
Master Thesis

Effectiveness of Verification Tools

conducted at the
Institute of Software Technology

Graz University of Technology, Austria

in co-operation with
SSI Schäfer Automation GmbH

Graz, Austria

by
Marcel Hannes Ablasser, 01230278

Supervisors:
Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Assessors/Examiners:
Univ.-Prof. Dipl.-Ing. Dr.techn. Frank Kappe

Univ.-Prof. Dipl.-Inf. Univ. Dr.rer.nat. Marcel Carsten Baunach

Graz, February 26, 2019

Abstract

Software faults, also referred to as bugs, can occur on each line of code; therefore, verification
and validation (V&V) is crucial before software products are delivered to customers. The pro-
cess of V&V is mainly performed by testing and reviewing requirements, design and source code.
Software developers can perform both tasks: reviewing and testing. However, one, two or even
ten developers might not find all bugs in a software project. A reason why bugs survive this
V&V process is the size and complexity of software projects. Another reason why bugs survive is
because code reviewing and testing is not performed thoroughly or at all by each team member.
Why not add an additional verification mechanism with an automated pair of eyes in order to
compensate these drawbacks by checking each line of code again for faults, inappropriate pro-
gramming habits and coding violations? Verification tools are created to perform this additional
check and are designed to work as an automated second pair of eyes. Therefore, these tools help
to further improve the code quality and might even detect problems overlooked by entry-level
as well as senior software developers.

The aim of this master thesis is to analyze and define the effectiveness of selected verification
tools – PMD, SpotBugs, SourceMeter, Infer, SonarQube, RATS and Cppcheck – for software
written in Java and C++. A case study is performed in order to measure the effectiveness by
means of criteria, for example, the number of detected errors (true positives), how many false
positives are reported and how many bugs are not detected by a verification tool (false negatives).
These criteria are captured for a Java program with 82 lines of code (LOC) called Argument
Printer . Furthermore, self-created programs are analyzed which contain common fault(s), for
instance, null pointer exceptions and index out of bounds bugs. In addition to this Java pro-
gram and these self-created programs, software projects from SSI Schaefer Automation GmbH,
an international company, are taken into account. Associates from SSI Schaefer Automation
GmbH took part in this case study using the selected verification tools. Hence, experience from
employees at SSI Schaefer Automation GmbH is considered and has a direct influence on the
outcome regarding the effectiveness of the selected verification tools.

The evaluation of these selected verification tools showed that more bugs are detected for soft-
ware written in Java than C++. Furthermore, performing an analysis for Java programs is easier
and more straightforward. Nevertheless, the best verification tool for both programming lan-
guages (PLs) – C++ and Java – is Infer. It detects a good amount of bugs, does not detect many
false positives and supports both PLs.

To sum up, this master thesis analyzes the effectiveness of selected verifications tools and ad-
dresses the following research question:

How effective are verification tools, nowadays, for C++ and Java source code?

Kurzfassung (German)

Softwarefehler, auch Bugs genannt, können in jeder Codezeile von Softwareprojekten auftreten.
Eine Verifizierung und Validierung (V&V) ist somit essentiell, bevor Softwareprodukte an Kun-
den ausgeliefert werden. Der Prozess V&V wird hauptsächlich durch Testen und Überprüfen
von Anforderungen, Design und Quellcode durchgeführt. Softwareentwicklerrinnen und Soft-
wareentwickler können diese beiden Aufgaben ausführen. Jedoch, einer, zwei oder sogar zehn
Personen finden möglicherweise nicht alle Fehler in einem Softwareprojekt. Ein Grund, warum
nicht alle Bugs durch diesen V&V Prozess gefunden werden, ist die Größe und Komplexität
von Softwareprojekten. Ein weiterer Grund ist die nicht ordnungsgemäße Durchführung des
V&V Prozesses aller Teammitglieder. Warum nicht einen zusätzlichen Überprüfungsmechanis-
mus mit einem automatisierten Augenpaar hinzufügen, um diese Nachteile zu kompensieren,
indem jede Codezeile erneut auf Fehler, schlechte Programmiergewohnheiten und Programmier-
standards geprüft wird? Verifikationstools wurden erstellt, um diese zusätzlichen Überprüfun-
gen durchzuführen. Somit helfen diese Tools die Codequalität weiter zu verbessern und finden
möglicherweise Probleme, die von Softwareentwicklerinnen und Softwareentwicklern übersehen
werden.

Das Ziel dieser Masterarbeit ist es, die Wirksamkeit ausgewählter Verifikationstools – PMD,
SpotBugs, SourceMeter, Infer, SonarQube, RATS und Cppcheck – für Software geschrieben in
C++ und Java zu analysieren und zu definieren. Eine Fallstudie wird durchgeführt, um die Wirk-
samkeit zu messen. Anhand von Kriterien kann beispielsweise die Anzahl der richtig erkannten
Fehler (True Positives) und die Anzahl der falsch erkannten Fehler (False Positives) ermittelt
werden. Diese Kriterien werden für ein Java-Programm mit 82 Codezeilen, genannt Argument
Printer , erfasst. Darüber hinaus werden selbst erstellte Programme analysiert, die allgemeine
Fehler enthalten. Zum Beispiel, NullPointerExceptions. Neben diesem Java-Programm und
diesen selbst erstellten Programmen werden Softwareprojekte von SSI Schaefer Automation
GmbH, einem internationalen Unternehmen, berücksichtigt. Mitarbeiter von SSI Schaefer Au-
tomation GmbH haben an dieser Fallstudie mit den ausgewählten Verifikationstools teilgenom-
men. Daher fließt die Erfahrung und Beurteilung der Mitarbeiter von SSI Schäfer Automation
GmbH ein und hat einen direkten Einfluss auf das Ergebnis hinsichtlich der Wirksamkeit dieser
ausgewählten Verifikationstools.

Die Auswertung der Tools hat gezeigt, dass mehrere Software Fehler in Java als in C++ entdeckt
wurden. Außerdem ist es einfacher eine Analyse für Java Programme als für C++ durchzuführen.
Das beste Verifikationstool für beide Programmiersprachen – C++ und Java – ist Infer. Es erkennt
viele richtige Fehler, meldet wenige falsche Fehler und unterstützt beide Programmiersprachen.

Zusammenfassend kann gesagt werden, dass diese Masterarbeit die Wirksamkeit ausgewählter
Verifikationstools analysiert und die folgende Forschungsfrage beantwortet:

Wie effektiv sind Verifikationstools für C++ und Java Software heutzutage?

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources. The text document uploaded to TUGRA-
Zonline is identical to the present master’s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommene Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline
hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum Unterschrift

Effectiveness of Verification Tools

Contents

Acronyms . IX
Glossary . X

1 Introduction 13
1.1 Motivation . 13
1.2 Problem and Thesis Statement . 17
1.3 Organization . 18

2 Software Verification and Validation 19
2.1 Definition Software Bug . 20
2.2 Verification Methods . 21

2.2.1 Testing . 21
2.2.2 Code Review . 22
2.2.3 Verification Tools . 22

3 Defining Effectiveness 25
3.1 Captured Criteria . 25

3.1.1 Source Code Criteria . 25
3.1.2 Verification Tool Criteria . 25

3.2 Calculated Parameter . 26
3.2.1 Source Code Parameter . 26
3.2.2 Verification Tool Parameter . 26

3.3 Effectiveness Metrics . 29

4 Selected Verification Tools 33
4.1 PMD . 34
4.2 SpotBugs (FindBugs) . 36
4.3 Infer . 38
4.4 SonarQube . 40
4.5 SourceMeter . 42
4.6 RATS . 43
4.7 Cppcheck . 44

5 Case Study 45
5.1 Detect Bug Challenge . 45
5.2 Programs with Common Errors in C++ . 46

5.2.1 Null Pointer Bugs in C++ . 50
5.2.2 Index Out of Bounds Bugs in C++ . 56
5.2.3 Resource Bugs in C++ . 59

5.3 Programs with Common Errors in Java . 60
5.3.1 Null Pointer Bugs in Java . 65
5.3.2 Index Out of Bounds Bugs in Java . 71
5.3.3 Resource Bugs in Java . 74

5.4 Sofware Projects from SSI Schaefer Automation GmbH 75

– VII –

5.4.1 Project-CA in C++ . 75
5.4.2 Project-JA in Java . 76
5.4.3 Project-JB in Java . 77
5.4.4 Beta Releases . 78

6 Outcome 79
6.1 Detect Bug Challenge . 79
6.2 Programs with Common Errors . 81
6.3 Sofware Projects from SSI Schaefer Automation GmbH 83

7 Conclusion 85

Appendices 87

A Appendix Chapter 1 Introduction 88
A.1 Section 1.1 Motivation . 88

B Appendix Chapter 4 Selected Verification Tools 90
B.1 Section 4.1 PMD . 90

B.1.1 Section 4.1 Get Started . 90
B.2 Section 4.2 SpotBugs (FindBugs) . 94

B.2.1 Section 4.2 Get Started . 94
B.3 Section 4.6 RATS . 98

C Appendix Chapter 5 Case Study 99

D Appendix Chapter 6 Outcome 101
D.1 Section 6.1 Detect Bug Challenge . 101

List of Figures 103

List of Tables 104

Bibliography 106

Effectiveness of Verification Tools

Acronyms

API application programming interface. 38

ch chapter. 21–23

CPD copy-paste-detector. 34, 40

CWE common weakness enumeration. 77

FDR false discovery rate. 27

GUI graphical user interface. 28

IDE integrated development environment. 34, 36, X

KLOC thousand lines of code. 26, X, Glossary: KLOC

LOC lines of code. 13, 14, 16, 18, 21, 25, 26, 40, 45, 46, 50–60, 65–77, 79, 85, I, X, Glossary:
LOC

OS operating system. 33, 34, 36, 38, 40, 42–44

PL programming language. 16, 17, 33–37, 40–43, 46, 50–60, 65–77, 79, 80, 82, 84, 85, I, X

QA quality assurance. 78

RATS Rough Auditing Tool for Security. 33, 43, 98, VII, VIII

sec section. 29

SOA service-oriented architecture. 76

TLLOC total logical lines of code. 45, 46, 50–60, 65–77

TLOC total lines of code. 42, 45, 46, 50–60, 65–77

TNOS total number of statements. 42, 45, 46, 60, 65–74, 76, 77

V&V verification and validation. 13, 18, 19, 78, I, III

– IX –

Effectiveness of Verification Tools

Glossary

This symbol indicates the number of something. For example, #Files indicates the number
of files. 16, 18, 30, 45–48, 50–63, 65–77, 83

Bug The term software bug, or short bug, describes in a colloquial way an error, failure or fault
in the source code of a software program[3, p. 358]. 13, 14, 16, 17, 19–23, 25–27, 29–31,
33, 36, 42, 44, 45, 75–81, 83–86, 101, I, III

Eclipse Eclipse is an integrated development environment (IDE) that is free and open-source
software. This IDE supports many programming languages (PLs) and is extendable by
a huge number of various plug-ins written by the Eclipse community, other developers or
even by oneself. 34–37, 90–92, 94–96, 103

False Negative A bug that exists in the analyzed source code but is not detected and reported
by a verification tool. 16, 23, 25, 26, 46–48, 50–63, 65–77, I

False Positive A bug that does not exist in the analyzed source code but is detected and reported
by a verification tool. False positives are reported due to missing information during the
analysis. 16, 23, 25–27, 29–31, 44, 46–48, 50–63, 65–77, 79, 83, 84, 86, I, III

KLOC A thousand lines of code (KLOC) from a software project. 26, 75–77, X

LOC All lines of code (LOC) from a software project. 13, 18, 21, 25, 40, 45, 46, 60, 76, 79, 85,
I, X

SonarQube SonarQube is a web platform that focuses on continuous code quality. This web
platform supports more than 20 PLs including these major languages: C, C++, C#, Java,
Javascript, Php and Python. Furthermore, various plug-ins are available in order to
enhance the code analysis and to detect even more faults, inappropriate programming
habits and coding style violations (see more about SonarQube in section 4.4). 16, 28,
33–37, 40–42, 60, 65–74, 76, 77, 93, 97, 103

True Negative A bug that does not exist in the analyzed source code and is not reported by a
verification tool. 23

True Positive A bug that exists in the analyzed source code and is detected and reported by a
verification tool. 16, 23, 25–27, 29, 30, 46–48, 50–63, 65–77, 79–81, I, III

– X –

Effectiveness of Verification Tools

1
Introduction

1.1 Motivation

Verifying software is crucial before new products or releases are shipped to users. This pro-
cess of verification and validation (V&V) is mainly performed by testing and reviewing every
single line of code. Performing these two steps properly and thoroughly is going to reduce the
number of faults alias bugs1 and lead to more confidence in the correctness and reliability of
software product(s). Unfortunately, each of these tasks (testing and reviewing of source code)
is time-consuming[32, p. 87] – and the more lines of code (LOC) and the more complex a
software project is the more work hours and machine hours are needed to test and review each
line of code[10, p. 9]. Due to this drawback, one or even both tasks (testing and reviewing of
source code) might not be performed appropriately or at all. Another drawback is that both
methods do not guarantee the correctness of software product(s) nor that all bugs are eliminated.

In order to compensate or rather diminish these drawbacks, verification tools can be added
in software development processes – in addition to basic code reviews – to further reduce the
number of faults and, therefore, to foster the confidence in the correctness and reliability of
software product(s). Verification tools are code analyzers that scan source code and report a list
of issues (real and potential errors & warnings like a compiler). By means of this list, developers
have another closer look to parts of source code where real or potential faults are. Even with
the use of verification tools, one can still not guarantee the correctness of software product(s)
nor that all bugs are eliminated. However, these verification tools enhance the V&V process by
detecting overlooked real and potential bugs of entry-level as well as senior software developers.

In addition to diminishing testing and reviewing drawbacks, verification tools can be used to
teach all and, in particular, entry-level software developers to avoid or rather reduce the number
of real and potential bugs. Furthermore, some verification tools report, in addition to real and
potential bugs, inappropriate programming habits and coding violations. For instance, having
an empty catch block of a try-catch statement in Java is defined as an inappropriate program-
ming habit. Coding violations depend on the defined coding standard by the team of software
developers. To illustrate, a constant named errorMessage is a coding violation if the coding
standard defines that all constants should be written only with capital letters and underscores
(errorMessage → ERROR MESSAGE). By reviewing these issues (real and potential bugs, inap-
propriate programming habits and coding violations), a software developer performs an own
additional code review by means of verification tools. Each issue is listed with a description
that explains why a statement or a combination of statements is marked as an error or warning
by a verification tool. Due to this explanation, a software developer is taught and reminded by
a verification tool to avoid well known critical and potential software problems as well as bad
coding habits.

1 The term software bug, or short bug, describes in a colloquial way an error, failure or fault in the source code
of a software program[3, p. 358].

– 13 –

1 Introduction

Statement of a 55 to 64-year-old man with 20 to 30 years of professional experience as a software
developer who participated in this case study (original language, German):

PS: SonarQube ist eine echte Hilfe! Ich habe 92 Fehler von 92 behoben; bei einigen
hätte ich ohne SonarQube nicht einmal gewußt, dass es ein Fehler ist.

Same statement translated into English:

PS: SonarQube is a real help! I have fixed 92 errors of 92; for some, without Sonar-
Qube, I would not even have known it was a mistake.

Another advantage of using verification tools is that the workload of a software developer who
performs code reviews of other developers decreases. If a software developer performs another
additional code review by means of verification tools, the code quality increases because real
and potential bugs, inappropriate programming habits and coding violations are reduced by
performing this additional review. In other words, a developer who uses verification tools sub-
mits source code with fewer software issues than a developer who performs a submission without
additional check. As a consequence, the workload of a software developer who performs code
reviews of other developers decreases.

To demonstrate the strength of verification tools, a short Java program called Argument Printer
with 82 LOC – see more statistics in Table 5.1 – is created and analyzed by software developers
and by verification tools. This program contains several bugs which in the worst case – crash
the program. The following excerpts shown on the next page illustrate the main functions of
the program Argument Printer in Listing 1.1 and Listing 1.2 (the whole source code is depicted
in Listing A.1 and Listing A.2).

– 14 –

1.1 Motivation

15 private static final Random RANDOM = new Random ();

16
17 /**

18 * Entry point of program

19 *

20 * @param args

21 * @throws InterruptedException

22 */

23 public static void main(String [] args) {

24 LOGGER.info("Start program ...");

25 final ArgumentPrinter argPrinter = new ArgumentPrinter ();

26 for (int i = 0; i < 5; i++) {

27 if (generateRandomInteger () > 0)

28 LOGGER.log(Level.INFO , "Log file path: ’{0}’", argPrinter.initLogFile (). toString ());

29 Object [] testArguments = i == 0 ? args : generateRandomArgs ();

30 argPrinter.setArguments(testArguments , 5);

31 argPrinter.logAll ();

32 LOGGER.log(Level.INFO , "{0}: iteration ..", i);

33 }

34 }

35
36 private static Object [] generateRandomArgs () {

37 int numArgs = RANDOM.nextInt (10);

38 if (numArgs > 0) { return new Object[numArgs]; }

39 return null;

40 }

41
42 private static Integer generateRandomInteger () {

43 Integer randomValue = Integer.valueOf(RANDOM.nextInt (2));

44 if (randomValue > 0)

45 return randomValue;

46 return null;

47 }

Listing 1.1: Excerpt of the program: Argument Printer written in Java (file Main.java).

13 public class ArgumentPrinter {

14
15 /** Default Java logger **/

16 private static final Logger LOGGER = Logger.getLogger(ArgumentPrinter.class.getName ());

17
18 private Object [] args;

19 private Integer maxArgs;

20
21 public void setArguments(final Object [] args , Integer maxArgs) {

22 this.args = new String[maxArgs]; this.maxArgs = maxArgs;

23 initArgs(args , maxArgs);

24 }

25
26 private synchronized void initArgs(final Object [] args , final Integer maxNumArgs) {

27 for (int i = 0; i < maxNumArgs; i++)

28 this.args[i] = args[i];

29 }

30
31 public File initLogFile () {

32 File logFile = new File("logFile.log");

33 try {

34 FileOutputStream fos = new FileOutputStream(logFile);

35 fos.write("LogFile: ArgumentPrinter".getBytes(Charset.defaultCharset ()));

36 fos.close ();

37 } catch (IOException e) {

38 // Ignore

39 return null;

40 }

41 return logFile;

42 }

43
44 /**

45 * Logs the number of arguments and the content of each argument.

46 */

47 public void logAll () {

48 logNumberOfArguments (); logAllArguments ();

49 }

50
51 private void logNumberOfArguments () {

52 String formatString = createFormatStringNumArgs ();

53 if (! formatString.isEmpty ())

54 LOGGER.log(Level.INFO , formatString , args.length);

55 }

56
57 private void logArgumentContent(Integer index) {

58 LOGGER.log(Level.INFO , "Arg[" + index + "]: ’{0}’", args[index]. toString ());

59 }

60
61 private void logAllArguments () {

62 for (int i = 0; i <= maxArgs; i++)

63 logArgumentContent(i);

64 }

65
66 private String createFormatStringNumArgs () {

67 if (args.length == 1) return "{0} argument is entered!";

68 else if (args.length > 1) return "{0} argument(s) are entered!";

69 return null;

70 }

71 }

Listing 1.2: Excerpt of the program: Argument Printer written in Java (file ArgumentPrinter.java).

– 15 –

1 Introduction

Software developers and selected verification tools performed a code review of the Java program
Argument Printer (see the whole source code in Listing A.1 and Listing A.2). The best software
developer correctly detected six out of six bugs (see Table 1.1 – column C and row #True
Positives). On the contrary, the best-selected verification tool is able to correctly detect four out
of six bugs (see Table 1.2 – column Infer and row #True Positives). Furthermore, a comparison
of the reported false positives – best software developer nine and best-selected verification tool
one (see Table 1.1 and 1.2 – row #False Positives) – enhances the benefits of verification tools.
In addition to true positives and false positives, execution time is another important criterion.
The best and fastest software developer who found all six bugs needed 1510 seconds which are
25 minutes and ten seconds. By contrast, the best-selected verification tool required less than
three seconds to correctly detect four out of six bugs in 82 LOC.

Table 1.1: Captured criteria of all software developer (software developer A, software developer B, . . . , D)
who participated in the detect bugs challenge of the Java program ArgumentPrinter.

Criteria

Developer
A B C D

#Reported Issues 5 2 15 7

#True Positive 2 1 6 5

#False Positive 3 1 9 2

#False Negative 4 5 0 1

Execution Time [s] 1666 2143 1510 1997

Table 1.2: Captured criteria of the program ArgumentPrinter – written in Java. All criteria are listed for
each verification tool which supports the programming language (PL) of the program Argument-
Printer (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 53 0 13 3 5

#True Positive 2 0 0 3 4

#False Positive 51 0 13 0 1

#False Negative 4 6 6 3 2

To sum up, from the result of this challenge – software developer vs verification tools – one
can see that verification tools do not detect every bug but analyze the source code of the Java

program Argument Printer faster than software developers. In other words, verification tools
detect a good amount of bugs and perform an analysis quite fast, therefore, why not performing
an additional check of source code with an automated pair of eyes?

#MakeCodeVerificationEasier

– 16 –

1.2 Problem and Thesis Statement

1.2 Problem and Thesis Statement

Problem Statement. The source code of software products is developed in several state-
ments, functions, classes, files and directories. Due to the complexity and size of software
projects, it is impossible to check every single line of code again by a software developer af-
ter each committed change from another co-worker. Even if every single line of code could be
checked by one, three or ten software developers, some issues could be overlooked.

Why not add an additional verification mechanism with an automated pair of eyes in order
to perform this tedious task? Verification tools are created to process this additional check by
scanning every single line of code for bugs, inappropriate programming habits and coding vio-
lations. Therefore, this master thesis investigates how effective verification tools are nowadays.

Thesis Statement. This master thesis analyzes the effectiveness of selected verifications
tools and addresses the following research question:

How effective are verification tools, nowadays, for C++ and Java source code?

In order to address this research question, a prerequisite has to be resolved:

How can one define the effectiveness of verification tools in terms of performance,
usability and reported issues?

The following statements are defined in order to define the scope of this master thesis:

� All verification tools which are analyzed during this master thesis are static code analyzer.

� Source code in the following programming languages (PLs) is analyzed: C++ and Java.

� In order to determine the effectiveness of selected verification tools, a case study is per-
formed. Programs with common errors are created and analyzed as part of this case study
as well as software projects from an international company: SSI Schaefer Automation
GmbH.

� Verification tools that perform a dynamic code analysis are not investigated and not part
of this master thesis.

� Not part of this master thesis is, adding one or a number of verification tools to the
software development process of SSI Schaefer Automation GmbH. Only an evaluation of
all selected verification tools is performed.

– 17 –

1 Introduction

1.3 Organization

This master thesis is divided into seven chapters.

� The first chapter – 1 Introduction – initiates the topic of this master thesis by addressing
the following questions in section 1.1 Motivation: What is this master thesis about? What
are verification tools? Why should the source code of software products be checked by
verification tools?

� Second, a closer look at the process of verification and validation (V&V) of software
projects is addressed – including the V&V methods: testing, code reviewing and verifica-
tion tools. Additionally, the reason why V&V should be performed is described in chapter
two – 2 Software Verification and Validation.

� Chapter three – 3 Defining Effectiveness – enumerates and defines all criteria that are
captured and calculated in order to derive the effectiveness of verification tools. In this
chapter, an answer to the following question is stated: Which terms have an influence on
the effectiveness of a verification tool?

� The next chapter – 4 Selected Verification Tools – contains an overview of all selected
verification tools that are investigated in this master thesis. Each verification tool is
described in its own section and is divided into three subsections: Description, Get Started
and Demonstration.

� Fifth, all about the case study which is divided into four main groups: (i) Detect Bug
Challenge, (ii) Programs with Common Errors in C++, (iii) Programs with Common Errors
in Java and, last but not least, (iv) Sofware Projects from SSI Schaefer Automation GmbH.
For each software project of all groups statistics about the source code are provided, for
example, lines of code (LOC), the number of (#) Files and #Classes. Furthermore, all
captured and calculated criteria are listed in tables for each software project. In addition
to statistics and these criteria tables, the source code is depicted for all software projects
of the (i) first, (ii) second and (iii) third group.

� The sixth chapter – 6 Outcome – presents the results of this master thesis.

� Finally, chapter seven – 7 Conclusion – sums up the concept behind this master thesis and
the insights that are accomplished and obtained by performing this case study.

In addition to these seven chapters, appendices are attached.

– 18 –

Effectiveness of Verification Tools

2
Software Verification and Validation

The process of verification and validation (V&V) is an engineering practice – according to
Fisher[15, p. 3] – and is used to foster the confidence in the correctness and reliability of software
product(s). Nowadays, software is part of almost everyone’s life. To illustrate, banks make use of
software to manage thousands of bank accounts, elementary school teachers work with software
to prepare the material and to submit the grades of all pupils, and cities use software to control
the traffic light on streets which are used on a daily basis. Furthermore, other devices that
are used several times on a daily basis are smartphones and computers. Consequently, humans
rely on these software products and, therefore, developers should ensure that these products are
reliable and behave as expected. In particular, software which is deployed in critical systems like
spaceships, airplanes, cars or medical devices has to run correctly because a fault could cause
enormous damage and even life-threatening situations. For example, an excerpt of lists about
cost-intensive and severe bugs (see bug definition in section 2.1):

� July 28, 1962 – Mariner I space probe[34, p. 1][1][17][27]
A rocket had to be destroyed because of a software bug that caused the rocket to divert
from its intended launch path.

� June, 1982 – Soviet Gas Pipeline Explosion[34, p. 1][1][17]
A software sabotage by an operation of the Central Intelligence Agency (CIA) from the
United States of America (USA) led to a gas pipeline explosion and was reported as the
largest non-nuclear explosion in the planet’s history.

� 1985-1987 – Therac-25 medical accelerator[34, p. 1][18, p. 2][17][25]
A race condition bug caused a machine called Therac-25 to overdose the radiation. This
machine was used to deliver radiation therapy for cancer patients. Due to this bug, at least
three patients died because of the overdose of radiation and many were seriously injured.

These historical bugs should remind each software developer, in particular, the ones who develop
critical source code about the importance and responsibility of deploying correct and error-free
code. Hence, the V&V of software is necessary before releases are delivered to customers.

What is the difference between verification and validation? An American software engineer-
ing Bohem (1981) put it in a nutshell[9, p. vi]:

You are doing validation when you are answering the question: ”Are we building
the right product?” You are doing verification when you are answering the question:
”Are we building the product right?”

– 19 –

2 Software Verification and Validation

Software Verification: A process to review the source code for faults which could lead
to wrong behavior, an unexpected result or in the worst case to shutdown and out of service
situations. To put it differently, is the software product reliable and does it always deliver the
expected output? For instance, a customer wants the following use case: As a user it is possible
to see images on the company’s website via any browser (Firefox, Internet Explorer, Google
Chrome, . . .). After the implementation, the verification process of the developed software is
performed. It is possible to see the first image but when a user clicks ”Next” to see another one,
the program does not respond. Therefore, the developers did not build the product right (the
software contains a bug).

Software Validation: A process to review the specified requirements with the behavior of
the developed software product. In other words, does the software product deliver what the
customer wants? The same use case: As a user I want to see images on the company’s website
via any browser (Firefox, Internet Explorer, Google Chrome, . . .). However, there was a mis-
communication which led to a misinterpretation and the team of developers implemented the
function for videos instead of images. During the verification process, no problem is detected
because the program executes without faults – the project was built right. However, during the
validation process with the customer the image/video problem is appeared – the developers did
not build the right product.

Validation is as important as verification in order to ensure customer satisfaction. However,
this master thesis focuses on verifying source code of software, thus, at this point, there is no
further explanation of validating software. Instead of targeting validation, a closer look at meth-
ods and techniques of software verification is outlined in the following section 2.2. In addition
to these methods, the definition of a software bug is explained in the next section 2.1.

2.1 Definition Software Bug

The term software bug, or short bug, describes in a colloquial way an error, failure or fault in
the source code of a software program[3, p. 358] Due to such an error, a software program can
produce wrong behavior, unexpected results or in the worst case scenario – it crashes or stops
responding by being in a deadlock.

According to T. Anderson and B. Randell, a software bug is defined as follows[3, p. 358]:

One or more software bugs exist in a system if a software change is required to cor-
rect a single major error or minor error so as to meet specified or implied system
performance requirements.

Thus, a bug is simply the colloquial and highly descriptive term for a software error.

– 20 –

2.2 Verification Methods

2.2 Verification Methods

In order to verify software, state-of-the-art methods should be used to ensure and deliver software
products with high confidence about correctness and reliability. An introduction about three
state-of-the-art methods[15, p. 3] is outlined in the following sections:

� 2.2.1 Testing

� 2.2.2 Code Review

� 2.2.3 Verification Tools

2.2.1 Testing

In addition to productive code, software developers write test code which is executed and per-
forms a verification of productive code. To put it differently, test code checks if a productive code
behaves as expected. For instance, a software developer implemented the add function of two
integers – public Integer add(Integer a, Integer b) { return a + b; }. The following
test cases are used to verify this function:

� input: a = 5, b = 2 → expected output: 7

� input: a = -5, b = 2 → expected output: −3

� input: a = 5, b = -2 → expected output: 3

� input: a = -5, b = -2 → expected output: −7

A simple test which takes the input (a & b) and compares the actual output which is obtained
from the function add with the expected output of a test case is called unit test (or module test).
Hence, a unit test checks one line of code, a statement, or several individual lines of code (LOC)
of a software project[24, ch. 5]. In addition to unit tests, there are various types of tests like
integration testing, system testing, object-oriented testing and more[19]. All tests regardless of
which type focus on detecting bugs in productive source code and enhancing the confidence in
the correctness and reliability of software products. In other words from Homès[18, p. 7]:

Testing is a set of activities with the objective of identifying failures in a software or
system and to evaluate its level of quality, to obtain user satisfaction. It is a set of
tasks with clearly defined goals.

More about specific testing types and the topic testing, in general, is readable in the following
recommended references:

References for section 2.2.1

[18] B. Homès, Fundamentals of Software Testing. London: ISTE [u.a.], 2012, 342 pp., OCLC:
796194421, isbn: 978-1-84821-324-1.

[19] P. C. Jorgensen, Software Testing, 4th Edition, 4th ed. Auerbach Publications, Apr. 8,
2016, 494 pp., isbn: 978-1-4987-8578-5.

[24] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 3rd Edition, 3rd ed.
John Wiley & Sons, Nov. 8, 2011, 240 pp., isbn: 978-1-118-13315-6.

– 21 –

2 Software Verification and Validation

2.2.2 Code Review

Another technique to verify the source code of software products is code review (also known as
peer review[22, ch. 1]). This process of reviewing source code is performed by at least two or
more software developers and can basically be performed in three steps. First, a software devel-
oper makes changes by implementing a task – for example, a new feature or an improvement.
Second, after the changes are finalized another co-worker reviews the developed source code by
comparing the old version with the new adaptation (to see only the changes). The software de-
veloper who performs this review and did not implement the task determines if the new changes
are acceptable or not. Finally, depending on the review either the changes are integrated or
rejected. This process of a four-eye-principle increases the code quality and reduces the number
of bugs in a software product.

A well known open-source tool that assists software developers in performing a code review
is the open-source tool – Gerrit2. This tool automates the comparison for a developer who
performs the code review. Furthermore, the integration and rejection of changes after a review
are automated by Gerrit. A step-by-step guide about this tool – Gerrit – and a closer look at
the verification technique – Code Review – is given by the book Learning Gerrit Code Review
by Luca Milanesio[22].

2.2.3 Verification Tools

There are two different types of verification tools: (i) static code analyzer and (ii) dynamic code
analyzer[15, p. 3]. A static code analyzer scans source files, performs an analysis and reports a
list of issues (see an overview about the process of a static code analyzer in Figure 2.1). On the
other hand, dynamic code analyzers run with the program simultaneously in order to capture
criteria during the execution of a program. These criteria are needed to perform an analysis and
to create a report of issues. Regardless of which type of verification tool is used, a list of issues
is the outcome.

Figure 2.1: Overview of a verification tool that performs a static code analysis. As you can see, a static code
analyzer needs source code which is written in several source files. Furthermore, some static
code analyzers need compiled source files as well in order to perform an analysis.

2 Gerrit homepage: https://www.gerritcodereview.com/

– 22 –

https://www.gerritcodereview.com/

2.2 Verification Methods

An issue indicates a problem in the source code of a program that should be reviewed by a
software developer. For example, an issue can be a null pointer bug – one of the most common
faults in Java[30][35]. Furthermore, memory leaks, buffer overflows/underflows (also known as
index out of bounds bugs), resource leaks, synchronization errors (deadlocks, race conditions
and livelocks) are known as common bugs and problems in software[33, ch. 2]. These common
problems are the reason why verification tools exist. To put it differently, verification tools are
created to detect these common problems and to help software developers finding and fixing
these issues.

Definitions

In this master thesis, the following terms are used in order to classify the reported issues by
verification tools. By means of this classification criteria are defined which are needed to calculate
the effectiveness of verification tools.

True Positive A bug that exists in the analyzed source code and is detected and reported
by a verification tool.

False Positive A bug that does not exist in the analyzed source code but is detected
and reported by a verification tool. False positives are reported due to
missing information during the analysis.

False Negative A bug that exists in the analyzed source code but is not detected and
reported by a verification tool.

True Negative A bug that does not exist in the analyzed source code and is not reported
by a verification tool.

This master thesis focuses on selected static code analyzers which are outlined in chapter 4
Selected Verification Tools.

– 23 –

Effectiveness of Verification Tools

3
Defining Effectiveness

In order to define the effectiveness of verification tools, three steps have to be performed. First,
criteria have to be captured – before, during and after an execution of a verification tool. All
captured criteria, for example, the number of reported issues, are listed in section 3.1 and
categorized in two groups: source code and verification tool. Second, by means of these criteria,
equations are defined in section 3.2 to derive parameters. These parameters are categorized in the
same two groups: source code and verification tool. Finally, these parameters are combined in
equations to obtain metrics that represent the effectiveness of verification tools (see section 3.3).
In addition to well-known equations in literature, self-defined parameters and metrics are listed
which were independently declared from the ones in literature.

3.1 Captured Criteria

3.1.1 Source Code Criteria

LOC All LOC from a software project.

numBugs Defines the number of bugs in a software project which are known
by the time of analysis.

numStmt The number of all code statements of the analyzed software project.

3.1.2 Verification Tool Criteria

numFalseNeg Represents the number of false negatives from a report by a verifi-
cation tool.

numFalsePos Represents the number of false positives from a report by a verifi-
cation tool.

numReportedIssues The number of reported issues of an analysis by a verification tool.

numTruePos Represents the number of true positives from a report by a verifi-
cation tool.

– 25 –

3 Defining Effectiveness

3.2 Calculated Parameter

3.2.1 Source Code Parameter

KLOC

A thousand lines of code (KLOC) from a software project.

KLOC =
LOC

1000
(3.1)

Ratio Bugs per KLOC:

A well-known parameter as well as metrics of how many bugs are included per KLOC.

ratioBugsKLOC =
numBugs

KLOC
=
numBugs

LOC
1000

(3.2)

3.2.2 Verification Tool Parameter

Precision:

The parameter precision stands for the ratio of true positives out of the number of true positives
and false positives[23][11][28]. If the summation (numTruePos + numFalsePos) is defined as
zero, precision is undefined (division by zero; marked with: na – not applicable).

precision =
numTruePos

numTruePos+ numFalsePos
(3.3)

Recall:

Recall (also known as sensitivity[23][11][28]) stands for the ratio of true positives out of the
number of all true positives and false negatives. The summation of these two criteria is equal
to the amount of bugs that are known by the time of analysis. If numBugs is defined as zero,
recall is undefined (division by zero; marked with: na – not applicable).

recall =
numTruePos

numTruePos+ numFalseNeg
=
numTruePos

numBugs
(3.4)

– 26 –

3.2 Calculated Parameter

Ratio of False Positives:

The self-defined parameter ratioFalsePos stands for the percentage of false positives out of all
reported true positives and false positives by a verification tool. If the number of true positives
and false positives is zero then as a consequence the ratio of false positives cannot be determined
and leads to an undefined result (zero divided by zero).

ratioFalsePos =
numFalsePos

numTruePos+ numFalsePos
(3.5)

This self-defined ratioFalsePos is also known as false discovery rate (FDR)[11] and can be
calculated by the well-known parameter precision as well (see Equation 3.6).

ratioFalsePos =
numTruePos+ numFalsePos− numTruePos

numTruePos+ numFalsePos

=
((((((((((((((((1
numTruePos+ numFalsePos

numTruePos+ numFalsePos
− numTruePos

numTruePos+ numFalsePos

= 1− precision

(3.6)

Ratio of True Positives:

The ratio of true positives out of all bugs (known by the time of analysis) in the source code
of a program is declared by the self-defined parameter ratioTruePos. The number of bugs is
defined by software developers. As mentioned before, this number represents only the amount
of bugs which are known by the time of analysis. If numBugs is defined as zero, the ratio of
true positives is undefined (division by zero).

This self-defined parameter ratioTruePos is equal to recall (see Equation 3.4) but was defined
independently. However, recall is used on the next pages instead of the self-defined parameter
ratioTruePos because recall is a well-known parameter as well as metric in literature.

ratioTruePos =
numTruePos

numBugs
= recall (3.7)

– 27 –

3 Defining Effectiveness

Rating of Usability:

Questionnaires by means of SurveyMonkey3 are used in order to rate the usability of graphical
user interfaces (GUIs) which are combinable with the selected verification tools of this master
thesis. The following question is asked each software developer who participated in this case
study.

How user-friendly is the GUI of X?

Each participant could choose between five ratings: Extremely user-friendly, Very user-friendly,
Somewhat user-friendly, Not very user-friendly and Not at all user-friendly (see example question
with answers in Figure 3.1).

Figure 3.1: Excerpt of the questionnaire to determine the usability of the GUI of SonarQube.

3 The homepage of SurveyMonkey: https://www.surveymonkey.com/

– 28 –

https://www.surveymonkey.com/

3.3 Effectiveness Metrics

3.3 Effectiveness Metrics

Effectiveness defined by F-measure: Fβ

This metric combines two well-known parameters – recall and precision– to obtain a single value.
Related works calculated this metric to quantify the effectiveness as well as the performance
of verification tools (see references [5, sec. VI][23, p. 7]). The F-measure is based on Van
Rijsbergen’s effectiveness measure[6, p. 25][16, sec. 1.4][11][29].

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(3.8)

Effectiveness defined by M-measure: Mα

In addition to the F-measure, another metric – the M-measure Mα – is defined to determine
the effectiveness of reported issues from verification tools. Criteria of section 3.1 and parameter
of section 3.2 are used for this equation Mα (see Equation 3.10). A comparison between the
F-measure and this metric is illustrated in Table 3.3.

Idea behind this equation: First statement: the more true positives are detected out of
all bugs the higher should the effectiveness of a verification tool be. On the contrary, the sec-
ond statement: the effectiveness of a verification tool should be decreased if false positives are
reported. Last but not least, third statement: one should be able to distinguish between verifi-
cation tools that do not detect any bug and tools that find bugs.

The first statement is defined by the first term in Equation 3.10 case (iii) where recall is directly
proportional to the result Mα. The penalty which decreases the effectiveness of a verification
tool is defined by the second term of Equation 3.10 case (iii) and declared in Equation 3.9. This
penalty of detected false positives is rated by the weight α and zero if no false positives are
reported. In order to satisfy the third statement, case (ii) of Equation 3.10 is defined and case
(iii) is limited higher than case (ii).

In a special case (i) of Equation 3.10 where a software project does not have any bugs (known
by the time of analysis) the first term is set to one. In other words, a verification tool should
not report issues if there are no bugs in the source code of a software project (known by the
time of analysis). The penalty of the second term is in both cases – (i) & (iii) – the same.

penalty =

 0 (i) if numFalsePos = 0

1
100 · e

10·α·(1−precision) (ii) otherwise
(3.9)

Mα =



max

⌈
0; 1− penalty

⌉
(i) if numBugs = 0

0 (ii) else if numTruePos = 0

max

⌈
0.01; recall · (1− penalty)

⌉
(iii) otherwise

(3.10)

– 29 –

3 Defining Effectiveness

Choosing weights for F-measure and M-measure: Selecting a weight for an equation is
difficult if one does not know the purpose of this weight, therefore, a closer look at the definition
of these weights is provided below. Additionally, Table 3.3 illustrates example values and results
of both measures with different weights.

F-measure: One needs to decide whether detecting bugs or reporting a small number of false
positives is more important. After this decision, there are three cases:

1. β > 1 Detecting bugs (high recall) is more important and there is no problem if a
verification tool reports many false positives (low precision).

2. β < 1 Reporting a small amount or no false positives (high precision) is more important
than detecting bugs.

3. β = 1 Otherwise, recall and precision are rated equally.

M-measure: How high should the penalty for reported false positives be? The higher the
weight α the lower is the result of this metric for the same amount of false positives. Example
values and results are demonstrated in Table 3.3. Additionally, a plot of the M-measure is
displayed in Figure 3.2.

Table 3.3: Example values and results of effectiveness metrics – M-measure and F-measure – with different
weights. To illustrate, if the number of bugs (#Bugs) is 50, #True Positives is 25 (25 bugs are
detected by a verification tool) and #False Positives is zero then according to the M-measure the
result is 50% because 25 out of 50 bugs are correctly detected. On the other hand, the result for
the F-measure depends on the weight and varies from around 56 to 83%.

Num. #Bugs
#True

Positives

#False

Positives
M-measure in [%] F-measure in [%]

α = 0.5 α = 1 α = 2 β = 0.5 β = 1 β = 2

1 10 10 0 100 100 100 100 100 100

2 10 10 1 98.425 97.518 93.839 92.593 95.238 98.039

3 10 10 2 97.699 94.706 71.968 86.207 90.909 96.154

4 10 10 3 96.83 89.949 1 80.645 86.957 94.34

5 10 10 4 95.827 82.588 1 75.758 83.333 92.593

6 10 10 5 94.706 71.968 1 71.429 80 90.909

7 10 10 8 90.772 14.847 1 60.976 71.429 86.207

8 10 10 9 89.319 1 1 58.14 68.966 84.746

9 10 10 10 87.818 1 1 55.556 66.667 83.333

10 10 10 15 79.914 1 1 45.455 57.143 76.923

11 50 25 0 50 50 50 83.333 66.667 55.556

12 50 25 1 49.394 49.265 48.921 81.169 65.789 55.31

13 50 25 2 49.276 48.951 47.8 79.114 64.935 55.066

14 50 25 3 49.146 48.54 45.738 77.16 64.103 54.825

15 50 25 4 49.003 48.014 42.111 75.301 63.291 54.585

16 50 25 5 48.85 47.353 35.984 73.529 62.5 54.348

17 50 25 10 47.914 41.294 1 65.789 58.824 53.191

18 50 25 15 46.74 28.739 1 59.524 55.556 52.083

19 50 25 20 45.386 7.424 1 54.348 52.632 51.02

20 50 25 25 43.909 1 1 50 50 50

– 30 –

3.3 Effectiveness Metrics

00.20.40.60.81

0

0.5
1

0

20

40

60

80

100

recall ratioFalsePos

M
α

(a) As you can see in the back of this plot, the effectiveness rises linearly due to the ratio of detected
bugs out of all known ones (definition of recall).

0.5

1
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

recall
ratioFalsePos

M
α

(b) Another perspective of the same equation shows the effectiveness of a verification tool
decreasing – the more false positives are reported.

Figure 3.2: Visualization of the Equation 3.10 case (ii) and (iii) with the weight α set to 1. As you can see,
the domain for Mα is defined in percentage from zero to 100% and recall and ratioFalsePos
from zero to one. To demonstrate, a verification tool is to 100% effective in terms of reported
issues if no false positives are reported and all bugs which are known by the time of analysis are
detected and reported correctly (numTruePos = numBugs → recall = 1 and numFalsePos =
0 → ratioFalsePos = 0 therefore the effectiveness of reported issues Mα = 100%).

– 31 –

Effectiveness of Verification Tools

4
Selected Verification Tools

All verification tools that are investigated during this master thesis are described in this chapter.
These verification tools are selected because of two reasons. First, all of them are free to use
and an open-source version of all selected tools, except for SourceMeter, is available. Second,
each of the selected tools supports either the programming language (PL) C++, Java, both or
even more PLs.

An overview of all selected verification tools is provided in Table 4.1. In addition to this
enumeration of all tools, Table 4.1 lists characteristics of each tool, for example, on which
operating system (OS) is an execution of the selected verification tools supported. This and
more characteristics are outlined in the following sections of this chapter as well: 4.1 PMD, 4.2
SpotBugs (FindBugs), . . . , 4.7 Cppcheck. Each section contains a description, get started and
demonstration subsection.

Table 4.1: Overview of all selected verification tools with the used version of each tool. Additionally, the
following characteristics for each tool are listed: OS, PL, Variant and History. In the first block,
one can see which OS supports the execution of each tool. The second block illustrates which
PL is supported by each verification tool. Next, the available variants are listed – either open
source, commercial or both. The last block (History) contains information about the first and
latest release date. The references of this information are provided in the upcoming sections 4.1
PMD, 4.2 SpotBugs (FindBugs), . . . , 4.7 Cppcheck.

Characteristic

Tool / Version
PMD Spotbugs Infer SonarQube

Source
Meter RATS Cppcheck

4.0.17 3.1.11 0.15.0 6.74 8.2.0 2.4 1.84

OS

q Windows 5 5 5 5 5 5

± Linux 5 5 5 5 5 5 5

 Mac 5 5 5 5 5

PL5

C 5 5 5 5 5

C++ 5 5 5 5 5

C# 5 5

Java 5 5 5 5 5

Javascript 5 5

Objective-C 5 5

Perl 5 5

Php 5 5

Python 5 5 5

Variant
Open-Source 5 5 5 5 5 5

Commercial 5 5

History

First Release
Jun. 25,
2002

Oct. 25,
2017

Jun. 11,
2015

Dec. 14,
2007

? ?
May. 8,
2007

Latest Release
Jan. 27,
2019

Jan. 21,
2019

Jun. 5,
2018

Jan. 28,
2019

Dec. 14,
2016

?
Dec. 8,
2018

4 The used version of SonarQube (web platform) was 6.7 and the version of SonarJava was 4.15.0.12310. The
rules to detect bugs in Java source code are defined by the plug-in SonarJava for SonarQube.

5 Not all supported programming languages are listed for PMD, SourceMeter and SonarQube.

– 33 –

4 Selected Verification Tools

4.1 PMD

https://pmd.github.io/

PMD6 is an extensible cross-language static code analyzer that mainly
focuses on inappropriate programming habits and coding style viola-
tions. This analyzer supports many programming languages (PLs):
Java, Javascript, Salesforce.com Apex and Visualforce, PLSQL,
Apache Velocity. In addition to these PLs, analyzes of XML and
XLS files can be performed[26].

In addition to inappropriate programming habits and coding style violations, PMD includes
a copy-paste-detector (CPD) which is based on Rabin-Karp string matching algorithm. This
CPD reports code duplications and can be applied to more programming languages than the
static code analyzer itself. To illustrate, the CPD finds duplicated code in Java, C, C++, C#,
Groovy and further PLs[26].

The first version of PMD (version 0.1) was released on Jun. 25, 2002 and the last release
(version 6.11.0) was performed on Jan. 27, 2019, according to the homepage of PMD6 (visited
on Feb. 10, 2019).

Get Started

PMD can be installed and executed on all three well-known operating systems (OSs) – q
Windows, ± Linux and  Mac. Furthermore, an integration via a plug-in to many tools is
possible – for example Maven or Ant. Moreover, a large number of integrated development
environments (IDEs) like Eclipse can be extended via a plug-in with PMD.

�
If Eclipse or SonarQube is already installed then an easy and user-friendly way to
install and run PMD on any well-known OS (q Windows, ± Linux and  Mac) is to
use Eclipse or SonarQube as the host platform for the PMD plug-in (a step-by-step
guide on how to install this plug-in on both host platforms is shown below).

Via Eclipse

https://www.eclipse.org/artwork/

Eclipse is an IDE that is free and open-source software. This IDE supports
many PLs and is extendable by a huge number of various plug-ins written
by the Eclipse community, other developers or even by oneself

Installation of PMD via Eclipse:

A detailed step-by-step guide with screenshots is provided in the appendix – see B.1.1.

Performing an analysis of PMD via Eclipse:

1. Open Eclipse.

2. Create or open a Java project.

3. Right-click on one or several Java projects and select PMD → Check Code (see Figure B.5).

6 The homepage of PMD: https://pmd.github.io/

– 34 –

https://pmd.github.io/
https://www.eclipse.org/artwork/
https://pmd.github.io/

4.1 PMD

Via SonarQube

www.sonarqube.org/community/logos/

SonarQube is a web platform that focuses on continuous code quality. This
web platform supports more than 20 PLs including these major languages:
C, C++, C#, Java, Javascript, Php and Python. Furthermore, various
plug-ins are available in order to enhance the code analysis and to detect even more faults,
inappropriate programming habits and coding style violations (see more about SonarQube in
section 4.4).

Installation of PMD via SonarQube:

A detailed step-by-step guide with a screenshot is provided in the appendix – see B.1.1.

Performing an analysis of PMD via SonarQube:

How to perform an analysis with SonarQube is illustrated step-by-step in section 4.4.

Demonstration

The following source code (see Listing 4.1) is created to demonstrate an analysis of PMD. Eclipse
is used as host platform because it is an easy and user-friendly way to install and run PMD. Af-
ter an analysis is performed, the results are shown in the violations outline view (see Figure 4.1).

1 package at.samplecode.main;

2
3 /**

4 * @author MaAb

5 */

6 public class DemonstrationPMD { // NOPMD by mab on 29.10.18 15:56

7
8 /**

9 * Tries to parse an integer from the transferred string.

10 *

11 * @param number

12 * @return integer value or -1 in case of an error.

13 */

14 public Integer convertString2Integer(final String number) {

15 Integer value = Integer.valueOf (-1); // NOPMD by mab on 29.10.18 15:55

16
17 try {

18 value = Integer.parseInt(number);

19 } catch(NumberFormatException e) {

20 }

21
22 return value;

23 }

24
25 }

Listing 4.1: This code excerpt illustrates an empty catch block. It is a bad practice to ignore exceptions
because no one knows how often or even if the exception is thrown during the program execution.
As a consequence, if this programming habit is applied several times within a software product
and many exceptions are thrown, the performance of the program is decreased.

Figure 4.1: The violations outline view in Eclipse from the PMD plug-in informs the user to avoid empty
catch blocks.

– 35 –

www.sonarqube.org/community/logos/

4 Selected Verification Tools

4.2 SpotBugs (FindBugs)

https://spotbugs.github.io/, Lizenz CC
BY 4.0

SpotBugs – previously known as FindBugs – is a free and open-source
static code analyzer for Java programs. This tool checks for more
than 400 bug patterns, according to the homepage of SpotBugs7. In
addition to these patterns, SpotBugs can be extended by new de-
tectors. To illustrate, one popular detector – find-sec-bugs – focuses on security vulnerabil-
ities and is able to detect 128 different vulnerability types (see the homepage of detector:
http://find-sec-bugs.github.io/).

Why from FindBugs to SpotBugs: According to an official post from Andrey Loskutov
(a team member of FindBugs and SpotBugs), FindBugs is dead because the project lead left
the team without admin rights. Therefore, no new team members could be added and no new
updates could be released (see quote below[21]).

. . . FindBugs was dead because the project lead left us without admin rights and any
response for more then a year now. SpotBugs is the natural successor, . . .

The first release of SpotBugs (version 3.1.0) took place on Oct. 25, 2017 and the latest release
was performed on Jan. 21, 2019, according to the SpotBugs project on GitHub[31].

Get Started

This tool can be installed and executed on all three well known operating systems (OSs) – q
Windows, ± Linux &  Mac.

�
If Eclipse or SonarQube is already installed then an easy and user-friendly way to install and
run SpotBugs on any well-known OS (q Windows, ± Linux and  Mac) is to use Eclipse or
SonarQube as the host platform for the SpotBugs plug-in (a step-by-step guide on how to install
this plug-in on both host platforms is shown below).

Via Eclipse

https://www.eclipse.org/artwork/

Eclipse is an integrated development environment (IDE) that is free and
open-source software. This IDE supports many programming languages
(PLs) and is extendable by a huge number of various plug-ins written by the Eclipse community,
other developers or even by oneself

Installation of SpotBugs via Eclipse:

A detailed step-by-step guide with screenshots is provided in the appendix – see B.2.1.

Performing an analysis of SpotBugs via Eclipse:

1. Open Eclipse.

2. Create or open a Java project.

3. Right-click on one or several Java projects and select SpotBugs → Find Bugs (see Fig-
ure B.11).

7 The homepage of SpotBugs: https://spotbugs.github.io/

– 36 –

https://spotbugs.github.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://find-sec-bugs.github.io/
https://www.eclipse.org/artwork/
https://spotbugs.github.io/

4.2 SpotBugs (FindBugs)

Via SonarQube

www.sonarqube.org/community/logos/

SonarQube is a web platform that focuses on continuous code quality. This
web platform supports more than 20 PLs including these major languages:
C, C++, C#, Java, Javascript, Php and Python. Furthermore, various plug-ins are available in
order to enhance the code analysis and to detect even more faults, inappropriate programming
habits and coding style violations (see more about SonarQube in section 4.4).

Installation of SpotBugs via SonarQube:

A detailed step-by-step guide with a screenshot is provided in the appendix – see B.2.1.

Performing an analysis of SpotBugs via SonarQube:

How to perform an analysis with SonarQube is illustrated step-by-step in section 4.4.

Demonstration

Eclipse is used as host platform because it is an easy and user-friendly way to install and run
SpotBugs. As you can see in Listing 4.2, this source code contains one null pointer bug. After
an analysis is performed by SpotBugs, detailed information about a detected bug is shown in
an own view of Eclipse (see Figure 4.2).

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class IfNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(IfNullPointerBug.class.getName ());

13
14 private IfNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 String message = null;

23 if (args.length == 2) {

24 message = message.concat("We have a problem here.");

25 } else {

26 message = "No bug occurred! Try another number of arguments.";

27 }

28
29 LOGGER.info(message);

30 }

31 }

Listing 4.2: This source code contains a simple null pointer bug.

Figure 4.2: As you can see (Bug Info view of Eclipse), SpotBugs correctly detects and reports the null pointer
bug of Listing 4.2.

– 37 –

www.sonarqube.org/community/logos/

4 Selected Verification Tools

4.3 Infer

https://infer.liaohuqiu.net/

Infer8 is a static code analyzer that detects bugs in Java, C, C++ and
Objective-C. In Java (including source code for Android applica-
tions) the following problems are checked by Infer: null pointer deref-
erences, resource leaks, annotation reachability, missing lock guards
and concurrency race conditions[13]. On the other hand, null pointer dereferences, memory leaks,
coding conventions and unavailable application programming interfaces (APIs) are checked by
Infer for C, C++ and iOS/Objective-C.

There is one feature that is only supported by Infer: a delta analysis. In general, a static
code analyzer scans the whole source code of a software project for each analysis – hence, high
execution time even for small code changes. By means of a delta-analysis, static code analyzer
reuse data from a previous analysis in order to perform another scan faster. In other words,
instead of scanning the whole source code again only the changes have to be scanned – as a
consequence, low execution time for small code changes.

Facebook develops Infer and uploaded it as an open-source project on June 9, 2015[14]. The
first version of Infer (version 0.1.0) was released on Jun. 11, 2015 and the last release (version
0.15.0) was performed on Jun. 5, 2018, according to the GitHub project of Infer[2].

Get Started

This tool can be installed via command line on platforms that run a ± Linux or  Mac operating
system (OS). Alternatively, a Docker image can be downloaded and used in order to install and
execute Infer[12].

On Linux ± 64 Bit

On a 64 bit Linux OS an installation of Infer can be performed with the following commands[12].
XX and Y of the variable VERSION have to be replaced with the desired Infer version. For example,
the version that is used for the case study of this master thesis: VERSION=0.15.0.

1 VERSION =0.XX.Y; \

2 curl -sSL "https :// github.com/facebook/infer/releases/download/v$VERSION/infer -linux64 -v$VERSION.tar.xz" \

3 | sudo tar -C /opt -xJ && \

4 ln -s "/opt/infer -linux64 -v$VERSION/bin/infer" /usr/local/bin/infer

On Mac 

On Mac, Infer can be installed with one command[12]:

1 brew install infer

8 The homepage of Infer: http://fbinfer.com/

– 38 –

https://infer.liaohuqiu.net/
http://fbinfer.com/

4.3 Infer

Demonstration

The following two listing – Listing 4.3 and Listing 4.4 – show the input for and the output
of a code analysis with Infer. After the installation of Infer, the output of Listing 4.4 can be
reproduced via the following command: infer run -- javac Main.java

1 public class Main {

2
3 public static void main(String [] args) {

4
5 String message = createMessage(args.length);

6 if (message.startsWith("User")) {

7 System.out.println(message);

8 }

9 }

10
11 public static String createMessage(int num) {

12 if (num > 0) {

13 return "User typed in " + num + " argument(s).";

14 }

15 return null;

16 }

17 }

Listing 4.3: A null pointer exception may be thrown at line number six. This exception occurs if no com-
mand line arguments are specified for this Java program. In this case, args.length is zero
and is transferred as an actual parameter to the static function createMessage(...). This
function returns null if the argument num is negative or zero.

1 ./Root/Main.java :6: error: NULL_DEREFERENCE

2 object message last assigned on line 5 could be null and is dereferenced at line 6

3 4.

4 5. String message = createMessage(args.length);

5 6. > if (message.startsWith ("User ")) {

6 7. System.out.println(message);

7 8. }

8 9.

9
10 Summary of the reports

11
12 NULL_DEREFERENCE: 1

Listing 4.4: Infer detects the null pointer dereference from Listing 4.3 correctly. Furthermore, Infer does
not report false positives and detects all bugs in this program.

– 39 –

4 Selected Verification Tools

4.4 SonarQube

www.sonarqube.org/community/logos/

SonarQube is a web platform that focuses on continuous code qual-
ity. This web platform supports more than 20 programming languages
(PLs) including these major languages: C, C++, C#, Java, Javascript,
Php and Python. Furthermore, various plug-ins are available in order to enhance the code analy-
sis and to detect even more faults, inappropriate programming habits and coding style violations.

In addition to detecting faults, inappropriate programming habits and coding style violations,
SonarQube supports a copy-paste-detector (CPD) to detect code duplications and shows the
number of passed and failed test cases as well as the code coverage. Furthermore, metrics are
displayed like lines of code (LOC) and the number of statements.

The first release of SonarQube (version 1.0.2) took place on Dec. 14, 2007 and the latest release
(7.6) was performed on Jan. 28, 2019, according to the homepage9 of SonarQube (visited on
Jan. 13, 2019).

Get Started

This web platform can be installed and executed on all three well known operating systems
(OSs) – q Windows, ± Linux &  Mac. Additionally, there is a cloud version (see https:

//sonarcloud.io/about/sq). To illustrate, a step-by-step guide is shown below for a Linux
OS.

On Ubuntu 18.04.1 ± 64 Bit

1. Download a SonarQube version from the homepage9, for example, version 7.6.

2. Extract the *.zip file to a directory.

3. Open the following folder: <ExtractedDirectory>/sonarqube-7.6/bin/linux-x86-64/

4. Run the script as shown below:

1 ./sonar.sh console

After these steps, SonarQube should be reachable via http://localhost:9000 in a browser.

Demonstration

An analysis can be performed with many tools like Gradle, MSBuild, Maven, Jenkins and Ant.
Additionally, the SonarQube Scanner10 can be used to analyze a software project on any well
known OS – q Windows, ± Linux &  Mac. To illustrate, a step-by-step guide for performing
an analysis via SonarQube Scanner10 is shown below.

On Ubuntu 18.04.1 ± 64 Bit

1. Download SonarQube Scanner10.

2. Extract the *.zip file to a directory.

9 The homepage of SonarQube: https://www.sonarqube.org/
10 SonarQube Scanner documentation and download: https://docs.sonarqube.org/display/SCAN/Analyzing+

with+SonarQube+Scanner

– 40 –

www.sonarqube.org/community/logos/
https://sonarcloud.io/about/sq
https://sonarcloud.io/about/sq
http://localhost:9000
https://www.sonarqube.org/
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner

4.4 SonarQube

3. Open the following folder: <ExtractedDirectory>/sonar-scanner-<version>-linux/bin/

4. Run the script as shown below:

1 ./sonar -scanner -Dsonar.projectKey=FirstTestProject -Dsonar.sources=<PathToSourceFiles >

After performing these steps, the program SonarQube Scanner displays the following message
(see Listing 4.5) – if the analysis was successful. If the execution terminated successfully, a new
project is created on the web platform of SonarQube (see Figure 4.3).

...

INFO: --

INFO: EXECUTION SUCCESS

INFO: --

INFO: Total time: 7.477s

INFO: Final Memory: 14M/499M

INFO: --

...

Listing 4.5: Message from SonarQube Scanner if an analysis was successful.

Figure 4.3: Project overview of the web platform of SonarQube.

Combination of SonarQube with PMD, SourceMeter and SpotBugs: As mentioned
before, SonarQube is extendable with various plug-ins to enhance the code analysis and detect
even more faults, inappropriate programming habits and coding style violations. A plug-in can
be installed via the Marketplace of SonarQube. After the installation, one can see more quality
profiles and more rules. For each PL one quality profile can be set as default and it is used for
all projects that are analyzed. One can create its own quality profile and activate one, some or
all rules for a specific PL. In other words, it is possible to combine one, two or several quality
profiles into one profile. To illustrate, if one wants to perform an analysis of SourceMeter with
SonarQube then the built-in quality profile of SourceMeter should be set as default.

V The quality profile has to be set before analyzing source code.

– 41 –

4 Selected Verification Tools

4.5 SourceMeter

https://www.sourcemeter.com/

SourceMeter performs a static code analysis for a large number of
programming languages (PLs): C, C++, Java, C#, Python, In
addition to software bugs, SourceMeter captures many source code
metrics like the total number of statements (TNOS), total lines of
code (TLOC) and many more. Moreover, it combines and executes free open-source static code
analyzers like PMD, FindBugs and Cppcheck during an analysis.

SourceMeter for Java (version 8.2.0): Uses two well known static code analyzer: Find-
Bugs version 3.0.0 (released on August 6, 2014; see more about FindBugs in section 4.2) and
PMD version 5.2.3 (released on December 21, 2014; see more about PMD in section 4.1). The
rules of PMD are carefully selected, according to the product characteristics of SourceMeter.

SourceMeter for C and C++ (version 8.2.0): Uses one well known static code analyzer
– Cppcheck (version 1.68; see more about Cppcheck in section 4.7).

The exact version and date of the first release could not be determined – even with two tries to
contact the developers of SourceMeter. However, the latest release (version 8.2) was performed
on Dec. 14, 2016, according to the SourceMeter homepage11 (visited on Jan. 14, 2019).

Get Started

This tool can be installed and executed on a ± Linux or q Windows operating system (OS).
In both cases, a request has to be sent via the homepage of SourceMeter11 in order to receive
the download links. After this download, the compressed file (*.zip on Windows and *.tgz on
Linux) needs to be extracted and SourceMeter is ready to use.

Demonstration

An analysis can be performed via the command line or via SonarQube. Therefore, all captured
issues and metrics by SourceMeter can be uploaded to SonarQube – prerequisite, the plug-in to
extend SonarQube with SourceMeter12 is installed.

On Ubuntu 18.04.1 ± 64 Bit

SourceMeter can be started with the following command for C++ programs. The directory where
SourceMeter is stored is represented by the tag <ExtractedDirectory> and <projectName> as
the name implies defines the project name for this analysis of SourceMeter.

1 <ExtractedDirectory >/ SourceMeter -8.2.0 -x64 -linux/CPP/SourceMeterCPP -projectName=<projectName >

2 -buildScript=build.sh -resultsDir=Results

Via SonarQube

The same command can be used as shown in section 4.4 if Java source files are analyzed. If an
analysis for a C++ software project is performed, an additional SonarQube parameter is needed:
-Dsm.cpp.buildfile=build.sh

V The quality profile of SonarQube has to be adjusted before an analysis.

11 The homepage of SourceMeter: https://www.sourcemeter.com/
12 The homepage of Plug-in to extend SonarQube with SourceMeter: https://github.com/FrontEndART/

SonarQube-plug-in

– 42 –

https://www.sourcemeter.com/
https://www.sourcemeter.com/
https://github.com/FrontEndART/SonarQube-plug-in
https://github.com/FrontEndART/SonarQube-plug-in

4.6 RATS

4.6 RATS

The Rough Auditing Tool for Security (RATS) scans various programming languages (PLs),
including C, C++, Perl, Php and Python. These PLs are checked by RATS for vulnerabilities
like race conditions, buffer overflows and critical function calls.

Get Started

This tool is available for a ± Linux and q Windows operating system (OS). A step-by-step
guide how to install RATS on Ubuntu 18.04.1 is shown below.

On Ubuntu 18.04.1 ± 64 Bit

1. Download RATS from the Google code archive13.

2. Extract the downloaded file to a directory.

3. Open the following folder: <ExtractedDirectory>/rats-<version>/

4. Run script as illustrated below:

1 ./ configure && make && sudo make install

2 ./rats

Demonstration

After the installation as described above, RATS can be started via the following commands.
The tag <sourceDirectory> stands for the path that contains the source files of a software
project. In addition to the default output as text (see Listing 4.6), RATS can display the result
in an XML and HTML format.

� Console report: rats -w 3 <sourceDirectory>

� XML report: rats -w 3 --xml <sourceDirectory> > rats-report.xml

�

SonarQube can read an XML file that contains the output of
RATS in XML format. In other words, all reported issues of
RATS can be uploaded to SonarQube (via this sonar property:
-Dsonar.cxx.rats.reportPath=rats-report.xml). Prerequisite: Plug-in
sonar-cxx14 is installed.

...

Analyzing src/DemonstrationRATS.cpp

src/DemonstrationRATS.cpp :13: High: fixed size local buffer

Extra care should be taken to ensure that character arrays that are allocated

on the stack are used safely. They are prime targets for buffer overflow

attacks.

src/DemonstrationRATS.cpp :17: High: scanf

Check to be sure that the format string passed as argument 2 to this function

call does not come from an untrusted source that could have added formatting

characters that the code is not prepared to handle. Additionally , the format

string could contain ‘%s’ without precision that could result in a buffer

overflow.

...

Listing 4.6: Report from RATS of demonstration source code (see Listing B.1).

13 Google code archive: https://code.google.com/archive/p/rough-auditing-tool-for-security/

downloads
14 The plug-in sonar-cxx is open-source and free to use (see GitHub project: https://github.com/

SonarOpenCommunity/sonar-cxx).

– 43 –

https://code.google.com/archive/p/rough-auditing-tool-for-security/downloads
https://code.google.com/archive/p/rough-auditing-tool-for-security/downloads
https://github.com/SonarOpenCommunity/sonar-cxx
https://github.com/SonarOpenCommunity/sonar-cxx

4 Selected Verification Tools

4.7 Cppcheck

C and C++ source code can be analyzed by the static code analyzer Cppcheck15. This tool is
free to use, open-source and detects a large number of bugs (dead pointers, division by zero,
integer overflows, null pointer dereferences, . . .). The goal of the open-source community (see
Cppcheck homepage15) is that the reported list of bugs contains only a few false positives.

The first version of Cppcheck (version 0.1) was released in May. 8, 2007 and the last release
(version 1.86) was performed on Dec. 8, 2018, according to the homepage of Cppcheck15 (visited
on Jan. 15, 2019).

Get Started

Cppcheck can be installed and executed on all three well known operating systems (OSs) – ±
Linux, q Windows and  Mac. A step-by-step guide on how to install Cppcheck on Ubuntu
18.04.1 is shown below.

On Ubuntu 18.04.1 ± 64 Bit

In order to install Cppcheck on Ubuntu only one command is necessary:

1 sudo apt -get install cppcheck

Demonstration

Cppcheck can be executed via the following commands. The tag <sourceDirectory> stands
for the path that contains the source files of a software project. Furthermore, the argument -v

enables an output with more detailed error messages16. In addition to the default output as
text, Cppcheck can display the result in an XML and HTML.

� Console report: cppcheck -v --enable=all <sourceDirectory>

� XML report: cppcheck -v --enable=all --xml <sourceDirectory> 2>

cppcheck-report.xml

�
SonarQube can read an XML file that contains the output of Cppcheck in XML format. In
other words, all reported issues of Cppcheck can be uploaded to SonarQube (via this sonar
property: -Dsonar.cxx.cppcheck.reportPath=cppcheck-report.xml). Prerequisite: Plug-in
sonar-cxx17 is installed. An example of an analysis is depicted in section 5.2.

15 The homepage of Cppcheck: http://cppcheck.sourceforge.net/
16 From Cppcheck help: -v, --verbose Output more detailed error information.
17 The plug-in sonar-cxx is open-source and free to use (see GitHub project: https://github.com/

SonarOpenCommunity/sonar-cxx).

– 44 –

http://cppcheck.sourceforge.net/
https://github.com/SonarOpenCommunity/sonar-cxx
https://github.com/SonarOpenCommunity/sonar-cxx

Effectiveness of Verification Tools

5
Case Study

5.1 Detect Bug Challenge

#Files 2

#Classes 2

#Functions 11

#Statements 42

#TNOS 48

#LOC 82

#TLOC 121

#TLLOC 82

#Bugs 6

Table 5.1: Statistics

As mentioned in section 1.1, a short Java program
called Argument Printer with 82 lines of code (LOC)
– see more statistics in Table 5.1 – is created and
analyzed by software developers and by verification
tools.

This program contains six bugs (see Table 5.1) and all bugs
were detected by a software developer (see Table 1.1) who
works for SSI Schaefer Automation GmbH. In addition to
the number of detected bugs, 25 minutes and ten seconds
were needed by this software developer to scan the source
code of the Java program Argument Printer (see Table 1.1).
Furthermore, this developer is 25 to 34 years old and has
already worked with Java for ten to 20 years as well as ten
to 20 years of professional experience as a software developer
(see Table 5.2).

In contrast, the best verification tool is able to correctly detect and report four out of six
bugs in less than three seconds.

To sum up, from the result of this challenge – software developer vs verification tools – one
can see that verification tools do not detect every bug but analyze the source code of the Java

program Argument Printer faster than software developers. In other words, verification tools
detect a good amount of bugs and perform an analysis quite fast.

Table 5.2: Captured criteria of all software developer (software developer A, software developer B, . . . , D)
who participated in the detect bugs challenge of the Java program ArgumentPrinter.

Criteria

Developer
A B C D

Age [Years] 25-34 18-24 55-64 18-24

Java Experience [Years] 10-20 1-3 1-3 < 1

Profession Developer [Years] 10-20 3-5 20-30 < 1

”Level of Difficulty18” 3 5 3 4

18 Level of Difficulty rated by participants: 5 Extremely difficult, 4 Very difficult, 3 Somewhat difficult, 2 not so
difficult, 1 not at all difficult

– 45 –

5 Case Study

5.2 Programs with Common Errors in C++

During this case study, simple C++ programs with common errors are created and analyzed by
all verification tools which support the programming language (PL) C++: RATS, Cppcheck,
SourceMeter and Infer. For each simple program with common errors an own page, called the
overview page, lists the analyzed source code and provides an overview of source code statis-
tics. Furthermore, all captured, classified and calculated criteria are depicted in tables on each
overview page (see upcoming pages 50–59 in this section). This process of analyzing and cap-
turing, classifying and calculating criteria for each verification tool which supports the PL C++

is performed step-by-step for the first C++ program: SimpleNullPointerBug (see source code in
Listing 5.1).

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int failsForSure () {

12 A *a = nullptr;

13 return a->num;

14 }

15 }

16
17 ///

18 /// Entry point of program

19 ///

20 int main() {

21 return faulty :: failsForSure ();

22 }

Listing 5.1: SimpleNullPointerBug

#Files 1

#Classes 1

#Functions 2

#Statements 3

#TNOS 0

#LOC 12

#TLOC 11

#TLLOC 9

#Bugs 1

Table 5.3: Statistics

The statistics in Table 5.3 of the source code from Listing 5.1 are captured by means of Sonar-
Qube and SourceMeter (see the screenshot of captured metrics from SonarQube in Figure C.1
and from SourceMeter in Figure C.2). The number of files (#Files), #Classes, #Functions,
#Statements and the number of lines of code (LOC) are captured by SonarQube. The crite-
ria total number of statements (TNOS), total lines of code (TLOC) and total logical lines of
code (TLLOC) are recorded by SourceMeter (all SourceMeter criteria are captured only for the
namespace faulty). As you can see, TNOS is not correctly calculated by SourceMeter. Conse-
quently, TNOS is omitted for all C++ programs. The last entry of Table 5.3, #Bugs, represents
the number of bugs of the C++ program SimpleNullPointerBug. The number of bugs in this
program is one – to be precise one null pointer bug is contained in the C++ program SimpleNull-
PointerBug because of lines 12 and 13. Which verification tool is able to detect this null pointer
bug? The analysis of each selected verification tool that supports the PL C++ is illustrated
below.

RATS

RATS does not detect and report any issues, therefore, all captured criteria (#Reported Issues,
#True Positive, #False Positive) are set to zero. On the other hand, the criteria #False Negative
is set to one because RATS did not detect the null pointer bug (see classification in Table 5.4).

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

RATS 0 0 0 1

Table 5.4: RATS classification of source code SimpleNullPointerBug (C++).

– 46 –

5.2 Programs with Common Errors in C++

Cppcheck

Cppcheck correctly detects and reports the null pointer bug of the C++ program SimpleNull-
PointerBug (see Figure 5.1). Therefore, the number of reported issues and true positives is one
and the number of false positives and false negatives is set to zero (see classification in Table 5.5).

Figure 5.1: Cppcheck analysis for C++ program SimpleNullPointerBug.

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

Cppcheck 1 1 0 0

Table 5.5: Cppcheck classification of source code SimpleNullPointerBug (C++).

SourceMeter

SourceMeter does not detect and report any issues, therefore, all captured criteria (#Reported
Issues, #True Positive, #False Positive) are set to zero. On the other hand, the criteria #False
Negative is set to one because SourceMeter did not detect the null pointer bug (see classification
in Table 5.6).

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

SourceMeter 0 0 0 1

Table 5.6: SourceMeter classification of source code SimpleNullPointerBug (C++).

– 47 –

5 Case Study

Infer

Infer correctly detects and reports the null pointer bug of the C++ program SimpleNullPointerBug
(see Figure 5.2). Therefore, the number of reported issues and true positives is one and the
number of false positives and false negatives is set to zero (see classification in Table 5.7).

Figure 5.2: Infer analysis for C++ program SimpleNullPointerBug.

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

Infer 1 1 0 0

Table 5.7: Infer classification of source code SimpleNullPointerBug (C++).

A summary of these analyses from the C++ program SimpleNullPointerBug is created in sec-
tion 5.2.1 on page 50. A list of created and analyzed C++ programs with common errors for this
master thesis is depicted on the next page.

– 48 –

5.2 Programs with Common Errors in C++

List of analysed C++ Programs

5.2.1 Null Pointer Bugs in C++ . 50
C++ – SimpleNullPointerBug 50
C++ – IfNullPointerBug . 51
C++ – SwitchNullPointerBug 52
C++ – ForNullPointerBug . 53
C++ – WhileNullPointerBug . 54
C++ – DoWhileNullPointerBug 55

5.2.2 Index Out of Bounds Bugs in C++ 56
C++ – PositiveOutOfBoundsBug 56
C++ – NegativeOutOfBoundsBug 57
C++ – OfByOneBug . 58

5.2.3 Resource Bugs in C++ . 59
C++ – ResourceLeakPartialClose 59

– 49 –

5 Case Study

5.2.1 Null Pointer Bugs in C++

C++ – SimpleNullPointerBug

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int failsForSure () {

12 A *a = nullptr;

13 return a->num;

14 }

15 }

16
17 ///

18 /// Entry point of program

19 ///

20 int main() {

21 return faulty :: failsForSure ();

22 }

Listing 5.2: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 3

#LOC 12

#TLOC 11

#TLLOC 9

#Bugs 1

Table 5.8: Statistics

Table 5.9: Captured criteria of the program SimpleNullPointerBug – written in C++. All criteria are listed
for each verification tool which supports the PL of the program SimpleNullPointerBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 1

#True Positive 0 1 0 1

#False Positive 0 0 0 0

#False Negative 1 0 1 0

Table 5.10: Effectiveness metrics for the program SimpleNullPointerBug – written in C++. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 100

precision na 100 na 100

Fβ na 100 na 100

Mα 0 100 0 100

– 50 –

5.2 Programs with Common Errors in C++

C++ – IfNullPointerBug

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int mayFailOrNot(int argc) {

12 A *a = nullptr;

13 if (argc == 2) {

14 return a->num;

15 }

16 return argc;

17 }

18 }

19
20 ///

21 /// Entry point of program

22 ///

23 int main(int argc , char** argv) {

24 return faulty :: mayFailOrNot(argc);

25 }

Listing 5.3: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 6

#LOC 15

#TLOC 14

#TLLOC 12

#Bugs 1

Table 5.11: Statistics

Table 5.12: Captured criteria of the program IfNullPointerBug – written in C++. All criteria are listed for
each verification tool which supports the PL of the program IfNullPointerBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 1

#True Positive 0 1 0 1

#False Positive 0 0 0 0

#False Negative 1 0 1 0

Table 5.13: Effectiveness metrics for the program IfNullPointerBug – written in C++. The percentage of
true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 100

precision na 100 na 100

Fβ na 100 na 100

Mα 0 100 0 100

– 51 –

5 Case Study

C++ – SwitchNullPointerBug

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int mayFailOrNot(int argc) {

12 A *a = nullptr;

13 switch (argc) {

14 case 1:

15 return 1;

16 case 2:

17 return 2;

18 case 3:

19 return a->num;

20 }

21 return argc;

22 }

23 }

24
25 ///

26 /// Entry point of program

27 ///

28 int main(int argc , char** argv) {

29 return faulty :: mayFailOrNot(argc);

30 }

Listing 5.4: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 11

#LOC 20

#TLOC 19

#TLLOC 17

#Bugs 1

Table 5.14: Statistics

Table 5.15: Captured criteria of the program SwitchNullPointerBug – written in C++. All criteria are listed
for each verification tool which supports the PL of the program SwitchNullPointerBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 1

#True Positive 0 1 0 1

#False Positive 0 0 0 0

#False Negative 1 0 1 0

Table 5.16: Effectiveness metrics for the program SwitchNullPointerBug – written in C++. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 100

precision na 100 na 100

Fβ na 100 na 100

Mα 0 100 0 100

– 52 –

5.2 Programs with Common Errors in C++

C++ – ForNullPointerBug

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int mayFailOrNot(int argc) {

12 A *a = nullptr;

13 for (int i = 1; i < argc; i++) {

14 return 0;

15 }

16 return a->num;

17 }

18 }

19
20 ///

21 /// Entry point of program

22 ///

23 int main(int argc , char** argv) {

24 return faulty :: mayFailOrNot(argc);

25 }

Listing 5.5: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 6

#LOC 15

#TLOC 14

#TLLOC 12

#Bugs 1

Table 5.17: Statistics

Table 5.18: Captured criteria of the program ForNullPointerBug – written in C++. All criteria are listed for
each verification tool which supports the PL of the program ForNullPointerBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 1

#True Positive 0 1 0 1

#False Positive 0 0 0 0

#False Negative 1 0 1 0

Table 5.19: Effectiveness metrics for the program ForNullPointerBug – written in C++. The percentage of
true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 100

precision na 100 na 100

Fβ na 100 na 100

Mα 0 100 0 100

– 53 –

5 Case Study

C++ – WhileNullPointerBug

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int mayFailOrNot(int argc) {

12 A *a = new A();

13 a->num = argc;

14
15 int i = 2;

16 while (i < argc) {

17 a = nullptr;

18 i++;

19 }

20
21 return a->num;

22 }

23 }

24
25 ///

26 /// Entry point of program

27 ///

28 int main(int argc , char** argv) {

29 return faulty :: mayFailOrNot(argc);

30 }

Listing 5.6: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 9

#LOC 18

#TLOC 19

#TLLOC 15

#Bugs 1

Table 5.20: Statistics

Table 5.21: Captured criteria of the program WhileNullPointerBug – written in C++. All criteria are listed
for each verification tool which supports the PL of the program WhileNullPointerBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 1

#True Positive 0 1 0 1

#False Positive 0 0 0 0

#False Negative 1 0 1 0

Table 5.22: Effectiveness metrics for the program WhileNullPointerBug – written in C++. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 100

precision na 100 na 100

Fβ na 100 na 100

Mα 0 100 0 100

– 54 –

5.2 Programs with Common Errors in C++

C++ – DoWhileNullPointerBug

1 ///

2 /// Author: MaAb

3 ///

4
5 namespace faulty {

6
7 struct A {

8 int num;

9 };

10
11 int mayFailOrNot(int argc) {

12 A *a = new A();

13 a->num = argc;

14
15 int i = 2;

16 do {

17 a = argc == 1 ? a : nullptr;

18 i++;

19 } while (i < argc);

20
21 return a->num;

22 }

23 }

24
25 ///

26 /// Entry point of program

27 ///

28 int main(int argc , char** argv) {

29 return faulty :: mayFailOrNot(argc);

30 }

Listing 5.7: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 9

#LOC 18

#TLOC 19

#TLLOC 15

#Bugs 1

Table 5.23: Statistics

Table 5.24: Captured criteria of the program DoWhileNullPointerBug – written in C++. All criteria are listed
for each verification tool which supports the PL of the program DoWhileNullPointerBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 1

#True Positive 0 1 0 1

#False Positive 0 0 0 0

#False Negative 1 0 1 0

Table 5.25: Effectiveness metrics for the program DoWhileNullPointerBug – written in C++. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 100

precision na 100 na 100

Fβ na 100 na 100

Mα 0 100 0 100

– 55 –

5 Case Study

5.2.2 Index Out of Bounds Bugs in C++

C++ – PositiveOutOfBoundsBug

1 ///

2 /// Author: MaAb

3 ///

4 #include <iostream >

5
6 namespace faulty {

7
8 void failsForSure(int argc , char** argv) {

9 std::cout << argc << " arguments are entered .\n";

10
11 std::cout << argv[argc] << "\n";

12 }

13 }

14
15 ///

16 /// Entry point of program

17 ///

18 int main(int argc , char** argv) {

19 faulty :: failsForSure(argc , argv);

20 return 0;

21 }

Listing 5.8: This program contains a positive out of bounds bug.

#Files 1

#Classes 0

#Functions 2

#Statements 4

#LOC 10

#TLOC 8

#TLLOC 6

#Bugs 1

Table 5.26: Statistics

Table 5.27: Captured criteria of the program PositiveOutOfBoundsBug – written in C++. All criteria are
listed for each verification tool which supports the PL of the program PositiveOutOfBoundsBug
(C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 0

#True Positive 0 0 0 0

#False Positive 0 1 0 0

#False Negative 1 1 1 1

Table 5.28: Effectiveness metrics for the program PositiveOutOfBoundsBug – written in C++. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 0 0 0

precision na 0 na na

Fβ na na na na

Mα 0 0 0 0

– 56 –

5.2 Programs with Common Errors in C++

C++ – NegativeOutOfBoundsBug

1 ///

2 /// Author: MaAb

3 ///

4 #include <iostream >

5
6 namespace faulty {

7
8 void failsForSure(int argc , char** argv) {

9 std::cout << argc << " arguments are entered .\n";

10
11 std::cout << argv[-1] << "\n";

12 }

13 }

14
15 ///

16 /// Entry point of program

17 ///

18 int main(int argc , char** argv) {

19 faulty :: failsForSure(argc , argv);

20 return 0;

21 }

Listing 5.9: This program contains an negative out of bounds bug.

#Files 1

#Classes 0

#Functions 2

#Statements 4

#LOC 10

#TLOC 8

#TLLOC 6

#Bugs 1

Table 5.29: Statistics

Table 5.30: Captured criteria of the program NegativeOutOfBoundsBug – written in C++. All criteria are
listed for each verification tool which supports the PL of the program NegativeOutOfBoundsBug
(C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 0

#True Positive 0 0 0 0

#False Positive 0 1 0 0

#False Negative 1 1 1 1

Table 5.31: Effectiveness metrics for the program NegativeOutOfBoundsBug – written in C++. The percent-
age of true positives out of all bugs in the whole source code of this program is declared by
recall. On the contrary, precision stands for the percentage of true positives out of all reported
issues. Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which
combine recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 0 0 0

precision na 0 na na

Fβ na na na na

Mα 0 0 0 0

– 57 –

5 Case Study

C++ – OfByOneBug

1 ///

2 /// Author: MaAb

3 ///

4 #include <iostream >

5
6 namespace faulty {

7
8 void failsForSure(int argc , char** argv) {

9 std::cout << argc << " arguments are entered .\n";

10
11 for (int i = 0; i <= argc; ++i) {

12 std::cout << i << ": " << argv[i] << "\n";

13 }

14 }

15 }

16
17 ///

18 /// Entry point of program

19 ///

20 int main(int argc , char** argv) {

21 faulty :: failsForSure(argc , argv);

22 return 0;

23 }

Listing 5.10: This program contains an of by one bug.

#Files 1

#Classes 0

#Functions 2

#Statements 6

#LOC 12

#TLOC 10

#TLLOC 8

#Bugs 1

Table 5.32: Statistics

Table 5.33: Captured criteria of the program OfByOneBug – written in C++. All criteria are listed for each
verification tool which supports the PL of the program OfByOneBug (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 0 1 0 0

#True Positive 0 0 0 0

#False Positive 0 1 0 0

#False Negative 1 1 1 1

Table 5.34: Effectiveness metrics for the program OfByOneBug – written in C++. The percentage of true
positives out of all bugs in the whole source code of this program is declared by recall. On
the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 0 0 0

precision na 0 na na

Fβ na na na na

Mα 0 0 0 0

– 58 –

5.2 Programs with Common Errors in C++

5.2.3 Resource Bugs in C++

C++ – ResourceLeakPartialClose

1 ///

2 /// Author: MaAb

3 ///

4
5 #include <iostream >

6 #include <stdio.h>

7
8 namespace faulty {

9
10 int mayFailOrNot(int argc) {

11 try {

12 FILE* f = fopen("output.txt", "w");

13 if (f != NULL) {

14 int result = fputs("HelloWorld!", f);

15 if (result != EOF) {

16 throw 1;

17 }

18
19 fclose(f);

20 }

21 } catch (...) {

22 std::cout << "Exception occurred !\n";

23 return 1;

24 }

25 return 0;

26 }

27 }

28
29 ///

30 /// Entry point of program

31 ///

32 int main(int argc , char** argv) {

33 return faulty :: mayFailOrNot(argc);

34 }

Listing 5.11: This program does not close all resources properly.

#Files 1

#Classes 1

#Functions 2

#Statements 13

#LOC 21

#TLOC 20

#TLLOC 18

#Bugs 1

Table 5.35: Statistics

Table 5.36: Captured criteria of the program ResourceLeakPartialClose – written in C++. All criteria are
listed for each verification tool which supports the PL of the program ResourceLeakPartialClose
(C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 1 1 0 0

#True Positive 0 0 0 0

#False Positive 1 1 0 0

#False Negative 1 1 1 1

Table 5.37: Effectiveness metrics for the program ResourceLeakPartialClose – written in C++. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 0 0 0

precision 0 0 na na

Fβ na na na na

Mα 0 0 0 0

– 59 –

5 Case Study

5.3 Programs with Common Errors in Java

During this case study, simple Java programs with common errors are created and analyzed
by all verification tools which support the programming language (PL) Java: PMD, SpotBugs,
SourceMeter, SonarQube and Infer. For each simple program with common errors an own page,
called the overview page, lists the analyzed source code and provides an overview of source code
statistics. Furthermore, all captured, classified and calculated criteria are depicted in tables on
each overview page (see upcoming pages 65–74 in this section). This process of analyzing and
capturing, classifying and calculating criteria for each verification tool which supports the PL
Java is performed step-by-step for the first Java program: SimpleNullPointerBug (see source
code in Listing 5.12).

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class SimpleNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(SimpleNullPointerBug.class.getName ());

13
14 private SimpleNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 Object obj = null;

23 final String message = obj.toString ();

24
25 LOGGER.info(message);

26 }

27 }

Listing 5.12: SimpleNullPointerBug

#Files 1

#Classes 1

#Functions 2

#Statements 3

#TNOS 3

#LOC 12

#TLOC 28

#TLLOC 12

#Bugs 1

Table 5.38: Statistics

The statistics in Table 5.38 of the source code from Listing 5.12 are captured by means of Sonar-
Qube and SourceMeter (see the screenshot of captured metrics from SonarQube in Figure C.3
and from SourceMeter in Figure C.4). The number of files (#Files), #Classes, #Functions,
#Statements and the number of lines of code (LOC) are captured by SonarQube. The crite-
ria total number of statements (TNOS), total lines of code (TLOC) and total logical lines of
code (TLLOC) are recorded by SourceMeter. The last entry of Table 5.38, #Bugs, represents
the number of bugs of the Java program SimpleNullPointerBug. The number of bugs in this
program is one – to be precise one null pointer bug is contained in the Java program SimpleNull-
PointerBug because of lines 22 and 23. Which verification tool is able to detect this null pointer
bug? The analysis of each selected verification tool that supports the PL Java is illustrated
below.

PMD

As you can see in Figure 5.3, PMD does not detect the null pointer bug in the Java program:
SimpleNullPointerBug. Therefore, all three reported issues are classified as false positives. As a
consequence, the number of true positives is set to zero and the number of false negatives is set
to one (see classification in Table 5.39).

– 60 –

5.3 Programs with Common Errors in Java

Figure 5.3: PMD analysis for Java program SimpleNullPointerBug.

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

PMD 3 0 3 1

Table 5.39: PMD classification of source code SimpleNullPointerBug (Java).

SpotBugs

SpotBugs correctly detects and reports the null pointer bug of the Java program SimpleNull-
PointerBug (see Figure 5.4). Therefore, the number of reported issues and true positives is
one and the number of false positives and false negatives is set to zero (see classification in
Table 5.40).

Figure 5.4: SpotBugs analysis for Java program SimpleNullPointerBug.

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

SpotBugs 1 1 0 0

Table 5.40: SpotBugs classification of source code SimpleNullPointerBug (Java).

SourceMeter

SourceMeter correctly detects and reports the null pointer bug of the Java program SimpleNull-
PointerBug (see Figure 5.5). Therefore, the number of true positives is one and the number
of false negatives is set to zero. In addition to this true positive, another issue is reported by
SourceMeter and classified as false positive because the bug has already been detected by the
first issue. The number of false positives is therefore set to one (see classification in Table 5.41).

– 61 –

5 Case Study

Figure 5.5: SourceMeter analysis for Java program SimpleNullPointerBug.

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

SourceMeter 2 1 1 0

Table 5.41: SourceMeter classification of source code SimpleNullPointerBug (Java).

SonarQube

SonarQube correctly detects and reports the null pointer bug of the Java program SimpleNull-
PointerBug (see Figure 5.6). Therefore, the number of reported issues and true positives is
one and the number of false positives and false negatives is set to zero (see classification in
Table 5.42).

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

SonarQube 1 1 0 0

Table 5.42: SonarQube classification of source code SimpleNullPointerBug (Java).

Infer

Infer correctly detects and reports the null pointer bug of the Java program SimpleNullPoint-
erBug (see Figure 5.7). Therefore, the number of reported issues and true positives is one and
the number of false positives and false negatives is set to zero (see classification in Table 5.43).

A summary of these analyses from the Java program SimpleNullPointerBug is created in sec-
tion 5.3.1 on page 65. A list of created and analyzed Java programs with common errors for
this master thesis is depicted on the next page.

– 62 –

5.3 Programs with Common Errors in Java

Figure 5.6: SonarQube analysis for Java program SimpleNullPointerBug.

Figure 5.7: Infer analysis for Java program SimpleNullPointerBug.

Tool

Criteria
#Reported Issues #True Positives #False Positives #False Negatives

Infer 1 1 0 0

Table 5.43: Infer classification of source code SimpleNullPointerBug (Java).

– 63 –

5 Case Study

List of analysed Java Programs

5.3.1 Null Pointer Bugs in Java . 65
Java – SimpleNullPointerBug 65
Java – IfNullPointerBug . 66
Java – SwitchNullPointerBug 67
Java – ForNullPointerBug . 68
Java – WhileNullPointerBug 69
Java – DoWhileNullPointerBug 70

5.3.2 Index Out of Bounds Bugs in Java 71
Java – PositiveOutOfBoundsBug 71
Java – NegativeOutOfBoundsBug 72
Java – OfByOneBug . 73

5.3.3 Resource Bugs in Java . 74
Java – ResourceLeakPartialClose 74

– 64 –

5.3 Programs with Common Errors in Java

5.3.1 Null Pointer Bugs in Java

Java – SimpleNullPointerBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class SimpleNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(SimpleNullPointerBug.class.getName ());

13
14 private SimpleNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 Object obj = null;

23 final String message = obj.toString ();

24
25 LOGGER.info(message);

26 }

27 }

Listing 5.13: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 3

#TNOS 3

#LOC 12

#TLOC 28

#TLLOC 12

#Bugs 1

Table 5.44: Statistics

Table 5.45: Captured criteria of the program SimpleNullPointerBug – written in Java. All criteria are listed
for each verification tool which supports the PL of the program SimpleNullPointerBug (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 3 1 2 1 1

#True Positive 0 1 1 1 1

#False Positive 3 0 1 0 0

#False Negative 1 0 0 0 0

Table 5.46: Effectiveness metrics for the program SimpleNullPointerBug – written in Java. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 100 100 100 100

precision 0 100 50 100 100

Fβ na 100 66.67 100 100

Mα 0 100 1 100 100

– 65 –

5 Case Study

Java – IfNullPointerBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class IfNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(IfNullPointerBug.class.getName ());

13
14 private IfNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 String message = null;

23 if (args.length == 2) {

24 message = message.concat("We have a problem here.");

25 } else {

26 message = "No bug occurred! Try another number of arguments.";

27 }

28
29 LOGGER.info(message);

30 }

31 }

Listing 5.14: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 5

#TNOS 5

#LOC 16

#TLOC 32

#TLLOC 16

#Bugs 1

Table 5.47: Statistics

Table 5.48: Captured criteria of the program IfNullPointerBug – written in Java. All criteria are listed for
each verification tool which supports the PL of the program IfNullPointerBug (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 5 1 2 1 1

#True Positive 0 1 1 1 1

#False Positive 5 0 1 0 0

#False Negative 1 0 0 0 0

Table 5.49: Effectiveness metrics for the program IfNullPointerBug – written in Java. The percentage of
true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 100 100 100 100

precision 0 100 50 100 100

Fβ na 100 66.67 100 100

Mα 0 100 1 100 100

– 66 –

5.3 Programs with Common Errors in Java

Java – SwitchNullPointerBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class SwitchNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(SwitchNullPointerBug.class.getName ());

13
14 private SwitchNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 String message = null;

23 switch (args.length) {

24 case 1:

25 message = "1 argument is specified.";

26 break;

27 case 2:

28 message = "2 arguments are specified";

29 break;

30 case 3:

31 message = message.replace(’2’, ’3’);

32 break;

33 default:

34 message = "No bug occurred! Try another number of arguments.";

35 break;

36 }

37
38 LOGGER.info(message);

39 }

40 }

Listing 5.15: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 11

#TNOS 11

#LOC 25

#TLOC 41

#TLLOC 25

#Bugs 1

Table 5.50: Statistics

Table 5.51: Captured criteria of the program SwitchNullPointerBug – written in Java. All criteria are listed
for each verification tool which supports the PL of the program SwitchNullPointerBug (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 7 1 2 1 1

#True Positive 0 1 1 1 1

#False Positive 7 0 1 0 0

#False Negative 1 0 0 0 0

Table 5.52: Effectiveness metrics for the program SwitchNullPointerBug – written in Java. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 100 100 100 100

precision 0 100 50 100 100

Fβ na 100 66.67 100 100

Mα 0 100 1 100 100

– 67 –

5 Case Study

Java – ForNullPointerBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class ForNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(ForNullPointerBug.class.getName ());

13
14 private ForNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 String message = null;

23 for (int i = 0; i < args.length; i++) {

24 message += String.format("%d: %s; ", i, args[i]);

25 }

26
27 if (! message.isEmpty ()) {

28 LOGGER.info(message);

29 }

30 }

31 }

Listing 5.16: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 5

#TNOS 7

#LOC 16

#TLOC 32

#TLLOC 16

#Bugs 1

Table 5.53: Statistics

Table 5.54: Captured criteria of the program ForNullPointerBug – written in Java. All criteria are listed
for each verification tool which supports the PL of the program ForNullPointerBug (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 4 0 2 2 1

#True Positive 0 0 0 1 1

#False Positive 4 0 2 1 0

#False Negative 1 1 1 0 0

Table 5.55: Effectiveness metrics for the program ForNullPointerBug – written in Java. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 0 0 100 100

precision 0 na 0 50 100

Fβ na na na 66.67 100

Mα 0 0 0 1 100

– 68 –

5.3 Programs with Common Errors in Java

Java – WhileNullPointerBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class WhileNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(WhileNullPointerBug.class.getName ());

13
14 private WhileNullPointerBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 String message = "No arguments are specified!";

23
24 int i = 0;

25 while (i < args.length) {

26 message = null;

27 i++;

28 }

29
30 if (! message.isEmpty ()) {

31 LOGGER.info(message);

32 }

33 }

34 }

Listing 5.17: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 7

#TNOS 7

#LOC 18

#TLOC 35

#TLLOC 18

#Bugs 1

Table 5.56: Statistics

Table 5.57: Captured criteria of the program WhileNullPointerBug – written in Java. All criteria are listed
for each verification tool which supports the PL of the program WhileNullPointerBug (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 6 0 1 1 1

#True Positive 1 0 0 1 1

#False Positive 5 0 1 0 0

#False Negative 0 1 1 0 0

Table 5.58: Effectiveness metrics for the program WhileNullPointerBug – written in Java. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 100 0 0 100 100

precision 16.67 na 0 100 100

Fβ 28.58 na na 100 100

Mα 1 0 0 100 100

– 69 –

5 Case Study

Java – DoWhileNullPointerBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class DoWhileNullPointerBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(DoWhileNullPointerBug.class.getName ());

13
14 private static final String NO_ARGUMENTS = "No arguments are specified!";

15
16 private DoWhileNullPointerBug () {}

17
18 /**

19 * Entry point of program

20 *

21 * @param args

22 */

23 public static void main(String [] args) {

24 String message = "";

25
26 int i = 0;

27 do {

28 message = args.length == 0 ? NO_ARGUMENTS : null;

29 i++;

30 } while (i < args.length);

31
32 if (! message.isEmpty ()) {

33 LOGGER.info(message);

34 }

35 }

36 }

Listing 5.18: This program contains a null pointer bug.

#Files 1

#Classes 1

#Functions 2

#Statements 7

#TNOS 7

#LOC 19

#TLOC 37

#TLLOC 19

#Bugs 1

Table 5.59: Statistics

Table 5.60: Captured criteria of the program DoWhileNullPointerBug – written in Java. All criteria are
listed for each verification tool which supports the PL of the program DoWhileNullPointerBug
(Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 7 0 1 1 1

#True Positive 0 0 0 1 1

#False Positive 7 0 1 0 0

#False Negative 1 1 1 0 0

Table 5.61: Effectiveness metrics for the program DoWhileNullPointerBug – written in Java. The percentage
of true positives out of all bugs in the whole source code of this program is declared by recall.
On the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 0 0 100 100

precision 0 na 0 100 100

Fβ na na na 100 100

Mα 0 0 0 100 100

– 70 –

5.3 Programs with Common Errors in Java

5.3.2 Index Out of Bounds Bugs in Java

Java – PositiveOutOfBoundsBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class PositiveOutOfBoundsBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(PositiveOutOfBoundsBug.class.getName ());

13
14 private PositiveOutOfBoundsBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 final String [] osNames = { "Windows", "Linux", "Mac" };

23 LOGGER.info(osNames [3]);

24 }

25 }

Listing 5.19: This program contains a positive index out of bounds error.

#Files 1

#Classes 1

#Functions 2

#Statements 2

#TNOS 2

#LOC 11

#TLOC 26

#TLLOC 11

#Bugs 1

Table 5.62: Statistics

Table 5.63: Captured criteria of the program PositiveOutOfBoundsBug – written in Java. All criteria are
listed for each verification tool which supports the PL of the program PositiveOutOfBoundsBug
(Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 2 1 1 0 0

#True Positive 0 1 0 0 0

#False Positive 2 0 1 0 0

#False Negative 1 0 1 1 1

Table 5.64: Effectiveness metrics for the program PositiveOutOfBoundsBug – written in Java. The per-
centage of true positives out of all bugs in the whole source code of this program is declared by
recall. On the contrary, precision stands for the percentage of true positives out of all reported
issues. Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which
combine recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 100 0 0 0

precision 0 100 0 na na

Fβ na 100 na na na

Mα 0 100 0 0 0

– 71 –

5 Case Study

Java – NegativeOutOfBoundsBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class NegativeOutOfBoundsBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(NegativeOutOfBoundsBug.class.getName ());

13
14 private NegativeOutOfBoundsBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 final String invalidArg = args [-1];

23 LOGGER.info(invalidArg);

24 }

25 }

Listing 5.20: This program contains a negative index out of bounds error.

#Files 1

#Classes 1

#Functions 2

#Statements 2

#TNOS 2

#LOC 11

#TLOC 26

#TLLOC 11

#Bugs 1

Table 5.65: Statistics

Table 5.66: Captured criteria of the program NegativeOutOfBoundsBug – written in Java. All criteria are
listed for each verification tool which supports the PL of the program NegativeOutOfBoundsBug
(Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 1 1 1 0 0

#True Positive 0 1 0 0 0

#False Positive 1 0 1 0 0

#False Negative 1 0 1 1 1

Table 5.67: Effectiveness metrics for the program NegativeOutOfBoundsBug – written in Java. The per-
centage of true positives out of all bugs in the whole source code of this program is declared by
recall. On the contrary, precision stands for the percentage of true positives out of all reported
issues. Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which
combine recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 100 0 0 0

precision 0 100 0 na na

Fβ na 100 na na na

Mα 0 100 0 0 0

– 72 –

5.3 Programs with Common Errors in Java

Java – OfByOneBug

1 package at.faultycode.java.simple;

2
3 import java.util.logging.Logger;

4
5 /**

6 * @author MaAb

7 */

8 public final class OfByOneBug {

9
10 /** Default Java logger **/

11 private static final Logger LOGGER = Logger

12 .getLogger(OfByOneBug.class.getName ());

13
14 private OfByOneBug () {}

15
16 /**

17 * Entry point of program

18 *

19 * @param args

20 */

21 public static void main(String [] args) {

22 for (int i = 0; i <= args.length; i++) {

23 String arg = args[i];

24 LOGGER.info(i + ": " + arg);

25 }

26 }

27 }

Listing 5.21: This program contains an of by one bug.

#Files 1

#Classes 1

#Functions 2

#Statements 3

#TNOS 5

#LOC 13

#TLOC 28

#TLLOC 13

#Bugs 1

Table 5.68: Statistics

Table 5.69: Captured criteria of the program OfByOneBug – written in Java. All criteria are listed for each
verification tool which supports the PL of the program OfByOneBug (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 3 0 3 1 0

#True Positive 0 0 0 0 0

#False Positive 3 0 3 1 0

#False Negative 1 1 1 1 1

Table 5.70: Effectiveness metrics for the program OfByOneBug – written in Java. The percentage of true
positives out of all bugs in the whole source code of this program is declared by recall. On
the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 0 0 0 0

precision 0 na 0 0 na

Fβ na na na na na

Mα 0 0 0 0 0

– 73 –

5 Case Study

5.3.3 Resource Bugs in Java

Java – ResourceLeakPartialClose

1 package at.faultycode.java.simple;

2
3 import java.io.*;

4 import java.nio.charset.StandardCharsets;

5 import java.nio.file.Files;

6 import java.util.logging.Level;

7 import java.util.logging.Logger;

8
9 /**

10 * @author MaAb

11 */

12 public final class ResourceLeakPartialClose {

13
14 /** Default Java logger **/

15 private static final Logger LOGGER = Logger

16 .getLogger(ResourceLeakPartialClose.class.getName ());

17
18 private ResourceLeakPartialClose () {}

19
20 /**

21 * Entry point of program

22 *

23 * @param args

24 */

25 public static void main(String [] args) {

26 String fileContent = "HelloWorld!";

27 File out = new File("output.txt");

28
29 try {

30 OutputStream os = Files.newOutputStream(out.toPath ());

31 os.write(fileContent.getBytes(StandardCharsets.UTF_8));

32 os.close ();

33 } catch (IOException e) {

34 LOGGER.log(Level.SEVERE , "IO exception occurred!", e);

35 }

36 }

37 }

Listing 5.22: This program does not close all resources properly.

#Files 1

#Classes 1

#Functions 2

#Statements 7

#TNOS 7

#LOC 22

#TLOC 38

#TLLOC 22

#Bugs 1

Table 5.71: Statistics

Table 5.72: Captured criteria of the program ResourceLeakPartialClose – written in Java. All criteria are
listed for each verification tool which supports the PL of the program ResourceLeakPartialClose
(Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 8 0 1 1 1

#True Positive 0 0 0 1 1

#False Positive 8 0 1 0 0

#False Negative 1 1 1 0 0

Table 5.73: Effectiveness metrics for the program ResourceLeakPartialClose – written in Java. The per-
centage of true positives out of all bugs in the whole source code of this program is declared by
recall. On the contrary, precision stands for the percentage of true positives out of all reported
issues. Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which
combine recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0 0 0 100 100

precision 0 na 0 100 100

Fβ na na na 100 100

Mα 0 0 0 100 100

– 74 –

5.4 Sofware Projects from SSI Schaefer Automation GmbH

5.4 Sofware Projects from SSI Schaefer Automation GmbH

5.4.1 Project-CA in C++

#Files 455

#Classes 80

#Functions 2948

#Statements 24698

#LOC 45148

#TLOC 1466

#TLLOC 739

#Bugs 1

#Bugs/KLOC 1

Table 5.74: Statistics

Performing an analysis of this C++ project was hard. Two out
of four selected verification tools of this master thesis could
only execute the analysis with errors. First, three subtasks
of SourceMeter (WrapperTask, LinkStaticLibsTask and Cp-
pcheck2GraphTask) reported an error (see Figure C.5). Due
to these errors, one can conclude that these failed subtasks
are the reason why the captured criteria of SourceMeter to-
tal lines of code (TLOC) and total logical lines of code (TL-
LOC) in Table 5.74 are incorrect. Second, Infer could only
perform an analysis with the additional command argument
--keep-going. As the name implies, the analysis is con-
tinued even if an error occurs. Most of the errors occurred
because many C++ files of this project used features of the
QT library and Infer (version 0.15.0) could not analyze some
source files of the QT library. On the other hand, no errors
occurred during the analysis with RATS and Cppcheck.

Bugs: As you can see in Table 5.75, the selected verification tools – RATS, Cppcheck, SourceMe-
ter and Infer – did not detect many bugs. As a result, the effectiveness of all tools is equal to
or going against zero (see Table 5.76). Nevertheless, the employees of SSI Schaefer Automation
GmbH who used these tools want to continue using verification tools as an automated second
pair of eyes.

Table 5.75: Captured criteria of the program Project-CA – written in C++. All criteria are listed for each
verification tool which supports the programming language (PL) of the program Project-CA (C++).

Criteria

Tool
RATS Cppcheck SourceMeter Infer

#Reported Issues 174 558 31 19

#True Positive 0 1 0 0

#False Positive 174 557 31 19

#False Negative 1 0 1 1

Table 5.76: Effectiveness metrics for the program Project-CA – written in C++. The percentage of true
positives out of all bugs in the whole source code of this program is declared by recall. On
the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool RATS Cppcheck SourceMeter Infer

[%] [%] [%] [%]

recall 0 100 0 0

precision 0 0.18 0 0

Fβ na 0.36 na na

Mα 0 1 0 0

– 75 –

5 Case Study

5.4.2 Project-JA in Java

#Files 299

#Classes 310

#Functions 2173

#Statements 11778

#TNOS 11594

#LOC 27068

#TLOC 36222

#TLLOC 26382

#Bugs 141

#Bugs/KLOC 6

Table 5.77: Statistics

No problems and errors occurred during the analysis of
this project with all verification tools which support the
PL Java. PMD, SourceMeter and SonarQube reported
a large number of issues compared to SpotBugs and In-
fer (see row #Reported Issues in Table 5.78). Almost
16000 issues are reported by PMD which means that
in every second line of code, there is a problem ac-
cording to the rules of PMD (see lines of code (LOC)
in Table 5.77 versus reported issues from PMD in Ta-
ble 5.78).

Bugs: Infer reported five resource leaks and 33 potential null
pointer dereferences (see Table 5.78). Most of the 13 false
positives that are reported by Infer are caused by a specific
software design – called service-oriented architecture (SOA).
SpotBugs did not detect these 33 potential null pointers in-
stead of that, SpotBugs reported another five null pointer
dereferences which are true positives. Therefore, Infer and SpotBugs did not detect the same
null pointer bugs and were a good combination of tools in terms of reporting a small num-
ber of false positives (see higher precision of SpotBugs and Infer than PMD, SourceMeter and
SonarQube in Table 5.79).

Table 5.78: Captured criteria of the program Project-JA – written in Java. All criteria are listed for each
verification tool which supports the PL of the program Project-JA (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 15599 22 2227 1352 38

#True Positive 9 5 73 69 25

#False Positive 15590 17 2154 1283 13

#False Negative 132 136 68 72 116

Table 5.79: Effectiveness metrics for the program Project-JA – written in Java. The percentage of true
positives out of all bugs in the whole source code of this program is declared by recall. On
the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0.06 3.55 51.77 48.94 17.73

precision 0.06 22.73 3.28 5.1 65.79

Fβ 0.06 6.14 6.17 9.24 27.93

Mα 1 1 1 1 12.3

– 76 –

5.4 Sofware Projects from SSI Schaefer Automation GmbH

5.4.3 Project-JB in Java

#Files 32

#Classes 32

#Functions 146

#Statements 1366

#TNOS 1377

#LOC 2742

#TLOC 3347

#TLLOC 2742

#Bugs 109

#Bugs/KLOC 40

Table 5.80: Statistics

Another Java program is analyzed and is compared to the
first one – Project-JA – ten percent smaller in terms of LOC.
Nevertheless, 109 pre-release bugs are detected (see in Ta-
ble 5.80) by means of all verification tools which support the
PL Java and further code review by software developers for
similar issues.

Bugs: 100 out of these 109 bugs were resources which
were not properly released. These resource leakages are
tagged with the common weakness enumeration (CWE) id
459 and could cause in the worst case a denial of service
problem if too many resources are kept open[8][20, p. 276].
The documentation of Java source code (JavaDoc) describes
this problem as well (see Java interfaces Closeable19 and
AutoCloseable20).

Table 5.81 shows the classification of all reported issues. In-
fer and Spotbugs do not detect and report many problems (less or equal to five) compared to
the other verification tools (more than 400): PMD, SourceMeter and SonarQube. However,
SpotBugs and Infer have again a higher precision than the other three verification tools (see
Table 5.82).

Table 5.81: Captured criteria of the program Project-JB – written in Java. All criteria are listed for each
verification tool which supports the PL of the program Project-JB (Java).

Criteria

Tool
PMD SpotBugs SourceMeter SonarQube Infer

#Reported Issues 2020 3 553 427 5

#True Positive 1 1 62 101 3

#False Positive 2019 2 491 326 2

#False Negative 108 108 47 8 106

Table 5.82: Effectiveness metrics for the program Project-JB – written in Java. The percentage of true
positives out of all bugs in the whole source code of this program is declared by recall. On
the contrary, precision stands for the percentage of true positives out of all reported issues.
Additionally, the F-measure and M-measure (see Equation 3.8 and 3.10) are listed which combine
recall and precision to obtain a single effectiveness value (na stands for not applicable).

Property

Tool PMD SpotBugs SourceMeter SonarQube Infer

[%] [%] [%] [%] [%]

recall 0.92 0.92 56.88 92.66 2.75

precision 0.05 33.33 11.21 23.65 60

Fβ 0.09 1.79 18.73 37.68 5.26

Mα 1 1 1 1 1.25

19 Closeable JavaDoc[7]: A Closeable is a source or destination of data that can be closed. The close method is
invoked to release resources that the object is holding (such as open files).

20 AutoClosable JavaDoc[4] excerpt: An object that may hold resources (such as file or socket handles) until it
is closed. . . . it is recommended to use try-with-resources constructions. . . .

– 77 –

5 Case Study

5.4.4 Beta Releases

During this case study, Project-CA and Project-JA are released as beta versions. This release
was performed before the employees of SSI Schaefer Automation GmbH worked with all selected
verification tools of this master thesis. After this beta release, the quality assurance (QA) team
started with the verification and validation (V&V) process and reported bugs.

Reported bugs: The list of bugs from the QA team is investigated whether the selected
verification tools of this master thesis would have detected these bugs as well or not. As men-
tioned in subsection 5.4.1, the analysis of the C++ Project-CA could not be performed without
errors by all verification tools that support C++. As a consequence, zero bugs of the C++ Project-
CA could have been detected by verification tools. However, one bug of the Java Project-JA
could have been fixed before this beta release – if verification tools, in particular, Infer would
have been used to analyze the source code for bugs.

To conclude, verification tools have the potential to detect and report bugs before the actual
beta release. However, verification tools cannot replace QA teams. Nevertheless, how effective
verification tools are in terms of detecting the same bugs as a QA team, cannot be illustrated
with this analyzed data. In order to answer this question, more projects and bugs have to be
analyzed. This analysis could be the topic of another bachelor or master thesis and, therefore,
it is referred as a point of further research.

– 78 –

Effectiveness of Verification Tools

6
Outcome

In order to quantify the effectiveness of verification tools, metrics which are defined in chapter 3
are calculated. The metric precision cannot be determined for each analyzed program because
the result of Equation 3.3 is undefined if no true positives and false positives are reported
(division by zero). Furthermore, recall is undefined as well – in one special case where a program
does not contain any software bugs (highly unlikely but still possible). As a consequence of these
undefined results, the outcome of another metric – F-measure (Fβ) – cannot be determined.
In other words, Fβ is not computable if recall or precision is undefined (see Equation 3.8).
However, the M-measure (Mα) can be calculated for each program and for each case. Therefore,
all four metrics – recall, precision, Fβ and Mα – are used to quantify the effectiveness of
verification tools.

6.1 Detect Bug Challenge

As mentioned in section 1.1 and section 5.1, a short Java program called Argument Printer with
82 lines of code (LOC) – see more statistics in Table 5.1 – is created and analyzed by software
developers and by verification tools.

Figure 6.1 depicts the results in terms of recall and precision. If a verification tool has a high
recall, then many or all software bugs which are known by the time of analysis are detected by
a verification tool. To illustrate, the metric recall of Infer is 66.7% because Infer detects four
out of six bugs (46 = 2

3 = 0.6̄) from the Java program Argument Printer . On the other hand,
precision stands for the ratio of true positives out of the number of true positives and false
positives (see Equation 3.3). In other words, precision defines how accurate a verification

0 20 40 60 80 100

0

20

40

60

80

100

precision [%]

re
ca

ll
[%

]

Ideal Developer
Developer-A
Developer-B
Developer-C
Developer-D

(a) Developer

0 20 40 60 80 100

0

20

40

60

80

100

precision [%]

re
ca

ll
[%

]

Ideal Tool
PMD
SpotBugs
Infer
SonarQube
SourceMeter

(b) Verification Tools

Figure 6.1: Trade-off between recall and precision of the program Argument Printer. As you can see, all
verification tools that support the programming language (PL) Java are listed. However, the
metric precision cannot be determined for SpotBugs because no issues are reported. Therefore,
SpotBugs is not shown in (b). In addition to the outcome of verification tools, (a) shows the
recall and precision trade-off for each developer.

– 79 –

6 Outcome

tool can detect real software bugs (true positives). For example, the metric precision of Sonar-
Qube is 100% because of all reported issues (three out of three → 3

3 = 1) from SonarQube are
real software bugs (true positives) in the Java program Argument Printer . In addition to all ver-
ifications tools, the performance in terms of recall and precision from all software developers of
SSI Schaefer Automation GmbH who participated in this bug challenge is depicted in Figure 6.1.

On the other hand, Figure 6.2 depicts all four effectiveness metrics – recall, precision, Fβ
and Mα – for all verification tools that support the PL Java. As mentioned before, the metric
precision cannot be determined for SpotBugs and, as a consequence, Fβ cannot be calculated for
SpotBugs either. Furthermore, Fβ for SourceMeter is undefined as well – recall and precision
are zero which leads to a division by zero (see Equation 3.8). However, recall and Mα can be
calculated for each verification tool.

Best verification tool of this bug challenge: Infer

Infer detects the most software bugs of the Java program Argument Printer (highest recall
of all verification tools). Furthermore, Infer has the highest value for both effectiveness metrics
– Fβ and Mα– compared to all verification tools in Figure 6.2. Moreover, a closer look at Figure
6.1(b) shows that Infer is closer than SonarQube to be an ideal verification tool.

Best developer of this bug challenge: Developer-B

A closer look at Figure 6.1(a) shows that Developer-B is closer than Developer-A to be an
ideal bug detector. Moreover, Fβ and Mα are higher than Developer-A (see Figure D.1) despite
the fact that Developer-B does not detect all bugs.

PM
D

Sp
ot

bu
gs

So
ur

ce
M

et
er

So
na

rQ
ub

e
In

fe
r

0%

20%

40%

60%

80%

100%

33.3

0 0

50

66.7

3.8
0

100

80

6.8

66.7
72.7

1 0 0

50

62

Recall
Precision
F1
M1

Figure 6.2: All of the selected verification tools that support the PL Java are depicted in this bar chart
and recall, precision, Fβ and Mα are used to determine the most effective verification tool for
the bug challenge program Argument Printer (Java). As you can see, not all of the selected
verification tools for Java source code detect bugs. SonarQube and Infer correctly identify and
report the most bugs.

– 80 –

6.2 Programs with Common Errors

6.2 Programs with Common Errors

As shown in chapter 5, C++ and Java programs with common errors are analyzed by the selected
verification tools which are introduced in chapter 4. To be precise, ten C++ and Java programs
with the same content (similar statements) are evaluated in section 5.2 and section 5.3. Each of
these C++ and Java programs (in total 20) contains only one software bug.

The effectiveness of a verification tool depends on whether this one bug is correctly detected
or not. To quantify the effectiveness of all verification tools, the same four metrics – recall,
precision, Fβ and Mα – are used as in section 6.1. The average of ten programs (Java and C++

separated) is used to quantify the effectiveness per verification tool. As mentioned in the first
paragraph of chapter 6, recall, precision and Fβ are not determinable for specific cases. Hence,
not all four metrics can be calculated for each program and verification tool (see Figures 6.3,
6.4 and 6.5).

Best verification tools of all C++ programs with common errors: Infer & Cppcheck

Infer and Cppcheck correctly detect and report the same six out of ten bugs (all null pointer
dereferences – see pages 50–59). If only all C++ programs that contain null pointer dereference
bugs are averaged then Infer and Cppcheck are ideal verification tools. To put it differently,
Infer and Cppcheck detect and report only one issue (one true positive) for all C++ programs
that contain null pointer dereference bugs. In contrast, RATS and SourceMeter do not detect
any bug of all C++ programs with common errors (zero out of ten – see Figure 6.4 and pages
50–59).

Best verification tools of all Java programs with common errors: Infer & SonarQube

Infer and SonarQube correctly detect and report the same seven out of ten bugs (all null pointer
dereferences and one resource leak bug – see pages 65–74). Both tools detect and report all
null pointer dereferences like Infer and Cppcheck for all C++ programs. Therefore, if only all
Java programs that contain null pointer dereferences are averaged then Infer and SonarQube
are ideal verification tools. On the contrary, PMD, SpotBugs and SourceMeter do not detect as
many bugs as Infer and SonarQube. However, at least one bug is detected by PMD, SpotBugs
and SourceMeter.

0 20 40 60 80 100

0

20

40

60

80

100

precision [%]

re
ca

ll
[%

]

Ideal Tool
RATS
Cppcheck
SourceMeter
Infer

(a) C++

0 20 40 60 80 100

0

20

40

60

80

100

precision [%]

re
ca

ll
[%

]

Ideal Tool
PMD
SpotBugs
Infer
SonarQube
SourceMeter

(b) Java

Figure 6.3: Trade-off between recall and precision of all programs with common errors. As you can see, this
trade-off can only be depicted for Cppcheck (C++ verification tool) and PMD (Java verification
tool).

– 81 –

6 Outcome

R
AT

S

C
pp

ch
ec

k

So
ur

ce
M

et
er

In
fe
r

0%

20%

40%

60%

80%

100%

0

60

0

6060

0

60

0

60

Recall
Precision
F1
M1

Figure 6.4: All of the selected verification tools that support the programming language (PL) C++ are depicted
in this bar chart and the average of recall, precision, Fβ and Mα is used to determine the most
effective verification tool for all C++ programs with common errors. As you can see, not all of the
selected verification tools for C++ source code detect bugs. Infer and Cppcheck correctly identify
and report the most bugs.

PM
D

Sp
ot

bu
gs

So
ur

ce
M

et
er

So
na

rQ
ub

e
In

fe
r

0%

20%

40%

60%

80%

100%

10

50

30

70 70

1.67

15

0.1

50

0.3

60.1

70

Recall
Precision
F1
M1

Figure 6.5: All of the selected verification tools that support the PL Java are depicted in this bar chart and
the average of recall, precision, Fβ and Mα is used to determine the most effective verification
tool for all Java programs with common errors. As you can see, all of the selected verification
tools for Java source code detect bugs. SonarQube and Infer correctly identify and report the
most bugs.

– 82 –

6.3 Sofware Projects from SSI Schaefer Automation GmbH

6.3 Sofware Projects from SSI Schaefer Automation GmbH

In addition to the bug challenge and all programs with common errors, software projects from
SSI Schaefer Automation GmbH are analyzed with the selected verification tools which are in-
troduced in chapter 4. One C++ software project (CA) and two Java projects (JA and JB) are
investigated (see section 5.4).

The same four metrics – recall, precision, Fβ and Mα – are used to determine the effectiveness
of all verification tools. Furthermore, all software developers who participated in this case study
rated the best verification tool via a survey. The output of these three software projects is not
100% accurate because the exact number of bugs is unknown. The bigger and more complex a
software project, the more difficult is it to determine the exact number of bugs. Nevertheless,
by means of all selected verification tools and further code review by software developers for
similar issues and other bugs, a number of faults for each software project is determined (see
#Bugs in Tables 5.74, 5.77 and 5.80).

Best verification tool of CA project: Cppcheck

All other tools – RATS, SourceMeter and Infer – reported only false positives, therefore, Cp-
pcheck is better by detecting at least one bug (see Figure 6.6(a)).

Best verification tool of JA and JB project: SonarQube

On the one hand, Infer is rated the best by the metrics precision and Mα. On the other
hand, SonarQube reaches the highest value for recall and Fβ (see Table 5.79 and Table 5.82).
In other words, SonarQube detects the most software bugs in both Java projects (see the highest
recall in Figure 6.6(b)). Furthermore, JA and JB are not critical software projects. Hence, a
tool that detects the most bugs is classified as the best.

0 20 40 60 80 100

0

20

40

60

80

100

precision [%]

re
ca

ll
[%

]

Ideal Tool
RATS
Cppcheck
SourceMeter
Infer

(a) C++

0 20 40 60 80 100

0

20

40

60

80

100

precision [%]

re
ca

ll
[%

]

Ideal Tool
PMD
SpotBugs
Infer
SonarQube
SourceMeter

(b) Java

Figure 6.6: Trade-off between recall and precision of all software project of SSI Schaefer Automation GmbH.
As you can see, this trade-off can only be depicted for Cppcheck (C++ verification tool) and PMD
(Java verification tool).

– 83 –

6 Outcome

In addition to analyzing these three software projects, associates of SSI Schaefer Automation
GmbH worked with all verification tools which are investigated by means of this master thesis
(see an enumeration and overview of all tools in Table 4.1). This gained experience is rated by
all employees who participated in this case study via a survey.

Best verification tool of CA project rated by developers: Cppcheck

For the software project CA – written in C++ – Cppcheck is rated as the best verification
tool out of all verification tools which support the programming language (PL) C++ – RATS,
Cppcheck, SourceMeter and Infer. As mentioned in subsection 5.4.1, two out of four verification
tools – SourceMeter and Infer – cannot perform the analysis of the software project CA without
errors (huge impact for this rating).

Best verification tool of JA and JB project rated by developers: SonarQube

SonarQube was rated as the best verification tool because it detects many bugs and, in particu-
lar, a detailed description is provided by each issue. Some descriptions contain, in addition to the
explanation of an issue, non-compliant and compliant code examples. Some participants stated
that these code examples are the reason why SonarQube is rated as the best verification tool.
Furthermore, an employee commented that processing even a large amount of false positives is
easy with SonarQube because of the filter and bulk change feature of SonarQube.

– 84 –

Effectiveness of Verification Tools

7
Conclusion

The effectiveness of selected verification tools has been determined for C++ and Java programs;
to be precise, for a small Java program with 82 lines of code (LOC), ten simple C++ and Java

programs with common errors and three software projects (C++ and Java) from SSI Schaefer
Automation GmbH – an international company. Each program and software project has been
analyzed by selected verification tools which support the same programming language (PL):

� C++: RATS, Cppcheck, SourceMeter and Infer

� Java: PMD, SpotBugs, SoureMeter, SonarQube and Infer

In addition to determining the effectiveness, a new metric – the M-measure (Mα) – has been
defined which is calculable for more cases than the F-measure (Fβ). As mentioned in chapter 6,
the metrics recall, precision and Fβ cannot be calculated in specific cases. To illustrate, if the
source code of a software project does not contain any bug then recall is undefined (division by
zero – see Equation 3.4). Furthermore, if a verification tool does not report any issues then the
metric precision is undefined (division by zero – see Equation 3.3). As a consequence, if either
one is undefined or if both (recall and precision) are zero then Fβ is not definable either (see
Equation 3.8). In contrast, Mα can be calculated in such cases (see Equation 3.10).

Using verification tools or code analyzers has three main benefits. First, verifying software
is crucial before new products or releases are shipped to users because software bugs can occur
on each line of code. Furthermore, a bug leading to a denial of service or an unexpected result
or behavior decreases the user satisfaction of software. Verification tools can be used to reduce
this risk by locating bugs before software products are released. Second, in addition to detecting
bugs, verification tools can be used to teach all, and in particular entry-level, software developers
to avoid or rather reduce the number of bugs. Additionally, many verification tools report not
only bugs but also code improvements in terms of performance and readability. Hence, software
developers are taught and reminded to improve the code quality by checking the reported issues
of a verification tool. Regardless of which code analyzer is used and how effective it is, by using
any tool a software developer takes time to review the source code of a software project another
time. This additional check might locate even more bugs which would have not been detected
without this additional review. Last but not least, as simple as fixing a bug can be, it takes
time because a change in the source code of a software project has to go through the whole
build and release process (build a new version, run test cases and perform release). Even for
a small change, these tasks may take approximately 15 to 30 minutes. Moreover, each bug fix
costs resources as well as money. For these reasons, detecting and fixing bugs before releasing a
software product is more efficient.

– 85 –

7 Conclusion

On the other hand, disadvantages of verification tools include set-up, configuration, maintenance,
memory consumption, execution time and a high number of false positives. No verification tool
is ideal but by addressing these disadvantages step by step it is possible to profit from the ben-
efits of verification tools.

To sum up, verification tools do not detect every bug and it might be tedious to run the
first analysis. However, these tools help to improve the code quality as well as to foster the
confidence in the correctness and reliability of software products. Therefore, why not perform
an additional check of source code with an automated pair of eyes?

– 86 –

Effectiveness of Verification Tools

Appendices

– 87 –

Effectiveness of Verification Tools

A
Appendix Chapter 1 Introduction

A.1 Section 1.1 Motivation

1 package at.faultycode.java.advanced;

2
3 import java.util.Random;

4 import java.util.logging.Level;

5 import java.util.logging.Logger;

6
7 /**

8 * @author MaAb

9 */

10 public class Main {

11
12 /** Default Java logger **/

13 private static final Logger LOGGER = Logger.getLogger(Main.class.getName ());

14
15 private static final Random RANDOM = new Random ();

16
17 /**

18 * Entry point of program

19 *

20 * @param args

21 * @throws InterruptedException

22 */

23 public static void main(String [] args) {

24 LOGGER.info("Start program ...");

25 final ArgumentPrinter argPrinter = new ArgumentPrinter ();

26 for (int i = 0; i < 5; i++) {

27 if (generateRandomInteger () > 0)

28 LOGGER.log(Level.INFO , "Log file path: ’{0}’", argPrinter.initLogFile (). toString ());

29 Object [] testArguments = i == 0 ? args : generateRandomArgs ();

30 argPrinter.setArguments(testArguments , 5);

31 argPrinter.logAll ();

32 LOGGER.log(Level.INFO , "{0}: iteration ..", i);

33 }

34 }

35
36 private static Object [] generateRandomArgs () {

37 int numArgs = RANDOM.nextInt (10);

38 if (numArgs > 0) { return new Object[numArgs]; }

39 return null;

40 }

41
42 private static Integer generateRandomInteger () {

43 Integer randomValue = Integer.valueOf(RANDOM.nextInt (2));

44 if (randomValue > 0)

45 return randomValue;

46 return null;

47 }

48 }

Listing A.1: Source code of the program: Argument Printer written in Java (file Main.java).

– 88 –

A.1 Section 1.1 Motivation

1 package at.faultycode.java.advanced;

2
3 import java.io.File;

4 import java.io.FileOutputStream;

5 import java.io.IOException;

6 import java.nio.charset.Charset;

7 import java.util.logging.Level;

8 import java.util.logging.Logger;

9
10 /**

11 * @author MaAb

12 */

13 public class ArgumentPrinter {

14
15 /** Default Java logger **/

16 private static final Logger LOGGER = Logger.getLogger(ArgumentPrinter.class.getName ());

17
18 private Object [] args;

19 private Integer maxArgs;

20
21 public void setArguments(final Object [] args , Integer maxArgs) {

22 this.args = new String[maxArgs]; this.maxArgs = maxArgs;

23 initArgs(args , maxArgs);

24 }

25
26 private synchronized void initArgs(final Object [] args , final Integer maxNumArgs) {

27 for (int i = 0; i < maxNumArgs; i++)

28 this.args[i] = args[i];

29 }

30
31 public File initLogFile () {

32 File logFile = new File("logFile.log");

33 try {

34 FileOutputStream fos = new FileOutputStream(logFile);

35 fos.write("LogFile: ArgumentPrinter".getBytes(Charset.defaultCharset ()));

36 fos.close ();

37 } catch (IOException e) {

38 // Ignore

39 return null;

40 }

41 return logFile;

42 }

43
44 /**

45 * Logs the number of arguments and the content of each argument.

46 */

47 public void logAll () {

48 logNumberOfArguments (); logAllArguments ();

49 }

50
51 private void logNumberOfArguments () {

52 String formatString = createFormatStringNumArgs ();

53 if (! formatString.isEmpty ())

54 LOGGER.log(Level.INFO , formatString , args.length);

55 }

56
57 private void logArgumentContent(Integer index) {

58 LOGGER.log(Level.INFO , "Arg[" + index + "]: ’{0}’", args[index]. toString ());

59 }

60
61 private void logAllArguments () {

62 for (int i = 0; i <= maxArgs; i++)

63 logArgumentContent(i);

64 }

65
66 private String createFormatStringNumArgs () {

67 if (args.length == 1) return "{0} argument is entered!";

68 else if (args.length > 1) return "{0} argument(s) are entered!";

69 return null;

70 }

71 }

Listing A.2: Source code of the program: Argument Printer written in Java (file ArgumentPrinter.java).

– 89 –

Effectiveness of Verification Tools

B
Appendix Chapter 4 Selected Verification Tools

B.1 Section 4.1 PMD

B.1.1 Section 4.1 Get Started

Installation of PMD via Eclipse:

1. Open Eclipse.

2. Select Help → Install New Software... via the top menu bar.

Figure B.1: Installing PMD via Eclipse: second step, open install new software dialog.

3. Click on the button Add... within the dialog Install.

Figure B.2: Installing PMD via Eclipse: third step, open add repository dialog.

– 90 –

B.1 Section 4.1 PMD

4. Another dialog Add Repository is opened. Enter PMD for the Name field and https:

//dl.bintray.com/pmd/pmd-eclipse-plugin/updates/ for the Location field. Submit
these changes by clicking on the button OK.

Figure B.3: Installing PMD via Eclipse: fourth step, define PMD repository.

5. Select PMD Plug-in and follow the install wizard.

Figure B.4: Installing PMD via Eclipse: fifth step, select PMD plug-in.

� After the installation, a restart of Eclipse is necessary.

– 91 –

https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/
https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/

B Appendix Chapter 4 Selected Verification Tools

Figure B.5: Running PMD via Eclipse (PMD version: 4.0.17.v20180801-1551).

– 92 –

B.1 Section 4.1 PMD

Installation of PMD via SonarQube:

1. Open and login as administrator to SonarQube.

2. Click on Administration. V
This top menu tab is only visible if an adminis-
trator of SonarQube is logged in.

3. Within this Administration view click on Marketplace.

4. Select PMD from the list of all available plugins. �
The search field can be
used to filter for a spe-
cific plugin.

5. Click on the Install button.

� After the installation, a restart of SonarQube is necessary.

Figure B.6: Step-by-step guide for installing PMD via SonarQube.

– 93 –

B Appendix Chapter 4 Selected Verification Tools

B.2 Section 4.2 SpotBugs (FindBugs)

B.2.1 Section 4.2 Get Started

Installation of SpotBugs via Eclipse:

1. Open Eclipse.

2. Select Help → Install New Software... via the top menu bar.

Figure B.7: Installing SpotBugs via Eclipse: second step, open install new software dialog.

3. Click on the button Add... within the dialog Install.

Figure B.8: Installing SpotBugs via Eclipse: third step, open add repository dialog.

4. Another dialog Add Repository is opened. Enter SpotBugs for the Name field and https:

//spotbugs.github.io/eclipse/ for the Location field. Submit these changes by clicking
on the button OK.

– 94 –

https://spotbugs.github.io/eclipse/
https://spotbugs.github.io/eclipse/

B.2 Section 4.2 SpotBugs (FindBugs)

Figure B.9: Installing SpotBugs via Eclipse: fourth step, define PMD repository.

5. Select SpotBugs Plug-in and follow the install wizard.

Figure B.10: Installing SpotBugs via Eclipse: fifth step, select SpotBugs plug-in.

� After the installation, a restart of Eclipse is necessary.

– 95 –

B Appendix Chapter 4 Selected Verification Tools

Figure B.11: Running SpotBugs via Eclipse (SpotBugs version: 3.1.11.r201901210915-d4a1331).

– 96 –

B.2 Section 4.2 SpotBugs (FindBugs)

Installation of SpotBugs via SonarQube:

1. Open and login as administrator to SonarQube.

2. Click on Administration. V
This top menu tab is only visible if an adminis-
trator of SonarQube is logged in.

3. Within this Administration view click on Marketplace.

4. Select SpotBugs from the list of all available plugins. �
The search field can
be used to filter for
a specific plugin.

5. Click on the Install button.

� After the installation, a restart of SonarQube is necessary.

Figure B.12: Step-by-step guide for installing SpotBugs via SonarQube.

– 97 –

B Appendix Chapter 4 Selected Verification Tools

B.3 Section 4.6 RATS

1 ///

2 /// Author: MaAb

3 ///

4
5 #include <stdio.h>

6 #include <string.h>

7
8 ///

9 /// Entry point of program

10 ///

11 int main(int argc , char** argv) {

12 char password [] = "1234";

13 char buffer [80];

14 for (int i = 0; i < 3; i++) {

15 printf ("Please enter the password:");

16 fflush (stdout);

17 scanf ("%79s", buffer);

18
19 if (strcmp (password , buffer) == 0) {

20 puts ("Logged in!");

21 return 0;

22 }

23 }

24
25 puts ("Invalid password!");

26 return 1;

27 }

Listing B.1: Source code of demonstration of RATS written in C++.

– 98 –

Effectiveness of Verification Tools

C
Appendix Chapter 5 Case Study

Figure C.1: Captured criteria from C++ program SimpleNullPointerBug by SonarQube

Figure C.2: Captured criteria from C++ program SimpleNullPointerBug by SourceMeter

– 99 –

C Appendix Chapter 5 Case Study

Figure C.3: Captured criteria from Java program SimpleNullPointerBug by SonarQube

Figure C.4: Captured criteria from Java program SimpleNullPointerBug by SourceMeter

Figure C.5: SourceMeter errors during analysis of SSI Project-CA.

– 100 –

Effectiveness of Verification Tools

D
Appendix Chapter 6 Outcome

D.1 Section 6.1 Detect Bug Challenge

D
ev

el
op

er
-A

D
ev

el
op

er
-B

D
ev

el
op

er
-C

D
ev

el
op

er
-D

Id
ea

l
0%

20%

40%

60%

80%

100%

33.3

16.7

100

83.3

100

40

50

40

71.4

100

36.4

25

57.1

76.9

100

1 1 1

68.8

100Recall
Precision
F1
M1

Figure D.1: The average of recall, precision, Fβ and Mα is used to determine the most effective software
developer for the bug challenge program Argument Printer. As you can see, all developers detect
bugs (recall is greater than zero for all developers). Developer C and D correctly identify and
report the most bugs.

– 101 –

Effectiveness of Verification Tools

– 102 –

Effectiveness of Verification Tools

List of Figures

2.1 Overview of a verification tool that performs a static code analysis. 22

3.1 Excerpt of the questionnaire to determine the usability. 28
3.2 Visualization of Mα (Equation 3.10; α = 1). 31

4.1 Violations outline view in Eclipse from the PMD plugin. 35
4.2 Demonstration SpotBugs. 37
4.3 Project overview of the web platform of SonarQube. 41

5.1 Cppcheck analysis for C++ program SimpleNullPointerBug. 47
5.2 Infer analysis for C++ program SimpleNullPointerBug. 48
5.3 PMD analysis for Java program SimpleNullPointerBug. 61
5.4 SpotBugs analysis for Java program SimpleNullPointerBug. 61
5.5 SourceMeter analysis for Java program SimpleNullPointerBug. 62
5.6 SonarQube analysis for Java program SimpleNullPointerBug. 63
5.7 Infer analysis for Java program SimpleNullPointerBug. 63

6.1 Trade-off between recall and precision of the program Argument Printer 79
6.2 Effectiveness metrics of the bug challenge program Argument Printer (Java). . . 80
6.3 Trade-off between recall and precision of all programs with common errors. . . . 81
6.4 Effectiveness metrics of all C++ programs with common errors. 82
6.5 Effectiveness metrics of all Java programs with common errors. 82
6.6 Trade-off between recall and precision of all software projects from SSI Schaefer

Automation GmbH. 83

B.1 Installing PMD via Eclipse: second step, open install new software dialog. 90
B.2 Installing PMD via Eclipse: third step, open add repository dialog. 90
B.3 Installing PMD via Eclipse: fourth step, define PMD repository. 91
B.4 Installing PMD via Eclipse: fifth step, select PMD plug-in. 91
B.5 Running PMD via Eclipse (PMD version: 4.0.17.v20180801-1551). 92
B.6 Step-by-step guide for installing PMD via SonarQube. 93
B.7 Installing SpotBugs via Eclipse: second step, open install new software dialog. . . 94
B.8 Installing SpotBugs via Eclipse: third step, open add repository dialog. 94
B.9 Installing SpotBugs via Eclipse: fourth step, define PMD repository. 95
B.10 Installing SpotBugs via Eclipse: fifth step, select SpotBugs plug-in. 95
B.11 Running SpotBugs via Eclipse (SpotBugs version: 3.1.11.r201901210915-d4a1331). 96
B.12 Step-by-step guide for installing SpotBugs via SonarQube. 97

C.1 Captured criteria from C++ program SimpleNullPointerBug by SonarQube 99
C.2 Captured criteria from C++ program SimpleNullPointerBug by SourceMeter . . . 99
C.3 Captured criteria from Java program SimpleNullPointerBug by SonarQube . . . 100
C.4 Captured criteria from Java program SimpleNullPointerBug by SourceMeter . . 100
C.5 SourceMeter errors during analysis of SSI Project-CA. 100

D.1 Effectiveness metrics of the bug challenge program Argument Printer 101

– 103 –

Effectiveness of Verification Tools

List of Tables

1.1 Captured criteria for ArgumentPrinter (Java) by software developers. 16
1.2 Captured criteria for ArgumentPrinter (Java). 16

3.3 Example values and results of effectiveness metrics (M-measure and F-measure). 30

4.1 Overview of all selected verification tools. 33

5.1 Statistics of source code ArgumentPrinter (Java). 45
5.2 Captured criteria for ArgumentPrinter (Java) by software developers. 45
5.3 Statistics of source code SimpleNullPointerBug (C++). 46
5.4 RATS classification of source code SimpleNullPointerBug (C++). 46
5.5 Cppcheck classification of source code SimpleNullPointerBug (C++). 47
5.6 SourceMeter classification of source code SimpleNullPointerBug (C++). 47
5.7 Infer classification of source code SimpleNullPointerBug (C++). 48
5.8 Statistics of source code SimpleNullPointerBug (C++). 50
5.9 Captured criteria for SimpleNullPointerBug (C++). 50
5.10 Effectiveness metrics for SimpleNullPointerBug (C++). 50
5.11 Statistics of source code IfNullPointerBug (C++). 51
5.12 Captured criteria for IfNullPointerBug (C++). 51
5.13 Effectiveness metrics for IfNullPointerBug (C++). 51
5.14 Statistics of source code SwitchNullPointerBug (C++). 52
5.15 Captured criteria for SwitchNullPointerBug (C++). 52
5.16 Effectiveness metrics for SwitchNullPointerBug (C++). 52
5.17 Statistics of source code ForNullPointerBug (C++). 53
5.18 Captured criteria for ForNullPointerBug (C++). 53
5.19 Effectiveness metrics for ForNullPointerBug (C++). 53
5.20 Statistics of source code WhileNullPointerBug (C++). 54
5.21 Captured criteria for WhileNullPointerBug (C++). 54
5.22 Effectiveness metrics for WhileNullPointerBug (C++). 54
5.23 Statistics of source code DoWhileNullPointerBug (C++). 55
5.24 Captured criteria for DoWhileNullPointerBug (C++). 55
5.25 Effectiveness metrics for DoWhileNullPointerBug (C++). 55
5.26 Statistics of source code PositiveOutOfBoundsBug (C++). 56
5.27 Captured criteria for PositiveOutOfBoundsBug (C++). 56
5.28 Effectiveness metrics for PositiveOutOfBoundsBug (C++). 56
5.29 Statistics of source code NegativeOutOfBoundsBug (C++). 57
5.30 Captured criteria for NegativeOutOfBoundsBug (C++). 57
5.31 Effectiveness metrics for NegativeOutOfBoundsBug (C++). 57
5.32 Statistics of source code OfByOneBug (C++). 58
5.33 Captured criteria for OfByOneBug (C++). 58
5.34 Effectiveness metrics for OfByOneBug (C++). 58
5.35 Statistics of source code ResourceLeakPartialClose (C++). 59
5.36 Captured criteria for ResourceLeakPartialClose (C++). 59
5.37 Effectiveness metrics for ResourceLeakPartialClose (C++). 59

– 104 –

List of Tables

5.38 Statistics of source code SimpleNullPointerBug (Java). 60
5.39 PMD classification of source code SimpleNullPointerBug (Java). 61
5.40 SpotBugs classification of source code SimpleNullPointerBug (Java). 61
5.41 SourceMeter classification of source code SimpleNullPointerBug (Java). 62
5.42 SonarQube classification of source code SimpleNullPointerBug (Java). 62
5.43 Infer classification of source code SimpleNullPointerBug (Java). 63
5.44 Statistics of source code SimpleNullPointerBug (Java). 65
5.45 Captured criteria for SimpleNullPointerBug (Java). 65
5.46 Effectiveness metrics for SimpleNullPointerBug (Java). 65
5.47 Statistics of source code IfNullPointerBug (Java). 66
5.48 Captured criteria for IfNullPointerBug (Java). 66
5.49 Effectiveness metrics for IfNullPointerBug (Java). 66
5.50 Statistics of source code SwitchNullPointerBug (Java). 67
5.51 Captured criteria for SwitchNullPointerBug (Java). 67
5.52 Effectiveness metrics for SwitchNullPointerBug (Java). 67
5.53 Statistics of source code ForNullPointerBug (Java). 68
5.54 Captured criteria for ForNullPointerBug (Java). 68
5.55 Effectiveness metrics for ForNullPointerBug (Java). 68
5.56 Statistics of source code WhileNullPointerBug (Java). 69
5.57 Captured criteria for WhileNullPointerBug (Java). 69
5.58 Effectiveness metrics for WhileNullPointerBug (Java). 69
5.59 Statistics of source code DoWhileNullPointerBug (Java). 70
5.60 Captured criteria for DoWhileNullPointerBug (Java). 70
5.61 Effectiveness metrics for DoWhileNullPointerBug (Java). 70
5.62 Statistics of source code PositiveOutOfBoundsBug (Java). 71
5.63 Captured criteria for PositiveOutOfBoundsBug (Java). 71
5.64 Effectiveness metrics for PositiveOutOfBoundsBug (Java). 71
5.65 Statistics of source code NegativeOutOfBoundsBug (Java). 72
5.66 Captured criteria for NegativeOutOfBoundsBug (Java). 72
5.67 Effectiveness metrics for NegativeOutOfBoundsBug (Java). 72
5.68 Statistics of source code OfByOneBug (Java). 73
5.69 Captured criteria for OfByOneBug (Java). 73
5.70 Effectiveness metrics for OfByOneBug (Java). 73
5.71 Statistics of source code ResourceLeakPartialClose (Java). 74
5.72 Captured criteria for ResourceLeakPartialClose (Java). 74
5.73 Effectiveness metrics for ResourceLeakPartialClose (Java). 74
5.74 Statistics of source code Project-CA (C++). 75
5.75 Captured criteria for Project-CA (C++). 75
5.76 Effectiveness metrics for Project-CA (C++). 75
5.77 Statistics of source code Project-JA (Java). 76
5.78 Captured criteria for Project-JA (Java). 76
5.79 Effectiveness metrics for Project-JA (Java). 76
5.80 Statistics of source code Project-JB (Java). 77
5.81 Captured criteria for Project-JB (Java). 77
5.82 Effectiveness metrics for Project-JB (Java). 77

– 105 –

Effectiveness of Verification Tools

Bibliography

[1] (). 11 of the most costly software errors in history [2018 update], [Online]. Available:
https://raygun.com/blog/costly-software-errors-history/ (visited on 01/15/2019).

[2] A static analyzer for Java, C, C++, and Objective-C: Facebook/infer, Facebook, Feb. 13,
2019. [Online]. Available: https://github.com/facebook/infer (visited on 02/13/2019).

[3] T. Anderson and B. Randell, Computer Systems Reliability. CUP Archive, Jul. 31, 1979,
504 pp., isbn: 978-0-521-22767-4.

[4] (). AutoCloseable (Java Platform SE 8), [Online]. Available: https://docs.oracle.
com/javase/8/docs/api/java/lang/AutoCloseable.html (visited on 01/27/2019).

[5] G. Chatzieleftheriou and P. Katsaros, “Test-Driving Static Analysis Tools in Search of
C Code Vulnerabilities,” in 2011 IEEE 35th Annual Computer Software and Applications
Conference Workshops, Jul. 2011, pp. 96–103. doi: 10.1109/COMPSACW.2011.26.

[6] N. Chinchor and S. Diego, “MUC-4 EVALUATION METRICS,” p. 8,

[7] (). Closeable (Java Platform SE 8), [Online]. Available: https://docs.oracle.com/
javase/8/docs/api/index.html?java/io/Closeable.html (visited on 01/27/2019).

[8] (). CWE - CWE-459: Incomplete Cleanup (3.2), [Online]. Available: https://cwe.mitre.
org/data/definitions/459.html (visited on 01/27/2019).

[9] A. Dasso and A. Funes, Verification, Validation and Testing in Software Engineering. Idea
Group Inc (IGI), 2007, 443 pp., isbn: 978-1-59140-851-2.

[10] B. D. Davia, C. D. Anderson, L. J. Merriman, and P. J. Niemeyer, “Code coverage test
selection,” U.S. Patent 7603660B2, Oct. 13, 2009. [Online]. Available: https://patents.
google.com/patent/US7603660B2/en (visited on 12/26/2018).

[11] F1 score, in Wikipedia, Page Version ID: 874064435, Dec. 16, 2018. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=874064435 (visited
on 01/30/2019).

[12] Facebook. (2018). Getting started with Infer, [Online]. Available: https://fbinfer.com/
docs/getting-started.html (visited on 11/05/2018).

[13] ——, (2018). Infer static analyzer, [Online]. Available: https://fbinfer.com/ (visited
on 11/05/2018).

[14] ——, (). Initial synchronization · facebook/infer@b898227, [Online]. Available: https://
github.com/facebook/infer/commit/b8982270f2423864c236ff8dcdbeb5cd82aa6002

(visited on 11/05/2018).

[15] M. S. Fisher, Software Verification and Validation: An Engineering and Scientific Ap-
proach. Springer Science & Business Media, Dec. 3, 2007, 178 pp., isbn: 978-0-387-47939-2.

[16] W. B. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures & Algorithms.
Prentice Hall, 1992, 520 pp., isbn: 978-0-13-463837-9.

[17] S. Garfinkel, “History’s Worst Software Bugs,” Wired, issn: 1059-1028. [Online]. Available:
https://www.wired.com/2005/11/historys- worst- software- bugs/ (visited on
01/15/2019).

[18] B. Homès, Fundamentals of Software Testing. London: ISTE [u.a.], 2012, 342 pp., OCLC:
796194421, isbn: 978-1-84821-324-1.

[19] P. C. Jorgensen, Software Testing, 4th Edition, 4th ed. Auerbach Publications, Apr. 8,
2016, 494 pp., isbn: 978-1-4987-8578-5.

– 106 –

https://raygun.com/blog/costly-software-errors-history/
https://github.com/facebook/infer
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://doi.org/10.1109/COMPSACW.2011.26
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/Closeable.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/Closeable.html
https://cwe.mitre.org/data/definitions/459.html
https://cwe.mitre.org/data/definitions/459.html
https://patents.google.com/patent/US7603660B2/en
https://patents.google.com/patent/US7603660B2/en
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=874064435
https://fbinfer.com/docs/getting-started.html
https://fbinfer.com/docs/getting-started.html
https://fbinfer.com/
https://github.com/facebook/infer/commit/b8982270f2423864c236ff8dcdbeb5cd82aa6002
https://github.com/facebook/infer/commit/b8982270f2423864c236ff8dcdbeb5cd82aa6002
https://www.wired.com/2005/11/historys-worst-software-bugs/

Bibliography

[20] F. Long, D. Mohindra, and R. C. Seacord, The CERT Oracle Secure Coding Standard for
Java. Addison-Wesley Professional, 2012, 739 pp., isbn: 978-0-321-80395-5.

[21] A. Loskutov, [FB-Discuss] Announcing SpotBugs as FindBugs successor, E-mail, Thu Sep
21 18:48:01 EDT 2017. [Online]. Available: https://mailman.cs.umd.edu/pipermail/
findbugs-discuss/2017-September/004383.html (visited on 02/13/2019).

[22] L. Milanesio, Learning Gerrit Code Review. Packt Publishing, Sep. 2, 2013, 144 pp., isbn:
978-1-78328-947-9.

[23] J. Moerman, “Evaluating the performance of open source static analysis tools,” p. 66,

[24] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 3rd Edition, 3rd ed.
John Wiley & Sons, Nov. 8, 2011, 240 pp., isbn: 978-1-118-13315-6.

[25] K. Pinedo. (Sep. 28, 2017). 4 of the Worst Computer Bugs in History, [Online]. Available:
https://blog.bugsnag.com/4- worst- computer- bugs- in- history/ (visited on
01/15/2019).

[26] PMD. (2018). PMD, [Online]. Available: https://pmd.github.io/#about (visited on
11/05/2018).

[27] i. QA. (May 2, 2018). History’s Most Expensive Software Bugs, [Online]. Available: https:
//www.ibeta.com/historys-most-expensive-software-bugs/ (visited on 01/15/2019).

[28] J. Renuka. (Sep. 9, 2016). Accuracy, Precision, Recall & F1 Score: Interpretation of Per-
formance Measures, [Online]. Available: https://blog.exsilio.com/all/accuracy-
precision-recall-f1-score-interpretation-of-performance-measures/ (visited
on 01/30/2019).

[29] C. J. V. Rijsbergen, Information Retrieval. Butterworths, Jan. 1, 1979, 228 pp., isbn:
978-0-408-70929-3.

[30] M. Selivanov. (). Buggy Java Code: The Top 10 Most Common Mistakes That Java Devel-
opers Make, [Online]. Available: https://www.toptal.com/java/top-10-most-common-
java-development-mistakes (visited on 01/16/2019).

[31] SpotBugs is FindBugs’ successor. A tool for static analysis to look for bugs in Java code.:
Spotbugs/spotbugs, spotbugs, Feb. 9, 2019. [Online]. Available: https://github.com/
spotbugs/spotbugs (visited on 02/10/2019).

[32] P. R. Srivastava and T.-h. Kim, “Application of Genetic Algorithm in Software Testing,”
International Journal of Software Engineering and Its Applications, vol. 3, p. 10, 2009.

[33] V. Vipindeep and P. Jalote, “List of Common Bugs and Programming Practices to avoid
them,” Mar. 30, 2005. [Online]. Available: https://pdfs.semanticscholar.org/8315/
73a1011102f2360c41743c09cda6c97d5354.pdf (visited on 01/16/2019).

[34] M. Weiglhofer, “Automated Software Conformance Testing,” p. 253, 2009. [Online]. Avail-
able: http://www.ist.tugraz.at/staff/weiglhofer/publications/pdf/dissertation
(visited on 01/16/2019).

[35] J. White. (Sep. 15, 2010). Top 10 Nasty Java Bugs, [Online]. Available: https://www.
intertech.com/Blog/top-10-nasty-java-bugs/ (visited on 01/16/2019).

– 107 –

https://mailman.cs.umd.edu/pipermail/findbugs-discuss/2017-September/004383.html
https://mailman.cs.umd.edu/pipermail/findbugs-discuss/2017-September/004383.html
https://blog.bugsnag.com/4-worst-computer-bugs-in-history/
https://pmd.github.io/#about
https://www.ibeta.com/historys-most-expensive-software-bugs/
https://www.ibeta.com/historys-most-expensive-software-bugs/
https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
https://www.toptal.com/java/top-10-most-common-java-development-mistakes
https://www.toptal.com/java/top-10-most-common-java-development-mistakes
https://github.com/spotbugs/spotbugs
https://github.com/spotbugs/spotbugs
https://pdfs.semanticscholar.org/8315/73a1011102f2360c41743c09cda6c97d5354.pdf
https://pdfs.semanticscholar.org/8315/73a1011102f2360c41743c09cda6c97d5354.pdf
http://www.ist.tugraz.at/staff/weiglhofer/publications/pdf/dissertation
https://www.intertech.com/Blog/top-10-nasty-java-bugs/
https://www.intertech.com/Blog/top-10-nasty-java-bugs/

	Acronyms
	Glossary
	Introduction
	Motivation
	Problem and Thesis Statement
	Organization

	Software Verification and Validation
	Definition Software Bug
	Verification Methods
	Testing
	Code Review
	Verification Tools

	Defining Effectiveness
	Captured Criteria
	Source Code Criteria
	Verification Tool Criteria

	Calculated Parameter
	Source Code Parameter
	Verification Tool Parameter

	Effectiveness Metrics

	Selected Verification Tools
	PMD
	SpotBugs (FindBugs)
	Infer
	SonarQube
	SourceMeter
	rats
	Cppcheck

	Case Study
	Detect Bug Challenge
	Programs with Common Errors in C++
	Null Pointer Bugs in C++
	Index Out of Bounds Bugs in C++
	Resource Bugs in C++

	Programs with Common Errors in Java
	Null Pointer Bugs in Java
	Index Out of Bounds Bugs in Java
	Resource Bugs in Java

	Sofware Projects from SSI Schaefer Automation GmbH
	Project-CA in C++
	Project-JA in Java
	Project-JB in Java
	Beta Releases

	Outcome
	Detect Bug Challenge
	Programs with Common Errors
	Sofware Projects from SSI Schaefer Automation GmbH

	Conclusion
	Appendices
	Appendix chp:intro Introduction
	sec:moti Motivation

	Appendix chp:tools Selected Verification Tools
	sec:PMD PMD
	sec:PMDgetstarted Get Started

	sec:SpotBugs SpotBugs (FindBugs)
	sec:SpotBugsgetstarted Get Started

	sec:Rats rats

	Appendix chp:casestudy Case Study
	Appendix chp:outcome Outcome
	sec:outcomebugchallenge Detect Bug Challenge

	List of Figures
	List of Tables
	Bibliography

