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Abstract 

 

In the design process of electromechanical devices today, the requirements on appropriate 
design tools are increasing. Due to the high precision and increased level of model complexity, 
numerical simulations with the aid of the finite element method are indispensable for such 
design processes. The ability to couple two domains where either the overall mesh becomes 
non-conforming through independent mesh topologies or relative movement between the two 
domains is a prerequisite in modern software packages. Treating the relative movement is still 
a hot topic and a challenging task, especially if three-dimensional models are considered. This 
thesis presents a finite element method to couple two disjoint domains with independent 
meshes that are allowed to become non-conforming along the coupling surface.  

The investigated non-conforming mesh method is based on an interpolation technique in the 
sense of a master/slave principle. The degrees of freedom associated with slave nodes that 
are defined along the coupling interface become interpolated by those of the corresponding 
master nodes. As this non-conforming mesh method introduces no additional unknowns to the 
resulting equation system, the advantages of the finite element method are preserved. The 
application to various three dimensional problems, ranging from static domain coupling to time 
transient analysis of motion induction, verifies this and demonstrates the reliability of the non-
conforming mesh method. Compared to reference methods, the non-conforming mesh method 
achieves high accuracy and good agreement with results obtained otherwise. 

By means of detailed error and accuracy analyses, the limits of the method are addressed and 
improvements are made. Regarding these limits, a guideline for the appropriate use of the non-
conforming mesh method is developed.  

 

Keywords: eddy current, electromagnetic modelling, finite element method, 
interpolation technique, motion induction, non-conforming mesh, sliding surface  
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Kurzfassung 

 

Heutzutage stellt die fortschreitende Entwicklung von elektromechanischen Geräten immer 
größer werdende Anforderungen an entsprechende Entwicklungspakete. Im speziellen sind 
numerische Simulationen mit Hilfe der Finiten-Elemente-Methode durch die geforderte 
Genauigkeit und Komplexität der Modelle vom Entwicklungsprozess nicht mehr wegzudenken. 
Die Kopplung zweier Problemgebiete wo entweder durch unterschiedliche Diskretisierung oder 
durch relative Bewegung zwischen den Gebieten das gesamte finite Elementgitter nicht 
konform wird, ist mittlerweile eine standardisierte Anforderung an entsprechende 
Softwarepakete. Besonders herausfordernd ist der Fall der relativen Bewegung, vor allem 
wenn dreidimensionale Modelle berücksichtigt werden müssen. In dieser Arbeit wird eine 
Finite-Elemente-Methode präsentiert, welche die Kopplung zweier unabhängiger 
Problemgebiete behandelt. Hierbei ist es erlaubt, dass die zugehörigen Elementgitter entlang 
einer Kopplungsfläche nicht konform werden. 

Der vorgestellten Methode liegt eine Interpolationsmethode im Sinne eines Master/Slave-
Prinzips zugrunde. Es werden hierbei die Freiheitsgrade der Slave-Knoten, welche entlang der 
Kopplungsfläche definiert wurden, mit jenen Freiheitsgraden der Master-Knoten interpoliert. 
Da bei dieser Methode keine weiteren unbekannten Variablen, welche im Gleichungssystem 
berücksichtigt werden müssen, eingeführt werden, bleiben die Vorteile der Finiten-Elemente-
Methode erhalten. Die Erhaltung dessen wurde durch Anwendung auf Probleme hinsichtlich 
rein statischer Gebietskopplung oder zeitabhängiger Analyse der Bewegungsinduktion 
bestätigt. Im Weiteren konnte die Zuverlässigkeit, sowie die Genauigkeit der Methode im 
Vergleich mit Referenzmethoden gezeigt werden.  

Mit Hilfe der durchgeführten Fehleranalysen und Genauigkeitsanalysen konnten die Grenzen 
der Methode aufgezeigt und Verbesserungen durchgeführt werden. Im Anbetracht der 
ermittelten Grenzen lässt sich ein Leitfaden zur Anwendung der vorgestellten Methode 
ableiten. 

 

Schlagwörter: Wirbelströme, elektromagnetische Modellierung, finite Elemente 
Methode, Interpolationsmethode, Bewegungsinduktion, nicht konforme Elementgitter, 
Bewegungsfläche/Kopplungsfläche 
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1 Introduction 

Numerical simulations and analysis with the aid of the finite element method have become 

indispensable in the design process of various electromechanical devices due to the high 

precision required and the increased level of model complexity. Prominent representatives of 

such electromechanical devices are electrical machines whose model complexity and non-

linear material parameters make analytical models practically useless and demand a dedicated 

modelling process. In general, the numerical analysis of electrical machines is an expensive 

task involving the building of a precise finite element model with a high level of detail and 

leading to time-consuming computations. Nevertheless, this kind of numerical analysis is more 

essential than ever today with the increasing demand on electrical machines (e.g. various 

mobile applications as cars, bikes, etc.). Therefore, the usability of numerical simulations with 

the aid of the finite element method has to be enhanced in order to give effective support to 

optimization processes of such electrical drives. 

 

The numerical analysis of an electrical machine must include the ability to take account of the 

motion of the rotor with respect to the stator, a basic phenomenon for the operation of these 

devices. It is desirable that the finite element mesh of the two parts is fixed, resulting in the 

overall mesh to become non-matching with hanging nodes along a certain surface called 

sliding surface. The position of the sliding surface is naturally selected in the air gap of the 

electrical machine. In classical finite element analysis, hanging nodes are not allowed and the 

conformity of the finite element mesh has to be guaranteed. In the past decades several 

different approaches have been introduced to treat this problem. First methods have meshed 

several models with different rotor positions, or executed local re-meshing in case the mesh 

would become too distorted due to rotor movement. However, this method exhibits extensive 

pre-processing as well as enormous computational costs in addition to the drawback of 

distorted elements and loss of accuracy [37]. To overcome this difficulty of exhaustive pre-

processing and enormous computational costs in case of time transient simulations, it is 

favourable to allow the two meshes of the fixed stator and moving rotor to become non-

conforming with hanging nodes along the sliding surface. Once non-conforming meshes are 

allowed, it becomes possible to build separate finite element meshes and, furthermore, 

powerful methods for numerical simulations can be introduced. The most popular and 

successfully implemented methods are the method with Lagrange multipliers as well as the 

mortaring method, with both techniques imposing the essential interface conditions at the 

sliding surface in a weak sense [37], [40]. 
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In most common computational tools for calculating electromagnetic fields, a magnetic vector 

potential is introduced to describe the fields. Unfortunately, in three-dimensional problems, this 

leads to high computational costs, because it results in a large number of degrees of freedom 

and because the use of edge elements is mandatory. Therefore, frequently, two-dimensional 

models are employed to keep computational efforts relatively limited, with the drawback of 

disabling to cover necessary model details like skewing (although special approximate 

methods are available to take this into account [102]) or end regions. If a three-dimensional 

model has to be used, the computational time increases and the numerical modelling becomes 

overly expensive. 

 

For the reasons addressed above, continuous improvements of existing methods are made 

and are still ongoing. Owing to the recent development of computational resources and 

powerful mathematical techniques, numerical simulation methods that have been less in focus 

in the past years become attractive again. This thesis presents an alternative numerical 

method, which is simple to implement, able to deal with any kind of relative motion between 

both domains, and able to couple domains with different discretizations.  
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1.1 Aim of the work 

The present thesis aims to provide a fundamental analysis of the non-conforming mesh method, 

which is based on the interpolation technique [45] that has been less in focus in the past 

decades. This non-conforming mesh method is well suited to decrease the computational 

burden when time transient simulations of three-dimensional problems are carried out. The 

advantageous use of the magnetic scalar potential in non-conducting regions e.g. the air gap 

of an electrical machine, and a current vector potential in conducting regions [7] decreases 

computational costs significantly and enables the use of the interpolation technique. 

Furthermore, the two independent finite element meshes of the disjoint domains are free to 

move without loss of the benefits of underlying finite element method. 

 

The objectives of the present thesis are to show up the limits of the non-conforming mesh 

method and to give a kind of guideline how to use this technique for different user applications. 

The possible cases to be considered are static coupling of disjoint domains, and coupling when 

relative movement (planar or rotational) is taken into account. Each of these cases are treated 

by means of numerical examples and analysed. For analysis purposes, the investigated 

numerical examples are kept simple and are thus of academic nature. After identifying a 

problem in case of cylindrical structures in time transient simulations, the coupling strategy has 

been improved and validated. 

 

Beside this validation of the investigated approach, the non-conforming mesh method has 

been implemented in the in-house software EleFAnT3D (Electromagnetic Field Analysis Tool 

3D) that has been mainly developed by Prof. Oszkár Bíró over the past three decades. The 

implementation took place in a systematic process. First, a static solver for electric or magnetic 

problems has been adopted for the use with non-conforming meshes. Hereby, essential 

knowledge about implementation strategies has been gained. Second, a time transient solver 

was re-coded to take account of planar or rotational movement as well as to consider motional 

induction. Incidentally, several adaptions to pre- and post-processing and software packages 

have been necessary. 
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1.2 Scientific contributions 

The scientific results of this thesis have been presented in various international conferences 

and have been published in prestigious journals as listed below. These published contributions 

[P1]-[P10], summarize the main findings and development steps of present thesis. 

 

 The simple method of interpolating slave nodes with corresponding master nodes 

defined on an interface, where two meshes are allowed to become non-conforming has 

been investigated for an electrostatic field problem. This first implementation step has 

been presented in [P1], and marks the beginning of the development of the non-

conforming mesh method. 

 

 An error analysis of the non-conforming mesh method has been applied to a cylindrical 

structure imitating the air gap region of an electrical machine. The numerical solutions 

have been compared to a known analytical solution for different experiments. It has 

been shown that the error decreases with the same rate as the classical finite element 

method if the number of elements is increased. Moreover, the error behaviour has been 

analysed in case of increasing relative displacement between two domains. These 

findings have been presented in [P2] and published in [P3]. 

 

 A possibility to take account of periodic boundary conditions within the framework of 

the non-conforming mesh method has been presented for the example of a standard 

electrical machine with six poles in [P4]. Here, the static magnetic flux density and field 

intensity have been compared in case of a conforming mesh and in case of a non-

conforming mesh. 

 

 The non-conforming mesh method has been applied to time transient problems and 

has been first presented in [P5]. By means of a simple example, the calculation of 

motion induced eddy currents with the non-conforming mesh method have been 

demonstrated. 

 

 As a continuation of [P5], the non-conforming mesh method has been applied to a 

voltage driven induction machine. The early results of this investigation have been 

presented in [P6] and [P7]. It could be shown that the obtained stator currents compare 

very well with the results obtained by a reference software.  

 

 Regarding to cylindrical structures, a special problem arises owing to the refinement of 

the discretization of the domains along the sliding surface. The issue of geometrical 

errors have been treated and presented in [P8] and published in [P10]. According to 

these findings, the coupling strategy has been improved for the case where cylindrical 

structures need to be taken into account.  
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1.3 Structure of the work 

The present thesis contains six chapters comprising all necessary development steps as well 

as basic details that underlay the investigated non-conforming mesh method. This chapter 1 

introduces and motivates the present work. The aim of the work has been outlined as well as 

the scientific contributions have been pointed out. 

 

In chapter 2 relevant literature is reviewed that deals with coupling of two independent finite 

element meshes of two disjoint domains. The review concentrates on methods based on the 

finite element method. These methods are classified into two groups: classical methods and 

modern methods.  

 

The theoretical background including fundamental laws and, following from this, relevant 

potential formulations are given in chapter 3. The basic concept of the finite element method, 

subdivided into the discussion of Galerkin’s approach, as well as space and time 

discretizations, is given as well.  

 

Chapter 4 introduces the non-conforming mesh method. Here, the coupling of the potentials 

as well as the reformulated equation system in case of a magneto-static problem is presented. 

Thereafter, an error analysis is carried out based on the example of a cylindrical structure 

imitating the air gap of an electrical machine. 

 

The extension to quasi-static eddy current problems is given in chapter 5. After introducing an 

approach to take account of motional induced eddy currents, the quasi-static eddy current 

formulation is adopted for the non-conforming mesh method. The validation of the introduced 

method is carried out for different examples. Time transient simulations regarding to planar 

movement and rotational movement are investigated. In each case, the transient behaviour of 

the induced eddy currents are analysed and compared to reference methods. The problem of 

geometrical errors due to cylindrical structures in rotational movement is also treated.  

 

Chapter 6 concludes the present work, discussing the investigated method. Finally, an outlook 

and suggestions for further studies are given.  
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2 Review of relevant research work 

In this chapter, a brief survey of relevant methods that take account of relative motion between 

a stationary and a moving domain is given. The review concentrates on methods based on the 

finite element method (FEM) as they are more convenient for such problems. The methods 

are classified into a class of techniques that preserve the conformity of the overall finite element 

mesh under movement and, additionally, into a class of methods where two independent 

meshes (both of them are fixed to their frame of reference) are allowed to become non-

conforming along a so-called sliding surface (slip surface). The moving domain is then free to 

move at any defined position without distorting the initial mesh topology.  

Most of the methods have been developed with similar problems to face, e.g. computational 

power. Therefore, continuous improvements in terms of applicability, numerical robustness 

and computational costs are investigated and still ongoing. This fact is highlighted by the vast 

amount of literature that can be found. Thus, a small selection of remarkable literature only is 

cited in this section. 

 

For the sake of completeness it is noted that another possibility besides the methods listed 

below is constituted by the boundary element method (BEM) [103]. As the pure BEM which is 

based on integral techniques is not the first choice for electromagnetic problems especially if 

non-linear material properties are considered, the coupling of FEM-BEM has been investigated 

[105], [106]. Here, the non-solid domains, e.g. air, are modelled with BEM whereas the solid 

domains are modelled with FEM. Recent advances demonstrate the possible use of this FEM-

BEM coupling to treat electrical machine problems [104]. However, compared to pure finite 

element approaches, the coupling with FEM-BEM is more complex and the resulting system 

matrix demands special treatment for solving. Beside that, the issue of non-simply connected 

domains still requires some further development [104]. Thus, the applicability to 

electromagnetic problems e.g. electrical machines is still limited.  
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2.1 Traditional methods 

Re-meshing/ Adaptive meshing: 

At the beginning of the analysis of rotating electrical machinery, different finite element models 

of the electrical machine were needed to take account of different rotor positions. This kind of 

analysis demands much effort on pre-processing, and has the drawback to be restricted to 

steady state analysis only [59], [60]. To reduce the tremendous pre-processing, software 

packages were developed in which the stator and rotor are separated for mesh generation and 

reassembled for a certain rotor position [61]. Nevertheless, the analysis of the dynamical 

behaviour of electrical machines challenges the modelling of continuous rotor movement. First 

ideas to deal with this problem are presented in e.g. [62], [63]. In these works, a step-by-step 

movement of the rotor is executed, where the air gap is remeshed only. While moving the rotor, 

the mesh becomes distorted and loses its integrity. Therefore, the Delaunay criterion [64], [65] 

for adaptive remeshing is used to preserve the integrity of the air gap mesh and guarantees 

the conformity of the overall mesh. The use of this method decreases the computational burden 

significantly, since the mesh of the stator and rotor are kept fixed in their own reference frame 

over the considered period. However, the obtained system matrices need to be recalculated 

after each time step. 

Moving band technique: 

The moving band technique introduced by [66] follows the idea given in [62] with the difference 

that the air gap domain is subdivided into a single layer of a regular finite element mesh. As 

the stator and rotor mesh is fixed in their own frame, the numbering of the nodes can be kept 

constant along the so-called moving band in the air gap. This yields the advantage that the 

specific part of the system matrix which corresponds to the moving band need to be 

recalculated at each time step only. While moving the rotor, the mesh of the moving band 

becomes distorted and will be remeshed if the distortion of the mesh becomes too large [67], 

[68].  
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2.2 Modern methods 

Air-Gap element – Fourier method: 

In contrast to the previously described methods, the air-gap element approach avoids 

extensive pre-processing and costly remeshing of the air gap domain. This air-gap element 

approach or so-called Fourier method was first introduced and pioneered by [70], [71]. Here, 

the uniform part of the air gap is modelled by a single air-gap element (macro element) 

providing a constant topology during rotor movement. In this special air-gap element, the exact 

solution of the governing differential equation can be written as a Fourier series. The Fourier 

coefficients are related to the nodes and boundary conditions along the stator and rotor side 

of the air-gap element. Hence, the air-gap element increases the system matrix bandwidth 

significantly, which results in higher computational effort.  

Overlapping element method: 

The overlapping element method originates in the work of [75] for two-dimensional problems, 

is capable to couple two disjoint domains having independent meshes regardless to element 

size. Independent of the method proposed in [75], a similar approach was introduced by [76] 

to take account of the rotor movement for analysing electrical machines. In recent years, the 

overlapping element method was extended to three-dimensional problems and for different 

types of elements: hexahedral meshes [77], [80], tetrahedral elements and prisms [78], [79]. 

The overlapping element method allows two disjoint meshes of a stationary and moving 

domain to overlap along the surface where these domains intersect. Here, the nodes 

associated to the surface of the stationary domain are projected to the intersecting surface of 

the moving domain and vice versa. Therefore, virtual elements are created along the sliding 

surface without introducing additional degrees of freedom. The virtual nodes are solely used 

to define continuous shape functions to approximate the nodal degrees of freedom in the 

overlapping area. Hence, the sparsity and symmetry of the system matrix is preserved by the 

overlapping element method. 

Interpolation method and locked step approach: 

Similar to the overlapping element method, the interpolation method is capable of coupling two 

independent finite element meshes of two disjoint domains along a so-called sliding surface 

regardless of the element type used (nodal or edge based). The interpolation method was 

developed by [45] for three dimensional problems and successfully applied to real world 

problems, e.g. [39], [46], [47], [81], [82]. By this interpolation method, the degrees of freedom 

associated to nodes or edges become interpolated in a master/slave principle. According to 

this master/slave principle, master and slave nodes/edges have to be defined along the sliding 

surface where the meshes of the two disjoint domains become non-conforming. In this method, 

the properties of the classical finite element method are preserved as no additional constraints 
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or degrees of freedom are introduced. In the work of [47], the interpolation method is extended 

to higher order interpolation to improve the precision of the interpolation.  

A method constituting a special case of the interpolation method is the locked step approach 

[69]. If the time step is chosen in a way that the rotor displacement is equal or at least a multiple 

to the element length of the regular mesh in the air gap, the special case of the locked step is 

arrived at. By doing so, the mesh in the air gap becomes conformal at each time step, providing 

highest accuracy and all advantages of the classic finite element method. However, as only 

discrete rotor shifts are allowed, a sufficient number of elements in the air gap have to be 

chosen. 

Lagrange multiplier method: 

The Lagrange multiplier method was first introduced by [37] for two-dimensional problems and 

afterwards extended to three-dimensional problems in the work of [38] and similarly in [83]. 

The Lagrange multiplier method is a very general approach and, indeed, widely used in many 

finite element codes and applications, e.g. [84] - [87]. To couple two independent meshes 

along a suitable surface (sliding surface), the Lagrange multiplier method introduces additional 

constraints to guarantee physical continuity between the domains with independent meshes. 

The additional constraints are incorporated into the original functional of the problems to be 

analysed. These additional equations lead to an ill-conditioned and non-positive definite 

system matrix. Hence, solving this equation system is problematic [39]. The set of Lagrange 

multipliers can be obtained by two approaches. First, the Lagrange multipliers can be 

interpolated on the sliding surface with the aid of the appropriate basis functions (nodal or 

edge). Second, eliminating the Lagrange multipliers from the functional, leads to a positive 

definite system matrix [39]. 

Mortaring methods: 

The mortar element method is another class of techniques that is able to couple two 

independent meshes regardless to their element size or type. A definition of the mortar element 

method for three-dimensional problems is extensively described in [40], and in a more compact 

form in [46]. The mortar element method is, again, widely used in finite element codes and is 

applicable to many electromechanical problems due to its generalised formulation [88]. Similar 

to the Lagrange method, the essential interface conditions are imposed weakly with the aid of 

the variational method at the sliding surface. Hereby, the potentials of one domain, e.g. moving 

domain, are expressed by those potentials of the stationary domain. However, the Lagrange 

multipliers are eliminated from the additional equations, which adds a dense matrix block to 

the overall equation system. Indeed, the system matrix is still symmetric and positive definite.  

Beside this classic mortaring method, a very similar method is known as Nitsche-type 

mortaring method [41] - [43]. Here, the interface conditions are imposed weakly without 

introducing additional unknowns, e.g. Lagrange multipliers. The two disjoint domains are 

treated individually and the symmetry of the resulting equation system is retained by adding a 

symmetrisation term [89]. Thus, the characteristics of the classic finite element method are 

preserved  
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Discontinous Galerkin approach: 

The Discontinuous Galerkin approach originally developed for mechanical problems [90] - [92] 

and for elliptical problems in [93], provides an alternative approach to couple non-conforming 

meshes in case of electromagnetic field problems. The applicability is shown by the work of 

[94], [95] as well as in the recently published works [96], [97]. In this approach, the boundary 

constraints between the two disjoint domains are enforced in a weak sense by numerical fluxes, 

which are fixed functions of the unknowns. Therefore, no additional unknowns are introduced. 

However, as the numerical fluxes are defined point-wise on each element edge, the number 

of degrees of freedom is increased. Since this method is a pure finite element method, the 

sparsity of the system matrix is preserved.  
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2.3 Conclusion 

The previously listed methods are more or less applicable to the analysis of the dynamical 

behaviour of electrical machines. As the computational power was a limiting factor in earlier 

days, some of the developed methods seemed to be not feasible enough. Independently, from 

a numerical viewpoint, advantages and drawbacks are obtained as well. Apparently, the re-

meshing of the air-gap domain [62] as well as the moving band method [66] introduce a 

numerical noise in the solution, which is known as torque ripple [75]. These methods also 

require a powerful mesh generator and still high demand on computational power, especially 

in case of three-dimensional problems. To overcome these difficulties, two independent 

meshes are allowed to move freely, relative to each other. The overlapping method [75], 

interpolation method [45] and the locked step approach [69] are simple methods and easy to 

implement. Nevertheless, the locked step approach is not feasible for time transient 

simulations as unacceptable restrictions on the choice of time step length are introduced [98]. 

However, the computational effort becomes greater in case edge element representation is 

necessary, e.g. for magnetic vector potential formulations. Here, the interpolation factors are 

obtained by integration along the element edges.  

A powerful alternative to these methods is given by the air-gap element method. Although, 

special attention must be paid to solving the equation system obtained in order to be as 

competitive as other methods [72], the air-gap method provides a sound basis for different 

machine analyses, e.g. magnetic bearings [73] and skewing [74]. 

The most flexible methods in terms of element type and mesh topology that appear are the 

Lagrange multipliers [37] and mortaring methods [40]. As the Lagrange multipliers method 

loses the advantages of the underlying finite element method, improvements are made to 

retain a symmetric and positive definite system matrix, e.g. [99] - [101]. However, both methods 

are computational costly and become even less attractive if three-dimensional problems are 

considered.  

The discontinuous Galerkin approach [90] is, again, a computationally costly method as 

numerical fluxes are introduced and therefore the number of degrees of freedom is increased. 

To overcome this, it is suggested to split the overall problem domain into parts using classical 

finite element method and domains using the local discontinuous Galerkin approach. Thus, the 

number of unknowns will be decreased and the method becomes computational competitive 

to other methods [94]. 

 

At this point, it should be noted that above methods have been widely investigated for scalar 

potential formulations or magnetic vector potential formulations using triangular or tetrahedral 

elements in two-dimensional or three-dimensional problems, respectively. 

  



Fundamentals 

 

12 

 

 

 

3 Fundamentals  

The use of optical and electromagnetic devices such as mobile phones or the internet has 

become vital in the daily life of people and is going to increase further. All of these everyday 

gadgets underlie certain electromagnetic phenomena, which can be described by the 

fundamental equations formulated by James Clerk Maxwell in 1873. These Maxwell’s 

equations also form the basis for other types of electromagnetic problems arising, among 

others, in electrical machines. Utilizing scalar and vector potentials to describe the field 

quantities, they result in second order partial differential equations. As these partial differential 

equations are hard to solve analytically, numerical methods like the finite element method [1], 

[2] can be used to solve them. 

 

After writing Maxwell’s equations in their basic form, the magneto-static problem as well as the 

quasi-static eddy current problem will be defined. In addition to that, the case of motion induced 

eddy currents will be treated. Thereinafter, the finite element method is introduced by 

discussing the method of weighted residuals and space discretization using finite elements. 

Finally, a time discretization method is presented. Moreover, the potential formulation of the 

magneto-static problem with the aid of the reduced scalar potential as well as two potential 

formulations for eddy current problems [5], [7] are discussed. 

  



Fundamentals 

13 

3.1 Electromagnetic field 

3.1.1 Maxwell’s equations 

Maxwell’s equations are capable of describing different electromagnetically coupled 

phenomena with the aid of the field quantities. These equations are an accumulation of 

Ampère’s law, Faraday’s law of induction and Gauss’ laws [23], [24]. With these Maxwell’s 

equations, problems ranging from antennas (wave propagation) to electrical machines (quasi-

static problems) can be described [25]. In this thesis, the focus will be kept on static and quasi-

static problems, in which the Maxwell’s equations become simplified. It is assumed here, that 

the time variation of the field quantities takes place at low frequency. Therefore, the 

displacement current density, caused by the time derivative of the electric flux density / t D , 

can be neglected. In Tab. 1, the differential and integral formulations of Maxwell’s equations 

are summarized. 

 

The integral form of Maxwell’s equations is obtained by using Gauss’ theorem and Stokes’ 

theorem [24]. Gauss’ theorem states the equivalence of a volume integral of the divergence of 

a vector field to a surface integral over the surface bounding the volume. This can be physically 

interpreted as the accumulation of sources within a defined volume being equal to the flux of 

these sources flowing through the bounding surface. Stokes’ theorem states the conversion of 

a surface integral of the curl of a vector field to a closed line integral over the curve bounding 

the surface. In other words, the circulation of a vector field around a closed path is equal to the 

flux of the curl of the vector field through the surface enclosed by this closed path. 

 

 differential formulation  integral formulation 

Ampère’s law curl H J  (1) 
C

dd
  

   H J Γs   

Faraday’s law curl
t

 




B
E   (2) 

C

dd
t



 





 E
B

Γs   

Gauss’ law for magnetism div 0B   (3) 0
C

d


  B Γ   

Gauss’ law div D   (4) d d
 

   ΓD   

Tab. 1: Electromagnetic field equations, the so-called Maxwell’s equations in two ways of formulations, 

differential and integral. The boundary of the surface  is denoted by ∂, ∂Ω denotes the bounding 
surface of the volume Ω and n denotes the surface normal vector pointing outward of closed surfaces. 

 

In addition to Maxwell’s equations, a fifth fundamental equation can be obtained from Ampère’s 

law (1). The law of continuity states the principle of charge conversation and is written as 

 

 div(curl v) d0 i H J . (5) 



Fundamentals 

 

14 

 

The quantities in (1)-(4) are defined as follows: the magnetic field intensity vector H, the current 

density vector J, the electric flux density vector D, the electric field intensity vector E, the 

magnetic flux density vector B and the electric volume charge density . Taking account of the 

material properties, these field quantities are coupled as  

 

 0 r  B H H, (6) 

 0 r  D E E , (7) 

 J E , (8) 

with the relative permeability r  and the permeability of vacuum 7 1

0 1 )4 0 (Vs Am    , the 

relative permittivity r  and the permittivity of vacuum 12 1

0 108 5 1 )8 (. 4 As Vm    as well as the 

conductivity  . Unless isotropic materials are considered, these material properties become 

tensors. Typically, these material properties vary with temperature, frequency, field intensity 

and location inside the medium. 

3.1.2 Faraday’s law of induction 

The effect of the electromagnetic field and the forces acting on charged particles or moving 

charged particles are demonstrated by the characteristic experiments of Faraday. These 

experiments substantially say that, whenever a conductor is moved in the presence of a static 

magnetic field, a current will flow (Lorentz’ force law). Conversely, if a conductor is stationary 

but exposed to a time varying magnetic field, a current will again flow in this conductor 

(Faraday’s law). These phenomena can by summarized in the Eulerian reference frame as 

 

 ( )q  F E v B   (9) 

with F denoting the force acting on a charged particle q and v denoting the velocity of the 

particle. Because of this force acting on the conductor, an electric field will arise within this 

conductor due to the separation of the charged particles (see Fig. 1a). In steady-state the force 

become zero F=0, and, hence, this electric force is then equal to the magnetic force 

 

 ( ) 0   ( )q       F E v B E v B .  (10) 

 

The work to separate the charged particles is named as electro-motive force (emf) and is 

defined as 

 

  
1

emf

C C

d du
q

    F s v B s ,  (11) 

where C denotes a closed line within the conductor. If the conductor is exposed to a magnetic 

field that is homogeneous over the whole domain including this conductor, the electro-motive 

force will be zero. In contrast to that, the electro-motive force is unequal to zero, if the magnetic 

field is inhomogeneous within the domain comprising the conductor. An illustration of both 

cases is given in Fig. 1. 
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a)  b)   

Fig. 1: Illustration of a conducting domain (σ≠0) moving with velocity v in a homogeneous (a) and 
inhomogeneous (b) magnetic field. 

 

The electro-motive force in (11) can also be interpreted as the time variation of the magnetic 

flux   through an arbitrary surface  within the conducting domain. 

 

 
emf

d
u d

d

dt dt



    B n .  (12) 

 

Taking the time variation of the magnetic flux density B into account, the emf can be rewritten 

as 

 

  
C

tdt
d

d
d

 

 
     

 
B

n v B s .  (13) 

 

Substituting (10) into (11) and comparing it to (13), Faraday’s law is arrived which is 

independent of the presence of a conducting medium: 

 

 
C

t
d d



 


  
 
B

nE s  . (14) 

 

As mentioned before, a variation of the magnetic field gives rise to an electric field. In the 

presence of a conductive medium, this electric field causes circular currents to flow in the 

conductive domain. These circular currents are named as eddy currents. As a result of these 

eddy currents, a magnetic field is generated affecting the original magnetic field. This damping 

influence mainly depends on the frequency of the change of the exciting magnetic field and 

the conductivity of the conducting domain. An illustration of eddy currents in the case of a 

homogeneous conducting domain is given in Fig. 2. 
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Fig. 2: If a conducting domain (σ≠0) is 

exposed to a time varying magnetic field, eddy 
currents Jeddy will flow in the conducting 
material causing a magnetic field Beddy. This 
field is then counteracting to the change of the 
exciting magnetic field. 
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3.2 Problem definitions 

3.2.1 Magneto-static problem: 

When describing the magneto-static problem, Ampères law (1) and the Gauss’ law for 

magnetism (3) need to be considered. To define a magneto-static problem, consider a problem 

domain   with the boundaries 
,

1

H i

N

H

i

   and B  as shown in Fig. 3. The excitation of the 

magnetic field is given by a source coil with impressed current density J0, which is placed in a 

region without magnetic material. 

 

   

Fig. 3: Generalized topology of a magneto-static problem. 

 

To ensure the solvability of the magneto-static problem, a set of differential equations as well 

as boundary conditions on the boundaries H  and B  need to be defined. Hence, such 

problems are also called boundary value problems. The tangential component of the magnetic 

field intensity H is prescribed on the boundary H . This is equivalent to assuming an 

impressed vector field K as a surface current density on the surface H , forming the boundary 

to an external magnetic wall ( 1r  ) . Setting the tangential component of H to zero (K=0), 

could represent a symmetry plane of the problem. By defining the normal component of the 

magnetic flux density B as a fictitious surface charge density b, the flux through B  is 

prescribed. By setting the normal component of B to zero (b=0), a possible symmetry plane 

can again be taken into account. The magneto-static boundary value problem is summarized 

in Tab. 2, with the outward surface normal vector denoted by n. 
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 Domain Definition/Condition 

Maxwell’s Equations:    curl H J  

    div 0B  

Boundary condition: ,

1

H H i

n

i

     H n K   

 B   b  B n  

Tab. 2: Summary of the equations and boundary conditions for the magneto-static boundary value 
problem. 

3.2.2 Quasi-static eddy current problem:  

In case of quasi-static eddy current problems, the set of Maxwell’s equations (1) - (3) need to 

be considered. This kind of boundary value problem can be defined by a generalized topology 

comprising a conducting domain 
c  and a non-conducting domain n  as shown in Fig. 4. In 

case of the non-conducting domain, the same differential equations and boundary conditions 

as in the magneto-static case are valid. However, in this case, the field quantities are time-

dependent. For the conducting domain, the presence of the eddy currents with the current 

density J has to be additionally considered with the aid of Faraday’s law. Again, to ensure a 

unique solution of the differential equations, boundary conditions need to be defined [5], [17]. 

The outer boundaries of the conducting domain are divided into electrical and magnetic 

boundaries: 
Ec  and 

Hc , whereas the outer boundary of the non-conducting domain is 

constituted by Hn  and Bn . In addition to these boundary conditions, an interface condition on 

cn  between the conducting and non-conducting domain need to be defined. The excitation of 

the magnetic field is a given current density 
0J  within the non-conducting domain.  

 

The quasi-static boundary value problem is defined and summarized in Tab. 3. The tangential 

component of the magnetic field intensity H is specified on the boundaries 
Hc  and Hn , 

whereas the tangential component of the electric field intensity E is defined on 
Ec . The normal 

component of the magnetic flux density B is defined on Bn . The continuity of the tangential 

component of the magnetic field intensity and the normal component of the magnetic flux 

density along the interface 
cn  between the domains n  and 

c , ensure the coupling of the 

formulations used in the conducting and non-conducting domains. 
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Fig. 4: Generalized topology for a quasi-static eddy current problem. 

 

 

 

 

 Domain Definition/Condition 

Equation: n   0curl H J   

 n  div 0B   

 c   curl H J   

 c   curl
t

 




B
E   

 c  div 0B   

Boundary condition: H n    H n K   

 Bn   b  B n   

 Hc   0 H n   

 Ec   0 E n   

 cn   H n  and B n  continuous 

Tab. 3: Summary of the equations and boundary conditions for the quasi-static, boundary value problem. 
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3.3 Method of weighted residuals 

The method of weighted residuals or the method of Galerkin constitutes the basis of the finite 

element method [3], [4], [8], [16]. This method is illustrated by the example of a second order, 

time independent differential equation of Poisson type in a domain Ω:  

 

 , at u f     (15) 

where u is the unknown function and f denotes the given exciting function. The uniqueness of 

the solution is ensured through the definition of the Dirichlet boundary condition 
Du u  on 

D  

describing the function values and the Neumann boundary conditions / Nu n     on 
N  

describing the surface normal derivatives of the unknown function u. 

 

Following the approach of Ritz, the unknown function u can be approximated by a linear 

combination of linear independent functions 0 1, m   : 

 

 
0

1

m

k

k

ku u v 


     (16) 

where 0 satisfies the Dirichlet boundary conditions exactly. With this approach, the differential 

equation (15) and the Neumann boundary conditions can be satisfied approximately by 

appropriately selecting the coefficients 
kv . If (16) is substituted into (15), the resulting 

differential equation is not satisfied exactly, an error R arises. This residual is defined as 

 

 
1

0

m

k

k kv f R 


     .  (17) 

 

It is demanded that this error R will vanish on average over the domain Ω if multiplied by some 

pre-defined weighting functions. If these weighting functions are chosen to be equal to the 

basis functions 
1 ... m  , the resulting residual function R is orthogonal to the function space 

spanned by the basis functions 
1 ... m  . This leads to a set of m equations to evaluate the 

unknown constant coefficients 
kv . Therefore, the residual function is defined to satisfy 

 

 0, with 1,2,...,j j mR d


   . (18) 
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Substituting (17) into (18) and utilizing Green’s identity [3],[25], a set of algebraic equations is 

obtained as 

 

 
, Green's identity

1

0
0

grad

grad

grad

grad 0 , with 1,2,..., .

k j

k
k k j j

j j j

m

k

d

v d d

d d f d j m

n

n

 


  


   



 

   

 



 


   






   

 
 
 

 
 
 
  

  






 

 
  (19) 

 

By taking advantage of the boundary conditions on 
D N     , the equation system (19) can 

be rewritten as 

 

 1

grad grad

 , with 1,2,..

grad gra

.

d

,  

N

k k j D j

N j

m

j

k

v d u d

d f d j m

  

  

 

 



     

   

  

 
  (20) 

with 0 Du   and 0k   , k=1,…,m on D. Apparently, the Neumann boundary conditions are 

satisfied implicitly and, therefore, they are called natural boundary conditions.  

 

In case of time dependent differential equations, the Galerkin method can be used by assuming 

the unknown coefficients to be time dependent ( )kv t . In general, the solution is dependent on 

time and the spatial coordinates r. As an example, consider the time dependent differential 

equation in domain   as 

 

 ( , 0, in )u f t C
u

t





    r   (21) 

with a constant coefficient C, the Dirichlet boundary    , ,Du t u tr r  on 
D  and the Neumann 

boundary    , / ,Nu t n t   rr  on 
N  for t>0. The initial value at time t=0 is given as 

   0,0 ,0u ur r  in Ω. Hence, the approximation of the unknown function u(r,t) is defined as 

 

 
0

1

( , ) ( , ) ( , ) ( ) ( )k k

m

k

tu t u t t v 


  r r r r   (22) 

where  0 ,t r  satisfies exactly the inhomogeneous boundary conditions on 
D , whereas 

 k r  satisfy the time independent homogeneous boundary conditions on 
D . Applying 

Galerkin’s method to the differential equation (21) as previously shown and taking account of 

the boundary conditions, the resulting set of algebraic equations is obtained as 
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1

grad grad( ) grad grad

 , with 1,2,..., . 

N

m
k

k k j k j D j

k

D
N j j

v t d d u d

d d j

v
C

t

u

t
mf C

    

  

   

 

 
       

 
   



 
 




 



 








  (23) 

 

The equation systems in (20) and (23) can be rewritten in a compact matrix form. As an 

example, the matrix form of (23) is presented. This can be written with the stiffness matrix [A] 

and mass matrix [M] as 

 

        v v b A M   (24) 

with v denoting the first-order time derivatives and the matrix elements: 

 

 grad ,     gradkj k j kj k ja m Cd d   
 

    , (25) 

 

 gra gradd

N

D
j D j N j jb u d d

u
dC

t
f   

  

 
     





  


    . (26) 

 

Note that, if the terms in (24)-(26) including the time derivative are omitted, the matrix form of 

(20) is arrived at. 

 

As presented, the method of weighted residuals (Galerkin’s method) is a suitable numerical 

technique for solving partial differential equations. Since the basis functions are defined over 

the whole domain Ω, it is difficult to choose them to satisfy the homogeneous Dirichlet boundary 

conditions in case of practical geometries. Therefore, a discretization of the domain Ω into 

subdomains is appropriate, in which case the satisfaction of the boundary conditions is easier 

to achieve. Furthermore, in case of time dependent problems, a time discretization is needed 

as well. 
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3.4 Space discretization using finite elements 

For discretizing a continuous domain, several techniques are known, e.g. the methods of finite 

differences, finite volumes and finite elements. The latter technique is used here for 

electromagnetic problems [7], [17] - [20], [22]. The domain discretization with finite elements 

leads to a so-called finite element mesh or grid. Thereby, a continuous domain is subdivided, 

depending on the dimensionality of the problem most commonly either into line segments (1D), 

triangles or quadrilaterals (2D), or tetrahedra, triangular prisms or hexahedra (3D). Depending 

on the polynomial order of the basis functions within them, these different types of elements 

can be designed to be linear, second order or of higher order. Fig. 5 illustrates such linear finite 

elements. In the following, the focus is kept on second order hexahedral elements, as the 

investigation made in this thesis deals with three-dimensional (3D) problems and the use of 

second order hexahedral elements. These higher order elements have the advantage to be 

capable of reconstructing shapes that are curved and diminish geometrical errors e.g. in 

cylindrical structures  

 

   

Fig. 5: Different types of linear elements, regarding to the dimensionality of the considered 
problem. a) 1D line element b) 2D triangle element c) 2D quadrilateral element d) 3D 
tetrahedral element e) 3D triangular prism f) 3D hexahedral element. 

 

The elements shown can be further classified into node based and edge based elements. 

Fig. 6a shows a node based, second order element with 20 nodes, whereas the hybrid version 

of an edge and node based element with 36 edges and 20 nodes is shown in Fig. 6b. By using 

node based second order elements, the degrees of freedom are expressed by the values of 

the approximated quantity in the nodes of the elements imposing full continuity. In case of 

vectorial quantities, both the normal and tangential components are continuous. The solution 

becomes approximated with the aid of the node based shape functions  , ,jN     . These 

functions are defined in the local coordinate space    ,, 1, 1      of the finite element. The 

shape functions  , ,jN     are defined as second order polynomial functions for all n=20 
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nodes. Thus, these basis functions are a linear combination of 20 polynomials for node j, which 

can be written as an inner product: 

 

 

,1

,2

,3

,20

2

, ,  ,   with

1

( )   and   

j

j

j j j

j

T

j

c

c

N c

c






  







 
 
   
   
   
     
   
   
   
    


 





 

C CK K   (27) 

with the vector K comprising appropriate permutations of  , ,p r s    , and the coefficient 

vector Cj comprising the coefficients of these power functions. These coefficients are derived 

from the shape functions’ property of being equal to one at node j and zero at all other nodes: 

 

 
1  at node 

( )
0 at all other 

, ,
nodes

j

j
N   


 


. (28) 

 

Explicitly, the coefficient vector Cj can be written with the aid of the (n x n) identity matrix E as 

 

 

 

 

 

1 1

2 20

20 20

1

1

20

1 1, ,

, ,

, ,

,  with   and [ , , ],

T

T
j j

T

j

  

  

  

 

 
 
 
 

    
 
 
 
  

K

W L E L L WK C C C

K

, (29) 

with W denoting the coefficient matrix and where the coefficients of matrix L denote the 

permutations of  , ,p r s    for each node j=1, … , 20.  

 

The second order, polynomial shape functions obtained in this way are illustrated by the 

example of three node locations in Fig. 7, which are similar to the shape functions of all other 

nodes. In particular, the shape functions presented correspond to two corner nodes, e.g. 

1 , 1,( )11 1N     and 
3 , 1( ) 1, 11N    , and one side middle node e.g. 

2 , 1( ) 1, 10N    . 
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Fig. 6: Classification into nodal or edge based, second order hexahedral elements. a) Nodal 
finite element with 20 nodes. b) Hybrid finite element with ne=36 edges (1 to 36) and nn=20 
nodes (37 to 56). 

 

Discretizing a given problem geometry by hexahedral finite elements, the resulting global 

continuous finite element mesh consists of arbitrarily shaped hexahedra. These elements can 

then be transformed into regularly shaped elements in the local coordinate space with the aid 

of the node based shape functions. If the transformation is done by the same shape functions 

,( ),jN    , the elements are called isoparametric. In this case, the global coordinate triple 

(xj,yj,zj) of node j appears in the transformation of the local coordinates into the global ones as 

follows: 
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  (30) 
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Fig. 7: Illustration of the nodal shape functions Ni in case of three different node locations. a) 3D 

surface view of a left corner node: 
1

, 1,( )11 1N     b) 3D surface view of a side middle node:

2
, 1( ) 1, 10N     c) 3D surface view of a corner node 

3
, 1( ) 1, 11N     d) Shape functions N1,N2 and N3 

along the local coordinate  , while keeping the other coordinates constant: 1    . 

 

In case of vectorial quantities, it is desirable to use edge-based elements (see Fig. 6b) as this 

element type imposes continuity of the tangential component only and allows the normal 

component to be discontinuous. This is in contrast to the nodal representation where full 

continuity of the normal and tangential component is imposed. In case of certain geometries, 

especially involving sharp corners or edges formed by interfaces to materials with high relative 

permeability, the nodal representation can lead to numerical errors and non-physical solutions 

[7], [8]. However, the vectorial shape functions ( , , )j x y zN  of the edge-based elements satisfy  

 

 
1 at edge ( )

( , , )
0 at all other edges ( )

i

j

edge

i i j
x y z

i
d

j





 


 N s  (31) 

with the global coordinate triple (x,y,z) obtained through the transformation (30) with the aid of 

the nodal shape functions ,( ),jN    . In addition to this property of the edge basis functions, 

a) b) 

c) d) 
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the gradient of the nodal shape functions can be represented by a linear combination of these 

edge basis functions  , ,j x y zN  with the constant coefficients ijc : 

 

 
36

1

grad ( ) (, , , , ), with 1,2, ,20
j

i ij jN c x y z i  


  N . (32) 

 

Using the function defined by the collection of all node-based shape functions ,( ),jN     

corresponding to a global node or the collection of all edge-based shape functions  , ,j x y zN  

corresponding to a global edge as the basis function k  in (20) or (23), the finite element 

method is arrived at. By doing this, the resulting system matrices are symmetric and sparse 

with a small bandwidth along the main diagonal, utilizing a proper numbering of the nodes 

and/or edges. To solve the resulting algebraic equation systems, classical iterative methods 

like the conjugate gradient method can be used or direct methods based on Gaussian 

elimination are applicable [27], [29]. The latter method is suitable to problems with a small 

number of degrees of freedom (DOF), whereas the iterative method is capable to solve 

problems with a very large number of DOF. By taking advantage of regularization and 

preconditioning methods, a speed up of convergence can be achieved [30] - [32]. In case non-

linear material properties need to be taken into account, the resulting non-linear equation 

system can be solved with iterative methods, e.g. direct iteration [35], Newton-Raphson 

method, fixed-point iteration [33], [34]. 
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3.5 Time discretization 

If time dependent electromagnetic field problems are considered, one has to distinguish 

between different types of time-dependence. In case of time harmonic problems, which can be 

easily treated in the frequency domain, the variation in time of the fields follows a sinusoidal 

function with a single frequency. On the other hand, in case of fields changing arbitrarily in 

time, the electromagnetic field problem has to be formulated in the time domain. Hence, such 

time transient problems require time discretization schemes to be applied to the finite element 

equations. A very common method is the use of one-step integration techniques [1], [36]. In 

particular, the explicit and implicit Euler schemes as well as the Crank Nicolson scheme are 

common methods. The corresponding recursion formulas are: 

 

 

 

 

 

1

1 1 1

1 1 1

Explicit Euler: 

Implicit Euler: ,

Crank Nicolson ( ,): ,
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

  

  
 

 

 

  

, (33) 

where h denotes the increment in time and the function f(t,u) evaluates to the time derivative 

 

 ( , )f
du

t
t

d
u  . (34) 

  

The semi-discrete recursion formulas (33) can be combined within one formula as 

 

      1
1 1, 1 ,k

k k k k

k

ku u
uf t f t u

t
 

 
  




  (35) 

with 
kt  denoting the time step width with θ ϵ [0,1] controlling the influence of the previous time 

value uk. For θ=0 we have explicit Euler, θ=1 yields implicit Euler and θ=1/2 corresponds to 

Crank Nicolson. It should be noted that stability is guaranteed regardless of the time step width 

provided 1/2 ≤ θ ≤ 1, [36]. 

 

Consider now the time dependent problem (24) with time derivative    / tv v   . By 

approximating this derivate as 

 

  
   1k k

k

v v

t
v





 ,  (36) 

and applying (34), the discrete time formulation of this problem is obtained as 

 

          
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v v b b
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     

 
A M .  (37) 
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3.6 A potential formulation for magneto-static problems 

A potential formulation for the magneto-static problem defined in Tab. 2 will be discussed by 

introducing a magnetic scalar potential Φ and a current vector potential T0. These potentials 

are introduced by using Ampere’s law and appropriate vector identities [26], [27]. The 

solenoidality of the magnetic flux density yields the resulting partial differential equation in 

terms of the scalar and vector potential describing the magnetic field quantities. 

 

By splitting the magnetic field intensity H into a source term T0 and a reduced field intensity 
rH : 

 

 0 r H T H  , (38) 

with the vector 
0T  (current vector potential) satisfying  

 

 0curl T J  , (39) 

the curl of the reduced magnetic field intensity 
rH results to be zero: 

 

 curl 0r H . (40) 

 

The condition (40) can be satisfied if the reduced magnetic field intensity 
rH  is described with 

the aid of a reduced scalar potential as 

 

 gradr   H  . (41) 

 

Therefore, the magnetic field intensity can be written as 

 

 
0 grad H T , (42) 

leading to the partial differential equation 

 

    0divgrad div    T  (43) 

by utilizing (6) and the solenoidality of the magnetic flux density (3). Writing the boundary 

conditions given in Tab. 2 with the aid of the potentials, the boundary value problem of the 

magneto-static problem can be summarised as shown in Tab. 4. If Galerkin’s method is applied 

to this boundary value problem, the resulting equation system becomes symmetric using nodal 

basis functions to represent the scalar potential Φ. 
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Equation/Condition Domain  

   0divgrad div    T     (44) 

0    
H   

(45) 
0grad b

n
  


     


n T n  B   

Tab. 4: Summary of the magneto-static boundary value problem in terms of the scalar potential 

Φ and the current vector potential T0. 

 

The advantageous use of the current vector potential T0 avoids the necessity of modelling the 

conductor structure, e.g. coils that carry the exciting current J. The current vector potential T0 

can be defined as the magnetic field intensity Hs obtained by Biot-Savart’s law 

 

 0 '
( ')1

( )
4 | ' |

s dr




 



J r r

H
r r

, (46) 

or by approximating the current vector potential T0 with the aid of the edge basis  

functions (31) 

 

 
1

0

e

k k

n

k

t


T N   (47) 

where ne is the number of edges of the finite element mesh, and the coefficient 
kt  represents 

the line integral of the source field along the edge k. Further details to this approach can be 

found in the Appendix of the present thesis. 
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3.7 Potential formulations for eddy current problems  

In case of quasi-static eddy current problems previously defined in Tab. 3, the problem domain 

can be split into a conducting and non-conducting domain, Ωc and Ωn. In the conducting domain 

both the magnetic and electric fields need to be considered, whereas only the magnetic field 

is relevant in the non-conducting domain. For this type of electromagnetic field problem two 

potential formulations are considered [7]. First, a magnetic vector potential A and an electric 

scalar potential V is used to describe the field quantities. Second, a current vector potential T 

and a scalar potential Φ are used. 

3.7.1  A, V-A formulation 

By taking advantage of the solenoidality of the magnetic flux density B, the magnetic vector 

potential A can be introduced satisfying 

 

 curl , in c n  B A  . (48) 

 

Using this magnetic vector potential A and by defining the electric scalar potential V, the 

electric field intensity E in the conductive region can be written as  

 

 grad , in c

V

t t

  
  

  
 E

A
  (49) 

where taking the time derivative of the scalar potential ensures symmetry in the resulting 

equation system after applying Galerkin’s method to the corresponding partial differential 

equations. 

 

The resulting boundary value problem is defined and summarised in Tab. 5, with the material 

properties J E  and 1/   H B B  taken into account and having substituted (48) and (49) 

into Ampère’s law and the continuity law of the current density. By specifying a constant scalar 

potential V0 on the boundary Ec, the voltage excitation of the eddy current problem can be 

taken into account. Conversely, the current excitation with a given current I is possible by 

introducing the scalar potential V0 as an unknown constant potential [10]. The additional 

relationship 

 

 grad
Ec

V
d

t t
I



 



  

 





A
n  (50) 

 

has to be satisfied as well. If Galerkin’s method is applied to the following boundary value 

problem, it is advantageous to use edge basis functions to represent the magnetic vector 

potential and nodal basis functions for the scalar potential [11]. If doing so, the resulting 

equation system is singular and symmetric [7]. The singularity results from the fact that the 

gradient of the nodal basis functions can be obtained as a linear combination of the edge basis 

functions (see (32)). When applying a conjugate gradient method for solving this singular 
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equation system, the right hand side of the equations system must be consistent. In case direct 

methods are used for solving, the singularity need to be eliminated, which is usually done by 

tree-cotree gauging approaches [12]. Since, the magnetic vector potential and the scalar 

potential is defined over the whole domain c n    , the number of degrees of freedom 

is rather high. Moreover, the necessity of modelling the conductors carrying the exciting 

sources further increases the numerical burden.  

 

Equation/Condition Domain  
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div grad 0
V

t t

   

      
    

A
  

c  (52) 

  0curlcurl  A J   
n  (53) 

 curl  A n K   
H n  

(54) 

 A n α   Bn  

 

 

, acu nd 

0

rl

/ grad /t V t



      

 

 

n 0A

A n
  

Hc  
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Tab. 5: Eddy current boundary value problem in terms of the A,V-A formulation. Here, the normal 
component of the magnetic flux density B is prescribed by the tangential component of the magnetic 
vector potential A. The outward surface normal vector of the conducting domain and non-conducting 

domain are related as 
c n n n .  

3.7.2 T, -formulation 

When introducing the T,Φ-Φ formulation for eddy current problems, the formulation for the 

magneto-static case (section 3.6) is used in the non-conducting domain Ωn, whereas the 

electric and magnetic quantities in the conducting domain Ωc need to be defined additionally. 

 

The current density J of the eddy currents in the conductor is divergence free, hence  

 

 curl , in cT J  , (55) 

and the magnetic field intensity H in the conducting region is given as 

 

 0 gra ,d  in c   H T T . (56) 
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In addition to the partial differential equation (44) in n, Faraday’s law need to be considered 

in c. Substituting the potentials defined in (41) and (55) into Faraday’s law, the T,Φ-Φ 

formulation of the quasi-static eddy current problem is arrived. Tab. 6 summarizes the partial 

differential equations and boundary conditions.  

 

When applying Galerkin’s method to this boundary value problem, the use of edge basis 

functions to represent the current vector potential T and the use of nodal basis functions for 

the scalar potential   is advantageous [7]. The resulting equation system is, again, singular 

and symmetric. Since the current vector potential is defined in the conducting domain only and 

the exciting conductor structure need not be modelled, the number of degrees of freedom is 

significantly lower than in case of the A,V-A formulation. The problem of non-simply connected 

conductor structures, e.g. holes within the conductor, can be tackled by introducing conductors 

with low conductivity in the holes or cutting domains to enable potential jumps [13]. 
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Tab. 6: Eddy current boundary value problem in terms of the T,Φ-Φ formulation. 
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4 Non-conforming mesh connection method 

In the present section, a non-conforming mesh method is introduced and discussed as applied 

to the Poisson equation. In particular, the static magnetic field problem formulated by a scalar 

potential is considered (see section 3.6). This setting is equivalent to the electrostatic or 

stationary current field problem. The coupling method introduced in section 4.1 can be used in 

all these field problems, since it uses the degrees of freedom of the nodes, e.g. the electric or 

magnetic scalar potential, to couple two disjoint domains with their meshes being non-

matching and thus featuring hanging nodes at a so-called sliding surface. The non-conforming 

mesh method follows the approach of [45] where the interpolation technique was first 

introduced for tetrahedral elements and revisited in [46]. 

4.1 Coupling of nodes/potentials 

For the sake of simplicity, the basic idea of the non-conforming mesh method is introduced 

with a two dimensional (2D) finite element mesh with second order quadrilateral elements as 

example. Consider two disjoint subdomains ΩM and ΩS of the problem domain M S    

with the sliding surface 
S  being the interface between them (see Fig. 8). Along this interface 

S, the two meshes of the domains ΩM and ΩS are allowed to be non-matching with so called 

hanging nodes. This non-conformance of the overall mesh can be caused either through the 

relative movement between ΩM and ΩS (the domains become displaced relative to each other), 

or due to different mesh topologies of the two domains ΩM and ΩS. Once the sliding surface 

has been defined, master nodes ml and slave nodes sk can be defined along this surface 

implicitly defining the master domain ΩM and the slave domain ΩS. The nodes that do not 

belong to this sliding surface S, will be called regular nodes 
Rn . 
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Fig. 8: Illustrative, two dimensional example of a non-conforming finite element mesh with 
quadrilateral elements. The overall mesh is allowed to be non-conforming with hanging 

nodes along the sliding surface S. Master and slave nodes, ml and sk can be defined along 

S. 

 

The degrees of freedom (e.g. the electric or magnetic scalar potential Φ ) of each slave node 

is replaced by a linear combination of the degrees of freedom of the corresponding master 

nodes. The set of the indices of the corresponding master nodes of a slave nodes is denoted 

by ( )master

k , and with ( )master

kL  denoting the number of corresponding master nodes. Hence, the 

degree of freedom of the slave node ( )slave

k  at the space coordinates ( )slave

kr  is written as: 

 

 
( )

( ) ( ) ( )( )
master

k

slave slave master

k k kl l

l

c


    r   (61) 

with ( )master

l  denoting the degrees of freedom of the master nodes. The coupling factor ckl is 

obtained with the aid of the node-based shape function Nl of the master node ml. In particular, 

the value of the coupling factor is obtained by the evaluation of the shape function at the space 

coordinates ( )slave

kr  of the slave node sk, 

 

  ( ) ( )maste

kl

r slave

l kc N r . (62) 

 

The computation of the coupling coefficients for a slave node along the sliding surface is 

illustrated in Fig. 9 for an example of a planar 2D non-conforming mesh consisting of second 

order quadrilateral elements with the slave node sk at position ( )slave

kr  corresponding to three 

master nodes, i.e. ( ) 3master

kL  . The example is shown in Fig. 9a, and detailed in Fig. 9b. In the 

latter figure, the localisation of the slave node sk is shown in the local coordinate system of the 

master element at position kr . 
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a)     b)   

Fig. 9: Coupling situation of a slave node sk in case of a two dimensional 
non-conforming mesh. a) Global position of the slave node at its space 
coordinates rk . b) Localisation of the slave node within the local 
coordinate system of the master element. 

 

If the location of the slave node sk is given by 0.6   and 1   , the coupling coefficients ckl, 

 1,3l   evaluate to ck1=-0.12 for the left end node m1 with the shape function N1, ck3=0.48 for 

the right end node m3 with the shape function N3 and ck2=0.64 for the middle node m2 with the 

shape function N2. The coupling coefficients and shape functions of the master nodes are 

illustrated in Fig. 10. It is obvious to assume that the coupling coefficients evaluate to values 

less or equal to one: ckl ≤ 1 if the local coordinates are between    , 1,1    . 

 

   

Fig. 10: Coupling coefficients and shape functions of corresponding master nodes in case 
of slave node sk located at ξ=0.6 and η=-1. 
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The extension to a three dimensional (3D) problem and finite element mesh is simple. In case 

of 3D problems, the sliding interface S consist of element surfaces instead of lines as in the 

2D case. Depending on the element type used (e.g. tetrahedral or hexahedral elements), the 

number of slave nodes and master nodes along the sliding surface will be higher than in the 

2D case. The number of corresponding master nodes ( )master

kL  is at least equal to the number 

of nodes that belong to the facet of the finite element which is part of the sliding interface S. 

In the present work, hexahedral elements of second order are used. Therefore, the number of 

corresponding master nodes satisfies ( ) 8master

kL  . Consider a stationary master domain ΩM 

and slave domain ΩS with a non-matching mesh along the sliding interface S as illustrated for 

a planar problem in Fig. 11a. In particular, the coupling situation for two nodes s1 and s2 is 

shown in detail along the sliding surface in Fig. 11b. First, consider the case of slave node s1 

which is aligned with the facet separating the neighbouring master elements M1 and M5. This 

slave node hence corresponds to the master nodes of both master elements M1 and M5. 

Obviously, the nodes of either master element M1 or those of M5 can be chosen to constitute 

the corresponding set of master nodes. Second, slave node s2 is considered, which is located 

on a facet of master element M1. It is obvious that only the nodes of master element M1 can 

be selected as master nodes of the slave node s2. In both cases, the set of corresponding 

master nodes for each slave node consists of ( ) 8master

kL   master nodes.  

 

 

 a)   

b)   

Fig. 11: Coupling situation in case of 3D problems. a) Non-conforming mesh along the sliding 

surface S. b) Top view of the coupling situation for two slave nodes in detail at the sliding 
surface. 
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4.2 Reformulating the Galerkin equations of the magneto-static 
field problem 

The magneto-static field problem leads to a second order differential equation of the Poisson 

type in the problem domain Ω with boundary conditions defined in section 3.6. After discretizing 

the problem domain and applying Galerkin techniques (see section 3.3 and 3.4), an algebraic 

equation system can be established. The ansatz function of the magnetic scalar potential Φ is 
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noden

k

n k kN
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      (63) 

with the node-based polynomial shape functions Nk, the nodal values φk of the magnetic scalar 

potential Φn and the number of nodes denoted by nnode. Hence, the equation system can be 

written as 
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where T0 is the current vector density and its curl describes the impressed current density J0. 

The matrix of this equation system (64) is sparse, symmetric and positive definite and can be 

solved by classical iterative solvers. 

 

Taking the interpolation of the slave node potential (61) into account, the ansatz function (63) 

can be rewritten as 
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 , (65) 

where the superscripts stand for the regular, master and slave nodes, and where the last term 

reflects the coupling of the nodal potentials (61). 
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Applying (65) to the Galerkin equations (64) , these can be rewritten as two sets of equations: 
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The interpolation of the slave potential is taken into account by the function Ψk denoted by 
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At this point it should be noted that mixed terms including both master and slave shape 

functions do not appear, since the two types of shape functions are disjoint.  

 

Of the two sets of Galerkin equations (66) and (67), the latter takes account of the interpolation 

of the slave potential. They can be written in matrix form as 
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where the subscripts R, M and S of the coefficient matrix Aij stand for the regular, master and 

slave nodes. The coupling to the slave nodes is represented by the rectangular matrices C and 

Aij containing the coupling terms. However, the matrices Aii are symmetric and the overall 

system matrix obtained is sparse, symmetric and positive definite. The coefficients of the 

matrices are: 
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where the superscripts indicate the corresponding matrices of equation system (69). The 

coefficients of the right hand side of (69) are given as: 
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4.3 Error analysis 

In this section, the precision of the non-conforming mesh method introduced in the previous 

two sections and summarized in (69) is investigated by analysing a simple cylindrical magneto-

static boundary value problem with a known exact solution. The model problem imitates the 

air gap of an electrical machine. There are no source terms, hence the boundary value problem 

reduces to the following (see Fig. 12): 

 

 grad ) 0 in div(     , (79) 

 0 1 2 on ,      , (80) 

with the Dirichlet data 

 

 0,1 1cos( ) on p

iR p   , (81) 

 0,2 2cos( ) on p

oR p    ,  (82) 

Where Ri, R0 are the inner and outer radii of the cylinder, ϕ is the azimuthal coordinate and p 

is the number of pole pairs. Then, the exact solution is:  

 

 cos( )p pr   .  (83) 

 

In order to impose a strong variation of the potential in azimuthal direction, the number of pole 

pairs is selected as p=10.  

 

The geometry of the cylindrical model with the finite element mesh is shown in Fig. 12a with 

the inner radius chosen as Ri=0.54m, the radius of the sliding surface as Rm=0.57m and the 

outer radius as Ro=0.6m. The length of the cylinder in the axial direction is chosen as l=1.0m. 

The finite element mesh consists of second order hexahedral elements and is obtained by 

dividing the annuli between Ri and Rm as well as between Rm and Ro, equidistantly into n 

quadrilateral elements.  

 

As this boundary value problem is independent of the axial coordinate, i.e. essentially two-

dimensional, the finite element mesh consists of only one layer in axial direction obtained by 

extruding these quadrilateral elements in the axial direction along the length l. A detailed view 

of the finite element mesh in the xy-plane is shown in Fig. 12b. The displacement angle  is 

introduced to characterize the degree of non-conformity between the two meshes of the annuli. 

This displacement angle depends on the number of elements of domain Ω2 and is defined as 

 

 
360

2n
  


  (84) 

where the factor  is in the range of 0 ≤ ≤ 1. Hence, a conforming mesh is characterized by 

=0, whereas the largest displacement is obtained for =1, where the hanging nodes are in 

the centres of the opposite element edges. Note that, in order to overcome the problem of a 

small gap or overlap between the meshes in case of a curved sliding surface, a tolerance for 
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the distance between the slave node and the facet master nodes has been introduced. A value 

of 10-6 (normalized with the size of the master element) has turned out to be appropriate.  

 

a)  b)   

Fig. 12: Problem model for the error analysis. a) 3D view of the cylindrical model with the 
non-matching meshes. b) Detailed view of the non-conforming mesh with equidistant 
elements along the sliding surface. 

 

Using this simple cylindrical model, two experiments have been carried out to evaluate the 

accuracy of the non-conforming mesh method. First, the number of elements has been 

increased from n=100 up to n=1500 in both domains, and the relative movement between the 

domains Ω1 and Ω2 has been modelled. This relative movement is taken into account by 

increasing the displacement angle  invoked by varying the value of  as = 0.1, 0.2, …,1.0. 

In the second experiment, the same accuracy investigation has been carried out, but here the 

number of elements is different in the two domains Ω1 and Ω2. The number of elements in the 

domain Ω2 has again been increased from n=100 up to n=1500, whereas the number of 

elements in the domain Ω1 has been taken to be a multiple of n and chosen as 2n, 3n. The 

mesh topologies of these two experiments in case of n=400 are shown in Fig. 13. 

 

a)  b)   

  

c)   

Fig. 13: Different mesh topologies considered for the error analysis.  a) Equal number of elements 
in the two domains Ω1 and Ω2.  b) Different number of elements in the two domains Ω1: 2n and 
Ω2: n  c) Different number of elements in the two domains Ω1: 3n and Ω2: n. 
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The solutions obtained by both experiments are quantified by an error εn, which uses the exact 

analytical solution Φ obtained with (83) and the numerical values 
k  at particular evaluation 

points:  
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The numerical values 
k  are taken along a circular line in the vicinity of the slip surface S at 

the radii R1=0.571m and R2=0.569m, for the master domain Ω2 and the slave domain Ω1, 

respectively. As the solution is of periodic nature, it is sufficient to consider one period of the 

solution. Hence, the numerical values 
k  are taken in the azimuthal range of 0 36     

degrees at Np=720 equidistant evaluation points.  

 

The magnetic scalar potential Φ is shown and compared in Fig. 14 and Fig. 15 for the case of 

n=400 finite elements. The solution obtained by a conforming mesh between Ω1 and Ω2 is 

shown in Fig. 14a. Fig. 14b illustrates the magnetic scalar potential in case of the non-

conforming mesh. The solutions obtained in the second experiment with a different number of 

elements in the master and slave domains are shown in Fig. 15a for the case of Ω1: 2n 

elements, and in Fig. 15b for Ω1: 3n elements.  

 

 

a)  b)   

Fig. 14: Comparison of the magnetic scalar potential. a) conforming mesh b) non-conforming 
mesh with equal number of elements in both domains Ω1 and Ω2. 
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a)  b)   

Fig. 15: Comparison of the magnetic scalar potential in case of different number of elements in 
both domains Ω1 and Ω2.. a) Ω1:2n and Ω2:n b) Ω1: 3n and Ω2: n. 

 

The field plots of the magnetic scalar potential compared in Fig. 14 and Fig. 15 indicate that 

the solutions of both experiments are reasonable and in a good agreement with the analytical 

solution. In the two cases where a different number of elements in the two domains Ω1 and Ω2 

is considered, the field plots in Fig. 15 also indicate reasonable solutions and a good 

agreement with the analytical solution. These observations are substantiated by the 

comparison of the numerical values k  with the analytical solution of the scalar potential in 

Fig. 17. The numerical values 
k  along the circular line with R2=0.569m are shown here for 

all considered cases with n=400 elements.  

 

 

a)  b)  

Fig. 16: Numerical values of the magnetic scalar potential along the circular line with radius 
R2=0.569m for n=400 elements. a) Comparison of the analytical solution with the non-conforming 
case with equal number of elements in both domains Ω1 and Ω2. b) Numerical values obtained in 
the two cases with different number of elements in the two domains. First, Ω1:2n and Ω2:n 
(numerical 2n) and second Ω1:3n and Ω2:n (numerical 3n). 
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The error εn of the obtained numerical values 
k  along the curved lines at R1=0.571m and 

R2=0.569m defined in (85) is compared in Fig. 17 for two cases of displacement with =0.0 

(conforming mesh) and =1.0 (worst non-conforming mesh case). In addition, the error in case 

of =1.0 and at R2 is shown for different numbers of elements in the two domains Ω1 and Ω2. 

The error εn is plotted in logarithmic scale against the number of elements n, with the curves 

showing identical convergence rates with a slope close to -2. This behaviour corresponds well 

to the theoretical result for second order elements predicting the error to decrease in a 

quadratic manner [1]. The error εn obtained for the second experiment is larger than in the case 

of an equal number of elements, but it converges again with a slope close to -2. It is reasonable 

to assume that there is a certain limit on increasing the number of elements for the slave 

domain Ω1, as in case of Ω1: 3n the error εn is almost one decade larger than the error obtained 

in the case of the first experiment. It is, therefore, obvious to suggest to limit the ratio between 

the number of elements master
ELn  in the master domain to slave

ELn  in the slave domain. 

 

  

Fig. 17: Error plotted as a function of the number of elements in logarithmic scale, both at 
R1 (solid lines) and R2 (dashed lines). The case of α=0 corresponds to a conforming mesh, 
α=1.0 to a maximally non-conforming one. The convergence rate indicated by all curves is 
almost the same with a slope close to -2, indicating quadratic convergence. 
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On the basis of the observations made, a third experiment has been carried out to obtain a 

recommendation of the limit on the ratio  between the number of elements master
ELn  in the 

master domain to slave
ELn  in the slave domain.  

  
master

EL

slave

EL

n

n
    (86) 

 

In this third experiment, the ratio (86) characterizes the finite element mesh density along the 

sliding surface of the master and slave domain (Ω2 and Ω1), and is varied between 0.1≤≤3.0. 

In case of 0.1≤<1.0, the finite element mesh of the slave domain is finer than that of the master 

domain, and in case of .1.0<≤3.0 the refinement of the finite element mesh is opposite to first 

case. If the ratio is equal to one: =1.0, the mesh density is equal in both domains Ω2 and Ω1 

with a number of elements 600master slave

EL ELn n  . In addition to the variation of , the degree of 

displacement between the two domains Ω2 and Ω1 is also varied. The error εn defined in (85) 

is compared for different degrees of displacement 0.1≤≤1.0 in Fig. 18 and detailed in Fig. 19. 

It is obvious that the solutions become incorrect if the ratio of the mesh density is increased 

beyond a certain limit. Apparently, this limit is approximately at =1.4. Hence, it is suggested 

to use a ratio between the number of elements master
ELn  in the master domain to slave

ELn  in the 

slave domain which is within the interval: 0.1≤<1.4. By choosing a ratio within this interval, 

reliable solutions with a small error can be obtained.  

 

   

Fig. 18: Error depending on the ratio  between the number of 

elements 
master

EL
n  in the master domain to 

slave

EL
n  in the slave 

domain. In case of the ratio of mesh density is <1.4, reliable 
solutions can be obtained. If the ratio is increased further, 
incorrect solutions are obtained. Therefore it is suggested to use 

a ratio of 0.1≤<1.4. 
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Fig. 19: A detailed plot of the error εn depending on the ratio of mesh density. 

Apparently, the error is smallest if the ratio is near to one. As in detail shown, 
the error decreases in quadratic manner when increasing the number of 
elements. 

 

In the following, the error εn for the master domain at radius R1 is investigated in Fig. 20 showing 

its dependence on the displacement angle  and on the number of finite elements being 

increased from n=100 up to n=1500. Fig. 21 shows the same error comparisons for the slave 

domain at radius R2. It can be seen in both figures that the error εn becomes larger with 

increasing degree of displacement. As expected, the largest error occurs at a displacement 

angle  with =1.0 (see (84)) where the hanging nodes are in the centres of the opposite 

element edges. Note that if the number of finite elements is large enough, the error remains 

almost stable with a slight tendency to become larger at increased displacement angles.  
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Fig. 20: Error depending on the relative movement between the 
domains Ω1 and Ω2. The error is shown in the case of domain Ω2 

with radius R1. 

 

   

Fig. 21: Error depending on the relative movement between the 
domains Ω1 and Ω2. The error is shown in the case of domain Ω1 

with radius R2. 

 
 
To conclude this section on error analyses, a brief remark is made about the sparsity of the 

system matrix of the equation system (69). A comparison of the distribution of the non-zero 

entries of the system matrices in case of a conforming and a non-conforming mesh for the 

magneto-static problem (79) - (82) is shown in Fig. 22. For illustrative purposes, the number 

of finite elements is chosen as n=400. Comparing the structure of the matrix in case of the 
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non-conforming mesh (Fig. 22a) with the structure of the matrix obtained by the conforming 

mesh case (Fig. 22b), it can be seen that the sparsity and symmetry are very similar in both 

cases. In case of the non-conforming mesh coupling, the number of non-zeros: nz=856799, is 

slightly larger than in case of the conforming mesh with nz=808799. In particular, the number 

of additional non-zeros (coupling coefficients) is nz=48000. The position of these additional 

coefficients in the overall matrix of the equations system is shown in Fig. 22c. 

 

a)   

b)  c)   

Fig. 22: Comparison of the distribution of the non-zero entries in the system matrix in case of a 
non-conforming and a conforming mesh. a) System matrix of the non-conforming mesh with a 
detail view of the main diagonal. b) System matrix in case of a conforming mesh. c) Additional 
coupling coefficients (non-zeros). 
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4.4 Periodic boundary condition 

The use of (anti-) periodic boundary conditions is useful to reduce the cost of modelling with 

finite elements, since many electromagnetic field problems are of symmetric, periodical and 

repetitive structure. The use of (anti-) periodic boundaries is well established and has been 

systematically introduced e.g. in [53] and [6]. In this section, the (anti-) periodic boundary 

conditions are investigated in the frame of the non-conforming mesh method for node-based 

hexahedral elements. The (anti-) periodic boundary condition is validated by solving a 

magneto-static field problem of simple rotating machine with six poles.  

 

The use of (anti-) periodic boundary conditions is applicable to the non-conforming mesh 

method without introducing any additional constraints. In Fig. 23, a sketch of the boundary 

connection conditions is shown for two disjoint domains Ω1 and Ω2 with a non-matching mesh 

along the sliding surface S. On the left and right boundaries a,1, a,2 of each domain, (anti-) 

periodic boundaries are imposed. Taking these into account, the nodal coupling between the 

master and slave nodes along the sliding surface splits up into two parts. First, the master- 

slave coupling can be directly obtained at the surface part d. Second, the coupling between 

the slave and master nodes is executed at the complementary surfaces c,1, c,2 . In other 

words, the slave nodes located on the surface c,1, correspond to master nodes located on the 

surface c,2. Taking this complementary correspondence and the (anti-) periodic boundary 

condition into account, the ansatz function (65) for the scalar potential can be rewritten as  
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  (87) 

with the transformed, fictitious space coordinates of the slave node r  at the complementary 

surface, either c,1 → c,2 or c,2 → c,1. Note that the (anti-) periodic boundary coupling is 

considered by the +/- sign of the magnetic scalar potential of the master node appearing in the 

third term on the right hand side of (87). 
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Fig. 23: Illustration of (anti-) periodic boundary conditions in case of moving domains.  

 

The validation of this concept to deal with (anti-) periodic boundary conditions is carried out by 

solving a magneto-static problem of a simple rotating machine with six poles. Only one-sixth 

of the machine has to be modelled, with a 60-degree azimuthal periodicity. The problem model 

with the rotor displaced relatively to the stator by an angle of 20 degrees is shown in Fig. 24a. 

The excitation of the magnetic field is provided by an impressed, stationary current in the stator 

winding, whereas the rotor is not excited in this simplified test case. The model with the periodic 

boundaries and discretised by node-based second order hexahedral elements is shown in Fig. 

24b. To compare the result obtained by the non-conforming mesh model, a second model with 

a conforming mesh is also analysed. The field plots of the magnetic flux density |B| in the two 

cases are compared in Fig. 25, and the comparison of some values of the magnetic flux density 

and the magnetic field intensity |H| are shown in Fig. 26. These values have been taken at 

Np=360 equidistant evaluation points along a curved line within the stator domain at radius 

R=0.09m in an azimuthal range of 60 degrees.  

 

a)  b)   

Fig. 24: Problem model of a rotating machine with six poles. a) 3D view of one-sixth of the 
machine with 60-degree azimuthal periodicity. b) Top view of the problem with (anti-) 
periodic boundary conditions. 
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a)   

 

 

b)   

Fig. 25: Comparison of the magnetic flux density |B|. a) Non-
conforming mesh b) Conforming mesh 
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a)   

 

b)   

Fig. 26: Comparison of numerical values calculated along a curved line 
with radius R=0.09m and azimuthal range of 60 degrees. a) Magnetic 
flux density |B| b) Magnetic field intensity |H|. 

 

The magnetic field intensity |H| determined by the non-conforming mesh model is in a good 

agreement with the magnetic field obtained by the conforming mesh model (see Fig. 26b). As 

the numerical values of the magnetic flux density |B| show (see Fig. 26a), there is also a good 

agreement between the result of the conforming mesh and non-conforming mesh.  
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5 Taking account of motion  

5.1 Problem definition 

The relative movement between two domains with at least one of them including a source that 

excites a magnetic field leads to eddy currents induced by motion if conducting regions are 

present. This problem has been treated in the literature for formulations utilizing a magnetic 

vector potential e.g. in [48] - [50]. The eddy currents are due to the time-variation of the 

magnetic field, either through a time varying imposed current density J0, or by the movement 

of the source generating the magnetic field, or by the movement of the conductor in the 

presence of a magnetic field. The issue of motional eddy currents can be described either by 

a stationary framework utilizing the Minkowski transformation, or by taking account of the 

relative movement between a stationary and moving domains. 

5.1.1 Motional eddy currents – stationary framework 

In a stationary framework, the motion induction is taken into account by adding the velocity 

term v B  to the electric field intensity [51] giving rise to the currents generating the magnetic 

field where v is the velocity and B the magnetic flux density. The so-called Minkowski 

transformation leads to a single steady state solution, assuming that the velocity is constant 

[49]. In addition to the restriction that only moving conductor volumes with invariant cross 

section at right angles to the direction of motion can be considered, the resulting finite element 

system matrix is asymmetric and often ill-conditioned in case of coarse meshes [49]. Despite 

these disadvantages, using this stationary framework as reference method in the following 

section 5.2 dedicated to accuracy analyses is feasible. The reason is that this formulation can 

be modelled by conforming meshes. 
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Briefly, the method uses the magnetic vector potential A, satisfying B=curlA, and the scalar 

electric potential V giving rise to the electric field a /gr dV t  E A . Therefore, Ampere’s 

law (see section 3.2.2) including the velocity term can be written as: 
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  



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A
A v A ,  (88) 

with the electric conductivity   and the relative permeability µ. Note that the continuity 

equation divJ=0 is implied by (88), but it is included in the boundary value problem in order to 

have two differential equations for the two unknown potentials: 
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5.1.2 Motional eddy currents – moving framework 

A more general approach to take account of the effects of the electro-motive force (emf) due 

to motion is to consider the relative movement between a stationary and a moving domain. 

Following the approach of [50] and [52], the moving framework can be defined as described 

below. 

 

Consider a stationary, global coordinate system S and a point located at r(t) within a conductor 

moving with the velocity v and discretised with the aid of finite elements. Hence, Faraday’s law 

can be written in this system with the velocity term as 
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where the flux density B is dependent on time t as well as the space coordinate r(t). If the 

conductor is moved at a velocity v for a given time interval t, each finite element of the 

conductor is exposed to a magnetic field B′(t′,r′) occuring at t′=t′+t′ in time and at r′=r(t)+vt 

in space. An illustration of this conductor movement is shown in Fig. 27. 
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Fig. 27: Conductor moving in the global coordinate system S at a velocity v for a certain 

time t. The finite elements of the conductor are exposed to a change of the magnetic flux 
density. 

 

Since the finite elements belong to their local coordinate system S′ which moves with the 

velocity v, each finite element observes a change of the magnetic flux density B=B-B′. 

Therefore, the velocity term v B  can be omitted in S′ and it is sufficient to approximate 

Faraday’s law (90) by the difference of the magnetic flux density at time instants t and t+t: 
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5.1.3 T,-formulation for motional eddy currents 

In this work the T,- formulation for eddy current problems (see section 3.7.2) will be 

combined with the non-conforming mesh method to consider the relative movement between 

a stationary and a moving domain. In this case, the non-conforming mesh method as 

introduced in the sections 4.1 and 4.2 can be used without change if the sliding interface is 

located in the non-conducting domain with the magnetic field described by the scalar 

potential . 

 

The governing equations of the eddy current problem can be found by substituting the 

potentials defined in (41) and (55) into Maxwell’s equations (1)-(3). Hence, the differential 

equation corresponding to Faraday’s law in the conducting domain Ωc is 
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By the solenoidality of the magnetic flux density (divB=0), an additional differential equation in 

the domain c n   (i.e. both in the conducting and non-conducting domains) is obtained as 

 

    0grad didiv v  in c n      T T  .  (93) 

 

Having discretized the problem, the current vector potential T can be approximated with the 

aid of the edge basis functions Nk (see section 3.4) and the magnetic scalar potential  by the 

node-based polynomial basis functions Nk (see section 3.4). Thus, the ansatz functions for the 

potentials are 
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where tk represent the line integrals of Tn along the element edges, and φk the  nodal values of 

the potential Φn. 

 

Applying Galerkin techniques to the differential equations in (92) and (93), two sets of 

equations are obtained 
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Focusing on the equation terms which are valid for the non-conducting domain Ωn in (97), the 

non-conforming mesh method can be introduced as already discussed in section 0. Using the 

ansatz function (65) for the magnetic scalar potential, the terms in (97) specific for the domain 

Ωn can be rewritten as: 
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Integral Int.1: 
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Integral Int. 2: 
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Integral Int. 3: 
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Again, the term Ψk used in the integral expressions (98) - (100) is defined as  
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Finally, the following equation system is obtained: 

 

 

,

, , , ,

( ) ( )

( ) ( ) ( ) ( )

RR RM RS R

T T T
MRM MM SS

RR RM RS R

T T T
MR

T
RS

T
R M MM SS

R K R

T T
A M K RS K M

S

K RS

t t

t t t t

   
   

     

   
    

     

  
   

       

A A A C x

xC A A A C A C

K K K C x

xC K K K C K C

b b

b C b b C b

  (102) 

where C denotes the coupling matrix including the coupling factors ckl of the master nodes. 

The stiffness matrix is denoted by Aij, and Kij denotes the mass matrix where the subscripts R, 

M and S stand for the regular, master and slave degrees of freedom. After time-discretization, 

the equation system in (102) can be solved iteratively by well-established techniques like the 

conjugate gradient (CG) method, since the obtained matrices are sparse, symmetric and 

positive definite. 
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5.2 Accuracy analysis 

In this section two problem types, planar and cylindrical structures are investigated and the 

results obtained are discussed. Both problem types are of academic nature to allow 

comparisons to reference methods and to analyse the application of the non-conforming mesh 

method to motional eddy current problems. The first problem takes account of planar motion 

with two straight conductors moved above an iron plate. In the second example, a cylindrical 

coil is rotated within a copper shell. 

Due to the simplicity of both examples, two kinds of reference solutions involving conforming 

meshes can be used as benchmarks. Either the transient behaviour or the steady state solution 

after the transients have faded will be compared to these. In the latter case, the Minkowski 

transformation described in subsection 5.1.1  is used to obtain the reference solution. The time 

transient behaviour is verified by comparing it to results obtained by solving the problems with 

the overall finite element mesh being stationary and conforming and the sources are moved 

only. This is possible, since, being represented by the source current vector potential T0 on the 

right hand side of (96) and (97), these need not be modelled by the finite element mesh. It is 

sufficient to update T0 at each time step with the motion of the sources taken into account. In 

the following, this method is referred to as transient reference method. Note that this method 

is only feasible if the sources (coil, conductors, etc.) are surrounded by air and no magnetic 

medium like e.g. the iron core of a coil is in movement.  

 

The performance of the non-conforming meshing method is analysed by varying the mesh 

density along the sliding surface S or the size of the time step. The simulations are first carried 

out both for planar and rotational movement with equal mesh densities in the moving and 

stationary domains along the sliding surface. In the case of rotational movement, an additional 

experiment is performed to consider two different mesh densities in the moving and stationary 

domains along the sliding surface. 
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5.2.1  Planar problem – plane motion 

The planar problem shown in Fig. 28 consists of a thin iron plate located parallel to the xy-

plane and two straight conductors above this plate. The geometrical dimensions of the problem 

are shown in Fig. 28. The linear material properties of the iron plate are chosen as 

σFe=0.45∙107Sm-1 for the conductivity and µr for the relative permeability. The sliding surface 

S  is placed in the middle of the air gap with the surrounding air containing the two conductors 

defined as master domain Ωmov and the region including the iron plate is selected as slave 

domain Ωstat. The movement of the master domain and the two conductors with a constant 

velocity contradicts the boundary conditions at the boundaries parallel to the xz-plane. In order 

to minimize the influence of this boundary effect, the problem domain including the plate is 

sufficiently enlarged in the y-direction. The field quantities are evaluated in Np=1000 

equidistant points along a straight line. This line runs in the y-direction in the centre of the iron 

plate with a length of l=1m at a depth of z1=1mm, below the top of the plate.  

 

 

 

   

Fig. 28: Planar problem model to consider motion induced eddy currents. The dimensions 
of the iron plate are defined as lplate=3m, wplate=1m and dplate=0.01m. The cross section of 
the conductors is defined by wcond=5mm and hcond=41mm. The two conductors are displaced 
to each other by dcond=20mm and the air gap between the conductors and iron plate is set 
to dA=1mm. 
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The finite element mesh is generated by subdividing the whole domain into nE equidistant 

second order hexahedral elements in the y-direction. As the example is geometrically invariant 

in x-direction, only one layer of elements parallel to the yz-plane is needed. The mesh density 

along the sliding surface S is defined as 
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l
    (103) 

where the unit of the length lplate is taken in meters. Note that this density is the same for both 

the master and slave domains. 

 

In case of the time transient simulations, the magnetic field is excited by the impressed current 

density of the conductors J(t) assumed to be a step function with a ramp as shown in Fig. 29 

and can be written as 
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with the steady state value J0=0.625∙107Am-2, t1=0.0ms, t2=16.0ms and T=48ms. This time 

interval T corresponds to an overall displacement of 240mm in the y-direction, as the y-

component of the velocity is chosen to be vy=5ms-1. In case of the stationary simulation 

including the velocity term, the impressed current density is set to the steady state value 

J0=0.625∙107Am-2. 

 

   

Fig. 29 Impressed current density J(t) is assumed to be a step 
function with ramp. 
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As mentioned in the introduction of this section, two types of analyses have been carried out. 

First, the time step size t has been varied from t=0.5ms up to t=1.5ms corresponding to 

displacements of d=0.25mm up to d=7.5mm of the moving domain Ωmov relative to the 

stationary domain Ωstat. Second, the mesh density 
En  is increased using the values 

nE ϵ {600, 1200, 3000} finite elements along the sliding surface, whereas the time step t is 

kept constant. The numbers nE of elements correspond to element widths of wEL=5.0, 2.5  

and 1.0mm.  

The curves in Fig. 30 and Fig. 31 have been obtained by calculating the mean value of the 

modulus of the current density |Ji| at the points i=1, 2, …, Np=1000 for each time step 
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The evaluation of the mean value at each time step allows a simple characterization of the 

transient behaviour of the eddy current density J in the iron plate (see Fig. 30). Oscillations of 

the solution at steady state obtained at approximately t=25.0ms occur for each time step. 

These oscillations are expected to be due to the mesh being too coarse with nE=600 elements. 

In the case of a small time step, oscillations of the solution are present but not as intense as 

shown by the solutions with an increased time step. In addition to these oscillations, the steady 

state solution decreases on average if the time step size increases.  

 

   

Fig. 30: Comparison of the current density in case of a coarse 
mesh with nE=600 elements along the sliding surface. 

 

The plots of the current density |J| shown in Fig. 31 correspond to the case of nE=3000 

elements along the sliding surface. The solutions obtained show the same overall transient 

behaviour as those plotted in Fig. 30 and compare quite well with the transient reference 

solution. In particular, the solutions at steady state are in a very good agreement with the 

stationary solution, provided the time steps are chosen sufficiently small. However, accuracy 
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is lost if the time step size is increased, similarly to the case of the coarser mesh in Fig. 21. As 

expected, the oscillations of the mean value of |J| seen in Fig. 30 disappear due to the increase 

of the number of elements. It is safe to conclude that the decrease of the element size will 

improve stability and, indeed, overall accuracy. These results are in agreement with the results 

obtained at the error analysis in section 4.3 where the error also decreases with an increased 

number of elements. 

 

   

Fig. 31: Comparison of the current density in case of a fine mesh 
with nE=3000 elements along the sliding surface. 

 

To underline this statement, the values of the current density |J| and of the magnetic flux 

density |B| at steady state are shown in Fig. 32 and Fig. 33. In addition to two solutions with 

different time steps using a non-conforming mesh, the reference solutions, stationary and 

transient, have also been plotted. In case of the time transient solutions, the field values 

following the last time step at t=48ms have been evaluated. The distribution of the current 

density |J| in Fig. 32 is almost identical for each solution. Only the peak values of the transient 

results, both the reference and the best solution obtained by the non-conforming mesh method, 

are slightly less than the value yielded by the stationary reference solution at position 

y=1.408m. The transient reference solution and the solution obtained by the non-conforming 

mesh method with t=0.5ms are in a very good agreement, but the peak value at y=1.408m is 

considerably lower in case of t=1.5ms. Comparing the magnetic flux density |B| in Fig. 33, 

the same observations as for the current density can be made. 
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Fig. 32: Comparison of the current density in case of nE=3000 
elements along the sliding surface and at last time step t=48ms. 

 

 

   

Fig. 33: Comparison of the magnetic flux density in case of 
nE=3000 elements along the sliding surface and at last time step 
t=48ms. 
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To conclude the presentation of the results for this planar problem, the field plots of the current 

density |J| and magnetic flux density |B| are compared for the stationary reference solution 

(Minkowski transformation) and the steady state solution following the last time step of the non-

conforming mesh method. The comparisons are shown in Fig. 34 and Fig. 35 where it can be 

seen that the fields are in a good agreement. 

 

 

a)  b)   

Fig. 34: Field plot of the induced eddy current in the iron plate. a) Current density in case of the 
stationary solution b) Current density in case of the transient solution with a non-conforming mesh 
along the sliding surface flowing the last time step at t=48ms. 

 

 

a)  b)   

Fig. 35: Field plot of the magnetic flux density in the iron plate. a) Magnetic flux density in case of the 
stationary solution b) Magnetic flux density in case of the transient solution with a non-conforming 
mesh along the sliding surface following the last time step at t=48ms. 
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5.2.2 Cylindrical problem – rotational motion 

In this section, the cylindrical problem shown in Fig. 36 is investigated using two different finite 

element mesh topologies. First, the density of finite element mesh along the sliding surface 

S  is the same for the stationary and moving domains Ωstat and Ωmov (see section 5.2.2.1). In 

the second case, the mesh density is different in the two domains Ωstat and Ωmov (see section 

5.2.2.2).  

The problem consists of a cylindrical shell made of copper in the stationary problem domain 

Ωstat with a cylindrical coil placed in the centre of a cylinder constituting the moving domain 

Ωmov. The axes of the coil and of the shell are perpendicular to each other. In addition, there is 

a symmetry plane perpendicular to the axis of the shell. The dimensions of the problem are 

shown in Fig. 36 and summarized in Tab. 7.  

 

a)  b)   

Fig. 36: Model of a problem consisting of a copper shell with a 
cylindrical coil settled in the centre of the annulus. a) Top view with 
dimensions b) 3D view with symmetry plane at the bottom. 

 

 

Copper shell  Cylindrical coil  

outer radius  Ro=10mm outer radius 0 0.9coilR mm  

inner radius Ri=5mm inner radius 0.7coil

iR mm  

height of the shell h1=10mm height of the coil h2=3mm 

radius sliding surface RS=4mm   

Tab. 7 Dimensions of the cylindrical problem. 
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The conductivity of the copper shell is σCu=5.7∙107Sm-1 and the relative permeability is µr ≈1. In 

both problem models, the impressed current density J(t) is, again, a step function  with a ramp, 

the steady state value being J0=0.1∙107Am-2: 

 

 
0 1 2 1 1 2

0 2

( ) / ( ) ,for t
( )

 , 

t t t t t t
t

t t T

   
 

 

J
J

J
 , (106) 

with t1=0.0ms, t2=16.0ms and T=50.0255ms. This time interval T corresponds to an azimuthal 

rotation of 180 degrees, as the constant angular frequency is chosen to be = 62.8s-1.  

The finite element mesh is generated for both problem models by dividing the structure 

equidistantly into nEL intervals along the circumference of the sliding interface S. Hence, the 

mesh density is defined as 
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In the following two subsections, the evaluation of the field quantities has been done along a 

circular line with radius R1=5.5mm located in the symmetry plane of the copper shell. These 

numerical values are taken at Np=1000 equidistant points along the circular line. Again, the 

time transient behaviour is characterized by evaluating the mean values similarly to (105), at 

each time step in the time interval 0<t<T. 
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5.2.2.1 Copper shell I: equal mesh density 

In this first experiment, the mesh density along the sliding surface is chosen to be equal for the 

moving and stationary domains. Similar to the simulations investigated in section 5.2.1, the 

size of the time step t is first varied with the mesh density kept constant. In addition to this, 

the mesh density is then varied with the time step size held constant. In Fig. 37, an example 

of the mesh topology with equal mesh density in the two domains is shown. Similar to the 

analysis of the planar motion, the results of the non-conforming mesh technique are compared 

to the solutions obtained by the transient reference method and to the stationary solution using 

the velocity term. The time steps are varied from t=0.278ms up to t=4.17ms and the mesh 

density values 
ELn  correspond to nEL ϵ {40, 80, 120}. The time steps chosen correspond to a 

relative azimuthal displacement between the domains Ωstat and Ωmov from φ=1 degrees up to 

φ=15 degrees.  

 

a)  b)   

Fig. 37: Mesh topology with equal mesh density in both domains, stationary and moving. 
a) Top view of the mesh b) Front view of the mesh along the z-axis. 

 

Fig. 38 compares the transient behaviour of the current density |J| for different time steps and 

for the number of elements nEL=40. It can be observed that the solutions are in a good 

agreement with the reference solutions (transient reference method and stationary solution). 

The time steps t=2.084ms and t=2.501ms are obviously too large to capture the decay of 

the transient solution properly. However, the steady state solutions obtained by these time 

steps are almost equal to the other solutions and no oscillations appear at steady state. Note 

that the time step t=2.501ms corresponds to an azimuthal displacement of 9 degrees which 

is equal to the angle of each element. In this particular case, a so called locked step analysis, 

with the mesh being conformal at each time step has been performed. The oscillations in the 

transient part as well as in the steady state part at lower time steps are expected to be due to 

a too large element size. The oscillations in case of t=0.417ms (relative displacement of 

φ=1.5 degrees) are smoother, than in case of t=0.278ms with corresponding relative 

displacement of φ=1.0 degrees. Comparing the solutions with the same time step but with 

increased number of elements nEL=80, a similar behaviour can be observed (see Fig. 39). 

Indeed, the accuracy and smoothness of the solutions has increased in general. In the 
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particular case of t=0.417ms, the oscillations have almost vanished. If the number of 

elements is further increased to nEL=120 , the oscillations of the solution are decreased in the 

case oft=0.278ms, too. Therefore, the ratio  to describe the relation between the element 

width wEL (azimuthal angle) and relative azimuthal displacement dEL dependent on the time 

step size t is introduced as  

 
( )
EL

ELd t

w
 


.  (108) 

 
According to the above analysis, it is obvious to assume that the correlation between the time 

step size and element width is important. If the ratio  is chosen to be either too large or too 

small, the solution shows large oscillations and instabilities. Considering the results obtained, 

the recommended range for the upper and lower limit of the ratio (108) is: 

 

 1/ 3 3  .  (109) 

 

Note that if the ratio is equal to one (), the special case of a locked step is arrived at, 

provided that the mesh density is equal in the moving and stationary domains. To further justify 

this recommendation, the solution in case of t=0.834ms and 40 is also shown in Fig. 38. 

Hereby the suggested ratio evaluates to . It can be seen that the oscillations become 

attenuated and accuracy is improved. 
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Fig. 38: Comparison of the current density for different time steps 
in case of nEL=40 equidistant elements along the sliding surface. 

 

 

   

Fig. 39: Comparison of the current density for different time steps 
in case of nEL=80 and nEL=120 equidistant elements along the 
sliding surface. 
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In Fig. 40, the transient behaviour of the flux density |B| is compared for different time steps 

and mesh densities to the reference results. Again, similar oscillations as the ones in the 

current density |J| appear. In general, the magnetic flux density evolutions are in good 

agreement with the transient and stationary reference solutions. 

 
 

a)   

b)   

Fig. 40: Comparison of the magnetic flux density for different time 
steps in case of nEL=40 (see a) and in case of nEL=80 and nEL=120 
(see b). 
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In the following series of field plots shown in Fig. 41, the time evolution of the magnetic flux 

density |B| (figures on the left) and current density |J| (figures on the right) is illustrated at 

certain time instances. It can be seen that the magnetic field follows the movement of the 

exciting coil at steady state, whereas the current density exhibits a certain lag during in the 

transient phase. 

 

a)  b)   

c)  d)   

e)  f)   
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g)  h)   

j)  k)  

Fig. 41: Time transient evolution of the magnetic flux density |B| on the left and of the 
current density |J| on the right. 
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5.2.2.2 Copper shell II: different mesh density 

In the second example, the mesh density is chosen to be different in the stationary and moving 

domains Ωstat and Ωmov. The mesh topology with nEL=80 elements in the moving and nEL=120 

elements in the stationary region is shown in Fig. 42. The transient simulation is carried out 

with a time step size of t=0.278ms corresponding to a relative azimuthal displacement of 

1 degree between the two domains Ωstat and Ωmov. As a reference, the best solution of the 

previous analysis is used. This is the case, if the number of elements is set to nEL=120 in both 

domains Ωstat and Ωmov, and the time step size is chosen ast=0.278ms. 

 

a)  b)   

Fig. 42: Mesh topology with different mesh density in both domains, stationary and moving. a)  
Overview of the mesh at the point of interest b) Detailed view of the mesh along the sliding 
surface. 

 

The evolutions of the current density |J| and of magnetic flux density |B| are shown in  Fig. 43 

and Fig. 44. It can be observed that, again, oscillations appear at steady state both for the 

current density and for the magnetic flux density. It is obvious to assume that this behaviour is 

again due to the correlation between the element width and time step size. Considering the 

ratio defined in (108) and its suggested limits (109), this ratio is outside the range for the 

moving domain with mov=4.5. For the stationary domain, this ratio evaluates to stat=3.0. 

Accordingly, two different time steps are chosen e.g. t=0.417ms and t=1.112ms with the 

values of  within the suggested limits (109) . Recalculating the solutions of the problem show 

that the oscillations still exist, but become attenuated. In particular, the oscillations have almost 

vanished in case oft=1.112ms, and the solution becomes on average closer to the reference 

solution at steady state. It is expected that the remaining oscillations are due to the insufficient 

discretization of the cylindrical structures and the problem arising due to geometrically non-

matching element facets along the sliding surface. This problem is investigated in the following 

subsection 5.2.3. 
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Fig. 43: Comparison of the current density in case of different 
mesh topologies in the two domains Ωstat and Ωmov. 

 

 

   

Fig. 44: Comparison of the magnetic flux density in case of 
different mesh topologies in the two domains Ωstat and Ωmov. 
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5.2.3 A special problem arising in case of cylindrical sliding surfaces  

Previous numerical examples involving cylindrical structures show that even if the finite 

element mesh is refined, oscillations occur at steady state. This is in contrast to the numerical 

example with planar structure (see subsection 5.2.1). In that case, the oscillations vanished, if 

the mesh was refined with the ratio  defined in (108) kept within the recommended limits 

1/3 ≤  ≤ 3. It is obvious to assume that these remaining oscillations result from the problem 

topology, i.e. from the sliding surface being curved. As mentioned in section 4.3, small gaps 

and overlaps occur in case of cylindrical sliding surfaces when the two domains become 

displaced relative to each other during rotational movement or the mesh topologies in the two 

disjoint domains are different. In order to overcome this problem of geometrical errors, a 

tolerance for the distance between the slave node and the corresponding facet of the master 

element was enforced. Nevertheless, the numerical results show that, even for fine meshes 

where the differences in element sizes are kept within appropriate limits and second order 

elements are used, oscillations of the solution occur. Therefore, this problem arising in case of 

cylindrical sliding surfaces is investigated in this section.  

 

The discretization of cylindrical structures leads to the problem of non-matching finite element 

surfaces along the sliding surface S, if the two disjoint domains ΩM and ΩS are displaced 

relative to each other. This situation is shown in an exaggerated way in Fig. 45 and in particular 

in Fig. 46 where the geometrical errors like small gaps and overlaps between the element 

surfaces along the sliding surface are highlighted. 

 

 

   

Fig. 45: Two disjoint domains ΩM and ΩS with non-conforming mesh along the sliding 

surface S. Master nodes ml and slave nodes sk can be defined along the interface S. 
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Fig. 46: Front view of two disjoint domains, showing in detail the problem of geometrical 
errors like small gaps and overlaps between the elements facets, in case of two elements 
displaced relatively to each other. 

 

In order to quantify this problem of geometrical errors and its influence on numerical solutions, 

a quality measure of the coupling between a slave node sk and its corresponding master nodes 

ml is introduced as  

 

  
( ) ( )

( ) ( )

1 1

master master
k kL L

master slave

lk

l l

k klc N r
 

     (110) 

with k called the stiffness of coupling. 

 

In case of perfectly matching surfaces like planar ones, the stiffness of coupling evaluates to 

one: k=1. However, the stiffness of coupling becomes unequal to one: k ≠ 1 if the element 

facet of the slave node fails to align with the corresponding facet of the master element, i.e. if 

non-matching element surfaces along the sliding surface S appear. To prove these 

statements, consider a single second order hexahedral master element corresponding to a 

cube in the local coordinate system {ξ,η,ζ} ϵ [-1, 1] with slave nodes sk located within this 

master element (see Fig. 47a).  

The local coordinates of some characteristic slave nodes are given in Tab. 2. In case of the 

conventional coupling strategy with only the nodes belonging to the sliding surface of the 

master element considered, the number of master nodes is ( ) 8master

kL  . The values of the 

stiffness of coupling for each slave node are also given in Tab. 8. Indeed, the values of the 

stiffness of coupling of slave nodes s3 and s4 are not equal to one. This inequality to one 

introduces potential jumps along the sliding interface resulting in additional oscillations of the 

solution. The values of the stiffness of coupling indicate that the stiffness of coupling decreases 

if the distance between the slave node and the corresponding facet of the master element 

including the master nodes become greater. This decrease is especially striking in case of 

slave node s4 whose location is close to the origin of the local coordinate system of the master 

element (i.e. to the centre of the element). 
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a)  b)   

Fig. 47: Illustrative example to consider different slave node locations and different number of 

corresponding master nodes. a) Conventional approach with ( ) 8master

kL   b) New approach 

with ( ) 20master

kL  . 

 

 

number of master nodes 
slave node 

 , ,ks     

stiffness of coupling 

k   

( ) 8master

kL    1( 1,0, 1)s  
  1 1.0 

  

 2(0,0, 1)s 
 2 1.0    

 3(0,0, 0.9)s 
 3 0.8550 

  

 4( 0.4,0.3, 0.5)s  
 4 0.3750 

  

( ) 20master

kL    1( 1,0, 1)s  
  1 1.0 

  

 2(0,0, 1)s 
 2 1.0 

  

 3(0,0, 0.9)s 
 3 1.0 

  

 4( 0.4,0.3, 0.5)s  
 4 1.0 

  

Tab. 8: Stiffness of coupling in case of the conventional approach where the number of master nodes is 

set to ( ) 8master

kL   , and in case of the new approach where the number of master nodes is set to
( ) 20master

kL  . 
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To discuss the behaviour of the stiffness of coupling as shown before, consider that the 

stiffness of coupling in case of ( ) 8master

kL   is a constant function equal to one, along a facet of 

the master element: 

 

  
8

( ) ( )

1

master slave
l k

l

N


 r .  (111) 

 

If the slave node fails to align with the facet comprising the corresponding master nodes, the 

stiffness of coupling become evaluated within the master element as: 

 

  
20

( )

1

slave
k l k

l

N 


  r  .  (112) 

 

Fig. 48 illustrates the stiffness of coupling where two local coordinates are kept constant, e.g. 

{ξc,ηc} ϵ [-1, 1], and the third coordinate is varied as -1 ≤ ζ ≤ 1. Hence, the stiffness of coupling 

become dependent on the -coordinate only.  

 

In contrast to the case of ( ) 8master

kL   corresponding master nodes, the stiffness of coupling 

becomes a constant function equal to one within the master element if ( ) 20master

kL   

corresponding nodes are chosen (see Fig. 48). 

 

   

Fig. 48: Stiffness of coupling dependent only on the local 

coordinate  for the cases of ( ) 8master

kL   and ( ) 20master

kL   

corresponding master nodes. 
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In such cases, e.g. in case of s3 and s4, it is more suitable to use all nodes of the master 

element instead of just the nodes belonging to the sliding surface, i.e, setting the number of 

corresponding master nodes to ( ) 20master

kL   in this example (see Fig. 47b). For all slave nodes, 

the stiffness of coupling becomes equal to one, resulting in no artificial potential jumps along 

the sliding surface. This improvement is tested in the following with the previous numerical 

example involving a cylindrical structure.  

 

To illustrate this simple technique, the two cases of equal mesh density (see section 5.2.2.1) 

and different mesh density (see section 5.2.2.2) in the two disjoint domains Ωstat and Ωmov are 

considered again. In both cases the transient simulation is carried out with a time step size of 

t=0.278ms which corresponds to a relative azimuthal displacement between the domains Ωstat 

and Ωmov of 1 degree. The numerical values of the z-component Jz(t) of the current density are 

compared for both cases in Fig. 49 and, in detail, in Fig. 50 showing the stationary solution. 

The case of equal mesh density is referred to as 40 and the case of different mesh densities 

as [120, 80]. Indeed, the oscillations of the solutions become attenuated, if a larger set of 

master nodes is used. In case of equal mesh density, the oscillations still exist, but this is due 

to the mesh being coarse. If the mesh is refined, the oscillations decrease as indicated by the 

curve of the second case with different mesh densities and using the conventional approach 

of ( ) 8master

kL   master nodes per element. In case of different mesh densities and using a larger 

set of master nodes ( ) 20master

kL  , the oscillations are completely eliminated and the solution is 

in a very good agreement with the stationary solution (see Fig. 50). 

 

  

Fig. 49: Comparison of the current density for the conventional 

(old) and new coupling approach, ( ) 8master

kL   and ( ) 20master

kL   

per element. 

 

  



Taking account of motion 

81 

 

   

Fig. 50: Detailed view of the comparison of the current density at 
steady state for the conventional (old) and new coupling 

approach, ( ) 8master

kL   and ( ) 20master

kL   per element. 

 

In the following, the stiffness of coupling k is averaged over the time interval T for all slave 

nodes s1…s8 of a particular slave element situated in the symmetry plane. A comparison of the 

stiffness of coupling is made between the cases of the conventional ( ( ) 8master

kL  ) and new 

( ( ) 20master

kL  ) approaches. Fig. 51 shows the case of equal mesh density 40 along the sliding 

surface. In case of the conventional approach, the stiffness of coupling is not balanced within 

the slave element. It is obvious to assume that this indicates an additional reason for larger 

oscillations as shown in previous numerical results and in particular in Fig. 49 and Fig. 50. As 

expected, refining the mesh results in a more balanced coupling of all slave nodes within one 

element as indicated in Fig. 52, although different mesh densities are used in the stationary 

and moving domains. Using a larger set of master nodes per element according to the new 

approach, the stiffness of coupling of each slave node becomes equal to one. 
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Fig. 51: Stiffness of coupling averaged over the period of time for 

the old and new coupling approaches, ( ) 8master

kL   and 
( ) 20master

kL   at equal mesh density in Ωstat and Ωmov. 

 

 

   

Fig. 52: Stiffness of coupling averaged over the period of time for 

the old and new coupling approaches, ( ) 8master

kL   and 
( ) 20master

kL   at different mesh densities in Ωstat and Ωmov. 

 

  



Discussion and conclusion 

83 

 

 

 

6 Discussion and conclusion 

This thesis presents a powerful alternative to standard methods used in commercial finite 

element software packages to couple two disjoint domains with independent meshes. The 

main findings of the investigated non-conforming mesh method are recapitulated in this 

chapter. Besides a conclusion of present thesis, some proposals for future work are also given.  

6.1 Recapitulation of obtained findings 

The error analysis made while treating magneto-static problems showed that, on the one hand, 

the error decreases at similar rates as known from the classical finite element method. On the 

other hand, the error increases with greater relative displacement between two elements. 

When treating the case of different mesh densities between the two independent meshes, it 

has become obvious that the non-conforming mesh method is well suited to couple domains 

with different mesh topologies without loss of accuracy. A certain limit of the ratio between the 

meshes of the master and slave domain has been obtained. It has been understood that the 

master domain cannot be refined excessively. Contrarily, the slave domain can be discretized 

much finer then the master domain.  

 

The treatment of motion induction (time transient problems) in case of planar and rotational 

movement has shown that the results are in a good agreement with the results obtained from 

references. However, the results have shown a dependence on the element width and time 

step length. Indeed, a limit on the ratio between element width and time step length (size of 

relative displacement) could be defined. Once a time step length or element width is chosen 

in such manner as to end up within this defined limit, the results become more accurate and 

stable after the transients are gone.  

While analysing the rotational movement, a special problem arises in case of cylindrical sliding 

surfaces. The issue of geometrical errors, e.g. small gaps or overlaps between the finite 

elements along the sliding surface, causes instabilities and loss of accuracy. Hence, the 

coupling strategy for cylindrical structures has been improved. Here, an increased number of 

corresponding master nodes results in a significant improvement of the obtained results. 

  



Discussion and conclusion 

 

84 

6.2 Suggestions 

The topic of periodic boundary conditions has already been raised in case of static problems 

where no relative movement between two disjoint domains has been considered. The obtained 

results are promising, but a deeper analysis is still missing. Further, the investigated concept 

should be adopted to time transient problems to provide the possibility of problem model 

reduction by means of topological periodicities.  

 

A difficult problem arises for dynamic analyses of electrical machines if eccentricity of the 

rotating rotor has to be take into account. The solution of the issue of geometrical errors in 

case of cylindrical sliding surfaces raises the idea to adopt the coupling strategy further to be 

able to take account of eccentricity. An idea would be, to introduce a sliding volume instead of 

a sliding surface in the air gap. Here, the number of slave nodes have to be increased to all 

nodes of a slave element that belongs to that sliding volume. Of course, this approach has 

some limitations and restrictions regarding the degree of eccentricity, e.g. the rotor is not 

allowed to contact the stator. Apparently, this would arise a challenging issue. Initially the 

coupling elements are situated in the air gap and then have to assume the material properties 

of the elements situated in e.g. stator iron or rotor iron. However, it is believed that a small 

degree of eccentricity can be taken into account as long as the coupling between the two 

domains takes place in the air gap region. 

6.3 Conclusion 

The present thesis contributes to the topic of domain coupling and presents a clever and 

accurate alternative to popular methods in this field of research. The investigated non-

conforming mesh method proposes a coupling strategy that uses the nodal potentials only to 

couple two disjoint domains with two independent meshes along a sliding surface. The 

coupling of the nodes pursue the principle of a master/slave interpolation.  

 

Combining the non-conforming mesh method with the T,-formulation, where the 

conducting medium is modelled with the aid of the current vector potential and the non-

conducting medium with the magnetic scalar potential, reduces the number of unknowns 

significantly and, therefore, reduces computational costs. The latter is a crucial point in case 

of three-dimensional, time transient analysis of electromagnetic problems. Especially the 

combination of domain coupling methods with the T,-formulation are not treated so far or 

have been less in focus over the past decades. Traditionally, the methods used for coupling 

utilize magnetic vector potential formulations with the drawback of a high number of degrees 

of freedom and increased computational burden.  
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When applying the non-conforming mesh method to three-dimensional applications, although 

of academic nature, the practicability to analyse the dynamical behaviour has been shown. 

Further, the limits of the investigated methods have been addressed as well as 

recommendations for use have been made. The non-conforming mesh method is applicable 

to a wide range of electromagnetic problems and promises to be a powerful tool for further 

research. 
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Appendix A: Source field calculation for complex 
conductor structures 

The following discussion has been presented during a poster session in the biennial 

International Symposium on Electromagnetic Phenomena in Nonlinear Circuits (EPNC), 

Helsinki, 2016. 

 

If the current density J0 occurs in massive conductors and is hence not a priori known, the 

corresponding static current flow problem could be solved in terms of a current vector potential 

T0 represented by edge basis functions to yield the approximation 
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T N .  (113) 

 

In many practical cases, however, stranded conductors occur and, hence, the current density 

is known, it is constant over any cross section of the conductor.  

In such cases one could integrate the Biot-Savart field over all edges of the finite element mesh 

to yield the values tk. This is computationally very demanding in case of complex coil shapes 

since all the Biot-Savart volume integrals have to be evaluated numerically. 

An alternative has been proposed in [56] to solve for a Coulomb-gauged nodal finite element 

representation of T0 with its curl given by J0. This would still have to be integrated over all 

edges of the finite element mesh involving additional numerical burden. 

If the current density is known, it is also possible to generate a tree in the graph formed by the 

finite element mesh and assign the value zero to tk along the tree edges and compute the 

integral of the current density over the loops generated by each co-tree edge to yield the values 

tk over the co-tree edges, see [57], [54]. In order to dispense with the necessity of identifying 

the loops, the authors in [58] have proposed to solve for the tree-gauged edge element 

representation of T0 with its curl given by J0. 

Another possibility is now to use the method of [58] without gauging the vector potential. It is 

well known that not using a gauge results in much better conditioned matrix than the one 

resulting in the gauged version [7]. The equations obtained by thus projecting the curl of T0 to 

J0 over the problem domain  are: 
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Although we have as many degrees of freedom as there are edges in the finite element mesh, 

the resulting system is well conditioned (although singular) and can be solved very efficiently 

by preconditioned conjugate gradient techniques. 

The obtained equation system (114) requires the knowledge about the value and direction of 

the current density along the whole conductor of any shape. It is assumed that the information 

about the current density is given for further considerations. From the view point of the finite 

element mesh of the problem domain  where the projection of the curl of T0 to J0 and solving 

the current flow problem takes place, each integration point of the finite element mesh needs 

the value and direction of the current density J0. If the integration point is within the conductor 

domain c, the position of the point has to be identified to determine the direction and value of 

the current density J0. If the integration point is not within the conductor domain c, the current 

density J0 becomes zero. Therefore, the current density J0 can be obtained as 
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where Jc is the given current density of the conductor. An example to illustrate this mapping of 

the current density can be seen at Fig. 53. The value of the current density Jc is given by the 

cross section Ac and by the given current I. The direction of the current density is obtained as 

the normalized normal vector of the conductor cross section /Ac n ne e e  . Therefore, the 

current density Jc can be obtained as 

 

 /c c AcI AJ e .  (116) 

 

   

Fig. 53: Illustration of an arbitrary shaped conductor 
getting mapped onto the problem domain Ω. The 
current density J0 at integration points within the 
conductor domain Ωc becomes Jc , otherwise the 
current density J0 is zero. 
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Numerical example: 

As an example, let us consider a stranded helical conductor shown in Fig. 54. The conductor 

consists of three windings of height hw=7.5mm with a slope of s=10mm per turn. In total the 

helical conductor has a height of hc=37.5mm with an inner radius Ri=10mm and an outer radius 

of Ro=15mm. The current density is assumed to be constant over any cross section of the 

winding. The helical conductor is nested in the centre of the problem domain of dimensions 

a=40mm; b=50mm; hp=60mm.  

The finite element mesh used is made of second order hexahedral elements, i.e. the shape of 

the winding is not modelled by the mesh. In order to obtain data of the current density J0 two 

data lines: line 1 and line 2 are taken parallel to the x-axis and z-axis in such manner that the 

current density along them is characteristic of the helical conductor 

 

a)  b)   

Fig. 54: Numerical example: a) Helical conductor within a hexahedral finite element mesh. 
b) Detailed view of the helical conductor showing the two data lines, parallel to the x and 
z-axis, respectively. 

 

As the question about the computational costs to solve the equation system (4) is of great 

interest, the investigated problem model was solved for a different number of elements. The 

number of elements is chosen in such a way that the resulting mesh ranges from a very coarse 

to a very dense finite element grid. For solving the equation system (4), the incomplete 

Cholesky preconditioned conjugate gradient method (ICCG) has been used on an Intel Core 

i7-5820 (6x 3,60Ghz) architecture. In Tab. 9, the investigated problems with the number of 

elements, of degrees of freedom, of ICCG iterations and computational time are listed. 

 

The current density computed in the finite element mesh with a number of 409600 elements 

and with a number of about 5.02 million degrees of freedom is represented by arrows in Fig. 

55a and Fig. 55b illustrates the convergence time in logarithmic scale against the number of 

degrees of freedom. As Fig. 5 shows, the convergence time rises in a sub-quadratic manner, 

as the slope of the curve is about 1.5. The current density obtained for a dense mesh of 409600 

elements along the two data lines (see Fig. 54), parallel to the x-axis and z-axis, respectively 

is shown in Fig. 56a for line 1 and in Fig. 56b for data line: line 2. Both data lines run within the 
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range of the problem model boundaries. In both cases shown in Fig. 56a and Fig. 56b, the 

characteristics of the helical conductor can be clearly seen, as the current density J0 becomes 

Jc inside the domain of the conductor and zero elsewhere. The value of the current density J0 

remains nearly constant over the data lines. 

 

 

Intel Core i7-5820 (6x 3,60Ghz) 

elements DOF ICCG iterations time [sec.] 

2560 34456 85 0,500 

20480 260528 191 9,766 

69120 862536 312 54,234 

81920 1018640 216 44,016 

163840 2024800 437 178,969 

204800 2523248 380 194,750 

245760 3021696 335 204,781 

286720 3520144 305 219,984 

327680 4018592 342 277,891 

368640 4517040 311 286,375 

409600 5015488 311 318,844 

Tab. 9: Convergence behaviour depending on the number of degrees of freedom and number of 
elements. 

 

 

a)  b)   

Fig. 55: a) Current density of the hexahedral mesh. b) Convergence time behaviour of the 
incomplete Cholesky preconditioned conjugate gradient method according to the degree 
of freedom. 
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a)  b)   

Fig. 56: a) Current density J0 on the hexahedral mesh taken along line 1. b) Current density J0 on 
the hexahedral mesh taken along line 2. 

 

Discussion: 

The current density distribution shown in Fig. 55. is in excellent agreement with the current 

density of the helical conductors and the good representation of the conductor is reaffirmed by 

the data taken along line 1 and line 2 shown in Fig. 56. As it can be seen in both figures Fig. 

56a and Fig. 56b, the current density J0 show peaks at the edges of the conductor boundaries, 

but remains constant within the conductor domain. It is assumed that this peak phenomenon 

at the end region comes from the density of the finite element mesh and therefore the ability 

of the finite element mesh of the problem domain to represent the shape of the conductor. This 

is an obvious restriction to the finite element mesh of the problem domain, that the finite 

element mesh needs to be as dense as necessary at the region where the conductor appears, 

in order to get the right representation of the conductor. Overall, the edge element 

representation of T0 has been obtained at reasonable computational costs, and the method is 

applicable for any conductor shape as long as the current density of the conductor can be 

assumed to be given. 
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