∣∣∣ ≤ |x− y|. (2.14)

Proof. Without loss of generality we can assume that

1 ≤ |x| ≤ |y|. (2.15)

Let λ = 〈x, y〉/(|x||y|2). Then there holds〈
x

|x| − λy, y
〉

=
〈x, y〉
|x| −

〈x, y〉
|x||y|2 |y|

2 = 0.

Using this property and (2.15) yields∣∣∣∣ x|x| − y

|y|

∣∣∣∣2 =

∣∣∣∣ x|x| − λy +

(
λ− 1

|y|

)
y

∣∣∣∣2
=

∣∣∣∣ x|x| − λy
∣∣∣∣2 +

(
λ− 1

|y|

)2

|y|2 + 2

(
λ− 1

|y|

)〈
x

|x| − λy, y
〉

=

∣∣∣∣ x|x| − λy
∣∣∣∣2 +

(|x||y| − 〈x, y〉
|x||y|2

)2

|y|2

≤
∣∣∣∣ x|x| − λy

∣∣∣∣2 +

(|y|2 − 〈x, y〉
|x||y|2

)2

|y|2

=

∣∣∣∣ x|x| − λy
∣∣∣∣2 +

(
λ− 1

|x|

)2

|y|2 + 2

(
λ− 1

|x|

)〈
x

|x| − λy, y
〉

=

∣∣∣∣ x|x| − λy + λy − y

|x|

∣∣∣∣2 =
|x− y|2
|x|2 ≤ |x− y|2.

Proposition 2.13. Let `hf ∈ N0. Let the directions {c(`)
j }N`j=1 be constructed as in

Algorithm 2.6 and the mappings dir(`) be defined as in Definition 2.9. Let TX and TY
be two uniform box cluster trees constructed by Algorithm 2.3. For a pair of boxes (t, s)
with t∩ s = ∅ and ` ∈ N0 let the direction c(`)(t, s) be defined by (2.13). Let κ > 0 and
let the characteristic high frequency diameter qhf be defined by

qhf := max{diam (X) , diam (Y)}2−`hf . (2.16)

Finally let

η1 =
√

2κqhf . (2.17)

60 2 Fast Directional Matrix-Vector Multiplication

Then for all levels ` ∈ N0 and all boxes t ∈ T (`)
X , s ∈ T (`)

Y with midpoints mt and ms

satisfying mt 6= ms there holds the admissibility condition (A2) for the constructed
direction c(`)(t, s), i.e.

κ

∣∣∣∣ mt −ms

|mt −ms|
− c(`)(t, s)

∣∣∣∣ ≤ η1

max{diam (t) , diam (s)} . (2.18)

Proof. We start by showing the estimate

|c− dir(`)(c)| ≤
√

2 2`−`hf (2.19)

for all c ∈ S2 := {c ∈ R3 : |c| = 1} and all ` ∈ N0. For ` > `hf this is trivially satisfied
as in this case |c| = 1, dir(`)(c) = 0 and the right hand side is greater than 1.

Hence, let ` ∈ {0, ..., `hf}. Consider the faces {E(`)
k }N`k=1 from the construction

of the directions {c(`)
k }N`k=1 in Algorithm 2.6. All these faces are squares with edge

length 2`+1−`hf . By definition of the function ψQ in (2.11) and by construction of the

directions {c(`)
k }N`k=1, their midpoints are given by {ψQ(c

(`)
k)}N`k=1. The distance of an

arbitrary point y ∈ E(`)
k and its midpoint ψQ(c

(`)
k) can therefore be estimated by

|y − ψQ(c
(`)
k)| ≤

√
2 2`−`hf . (2.20)

Let c ∈ S2 be fixed. By Definition 2.9 the direction dir(`)(c) is such that ψQ(c) and

ψQ(dir(`)(c)) are contained in the same square E
(`)
k for a k ∈ {1, ..., N`}. Hence, by

using Lemma 2.12 and (2.20) we get

|c− dir(`)(c)| ≤ |ψQ(c)− ψQ(dir(`)(c))| = |ψQ(c)− c(`)
k | ≤

√
2 2`−`hf .

For the proof of the main assertion (2.18) let η1 be given by (2.17). Due to the
uniformity of the cluster trees we have

max{diam (t) , diam (s)} = max{diam (X) , diam (Y)}2−` = qhf2
`hf−`

for all ` ∈ N0 and arbitrary boxes t ∈ T (`)
X and s ∈ T (`)

Y . Together with (2.19) and the
definition of c(`)(t, s) in (2.13) this yields

κ

∣∣∣∣ mt −ms

|mt −ms|
− c(`)(t, s)

∣∣∣∣ = κ

∣∣∣∣ mt −ms

|mt −ms|
− dir(`)

(
mt −ms

|mt −ms|

)∣∣∣∣
≤ κ
√

2 2`−`hf =
η1

qhf2`hf−`
=

η1

max{diam (t) , diam (s)} .

Remark 2.14. Let the assumptions of Proposition 2.13 hold and let ` > `hf . Then one
can easily check that for two boxes t ∈ T (`)

X and s ∈ T (`)
Y the pair (t, s) is in the low

frequency regime with respect to η1 (cf. Definition 1.14). Hence it is reasonable that
the direction c(`)(t, s) is chosen to be zero for such boxes.

2.1 Matrix partitioning and fast matrix-vector multiplication 61

Remark 2.15. If the depths p(TX) and p(TY) are at least `hf , then due to the uniformity
of the cluster trees the characteristic high frequency diameter qhf in (2.16) corresponds
to the maximum of the diameters of boxes at level `hf in TX and TY , i.e.

qhf = max{q`hf (TX), q`hf (TY)}. (2.21)

We have yet to choose suitable directions for the directional reinterpolation. Let us
recall the discussion in Section 1.3. For two sequences of boxes {tj}Lj=0 and {sj}Lj=0

with t0 ⊃ ... ⊃ tL and s0 ⊃ ... ⊃ sL, and a sequence of directions {cj}Lj=0 we define the

directional multi-level approximation f̂
(m)
t0,s0 on tL × sL as in (1.26). By Theorem 1.15

we get exponential convergence of the approximation error

‖f − f̂ (m)
t0,s0‖∞,tL×sL

in m under suitable assumptions. In particular there should exist γ ∈ R and η1 ∈ R
such that for all ` ∈ {1, ..., L} there holds (1.32), i.e.

κmax{diam (t`−1) , diam (s`−1)}|c` − c`−1| ≤ γ,

and the admissibility criterion (A2) should be satisfied for the boxes t`, s`, and the di-
rection c`. We will show in Corollary 2.17 and Theorem 2.19 that these conditions hold
true for sequences of boxes {tj}Lj=0 and {sj}Lj=0 in uniform box cluster trees TX and TY ,

where t0 ∈ T (`0)
X and s0 ∈ T (`0)

Y for some `0 ∈ N0, and the directions {cj}Lj=0 such that
cj = c(j+`0)(t0, s0). The choice of c0 = c(`0)(t0, s0) was already motivated in Proposi-
tion 2.13. We can think of cj as the naturally inherited directions from c0 by means of
the mappings dir(`0+j) given in Definition 2.9. Indeed there holds cj = dir(`0)+j)(cj−1)
by definition of the directions c(`0+j)(t0, s0) in (2.13) and (2.12). This will allow us to
show (1.32) in Corollary 2.17 by proving the following theorem.

Theorem 2.16. Let κ > 0 and `hf ∈ N0. Let the directions {c(`)
j }N`j=1 be constructed as

in Algorithm 2.6 and the mappings dir(`) be defined as in Definition 2.9. Let TX and TY
be two uniform box cluster trees constructed by Algorithm 2.3. Let the diameters q`(TX)
and q`(TY) for all ` ≤ p(TX) and ` ≤ p(TY), respectively, be defined by (2.9) and let qhf

be defined by (2.16). Then for all ` ≤ min{p(TX), p(TY)} and all j ∈ {1, ..., N`} we
have

κmax{q`(TX), q`(TY)}|c(`)
j − dir(`+1)(c

(`)
j)| ≤ γ, (2.22)

where the constant γ is given by

γ =
√

2κqhf . (2.23)

Proof. Without loss of generality we assume that min{p(TX), p(TY)} > `hf . Then we
show (2.22) for all ` ≤ min{p(TX), p(TY)} by distinguishing three cases.

62 2 Fast Directional Matrix-Vector Multiplication

If ` > `hf , i.e. the level ` is in the low frequency regime, then the directions c
(`)
j and

dir(`+1)(c
(`)
j) are zero by construction. Hence (2.22) holds trivially.

If ` = `hf then dir(`+1)(c
(`)
j) = 0 for all j. Due to (2.21) we get

κmax{q`(TX), q`(TY)}|c(`)
j − dir(`+1)(c

(`)
j)| = κqhf |c`j| = κqhf ≤ γ,

for γ in (2.23).

Finally let ` < `hf . We consider a fixed direction c
(`)
j and the related direction

c
(`+1)
k = dir(`+1)(c

(`)
j). Let the mapping ψQ : R3\{0} → ∂([−1, 1]3) be given by (2.11).

By construction of the directions {c(`)
j }N`j=1 in Algorithm 2.6 we know that ψQ(c

(`)
j) is

the midpoint of the square E
(`)
j with edge length 2`+1−`hf and ψQ(c

(`+1)
k) is the mid-

point of the square E
(`+1)
k with edge length 2`+2−`hf , where the squares E

(`)
j and E

(`+1)
k

are defined as in Algorithm 2.6. Furthermore ψQ(c
(`)
j) lies in the square E

(`+1)
k by

Definition 2.9 of the mapping dir(`+1), since dir(`+1)(c
(`)
j) = c

(`+1)
k . Hence, by construc-

tion E
(`)
j is one of the squares which we get when we subdivide E

(`+1)
k uniformly into

four squares. The distance of their midpoints is therefore given by

|ψQ(c
(`+1)
k)− ψQ(c

(`)
j)| = 1

4
diam

(
E

(`+1)
k

)
=
√

2 2`−`hf .

Together with Lemma 2.12 this yields

|c(`)
j − dir(`+1)(c

(`)
j)| ≤ |ψQ(c

(`+1)
k)− ψQ(c

(`)
j)| =

√
2 2`−`hf ,

and due to the uniformity of the cluster trees we finally get

κmax{q`(TX), q`(TY)}|c(`)
j − dir(`+1)(c

(`)
j)| = κqhf2

`hf−`|c(`)
j − dir(`+1)(c

(`)
j)|

≤ κqhf2
`hf−`
√

2 2`−`hf = γ.

Corollary 2.17. Let the assumptions of Theorem 2.16 hold. Let {tj}Lj=0 and {sj}Lj=0

be two sequences of boxes in TX and TY , respectively, and let `0 ∈ N0 be such that

t0 ⊃ ... ⊃ tL, s0 ⊃ ... ⊃ sL, tj ∈ T (j+`0)
X , sj ∈ T (j+`0)

Y for all j ∈ {0, ..., L}. (2.24)

Assume further that s0 ∩ t0 = ∅ and define the directions

cj = c(`0+j)(t0, s0) for all j ∈ {0, ..., L}, (2.25)

with c(`0+j)(t0, s0) defined as in (2.13). Then for all ` ∈ {1, ..., L} there holds (1.32),
i.e. we have

κmax{diam (t`−1) , diam (s`−1)}|c` − c`−1| ≤ γ,

for the constant γ in (2.23).

2.1 Matrix partitioning and fast matrix-vector multiplication 63

Proof. Due to (2.12) and the definition of the directions c(`0+j)(t0, s0) there holds

cj = c(`0+j)(t0, s0) = dir(`0+j)

(
mt0 −ms0

|mt0 −ms0|

)
= dir(`0+j)

(
dir(`0+j−1)

(
mt0 −ms0

|mt0 −ms0|

))
= dir(`0+j)(c(`0+j−1)(t0, s0)) = dir(`0+j)(cj−1),

for all j ∈ {1, ..., L}. Hence, the assertion is a direct consequence of Theorem 2.16.

Let {tj}Lj=0 and {sj}Lj=0 be two sequences of boxes in two uniform box cluster trees TX
and TY such that (2.24) holds. Let the directions {cj}Lj=0 be given by (2.25). We want
to show that there exists an η1 > 0 such that (A2) holds for the boxes tj, sj, and the
direction cj for all j ∈ {0, ..., L}. Unfortunately we cannot apply Proposition 2.13 for
this purpose. The reason is that in general

cj = c(`0+j)(t0, s0) 6= c(`0+j)(tj, sj), (2.26)

i.e. in general cj is not the best direction to approximate (mtj − msj)/|mtj − msj |.
However, by assuming that t0 and s0 satisfy the admissibility condition (A3) we can
show that (A2) holds for the boxes tj, sj, and the direction cj, for all j ∈ {1, ..., L}.
For this purpose, however, η1 has to be chosen greater than in Proposition 2.13. To
show this we need the following lemma.

Lemma 2.18. Let TX and TY be two uniform box cluster trees and let qhf be defined
by (2.16). Let two sequences of boxes {tj}Lj=0 and {sj}Lj=0 in TX and TY , respectively,

satisfy (2.24). Let κ > 0 and `hf ∈ N0. Let the directions {c(`)
j }N`j=1 be constructed as

in Algorithm 2.6 and the directions c(`)(t, s) for two boxes t and s with t ∩ s = ∅ be
defined by (2.13). Assume that t0 and s0 satisfy the admissibility criterion (A3) for
an η2 such that

η2 ≤ 4κqhf . (2.27)

Then for all j ∈ {1, ..., L} there holds

|c(j+`0)(t0, s0)− c(j+`0)(tj, sj)| ≤
√

2 2`0+j+1−`hf . (2.28)

Proof. For j > `hf − `0 the assertion is trivially satisfied as c(j+`0)(t0, s0) = 0 and
c(j+`0)(tj, sj) = 0. Hence let j be such that 1 ≤ j ≤ `hf−`0. Let k1 and k2 be such that

c(j+`0)(t0, s0) = c
(`0+j)
k1

and c(j+`0)(tj, sj) = c
(`0+j)
k2

, and let E
(`0+j)
k1

and E
(`0+j)
k2

be the
corresponding squares used for the construction of these directions in Algorithm 2.6.
The idea of the proof is to show that

E
(`0+j)
k1

∩ E(`0+j)
k2

6= ∅, (2.29)

i.e. that these squares share at least a common corner. Then (2.28) will follow imme-
diately. Indeed, one can easily check that the maximal distance of the midpoints of

64 2 Fast Directional Matrix-Vector Multiplication

two squares in {E(`0+j)
j }N`0+jj=1 satisfying (2.29) is given by

√
2 2`0+j+1−`hf . Hence, by

Lemma 2.12 we get

|c(j+`0)(t0, s0)− c(j+`0)(tj, sj)| = |c(`0+j)
k1

− c(`0+j)
k2

| ≤ |ψQ(c
(`0+j)
k1

)− ψQ(c
(`0+j)
k1

)|
≤
√

2 2`0+j+1−`hf ,

which is (2.28).
To show (2.29) we consider the vectors c̃k1 = ψQ(mt0−ms0) and c̃k2 = ψQ(mtj−msj),

where the mapping ψQ is defined in (2.11) and mtj and msj are the midpoints of tj

and sj, respectively. From c(j+`0)(t0, s0) = c
(`0+j)
k1

we get that c̃k1 ∈ E(`0+j)
k1

by (2.13)

and the Defintion 2.9 of dir(`0+j). Likewise we have c̃k2 ∈ E(`0+j)
k2

. Our goal is to show
the componentwise estimate

|c̃k1,n − c̃k2,n| < 2`0+j+1−`hf , for all n ∈ {1, ..., 3} and j ∈ {1, ..., `hf − `0}. (2.30)

From these estimates we immediately get (2.29), since the edges of the squares E
(`0+j)
k1

and E
(`0+j)
k2

have length 2`0+j+1−`hf and are arranged on a regular grid on the surface
of ∂([−1, 1]3). Instead of showing (2.30) directly we show for arbitrary x ∈ t0 and
y ∈ s0 the componentwise estimate

|(ψQ(x− y))n − c̃k1,n| < 23+`0−`hf , for all n ∈ {1, ..., 3}. (2.31)

For j ≥ 2 this yields (2.30) if we choose x and y as the midpoints of the boxes tj
and sj, i.e. x = mtj , and y = msj . The case j = 1 is treated separately afterwards.

For the proof of (2.31) we first define the half edge lengths ht0 = h`0(TX) and
hs0 = h`0(TY) as in (2.8) and set hmax := max{ht0 , hs0}. Let us write the midpoint
mt0 = (d1, d2, d3) and assume without loss of generality that ms0 = 0. Due to sym-
metry arguments we can assume that d1 ≥ d2 ≥ 0 and d1 ≥ d3 ≥ 0. This yields
d1 > ht0 + hs0 . Indeed, in the contrary case we would get 0 ≤ dn ≤ ht0 + hs0 for
all n ∈ {1, ..., 3} and hence dist (t0, s0) = 0 in contradiction to the assumption that t0
and s0 satisfy (A3). For arbitrary x ∈ t0 and y ∈ s0 we know by definition of ht0
and hs0 that

|xn −mt0,n| ≤ ht0 , |yn −ms0,n| = |yn| ≤ hs0 , for all n ∈ {1, ..., 3}.

In particular we can write x− y = mt0 + z = (d1 + z1, d2 + z2, d3 + z3) with

|zn| = |xn − yn − dn| ≤ |xn − dn|+ |yn| ≤ ht0 + hs0 for all n ∈ {1, ..., 3}. (2.32)

For the computation of ψQ(x− y) we need the maximum µ = maxn{|xn− yn|}. From

|xn − yn| = |dn + zn| ≤ dn + |zn| ≤ d1 + ht0 + hs0 and

µ ≥ |x1 − y1| = |d1 + z1| ≥ d1 − ht0 − hs0

2.1 Matrix partitioning and fast matrix-vector multiplication 65

we get the estimate
|µ− d1| ≤ ht0 + hs0 .

Together with (2.32) this yields the componentwise estimate

|c̃k1,n − (ψQ(x− y))n| =
∣∣∣∣dnd1

− dn + zn
µ

∣∣∣∣ =

∣∣∣∣dn(µ− d1)− znd1

d1µ

∣∣∣∣
≤ dn|µ− d1|+ |zn|d1

d1µ
≤ 4d1hmax

d1µ
≤ 4hmax

d1 − ht0 − hs0

(2.33)

for all n ∈ {1, ..., 3}. To continue the estimate in (2.33) we have to bound d1−ht0−hs0
from below. For this purpose we note that due to our assumption on the midpoints of
the boxes t0 and s0 there holds

dist (t0, s0)2 =
3∑

n=1

dist ([−hs0 , hs0], [dn − ht0 , dn + ht0])
2

=
3∑

n=1

max{0, (dn − ht0 − hs0)2} ≤ 3(d1 − ht0 − hs0)2,

where for the last inequality we used d1 ≥ max{d2, d3, ht0 + hs0}. Together with the
relation max{diam (t0) , diam (s0)} = 2

√
3hmax and the assumption that (A3) holds

for t0 and s0 this yields

(d1 − ht0 − hs0) ≥
1√
3

dist (t0, s0) ≥ κ√
3η2

max{diam (t0) , diam (s0)}2 =
4
√

3κh2
max

η2

.

In particular with (2.27) and the equality

qhf = 2−`hf max{diam (X) , diam (Y)} =
√

3 21−`hf max{h0(TX), h0(TY)}
=
√

3 21+`0−`hfhmax,

which holds by definition of qhf in (2.16) and due to the uniformity of the cluster trees,
we get

4hmax

d1 − ht0 − hs0
≤ η2√

3κhmax

≤ 4κqhf√
3κhmax

= 23+`0−`hf .

Hence, (2.31) follows from (2.33). In particular we have shown (2.30) for j ≥ 2.
For j = 1 we repeat the same computations but restrict ourselves to pairs (x, y) in

the set{
(x, y) : x− y = (d1 + z1, d2 + z2, d3 + z3), |zn| ≤

ht0 + hs0
2

for all n ∈ {1, ..., 3}
}
,

in which the middlepoints (mt1 ,ms1) lie by construction of the uniform cluster trees.
In this way we get an analogous estimate like (2.33) but with a factor 2 instead of a
factor 4 in the numerator of the right hand side. Similarly as before we can conclude
that (2.30) holds for j = 1. This completes the proof.

66 2 Fast Directional Matrix-Vector Multiplication

Theorem 2.19. Let TX and TY be two uniform box cluster trees and let qhf be defined
by (2.16). Let two sequences of boxes {tj}Lj=0 and {sj}Lj=0 in TX and TY , respectively,
satisfy (2.24). Let for all j ∈ {1, ..., L} the midpoints of tj and sj be given by mtj

and msj . Let κ > 0 and `hf ∈ N0. Let the directions {c(`)
j }N`j=1 be constructed as in

Algorithm 2.6 and the sequence of directions {cj}Lj=0 be defined by (2.25). Assume
that t0 and s0 satisfy the admissibility criterion (A3) for an η2 satisfying (2.27).Then
for all j ∈ {0, ..., L} the admissibility criterion (A2) is satisfied for the boxes tj, sj,
and the direction cj, i.e.

κ

∣∣∣∣ mtj −msj

|mtj −msj |
− cj

∣∣∣∣ ≤ η1

max{diam (tj) , diam (sj)}
,

for the admissibility constant
η1 = 3

√
2κqhf . (2.34)

Proof. For j = 0 the assertion follows directly from Proposition 2.13. Hence we
fix j > 0. By means of the triangle inequality we get

κ

∣∣∣∣ mtj −msj

|mtj −msj |
− cj

∣∣∣∣ ≤ κ

∣∣∣∣ mtj −msj

|mtj −msj |
− c(`0+j)(tj, sj)

∣∣∣∣︸ ︷︷ ︸
=:S1

+κ
∣∣c(`0+j)(tj, sj)− cj

∣∣︸ ︷︷ ︸
=:S2

.

From Proposition 2.13 we get

S1 ≤
√

2κqhf

max{diam (tj) , diam (sj)}
.

With Lemma 2.18 and the relation

max{diam (tj) , diam (sj)} = qhf2
`hf−`0−j

we can estimate S2 by

S2 ≤ κ
√

2 2`0+j+1−`hf =
2
√

2κqhf

qhf2`hf−`0−j
=

2
√

2κqhf

max{diam (tj) , diam (sj)}
.

Hence, we end up with

κ

∣∣∣∣ mtj −msj

|mtj −msj |
− cj

∣∣∣∣ ≤ 3
√

2κqhf

max{diam (tj) , diam (sj)}
=

η1

max{diam (tj) , diam (sj)}
.

Remark 2.20. Let us recall the error estimate of the directional multi-level approxima-
tion in Theorem 1.15. From the proof of Proposition 1.23 we know that the constant C
in (1.34) gets smaller for decreasing η1 in the admissibility criterion (A2). Further-
more the proof of Lemma 1.31 yields that (1.34) is applicable for smaller degrees m for

2.1 Matrix partitioning and fast matrix-vector multiplication 67

decreasing γ in (1.32) because m0 decreases with γ. Hence by Theorems 2.16 and 2.19
we should choose κqhf as small as possible, because then γ and η1 are small by (2.23)
and (2.34), respectively. For this purpose we need to choose the level `hf , which is
used for the construction of the directions, sufficiently large. On the other hand we
need that η2 ≤ 4κqhf for the application of Theorem 2.19. Furthermore the number of
directions per level `, which is given by N` = 6 4`hf−`, increases exponentially with in-
creasing `hf . Hence, the storage and computational costs increase with increasing `hf .
This means that we should choose `hf such that κqhf is neither to large nor to small.
In Chapter 3 we will run some numerical experiments and further investigate how
the choice of `hf influences the quality and the computational costs of the directional
multi-level approximation.

2.1.3 Matrix partitioning

Let the matrix A be defined by (2.1) for two sets of points PX and PY . In Section 2.1.1
we described how to build box cluster trees TX(PX) and TY (PY) corresponding to
these sets of points. Here we want to discuss how these trees can be used to partition
the matrix A into appropriate subblocks, which can then be approximated using a
directional approximation as in (1.20). The principle idea is to find pairs (t, s) of boxes
t ∈ TX(PX) and s ∈ TY (PY) that satisfy the admissibility criteria (A1) and (A3) in
Section 1.2.2 and assign them a suitable direction c such that (A2) holds. For this
purpose we will introduce block trees as in [5, Definition 2].

We start by defining the near- and farfield of a box in the setting of box cluster
trees.

Definition 2.21 (Near- and farfield). Let TX and TY be two box cluster trees as in

Definition 2.1. Let η2 > 0. For a box t ∈ T (`)
X at level ` we define the farfield F(t)

(with respect to TX , TY , and η2) by

F(t) = {s ∈ T (`)
Y : t and s satisfy (A1) and (A3)}. (2.35)

Furthermore we define the nearfield N (t) by

N (t) = T (`)
Y \ F(t). (2.36)

Analogously we define the nearfield N (s) and farfield F(s) for a box s in T (`)
Y .

Remark 2.22. In regard to Definition 2.21 we note:

• For the definition of the near- and farfield we only consider boxes at the same
level in their respective cluster trees. This is not necessary in general. However,
it fits to the Definition 2.24 of the block trees, which we will use to partition the
matrix in (1.19).

68 2 Fast Directional Matrix-Vector Multiplication

• Let t ∈ T (`)
X and s ∈ T (`)

Y . We see that s ∈ N (t) if and only if t ∈ N (s). Likewise
there holds s ∈ F(t) if and only if t ∈ F(s), i.e. the property of being in the near-
or farfield of a box is symmetric.

• The admissibility criterion (A2) is not relevant for the definition of the near- or

farfield of a box. The reason is that for two boxes t ∈ T (`)
X and s ∈ T (`)

Y with

s ∈ F(t) and the set of directions {c(`)
j }N`j=1 constructed in Algorithm 2.6, we can

find a direction c ∈ {c(`)
j }N`j=1 such that (A2) holds for suitable η1 (cf. Proposi-

ton 2.13 and Theorem 2.19).

For a pair of boxes (t, s) with t ∈ T (`)
X and s ∈ T (`)

Y such that s ∈ F(t) we can use

the directional single-level approximation f̃
(m)
t,s in (1.18) to approximate f on t× s. In

particular we can approximate the subblock of A corresponding to the points in t×s as
in (1.20). However, if parent(s) ∈ F(parent(t)) then it is more efficient to approximate
the larger subblock corresponding to the points in parent(t)× parent(s). This means

that for all levels ` we are interested in finding the pairs of boxes (t, s) in T (`)
X ×T

(`)
Y such

that s ∈ F(t) and parent(s) ∈ N (parent(t)). This motivates the following definition.

Definition 2.23 (Hierarchical admissibility). Let TX and TY be two box cluster trees

and let ` > 0. Let t ∈ T (`)
X and s ∈ T (`)

Y . We say that t and s are hierarchically
admissible if s ∈ F(t) and parent(s) ∈ N (parent(t)).

It is our goal to find all pairs of hierarchically admissible boxes in two uniform box
cluster trees TX and TY . A suitable structure for this purpose are block trees, which
we define in the following.

Definition 2.24 (Block Trees [5, cf. Definition 2]). Let TX and TY be two box cluster
trees as in Definition 2.1. A tree TX×Y is a block tree corresponding to TX and TY if
the following properties are satisfied:

• For each node b ∈ TX×Y there exist boxes t ∈ TX and s ∈ TY such that b = (t, s).

• The root r ∈ TX×Y is given by the pair r = (X, Y).

• For each b = (t, s) ∈ TX×Y there holds

child(b) 6= ∅ =⇒ child(b) = child(t)× child(s). (2.37)

The tree TX×Y is divided into levels by defining

T (0)
X×Y = {(X, Y)},
T (`)
X×Y = {(t, s) ∈ TX×Y : parent(t, s) ∈ T (`−1)

X×Y }, for all ` ∈ N.
(2.38)

We denote the nodes in a block tree TX×Y as blocks and the set of its leaves by

LX×Y := {b ∈ TX×Y : child(b) = ∅}. (2.39)

2.1 Matrix partitioning and fast matrix-vector multiplication 69

Remark 2.25. In [5, Definition 2] the nodes of block trees are not pairs of boxes, but
pairs of indices. We changed the definition to be consistent, as in our setting also the
nodes of the corresponding trees are not indices but boxes.
We further note that for a block b = (t, s) ∈ T (`)

X×Y there holds t ∈ T (`)
X and s ∈ T (`)

Y

by definition, i.e. for a block at level ` in TX×Y its boxes are also at level ` in the
corresponding box cluster trees.
Finally we observe that the blocks at level ` in a block tree TX×Y together with the
leaves at levels less than ` form a partition of a suitable matrix A. In particular
this holds true for the set of leaves LX×Y , which is relevant for us. Let us describe
a partition induced by such leaves of a block tree more in detail. For this purpose,
let A be a matrix as in (2.1) for two sets of points PX = {xj}NXj=1 and PY = {yk}NYk=1.
Let TX(PX) and TY (PY) be two box cluster trees and TX×Y the corresponding block
tree. Every pair (xj, yk) of points xj ∈ PX and yk ∈ PY is included in exactly one
block (t, s) ∈ LX×Y . This follows immediately from (2.37) and the fact that every
point x ∈ PX or y ∈ PY is contained in exactly one leaf of TX(PX) and TY (PY).
Hence, a block b = (t, s) ∈ LX×Y corresponds to the subblock of A formed by the row
indices in t̂ and column indices in ŝ, where t̂ and ŝ are the sets of indices of points in t
and s as defined in (2.3).

A block tree whose leaves yield a suitable partition for the directional approximation
of the subblocks of A is constructed in Algorithm 2.26.

Algorithm 2.26. Let TX and TY be two uniform box cluster trees and let η2 > 0.
Let the farfield F(t) for boxes t in TX be defined by (2.35). Then we construct TX×Y
as follows:

1. Insert r = (X, Y) as root in TX×Y .

2. If either Y ∈ F(X) or one of the trees TX or TY has depth zero then we stop the
construction. Else we add all pairs (t, s) such that t ∈ child(X) and s ∈ child(Y)
as children of (X, Y) to TX×Y .

3. Recursively we add blocks to TX×Y as in step 2 until for each leaf (t, s) in TX×Y
there holds either s ∈ F(t) or child(t) = ∅ or child(s) = ∅.

We can divide the leaves of a block tree TX×Y constructed by means of Algo-
rithm 2.26 into admissible and inadmissible blocks.

Definition 2.27 ([5, cf. page 8]). Let TX×Y be a block tree constructed as in Algo-
rithm 2.26. We define the set of all admissible leaves of TX×Y by

L+
X×Y := {b = (t, s) ∈ LX×Y : s ∈ F(t)} (2.40)

and the set of all inadmissible leaves by

L−X×Y = LX×Y \ L+
X×Y . (2.41)

70 2 Fast Directional Matrix-Vector Multiplication

Remark 2.28. Let us comment on the construction of a block tree TX×Y described in
Algorithm 2.26:

• By construction all admissible leaves b = (t, s) ∈ L+
X×Y are such that t and s are

hierarchically admissible. Indeed by construction we know that s′ ∈ N (t′) for
(t′, s′) = parent(b) and since b ∈ L+

X×Y there holds s ∈ F(t).

• In Algorithm 2.26 we do not specify the choice of directions for the admissible
leaves (t, s) ∈ L+

X×Y . However, we have seen in Proposition 2.13 that by choosing

the direction c(`)(t, s) for (t, s) ∈ T (`)
X×Y we satisfy the admissibility criterion (A2)

for a suitable η1 > 0.

• The construction of the tree TX×Y in Algorithm 2.26 is possibly unsuitable if the
roots X and Y of the uniform box cluster trees TX and TY are very different in
size. The reason is that the admissibility criteria (A1) and (A3) take into account
only the larger of the two diameters of two boxes. To overcome this problem we
can consider only pairs (t, s) of boxes t and s with comparable diameters instead
of identical levels. The required adjustments of the block trees in this setting are
straightforward.

Let us consider the partition of the matrix A in (2.1) induced by the block tree TX×Y
constructed by Algorithm 2.26. The question arises if all subblocks A|t̂×ŝ of A cor-
responding to admissible blocks (t, s) ∈ L+

X×Y can be approximated sufficiently well
by means of the directional single- and multi-level approximation. For this purpose
we show in the following theorem that the assumptions of Theorem 1.15 hold for the
corresponding boxes and directions.

Theorem 2.29. Let TX and TY be two uniform box cluster trees with depths p(TX)

and p(TY), respectively. Let `hf ∈ N0 and let the directions {c(`)
j }N`j=1 be constructed

as in Algorithm 2.6. Let κ > 0 and qhf be defined by (2.16). Let TX×Y be a block
tree corresponding to TX and TY constructed as in Algorithm 2.26 for an η2 ≤ 4κqhf .
Let b = (t0, s0) be a block in L+

X×Y at level `0. Let {tj}Lj=0 and {sj}Lj=0 be two sequences
in TX and TY , respectively, such that

tj ∈ child(tj−1), sj ∈ child(sj−1), for all j ∈ 1, ..., L

and the directions {cj}Lj=0 be given by cj = c(`0+j)(t0, s0) as defined in (2.13). Let

η1 = 3
√

2κqhf and let ρ̂ = 1+2/η2 as in (1.33). Then the assumptions of Theorem 1.15
on {tj}Lj=0, {sj}Lj=0 and {cj}Lj=0 are satisfied. In particular there exists a constant C
depending only on η2, max{p(TX , p(TY)}, and the product κqhf , and an m0 ∈ N de-
pending only on κqhf , such that for all m ≥ m0 the estimate (1.34) on the directional
multi-level approximation error holds, i.e.

‖f − f̂ (m)
t0,s0‖∞,tL×sL ≤

C

dist (t0, s0)
ρ̂−(m+1).

2.1 Matrix partitioning and fast matrix-vector multiplication 71

Proof. We start by showing (1.30) and (1.31). By construction all boxes at a given
level ` in a general uniform box cluster tree T are cubes which are identical up to
translation. Furthermore the half edge length h`(T) of these boxes satisfies

h`−1(T) =
1

2
h`(T).

Hence we immediately get (1.30) with q̄ = 1/2 for the edge lengths of the boxes in
{tj}Lj=0 and {sj}Lj=0. Furthermore the diameters q`(T) of boxes at level ` of a uniform
box cluster tree satisfy

q`(T) = 2
√

3h`.

Therefore we have

s(tj) =
1√
3

diam (tj) , s(sj) =
1√
3

diam (sj) ,

where s(tj) and s(sj) denote the length of the longest edge of tj and sj, respectively.
In particular there holds (1.31) with σ = 1/

√
3.

Next we observe that s0 ∈ F(t0) due to (t0, s0) ∈ L+
X×Y , which means that t0

and s0 satisfy (A1) and (A3). Furthermore the criterion (A2) holds for η1 = 3
√

2κqhf ,
the boxes tj, sj, and the direction cj for all j ∈ {0, ..., L} due to Theorem 2.19.
Moreover we have (1.32) for γ =

√
2κqhf due to Theorem 2.16. Hence all assumptions

of Theorem 1.15 are satisfied and (1.34) follows.
Let us finally check the dependencies of C and m0. By Theorem 1.15 C depends on

η1, η2, q̄, σ and L. In our setting η1 depends only on the product κqhf . Furthermore q̄
and σ are constants independent of the particular trees, and L is bounded by the
maximal depth max{p(TX), p(TY)}. Hence C depends only on η2, max{p(TX), p(TY)},
and the product κqhf . Similarly m0 depends only on the product κqhf as γ does so
too.

2.1.4 An efficient matrix-vector multiplication

With the block trees constructed in Algorithm 2.26 we can define an efficient matrix-
vector multiplication for the matrix A in (2.1). We focus first on the directional
single-level approximation of the admissible subblocks of A in Algorithm 2.35. Then
we discuss the necessary changes if a multi-level approximation is used instead in
Algorithm 2.38. Both ideas can be found in [5, Section 4] and [30, Section 3.3.5].

We start by clarifying our notation.

Definition 2.30. Let the matrix A be defined as in (2.1) for two sets of points PX
and PY . Let TX(PX) and TY (PY) be the corresponding uniform box cluster trees and
the block tree TX×Y be constructed as in Algorithm 2.26. For a block (t, s) ∈ L+

X×Y
denote the set of indices t̂ and ŝ by (2.3). Then we denote the subblock of A corre-
sponding to the row indices in t̂ and the column indices in ŝ by A|t̂×ŝ.

72 2 Fast Directional Matrix-Vector Multiplication

For a vector v ∈ CN and a set of indices ŝ ⊂ {1, ..., N} we further denote the
subvector of v corresponding to the indices in ŝ by v|ŝ.
Remark 2.31. If the points in the respective box cluster trees TX(PX) and TY (PY) are
reordered, then the subblocks A|t̂×ŝ of a matrix A are subblocks in the classical sense,
i.e. they consist of consecutive rows and columns. While in theory this reordering has
no effect, in implementations it can cause speedups due to better memory alignment.

For a block (t, s) ∈ L+
X×Y at level ` and the direction c = c(`)(t, s) in (2.13) we

approximate the subblock A|t̂×ŝ as in (1.20) by

A|t̂×ŝ = Lt,cAc,t,sL
∗
s,c.

For blocks (t, s) ∈ L−X×Y on the other hand we cannot approximate A|t̂×ŝ. Hence it is
reasonable to split the multiplication g = Av into two parts.

Definition 2.32. In the setting of Definition 2.30 let v ∈ CNY and g = Av. Define
the matrix of admissible subblocks A+ by

A+|t̂×ŝ :=

{
A|t̂×ŝ, for (t, s) ∈ L+

X×Y ,

0, for (t, s) ∈ L−X×Y ,
(2.42)

and the matrix of inadmissible subblocks A− by

A−|t̂×ŝ :=

{
0, for (t, s) ∈ L+

X×Y ,

A|t̂×ŝ, for (t, s) ∈ L−X×Y ,
(2.43)

Then we define the nearfield part g− and the farfield part g+ of g by

g+ := A+g, g− := A−g. (2.44)

The computation of the nearfield part g− is straightforward.

Algorithm 2.33 (Computation of g−). Let A be a matrix as in (1.19) and TX×Y
a corresponding block tree as in Definition 2.30. Let L−X×Y be defined as in (2.41).
Let v ∈ CNY and the nearfield part g− of a vector g = Av be defined by (2.44). Then
for all j ∈ {1, ..., NX} there holds componentwise

g−j =
∑

(t,s)∈L−X×Y
j∈t̂

(
A|t̂×ŝv|ŝ

)
j
. (2.45)

The farfield part g+ is not computed exactly but approximated via the direc-
tional approximation (1.20) of the admissible subblocks or its multi-level counterpart.
In Algorithm 2.35 we describe the single-level approximation of g+ as presented in
[5, Section 4]. For this purpose we use the following definition.

2.1 Matrix partitioning and fast matrix-vector multiplication 73

Definition 2.34. Let TX and TY be two uniform box cluster trees and TX×Y the
corresponding block tree constructed by Algorithm 2.26. Let `hf ∈ N0 and the di-
rections {c(`)

j }N`j=1 for all ` ∈ N0 be constructed by Algorithm 2.6. Furthermore let
the direction c(`)(t, s) for two boxes t and s be defined by (2.13). Then we define for

all ` ∈ N0 and all t ∈ T (`)
X the set of active directions

Dt := {c ∈ {c(`)
j }N`j=1 : ∃ s ∈ T (`)

Y such that (t, s) ∈ L+
X×Y and c = c(`)(t, s)}. (2.46)

Analogously, we define the set of directions Ds for s ∈ T (`)
Y .

Algorithm 2.35 (Directional single-level approximation of g+ [5, cf. Section 4]).
Let A be a matrix as in (1.19) and TX×Y a corresponding block tree as in Defini-
tion 2.30. Let LX×Y be defined as in (2.41). Let v ∈ CNY and the farfield part g+ of a
vector g = Av be defined by (2.44). Choose the interpolation degree m ∈ N. Let the
coupling matrices Ac,t,s for two boxes t and s and a direction c be defined by (1.21).
Let the directional interpolation matrices Lt,c and Ls,c be defined by (1.22). Let the
sets of directions Dt and Ds be defined by (2.46). Then we compute the directional
single-level approximation g̃+ of g+ in three steps:

1. Forward transformation (S2M)
For all s ∈ TY and all active directions c ∈ Dt we compute the coefficient-vectors

ṽsc := L∗s,c(v|ŝ).

2. Coupling step (M2L)

For all t ∈ T (`)
X and directions c ∈ Dt we compute the coefficient-vectors

g̃tc :=
∑

(t,s)∈L+X×Y
c=c(`)(t,s)

Ac,t,sṽsc.

3. Backward transformation (L2T)
For all j ∈ {1, ..., NX} we compute componentwise

g̃+
j =

∑
t∈TX ,c∈Dt

j∈t̂

(Lt,cg̃tc)j .

Remark 2.36. In Algorithm 2.35 we added the abbreviations S2M, M2L and L2T in
parentheses to the three steps. These abbreviations originate from the fast multipole
method originally presented in [20, 22, 34]. The basic idea of this fast summation
scheme is the same that we exploit: Suitable expansions are used to express the effect of
the kernel function of a certain region s on another distant region t. To emphasize the
similarities of the computation steps in our algorithm we use the same abbreviations

74 2 Fast Directional Matrix-Vector Multiplication

for these steps, even though we are using interpolation schemes instead of multipole
and local expansions, which are used in the classical fast multipole method and from
which the names are taken from. Similarly we will use the abbreviations M2M and L2L
for steps two and four of Algorithm 2.38.

As discussed in Section 1.2.1 the approximation of a subblock A|t̂×ŝ and, hence,
the approximation of the farfield part g+ becomes really efficient only if we do not
compute the directional interpolation matrices Lt,c and Ls,c directly. Instead, we
have to approximate Lt,c with the transfer matrices Et′,c and the matrices Lt′,c′ for
t′ ∈ child(t) as in (1.24). If the box t has eight sons t′1, ..., t′8 and the points in t are
ordered according to the numeration of its sons this approximation has the form

Lt,c =

Lt′1,c′Et′1,c...
Lt′8,c′Et′8,c

 .
In Section 2.1.2 we discussed a suitable choice of c′. Let us recall this here.

We have seen in Theorems 2.16 and 2.19 that for two sequences of boxes {tj}Lj=0

and {sj}Lj=0 satisfying (2.24) the directions {cj}Lj=0 with cj = c(`0+j)(t0, s0) as defined
in (2.13) are a reasonable choice. In the proof of Corollary 2.17 we have shown that
cj = dir(`0+j)(cj−1) holds for all j ∈ {1, ..., L}, where the mappings dir(`) are given in
Definition 2.9. Hence, we see that for a box t at level ` we should choose the direction
c′ = dir(`+1)(c) for the approximation of Lt,c as in (1.24).

To keep track of all directions which we need to consider for given boxes t and s we
introduce the sets D̂t and D̂s of inherited directions.

Definition 2.37. Let TX and TY be two uniform box cluster trees and TX×Y the

corresponding block tree. Let `hf ∈ N0 and the directions {c(`)
j }N`j=1 for all ` ∈ N0 be

constructed by Algorithm 2.6. Furthermore let the mappings dir(`) for all ` ∈ N0 be
given by Definition 2.9. Let the set Dt for a box t ∈ TX be defined by (2.46) and
denote by anc(t) the set of all the ancestors of t in TX . Then we define for all ` ∈ N
and all t ∈ T (`)

X the set of inherited directions D̂t by

D̂t = {ĉ ∈ {c(`)
j }N`j=1 : ∃ t′ ∈ anc(t),∃ c ∈ Dt′ such that ĉ = dir(`)(c)}. (2.47)

Analogously, we define the set of inherited directions D̂s for s ∈ T (`)
Y .

Finally we are ready to describe the computation of the directional multi-level ap-
proximation of the farfield part g+.

Algorithm 2.38 (Directional multi-level approximation of g+ [5, cf. Section 4]).
Let A be a matrix as in (1.19) and TX×Y a corresponding block tree as in Defini-
tion 2.30. Let LX×Y be defined as in (2.41). Let v ∈ CNY and the farfield part g+ of a
vector g = Av be defined by (2.44). Choose the interpolation degree m ∈ N. Let the

2.1 Matrix partitioning and fast matrix-vector multiplication 75

coupling matrices Ac,t,s for two boxes t and s and a direction c be defined by (1.21),
the directional interpolation matrices Lt,c and Ls,c by (1.22), and the transfer matrices
Et,c and Es,c by (1.25). Let the sets of directions Dt and Ds be defined by (2.46) and

the sets of inherited directions D̂t and D̂s by (2.47). Then we compute the directional
multi-level approximation ĝ+ of g+ in five steps:

1. Direct forward transformation (S2M)
For all leaves s ∈ LY and all active or inherited directions c ∈ D̂s∪Ds we compute
the coefficient-vectors

v̂sc := L∗s,c(v|ŝ).

2. Forward transfer (M2M)
Starting at level ` = p(TY)− 1, where p(TY) is the depth of TY , we compute for

decreasing ` for all boxes s ∈ T (`)
Y \LY and directions c ∈ D̂s ∪Ds the coefficient-

vectors

v̂sc :=
∑

s′∈child(s)

E∗s′,cv̂s′c′ , where c′ = dir(`+1)(c).

3. Coupling step (M2L)

For all t ∈ T (`)
X and directions c ∈ Dt we compute the coefficient-vectors

g̃tc :=
∑

(t,s)∈L+X×Y
c=c(`)(t,s)

Ac,t,sv̂sc.

Further we set g̃tc := 0 for all t ∈ T (`)
X and directions c ∈ D̂t\Dt.

4. Backward transfer (L2L)

Starting at level ` = 0 we compute for incremental ` for all boxes t′ ∈ T (`)
X and

directions c′ ∈ D̂t′ ∪Dt′ the coefficent-vectors

ĝt′c′ = g̃t′c′ +
∑

c∈D̂t∪Dt
dir(`)(c)=c

′

Et′,cĝtc, where t = parent(t′).

5. Direct backward transformation (L2T)
For all leaves t ∈ LX such that Dt ∪ D̂t 6= ∅ we compute

ĝ+|t̂ =
∑

c∈D̂(t)∪Dt

Lt,cĝtc.

For the remaining leaves we set

ĝ+|t̂ = 0.

76 2 Fast Directional Matrix-Vector Multiplication

Remark 2.39. We observe that in Algorithm 2.38 there is no explicit transition from the
high frequency regime, i.e. levels ` ≤ `hf , to the low frequency regime, i.e. levels ` > `hf .
Indeed we use the same matrix operators for all levels. For levels ` > `hf , however, the
directions used for the computation of the directional interpolation matrices Lt,c and
the transfer matrices Et′,c are zero. This means that we use standard interpolation
and standard reinterpolation for such levels. This is the implicit transition between
the two frequency regimes in Algorithm 2.38.

Example 2.40. To clarify the steps in Algorithm 2.38 we examplarily compute the
matrix-vector product g = A|t̂×ŝvs of an admissible subblock A|t̂×ŝ ∈ CNt×Ns and
a corresponding vector v ∈ CNs . For this purpose we use a directional two-level
approximation of A|t̂×ŝ ∈ CNt×Ns . For the children s′1, ..., s′8, and t′1, ..., t′8 of s and t,
respectively, the directions c, and the inherited direction c′ this approximation can be
written in the form

A|t̂×ŝ ≈ Lt,cAc,t,sL
∗
s,c ≈

Lt′1,c′Et′1,c...
Lt′8,c′Et′8,c

Ac,t,s [E∗s′1,cL∗s′1,c′ ... E∗s′8,c
L∗s′8,c′

]
(2.48)

The matrix vector product of this two-level approximation (2.48) and the vector v is
computed in the following five steps:

1. For all boxes s′1, ..., s′8 and the direction c′ we compute the coefficient-vectors

v̂s′jc′ = L∗s′j ,c′(v|ŝ′j) j ∈ {1, ..., 8}.

2. We compute the coefficient-vector v̂sc by

v̂sc =
[
E∗s′1,c

L∗s′1,c′
... E∗s′8,c

L∗s′8,c′
]
v =

8∑
j=1

Es′j ,cL
∗
s′j ,c
′(v|ŝ′j) =

8∑
j=1

Es′j ,cv̂s′jc′ .

3. Next we compute the coefficient-vector

g̃tc = Ac,t,sv̂sc

and set g̃t′jc′ = 0 for all j ∈ {1, ..., 8}.
4. We set ĝtc = g̃tc and compute for all boxes t′1, ..., t′8 the coefficient-vectors

ĝt′jc′ = g̃t′jc′︸︷︷︸
=0

+Et′j ,cĝtc, j ∈ {1, ..., 8}.

5. Finally we compute the approximation ĝ of g blockwise by

ĝ|t̂′j = Lt′j ,c′ ĝt′jc′ .

2.1 Matrix partitioning and fast matrix-vector multiplication 77

The five steps of this computation correspond to the five steps in Algorithm 2.38.
The few differences are easily explained:

• In the M2L step of Algorithm 2.38 we collect in the coefficient vector g̃tc all
contributions from boxes s, such that t, s and c satisfy the three admissibility
criteria (A1) – (A3) from Section 1.2.2. In our example we only consider one such
box, hence we need no sum.

• In the L2L step the coefficient-vector gt′c′ is computed using two parts: the
coefficient-vector g̃t′c′ , which is formed by direct contributions in the M2L step,
and the inherited part, which is the sum in step four of Algorithm 2.38. This
inherited part is what we compute in step four of our example. However, we only
have one active direction c for the box t in our example and, therefore, need no
summation over all directions.

Remark 2.41. The directional multi-level approximation of g+ in Algorithm 2.38 relies
on the directional approximation of the Helmholtz kernel f in (1.1) on sets t0 × s0

such that (t0, s0) ∈ L+
X×Y . Due to the forward transfer and the backward transfer we

end up with approximations of the form(
I(m)
tL1

,cL1
◦ ... ◦ I(m)

t0,c0

)
⊗
(
I(m)
sL2

,−cL2
◦ ... ◦ I(m)

s0,−c0

)
[f], (2.49)

where the interpolation operators of the form I(m)
t,c are defined in (1.16) and L1 and L2

are the lengths of the sequences of boxes {tj}L1
j=0 and {sj}L2

j=0 such that tL1 and sL2

are leaves in the respective box cluster trees. In case that L1 = L2 we can estimate
the approximation error by Theorem 1.15. However, L1 and L2 in (2.49) are not
necessarily equal. Let without loss of generality L1 ≤ L2. Then there holds(

I(m)
tL1

,cL1
◦ ... ◦ I(m)

t0,c0

)
⊗
(
I(m)
sL2

,cL2
◦ ... ◦ I(m)

s0,c0

)
[f]

=
(
I ⊗ I(m)

tL2
,cL2
◦ ... ◦ I(m)

tL1+1,cL1+1

) [
I(m)
tL1
×sL1

,cL1
◦ ... ◦ I(m)

t0×s0,c0 [f]
]
,

where the operators of the form I(m)
t×s,c are defined in (1.17). If cj = 0 for all j ≥ L1 then

the operator I ⊗I(m)
tL2

,cL2
◦ ... ◦ I(m)

tL1+1,cL1+1
induces no further error as the interpolation

operators are non-directional, i.e. standard interpolation operators, and the function
I(m)
tL1
×sL1

,cL1
◦...◦I(m)

t0×s0,c0 [f] is a polynomial in both its arguments. For general directions
this is no longer true. In this case one has to estimate the error when re-interpolating a
directional Lagrange polynomial. In [7, Corollary 5.8] it is shown that this error decays
exponentially for sufficiently largem, i.e. exponential convergence of the approximation
error is maintained.

By using Algorithm 2.33 for the computation of g− and Algorithm 2.38 for the com-
putation of ĝ+ we can now efficiently approximate the matrix-vector product g = Av
for a matrix A as in (2.1) and a vector v ∈ CNY . In Section 2.2.2 we will discuss

78 2 Fast Directional Matrix-Vector Multiplication

the complexity of this approach. Here we recapitulate all the necessary steps for the
approximation.

Algorithm 2.42 (Fast directional matrix-vector multiplication). Let A be a matrix as
defined in (2.1) for two sets of points PX = {xj}NXj=1 and PY = {yk}NYk=1. Let v ∈ CNY .
Choose a separation constant η2, the highest level in the high frequency regime `hf ,
and the interpolation degree m ∈ N. Then an approximation ĝ = g− + ĝ+ of the
matrix-vector product g = Av is computed as follows:

1. Construct uniform box cluster trees TX(PX) and TY (PY) by Algorithm 2.3.

2. Construct the sets of directions {cj}N`j=1 for the chosen `hf by Algorithm 2.6.

3. Construct the block tree TX×Y corresponding to TX(PX), TY (PY) and the sepa-
ration paramter η2 by Algorithm 2.26.

4. Compute the nearfield part g− by Algorithm 2.33.

5. Compute the directional multi-level approximation ĝ+ of the farfield part g+ by
Algorithm 2.38 and set ĝ = g− + ĝ+.

Remark 2.43. In Algorithm 2.42 we compute the approximation ĝ = g− + ĝ+ of the
matrix vector product g = g−+ g+ = Av for the matrix A ∈ CNX×NY in (2.1) and any
vector v ∈ CNY , where g+ and g− are defined in (2.44). In applications we would like
to control the error

‖g − ĝ‖2 = ‖ĝ+ − g+‖2 = ‖Â+v − A+v‖2 ≤ ‖Â+ − A+‖‖v‖2,

where A+ is the matrix of admissible subblocks in (2.42) and Â+ the approximation
of A+ which we get when we approximate each of its subblocks using the directional
multi-level approximation. Hence we need to estimate the difference Â+ − A+ in a
suitable norm, for example, the Frobenius norm ‖·‖F or the spectral norm ‖·‖2. For this
purpose, we observe, that the non-zero blocks of A+ are generated by the Helmholtz
kernel f defined in (1.1) while in Â+ they are generated by a (possibly asymmetric)
multi-level approximation of f as in (2.49). We have discussed in Remark 2.41 that the
approximation error of the directional multi-level approximation of f is exponentially
converging to zero with increasing interpolation degree m, which follows from (1.34)
in Theorem 1.15 in case of the standard directional multi-level approximation. These
estimates on the generating functions suffice to show that the approximation errors
‖A+−Â+‖F and ‖A+−Â+‖2 converge exponentially to zero with increasing m. Details
can be found in [4, Section 4.6].

2.2 Implementation details and complexity discussion 79

2.2 Implementation details and complexity

discussion

The fast directional matrix-vector multiplication presented in Algorithm 2.42 is based
on the clustering of the points corresponding to the matrix A in (2.1). In Section 2.1
we have focused on a uniform clustering strategy. We have already pointed out in
Remark 2.4 that we can exploit this uniformity in the implementation. We will discuss
this in the following section. Furthermore we talk about a possible recompression of
the occurring coupling matrices. Finally we will analyze the complexity of the fast
matrix-vector multiplication in Section 2.2.2.

2.2.1 Implementation details

In this section we do not give a complete description of an implementation of the fast
directional matrix-vector multiplication described in Algorithm 2.42. Instead we focus
on some details which allow us to reduce the computational costs. In particular we
describe how to exploit the uniformity of the box cluster trees for the storage and ap-
plication of the coupling matrices Ac,t,s defined in (1.21) and the transfer matrices Et′,c
and Es′,c defined in (1.25). Throughout this section we let TX and TY be two uniform
box cluster trees as constructed in Algorithm 2.3 and TX×Y the corresponding block
tree as constructed in Algorithm 2.26. We let `hf ∈ N0 be the highest level in the
high frequency regime. Furthermore we let the directions {c(`)

j }N`j=1 be constructed as
in Algorithm 2.6 and the mappings dir(`) be given as in Definition 2.9.

We start by considering the transfer matrices defined in (1.25). It suffices to focus
on the cluster tree TX as the properties which we show hold for general uniform box
cluster trees. Let t ∈ T (`)

X be a non-leaf box at level ` and t′ ∈ child(t). The transfer
matrix Et′,c has the entries

Et′,c[j, k] = exp(iκ〈ξt′,νj , c− c′〉)L(m)
t,νk

(ξt′,νj), j, k ∈ {1, ..., (m+ 1)3},

where c′ = dir(`+1)(c), {ξt′,νj}νj∈M are the interpolation points in t′ and {L(m)
t,νk
}νk∈M

are the Lagrange polynomials corresponding to the interpolation points in t for the
set of multi-indices M = {0, ...,m}3. We can split this matrix into a directional and a
non-directional part by setting

Et′,c = Ed
t′,cEt′ , (2.50)

where we define the directional part by

Ed
t′,c := diag ({exp(iκ〈ξt′,ν̃ , c− c′〉)}ν̃∈M) (2.51)

and the non-directional part by

Et′ [j, k] := L
(m)
t,νk

(ξt′,νj), j, k ∈ {1, ..., (m+ 1)3}. (2.52)

80 2 Fast Directional Matrix-Vector Multiplication

In particular we can split the multiplication g = Et′,cv for a vector v ∈ C(m+1)3 into

g = Ed
t′,cgnd, gnd = Et′v.

Let us consider the directional part Ed
t′,c of the transfer matrix Et′,c. We distinguish

two cases. If ` ∈ {0, ..., `hf}, i.e. ` is a level in the high frequency regime, then for each

box t ∈ T (`)
X we have to compute a matrix Ed

t′,c for all children t′ of t and all directions c

in the set of active and inherited directionsDt and D̂t given in Definitions 2.34 and 2.37.
As these matrices are diagonal, we only have to compute (m + 1)3 entries instead of
(m+ 1)6, which are needed for the transfer matrices Et′,c. If ` > `hf we see that Ed

t′,c

corresponds to the identity matrix because in this case c = c′ = 0. Hence, for such
levels no directional part Ed

t′,c of a transfer matrix Et′,c has to be computed.
Let us consider the non-directional part Et′ defined in (2.52). We observe that the

value of the Lagrange polynomial L
(m)
t,ν depends only on the position of the evaluation

point x relative to the box t. If t and x are translated by the same vector w ∈ R3 then
the value does not change. Hence, we have

L
(m)
t1,ν(ξt′1,ν̃) = L

(m)
t2,ν(ξt′2,ν̃), for all ν, ν̃ ∈M (2.53)

for two arbitrary boxes t1, t2 ∈ T (`)
X and their children t′1 ∈ child(t1), t′2 ∈ child(t2)

if t′1 and t′2 have the same position relative to t1 and t2, respectively. In particular,
for such boxes there holds Et′1 = Et′2 , i.e. the non-directional parts of the transfer
matrices coincide. The boxes in TX have this translation invariance property due to
the uniformity of TX . In fact, each box t ∈ TX has at most 8 children whose position
relative to t is fixed. Hence, we only have to compute and store at most eight non-
directional transfer matrices E ′t at each level ` ∈ {0, ..., p(TX) − 1} of the box cluster
tree TX , where p(TX) defines the depth of TX .

Next we consider the coupling matrices Ac,t,s defined in (1.21). Their entries are
given by

Ac,t,s[j, k] = fc(ξt,νj , ξs,νk) =
exp(iκ(|ξt,νj − ξs,νk | − 〈ξt,νj − ξs,νk , c〉))

4π|ξt,νj − ξs,νk |
,

where j, k ∈ {1, ..., (m + 1)3}. The generating function fc of these matrices depends
only on the difference of its arguments. Hence, fc is invariant under a translation of
both its arguments by the same vector. In particular, if two pairs of boxes (t1, s1)
and (t2, s2) are identical up to translation we get

Ac,t1,s1 = Ac,t2,s2 . (2.54)

We observe that two admissible leaf-blocks (t1, s1), (t2, s2) ∈ L+
X×Y at the same level `

of the block tree are identical up to translation if the difference of their midpoints
mt1 − ms1 and mt2 − ms2 is the same. Furthermore the direction used to compute

2.2 Implementation details and complexity discussion 81

the coupling matrix is c = c(`)(t1, s1) = c(`)(t2, s2) for such blocks by definition of the
directions c(`)(t, s) in (2.13). Hence, the coupling matrices corresponding to (t1, s1)
and (t2, s2) satisfy (2.54). In particular, it suffices to compute and store all required
coupling matrices for all levels ` once for a reference configuration and assign them to
the appropriate blocks (t, s) ∈ L+

X×Y .
Another aspect which improves the performance of an implementation further is a

compression of the coupling matrices (cf. [6, 30]). The problem is that the number
of rows and columns of these matrices, which is (m + 1)3, increases cubically in the
interpolation degree m. Hence, we would like to approximate them further. For this
purpose we would like to find a low rank approximation of Ac,t,s, i.e. we would like to
find a k ∈ N and two matrices Uc,t,s, Vc,t,s ∈ C(m+1)3×k such that

Ac,t,s ≈ Uc,t,sV
∗
c,t,s. (2.55)

We assume that such an approximation exists, because the coupling matrices are
generated by functions which are reasonably smooth by construction. This allows to
reduce the effort for the storage and application of the matrix Ac,t,s from O((m+ 1)6)
to O(k(m+ 1)3).

There are several possibilities to construct a low rank approximation of a given
matrix A ∈ Cn×n. The best low rank approximation for a given rank k can be found
by computing a singular value decomposition (SVD) of A and truncating the resulting
matrices appropriately, i.e by taking only the k largest singular values. However, the
computation of a SVD for a general matrix is quite expensive. Indeed, the number
of floating point operations needed to compute the SVD of a matrix A ∈ Cn×n is of
order O(n3) [19, Section 5.4.5]. Hence a truncated singular value decomposition is
unsuitable for our implementation.

Instead, we use the adaptive cross approximation (ACA), which was originally pre-
sented in [1, 3], for the compression of the coupling matrices. This method is based on
a gradual approximation of a matrix A by rank one matrices. A detailed description
of the general method and the partially pivoted ACA which we used in our implemen-
tation can be found in [33, Section 3.2.2, in particular Algorithm 3.9]. An advantage
of this method is that it can be used without the knowledge of the full matrix A.
Furthermore for the computation of a rank r approximation of a quadratic matrix
A ∈ Cn×n we only need O(r2n) floating point operations in general, see [33, Remarks
on Algorithm 3.9].

2.2.2 Complexity analysis

The standard matrix-vector multiplication g = Av for a dense matrix A ∈ CNX×NY

and a vector v ∈ CNY has a complexity of O(NXNY) in terms of storage and number of
floating point operations needed for the computation. Hence, for large NX and NY its
use is prohibitive. This was the motivation for the derivation of the directional approx-
imation of the matrix A in (2.1) and the corresponding fast directional matrix-vector

82 2 Fast Directional Matrix-Vector Multiplication

multiplication presented in Algorithm 2.42. Here we want to analyze the complexity
of this algorithm. However, we skip the discussion of the algorithms to construct the
box cluster trees and the block tree, as these are standard.

The results which we show in Theorems 2.45, 2.47 and 2.54 hold for rather general
assumptions of the underlying box cluster trees. As a consequence, they do not im-
ply an optimal or near optimal complexity in many application cases. Indeed, only
for points distributed more or less uniformly in a 3D domain we achieve a complex-
ity of O(N log(N)) under suitable assumptions on the domain and the wave num-
ber κ (cf. (2.68c)). In [30, Section 3.3.6] a complexity of O(N log(N)) is heuristically
motivated for various distributions of points. A more sophisticated discussion for
the 2D case can be found in [5, Section 5, cf. Theorem 12] that leads to a complex-
ity of O(N + κ2 log(N)) under suitable assumptions on the distribution of the points.
Since κ2 is typically of order N in applications, the complexity is of order O(N log(N))
also in this case.

We start our complexity estimate with an immediate but important observation.

Remark 2.44. Let us consider Algorithm 2.38, which is used to approximate the farfield
part g+ of the matrix-vector product g = Av (cf. Definition 2.32). In this algorithm we
multiply every directional interpolation matrix Lt,c and Ls,c, every transfer matrix Et′,c
and Es′,c and every coupling matrix Ac,t,s with a suitable vector exactly once. The
same holds for the matrices A|t̂×ŝ in Algorithm 2.33, which is used for the computation
of the nearfield part g− of g = Av. Furthermore every entry of these matrices can
be computed with O(1) operations. Hence, it suffices to discuss only the storage
requirements of Algorithms 2.33 and 2.38 as these are directly proportional to the
number of floating point operations required for their execution.

Let us first count the directional interpolation matrices and transfer matrices.

Theorem 2.45. Let TX and TY be two uniform box cluster trees and TX×Y the corre-
sponding block tree. Let pmax := max{p(TX), p(TY)} be the maximum of the depths of
the trees TX and TY . Let the highest level in the high frequency regime `hf ∈ N0 satisfy

`hf ≤ pmax − 1, (2.56)

where p(TX) and p(TY) are the depths of the corresponding trees. Let the direc-

tions {c(`)
j }N`j=1 be constructed as in Algorithm 2.6. Then there exists a constant CLE

such that the number NE of all transfer matrices Et′,c and Es′,c and the number NL of
all directional interpolation matrices Lt,c and Ls,c in Algorithm 2.38 is bounded by

NL +NE ≤ CLE 8pmax . (2.57)

Proof. We start by estimating the number of transfer matrices for boxes in the tree TX ,
which are needed in step four (L2L) of Algorithm 2.38. For all non-leaf boxes t

in T (`)
X \LX we need a transfer matrix Et′,c for each child t′ of t and each direction

2.2 Implementation details and complexity discussion 83

c ∈ Dt ∪ D̂t, where the set of active directions Dt is defined in (2.46) and the set of
inherited directions D̂t in (2.47). At each level ` of a uniform box cluster tree there
exist at most 8` boxes. Furthermore the number N` of directions at level ` is 6 · 4`hf−`
if ` ≤ `hf and 1 else. As a consequence we can estimate the number N

(`)
E,X of transfer

matrices at level ` ≤ `hf by

N
(`)
E,X =

∑
t∈T (`)

X

child(t)#(Dt ∪ D̂t) ≤
∑
t∈T (`)

X

8 · 6 · 4`hf−`

≤ 8`+1 · 6 · 4`hf−` ≤ 48 · 4`hf · 2`
(2.58)

and at level ` > `hf by

N
(`)
E,X =

∑
t∈T (`)

X

child(t) ≤ 8`+1.

Let us assume without loss of generality that p(TX) = pmax. The number NE,X of all
transfer matrices can then be estimated by

NE,X =

p(TX)−1∑
`=0

N
(`)
E,X ≤

`hf∑
`=0

48 · 4`hf · 2` +

p(TX)−1∑
`=`hf+1

8`+1 ≤ 96 · 8`hf + (8p(TX)+1 − 8`hf+2)

= 4 · 8`hf+1 + 8 · 8p(TX) ≤ 12 · 8p(TX) = 12 · 8pmax ,

(2.59)

if we assume that `hf ≤ p(TX)− 1 = pmax − 1.
Next we estimate the number NL,X of all directional interpolation matrices Lt,c for

boxes in TX , which are required in step five (L2T) of Algorithm 2.38. Let us first
assume that all leaf boxes t ∈ LX are at a level ` > `hf in TX . In this case we need
for each leaf box exactly one interpolation matrix, which does not depend on any
direction. Since a uniform box cluster tree with depth p(TX) has at most 8p(TX) leaves,
we can estimate the number NL,X of interpolation matrices in TX by

NL,X ≤ 8p(TX) ≤ 8pmax .

Together with (2.59) this yields

NE,X +NL,X ≤ 13 · 8pmax . (2.60)

Let us now consider the general case, where we allow leaves at levels ` ≤ `hf . For
all such leaves t ∈ T (`)

X we need a directional interpolation matrix for all direc-

tions c ∈ Dt ∪ D̂t, i.e. at most 6 · 4`hf−` per box. However, for such leaf boxes we
do not need any transfer-matrices, but have counted nonetheless 8 · 6 · 4`hf−` such ma-
trices in the estimate of N

(`)
E,X in (2.58). Hence, the estimate (2.60) holds also in the

general case.

84 2 Fast Directional Matrix-Vector Multiplication

Analogously we denote by NE,Y the number of transfer matrices and by NL,Y the
number of directional interpolation matrices for boxes in TY which are needed in steps
two (M2M) and one (S2M) of Algorithm 2.38, respectively. As above we get

NE,Y +NL,Y ≤ 13 · 8pmax .

Together with (2.60) this yields

NE +NL = NE,X +NE,Y +NL,X +NL,Y ≤ 26 · 8pmax = CLE 8pmax .

Remark 2.46. Let all assumptions of Theorem 2.45 hold, but `hf ≥ pmax − 1. By
repeating the proof of Theorem 2.45 we end up with the estimate

NE ≤ 96 · 4`hf−pmax · 8pmax , (2.61)

where NE still denotes the number of transfer matrices. In the proof we ignored
that the number of directions per box t at level ` is not only bounded by the total
number of directions at level ` but also by the number of admissible boxes s such that
(t, s) ∈ L+

X×Y . Hence the estimate (2.61) is in general far from optimal. However,
we observe for sufficiently large `hf that a different direction will be used for each
admissible box. In this case the number of transfer matrices and directional matrices
exceeds the number of coupling matrices, which is undesirable. Hence, we should not
choose `hf too large in general.

In the following theorem we estimate the number NC of all coupling matrices in
Algorithm 2.38. The proof of this theorem is inspired by [5, proof of Lemma 8]. In
particular, the strategy which we use to count hierarchically admissible clusters is
identical.

Theorem 2.47. Let κ > 0. Let TX and TY be two uniform box cluster trees and TX×Y
the corresponding block tree constructed as in Algorithm 2.26 for a given η2 > 0. Let the
diameters q`(TX) and q`(TY) be defined as in (2.9) and p(TX) and p(TY) be the depths
of the corresponding box cluster trees. Define the depth pmin := min{p(TX), p(TY)} and
the diameters q` := max{q`(TX), q`(TY)} for all ` ∈ {0, ..., pmin}. Let Cun ≥ 1 be such
that

q`
q`(TX)

≤ Cun. (2.62)

Then there exists a constant C(Cun, η2) depending only on Cun and η2, such that the
number NC of all coupling matrices Ac,t,s in Algorithm 2.38 is bounded by

NC ≤ C(Cun, η2)
(
pmin(q0κ)3 + 8pmin

)
. (2.63)

Proof. [5, cf. proof of Lemma 8] If there exists a leaf in TX×Y at level zero then NC ≤ 1
and the assertion is trivial. Hence we can assume that no such leaf exists. We want to

2.2 Implementation details and complexity discussion 85

estimate the number of coupling matrices levelwise. Therefore we denote the number
of all coupling matrices at level ` ∈ {1, ..., pmin} by NC,`.

For the estimate of NC,` we observe, that the number of coupling matrices needed

for a box s′ ∈ T (`)
Y in step three of Algorithm 2.38 corresponds to the number of

boxes t′ ∈ T (`)
X such that t′ and s′ satisfy (t′, s′) ∈ L+

X×Y . The interaction list I+(s′)
defined by

I+(s′) := {t′ ∈ T (`)
Y : (t′, s′) ∈ L+

X×Y } (2.64)

collects all such boxes. The parent t ∈ T (`−1)
X of a box t′ in I+(s′) is contained in the

nearfield N (s) of s = parent(s′) ∈ T (`−1)
Y by construction of TX×Y in Algoritm 2.26.

Therefore, we can estimate the number of boxes t′ ∈ I+(s′) by estimating the number
of boxes t ∈ N (s). In fact there holds

#I+(s′) ≤ 8#N (s),

because every box t ∈ N (s) has at most eight children. To estimate #N (s) we
construct a ball Br`−1

(ms) with radius r`−1 centered at the midpoint ms of s which
covers N (s), i.e. ⋃

t∈Ns

t ⊂ Br`−1
(ms).

Then there holds

#N (s) ≤ |Br`−1
(ms)|

v`−1(TX)
=

(4π/3)r3
`−1

3−3/2q`−1(TX)3
= 4π

√
3

(
r`−1

q`−1(TX)

)3

,

where v`−1(TX) = 3−3/2q`−1(TX)3 denotes the volume of a box t ∈ T (`−1)
X . In particular

we get

NC,` =
∑

s′∈T (`)
Y

#I+(s′) ≤
∑

s′x∈T (`)
Y

8#N (parent(s′))

≤ 8` · 32π
√

3

(
r`−1

q`−1(TX)

)3

= 8` C

(
r`−1

q`−1(TX)

)3

,

(2.65)

with the constant C = 32π
√

3.
In the following we construct a ball Br`−1

(ms) which covers the nearfield N (s) of a

box s ∈ T (`−1)
Y . For this purpose we have to consider the admissibility criteria (A1)

and (A3). Let ˜̀ be such that κq˜̀−1 > 1 and κq˜̀ ≤ 1. Then the admissibility crite-

rion (A3) implies (A1) for boxes t ∈ T (`−1)
X and s ∈ T (`−1)

Y if ` ≤ ˜̀. In particular there
holds t ∈ N (s) if and only if (A3) is violated. Similarly, if ` > ˜̀ then t ∈ N (s) holds
if and only if (A1) is violated. We distinguish these two cases to determine a suitable
ball Br`−1

(ms).

86 2 Fast Directional Matrix-Vector Multiplication

Let first ` ∈ {1, ...˜̀}. We consider a fixed box t ∈ T (`−1)
X in the nearfield N (s)

of s ∈ T (`−1)
Y and let z ∈ t̄ be such that

|z −ms| = max
x∈t
|x−ms|.

We know that η2 dist (t, s) < κq2
`−1, because (A3) is violated since t ∈ N (s). Hence,

there exist x ∈ t̄ and y ∈ s̄ such that

|x− y| < q`−1

η2

.

Therefore we can estimate

|z −ms| ≤ |z − x|+ |x− y|+ |y −ms| < q`−1(TX) +
κq2

`−1

η2

+
q`−1(TY)

2

≤ 3q`−1

2
+
κq2

`−1

η2

<

(
3

2
+

1

η2

)
κq2

`−1,

where we used q`−1 < κq2
`−1 for the last estimate. In particular every box t ∈ N (s) is

contained in the ball Br`−1
(ms) with radius

r`−1 =

(
3

2
+

1

η2

)
κq2

`−1.

Together with (2.62) and (2.65) we get

NC,` ≤ 8` C

(
r`−1

q`−1(TX)

)3

≤ 8` C

(
3

2
+

1

η2

)3(
q`−1

q`−1(TX)

)3

(κq`−1)3

≤ 8` C

(
3

2
+

1

η2

)3

C3
un(κq`−1)3

(2.66)

for all ` ∈ {1, ...˜̀}.
Let now ` ∈ {˜̀ + 1, ..., pmin}. Then a box t ∈ T (`−1)

X is in the nearfield N (s)

of s ∈ T (`−1)
Y if (A1) is violated, i.e. η2 dist (t, s) < q`−1. Analogously as above this

yields that the nearfield N (s) is covered by the ball Br`−1
(ms) with radius

r`−1 =

(
3

2
+

1

η2

)
q`−1.

In particular for all ` ∈ {˜̀+ 1, ..., pmin} there holds the estimate

NC,` ≤ 8` C

(
3

2
+

1

η2

)3

C3
un. (2.67)

2.2 Implementation details and complexity discussion 87

To estimate the number NC of all needed coupling matrices it suffices to sum up
the estimates of NC,` over all levels ` ∈ {1, ..., pmin}. With q0 = 2`q` and the esti-
mates (2.66) and (2.67) we get

NC =

pmin∑
`=1

NC,` ≤
˜̀∑

`=1

8 C

(
3

2
+

1

η2

)3

C3
un(κq0)3 +

pmin∑
`=˜̀+1

8` C

(
3

2
+

1

η2

)3

C3
un

≤ 8 ˜̀ (q0κ)3 C C3
un

(
3

2
+

1

η2

)3

+ 8pmin+1C C3
un

(
3

2
+

1

η2

)3

< C(Cun, η2)
(
pmin(q0κ)3 + 8pmin

)
,

in case that ˜̀< pmin, with the constant

C(Cun, η2) := 8 C C3
un

(
3

2
+

1

η2

)3

.

In case that ˜̀≥ pmin we similarly get the estimate

NC ≤ C(Cun, η2) pmin (q0κ)3 ≤ C(Cun, η2)
(
pmin(q0κ)3 + 8pmin

)
.

In Theorems 2.45 and 2.47 we have estimated the number of matrices which are
needed for the application of Algorithm 2.38. Hence we can now estimate its complex-
ity.

Theorem 2.48. Let A be a matrix as in (2.1) corresponding to two sets of points PX
and PY with cardinalities NX and NY . Let N := max{NX , NY }. Let TX and TY be
the uniform box cluster trees corresponding to these sets of points as constructed in
Algorithm 2.3. In particular let each leaf box contain at most nmax points. Let TX×Y be
the block tree corresponding to TX and TY . Let all the assumptions of Theorems 2.45
and 2.47 hold. Furthermore, let m be the interpolation degree for the directional ap-
proximation. Assume that there exist constants Cad, Cmax, and Cgeo such that

nmax ≤ Cmax(m+ 1)3, (2.68a)

pmax ≤ log8(N) + Cad, (2.68b)

κq0 ≤ Cgeo
3
√
N. (2.68c)

Then there exists a constant C(Cmax, CLE, Cad, Cun, Cgeo, η2) such that Algorithm 2.38
requires not more than

C(Cmax, CLE, Cad, Cun, Cgeo, η2)(m+ 1)6N log(N) (2.69)

units of storage.

88 2 Fast Directional Matrix-Vector Multiplication

Proof. We observe that due to (2.68a) a directional interpolation matrix Ac,t,s has at
most Cmax(m + 1)6 entries, where m is the interpolation degree. Since all transfer
and coupling matrices have exactly (m+ 1)6 entries, we see that each matrix used in
Algorithm 2.38 requires at most Cmax(m + 1)6 units of storage. By Theorems 2.45
and 2.47 we know that the total number of all such matrices is bounded by

NL +NE +NC ≤ CLE 8pmax + C(Cun, η2)
(
pmin(q0κ)3 + 8pmin+1

)
≤ CLE 8CadN + C(Cun, η2)

(
(log8(N) + Cad)C3

geoN + 8Cad+1N
)

≤ C(CLE, Cad, Cun, Cgeo, η2)N log(N),

for a suitable constant C(CLE, Cad, Cun, Cgeo, η2). Hence, we need at most

C(CLE, Cad, Cun, Cgeo, η2)N log(N)Cmax(m+ 1)6,

units of storage. By setting

C(Cmax, CLE, Cad, Cun, Cgeo, η2) = Cmax C(CLE, Cad, Cun, Cgeo, η2)

we end up with (2.69).

Remark 2.49. The constant Cmax in assumption (2.68a) can be controlled by choosing
nmax in the construction of the uniform box cluster trees sufficiently low. The assump-
tions (2.68b) and (2.68c) on the other hand depend substantially on the position of
the points in PX and PY . For points which are distributed more or less uniformly
in a 3D domain they are reasonable. However, in the setting of boundary element
methods the points are typically distributed on 2D manifolds. In particular we would
expect in such applications that

pmax ≈ log4(N),

κq0 ≤ Cgeo

√
N.

With these assumptions we would end up with a quadratic complexity in N by repeat-
ing the previous proof, which is unsatisfactory. Hence we need to refine our estimates
in Theorems 2.45 and 2.47 for points on 2D manifolds to end up with a complexity of
O((m + 1)6N log(N)). However, we do not further discuss this here but refer to [5,
Section 5] instead.

In Section 2.2.1 we have seen that we only have to compute coupling matrices once
for a reference configuration due to the uniformity of the box cluster trees TX and TY .
In the following proposition we discuss the effect of this approach for the required
storage.

Proposition 2.50. Let κ > 0. Let two uniform box cluster trees TX(PX) and TY (PY)
and the corresponding block tree TX×Y be given as in Theorem 2.47. In particular let

2.2 Implementation details and complexity discussion 89

pmin = min{p(TX), p(TY)} be the minimal depth of the two box cluster trees and the
constant C(Cun, η2) be the same as in (2.63). Then we can estimate the number NSC

of coupling matrices Ac,t,s which we need to store by

NSC ≤ pmin max{C(Cun, η2),
√
C(Cun, η2)(κq0)3/2}. (2.70)

Let furthermore NX and NY be the cardinalities of the sets PX and PY and their
maximum be given by N = max{NX , NY }. Let m be the interpolation degree chosen
for the directional approximation. Assume that there exist constants Cp and Cgeo,2

such that

pmin ≤ Cp log(N), (2.71a)

κq0 ≤ Cgeo,2

√
N. (2.71b)

Then there exists a constant C(Cun, η2, Cp, Cgeo,2) depending only on Cun, η2, Cp,
and Cgeo,2 such that the number MSC of entries of coupling matrices Ac,t,s which we
need to store is bounded by

MSC ≤ C(Cun, η2, Cp, Cgeo,2)(m+ 1)6N3/4 log(N). (2.72)

Proof. The number NSC,` of coupling matrices which we need to store at level ` is the

same as the maximal possible number of boxes t′ ∈ T (`)
X in the interaction list I+(s′) of

a box s′ ∈ T (`)
Y , which we defined in (2.64). Analogously as in the proof of Theorem 2.47

(cf. equations (2.66) and (2.67)) it follows that

NSC,` ≤ C(Cun, η2) max{1, (κq`−1)3}.

We further know that there can be at most 8` boxes in T (`)
X and that q` = 2−`q0 due

to the uniformity of the box cluster trees TX and TY . Hence, there holds the even
stronger estimate

NSC,` ≤ min{8`, C(Cun, η2) max{1, (κq0)381−`}} = NSC,`

Let us compute the maximum of NSC,`. Such a maximum exists, since 8` is strictly
increasing and max{1, (κq0)381−`} is decreasing. In particular there holds

max
`∈{0,...,pmin}

NSC,` ≥ min
`∈N0

C(Cun, η2) max{1, (κq0)381−`} = C(Cun, η2). (2.73)

If equality holds in (2.73) we have found the maximum. Else we compute the intersec-
tion point of the expressions 8` and C(Cun, η2)(κq0)381−`, i.e. we want to find `∗ such
that

8`
∗

= C(Cun, η2)(κq0)381−`∗ .

This is equivalent to
8`
∗

=
√

8 C(Cun, η2)(κq0)3/2.

90 2 Fast Directional Matrix-Vector Multiplication

In particular we get the estimate

max
`∈{0,...,pmin}

NSC,` ≤ 8`
∗

=
√

8 C(Cun, η2)(κq0)3/2

≤ max
{
C(Cun, η2),

√
8 C(Cun, η2)(κq0)3/2

}
.

Summation over all numbers NSC,` finally yields

NSC =

pmin∑
`=1

NSC,` ≤ pmin max{C(Cun, η2),
√

8 C(Cun, η2)(κq0)3/2}.

Here we assumed that at level ` = 0 no coupling matrix is stored, because else we need
exactly one coupling matrix and the assertion is trivial.

Let now (2.71a) and (2.71b) hold. We know that each coupling matrix has ex-
actly (m+ 1)6 entries, where m is the interpolation degree. Hence, we get

MSC = (m+ 1)6NSC ≤
√

8 C(Cun, η2)(m+ 1)6pmin max{1, (κq0)3/2}
≤ C(Cun, η2, Cp, Cgeo,2)(m+ 1)6N3/4 log(N),

with the constant C(Cun, η2, Cp, Cgeo,2) =
√

8 C(Cun, η2)CpCgeo,2.

Remark 2.51. Assumptions (2.71a) and (2.71b) are comparable to assumptions (2.68b)
and (2.68c) in Theorem 2.48, but weaker. In particular, assumption (2.71b) is generally
fulfilled in applications if the points in PX and PY are scattered more or less uniformly
in a 3D domain or on a 2D manifold. This is also assumed in the complexity discussion
in [30, Section 3.3.6]. Under these assumptions the costs to store the coupling matrices
are of order O(N3/4 log(N)). However, we still need to assign the stored coupling
matrices to the corresponding admissible blocks (t, s) ∈ L+

X×Y . For this purpose we
need NC assignments, where NC denotes the number of all needed coupling matrices.
Each of these assignments needs only O(1) storage. Hence, for general applications
they play a subordinate role. However, asymptotically they require O(NC) storage and
hence the asymptotic storage requirements do not change, if we store every coupling
matrix only once.

Next we consider the nearfield matrices A|t̂×ŝ corresponding to inadmissible blocks
in the block tree TX×Y . These matrices are not approximated but used directly for
the computation in Algorithm 2.33. Hence, we estimate the number of entries of these
matrices to estimate the required storage in Theorem 2.54. In the formulation and the
proof of this theorem we make use of the following definition.

Definition 2.52. Let TX(PX) and TY (PY) be two uniform box cluster trees con-
structed as in Algorithm 2.3. In particular let nmax ∈ N be such that all leaves t ∈ LX
and s ∈ LY contain at most nmax points. Let TX×Y be the block tree corresponding

2.2 Implementation details and complexity discussion 91

to TX(PX) and TY (PY). Let Cm ≥ 1 and let the sets of indices t̂ and ŝ for boxes t ∈ TX
and s ∈ TY be defined by (2.3). Then we define the set of controllable leaves L+

Y,X×Y
in TY and the remaining leaves L−Y,X×Y by

L+
Y,X×Y :=

⋃
`∈{0,...,pmin}

κq`<1

{s ∈ T (`)
Y ∩ LY : #t̂ ≤ Cmnmax if (t, s) ∈ L+

X×Y },

L−Y,X×Y := LY \L+
Y,X×Y .

(2.74)

Analogously we define the set of controllable leaves L+
X,X×Y in TX and the remaining

leaves L−X,X×Y .

Remark 2.53. In [5, Section 5, Equations (15) and (16)] the author assumes for all
leaves in the cluster trees similar conditions as we do for the leaves in the sets L+

Y,X×Y
and L+

Y,X×Y to control the contribution of the inadmissible blocks in the complexity
estimates. In particular, it is assumed that all leaves of the respective cluster trees
satisfy κq` < 1, i.e. they have sufficiently large levels. In our case we cannot assume
such a property in general, because there can be leaves at any level of a tree due to
the construction of the uniform box cluster trees in Algorithm 2.3. Only for suitable
geometries or box cluster trees constructed with a bisection method, for example,
this assumption is reasonable. In the estimate which we present in Theorem 2.54 we
assume that the number of leaves which do not have such nice properties, i.e. the
leaves in L−Y,X×Y and L−Y,X×Y are only few.

Theorem 2.54. Let the matrix A be defined as in (2.1) and PX and PY be the cor-
responding sets of points with cardinalities NX and NY . Let TX(PX) and TY (PY)
be two uniform box cluster trees constructed as in Algorithm 2.3. In particular let
nmax ∈ N be such that all leaves t ∈ LX and s ∈ LY contain at most nmax points.
Let pmin = min{p(TX), p(TY)} be the minimal depth of the two box cluster trees. Let
q` := max{q`(TX), q`(TY)} be the maximum of the diameters of boxes at level ` in the
two trees and let Cun ≥ 1 be such that

q`
min{q`(TX), q`(TY)} ≤ Cun. (2.75)

Let TX×Y be the block tree corresponding to TX(PX) and TY (PY). Let Cm ≥ 1 and let
the controllable leaves L+

Y,X×Y and L+
X,X×Y , as well as the remaining leaves L−Y,X×Y

and L−X,X×Y be given by Definition 2.52. Finally let Cin ∈ N0 be such that

#L−X,X×Y ≤ Cin, #L−Y,X×Y ≤ Cin. (2.76)

Then there exists a constant Ĉ(Cun, η2) depending only on Cun and η2 such that the
number MD of entries of all nearfield matrices A|t̂×ŝ corresponding to inadmissible
blocks (t, s) ∈ L−X×Y is bounded by

MD ≤ Cinnmax(NX +NY) + Ĉ(Cun, η2)Cmn
2
max8pmin+1. (2.77)

92 2 Fast Directional Matrix-Vector Multiplication

In particular, if pmin ≤ log8(N)+Cad for N = max{NX , NY } and a constant Cad ∈ N0,
then there exists a constant Cnf depending only on Cad, Cin, Cm, Cun, nmax, and η2

such that Algorithm 2.33 does not need more than CnfN units of storage.

Proof. For each inadmissible block (t, s) ∈ L−X×Y we know that either t ∈ LX or
s ∈ LY . Hence, we start by considering the leaves in LY . Our goal is to estimate the
number MD,Y of matrix entries corresponding to all blocks (t, s) ∈ L−X×Y with s ∈ LY .
We split this estimate into two parts. First we consider the number M−

D,Y of matrix

entries corresponding to all blocks (t, s) ∈ L−X×Y such that s ∈ L−Y,X×Y . For s ∈ L−Y,X×Y
the nearfield can contain all NX points in PX . However, the number of boxes in L−Y,X×Y
is bounded by Cin by assumption. Furthermore we know that the number of points
in s is bounded by nmax by construction of the tree TX in Algorithm 2.3. Hence, we
get

M−
D,Y =

∑
s∈L−Y,X×Y

#ŝ
∑

{t:(s,t)∈L−X×Y }

#t̂ ≤ CinnmaxNX . (2.78)

Next we consider the number M+
D,Y of matrix entries corresponding to all blocks

(t, s) ∈ L−X×Y such that s ∈ L+
Y,X×Y . Each matrix corresponding to such a block

has at most Cmn
2
max entries, as #ŝ ≤ nmax by construction of TY and #t̂ ≤ Cmnmax

by definition of L+
Y,X×Y in (2.74). Hence, it suffices to count the number of all these

blocks. Let s ∈ L+
Y,X×Y . We know that ` = level(s) is such that κq` ≤ 1 by definition

of L+
Y,X×Y . Similarly as in the proof of Theorem 2.47 we see that the nearfield N (s)

is included in a ball with radius (3/2 + 1/η2)q` centered at the midpoint ms of s. This
allows us to estimate the number of boxes t in the nearfield N (s) of s by

#N (s) ≤ 4π
√

3

(
3

2
+

1

η2

)3

C3
un =: C̃(Cun, η2),

similarly as in (2.67). With this estimate we get

M+
D,Y,` :=

∑
s∈L+Y,X×Y
level(s)=`

#ŝ
∑

{t:(s,t)∈L−X×Y }
#t̂ ≤ C̃(Cun, η2)Cmn

2
max8`,

where we further used that the number of boxes s ∈ LY at level ` is bounded by 8`.
Therefore we can estimate M+

D,Y by

M+
D,Y =

∑
`∈{0,...,pmin}

κq`≤1

M+
D,Y,` ≤

pmin∑
`=0

C̃(Cun, η2)Cmn
2
max8` ≤ C̃(Cun, η2)Cmn

2
max8pmin+1.

Finally we get

MD,Y = M−
D,Y +M+

D,Y ≤ CinnmaxNX + C̃(Cun, η2)Cmn
2
max8pmin+1.

2.2 Implementation details and complexity discussion 93

In the same manner we can show that

MD,X ≤ CinnmaxNY + C̃(Cun, η2)Cmn
2
max8pmin+1,

where MD,X is the number of matrix entries corresponding to all blocks (t, s) ∈ LX×Y
with t ∈ LX . The assertion (2.77) follows by summation of the estimates on MD,Y

and MD,X with the constant Ĉ(Cun, η2) = 2C̃(Cun, η2).
To show the linear complexity of Algorithm 2.33 it suffices to estimate

8pmin ≤ 8Cad+1N

in (2.77), replace NX and NY by N , and collect the constants.

Remark 2.55. We have already pointed out in Remark 2.49 that the assumption
pmin ≤ log8(N) + Cad is generally unsuitable for points distributed on a 2D manifold.
Again, we refer to [5, Section 5] for a detailed discussion of the 2D setting.

The following theorem concerning the complexity of Algorithm 2.42 is a summary
of the main results of this section.

Theorem 2.56. Let the matrix A be defined in (2.1) and PX and PY be the cor-
responding sets of points with cardinalities NX and NY . Let N := max{NX , NY }.
Let TX and TY be the uniform box cluster trees constructed by Algorithm 2.3 for the
sets PX and PY and TX×Y the corresponding block tree constructed by Algorithm 2.26
for some η2 > 0. Assume that there exists a constant Ctree > 0 such that the construc-
tion of the trees TX , TY , and TX×Y does not require more than CtreeN log(N) units of
storage and floating point operations. Assume further that the assumptions of Theo-
rems 2.48 and 2.54 hold. Then the run-time and storage complexity of Algorithm 2.42
is of order O(N log(N)).

Proof. Step one and three of Algorithm 2.42, i.e. the construction of the uniform
box cluster trees TX and TY and the block tree TX×Y , have the desired complex-
ity by assumption. The same holds for steps four and five due to Theorems 2.48
and 2.54. Hence, it remains to show that step two in Algorithm 2.42 has a complex-
ity of O(N log(N)). As every direction can be constructed with O(1) floating point
operations it suffices to estimate the number of all constructed directions.

For ` > `hf there exists only the trivial direction 0 which has to be stored only once.
For all other levels ` ≤ `hf the number of directions is given by 6 · 4`hf−`. Hence, in
total we need to compute and store at most

1 +

`hf∑
`=0

6 · 4`hf−` = 1 +
6 · (4`hf+1 − 1)

4− 1
≤ 2 · 4`hf+1

directions. By assumptions (2.56) and (2.68b) we have `hf +1 ≤ pmax ≤ log8(N)+Cad.
Therefore the number of directions is of order O(N), since

2 · 4`hf+1 ≤ 2 · 4Cad+log8(N) ≤ 2 · 4Cad+log4(N) = 2 · 4Cad ·N.

3 Numerical Experiments

The fast directional matrix vector multiplication in Algorithm 2.42 allows us to ap-
proximate the matrix-vector product of a matrix A ∈ CNX×NY as in (2.1) and a
vector v ∈ CNY . The required number of floating point operations for this algorithm
is of order O(N log(N)) with N := max{NX , NY } as seen in Theorem 2.56. Hence
it is significantly less than the complexity O(NXNY) of the direct evaluation, if NX

and NY are large. Furthermore we have seen that the approximation error converges
exponentially to zero with increasing interpolation degree m, which is used for the
directional approximation. This interpolation degree m as well as the separation con-
stant η2 and the highest level in the high-frequency regime `hf have to be chosen for the
application of Algorithm 2.42. The choice of the latter two parameters is not immedi-
ate. If η2 is small, then we expect lower approximation errors by Theorem 2.29, but at
the same time a higher number of floating point operations for the evaluation due to
Theorems 2.48 and 2.54. Similarly large `hf reduce the approximation error by The-
orem 2.29 but increase the computational effort, which is discussed in Remark 2.46.
This motivates the necessity of numerical experiments and a detailed parameter study,
which we present below. To our best knowledge, such a parameter study is missing in
literature.

For the numerical experiments we implemented Algorithm 2.42 in C++. The basis
of our code is an implementation of a fast multipole method for the Laplace equation
presented in [28]. We used the construction of the uniform box cluster trees (cf. Al-
gorithm 2.3) of this implementation and adapted the other existing structures to our
needs. In particular we had to adapt the admissibility criteria for the construction of
the block tree (cf. Algorithm 2.26) and to construct the sets of directions (cf. Algo-
rithm 2.6). In our implementation we take into account also the details of Section 2.2.1.
In particular we store each coupling matrix Ac,t,s exactly once and compress it using
a partially pivoted ACA. The only other matrices we store are the non-directional
transfer matrices Et′ introduced in Section 2.2.1. All other matrices appearing in Al-
gorithm 2.38 are used exactly once in a matrix vector multiplication. Hence, we do
not store them, but assemble them when needed. We note that all computations in
this chapter were executed sequentially on a PC with two Intel Xeon E5620 CPUs
running at 2.4 GHz and a total of 24 GiB of RAM.

For our numerical tests we focused on matrices A ∈ CN×N with entries

A[j, k] =

{
exp(iκ|xj−xk|)

4π|xj−xk|
if j 6= k,

0 if j = k,
(3.1)

95

96 3 Numerical Experiments

where PX = {xj}Nj=1 is a set of points in R3. These matrices correspond to those
in (2.1), if the sets of points PX and PY are chosen to be equal and the diagonal of the
matrix is set to zero to get rid of the singularities. We note that Algorithm 2.42 is also
applicable for a matrix A as in (3.1), because the change of the diagonal affects only
the computation of the nearfield part g− of the matrix vector product g = Av, which
is evaluated directly in Algorithm 2.42. Matrices of similar shape are of particular
interest for the solution of boundary value problems by means of boundary element
methods. In this setting the points in PX are scattered on a 2D manifold in R3, which
is why we focus on such sets of points.

In the following sections we consider matrices A ∈ CN×N defined by (3.1) for var-
ious sets of points PX and compute the matrix-vector product g = Av directly and
approximately using the fast directional matrix vector multiplication in Algorithm 2.42
for some vectors v ∈ CN . In Section 3.1 we choose the points on the surface of the
cube [−1, 1]3. We investigate how the choice of parameters influences the approxima-
tion quality, the memory requirements, and the runtimes of the fast directional matrix-
vector mlieultiplication. For this purpose we execute Algorithm 2.42 for various choices
of the parameters m, η2, and `hf and compare the resulting vector ĝ with the exact
result g = Av by computing the relative error ‖g − ĝ‖2/‖g‖2. The comparison of the
runtimes and approximation qualities in Sections 3.1.2 and 3.1.3 motivates a parame-
ter selection strategy for η2 and `hf which we discuss in Section 3.1.4. In Section 3.2
we check if the parameters chosen according to these parameter choice strategies are
reasonable also in the case of points distributed on the sphere S2 = {x ∈ R3 : |x| = 1}.

We conclude the chapter by presenting computation results of two implementations
of Algorithm 2.42: one in which all stored coupling matrices Ac,t,s are compressed
via ACA and one in which they are not. By comparing the relevant runtimes, ap-
proximation qualities, and the required storage for the coupling matrices we show that
compression strategies are crucial for a good performance of Algorithm 2.42.

Before we start with the parameter study we note that in other works the parame-
ter η1 from the criterion (A2) is chosen instead of `hf as a parameter for the algorithm
(cf. [5, 7]). However, these two parameters are closely connected, as seen in Theo-
rem 2.19.

3.1 Parameter study on the surface of a cube

To gain a better understanding of the effect of the parameters η2 and `hf on Algo-
rithm 2.42 it makes sense to consider a simple geometry for a basic parameter study.
Hence, we consider only points on the surface of the cube [−1, 1]3 throughout this
section. In Section 3.1.1 we describe a way to construct sets of points PX(L) whose
corresponding box cluster trees TX are balanced. Then we start our parameter study
by first varying the separation constant η2 in some numerical experiments in Sec-
tion 3.1.2. This gives us an insight into suitable choices of η2. We repeat the same for

3.1 Parameter study on the surface of a cube 97

the parameter `hf in Section 3.1.3. In Section 3.1.4 we finally summarize our observa-
tions and discuss a possible parameter selection strategy. We note that the results in
Sections 3.1.2 and 3.1.3 are only a suitable selection of a large number of numerical
experiments which we conducted.

3.1.1 Construction of the point sets

To make the interpretation of the results easier we construct a set of points PX on
the surface of [−1, 1]3 such that the uniform box cluster tree TX(PX) constructed
by Algorithm 2.3 is balanced. In particular we want that all leaves of the tree are
on the same level and contain a similar number of points. For this purpose we fix
the number nmax = 150 of maximally allowed points in a leaf. We choose this number
since it guarantees that inadmissible blocks in the later matrix partition are reasonably
small, and at the same time admissible blocks corresponding to boxes at leaf level are
still large enough such that it is reasonable to approximate them. Then we choose a
level L ∈ N for the leaves and divide each face of the surface ∂([−1, 1]3) uniformly
into 4L squares. On any square which does not touch an edge or corner of ∂([−1, 1]3)
we distribute 12 × 12 points on an equidistant grid on the inside of this square, to
ensure that the resulting points are pairwise disjoint. If a square touches an edge
but no corner then we distribute only 10 × 7 points on this square and in case it
touches a corner only 7 × 7. We denote the resulting set of points by PX(L). If we
use Algorithm 2.3 to construct a uniform cluster tree TX for the set of points PX(L)
and choose the box X = [−1, 1]3 as initial box, then all of the leaves of TX are at
level L and contain at least 140 and at most 147 points. The set PX(2) is depicted in
Figure 3.1.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x1x2

x
3

Figure 3.1: The set of points PX(2) on ∂([−1, 1]3)

98 3 Numerical Experiments

One could argue that this choice of points is inappropriate, because the regularity
of the points could lead to unrealistically low approximation errors due to the inter-
polation schemes used for the directional approximation (cf. Section 1.2.1). However,
we use Chebyshev nodes as interpolation points whereas the points in PX(L) lie on
equidistant grids. Hence, the points in PX(L) do not coincide with the interpolation
points in general and we can assume that this choice of points does not have a strong
impact on the approximation errors.

In the following sections we choose the wave number κ depending on the sets of
points PX(L). The choice κ = 3.14 · 2L−2 seems to be reasonable for the set PX(L) for
a fixed L. For this wave number the wavelength λ = 2π/κ is approximately 23−L. By
construction of PX(L) there are about 12 points per length 21−L and hence 48 points
per wavelength. This suffices to resolve the waves of the oscillatory factor exp(iκ|x−y|)
sufficiently good, which is typically required in applications.

3.1.2 Variation of the separation parameter

We want to investigate the influence of the separation parameter η2 on the fast direc-
tional matrix vector multiplication in Algorithm 2.42. For this purpose we consider
the points PX(4) constructed in Section 3.1.1, whose cardinality is N = 194040, and
the corresponding box cluster tree TX . We choose the wave number κ = 12.56. Ad-
ditionally, we fix the highest level `hf = 3 in the high frequency regime, i.e. we let
only the leaf level of TX be in the low frequency regime. Then we construct the block
tree TX×X(η2) by Algorithm 2.26 for various choices of η2. The notation TX×X(η2) is
used to emphasize the dependence on the parameter η2. Finally we compute the ap-
proximation ĝ of the matrix-vector product g = Av for the matrix A ∈ CN×N in (3.1)
and a vector v ∈ CN , which we choose randomly but fixed for all the computations.
This approximation consists of the approximate farfield part ĝ+ which is computed by
Algorithm 2.38 and the nearfield part g− computed by Algorithm 2.33. The choice
of η2 influences both parts.

Table 3.1 contains the numbers of admissible leaf blocks L+
X×X(η2) at the relevant

levels ` ∈ {2, ..., 4} in TX×X(η2), their sum, and the percentage of entries of the ma-
trix A, which are used for the compuation of the nearfield part g− in Algorithm 2.33,
for some values of η2. These values were chosen suitably to show the effect of the
change of η2.

The nearfield percentage is given in the last column of the table. We see that for
increasing η2 it decreases until it reaches the fixed value 0.7202 for η2 ≥ 5. The reason
is that for increasing η2 the admissibility criteria (A1) and (A3) become less restrictive,
i.e. more and more pairs of boxes (t, s) with t and s in TX become admissible and as
a consequence the nearfield percentage decreases. If we choose η2 large enough only
pairs (t, s) satisfying dist (t, s) = 0 remain inadmissible. This is the case for η2 = 5 in
Table 3.1. Increasing η2 even further has no more effect on the nearfield percentage,
as these remaining pairs of boxes can never be admissible.

3.1 Parameter study on the surface of a cube 99

Table 3.1: Number of admissible leaf blocks in T +
X×X(η2) (levelwise and total) and the

percentage (near. %) of matrix entries used to compute the nearfield part g−

in Algorithm 2.33; (set of points PX(4), κ = 12.56)

η2 level 2 level 3 level 4 total near. %
1 0 56 1649400 1649456 9.6439
2 0 47360 724200 771560 3.7384
3 0 65912 393072 458984 2.0736
4 0 71648 286848 358496 1.6923
5 0 78392 170592 248984 0.7202
6 8 78240 166368 244616 0.7202
7 176 73080 132192 205448 0.7202

10 1352 41472 49536 92360 0.7202
19 2504 12960 49536 65000 0.7202

Next we consider columns two to five of Table 3.1. The first three of these columns
contain the number of admissible leaf blocks in L+

X×X counted at each of the levels
` ∈ {2, ..., 4} separately, and the last their sum. We note that this sum corresponds to
the total number of M2L operations used for the computation of the farfield part ĝ+ in
Algorithm 2.38. For increasing η2 the total number of admissible leaf blocks decreases
strictly. Again the reason is that for increasing η2 the admissibility criteria (A1)
and (A3) are less restrictive. As a consequence non-leaf blocks in TX×X(η2) can become
admissible and are transformed into leaves by truncating the underlying subtrees. This
reduces the total number of leaves in TX×X drastically, as every block (t, s) in TX×X
has at least 16 children. Indeed every non-leaf box t in TX(4) has at least four children
due to the uniformity of the construction of the set PX(4) and the corresponding box
cluster tree TX in Section 3.1.1. Hence, the children of a block (t, s), which are formed
by all pairs of children of t and s, are at least 16. Another effect of the increase of η2

is that previously inadmissible leaves in TX×X(η2) can become admissible, which leads
to an increase of the number of admissible blocks. However, the reduction of the total
number of leaves outweighs this transformation of inadmissible blocks in general. This
explains the decreasing behavior of the total number of admissible blocks. Similarly
one can explain the steady decrease of the number of admissible blocks at level four,
the initial increase and later decrease at level three and the increase at level two.

The numbers in Table 3.1 suggest to choose η2 not too small. Indeed, we see that
for η2 = 1 the nearfield percentage is almost 10, and the total number of blocks in the
block tree, which correspond to the subblocks in which we partition the matrix A, is
1649456, which is more than 8N . Optimal in terms of the total number of admissible
blocks is the choice η2 = 19. However, we have not yet considered the approxima-
tion quality. For this purpose we compute the approximations ĝ of the matrix vector
product g = Av for the matrix A in (3.1) and a given vector v for several choices of
the separation parameter η2 and interpolation degrees m. The resulting relative errors

100 3 Numerical Experiments

are presented in Table 3.2. We note that these errors are in general also influenced
by the choice of the stopping criterion used for the compression of the coupling ma-
trices by means of the ACA. We used the stopping criterion in [33, Algorithm 3.9,
Step 3.5] with εACA = 10−5. A comparison between the errors in the compressed case
and the uncompressed case showes that the influence of the compression on the errors
in Table 3.2 is neglectible for this stopping criterion and our choices of parameters.
We note that this choice of εACA is not optimal for all the following computations. In
particular for some choices of η2 and m we could choose larger εACA and achieve a
better compression without disturbing the approximation quality. Only for the sake of
simplicity we consider the fixed parameter εACA = 10−5 as long as it does not influence
the approximation quality.

Table 3.2: Relative errors ‖g − ĝ‖2/‖g‖2 for various separation parameters η2 and in-
terpolation degrees m and the estimated and predicted rate of convergence
(erc and prc); (set of points PX(4), κ = 12.56, `hf = 3, εACA = 10−5)

η2 m = 2 m = 3 m = 4 m = 5 erc prc
1 2.19−2 2.13−3 1.63−4 1.71−5 0.10 0.33
2 2.30−2 2.37−3 2.21−4 2.40−5 0.11 0.50
3 2.47−2 2.53−3 2.41−4 2.51−5 0.10 0.60
4 2.70−2 2.81−3 2.95−4 3.23−5 0.11 0.67
5 2.81−2 3.31−3 3.17−4 3.22−5 0.10 0.71
6 2.85−2 3.35−3 2.92−4 3.17−5 0.11 0.75
7 3.83−2 6.43−3 8.40−4 1.11−4 0.13 0.78

10 6.41−2 1.12−2 2.17−3 3.71−4 0.17 0.83
19 8.46−2 1.90−2 6.41−3 1.60−3 0.25 0.90

In Table 3.2 we observe exponential convergence of the relative errors with increasing
interpolation degree m for all choices of the separation parameter η2. This is what
we expect from Theorem 1.15 and Remark 2.43. The last two columns in Table 3.2
contain an estimate of the rate of convergence of the relative errors, which we compute
by taking the quotient of the relative errors for m = 5 and m = 4, and a prediction
of this rate by Theorem 1.15. Although the estimate is very rough, it suggests that
the rate of convergence is much better than the predicted rate 1/ρ̂ = 1/(1 + 2/η2).
The qualitative statements of Theorem 1.15 seem to apply, however. In particular, the
errors for a fixed interpolation degree m increase with increasing η2. Only the errors
for η2 = 6 and m = 4 and m = 5, respectively, step out of row, as they are lower than
the respective errors for η2 = 5. Similarly the rate of convergence seems to increase
with increasing η2, in particular for larger values of η2.

All in all the results in Table 3.2 suggest to choose η2 rather small. While the
approximation errors do not differ to much for η2 ≤ 6 they get significantly worse for
higher η2. On the other hand we recall that the numbers in Table 3.1 suggested to

3.1 Parameter study on the surface of a cube 101

choose η2 as high as possible. Indeed, we observed that the percentage of nearfield
operations reaches its minimum for η2 ≥ 5 and that the total number of admissible
blocks is strictly decreasing for increasing η2. Hence by Tables 3.1 and 3.2 the choices
η2 = 5 and η2 = 6 seem to be reasonable.

Finally we want to check if these choices are also reasonable in regard to the com-
putation times. In Table 3.3 we show the computation times needed for the evaluation
of Algorithm 2.42 for several choices of the separation parameter η2. In regard to
Table 3.2 we consider the interpolation degree m = 3 if η2 ≤ 7, and m = 4 if η2 > 7.
These choices lead to relative errors which are of similar magnitude and can therefore
be compared well.

Table 3.3: Time in seconds required for the computation of the fast directional matrix-
vector product ĝ for several choices of η2 and m and the set of points PX(4).
The columns two to four contain the times needed for the setup, the com-
putation of the nearfield part g−, and the computation of the approximate
farfield part ĝ+. Column five contains the time required for the computa-
tion of ĝ after setup, i.e. the sum of columns three and four. The last line
contains the time required for the exact computation of g = Av. (κ = 12.56,
`hf = 3, εACA = 10−5)

(η2,m) setup g− ĝ+ ĝ
(1, 3) 13.35 361.20 3.54 364.75
(2, 3) 7.39 135.93 2.07 138.01
(3, 3) 5.25 74.23 1.51 75.75
(4, 3) 4.71 59.65 1.28 60.94
(5, 3) 4.25 23.40 1.08 24.49
(6, 3) 5.93 23.38 1.08 24.46
(7, 3) 5.37 23.39 0.98 24.38
(10, 4) 6.77 23.38 1.32 24.71
(19, 4) 5.09 23.39 1.17 24.57
exact 3810.26

The setup times in Table 3.3 include the times needed for the construction of the
uniform box cluster tree TX and the block tree TX×X(η2) as well as the times to
assemble the non-directional transfer matrices Et′ introduced in Section 2.2.1 and to
assemble the compressed coupling matrices Ac,t,s. We present them to show that they
are not extraordinarily high, but in the range of the computation times in column three
and four. If the matrix A in (3.1) is used several times for matrix-vector multiplications
this setup is only required once. Therefore, we neglect the setup times in the sums in
column five.

The nearfield computation times, i.e. the times required for the computation of g−,
are given in column three of Table 3.3. Let us compare them with the time needed
for the computation of the exact matrix-vector product g = Av which is given in the

102 3 Numerical Experiments

last line of the same table. We see that they behave as we expect when considering
the nearfield percentages in Table 3.1. In particular, the nearfield computation times
are constant for η2 ≥ 5, and attain their minimum for such η2. In comparison to the
farfield computation times the nearfield computation times are significantly higher.
Hence, it seems to be reasonable to choose η2 such that the nearfield computation
time is minimal.

Let us finally consider the farfield computation times in column five of Table 3.3.
As expected we observe a decrease of these times for increasing η2 and fixed m = 3 up
to η2 = 7. The slight increase of the farfield computation time for η2 = 10 and m = 4
is what we expect due to the increase of the interpolation degree. Overall, the farfield
computation times are in a similar range for η2 ≥ 4.

In summary, we observe that Tables 3.1 and 3.3 give similar insights into the choice
of η2. Both suggest to choose η2 sufficiently large. In particular the choice η2 ≥ 5 seems
to be reasonable as for such η2 the nearfield percentage is minimized. Together with
the results in Table 3.2 on the approximation quality we see that the choices η2 = 5
and η2 = 6 seem to be preferable. For the sake of completeness we list the relative
errors and farfield times for these parameters and interpolation degrees m ∈ {2, ..., 5}
in Table 3.4.

Table 3.4: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ for `hf = 3, η2 ∈ {5, 6}, and m ∈ {2, ..., 5}; (set of points
PX(4), κ = 12.56, εACA = 10−5)

`hf = 3 η2 = 5 η2 = 6
m rel. error time ĝ+ rel. error time ĝ+

2 2.81−2 0.47 2.85−2 0.47
3 3.31−3 1.08 3.35−3 1.08
4 3.17−4 2.12 2.92−4 2.12
5 3.22−5 3.86 3.17−5 3.87

Up to this point we have only talked about the set of points PX(4) and the cor-
responding matrix-vector multiplication. Let us now consider the set PX(5) with
cardinality N = 829176. As mentioned in Section 3.1.1 we choose the wave number
κ = 25.12 for this set of points. Furthermore we set the highest level in the high
frequency regime `hf = 4 to end up again with only one level in the low frequency
regime. Analogously as for the set PX(4) we consider the matrix A in (3.1) and fix a
randomly constructed vector v ∈ CN for the matrix-vector multiplication. As before
our goal is to find a suitable separation constant η2 for the fast directional matrix-
vector multiplication. Therefore, we used Algorithm 2.42 for the computation of this
fast directional matrix-vector product ĝ for several choices of η2 and interpolation de-
grees m and compared them with the exact result g = Av. The results are given in
Table 3.5.

3.1 Parameter study on the surface of a cube 103

Table 3.5: Relative errors ‖g − ĝ‖2/‖g‖2 for various separation parameters η2 and in-
terpolation degrees m and the estimated and predicted rate of convergence
(erc and prc); (set of points PX(5), κ = 25.12, `hf = 4, εACA = 10−5)

η2 m = 2 m = 3 m = 4 m = 5 erc prc
4 4.81−2 7.04−3 9.17−4 1.36−4 0.15 0.67
5 4.80−2 8.17−3 1.12−3 1.64−4 0.15 0.71
6 4.84−2 8.38−3 1.14−3 1.72−4 0.15 0.75
7 5.06−2 9.31−3 1.45−3 2.19−4 0.15 0.78
10 6.07−2 1.10−2 2.54−3 3.86−4 0.15 0.83

This time we have only considered a smaller number of separation parameters η2 due
to our findings for the set of points PX(4). Indeed, we have seen that choosing η2 too
small leads to large computation times, while choosing η2 too large leads to large errors.
In Table 3.5 we consider the approximation quality. We observe again an increase
of the approximation errors and a decrease of the estimated rates of convergence for
increasing η2. The differences are only small, however. Only for η2 = 10 and m ∈ {4, 5}
the relative errors are about a factor two to three worse than the corresponding errors
for the other choices of η2.

In Table 3.6 we show the computation times which are needed for the setup and
computation of the fast directional matrix-vector product ĝ as well as the time for the
exact computation of g = Av. Similarly as in Table 3.3 we choose the interpolation
degree m such that a similar approximation quality is achieved for all choices of η2.
Choosing m = 4 for all η2 seems to be reasonable for this purpose.

Table 3.6: Time in seconds required for the computation of the fast directional matrix-
vector product ĝ for several choices of η2 and m and the set of points PX(5).
The columns two to four contain the times needed for the setup, the com-
putation of the nearfield part g−, and the computation of the approximate
farfield part ĝ+. Column five contains the time required for the computa-
tion of ĝ after setup, i.e. the sum of columns three and four. The last line
contains the time required for the exact computation of g = Av. (κ = 25.12,
`hf = 4, εACA = 10−5)

η2 setup g− ĝ+ ĝ
(4, 4) 20.45 244.27 13.34 257.63
(5, 4) 16.49 95.62 10.89 106.54
(6, 4) 14.56 95.92 10.21 106.15
(7, 4) 13.07 95.38 9.12 104.52
(10, 4) 10.81 95.81 6.50 102.34
exact 70575.70

104 3 Numerical Experiments

First we want to emphasize the huge difference between the times needed for the
computation of the approximate matrix-vector products, which lie in the range of a
few minutes, and the computation of the exact product, which requires more than
19 hours on our PC. This underlines the benefits of the fast directional matrix-vector
multiplication. Furthermore the large time required for the exact computation suggests
to choose η2 not to small. If we choose η2 = 1, for example, the nearfield percentage,
i.e. the percentage of entries of A needed for the computation of the nearfield part g−,
is about 2.1, and we expect the nearfield computation time for η2 = 1 to be more than
20 minutes.

Let us further comment on the nearfield computation time. As in the case of the
set of points PX(4) it reaches its minimum for η2 ≥ 5. Also the farfield computation
times behave as in the case before, i.e. they decrease for increasing η2. The decrease
is greater this time. In particular for η2 = 10 the farfield computation time is clearly
lower compared to the rest.

When considering the results in Tables 3.5 and 3.6 it is hard to speak of an optimal
choice of η2. While choosing η2 ∈ {5, 6} leads to slightly better relative errors choosing
η2 = 10 is preferable in terms of the computation time for the farfield part ĝ+. However,
we note that in some applications an error twice as large might enforce a higher
interpolation degree. In such a case the choices η2 = 5 and η2 = 6 are preferable.
Nonetheless we collect the relative errors and farfield computation times for all three
choices of η2 in the separate Table 3.7.

Table 3.7: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ for `hf = 3, η2 ∈ {5, 6}, and m ∈ {2, ..., 5}; (set of points
PX(5), κ = 25.12, εACA = 10−5)

`hf = 4 η2 = 5 η2 = 6 η2 = 10
m rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

2 4.80−2 2.35 4.84−2 2.16 6.07−2 1.22
3 8.17−3 5.49 8.38−3 5.12 1.10−2 3.14
4 1.12−3 10.89 1.14−3 10.21 2.54−3 6.50
5 1.64−4 20.43 1.72−4 19.62 3.86−4 13.07

By the computations and discussions above we have now a basic idea on how to
choose the separation parameter η2. What we have not considered yet is how the pa-
rameter `hf influences the fast directional matrix-vector multiplication in applications.
This is the topic of the following section.

3.1 Parameter study on the surface of a cube 105

3.1.3 Variation of the number of high frequency levels

In Section 3.1.2 we have chosen the highest level in the high frequency regime `hf = 3
for the set of points PX(4) and `hf = 4 for PX(5). Here we want to investigate if these
choices are reasonable. For this purpose we repeat some of the computations from
Section 3.1.2 for other choices of `hf . Again, we consider first the set of points PX(4)
and the wave number κ = 12.56.

Table 3.8: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ for `hf = 2 and several choices of m and η2; (set of points
PX(4), κ = 12.56, εACA = 10−5)

`hf = 2 η2 = 2 η2 = 5 η2 = 6
m rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

2 1.46−1 1.04 1.67−1 0.49 1.69−1 0.44
3 2.67−2 2.04 3.09−2 1.11 3.15−2 1.02
4 4.19−3 3.86 4.83−3 1.97 5.00−3 1.95
5 5.60−4 7.10 6.43−4 3.43 6.80−4 3.41

In Table 3.8 we see some computational results for `hf = 2. We only list the relative
errors and farfield computation times, since the choice of `hf does not influence the
nearfield computation times and the setup time only slightly due to the different sets
of directions which have to be constructed. The separation parameters η2 = 5 and
η2 = 6 are considered, since these are the reasonable choices for `hf = 3 as seen in
Section 3.1.2. The results for η2 = 2 are listed for comparison, as we expect the
accuracy to be better for this choice of η2. The results for η1 would be misleading.
The reason is that for η2 = 1 there are almost no admissible blocks at level three in the
box cluster tree, which we see in Table 3.1. Changing `hf from three to two, however,
affects only these blocks.

If we compare the relative errors in Table 3.4 for `hf = 3 and η2 ∈ {5, 6} with their
counterparts in Table 3.8 for `hf = 2, then we note that the approximation errors are
significantly worse for `hf = 2. At the same time the computation times decrease only
slightly if we choose `hf = 2 instead of `hf = 3. The same holds for η2 = 2, which
can be seen by comparing the results in Table 3.8 with the corresponding results in
Tables 3.2 and 3.3. Hence, the choice `hf = 2 appears to be inappropriate for the
considered data.

In Table 3.9 we see the relative errors and farfield computation times for the levels
`hf = 4 and `hf = 5 and the separation parameters η2 ∈ {1, 5, 6}. For m = 4 and
m = 5 we adapted the parameter εACA for the stopping criterion of the ACA, to end
up with a similar accuracy as in the uncompressed case. In particular we have chosen
εACA = 10−6 for m = 4, and εACA = 10−7 for m = 5 instead of εACA = 10−5. The
results for η2 = 1 are used for comparison purposes. The relative errors for η2 = 1
and `hf ∈ {4, 5} are considerably lower than the corresponding errors for η2 = 1 and

106 3 Numerical Experiments

Table 3.9: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ for `hf = 4 and `hf = 5, several choices of η2, and the inter-
polation degree m ∈ {2, ..., 5}; (set of points PX(4), κ = 12.56)

`hf = 4 η2 = 1 η2 = 5 η2 = 6
(m, εACA) rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

(2, 10−5) 1.64−3 2.06 1.31−2 0.98 1.31−2 0.98
(3, 10−5) 1.19−4 4.17 2.09−3 1.81 2.10−3 1.80
(4, 10−6) 7.72−6 9.56 3.25−4 3.99 3.26−4 4.02
(5, 10−7) 3.97−7 20.90 3.63−5 8.52 3.65−5 8.50

`hf = 5 η2 = 1 η2 = 5 η2 = 6
(m, εACA) rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

(2, 10−5) 1.14−3 2.95 1.07−2 2.04 1.07−2 2.23
(3, 10−5) 1.25−4 5.55 1.60−3 3.78 1.62−3 3.77
(4, 10−6) 8.08−6 11.79 2.31−4 7.57 2.32−4 7.57
(5, 10−7) 5.44−7 24.01 2.03−5 15.65 2.05−5 15.71

`hf = 3 in Table 3.2. Unfortunately, this does not hold for η2 ∈ {5, 6}. For `hf = 4
and m ≥ 4 the relative errors are even slightly worse, while for `hf = 5 they are only
slightly better. The farfield computation times on the other hand increase clearly.
Hence, the choice `hf = 3 which we considered in Section 3.1.2 seems to be reasonable
for the set of points PX(4).

Next we consider the set PX(5) for varying `hf to see if also for this set of points the
choice `hf = 4 of Section 3.1.2 is preferable. We start by considering the results for
`hf = 3 in Table 3.10.

Table 3.10: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ for `hf = 3, η2 ∈ {5, 6, 10}, and m ∈ {2, ..., 5}; (set of points
PX(5), κ = 25.12, εACA = 10−5)

`hf = 3 η2 = 5 η2 = 6 η2 = 10
m rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

2 1.85−1 2.16 1.83−1 2.14 1.87−1 1.05
3 3.70−2 5.03 3.69−2 4.67 3.69−2 2.66
4 6.43−3 9.63 6.43−3 8.92 6.71−3 5.16
5 1.01−3 17.02 1.01−3 15.82 1.06−3 9.30

Let us compare this results with those in Table 3.7. As in the case of the set PX(4)
we see that reducing `hf leads to significantly larger errors while the computation
times decrease in comparison only slightly. We draw the conclusion that for PX(5)
and κ = 25.12 we should choose the level `hf ≥ 4.

In Table 3.11 we show the computational results for the choices `hf = 5 and `hf = 6.

3.1 Parameter study on the surface of a cube 107

Table 3.11: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ for `hf = 5 and `hf = 6, several choices of η2, and the
interpolation degree m ∈ {2, ..., 5}; (set of points PX(5), κ = 25.12)

`hf = 5 η2 = 5 η2 = 6 η2 = 10
(m, εACA) rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

(2, 10−5) 1.84−2 4.47 1.87−2 4.31 2.42−2 3.32
(3, 10−5) 2.74−3 9.38 2.84−3 9.07 4.72−3 6.94
(4, 10−5) 4.99−4 18.19 5.03−4 17.66 1.13−3 14.03
(5, 10−6) 4.51−5 39.76 4.71−5 39.07 1.77−4 31.88

`hf = 6 η2 = 5 η2 = 6 η2 = 10
(m, εACA) rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

(2, 10−5) 1.30−2 10.33 1.31−2 10.23 1.75−2 9.32
(3, 10−5) 1.87−3 19.84 1.91−3 19.63 2.42−3 17.88
(4, 10−5) 3.50−4 39.04 3.53−4 39.08 6.61−4 37.34
(5, 10−6) 2.36−5 85.94 2.44−5 86.22 8.24−5 82.64

We have adapted the parameter εACA for the stopping criterion of the ACA here again
whenever needed. Let us first consider the results for `hf = 5 in comparison with the
results for `hf = 4 in Table 3.7. We observe that the errors for given η2 and m decrease
by a factor between two and four, while the computation times almost double when
we choose `hf = 5 instead of `hf . This makes a direct comparison difficult. Comparing
the results for given η2 and m for the choice `hf = 5 with the results for `hf = 4 for
the same η2 but the interpolation degree m + 1 simplifies the discussion. Indeed, we
see that then the approximation errors for `hf = 4 are more than fifty percent lower
while the computation times are only slightly higher. Hence, it seems to be preferable
to choose `hf = 4 and increase the interpolation degree if higher accuracy is needed.

The results for `hf = 6 can be compared well with the results for `hf = 5. We
observe that the relative errors are more or less halved, while the computation times
are about doubled for fixed η2 and m when we increase `hf = 5 by one. Increasing
the interpolation degree m instead leads also to similar computation times, but far
better approximation errors. Hence the choice `hf = 6 appears to be worse then the
choice `hf = 5, and in particular worse then the choice `hf = 4. Again, we come to the
conclusion that the choice `hf = 4 considered in Section 3.1.2 is reasonable for the set
of points PX(5).

108 3 Numerical Experiments

3.1.4 A parameter selection strategy

Based on the insights which we gained in the previous two sections we present a
strategy to choose the parameters η2 and `hf for the execution of Algorithm 2.42.
This strategy must be understood as a rule of thumb and not a mathematically sound
parameter choice rule, as it bases only on the few observations and conclusions we
drew from the simple setting of points on the surface of a cube.

We start with the choice of the level `hf . This level is used to distinguish the low
and high frequency levels in the box cluster trees in Algorithm 2.42. Boxes at levels
` ≤ `hf are considered to be in a high frequency setting, while boxes at level ` > `hf

are in a low frequency setting. Hence, it seems reasonable to choose `hf not arbitrarily
but depending on the size of the boxes, i.e. the geometry, and furthermore on the wave
number κ. An implicit distinction of the frequency regimes is already incorporated in
the admissibility criteria (A1) and (A3). Indeed, we have seen in Section 1.2.2 that
for two boxes t and s the value of κmax{diam (t) , diam (s)} decides which of these
criteria is stronger and has to be considered therefore. If

κmax{diam (t) , diam (s)} ≤ 1,

then the standard separation criterion (A1) is stronger, else the newly introduced
(high frequency) criterion (A3). This motivates to choose the level `hf depending on
the products κq`, where q` denotes the diameters of the boxes at level ` in a uniform
box cluster tree. In particular, it seems reasonable to choose `hf such that

κq`hf > C and κq`hf+1 ≤ C (3.2)

for a suitable constant C. We determine such a constant by investigating the choices
of `hf in the above parameter study.

In Section 3.1.2 `hf we chose `hf = 3 for the wave number κ = 12.56 and the
points PX(4) on ∂([−1, 1]3), constructed in Section 3.1.1. For the set PX(5) and
κ = 25.12 we chose `hf = 4. In Section 3.1.3 we observed that these choices are
reasonable compared to other choices of `hf . In case of the set PX(4), the wave num-
ber κ = 12.56, and the level `hf = 3 there holds

κq`hf+1 = 12.56 q4 = 12.56 ·
√

3

8
≈ 2.72.

The same can be shown for the set PX(5), the wave number κ = 25.12 and the level
`hf = 4, i.e. in both cases (3.2) holds for C ≈ 2.72. In Section 3.1.3 we saw that the
choices `hf = 2 and `hf = 4 for PX(4) and κ = 12.56 lead to worse relative errors
and worse computation times, respectively. The corresponding constants C for these
levels would be 5.44 and 1.36, respectively. Similar effects were observable for PX(5),
κ = 25.12, and the choices `hf = 3 and `hf = 5. However, the choice `hf = 5 appeared
to be only slightly worse than `hf = 4 in this example. Hence we suggest to choose `hf

such that (3.2) holds for a C close to 2.72, preferring the case 1.36 < C ≤ 2.72. We
summarize this in the following remark

3.1 Parameter study on the surface of a cube 109

Remark 3.1 (Parameter choice rule for `hf). For given κ and a box cluster tree TX
choose the highest level in the high frequency regime `hf such that (3.2) holds for a
constant C close to 2.72, preferably 1.36 < C ≤ 2.72.

A drawback of the above parameter choice rule is the inconsistency of the high
frequency regimes introduced by this choice of `hf and the natural distinction of regimes
introduced by the admissibility criteria (A1) and (A3). In the case of the set of
points PX(4), the wave number κ, and the level `hf = 3, for example, the level ` = 4
satisfies ` > `hf , which means that it is in the low frequency regime corresponding
to `hf . However, we use the (high frequency) admissibility criterion (A3) to control the
distance of boxes at level four, because q4κ = 1.36 > 1 and, therefore, the criterion (A3)
is stronger than (A1). Hence, it would be reasonable to substitute (A3) with a criterion
like

κmax{diam (X) , diam (Y)}2 ≤ η2q`hf+1 dist (X, Y) ,

for which the frequency regimes would coincide. With this criterion the theoretical
results on the approximation quality and the complexity would still hold up to a change
of constants. However, this new criterion would influence the construction of the block
trees in Algorithm 2.26 and in particular also the choice of the separation constant η2,
which is why we keep the criterion (A3).

Finally we discuss the choice of the separation parameter η2. We recall that this
parameter appears in the admissibility criteria (A1) and (A3) and therefore controls
which blocks (t, s) in the block tree TX×X are admissible. In Section 3.1.2 we observed
that it is crucial for low computation times to choose η2 such that the number of
inadmissible blocks in TX×X(η2) is minimal. This means that for the chosen η2 the
only remaining inadmissible blocks (t, s) in TX×X(η2) should satisfy dist (t, s) = 0. For
general geometries this is probably a too strong requirement. Indeed, if there are leaves
at high levels ` in the box cluster tree TX , then there are corresponding leaves at level `
in the block tree. These leaves become admissible only if η2 is chosen considerably
high, which can lead to a bad approximation quality. Hence minimizing the number
of all inadmissible blocks seems to be inappropriate. However, we can choose η2 such
that the number of all inadmissible blocks at low frequency levels ` > `hf is minimized.
Let us describe how to choose η2 for this purpose.

In a uniform box cluster tree TX the boxes are arranged on a regular grid. Two
boxes t and s do not touch if there is at least a box between them in this grid.
This means that the minimal distance for two boxes t and s at level ` in TX with
dist (t, s) 6= 0 is one edge length of a box at level `, which is q`/

√
3, where q` denotes

again the diameter of the boxes at level `. Our goal is to choose η2 such that these
boxes are admissible, if ` > `hf . For this purpose we distinguish two cases.

Let first ` ≥ `hf + 1 such that κq` > 1. Then for all boxes t and s at level ` the
admissibility criterion (A3) implies (A1). In particular t and s with dist (t, s) = q`/

√
3

110 3 Numerical Experiments

are admissible if (A3) holds, i.e.

κq2
` ≤ η2 dist (t, s) =

η2q`√
3
,

which is equivalent to
η2 ≥

√
3κq`. (3.3)

Let now ` ≥ `hf +1 but κq` ≤ 1. Then t and s with dist (t, s) = q`/
√

3 are admissible
if (A1) holds, which means

q` ≤ η2 dist (t, s) =
η2q`√

3
,

or equivalently
η2 ≥

√
3. (3.4)

By combining (3.3) and (3.4) we see that the number of inadmissible blocks at all
levels ` > `hf is minimized, if we choose

η2 ≥
√

3 max{1, κq`hf+1}.

In particular a suitable choice for η2 is given by⌈√
3 max{1, κq`hf+1}

⌉
, (3.5)

where dαe denotes the least integer greater than or equal to α as usual. Again, we
summarize this parameter choice rule in a separate remark.

Remark 3.2 (Parameter choice rule for η2). For a given κ, a given uniform box cluster
tree TX and a fixed level `hf choose the separation parameter η2 such that (3.5) holds.

In the discussion of the parameter choice of `hf we observed, that in the computations
in Section 3.1.2 the product κq`hf+1 was approximately 2.72 for the set of points PX(4),
κ = 12.56, and `hf = 3, as well as for PX(5), κ = 25.12 and `hf = 4. Hence in these
examples there holds

√
3κq`hf+1 ≈ 4.71 and by the parameter choice rule in Remark 3.2

we should choose η2 = 5 in both settings. This choice appeared to be reasonable in
the computations, in particular with respect to the approximation quality.

3.2 Further numerical experiments 111

3.2 Further numerical experiments

In all previous computations we focused on sets of points on the surface of the
cube [−1, 1]3. Furthermore these points were chosen such that corresponding uni-
form box cluster trees were balanced. In this section we want to consider a more
general setting. For this purpose we consider points on the surface of the sphere
S2 = {x ∈ R3 : |x| = 1} and investigate the fast directional matrix vector multiplica-
tion for the corresponding matrix A in (3.1), similarly as in Sections 3.1.2 and 3.1.3.
It is our goal to see if the choice of the parameters according to Remarks 3.1 and 3.2
is reasonable in such a more general setting.

For the computations in this section we consider the sets of points P S
X(L). These sets

are constructed by projecting the points in the sets PX(L) constructed in Section 3.1.1
onto the sphere S2. In Figure 3.2 we present the set P S

X(2).

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x1x2

x
3

Figure 3.2: The set of points P S
X(2) on the sphere S2

The uniform box cluster trees for these geometries are constructed by Algorithm 2.3
using the initial box X = [−1, 1]3 and allowing at most nmax = 150 points per leaf
box. The resulting box cluster trees are not balanced anymore, which we observe in
Table 3.12. In this table we compare the number of leaves in the box cluster trees
TX(PX(5)) and TX(P S

X(5)). The entries for levels less than four and greater than
seven are missing, since for these levels there are no leaves in either of the two trees.
In TX(PX(5)) all leaves are at level five, which is the depth of this tree. In TX(P S

X(5))
the majority of the leaves is at level six, but also an other levels we find some leaves.
This is the typical situation for general sets of points.

112 3 Numerical Experiments

Table 3.12: Comparison of the number of leaves in the trees TX(PX(5)) and TX(P S
X(5))

corresponding to the points PX(5) on the surface of [−1, 1]3 and the points
P S
X(5) on the sphere S2

box cluster tree level 4 level 5 level 6 level 7
TX(PX(5)) 0 5768 0 0
TX(P S

X(5)) 240 1760 13824 168

Let us check if the fast directional matrix vector multiplication given in Algo-
rithm 2.42 performs well for such general sets of points. For the following compu-
tations we consider the set of points P S

X(5) with cardinality N = 829176 and choose
the wave number κ = 25.12, i.e. the same as for PX(5) in the calculations in Sec-
tions 3.1.2 and 3.1.3. We consider the matrix A in (3.1) for the points in P S

X(5), use
Algorithm 2.42 to compute the approximation ĝ = ĝ+ + g− of the matrix-vector prod-
uct g = Av for a random but fixed vector v, and compare the computational results for
several choices of the parameters `hf , η2, and interpolation degrees m ∈ {2, ..., 5}. In
all computations the parameter εACA for the stopping criterion of the ACA is a priori
chosen sufficiently high to avoid an influence on the relative errors. In particular, we
choose a lower parameter for m = 5.

Table 3.13: Relative errors ‖g − ĝ‖2/‖g‖2 and computation times in seconds for the
farfield part ĝ+ for η2 ∈ {4, 5, 10}, `hf ∈ {3, ..., 5}, and interpolation de-
grees m ∈ {2, ..., 5}, together with the corresponding computation times
in seconds for the nearfield part g−. (set of points P S

X(5), κ = 25.12)

η2 = 4 η2 = 5 η2 = 10
(m, εACA) rel. error time ĝ+ rel. error time ĝ+ rel. error time ĝ+

`hf = 3 (2, 10−5) 2.65−1 5.00 2.51−1 3.17 2.81−1 2.01
(3, 10−5) 4.75−2 10.92 4.75−2 7.58 5.09−2 5.16
(4, 10−5) 9.09−3 20.67 9.45−3 14.56 9.92−3 10.04
(5, 10−6) 1.57−3 36.16 1.62−3 25.78 1.68−3 18.10

`hf = 4 (2, 10−5) 6.02−2 5.05 6.80−2 3.38 8.15−2 2.22
(3, 10−5) 8.74−3 11.40 1.06−2 8.04 1.50−2 5.65
(4, 10−5) 1.21−3 21.85 1.50−3 15.73 2.66−3 11.58
(5, 10−6) 1.59−4 39.20 1.96−4 28.90 4.50−4 21.72

`hf = 5 (2, 10−5) 1.70−2 6.23 1.98−2 4.55 3.20−2 3.39
(3, 10−5) 1.95−3 14.01 2.49−3 10.65 5.36−3 8.33
(4, 10−5) 2.26−4 28.13 3.19−4 22.36 9.74−4 18.28
(5, 10−6) 2.46−5 66.70 3.58−5 52.65 1.58−4 45.09
time g− 375.80 224.70 125.28

3.2 Further numerical experiments 113

Let us first consider the relative errors ‖g − ĝ‖2/‖g‖2 and the computation times
of the farfield part ĝ+ for different η2 and `hf in Table 3.13. The parameter rules in
Remarks 3.1 and 3.2 suggest to choose `hf = 4 and η2 = 5, as in the case of the set of
points PX(5). Hence, we take a closer look at this choice.

Compared to the relative errors for `hf = 3 the relative errors for `hf = 4 are clearly
lower for fixed η2 and interpolation degree m, while the farfield computation times do
not differ much. Therefore, `hf should not be chosen smaller than four. The comparison
of the errors for `hf = 4 and `hf = 5 is more complicated. Both choices have their
advantages. While choosing `hf = 4 leads to better farfield computation times and a
lower increase of these times for increasing m, choosing `hf = 5 leads to better relative
errors and a faster decrease of these errors. However, none of the two choices appears
to be significantly better than the other.

Next we want to compare the results for different choices of η2 for fixed `hf ∈ {4, 5}.
We observe that the choice η2 = 5 is a good compromise when considering the relative
errors and farfield computation times. The farfield computation times for η2 = 5 are
lower than the times for η2 = 4 but higher than those for η2 = 10. At the same time
the errors for η2 = 5 are worse than the errors for η2 = 4 but better than those for
η2 = 10. We note further, that the errors for η2 = 4 and η2 = 5 appear to converge
faster to zero with increasing m than the errors for η2 = 10, while the computation
times seem to behave similarly for all three choices with increasing m.

What we have ignored so far are the nearfield computation times, which are given
in the last line of Table 3.13. Comparing them shows that the only acceptable choice
in this example is η2 = 10. Indeed, for the other choices of η2 the nearfield times are
significantly higher, in particular in regard to the farfield computation times. Only if
the desired accuracy is high enough, i.e. when the farfield computation times dominate
the time required to compute ĝ = ĝ+ + g−, we expect a better performance for the
choices η2 = 4 and η2 = 5 due to the better convergence of the errors.

The conclusion which we draw from the test on the surface of the sphere is that the
parameter selection strategy presented in Section 3.1.4 is only partially applicable to
general geometries. While the choice of `hf according to the parameter choice rule 3.1
seems to be reasonable, the choice of η2 according to the parameter choice rule 3.2 is
too restrictive for general examples. In particular, if only a low accuracy is required
minimizing the number of all inadmissible blocks of the matrix A seems to be crucial
for a good performance.

114 3 Numerical Experiments

3.3 Effect of the compression via ACA

For all the computations in the previous sections we used an implementation of Algo-
rithm 2.38 in which we compressed the occuring coupling matrices Ac,t,s in step three
with the adaptive cross approximation (ACA). Here we present an example which
shows the benefits of this compression.

Let us consider the set of points PX(5) with cardinality N = 829176 on the surface of
the cube [−1, 1]3, as constructed in Section 3.1.1. Let the matrix A be given by (3.1) for
this set of points and the wave number κ = 25.12. We repeat the same computations
as in Section 3.1.2 with the same vector v and the parameters η2 = 5 and `hf = 4,
once with compression and once without. Then we compare the computation times of
the farfield part ĝ+, the required storage for the coupling matrices, and the relative
errors ‖ĝ − g‖2/‖g‖2, where g = Av is the exact matrix vector product and ĝ its
approximation computed by Algorithm 2.42. The results are given in Table 3.14.

Table 3.14: Relative errors ‖g− ĝ‖2/‖g‖2, computation times in seconds for the farfield
part ĝ+ and required storage for the coupling matrices Ac,t,s for implemen-
tations of Algorithm 2.42 with compression (ACA) and without compres-
sion (direct). (set of points PX(5), κ = 25.12)

rel. error time ĝ+ storage
(m, εACA) ACA direct ACA direct ACA direct
(3, 10−3) 8.15−3 8.16−3 3.29 46.85 107.6 MiB 614 MiB
(4, 10−5) 1.12−3 1.10−3 10.89 134.02 436.4 MiB 2.3 GiB
(5, 10−5) 1.64−4 1.64−4 20.43 446.69 754.4 MiB 6.8 GiB

In contrast to Section 3.1.2 we reduce the parameter εACA for m = 3, choosing
εACA = 10−3 instead of εACA = 10−5. In Table 3.14 we observe that this has no
negative effect on the approximation quality. However, it further reduces the required
storage for the coupling matrices and the computation time of the farfield part ĝ+.
Indeed, we see in Table 3.7 that for η2 = 5, m = 3, and εACA = 10−5 the computation
time is 5.49 while it is 3.29 for εACA = 10−3. For m = 4 choosing εACA = 10−4 leads
to an error of 1.39 · 10−3, which is why we retain εACA = 10−5.

A comparison of the results in Table 3.14 shows why a compression of the coupling
matrices Ac,t,s is crucial. While we observe that the relative errors for the imple-
mentation of Algorithm 2.42 with and without compression are nearly identical, the
computation times and storage requirements for the coupling matrices differ essen-
tially. For m = 3 and m = 4 the required storage is reduced by a factor greater
than five, and the farfield computation times by a factor greater than twelve. Even
better, for m = 5 the storage is reduced by a factor greater than nine and the farfield
computation time by a factor greater than 21.

In addition we see in Table 3.15 that also the setup time is significantly lower for the
implementation including the compression of the coupling matrices. We recall that

3.3 Effect of the compression via ACA 115

these setup times include the required time for steps one to three in Algorithm 2.42,
i.e. the construction of the tree structures and directions, as well as the times to
compute and store the non-directional transfer matrices E ′t introduced in Section 2.2.1
and the coupling matrices Ac,t,s.

Table 3.15: Setup times in seconds for the implementations of Algorithm 2.42 with
compression (ACA) and without compression (direct). (κ = 25.12, set of
points PX(5))

time setup
(m, εACA) ACA direct
(3, 10−3) 4.64 51.60
(4, 10−5) 16.49 150.96
(5, 10−5) 28.51 371.22

The difference in the setup times is caused by the different computation of the
coupling matrices Ac,t,s, since the two considered implementations are identical up
to this computation. In Section 2.2.1 we have mentioned that the approximation
of a coupling matrix Ac,t,s by means of ACA requires only O(r2(m + 1)3) floating
point operations, where r is the rank of the resulting approximation, while the direct
computation of such a matrix requires O((m+ 1)6) floating point operations, which
is significantly more if r2 � (m + 1)3. This explains the significantly lower setup
times for the implementation of Algorithm 2.42 with compression compared with the
implementation without compression.

In conclusion, we see that by compressing the coupling matrices Ac,t,s by means
of ACA we do not only reduce the farfield computation time but also the setup time
of Algorithm 2.42. The only drawback is the additional parameter εACA which has
to be introduced for the stopping criterion of the ACA. However, it seems sufficient
to choose this parameter close to the expected relative error to achieve reasonable
approximations.

Conclusion and Outlook

In this thesis we discussed directional single- and multi-level-approximations of the
Helmholtz kernel f based on polynomial tensor interpolation. We introduced admissi-
bility criteria that guarantee a suitable approximation quality. In particular we proved
that the directional single- and multi-level approximation errors converge exponentially
to zero with increasing polynomial degree m. Subsequently we derived an algorithm
for fast directional matrix-vector multiplications which is applicable for matrices gen-
erated by the Helmholtz kernel. For this purpose we used a clustering strategy based
on uniform box cluster trees. We constructed hierarchical sets of directions and proved
that they are suitable for the directional approximation. An appropriate partitioning
strategy allowed us then to split the matrix-vector product in a nearfield and farfield
part, and to approximate the latter using the directional multi-level approximation
of the kernel f . We analyzed the complexity of the resulting Algorithm 2.42. In
particular, we proved that the storage and runtime complexity of this algorithm is of
order O(N log(N)) under suitable assumptions on the wave number κ, the geometry,
and the degrees of freedom N . The accuaracy and performance of the fast direc-
tional matrix-vector multiplication was further investigated in numerical experiments
for which we implemented it in C++. To understand the effects of the separation
parameter η2 and the parameter `hf on the accuracy and runtimes we conducted a
parameter study. Its results lead to a heuristic parameter selection strategy.

There are still a few details in this thesis which are missing or could be improved:

• There is room for improvement in our complexity estimate of Algorithm 2.42.
We have already pointed out that the estimates which we proved are valid in
general only for points distributed more or less uniformly in a 3D domain. The
complexity esimate in [5], which holds for suitable 2D manifolds is not directly
applicable in our setting, since it requires rather balanced cluster trees. However,
we are optimistic that it can be adapted to our setting.

• The numerical tests on the surface of the sphere presented in Section 3.2 showed
that further investigation is required for the development of reliable parameter
selection strategies for the parameters η2 and `hf in Algorithm 2.42. In particular
a broader range of wave numbers and degrees of freedom should be considered in
the numerical examples in future works.

• One of the motivations for the derivation of the fast directional matrix-vector
multiplication was its relevance for the solution of boundary value problems for

117

118 Conclusion and Outlook

the Helmholtz equation by means of boundary element methods. In this thesis,
however, we have not considered such an application, because it would require
some further adaptions of the theory and the implementation. Let us shortly
discuss some of the differences and obstacles. In the setting of boundary element
methods, we typically do not deal with sets of loose points on some 2D manifold,
but sets of elements of the discretization of the boundary. In case of Galerkin
discretizations the matrix entries are furthermore given by some surface integrals
over these elements, and not simple function values. The matrix entries in inad-
missible blocks need to be evaluated directly. Note that this requires to evaluate
possibly singular integrals. On the other hand, the matrix entries in admissi-
ble blocks can be approximated using some quadrature formulas, resulting in a
similar setting which we considered in this thesis, i.e. sets of points and function
values as matrix indices. For the computations it makes sense to keep the points
corresponding to an element together. However, if we build a uniform box clus-
ter tree by Algorithm 2.3 then the points corresponding to a common element
can be contained in different boxes. To overcome this problem we could pad all
boxes at a certain level in the uniform cluster tree equally such that each element
would be completely contained in a box. While the uniformity of the boxes would
be preserved like this, other basic properties would be lost with this approach.
All these changes would in particular require some new parameter studies for η2

and `hf .

Bibliography

[1] M. Bebendorf. Approximation of boundary element matrices. Numer. Math.,
86(4):565–589, 2000.

[2] M. Bebendorf, C. Kuske, and R. Venn. Wideband nested cross approximation for
Helmholtz problems. Numer. Math., 130(1):1–34, 2015.

[3] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation
matrices. Computing, 70(1):1–24, 2003.

[4] S. Börm. Efficient Numerical Methods for Non-local Operators, volume 14 of
Tracts in Mathematics. European Mathematical Society, Zürich, 2010.

[5] S. Börm. DirectionalH2-matrix compression for high-frequency problems. Numer.
Linear. Algebra. Appl., 24(6):e2112, 2017.

[6] S. Börm and C. Börst. Hybrid matrix compression for high-frequency problems.
Preprint, arXiv:1809.04384, 2018.

[7] S. Börm and J. M. Melenk. Approximation of the high-frequency Helmholtz kernel
by nested directional interpolation: error analysis. Numer. Math., 137(1):1–34,
2017.

[8] A. Brandt. Multilevel computations of integral transforms and particle interac-
tions with oscillatory kernels. Comput. Phys. Commun., 65(1):24 – 38, 1991.

[9] D. Brunner, M. Junge, P. Rapp, M. Bebendorf, and L. Gaul. Comparison of the
fast multipole method with hierarchical matrices for the Helmholtz-BEM. CMES
Comput. Model. Eng. Sci., 58(2):131–159, 2010.

[10] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge,
J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. A wideband fast multipole method
for the Helmholtz equation in three dimensions. J. Comput. Phys., 216:300–325,
2006.

[11] R. Coifman, V. Rokhlin, and S. Wandzura. The Fast Multipole Method for
the Wave Equation: A Pedestrian Prescription. IEEE Trans. Antennas Propag.,
35(3):7–12, 1993.

[12] W. Dahmen, S. Prössdorf, and R. Schneider. Wavelet approximation methods
for pseudodifferential equations. II. Matrix compression and fast solution. Adv.
Comput. Math., 1(3-4):259–335, 1993.

119

120 Bibliography

[13] E. Darve and P. Havé. Efficient fast multipole method for low-frequency scatter-
ing. J. Comput. Phys., 197(1):341–363, 2004.

[14] R. A. Devore and G. G. Lorentz. Constructive Approximation, volume 303 of
A Series of Comprehensive Studies in Mathematics. Springer, Berlin-Heidelberg-
New York, 1993.

[15] B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory
kernels. SIAM J. Sci. Comput, 29(4):1710–1737, 2007.

[16] P. Erdös. Problems and results on the theory of interpolation, II. Acta. Math.
Acad. Sci. H., 12:235–244, 1961.

[17] W. Fischer and I. Lieb. Einführung in die komplexe Analysis. Vieweg + Teubner,
Wiesbaden, 2010.

[18] K. Giebermann. A new version of panel clustering for the boundary element
method. Preprint, Institut für Angewandte Mathematik Universität Bonn, 1999.

[19] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, Baltimore, 1996.

[20] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. PhD
thesis, Yale University, New Haven, CT, USA, 1987.

[21] L. Greengard, J. Huang, R. V., and S. Wandzura. Accelerating Fast Multipole
Methods for the Helmholtz Equation at Low Frequencies. IEEE Comput. Sci.
Eng, pages 32–38, 1998.

[22] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.
Comput. Phys., 73(2):325–348, 1987.

[23] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. part I: Intro-
duction to H-matrices. Computing, 62:89–108, 1999.

[24] W. Hackbusch. Hierarchische Matrizen. Springer, Berlin-Heidelberg, 2009.

[25] W. Hackbusch and B. Khoromskij. A sparse H-matrix arithmetic, part II: Appli-
cation to multi-dimensional problems. Computing, 64, 2000.

[26] W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H2-matrices. In Lectures
on applied mathematics (Munich, 1999), pages 9–29. Springer, Berlin, 2000.

[27] W. Hackbusch and Z. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numer. Math., 54(4):463–492, 1989.

[28] F. Himmelbauer. Analyse und Implementierung einer adaptiven schnellen Mul-
tipolmethode für die Potentialrechnung. Masterarbeit, Institut für Numerische
Mathematik, Technische Universität Graz, 2017.

[29] B. Hu and W. C. Chew. Fast inhomogeneous plane wave algorithm for scattering
from objects above the multilayered medium. IEEE Trans. Geosci. Remote Sens.,
39(5):1028–1038, May 2001.

Bibliography 121

[30] M. Messner. Fast Boundary Element Methods in Acoustics. Number 13 in Mono-
graphic Series TU Graz / Computation in Engineering and Science. Verlag der
Technischen Universität Graz, 2012.

[31] M. Messner, M. Schanz, and E. Darve. Fast directional multilevel summation
for oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys.,
231(4):1175–1196, 2012.

[32] T. J. Rivlin. Chebyshev polynomials. Wiley, New York, 1990.

[33] S. Rjasanow and O. Steinbach. The Fast Solution of Boundary Integral Equations.
Springer-Verlag, Berlin, Heidelberg, 2007.

[34] V. Rokhlin. Rapid solution of integral equations of classical potential theory. J.
Comput. Phys., 60:187–207, 1985.

[35] V. Rokhlin. Diagonal forms of translation operators for Helmholtz equation in
three dimensions. Appl. Comput. Harmon. A., 1:82–93, 1993.

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitely indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present master‘s thesis.

Date Signature

	Introduction
	A Directional Approximation of the Helmholtz Kernel
	Polynomial interpolation
	Basic definitions and results concerning interpolation
	A 1D interpolation error estimate
	Matrix approximation via tensor interpolation

	A directional multi-level approximation
	Derivation of the directional single- and multi-level approximation
	Directional admissibility conditions

	Error analysis of the directional multi-level approximation
	Error analysis of the directional single-level approximation
	Estimate of the directional reinterpolation

	Fast Directional Matrix-Vector Multiplication
	Matrix partitioning and fast matrix-vector multiplication
	Box cluster trees
	The choice of directions
	Matrix partitioning
	An efficient matrix-vector multiplication

	Implementation details and complexity discussion
	Implementation details
	Complexity analysis

	Numerical Experiments
	Parameter study on the surface of a cube
	Construction of the point sets
	Variation of the separation parameter
	Variation of the number of high frequency levels
	A parameter selection strategy

	Further numerical experiments
	Effect of the compression via ACA

	Conclusion and Outlook
	Bibliography

