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Kurzfassung

Algorithmen, die selbstkonsistent arbeiten, wie z.B. Hartree-Fock, ein Standardverfah-
ren in der Elektronenstrukturtheorie, zeigen naturgemäß eine starke Abhängigkeit von
der Qualität der Startlösung. Dies umso mehr, je größer und komplexer das untersuchte
System ist. Ist die Startlösung jedoch unzureichend, sind nicht nur ein langwieriger Kon-
vergenzprozess, sondern im schlimmsten Fall sogar ein völliger Abbruch der Berechnung
zu erwarten. Obwohl in den letzten Jahrzehnten große Fortschritte bei der Verbesserung
der Algorithmen selbst gemacht wurden, ist das Generieren einer guten Startlösung bisher
mit vergleichsweise wenig Aufmerksamkeit bedacht worden. Viele der gängigen Schemata
sind sehr allgemein konstruiert und oft für bestimme Systeme nicht anwendbar.

Ein Beispiel sind Hückel-artige Verfahren, welche sich hervorragend für organische Mo-
leküle eignen, aber für metallische Systeme im Vergleich zu Methoden wie der

”
superpo-

sition of atomic densities“, in der sphärisch gemittelte atomare Dichten zu einer mole-
kularen Startlösung kombiniert werden, deutliche Nachteile zeigen. Hier setzt die vorlie-
gende Arbeit an, welche einen Machine-Learning-Ansatz ins Spiel bringt und untersucht,
ob sich brauchbare Startlösungen mit künstlichen neuronalen Netzen generieren lassen.
Ausgehend von einer Beziehung zwischen orbitalem Überlapp und konvergierter Elektro-
nendichte, wird der Ansatz in späteren Kapiteln weiter verfeinert.





Abstract

As much fine tuning as the initial guess and the self consistent field (SCF) iteration
algorithms of Hartree-Fock implementations have seen in the last decades, in many cases
the convergence for large systems is still problematic, and automatic black box-type initial
guesses often apply only to a limited selection of scenarios. An inappropriate guess can
lead to a very slow and therefore inefficient convergence behavior. Many of the schemes
currently in use are designed in a very general way, and may therefore not be applicable
to certain systems.

An example are Hückel-based methods, which are very effective for organic molecules, but
fail for metallic systems. The latter are preferably treated via the conceptually simple
superposition of atomic densities, where the latter are spherically averaged to yield a trial
density matrix. This is the starting point for the machine learning ansatz proposed in this
thesis. The applicability of a neural network-based approach is investigated with the aim
to find fast converging initial guesses for the SCF algorithm. The thesis starts with a very
simple first approach, based on relations between atomic orbital overlap and the electron
density distribution, which is finally improved towards a more generalized solution in later
chapters.
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1. Introduction

This thesis is conducted to mitigate a problem very common in the machine learning
community, not just in quantum chemistry. All models, regardless of their complexity,
require fitting data. This data needs to be as representative as possible to yield the
best results with the fewest examples. Unfortunately, obtaining data is often difficult in
quantum chemistry due to one or both of the following reasons:

• The samples are computationally too expensive to generate. In most cases, this is
the main reason why machine learning is needed in the first place.

• Data sampling without introducing a bias is not straight forward and often not
possible. Usually the samples correspond to points in very high-dimensional spaces,
and this dimensionality makes it computationally impossible to exhaustively sample
these spaces e.g. by working along a grid.

In some cases the two problems from above combine. If grid sampling or other deter-
ministic methods are no longer applicable, probabilistic methods (such as Monte Carlo or
molecular dynamics1 ) are typically used in order to restrict the sampling to “more rele-
vant” areas of space. This bias, while saving computation time, has of course an impact
on the model performance and will cause the model to fail if it is confronted with a sam-
ple outside of the sampled regions. However, reducing this bias involves more than just
adjusting the sampling algorithm. After a point in the space to sample is selected further
calculations (e.g. the application of the SCF-technique in order to obtain properties of
interest) are often necessary, and the methods to carry them out might face additional
difficulties in certain areas of the space (e.g. far away from equilibrium).

To remedy these difficulties, many ideas have been proposed to make the SCF process
more robust and to speed it up. An SCF calculation starts from an initial guess for
the electronic density and then improves this guess in an iterative fashion until it either
reaches the final density or has to admit defeat. One could compare it to a traveller,
trying to get from one city to another as fast as possible. The straight forward way to do
this would be to take the shortest possible way and avoid any detours. This corresponds
to improvements in the iteration process. A lot of research has been conducted in this
area with great results2. However, the travel of our hiker would also be a lot shorter if
the towns were fairly close in the first place. For the SCF calculation, this would mean a
better starting solution. A good initial guess to an SCF calculation definitely reduces the
probability of the calculation to fail. To our surprise, not much attention has been paid
to this aspect recently. The latest break-through was the very successful superposition
of atomic densities approach (Section 2.1.9), published in 2006[2]. In this work, a few

1 See e.g. [1, p. 22 et seqq.] for molecular dynamics and [1, p. 448 et seqq.] for Mote Carlo methods.
2 See e.g. the methods described in Section 2.1.10 or [1, p. 101 et seqq.] for more details.
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1. Introduction

new schemes based on machine learning and artificial neural networks in particular are
developed and tested. This way, we hope to leverage a priori available information (in
the form of the densities of easily converged samples) together with improved schemes to
produce more robust and reliable initial guesses. Since the aim is to reduce computation
time, these initial guess schemes need to be as “lightweight” as possible while still providing
suitable accuracy. As a first test, we investigate whether the density matrix of a molecule
can be guessed using the overlap matrix as input. After that, we attempt to generalize
this result. This generalization is with respect to the input as well as the output side of
the guess algorithm. So far, to our knowledge, there is no scheme that captures enough
information on an atomic environment to estimate non-scalar quantities. Since we need
just that, we will discuss ways to create inputs that have this capability. In addition, we
will derive a few schemes to generate guesses for the density matrix based on these inputs,
and apply the result to a few testing datasets.

Before going into the details a few words shall be said about the actual software that this
project is executed with.

• Back End: all of the back end used to set up testing and analysis methods as
well as data set generation and processing functionality was done with the Python3

language. In the course of this, all numerically demanding steps were carried out
using SciPy[3] and NumPy[4–6] and all plots were generated with Matplotlib[7], an
open-source plotting library for python, most of them using the seaborn front end4.

• Data Generation: most data generated to be used in this work was sampled using
molecular dynamics. The initial geometries were created using Avogadro[8, 9]. The
molecular dynamics trajectories were calculated with the QChem[10] computational
chemistry package.

• SCF Calculations: the Hartree-Fock calculations to measure the number of iterations
required to converge an initial guess were carried out using PySCF[11]. Also, some of
the initial guess schemes (Hcore and SAD, see Section 2.1.9) were used as implemented
in the package.

• Neural Networks: parts of this thesis related to neural network approaches employ
the library Keras[12] in a Tensorflow[13] based implementation.

3https://www.python.org/
4https://seaborn.pydata.org/
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2. Fundamentals

2.1. Self Consistent Field Calculations

2.1.1. Introduction

The aim of this thesis is to ultimately make the calculation of molecular properties easier.
Therefore we will take a closer look at the problem at hand and introduce a method to
solve it. The introduction given here follows to a great extend the book of A. Szabo and N.
S. Ostlund1. Before going into details, a few words must be spent on units. The problem
that is outlined below can be simplified by using atomic units (Tab. 2.1).

Table 2.1.: Atomic units and their values in SI units [14, p. 42].

Physical Quantity Denotation Value in SI

Length a0 5.2918× 10−11 m
Mass me 9.1095× 10−31 kg
Charge e 1.6022× 10−19 C
Energy Eh 4.3598× 10−18 J
Angular Momentum ~ 1.0546× 10−34 J s
Electric Dipole Moment e a0 8.4784× 10−30 C m
Electric Polarizability e2 a0

2Eh
−1 1.6488× 10−41 C2 m2 J−1

Electric Field Eh e
−1 a0

−1 5.1423× 1011 V m−1

Wave Function a0
−3/2 2.5978× 1015 m−3/2

By expressing physical quantities in atomic units most constants are set to 1, allowing us
to omit them and thus saving us time and energy. If not explicitly stated otherwise, these
units are used throughout the whole thesis.

In order to calculate basic molecular properties, the non-relativistic time-independent
Schrödinger equation

H |Φ〉 = E |Φ〉 (2.1)

has to be solved, with the many-body Hamilton operator (in atomic units)

H = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA
∇2
A −

N∑
i=1

M∑
A=1

ZA
ri,A

+

N∑
i=1

N∑
j>i

1

rij
+

N∑
A=1

N∑
B>A

ZAZB
RAB

. (2.2)

1 Most of Chapters 2 and 3[14, p. 39-152].
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2. Fundamentals

describing a molecule with N electrons and M nuclei. This poses a very complicated
problem that can only be solved by making a few approximations.

2.1.2. Born-Oppenheimer Approximation

The first approximation is a very powerful one. With the mass of the electrons being
much smaller2 than the mass of any of the nuclei, we can treat the electronic motion as
decoupled from the nuclear motion. In practice this means that equation (2.1) is solved
for fixed nuclear positions, which yields the Hamiltonian

H = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
ri,A

+
N∑
i=1

N∑
j>i

1

rij
. (2.3)

Details of how this is achieved can be found in Appendix A.1.

2.1.3. Electronic Wave Functions

The problem above is still very complicated. We will try to simplify it even further by
expressing our solution, the many-electron wave function |Φ〉 as a combination of one-
electron wave functions |φ〉, which we will call orbitals. The many-electron wave function
must fullfil the Pauli exclusion principle and thus be antisymmetric in the electronic co-
ordinates. A way to realize this is to use Slater-determinants, where all combinations of
electrons and orbitals are arranged in a matrix of which the determinant is taken to obtain
an antisymmetrized N -electron wave function.

Ψ(r1, r2, . . .) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ1(r2) . . . ψ1(rN )
ψ2(r1) ψ2(r2) . . . ψ2(rN )

...
. . .

ψN (r1) ψN (r2) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣ (2.4)

Throughout this thesis, a short notation for kets corresponding to determinants such as
the one above will be used, writing it as |ψ1 . . . ψN 〉 or even shorter as |1 . . . N〉.

2.1.4. Variational Method and Hartree-Fock Equations

With this many-electron wave function we can now begin our search for the ground state
energy

E0 = 〈Ψ0|H|Ψ0〉 . (2.5)

We apply the variational method to find the orbitals that yield the slater determinant
with the lowest energy.

E0 = min
{ψi}
〈Ψ|H|Ψ〉 (2.6)

2 The ratio of the mass of a single proton to that of an electron is approx. mp/me ≈ 1838.
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2.1. Self Consistent Field Calculations

This is discussed in detail in Appendix A.3. As is demonstrated, the orbitals that yield the
lowest energy E0 are also the eigenvalues of the Fock operator, an effective one-electron
operator occurring in the Hartree-Fock equations

F |ψi〉 = εi |ψi〉 (2.7)

or in more detail h(1) +
∑
j 6=i

Jj(1)−
∑
j 6=i

Kj(1)

ψi(1) = εiψi(1), (2.8)

with J denoting the Coulomb operator,

Jb(1)ψa(1) :=

[∫
ψ∗b (2)

1

r12
ψb(2)dx2

]
ψa(1), (2.9)

K as the Exchange operator,

Kb(1)ψa(1) :=

[∫
ψ∗b (2)

1

r12
ψa(2)dx2

]
ψb(1), (2.10)

and h as the one-electron Hamiltonian (also called core Hamiltonian)

h(i) = −1

2
∇2
i −

M∑
A

ZA
riA

(2.11)

Their sum (the term in brackets in (2.8)) yields the Fock operator

F (1) = h(1) +
∑
j 6=i

Jj(1)−
∑
j 6=i

Kj(1) (2.12)

The numbers in the parentheses express on which electron in the system they act or belong
to (e.g. ψ(1) = ψ(x1) has the first electron’s coordinates x1 as argument).

This is a remarkable result. The sums in (2.8) can be seen as averaging the influence of
all electrons in the system on the i-th electron3. This can be interpreted as an electron
moving in the mean-field produced by all other electrons. This allows us to work with
one-electron operators while still maintaining electron-electron interaction.

The eigenvalues of the Fock operator can be interpreted as orbital energies. This is e.g.
used to derive Koopmans’ theorem[15]. The total energy can be calculated directly from
the orbitals via

E0 =
∑
a

〈a|h|a〉+
1

2

∑
ab

〈ab||ab〉 , (2.13)

as is shown in Appendix A.2. The energy in this expression is of course not exact and will
lie above the actual ground state energy as it was derived using a variational method. We
will refer to it as Hartree-Fock energy (HF energy).

3 i 6= j avoids self-interaction. This could be skipped here, since Jj(1)ψi = Kj(1)ψi for i = j, causing the
problematic terms to cancel each other.
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2. Fundamentals

2.1.5. Spin and Closed-Shell Restricted Hartree-Fock

To be able to execute concrete computations we must find a way to represent our orbitals.
However, before we do this we must briefly talk about spin. A suitable description electrons
naturally requires a spin and a spatial component in the orbitals. This means our orbitals

from Section 2.1.3 are actually product states of a space
∣∣∣ψ̃〉 and a spin state |χ〉: |ψi〉 =∣∣∣ψ̃i〉 · |χi〉. For the sake of simplicity, we will restrict ourselves in this derivation to

“restricted” Hartree-Fock, which means that for the rest of this introduction we assume
that all spins in our system are paired (closed-shell) and our orbitals are of the form

|ψi〉 =


∣∣∣ψ̃j〉 · |χi〉 ∣∣∣

χi=↑
if i is odd∣∣∣ψ̃j〉 · |χi〉 ∣∣∣

χi=↓
if i is even

, (2.14)

where j is related to i via j = floor( i+1
2 ))4. This means that a pair of spin functions {↑, ↓}

shares a common spatial component. The fact that all spins are paired forces us to stick
to systems with an even number of electrons5, but it also allows us to integrate the spin
part out of the Hartree-Fock equations. The result ish(1) + 2

N
2∑

j=1,j 6=i
Jj(1)−

N
2∑

j=1,j 6=i
Kj(1)

 ψ̃i(1) = εiψ̃i(1), i ∈
{

1, . . . ,
N

2

}
(2.15)

which is very similar to (2.8). Since the spatial part of two orbitals at a time is identical, the
sums have reduced to twice the sum over the available spatial orbitals. This corresponds
to cases of combinations of parallel and opposite spin. The latter vanishes for the exchange
term, reflecting that exchange interaction only takes place between electrons of equal spin.
This can also bee seen when investigating the HF energy, which becomes

E0 = 2
∑
i

hii +
∑
ij

(2Jij −Kij) (2.16)

with the Coulomb integral Jij , the Exchange integral Kij and hij as defined in Appendix
A.2.

We will continue with our closed shell approximation for the rest of this chapter and shall
thus drop the tilde from our spatial orbitals ψ̃ → ψ, and denote them as we used to denote
the product states before. Thus, ψ shall always denote the spatial component if not states
otherwise.

2.1.6. The Roothaan-Equations

Above the necessity to find a (computerreadable) representation of our now merely spatial
orbitals was mentioned. We will do this by introducing a set basis of functions and

4floor maps a real number to the largest integer that is lower than itself, i.e., floor(x) := max{k ∈ Z : k ≤
x} for x ∈ R.

5 For other cases see e.g. Szabo and Ostlund[14, p. 205 et seqq.], where they are discussed in detail.
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expanding our orbitals in this basis. As computers are finite instruments, we will have to
make due with a finite basis of K elements:

ψi ≈
∑
ν

Cνiφν , ν ∈ {1, . . . ,K} (2.17)

The fact that our basis is finite and thus not complete introduces an error which is discussed
in Section 2.2.4. Nevertheless, by introducing a basis, (2.7) will simplify ultimately to a
set of algebraic equations, which is much easier to solve numerically. First, we will insert
(2.17) into (2.15), multiply by φ∗µ and integrate to obtain:

∑
ν

Cνi

∫
φ∗µ(1)F (1)φν(1) dr1 = εi

∑
ν

Cνi

∫
φ∗µ(1)φν(1) dr1 (2.18)

By defining

Fµν :=
∫
φ∗µ(1)F (1)φν(1) dr1 (Fock matrix) (2.19)

Sµν :=
∫
φ∗µ(1)φν(1) dr1 (Overlap matrix) (2.20)

we can rewrite the equations above to receive∑
ν

FµνCνi = εi
∑
ν

SµνCνi, i ∈ {1, . . . ,K} (2.21)

or, written as matrix equation,
FC = SCε. (2.22)

Here ε denotes a matrix with εi, i ∈ {1, . . . ,K} in the diagonal elements and the other
elements being zero. This is an incredible step forward. Not only does this matrix form
allow us to store representations of integro-differential operators but matrix equations can
also be efficiently processed on the computer.

In (2.22) we found a generalized eigenvalue problem. We will transform it into a simple
eigenvalue problem by constructing a matrix X, such that

X†SX
!

= 1 (2.23)

and use orbitals
φ′i =

∑
j

Xjiφj , ∀i ∈ {1, . . . ,K}. (2.24)

While there are many ways to construct such a matrix we will use

X = Us, (2.25)

where s is the diagonalized version of the Overlap matrix S and U is the diagonalizing
matrix, i.e. S = UsU †. This is called canonical orthogonalization. It is preferred over
symmetric orthogonalization (using S1/2 directly as X) because it allows a reduction of
dimension if the basis set shows linear dependence6.

6 More about this can be found in the book of Szabo and Ostlund [14, p. 142 et seqq.].
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2.1.7. The (Charge) Density Matrix

We will now investigate if we can find a simpler way to calculate F . We define the
charge-density matrix

Pµν = 2

N
2∑
i

CµiC
∗
νi (2.26)

which allows us to express the probability to find an electron at the position r in our
system in the following way:

P(r) =
∑
µν

Pµνφµ(r)φ∗ν(r) (2.27)

as is shown in Appendix A.4. We can use the charge-density matrix to rewrite the Fock
operator,

Fµν = Hcore
µν +Gµν (2.28)

where Hcore
µν denotes the elements of the one-electron hamiltonian h as defined in (2.11),

Hcore
µν =

∫
φ∗µ(1)h(1)φν(1) dr1 (2.29)

and Gµν contains all two-electron parts:

Gµν = Pµν

[
(µν|σλ)− 1

2
(µλ|σν)

]
. (2.30)

We used the notation defined in Appendix A.2. The details of the last step are shown in
Appendix A.5. What was gained in this step? The advantages are that the core Hamil-
tonian and the charge-density appear explicitly, allowing us to calculate them separately.
More importantly, the core Hamiltonian and two-center integrals of the basis functions
(µν|σλ) may be calculated at the beginning of the computation, as they remain the same
throughout the SCF algorithm. This can save a lot of unnecessary work.

Before moving on, we will point out a few properties of the density matrix which can be
used later to validate our results.

• Symmetry: as the density matrix is a matrix representation of a hermitian operator,
the matrix is hermitian too.

• Idempotence: the density matrix can easily be shown to be idempotent with respect
to the overlap matrix:

PSP = C C†SC︸ ︷︷ ︸
(〈ψi|ψj〉)=1

C† = CC† = P . (2.31)

• Its trace: Mullikan Population analysis[16] is a very practical tool to get a rough
understanding of the charge distribution in the system. The idea is that the number
of electrons at atom A can be calculated by

NA =
∑
i∈I

(PS)ii, (2.32)
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where I denotes the subset of indices that label basis functions associated with atom
A (more on that in Section 2.2). The charge at this atom is now the difference of
the atomic number and the number of electrons. Furthermore, we denote that for
the total number of electrons in the system we can write:

N = tr (PS). (2.33)

2.1.8. The Hartree-Fock SCF Procedure

Now we have all components together to automatically calculate our approximation to
the ground state energy for an arbitrary molecule. The procedure is summarized below in
Algorithm 1.

Algorithm 1: The Hartree-Fock procedure to calculate an approximation of the
ground state energy of a given molecule in a given basis set.

Data: The molecule (i.e. the nuclear coordinates Ra and the basis set.)
begin

Calculate Sµν , Hcore
µν and (µν|σλ) ;

Diagonalize S to obtain U and s to calculate X;
Create an initial guess for P ;
while energy not converged do

Calculate G from P and (µν|σλ);
Calculate F from Hcore and G;
Transform the generalized eigenvalue problem to an ordinary eigenvalue
problem by transforming F →X†FX := F ′;

Diagonalize F ′, i.e. find C ′, so that F ′ = C′εC ′†;
Transform back: calculate C = XC ′;
Recalculate P with the new C;
Calculate the energy from P ;

end
Result: The orbital occupations in form of C and perhaps the converged

energy.
end

2.1.9. Initial Guesses

In Algorithm 1 an initial guess for the charge density matrix was mentioned. Though
seeming to be just a small detail, it can have a major impact on convergence speed.
The quality of the initial guess can also make the difference between convergence and
divergence. With “initial guesses” being the main topic of this thesis, we will take a closer
look at some of the schemes currently in use.
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2. Fundamentals

One Electron Hamiltonian

The probably simplest and cheapest initial guess is to simply diagonalize the core hamilto-
nian Hcore to obtain a density that completely neglects electron interaction. However, it
already incorporates some information about the system (e.g. charge and position of the
nuclei) and is very easily implemented. Furthermore, it does not require any additional
computation as Hcore is required for the SCF algorithm anyway. However, as we will see
later, the fact that electron-electron interaction is neglected entirely means that there is
still a long way to go to obtain meaningful results from the SCF calculation, requiring
many iterations to converge, and often showing “oscillating” behavior around the final
energy. This guess scheme shall be denoted as “Hcore” throughout this thesis.

Generalized Wolfsberg-Helmholtz Ansatz

The generalized Wolfsberg-Helmholtz guess (GWH)[17], sometimes also referred to as
extended Hückel guess after the work of R. Hoffman[18], is a semi-empirical method to
first set up a trial Fock matrix, which is then diagonalized to obtain a guess for the
density of the molecule. The scheme also starts with the core Hamiltonian, but only
uses its diagonal elements. All off-diagonal elements are interpolated by combining the
corresponding diagonal elements and weighting the result with the overlap matrix S,

Fµν = KSµν
Hcore
µµ +Hcore

νν

2
, (2.34)

where K is a small dimensionless constant very often chosen to be 1.75. This scheme is
a drastic improvement to simply using the one-electron Hamiltonian as electron-electron
interaction is not neglected completely anymore. The weighting with the overlap matrix
is argued in the following way: if two orbitals have large overlap (which implies that the
corresponding element in the overlap matrix will be large) there will be more interaction,
therefore the corresponding element in the Fock matrix must be larger too. In the simplest
approximation this relationship may be assumed as a linear proportionality - and that is
exactly what is implemented in the GWH scheme.

Superposition of Atomic Densities

Superposition of atomic densities (SAD)[2] is a scheme to construct the initial density
by creating a separate, spherically averaged density for every atom in the molecule and
adding them together to yield a raw molecular density. This raw density is then used
to construct a raw Fock matrix, which is diagonalized to give an orbital structure to be
used as initial guess. While this may seem rather simple, it is actually a very powerful
scheme, as the density only needs to be calculated once per atom species. Therefore, even
for very large molecules, a guess can be obtained with very little effort if many of the
atoms featured in the molecule are of the same element (as is e.g. the case in metallic
clusters). However, SAD can be laborious to implement as a separate implementation is
necessary for every desired basis set. Also, it is entirely independent of the geometry of
the molecule. For two different isomers of a molecule SAD will thus return the same guess
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2.1. Self Consistent Field Calculations

in the sense that the density matrices corresponding to the initial guesses will be identical
(if the atoms are stored in the same order for both isomers).

Minimal Basis with projection

Very often it is necessary to use a larger basis set (see Section 2.2) to obtain results in an
acceptable quality. However, in some cases it might be practical to do a first calculation
in a much smaller basis set to obtain an initial guess. While still lacking the accuracy,
calculations in a smaller basis provide significant speedups. Very often, the smallest basis
available, usually called minimal basis (cf. Section 2.2.3), is used.

2.1.10. Convergence Enhancements

As mentioned above, some molecules tend to show oscillating convergence behavior (some
only for certain initial guesses, some more often). SCF Calculations have seen great
improvements regarding this and other issues due to the development of convergence en-
hancement methods. A few of them are briefly discussed below, following the explanations
given by F. Jensen in [1, p. 101 et seqq.].

Damping

The first thing that comes to mind when dealing with oscillation is to introduce some kind
of damping, i.e.

P ′n+1 = ωP n + (1− ω)P n+1 (2.35)

where the density matrix of the current iteration is coupled the one from the previous
iteration with a damping parameter ω.

Direct Inversion of Iterative Subspace

Direct Inversion of Iterative Subspace (DIIS)[19, 20] is a method using data from previous
iterations to extrapolate the Fock matrix. First, an error measure (i.e. how far the current
solution is away from convergence) for every iteration step n,

En = F nP nS − SP nF n (2.36)

Error = trEn ·En, (2.37)

is defined. In every iteration step the density matrices {P 1,P 2, . . .} and Fock matrices
{F 1,F 2, . . .} are logged and the error matrices {E1,E2, . . .} are calculated. Finally, we
set for the linear combination of error matrices

En+1 =

n∑
i=0

ciEi, (2.38)
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under the condition
∑n

i=0 ci = 1. The ci that minimize this expression are then used to
construct an extrapolated Fock matrix,

F ′n =
n∑
i=0

ciF i, (2.39)

which is then used to calculate the density for the next iteration step.

In Fig. 2.1 the techniques mentioned above are compared for the SCF calculation of an
ethyne molecule. As expected, both damping and DIIS lead to a significant speedup, but
it also clearly shows the downside of damping. There is always a risk of loosing speed in
case of a good initial guess. In the first few steps of the iteration Pure is actually ahead
of Damped, but the latter is held back by its nature, which becomes an advantage again
a few iterations later, when Pure probably overshoots and thus produces a larger error.

0 10 20 30 40 50
Iteration Step n / 1

10
9

10
7

10
5

10
3

10
1

10
1

E n
E C

on
ve

rg
ed

 / 
E h

Pure
Damping
DIIS

Figure 2.1.: Comparison of convergence enhancements for an ethyne molecule slightly off
the equilibrium geometry. The difference between current energy En and the converged
energy EConverged are plotted as a function of the step number n. As initial guess Hcore was
used. As criterion for convergence the difference to the previous step’s energy must be
smaller than 1× 10−9Eh. The line “Pure” depicts the convergence behavior without
any enhancement, “Damping” is the result of an SCF algorithm employing a damping of
ω = 0.3, and “DIIS” refers to results obtained with DIIS.

2.2. Basis Sets

In Section 2.1.6, an abstract basis was introduced in (2.17). To do concrete computations
these basis sets must be implemented in some way. The following describes a few ideas on
how this is usually done7.

7 See also [1, Chapter 5, p. 192 et seqq.] for more information.
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The form of the basis set function is often motivated by both theoretical and experimental
results. Molecular orbitals are described using “atomic orbitals”, which are modeled after
results obtained from the atomic Schrödinger equation, and are often parametrized to
reproduce empirical data as well as possible. The functions presented are all centered
at the nuclei of the molecule, which indicates that electrons may be loosely associated
with one atom, but they also make for a key challenge regarding computational effort. A
substantial amount of integrals involving the basis functions has to be calculated in the
SCF calculation, and this needs to be done as fast as possible to make Hartree-Fock and
related techniques computationally feasible.

2.2.1. Slater Type Orbitals

As the Schrödinger equation has an exact solution for hydrogen and was solved in approx-
imations for other atoms it makes sense to use similar functions as basis for molecular
orbitals. Very notable are so-called Slater Type Orbitals (STOs), which are modeled after
the solutions to the atomic Schrödinger equation and take the form

φζ,n,l,m(r, ϕ, θ) = NYlm(φ, θ)rn−1 exp{−ζr}, (2.40)

where N is a normalization constant, n the principal quantum number, ζ a tuneable
parameter and Ylm(φ, θ) the real spherical harmonics. With their exponential form they
ensure rapid convergence regarding the number of functions used. However, they do not
exhibit radial nodes and must be (e.g. linearly) combined to introduce the physically
correct radial behavior. However, their biggest drawback is that the many two-electron
integrals cannot be calculated analytically, making these orbitals a rather inefficient choice
from a computational point of view.

2.2.2. Gaussians: STO-nG

A way to make basis functions more efficient is to use Gaussian functions, which allows
analytical integration and therefore much faster evaluation. Orbitals of this type are
called Gaussian Type orbitals or GTOs. While notably decreasing the computational
effort of ab initio calculations GTOs by themselves, they also have a distinct disadvantage
in comparison to STOs: their slope becomes zero at their nucleus which is unphysical.
Therefore GTOs perform very badly at describing electronic behavior close to the atoms.
A way to mitigate this problem is to “contract” two or more GTOs in a linear combination
to approximate STOs. An example of these orbitals is the STO-nG group, where STOs
are approximated by a sum of n Gaussians,

φα(r) = N

n∑
i=1

ci exp
{
−αir2

}
, (2.41)

with α := {α1, . . . , αn} as the centers of the Gaussian functions. In the equation above
only the radial part of the orbital is given; the angular part is expressed using real spherical
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harmonics once more. However, there is also an alternative form where GTOs are expressed
in Cartesian coordinates8.

Common choices for n are values between 2 and 6. In Fig. 2.2 STO-2G, STO-3G und
STO-6G are compared to an STO. As explained above, the slopes near the nucleus and
the form of the curves for great radii is inferior to STOs’ even for large n.
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Figure 2.2.: STO(ζ = 1.24) and contracted GTOs (namely STO-nG for n ∈ {2, 3, 6})
for the 1s orbital of hydrogen. Parameter for ζ is taken from [14, p. 159], the STO-nG
parameters from EMSL basis set library [21, 22]. The figure is modeled after Fig. 3.3.
from [14, p. 158].

2.2.3. Split-Valence, Diffuse, and Polarized

The remaining question is now how many basis functions should be used. A minimal
basis is a basis set with as few functions as necessary to distribute all electrons in the
neutral atom/molecule. Surely this cannot be enough. Therefore, a first approach is to
simply double the number of basis functions (Double Zeta or DZ bases). Here two STOs
(approximated by contracted GTOs) are used for a single electron. However, the electrons
close to the nuclei “core electrons” will usually behave very similar to how they would in
an atom, while the valence electrons have a much greater impact on the chemical behavior
of the atom in the molecule. A more economic ansatz is therefore to only double the
basis for valence electrons creating a split-valence basis, which is a better tradeoff between
computational cost and accuracy. Split valence Double Zeta bases are usually denoted as
VDZ (for Valence Double Zeta). With greater computational abilities, this scheme can
be repeated to create Triple Zeta (DZ) bases with three times and Quadruple Zeta (QZ)
with four times as many orbitals as the minimal basis and so on.

8 For more details see also [14, p. 153 et seqq.].
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Another way to go is to specifically add higher angular momentum orbitals (e.g. extra
p-orbitals to hydrogen, which in minimal basis would only have s-orbitals). These func-
tions are then called polarization functions and are of particular importance for electron
correlation. Another type are “diffuse” functions with very small exponents αi. They
extend very far from the nuclei and are used to describe loosely bound electrons.

2.2.4. Basis Set Superposition Error (BSSE)

Using a finite basis triggers a whole series of systemic errors. The fact that basis functions
are usually centered around the nuclei of the system gives rise to the BSSE[23]. A basis
of atom-centered basis functions does not always provide the same accuracy for different
molecular geometries. The reason for this is that sometimes basis functions that belong
to a second nucleus can improve the description of the electronic density at a first nucleus.
This is of course only relevant if the two atoms are close enough, which introduces a
geometry-dependent bias. When calculating energies for different geometries, this has to
be accounted for.

2.3. Artificial Neural Networks

The core topic of this thesis concerns the applicability of neural networks to a very specific
field of computational chemistry. In this section, we will take a more general look at neural
networks and their components. The text loosely follows the book of J. Heaton9.

2.3.1. Introduction

Inspired by the human brain, artificial neural networks (ANNs) are a collection of intercon-
nected nodes (“neurons”), i.e. cells that can receive an input and output a signal to other
cells that is in some relation to the input (e.g. it may only be sent if the input surpasses a
certain threshold). The idea of ANNs is not new, with the first publications on this topic
dating back to the 1950s. One of them was F. Rosenblatts Perceptron[25], a prototype of
a neural network. Back then, they could hardly be realized due to technical limitations.
However, in the last few years ANNs have seen a renaissance and are now widely used in
many field and in many variations, as greater computational capabilities allow for com-
plexer and thus more powerful models. They are used within a wide range from various
image-processing applications (such as facial recognition) over acoustic engineering (e.g.
natural language processing) to more or less complex regression problems.

2.3.2. Feed-Forward Networks

We will make use of the simplest type of ANNs, a so-called feed-forward network (FNN).
They comprise multiple sets of nodes (called layers), in which each node is connected to

9 Most notably Chapters 1, 4, 5, and 6[24], see p. 1-25 and p. 65-130.
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every node of the previous and the following layer. Exceptions are the first (the input
layer) and the last (output layer), which have only connections to the following and the
previous, respectively. FNNs can be understood as directed graphs, with the direction
going from the input, via the so called hidden-layers, to the output layer. In Fig. 2.3 an
ANN is drawn in a very schematic way. The connections between the neurons are directed

Input Layer

Output Layer

Hidden Layer

Nodes

Weighted Connections

Figure 2.3.: Schematic drawing of an ANN, consisting of a single hidden layer.

(sending the input from the input layer to the output layer) and also weighted. We will
now briefly explain the situation for the node i in the network layer j. Each connection
from layer j − 1 to a neuron in layer j represents the output yj−1k of the neuron k in the
previous layer. In neuron i of layer j, all inputs from the neurons in the previous layer are
weighted by weights wjki and summed up to yield the “raw input”

z̃ji =
∑
k

wjkiy
j−1
k . (2.42)

By adding the bias bji we form the “total input”

zji = z̃ji + bji =
∑
k

wjkiy
j−1
k + bji . (2.43)

This can also be expressed in matrix notation:

zj = W jyj−1 + bj . (2.44)

In addition to the above, every node (or rather every layer) is associated with an activation
function f , which determines how much output y there will be for a given total input from
nodes from the previous layer.

yji = f j
(
zji

)
= f j

(∑
k

wkiy
j−1
k + bji

)
, (2.45)
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or in matrix notation

yj = f j
(
zj
)

= f j
(
W jyj−1 + bji

)
, (2.46)

This is graphically captured in Fig. 2.4, where the neuron described above is shown. Note
that the output of every node (except for the output layer) will be the input for nodes in
the next layer.

+

Bias

wj
1i

wj
2i

wj
3i

zji

bji

yj-11

yj-12

yj-13

yji

Figure 2.4.: A depiction of neuron i in layer j and all quantities involved in calculating its
output.

Universal Approximation Theorem

FNNs are a very general class of non-linear mappings. They have been shown to be able to
approximate any real continuous function with a single hidden layer containing sufficiently
many nodes to arbitrary accuracy if a non-linear activation functions is used[26]. This
shows how powerful they are in principle suggesting a broad spectrum of applications.

2.3.3. Network Training

Initialisation

As soon as the architecture of a network is decided, it needs to be be initialized. There are
many different schemes to initialize a network in a suitable fashion for the task at hand; in
this work, we will initialize the weights of new networks randomly with a suitable normal
distribution and the biases set to zero unless stated otherwise.

Normalisation

A common pre-processing step is to “normalize” input data. This means that the data
is transformed by a linear mapping to have a mean of zero and a variance of one in for
every input feature. A normalization is applied in order to make different input features
comparable to each other, and to let the network learn in an unbiased way which feature
is more important.
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Activation Functions

The form of the activation function can have rigorous effects on network training speed and
performance. Classical choices were also influenced by human nerve cells, which remain
inactive until a threshold is reached. In Fig. 2.5 a few common examples are given. As
we will be doing regression, the activations of the last layer will be linear, to be able to
reach all real numbers. Activation functions can also be used to introduce normalization
for the inputs of inner layers and mitigate what is called the vanishing/exploding gradient
problem. The more hidden layers the networks have, the harder they are to train, because
the gradients that appear in the hidden layers tend to become very large or very small
for classical activation functions such as e.g. the hyperbolic tangent. Recent research[27]
has shown that this can be avoided if the activation function has certain properties (e.g.
allowing for negative activation values, showing almost linear behavior for positive inputs
and a saturation behavior for negative ones, etc.). A recently introduced function that
provides all desired features is the exponential linear unit function (called “ELU”)[27],
which will be used throughout this thesis,

ELU(x) =

{
x if x > 0

a (ex − 1) otherwise,
(2.47)

where a is a tuneable parameter and must be positive.
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Figure 2.5.: A few examples of activation functions. the Heaviside step function (with a
threshold of 0 and a step of 1 are displayed), the sigmoid function (very smooth, usu-
ally used for classification), the hyperbolic tangent function (very popular because of its
smoothness and asymptotic behavior, which exhibits saturation effects), the exponential
linear unit function (ELU), the rectified linear unit function [28] (ReLU, finds great appli-
cation in image and natural language processing) and the scaled exponential linear unit
function (SELU)[29].
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Optimizers

After initialization the network needs to be trained. In other words, the weights and biases
have to be optimized to minimize a cost of some sort. This cost function, which we shall
denote as E, is usually a measure of how well the network performs, and can be as simple as
a mean squared error10. Very often it is a combination of an error measure and other terms
that penalize certain unfavorable properties (e.g. for regularization; see below for more
details). Finding the minimum of this cost function is a classical optimization problem
and there is a nifty solution to it: the backpropagation algorithm [30–32]. In principle,
it can be described as a layer-wise unfolding of the ANN by applying the chain-rule of
differential calculus[33]. The process is presented in Algorithm 2.

Algorithm 2: The backpropagation algorithm

Data: Initilized network components: weights, biases etc. (denoted by w)
Data: Traning data, a set of 2-tuples of the form (input, output)
Data: Error or cost function E
Data: Lerning rate η
begin

while stopping criterion not met do
foreach sample (x, y) in the test dataset do

foreach network variable w ∈ w do

Calculate the backpropagation error δ = ∂E(fw̃(x̃),ỹ)
∂w̃

∣∣∣
x̃=x,ỹ=y,w̃=w

;

Update the variable w = w − ηδ;
end

end

end

end

Algorithm 2 is a form of the Gradient Descent algorithm11 and requires the gradients
of the cost function. The computation of these gradients is one of the most complicated
parts of the training, due to the large number of parameters in a neural network. The term
backpropagation, in a more narrow sense, thus often only refers to the efficient calculation
of the gradients via the chain-rule. The time needed to calculate these gradients has a
large effect on the training speed. Therefore, it is important to choose and implement cost
function, activation functions etc. in a way that they can be easily (preferably analytically)
calculated and evaluated.

Another way to train ANNs is the Adam algorithm[34] which uses adaptive “momenta”
to further accelerate the learning (hence the name). It also features an adaptive learning
rate which gets larger for steep parts of the cost function and smaller closer to a minimum.

10 The sum of squared differences between network predictions and target values.
11 In Gradient Descent, a (local) minimum of a real, continuous, scalar function E : Rm → R,x 7→ E(x)

of m variables is found iteratively, starting from a given initial guess x0, by repeatedly “moving” in
the direction of the negative gradient, xn+1 = xn − η∇E(xn), with a step size η ∈ R.
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Algorithm 3: The Adam (adaptive moments) algorithm. δ is a small constant
introduced to ensure numerical stability, i.e. to avoid division by zero.

Data: Initialized network components: weights, biases etc. (denoted w)
Data: Traning data, a set of 2-tuples of the form (input, output)
Data: Error or cost function E
Data: Step size ε and two decay rates ρ1, ρ2 ∈ [0, 1). Default: ρ1 = 0.9, ρ2 = 0.999
begin

Initialize the two momentum variables: m1 = 0,m2 = 0;
Initialize the training step counter: t = 0;
while stopping criterion not met do

foreach sample (x, y) in the test dataset do
Update counter: t = t+ 1
Calculate the backpropagation error: δ = ∇wE(fw′(x̃), ỹ)

∣∣
x̃=x,ỹ=y,w̃=w

;

Update the first momentum estimate: m′1 = ρ1m1 + (1− ρ1)δ ;
Update the second momentum estimate: m′2 = ρ2m2 + (1− ρ2)δ ∗ δ ;

Correct bias in first momentum: m1 =
m′

1

1−ρt1
;

Correct bias in second momentum: m2 = m2

1−ρt2
;

Compute the update: δw = −ε m1√
m2+δ

;

Update the network variable: w = w + δw ;

end

end

end

As opposed to Algorithm 2, the updates for the network variables w are all calculated
simultaneously in Algorithm 3. The multiplication of the backpropagation error δ with
itself must be understood as element-wise, as well as the square root of the second weight√
m2 in the calculation of the update vector. Due to this, there is also an individual

learning rate for every parameter.

Learning Rate

Obviously, one must be careful when choosing a certain learning rate η (in Algorithm 2)
or ε (in Algorithm 3). If it is too large, it may become difficult to converge, but if it is
too small, one is likely to get stuck in a local minimum. Since this is a difficult choice, it
is a common practice to start with a larger rate and decrease it during training. This is
called learning rate decay. However, some optimizers adapt their equivalent of a learning
rate automatically. An example for this behavior is Algorithm 3.

Mini-Batching

While it is of course possible to use all of the available training data in every training
step (see e.g. Algorithm 2), research has shown that this bears the increased risk of
getting stuck in local minima of the cost function. To reduce this risk, mini-batching was
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2.3. Artificial Neural Networks

introduced, where the dataset is subdivided into (often not exclusive) subsets over which
a single optimization step is performed. The randomness in the selection of the subset
elements used in an optimization step helps to avoid overfitting and makes it easier to
overcome local minima. The batch size used in training is a “hyperparameter”, i.e. a
fundamental, often manually chosen parameter of the ANN implementation, that must be
optimized for every application individually.

Regularization

Another widely used trick to avoid overfitting is the introduction of a penalty for large
weight or bias values. This is called weight decay[35] or regularization, and is very popular
in the machine learning community. For example, a given cost function E(x) for an input
x could be augmented with the Euclidean norm12 of the “vector” of all weights w of a
network trained with this function,

E(x)′ := E(x) + λ‖w‖, (2.48)

where λ is the coupling parameter which has to be chosen in a way to make sure that the
regularization term is of a suitable order of magnitude.

2.3.4. Neural Networks in Quantum Chemistry - Descriptors

Machine leaning, and in particular ANNs, are already widely used in quantum chemistry
nowadays. As mentioned above, a very common application is the interpolation of the
potential energy surface or the prediction of any other molecular quantity based on a
dataset of ab initio calculated examples (see e.g. Behler and Parinello [36]). Whatever
the task in detail is, the atomic environment has to be captured somehow. It has to be
encoded in a format that can be fed into ANNs13. This “finger print” of a local molecular
environment is a vector or matrix, which we shall call generically “symmetry vector”,
throughout this thesis. It is the result of what we will call “descriptors” or “symmetry
functions”, which map features of the environment (such as positions and species of the
atoms in a molecule, ionization energies, etc.) to an abstract vector, which rarely has any
physical meaning anymore. This is illustrated in Fig. 2.6. While there are many ways
to set up these mappings, they need to reflect certain physical principles such as given
symmetries and invariances, otherwise unphysical predictions will follow. An important
example is the fact that the representation of a molecular system must not depend on
the order the atoms are stored in. Computers can in principle only work in sequences.
They store only a representation of the molecule by remembering the atoms and their
positions in the molecule. Unfortunately, this representation is not unique, while physical
quantities such as the energy are. If a model gave a different prediction for, say, the energy

12 Regularization is not restricted to the Euclidean norm. In fact, the absolute-value norm is also very
popular in this context in machine learning.

13 It is worth mentioning that an ANN ansatz does not imply that a single network is doing all the work.
Behler and Parinello for instance used multiple “atomic networks” that would estimate the contribution
of a single atom to the total energy of a molecule based on a description of the environment of that
molecule [36]).
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Molecular description

Descriptor

Molecular
Environment

Application of  machine-learning model

ANN Prediction
Symmetry
Vector

Figure 2.6.: The path from atomic information to neural network input (symmetry vector)
to neural network prediction.

for molecules of equal geometry, because they were stored differently, this would lead to
an immediate contradiction.

As of now, the scientific community is mostly focussing on estimating scalar properties,
such as the molecular energy or the norm of the dipole moment. Higher dimensional
quantities that depend on the orientation of the molecule, such as e.g. the vector of the
dipole moment, have not drawn much attention so far. A reason for this is the fact that
a lot of symmetries and thus physical information that can be coded into the descriptors
can not be applied anymore. If a network is supposed to estimate a scalar, the descriptor
mapping should probably be invariant to permutation of the atoms in the molecule as
well as to rotation and translation or even exchanging them (among related species).
Otherwise, equivalent cases would end up with two different inputs, yielding a redundant
and possibly contradictory dataset. All these constraints - once they are met - might also
simplify the usage of “divide and conquer”-schemes for increased flexibility regarding the
types of systems that can be dealt with. A comparison of some selected descriptors is
provided in a recent article of Bartók et al. [37]. An example of such a descriptor is the
Coulomb matrix [38],

Mij =

{
1
2Z

2.4
i i = j
ZiZj

‖Ri−Rj‖ i 6= j
, (2.49)

which was used in a model estimating atomization energies of molecules.
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3. From Overlap to Density: a First
Approach

3.1. Introduction

The generation of an initial guess should be computationally inexpensive. It is not the
goal to go as far as to create a nearly converged solution for the guess if it is more
expensive than a single point SCF calculation itself. This would defeat the purpose of the
SCF procedure. To keep the computational expense of our guess as small as possible, it
would be very practical if it could work with an input that is simple to produce from the
information that is already at hand. However, it is crucial that all necessary information
about the atomic environment is fully captured. The calculation of the core Hamiltonian
matrix Hcore and the overlap matrix S are mandatory steps of any SCF algorithm (cf.
Algorithm 1). As described in Section 2.1.9, the core Hamiltonian has already been used
to generate guesses by approximating the Fock matrix:

• Hcore uses the the core Hamiltonian itself as an estimate to the Fock matrix.

• GWH employs the diagonal of the core Hamiltonian in combination with the overlap
matrix to make a guess for the Fock matrix.

The core Hamiltonian only contains information about the situation of a single electron
in the field of the nuclei. Therefore, Hcore can only give a qualitative idea of the elements
in the density and Fock matrix. The fact that it does not include any information on
electron-electron interaction is a huge disadvantage. The overlap matrix, on the other
side, does include this information (at least to some extent). If two atoms are closer, the
basis functions centered on them will overlap more strongly. The number of electrons
in a system is also encoded in the number of basis functions used. In a GWH guess,
Hcore provides formation on the nature of the atoms in the molecule and the overlap
matrix specifies the geometry. The question at hand is now if other properties, such as the
density matrix, can also be deduced from information encoded in the overlap matrix. In
the following chapter we will investigate whether there is enough information and whether
it is possible to find a mapping from the overlap matrix to the density matrix Sµν 7→ Pµν .

The size of the density matrix depends on the number of basis functions used, which in
turn depends on the basis set, and most importantly, on the number of atoms and electrons
in the system. Therefore, the computational treatment is restricted to a single molecule
for now. Our molecule of choice should therefore be a system that does not consist of too
many electrons but still shows a non-trivial electronic structure. We choose the molecule
1,3-butadiene, an organic molecule with the empirical formula C4H6. The overlap matrix
of butadiene (close to equilibrium geometry) is shown in Fig. 3.1.
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Figure 3.1.: The overlap matrix of a butadiene molecule (near equilibrium geometry) as
obtained with the STO-3G basis[39]. The basis functions are labeled according to the
atom they are centered at (cf. Fig 3.2).
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3.2. A Neural Network Guess

We will now investigate a suitable model. This involves finding the right network archi-
tecture, training parameters and a few other factors. Finally we will train our model and
see how it performs. Fig. 3.2 depicts a butadiene molecule.

C1

C2

C3

C4

H1

H2

H3

H4

H5

H6

Figure 3.2.: A 3D view of a butadiene molecule, very close to its equilibrium geometry.
Created and captured with Avogadro.

3.2.1. The Dataset

Training of any model requires data. A very common approach in the quantum chemistry
community is to sample data using molecular dynamics (MD). This method has also been
chosen for data generation in this work. Starting from a specially tweezed starting geom-
etry (not too close to the equilibrium geometry) 1000 simulation steps of about 0.5 fs are
executed at 450 K. This small time step was necessary in order to provide an appropriate
resolution of molecular motion at this high temperature. The high temperature in turn is
chosen so that a large volume of the phase space of the system can be explored and more
geometries further away from equilibrium can be sampled. From the sampled geometries
the overlap matrix and density matrix were calculated in STO-3G basis[39]. The latter is
a minimal basis, but leads to matrices with 676 elements already for our system of choice.
To illustrate the width of the variation of geometries in the dataset the evolution of the
values for distances and angles in the molecule during the MD simulation is presented in
Fig. 3.3.

25



3. From Overlap to Density: a First Approach

0 200 400 600 800 1000
Timesteps / 1

1

2

3

4

5

D
is

ta
nc

es
 / 

Å

C1C2
C2C3
C3C4
C1H1
C1H2
C2H3
C3H4
C4H5
C4H6

(a)

0 200 400 600 800 1000
Timesteps / 1

0.0

0.2

0.4

0.6

0.8

1.0

A
ng

le
s 

/ 

C1C2C3
C2C3C4
H1C1C2
H2C1C2
H3C2C1
H4C3C4
H5C4C3
H6C4C3

(b)

Figure 3.3.: Molecule geometry parameters over time. For orientation, the atoms have
been labeled (cf. Fig. 3.2). (a) shows distances and (b) angles between nearest-neighbor
atoms.

Another way to analyze the diversity of the dataset is to take a look at the energies that
appear in it. If we look at the histogram of the energy distribution in Fig. 3.4 we can see
that highest and lowest energies are more than 0.35Eh ≈ 9.5 eV apart.
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Figure 3.4.: Distribution of energies in the dataset.

Since both overlap and density matrix are symmetric by construction, almost half the
elements (e.g. those of the lower triangular half, below the diagonal) only contain redun-
dant information. In the ANN mapping they can be omitted and reconstructed in post
processing, which leaves us with 351 elements. The final dataset will be split into three
subsets. 20 % are reserved for testing the trained networks. Of the remaining samples
20 % are used for validation and the rest for training.

3.2.2. Plain Neural Network Fit

Network Architecture and Hyperparameters

At the beginning, a few networks with varying size are trained with a simple cost function
comprising the mean squared error and a regularization term (coupled with λ = 1× 10−6).
The network weights are initialized with a truncated normal distribution, which is centered
around 1× 10−2 with a variance of 1× 10−2, while the biases are initialized to zero. For
our training we use a special algorithm in which the learning rate is altered. The process
is outlined in Algorithm 4. In principle it works as follows: As described in Section 2.3.3,
the learning rate is decayed if no further progress can be made. When the learning rate
gets too small it is reset to its initial value.
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3. From Overlap to Density: a First Approach

Algorithm 4: Learning rate decay used to train the initial guess networks. Training
is performed until a given number of resets is reached. During all of the training
steps, whenever a new “best” model is found, it gets stored, thus ensuring that no
progress is lost, even if the cost goes up again due to a learning rate reset.

Data: Inital learning rate η0, minimum learning rate ηmin, reduction factor f < 1
Data: Two thresholds θ1, θ2, where θ1 < θ2
begin

Initialize reset counter;
while maximum number of resets not reached do

(Re-)Initialize learning rate η = η0 ;
while change in validation cost is not lower than θ1 do

while change in validation cost is not lower than θ2 do
Train the network with the current learning rate;
if validation cost reaches new minimum then

Store the current network;
end

end
if updated learning rate not too small, i.e. fη > ηmin then

Reduce the learning rate η = fη;
end

end
Advance reset counter;

end

end

A typical example of the cost evolution in such a training is displayed in Fig. 3.5, together
with the evolution of the learning rate.

To test which architecture makes the most sense a few models are trained using Algorithm 4
with a fixed number of 3 resets. This is done for each model with three different learning
rates1 and repeated 5 times for each learning rate to account for statistical fluctuation.
The result is shown in Fig. 3.6.

1 Higher learning rates typically improve the training performance in small models but can be ineffective
in larger ones.
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Figure 3.5.: Evolution of the costs (MSE) and the learning rate during the training of an
ANN with Algorithm 4.
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Figure 3.6.: Various network architectures in comparison. The number of neurons per
hidden layer are noted along the abscissa, separated by underscores.
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Four of the analyzed models (2nd-5th) are fairly close for all learning rates, making it hard
to decide on the final structure from this data. Therefore, some additional manual testing
is required. Note first that there is a certain bias. Smaller models can usually be trained a
lot faster than larger, deeper models (especially if Algorithm 4 is employed). Evidence of
this is the bad performance of the larger models for lower learning rates. This difference
in training speed is a significant factor in parameter studies as the one above, because the
true power of the deeper networks cannot always unfold in the short time of just three
resets. There is always a tradeoff not only between training time and accuracy, but also
between minimum training time and maximum achievable accuracy. With this in mind,
and after some further testing, in spite of the results from Fig. 3.6, a network with three
hidden layers in a wedge form (neurons per hidden layer: 601-501-401) proved to achieve
the lowest error.

Analysis of Network Performance

We will now compare the guess of our chosen network to classical initial guess schemes. As
explained in Section 2.3, neural networks are basically a nonlinear fit with many variables.
Thus, there are many local minima to every network training, all of which imply different
prediction capabilities for the trained network. All values listed below may vary therefore
for equal network structures trained with the same algorithm on the same dataset. A
first look at the absolute errors achieved by the network fit in comparison to the classical
guesses (Tab. 3.1) seems quite promising.

Table 3.1.: Average (over all matrix elements and over all samples of the test set) of mean
absolute error (MAE) of initial guess schemes. The value of the neural network is denoted
by NN.

Hcore SAD GWH NN

MAE / 1× 10−3 300± 190 96± 31 56± 8 0.3± 0.1

In order to deepen our insights into the prediction capabilities of out network we compare
the network and the classical predictions to the corresponding values in the converged
density matrix in Fig. 3.7.
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3.2. A Neural Network Guess

Figure 3.7.: The network predictions for elements of the density matrix against their
reference values.

In Fig. 3.7 all values are compared the same way. However, this is only fair to some extent
as some do not contribute as much to observables such as e.g. the total energy as others.
Examining the error for each element of the density matrix shown in Fig. 3.8, we see that
it is rather distributed. However, some weaker areas are e.g. in the areas corresponding
to basis functions that are centered at hydrogen atoms. This not surprising, since the
hydrogen atoms definitely moved around more easily than the carbon atoms during the
MD simulation (as the hydrogen atoms are much lighter), causing higher variance in these
regions of the density matrices in our dataset. Strongly varying targets are always harder
to learn, thus the difference in achieved performance. Nevertheless, the difference is fairly
small and the overall performance solid. To test whether the difference in quality for
different regions of the matrix will have distorting side effects, we will take a look at how
well our guess is able to predict the HF energy directly in comparison to our classical
guesses, which do not show this bias. In Tab. 3.2 a comparison of the neural network
estimates to the results of classical guesses is presented.

Table 3.2.: Estimates for the HF energy for the neural network guess denoted by NN and
classical schemes. All values are in mEh

.
Hcore SAD GWH NN

17 000± 1500 590± 340 700± 140 11± 9

Not only are no side effects visible, but the error of the guess of the ANN is almost two
orders of magnitudes smaller! This means that the difference in quality regarding the
different matrix elements is not a problem as the overall error is small enough.
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Figure 3.8.: A heatmap plot of the average error of the neural network prediction for each
element of the density matrix.

This is a promising start. We will now see how this affects the SCF calculation. Tab. 3.3
lists the iterations which are required by an SCF calculation to converge. Of course, not
all samples will converge for all guesses, which is why the percentage of samples which
exceeded the maximum number of allowed iterations (which was 100 iterations) are stated
as well. The average number of iterations are calculated using only the results from the
converged samples, as the ones that did not converge would contribute with the maximum
number of allowed iterations and distort the result. We find improvements of up to half
the number of iterations (Pure) and almost a third for DIIS. Also, regarding the number
of samples that did not converge, NN is clearly taking the lead.
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Table 3.3.: Average number of iterations needed to converge the calculation for the cases of
no convergence enhancement (Pure), damping (Damped) and with DIIS (DIIS) are shown
for Hcore, SAD, GWH and the neural network guess (NN). Also shown is the percentage of
samples that did not converge for the respective combination of enhancement method and
initial guess scheme “Not Conv.”. For the Hcore guess no samples could reach convergence
with Pure or Damped, which is why no values are listed.

Method Quantity Hcore GWH SAD NN

Pure
Iterations / 1 - 37± 14 39± 25 21± 20
Not Conv. / % 100.0 13.4 10.9 0.0

Damped
Iterations / 1 - 28± 11 23± 10 10± 3
Not Conv. / % 100.0 2.9 0.5 0.0

DIIS
Iterations / 1 15± 2 12± 1 11± 1 7± 1
Not Conv. / % 0.0 0.0 0.0 0.0

In Fig. 3.9 the results from Tab. 3.3 are presented graphically. We can see the number
of samples that could not reach convergence, which is largest for Pure calculations (blue
bars).
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Figure 3.9.: The iterations needed to reach convergence for different guess schemes and
convergence enhancement methods.

3.3. Improving the Network Guess

We want to improve our scheme even further. In Section 2.1.7, a few attributes of the
density matrix were introduced. Most notably, we talked about the number of electrons
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and charge population analysis and the idempotence with respect to the overlap matrix.
We will investigate as to how far our neural network guess already fulfills these constraints.
With the network from Section 3.2.2 we receive the results listed in Tab. 3.4.

Table 3.4.: Orders of errors of attributes of the neural network guess and the classical
guesses in comparison to the converged result over the test dataset. Reference denotes
converged density matrix.

Idempotence Occupancy

Hcore O
(
10−16

)
O(10−15)

SAD O
(
100
)

O
(
10−15

)
GWH O

(
10−16

)
O
(
10−15

)
Reference O

(
10−16

)
O
(
10−15

)
NN O

(
10−4

)
O
(
10−3

)

This is our starting point. We see that the converged matrices (as well as most of the
classical guesses) show very little error, while our NN guess performs rather poorly. An
exception is the SAD guess, which is non-idempotent by construction (cf. Section 2.1.9).
It might be helpful for us to improve on these attributes. We will do this using matrix
transformations, which are applied in a post-processing step.

3.3.1. Improving the Idempotence

We will start with idempotence as this should be easy to fix, due to a matrix transformation
proposed by McWheeny[40]. It is generally referred to as the McWheeny purification. The
idea is to transform a matrix A to obtain a more idempotent matrix

A′ = 3A2 − 2A3, (3.1)

where A and A′ are represented in an orthonormal basis, a luxury we unfortunately do
not have. For our application the transformation thus becomes

P ′ =
3

2
PSP − 1

2
PSPSP . (3.2)

The purification is an iterative process and must be applied repeatedly, generating a more
and more idempotent matrix (i.e. exhibiting a smaller idempotence error) every time. We
will apply the transformation once (McW-1) and five times (McW-5) to see the gradual
effects. This leaves us with the values listed in Tab. 3.5. Interestingly, not only the
idempotence is improved, but also the HF energy error and even the absolute error of the
guess.
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Table 3.5.: Properties of the neural network guess (NN) and its transformed versions
(McWheeny purification applied once, “McW-1”, and five times, “McW-5”). MAE de-
notes the mean absolute error of the matrix elements. “Not Conv. (Pure)” denotes the
percentage of not converged calculations without any convergence enhancements (Pure).
The iterations for the Pure case are given without non-converged samples. In the calcula-
tions with damping and DIIS all samples converged for all guesses.

NN McW-1 McW-5

MAE / 1× 10−4 3± 1 2± 1 2± 1
HF energy error / mEh 11± 9 0.13± 0.07 0.010± 0.008
Idempotence / 1 (5± 1)× 10−4 (2± 1)× 10−6 (7.6± 0.6)× 10−17

Occupancy / 1 (4± 3)× 10−3 (1.0± 0.7)× 10−4 (2± 1)× 10−15

Iterations (Pure) / 1 17± 14 13± 10 13± 10
Not Conv. (Pure) / % 5.0 3.5 3.5
Iterations (Damped) / 1 10± 3 9± 3 9± 3
Iterations (DIIS) / 1 7± 1 7± 1 7± 1

After only applying the purification once, accuracy in the values and the HF energy cal-
culated from the matrices and prediction of the total number of electrons increases. After
applying it five times, the idempotence is approximately on the same level as the converged
density matrix. Most notable is the incredibly small error in HF energy. Regarding itera-
tions, unfortunately only a small advantage could be gained by the purification. For the
cases done with DIIS no improvement is visible at all. Therefore, we must conclude that
a McWheeny purification does improve the guess, but only to a rather small degree.

3.3.2. Improving the Charge Analysis

Next, we will target the ability of the guess to reproduce the correct number of electrons.
Due to the linearity of the trace,

c tr(PS) = tr((cP )S) ∀c ∈ R, (3.3)

we can rescale the density matrix guesses to yield exactly the number of electrons in the
charge population analysis. We define our rescaling transformation,

P ′ = P
N

tr(PS)
, (3.4)

and apply it to the output of the ANN. It must be noted that we can gain at most a single
iteration, because after the first SCF step the occupation should be of the order of the
reference. The results are listed in Tab. 3.6. While the prediction of the number of electrons
was improved drastically all other properties remained widely unchanged. However, the
number of iterations in the Pure case improved slightly. Unfortunately, at the same time,
the percentage of not converged samples increased, which leads us to believe that this
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improvement is just a consequence of a few difficult geometries not reaching converge and
thus falling out of the statistics.

Table 3.6.: Properties of the neural network guess (NN) and its rescaled version. MAE
denotes the mean absolute error of the matrix elements. Not Conv. (Pure) denotes the
percentage of not converged calculations without any convergence enhancements. The
iterations given for the Pure case are given without non-converged samples. In the calcu-
lations with damping and DIIS all samples converged.

NN Rescaled

MAE / 1× 10−4 3± 1 3± 1
HF energy error / mEh 11± 9 7± 6
Idempotence / 1 (5± 1)× 10−4 (5± 1)× 10−4

Occupancy / 1 (4± 3)× 10−3 (3± 2)× 10−15

Iterations (Pure) / 1 17± 14 16± 13
Not Conv. (Pure) / % 5.0 8.9
Iterations (Damped) / 1 10± 3 10± 3
Iterations (DIIS) / 1 7± 1 7± 1

3.4. Conclusion

In this chapter we estimated the density matrix of butadiene molecules using their overlap
matrix as input. Not only did we manage to produce a very robust and accurate guess,
we also improved it using the McWheeny transformation. The NN guess and its improved
versions McW-1 and McW-5 performed far superior to the classical guess schemes.

On the other hand the presented scheme is very rigid. It can only produce guesses for a
single molecule in a single basis set. Therefore, a few substantial modifications must be
introduced to make the NN guess applicable to arbitrary systems.
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4.1. Introduction

In Chapter 3 we used the overlap matrix as input for our neural network. This “descriptor
scheme” was computationally cheap and delivered the required information, but was also
very rigid. Now we will work on making the input side of the network more flexible.
The goal is to derive a descriptor scheme that describes the situation of every atom in a
molecule independently, thus being able to perform independently of the actual molecule
composition. (In other words: it must not have any restrictions regarding molecular
composition.) The description of a molecule will be assembled from the descriptions of
the respective environments of the atoms in such a scheme.

We need to make sure that the scheme to be derived fulfills our requirements (e.g. re-
garding symmetry and invariances) but is still able to encode all relevant information.
As mentioned in Section 2.3.4, estimating non-scalar quantities is still mostly unexplored
territory. Thus, we need to define a few physical ground rules. First, we will define our
requirements for our descriptor scheme:

• It should be able to distinguish different elements. Oxygen will no doubt have a
different impact on the electron density than a helium atom would in the same
position.

• It must to be able to distinguish close and distant atoms, i.e. be sensitive to bond
lengths and geometry in general.

• The description should be independent of the order the atoms in the geometry spec-
ification of the molecule are given in (see also Section 2.3.4).

• As mentioned above, it should remain applicable to any molecule, regardless of its
composition.

Second, we will consider certain invariances of our preferred descriptor scheme:

• Translational invariance: The absolute coordinates of the atoms are irrelevant; only
their relative positions are important.

• A fixed orientation in space: This is a direct consequence of the fact that basis
functions (Section 2.2) have a fixed orientation. Therefore, all matrices in this basis
(such as e.g. the density matrix) will be different for differently oriented, yet identical
molecules. Thus, it will be essential for our descriptor to capture how a sample is
positioned in space.
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4.1.1. The Scheme

The starting point is the vector from atom i to atom j,

Rij = Ri −Rj ,

where Ri denotes the position of atom i in spherical coordinates. Our descriptor for the
environment of atom i, denoted by Gi, will be composed of atomic contributions of all
atoms j 6= i, denoted as

Gij = S(Rij) (4.1)

with S = ({Sk})> as the vector of symmetry functions Sk, where k is the index of the
element or the symmetry vector corresponding to the symmetry function and does not
refer to an atom in the molecule. They are combined in a weighted sum,

Gi =
∑
j

wij(Gij), (4.2)

with wij denoting a weighting function to be defined later. These atomic contributions
should each for themselves be an encoding of the position of atom j with respect to
atom i, as well as additional physical information such as which chemical element atom
j corresponds to (this is the purpose of wij). The role of the symmetry functions in this
context is to yield a description of the local environment of atom i in a compact and (in
combination with the weighting) unique way. Unique in this context refers to the fact
that a descriptor must produce different outputs for different molecules1, thus making it
possible to distinguish them. However, it is not required that molecules can be identified
by the descriptor output. If two different molecules would exhibit the same density matrix
(regardless of whether this is possible at all), may result in the same descriptor output.
The resulting process is depicted in Fig. 4.1.

The goal of this chapter is to find suitable sampling functions Sk. A set of such functions
will be called a “descriptor model”. For simplicity, we will now drop the atom indices in
e.g. Rij → R, as our discussions in the next pages will focus on an abstract pair of atoms,
i-j. We must encode R in a way that allows us to combine it with the contribution from
the other atoms in a simple way. In analogy to Behler and Parinello[36], we will express
R in spherical coordinates as

R =: (r, ϕ, θ)> (4.3)

and sample its components with our descriptor functions. The difference is, however, that
the symmetry functions used in this project show far less symmetries. While the radial
part is mostly the same, the difference lies in the angular part. The descriptors used by
Behler and Parinello sample the angles between three atoms2. We will use the azimuthal
and the polar components, ϕ and θ, of the vectorR instead. One could say that Behler and
Parinello sample internal coordinates, which ensure all the required symmetries, while we
use a mixture of internal (atom distances) and spatially fixed (angles) coordinates. This
mixture preserves some symmetries but does not fully decouple our description from our
reference coordinate system.

1 Different in the sense that these molecules have differing density matrices.
2 An example of such an angle is “HCH” in Fig. 4.2. The time evolution of the angles between nearest

neighbor atoms of a butadiene molecule during an MD simulation can be seen in Fig. 3.3b.
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+ G_i

Figure 4.1.: Schematic illustration of the calculation of the symmetry vector that describes
the environment of atom i in the molecule. For relative positions, atom contributions are
calculated via symmetry and weighting functions, which are finally added up to yield the
symmetry vector.

4.1.2. The Dataset

In this chapter we will illustrate a few things using the small olefin ethene. While being
similar to butadiene, it is more convenient due to its smaller size. It is depicted in Fig. 4.2.

4.2. Radial Description

In this section, we will discuss how to sample r, the radial component of the vector R
(i.e. r = ‖R‖) that connects the two atoms of the pair (i, j). Our tool of choice will be
Gaussian functions of varying width η,

fGaussian(r, η, rs) = e−η(r−rs)
2
, (4.4)

centered at rs. Behler and Parinello used Gaussians centered around zero[42] as well as
models with distributed Gaussians[36]. We will also try other models for reasons explained
below.

4.2.1. Activation

We will now introduce a practical tool for the visualization of our models: activation. The
aim is to extract the information encoded in a symmetry vector and visualize it. This way
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Figure 4.2.: Ethene molecule near optimum geometry. A few characteristic distances and
angles are marked in the drawing. Their values are approximately “CC” 1.33 Å, “CH”
1.08 Å, “CH′” 2.11 Å (distances) and “HCC” 121.4◦, “HCH” 117.2◦ for an ethene molecule
in equilibrium geometry[41].

we can limit the parameter space for a more systematic parameter optimization and make
sure that the information relevant to us is actually captured. For a given symmetry vector
G with the elements Gi we can retain the encoded information by using it as weighting
for the corresponding symmetry functions Si which are evaluated at (r, ϕ, θ). This way
we obtain an “activation”

a(r, ϕ, θ,G) =
∑
i

GiSi(r, ϕ, θ). (4.5)

If we restrict the symmetry functions and vector values to those that correspond to radial
description, i.e. to all i ∈ I, with I the set of indices that correspond to radial descriptors,
we can obtain a radial activation

aradial(r,G) =
∑
i∈I

GiSi(r). (4.6)

In Fig. 4.3 the radial activation of a few descriptor models for the C1 atom is plotted,
together with the typical lengths of the system: the C-C double bond bonding length
(“CC”), the C-H bonding length (“CH”) and even a peak for the remote H atoms (“CH′”),
which are naturally less pronounced due to the cut-off (see Section 4.4). The values are
also marked in Fig. 4.2. Included in the test is a model containing 50 Gaussians, all
centered at zero (Origin-50), several models of uniformly distributed Gaussians (Unif-N ,
where N is the number of Gaussians) and a manually tweaked model of 50 Gaussians, with
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higher densities in the areas of the characteristic distances (Man-50). All these models are
presented in detail in Appendix B.1. As can be seen in Fig. 4.3, the uniformly distributed
models have difficulties capturing the characteristic distances with fewer functions, while
the Man-50 does without effort. This is obviously not very surprising as it has many
sampling functions in this area and can thus sample with a very high resolution. Origin-
50 is not able to resolve any of the distances in a way that would be visible for a human
spectator. However, this is also the catch with this tool: activation allows for a quick
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Figure 4.3.: The radial activation of the description of atom C1 in ethene for a few de-
scriptor models together with characteristic distances of the system. See Fig. 4.2 for the
distances and Appendix B.1 for details on the models.

visualization, but only gives a rough idea of how information is encoded. A neural network
can read much more out of the symmetry vectors and, even if no physical information
could be reconstructed, as is the case with Origin-50, the network might still be able to
draw sufficient information to make meaningful and accurate predictions. It merely shows
where the emphasis of a descriptor model lies. This leads us to the second lesson to be
learned here: the number of descriptor functions needed for a required accuracy can be
significantly reduced if they are fine-tuned to sample in relevant regions.

4.3. Angular Description

Now we will encode the angular component of R, i.e. the azimuthal angle ϕ and the polar
angle θ. As opposed to the radial component, they need a description that is periodic.
Plain Gaussians will therefore not work. We suggest two possible solutions: a periodic
adaption of Gaussians (called periodic Gaussians), in which polar and azimuthal angle
are sampled separately, and spherical harmonics (which of course already have the desired
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periodicity). A periodic Gaussian takes the form

gperiodic(ϕ,ϕs, η, p) := max
{

e−η((ϕ−ϕs)(mod p))2 , e−η((ϕ−ϕs)(mod p)−p)2
}

(4.7)

and is centered around ϕs, with a width defined by η and a periodicity of p. The function
“mod” denotes the modulo operation extended to real numbers, e.g. for x, y ∈ R:

x(mod y) = x− k ∗ y, k = floor(x/y).

(Even though ϕ and ϕs were used in (4.7) this function is of course also used to sample
the polar angle.) Note that the “Gaussian form” can only be realized if the width η of
the Gaussians involved is large enough in comparison to the period. Their activation is
calculated analogously to the activation of non-periodic Gaussians.

For the spherical harmonics, the real and the imaginary parts of the complex values are
used. We define

gSPH(ϕ, θ, l,m, σ) :=

{
<(Ym

l (ϕ, θ)) if σ = 1

=(Ym
l (ϕ, θ)) if σ = −1

(4.8)

In a symmetry vector that was created using spherical harmonics for the angular part, two
values at a time will correspond to the same l and m: one with σ = +1 and the other with
σ = −1. The activation is calculated by taking the absolute value of the complex number
that would result from combining the corresponding values of the symmetry vector again:

aSPH(ϕ, θ,G) =
∑

(i,j)∈I

|GiSi(ϕ, θ) + iGjSj(ϕ, θ)|, (4.9)

with I denoting the family of pairs of indices that belong to the angular part of the
symmetry vector and correspond to the symmetry function with matching l and m but
differing σ. In Fig. 4.4, the azimuthal activation resulting from ethene for a few angular
models is shown, for a fixed polar angle. The models compared are two spherical harmonics
models SPH-N (where N denotes the highest l to be used) and PG-M which denotes a
model of M evenly distributed periodic Gaussians. The peak at ϕ = 0 may be confusing at
first, but is merely a result of the peak at ϕ = 2π and the periodic nature of the symmetry
functions. Once again, it can be seen that greater resolution can be achieved with more
functions.

4.4. Weighting and Cut-Off

Now that an atomic contributionGij can be calculated, we need to specify how to combine
them and thus calculate the weighting function wij . The weighting is a great opportunity
to include physical information such as mass, charge etc. of atom j in relation to the
respective quantities of atom i.

Also, electrostatics should not be neglected; taking into account a dependence on the
distance is probably advantageous. This is done via so called cut-off functions as used by
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Figure 4.4.: The azimuthal activation for ethene in the x-y plane, together with charac-
teristic angles (cf. Fig. 4.2). θ is fixed at π

2 .

Behler and Parinello[36]. We will employ one of the presented functions, which we shall
call “Behler1”3 in this work. It is of the form

fBehler1(r) =

{
1
2

[
cos
(

πr
Rc

)
+ 1
]

r ≤ Rc

0 r > Rc

, (4.10)

with the cut-off distance Rc. We will also evaluate the feasibility of a simple exponential
damping

fexponential(r) = e−
r
τ , (4.11)

where τ denotes the half-life, taking to role of the cut-off distance. The two candidate cut-
off functions are shown in Fig. 4.5. With the first cut-off function, as it goes to zero at and
beyond the cut-off distance Rc, linear scaling in the calculation of symmetry functions can
be reached for sufficiently large molecules, because atom pairs (ij) with a distance r > Rc

can simply be neglected as they do not yield any contribution to the atomic descriptor.
Note, however, that this is not possible for (4.11).

We will choose the weighting functions to be a product of a physical quantity Wj of atom
j and a cut-off function f :

wij(Rij) = Wjf(‖Rij‖). (4.12)

The reason for not using e.g. the ratio of the property
Wj

Wi
is that it Wi would be the same

for all wij and thus not make a difference. In Fig. 4.6, the radial activation of the C1 atom
is shown for a model consisting of uniformly distributed Gaussians, weighted by various
physical quantities.

3 Following a similar naming scheme used by Behler a review article[42].
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Figure 4.5.: The cut-off functions analyzed in this project. For Behler1 a cut-off distance
of 5 Å and for the exponential decay a half-life of 2 Å.
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Figure 4.6.: Radial activation of the C1 atom in an ethene molecule, for the radial model
Unif-25 (cf. Appendix B.1.3) in connection with different quantities used for weighting. For
a better comparison, no cut-off was applied. The curves are all rescaled to their respective
maximum value. The quantities used are the atomic number Z, the electronegativity χ,
and a factor of 1 (i.e. no weighting factor applied) denoted by “Id”.

We observe that using the electronegativity has a subtle effect at best, and is very close to
the non-weighted activation (“Id”). Neither χ nor Id seem to promote distinguishability
of the atom in molecule. Using the atomic number Z, on the other hand, really brings out
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the CC peak, i.e. emphasizes the C2 carbon. This is probably a favorable behavior.

Finally, to give an impression of the effect of the weighting function, a set of Gaussians
sampling the distance r, multiplied by a cut-off function, is shown in Fig. 4.7. It is worth
noting that the direction of the cut-off and the direction of the sampling fall together,
yielding this special result. For the angles, the cut-off is perpendicular, and plotting them
the same way would make no sense.
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Figure 4.7.: Gaussians (denoted by g(r, rs, η)) centered at rs with a width of (2 ∗ η),
weighted by the cut-off function Behler1 (denoted in the plot as fcut), as radial part of
descriptor values would be.

4.5. Raw Selection

Now that we have gathered a few candidate descriptor models, we shall do a quick pa-
rameter study to assess which of them are the most suitable. Our model task will be to
estimate the full density matrix of ethene. As input we will calculate descriptors for every
atom in the molecule and concatenate them to an input that describes the whole molecule.
We will train a single layer (i.e. linear) ANN for every combination of candidates for ra-
dial and angular descriptor models, cut-off function, and physical quantity W to be used
in the weighting and compare the reached training and validation errors. Each network
is initialized and trained independently five times to account for possible disadvantages
resulting from an unfortunate initialization or slow learning behavior.
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4.5.1. Dataset

Similarly to Chapter 3, the geometries of the dataset for this part of the thesis were also
created via an MD simulation with QChem[10]. Again, 1001 geometries were sampled
with 1000 time steps of 0.5 fs at 450 K. This resulting energy distribution of the dataset
is shown in Fig. 4.8. For each of the sampled geometries the Fock and the density matrix
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Figure 4.8.: Distribution of energies in the dataset. The lowest and the highest energies
lie about 0.2Eh ≈ 5.5 eV apart.

are calculated in the 6-311++G** basis[43]. 80 % of the samples were used for training,
the remaining make up the validation dataset.

4.5.2. Descriptor Model Candidates

Our descriptor models will be composed of models for the radial part:

“Man-50” 50 Gaussians with manually tweaked positioning and width. They also become wider
the further away from 0 they are, but have the highest density in the range 0.7-2.5 Å,
where we would expect most of the interaction.

“Unif-N” N uniformly distributed (regarding centers and widths) Gaussians. They become
broader with increasing distance from zero.

For the angular part we will use the following selection:

“PG” Periodic Gaussians for azimuthal and polar angles, both uniformly distributed.
20 Gaussians for azimuthal and 10 for the polar part.

“SPH-3” The real and imaginary part of spherical harmonics, up to a maximum angular
momentum number of lmax = 3.
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“SPH-6” Similar to SPH-3, but including spherical harmonics up to a maximum angular
momentum number of lmax = 6.

The models using Gaussians or periodic Gaussians are depicted in Appendix B.1. The
candidates for quantities used as weight W in the weighting function are:

“Id” No specific weighting at all. ∀j : Wj = 1.

“Z” The atomic number Zj .

“χ” The electronegativity χj .

Finally, the cut-off will be modeled by the two functions shown in Fig. 4.5: Behler1 (with a
cut-off distance of 2.5 and 5 Å) and the exponential decay “Exponential” (with a parameter
of 2 Å).

4.5.3. Results

The detailed composition of the models is listed in Tab. 4.1 and the result of the comparison
is shown in Fig. 4.9.
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Figure 4.9.: Comparison of different descriptors as inputs for a linear ANN. The figure
shows training and validation mean square error. The detailed configuration of the models
is shown in Tab. 4.1.

The following conclusions can be drawn:

• The weighting seems to have little influence. This seems to be true both for constants
used as well as the choice of cut-off functions. However, since only two types of atoms
appear in the dataset, we cannot be sure if this is also the case for systems with more
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elements. From what can be seen here, there is a very small edge in favour of χ, but
the difference is too small to be statistically relevant.

• The radial descriptor definitely makes a difference. Surprisingly, the hand-crafted
candidate, Man-50, performed worst. Apparently, there was a lot of relevant infor-
mation at greater distances. We also note that for the uniform model Unif-N the
lowest training errors are achieved with the largest N , while the opposite is true for
the validation error. This raises the suspicion that an important decisive factor is
not how well information is captured, but rather the additional number of param-
eters, resulting from the larger input. In other words, Unif-N , while proving to be
superior to Man-50, is prone to over-fitting for large N , which can arguably be seen
already for Unif-25, but definitely for Unif-50. The boundary between “too large”
and “large enough” will surely vary from atom to atom.

• The largest impact, as is seems, had the angular description. Here, SPH-6 Exhibited
some drastic advantages over SPH-3, which in turn performed slightly worse than
the periodic Gaussian model. This is surprising, as the PG model should have been
large enough to capture the environment very well, while not being larger than the
SPH-3.

Table 4.1.: List of the descriptor model configurations tested in this Section.

Model Nr. Weighting Cut-Off Radial Angular

1 Id Behler1(2.5) Man-50 PG
2 Id Behler1(2.5) Man-50 SPH-3
3 Id Behler1(2.5) Man-50 SPH-6
4 Id Behler1(2.5) Unif-5 PG
5 Id Behler1(2.5) Unif-5 SPH-3
6 Id Behler1(2.5) Unif-5 SPH-6
7 Id Behler1(2.5) Unif-25 PG
8 Id Behler1(2.5) Unif-25 SPH-3
9 Id Behler1(2.5) Unif-25 SPH-6
10 Id Behler1(2.5) Unif-50 PG
11 Id Behler1(2.5) Unif-50 SPH-3
12 Id Behler1(2.5) Unif-50 SPH-6
13 Id Behler1(5.0) Man-50 PG
14 Id Behler1(5.0) Man-50 SPH-3
15 Id Behler1(5.0) Man-50 SPH-6
16 Id Behler1(5.0) Unif-5 PG
17 Id Behler1(5.0) Unif-5 SPH-3
18 Id Behler1(5.0) Unif-5 SPH-6
19 Id Behler1(5.0) Unif-25 PG
20 Id Behler1(5.0) Unif-25 SPH-3
21 Id Behler1(5.0) Unif-25 SPH-6
22 Id Behler1(5.0) Unif-50 PG
23 Id Behler1(5.0) Unif-50 SPH-3
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Model Nr. Weighting Cut-Off Radial Angular

24 Id Behler1(5.0) Unif-50 SPH-6
25 Id Exponential(2.0) Man-50 PG
26 Id Exponential(2.0) Man-50 SPH-3
27 Id Exponential(2.0) Man-50 SPH-6
28 Id Exponential(2.0) Unif-5 PG
29 Id Exponential(2.0) Unif-5 SPH-3
30 Id Exponential(2.0) Unif-5 SPH-6
31 Id Exponential(2.0) Unif-25 PG
32 Id Exponential(2.0) Unif-25 SPH-3
33 Id Exponential(2.0) Unif-25 SPH-6
34 Id Exponential(2.0) Unif-50 PG
35 Id Exponential(2.0) Unif-50 SPH-3
36 Id Exponential(2.0) Unif-50 SPH-6
37 Z Behler1(2.5) Man-50 PG
38 Z Behler1(2.5) Man-50 SPH-3
39 Z Behler1(2.5) Man-50 SPH-6
40 Z Behler1(2.5) Unif-5 PG
41 Z Behler1(2.5) Unif-5 SPH-3
42 Z Behler1(2.5) Unif-5 SPH-6
43 Z Behler1(2.5) Unif-25 PG
44 Z Behler1(2.5) Unif-25 SPH-3
45 Z Behler1(2.5) Unif-25 SPH-6
46 Z Behler1(2.5) Unif-50 PG
47 Z Behler1(2.5) Unif-50 SPH-3
48 Z Behler1(2.5) Unif-50 SPH-6
49 Z Behler1(5.0) Man-50 PG
50 Z Behler1(5.0) Man-50 SPH-3
51 Z Behler1(5.0) Man-50 SPH-6
52 Z Behler1(5.0) Unif-5 PG
53 Z Behler1(5.0) Unif-5 SPH-3
54 Z Behler1(5.0) Unif-5 SPH-6
55 Z Behler1(5.0) Unif-25 PG
56 Z Behler1(5.0) Unif-25 SPH-3
57 Z Behler1(5.0) Unif-25 SPH-6
58 Z Behler1(5.0) Unif-50 PG
59 Z Behler1(5.0) Unif-50 SPH-3
60 Z Behler1(5.0) Unif-50 SPH-6
61 Z Exponential(2.0) Man-50 PG
62 Z Exponential(2.0) Man-50 SPH-3
63 Z Exponential(2.0) Man-50 SPH-6
64 Z Exponential(2.0) Unif-5 PG
65 Z Exponential(2.0) Unif-5 SPH-3
66 Z Exponential(2.0) Unif-5 SPH-6
67 Z Exponential(2.0) Unif-25 PG
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Model Nr. Weighting Cut-Off Radial Angular

68 Z Exponential(2.0) Unif-25 SPH-3
69 Z Exponential(2.0) Unif-25 SPH-6
70 Z Exponential(2.0) Unif-50 PG
71 Z Exponential(2.0) Unif-50 SPH-3
72 Z Exponential(2.0) Unif-50 SPH-6
73 χ Behler1(2.5) Man-50 PG
74 χ Behler1(2.5) Man-50 SPH-3
75 χ Behler1(2.5) Man-50 SPH-6
76 χ Behler1(2.5) Unif-5 PG
77 χ Behler1(2.5) Unif-5 SPH-3
78 χ Behler1(2.5) Unif-5 SPH-6
79 χ Behler1(2.5) Unif-25 PG
80 χ Behler1(2.5) Unif-25 SPH-3
81 χ Behler1(2.5) Unif-25 SPH-6
82 χ Behler1(2.5) Unif-50 PG
83 χ Behler1(2.5) Unif-50 SPH-3
84 χ Behler1(2.5) Unif-50 SPH-6
85 χ Behler1(5.0) Man-50 PG
86 χ Behler1(5.0) Man-50 SPH-3
87 χ Behler1(5.0) Man-50 SPH-6
88 χ Behler1(5.0) Unif-5 PG
89 χ Behler1(5.0) Unif-5 SPH-3
90 χ Behler1(5.0) Unif-5 SPH-6
91 χ Behler1(5.0) Unif-25 PG
92 χ Behler1(5.0) Unif-25 SPH-3
93 χ Behler1(5.0) Unif-25 SPH-6
94 χ Behler1(5.0) Unif-50 PG
95 χ Behler1(5.0) Unif-50 SPH-3
96 χ Behler1(5.0) Unif-50 SPH-6
97 χ Exponential(2.0) Man-50 PG
98 χ Exponential(2.0) Man-50 SPH-3
99 χ Exponential(2.0) Man-50 SPH-6
100 χ Exponential(2.0) Unif-5 PG
101 χ Exponential(2.0) Unif-5 SPH-3
102 χ Exponential(2.0) Unif-5 SPH-6
103 χ Exponential(2.0) Unif-25 PG
104 χ Exponential(2.0) Unif-25 SPH-3
105 χ Exponential(2.0) Unif-25 SPH-6
106 χ Exponential(2.0) Unif-50 PG
107 χ Exponential(2.0) Unif-50 SPH-3
108 χ Exponential(2.0) Unif-50 SPH-6
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4.6. Application to Butadiene

Having decided on a descriptor model, we will apply it now to our system from Chap-
ter 3 to compare the results. As in Section 4.5, the inputs for the ANN will consist of
the concatenated symmetry vectors, which are calculated for all atoms in the molecule
individually via the respective descriptors. For 100 radial descriptors (Model “Man-50”,
Fig. B.2) and 98 angular functions (SPH-4) at 10 atoms in the molecule, we end up with
an input layer size of 1980 neurons! For the rest of the neural network a structure of three
hidden layers ( 700, 500 and 400 neurons ) was selected. Results are presented in Tab. 4.2
and 4.3.

Table 4.2.: Properties of the guess produced by the neural network with the new descriptors
as input (“NN-Descriptors”) for the test dataset samples from Section 3.2.1 together with
the results from Section 3.2.2 “NN” . MAE denotes the mean absolute error of the matrix
elements.

NN NN-Descriptors

MAE / 1× 10−3 0.3± 0.1 1.0± 0.5
HF energy error / mEh 11± 9 60± 68
Idempotence / 1× 10−4 5± 1 15± 6
Occupancy / 1× 10−3 4± 3 17± 19

Table 4.3.: Number of iterations required to reach convergence using the descriptor-based
approach “NN-Descriptors” for the test dataset samples from Section 3.2.1 together with
data of the results from the overlap matrix based approach “NN”. The averages for the
number of iterations do not contain the results from not converged samples. The percent-
age of samples that did not converge are listed in the rows labeled “Not Conv.”.

Method Quantity NN NN-Descriptors

Pure
Iterations / 1 17± 14 22± 15
Not Conv. / % 5.0 6.0

Damped
Iterations / 1 10± 3 13± 7
Not Conv. / % 0.0 0.0

DIIS
Iterations / 1 7± 1 8± 1
Not Conv. / % 0.0 0.0

As can be seen from the tables, the results are fairly close, with a slight edge towards
“NN”, the guess that used the overlap matrix as input. A reason for the differences
may be rooted in the large number of inputs, which resulted in an expansion of the
overall network dimensions and thus made the training more complex. Furthermore, the
network geometry for “NN” was optimized more rigorously (Section 3.2.2), whereas for
this application only trial and error-based manual tuning was done, and not as exhaustive
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as for “NN”. The result also shows that there is still room for improvement regarding the
descriptor system. For example, the same descriptor model was used for carbon as well
as hydrogen, even though their requirements are most likely different. Besides a more
optimized configuration of the used symmetry functions (e.g. the distribution of radial
Gaussians) one could perhaps also reduce the number of descriptors for hydrogen.

4.7. Conclusion

In this chapter we introduced a descriptor scheme flexible enough to be used in “divide
and conquer”-approaches, which can give a description of the environment of one atom of
the molecule at a time while still being able to capture substantial information about the
environment.

That information is indeed captured was made sure on multiple levels. A tool called ac-
tivation was presented to make resulting symmetry vectors more easily interpretable to
humans. Fig. 4.3 and Fig. 4.4 show this for an ethene molecule. The two figures also
emphasized the obvious fact that the result can be greatly enhanced by choosing the de-
scriptor functions based on physical knowledge, e.g. for the radial sampling functions to
be of the highest density in areas of typical atomic distances. In Section 4.5 a system-
atic comparison of descriptor functions was carried out. The result was surprising as it
implicated that the weighting was rather unimportant. However, it did emphasize the
importance of the angular descriptions.
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5.1. Introduction

Now that the input side of our neural network guess process has been made more flexible,
the output side must be treated in a similar way. We will again pursue a “divide and
conquer”-approach. This means that, using ANNs, we will guess components (e.g. parts
of the density matrix) independently, and assemble the full density matrix in a second
step from these components. Another option is to estimate the Fock matrix this way and
then use it to calculate the density matrix. We will call algorithms to assemble the density
matrix “construction schemes” (regardless if it is done via construction and subsequent
diagonalization of the Fock matrix or by constructing the density matrix directly). While
many construction schemes exist, not all of them work sufficiently well. This chapter is
dedicated to the presentation and comparison of a few selected examples. Since we are
about to discuss construction schemes that involve estimating parts of either the density
or the Fock matrix we shall introduce the abstract term “target matrix” to refer to the
respective matrix being estimated.

5.1.1. The Best Achievable Performance

Not all of the construction schemes presented in this chapter will estimate all elements
of their respective target matrices. Some will only guess parts and interpolate or fill the
remaining elements of the matrix with a simpler classical guess scheme. In order to observe
the effects of approximating the density matrix via a construction scheme, we shall assume
“perfectly trained” ANNs in those schemes, that are able to reproduce the reference values1

for the components of the target matrix exactly. This is done by skipping any ANNs
that would appear in the guess process and directly using the reference values instead.
The remaining error exhibited by an initial guess will thus be due to the construction
scheme, allowing us to investigate the feasibility of the scheme independently of any ANN
performance.

5.1.2. Dataset and Classical Guess Performance

We need to perform ab initio calculations in a large basis to see the full “wrath” of the
side effects stemming from the assembly of the target matrices in our construction schemes
from independently estimated parts. To keep computation time at an acceptable level, we

1 The ANNs would be trained to predict values of the converged density or Fock matrix, depending on
what the target matrix in the construction scheme is.
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will fall back on the ethene molecule and recycle the dataset used in Section 4.1.2. The
performance of the classical guess schemes on this dataset is documented in Tab. 5.1 and
5.2.

Table 5.1.: Properties of the initial guesses produced by classical schemes for the dataset
samples. MAE denotes the mean absolute error of the matrix elements.

Hcore GWH SAD

MAE / 1× 10−2 2.8± 0.5 1.4± 0.2 1.2± 0.1
HF energy error / Eh 20± 1 4.9± 0.5 0.5± 0.3
Idempotence / 1× 10−18 50± 14 25± 5 (117± 6)× 1014

Occupancy / 1× 10−15 5± 4 4.0± 0.3 4.0± 0.4

Table 5.2.: Number of iterations required to reach convergence from the initial guesses
produced by classical schemes for the dataset samples. The average numbers of iterations
do not contain the results from not converged samples. The percentages of samples that
did not converge are listed in the rows labeled “Not Conv.”.

Method Quantity Hcore GWH SAD

Pure
Iterations / 1 48± 19 44± 16 29± 13
Not Conv. / % 96.3 80.0 4.7

Damped
Iterations / 1 38± 1 36± 10 25± 8
Not Conv. / % 99.8 96.6 0.0

DIIS
Iterations / 1 15± 1 14± 1 11± 1
Not Conv. / % 0.0 0.0 0.0

Hcore and GWH perform very poorly. In addition to a high number of iterations required
to reach convergence, the number of samples that did not converge at all is also very large
for both guesses. In some cases this value is close to 100 %, implying a total failure. This is
a manifestation of the fact that most of the samples are rather far away from equilibrium
due to the high temperature used when sampling the geometries. SAD, on the other hand,
performs surprisingly well, with most of the samples reaching convergence in comparably
few iterations.

5.1.3. Matrix Regions

We need to define a few terms regarding regions of the overlap, density and Fock matrix.
As an example, all of the regions to be discussed are illustrated for an ethene molecule in
Fig. 5.1. The regions of the overlap matrix, where basis functions overlap that are centered
around the same nucleus, we shall call “self-overlap” regions. They form diagonal blocks,
marked as “HH Self-Overlap” and “CC Self-Overlap” in the example. Regions related to
basis functions centered at two different atoms of the same atomic species, we will name
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regions of “homonuclear” overlap (“HH Overlap” and “CC Overlap”). Similarly, we will
refer to regions corresponding to the overlap of basis functions centered at different cores
of atoms of differing elements as “heteronuclear” overlap (marked as “CH Overlap” in
Fig. 5.1). Since overlap, Fock, and density matrix are all represented in the same basis,
we can use this terminology to refer to analogous regions in these matrices.
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Figure 5.1.: Regions of the overlap matrix of ethene in 6-311++G** basis. The contraction
schemes are (6s, 1p)→ [4s, 1p] for hydrogen and (12s, 6p, 1d)→ [5s, 4p, 1d] for carbon.

5.2. Wolfsberg-Helmholz 2.0: E-GWH

In Section 2.1.9 we outlined a classical guess scheme that approximates the diagonal of the
Fock matrix by the diagonal of the core Hamiltonian. It further relies on the Wolfsberg-
Helmholz scheme (c.f. (2.34)) to estimate the off-diagonal elements via.

Fµν = KSµν
Hcore
µµ +Hcore

νν

2
,

with K = 1.75 usually [18]. To improve this ansatz, we will simply use a diagonal esti-
mated by ANNs instead of Hcore. ANNs means in this case, that we will use a separate
network for each chemical element, and assemble the diagonal according to molecular
composition. This gives us the desired flexibility. A look at the average error in Fock
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Figure 5.2.: Mean absolute error (MAE) of elements of the Fock matrix for GWH and
E-GWH, clipped at an error of 3.0Eh .

matrix in Fig. 5.2 reveals that it also leads to tremendous improvements. Just as with
the classical pendant, the resulting guess for the Fock matrix is then used to construct a
density matrix. The results are listed in Tab. 5.3 and 5.4. While there is definitely an
improvement to GWH regarding the rate of samples that did not converge (a reduction
by almost 50 %), it is still very high. A slight reduction in the number of iterations is also
noticeable. However, the error in HF energy is enormous and even larger than for the
classical GWH. The reason for this is not entirely clear and contradictory to the obvious
improvements regarding the estimate of the Fock matrix as shown in Fig. 5.2.

Table 5.3.: Properties of the E-GWH initial guess produced for the dataset samples. MAE
denotes the mean absolute error of the matrix elements.

E-GWH

MAE / 1× 10−1 2.8± 2.8
HF energy error / Eh 25± 2
Idempotence / 1× 10−16 10± 5
Occupancy / 1× 10−15 7± 5

56



5.3. The Center Blocks: E-GWH+ and Embedded GWH

Table 5.4.: Number of iterations required to reach convergence from the initial guesses
produced by the E-GWH scheme for the dataset samples. The average numbers of itera-
tions do not contain the results from not converged samples. The percentages of samples
that did not converge are listed in the rows labeled “Not Conv.”.

Method Quantity E-GWH

Pure
Iterations / 1 36± 16
Not Conv. / % 43.2

Damped
Iterations / 1 29± 10
Not Conv. / % 48.9

DIIS
Iterations / 1 13± 1
Not Conv. / % 0.0

5.3. The Center Blocks: E-GWH+ and Embedded GWH

The next construction scheme to be introduced is based on the E-GWH scheme from
Section 5.2. We shall call it “E-GWH+”. The Fock matrix estimate of E-GWH is improved
by replacing the center blocks (self-overlap regions; cf. Fig. 5.1) with an ANN prediction for
the values in these regions, similarly to how the density matrix is set up in the SAD guess.
In practice, this of course does not mean that two separate networks for diagonal and
center blocks are required. Rather than that, the center block is guessed by a network
and the diagonal of this block is used to fill the outer regions (both homonuclear and
heteronuclear overlap regions). The resulting Fock matrix is subsequently diagonalized
to calculate the density matrix, which can finally be used as initial guess. In addition,
because of its easy accessibility, we will also analyze the result of embedding the center
blocks of a Fock matrix that was generated via the classical GWH scheme (which uses the
diagonal of the one-electron Hamiltonian matrix, Hcore). We refer to this second scheme
as “Embedded GWH”. Results are compiled in Tab. 5.5 and Tab. 5.6.

Table 5.5.: Properties of the initial guesses produced for the dataset samples. MAE denotes
the mean absolute error of the matrix elements.

E-GWH+ Embedded GWH

MAE / 1× 10−2 103± 107 5± 4
HF energy error / Eh 24± 4 4.4± 0.3
Idempotence / 1× 10−17 (1.4± 1.1)× 103 7.5± 1.8
Occupancy / 1× 10−14 1.6± 1.5 0.4± 0.3

We notice that both mean absolute errors and HF energy errors are very large once again.
A scatter plot (see Fig. 5.3) is employed to check for systematic deviations. Unfortunately,
it reveals a complete failure of all our Fock matrix-based approaches, as was to be expected
due to the HF energy error. Even worse, it does not show any characteristic pattern, which
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Table 5.6.: Number of iterations required to reach convergence from the initial guesses
produced for the dataset samples. The average numbers of iterations do not contain the
results from not converged samples. The percentages of samples that did not converge are
listed in the rows labeled “Not Conv.”.

Method Quantity E-GWH+ Embedded GWH

Pure
Iterations / 1 37± 17 37± 16
Not Conv. / % 42.6 30.0

Damped
Iterations / 1 28± 9 27± 7
Not Conv. / % 35.4 25.4

DIIS
Iterations / 1 13± 2 13± 1
Not Conv. / % 0.0 0.0

could point at a potential source of the large HF energy errors. It is noteworthy, however,
that Embedded GWH, which is much closer to the classical GWH scheme, exhibits a
much lower HF energy error, thus raising the suspicion that off-diagonal estimates of the
Fock matrix based on a more accurately estimated diagonal are not as good as expected.
Despite this issue, the robustness of the guesses was improved significantly in comparison
to the classical GWH scheme. The same is true for the number of iterations.

5.4. Superposition of Atomic Neural Network Densities
(SANND)

In the previous sections we introduced construction schemes that sought to improve upon
guesses for the Fock matrix. In a final effort, we will try a brute-force approach, i.e. a
direct estimate of the density matrix. We will use ANNs to estimate parts of the density
matrix (e.g. self-overlap blocks) and embedded them in the output of a simpler classical
guess, namely GWH, to improve it. This should give us an edge to SAD, which is very
similar to our approach (it estimates self-overlap blocks and embeds them in a matrix of
zeros). To emphasize this similarity, the scheme is called Superposition of Atomic Neural
Network Densities (SANND). We will distinguish between the following flavors of SANND:

Center: Here we will guess the center blocks of the density, similarly to SAD. This corre-
sponds to the self-overlap areas in Fig. 5.1.

Homo: Here we will guess the blocks of the homonuclear overlap regions in addition to the
center blocks.

Hetero: Here we will guess the blocks that correspond to heteronuclear overlap in addition
to the center blocks.

Note that a combination of Homo and Hetero would imply to estimate the full density
matrix. We will first guess a “raw” density, which is used to build a “raw” Fock matrix.
Finally, this “raw” Fock matrix is diagonalized to build a proper density matrix, ready to
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Figure 5.3.: Elements of the density matrix as predicted by Fock matrix-based guesses,
plotted against the reference values from the converged density matrices. Since the product
of number of elements, samples, and displayed guesses yield a fairly big number, not all
samples are included in the making of this plot. Instead, 30 examples have been chosen
randomly from the dataset for visualization.

be used as initial guess. This extra step of building and diagonalizing a “raw Fock matrix”
helps to smoothen the density matrix. The performances of the various SANND guesses
are summarized in Tab. 5.7 and Tab. 5.8.

Table 5.7.: Properties of the SANND initial guess produced for the dataset samples. MAE
denotes the mean absolute error of the matrix elements.

Center Homo Hetero

MAE / 1× 10−3 6± 10 5± 6 0.03± 0.73
HF energy error / Eh 0.17± 0.08 0.16± 0.07 0.06± 0.20
Idempotence / 1× 10−17 2.8± 0.8 2.8± 0.6 490.0± 784.4
Occupancy / 1× 10−15 4± 3 5± 4 6± 20

59



5. Density Construction Schemes

Table 5.8.: Number of iterations required to reach convergence from the initial guesses
produced by the SANND schemes for the dataset samples. The average numbers of itera-
tions do not contain the results from not converged samples. The percentages of samples
that did not converge are listed in the rows labeled “Not Conv.”.

Method Quantity Center Homo Hetero

Pure
Iterations / 1 30± 13 30± 14 27± 13
Not Conv. / % 5.1 4.8 5.0

Damped
Iterations / 1 25± 7 23± 6 24± 6
Not Conv. / % 0.0 0.0 0.3

DIIS
Iterations / 1 12± 1 11± 1 11± 1
Not Conv. / % 0.0 0.0 0.0

All SANND guesses show a similar performance. Homo is slightly more robust than Hetero,
while the latter requires slightly less iterations on average. All guesses are very close to
the classical SAD scheme. Hetero even surpasses SAD regarding the number of iterations
needed in Pure and Damped settings. Homo performs similarly well, beating SAD for
Damped by two iterations, but requiring one additional iteration for the Pure case. The
SANND guesses also perform well regarding matrix properties. This is especially true
for Hetero, which exhibits a very low mean squared error and HF energy error; The high
error in idempotence, thus seems not to be a problem. As already stated, the differences
between the SANND guesses and SAD are not too large and they obviously vary greatly
with the dataset.

The outcome clearly shows that both Homo and Hetero are an improvement to Center.
There is, however, a downside to the improvements that Homo and Hetero bring. Note that
both come with a great increase in effort because of the combinatorics of possible overlaps:
the more elements appear in a molecule, the more distinct types of overlap regions will
appear in the density matrix. For each type of overlap, a separate ANN is required. While
this results in only one ANN per element for Center, an additional ANN per element is
required to make the extension from Center to Homo. The step from Center to Hetero
is even worse, as another ANN for each possible combination of two elements is needed.
(Strictly speaking, only for each ordered combination, e.g. the heteronuclear overlap region
of the combination C-H may be processed via the same ANN as the combination H-C.)
For a molecule build from atoms of N different elements, this means that N ANNs are
required for Center, 2N for Homo, and a painful 1

2

(
N
2

)
for Hetero.

5.5. Comparison and Conclusion

In a final comparison we want to look at the predictions for the electron density in the
molecule. The respective predictions produced by a selection of guess schemes is shown
in Fig. 5.4. Here we can see the spherical atomic regions produced by SAD. In spite of
the fact that it is actually geometry-independent, the produced electron density is fairly
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close to the converged reference. GWH, on the other side, which should have geometry
dependence, even fails to reproduce an at least qualitatively correct electron density in
the area of the hydrogens. The guesses produced by our Fock matrix-based construction
schemes are also not very convincing: The density produced by Embedded GWH remotely
resembles the correct “form”, but performs badly regarding details near the hydrogens.
On the other hand, E-GWH seems to overestimate the density in these areas, which causes
strange, unrealistic holes in other places (e.g. between the two carbon nuclei). The only
guess that comes close to the quality of SAD is SANND. In many details it even surpasses
the classical guess. An example is the bulge in the density in the centers of the triangles
spanned by the hydrogens and the carbon next to them, which SAD can not provide due
to its spherical averaging.
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Figure 5.4.: Cut at z = 3 Å through the electron density of ethene, lying in the x-y plane
(z = 0 Å), as obtained for various guesses, and compared to the converged result.
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5.5.1. Conclusion

Before concluding, a word of caution must be repeated: tests such as the ones carried
out above show a considerable dependence on the dataset. This can already be seen by
the poor performance of Hcore and GWH, which are simply not designed for the rather
challenging off-equilibrium geometries found in the dataset at hand.

Out of all the presented schemes, the SANND approach, especially with the more complex
forms Homo and Hetero, appears to be the most promising. Its convergence behavior
(speed and robustness) is much better than that of GWH, which could hardly converge
any of the samples, and rather close to SAD, performing very similarly (with a very
slight edge to SANND). We did not include a combination of Homo and Hetero in the
tests of this chapter, because the resulting guesses (using best achievable performance;
cf. Section 5.1.1), would be identical to the converged density matrices. However, after
having seen the performance of Homo and Hetero, it is fair to assume that a combination
of the two would make for an even better guess. On the other hand, it should be noted
that Homo and Hetero are probably very impractical to implement, because the number
of ANNs to train increases quickly with the number of chemical elements involved.

The poor performance of Fock matrix-based approaches is very disappointing. While
they proved to be significantly better (especially regarding robustness) than the classical
GWH guess, none of them was even close to being a threat to SAD or SANND.

In conclusion, the SANND approaches (Homo and Hetero) showed to be most promising.
This ansatz is much more accurate than GWH and very close to (partly even better than)
SAD. A combination of Homo and Hetero surely has great potential.
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6.1. Introduction

After having experimented with various ways to formulate a description of the molecular
environment in Chapter 4, and having investigated a few schemes to generate a density
matrix from a guess made using this descriptions, it is finally time to put the results of
this research to work and apply them to a test dataset.

We choose a dataset containing off-equilibrium geometries of carbohydrate molecules
(ethane, ethene, and ethyne). Since there are only two elements involved (carbon and
hydrogen), the effort to implement SANND is minimal.

6.2. SANND Architecture and Network Training Conditions

We will employ the SANND guess scheme from Section 5.4 in the form of a combination
of SANND (Homo) and SANND (Hetero), which we shall call “SANND” (without trailing
specification in parentheses). In SANND, all elements of the density matrix are estimated
with ANNs. Two networks are needed for SANND (Center), two more for the homonuclear
overlap regions (C-C) and (H-H), and another one for the heteronuclear regions (C-H).
Obviously, there will be molecules in which an element appears more than once. Therefore,
the number of samples does not match the number of molecules anymore, because these
molecules will provide as many samples as they contain atoms of that specific element.
A consequence is that not all ANNs have the same amount of information available for
training. This is all the more troubling as heavier atoms with more electrons, such as
e.g. carbon, lead to larger regions in the density matrix. Therefore larger networks are
required, which are also more difficult to train because these heavier atoms typically do
not appear as often in molecules as e.g. hydrogen, which results in fewer training samples.

6.3. The Dataset

The dataset contains various geometries of ethane, ethene and ethyne. They are sampled
using multiple MD simulations each, all at temperatures between 273 K and 450 K. This
leads to geometries being far from their equilibrium. In addition to this, the initial geome-
tries are hand-crafted to minimize similarity between the runs and to be able to sample
broad regions of the phase space. The time step used in the simulations is 0.5 fs, and the
number of steps varies from 400 to 1000 steps. Occasionally, molecules tend to disassemble

63



6. Application

during the simulation due to the high temperatures. Affected structures are discarded as
soon as the distance between any carbon and any hydrogen atom in the molecule exceeds
10 Å.

The dataset consists of 11 070 structures in total, adding up to 19 617 carbon and 43 738 hy-
drogen atoms. Usage assignment is as follows: 20 % of the molecules are reserved for test-
ing, 20 % of the remaining molecules are used for validation and early stopping and the
rest for network training1. Fig. 6.1 shows the distribution of C-H distances in the dataset
to illustrate its structural variety.
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Figure 6.1.: Relative frequency of carbon-hydrogen (C-H) bond lengths.

6.4. Descriptor Details and Results

As a descriptor we will use our Gaussians with the respective models for the radial part and
for the angular spherical harmonics. As introduced in Section 4.5 weighting will consist of
a cut-off function times a physical quantity (as specified in (4.12)). The cuff-off function
Behler1 (see equation (4.10)) with a cut-off of Rc = 5 Å and for the physical quantity the
atomic number Z is chosen. For the networks describing homo- and heteronuclear overlap
regions, combinations of the descriptors used for the center blocks (listed in Tab. 6.1) are
employed. The resulting network structures can be found in Tab. 6.2.

1 Reminder: since a molecule can consist of multiple samples, the number of molecules is smaller than
the number of samples.
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6.4. Descriptor Details and Results

Table 6.1.: Configuration of the used descriptors. The column “Radial” lists the radial
model used (see Section B.1) and the column “Angular” the angular model. “SPH-X”
denotes spherical harmonics with lmax = X.

Species Radial Angular

H Unif-25 SPH-3
C Unif-25 SPH-5

Table 6.2.: Configuration of the atomic networks for different combinations of overlap
region type and chemical species involved. In the column “Structure” the number of
nodes in the layers of the network used are listed (including input and output; layers are
separated by a hyphen).

Type of Overlap Species Structure

Self H 57-50-50-28
Self C 75-100-200-253
Homonuclear H-H 114-100-70-49
Homonuclear C-C 150-200-350-484
Heteronuclear C-H 132-200-200-154

Table 6.3.: Properties of initial guesses produced by various guess schemes for the dataset
samples. MAE denotes the mean absolute error of the matrix elements.

GWH SAD SANND (Center) SANND

MAE / 1× 10−2 1.3± 0.3 1.1± 0.2 0.5± 0.2 0.7± 0.3
HF energy error / Eh 6± 2 0.3± 0.2 0.2± 0.4 0.5± 0.7
Idempotence / 1× 10−17 2.4± 0.7 (1.1± 0.2)× 1015 2.5± 0.8 2.8± 0.8
Occupancy / 1× 10−15 4± 4 4± 3 5± 4 4± 4

The results are listed in Tab. 6.3 and 6.4 together with the results of GWH and SAD. As
expected, both SANND schemes perform better than GWH and SANND performs slightly
worse than SAD. More interesting is the fact that SANND (Center) yields a better guess
than SANND. The differences are small, but almost always in favour of SANND (Center).
In Fig. 6.2 we can see why: the estimates for homo- and heteronuclear overlap areas are
of lower quality. This can only be a result of poor ANN performance. Similarly to the
values of Tab. 6.3 and 6.4 the differences are small but significant. Most noticeable are
the errors in the self and homonuclear overlap regions of the carbon atoms in the ethene
molecules. This was to be expected, since, as described in the introduction of this chapter,
all carbon related ANNs are larger and fewer samples are available for their training. The
difference in error in the self overlap blocks is a consequence of the diagonalization of the
“raw” density (cf. Section 5.4), during which the errors seem to diffuse and spread to
other regions, e.g. from the C1-C2 homonuclear overlap to the C1 and C2 self overlap
regions.
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6. Application

Table 6.4.: Number of iterations required to reach convergence from the initial guesses
produced various guess schemes. The average number of iterations does not contain the
results from not converged samples. The percentage of samples that did not converge are
listed in the row labeled “Not Conv.”.

Method Quantity GWH SAD SANND (Center) SANND

Pure
Iterations / 1 28± 15 26± 17 30± 18 31± 17
Not Conv. / % 60.1 11.2 19.6 26.0

Damped
Iterations / 1 27± 11 25± 12 28± 15 28± 14
Not Conv. / % 71.7 1.3 9.3 14.7

DIIS
Iterations / 1 14± 4 11± 2 11± 4 12± 4
Not Conv. / % 0.0 0.0 0.0 0.0
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Figure 6.2.: Average mean absolute error (MAE) of elements in the density matrix pro-
duced by SANND (Center) and SANND for all ethene molecule samples of the test dataset,
clipped at an error of 0.05 (dimensionless).

6.5. Conclusion

Our guesses SANND (Center) and SANND performed worse than the classical approaches.
This is not entirely surprising as the performances of SAD and SANND (Center) were fairly
close in Section 5.4 already where the converged reference values had been used directly
instead of a fit. With the ANN fit as an additional source of error, SANND (Center) is
less accurate. Originally, there was some hope that SANND, being the combination of
SANND (Homo) and SANND (Hetero), would yield an improvement. Sadly, the homo-
and heteronuclear overlap regions were even harder to learn for the ANNs than the center
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blocks, which resulted in even worse predictions. Yet, the gap is not too large and on a
different dataset things may look different.
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7. Conclusion and Outlook

The aim of this thesis was to investigate new ways to generate initial guesses for SCF
calculations using machine learning techniques and ANNs in particular.

In Chapter 3 we started with a very simple approach, trying to find a mapping from the
overlap matrix to the density matrix of a molecule. Inspired by Hückel Theory and the
generalized Wolfsberg-Helmholz scheme, the question arose whether a mapping of this
form exists. According to the results from Section 3.2.2 this assumption can be confirmed.
In this process we also showed that it is possible to capture the molecular environment
using the overlap matrix and to estimate the density matrix via ANNs. The results could
be improved even further using the McWheeny purification, to give a very low error in HF
energy.

However, this approach showed limited flexibility. Therefore, we constructed more gen-
eral descriptor schemes in Chapter 4, which finally allowed for a treatment of arbitrary
molecules on the input side of the guessing process. This was achieved by an ansatz similar
to Behler and Parinello’s work on Neural Network Potentials, where the description of the
environment of an atom is achieved by a combination of contributions from all surrounding
atoms in the molecule. Several ways to define these contributions and their combinations
have been suggested. We find that a spherical harmonics-based approach for the angular
dependency in combination with Gaussians for the radial part is most promising, while the
actual weighting in the combination seems to have little influence on the final outcome.

Additionally, several schemes have been presented to make the output side of our guess
process independent of molecular composition. Some of these “construction schemes”,
as we called them, were again inspired by GWH, but the most convincing approach was
SANND, a group of schemes similar to SAD.

In this preliminary work, our models have been applied to carbon and hydrogen-based
structures exclusively. The performance on this limited and highly specific test set was
slightly worse than that of the classical guesses.

7.1. Outlook

Next steps should aim at a further improvement of the ANN performance in the imple-
mentations of the SANND scheme to leverage its full potential. The scheme could also be
applied to other, more diverse datasets, featuring molecules that consist of other elements
than just hydrogen and carbon.

Another issue concerns the fixed spatial orientation of the density matrix. Obviously, the
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7. Conclusion and Outlook

electron density of a molecule (as was discussed for the energy in Section 2.3.4) is the
same regardless of how the atom is rotated (if external fields are absent). Due to the fact
that the density matrix is represented in a set of spatially fixed basis functions, equivalent
densities (differing only by e.g. a rotation) have different representations. This is highly
undesired for network training because now two identical samples are treated separately,
resulting in numerous redundancies. Training speed and convergence could be greatly
improved if identical structures could be identified and processed as identical examples.
For instance, they could be mapped to an intermediate input, which is used by the ANN
to generate an intermediate output, which is in turn mapped to the density matrix in the
spatially fixed representation.
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A. Mathematical Details

A.1. Born-Oppenheimer Approximation

The Born-Oppenheimer approximation, sometimes also referred to as the adiabatic ap-
proximation, makes use of the different masses in a molecular system and separates the
nuclear and the electronic motion to obtain two decoupled equations for the electronic
and the nuclear energies, respectively. This derivation follows the one given by A. C.
Hurley[44, p. 1 et seqq.]. Starting with the full many-body Hamiltonian from (2.2), we
realize that it consists of kinetic and potential contributions:

H =−1

2

N∑
i=1

∇2
i︸ ︷︷ ︸

Te

−1

2

M∑
A=1

1

MA
∇2
A︸ ︷︷ ︸

TN

−
N∑
i=1

M∑
A=1

ZA
ri,A︸ ︷︷ ︸

VNe

+
N∑
i=1

N∑
j>i

1

rij︸ ︷︷ ︸
Vee

+
M∑
A=1

M∑
B>A

ZAZB
RAB︸ ︷︷ ︸

VNN

,

(A.1)

Te and TN denote electronic and nuclear kinetic terms, respectively, while VNe, Vee, VNN

denote the nuclear-electron, electron-electron and nuclear-nuclear potential terms. As-

suming constant nuclear coordinates R := {RA : 1 ≤ A ≤ 3M} !
= const. we obtain the

electronic Hamiltonian (2.3), which gives us the electronic Schrödiger equation, in the
form

[Te + V (r,R)]ψi(r,R) = Ei(R)ψi(r,R), (A.2)

with r := {ri : 1 ≤ i ≤ 3N} as the coordinates of the positions of the electrons and R as
a parameter. The electronic eigenfunctions ψ(r,R) form a complete, orthonormal basis
of the set of functions of the electronic coordinates r. This allows us to expand the total
molecular wave function in terms of the following:

Ψ(r,R) =
∑
i

φi(R)ψi(r,R). (A.3)

Inserting (A.3) into the Schrödinger equation (2.1) yields

[Te − TN + V (r,R)− E ]
∑
i

φi(R)ψi(r,R) = 0 (A.4)

where E represents the total energy of the system. Multiplication by ψ∗j and integration
over the whole space of electronic coordinates yields∑

i

∫
ψ∗j (r,R) [Te + TN + V (r,R)− E ]φi(R)ψi(r,R) dr = 0. (A.5)

71



A. Mathematical Details

Combining the above with (A.2) and using the orthonormality of the electronic eigenfunc-
tions ψ(r,R) we obtain∑

i

[∫
ψ∗j (r,R)TNψi(r,R) dr + (Ei(R)− E)δij

]
φi(R) = 0. (A.6)

Now we apply TN to ψ and φ. We obtain (again using orthonormality)∫
ψ∗jTNψiφi dr =−

∑
A

1

2MA

∫
ψ∗j
∂2ψi
∂R2

A

φi dr

− 2
∑
A

1

2MA

∫
ψ∗j

∂ψi
∂RA

∂φi
∂RA

dr

−
∑
A

1

2MA

∂2φi
∂R2

A

δij ,

(A.7)

which - after inserting (A.7) into (A.6) - leads us to[
−
∑
A

1

2MA

∂2

∂R2
A

+ Ei(R)− E

]
ψj(R) =

∑
i

∑
A

1

MA

∫
ψ∗j

∂ψi
∂RA

∂φi
∂RA

dr
∑
i

∑
A

1

2MA

∫
ψ∗j
∂2ψi
∂R2

A

φi dr .

(A.8)

Finally, we define the coupling operator

Λnm :=
∑
A

1

MA

∫
dr ψ∗n

[
∂

∂RA
ψm

]
∂

∂RA
+
∑
A

1

2MA

∫
dr ψ∗n

[
∂2

∂R2
A

ψm

]
(A.9)

to shorten the expression in (A.8), which finally yields the compressed equation:

[TN + Ej(R)− E ]φj(R) =
∑
i

Λjiφi(R). (A.10)

The Born-Oppenheimer approximation is now to ignore the coupling in (A.10), i.e.

Λji
!

= 0, (A.11)

which gives us two decoupled sets of equations, one for the nuclear part

[TN + En(R)− Enν ]φnν(R) = 0 (A.12)

and (A.2) for the electronic part. In the nuclear part, the total energy was relabeled
E → Enν to express that there is a different set of electronic states (label by n) for each
nuclear state (labeled by ν). The total wave function is now a product of an electronic
and a nuclear wave function:

Ψnν(r,R) = ψn(r,R)φnν(R). (A.13)
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A.2. Practical Notations for Common Integrals

As for every approximation, the question of the boundaries of validity arises immediately.
In the context of perturbation theory a criterion for validity can be obtained

| 〈φnν |Λnm|φmν′〉|
|Enν − Emν′ |

� 1 ∀ν, ν ′, n,m : ν 6= ν ′, n 6= m. (A.14)

The condition can be interpreted in the following way: the matrix elements of the coupling
operator have to be small compared to the difference in total energy of the system. Except
for when the matrix elements vanish due to symmetry, this will no longer be the case when
electronic energy differences approach the order of magnitude of vibronic frequencies.

A.2. Practical Notations for Common Integrals

Since writing out all integrals for our derivations is very tiring we will define a few short-
cuts to save space and time. Very frequent are two-electron integrals of r−1ij (with rij the
distance between two electrons i and j). Therefore, we define

〈ij|kl〉 := 〈φiφj |φkφl〉 :=

∫
φ∗i (x1)φ

∗
j (x2)

1

rij
φk(x1)φl(x2)dx1dx2 (A.15)

and

〈ij||kl〉 := 〈φiφj ||φkφl〉 :=

∫
φ∗i (x1)φ

∗
j (x2)

(
1

rij
− P12

)
φk(x1)φl(x2)dx1dx2 (A.16)

with Pnm as the operator that exchanges electron n and m. Note that

〈ij||kl〉 = 〈ji||lk〉 (A.17)

〈ij||kl〉 = 〈kl||ij〉∗ (A.18)

〈ij||kk〉 = 0. (A.19)

The orbitals φ above include spin. Therefore, the integrals are over the product space of
spin spaces and coordinate spaces. We also define notations for purely spacial integrals,

(ij|kl) := (ϕiϕj |ϕkϕl) :=

∫
ϕ∗i (r1)ϕ

∗
j (r2)

(
1

rij
− P12

)
ϕk(r1)ϕl(r2)dr1dr2, (A.20)

two of which receive a special name:

Jij := (ii|jj) (Coulomb integrals) (A.21)

Kij := (ij|ji) (Exchange integrals). (A.22)

There are also shorter notations for integrals involving one-electron operators h

〈i|h|j〉 :=
∫
φ∗i (x1)h(r1)φj(x1)dx1 (with spin) (A.23)

(i|h|j) :=
∫
ϕ∗i (r1)h(r1)ϕj(r1)dr1 (just spacial) (A.24)

and we shall denote its elements by

hij = 〈i|h|j〉 = (i|h|j) . (A.25)
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The last equality is due to fact that the one-electron Hamiltonian only acts on the spatial
component of orbitals.

We can now use these rules to express the Coulomb and the exchange operator ((2.9) and
(2.10))

〈φa(1)|Jb(1)|φa(1)〉 = 〈ab|ab〉 (A.26)

〈φa(1)|Kb(1)|φa(1)〉 = 〈aa|bb〉 (A.27)

If we take the electronic Hamiltonian (2.3), use slater determinants |Ψ〉 = |φ1 . . . φN 〉 from
(2.4) to build the expectation value E0 = 〈Ψ|H|Ψ〉 and apply our notations from above,
we obtain a very compact expression for the energy, namely (2.13),

E0 =
∑
a

〈a|h|a〉+
1

2

∑
ab

〈ab||ab〉 ,

where h denotes the one-electron Hamiltonian from (2.11).

A.3. Variation of Orbitals

In Section 2.1.4 we mention that we apply the variational method to derive (2.8), i.e. the
Hartree-Fock equations. This is what we will do now. The Section follows the derivation
by A. Szabo and N. S. Ostlund[14, p. 117-122].

We want to minimize the energy with respect to the orbitals while maintaining their
orthonormality 〈φa|φb〉 = 〈a|b〉 = δab. We use Langrange multipliers to ensure this and
thus receive the following target function to minimize

L [{φa}] = E0[{φa}]−
N∑
a=1

N∑
b=1

εab (〈a|b〉 − δab) =

∑
a

〈a|h|a〉+
1

2

∑
ab

〈ab||ab〉 −
N∑
a=1

N∑
b=1

εab (〈a|b〉 − δab)

(A.28)

We introduce a variation in the orbitals φ → φ + δφ and apply it to (A.28) to obtain
L → L+ δL with

δL = δE0 −
N∑
a=1

N∑
b=1

εab δ (〈a|b〉 − δab) . (A.29)

To minimize L we must set its variation zero, i.e.

δL !
= 0, (A.30)

but before we do that we will simplify the expressions variation of the energy and of our
constraint. We will use the notation 〈δa|b〉 = 〈δφa|φb〉, 〈δ(a) b|cd〉 = 〈δ(φa)φb|φcφd〉 etc.
as extension to the one from Appendix A.2. By writing out all of the terms for variation
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of the energy and renaming some of the indices (details see Szabo & Oslund) we find for
that some of the terms match. This gives us

δE0 =

N∑
a=1

〈δa|h|a〉+
1

2

N∑
a=1

N∑
b=1

〈δ(a) b|ab〉 − 〈δ(a) b|ba〉+ c.c. , (A.31)

where “c.c.” denotes the complex conjugated version of whichever term precedes it. For
the constraint we find

∑
ab

εab (〈δa|b〉+ 〈a|δb〉) =
∑

ab εab 〈δa|b〉+
∑

ab εab 〈a|δb〉 (A.32)

=
∑

ab εab 〈δa|b〉+
∑

ab ε
∗
ab 〈δa|b〉

∗ (A.33)

=
∑

ab εab 〈δa|b〉+ c.c. (A.34)

If we plug these results back into (A.30) and replace our short notations with the actual
integrals we obtain

δL =

N∑
a=1

∫
δφ∗a(1)

[
h(1)φa(1) +

N∑
b=1

(Jb(1)−Kb(1))φa(1)−
N∑
b=1

εabφb(1)

]
dx1

+ c.c.
!

= 0

(A.35)

Considering that the variation δφa(1) and thus δφ∗a(1) is arbitrary, (A.35) can only hold
if the expression in the brackets vanishes. Thus we receive

[
h(1) +

N∑
b=0

(Jb(1)−Kb(1))

]
φa(1) =

N∑
b=1

εNb=1φb(1) ∀a ∈ {1, . . . , N}. (A.36)

As this is already very close to (2.8) we realize the term in brackets is the Fock operator
from (2.12). To get from this generalized eigenvalue problem to an ordinary eigenvalue
problem problem we must apply a rotation.

We now investigate how things change if the orbitals are rotated φ′a =
∑

b φbUba. This
is equivalent to rotating the matrix before taking the determinant in (2.4) (the Slater-
Determinant). Due to the rules of determinants of a matrix product, det{(AB)} =
det{A} det{B}, we see that ∣∣Ψ′0〉 = det{U} |Ψ0〉 . (A.37)

Determinants of rotation matrices (as they are orthogonal and real) can only be ±1. This
means the rotated slater determinant only differs by a constant phase, which is irrelevant
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to us1. Next we check the Coulomb operator,

∑
a

J ′a(1) =
∑
a

∫
φ′a(2)∗

1

r12
φ′a(2) dx2

=
∑
bc

∑
a

U∗baUca︸ ︷︷ ︸
(UU†)bc=δbc

∫
φ∗b(2)

1

r12
φc(2)dx2

=
∑
b

∫
φ∗b(2)

1

r12
φb(2) dx2

=
∑
b

Jb(1),

(A.38)

and see that it does not change at all. The same is true for the Exchange operator. We have
shown that the Fock operator is invariant under rotation, and does not change regardless
of how we rotate the orbitals. Therefore, we will choose a rotation that will cause the
Fock matrix (whose elements in the basis of the orbitals are the Lagrange multipliers,
〈φc|F |φa〉 =

∑N
b=1 εba 〈φc|φb〉 = εca ) to be diagonal, i.e. we will choose a rotation U , so

that ε′ = U †εU is a diagonal matrix with the diagonal elements εi, i ∈ {1, . . . , N}. The
orbitals that result from this rotation are called canonical orbitals. What follows is (2.7).

A.4. Probability of Finding an Electron

The probability to find an electron at position r in our system of N electrons can be
expressed via the density matrix P . It is defined in our closed shell formalism (ψi are
spatial orbitals) by

ρ(r) = 2

N
2∑
i=1

|ψi(r)|2. (A.39)

1 A global phase of a state may be neglected as all physical properties are calculated using expectation
values, where these phases cancel.
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A.5. Expressing the Fock Matrix in Terms of the Density Matrix

One can easily see that
∫
ρ(r) dr = N . If we plug in our basis expansion from (2.17), we

obtain

ρ(r) = 2

N
2∑
i=1

ψ∗i (r)ψi(r) (A.40)

= 2

N
2∑
i=1

∑
ν

C∗νiφ
∗
ν(r)

∑
µ

Cµiφµ(r) (A.41)

=
∑
µ,ν

2

N
2∑
i=1

CµiC
∗
νi

φµ(r)φν(r)∗ (A.42)

=
∑
µ,ν

Pµνφµ(r)φν(r)∗. (A.43)

(A.44)

In the last step we used the definition of the density matrix (2.26).

A.5. Expressing the Fock Matrix in Terms of the Density Matrix

Using the notation from Appendix A.2 we can write the Fock matrix as

Fµν = Hcore
µν +

N
2∑
i=1

∫
φ∗µ(1) [2Ji(1)−Ki(1)]φν(1) dr1 (A.45)

= Hcore
µν +

N
2∑
i=1

2(µν|ii)− (µi|iν) (A.46)

= Hcore
µν +

N
2∑
i=1

∑
λσ

CλiC
∗
σi [2(µν|σλ)− (µλ|σν)] (A.47)

= Hcore
µν +

∑
λσ

Pλσ

[
(µν|σλ)− 1

2
(µλ|σν)

]
(A.48)

=: Hcore
µν +Gµν . (A.49)

(A.50)

Here we used the basis set expansion (2.17) and finally the definition of the density matrix
(2.26).
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B. Descriptor Models

In Chapter 4 we introduced symmetry functions, which are used to sample information
regarding the molecular environment of an atom. A certain group of these functions,
Gaussians and periodic Gaussians, are parametrized; in this chapter we shall depict the
various parametrization models used in this thesis.

B.1. Radial Models

This section shows the models consisting of ordinary Gaussians, introduced in Section 4.2,
and used to describe the radial part of the relative position of two atoms. A few of these
models are characterized as “N equidistant points in an interval [x, y]”. This describes a
list {zi : i ∈ {1, . . . , N}, zi = x+ (y − x)i/N}, with x and y as real numbers. Note that x >

y is explicitly allowed. All numbers for widths and centers are in Å
−1

and Å, respectively.

B.1.1. Origin Centered

The models in this section consist of Gaussians, that are all centered at 0.
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Figure B.1.: Set of radial symmetry functions of the “Origin-50” model. They are all
centered at 0. The widths are 50 equidistant points in the interval [10, 0.1].

79



B. Descriptor Models

B.1.2. Manually Tweaked

The models in this section are not built after any algorithm, but rather by intuition. This
means the position and the width of the models is hand-crafted.
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Figure B.2.: Set of radial symmetry functions of the “Man-50” model. The Gaussians have
an increased concentration in the range 0.7-2.5 Å, in which all the bounding distances of
ethene lie. The set consists of three subsets. The first group’s is centers are 10 equidistant
points from [0.2, 0.67], and the width of 500 The Gaussians from the second group have
centers that are 30 points from [0.7, 2.5], at a width of 1000 and the ones from the last
group have 10 points from [2.7, 4] and a width of 200.

B.1.3. Uniformly Distributed

The models in this section consist of Gaussians, which are spaced equidistantly over a
given interval. Their widths are monotonically increasing the further away from 0 the
center of the Gaussian is; the values of the widths are equidistant points in a specified
interval too.
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Figure B.3.: Set of radial symmetry functions of the “Unif-5” model. The centers/widths
are 10 equidistant points from [0.1, 4.0]/[10.0, 1.0].
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Figure B.4.: Set of radial symmetry functions of the “Unif-25” model. The centers/widths
are 25 equidistant points from [0.1, 4]/[60, 20].
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Figure B.5.: Set of radial symmetry functions of the “Unif-50” model. The centers/widths
are 50 points from [0.1, 4]/[120, 40].

0 1 2 3 4 5
r / Å

0.0

0.2

0.4

0.6

0.8

1.0

g(
r,

r s
,

)
/

1

Figure B.6.: Set of radial symmetry functions of the “Unif-250” model. The centers/widths
are 250 points from [0.1, 4]/[500, 100].
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B.2. Angular Models

Similarly to Section B.1.3, the models shown in this section are collections of (periodic)
Gaussians, which are equidistantly spaced. In the context of our angular models, this
means that for a model with N Gaussians periodic with a period P the centers will be{
P
N i : i ∈ {0, . . . , N − 1}

}
, yielding a periodic distribution, symmetric around 0. Due to

the isotropy of the angle-space all Gaussians will have the same width. They are chosen
so that the periodic Gaussians overlap exactly at their points of inflection, i.e. at 2N2

P 2 .
The values for the centers and widths will thus not be given explicitly.

B.2.1. Azimuthal Models

These models are used to sample the azimuthal angle. They have a periodicity of 2π.
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Figure B.7.: Set of angular symmetry functions of the azimuthal part of the “PG-10”
model. It contains 10 periodic Gaussians.
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Figure B.8.: Set of angular symmetry functions of the azimuthal part of the “PG-20”
model. It contains 20 periodic Gaussians.
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Figure B.9.: Set of angular symmetry functions of the azimuthal part of the “PG-20”
model. It contains 20 periodic Gaussians.
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B.2.2. Polar Models

These models are used to sample the polar angle. They have a periodicity of π.
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Figure B.10.: Set of angular symmetry functions of the polar part of the “PG-10” model.
Note the similarity to B.7. However, due to the lower periodicity of only π, it is closer to
B.8.
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