
S C I E N C E P A S S I O N T E C H N O L O G Y

Lorenzo Grassi

Cryptanalysis of AES-like Ciphers and Reviving Old Design
Ideas for New Constructions

PhD Thesis
Supervised by Christian Rechberger

Lorenzo Grassi

Cryptanalysis of AES-like Ciphers and Reviving Old
Design Ideas for New Constructions

Doctoral Thesis

to achieve the university degree of
Doktorin der technischen Wissenschaften

submitted to
Graz University of Technology

Advisor: Christian Rechberger

Assessors: Christian Rechberger
Graz, University of Technology (Austria)

Anne Canteaut
Inria, Paris (France)

Institute of Applied Information Processing and Communications
Graz University of Technology

Graz, April 2019

Abstract

In this thesis, I present the research I did with my co-authors on several aspects of symmetric
cryptography from September 2015 to April 2019, that is, when I was a PhD student at IAIK, Graz
University of Technology (Austria) under the supervision of Christian Rechberger. My research
has spanned two different areas of symmetric cryptography, that is the cryptanalysis of existing
symmetric ciphers and the design of new ones.

After a brief introduction to block ciphers and their cryptanalysis, the first part of this thesis
concerns my work on cryptanalysis of (round-reduced) AES (and AES-like ciphers). Usually, the
security of symmetric cryptographic primitives cannot be proven. Hence, an important part of
symmetric cryptography is cryptanalysis. AES is probably the most used and studied block cipher,
and it is not a surprise that there is a vast amount of cryptanalysis on AES. This part contains new
approaches to cryptanalyze round-reduced AES. As our main results, we present new properties for
up to 5-round AES which are independent of the secret key, improving over a 20 year old result on 4
rounds. Such properties can be used to set up secret- and open-key distinguishers for AES, or they
can serve as starting point for new key-recovery attacks. These techniques include: the multiple-of-n
distinguisher, mixture differential cryptanalysis and new truncated differential distinguishers based
on the mean and on the variance. Besides that, we present new key-recovery attacks on AES with a
single secret S-Box, and several observations and new results about open-key distinguishers on AES
in the single key-setting.

Modern cryptography developed many techniques that go well beyond solving traditional confi-
dentiality and authenticity problems in two-party communication. The second part of this thesis is
devoted to our work on new designs (strategy) of block ciphers and permutations which are targeted
for new applications in e.g. Multi-Party computation (MPC) and Zero-Knowledge applications.
This is motivated by recent progress in these new applications, where primitives from symmetric
cryptography are needed and where the cost metric is different from the tradition one in which
linear and non-linear computations have (almost) the same cost. Our first contribution here is the
development and analysis of a new cipher (called MiMC) with low multiplicative complexity, which
resembles a cipher proposed by Knudsen and Nyberg in 1995. As a generalization of such design
and of Partial-SPN ciphers in general, we propose a high-level design approach for cryptographic
(keyed/unkeyed) permutations – called Hades – addressing both needs of new applications that
emphasize the role of non-linear operations and at the same time with a focus on simple arguments
for its security. The design is mainly built up on the Wide-Trail design strategy for SP-Networks. At
the same time, the crucial feature of such design – that was so far not exploited in details – is of
moving from an even to a highly uneven distribution of non-linearity. For our concrete instantiations
of HadesMiMC, we borrow ideas from the pre-predecessor of AES, namely SHARK, an S-Box-based
design with a single large MDS layer covering the whole internal state, proposed by Rijmen, Daemen,
Preneel, Bosselaers and De Win in 1996.

v

Contents

Abstract v

Contents xi

1. Introduction 1

2. Preliminary 9

2.1. Block Cipher . 9

2.1.1. Security Notion . 9

2.2. Block Cipher - Design . 10

2.2.1. Substitution-Permutation Networks and Feistel Construction 11

2.3. Block Cipher - Attack Scenario . 13

2.3.1. Attack Construction . 14

2.3.2. “Academic” Attacks . 14

2.4. Design Challenges . 15

2.5. Brief Introduction to (Cryptography) Permutations 18

2.6. Brief Introduction to Hash Functions . 18

2.6.1. Secure Hash Function . 19

2.6.2. Design – Sponge Construction . 19

2.7. Preliminary - Probabilistic Theory . 20

I. Cryptanalysis of AES 23

3. Advanced Encryption Standard (AES) 25

3.1. AES . 25

3.1.1. Description of AES . 25

3.1.2. Key-Schedule . 26

3.2. The Wide Trail Strategy . 27

3.2.1. Differential Cryptanalysis . 27

3.2.2. Linear Cryptanalysis . 30

3.2.3. The Wide Trail Design Strategy . 31

3.3. Existing Cryptanalysis of AES . 33

3.3.1. Integral Attack . 34

3.3.2. Truncated Differential Attack . 36

3.3.3. Impossible Differential Attack . 37

3.3.4. Meet-in-the-Middle Attacks . 38

3.3.5. Interpolation and Algebraic Attacks . 39

3.3.6. Higher-Order Differential . 40

3.3.7. Link among different Cryptanalytic Tools . 43

3.3.8. Boomerang and Yoyo Attacks . 43

3.3.9. “Low-Data” and Polytopic Attacks . 45

3.3.10. Related-Key Attacks . 46

4. Subspace Trail Cryptanalysis 47

4.1. Subspace Trail Cryptanalysis . 48

4.1.1. Invariant Subspace Cryptanalysis . 48

vii

Contents

4.1.2. Subspace Trail Cryptanalysis . 49

4.1.3. Weak-Key Subspace Trails . 51

4.2. Subspace Cryptanalysis for AES . 52

4.2.1. Subspaces for AES . 53

4.2.2. Subspace Trails of AES . 54

4.2.3. Intersecting AES Subspaces . 55

4.3. Truncated Distinguishers for AES . 56

4.3.1. Truncated Differential for 2-round AES . 56

4.3.2. Truncated Differential for 3-round AES . 57

4.3.3. (Impossible) Truncated Differential for 4-round AES 58

4.4. Weak-Key Invariant Subspace and Subspace Trails for AES 58

4.4.1. Identical Round Keys and Weak Round Constants 59

4.4.2. Key-Schedule based on Permutation of the Byte Positions 60

4.4.3. AES Key-Schedule . 60

4.4.4. Weak-key subspace trail of AES . 62

4.5. Weak-Key Truncated Differential for round-reduced AES 63

4.6. Generalization of Truncated Differential: Moments of a Probabilistic Distribution . . 64

4.6.1. Probabilistic Distributions . 64

4.6.2. First Results on round-reduced AES . 64

4.6.3. Final Remark: the Pairs of Texts are not Independent! 65

5. 5-round AES: Probabilistic Distribution 67

5.1. “Multiple-of-8” Property . 68

5.1.1. Proof . 68

5.1.2. “Multiple-of-8” Secret-Key Distinguisher . 71

5.2. Probabilistic Distribution for 5-round AES . 73

5.2.1. Sketch of the Proof . 75

5.2.2. About the “Uniform Distribution of Solutions of eq. (5.5)” 76

5.2.3. Comparison between the Prob. Distribution of 5-round AES and of a Random
Permutation . 78

5.3. Proof of Theorem 5 – Mean of the Probabilistic Distribution of 5-round AES 79

5.3.1. Remarks – On the Requirement that the MixColumns matrix is MDS 85

5.3.2. Generic Result on the Average Number of Collisions 85

5.4. Proof of Theorem 5 – Variance – and of Lemma 5 86

5.4.1. Proof – Variance of the Prob. Distribution for 5-round AES 86

5.4.2. Proof of Lemma 5 . 87

5.5. Relation among Multiple-of-8, Mean and Variance 88

5.6. Practical Results on AES . 90

5.6.1. 5-round AES defined over (F2n)4×4 . 90

5.6.2. Practical Verification on 4-bit AES . 91

5.7. Truncated Differential Distinguishers for 5-round AES 93

5.7.1. Truncated Differential Distinguisher based on the Variance 93

5.7.2. Useful Approximation for the Prob. Distribution for 5-round AES 94

5.7.3. Truncated Differential Distinguisher based on the Mean 95

5.8. Open Problem - 5-round Truncated Distinguisher for Generic AES-like Ciphers . . . 97

5.9. Key-Recovery Attacks on 5-round AES . 100

5.9.1. Generic Strategy . 101

5.9.2. Multiple-of-n Key-Recovery Attack . 103

5.9.3. Truncated Diff. Attack based on the Mean 104

5.9.4. Truncated Diff. Attack based on the Variance 105

viii

Contents

6. Mixture Differential Cryptanalysis 107
6.1. Preview . 107

6.1.1. Mixture Differential Cryptanalysis . 107
6.1.2. Probabilistic Mixture Differential Cryptanalysis 109
6.1.3. Key-Recovery Attacks . 110

6.2. New 4-round Secret-Key Distinguisher for AES . 110
6.2.1. Mixture Differential Distinguisher for 4-round AES 110
6.2.2. Comparison with Other 4-round Secret-Key Distinguishers 113

6.3. New Key-Recovery Attack on 5-round AES . 115
6.3.1. Data and Computational Costs . 118
6.3.2. Practical Verification . 119
6.3.3. Improved Key-Recovery Attack by Bar-On et al. (Crypto 2018) 120

6.4. A new 5-round Secret-Key Distinguisher for AES . 120
6.4.1. Intersections of Subspaces and Useful Probabilities 120
6.4.2. 5-round Probabilistic Mixture Differential Secret-Key Distinguisher 123
6.4.3. Data and Computational Complexity . 126
6.4.4. Practical Verification on small scale AES . 129

6.5. Key-Recovery Attack on 6 rounds of AES-128 . 131

7. AES with a Single Secret S-Box 135
7.1. New Attacks on AES with a single Secret S-Box . 137

7.1.1. Idea of the Attack . 137
7.1.2. Equal coefficients in MixColumns Matrix . 138
7.1.3. A More Generic Strategy . 140

7.2. Truncated Diff. Attacks up to 4-round AES with a Single Secret S-Box 142
7.2.1. Truncated Differential Attack on 3 rounds of AES with Secret S-Box 142
7.2.2. Integral Attack on 3 Rounds of AES with Secret S-Box 143
7.2.3. Truncated Differential Attack on 4-round AES with a single Secret S-Box . . 144

7.3. Impossible Differential Attack on 5-round of AES with a single Secret S-Box 147
7.3.1. Idea of the Attack using Equal Coefficients of MC 147
7.3.2. Attack using Zero XOR-sum of some Coefficients of MC 148
7.3.3. Data Complexity and Computational Cost 150

7.4. Multiple-of-n Attack on 5-round AES with a secret S-Box 151
7.4.1. Attack using Equal Coefficients of MC . 151
7.4.2. The Attack using Zero XOR-Sum of some Coefficients of MC 154

8. Open-Key Distinguishers for AES 157
8.1. “Weak” Known-Key Distinguisher . 158

8.1.1. The Known-Key Distinguisher Scenario . 160
8.1.2. Open Problem - How to Formally Define the “Weak Known-Key” Distinguisher?161

8.2. Known-Key Distinguishers for AES . 164
8.2.1. 7- and 8-Round Known-Key Distinguisher . 164
8.2.2. Multiple Limited-Birthday 8-Round Known-Key Distinguisher 165

8.3. Gilbert’s Known-Key Distinguisher for 10-round AES 165
8.3.1. Uniform Distribution 8-round Known-Key Distinguisher 165
8.3.2. Extension to 10 Rounds of AES . 168
8.3.3. Statistical Integral Distinguisher with Multiple Structures 170

8.4. Revisiting Gilbert’s Distinguisher: is it a “Valid” Model? 170
8.4.1. 10-round Distinguisher based on the Truncated Differential Trails 171
8.4.2. 12-round Distinguishers . 173
8.4.3. On the Validity of Gilbert’s Known-Key Distinguisher 175

ix

Contents

8.5. Chosen-Key Distinguisher . 176

8.5.1. Chosen-Key Distinguishers for AES . 177

8.5.2. New Chosen-Key Distinguishers for AES in the Single-Key Setting 177

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round chosen-key distinguisher for
AES . 178

8.6.1. Weak-key “Multiple-of-n” property . 179

8.6.2. 9-round Chosen-Key Distinguisher for AES-128 182

8.6.3. Achieving the “Simultaneous Multiple-of-n” Property Generically 183

8.6.4. Chosen-key distinguisher for 10-round AES-128 186

8.7. Chosen-Key Distinguishers for 11-round AES-192 and (full) 14-round AES-256 . . . 188

8.7.1. Chosen-Key Distinguisher for 11-round AES-192 188

8.7.2. Chosen-Key Distinguisher for (full) AES-256 189

9. Open Problems - Cryptanalysis of AES 191

II. Novel Designs: MiMC and its Generalizations 195

10.MiMC 197

10.1. The MiMC Primitives . 199

10.1.1. The Block Cipher MiMC . 199

10.1.2. The Hash Function – MiMCHash . 200

10.2. Security Analysis . 201

10.2.1. Interpolation Attack . 201

10.2.2. GCD Attack . 202

10.2.3. Algebraic Degree and Higher-Order Differentials 202

10.2.4. Statistical and Other Attacks . 203

10.2.5. Hash-Specific Security Considerations . 203

10.3. Variants . 204

10.3.1. MiMC over Prime Fields . 204

10.3.2. Different Round Functions . 204

10.4. Application . 207

10.4.1. SNARKs Applications . 207

10.4.2. MPC Applications . 208

10.4.3. Other Applications . 209

11.Feistel MiMC and GMiMC 211

11.1. Description of Feistel and Generalized MiMC . 211

11.1.1. Feistel MiMC . 212

11.1.2. The Block Cipher GMiMC . 212

11.1.3. Hash Function . 215

11.2. Security Analysis . 215

11.3. Security Analysis – GMiMC instantiated over Fp . 217

11.3.1. Algebraic Attacks . 217

11.3.2. Statistical Attacks . 224

11.4. Security Analysis – GMiMC instantiated over F2n in the Low-Data Attacks 227

11.5. Parameter-Space Exploration . 230

11.5.1. MPC/SNARK/PQ Signature Applications . 231

11.6. Applications . 235

11.6.1. MPC Applications . 235

x

Contents

11.6.2. SNARKs Applications . 236
11.6.3. Post-Quantum Signature Applications . 237
11.6.4. Conclusion . 237

12.Hades Strategy and HadesMiMC 239
12.1. Introduction and Motivations . 239
12.2. Description of the Hades Strategy and HadesMiMC 242

12.2.1. Hades Strategy . 242
12.2.2. The Block Cipher HadesMiMC . 244

12.3. Security Analysis . 247
12.3.1. Main Points of Our Cryptanalysis Results . 248
12.3.2. Security Analysis - Statistical Attacks . 250
12.3.3. Security Analysis - Algebraic Attacks . 254
12.3.4. Low-Data Scenario (HadesMiMC instantiated over F2n) 261

12.4. Number of Rounds Needed for Security . 262
12.4.1. Minimize “Number of S-Boxes” – HadesMiMC over Fp 263
12.4.2. Minimize “Number of S-Boxes × Field Size” 266
12.4.3. Concrete Instantiations of HadesMiMC . 266

12.5. MPC and Post-Quantum Signature Applications . 266
12.5.1. MPC Experiments . 267
12.5.2. Post-Quantum Signatures from Symmetric-Key Primitives 268

13.Open Problems – MiMC and its Generalizations 271

References 273

Affidavit 293

xi

1
Introduction

Cryptography or cryptology (from Ancient Greek: kryptós “hidden, secret” and graphein “to write”,
or -logia “study” respectively) is the branch of science concerned on developing methods that enable
secure communication over insecure channels.

Classically, a communication can be considered secure if it satisfies (at least) one of the following
three characteristics: confidentiality, integrity and authenticity. Confidentiality refers to the impossi-
bility of a stranger to obtain any meaningful information from the communication that she intercepts.
Integrity describes the assurance that the information has not been modified during transmission.
Authenticity is the ability to prove the source of a certain information.

In the first part of this thesis, we mainly focus on the problem regarding confidentiality. To provide
it, the idea is to convert ordinary information (called “plaintext”) into unintelligible text (called
“ciphertext”). The method or algorithm that does such procedure is called a cipher. Using a cipher, a
sender can encrypt information and send the encrypted information to a recipient. The recipient can
then again use the cipher to decrypt and receive the original information. The detailed operation of
a cipher is controlled both by the algorithm and in each instance by a secret “key”.

To set up a confidential communication, it is possible to use symmetric cryptography and/or
asymmetric (or public) one. In the first (and older) case, the same key is used for both encryption
and decryption. This is in contrast to public key cryptography, where different but related keys are
used for encryption and decryption.

Here we will concentrate on symmetric ciphers, in particular on block ciphers. Roughly speaking,
a block cipher is a family of permutations indexed by a key. The size of such a key determines the
resilience of the cipher to the most basic attack: brute-force. It consists simply in checking all possible
keys until the correct one is found. Even if this attack works for every possible cipher (independently
of its details), other attacks can be potentially set up as well. Exploiting the mathematical details
of the cipher, it can indeed be possible to set up attacks which are more competitive in term of
computational cost, but which usually require more data. The branch of cryptography that evaluates
the security of (symmetric) schemes and primitives is called cryptanalysis. Since the security of a
symmetric scheme can not be mathematical proven, cryptanalysis is never finished, and every year
new attack, techniques and scenarios are proposed.

Besides confidentiality, integrity and authenticity, new goals of cryptography have recently emerged,
in which block ciphers can play a central role. In the second part of this thesis, we mainly focus on
the design of cryptographic (keyed/unkeyed) permutations for several applications, like Multi-Party
Computation (MPC) – where the goal is of creating methods for parties to jointly compute a function
over their inputs while keeping those inputs private, Zero-Knowledge proof – where a prover can prove
that she knows a certain information to a verifier, without communicating any other information
other than the fact that she knows it, and many others.

Contributions and Overview of the Thesis

This thesis contains a collection of publications which treat various aspects of block cipher security.

In Part I, we analyze the security of AES (Advanced Encryption Standard) [DR02b], probably
the most used and studied block cipher. As main results, we propose new cryptanalysis techniques

1

1. Introduction

(which are general enough to be applied to any AES-like cipher) and we show new proprieties and
attacks on round-reduced AES.

In Part II, we develop new design strategies for block ciphers. This is motivated by recent progress
in practical applications of secure Multi-Party Computation (MPC), Zero-Knowledge (ZK) proofs
and Post-Quantum (PQ) Signature schemes, where primitives from symmetric cryptography are
needed and where the cost metric is different from the tradition one in which linear and non-linear
computations have (almost) the same cost (roughly speaking, linear computations are – compared
to non-linear operations – essentially free).

Part I: Cryptanalysis of AES

Cryptanalysis. Block ciphers are certainly among the most important cryptographic primitives.
Their design and analysis are well advanced, and with today’s knowledge designing a secure block
cipher is a problem that is largely considered solved.

Since it is not possible to prove mathematically the security of a symmetric scheme, the security
of symmetric cipher is always security against specific attacks. The number of available attacks
has increased significantly ever since the introduction of linear [Mat93; Mat94] and differential
cryptanalysis [BS90; BS91; BS93] in the early 1990. Besides the numerous variations of linear and
differential attacks (e.g. truncated differentials [Knu94], impossible differentials [BBS99; Knu98], and
differential-linear cryptanalysis [LH94; BLN14; BLN17] to name only a few), other attacks are based
on algebraic properties (as the interpolation attack [JK97]) or exploit some structural properties (as
the integral attack [DKR97; KW02], and its recent generalization, the division property [Tod15b]).
The consequence of this is that, even if a cipher is today considered secure, it can be potentially
broken in the future by e.g. new cryptanalysis techniques. A recent and concrete example of this
is the case of MISTY1 [Mat97], a block cipher designed in 1995 by Mitsuru Matsui and others for
Mitsubishi Electric and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. Even
if it was designed based on the theory of provable security against differential and linear attacks, at
CRYPTO 2015 Todo presented the first key-recovery attack on full MISTY1 [Tod15a; Tod17], based
on the division property technique proposed by him some time before at EUROCRYPT 2015.

Another important aspect to keep in mind is that the attacker model is regularly changing. With
the introduction of statistical attacks, especially linear and differential cryptanalysis, the attacker
was suddenly assumed to be able to retrieve, or even choose, large amounts of plaintext/ciphertext
pairs. Later, in the related-key setting, the attacker became even more powerful and was assumed to
be able to choose not only plaintexts but also ask for the encryption of chosen messages under a key
that is related to the unknown secret key. Finally, in the open-key model, the attacker either knows
the key or has the ability to choose the key herself.

While the practical impact of such models is often debatable, they actually might become
meaningful when the block cipher is used as a building block for other primitives, in particular for
the construction of hash-functions. Moreover, even if those considerations do not pose practical
attacks, they still provide very useful insights and observations that strengthen our understanding of
block ciphers

Cryptanalysis of AES. The Advanced Encryption Standard (AES) [DR02b] is the best known
and most widely used secret key cryptosystem, and determining its security is one of the most
important problems in cryptanalysis. Since no known attack can break the full AES significantly
faster than via exhaustive search, researchers had concentrated on attacks which can break reduced
round versions of AES. While such attacks do not pose any practical threat to the AES, they give
new insights in the cipher that is probably responsible for the largest fraction of encrypted data
worldwide.

Such attacks are important for several reasons. First of all, they enable us to assess the remaining
security margin of AES, defined by the ratio between the number of rounds which can be successfully

2

attacked and the number of rounds in the full AES. In addition, there are many proposals for using
reduced round AES (and especially its 4 or 5 rounds versions) as components in larger schemes,
and thus successful cryptanalysis of these variants can be used to attack those schemes. Only to
give some examples, such proposals include Simpira [GM16], ZORRO [GGNS13], LED [GPPR11],
Haraka [KLMR16], and AES-PRF [MN17] among many others.

Finally, new cryptanalysis techniques can enable us to develop new attack strategies which may
become increasingly potent with additional improvements. In most of the cases, it took several years -
and a series of subsequent improvements - from the invention of the technique until it was developed
into its current form. As a concrete example, consider the impossible differential cryptanalysis on
AES. When it was proposed in 2001 by Biham and Keller [BK01], the impossible differential attack
could attack (“only”) 5 rounds of AES and it was not competitive with respect to others attacks, as
the integral one. It took approximately 6 years before that attack was extended and set up against
7-round AES-128 [Pha04], becoming one of the few attacks on such number of rounds. Finally, only
recently Boura et al. [BLNS18] improved it into its best currently known variant which breaks
7-round AES with an overall complexity of about 2107.

Cryptanalysis of AES - Our Contribution. Rouglhy speaking, in the last recent years crypt-
analysis has mainly focused on maximizing the number of rounds that can be broken without
exhausting the full codebook and key space. The most successful attacks often become de-facto
standard methods of cryptanalysis for a particular block cipher. In many cases, this process often
leads to attacks marginally close to that of pure brute force.

Here we consider a different point of view. Instead of focusing/improving already existing attacks,
we try to propose new methods of cryptanalysis. Even if such new methods can only break or
distinguish a number of rounds that is smaller than the ones already present in the literature
and/or even if such methods can be less competitive than existing attacks, such new directions in
cryptanalysis can be interesting from a research point of view in order to better understand the
ciphers that are in used. Moreover, we can not exclude a priori that, when such methods reached
their full potential, they can beat the existing attacks.

First of all, in Chapter 4, we introduce the “subspace trail notation”, as a generalization of
the invariant subspace attack [LAAZ11; LMR15]. While invariant subspace cryptanalysis relies
on iterative subspace structures, our analysis is concerned with trails of different subspaces. With
this more generic treatment of subspaces, the resulting method is as such a potentially more
powerful attack vector. Interestingly, a strong relation exists between subspace trails and (impossible)
truncated differential cryptanalysis. In other words, subspace trail turns out to be an alternative
notation that can be exploited to formally describe several attacks in the literature. While an
alternative representation of a cipher can obviously be regarded in itself neither as a design nor as a
cryptanalysis result, we remark that the simplicity of a new representation of a cipher can play a
significant heuristic role in the investigation of distinguishers and key-recovery attacks. Here we also
present “weak-key subspace trails” for AES, that is subspace trails that hold for a class of weak-keys
only. They will be the starting point in order to set up chosen-key distinguishers on AES.

In Chapter 5, we propose a precise theoretical analysis of truncated differentials for 5-round AES.
Since the development of cryptanalysis of AES and AES-like constructions in the late 1990s, the set
of inputs (or a subset of it) which differ only in one diagonal has special importance. It appears in
various (truncated) differential, integral, and impossible differential attacks, among others. Here,
given a diagonal set 232 plaintexts which differ only in one diagonal, we study the probabilistic
distribution of the number of different pairs of ciphertexts that lie in certain subspaces after 5 rounds
of AES - denoted as “number of collisions” in the following. For the first time, we are able to show
that independently of the secret key;

• the number of collisions is always a multiple of 8 with prob. 1;

3

1. Introduction

• the number of collisions is on average (a little) bigger compared to the case in which the
ciphertexts are generated by a random permutation;

• besides the mean, also the variance of such a distribution is (much) higher than for a random
permutation.

To show and prove these, we have developed new theoretical approaches. Practical implementations
and verification confirm our analysis.

Such results can be exploited to set up new secret-key distinguishers - e.g. the “multiple-of-n”
distinguisher and the first truncated differential distinguisher based on the variance, besides new
key-recovery attacks. We remark that these are the first secret-key distinguishers on 5-round AES
which are independent of the secret key, improving over a 20 year old result on 4 rounds. However,
we start to point out that several problems that concern these new results are still open for future
research.

At first it was not clear whether the “multiple-of-8” property/distinguisher could at all lead to
attacks on AES which are competitive with respect to previously known results. In Chapter 6,
we partially resolve this question, by developing a new type of distinguishers and attacks - called
“mixture differential cryptanalysis” - on round-reduced AES-like ciphers, a way to translate the
(complex) “multiple-of-8” 5-round distinguisher into a simpler and more convenient one (though, on
a smaller number of rounds). Given a pair of chosen plaintexts, the idea is to construct new pairs of
plaintexts by mixing the generating variables of the original pair of plaintexts. Here we theoretically
prove that for 4-round AES the corresponding ciphertexts of the original pair of plaintexts lie
in a particular subspace if and only if the corresponding pairs of ciphertexts of the new pairs of
plaintexts have the same property. As a slight result, we exploit this fact to set up the first (but
non-competitive) key-recovery attack on 6-round AES based on a secret-key distinguisher on 5-round
AES which is independent of the secret key.

In Chapter 7, we analyze the security of the cipher that is derived from the AES by replacing
the S-Box with a secret 8-bit S-Box, while keeping everything else unchanged. This problem has
been already considered in the literature - see [BS01; BS10] and [TKKL15]. In those papers, the
proposed attacks consist of two steps: first the attacker determines the secret S-Box up to additive
constants, then she uses this knowledge and applies key-recovery attacks present in the literature to
derive the whitening key. Here we show that another strategy is also possible. Exploiting particular
properties of the MixColumns matrix, we show that the attacker is able to deduce information about
the whitening key without discovering and/or exploiting any information of the (secret) S-Box.

Finally, in Chapter 8 we study the security of AES in the open-key model, that is in a scenario in
which the adversary is assumed to have a full control over the key. Such attacks makes sense in a hash
setting, since in practice the attacker has full access and control over the internal computations1. The
most recent approach to construct a known-key distinguisher for AES has been proposed by Gilbert
at ASIACRYPT 2014 [Gil14]. Such a distinguisher considers 8 core rounds, and extends it by one
round in each direction, covering full AES-128. As a first contribution, we disprove both conjectures
made there to support such result, e.g. showing that - under the assumptions made in [Gil14] -
known-key distinguishers on 12 rounds of AES are also possible. As second contribution, we present
the first chosen-key distinguisher on full AES-128 and on full AES-256 in the single-key setting,
by exploiting and combining our “multiple-of-8” distinguisher and the AES invariant subspace
trail. These largely improve all the AES chosen-key distinguishers present in the literature, usually
proposed in the related-key setting.

Publication List. This first part includes contributions published as part of the following papers
at FSE/ToSC 2017, EUROCRYPT 2017, CT-RSA 2018 and Tosc/FSE 2019, as :

1We recall that block ciphers and hash functions are very close cryptographic primitives, as the latter can be built
from the former and vice-versa.

4

L. Grassi, C. Rechberger, and S. Rønjom. Subspace Trail Cryptanalysis and its Applications
to AES. In: IACR Trans. Symmetric Cryptol. 2016.2 (2016), pp. 192–225. doi: 10.13154/tosc.
v2016.i2.192-225.

L. Grassi, C. Rechberger, and S. Rønjom. A New Structural-Differential Property of 5-Round
AES. In: Advances in Cryptology – EUROCRYPT 2017. Ed. by J. Coron and J. B. Nielsen.
Vol. 10211. LNCS. Springer, 2017, pp. 289–317. doi: 10.1007/978-3-319-56614-6_10.

L. Grassi and C. Rechberger. New and Old Limits for AES Known-Key Distinguishers.
Cryptology ePrint Archive, Report 2017/255. In Submission. 2017. url: https://eprint.iacr.
org/2017/255.

L. Grassi. MixColumns Properties and Attacks on (Round-Reduced) AES with a Single Secret
S-Box. In: Topics in Cryptology - CT-RSA 2018. Ed. by N. P. Smart. Vol. 10808. LNCS.
Springer, 2018, pp. 243–263. doi: 10.1007/978-3-319-76953-0_13.

L. Grassi. Mixture Differential Cryptanalysis: a New Approach to Distinguishers and Attacks on
round-reduced AES. In: IACR Transaction on Symmetric Cryptology 2018.2 (2018), pp. 133–160.
doi: 10.13154/tosc.v2018.i2.133-160. url: https://doi.org/10.13154/tosc.v2018.i2.133-
160.

L. Grassi. Mixture Differential Cryptanalysis and Structural Truncated Differential Attacks on
round-reduced AES. Cryptology ePrint Archive, Report 2017/832. https://eprint.iacr.org/
2017/832. 2017.

L. Grassi and C. Rechberger. New Rigorous Analysis of Truncated Differentials for 5-round
AES. Cryptology ePrint Archive, Report 2018/182. https://eprint.iacr.org/2018/182. 2018.

L. Grassi, G. Leander, C. Rechberger, C. Tezcan, and F. Wiemer. Weak-Key Subspace Trails
and Applications to AES. In Submission. 2018.

Part II: Novel Designs: MiMC and its Generalizations

Modern cryptography developed many techniques that go well beyond solving traditional confiden-
tiality and authenticity problems in two-party communication. Among them, we mention Secure
Multi-Party Computation (MPC), Zero-Knowledge proofs (ZK), Fully Homomorphic Encryption
(FHE), and many others. In various applications of these schemes, part of the circuit or function
that is being evaluated is actually a cryptographic primitive such as a Pseudo-Random Function
(PRF), a symmetric encryption scheme or a collision resistant function. In particular, in many cases
the performances of such a schemes depend on the underlying symmetric cryptographic primitive.
In this second part of the Thesis, we propose new designs which aim to improve the performances
of a large class of applications where the total number of field multiplications in the underlying
cryptographic primitive poses the largest performance bottleneck.

In Chapter 10, we present “MiMC”2, a block cipher that resembles PURE . Such design was
initially introduced by Knudsen and Nyberg [NK95] from 1995, which was aimed to demonstrate
ways to achieve provable security against the emerging differential and linear attacks, using a small
number of rounds (smaller than, say, DES). Few years later, such proposal was broken by a new
technique called interpolation attack [JK97], and basically it was never re-considered – a recent
standard textbook [KR11, Sect. 8.4] explicitly considers such constructions as “not serious, for
various reasons”.

We pick up this work from almost 20 years ago, and study if a simplified version of PURE with
a much higher number of rounds can make this design secure. The cubic mapping is used as the

2The name MiMC is due to the goal of “Minimize the Multiplicative Complexity”.

5

https://doi.org/10.13154/tosc.v2016.i2.192-225
https://doi.org/10.13154/tosc.v2016.i2.192-225
https://doi.org/10.1007/978-3-319-56614-6_10
https://eprint.iacr.org/2017/255
https://eprint.iacr.org/2017/255
https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://eprint.iacr.org/2017/832
https://eprint.iacr.org/2017/832
https://eprint.iacr.org/2018/182

1. Introduction

main component there and is also the main component of MiMC. It turns out, perhaps surprisingly,
that the required much higher number of rounds (in the order of 100s instead of 10 or less) is very
competitive when it comes to the new application areas of symmetric cryptography that motivate
this work. MiMC - which can be instantiated both in GF (p) and in GF (2n) - can be used for
encryption as well as for collision-resistant cryptographic hashing based on a sponge construction.

One drawback of MiMC is that the decryption process is much more expensive than the encryption
one. Moreover, MiMC does not outperform LowMC in PQ-Signature schemes applications. For this
reason, we started considering possible variants of MiMC.

In Chapter 11, we present “Generalized Feistel MiMC” [AGP+18] (or GMiMC for simplicity), a
first variant of MiMC obtained by simply turning the MiMC Even-Mansour cipher into a Feistel
one, for which the encryption process and the decryption one are identical expect for the order of
the round keys and round constants. On the other hand, one inconvenience of such a design is the
possibility to set up competitive Meet-in-the-Middle attacks, which requires (approximately) to
double the number of rounds with respect to MiMC in order to guarantee the same security. As
a result, it seems that Feistel MiMC can not be competitive for the applications that we have in
mind (where the goal is to minimize the number of multiplications), and that the only advantage
of the Feistel approach seems to be that decryption is as cheap as an encryption computation. If
this is true for Feistel MiMC, our current analysis suggest that this conclusion does not hold for
Generalized Feistel constructions [Nyb96]. In particular, our analysis suggests that for unbalanced
Feistel schemes with an expanding round function we do not have to increase the number of rounds
further for t > 2 branches – up to a certain finite limit t ≤ t? – compared to t = 2 branches. From
the practical point of view, GMiMC improves the performance of MiMC in several applications, like
PQ-signature schemes, MPC and ZK protocols.

In Chapter 12, we propose another possible generalization of MiMC called HadesMiMC [GLR+19],
constructed using our new Hades strategy. Hades strategy is a high-level design approach for
cryptographic permutations and keyed permutations addressing needs of new applications that
emphasize the role of multiplications in such designs, with a focus on simple arguments for its
security. It builds up on the Wide-Trail design strategy for SP-Networks, which proved already
very useful for a plethora of cipher and permutation designs as it helps to argue security against
important classes of cryptanalytic attacks such as differential or linear attacks in a clean and simple
way. Our approach “Hades” additionally allows for such arguments against important classes of
algebraic attacks that are of much more concern when multiplications are to be minimized in a design.
An important reason why this approach simultaneously enjoys elegant arguments against a larger
number of classes of attacks and at the same time results in the most competitive instantiations to
date is that we use a freedom in the design space that was so far not exploited: moving from an even
to a highly uneven distribution of non-linearity, and hence cryptographic strength, of the rounds.

For our concrete instantiations HadesMiMC for the PQ digital signature scheme and MPC
use-cases, we borrow ideas from the pre-predecessor of Rijndael/AES, namely SHARK [RDP+96],
an S-Box based design with a single large MDS layer covering the whole internal state.

Remark. Since I did not work on the practical applications/implementations of MiMC, GMiMC
and HadesMiMC, I limit myself to recall in this Thesis the main results and I refer to the corresponding
papers for a detailed discussion on such topic.

Publication List. This second part includes contributions published as part of following paper at
Asiacrypt 2016 as:

M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient Encryption
and Cryptographic Hashing with Minimal Multiplicative Complexity. In: Advances in Cryp-
tology – ASIACRYPT 2016. Ed. by J. H. Cheon and T. Takagi. Vol. 10031. LNCS. Springer,
2016, pp. 191–219. doi: 10.1007/978-3-662-53887-6_7.

6

https://doi.org/10.1007/978-3-662-53887-6_7

M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru, A. Roy, and
M. Schofnegger. Feistel Structures for MPC, and more. In Submission. 2018.

L. Grassi, R. Lueftenegger, S. Ramacher, C. Rechberger, D. Rotaru, and M. Schofnegger. On
a Generalization of Substitution-Permutation Networks: The HADES Design Strategy. In
Submission. 2019.

7

2
Preliminary

In this chapter, we introduce the concept of block cipher, cryptography permutation and hash
function, discuss the different notions of security, and take a look at some basic design strategies.

Remark. The way in which this chapter and part of the next one are presented is (largely) inspired
by the introduction of the PhD Thesis of Tyge Tiessen [Tie16b] and of Maria Eichlseder [Eic18]. We
emphasize that the only goal of this chapter is to recall (basic) concepts useful for the topics discussed
in this thesis. For a complete introduction on symmetric cryptography, we recommend the textbooks
[MVO96] and [KR11].

2.1. Block Cipher

A block cipher is a family of bijective functions Enck parameterized by a key k ∈ K (where |K| <∞)
that map a finite set of messages P to a finite set of encrypted messages C:

Enck(·) : P 7→ C.

The input to a block cipher is called the plaintext, the output is called the ciphertext. These are
usually denoted as p and c. Accordingly P and C are called the plaintext space (or message space)
and the ciphertext space. K is called the key space. The function Enck is called the encryption
function, its inverse Deck := Enc−1

k is called the decryption function.

Usually P, C, and K have a group structure e.g. (Fq)t where q = 2n or q = p prime. Since the most
common choice is the binary representation (F2n)t, their elements can be associated with bit-strings
of length n · t.

2.1.1. Security Notion

Roughly speaking, a cipher can be considered secure if an adversary is not able to deduce any
information in a faster way than a brute force attack. In such a brute force attack (or exhaustive
search attack), the attacker simply tries out all keys, until she recovers the right one.

Note that such attack is always possible if the attacker knows the details of the block cipher. To
thwart this type of attack one could simply try to keep the block cipher itself a secret. While this
has been done in the past, modern cryptosystem are designed following Kerkhoffs’ Principle:

Kerkhoffs’ Principle [Ker83]. The security of a cipher should solely rely on the secrecy of the key
and never on the secrecy of the encryption method.

The motivation behind this principle - which is nowadays generally accepted - is very simple. If a
cipher is public, cryptographers are free to study it and assess its quality. This allows us to discard
bad algorithms and to increase our confidence in the good ones.

9

2. Preliminary

Attack Models. In this context, an attack against a cryptosystem is a method which recovers
some information about the plaintext and/or about the key. For being able to attack the cipher,
an attacker adversary needs access to some data. Depending on them, it is common to define four
different main types of attack scenarios:

• Ciphertext-only attacks: The adversary is only given access to a number of ciphertexts.

• Known-plaintext attacks: The adversary is given access to a number of corresponding plaintext-
ciphertext pairs.

• Chosen-plaintext attacks: The adversary can choose one set of plaintexts for which she will be
given the corresponding ciphertexts.

• Adaptively chosen-plaintext attacks: The adversary has access to the encryption of any plaintext
of her choice during the whole attack.

Clearly each attack type gives the adversary more power than the previous attack types. While
especially the chosen-plaintexts attacks might seem to be giving the adversary unrealistically much
access, there are practical scenarios in which attacks of this type are possible. Furthermore, as
security against chosen-plaintext attacks is a strong security notion, a cipher that is secure in this
model is also secure in the weaker ones.

Data and Computational Costs. Since block ciphers are finite objects, they can always be
attacked just given enough time and data (e.g. it is for example always possible to find the key
by exhaustive search). To make meaningful statements about the security of a block cipher, it is
hence necessary to state what the maximally allowed time and the maximally allowed amount of
data are. The natural upper bound for the allowed time - the so-called time complexity - is the
time needed to exhaustively try out the whole key space, while the natural upper bound for the
maximally allowed knowledge of data - the so-called data complexity - is the whole codebook, i.e. all
possible plaintext-ciphertext pairs.

2.2. Block Cipher - Design

A block cipher can be seen as a set of 2k permutations on n-bit words which are indexed by the
key k. Ideally we want a block cipher to randomly draw 2k permutations out of the possible 2n!
permutations on n-bit words. Unfortunately, in practice such a random block cipher would be very
difficult to implement in an efficient way for any meaningful key and block sizes. Indeed, for a block
cipher that works on n-bit words, one needs a key of size at least k where

2k ≥ 2n! ≈
√

2π · 2n · 2n·2n · e−2n → k ≥ 2n · (n− log2 e) +
1 + log2(π · n)

2
,

that is k = O(2n · n). For used values of n like 64, 128 or 256, this means respectively a key size of at
least 270, 2135 or 2264 bits.

To overcome this problem, most block ciphers are constructed combining simple building blocks
in order to get a complex function, keeping in mind that it must be difficult for an adversary to find
any relationship between plaintext, ciphertext and the secret key faster than via a brute force attack.
One of the first constructions of this kind - the product cipher - was described by Shannon in [Sha49]

An iterative block cipher is an algorithm which maps a plaintext of fixed size n into a fixed size
ciphertext n using a key K, by repeatedly applying a round transformation f i(·) to the plaintext

EK(·) = f rkr(·) ◦ ... ◦ f1
k1(·).

10

2.2. Block Cipher - Design

The round keys k1, k2, ..., kr are derived from K by a so called key schedule. The intermediate
outputs of the function are called intermediate states. If the round functions are all equal we
also refer to this as an iterated block cipher.

Even if any round transformation fk(·) is potentially possible, the largely choice is

fk(·) = k ? f̂(·),

where f̂(·) is a function (usually a permutation) which is independent of the key, and where ? is an
operation in the structural group (Fq)t.

Given such a construction, the job of a designer is to determine (1st) suitable round functions and
(2nd) the number of rounds needed to achieve security. Potentially, given any arbitrary non-linear
function, the corresponding iterative cipher can be secure by choosing a “largely enough” number of
rounds. The resulting performance, however, is of course unacceptable for many applications. The art
is to define a round function in such a way that the designer can claim with reasonably confidence
that a relatively limited number of rounds will provide the expected security level.

Due to a lack of any method to ensure that an efficient cipher design is secure against all possible
attacks, the best option of determining the number of rounds of a cipher is to ensure that the cipher
is secure against all known attacks. Quoting an article from Claude Shannon [Sha49]:

It is not enough merely to be sure none of the standard methods of cryptanalysis work - we
must be sure that no method whatever will break the system easily. This, in fact, has been the
weakness of many systems; designed to resist all the known methods of solution, they later gave
rise to new cryptanalytic techniques which rendered them vulnerable to analysis.

2.2.1. Substitution-Permutation Networks and Feistel Construction

Substitution-Permutation Networks

One of the largest used construction for block cipher is Substitution Permutation Networks (SPNs).

Referring to the “product cipher” previously recalled, the round function f(·) is constructed by
combining two different operations: after splitting the whole message in smaller parts, a non-linear
layer on each part and a (cheap) linear mixing operator on the whole state. In more details:

Substitution Layer: in the substitution layer, the state is separated into smaller segments, usually
all of the same size. Each of the segments is then substituted independently of the other
segments according to a so-called S-Box (“S” as in substitution) which is simply a look-up
table. Depending on the design, the same S-Box might be used for all segments, or different
S-Boxes can be employed.

Permutation Layer: in the permutation layer operates on the entire state. As such it is desirable to
keep the complexity of this layer low to achieve an efficient implementation. Generally, the
permutation layer is defined by a linear or an affine transformation.

To mix a round key into the state, the most common technique is though to add a key of the same
length as the state to the state using either modular or exclusive-or addition. In this case, the
function fk(·) can be rewritten as

fk(x) = k ⊕ P ◦ S(x)

where an initial key addition is performed. A schematic representation of an SPN scheme is proposed
in Fig. 2.1.

1Acknowledgement. The source-code of Figure 2.1 – made by Jérémy Jean – has been copied from [Jea16b].

11

2. Preliminary

Figure 2.1.: A key-alternating Substitution-Permutation Networks (SPN)1

Feistel Construction

The basic idea underlying Feistel ciphers, also called Feistel networks, is similar to that of substitution-
permutation networks. The main difference with substitution-permutation networks is that Feistel
ciphers do not apply the complex transformations to all segments in parallel but apply the transfor-
mation only to a subset of segments each round.

In the classical Feistel construction, the state is split into two equally sized segments. The first
segment is sent through some transformation, usually called the (Feistel) round function, and then
mixed with the second segment via a commutative operation (e.g. a XOR-addition). The result of
this operation together with the original value of the first segment become the two input segments
of the next round - only with reversed roles. It follows that the function fk(·) can be rewritten as

fk
([
xL||xR

])
=
[
xR||xL ⊕ Fk

(
xR
)]

where x =
[
xL||xR

]
with |x| = |xL|+ |xR|. See Fig. 2.2 for a schematic of a Feistel network.

SPN versus Feistel construction

Each one of the constructions has some advantages and some disadvantages. First of all, the round
transformation of a Feistel scheme does not have to be invertible, giving the designer more options
to choose from. Furthermore, the decryption algorithm can easily be derived by changing the order
of the round keys. Also the computationally expensive round transformation are only applied to half

2Acknowledgement. The source-code of Figure 2.2 – made by Jérémy Jean – has been copied from [Jea16b].

12

2.3. Block Cipher - Attack Scenario

Figure 2.2.: A 3-round Feistel Network2

the state. But then, as only a part of the state undergoes a non-linear transformation at each round,
generally more rounds are needed to achieve security than in comparable SPN constructions.

2.3. Block Cipher - Attack Scenario

To define the security of a cipher, we need to both define the power and the goal that the attacker
tries to achieve. In the following, we briefly list a number of different possible attack goals:

Key-recovery attack: in a key-recovery attack, the attacker’s goal is to retrieve the key. Since it
is always possible to find key by exhaustive search, a key-recovery attack is considered to be
meaningful if it has a time complexity below that of a brute-force attack3.

Deduction attack: in a global deduction attack, the goal of the attacker is to find an efficient
method for decrypting ciphertexts. Note that this is a weaker attack goal, since it is potentially
possible to find such method without knowing anything about the key.

Distinguisher attack: in a distinguishing attack, the attacker is given access to both the cipher with
a uniformly randomly chosen key and to a function that has been chosen uniformly at random
from all invertible mappings from the plaintext space to the ciphertext space. The goal of the
attacker is then to determine which of the two is the cipher and which is the random function.

As we are going to show in the following, this kind of attack is not only of theoretical interest:
if the attacker can exploits a property which is independent of the secret key in order to set up
a distinguisher attack, then such a property can potentially become the starting point of a
key-recovery attack.

For completeness, we just mention that there exists a range of other types of adversaries and attack
goals that give rise to other interesting security notions.

Ideally, a (block) cipher can be considered secure if it behaves like an idealized block cipher :

An ideal cipher Π for a plaintext space P, a ciphertext space C and a key space K

Π(·, ·) : P× K 7→ C

is a family of functions indexed by k ∈ K where each function is chosen independently and
uniformly at random from all bijective P to C.

3However, it is principally possible for the designers of a cipher to explicitly state lower security claims, depending on
the applications - e.g. a low-data application.

13

2. Preliminary

An ideal cipher tries to capture the intuitive notion of what we would like a cipher to behave like. It
is important to note that the ideal cipher is not a block cipher, but it corresponds rather to the set of
all possible block ciphers (for given P, C and K) endowed with the uniform probability distribution.
This means that no concrete instantiation can ever be an ideal cipher: the best we can hope for is
thus that a good concrete design is indistinguishable from an ideal cipher.

2.3.1. Attack Construction

To construct an attack which can be executed faster than a brute-force attack, some weakness in the
cipher design needs to be exploited. One of the widely used strategy to set up a key-recovery attack
is by combining a “distinguishing attack” (which is independent of the secret key) and a “partial
key-guessing”.

A (secret-key) distinguisher is a property of the cipher that holds for many (potentially any) key
and would be highly improbable to hold for a random permutation. Assume that the distinguishing
property is determined from some of the input bits and some of the output bits of round s of the
cipher. Obviously, such output bits of round s of the cipher can be written as a function of the
output bits of rounds s+ r′ for each r′ ≥ 1 and of the key bits after. Thus, let’s assume that for a
particular number of rounds s+ r, such a function does not depend on all key bits. In such a case,
the attacker can then determine the value of these key bits by using exhaustive search only on them.
If this technique can successfully be applied, it allows to strongly reduce the time complexity to
determine the full key.

In more details, an attacker given access to the output bits of round r + s and the corresponding
input bits but not the intermediate bits, can now try all key bit combinations needed to determine
the intermediate state bits

plaintexts
Rs(·)−−−−−−−−→

distinguisher
“property”

R−r(·)←−−−−−−−−−−−−
attack: key-guessing

ciphertexts.

By discarding all those key bit combinations that do not give intermediate state bits for which the
distinguishing property holds, the attacker can reduce the possible key space, potentially to the
point of determining the key exactly.

In order to work, a crucial assumption – commonly known as the wrong-key randomization
hypothesis – is needed: the property at round s must be unlikely to hold if the output of round r + s
is partially decrypted with a wrong key bit guess. To be more concrete, let r = 1 for simplicity, and
let k and k′ respectively the secret and the guessed key. Given a ciphertext c = R1+s(p), the attacker
partial decrypt it using the guessed key, that is R−1(c ⊕ k′). Since c = R(t) ⊕ k = R(Rs(p)) ⊕ k,
the distinguisher property holds with prob. 1 if and only if k = k′ (in this case: R−1(c ⊕ k′) =
R−1(R(t)⊕ k ⊕ k′) = t). In all other cases k 6= k′, the text R−1(c⊕ k′) = R−1(R(t)⊕ k ⊕ k′) can
potentially assume any possible value. Here the wrong-key randomization hypothesis plays a crucial
role, since the key-recovery attacks work only if the distinguisher property does not hold (this allows
the attacker to distinguisher the secret key from all other candidates).

2.3.2. “Academic” Attacks

From a research point of view, a cipher is considered broken if a weakness in the cipher that can
be exploited with a complexity less than brute-force is found. Note that breaks might also require
unrealistic amounts of known or chosen plaintext or unrealistic amounts of storage. Simply put, a
break can just be a “certificated weakness”: evidence that the cipher does not perform as advertised.
In other words, in academic cryptography, a weakness or a break in a scheme is usually defined quite
conservatively: it might require impractical amounts of time, memory, or plaintexts.

Academic attacks are often against weakened versions of a cryptosystem, such as a block cipher
with some rounds removed. Almost all attacks become exponentially more difficult to execute as

14

2.4. Design Challenges

rounds are added to a cryptosystem, so it’s possible for the full cryptosystem to be strong even
though reduced-round variants are weak.

Attacks on “round-reduced” ciphers are important for several reasons. First of all, they enable us
to assess the remaining security margin of that cipher, defined by the ratio between the number of
rounds which can be successfully attacked and the number of rounds in the full cipher. More formally,
given a cipher with n rounds, if there exists a cryptanalysis attack against a reduced-round version
with n − k rounds, the cipher has an absolute security margin of k rounds, or a relative security
margin of k/n. The security margin provides a roughly estimation of the resistance of the cipher
against cryptanalysis. However, note that it says nothing about the likelihood of these advances in
cryptanalysis or about the resistance of the cipher against unknown attacks.

As second reason, attacks on round-reduced cipher enable us to develop new attack techniques
which may become increasingly potent with additional improvements. Finally, it is possible that
reduced round of particular ciphers (e.g. AES) have nice and well-studied properties that can be
favorably as components of larger designs/schemes. As a result, successful cryptanalysis of these
variants can be used to attack those schemes.

2.4. Design Challenges

Designing an efficient cipher is an open challenge. Depending on the particular application of a
cipher, several trade-off must be taken in consideration.

If the goal is to design a cipher which can be efficiently implemented both in software and in
hardware, traditionally it is a well accepted practice to have approximately the same number of
linear and non-linear building blocks4. On the other hand, this conclusion does not hold for other
applications, which include

• Lightweight Cryptography

• Specialized (block) Ciphers for Efficient Masking

• Specialized ciphers for Multi-Party Computation (MPC), Fully-Homomorphic Encryption
(FHE), Zero-Knowledge Proof (ZK), Post-Quantum Signature Schemes, ...

among others. Roughly speaking, in all these cases non-linear operations are usually much more
expensive than the linear ones. In the following, we limit ourselves to focus on the third application,
which is the only one targeting in this thesis.

Specialized Ciphers for Multi-Party Computation (MPC), Fully Homomorphic
Encryption (FHE), Zero-Knowledge Proof (ZK) and Post-Quantum Signature
Schemes

Modern cryptography developed many techniques that go well beyond solving traditional confi-
dentiality and authenticity problems in two-party communication. Examples of these are secure
multiparty computation (MPC), zero-knowledge proofs (ZK), fully homomorphic encryption (FHE)
and Post-Quantum (PQ) Signature Schemes.

While linear and non-linear building blocks have roughly similar costs in hardware and software
implementations, the situation is radically different when a block cipher is used in applications like
MPC, FHE, ZK and PQ signature schemes. In these cases, linear operations come almost for free,
whereas nonlinear operations that involve symmetric cryptographic operations and communication
between parties are very expenses. As a result, in the context of MPC, ZK, or FHE schemes, the
goal becomes to design ciphers which minimize the number of non-linear operations.

4Linear and non-linear building blocks have roughly similar costs in hardware and software implementations. In CMOS
hardware, the smallest linear gate (XOR) is about 2-3 times larger than the smallest non-linear gate (typically,
NAND).

15

2. Preliminary

Fully-Homomorphic Encryption

The purpose of homomorphic encryption is to allow computation on encrypted data. This means
that if a user has a function f and want to compute f(m1, ...,mn) for some inputs m1, ...,mn, he
can compute an equivalent function f ′ on encryptions of these inputs, c1, ..., cn, obtaining a result
which decrypts to f(m1, ...,mn)

f(m1, ...,mn) ≡ Dec
(
f ′ (Enc(m1), ..., Enc(mn))

)
.

To practically set up this process, in typical applications of homomorphic encryption, a plaintext
p is encrypted under a public key pk and the corresponding ciphertext c = HEpk(m) is sent to
some third-party evaluator. All known fully/somewhat homomorphic encryption schemes come with
significant, often prohibitive ciphertext expansion. To prevent the thousand-fold to million-fold
ciphertext expansion in (F)HE schemes, a form of compression is achieved using hybrid encryption.
Given a symmetric encryption scheme E, a random key k is picked and a much smaller ciphertext

c = (HEpk(k), Ek(m))

is sent. The third party then decompresses homomorphically into the original c = HEpk(m) using a
particular decryption circuit. One downside of this approach is that application-specific operations
on the ciphertext become more costly, as the decryption circuit of the cipher always needs to be
evaluated as well.

Currently, all known candidates for FHE schemes use noise-based cryptography. Each operation on
the homomorphically encrypted ciphertext incurs an increase in the noise. To prevent bootstrapping
(necessary to reduce the noise), one needs to choose the FHE parameters generously enough to
accommodate all additional noise from the decryption circuit. This is linked to the homomorphic
capacity of a concrete instantiation of an FHE scheme, i.e. the number of operations on the ciphertext
before an expensive bootstrapping operation is needed.

In many schemes, the noise level grows fast with the multiplicative depth of the circuit [BGV12;
CLT14], that is in all somewhat and fully homomorphic encryption schemes known so far XOR
(resp. addition) gates are considerably cheaper than AND (resp. multiplication) gates. Hence,
symmetric encryption scheme proposals aiming for these types of applications minimize first of
all the ANDdepth. Moreover, XOR gates do not increase the noise much, whereas AND gates
increase the noise considerably [HS14]. Hence, as in somewhat homomorphic encryption schemes the
parameters must be chosen such that the noise of the result is low enough to permit decryption,
the overall complexity depends on the ANDdepth. Finally, while the cost of the application-specific
homomorphic operations only depends on the ANDdepth of the cipher, the cost of evaluating the
additional decryption circuit itself primarily depends on the number of multiplications.

In conclusion, both the ANDdepth and the number of AND computations are the most relevant
metrics for this application.

Applications of Secure Multi-Party Computation Protocols

Secure multi-party computation (MPC) allows a set of parties to jointly evaluate a function on
private inputs, with the guarantee that no party can learn anything more than the output of the
function. In the last decade, MPC has moved from a theoretical pursuit to a very practical field, as
protocols have become more efficient and many implementations been been developed.

For many years now, the de facto benchmark for MPC systems has been secure computation
of the AES function [PSSW09; DK10; DKL+12]. Although the actual choice of this function was
originally as a test-bed for comparing protocols, it has often been justified as “useful”, e.g. in the
case in which an application needs to evaluate a symmetric encryption scheme with a secret-shared
key. However, if this is indeed required, then there is no particular reason why AES should be the
best choice to work with MPC, compared with other PRFs or symmetric ciphers.

16

2.4. Design Challenges

There are various classes of practically efficient secure multiparty computation (MPC) protocols for
securely evaluating Boolean circuits where XOR gates are considerably cheaper (no communication,
less computation) than AND gates, e.g. protocols based on Yao’s garbled circuits [Yao86]. These
MPC protocols have a constant number of rounds – roughly speaking, the complexity of each round
is linear in the ANDdepth of the evaluated circuit, and their total amount of communication depends
on the “Multiplicative Complexity” of the circuit (each AND gate requires communication).

In conclusion, both the ANDdepth and the number of AND computations are the most relevant
metrics for these MPC protocols.

Zero-Knowledge Proofs

Zero-knowledge proofs [GMR85; GMR89] are protocols that enable a prover to convince a verifier
about the truth of a statement without leaking any information but the fact that the statement is
true. In the case of non-interactive zero-knowledge (NIZK) proofs introduced by Blum, Feldman and
Micali in [BFM88], the prover outputs just one message called a proof, which convinces the verifier
of the truth of the statement. The central properties of (non-interactive) zero-knowledge proofs are
completeness, soundness and zero-knowledge.

In several zero-knowledge proof protocols XOR relations can be proven for free and the complexity
essentially depends on the number of AND gates of the relation to be proven. Examples for such
protocols are presented in [BC86; BDP00] and more recently in [JKO13], where only one evaluation
of a garbled circuit [Yao86] is required and that can make use of the free XOR technique [KS08].

SNARKs. A special kind of Succinct Non-interactive Argument of Knowledge [BCG+13] - or
SNARK - was proposed in 2014 to build Zerocash [BCG+14], a digital currency similar to Bitcoin
but achieving anonymity. A zk-SNARK is a non-interactive zero-knowledge proof of knowledge that
is succinct, i.e. for which proofs are very short and easy to verify. The main idea of the SNARK
is to provide a circuit whose satisfiability enables a verifier to check correctness of an underlying
computation.

ZKBoo. ZKBoo [GMO16] is a proposal for practically efficient zero-knowledge arguments especially
adapted for Boolean (e.g. arithmetic and binary) circuits. It is based on the “MPC-in-the-head”
approach to zero-knowledge of Ishai et al. [IKOS09] (IKOS)5. The possibility to use this strategy to
construct ZK protocols with good asymptotic properties has been showed in [IKOS09] for the first
time, while in [GMO16] authors show how to exploit it to set up practically efficient ZK protocols.

A recent improvement in this topic includes Ligaro [AHIV17], a simple zero-knowledge argument
protocol whose communication complexity is proportional to the square-root of the verification circuit
size. Relevant for this thesis, this protocol can be based on any collision-resistant hash function. For
completeness, we mention that both ZKBoo and Ligaro can be instantiated with MPC protocols in
the preprocessing model, which allows shorter proofs (see [KKW18] for details).

Post-Quantum Signature Scheme

A possible way to construct a post-quantum signature scheme without relying on structured hardness
assumptions involves symmetric key primitives. This is due to the fact that symmetric key primitives
are conjectured to remain secure in the advent of sufficiently powerful quantum computers, while
it is a well known fact that such quantum computers would break all discrete log and RSA based
public key cryptosystems [Sho99].

Fish and Picnic [CDG+17] are new classes of digital signature schemes which derive their security
entirely from the security of symmetric-key primitives, have extremely small key pairs, and are highly

5Since the details of such approach are not used in the following, we refer to [IKOS09] for more information.

17

2. Preliminary

parameterizable. The construction is based on a one-way function f(·), where for the secret key x,
the image y = f(x) is published as the public key. A signature on a message is then obtained from
a non-interactive zero-knowledge proof of the relation y = f(x), that incorporates the message in
the challenge generation. This proof uses an improved ZKBoo [GMO16] – called ZKB++ – and the
Fiat-Shamir transform [FS86] or the Unruh transform [Unr15] to make the zero-knowledge proof
non-interactive.

Privacy-Preserving and Functional Signatures based on Symmetric-Key Primitives.
Continuing the work on signatures, authors in [DRS18b] present a construction of a ring signature
scheme solely relying on symmetric-key primitives. There the statement is extended to prove an
authentication path in a Merkle tree in zero-knowledge, hence collision-resistant hash functions with
low multiplicative complexity are of interest for this application.

Besides [DRS18b], ring signature schemes are also considered in [KKW18] and in [BEF18]. Here
authors construct group signature schemes built only from symmetric primitives, such as hash
functions and PRFs, widely regarded as the safest primitives for post-quantum security. Finally, we
mention [DRS18a], where authors present a double-authentication preventing signatures (DAPS)
based on symmetric primitives. DAPS are a variant of digital signatures used to sign messages of
the form m = (a, p) with a being the so called address and p the payload.

2.5. Brief Introduction to (Cryptography) Permutations

A cryptographic permutation P is a bijective function

P : T→ T

(usually T ≡ (Fq)
t for q = 2n or q = p prime) such that P (·) (and, if required, its inverse P−1) is

easy to evaluate.

Due to the lack of a key, it is not easy to define a clear security notion for unkeyed cryptographic
permutations. To be considered secure for cryptographic applications, P must not permit any structural
distinguisher. This includes any property which is not expected for a randomly chosen permutation.

Probably, the simplest way to construct a cryptography permutation is to consider a block cipher
with a fixed (random) key K̂

P (·) ≡ EncK̂(·).

In such a case, P (·) can be considered secure if and only if EncK̂(·) is a secure cipher in the
secret-/known-/chosen-key model, as described in detail in the following.

2.6. Brief Introduction to Hash Functions

A cryptographic hash function H is an efficient deterministic algorithm, which maps messages of
arbitrary length to strings of fixed length

H : M 7→ H,

e.g. M ≡ F2N where N “→” ∞ and H ≡ F2n for a fixed n.

The output of a hash function is called the hash value, hash, digest or finger- print of a message.
Every possible message is associated with such a value which can then be used as a short identifier
or representative for this message. Cryptographic hash functions are used to provide integrity and
authenticity in a large number of applications and protocols.

18

2.6. Brief Introduction to Hash Functions

2.6.1. Secure Hash Function

For a secure cryptographic hash function it should be difficult to find a message for a given hash
value and it should also be difficult to find two messages which result in the same hash value, a
collision6. More formally, a secure hash function must satisfy the following requirements:

Preimage Resistance: For a given output y it should be computationally infeasible to find an input
x such that y = H(x).

Second Preimage Resistance: For a given x and y = H(x) it should be computationally infeasible
to find x′ 6= x such that H(x′) = y.

Collision Resistance: It should be computationally infeasible to find two distinct inputs x, x′ such
that H(x) = H(x′).

Note that collision resistance implies second preimage resistance.
An ideal hash function should behave like a random oracle, that is a function which outputs a

random value for each new input. If an input value is repeated it outputs the previously used value.
No practical hash function can implement a random oracle, as the description would be too large.
Nonetheless, a good hash function should be difficult to distinguish from such a random oracle.

Generic Attacks. Similar to block ciphers, there exist also generic attacks on hash functions,
which allow an attacker to find preimages or collisions disregarding the underlying structure. When
treating the hash function as a black box the only relevant parameter for these attacks is the length
of the hash value n.

An attacker can always find a (second) preimage by trying out many inputs and checking whether
they give the desired hash value. The attack is likely to succeeds after trying approximately 2n

different inputs. Finding a collision for a hash function can be done more efficiently. Using the so
called birthday paradox, a generic attack requires approximately 2n/2 different inputs to succeed.

2.6.2. Design – Sponge Construction

There are several ways to design a secure hash function, including the the Merkle-Damg̊ard (MD)
construction and the Sponge construction. For the goal of this thesis, we limit ourselves to recall the
second one.

The sponge construction (Fig. 2.3) has been introduced by Bertoni, Daemen, Peeters and Van
Assche [BDPA07; BDPA08] as a theoretical model for hash functions. Sponge construction is based on
a wide random functions/permutations, and allows inputting (“absorbing” in sponge terminology) any
amount of data, and outputting (“squeezing”) any amount of data, while acting as a pseudorandom
function with regard to all previous inputs. Keccak/SHA-3 [BDPA11] is based on such a construction.

A sponge construction is composed of two components:

• a state memory – denoted by S – containing n bits;

• a function f(·) : {0, 1}b → {0, 1}b that transforms the state memory;

• a padding function P .

The state memory is divided into two sections: one of size r (the “bitrate”) and the remaining part
of size c (the “capacity”), such that n = r + c.

A sponge function operates as follows:

6As the input domain of a hash function is always significant larger than the output domain this collisions are
unavoidable.

7Acknowledgement. Figure 2.3 – made by Keccak Team – has been copied from https: // keccak. team/ figures.
html .

19

https://keccak.team/figures.html
https://keccak.team/figures.html

2. Preliminary

= +

/

Figure 2.3.: A Sponge Hash Function7

Initialization: the state S is initialized to zero:

S0 = (0, ..., 0︸ ︷︷ ︸
r bits

‖ 0, ..., 0︸ ︷︷ ︸
c bits

) ≡ (Sr‖Sc);

Absorbing: after transforming the input M into blocks of r bits (the initial message is padded using
function P if necessary), that is M = (M1‖...‖Mm), the state is “absorbed” (in the sponge
metaphor)

∀i = 1, ...,m : Si = P (Sri−1 ⊕Mi‖Sci−1);

Squeezing: the sponge function output Z = (Z1‖Z2‖...) is now ready to be produced (”squeezed
out”) as follows

∀i ≥ 1 : Sm+i = P (Sm+i−1), Zi = Srm+i.

As proved by Bertoni et al.[BDPA08], when the internal permutation f(·) is modeled as a randomly
chosen permutation, the corresponding Sponge function is indifferentiable from a random oracle
up to 2c/2 calls to f(·). This is due to the fact that distinguishing this Sponge construction from a
random oracle requires the detection of inner collisions in the capacity part. As a result, a sponge
with a capacity of c provides respectively 2c/2 collision and 2c/2 (second) preimage resistance.

2.7. Preliminary - Probabilistic Theory

Finally, we also recall some useful concepts regarding probabilistic theory.

Let n ∈ N and let f(·) : Z 7→ Z be a discrete function. The n-th moment - denoted by µn - of the
discrete function f(·) about a value c ∈ R is defined as

µn =
∑
x∈Z

(x− c)n · f(x)

Similar definition can be given for real-valued continuous function f(·) of a real variable.

If f(·) is a discrete probability density function8, then the value of the sum above is called the n-th
moment of the probability distribution. In the following, we consider the normalized n-th central

8Remember that a discrete probability density function f(·) : Z 7→ Z satisfies the following properties: (1st)
0 ≤ f(x) ≤ 1 for each x and (2nd)

∑
x∈Z f(x) = 1.

20

2.7. Preliminary - Probabilistic Theory

moment for n ≥ 3, defined as the n-th central moment divided by
(
µ2

)n/2
:

µn =
1

µ2
·
∑
x∈Z

(x− µ1)n · f(x) ≡
∑

x∈Z(x− µ1)n · f(x)(∑
x∈Z(x− µ1)2 · f(x)

)n/2 ∀n ≥ 3,

where the constant c is defined as

c =

{
0 if n = 0

µ1 otherwise

Moreover, in the following we mainly focus on the first three central moment:

• the first (raw) moment of a random variable X is the mean, usually denoted by µ = E[X];

• the second central moment is the variance, usually denoted by σ2. The positive square root of

the variance is the standard deviation σ ≡
(
E
[
(x− µ)2

]) 1
2 ;

• the third central moment is the measure of the lopsidedness of the distribution; any symmetric
distribution has a third central moment equal to zero. The normalized third central moment
is called the skewness, often denoted by γ. A distribution that is skewed to the left (the tail
of the distribution is longer on the left) will have a negative skewness. A distribution that is
skewed to the right (the tail of the distribution is longer on the right), will have a positive
skewness.

21

Part I.

Cryptanalysis of AES

23

3
Advanced Encryption Standard (AES)

In this chapter, we will first recall AES, and we give an overview of different types of attack elements
and how they can be combined to form more complex attacks.

3.1. AES

The Advanced Encryption Standard (AES) [DR98; DR00; DR02b], also known by its original name
Rijndael, is a specification for the encryption of electronic data established by the U.S. National
Institute of Standards and Technology (NIST) in 2001. AES is a subset of the Rijndael cipher
developed by two Belgian cryptographers, Vincent Rijmen and Joan Daemen, who submitted a
proposal to NIST during the AES selection process.

3.1.1. Description of AES

AES [DR02b] is a Substitution-Permutation network that supports key sizes of 128, 192 and 256
bits. The 128-bit plaintext initializes the internal state as a 4× 4 matrix of bytes

p0,0

p1,0

p2,0

p3,0

p0,1

p1,1

p2,1

p3,1

p0,2

p1,2

p2,2

p3,2

p0,3

p1,3

p2,3

p3,3

as values in the finite field GF(28) ≡ F256 defined using the irreducible polynomialX8+X4+X3+X+1,
that is GF (2)[X]/(X8 +X4 +X3 +X + 1). Depending on the version of AES, Nr rounds are applied
to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round
applies four operations to the state matrix:

• SubBytes - S-Box(·);

• ShiftRows - SR(·);

• MixColumns - MC(·);

• AddRoundKey - ARK(·).

One round of AES can be described as

R(·) = K ⊕MC ◦ SR ◦ S-Box(·).

In the first round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is (usually) omitted1.

1The choice to omit the final MixColumns operation allows to make the cipher and its inverse more similar in
structure.

25

3. Advanced Encryption Standard (AES)

The SubBytes Step. In the SubBytes step, each byte pi,j in the state matrix is replaced with
another one S-Box(pi,j) using an 8-bit substitution box, the Rijndael S-Box

∀i, j : pi,j 7→ S-Box(pi,j).

This operation provides the non-linearity in the cipher. Only one S-Box is used for all bytes, which
is derived from the multiplicative inverse over GF(28), known to have good non-linearity properties.
To avoid attacks based on simple algebraic properties, the S-Box is constructed by combining the
inverse function with an invertible affine transformation, that is S-Box(x) = M ⊕ x−1 ⊕ 0x63, where
M is a 28 × 28 binary invertible matrix and 0−1 := 0. The S-Box is also chosen to avoid any fixed
point.

The ShiftRows Step. The ShiftRows step operates on the rows of the state. It cyclically shifts
the bytes in each row by a certain offset. For AES, the r-th row is shifted of r to the left:

∀i, j : pi,j 7→ pi,j+i mod 4.

The importance of this step is to avoid that the columns are encrypted independently, in which case
AES degenerates into four independent block ciphers. In other words, the aim is to guarantee that,
given two bytes in the same column, they belong to different columns after this step.

The MixColumns Step. In the MixColumns step, the four bytes of each column of the state are
combined using an invertible linear transformation. The MixColumns function takes four bytes as
input and outputs four bytes, where each input byte affects all four output bytes:

∀j :


p0,j

p1,j

p2,j

p3,j

 7→


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

p0,j

p1,j

p2,j

p3,j


where each entry of the (fixed) matrix M is treated as element of GF(28)[X]. Together with ShiftRows,
MixColumns provides diffusion in the cipher.

The AddRoundKey Step. In the AddRoundKey step, the subkey is combined with the state.
For each round, a subkey is derived from the main key using Rijndael’s key schedule (each subkey
has the same size of the state). The subkey is added by combining each byte of the state with the
corresponding byte of the subkey using bitwise XOR:

∀i, j : pi,j 7→ pi,j ⊕Ki,j .

3.1.2. Key-Schedule

Key-Schedule for AES-128. The key schedule of AES-128 takes the user key and transforms it
into 11 subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 43], where each word of
W [·] consists of 4 bytes and where the first 4 words of W [·] are loaded with the user secret key. The
remaining words of W [·] are updated according to the following rule:

W [i][j] =

{
W [i][j − 4]⊕ S-Box(W [i+ 1][j − 1])⊕R[i][j/4] if j mod 4 = 0

W [i][j − 1]⊕W [i][j − 4] otherwise

where i = 0, 1, 2, 3, j = 4, . . . , 43 and R[·] is an array of predetermined constants3.

2Acknowledgement. The source-code of Figure 3.1 – made by Jérémy Jean – has been copied from [Jea16b].
3The round constants are defined in GF (28)[X] as R[0][1] = X, R[0][r] = X · R[0][r − 1] if r ≥ 2 and R[i][·] = 0 if
i 6= 0. In the following, let R[r] ≡ R[0][r].

26

3.2. The Wide Trail Strategy

Figure 3.1.: Essential structure of an AES round2

Key-Schedule for AES-192. The key schedule of AES-192 is similar to the one given for AES-
128. In this case, the subkey array is denoted by W [0, . . . , 51], where here the first 6 words of W [·]
are loaded with the user secret key. The remaining words of W [·] are updated according to the
following rule:

W [i][j] =

{
W [i][j − 6]⊕ S-Box(W [i+ 1][j − 1])⊕R[i][j/6] if j mod 6 = 0

W [i][j − 1]⊕W [i][j − 6] otherwise

where i = 0, 1, 2, 3, j = 6, . . . , 51 and R[·] is an array of predetermined constants.

Key-Schedule for AES-256. The case AES-256 is a little different from the previous cases. In
this case, the subkey array is denoted by W [0, . . . , 59], where here the first 8 words of W [·] are loaded
with the user secret key. The remaining words of W [·] are updated according to the following rule:

W [i][j] =


W [i][j − 8]⊕ S-Box(W [i+ 1][j − 1])⊕R[i][j/8] if j mod 8 = 0

W [i][j − 8]⊕ S-Box(W [i][j − 1]) if j mod 8 = 4

W [i][j − 1]⊕W [i][j − 8] otherwise

where i = 0, 1, 2, 3, j = 8, . . . , 59 and R[·] is an array of predetermined constants.

3.2. The Wide Trail Strategy

The strategy that has been used in the design of Rijndael, the block cipher which has been selected to
become the Advanced Encryption Standard (AES), is the “Wide Trail” strategy. This is an approach
for designing the round transformations of block ciphers that combine efficiency and resistance
against differential and linear cryptanalysis. In order to explain the wide trail strategy, we first recall
differential and linear cryptanalysis.

3.2.1. Differential Cryptanalysis

Differential cryptanalysis is one of the most effective and most versatile cryptanalytic techniques for
analyzing symmetric primitives. The approach was introduced by Biham and Shamir [BS90; BS91;
BS93], who exploited this technique in order to present the first attack faster than brute-force for
full-round DES [BS92]. After this pioneer and original work, many variants of such strategy have
been proposed in the literature. As a result, one of the main security requirements for any new
design is security against differential cryptanalysis.

Roughly speaking, given pairs of inputs with some fixed input difference, differential cryptanalysis
considers the probabilistic distribution of the corresponding output difference produced by the
(round-reduced) cryptographic primitive. If such probabilistic distribution differs from a uniform

27

3. Advanced Encryption Standard (AES)

distribution one, then the attacker can exploit such fact to set up an attack on the (round-reduced)
cipher.

Basic Concepts of Differential Cryptanalysis. As largely done in the literature, we assume
that the plaintexts space P and the ciphertexts space C are equal to a Galois Field P ≡ C ≡ (Fn2 ,⊕).

In differential cryptanalysis, one considers a pair of texts x and y, and evaluates their difference4

∆ = x ⊕ y. Given an input difference ∆I , the idea is to study the probabilistic distribution of
the corresponding output difference ∆O after a certain number of rounds r. Note that, since each
round f(·) is composed by linear and by non-linear operations, a single input difference is usually
mapped in many different output differences, that is f(x)⊕ f(x⊕∆I) is in general different from
f(y)⊕ f(y ⊕∆I) for x 6= y. Thus, in a natural way, one can define the probability of a differential
α→ β as

Prob
[
α→ β

]
=

∣∣{x ∈ Fn2 |f(x⊕ α)⊕ f(x) = β}
∣∣

|Fn2 |
=

∣∣{x ∈ Fn2 |f(x⊕ α)⊕ f(x) = β}
∣∣

2n

where | · | denotes the cardinality of the corresponding set. In the following, we limit ourselves to
recall that the maximum probability that f(·) maps an input difference α to an output difference β
for uniformly random x is defined as the maximum differential probability, denoted by

DPmax(f) := max
α 6=0,β

∣∣{x ∈ Fn2 |f(x⊕ α)⊕ f(x) = β}
∣∣

|Fn2 |

Since x ∈ Fn2 satisfies f(x⊕ α)⊕ f(x) = β if and only if x⊕ α satisfies it, the maximum differential
probability is always greater or equal to 2/|Fn2 |. Functions with DPmax(f) = 2/|Fn2 | are called almost
perfect nonlinear (APN) and have been proposed for designing ciphers resistant against differential
cryptanalysis [NK92; NK95].

Before going on, we recall that that DPmax(f) = DPmax(f−1), that is a function f and its inverse
f−1 have the same DPmax (see e.g. [Nyb94] for details).

Classical Differential Cryptanalysis

For a random function - and similarly for a random permutation, the probability of any given
differential with non-zero input difference is very low, on average 1/|Fn2 |. If for a cipher E(·) there
exists a differential of probability significantly different from 1/|Fn2 |, then an attacker can potentially
use it to distinguish the cipher from a random function (or permutation), or to set up a key-recovery
attack.

Even if it is theoretically possible to compute the probability of any differential for a product
cipher E(·), from a practical points of view (at least) two problems arise:

1. How to determine the differential probability when exhaustively trying all text pairs is compu-
tationally infeasible?

2. How to determine the differential probability of functions with secret parameters (e.g. block
ciphers with secret keys)?

Differential Characteristic. For simplicity, let us consider only the case of an iterative cipher
E : Fn2 7→ Fn2 :

E(·) = Rr ◦ ... ◦R2 ◦R1(·),
where the commutative operation defined on it is simply the XOR-sum ⊕. In this case, it is natural
to consider intermediate differences taken between the single rounds:

4If one works on a different field/group, then the difference must be evaluated w.r.t. the operation that defines such
field/group.

28

3.2. The Wide Trail Strategy

An r + 1-tuple of differences (α0, α1, ..., αr) with differences in Fn2

α0
R1(·)−−−→ α1

R2(·)−−−→ ...
Rr(·)−−−→ αr

is called a differential characteristic.

As we just mentioned, computing the probability of a single differential trail is in general infeasible
for real ciphers.

The common way to compute such probability is to consider the product of the single round
transition. The first problem that one encounters in such a task is that (1st) the probability of such
differential characteristic depends on the concrete values of the initial pair of texts (that is, x and
x⊕ α0) and that (2nd) the differences αi are in general not independent, since the round functions
Ri(·) are in general not independent. In other words, the probability of a single differential trail
(α0, α1, ..., αr) is given by

Probx,K
[
(α0, α1, ..., αr)

]
=

r∏
i=1

ProbK
[
αi
∣∣αi−1, ..., α0, x

]
,

where K denotes the secret key. While the assumptions of round independence and of independence
of the initial value x are clearly not satisfied in general, experiments suggest that the approximation

r∏
i=1

ProbK
[
αi
∣∣αi−1, ..., α0, x

]
'

r∏
i=1

ProbK
[
αi
∣∣αi−1

]
holds quite well in many practical cases. More formally, this corresponds to the assumption of
“Markov ciphers” [LMM91] and of “independence of the rounds”. A common approach is to consider
these two assumptions, and to assume that this model is close to reality.

A second problem that one encounters in such a task is that the round function R(·) depends on
keys which are in general secret. To handle this problem and similar to before, the idea is simply to
assume that the probability of a differential characteristic is independent of the value of the secret
key. In other words, this assumption – known as “stochastic equivalence hypothesis” – states that
the probability of a differential characteristic behave (almost) in the same way for all keys.

Using these two assumptions, the probability of a differential characteristic can be computed using
the formula:

Probx,K
[
(α0, α1, ..., αr)

]
'

r∏
i=1

Probx̂,K̂
[
αi−1

Ri(·)−−−→ αi
]
,

where x̂ and K̂ are randomly fixed values. For simplicity, in the following let

Probx̂,K̂
[
αi−1

Ri(·)−−−→ αi
]
≡ Prob

[
αi−1

Ri(·)−−−→ αi
]
.

From Differential Characteristic to Differential Trail. In most attacks, the attacker has
no information about intermediate states of the cipher, so it is in general infeasible to exploit
the previous formula. Therefore for an attack we are actually interested in the probability of the
differential trail

α0
E(·)−−→ αr : α0

R1(·)−−−→ ?
R2(·)−−−→ ...

Rr−1(·)−−−−−→ ?
Rr(·)−−−→ αr

where the intermediate differences are not fixed. Thus, the probability of a differential (α0, αr) over
an encryption function E : Fn2 7→ Fn2 (where E(·) = Rr ◦ ...◦R2 ◦R1(·)) is the sum of the probabilities
of all differential trails (α0, α1, ..., αr) that it contains:

Prob
[
α0

E(·)−−→ αr
]
=

∑
α1,...,αr−1

Prob
[
(α0, α1, ..., αr)

]
'

∑
α1,...,αr−1

r∏
i=1

Prob
[
αi−1

Ri(·)−−−→ αi
]

29

3. Advanced Encryption Standard (AES)

Obviously

Prob
[
(α0, α1, ..., αr)

]
≤ Prob

[
α0

E(·)−−→ αr
]
,

which means that a differential characteristic allows us to determine a lower bound on the probability
of a differential trail.

Key-Recovery Attack. If there now exists a differential α0 → αr over r rounds of a n-bit cipher
that has a probability p (much) larger than 2−n, we can use this differential to distinguish these
rounds from a random permutation in a chosen-plaintext attack.

Moreover, this distinguisher can be used to set up a key-recovery attack on r + s rounds. In more
details, given a set of sufficiently many pairs of plaintexts (pi, p

′
i ≡ pi ⊕ α0) for i = 0, ..., N , the

attacker asks for the corresponding ciphertexts (ci, c
′
i) after r + s rounds, guesses the last s sub-keys,

partially decrypts s rounds and compute the probabilistic distribution of the difference at round r:

(pi, p
′
i ≡ pi⊕α0)

Rr(·)−−−−−−−−−−−→
diff. Distinguisher

probability p that “Rr(pi)⊕Rr(p′i) = αr” > 2−n
R−s(·)←−−−−−−−

key-guessing
(ci, c

′
i).

Obviously, the probability of αr is equal to p for the right key guessing. Due to the “wrong-key
randomization hypothesis” – which states that when decrypting one or several rounds with a wrong
key guess creates a function that behaves like a random function, the attacker can be expect that
the probability of αr is approximately equal to 2−n for a wrongly key guessing.

The data complexity primarily depends on the number of queries necessary s.t. at least one of
them satisfies the given differential α0 → αr with non-negligible probability. Roughly speaking,
this is given by the inverse probability C · p−1 (for some constant C ≥ 1), but several additional
parameters must also be taken into account. A detailed analysis of the success probability and its
dependency on the invested data complexity has been performed by Selçuk [SB02; Sel08].

3.2.2. Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack in which the attacker exploits probabilistic linear
- or (more generally) affine - relations between bits of the plaintext, of the ciphertext and of the
key. It was introduced by Matsui [Mat93] as a theoretical attack on the Data Encryption Standard
(DES), and later successfully used in the practical cryptanalysis of DES [Mat94].

Let 〈a, b〉 denote the canonical inner product in Fn2

〈a, b〉 :=
⊕
i

ai · bi.

A linear approximation of a cipher EK(·) through masks α, β and γ is defined as

〈α, x〉 ⊕ 〈β,EK(x)〉 = 〈γ,K〉

where x and K denotes respectively a plaintext and the (secret) key. The linear deviation of such
linear expression in linear cryptanalysis is given by |p − 1/2|, where p is the probability that the
previous equality holds.

Given “good” masks α, β and γ (that is masks for which the linear deviation is different from 0),
the value in the l.h.s. of the previous equation for a large number of plaintext/ciphertexts pairs can
be exploited to derive information about the secret key by analyzing the value in the l.h.s. of the
previous equation that occurs most often. In principle, this gives a single bit of information about
the key. In [Mat93], it is shown that the probability of making a wrong guess is very small if the
number of plaintext/ciphertexts pairs is larger than |p− 1/2|−2.

30

3.2. The Wide Trail Strategy

Basic Concepts of Linear Cryptanalsis. For the follow-up, we recall some basic concepts of
linear cryptanalysis. As for differential cryptanalysis, it is possible to assign to each function f(·) a
linear approximation table, whose entry in row α and column β corresponds to∣∣{x ∈ Fn2 : 〈α, x〉 ⊕ 〈β, f(x)〉 = 0}

∣∣.
Let the linear correlation of a function f(·) with masks α and β defined as5

L(f) := max
α,β 6=0

Lα,β(f)

where
Lα,β(f) := 2−n ·

∣∣{x ∈ Fn2 : 〈α, x〉 ⊕ 〈β, f(x)〉 = 0}
∣∣.

A function is an Almost Bent (AB) function if L(f) = 2
−n+1

2 .

Theorem 1 ([CCZ98]). Any almost bent (AB) function is also almost perfect nonlinear (APN).

From this theorem and from the results proposed in [CV94] (where it is showed that the probability
of a differential can be expressed in terms of a sum of correlations of linear approximations), it
follows that linear-resistant functions are also differential-resistant. On the other hand, resistance
against differential cryptanalysis does not imply resistance against linear cryptanalysis.

As we are going to show in the next section, (almost) bent functions are the ones that oppose an
optimum resistance to linear cryptanalysis, as almost perfect nonlinear functions are the ones that
oppose an optimum resistance to differential cryptanalysis.

3.2.3. The Wide Trail Design Strategy

The wide-trail strategy by Daemen and Rijmen [DR01; DR02a] is a general approach for designing
the round transformation of key-alternating block ciphers that combines efficiency and resistance
against linear and differential cryptanalysis. For simplicity, in the following we limit ourselves to
focus on differential cryptanalysis (analogous results can be derived for linear cryptanalysis).

The Wide Trail Strategy. Consider a round transformation for key-alternating SP constructions
for t · n = N -bit blocks, built as a sequence of two invertible steps:

1. a local non-linear transformation, that is a permutation consisting of a number of n-bit S-Boxes
(t bundles or cells);

2. a linear mixing transformation λ providing high diffusion.

Moreover, as largely done in the literature, assume6 that a cipher is secure against differential
cryptanalysis if each characteristic has probability smaller than 2−N . Since a linear transformation
does not affect the probability of a differential, the probability of a differential characteristic depends
only on:

5To be more precise, the linear correlation of a function f(·) is usually defined using the Fourier Transform [Car10] as

corr(f) = 2−n · max
α,β 6=0

∑
x

(−1)〈α,x〉⊕〈β,f(x)〉 =

= 2−n · max
α,β 6=0

{
| {x ∈ Fn2 : 〈α, x〉 ⊕ 〈β, f(x)〉 = 0}

∣∣−| {x ∈ Fn2 : 〈α, x〉 ⊕ 〈β, f(x)〉 = 1}
∣∣}.

Since
| {x ∈ Fn2 : 〈α, x〉 ⊕ 〈β, f(x)〉 = 0}

∣∣+| {x ∈ Fn2 : 〈α, x〉 ⊕ 〈β, f(x)〉 = 1}
∣∣= 2n,

these two definitions are strictly related, i.e. corr(f) = 2L(f)− 1.
6Since it is in general very hard to compute the probability of a differential, a common assumption in the literature is

to approximate its probability with the sum of probabilities of some differential characterestics that define it.

31

3. Advanced Encryption Standard (AES)

• the maximum differential probability DPmax of the S-Boxes;

• the number of active S-Boxes.

Note that the maximum differential probability of an n-bit S-Box is at most 2−n+1. Unfortunately,
all known APN S-boxes have an odd number of input bits7, with the exception of one 6-bit S-Box
due to Dillon [BDMW10]. In more details, there is no (invertible) APN permutation of dimension 4
[LP07], while the question of finding an APN bijective (n, n)-function for even n ≥ 8 is still open.
Thus, the maximum differential probability of an n-bit S-Box for even n 6= 6 is “at most” 2−n+2.
This seems to suggest that one should take large S-Boxes.

Instead of spending most of its resources for looking for large S-Boxes with “good” properties, the
wide-trail strategy aims at designing the round transformation(s) in order to maximize the minimum
number of active S-Boxes over multiple rounds. Thus, in ciphers designed by the wide trail strategy,
the idea is to look for linear layers that guarantee a large number of active S-Boxes over several
rounds.

To achieve this goal, the concept of the branch number B has been introduced in [Dae95] as a
metric for the diffusion achieved by the round function:

The branch number B(λ) ≤ t + 1 of a linear transformation λ : (F2n)t → (F2n)t (and the
resulting round function) is the minimum total number of active bundles in the input and
output of the transformation, that is

B(λ) := min
x 6=0
{wb(x)⊕ wb(λ(x))}

where wb(·) denotes the number of non-zero bundles.

Equivalently, the branch number B(λ) corresponds to the minimum number of active S-Boxes over
2 rounds. Transformations λ which attain the maximum branch number

B(λ) = t+ 1

can be constructed using matrices of Maximum Distance Separable (MDS) Codes, as suggested by
Vaudenay [Vau94]

A matrix M ∈ Ft×t2n is called Maximum Distance Separable (MDS) matrix iff it has branch
number B(M) equal to B(M) = t+ 1.

It is simple to observe that if a matrix M is MDS, then also its inverse M−1 is MDS.
For completeness, we remember the following theorem that characterize an MDS matrix.

Theorem 2 ([MS78]). A t× t matrix M is an MDS matrix if and only if every square submatrix of
M is nonsingular.

It follows that all entries of an MDS matrix are non zero.

2-round AES. The previous result applies immediately to 2-round AES. First of all, AES S-Box
has been chosen in order to have DPmax = 2−6, that is the lowest possible8. Secondly, the 4 × 4
MixColumns matrix is an MDS matrix9, which means that the minimum number of active S-Box
over two consecutive rounds is equal to 5. As a result, the probability of each characteristic over 2
consecutive rounds of AES is at least

(DPmax)B = (2−6)5 = 2−30.
7For completeness, we mention that an almost bent function can only have an odd number of input bits. When n is

even, almost bent functions do not exist, and the lowest possible linearity for an n-bit S-Box (where n is even) is

not known. The best known value for n even is L = 2
−n+2

2 , and this value is tight for a very few families of S-Boxes,
including the inversion over Fn2 which is used e.g. in the AES.

8We mention that the linear correlation of the AES S-Box is 2−3.
9Equivalently, this means that if x bytes are active in input, then at least 5− x bytes are active in output.

32

3.3. Existing Cryptanalysis of AES

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

Figure 3.2.: 4-round AES characteristic with 25 active S-Boxes. A black byte denotes an active
S-Box.

4-round AES. In order to apply the previous results on 4-round AES, the idea is to re-write
it as a 2-round cipher. For this goal, we recall the super-Sbox notation [DR06] introduced by the
designers

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·), (3.1)

which allows to rewrite10 4-round AES as

R4(·) = ARK ◦ super-Sbox ◦M ′ ◦ super-Sbox ◦ARK(·)

where we omitted for simplicity the initial and the final ShiftRows operation (besides the final
MixColumns operation) and where

M ′(·) = SR ◦ARK ◦MC ◦ SR(·).

Using Theorem 2 and since AES MixColumns matrix is MDS, it follows that M ′ is also an MDS
matrix, which means that at least 5 super-Sbox are active over 4-round AES. Due to the previous
result on 2-round AES, it follows that each active super-Sbox contains at least 5 active S-Boxes, for
a total of 25 active S-Boxes over 4-round AES. As a result, the probability of each characteristic
over 2 consecutive rounds of AES is at least

(2−6)25 = 2−150.

Full AES. As we have seen, differential cryptanalysis exploits differentials rather than differential
characteristics to set up key-recovery attacks. By definition, the probability of a differential is
always greater (or equal) than the probability of a characteristic. The maximum probability of a
2-round AES differential has been computed (by exhaustive search) in [KMT01], and it is equal to
53/234 ≈ 2−28.27, while no result is known for 3 or more rounds.

On the other hand, since evaluating the true (maximum) differential probability (respectively,
linear correlation) is computationally not practical for a typical block cipher, one natural solution is
to try to upper bound these terms. This approach was chosen by Park et al. [PSC+02; PSLL03]
who showed that the differential probability and linear correlation for 4-round AES are respectively
bounded by 1.144× 2−111 and 1.075× 2−106.

In conclusion, since each differential characteristic over 4-round AES has probability (much) lower
than 2−128 and since AES is composed of (at least) 10 rounds, any differential attack is considered
to be unfeasible [PSC+02; PSLL03]. A similar result holds for linear cryptanalysis.

3.3. Existing Cryptanalysis of AES

Besides differential and linear cryptanalysis, many other techniques have been proposed in the
literature in order to set up distinguishers and key-recovery attacks. In the following, we recall the
main ones.

10Note that SR ◦ S-Box(·) = S-Box ◦ SR(·).

33

3. Advanced Encryption Standard (AES)

Table 3.1.: Secret-key Distinguishers on round-reduced AES (which are independent of the secret-
key). All distinguishers in the table are independent of the details of the S-Box, of the details of
key-schedule and of the MixColumns matrix (assuming branch number equal to 5). Data complexity
is measured in minimum number of chosen plaintexts/ciphertexts CP/CC or/and adaptive chosen
plaintexts/ciphertexts ACP/ACC which are needed to distinguish the AES permutation from a
random permutation with probability (much) higher than 95%. Time complexity is measured in
XOR operations (XOR), equivalent encryptions (E) or memory accesses (M) - using the common
approximation 20 M ≈ 1-round E. Distinguishers proposed in our works are in bold.

Property Rounds Data Computation Reference

Truncated Differential 1 - 2 2 CP 1 XOR [DR06]

Truncated Differential 3 20 ' 24.3 CP 27.6 M folklore

Integral 3 28 CP 28 XOR [DR98; DR02b]

Yoyo 4 2 CP + 2 ACC 1 XOR [RBH17]

Boomerang 4 2 CP + 2 ACC 1 XOR [Bir04]

Impossible Differential 4 216.25 CP 231.5 M ≈ 225.18 E [BK01]

Mixture Diff. 4 217 CP 223.1 M ≈ 216.75 E [Gra18b]

Integral 4 232 CP 232 XOR [DR98; DR02b]

Yoyo 5 212 CP + 225.8 ACC 224.8 XOR [RBH17]

Multiple-of-8 5 232 CP 235.6 M ≈ 229 E [GRR17]

Truncated Diff. (Variance) 5 234 CP 237.6 M ≈ 231 E [GR18]

Truncated Diff. (Mean) 5 248.96CP 252.6 M ≈ 246 E [GR18]

Prob. Mixture Diff. 5 252 CP 271.5 M ≈ 264.9 E [Gra17b]

Imp. Mixture Diff. 5 282 CP 297.8 M ≈ 291.1 E [Gra17b]

Threshold M.D. 5 289 CP 298.1 M ≈ 291.5 E [Gra17b]

Yoyo 6 2122.83 ACC 2121.83 XOR [RBH17]

3.3.1. Integral Attack

In the paper presenting the block cipher Square [DKR97], a dedicated attack on reduced versions
of Square is described. The attack is often referred to as the “Square” attack, but it is also called
Integral [KW02] or Saturation attack [Luc01]. The attack exploits the byte-oriented structure of
Square, and is also applicable to reduced versions of AES. This attack is a chosen plaintext attack,
and it can be mounted independently of the choice of the S-Box, of the key-schedule and of the
details of the linear operations. In an integral attack, one considers a set Λ of input texts with the
following characteristics:

• it sums to 0 and its values are fixed in some bit/byte/word positions and take all possible
combinations of values in the other bit/byte/word positions;

• the sum of the corresponding encrypted values is equal to 0 (at least in some bits):⊕
t∈Λ

t =
⊕
t∈Λ

Rr(t) = 0.

Since for a random permutation the same event happens with probability lower than 1 (e.g. with
prob. 2−128 for a random permutation on 128 bits), this zero-sum property can be exploited in order
to distinguish a cipher from a random permutation.

34

3.3. Existing Cryptanalysis of AES

Table 3.2.: Comparison of attacks on round-reduced AES-128. Data complexity is measured in num-
ber of required chosen plaintexts/ciphertexts (CP/CC) or/and adaptive chosen plaintexts/ciphertexts
ACP/ACC . Time complexity is measured in round-reduced AES encryption equivalents (E) - the
number in the brackets denotes the precomputation cost (if not negligible). Memory complexity is
measured in texts (16 bytes). Attacks proposed in our works are in bold.

Attack Rounds Data Computation Memory Reference

MitM 5 8 CP 264 256 [Der13, Sec. 7.5.1]

Imp. Polytopic 5 15 CP 270 241 [Tie16a]

Partial Sum 5 28 CP 238 small [Tun12]

Integral (EE) 5 211 CP 245.7 small [DR02b]

Yoyo 5 211.3 ACC 231 small [RBH17]

Mixture Diff. 5 222.5 CP 222.5 220 [BDK+18]

Imp. Differential 5 231.5 CP 233 (+ 238) 238 [BK01]

Integral (EB) 5 233 CP 237.7 232 [DR02b]

Variance 5 233 CP 264.2 232 [GR18]

Mixture Diff. 5 233.6 CP 233.3 234 [Gra18b]

Multiple-of-n 5 233.6 CP 248 232 [GRR17]

Trunc. Diff. 5 235 CP 269.2 232 [GR18]

Boomerang Attack 5 239 CP/ACC 239 233 [Bir04]

MitM 6 13 CP 2120 296 [Der13, Sec. 7.5.2]

MitM 6 28 CP 2106.2 2106.2 [Der13, Sec. 7.3.3]

Mixture Diff. 6 227.5 CP 281 227.5 [BDK+18]

Partial Sum 6 232 CP 242 240 [Tun12]

Integral 6 235 CP 269.7 232 [DR02b]

Boomerang Attack 6 271 CP/ACC 271 233 [Bir04]

Prob. Diff. Struc. 6 272.8 CP 2105 233 [Gra17b]

Imp. Differential 6 291.5 2122 289 [CKK+02]

MitM 7 232 CP 2126.5 2126.5 [Der13, App. 7.B.6]

MitM 7 297 CP 299 298 [DF13]

Imp. Differential 7 2106.2 CP 2110.2 290.2 [MDRM10]

Herds Attack 7 (2128 − 2119) CP 2120 (?) [FKL+00]

Biclique 8 288 CP 2125.34 28 [BKR11]

Biclique 8 2127 CP 2125.64 232 [BKR11]

Biclique 10 288 CP 2126.18 28 [BKR11]

MitM: Meet-in-the-Middle, EE: Extension at End, EB: Extension at Beginning

To describe such attack/distinguisher on round-reduced AES in more details, we first recall some
notations largely used in the literature. Given a set of texts Λ = {ti}i, we say that the bytes in
position (j, k) for 0 ≤ j, k ≤ 3 are

constant (C): tj,k = sj,k for each t, s ∈ Λ;

active (A): tj,k 6= sj,k for each t, s ∈ Λ;

balance (B):
⊕

t∈Λ tj,k = 0;

35

3. Advanced Encryption Standard (AES)

unknown (?): if no one of the previous property is satisfied.

Note that if a byte is constant or active, then by definition it is also balance.

3-round (secret-key) Distinguisher. Consider a Λ-set of 28 chosen plaintexts in which only
one byte is active. It is possible to prove that all bytes of the corresponding ciphertexts after 3-round
AES are balanced independently of the secret key:

A C C C
C C C C
C C C C
C C C C

 R(·)−−→


A C C C
A C C C
A C C C
A C C C

 R(·)−−→


A A A A
A A A A
A A A A
A A A A

 R(·)−−→


B B B B
B B B B
B B B B
B B B B

 .
4-round (secret-key) Distinguisher. Consider a Λ-set of 232 chosen plaintexts in which one
diagonal11 is active. It is possible to prove that all bytes of the corresponding ciphertexts after
4-round AES are balanced independently of the secret key.

To show this fact, note that such set Λ is mapped into a Λ′-set of 232 chosen plaintexts in which
one column is active. Since the set Λ′ can be seen as the union of 224 sets of 28 texts in which only
one byte (e.g. the first one) is active, the result follows immediately due to the previous integral
distinguisher on 3-round AES. Again, since for a random permutation the same event happens with
prob. 2−128, it is possible to distinguish 4-round AES from it.

Key-Recovery Attacks. The previous distinguishers can be extended at the beginning and/or
at the end into key-recovery attacks for up to 6-round AES-128 and for up to 7-round AES-192/256.
The computational complexities of these attacks has then been improved by Ferguson et al. in
[FKL+00], using the partial sum technique. Besides that, a further extension for up to 7-round
AES-128 and for up to 8-round AES-192/256 - called the Herds attack - have been proposed by N.
Ferguson et al. in [FKL+00]. On the other hands, such attacks require 2128 − 2119 chosen plaintexts,
that is almost the full codebook.

3.3.2. Truncated Differential Attack

The concept of truncated differential was initially proposed by L. Knudsen in [Knu94].
As we have just seen, differential attacks exploit the fact that pairs of plaintexts with certain

differences yield other differences in the corresponding ciphertexts with a non-uniform probability
distribution. In some cases, such attack can be improved (both from the complexity point of view
or/and by the number of rounds that can be attacked) by considering differences that are not fully
specified, but only specified for selected bits/bytes, while the exact difference in the remaining
bits/bytes is ignored. Truncated differential attack/distinguisher is a variant of classical differential
attack/distinguisher in which the attacker can predict only part of the difference between pairs of
texts.

About AES, it is possible to set up secret-key distinguishers - which are independent of the key and
of the details of the S-Box - for up to 3-round AES. In particular, assume that the last MixColumns
is omitted:

• given two plaintexts that differs in the i-th diagonal, then the corresponding ciphertexts after
2-round AES are equal in all bytes expect for the ones that lie in the i-th anti-diagonal with
prob. 1. Since for a random permutation the same event happens with prob. 2−96, it is possible
to distinguish the two cases;

11The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such that r − c = i
mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r + c = i mod 4.

36

3.3. Existing Cryptanalysis of AES

Figure 3.3.: Truncated Differential on 3-round AES. A black byte denotes a byte with non-zero
difference, while a white byte denotes a byte with zero-difference.

• given two plaintexts that differs in the i-th diagonal, then the corresponding ciphertexts after
3-round AES are equal in the j-th anti-diagonal (for a certain j ∈ {0, 1, 2, 3} fixed) with prob.
2−8. Since for a random permutation the same event happens with prob. 2−32, it is possible to
distinguish the two cases.

More details are given in the following using the subspace trail terminology.
Such distinguishers can be exploited to set up key-recovery attacks on round-reduced AES.

3.3.3. Impossible Differential Attack

In standard differential cryptanalysis, a common approach is to use differentials that have a sufficiently
high probability to distinguish the cipher from a random permutation. On the other hand, another
possibility is to use differentials that have zero probability. Such differentials are called impossible
differentials. Impossible differentials were independently developed by Biham, Biryukov, and Shamir
[BBS99] and by Knudsen [Knu98].

One of the most important class of impossible differentials is impossible truncated differentials,
i.e. truncated differentials of probability zero. Such impossible truncated differentials can often
be constructed by combining two probability-one truncated differentials that do not match in the
middle.

For the AES case, it is possible to set up secret-key distinguishers based on impossible truncated
differentials which are independent of the secret key and of the details of the S-Box for up to 4 rounds
[BK01]. E.g., given a pair of texts that differ in only one diagonal, the corresponding ciphertexts
after 4-round can not be equal in any of the four anti-diagonal (assuming the last MixColumns is
omitted). Since the same event happens with non-zero probability for a random permutation, it is
possible to distinguish the two cases. More details are given in the following using the subspace trail
terminology.

Key-Recovery Attacks. Together with the impossible differential distinguisher on 4-round AES,
Biham and Keller [BK01] proposed the first impossible differential attack on 5-round AES. This
attack has been improved in [CKK+02], where authors also presented the first attack on 6 rounds. In
[Pha04], the first impossible differential attack on 7-round AES-192 and AES-256 is presented. Later,
based on different impossible differentials, new 7-round impossible differential attacks – also on

37

3. Advanced Encryption Standard (AES)

Figure 3.4.: Impossible Differential on 4-round AES. A black byte denotes a byte with non-zero
difference, while a white byte denotes a byte with zero-difference. A gray byte denotes a byte with
an unknown difference.

AES-128 – were presented in [BA08]. Using various techniques, including the early abort approach
and key-schedule considerations, the attack has then been improved in [LDKK08], resulting in
the best impossible differential attacks on AES-192 and AES-256, and in [MDRM10], resulting
in the best impossible differential attacks on AES-128 so far. Finally, only recently Boura et al.
[BLNS18] improved it into its best currently known variant which breaks 7-round AES with an
overall complexity of about 2107

3.3.4. Meet-in-the-Middle Attacks

The Meet-in-the-Middle (MitM) attack is a generic attack applicable to a large variety of cryptographic
primitives. The main idea is to split the cipher into two independent parts and use a time-memory
trade-off for a more efficient attack. In more details, assume to split the cipher E into two parts
E(·) = E2 ◦ E1(·). Roughly speaking, given a plaintext-ciphertext pair (p, c) obtained under the
secret key K, the attacker partially guesses the secret key and check if

p
E1(·)−−−→ −→v ?

=←−v E2(·)←−−− c.

If there is no match in the middle, it turns out that the guessed key is wrong.
While the original Meet-in-the-Middle attack was very generic, many subsequently improvements to

it have been suggested by using the underlying structure of the cryptographic primitive. Since a basic
Meet-in-the-Middle attack requires only the information-theoretical minimum of plaintext-ciphertext
pairs, it can (potentially) be the most practical in terms of data complexity.

Meet-in-the-Middle Attacks on AES. The original Meet-in-the-Middle attack against AES
was proposed by Demirci and Selçuk at FSE 2008 [DS08], and it relies on particular sets called Λ-sets
equal to the ones introduced by Daemen et al. against the block cipher Square. More specifically, they
show that on 4 rounds, the value of each byte of the ciphertext can be described by a function of the
active byte parameterized by 25 8-bit parameters (reduced to 24 in [DTÇB09]). Several improvements
for the attack were then proposed at Asiacrypt 2010 by Dunkelman et al. [DKS10], and they mainly

38

3.3. Existing Cryptanalysis of AES

include (1st) the differential enumeration technique and (2nd) a clever and powerful memory/data
trade-off that does not change the time. Then at Eurocrypt 2013, Derbez et al. [DFJ13] showed that
this technique leads to much better attacks than expected by Dunkelman et al., and reached the
best known attacks against 7-round AES-128 and 9-round AES-256 in the single-key model. Next,
at FSE 2013, Derbez and Fouque [DF13] generalized the attack of Demirci and Selçuk by searching
a match on some equation and not only on the byte state.

Bycicle Attack. Meet-in-the-Middle attacks on block ciphers have also great potential if enhanced
with bicliques. The biclique concept was first introduced for hash cryptanalysis by Savelieva et al.
[KRS12]. Its approach led to the best preimage attacks on the SHA family of hash functions so far,
including the attack on 50 rounds of SHA-512, and the first attack on a round-reduced Skein hash
function [KRS12].

A biclique is characterized by its length (number of rounds covered) and dimension. The dimension
is related to the cardinality of the biclique elements and is one of the factors that determines the
advantage over brute force. The total cost of the key search with bicliques depends on two main
contributors, namely the cost of constructing the bicliques and the cost of the matching computations.

Biclique cryptanalysis [BKR11] successfully applies to all full versions of AES and compared to
brute force provides a computational advantage of about a factor 3 to 5, depending on the version.

3.3.5. Interpolation and Algebraic Attacks

Algebraic attacks model a cryptographic primitive (such as a block cipher) as a system of equations.
By applying (algebraic) transformations to these equations, these attacks (attempt to) recover
information about the secret of the primitive (the key).

One example of algebraic attack is the interpolation attack, introduced by T. Jakobsen and
L. Knudsen in [JK97]. In this attack, the attacker constructs a polynomial corresponding to the
encryption function without knowledge of the secret key. If an adversary can construct such a
polynomial then for any given plaintext the corresponding cipher-text can be produced without
knowledge of the secret key.

In more details, let e.g. Ek(·) : F2n → F2n be an encryption function. For a randomly fixed key k,
the polynomial P (x) representing Ek(x) can be constructed using e.g. Lagrange’s theorem, where x
is the indeterminate corresponding to the plaintext. If the polynomial has degree d then we can find
it using Lagrange’s formula

P (x) =
d∑
i=0

yi
∏
j 6=i

x− xi
xj − xi

(3.2)

where Ek(xi) = yi for 0 ≤ i ≤ d. This method can be extended to a key recover attack. The attack
proceeds by simply guessing the key of the final round, decrypting the ciphertexts and constructing
the polynomial for r − 1 rounds. An extra pair of texts (p, c) is then used to check the guessed key
(note that the equality P (p) = R−1

k (c) is satisfied by the secret key).
About AES, the complicated expression of the S-Box in GF (28)

S-Box(x) = 63⊕ 8Fx127 ⊕B5x191 ⊕ 01x223 ⊕ F4x239 ⊕ 25x247 ⊕ F9x251 ⊕ 09x253 ⊕ 05x254

together with the effect of the mixing and transposition steps, prohibis interpolation attack on more
than a few rounds12.

For completeness, we mention that a detailed algebraic analysis of AES has been performed
in [CP02], where authors proposed an attack that can potentially break full AES-128 faster than
brute force. Such attack works by trying to express the entire algorithm as multivariate quadratic

12As a concrete example, the algebraic representation for 10-round AES found by N. Ferguson et al. [FSW01] would
count 250 terms.

39

3. Advanced Encryption Standard (AES)

polynomials, and it used the so called “XLS technique” to solve it. On the other hand, a complete
analysis of the XSL algorithm presented at Asiacrypt 2005 [CL05] led to the result that - in its
current form - the XSL algorithm does not provide an efficient method for solving the AES system
of equations.

3.3.6. Higher-Order Differential

Higher-order differentials consider the difference of more than two texts. The idea – first introduced
by Lai [Lai94] without a concrete application however – was used by Knudsen [Knu94] in 1995 to
describe higher-order differentials that can be used to break ciphers (with low algebraic degree)
which are secure against standard differential cryptanalysis.

For simplicity, we limit ourselves here to present the idea of higher-order differential cryptanalysis
for bit-based ciphers only.

Algebraic Normal Form and Algebraic Degree. Each function F : F2n → F2n admits a
unique representation as a polynomial of degree smaller than 2n:

F (x) =
2n−1⊕
i=0

ϕi · xi, ϕi ∈ F2n (3.3)

where x is a variable in F2n . Such a function is linear if and only if it can be expressed as

FL(x) =
n−1⊕
i=0

ϕi · x2i , ϕi ∈ F2n ,

while it is affine if it is the sum of a linear function and a constant.

At the same time, the function F (·) admits a unique representation – called “algebraic normal
form” – as a polynomial in n variables

F (x) =
⊕
u∈Fn2

ϕ(u) ·

(
n∏
i=1

xuii

)

where u = (un, un−1, ..., u1) ∈ Fn2 .

Definition 1. Let f(·) a boolean function of n variables. The Algebraic Normal Form (ANF) of
f(·) is defined as

f(x) =
⊕
u∈Fn2

µf (u)xu

where xu = xu0
0 · x

u1
1 · ... · x

un−1

n−1 , µf (u) =
⊕

x�u f(x) and x � u iff xi ≤ ui for each 0 ≤ i < n.

The (algrebraic) degree of the ANF of a function f(·) is defined as the maximum of the degrees of
the monomials of its ANF

deg(f) = max{hw(u) |µ(u) = 1}

where hw(·) is the hamming weight13.

13Given n ∈ N, its hamming weight is defined as hw(n) =
∑blog2(n)c
i=0 ni where n =

∑blog2(n)c
i=0 ni · 2i and ni ∈ {0, 1}.

40

3.3. Existing Cryptanalysis of AES

As showed e.g. in [CCZ98], these two representations are equivalent. Let α be a primitive element14

in F2n , it follows that each x ∈ F2n can be rewritten as
⊕n

j=1 xj · αj−1. Thus

F (x) = F

 n⊕
j=1

xj · αj−1

 =
2n−1⊕
i=0

ϕi

 n⊕
j=1

xj · αj−1

i

=

=
2n−1⊕
i=0

ϕi

 n⊕
j=1

xj · αj−1


∑n−1
s=0 is·2s

=
⊕
u∈Fn2

ϕ(u) ·

(
n∏
i=1

xuii

)
.

Note that (
⊕

i xi)
2s =

⊕
i x

2s
i (since f(x) = x2s is a linear function).

As showed in [CCZ98], the algebraic degree of F (x) =
⊕2n−1

i=0 ϕi · xi is equal to the maximum of
the hamming weight of its exponents.

Definition 2 ([CCZ98]). Let F (·) be a polynomial given by the expression (3.3). F (·) has algebraic
degree δ(F) if δ is the maximum hamming weight of its exponents:

δ = max
0≤i≤2n−1

{hw(i) |ϕi 6= 0}

In particular, if F is a polynomial of degree d, it follows that δ = max0≤i≤d<2n−1 {hw(i) |ϕi 6= 0}.

Higher-Order Differential Attack. Following [Lai94], the derivative ∆α of a boolean function
f : Fn2 → Fn2 in the direction of α ∈ F2

n is defined as

∆αf(x) := f(x⊕ α)⊕ f(x)

where x is the input bit vector. This derivative shares many properties with the standard derivative
over the real numbers: it is linear, it satisfies (a variant of) the product rule and importantly it
reduces the degree of the function by at least 1.

In a similar way, it is possible to define the d-th order derivative of the (vectorial) Boolean function
f : Fn2 → Fn2 (by α1, . . . , αd ∈ Fn2) as

∆(d)
α1,...,αd

f(x) := ∆αd · · ·∆α1f(x).

Due to the product rule and due to the definition of the boolean derivative, two important
properties can be highlighted:

• first, the algebraic degree of ∆(d)f is

deg ∆(d)
α1,...,αd

f(x) ≤ deg f − d ;

• secondly, the following equivalence

∆αd · · ·∆α1f(x) =
⊕
α∈A

f(x⊕ α) ,

holds, where the sum ranges over all 2d elements of the span

A = 〈α1, . . . , αd〉 = {λ1α1 ⊕ . . .⊕ λdαd | λ ∈ Fd2} .

Both these two properties are exploited by higher-order differential. In more details, higher-order
differential cryptanalysis exploits the fact that given a subspace A whose dimension d satisfies
d ≥ deg f + 1, then for any offset α: ⊕

x∈A⊕α
f(x) = 0.

14An element α ∈ F2n is “primitive” if for each β ∈ F2n there exists j s.t. αj = β.

41

3. Advanced Encryption Standard (AES)

How to Prevent Higher-Order Differential? To prevent such attacks, ideally one would like
to be able to make a statement such as “After r rounds there is no output bit and no input subspace
of dimension d′ s.t. the derivative of the polynomial representation of the output bit with respect to
this subspace is the zero-polynomial.” To achieve such goal, one needs to estimate the growth of the
degree.

Consider a SPN cipher defined over (F2n)t where N = t · n. First of all, note that the growth of
the degree is independent of the linear layer. Secondly, observe that the algebraic degree does not
increase if several non-linear functions (namely, S-Boxes) are applied in parallel. Thus, denoting by
d the degree of the S-Box in its algebraic representation in GF (2n), it follows that the algebraic
degree of the cipher after r rounds is bounded from above by dr. It is furthermore generally bounded
from above by N − 1 since the cipher is a permutation.

A better and certainly more realistic upper bound was found by Boura, Canteaut, and De Canniére:

Proposition 1 ([BCC11]). Let F be a function from FN2 into FN2 corresponding to the concatenation
of t smaller balanced15 S-Boxes S1, ..., St defined over Fn2 Then, for any function G from FN2 into
FN2 , we have

deg(G ◦ F) ≤ min

{
deg(G) · deg(F), N − N − deg(G)

n− 1

}
. (3.4)

Moreover, if n ≥ 3 and all S-Boxes have degree at most n− 2, we have

deg(G ◦ F) ≤ min

{
deg(G) · deg(F), N − N − deg(G)

n− 2

}
. (3.5)

These bounds can be exploited in order to compute the algebraic degree of the encryption/decryption
function after r rounds, and so to compute the minimum number of rounds necessary to guarantee
security against higher-order differential attacks.

About AES, full AES can be considered secure against higher-order differential attacks due to the
same considerations made for the interpolation attack.

Division Property. A generalization of integral and higher-order differential distinguisher – called
“division property” – has been recently introduced by Todo at Eurocrypt 2015 [Tod15b].

Let u = (u1, ..., un), x = (x1, ..., xn) be vectors in Fn2 and let ux be defined as
∏n
i=1 u

xi
i . A set

X ⊆ Fn2 has the division property Dnk for 1 ≤ k ≤ n if

∀u ∈ Fn2 s.t. wt(u) < k :
⊕
x∈X

xu = 0

where wt(·) denotes the Hamming weight.

Using the notation proposed for integral attack, it is possible to show that a set X has the division
property Dn2 if and only if the set X is balanced. Moreover, if a set X is active, then it has the division
property Dnn (vice-versa is in general not true). The novelty here is that it introduces intermediate
properties Dnk for 3 ≤ k ≤ n − 1 which do not appear in classical integral attacks. This allows to
study the propagation of Dkn over multiple rounds, capturing information resulting from the algebraic
degree of the round function. In such a sense, division property can be seen as a generalization of
higher-order differential.

Since it is not possible to improve the results just proposed by integral and higher-order differential
attacks on AES using the division property and since we do not consider the division property in
the following of this Thesis, we refer to [Tod15b; BC16] for more details about this topic.

15Any function f(·) : Fn2 → Fm2 is balanced if each element in Fm2 has exactly 2n−m preimages under f(·).

42

3.3. Existing Cryptanalysis of AES

3.3.7. Link among different Cryptanalytic Tools

Along with the growing of the list of cryptanalytic tools, the question whether there are direct links
or any connections among different tools has drawn much attention of the cryptographic research
community, since such relations can be used to compare the effectiveness of different tools as well as
to improve cryptanalytic results on block ciphers.

The first theoretical link between differential and linear cryptanalysis was presented by Chabaud
and Vaudenay in [CV94]. After that, many attempts have been made to establish further relations
among various cryptanalytic tools. In [SLQL10], Sun et al. proved that from an algebraic view,
integral cryptanalysis can be seen as a special case of the interpolation attack. In [Lea11], Leander
stated that statistical saturation distinguishers are averagely equivalent to multidimensional linear
distinguishers. In [BLNW12], Bogdanov et al. showed that an integral implies a zero correlation
linear hull unconditionally, a zero correlation linear hull indicates an integral distinguisher under
certain conditions, and a zero correlation linear hull is actually a special case of multidimensional
linear distinguishers.

Later on, in [BN13; BLN14], Blondeau and Nyberg further analyzed the link between differential
and linear cryptanalysis and demonstrated some new insights on this link to make it more applicable
in practice. They established new formulas between the probability of truncated differentials and
the correlation of linear hulls. Moreover, they claimed that the existence of a zero correlation linear
hull is equivalent to the existence of an impossible differential in some specific cases. This link
has been proved in [SLR+15], where Sun et al. established the link between impossible differential
cryptanalysis and integral cryptanalysis. Moreover, in there they showed that constructing impossible
differentials of a structure is equivalent to constructing zero correlation linear hulls of the dual
structure.

Finally, in [BN14], Blondeau and Nyberg proposed the link between truncated differential and
multidimensional linear approximation, and then applied this link to explore the relations between
the complexities of chosen-plaintext and known-plaintext distinguishing/key recovery attacks of
differential and linear types. Moreover, they showed that statistical saturation cryptanalysis is
indeed equivalent to truncated differential cryptanalysis, which could be used to estimate the data
requirement of the statistical saturation key recovery attack.

3.3.8. Boomerang and Yoyo Attacks

W.r.t. previous attacks/distinguishers, boomerang and yoyo attacks require adaptive chosen plain-
texts/ciphertexts besides known/chosen plaintexts/ciphertexts.

Boomerang Attack

Boomerang attacks [Wag99] allow to analyze a given cryptographic transform that lacks long
differentials with sufficient probability, but for which short differentials with high probabilities exist.
Say, E : {0, 1}k × {0, 1}n → {0, 1}n is a cipher that can be decomposed into parts E(·) = E2 ◦ E1(·)
such that there exist a differential α→ β with probability prob1 over E1 and a differential γ → δ
with probability prob2 over E2. In the following, let D(·) ≡ E−1(·) ≡ D1 ◦ D2(·). A boomerang
distinguisher follows the procedure:

1. Choose a plaintext pair (p, p′), with p′ = p⊕ α, and ask for its corresponding ciphertext (c, c′)
through E;

2. Compute d = c ⊕ δ and d′ = c′ ⊕ δ to obtain the ciphertext pair (d, d′), and ask for its
corresponding plaintext (q, q′). This is also called a δ-shift;

3. Check if q ⊕ q′ = α.

43

3. Advanced Encryption Standard (AES)

E2

E1

E2

E1

p p′

c c′

α

β

d d′δ δ

D2

D1

D2

D1

q q′

γ γ

ψ

β

Figure 3.5.: Schematic illustration of a boomerang construction

The probability that q ⊕ q′ = α for a block cipher is (roughly) approximated by (prob1 · prob2)2

since the trails must hold for both pairs. If the probability that q ⊕ q′ = α is different than from
the corresponding probability a random permutation - which is given by 2−n, then it is possible to
distinguish distinguisher or key-recovery attack. Figure 3.5 illustrates the boomerang construction
schematically.

Such probability can be increased by considering all possible internal trails α→ β′ and γ → δ′,
where β′ and δ′ are not fixed. This allows to increase the probability that q ⊕ q′ = α for a block
cipher, which is now equal to ∑

β′

∑
γ′

Prob2(α→ β′) · Prob2(γ → δ′).

Boomerang Attacks on round-reduced AES. A boomerang distinguisher on 4-round AES -
independent of the secret-key - was first presented in [Bir04], by combining two 2-round truncated
differential with prob. 1. Such distinguisher requires approximately 217.3 chosen plaintexts, 217.3

adaptive chosen ciphertexts and a computational cost of 219.65 table look-ups. Key-recovery attacks
on 5- and 6-round AES that exploit such distinguisher have been proposed in the same paper.

Yoyo Attack on AES

Yoyo game cryptanalysis was introduced by Biham et al. in [BBD+98] for cryptanalysis of 16 rounds
of SKIPJACK. Yoyo games are similar to Boomerang attacks, and they are based on adaptively
making new pairs of plaintexts and ciphertexts that preserve a certain property inherited from the
original pair.

At Asiacrypt 2016, the first key-independent yoyo-distinguishers for 4- and 5-rounds of AES has
been proposed by Rønjom et al. [RBH17]. These distinguishers beat previous records and require
respectively 2 and 225.8 adaptive chosen ciphertexts, and essentially zero computation except for
observing differences. In addition, authors present the first key-independent distinguisher for 6-rounds
AES based on yoyos that preserve impossible zero differences in plaintexts and ciphertexts. This

44

3.3. Existing Cryptanalysis of AES

Table 3.3.: Comparison of low-data attacks on round-reduced AES-128. Data complexity is measured
in number of required known/chosen plaintexts (KP/CP). Time complexity is measured in round-
reduced AES encryption equivalents (E), while memory complexity is measured in plaintexts (16
bytes). The case in which the MixColumns operation is omitted in the last round is denoted by “r.5
rounds”, that is r full rounds and the final round. Attacks proposed in our works are in bold.

Attack Rounds Data Computational Memory Reference

G&D-MitM 2.5 2 KP 280 280 [BDF11]

TrD 2.5 - 3 2 CP 231.6 28 [GRR16]

G&D-MitM 2.5 2 CP 224 216 [BDF11]

G&D-MitM 3 2 CP 216 28 [BDF11]

TrD 2.5 - 3 3 CP 211.2 − [GRR16]

G&D-MitM 3 3 CP 28 28 [BDF11]

TrD 2.5 - 3 3 CP 25.7 212 [GRR16]

TrD (EE) 3.5 - 4 2 CP 296 − [GRR16]

G&D-MitM 4 2 CP 288 28 [BDF11]

G&D-MitM 4 2 CP 280 280 [BDF11]

G&D-MitM 3.5 2 CP 272 272 [BDF11]

TrD (EE) 3.5 - 4 3 CP 274.7 − [GRR16]

G&D-MitM 4 3 CP 272 28 [BDF11]

TrD (EE) 3.5 - 4 3 CP 269.7 212 [GRR16]

G&D-MitM 4 4 CP 232 224 [BDF11]

ImpPol 3.5 - 4 8 CP 238 215 [Tie16a]

TrD (EB) 3.5 - 4 24 CP 235.1 217 [GRR16]

G&D: Guess & Det., D: Diff., MitM: Meet-in-the-Middle, TrD: Truncated Differential, ImpPol: Imp.
polytopic, EE: Extension at End, EB: Extension at Beginning.

distinguisher requires an impractical amount of 2122.83 adaptive chosen plaintext/ciphertext pairs
and essentially no computation apart from observing the corresponding differences.

Due to the similarity with “Mixture Differential” cryptanalysis, more details are given in the
following using the subspace trail terminology.

3.3.9. “Low-Data” and Polytopic Attacks

As already recalled in the introduction, a common approach of the cryptanalysis community is to
consider attacks on reduced-round variants of block ciphers. Here, the usual goal of the adversary is
to maximize the number of rounds that can be broken, using less data than the entire codebook
and less time than exhaustive key search. Attacks following such an approach are of importance,
since they ensure that the block ciphers are strong enough and because they help to establish the
security margins offered by the cipher. However, aiming for the highest number of rounds often leads
cryptanalyst to attacks very close to brute force ones, or requiring completely impractical amounts
of chosen/known inputs up to the full codebook.

In works like [BDD+12] authors consider Low-Data Complexity attacks on reduced-rounds of AES,
that is they apply attacks assuming the attacker has limited resources, e.g. few plaintext/ciphertext
pairs, which is often much more relevant in practice than attacks only aiming at the highest number
of rounds. The results of this work have then been improved in [BDF11]. In that paper, authors set
up tools which try to find attacks automatically by searching some classes of Guess-and-Determine

45

3. Advanced Encryption Standard (AES)

and Meet-in-the-Middle attacks. These tools take as input a system of equations that describes the
cryptographic primitive and some constraints on the plaintext and ciphertext variables. Then, they
first run a search for an “ad hoc” solver for the equations to solve, build it, and then run it to obtain
the actual solutions. Other competitive low-data key-recovery attacks on 3- and 4-round AES based
on 2-round truncated differential distinguishers with prob. 1 has been proposed at ToSC/FSE 2017
by Grassi et al. [GRR16].

Polytopic Attack. Another attack competitive in the low-data complexity scenario is the Polytopic
Cryptanalysis [Tie16a], which is a generalization of differential cryptanalysis. Polytopic cryptanalysis
has been introduced by Tiessen at Eurocrypt 2016, and it can be viewed as a generalization of
standard differential cryptanalysis. Consider a set of d ≥ 2 couples of plaintexts (p0, p0⊕α1), (p0, p0⊕
α2), ..., (p0, p0 ⊕ αd) with one plaintext in common (namely p0), called d-poly. The idea of polytopic
cryptanalysis is to exploit the probability that the input set of differences α ≡ (α1, α2, ..., αd) is
mapped into an output set of differences β ≡ (β1, β2, ..., βd) after r rounds. If this probability16 -
which depends on the S-Box details - is different from the corresponding probability in the case of
a random permutation, it is possible to set up distinguishers or key-recovery attacks. Impossible
polytopic cryptanalysis focuses on the case in which the probability of the previous event is zero. In
[Tie16a], an impossible 8-polytopic is proposed for 2-round AES, which allows to set up low-data
key-recovery attacks on 4- and 5-round AES.

3.3.10. Related-Key Attacks

The related-key attack model [Bih93; Bih94] is a class of cryptanalytic attacks in which the attacker
knows or chooses a relation between several keys and is given access to encryption/decryption
functions with all these keys. The goal of the attacker is to find the actual secret keys. In the
simplest form of this attack17, this relation between the keys is just a XOR with a constant, that
is k2 = k1 ⊕ C, where the constant C is chosen by the attacker. This type of relation allows the
attacker to trace the propagation of XOR differences induced by the key difference C through the
key schedule of the cipher.

For the AES case, related-key attacks have been proposed for full AES-256 and full AES-192
[BKN09; BK09], while no related-key attack on full AES-128 has been proposed in the literature.
In both attacks on AES-192 and AES-256, authors minimize the number of active S-Boxes in the
key-schedule by looking for local collisions.

16We remark that the probability of polytopic trails is usually much lower than the probability of trails in differential
cryptanalysis, that is simple polytopic cryptanalysis can not in general outperform standard differential cryptanalysis
- see Sect. 2 of [Tie16a] for details. For this reason, Polytopic Cryptanalysis can not be more competitive that
differential cryptanalysis in the general setting, but it can outperform it when one works in the low-data scenario.

17We mention that more complex forms of this attack allow other (possibly non-linear) relations between the keys.

46

4
Subspace Trail Cryptanalysis

Invariant subspace cryptanalysis is a cryptanalytic technique that is powerful for certain block
ciphers. If there exists an invariant subspace for the round function and for the key schedule, then
this technique can be used to mount fast distinguishers and key recovery. However, if such symmetries
do not exist or are not found, invariant subspace cryptanalysis is not applicable. This leads to the
natural question: Can subspace properties still be used, even if no special symmetries or constants
allow for invariant subspaces?

In [GRR16], we answered this question in the affirmative. While invariant subspace cryptanalysis
relies on iterative subspace structures, our analysis is concerned with trails of different subspaces.
With this more generic treatment of subspaces we do no longer rely on specific choices of round
constants or subkeys, and the resulting method is as such a potentially more powerful attack vector.

Interestingly, a strong relation exists between subspace trails and (impossible) truncated differential
cryptanalysis. As a result, subspace trail turns out to be an alternative notation that can be exploited
to formally describe several attacks in the literature. While an alternative representation of a cipher
can obviously be regarded in itself neither as a design nor as a cryptanalysis result, the simplicity
of a new representation of a cipher can play a significant heuristic role in the investigation of
distinguishers and key-recovery attacks.

To support this claim, we report some examples in the literature that illustrate that the choice
of an appropriate description of a cipher may be very useful for highlighting some of its structural
features and serve as a starting point for its cryptanalysis or for optimized implementations.

As first example, the so-called ladder representation of the Feistel scheme – which is strictly
equivalent to its more traditional twisted representation for any even number of rounds – is helpful
for understanding some attacks against DES and DES-like ciphers, as the Davies-Murphy attack
[DM95].

In the case of AES, several alternative representations have been proposed [FSW01; MR02] to
highlight some aspects of its algebraic structure. In [BB02; BCBP03] it was shown that numerous
dual ciphers of AES – i.e. equivalent descriptions of AES up to fixed, easy to compute and to invert
bijective mappings on the plaintexts, the ciphertexts, and the keys – can be obtained by applying
appropriately chosen modifications to the irreducible polynomial used to represent GF (28), the
affine transformation in the S-Box, the coefficients of MixColumns, etc. While these dual ciphers can
be considered as equivalent representations of AES, these representations essentially preserve the
structure of the round function of the AES up to small variations on the exact parameter of each
elementary transformation.

Another representation introduced by the designers of AES [DR06] is the so-called super S-Box
(or super-Sbox) representation of two AES round. It allows to describe two consecutive AES rounds
as the composition of one single non-linear operation, namely a range of four parallel 32-bit to 32-bit
key-dependent S-Boxes and several affine transformations. This representation – useful e.g. for the
analysis of AES differentials over two rounds – was subsequently re-used in [GP10; LMS+15] in order
to extend the so-called rebound attacks [MRST09; LMR+09] on AES-like permutations by at least
one round: this improved rebound technique, sometimes referred to as super S-Box cryptanalysis,
was shown to be applicable (at least) in two related contexts, the cryptanalysis of AES-like hash
functions and the investigation of so-called known-key distinguishers for AES-like block ciphers.

47

4. Subspace Trail Cryptanalysis

Finally, a novel representation - called “untwisted representation” - of two consecutive AES rounds
that results from an extra simplification of the super S-Box representation was introduced in [Gil14].
The simplification relates to the description of the affine transformations that surround the 32-bit
super S-Boxes. In there, authors show that all these affine transformations can be replaced by
one simple 32-bit oriented affine transformation that operates on the rows of the 4 × 4 matrix
of bytes representing the current state. As a result, in the untwisted representation of AES, two
consecutive AES rounds are viewed as the composition of a non-linear transformation S and an affine
transformation R that respectively operate on the four 32-bit columns and on the four 32-bit rows
of their 128-bit input. This representation has been introduced to analyze the resistance of AES-like
ciphers or AES-based hash functions against some structural attacks, and in order to present new
known-key distinguishers on 8- and 10-round AES.

4.1. Subspace Trail Cryptanalysis

4.1.1. Invariant Subspace Cryptanalysis

Invariant subspace cryptanalysis [LAAZ11; LMR15] can be a powerful cryptanalytic tool. Let F
denote a round function in an iterative key-alternating block cipher EK(·):

EK(m) = kn ⊕ F (... k2 ⊕ F (k1 ⊕ F (k0 ⊕m))),

where the round keys k0, ..., kn are derived from the master key K using some key schedule f :
(k0, ..., kn) = f(K). Assume there exists a coset1 V ⊕ a such that F (V ⊕ a) = V ⊕ a′. Then if the
round key K resides in V ⊕ (a⊕ a′), it follows that

FK(V ⊕ a) := F (V ⊕ a)⊕K = V ⊕ a

and we get an iterative invariant subspace.

F

V ⊕ a V ⊕ a′

K ∈ V ⊕ (a⊕ a′)

V ⊕ a

Figure 4.1.: Invariant Subspace.

A slightly more powerful property can occur if for each a, there exists unique b such that

FK(V ⊕ a) = F (V ⊕ a)⊕K = V ⊕ b

meaning that the subspace property is invariant, but not the initial coset2. That is, for each initial
coset V ⊕ a, its image under the application of FK is another coset of V , in general different from
the initial one. Equivalently, the initial coset V ⊕ a is mapped into another coset V ⊕ b, where b
depends on a and on the round key.

Definition 3 (Invariant Subspace Trail). Let Kweak be a set of keys. Given k ∈ Kweak, let
k ≡ (k0, k1, ..., kr) where kj is the j-th round key. For each k ∈ Kweak, the subspace U generates an

1Let W a vector space and V a subspace of W . If a is an element of W , a coset V ⊕ a of V in W is a subset of the
form V ⊕ a = {v ⊕ a | ∀v ∈ V }. We recall that two different cosets V ⊕ a and V ⊕ b (i.e. a 6= b) of the same generic
subspace V are equal if and only if a⊕ b ∈ V .

2Note that it is not necessary that a = b in order to set up an invariant subspace attack. Indeed, remember that the
round-keys are in general different, which means that they belong to different cosets of V .

48

4.1. Subspace Trail Cryptanalysis

invariant subspace trail of length r for the function Fk(·) ≡ F (·)⊕ k if for each i = 1, . . . , r there
exists a non-empty set Ai ⊆ UC – where UC is the complementary subspace of U – for which the
following property holds: for each ai ∈ Ai, there exists (unique) ai+1 ∈ Ai+1 such that

Fki(U ⊕ ai) ≡ F (U ⊕ ai)⊕ ki = U ⊕ ai+1.

Resistance against Invariant Cryptanalysis. Many lightweight block ciphers apply a very
simple key schedule in which the round keys only differ by addition of a round-specific constant. Due
to a poor choice of round constants, several of those schemes were recently broken using invariant
attacks, e.g. PRINTcipher [LAAZ11], Robin, iSCREAM and Zorro [LMR15], Midori [GJN+16] and
Haraka [Jea16a]. In [BCLR17], authors showed how to choose the round constants in order to prove
resistance against invariant subspace (or more generally invariant sets) in the case of identical round
keys (up to the addition of round constants).

4.1.2. Subspace Trail Cryptanalysis

A generalization of this concept is a subspace trail [GRR16]. In the simplest case, we look for pairs
of subspaces V1 and V2 such that

F (V1 ⊕ a)⊕K = V2 ⊕ b

holds for any constant a, that is for each a there exists unique b for which the previous equivalence
is satisfied.

F

V1 ⊕ a V2 ⊕ a′

K

V2 ⊕ b

Figure 4.2.: Subspace Trail.

A subspace trail of length r is then simply a set of r + 1 subspaces (U1, U2, . . . , Ur+1) that satisfy

F (Ui ⊕ ai)⊕K ⊆ Ui+1 ⊕ ai+1.

When the relation holds with equality, the trail is called a constant-dimensional subspace trail. In
this case, if F tK denotes the application of t rounds with fixed keys, it follows that

F tK(U1 ⊕ a1) = Ut+1 ⊕ at+1.

Definition 4 (Subspace Trail [GRR16]). Let (U1, U2, ..., Ur+1) denote a set of r+1 subspaces with
dim(Ui) ≤ dim(Ui+1). If for each i = 1, ..., r and for each ai ∈ UCi – where UCi is the complementary
subspace of Ui - there exist (unique) ai+1 ∈Wi+1 such that for each key k

Fk(Ui ⊕ ai) ≡ F (Ui ⊕ ai)⊕ k ⊆ Ui+1 ⊕ ai+1,

then (U1, U2, ..., Ur+1) is subspace trail of length r for the function FK . If all the previous relations
hold with equality, the trail is called a constant-dimensional subspace trail.

Note that ai+1 depends on ai and on the secret round key - to simplify notation we use ai+1 instead
of ai+1(ai, k). With subspace structures at hand, we might ask questions about the probability that
ciphertexts or sums of ciphertexts reside in certain subspaces, given that the plaintexts obey certain
subspace structure (e.g. their sum is also in a fixed subspace). If the sum is over two texts this
approaches resembles (truncated) differential cryptanalysis, if the sum is over more it can resemble
integral cryptanalysis.

49

4. Subspace Trail Cryptanalysis

Subspace Trail and Truncated Differential Cryptanalysis

As highlighted in [BLN14; GRR16; BLN17; LTW18], there is a strong connection between subspace
trails and truncated differentials.

Let’s focus for simplicity only on truncated differentials of probability 1, which can be described
as affine spaces of differences.

Definition 5. Let F : Fn2 → Fn2 be a permutation. A truncated differential of probability one is
defined by a pair of affine subspaces (U ⊆ Fn2 , s ∈ Fn2) and (V ⊆ Fn2 , t ∈ Fn2) for which:

∀α ∈ U,∀x ∈ Fn2 : F (x)⊕ F (x⊕ α⊕ s) ∈ V ⊕ t.

Let’s consider first the case s = t = 0. If s = t = 0, this simply states that each coset of U is
mapped into a coset of V . Indeed, if (U, V) is a subspace trail of length 1, then

∀a ∈ Fn2 : ∃b ∈ Fn2 s.t. F (U ⊕ a) ⊆ V ⊕ b

if and only if

∀α ∈ U,∀x ∈ Fn2 : F (x)⊕ F (x⊕ α) ∈ V.

What happens if s, t 6= 0? In [LTW18], authors claim that a subspace trail (U, V) of length 1 (that
is, F (U ⊕ a) ⊆ V ⊕ b) “determine [only] a truncated differential with linear subspaces [– that is
s = t = 0 –] that holds with probability one” (see Corollary 2). In other words, subspace trail implies
truncated differentials, while vice-versa is not true in general. As a result, “while subspace trails are
included in truncated differentials (as linear subspaces are a special case of affine subspaces), the
converse is not true in general. In other words, using truncated differentials we obtain a bit more
information on the actual structure of the investigated function.”.

In the following, we show that a subspace trail always implies a truncated differential with affine
subspaces, which means that

subspace trail and truncated differential with affine subspaces are completely equivalent.

Lemma 1. Let F : Fn2 → Fn2 be a (keyed/unkeyed) permutation. Let (U, V) be a subspace trail of
F (·), that is each coset of U (i.e., U ⊕ a) is mapped into a coset of V (i.e., V ⊕ b):

∀a : ∃b s.t. F (U ⊕ a) ⊆ V ⊕ b.

Such subspace trail implies the existence of truncated differentials with prob. 1 defined by pairs of
affine subspaces (U ⊆ Fn2 , s ∈ Fn2) and (V ⊆ Fn2 , t ∈ Fn2).

Proof. Since we already analyzed the case s = t = 0, we focus on the case s, t 6= 0.

Let (U, V) be a subspace trail of the (keyed/unkeyed) permutation F . By definition, ∀a ∈ Fn2 ,
there exists b ∈ Fn2 s.t. F (U ⊕a) ⊆ V ⊕ b. Thus, given a0, a1 ∈ Fn2 fixed but arbitrary s.t. a0 6= a1 and
a0 ⊕ a1 /∈ U (equivalently, this second request implies that U ⊕ a0 6= U ⊕ a1), there exist b0, b1 ∈ Fn2
s.t.

F (U ⊕ a0) ⊆ V ⊕ b0 and F (U ⊕ a1) ⊆ V ⊕ b1.

Note that if F (U ⊕ a0) = V ⊕ b0 and if F (U ⊕ a1) = V ⊕ b1, then b0 ⊕ b1 /∈ V . Indeed, b0 ⊕ b1 ∈ V
implies V ⊕ b0 = V ⊕ b1, that is U ⊕a0 = U ⊕a1 or equivalently a0⊕a1 ∈ U , which is a contradiction.
Instead in the case in which F (U ⊕ a0) ⊂ V ⊕ b0 and if F (U ⊕ a1) ⊂ V ⊕ b1, then both cases
b0 ⊕ b1 /∈ V and b0 ⊕ b1 ∈ V (i.e. V ⊕ b0 = V ⊕ b1) can occur.

By definition of subspace trail, this means that ∀i = 0, 1

∀z ∈ U : F (z ⊕ ai) ∈ V ⊕ bi

50

4.1. Subspace Trail Cryptanalysis

that is

∀w, z ∈ U : F (z ⊕ a0)⊕ F (w ⊕ a1) ∈ V ⊕ b0 ⊕ b1

since V is a subspace (that is, given x, y ∈ V , then x⊕y ∈ V). Since the previous result is independent
of the actual values of a0 and a1, it follows that

∀α ∈ U,∀x ∈ Fn2 : F (x)⊕ F (x⊕ α⊕ s) ∈ V ⊕ t

where t = b0 ⊕ b1, x = z ⊕ a0, α = z ⊕ w and s = a0 ⊕ a1, which is exactly the definition given for
truncated differentials. Note that if b0 ⊕ b1 ∈ V , then the previous result holds in the same way
using t = 0 (similar for s = a0 ⊕ a1 if a0 ⊕ a1 ∈ U).

A similar result can be derived also for truncated differential of probability lower than 1. To give
a concrete example, assume to know two subspace trails (U, V) and (W,Z) of length respectively r
and s:

∀a ∈ Fn2 : ∃b ∈ Fn2 s.t. F r(U ⊕ a) ⊆ V ⊕ b
∀a′ ∈ Fn2 : ∃b′ ∈ Fn2 s.t. F s(W ⊕ a′) ⊆ Z ⊕ b′.

It follows that3

∀α ∈ U,∀x ∈ Fn2 : F (x)⊕ F (x⊕ α⊕ s) ∈ Z ⊕ t

with probability |V ∩W |/|V |, where |X| denotes the cardinality of the set X. The result follows
immediately from the facts that

∀α ∈ U,∀x ∈ Fn2 : F (x)⊕ F (x⊕ α⊕ s) ∈ V ⊕ t
∀α′ ∈W, ∀x ∈ Fn2 : F (x)⊕ F (x⊕ α′ ⊕ s′) ∈ Z ⊕ t′

and from the fact that

Prob
[
x ∈W

∣∣x ∈ V]= |V ∩W |
|V |

.

Similarly

∀α ∈W, ∀x ∈ Fn2 : F (x)⊕ F (x⊕ α⊕ s) ∈ V ⊕ t

with probability |Z ∩ U |/|Z|.
Concrete examples are given in the following for 3 and 4 rounds of AES.

4.1.3. Weak-Key Subspace Trails

Invariant versus Subspace Trail

One may ask what relations hold between the “invariant subspace trail” definition and the “subspace
trail” one. Here we highlight two obvious but important differences among them.

First, subspace trails are clearly much more general as they allow different spaces in the domain
and the co-domain of F (·).

Second, subspace trails are by far more restrictive, as not only one coset of the subspace has to be
mapped to one coset of (a potentially different) subspace, but rather all cosets have to be mapped
to cosets. In more details, observe that a subspace trail for F will extend to a subspace trail for
Ek for any choice of round keys. This is a simple consequence as, if F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1 then
F (Vi ⊕ ai)⊕ ki ⊆ Vi+1 ⊕ a′i+1 for a suitable a′i+1. In other words, the key addition changes only the
coset of the subspace Ui+1, while it does not affect the subspace itself.

3We emphasize that no assumption is made about the relation between U and Z or/and between V and W .

51

4. Subspace Trail Cryptanalysis

Not only do subspace trails work for all keys, they are also completely independent of the key
schedule. Here, invariant subspace attacks behave very differently. In strong contrast, invariant
subspace attacks are always weak-key attacks by nature.

Namely, again focusing on the key-alternating cipher from above, in order to extend the invariant
subspace V ⊕ ai 7→ V ⊕ ai+1 to the whole cipher, we need all round keys to be in a specific coset
of V namely, ki ∈ V ⊕ (ai+1 ⊕ bi) (where F (V ⊕ ai) = V ⊕ bi). If this is fulfilled, then clearly
Fk(V ⊕ ai) = F (V ⊕ ai) ⊕ k = V ⊕ bi ⊕ k = V ⊕ ai+1 which then is iterative for any number of
rounds. As all round keys have to fulfill the same condition, which can be described by a system of
affine equations, the class of weak-master keys is largest in the case where all round keys are actually
identical to the master key itself.

Weak-Key Subspace Trails

Using the previous discussion as starting point, here we introduce the “weak-key subspace trails”.
The key idea is to stick to the property of invariant subspace attacks where only one coset of a
subspace is mapped to one coset of a subspace. However, borrowing from subspace trails, we allow
those subspaces to be different for each round. As this will again restrict the choice of round keys
that will keep this property invariant to a class of weak-keys we call this combination weak-key
subspace trails (or simply, weak subspace trails). The formal definition is the following.

Definition 6 (Weak-Key Subspace Trail [GLR+18]). Let Kweak be a set of keys. Given k ∈
Kweak, let k ≡ (k0, k1, ..., kr) where kj is the j-th round key. Let (U1, U2, . . . , Ur+1) denote a set
of r + 1 subspaces with dim(Ui) ≤ dim(Ui+1). For each k ∈ Kweak, (U1, U2, . . . , Ur+1) is a weak
subspace trail of length r for the function Fk(·) ≡ F (·) ⊕ k if for each i = 1, . . . , r there exists a
non-empty set Ai ⊆ UCi – where UCi is the complementary subspace of Ui – for which the following
property holds: for each ai ∈ Ai, there exists (unique) ai+1 ∈ Ai+1 such that

Fki(Ui ⊕ ai) ≡ F (Ui ⊕ ai)⊕ ki ⊆ Ui+1 ⊕ ai+1.

If all the previous relations hold with equality, the trail is called a weak constant-dimensional subspace
trail.

Usually, the set Ai ⊆Wi reduces to a single element ai, that is Ai ≡ {ai}. Moreover, we emphasize
that:

• if Kweak is equal to the whole set of keys and if Ai = Wi for each i = 0, ..., r+ 1, then previous
definition reduces/corresponds to Def. 4 for subspace trail;

• if Ui = Ui+1 for each i, then previous definition reduces/corresponds to Def. 3 for invariant
subspace trail.

Clearly, this allows greater freedom for an attacker4. In comparison to invariant subspace attacks,
weak-key subspace trails have the potential of being better applicable to block ciphers with a non trivial
key schedule.

4.2. Subspace Cryptanalysis for AES

For a vector space V and a function F on F4×4
28 , let F (V) = {F (v) | v ∈ V } (as usual). For a subset

I ⊆ {1, 2, . . . , n} and a subset of vector spaces {G1, G2, . . . , Gn}, we define GI as GI :=
⊕

i∈I Gi.
We denote with E = {e0,0, ..., e3,3} the unit vectors of F4×4

28 (e.g. ei,j has a single 1 in row i and
column j).

4Remark. In [GLR+18] we also propose an algorithm in order to (automatically) detect weak-key subspace trails.
Since I did not work on such result – it was done by Friedrich Wiemer, I limit myself to refer to [GLR+18, Sect.
2.4] for all details.

52

4.2. Subspace Cryptanalysis for AES

4.2.1. Subspaces for AES

In the following we define four families of subspaces essential to AES: the diagonal spaces DI , the
inverse-diagonal spaces IDI , the column spaces CI and the mixed spaces MI .

Definition 7 (Column Spaces [GRR16]). The column spaces Ci are defined as

Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, the column space C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 8 (Diagonal Spaces [GRR16]). The diagonal spaces Di are defined as

Di = SR−1(Ci) = 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉

where the index i+ j is computed modulo 4. For instance, the diagonal space D0 corresponds to
the symbolic matrix

D0 =

{
x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 9 (Inverse-Diagonal Spaces [GRR16]). The inverse-diagonal spaces IDi are defined
as

IDi = SR(Ci) = 〈e0,i, e1,i−1, e2,i−2, e3,i−3〉.

where the index i − j is computed modulo 4. For instance, ID0 = SR(C0) corresponds to the
symbolic matrix

ID0 =

{
x1 0 0 0
0 0 0 x2

0 0 x3 0
0 x4 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

The last type of subspaces we define are called mixed subspaces.

Definition 10. [Mixed spaces [GRR16]] The i-th mixed subspace Mi is defined as

Mi = MC(IDi).

These subspaces are formed by applying ShiftRows and then MixColumns to a column space. For
instance, M0 corresponds to symbolic matrix

M0 =

{
0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2

x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

The essential subspaces in AES are built from diagonal spaces Di, inverse-diagonal spaces IDi,
column spaces Cj and mixed spaces Mk. There are four of each of these spaces, and direct sums of
them result in higher-dimensional diagonal, inverse-diagonal, column and mixed spaces.

53

4. Subspace Trail Cryptanalysis

Definition 11 ([GRR16]). Given I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, we define:

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi MI =

⊕
i∈I
Mi.

The dimension5 of any of the spaces DI , IDI , CI and MI is 4 · |I|. Before going on, we remark
that the complements of DI , CI , IDI ,MI are simply the (respective) orthogonal D⊥I , C⊥I , ID

⊥
I ,M⊥I .

This follows immediately by the fact that6

DI ⊕D⊥I = CI ⊕ C⊥I = IDI ⊕ ID⊥I =MI ⊕M⊥I = F4×4
28

for each I ⊆ {0, 1, 2, 3}.

4.2.2. Subspace Trails of AES

Here we prove that {DI , CI ,MI} is a subspace trail of AES of length 2. To do this, we show that
{DI , CI} and {CI ,MI} are two subspace trails of AES of length 1. The result follows immediately.

Subspace Trail: {DI, CI}. It is easy to see that SubBytes maps cosets of diagonal and column
spaces to cosets of diagonal and column spaces. Since SubBytes operates on each byte individually
and it is bijective, and since the bytes of column and diagonal spaces are independent, its only effect
is to change the coset. It is also easy to see that ShiftRows maps a coset of a diagonal space to a
coset of a column space, since diagonals are mapped to columns, and it maps a coset of a column
space to a coset of an inverse-diagonal space. The effect of MixColumns to a columns space CI ⊕ a
is simply to change the coset, since applying the MixColumns matrix to a column space Ci has no
effect.

Lemma 2 ([GRR16]). Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ D⊥I . There exists unique b ∈ C⊥I
such that

RK(DI ⊕ a) = CI ⊕ b.

Proof. As we have just seen, since SubBytes is bijective and operates on each byte independently, it
simply changes the coset DI ⊕a to DI ⊕a′, where a′i,j = S-Box(ai,j) for each i, j = 0, ..., 3. ShiftRows

simply moves the bytes of DI ⊕ a′ to a column space CI ⊕ b
′
, where b′ = SR(a′). MixColumns affects

only the constant columns, thus MC(CI ⊕ b
′
) = CI ⊕MC(b′) = CI ⊕ b

′′
. Key addition then changes

the coset to CI ⊕ b.

This simply states that a coset of a sum of diagonal spaces DI encrypt to a coset of a corresponding
sum of column spaces CI through one round.

Subspace Trail: {CI,MI}. Similarly to before, a coset of a sum of column spaces CI encrypts to
a coset of the corresponding sum of mixed spaces MI over one round.

Lemma 3 ([GRR16]). Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ C⊥I . There exists unique
b ∈M⊥I such that

RK(CI ⊕ a) =MI ⊕ b.
5Since we are working over the field F28 , we consider the dimension of the subspace as the number of active and

independent bytes. As a result, the dimension of the subspaces is constant through SubBytes and MixColumns
operations.

6The equivalence MI ⊕M⊥I = F4×4
28 can be obtained by IDI ⊕ ID⊥I = F4×4

28 by applying MC(·) on both sides -
remember that MC(·) is linear.

54

4.2. Subspace Cryptanalysis for AES

Proof. By Def. 10, the mixed spacesMI are defined as the application of the MixColumns operation
to inverse-diagonal space IDI . Since a ShiftRows operation maps a column space to an inverse-
diagonal space, a mixed spaceMI is equivalently defined as the application of the linear layer in AES
to column spaces CI . Since the SubBytes layer only moves a coset CI ⊕ a to a coset CI ⊕ a′, it follows
that for any fixed coset CI⊕a, there exists b ∈M⊥I such that MC ◦SR◦S-Box(CI⊕a)⊕K =MI⊕b,
where b = MC ◦ SR(a′)⊕K and a′i,j = S-Box(ai,j) for each i, j = 0, ..., 3.

Subspace Trail: {DI, CI,MI}. Finally, we are able to prove the desired result.

Theorem 3 ([GRR16]). Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ D⊥I . There exists unique
c ∈M⊥I such that

R2
K(DI ⊕ a) =MI ⊕ c.

This simply states that each coset of DI is mapped into a coset ofMI after 2 rounds, independently
of the details of the S-Box and of the secret key.

4.2.3. Intersecting AES Subspaces

We continue with useful properties of AES subspaces. In this section we show the following: diagonal
spaces and column spaces have non-trivial intersection, column spaces and mixed spaces have
non-trivial intersection, but diagonal spaces and mixed spaces have only trivial intersection. This
will be useful for creating subspace trails covering a higher number of rounds. In the following, let
I, J ⊆ {0, 1, 2, 3} and we assume that all the indexes are taken modulo 4.

Proposition 2 ([GRR16]). Di ∩ Cj = 〈ei+j,j〉 and IDi ∩ Cj = 〈ei−j,j〉.

Proof. Di space corresponds to a symbolic matrix with variables along the i-th diagonal, while Cj
has variables in the j-th column. Any diagonal and column meets in exactly one byte, precisely in
row j + i and column j. The proof is equivalent for the intersection IDi ∩ Cj .

It follows that DI ∩ CJ = 〈ej+i,j | i ∈ I, j ∈ J〉 and IDI ∩ CJ = 〈ei−j,j | i ∈ I, j ∈ J〉 (j + i and
i− j are taken modulo 4), where the intersections have dimension |I| · |J |.

Proposition 3 ([GRR16]). Ci ∩Mj = 〈MC(ej+i,i)〉.

Proof. We have that MC ◦ SR(Di) = Ci and by Def. 10, Mi = MC(IDi) = MC ◦ SR(Ci). By
Lemma 2, Di ∩ Cj = 〈ej+i,j〉. Thus it follows that 〈MC(ej+i,j)〉 = MC ◦ SR(Di) ∩MC ◦ SR(Cj) =
Di ∩Mj . Finally, since SR(er,c) = er,c−r, we obtain that 〈MC ◦ SR(ej+i,j)〉 = 〈MC(ej+i,i)〉.

It follows that CI ∩MJ = 〈MC(ej+i,i) | i ∈ I, j ∈ J〉 (i+j is taken modulo 4), which has dimension
|I| · |J |.

While the spaces DI and CJ , IDI and CJ , and CI and MJ intersect non-trivially, the spaces DI
and MJ and the spaces IDI and MJ intersect trivially. In particular:

Proposition 4 ([GRR16]). DI ∩MJ = IDI ∩MJ = {0} for all I and J such that |I|+ |J | ≤ 4.

Proof. To prove this proposition, we first consider the case |I| = |J | = 1, and we prove the following
result.

∀i, j ∈ {0, 1, 2, 3} : Di ∩Mj = IDi ∩Mj = {0}.

The proof works as follows. A basis for Mj is given by:

Mj = 〈MC(e0,j),MC(e1,j−1),MC(e2,j−2),MC(e3,j−3)〉,

while a basis for Di is given by Di = 〈〈e0,i, e1,i+1, e2,i+2, e3,i+3〉, where in both cases the indexes are
taken modulo 4.

55

4. Subspace Trail Cryptanalysis

Suppose by contradiction that Di andMj has a nonzero intersection. This implies that there exist
xk and yk for k = 0, ..., 3 such that

3⊕
k=0

[xk−i · ek−i,k ⊕ yk+j ·MC(ek+j,k)] = 0. (4.1)

has a nontrivial solution (where at least one xk or/and yk is different from zero). The only possible
solution of the previous equivalence is given by

xk−i · ek−i,k ⊕ yk+j ·MC(ek+j,k) = 0

for each k (note that e·,n and e·,m lie on different columns for n 6= m - similar for MC(e·,n) and
MC(e·,m)). This is clearly impossible since ek−i,k and MC(ek+j,k) are linearly independent for each
k = 0, ..., 3. Thus, Di and Mj intersect only in zero.

Coming back to the generic case I, J ⊆ {0, 1, 2, 3}, as long as |I| + |J | ≤ 4, we have that any
combinations of subspaces DI and MJ only intersect in the zero vector. Indeed, consider the sum
over k defined in Eq. (4.1). If |I|+ |J | ≤ 4, then for each k (i.e. for each column) there are at most
four terms. Among them, there is at least one term of the form 〈e·,k〉 and at least one of the form
〈MC(e·,k)〉. Thus, equation (4.1) has only trivial solutions. Instead, note that this is not true if
|I|+ |J | > 4. Indeed, in this case for each k (i.e. for each column), the equation (4.1) has at least 5
terms. Since there are only 4 rows, it is always possible to find non trivial solutions.

The proof is equivalent for the intersection IDI ∩MJ .

4.3. Truncated Distinguishers for AES

In this section, we show that the subspace trail notation is a valid notation in order to describe
truncated (and impossible) distinguishers for up to 4-round AES. In other words, the “classical”
truncated differential notation and the subspace trail one are basically equivalent. This is due to the
fact that the difference of two texts t1 and t2 can be described by the fact that t1 and t2 belong to the
same coset of a particular subspace X , that is t1 ⊕ t2 ∈ X .

For concrete examples, consider the following. If two texts t1 and t2 are equal except for the
bytes in the i-th diagonal7 for each i ∈ I, then they belong to the same coset of DI . A coset of DI
corresponds to a set of 232·|I| texts with |I| active diagonals. Again, two texts t1 and t2 belong to
the same coset of IDI if the difference of the bytes that lie in the i-th anti-diagonal for each i /∈ I is
equal to zero. Similar considerations hold for the column space CI and the mixed space MI .

4.3.1. Truncated Differential for 2-round AES

As we have seen, diagonal spaces are encrypted over two rounds to ciphertexts in mixed subspaces.
More formally, for each a ∈ D⊥I , there exists unique b ∈M⊥I such that R(2)(DI ⊕ a) =MI ⊕ b.

Consequently, we get the following properties. If two plaintexts belong to the same coset of a
diagonal space DI , then their 2-round encryptions belong to the same coset of a mixed space MI .
In particular, for a two round encryption R2 with fixed keys, we have that

Prob
[
R2(p1)⊕R2(p2) ∈MI | p1 ⊕ p2 ∈ DI

]
= 1 (4.2)

for nonzero set I of {0, 1, 2, 3} (i.e. |I| 6= 0).

7The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such that r − c = i
mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r + c = i mod 4.

56

4.3. Truncated Distinguishers for AES

Since for a random permutation Π(·) it holds that

Prob
[
Π(p1)⊕Π(p2) ∈MI | p1 ⊕ p2 ∈ DI

]
= (2−32)4−|I|, (4.3)

it is possible to exploit this property to distinguish two rounds of AES from a random permutation.
In particular, the difference between the two probabilities is maximized by choosing |I| = 1. In this
last case, two pairs of plaintexts/ciphertexts (p1, c1) and (p2, c2) where p1 ⊕ p2 ∈ DI are largely
sufficient to distinguish the two permutations.

4.3.2. Truncated Differential for 3-round AES

While no deterministic subspace trail can be set up for 3-round AES, we can exploit the subspace
trail notation to easily describe any truncated differential on 3-round AES.

Consider a coset of DI as starting point. After one round, this coset is mapped into a coset of
CI with probability 1 - see Lemma 2. Thus, if we consider two elements that belong to the same
cosets of DI , after one round they belong in the same coset of CI for sure. However, at the same
time and with a certain probability, it is possible that these two elements belong to the same coset
of CI ∩DJ ⊆ DJ for a certain J after one round. This happens with a certain probability, and this is
the starting point for our desired result. In particular, the following proposition holds:

Proposition 5 ([GRR16]). For any CI and DJ , we have that

Prob
[
x ∈ DJ |x ∈ CI

]
= (28)−4|I|+|I|·|J |. (4.4)

That is, given a texts in CI , it also belongs in DJ with probability (28)−4|I|+|I|·|J |. This follows
immediately by the intersection CI ∩ DJ , as shown in Prop. 2.

This result is the starting point for any truncated differential distinguisher on 3-round AES. If two
plaintexts belong to the same coset of a diagonal space DI , then their 3-round encryption belongs
to the same coset of a mixed space MJ with prob. (28)−4|I|+|I|·|J |. In particular, for a three round
encryption R3 with fixed keys, we have that

Prob
[
R3(p1)⊕R3(p2) ∈MJ | p1 ⊕ p2 ∈ DI

]
= (28)−4|I|+|I|·|J | (4.5)

for nonzero set I of {0, 1, 2, 3} (i.e. |I| 6= 0). To get the result, note that

DI ⊕ a
R(·)−−−−−−−−−−−−−→

prob. (28)−4|I|+|I|·|J|

(
CI ∩ DJ

)
⊕b R2(·)−−−−→

prob. 1
MJ ⊕ c.

Since for a random permutation Π(·) it holds that Prob
[
Π(p1) ⊕ Π(p2) ∈ MJ | p1 ⊕ p2 ∈ DI

]
=

(2−32)4−|J |, it is possible to distinguish three rounds of AES from a random permutation. In particular,
the difference between the two probabilities is maximized by choosing |I| = 1 and |J | = 3. For this
choice, it turns out that the probability for 3-round AES is 2−8 while for a random permutation is
2−32.

In this last case, 40 pairs of plaintext/ciphertext (pi, ci) for 1 ≤ i ≤ 20 where pi⊕ pj ∈ DI for each
i, j are largely sufficient to distinguish the two permutations8. Indeed, given 40 texts, it is possible
to construct

(
40
2

)
= 780 different couples of two pairs of plaintext/ciphertext. As a result, we expect

approximately 780 · 2−8 ' 3 collisions for the AES case and 780 · 2−32 ' 0 for the random case.
Moreover, in the following we show that also the variance9 can be exploited in order to distinguish

3-round AES from a random permutation, besides the mean. To the best of our knowledge, this is
the first time that such consideration is explicitly made.

8We emphasize that 20 pairs of plaintext/ciphertext are sufficient to distinguish the two cases if the index J ⊆ {0, 1, 2, 3}
with |J | = 3 of the final subspace MJ is not fixed.

9Potentially, also the skewness can be used in order to set up a distinguisher.

57

4. Subspace Trail Cryptanalysis

Description in the Literature. To have a concrete comparison of the description of such
distinguisher using the “classical” truncated differential notation, we recall its description proposed
in [BK07]: “a differential which starts with four active S-boxes at the 1st round. We choose those
active S-boxes to appear in positions which arrive in one column after the ShiftRows transformation.
Then with probability 2−6 four active S-boxes will collapse to three (one byte out of four getting a zero
difference). After the second round the three active bytes are expanded into 12 active bytes and there
will still remain 4 passive bytes. This differential can be schematically described as 4→ 3→ 12.” For
comparison, our notation allows to formally collect all possible cases.

4.3.3. (Impossible) Truncated Differential for 4-round AES

From now on, we assume that I and J satisfy the condition 0 < |I|+ |J | ≤ 4 (which allows us to use
Lemma 4).

To set up the 4-round impossible differential distinguisher, the idea is to combine two 2-round
differential ones with prob. 1 such that they collapse in the middle. In particular, remember that

Prob
[
R2(p1)⊕R2(p2) ∈MI | p1 ⊕ p2 ∈ DI

]
= 1

and that

Prob
[
x ∈ DJ |x ∈MI

]
= 0

if x 6= 0. Combining these two probabilities for 2-round yields a 4-round probability

Prob
[
R4(p1)⊕R4(p2) ∈MJ | p1 ⊕ p2 ∈ DI

]
= 0 (4.6)

where p1 6= p2 and 0 < |I|+ |J | ≤ 4.

Since for a random permutation Π(·) it holds that Prob
[
Π(p1) ⊕ Π(p2) ∈ MJ | p1 ⊕ p2 ∈ DI

]
=

(2−32)4−|J |, it is possible to distinguish four rounds of AES from a random permutation. In particular,
the difference between the two probabilities is maximized by choosing |I| = 1 and |J | = 3. In this
last case, 217.25 pairs of plaintext/ciphertext (pi, ci) for 1 ≤ i ≤ 217.25 where pi ⊕ pj ∈ DI for each
i, j are largely sufficient to distinguish the two permutations10.

Description in the Literature. To have a concrete comparison of the description of such
distinguisher using the “classical” truncated differential notation, we recall its description proposed
in [BK01]: “If a pair of plaintexts differ by only one byte then the ciphertexts cannot be equal in
any of the following combinations of bytes: (1,6,11,16), (2,7,12,13), (3,8,9,14), nor (4,5,10,15).
[...] The reason is that the difference before the first MixColumn is in one byte, so after it there is
difference in one column, and then after the second MixColumn the data differs in all the bytes. On
the other hand, if the ciphertexts are equal in one of the four prohibited combinations of bytes then
after the third MixColumn the data is equal in one column, and thus before the MixColumn the data
in this column is also equal. Therefore, after the second MixColumn there are 4 bytes in which the
data is equal. This is a contradiction since we showed that all the bytes of the data differ after that
MixColumn. This property is indeed impossible.” For comparison, our notation allows to formally
collect all possible cases.

4.4. Weak-Key Invariant Subspace and Subspace Trails for AES

Here we show that it is possible to extend the previous results on an higher number of rounds in the
case of weak keys of AES.

10We emphasize that 216.25 pairs of plaintext/ciphertext are sufficient to distinguish the two cases if the index
J ⊆ {0, 1, 2, 3} with |J | = 3 of the final subspace MJ is not fixed.

58

4.4. Weak-Key Invariant Subspace and Subspace Trails for AES

To do this, we make use of the “weak” subspace trail notation previously defined. First of all, we
define an invariant subspace IS and a class of weak keys of AES.

Let the subspace IS be defined as

IS =

{
a b a b
c d c d
e f e f
g h g h

 ∣∣∣∣ ∀a, b, c, d, . . . , h ∈ F28

}
(4.7)

This subspace - already presented and used in e.g. [LSWD04; GNPW13; CFG+17] - is invariant
under a key-less round R(·) = MC ◦ SR◦ S-Box(·), since

S-Box(IS) = IS SR(IS) = IS MC(IS) = IS.

AES Key-Schedule. As we are going to show, the possibility to set up a weak invariant subspace
trail depends on the concrete value of the secret key and of the key schedule details.

The problem to design a strong key schedule has been largely studied and discussed in the literature.
Usually, the target that a key schedule must satisfy is resistance against related-key attacks, while
the problem of weak-keys is in general less considered. However, presence of weak-keys can have a
devastating effect on the security of a cipher.

For this reason, in the following we consider several AES key-schedules present in the literature,
and for each one of them we discuss the possibility to set up a weak invariant subspace trail. In more
details, we consider three categories of key schedule:

• the simplest key schedule is given by identical subkeys or by subkeys defined as the XOR of
the whitening key and round constants - this category has been largely studied in [BCLR17],
recently published at Crypto 2017;

• another category of key schedule is given by (linear) permutation of the byte positions: each
subkey is the result of a particular permutation applied to the whitening key - e.g. the key
schedule recently proposed at ToSC/FSE 2018 [KLPS17];

• finally, we consider the AES key-schedule11.

For each case, we present a set of weak-keys for which the invariant subspace trail - of length
equal or bigger than two - can be set up. To do this, our strategy is simply to look for keys that
(1st) belong to the invariant subspace IS and (2nd) for which the “next round sub-key” generated
by the key schedule belongs to the invariant subspace IS. In other words, in order to find weak-keys,
we initially focus on a set of 264 keys - denoted by Kweak - “equal” to the subspace IS just defined,
and among them we identify the keys that satisfy the second requirement just given.

4.4.1. Identical Round Keys and Weak Round Constants

The simplest possible key schedule (mainly used for lightweight ciphers) is probably obtained as
follows: the r-th round subkey k[r] is simply given by the XOR of the whitening key K and a round
constant RC[r], that is k[r] = K ⊕RC[r].

11In [GLR+18], we also considered the key-schedule proposed by Nikolic [Nik10] at SAC 2010. This variant is obtained
by introducing a small change in the current AES key schedule, which allows to improve the security against
related-key attacks. In short, for obtaining each column of the new subkey, the new key schedule always uses
rotation by one byte up of the previous subkey column, while AES uses a rotation only when obtaining the subkey
column with an index multiple of Nk (Nk = 4, 6, 8 for AES-128,-192,-256).

As we show in [GLR+18], even if this change improves the security against related-key attack, it does not improve
the security against weak-key attacks w.r.t. the original AES key schedule.

59

4. Subspace Trail Cryptanalysis

Consider the subspace IS previously defined. If for each round r the subkey K ⊕RC[r] belongs
to this subspace, then it is possible to set up a weak invariant subspace trail for a set of weak-keys
for an arbitrary number of rounds. In particular, if k[r] ∈ IS then

IS MC◦SR◦S-Box(·)−−−−−−−−−−−→ IS ·⊕k[r]−−−→ IS (4.8)

This property, and similar symmetries in the AES round transformation, are folklore.
Clearly, with a proper choice of round constants, such properties can be easily avoided. As already

mention, [BCLR17] show how to check that at least invariant subspaces (and subsets) are ruled out.
Even though we do not know of a method to generically rule out weak subspace trails, we do not
know of such properties for such a key schedule with random round constants either.

4.4.2. Key-Schedule based on Permutation of the Byte Positions

Another possible category of key schedule exploits permutation of the byte positions: each subkey
is the result of a particular permutation applied to the whitening key. A concrete example of key
schedule based on permutation has been proposed at ‘ToSC/FSE 2018 [KLPS17]. This new key
schedule is basically a permutation on the key state byte positions, where the key state update
function is defined as follows

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

→


11 15 3 7
12 0 4 8
1 5 9 13
2 6 10 14


Regarding security, even though no S-Box nor round constant is used in this key schedule, authors
prove more active S-Boxes in the related-key model than for AES-128. However, consider the previous
subspace IS defined in (4.7) and assume that the whitening key belongs to such subspace. It follows
that any subkey generated by the previous permutation belongs to such subspace (due to particular
symmetries of the permutation), which implies the possibility to set up an “infinitely-long” weak
invariant subspace of the form (4.8) for a set of weak-keys.

However, a simple way to avoid such invariant subpsace attack would be to add random round-
constants. For completeness, we mention that authors of [KLPS17] also propose to “tweak this
design (without increasing the tracking effort) by adding an S-Box layer every round to the entire
first row of the key state”. Due to the analysis just proposed, this operation does not improve the
security against the presented invariant subspace attack. However, this problem can be easily fixed
by applying an S-Box layer every round to one entire column.

4.4.3. AES Key-Schedule

Weak-Keys of AES-128. Under one of the 232 weak-keys in Kweak

Kweak =

{
A A A A
B B B B
C C C C
D D D D

 ∣∣∣∣∀A,B,C,D ∈ F28

}
(4.9)

the subspace IS is mapped into a coset of IS after two complete AES rounds. In more details, given
k ∈ Kweak, let k̂ be the corresponding subkey after 2 rounds of the key schedule (where k̂ /∈ Kweak

in general). It follows that

IS R2◦ARK(·)−−−−−−−→ IS ⊕ k̂

where R(·) ≡ ARK ◦MC ◦ SR◦ S-Box(·), that is IS forms a weak invariant subspace of length 2.
In order to prove this result, it is sufficient to note that

60

4.4. Weak-Key Invariant Subspace and Subspace Trails for AES

1. Kweak ⊆ IS, which implies that IS ⊕ k = IS for all k ∈ Kweak;

2. the first round key derived from the key-schedule of Kweak – denoted by K ′w – is a subset of IS

K ′w ≡


S-Box(B)⊕A⊕R[1] S-Box(B)⊕R[1] S-Box(B)⊕A⊕R[1] S-Box(B)⊕R[1]

S-Box(C)⊕B S-Box(C) S-Box(C)⊕B S-Box(C)
S-Box(D)⊕ C S-Box(D) S-Box(D)⊕ C S-Box(D)
S-Box(A)⊕D S-Box(A) S-Box(A)⊕D S-Box(A)


for all A, ...,D ∈ F28 .

Weak-Keys of AES-256. For the case AES-256, a set of 2128 weak-keys is given by

Kweak =

{
A0 A1 A0 A1 E0 E1 E0 E1

B0 B1 B0 B1 F 0 F 1 F 0 F 1

C0 C1 C0 C1 G0 G1 G0 G1

D0 D1 D0 D1 H0 H1 H0 H1

 ∣∣∣∣∀Ai, . . . ,H i ∈ F28 ∀i = 0, 1

}

Under any of such keys, the subspace IS is mapped after two complete rounds into a coset of IS,

that is IS R2◦ARK(·)−−−−−−−→ IS ⊕ k̂, where k̂ is the corresponding subkey after 2 rounds of the key schedule.

For the follow-up, we also present two subspaces of Kweak for which it is possible to construct a
longer invariant subspace trail:

3-round: working with any of the 296 keys that satisfy A0 = A1, . . . , D0 = D1, the subspace IS is

mapped after three complete rounds into a coset of IS, that is IS R3◦ARK(·)−−−−−−−→ IS ⊕ k̂′ where
k̂
′

is the subkey after 3 rounds.

4-round: working with any of the 264 keys that satisfy A0 = A1, . . . ,H0 = H1, the subspace IS is

mapped after four complete rounds into a coset of IS, that is IS R4◦ARK(·)−−−−−−−→ IS ⊕ k̂′′ where
k̂
′′

is the subkey after 4 rounds.

5-round: working with any of the 232 keys that satisfy A0 = A1 = B0 = . . . = D0 = D1 = 0, E0 =
E1, . . . ,H0 = H1, the subspace IS is mapped after five complete rounds into a coset of IS,

that is IS R5◦ARK(·)−−−−−−−→ IS ⊕ k̂′′′ where k̂
′′′

is the subkey after 5 rounds.

A complete proof of these results can be found in [GLR+18, App. B].

Weak-Keys of AES-192. For the case AES-192, a set12 of 264 weak-keys is given by

Kweak ≡


A E ⊕ SB(D ⊕H) A E ⊕ SB(D ⊕H) E SB(D ⊕H)

B F ⊕ SB(A⊕ E ⊕R[1]) B F ⊕ ŜB(A⊕ E) F SB(A⊕ E ⊕R[1])
C G⊕ SB(B ⊕ F) C G⊕ SB(B ⊕ F) G SB(B ⊕ F)
D H ⊕ SB(C ⊕G) D H ⊕ SB(C ⊕G) H SB(C ⊕G)


where SB(·) ≡ S-Box−1(·) and for each A, ...,H ∈ F28 .

Under any of such keys, the subspace IS is mapped after two complete rounds into a coset of IS,

that is IS R2◦ARK(·)−−−−−−−→ IS ⊕ k̂, where k̂ the corresponding subkey after 2 rounds of the key schedule.

12We highlight that this subset is not a subspace, as for AES-128 and AES-256.

61

4. Subspace Trail Cryptanalysis

4.4.4. Weak-key subspace trail of AES

Before going on, we present a (proper) weak-key subspace trail for AES. The trails that we just
proposed in this section are actually invariant subspace trails: here we present subspace trails with
different input and output subspaces that work only for a class of weak keys, that is weak-key subspace
trails which can not be reduced to invariant subspace trails.

For simplicity, initially we work with a simpler S-Box, that is we replace the AES S-Box with the
following one

∀x ∈ GF (28) : Sbox(x) =

{
1/x ≡ x254, if x 6= 0,

0 otherwise

To achieve our goal, the idea is to find subspace V,W ⊂ GF (28) of dimension two or/and four such
that

Sbox(V ⊕ v) ⊆W ⊕ w

for certain (not all) v, w ∈ GF (28), where V 6= W in general. E.g. the subspace V of dimension four
defined as

V = {x ∈ GF (28) |x256 + x = 0}.

It’s simple to observe that V is invariant under the Sbox - that is, Sbox(V) = V , since Sbox(x)256 ⊕
Sbox(x) = [(x254)]256 ⊕ x254 = [(x254)]255︸ ︷︷ ︸

≡1

·x254 ⊕ x254 = 0 (remember that x2n−1 = 1 for all

x ∈ GF (2n)).
In [BWP05], several subspaces V,W ⊂ GF (28) of dimension two and four are defined such that

V 6= W and Sbox(V ⊕v) ⊆W ⊕w. In particular, they found 85 disjoint input subspaces of dimension
2 together with the corresponding output subspaces, and 17 disjoint input subspaces of dimension 4
together with the corresponding output subspaces of the AES13, e.g.

Sbox
(
V ≡ 〈[2, 24, 97, 160], 0〉

)
=
(
W ≡ 〈[6, 40, 88, 139], 0〉

)
.

This can be used to set up a weak-subspace trail for 1-round AES, e.g.

V ⊕ x ≡

〈[2, 24, 97, 160]〉 x0,1 x0,2 x0,3
x1,0 〈[2, 24, 97, 160]〉 x1,2 x1,3
x2,0 x2,1 〈[2, 24, 97, 160]〉 x2,3
x3,0 x3,1 x3,2 〈[2, 24, 97, 160]〉

 MC◦SR◦Sbox(Kw⊕·)−−−−−−−−−−−−−−→

W ⊕ y ≡

〈[6, 40, 88, 139]〉 y0,1 y0,2 y0,3
〈[6, 40, 88, 139]〉 y1,1 y1,2 y1,3
〈[6, 40, 88, 139]〉 y2,1 y2,2 y2,3
〈[6, 40, 88, 139]〉 y3,1 y3,2 y3,3


for random value of x ∈ D1,2,3, and where the class of weak keys Kw corresponds to the subspace
V ⊕D1,2,3 (where V ⊆ D0), that is each byte in the first diagonal of the key belongs to the subspace
〈[2, 24, 97, 160]〉 while all other bytes can take any possible value.

In a similar way, it is possible to set up different and longer weak-key subspace trails for AES.
Finally, we mention that analogous result can be obtained for real AES, since the AES S-Box is
affine equivalent to Sbox(x), that is

AES-SBox(x) = α · Sbox(x)⊕ β ≡ α · 1

x
⊕ β

where α is a 8× 8 binary (invertible) matrix and β is a constant (β = 0x63). In other words, the
previous weak-key subspace trail holds if the subspace W is replaced by α ·W ⊕ β.

13About the notation, the flats are denoted by 〈[a1, ..., ad], b〉, where b represents the coset and a1, ..., ad the d basis
vectors of the subspace. Here the vectors are denoted by their radius-2 notation, i.e. x = x1 +2 ·x2 + ...+2n−1 ·xn ∈ Z
corresponds with the vector x = (x1, ..., xn).

62

4.5. Weak-Key Truncated Differential for round-reduced AES

4.5. Weak-Key Truncated Differential for round-reduced AES

In the following, we show that it is possible to extend the truncated differential distinguishers
proposed in Sect. 4.3 for up to 5 rounds in the case of weak-key. For simplicity, we focus on the
case of AES-128 - analogous results hold for AES-192 and AES-256 for the corresponding class of
weak-keys Kweak.

As we have just seen, for the case AES-128, the subspace IS is mapped into a coset IS ⊕ a after
two rounds if the secret key is a weak-key. In other words, given two plaintexts x, y ∈ IS, then
R2(x)⊕R2(y) ∈ IS under a weak-key. By definition of IS and of DI , note that14

Prob
[
z ∈ DI

∣∣ z ∈ IS]= {2−32 I ≡ {0, 2}, {1, 3}
0 otherwise

where we assume that z /∈ DL for all L ⊆ {0, 1, 2, 3} such that |L| < |I| < 4. This is the starting
point for our results, together with the fact that Prob[z ∈ D0,2] = Prob[z ∈ D1,3] = 2−64 for a
generic text z.

Weak-Key Truncated Differential over 4-round AES-128

Since R2(DI ⊕ a) =MI ⊕ b (that is Prob
[
R2(x)⊕ R2(y) ∈ MI

∣∣x⊕ y ∈ DI] = 1), it follows that
for an AES permutation and for a weak-key

Prob
[
R4(x)⊕R4(y) ∈MI

∣∣x, y ∈ IS, k ∈ Kweak

]
= 2−32 if I ≡ {0, 2}, {1, 3},

while for a random permutation Π the probability is equal to 2−64.
A similar result holds for 4-round AES-192 and for up to 7-round AES-256.

Weak-Key Truncated Differential over 5-round AES-128

Since Prob
[
x ∈ CJ

∣∣x ∈MI

]
= (28)−4|I|+|I|·|J | as we have just seen, it is possible to set up a 5-round

truncated differential distinguisher on 5-round AES for a weak-key.

Proposition 6. Let I ⊆ {0, 1, 2, 3} fixed. The following probability holds:

Prob
[
R5(x)⊕R5(y) ∈MI

∣∣x, y ∈ IS, k ∈ Kweak

]
= 2−95+16·|I| + 2−128+32·|I| (4.10)

Since for a random permutation Prob
[
Π(x)⊕Π(y) ∈MI

∣∣x, y ∈ IS, k ∈ Kweak

]
= (2−32)4−|I|, it

is possible to distinguish the two cases.

Proof. In order to compute the previous probability, we recall the law of total probability. Given a
finite (or countably infinite) partition B1, . . . , Bn of a sample space events in a probability space
(Ω,F ,P) s.t. (1st) Bi ∩Bj = ∅ for each i 6= j and s.t. (2nd)

⋃
iBi is the entire sample space, then

Prob(A) =
n∑
i=1

Prob(A|Bi) · Prob(Bi). (4.11)

It follows that for a fixed I:

Prob
[
R5(x)⊕R5(y) ∈MI | x, y ∈ IS, k ∈ Kweak

]
=

=
{
Prob

[
R5(x)⊕R5(y) ∈MI

∣∣R4(x)⊕R4(y) ∈M′
]
×Prob

[
R4(x)⊕R4(y) ∈M′

]}
+

+
{
Prob

[
R4(x)⊕R4(y) /∈M′

]
×Prob

[
R5(x)⊕R5(y) ∈MI

∣∣R4(x)⊕R4(y) /∈M′
]}

=

= 2−64+16·|I| · 2−31 + 2−32·(4−|I|) · (1− 2−31) ' 2−95+16·|I| + 2−128+32·|I|

where M′ =M0,2 ∪M1,3.

14Observe that the first and the third diagonals of each texts in IS are equal, as well as the second and the fourth ones.

63

4. Subspace Trail Cryptanalysis

To have concrete numbers, if |I| = 2, then the probability for 5-round AES-128 is equal to 3 · 2−64,
while for a random permutation it is equal to 2−64. If |I| = 1, then the probability for 5-round
AES-128 is equal to 2−79, while for a random permutation it is equal to 2−96. Finally, if |I| = 3, then
the probability for 5-round AES-128 is equal to 2−32 + 2−47, while for a random permutation it is
equal to 2−32.

A similar result holds for 5-round AES-192 and for up to 8-round AES-256.

4.6. Generalization of Truncated Differential: Moments of a
Probabilistic Distribution

To conclude, we propose a generalization of the truncated differential distinguishers on round-reduced
AES just proposed. The central idea is to consider the variance/skewness/kurtosis/... instead of
the mean as probabilistic parameter to set up the distinguisher. Such strategy can be used for any
cipher/hash function. Even if for the studied cases it is not competitive to considerer e.g. the variance
instead of the mean, in the following we show a case (see Sect. 5 - truncated differential distinguishers
on 5-round AES) in which such strategy is instead competitive.

The strategy is the following: given plaintexts in a chosen coset of a certain subspace X , the idea
is to consider the moments of the probabilistic distribution of the number of corresponding pair of
ciphertexts that belong to the same coset of another subspace Y.

4.6.1. Probabilistic Distributions

Given plaintexts in a chosen coset of a certain subspace X , what is the probabilistic distribution of
the number of corresponding pair of ciphertexts that belong to the same coset of another subspace
Y?

Such probabilistic distribution is - well approximated - by a binomial distribution. By definition,
a binomial distribution with parameters n and p is the discrete probability distribution of the
number of successes in a sequence of n independent yes/no experiments, each of which yields success
with probability p. In our case, given n pairs of texts, each one of them satisfies or not the above
property/requirement with the same probability p. Thus, this model is well described by a binomial
distribution. We remember that for a random variable Z that follows the binomial distribution, that
is Z ∼ B(n, p), the mean µ, the variance σ2 and the skewness γ are respectively given by

µ = n · p, σ2 = n · p · (1− p), γ =
1− 2p√

n · p · (1− p)
.

For the follow-up, we remember that a good approximation of the binomial distribution is the
normal one if the skewness is equal or close to zero (see “De Moivre–Laplace Theorem” for more
details). By definition of skewness, the binomial distribution B(n, p) is well approximated by a
normal one if

p = 1/2 and/or n� p−1.

4.6.2. First Results on round-reduced AES

In the following, we show how to apply the previous results on the truncated differential distinguishers
on round-reduced AES. For simplicity, we limit ourselves to consider the subspace trails case, that is
the case where the results are independent of the value keys.

Given n chosen plaintexts in the same coset of DI , we have just seen that the probabilistic
distribution of the number of corresponding pair of ciphertexts that belong to the same coset of
another subspace MJ after r rounds AES (for 2 ≤ r ≤ 4) and of a random permutation Π are well
approximated by a binomial distributions. In order to highlight the differences between the two

64

4.6. Generalization of Truncated Differential: Moments of a Probabilistic Distribution

cases, we assume |I| = 1 and we assume both I, J ⊆ {1, 2, 3, 4} fixed (which implies |I|+ |J | ≤ 4 for
each choice of J).

First, note that it is possible to construct N different couples of texts, where N =
(
n
2

)
= n·(n−1)

2 ≈
n2/2. Using the probabilities

Prob
[
Rr(x)⊕Rr(y) ∈MJ |x⊕ y ∈ DI

]
Prob

[
Π(x)⊕Π(y) ∈MJ |x⊕ y ∈ DI

]
proposed in this section, we can use the previous formula to compute the mean, the variance and
the skewness of these two distributions (for up to 4-round AES). The results are listed in Table 4.1.

Table 4.1.: Given n chosen plaintexts in the same coset of DI for |I| = 1, in this table we list
the moments of the probabilistic distribution of the number of corresponding pair of ciphertexts
that belong to the same coset of another subspace MJ after r-round AES (for 2 ≤ r ≤ 4) and of a

random permutation Π (where N =
(
n
2

)
= n·(n−1)

2 ≈ n2/2).

Mean Variance Skewness

2-round AES N 0 0

3-round AES N · 2−32+4|J | N · 2−32+4|J | · (1− 2−32+4|J |) 1−2−31+4|J|√
N ·2−32+4|J|·(1−2−32+4|J|)

4-round AES 0 0 0

Π(·) N · 2−128+32|J | N · 2−128+32|J | · (1− 2−128+32|J |) 1−2−127+32|J|√
N ·2−128+32|J|·(1−2−128+32|J|)

Due to the difference between the moments of round-reduced AES and of the random permutation
proposed in Table 4.1, it turns out that every truncated differential distinguishers (and key-recovery
attacks) based on the mean just presented in this section can be potentially implemented using the
variance and/or the skewness. Similar considerations can be made for all other cases, and also for
the weak subspace trails presented before.

4.6.3. Final Remark: the Pairs of Texts are not Independent!

Here we point out an important fact that must be considered is the following: when considering the
number of corresponding pair of ciphertexts that belong to the same coset of another subspace Y,
such pairs of ciphertexts are not independent. Indeed by definition of subspace, given two couples
(t1, t2) and (t2, t3), then if e.g. t1 ⊕ t2 ∈ Y and t2 ⊕ t3 ∈ Y, it follows that t1 ⊕ t3 ∈ Y with prob. 1.

Here we show that the previous results are still true even if the pairs are not independent, that is
we show that even if the pairs are not independent, the following probability holds

Prob
[
t1 ⊕ t2 ∈ X

]
= (2−32)4−dim(Y)

where Y is a generic subspace with dimension dim(Y) and where t1 6= t2. For simplicity, we denote
the previous probability pr.

Consider three texts, that is t1, t2 and t3, and the corresponding three couples, that is (t1, t2), (t1, t3)
and (t2, t3). Three possible events can happen:

• if t1 ⊕ t2 ∈ Y and t1 ⊕ t3 ∈ Y, then t2 ⊕ t3 ∈MJ with probability 1 (since Y is a subspace);

• if t1 ⊕ t2 ∈ Y and t1 ⊕ t3 /∈ Y (or vice-versa), then t2 ⊕ t3 /∈ Y with probability 1 (since Y is a
subspace);

• if t1 ⊕ t2 /∈ Y and t1 ⊕ t3 /∈ Y , then both the events t2 ⊕ t3 ∈ Y and t2 ⊕ t3 /∈ Y are possible; in
particular, t2 ⊕ t3 ∈ Y with approximately prob. pr.

65

4. Subspace Trail Cryptanalysis

Thus, what is the probability that a pair of texts (p, q) satisfy p⊕ q ∈ Y? In the following, we prove
that such probability is equal to pr.

To answer the previous question, first of all, it is important to focus on the previous last event and
to theoretically compute a better approximation of this probability. We are going to show that the
last probability is well approximated by pr ·(1−pr)−1. Since t1⊕t2 /∈ Y , it follows that 4 · [4−dim(Y)]
bytes of t1⊕ t2 are different from zero, i.e. they can take only (28)4·[4−dim(Y)]− 1 = pr−1− 1 possible
values different from zero. Similar consideration holds for t1⊕t3 /∈ Y . Since t2⊕t3 = (t1⊕t2)⊕(t1⊕t3),
it follows that the difference on - specific - 4 · [4 − dim(Y)] bytes of t2 ⊕ t3 is equal to zero if the
difference on - specific - 4 · [4 − dim(Y)] bytes of t1 ⊕ t2 is equal to the difference on - specific -
4 · [4− dim(Y)] bytes of t1 ⊕ t3. Since this happens with probability (pr−1 − 1)−1, it follows that the
probability that t1 ⊕ t3 ∈ Y is

(pr−1 − 1)−1 = pr · (1− pr)−1 ≈ pr + pr2 − pr3 + ...

To have more confidence about this fact, note that:

• t1 ⊕ t2 ∈ Y, t1 ⊕ t3 ∈ Y and t2 ⊕ t3 ∈ Y occurs with probability pr2;

• t1 ⊕ t2 ∈ Y, t1 ⊕ t3 /∈ Y and t2 ⊕ t3 /∈ Y occurs with probability pr · (1− pr) (similar for the
other 3 cases);

• t1 ⊕ t2 /∈ Y , t1 ⊕ t3 /∈ Y and t2 ⊕ t3 /∈ Y occurs with probability (1− pr)2 · (1− pr · (1− pr)−1).

All the other cases have probability 0 (since Y is a subspace). By simple computation, the probability
of all the possible events is equal to

(pr)2 + 3 · pr · (1− pr) + (1− pr)2 · (1− pr · (1− pr)−1) = 1,

as expected. In other words, if one uses the probability (1− pr)3 for the last case, it follows that the
overall probability is less than 1, which is obviously wrong.

Thus, what is the probability that t2 ⊕ t3 ∈ Y? Using the law of total probability (4.11), it follows
that

Prob
[
t2 ⊕ t3 ∈ Y

]
= pr · pr · 1︸ ︷︷ ︸

1st Case

+ 2 · pr · (1− pr) · 0︸ ︷︷ ︸
2nd Case

+

+ (1− pr)2 · pr · (1− pr)−1︸ ︷︷ ︸
3rd Case

= pr.

Since this procedure works for any text t1, it follows that even if the pairs are not independent, the
probability Prob(t2 ⊕ t3 ∈ Y) is equal to pr as expected.

66

5
5-round AES: Probabilistic Distribution

Consider a diagonal set of plaintexts DI ⊕ a, i.e. a set of plaintexts with |I| active diagonal(s). What
is the probabilistic distribution of the corresponding number of pairs of ciphertexts after r-round
AES that belong to the same coset of MJ (equivalently, that are equal in |J | anti-diagonal(s),
assuming the last MixColumns operation is omitted)?

While a lot is known about the properties of a diagonal set of plaintexts for up to 4-round AES
(see Sect. 3 for details), a complete analysis for 5 or more rounds AES is still missing. E.g. given a
diagonal set of plaintexts and the corresponding ciphertexts after 4 rounds, it is well known that the
XOR-sum of the ciphertexts is equal to zero - see integral cryptanalysis [DKR97; KW02], or that
each pair of ciphertexts can not be equal in any of the four anti-diagonal (as showed by Biham and
Keller in [BK01]).

For the first time, we performed and proposed a precise theoretical differential analysis of such
distribution after 5-round AES, supported by practical implementations and verification. In the
following, we present in details our results, which are summarized in the following Table.

Table 5.1.: (Theoretical) Properties of a diagonal set after 5-round encryption. Given a set of 232

chosen plaintexts all equal in three diagonals (that is, a diagonal set), we consider the distribution of
the number of different pairs of ciphertexts that lie in a particular subspace MI for I ⊆ {0, 1, 2, 3}
fixed with |I| = 3. Accurate theoretical expected values mean and variance of this distribution is
given in this table for 5-round AES and for a random permutation.

Random Permutation 5-round AES

Mean [GR18] 2 147 483 647.5 ≈ 231 2 147 484 685.6 ≈ 231 + 210

Variance [GR18] 2 147 483 647 ≈ 231 76 842 293 834.905 ' 236.161

Multiple-of-8 [GRR17] 3

Before going on, let us recall some notations that we are going to use often in the following.

Definition 12. Given two different texts t1, t2 ∈ F4×4
2b

, we say that t1 ≤ t2 if t1 = t2 or if there
exists i, j ∈ {0, 1, 2, 3} s.t. (1st) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3} with k + 4 · l < i+ 4 · j and (2nd)

t1i,j < t2i,j. Moreover, we say that t1 < t2 if t1 ≤ t2 (w.r.t. the previous definition) and t1 6= t2.

Definition 13. Let X be one of the subspaces previously defined, that is CI , DI , IDI or MI . Let
x0, ..., xn−1 ∈ F4×4

28 be a basis of X - i.e. X ≡ 〈x0, x1, ..., xn−1〉 where n = 4 · |I| - s.t. xi < xi+1 for
each i = 0, ..., n− 1. Let t be an element of an arbitrary coset of X , that is t ∈ X ⊕ a for arbitrary
a ∈ Y (where Y is the orthogonal subspace of X). We say that t is “generated” by the generating
variables (t0, ..., tn−1) - in the following, t ≡ (t0, ..., tn−1) - if and only if

t ≡ (t0, ..., tn) iff t = a⊕
n−1⊕
i=0

ti · xi.

67

5. 5-round AES: Probabilistic Distribution

As an example, let X =M0 ≡ 〈MC(e0,0),MC(e3,1),MC(e2,2),MC(e1,3)〉, and let p ∈ M0 ⊕ a.
Then p ≡ (p0, p1, p2, p3) if and only if

p ≡ p0 ·MC(e0,0)⊕ p1 ·MC(e1,3)⊕ p2 ·MC(e2,2)⊕ p3 ·MC(e3,1)⊕ a. (5.1)

Similarly, let X = C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, and let p ∈ C0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if and only
if p ≡ a⊕ p0 · e0,0 ⊕ p1 · e1,0 ⊕ p2 · e2,0 ⊕ p3 · e3,0.

5.1. “Multiple-of-8” Property

As first result, we present a new structural property for up to 5 rounds of AES, differential in nature
and which is independent of the secret key, of the details of the MixColumns matrix and of the
SubBytes operation: By appropriate choices of difference for a number of input pairs it is possible to
make sure that the number of times that the difference of the resulting output pairs lie in a particular
subspace is always a multiple of 8. This “multiple-of-8” property [GRR17] – proposed at Eurocrypt
2017 – allows to set up the first secret-key distinguisher in the literature for 5-round AES which is
independent of the secret-key.

Theorem 4 ([GRR17]). Let DI and MJ the subspaces defined as before for certain fixed I and J ,
where 1 ≤ |I| ≤ 3. Given an arbitrary coset of DI - that is DI ⊕a for a fixed a ∈ D⊥I , consider all the
232·|I| plaintexts and the corresponding ciphertexts after 5 rounds, that is (pi, ci) for i = 0, ..., 232·|I|−1
where pi ∈ DI ⊕ a and ci = R5(pi). The number n of different pairs of ciphertexts (ci, cj) for i 6= j
such that ci ⊕ cj ∈MJ (i.e. ci and cj belong to the same coset of MJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈ DI ⊕ a, pi < pj and ci ⊕ cj ∈MJ}| (5.2)

is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′, independently of the secret-key, of the details
of the S-Box and of the MDS MixColumns matrix (except for the branch number equal to 5).

Only for completeness, if the final MixColumns operation is omitted, then the above theorem holds
in the same way with IDJ instead of MJ . Before going on, we also mention that a new framework
for proving and adapting the result just proposed has been proposed in [BCC19]. In there, authors
re-formulate the above property as immediate consequence of an equivalence relation on the input
pairs, under which the difference at the output of the round function is invariant. This approach
provides a further understanding of this newly developed distinguisher.

5.1.1. Proof

As we have seen, a coset of DI is always mapped into a coset of CI after one round and in a coset of
MI after two rounds, that is for each a ∈ D⊥I there exists unique b ∈ C⊥I and unique c ∈M⊥I such
that R2(DI ⊕ a) = R(CI ⊕ b) =MI ⊕ c. This statement holds also in the same way in the reverse
direction, that is for each b′ ∈M⊥I there exists unique a′ ∈ D⊥I such that R−2(MI ⊕ b′) = DI ⊕ a′.
Since

DI ⊕ a
R(·)−−−−→

prob. 1
CI ⊕ b

R2(·)−−−→ DJ ⊕ a′
R2(·)−−−−→

prob. 1
MJ ⊕ b′,

the idea is to focus only on the two central rounds CI ⊕ b→ DJ ⊕ a′ in order to prove the statement
of Theorem 4. In particular, this theorem on 5 rounds of AES (and its proof) is related to the
following lemma on 2-round AES.

Lemma 4. Let CI and DJ the subspaces defined as before for certain fixed I and J , where 1 ≤ |I| ≤ 3.
Given an arbitrary coset of CI , consider all the 232 plaintexts and the corresponding ciphertexts after
2 round, that is (p̂i, ĉi) for i = 0, ..., 232·|I| − 1 where ĉi = R2(p̂i). The number n of different pairs of
ciphertexts (ĉi, ĉj) for i 6= j such that ĉi ⊕ ĉj ∈ DJ (i.e. ĉi and ĉj belong to the same coset of DJ) is
a multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

68

5.1. “Multiple-of-8” Property

We emphasize that the proof of Theorem 4 follows immediately by the proof of Lemma 4. Indeed,
note that considering 232 plaintexts in the same coset of DI is equivalent to consider 232 texts in the
same coset of CI after one round. Moreover, note that the number of collisions (i.e. a pair of texts
that belong to the same coset of a given subspace) in the same coset of MJ is equal to the number
of collisions in the same coset of DJ two rounds before.

To prove the lemma, the idea is show that if one pair of ciphertexts satisfies the requirement to
belong to the same coset of DJ , then also other pairs of ciphertexts have the same property with
probability 1. We highlight that the statement given in Theorem 4 (or Lemma 4) does not depend
on the details of the MixColumns matrix or/and of the SubBytes operation.

Proof. For simplicity, we limit ourselves to give all the details for the case |I| = 1. The proof for the
other cases is analogous – more details are given in the following and in [GRR17].

To prove the desired result1, we use the “super-Sbox” notation (3.1)

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·).

For the follow-up, note that the super-Sbox works independently on each column of the texts. As it
is well known, 2-round AES can be rewritten as

R2(·) = ARK ◦MC ◦ SR ◦ super-Sbox ◦ SR(·).

Since ShiftRows and MixColumns operations are linear, it is sufficient to prove the following
equivalent result. Given an arbitrary coset of SR(CI), consider all the 232 plaintexts in a coset of
SR(CI) and the corresponding ciphertexts after the super-Sbox, that is (p̃i, c̃i = super-Sbox(p̃i))
for i = 0, ..., 232·|I| − 1. The number n of different pairs of ciphertexts (c̃i, c̃j) for i 6= j such that
ĉi ⊕ ĉj ∈ WJ where

WJ := SR−1 ◦MC−1(DJ). (5.3)

is a multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.
Consider two elements p̃1 and p̃2 in the same coset of SR(Ci)⊕ a ≡ IDi⊕ a for a ∈ ID⊥i . Without

loss of generality (W.l.o.g.), assume i = 0 (it is analogous for the other cases). By definition of IDi,
there exist xj , yj , zj , wj ∈ F28 for j = 1, 2 such that:

p̃1 = a⊕


x1 0 0 0
0 0 0 y1

0 0 z1 0
0 w1 0 0

 , p̃2 = a⊕


x2 0 0 0
0 0 0 y2

0 0 z2 0
0 w2 0 0

 .
According to Def. 13, we say that p̃j is “generated” by the variables (xj , yj , zj , wj), that is p̃j ≡
(xj , yj , zj , wj).

Three Equal Generating Variables. Firstly, we consider the case in which three generating
variables are equal, e.g. x1 6= x2, y1 = y2, z1 = z2 and w1 = w2. Equivalently, this means that we
are considering two texts p̃1 and p̃2 in the same coset of ID0 ∩ C0 ⊆ C0, or equivalently SR−1(p̃1)
and SR−1(p̃2) are in the same coset of D0.

Due to the “impossible differential trail” given in (4.6), we know that

∀J ⊆ {0, 1, 2, 3} : Prob
[
R2(p1)⊕R2(p2) ∈ DJ | p1 ⊕ p2 ∈ D0

]
= 0.

As a result, for the case in which three generating variables are equal, then the number of collisions
is equal to 0 with prob. 1.

1The proof proposed here is not equal to the original one presented in [GRR17].

69

5. 5-round AES: Probabilistic Distribution

Two Equal Generating Variables. Secondly, we consider the case in which two generating
variables are equal, e.g. x1 6= x2, y1 6= y2, z1 = z2 and w1 = w2. Equivalently, this means that we
are considering two texts p̂1 and p̂2 in the same coset of ID0 ∩ C0,1 ⊆ C0,1, or equivalently SR−1(p̃1)
and SR−1(p̃2) are in the same coset of D0,1.

Due to the “impossible differential trail” given in (4.6), the event R2(p1)⊕R2(p2) ∈ DJ is possible
if and only if |J | ≥ 3. In other words, if |J | ≤ 2 and for the case in which three generating variables
are equal, then the number of collisions is equal to 0 with prob. 1.

Consider the case |J | ≥ 3. Since each column of p̃1 and p̃2 depends on different and independent
variables, since the super-Sbox works independently on each column and since the XOR-sum is
commutative, it follows that

super-Sbox(p̃1)⊕ super-Sbox(p̃2) = super-Sbox(q1)⊕ super-Sbox(q2)

where q1, q2 are texts in the same coset SR(Ci)⊕ a generated by:

1. (x1, y1, z, w) and (x2, y2, z, w); 2. (x2, y1, z, w) and (x1, y2, z, w);

for each z, w ∈ F28. Indeed, note that if the second and the third columns of p̃1 and of p̃2 are
equal, then the second and the third columns of super-Sbox(p̃1)⊕ super-Sbox(p̃2) are equal to zero
independently of the value of z and w. As a result, for the case in which two generating variables
are equal, then the number of collisions is a multiple of 2 · (28)2 = 217.

One Equal Generating Variable. Thirdly, we consider the case in which one generating variable
is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2. Equivalently, this means that we are considering
two texts p̃1 and p̃2 in the same coset of ID0∩C0,1,2 ⊆ C0,1,2, or equivalently SR−1(p̃1) and SR−1(p̃2)
are in the same coset of D0,1,2.

Due to the “impossible differential trail” given in (4.6), the event R2(p1)⊕R2(p2) ∈ DJ is possible
if and only if |J | ≥ 2. In other words, if |J | ≤ 1 and for the case in which three generating variables
are equal, then the number of collisions is equal to 0 with prob. 1.

Consider the case |J | ≥ 2. Since each column of p̃1 and p̃2 depends on different and independent
variables, since the super-Sbox works independently on each column and since the XOR-sum is
commutative, it follows that

super-Sbox(p̃1)⊕ super-Sbox(p̃2) = super-Sbox(q1)⊕ super-Sbox(q2)

where q1, q2 are texts in the same coset SR(Ci)⊕ a generated by:

1. (x1, y1, z1, w) and (x2, y2, z2, w); 2. (x2, y1, z1, w) and (x1, y2, z2, w);

3. (x1, y2, z1, w) and (x2, y1, z2, w); 4. (x1, y1, z2, w) and (x2, y2, z1, w);

for each w ∈ F28 . Indeed, note that if the second column of p̃1 and of p̃2 are equal, then the second
column of super-Sbox(p̃1)⊕ super-Sbox(p̃2) are equal to zero independently of the value of w. As
a result, for the case in which one generating variable is equal, then the number of collisions is a
multiple of 4 · 28 = 210.

Different Generating Variables. Finally we consider the case in which all generating variables
are different, that is x1 6= x2, y1 6= y2, z1 6= z2 and w1 6= w2.

Since each column of p̃1 and p̃2 depends on different and independent variables, since the super-
Sbox works independently on each column and since the XOR-sum is commutative, it follows that

super-Sbox(p̃1)⊕ super-Sbox(p̃2) = super-Sbox(q1)⊕ super-Sbox(q2)

70

5.1. “Multiple-of-8” Property

where q1, q2 are texts in the same coset SR(Ci)⊕ a generated by:

1. (x1, y1, z1, w1) and (x2, y2, z2, w2); 2. (x2, y1, z1, w1) and (x1, y2, z2, w2);

3. (x1, y2, z1, w1) and (x2, y1, z2, w2); 4. (x1, y1, z2, w1) and (x2, y2, z1, w2);

5. (x1, y1, z1, w2) and (x2, y2, z2, w1); 6. (x2, y2, z1, w1) and (x1, y1, z2, w2);

7. (x2, y1, z2, w1) and (x1, y2, z1, w2); 8. (x2, y1, z1, w2) and (x1, y2, z2, w1).

As a result, for the case in which all generating variables are different, then the number of collisions
is a multiple of 8.

Conclusion. The “multiple-of-8” property follows immediately by combining the results just given.

Without going into the details, we discuss the case |I| ≥ 2. W.l.o.g consider |I| = 2 and assume
I = {0, 1} (the other cases are analogous). The proof works exactly as before.

Given two texts p and q in the same coset of SR(CI), that is SR(CI)⊕ a for a given a ∈ SR(CI)⊥,
there exist p′0, p

′′
0 , p
′
1, p

′′
1 , p
′
2, p

′′
2 , p
′
3, p

′′
3 ∈ F28 and q′0, q

′′
0 , q
′
1, q

′′
1 , q
′
2, q

′′
2 , q
′
3, q

′′
3 ∈ F28 such that:

p = a⊕


p′0 p

′′
1 0 0

p
′′
0 0 0 p′3
0 0 p′2 p

′′
3

0 p′1 p
′′
2 0

 , q = a⊕


q′0 q

′′
1 0 0

q
′′
0 0 0 q′3
0 0 q′2 q

′′
3

0 q′1 q
′′
2 0

 .
As for the case |I| = 1, the idea is to consider all possible combinations of the variables p0 ≡
(p′0, p

′′
0), p1 ≡ (p′1, p

′′
1), p2 ≡ (p′2, p

′′
2), p3 ≡ (p′3, p

′′
3) and q0 ≡ (q′0, q

′′
0), q1 ≡ (q′1, q

′′
1), q2 ≡ (q′2, q

′′
2), q3 ≡

(q′3, q
′′
3). In other words, the idea is to consider variables in (F28)2 ≡ F28 × F28 and not in F28 . For

|I| = 3, the idea is to work with variables in (F28)3.

5.1.2. “Multiple-of-8” Secret-Key Distinguisher

Our 5-round distinguisher exploits the property just described that the above defined number n
is a multiple of 8 for 5-round AES, while it can take any possible value in the case of a random
permutation. In the following we show how to set up the previous distinguisher in an efficient way
for the case |I| = 1 and |J | = 3. In this case, the data cost of the distinguisher is of 232 chosen
plaintexts, while the computational cost is well approximated by 235.6 table look-ups, or equivalently
229 five-round encryptions of AES (using the approximation 20 table look-ups ≈ 1 round of AES).
We emphasize that this is the first and currently the most competitive secret-key distinguisher for
5-round AES in the literature which is independent of the secret key and that does not require
adaptive chosen plaintexts/ciphertexts.

Data Cost. To implement the distinguisher, one has to count the number of pairs of ciphertexts
for which the difference in 4− |J | = 1 anti-diagonal is equal to zero (where this anti-diagonal is fixed
in advance). First of all, since the probability that two ciphertexts satisfy this property is 2−32, we
expect that on average (

232

2

)
· 2−32 = 231 · (232 − 1) · 2−32 ' 231

different pairs of ciphertexts have difference zero in one fixed anti-diagonal both for an AES
permutation and for a random one. However, while for an AES permutation this number is a multiple
of 8 with probability 1, for a random permutation this happens only with probability 0.125 ≡ 2−3.
In particular, consider s initial arbitrary diagonal sets of plaintexts and for each of them count the

71

5. 5-round AES: Probabilistic Distribution

number of different pairs of ciphertexts that have difference zero in d anti-diagonals. For an AES
permutation, each of these numbers is a multiple of 8, while the probability that this happens for a
random permutation is only 2−3·s. In order to distinguish the AES permutation from the random
one with probability at least pr, it is sufficient that for a random permutation at least one of these
numbers is not a multiple of 8, which happens with probability pr = 1 − 2−3·s. As a result, the
probability of success of this distinguisher is greater than 99% (i.e. pr ≥ 0.99) for s ≥ 3. Note that for
each initial diagonal set, one can count the above defined number n for each one of the four possible
anti-diagonals. In other words, there are four different anti-diagonals for which one can count the
number n of pairs of ciphertexts with zero difference in that anti-diagonal. It follows that using a
single initial diagonal set, it is possible to distinguish 5-round AES from a random permutation with
a probability of success of approximately 1− (2−12) = 99.975%.

In conclusion, 232 chosen plaintexts in the same coset of DI for I ⊆ {0, 1, 2, 3} fixed with |I| = 1
are sufficient to distinguish a random permutation from 5-round AES.

Computational Cost. We have just seen that 232 chosen plaintexts in a single diagonal set are
sufficient to distinguish a random permutation from 5 rounds of AES, simply counting the number
of pairs of ciphertexts with equal bytes in d anti-diagonal and checking if it is a multiple of 8 or not.
Here we give an estimation of the computational cost of the distinguisher, which is approximately
given by the sum of the cost to construct all the pairs and of the cost to count the number of pairs
of ciphertexts with the previous property. As a result, the total computational cost can be well
approximated by 235.6 table look-ups.

Assume the final MixColumns operation is omitted. As we have just said, for each initial diagonal
set the two steps of the distinguisher are (1) construct all the possible pairs of ciphertexts and (2)
count the number of collisions. First of all, given pair of ciphertexts, note that the cost to check that
the bytes in d anti-diagonals are equal corresponds to the cost of a XOR operation2. As we are going
to show, the major cost of this distinguisher regards the construction of all the possible different
pairs, which corresponds to step (1). Since it is possible to construct approximately 263 pairs for
each initial diagonal set, the simplest way to do it requires 263 table look-ups. In the following, we
present a way to reduce the total cost to approximately 235.6 table look-ups, where the used tables
are of size 232 texts (or equivalently 232 · 16 = 236 byte).

The basic idea is to implement the distinguisher using a data structure. The goal is to count the
number of pairs of ciphertexts (c1, c2) for which the bytes in one of the anti-diagonal are equal, that
is such that for a fixed j ∈ {0, 1, 2, 3} the following condition is satisfied:

c1
i,j−i = c2

i,j−i ∀i = 0, 1, 2, 3 (5.4)

where the index is computed modulo 4. To do this, consider an array A of 232 elements completely
initialized to zero. The element of A in position x for 0 ≤ x ≤ 232 − 1 - denote by A[x] - represents
the number of ciphertexts c that satisfy the following equivalence (in the integer field N): x =
c0,0−j + 256 · c1,1−j + c2,2−j · 2562 + c3,3−j · 2563. It’s simple to observe that if two ciphertexts c1 and
c2 satisfy (5.4), then they increment the same element x of the array A. It follows that given r ≥ 0
texts that increment the same element x of the array A, then it is possible to construct(

r

2

)
=
r · (r − 1)

2

different pairs of texts that satisfy (5.4). The complete pseudo-code is given in Algorithm 1.

What is the total computational cost of this procedure? Given a set of 232 (plaintexts, ciphertexts)
pairs, one has first to fill the array A using the strategy just described, and then to compute the

2As example, let J ⊆ {0, 1, 2, 3} with d = |J |. Given a pair (c1, c2), this operation can be reduced to check that
c̃k,j−k = 0 for each k = 0, ..., 3 and j ∈ J , where c̃ ≡ c1 ⊕ c2.

72

5.2. Probabilistic Distribution for 5-round AES

Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single diagonal set.
Result: 1 for an AES permutation, 0 otherwise (prob. ≥ 99%)
Let (pi, ci) for i = 0, ..., 232 − 1 the (plaintext, ciphertext) pairs;
for all j ∈ {0, 1, 2, 3} do

Let A[0, ..., 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x←
∑3

k=0 c
i
k,j−k · 256k; // cik,j−k denotes the byte of the ciphertextci in

row k and column j − k mod 4
A[x]← A[x] + 1; // A[x] denotes the value stored in the x-th address of

the array A

end

n←
∑232−1

i=0 A[i] · (A[i]− 1)/2;
if (n mod 8) 6= 0 then

return 0;
end

end
return 1.

Algorithm 1: Secret-Key Distinguisher for 5 rounds of AES which exploits a property which is
independent of the secret key - probability of success: ≥ 99%.

number of total of pairs of ciphertexts that satisfy the property, for a cost of 3 · 232 = 233.6 table
look-ups - each one of these three operations require 232 table look-ups. Since one has to repeat this
algorithm 4 times - one time for each one of the four anti-diagonal, the total cost is of 4 · 233.6 = 235.6

table look-ups, or equivalently 229 five-round encryptions of AES (using the approximation3 20 table
look-ups ≈ 1 round of AES).

Practical Verification. The proposed distinguisher has also been practically verified on real
AES4. The practical results of our experiments are in accordance with the theoretical ones.

5.2. Probabilistic Distribution for 5-round AES

Several open questions arise from the “multiple-of-8” result provided in [GRR17]. In particular,
given a set of 232·|I| plaintexts in the same coset of DI , consider the probabilistic distribution of
the number of pairs of ciphertexts which are equal in n fixed anti-diagonal(s) (assuming the final
MixColumns operation has been omitted) for 1 ≤ n ≤ 3:

• is it possible to say something about the mean, the variance and the skewness of this distribu-
tion?

• does the multiple-of-8 property influence e.g. the average number of output pairs that lie in a
particular subspace (i.e. the mean)? Are other parameters (e.g. the variance, the skewness, ...)
affected by the multiple-of-8 property?

In the following, we (partially) answer these questions. Using the multiple-of-8 property just recalled
and the results that we are going to present, we can formally describe the probabilistic distribution

3We highlight that even if this approximation is not formally correct - the size of the table of an S-Box look-up is
lower than the size of the table used for our proposed distinguisher, it allows to give a comparison between our
proposed distinguisher and the others currently present in literature. At the same time, we note that the same
approximation is largely used in literature.

4The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/AES_5round_
SKdistinguisher

73

https://github.com/Krypto-iaik/AES_5round_SKdistinguisher
https://github.com/Krypto-iaik/AES_5round_SKdistinguisher

5. 5-round AES: Probabilistic Distribution

of the number of pairs of ciphertexts which are equal in n fixed anti-diagonal(s) (assuming the final
MixColumns operation has been omitted) after 5-round AES, whose corresponding plaintexts are in
the same coset of Di.

Theorem 5 ([GR18]). Consider an AES-like cipher that works with texts in F4×4
28 , s.t. the Mix-

Columns matrix is an MDS matrix and such that the solutions of the equation

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O. (5.5)

are uniformly distributed for each input/output difference ∆I 6= 0 and ∆O 6= 0.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal space Di, that is Di ⊕ a

for i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi).
The distribution probability 5-AES of the number of different pairs of ciphertexts (ci, cj) with ci < cj

that belong to the same coset of MJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 is described by

5-AES = 23 ×X3 + 210 ×X10 + 217 ×X17

where
∀i = 3, 10, 17 : Xi ∼ B(ni, pi)

are binomial distributions s.t.

n3 = 228 · (28 − 1)4 p3 = 2−32 + 2−53.98306;

n10 = 223 · (28 − 1)3 p10 = 2−32 − 2−45.98874;

n17 = 3 · 215 · (28 − 1)2 p17 = 2−32 + 2−37.98588.

The distribution probability 5-AES of the number of different pairs of ciphertexts (ci, cj) with
ci < cj that belong to the same coset of MJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 has mean value
µ = 2 147 484 685.6 and standard deviation σ = 277 204.426.

If the final MixColumns is omitted, it is sufficient to replace the mixed space MJ with an inverse-
diagonal space IDJ . We remember that a coset of Dk corresponds to a set of 232 texts with one active
diagonal, while that two ciphertexts ci and ch belong to the same coset of an inverse-diagonal space
IDJ = MC−1(MJ) (that is, ci ⊕ ch ∈ IDJ) if and only if they are equal in the j-th anti-diagonal
where j ≡ {0, 1, 2, 3} \ J . For completeness, the same result holds also in the decryption direction
(that is, using chosen ciphertexts instead of chosen plaintexts).

Lemma 5 ([GR18]). Consider an AES-like cipher that works with texts in F4×4
28 and for which the

assumptions of Theorem 5 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal space Di, that is Di ⊕ a

for i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi).
The probability to have n ∈ N different pairs of ciphertexts (ci, cj) with ci < cj that belong to the
same coset of MJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 (i.e. n collisions) is given by:

Prob(n) =



0 if n mod 8 6= 0

∑
(k3,k10,k17)∈Kn

∏i∈{3,10,17}

(
ni
ki

)
· (pi)ki · (1− pi)ni−ki︸ ︷︷ ︸
∼B(ni,pi)

 otherwise

where

Kn =
{

(k3, k10, k17) ∈ N× N× N
∣∣ 0 ≤ ki ≤ ni and 23 · k3 + 210 · k10 + 217 · k17 = n

}
and where ni and pi for i = 3, 10, 17 are given in Theorem 5.

Note that Prob(n >
[
23 · n3 + 210 · n10 + 217 · n17]

)
= 0.

74

5.2. Probabilistic Distribution for 5-round AES

5.2.1. Sketch of the Proof

The results of Theorem 5 and Lemma 5 are due to the following considerations. First of all, given 232

plaintexts in a coset of Di, the corresponding pairs of texts are not independent/unrelated. Due to the
multiple-of-8 property [GRR17] and of the mixture differential cryptanalysis [Gra17b; Gra18b], we
know that these pairs of texts can be divided in sets of cardinality respectively 8 (if the generating
variables of a pair of texts are all different after 1-round encryption), 210 (if one out of the four
generating variables is equal for the pair of texts after 1-round encryption), 217 (if two out of the
four generating variables are equal for the pair of texts) and 224 (if three out of the four generating
variables are equal for the pair of texts after 1-round encryption) such that

1. pairs of texts of different sets are independent;

2. all pairs in the same set belong or not belong to the same coset of M after 5 rounds.

In other words, given a set of pairs as just defined, it is not possible that the ciphertexts of some
pairs belong to the same coset of M after 5 rounds, while the ciphertexts of other pairs not (see
Sect. 6 – “Mixture Differential” distinguisher – for more details). Moreover, let us recall that if three
out of the four generating variables of the plaintexts are equal after 1-round encryption, then the
corresponding ciphertexts cannot belong to the same coset of M. It follows that the probability of
the event “n = 8 · n̂ collisions” corresponds to the sum of the probabilities to have “23 · k3 collisions
in the first set and 210 · k10 collisions in the second set and 217 · k17 collisions in the third set” for
each k3, k10, k17 such that 23 · k3 + 210 · k10 + 217 · k17 = n.

Each one of these (independent) events is well characterized by a binomial distribution. Indeed,
remember that a binomial distribution with parameters n and p is the discrete probability distribution
of the number of successes in a sequence of n independent yes/no experiments, each of which yields
success with probability p. In our case, given n pairs of texts, each one of them satisfies or not the
above property/requirement with the same probability p. For a random variable that follows the
binomial distribution B(n, p), the mean µ and the variance σ2 are respectively given by µ = n · p
and σ2 = n · p · (1− p).

As a result, the distribution 5-AES of the number of collisions for the AES case is given by

5-AES = 23 ×X3 + 210 ×X10 + 217 ×X17

where Xi ∼ B(ni, pi) for i = 3, 10, 17 are binomial distributions.
While the values of ni can be easily derived using the Multiple-of-8 property and/or the Mixture

Diff. distinguisher, a formal computation to derive the probabilities pi for i = 3, 10, 17, the value of
the mean and the variance, and the probability given in Lemma 5 will be computed in the following
sections.

Preliminary Considerations. First of all, given a coset of Ci of 232 chosen plaintexts, we compute
the number of different pairs of texts with v equal generating variables for 0 ≤ v ≤ 3. Note that
given a coset of Di of 232 chosen plaintexts, one can construct 231 · (232 − 1) ' 263 different pairs.
Among them, the number of pairs of texts with 0 ≤ v ≤ 3 equal generating variables (and 4 − v
different generating variables) after one round is given by(

4

v

)
· 231 · (28 − 1)4−v. (5.6)

Indeed, if v variables are equal for the two texts of the pair, then they can take (28)v different values.
For each one of the remaining 4 − v variables, the variables must be different for the two texts.
Thus, these 4− v variables can take exactly

[
28 · (28 − 1)

]4−v
/2 different values. The result follows

immediately since there are
(

4
v

)
different combinations of v variables.

It follows that

75

5. 5-round AES: Probabilistic Distribution

• the number of pairs of texts with “no equal generating variables” is given by
(

4
0

)
· 231 · (28− 1)4.

Due to the multiple-of-8 property, note that these pairs can be divided in sets of cardinality 23

such that: (1st) pairs of texts of different sets are independent and (2nd) all pairs in the same
set belong or not belong to the same coset of M after 5 rounds. It follows that the number
n3 of sets of cardinality 23 for which (1st) all generating variables of each pair of texts are
different and (2nd) the pairs of texts in the same texts share the same generating variables (in
different combinations) is given by

n3 =
1

8
·
(

4

0

)
· 231 · (28 − 1)4 = 228 · (28 − 1)4;

• the number of pairs of texts with “one equal (and three different) generating variable(s)” is
given by

(
4
1

)
· 231 · (28− 1)3. As before and due to the multiple-of-8 property, the number n10 of

sets of cardinality 210 for which (1st) one generating variable of each pair of texts is equal and
– a part from this one – (2nd) the pairs of texts in the same texts share the same generating
variables (in different combinations)

n10 =
1

210
·
(

4

1

)
· 231 · (28 − 1)3 = 223 · (28 − 1)3

• the number of pairs of texts with “two equal (and two different) generating variable” is given
by
(

4
2

)
· 231 · (28 − 1)2. As before and due to the multiple-of-8 property, the number n17 of sets

of cardinality 217 for which (1st) two generating variables of each pair of texts are equal and –
a part from these ones – (2nd) the pairs of texts in the same texts share the same generating
variables (in different combinations)

n17 =
1

217
·
(

4

2

)
· 231 · (28 − 1)2 = 3 · 215 · (28 − 1)3

5.2.2. About the “Uniform Distribution of Solutions of eq. (5.5)”

Before going on, we discuss the assumptions of Theorem 5, focusing on the assumption related to
the properties/details of the S-Box.

Preliminary. Since the assumptions of Theorem 5 depends on the details of the S-Box, we first
recall some properties of the S-Box function.

Given a bijective S-Box function, let ∆I ,∆O ∈ F28 . We denote by n∆I ,∆O
the number of solutions

x of the following equation

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O.

In the following, we limit to consider the cases ∆I 6= 0 and ∆O 6= 0 - if ∆O = 0, the equation admits
solution if and only if ∆I = 0 (the S-Box is bijective).

Independently of the details of the S-Box, the mean value5 of n∆I ,∆O
is equal to

E[n∆I ,∆O
] =

256

255
' 1.00392... ' 1 + 2−7.9944, (5.7)

Indeed, observe that for each x and for each ∆I 6= 0 there exists ∆O 6= 0 (since S-Box is bijective)
that satisfies eq. (5.5). Since there are 256 different x and 255 different values of ∆I and ∆O, the
average number of solutions is 256·255

2552 = 256
255 independently of the details of the (bijective) S-Box.

5In the case of a discrete probability distribution of a random variable X, the mean E[X] ≡ µ is defined as
µ =

∑
x · P (x), i.e. the sum over every possible value x weighted by the probability of that value P (x).

76

5.2. Probabilistic Distribution for 5-round AES

In the following, we denote by V ar(n∆I ,∆O
) the variance6 of n∆I ,∆O

. This quantity depends on
the details of the S-Box, in particular on the distribution of n∆I ,∆O

with respect to ∆I and ∆O. For
the AES S-Box case, for each ∆I 6= 0 there are 128 values of ∆O 6= 0 for which equation (5.5) has no
solution, 126 values of ∆O 6= 0 for which equation (5.5) has 2 solutions (x̂ is a solution iff x̂⊕∆I is
a solution) and finally 1 value of ∆O 6= 0 for which equation (5.5) has 4 solutions. The variance of

the AES S-Box is so equal to V arAES(n∆I ,∆O
) = 22 · 126

255 + 42 · 1
255 −

(
256
255

)2
= 67 064

65 025 .
The Maximum Differential Probability DPmax of an S-Box is defined as

DPmax = max
∆I 6=0,∆O

n∆I ,∆O

2n
. (5.8)

Since all entries of the differential distribution table are even, DPmax is always bigger than or
equal to 2−n+1 (i.e. DPmax ≥ 2−n+1). Permutations with DPmax = 2−n+1 are called Almost Perfect
Nonlinear (APN).

Finally, given ∆I 6= 0 (resp. ∆O 6= 0), consider the probabilistic distribution of n∆I ,∆O
w.r.t.

∆O 6= 0 (resp. ∆I 6= 0). We say that the S-Box is “Uniform” if such distribution is independent of
∆I (resp. ∆O). As examples, the AES S-Box is uniform differential since for each ∆I 6= 0 (fixed),
Prob(n∆I ,∆O

= 2) = 126
255 and Prob(n∆I ,∆O

= 4) = 1
255 . The PRINCE S-Box is instead not uniform

differential, since for example Prob(n∆I ,∆O
= 4) depends on ∆I 6= 0, e.g. Prob(n∆I ,∆O

= 4) = 0 if
∆I = 0xF (i.e. n0xF,∆O

6= 4 ∀∆O) while Prob(n∆I ,∆O
= 4) = 2

15 if ∆I = 0xA (two values of ∆O

satisfy n0xA,∆O
= 4).

Assumptions on the S-Box. The fact that “the solutions of eq. (5.5) are uniform distributed for
each ∆I 6= 0 and ∆O 6= 0” basically corresponds to work with an S-Box that satisfies the following
properties: (1st) it is “uniform” and (2nd) its V ar(n∆I ,∆O

) is as “low” as possible. This is close to
being true if the S-Box is APN, or if the SBox is “close” to be APN. Before going on, we remark that
even if the variance V ar(n∆I ,∆O

) is related “in some sense” to DPmax, S-Boxes with equal DPmax
can have very different variances. Moreover, the variance of an S-Box S1 can be bigger than the
corresponding variance of an S-Box S2 even if DPmax of S1 is lower than DPmax of S2 (see Table
5.2 in Sect. 5.8 for examples).

Although much is known for (bijective) APN permutations in odd dimension, currently only little
is known for the case of even dimension and what is known relies heavily on computer checking. In
particular, there is no APN permutation of dimension 4 [LP07], while there is at least one APN
permutation, up to equivalence, of dimension 6 - called the Dillon’s permutation [BDMW10]. The
question of finding an APN bijective (n, n)-function for even n ≥ 8 is still open.

As a result, in the case of dimensions equal to a power of 2 (e.g. F24 or F28), the only (known)
S-Box that (approximately) matches the assumptions of the Theorem in dimensions 4 or 8 is the
one generated by the multiplicative-inverse permutation unless affine equivalence relations7, as for
example the AES S-Box, which is not APN but differentially 4-uniform [Nyb91] (e.g. note that the
variance of the AES S-Box is 67 064/65 025 vs 64 004/65 025 of an APN S-Box). Our practical results
on small-scale AES (for which the S-Box has the same property as the full-size AES one) are very
close to the ones predicted by the previous Theorem.

We remark that even if the assumptions on the S-Box of Theorem 5 are restrictive, they match
criteria used to design an S-Box which is strong against differential cryptanalysis. As a result, many
ciphers in the literature are built using S-Boxes which (are close to) satisfy the assumptions of
Theorem 5.

6In the case of a discrete probability distribution of a random variable X, the variance V ar(X) ≡ σ2 is defined as
σ2 = E[(X − E[X])2 = E[X2]− E[X]2.

7Uniform differential property and DPmax of an S-Box S remain unchanged if affine transformations are applied in
the domain or co-domain of S. In more details, consider two S-Boxes S,S ′ : Fn2 → Fn2 . Let A,B ∈ Fn×n2 be two
invertible n× n matrices and a, b ∈ Fn2 . S and S ′ are affine equivalent if and only if S ′(x) = B · [S(A · x+ a)] + b
∀x ∈ Fn2 .

77

5. 5-round AES: Probabilistic Distribution

Figure 5.1.: Comparison between the theoretical probabilistic distribution of the number of collisions
between 5-round AES (approximated by a normal distribution) and a random permutation.

Finally, we emphasize that if the S-Box does not satisfy the required properties related to the
assumption of the Theorem, then the number of collisions can be different from the one previously
given. To be more concrete, in Sect. 5.8 we provide several practical examples of the dependency of
the number of collisions for small-scale AES-like ciphers w.r.t. the properties of the S-Box, and we
provide theoretical argumentation to explain the influence of the S-Box. In the case in which the
assumption about the S-Box is not fulfilled, it turns out that also the details of the MixColumns
matrix can influence the average number of collisions.

5.2.3. Comparison between the Prob. Distribution of 5-round AES and of a
Random Permutation

The previous results regarding the probabilistic distribution of the number of collisions for 5-round
AES are not only of theoretically interest. As we are going to show, they can also be exploited in order
to set up new truncated differential distinguishers for 5-round AES, which are independent of the
secret-key. Thus, consider 232 plaintexts in the same coset of Di, and the corresponding (cipher)texts
generated by a random permutation Π(·) (or by an ideal cipher). What is the probabilistic distribution
of the number of different pairs of (cipher)texts generated by a random permutation Π(·) which are
equal in one fixed anti-diagonal (assuming the final MixColumns operation is omitted)?

Proposition 7. Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal space Di,
that is Di ⊕ a for i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding (cipher)texts generated by a
random permutation Π, that is ci = Π(pi). The probabilistic distribution of the number of different
pairs of ciphertexts (ci, cj) with ci < cj that belong to the same coset of MJ for J ⊆ {0, 1, 2, 3} fixed
with |J | = 3 (i.e. n collisions) is well approximated by a binomial distribution B(n, p), where

n =

(
232

2

)
= 231 · (232 − 1) and p = 2−32.

The average number of collisions of such distribution is equal to 231 − 0.5 = 2 147 483 647.5, while its
variance is equal to 2 147 483 647 ' 231.

The main differences between the two distributions are the following:

• independently of the secret key, the average number of collisions is a (little) bigger for 5-round
AES than for a random permutation (approximately 1 038.1 more collisions);

• independently of the secret key, the variance of the probabilistic distribution of the number of
collisions is a (much) bigger for 5-round AES than for a random permutation (approximately
of a factor 36).

78

5.3. Proof of Theorem 5 – Mean of the Probabilistic Distribution of 5-round AES

To highlight this difference, Fig. 5.1 proposes a comparison between the probabilistic distribution of
the number of collisions for the AES case in red - the probability to have n 6= 8 · n′ collisions (i.e.
where n is not a multiple of 8) is zero - and of the random case in blue. For simplicity and just
for this figure, the probabilistic distribution for the AES case has been approximated by a normal
distribution.

5.3. Proof of Theorem 5 – Mean of the Probabilistic Distribution
of 5-round AES

In this section, we give a formal proof of Theorem 5, focusing on the values of p3, p10, p17 given there
and on the average number of collisions for 5-round AES.

Reduction to the Middle Round

In order to prove the probability p3, p10 and p17 given in Theorem 5, the idea is to prove an equivalent
result on a single round.

Since each coset of a diagonal space is mapped into a mixed space after 2 rounds - see (4.2) - and
since Prob

[
t1 ⊕ t2 ∈ DJ |R2(t1)⊕R(t2) ∈MJ

]
= 1, observe that for any I, J ⊆ {0, 1, 2, 3}:

DI ⊕ a′
R2(·)−−−−→

prob. 1
MI ⊕ b′

R(·)−−→ DJ ⊕ a′′
R2(·)−−−−→

prob. 1
MJ ⊕ b′′.

Working on the middle round, the idea is to prove the following equivalent result. For simplicity,
we limit ourselves to consider plaintexts in the same coset of M0 and to count the collisions in
the same coset of a diagonal space D1,2,3 (the other cases are analogous). By definition of M0, if
p1, p2 ∈M0 ⊕ b′ there exist xi, yi, zi, wi ∈ F28 for i = 1, 2 such that:

pi = b′ ⊕


2 · xi yi zi 3 · wi
xi yi 3 · zi 2 · wi
xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi


where 2 ≡ 0x02 and 3 ≡ 0x03. According to Def. 13, we say that p1 is “generated” by the generating
variables (x1, y1, z1, w1) and that p2 is “generated” by the generating variables (x2, y2, z2, w2) - we
denote it by pi ≡ (xi, yi, zi, wi) for i = 1, 2.

The idea is to consider separately the following cases

• 3 variables are equal, e.g. x1 6= x2 and y1 = y2, z1 = z2, w1 = w2;

• 2 variables are equal, e.g. x1 6= x2,y1 6= y2 and z1 = z2, w1 = w2;

• 1 variable is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2;

• all variables are different, e.g. x1 6= x2, y1 6= y2, z1 6= z2, w1 6= w2.

In the first case - if 3 variables are equal (e.g. y1 = y2, z1 = z2 and w1 = w2), then p1 ⊕ p2 ∈ Ck and
R(p1)⊕R(p2) ∈Mk for a certain k ∈ {0, 1, 2, 3}.Due to the “impossible differential trail” given in
(4.6), it follows that R(p1) ⊕ R(p2) /∈ DJ for each J . Thus, in the following we limit ourselves to
consider the case in which at least 2 generating variables are different.

79

5. 5-round AES: Probabilistic Distribution

Case: 216 Texts with Two Equal Generating Variables

As a first case, we consider 216 plaintexts in the same coset of C0,1 ∩ M0 (the other cases are
equivalent). This corresponds to the case in which (at least) two generating variables are equal, e.g.
z1 = z2 and w1 = w2.

Thus, consider two plaintexts p1 generated by (x1, y1, 0, 0) and p2 generated by (x2, y2, 0, 0) in
(C0,1 ∩M0)⊕b′. By simple computation and by definition of the diagonal space D1,2,3, R(p1)⊕R(p2) ∈
D1,2,3 if and only if the following four equations are satisfied

(R(p1)⊕R(p2))0,0 = 2 ·
[
S-Box(2 · x1 ⊕ a0,0)⊕ S-Box(2 · x2 ⊕ a0,0)

]
⊕

⊕ 3 ·
[
S-Box(y1 ⊕ a1,1)⊕ S-Box(y2 ⊕ a1,1)

]
= 0,

(R(p1)⊕R(p2))1,1 = S-Box(3 · x1 ⊕ a3,0)⊕ S-Box(3 · x2 ⊕ a3,0)⊕
⊕ S-Box(y1 ⊕ a0,1)⊕ S-Box(y2 ⊕ a0,1) = 0,

(R(p1)⊕R(p2))2,2 = 2 ·
[
S-Box(x1 ⊕ a2,0)⊕ S-Box(x2 ⊕ a2,0)

]
⊕

⊕ 3 ·
[
S-Box(2 · y1 ⊕ a3,1)⊕ S-Box(2 · y2 ⊕ a3,1)

]
= 0,

(R(p1)⊕R(p2))3,3 = S-Box(x1 ⊕ a1,0)⊕ S-Box(x2 ⊕ a1,0)⊕
⊕ S-Box(3 · y1 ⊕ a2,1)⊕ S-Box(3 · y2 ⊕ a2,1) = 0.

Equivalently, four equations of the form

A ·
[
S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a)

]
⊕C ·

[
S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)

]
= 0 (5.9)

must be satisfied, where A,B,C,D depend only on the MixColumns matrix, while a, c depend on
the secret key and on the initial constant that defines the coset.

Number of Solutions of Each Equations. Consider one of these four equations. By simple
observation, equation (5.9) is satisfied if and only if8 the following system of equations is satisfied

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O

S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O

∆′O = C−1 ·A ·∆O

(5.10)

for each value of ∆O, where x̂ = B ·x1⊕ a, ∆I = B · (x1⊕x2), ŷ = D · y1⊕ c and ∆′I = D · (y1⊕ y2).

What is the number of different (not null) solutions [(x1, y1), (x2, y2)] of eq. (5.9)? Given ∆O,
each one of the first two equations of (5.10) admits 256

255 · 255 = 256 different solutions (x̂,∆I) (resp.
(ŷ,∆′I)) - note that there are 255 different values of ∆I ,∆

′
I 6= 0 and that the average number of

solutions is 256/255. It follows that the number of different (not null) solutions [(x1, y1), (x2, y2)] of
eq. (5.9) - considering all the 255 possible values of ∆O - is exactly equal to

1

2
· 255 ·

(
256

255
· 255

)2

= 255 · 215

independently of the details of the S-Box. The factor 1/2 is due to the fact that we consider
only different solutions, that is two solutions of the form (p1 ≡ (x1, y1), p2 ≡ (x2, y2)) and (p2 ≡
(x1, y1), p1 ≡ (x2, y2)) are considered equivalent. In other words, a solution [(x1, y1), (x2, y2)] is
considered to be valid if x2 6= x1 and y1 < y2.

8Observe that the equality ∆′O = A−1 · C ⊕∆O is well defined, since no coefficient of an MDS matrix M ∈ F4×4

2b is
equal to zero. Indeed, by definition, a matrix M is MDS if and only if all square sub-matrices of M are of full rank.

80

5.3. Proof of Theorem 5 – Mean of the Probabilistic Distribution of 5-round AES

Probability of Common Solutions. Knowing the number of solutions of one eq. (5.9), what is
the number of common - different (not null) - solutions [(x1, y1), (x2, y2)] of 4 equations of the form
(5.9)? We have just seen that each equation of the form (5.9) has exactly 255 · 215 different (not
null) solutions [(x1, y1), (x2, y2)]. The probability that two equations admit the same solution (i.e.
that [(x1, y1), (x2, y2)] - solution of one equation - is equal to [(x̂1, ŷ1), (x̂2, ŷ2)] - solution of another
equation) is

(256 · 255)−1 · (255 · 128)−1 = 255−2 · 2−15. (5.11)

To explain this probability, the first term (256 ·255)−1 is due to the fact that x1 = x̂1 with probability
256−1 while x2 = x̂2 with probability 255−1, since by assumption x2 (resp. x̂2) can not be equal
to x1 (resp. x̂1). The second term (128 · 255)−1 is due to the assumption on the second variable,
that is y1 < y2. To explain it9, note that the possible number of pairs (y1, y2) with y1 < y2 is∑255

i=0 i = 255·(255+1)
2 = 255·128. It follows that y1 and y2 are equal to ŷ1 and ŷ2 with prob. (128·255)−1.

Total Number of Different - not null - Common Solutions. In conclusion, the average
number of common - different (not null) - solutions [(x1, y1), (x2, y2)] of 4 equations of the form (5.9)
is given by

(255 · 215)4 · (255−2 · 2−15)3 =
215

2552
' 0.503929258 ' 2−1 + 2−7.992.

For comparison, given plaintexts in the same coset of M0 ∩ C0,1 and the corresponding ciphertexts
generated by a random permutation, the average number of pairs of ciphertexts that belong to the
same coset of DJ is approximately given by(

216

2

)
· (2−8)4 =

216 − 1

217
' 0.499992371 ' 2−1 − 2−17.

Remark. We highlight that probability (5.11) (strongly) depends on the assumptions that

• the solutions of eq. (5.5) - so the numbers n∆I ,∆O
- are uniform distributed for each ∆I 6= 0

and ∆O 6= 0;

• there is “no (obvious/non-trivial) relations” between the solutions of the studied system of
four equations of the form (5.9); in other words, the four equations (5.9) must be indepen-
dent/unrelated, in the sense that the solution of one equation must not be a solution of another
one with probability different (bigger/smaller) than (5.11).

Let’s focus here on this second requirement. A relation among solutions of different equations can
arise if some relations hold between the coefficients A,B,C,D of different equations of the form
(5.9). Since these coefficients are the MixColumns coefficients, we deal with an MDS matrix (for
which no linear relation among the rows/columns of any submatrix exist) in order to avoid this
problem. More details about this are given in the following.

Case: 224 Texts with One Equal Generating Variable

As second case, we consider 224 plaintexts in the same coset of C0,1,2 ∩M0 (the other cases are
equivalent). This corresponds to the case in which (at least) one generating variable is equal, e.g.
w1 = w2.

9As examples, if y1 = 0x0 then y2 can take 255 different values (all values except 0), if y1 = 0x1 then y2 can take
254 different values (all values except 0x0, 0x1) and so on - if y1 = d with 0 ≤ d ≤ 255 then y2 can take 255− d
different values.

81

5. 5-round AES: Probabilistic Distribution

As before, given two plaintexts p1, p2 ∈ (C0,1,2 ∩M0)⊕ b′, they belong to the same coset of the
diagonal space D1,2,3 if 4 equations of the form

A ·
[
S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b)

]
⊕

⊕C ·
[
S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d)

]
⊕ (5.12)

⊕E ·
[
S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)

]
= 0

are satisfied, where A,B,C,D,E, F depend only on the MixColumns matrix, while b, d, f depend
on the secret key and on the initial constant that defines the coset. As before, each one of these
equations is equivalent to a system of equations like (5.10), that is

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O

S-Box(z ⊕∆
′′
I)⊕ S-Box(z) = ∆

′′
O

together with one of the two following conditions10:

1. ∆
′′
O = 0 and ∆′O = C−1 ·A ·∆O, or analogous (3 possibilities);

2. ∆O,∆
′
O,∆

′′
O 6= 0 and ∆

′′
O = E−1 · (A ·∆O ⊕ C ·∆′O).

First Case. Since this first case is analogous to the case in which two generating variables are
equal, we simply re-use the previous computation.

First of all note that if ∆
′′
O = 0, then the third equation admits solutions if and only if ∆

′′
I = 0. In

other words, if ∆
′′
O = 0, the only possible solutions of the third equation are (z,∆

′′
I = 0) for each z.

Using the same computation as before, the average number of (not null) common solutions for this
first case is (

3

1

)
· 256 · 215

2552
=

223

21 675
' 387.018.

Second Case. Consider now the case ∆O,∆
′
O,∆

′′
O 6= 0 (i.e. ∆I ,∆

′
I ,∆

′′
I 6= 0). First of all, note

that ∆O 6= 0 can take 255 different values, while ∆′O 6= 0 can take only 254 different values. Indeed,
it must be different from 0 and from C−1 · A ·∆O (if ∆′O = C−1 · A ·∆O, then ∆

′′
O = 0 which is

excluded by assumption). Finally, the value of ∆
′′
O depends on ∆O and ∆′O.

Using the same argumentation as before, for each equation (5.12) the number of different solutions

[(x1, y1, z1), (x2, y2, z2)] - where z1 < z2 - is given by 1
2 · 255 · 254 ·

(
255 · 256

255

)3
= 32 385 · 224,

while the probability that two equations of the form (5.12) have a common solution is given by
(256 · 255)−2 · (128 · 255)−1 = 2−23 · 255−3 under the assumption (1st) of uniform distribution of the
solutions n∆I ,∆O

of eq. (5.5) and (2nd) that there is “no (obvious/non-trivial) relation” between the
solutions of the studied system of four equations of the form (5.12). It follows that for this second
case we expect on average

(32 385 · 224)4 · (2−23 · 255−3)3 =
1274 · 227

2555
' 32 383.506

different - not null - common solutions for the 4 equations of the form (5.12).

10A solution of the first case can not be equal to a solution of the second case. Indeed, ∆
′′
O = 0 implies ∆

′′
I = 0 in the

first case, while in the second one ∆I ,∆
′
I ,∆

′′
I 6= 0.

82

5.3. Proof of Theorem 5 – Mean of the Probabilistic Distribution of 5-round AES

Total Number of Different - not null - Common Solutions. By simple calculation, given
plaintexts in the same coset of C0,1,2 ∩M0, the average number of different pairs of ciphertexts that
belong to the same coset of D1,2,3 is

32 383.506 + 387.018 ' 32 770.524 ' 215 + 21.336

For comparison, if the ciphertexts are generated by a random permutation, the average number of
different pairs of ciphertexts that belong to the same coset of MJ is approximately given by(

224

2

)
· 2−32 ' 32 767.998 ' 215 − 2−9

Generic Case: 232 Texts

Finally, we consider 232 plaintexts in the same coset of M0. This corresponds to the case in which
all the generating variables are (potentially) different.

As before, given two plaintexts p1, p2 ∈ M0 ⊕ b′, they belong to the same coset of D1,2,3 if four
equations of the form

A ·
[
S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b)

]
⊕

⊕C ·
[
S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d)

]
⊕

⊕E ·
[
S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)

]
⊕

⊕G ·
[
S-Box(H · w ⊕ h)⊕ S-Box(H · w′ ⊕ h)

]
= 0

(5.13)

are satisfied, where A,B,C,D,E, F,G,H depend only on the MixColumns matrix, while b, d, f, h
depend on the secret key and on the constant that defined the initial coset. As before, each one of
these equations is equivalent to a system of equations like (5.10), that is:

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O

S-Box(z ⊕∆
′′
I)⊕ S-Box(z) = ∆

′′
O S-Box(w ⊕∆

′′′
I)⊕ S-Box(w) = ∆

′′′
O

together with one of the following conditions

1. ∆
′′′
O = ∆

′′
O = 0 and ∆′O = C−1 ·A ·∆O 6= 0 or analogous (6 possibilities);

2. ∆
′′′
O = 0, ∆O,∆

′
O,∆

′′
O 6= 0 and ∆

′′
O = E−1 · (A ·∆O ⊕ C ·∆′O) or analogous, for a total of 4

possibilities;

3. ∆O,∆
′
O,∆

′′
O,∆

′′′
O 6= 0 and ∆

′′′
O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆

′′
O).

Since the first two conditions are analogous to the previous two cases already studied, we simply
re-use the previous calculation.

First Case. In the case ∆
′′′
O = ∆

′′
O = 0 and ∆′O = C−1 · A ·∆O 6= 0, the only possible solutions

of the third and fourth equations are of the form (z,∆
′′
I = 0) and (w,∆

′′′
I = 0) for each possible

value of z and w. Using the same computation as before, the average number of (not null) common
solutions for this case is (

4

2

)
· 2562 · 215

2552
=

232

21 675
' 198 153.047. (5.14)

This number can also be used in order to compute the probability p17 that texts with two equal (and
two different) generating variables belong to the same coset of DK after one round. By definition of
probability:

p17 =
1

217 × n17
· 232

21 675
= 2−32 + 2−37.98588.

83

5. 5-round AES: Probabilistic Distribution

Second Case. Similarly, in the second case ∆
′′′
O = 0, ∆O,∆

′
O,∆

′′
O 6= 0 and using the same

computations as before, it follows that the average number of (not null) common solutions of this
case is (

4

1

)
· 256 · 1274 · 227

2555
=

1274 · 237

2555
' 33 160 710.047. (5.15)

This number can also be used in order to compute the probability p10 that texts with one equal (and
three different) generating variable(s) belong to the same coset of DK after one round. By definition
of probability:

p10 =
1

210 × n10
· 1274 · 237

2555
= 2−32 − 2−45.98874.

Third Case. We finally consider the case ∆O,∆
′
O,∆

′′
O,∆

′′′
O 6= 0. By simple computation, the

number of different values that satisfy

∆
′′′
O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆

′′
O).

is given by 2553 − (255 · 254) = 16 516 605. Indeed, the total number of ∆O,∆
′
O,∆

′′
O 6= 0 is 2553,

while 255 · 254 is the total number of values ∆O,∆
′
O,∆

′′
O 6= 0 for which ∆

′′′
O is equal to zero (which is

not possible since ∆
′′′
O 6= 0 by assumption). In more detail, firstly observe that for each value of ∆O

there is a value of ∆
′
O that satisfies A ·∆O = C ·∆′O. For this pair of values (∆O,∆

′
O = C−1 ·A ·∆O),

the previous equation - which reduces to ∆
′′′
O = G−1 · E ·∆′′O is always different from zero, since

∆
′′
O 6= 0. Secondly, for each one of the 255 · 254 values of the pair (∆O,∆

′
O 6= C−1 ·A ·∆O), there is

only one value of ∆
′′
O such that the previous equation is equal to zero.

As a result, the total number of different solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] with w1 < w2

of each equation corresponding to (5.13) is

1

2
· 16 516 605 ·

(
255 · 256

255

)4

= 16 516 605 · 231.

Since the probability that two solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x̂1, ŷ1, ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)]
are equal is (255 · 256)−3 · (255 · 128)−1 = 255−4 · 2−31 – under the assumption (1st) of uniform
distribution of the solutions n∆I ,∆O

of eq. (5.5) and (2nd) that there is “no (obvious/non-trivial)
relation” between the solutions of studied system of four equations 5.13, the average number of (non
null) common solutions (with no equal generating variables) is(

16 516 605 · 231
)4·(255−4 · 2−31)3 =

64 7714 · 231

2558
' 2 114 125 822.5 (5.16)

This number can also be used in order to compute the probability p3 that texts with no equal
generating variable belong to the same coset of DK after one round. By definition of probability:

p3 =
1

23 × n3
· 64 7714 · 231

2558
= 2−32 + 2−53.98306.

Total Number of Different - not null - Common Solutions. By simple computation, given
plaintexts in the same coset of M0, the number of different pairs of ciphertexts that belong to the
same coset of D1,2,3 is

2 114 125 822.5 + 33 160 710.047 + 198 153.047 ' 2 147 484 685.594 ' 231 + 210.02.

Comparison with Random Permutation. For comparison, if the ciphertexts are randomly generated,
the number of different pairs of ciphertexts that belong to the same coset of MJ is(

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1

84

5.3. Proof of Theorem 5 – Mean of the Probabilistic Distribution of 5-round AES

In other words, on average there are

2 147 484 685.594− 2 147 483 647.5 ' 1 038.094

more collisions for 5-round AES than for a random permutation.
Finally, since the number of possible pairs of texts is 231 · (232 − 1), the probability for the AES

case that a couple of ciphertexts (c1, c2) satisfies c1 ⊕ c2 ∈ DJ for |J | = 3 fixed is equal to

pAES '
2 147 484 685.594

231 · (232 − 1)
' 2−32 + 2−52.9803 (5.17)

versus 2−32 of the random case.

5.3.1. Remarks – On the Requirement that the MixColumns matrix is MDS

The assumption that the MixColumns matrix is MDS is crucial when computing the number of
solutions of a system of 4 equations of the form (5.9) or (5.12) or (5.13) – remember that the
coefficients A,B,C, ... are the coefficients of the MixColumns matrix.

To give evidences of this, assume by contradiction that the matrix is not MDS, and focus on a
system of equations e.g. of the form (5.9). First of all, if some coefficients of the MixColumns matrix
are equal to zero, then some of such equations become trivial. E.g. if C = 0 then an equation of the
form (5.9) is satisfied by x1 = x2 and by y1 6= y2 (otherwise the two texts are equal). The problem
arises since the arguments given for the case (5.9) hold only under the assumption x1 6= x2 and
y1 6= y2. If the case x1 = x2 is admitted, the previous proof must modified accordingly – e.g. the
number of solutions of an equation of the form (5.9) for C = 0 is 255 · 216, which differs from 2552 · 28

given in the text, and the previous result must is not true anymore.
What happens if the MixColumns matrix is not MDS and it has no null coefficients? Consider a

system of four equations of the form (5.9) or (5.12) or (5.13). Since the matrix is not MDS, then
there exists a r × r submatrix (for 2 ≤ r ≤ 3) whose determinant is equal to zero (this means that
there exists a linear relation between the rows/columns of this matrix). This fact can have effects on
the probability that the studied system of four equations has a common solution(s). In particular, it
can happen that the solutions of different equations of this system are not unrelated/independent,
which is a crucial assumption exploited in the previous proof in order to compute the probability that
different equations admit the same solution(s). To better understand this fact, we show a concrete
example in [GR18, App. D].

5.3.2. Generic Result on the Average Number of Collisions

For completeness, we generalize the previous result to the case in which the final mixed space is
not fixed, that is we briefly discuss the case in which one considers the number of different pairs of
ciphertexts that belong to the same coset of a mixed space MK for an arbitrary K ⊂ {0, 1, 2, 3}
with |K| = 3.

Proposition 8 ([GR18]). Consider an AES-like cipher that works with texts in F4×4
28 and for which

the assumptions of Theorem 5 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal space Dk, that is Dk ⊕ a

for i ∈ {0, 1, 2, 3} and a ∈ D⊥k , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi).
The probability that a pair of ciphertexts (ci, cj) with ci < cj belong to the same coset of MK for
K ⊆ {0, 1, 2, 3} with |K| = 3 is equal to

• 2−32 + 2−52.9803 if K is fixed to a (single) subset of {0,1,2,3} of cardinality 3;

• 2−30 + 2−50.9803 − 261.415 + ... if K is not fixed (free to be equal to any subset of {0,1,2,3} of
cardinality 3).

85

5. 5-round AES: Probabilistic Distribution

A proof of this proposition can be found in [GR18, App. C]. For comparison, the same event has
probability 2−30 − 2−61.415 + 2−94 in the case in which the ciphertexts are generated by a random
permutation.

5.4. Proof of Theorem 5 – Variance – and of Lemma 5

Using the result just given, we finally compute the variance of the probabilistic distribution for
5-round AES given in Theorem 5, and the probability given in Lemma 5.

Let us recall that the probabilistic of 5-round AES is well described by

5-AES = 23 ·X3 + 210 ·X10 + 217 ·X17

where Xi are binomial distributions. The pairs of texts with no equal generating variables are
represented by 23 ·X3, the pairs of texts with 1 equal generating variable are represented by 210 ·X10

and finally the pairs of texts with 2 equal generating variables are represented by 217 ·X17. We recall
that given two plaintexts with three equal generating variables, then they can not belong to the
same coset of DJ for |J | ≤ 3 after one round.

5.4.1. Proof – Variance of the Prob. Distribution for 5-round AES

As we have just seen, note that all the previous cases (namely, X3, X10 and X17) are independent.
In other words, the behavior of a pair of texts with v equal generating variables is independent
of another pair with v̂ equal generating variables where v̂ 6= v. One property of the variance is
that, given x independent variables X1, ..., Xx, the variance of Y = X1 + ... + Xx is given by
V ar(Y) = V ar(X1)+ ...+V ar(Xx). It follows that the total variance of the probabilistic distribution
for 5-round AES case is given by

V ar(5-AES) = V ar(23 ·X3) + V ar(210 ·X10) + V ar(217 ·X17) =

= 26 · V ar(X3) + 220 · V ar(X10) + 234 · V ar(X17),

where V ar(α ·X) = α2 · V ar(X).

Different Generating Variables. As first case, we consider the pairs of texts in which all the
generating variables are different. The number of pairs with this property is 23 · n3 = 231 · (28 − 1)4.
Again, the probability p3 to have a collision for these pairs of texts is given by

p3 =
64 7714 · 231

2558︸ ︷︷ ︸
see eq. (5.16)

· 1

8 · n3
= 2−32 + 2−53.98306

using the results of the previous section.

As we have just seen, these pairs are not independent. By [GRR17], it is possible to divide them
in 231 · (28 − 1)4/8 = 228 · (28 − 1)4 = n3 sets of 8 pairs such that for each set only two events
can happen: (1st) all the pairs belong to the same coset of DJ after one round or (2nd) no one
of them satisfies this property. Thus, the idea is to consider only independent pairs, i.e. one pair
for each one of these sets, for a total of 228 · (28 − 1)4 pairs. Since these pairs are independent,
the probabilistic distribution of the number of pairs that belong to the same coset of DJ after
one round is given by a binomial distribution X3 with mean value µ = n3 · p3 and variance
σ2 = n3 · p3 · (1− p3) = 228 · (28 − 1)4 · (2−32 + 2−53.98306) · (1− 2−32 − 2−53.98306) ≈ 264 265 727.751,
that is V ar(X3) = 264 265 727.751.

86

5.4. Proof of Theorem 5 – Variance – and of Lemma 5

One Equal Generating Variable. As second case, we consider the pairs of texts in which all
except one of the generating variables are different. The number of pairs with this property is
210 · n10 = 4 · 231 · (28 − 1)3. Again, the probability p10 to have a collision for these pairs of texts is
given by

p10 =
1274 · 237

2555︸ ︷︷ ︸
see eq. (5.15)

· 1

210 · n10
= 2−32 − 2−45.98874

using the results of the previous section.
Working exactly as before, it is possible to divide them in 233 · (28− 1)3/210 = 223 · (28− 1)3 = n10

sets of 210 pairs. Considering only one pair for each one of these sets and since these pairs are
independent, the probabilistic distribution of the number of pairs that belong to the same coset of DJ
after one round is given by a binomial distribution X10 with mean value µ = n10 · p10 and variance
σ2 = n10 · p10 · (1− p10) = 223 · (28 − 1)3 · (2−32 − 2−45.98874) · (1− 2−32 + 2−45.98874) ≈ 32 383.506,
that is V ar(X10) = 32 383.506.

Two Equal Generating Variables. As third case, we consider the case in which all except
two of the generating variables are different, i.e. v = 2. The number of pairs with this property is
217 · n17 = 6 · 231 · (28 − 1)2. Again, the probability p17 to have a collision for these pairs of texts is
given by

p17 =
232

21 675︸ ︷︷ ︸
see eq. (5.14)

· 1

217 · n17
= 2−32 + 2−37.98588

using the results of the previous section.
Working exactly as before, it is possible to divide them in 3·232 ·(28−1)2/217 = 3·215 ·(28−1)2 = n17

sets of 217 pairs. Considering only one pair for each one of these sets and since these pairs are
independent, the probabilistic distribution of the number of pairs that belong to the same coset of DJ
after one round is given by a binomial distribution X17 with mean value µ = n17 · p17 and variance
σ2 = n17 · p17 · (1− p17) = 3 · 215 · (28 − 1)2 · (2−32 + 2−37.98588) · (1− 2−32 − 2−37.98588) ≈ 1.51179,
that is V ar(X17) = 1.51179.

Final Result. By combining all previous results, it follows that

V ar(5-AES) = 26 · 264 265 727.751︸ ︷︷ ︸
'V ar(X3)

+220 · 32 383.506︸ ︷︷ ︸
'V ar(X10)

+234 · 1.51179︸ ︷︷ ︸
'V ar(X17)

' 236.16118.

5.4.2. Proof of Lemma 5

Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal space Di, that is Di ⊕ a for
i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi).
As last thing, we formally compute the probability to have n ∈ N different pairs of ciphertexts
(ci, cj) with ci < cj that belong to the same coset ofMJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 (i.e. n
collisions).

Given n ∈ N, note that Prob(5-AES = n) = 0 if n 6= 8 · n′ is not a multiple of 8 (due to the
multiple-of-8 property). Thus, assume n = 8 · n′ for n′ ∈ N:

Prob (5-AES = n) := Prob
(
[23 ·X3 + 210 ·X10 + 217 ·X17] = n

)
=

=
∑

n3,n10,n17

Prob([23 ·X3] = n3)× Prob([210 ·X10] = n10)× Prob([217 ·X17] = n17)×

× Prob
(

[23 ·X3 + 210 ·X10 + 217 ·X17] = n

∣∣∣∣23 ·X3 = n3, 2
10 ·X10 = n10, 2

17 ·X17 = n17

)

87

5. 5-round AES: Probabilistic Distribution

where remember that the distributions X3, X10 and X17 are independent.
Since Prob([2i ·Xi] = ni) = 0 if ni 6= 2i · ki for i = 3, 10, 17 and ki ∈ N and since

Prob

(
[23 ·X3 + 210 ·X10 + 217 ·X17] = n

∣∣∣∣23 ·X3 = n3, 2
10 ·X10 = n10, 2

17 ·X17 = n17

)
=

=

{
1 if n3 + n10 + n17 = n

0 otherwise

it follows that Prob (5-AES = n) is equal to∑
k3,k10,k17∈Kn

Prob(X3 = k3)× Prob(X10 = k10)× Prob(X17 = k17)

where

Kn =
{

(k3, k10, k17) ∈ N× N× N
∣∣ 0 ≤ ki ≤ ni and 23 · k3 + 210 · k10 + 217 · k17 = n

}
.

The probability given in Lemma 5 is finally obtained using the fact that Xi are binomial distributions:

Prob(Xi = x) =

(
ni
x

)
· (pi)x · (1− pi)ni−x,

where ni and pi for i = 3, 10, 17 are given in Theorem 5.

5.5. Relation among Multiple-of-8, Mean and Variance

Before going on, we discuss the relations among the multiple-of-8 property, the fact that the average
number of collisions - the mean in the following - is higher for AES than for a random permutation
and the fact that the variance of the number of collisions is (much) higher for AES than for a random
permutation. As we are going to highlight, there is no “obvious relation” between the multiple-of-8
property and the result on the mean, while the multiple-of-8 property and the result on the variance
are strictly related.

Relation between Multiple-of-8 Property and the Mean

As we just said, the multiple-of-8 property and the result on the mean are unrelated/independent:

• the fact that the number of collisions is always a multiple of 8 for AES does not imply that
such number is on average bigger/equal/smaller for AES;

• the fact that the number of collisions is on average higher for AES does not imply that it is a
multiple-of-8.

To give concrete examples, we practically computed the average number of collisions for 4-bit AES
when the AES S-Box is replaced by the S-Box of other ciphers — see Table 5.2 in Sect. 5.8. In all
cases, the number of collisions always satisfies the multiple of 8 property. Instead, depending on the
S-Box details, it’s possible that the number of collisions is higher or smaller (or potentially equal) for
AES than for a random permutation (more details in the following). This supports the arguments
that these two properties are independent.

The independence of these two results is also motivated by the fact that the reasons for which these
two properties hold are completely different and independent. E.g. let’s focus on the corresponding

proofs11. Even if both proofs focus on the middle round MI ⊕ a
R(·)−−→ DJ ⊕ b, their goals are very

different:
11The fact that both the two proofs are divided in cases is a choice made in order to simplify their understanding.

88

5.5. Relation among Multiple-of-8, Mean and Variance

Multiple-of-8: given two texts in t1, t2 ∈ MI ⊕ a, the goal is to show that other pairs of texts
s1, s2 ∈MI ⊕ a defined by considering all possible combinations of the generating variables of
t1 and t2 satisfy the following equivalence

R(t1)⊕R(t2) = R(s1)⊕R(s2).

More concretely, assume |I| = 1 and let (xi, yi, zi, wi) be the generating variables of ti for i = 1, 2,
that is ti ≡ 〈xi, yi, zi, wi〉 ∈ MI ⊕ a. As proved in Sect. 5.1, R(t1) ⊕ R(t2) = R(s1) ⊕ R(s2)
for each pairs of texts s1, s2 ∈MI ⊕ a defined by a different combinations of the generating
variables.

To summarize, the multiple-of-8 property depends on the facts that (1st) the XOR-sum is
commutative and (2nd) the S-Box works independently on each generating variable.

Mean: in this case, the goal is to count the average number of pairs of texts t1 and t2 that satisfy
R(t1)⊕R(t2) ∈ DJ , which can be re-written as a system of four equations of the form

∀k, j s.t.
[
(k − j) mod 4

]
/∈ J : (R(t1)⊕R(t2))k,l = 0,

As we have seen in Sect. 5.3, this corresponds to count the average number of common solutions
of systems of four equations of the form

S-Box(x2 ≡ x1 ⊕∆x
I)⊕ S-Box(x1) = ∆x

O S-Box(y2 ≡ y1 ⊕∆y
I)⊕ S-Box(y1) = ∆y

O

S-Box(z2 ≡ z1 ⊕∆z
I)⊕ S-Box(z1) = ∆z

O S-Box(w2 ≡ w1 ⊕∆w
I)⊕ S-Box(w1) = ∆w

O

A ·∆x
O ⊕B ·∆

y
O ⊕ C ·∆

z
O ⊕D ·∆w

O = 0

where as before (xi, yi, zi, wi) are the generating variables of ti for i = 1, 2, and the constants
A,B,C,D depend on the MixColumns matrix. By contrast to the multiple-of-8 property, the
final result for the mean is obtained by probabilistic considerations, under precise assumptions
on the S-Box. To the best of our knowledge, this is the first time that a similar approach is
used in the literature.

We also remark that the first proof is independent of the details of the S-Box, while the second
one depends on them. Finally, while the first proof is deterministic (everything is deterministic -
probability plays no role) and the multiple-of-8 property holds with prob. 1, the second proof is
probabilistic.

Relation between Multiple-of-8 Property and the Variance

Vice-versa, as we have just seen, the multiple-of-8 property and the variance are strictly related.
Roughly speaking, due to the multiple-of-8 property (i.e. due the fact that the pairs of texts are
not independent), the probabilistic distribution of the number of collisions Y can be rewritten as
Y = α×X for a constant α > 1, where X is the probabilistic distribution of the number of collisions
for the independent/unrelated pairs of texts (see Theorem 5 for details). Since

V ar(Y) = V ar(α×X) = α2 × V ar(X),

it turns out that the variance for 5-round AES is higher than the corresponding variance of a random
permutation (note instead that the mean value does not have this property, since E[Y] = C × E[X]).

89

5. 5-round AES: Probabilistic Distribution

5.6. Practical Results on AES

We have practically verified the mean and the variance for 5-round AES given above – see Theorem
5 – using a C/C++ implementation12. In particular, we have verified the mean value on a small-scale
AES as proposed in [CMR05], and the variance value both on full-size and on the small-scale AES.
We limit ourselves to recall that the AES small-scale S-Box is defined in the same way as the full-size
one and that it has the same properties as the full-size one, with the only exception that each word
is composed of 8 bits for full-size AES and of 4 bits for the small-scale one. We emphasize that our
verification on the small-scale variant of AES is strong evidence for it to hold for the full-size AES,
since the strategy used to theoretically compute such probabilities is independent of the fact that
each word of AES is of 4 or 8 bits.

5.6.1. 5-round AES defined over (F2n)
4×4

For completeness, we propose a generic result about the average number of collisions for 5-round
AES defined over F4×4

2n .

Theorem 6 ([GR18]). Consider an AES-like cipher that works with texts in F4×4
2n , s.t. the Mix-

Columns matrix is an MDS matrix and s.t. the solutions of eq. (5.5) are uniformly distributed for
each input/output difference ∆I 6= 0 and ∆O 6= 0.

Consider 24n plaintexts pi for i = 0, 1, ..., 24n − 1 in a coset of a diagonal space Di, that is Di ⊕ a
for i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi).
The distribution probability 5-AES of the number of different pairs of ciphertexts (ci, cj) with ci < cj

that belong to the same coset of MJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 is described by

5-AES = 23 ×X3 + 2n+2 ×Xn+2 + 22n+1 ×X2n+1

where
∀i = 3, n+ 2, 3n+ 1 : Xi ∼ B(ni, pi)

are binomial distributions s.t.

n3 = 24n−4 · (2n − 1)4 p3 =
(22n − 3 · 2n + 3)4

(2n − 1)12
;

nn+2 = 23n−1 · (2n − 1)3 pn+2 =
(2n−1 − 1)4 · 24

(2n − 1)8
;

n2n+1 = 3 · 22n−1 · (2n − 1)2 p2n+1 =
1

(2n − 1)4
.

The average number of different pairs of ciphertexts (ci, cj) with ci ≤ cj for i 6= j that belong to
the same coset of MK for K ⊆ {0, 1, 2, 3} fixed with |K| = 3 is equal to

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 24n+5

(2n − 1)5
+ 3 · 24n

(2n − 1)2
,

while the variance of such distribution is given by

24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 26n+9

(2n − 1)5
+

3 · 26n+1

(2n − 1)2

A complete proof of this Theorem – equivalent to the one just given for the case (F28)4×4 – can
be found in [GR18].

12The source codes of the distinguishers are available at https://github.com/Krypto-iaik/Distinguisher_
5RoundAES

90

https://github.com/Krypto-iaik/Distinguisher_5RoundAES
https://github.com/Krypto-iaik/Distinguisher_5RoundAES

5.6. Practical Results on AES

5.6.2. Practical Verification on 4-bit AES

Theoretical Results To compare the practical values with the theoretical ones, we first re-propose
Theorem 5 for the case of small-scale AES.

Lemma 6. Consider an AES-like cipher that works with texts in F4×4
24 and for which the assumptions

of Theorem 5 hold.

Consider 216 plaintexts pi for i = 0, 1, ..., 216 − 1 in a coset of a diagonal space Dk, that is Dk ⊕ a
for i ∈ {0, 1, 2, 3} and a ∈ D⊥k , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi).
The distribution probability of the number of different pairs of ciphertexts (ci, cj) with ci ≤ cj for i 6= j
that belong to the same coset of MK for K ⊆ {0, 1, 2, 3} fixed with |K| = 3 is well approximated by a
Normal Distribution with mean value µ = 32 847.124 and variance σ2 = 982 466.615 (or equivalently,
standard deviation σ = 991.195).

For comparison, in the case in which the ciphertexts are generated by a random permutation, the
distribution probability of the number of collisions is well approximated by a normal distribution with
mean value µ = 32 767.5 and variance σ2 = 32 767 (or equivalently, standard deviation σ = 181.017).

Practical Results. In order to test our results, we took the variance over 320 initial cosets for
full-size AES, while we took the average number of collisions and the variance over respectively
125 000 ' 217 and over 100 initial cosets for the small-scale one.

The variance results for full-size AES13 are given in the following

σ2
T = 76 842 293 834.905 ' 236.161 σ2

P = 73 288 132 411.36 ' 236.093

where the subscript ·T denotes the theoretical value and the subscript ·P the practical one.

Our practical results for small-scale AES regarding the mean - denoted by µ - are

µTAES = 32 847.124 µTrand = 32 767.5

µPAES = 32 848.57 µPrand = 32 768.2

while our practical results for small-scale AES regarding the variance - denoted by σ2 - are

σTAES = 991.195 σTrand = 181.02

σPAES = 1023.06 σPrand = 182.42

where as before the superscript ·T the theoretical values and the superscript ·P the practical ones.

Fig. 5.2 highlights the difference between the practical probabilistic distribution of the number of
collisions for small-scale AES and for a permutation drawn at random.

Remark – Mean, Mode and Skewness. About Fig. 5.2, it is important not to confuse the
mean and the mode. In particular, consider a random variable X with a finite number of outcomes
x0, x1, ..., xn occurring with probabilities p0, p1, ..., pn respectively (where

∑
i pi = 1):

mean: the mean - or expected value - of such a random variable X is defined as µ = E[X] =∑n
i=0 pi × xi;

mode: the mode of a set of data values is the value - if exists - that appears most often, that is
mode(X) =

{
xi ∈ X | ∀j = 0, ..., n, j 6= i : pi > pj

}
.

13We remark that one would need more than one year of computation on our cluster to test the distinguisher based on
the mean with its ≈ 216 initial cosets.

91

5. 5-round AES: Probabilistic Distribution

Figure 5.2.: Comparison between the practical probabilistic distributions of the number of collisions
of small-scale 5-round AES and of a random permutation.

In our case, consider the probabilistic distribution for 5-round AES: the mean of such distribution
is approximately equal to µPAES = 32 848.57, while the mode is approximately equal to 32 560. For
the random case, the mean and the mode are approximately equal (the distribution is approximately
symmetric).

It is important to have in mind that for skewed (i.e. asymmetric) distributions, the mean is not
necessarily the same as the most likely value, i.e. the mode. In particular, the mean and the mode
coincide only in the case in which the skewness is equal to zero, which is the case of e.g. a normal
distribution (which is always symmetric).

The skewness is a parameter that measures the asymmetry of the probabilistic distribution of
a real-valued random variable about its mean. The skewness value can be positive or negative, or
undefined. In particular, referring to Figure 5.314, the skew is negative if the left tail is longer (i.e.
the mass of the distribution is concentrated on the right of the figure), while it is positive if the right
tail is longer (i.e. the mass of the distribution is concentrated on the left of the figure).

Figure 5.3.: Examples of negative and positive skew.

The skewness of a random variable X is the third standardized moment γ, defined as:

γ = E

[(
X − µ
σ

)3
]

where E[·] is the mean value operator, µ ≡ E[X] the mean value and σ2 ≡ V ar(X) the variance15.
For the particular case of a binomial distribution B(n, p), the skewness is given by

γ =
1− 2 · p√
n · p · (1− p)

, (5.18)

which is close to zero if p ≈ 1/2 or if n · p� 1.

14Figure re-printed from Wikipedia https://en.wikipedia.org/wiki/Skewness
15For a sample of n values, an estimator z for the skewness is given by z ={

1
n

∑n
i=1(xi − X̄)3

}
/
{

1
n

∑n
i=1[(xi − X̄)2])3/2

}
where X̄ = 1

n

∑n
i=1 xi.

92

https://en.wikipedia.org/wiki/Skewness

5.7. Truncated Differential Distinguishers for 5-round AES

The Probabilistic Distribution for 5-round AES is not Symmetric – A Distinguisher
based on the Skewness? Interestingly, it is possible to observe an asymmetry in the (small-scale)
5-round AES distribution.

By Fig. 5.2-5.4, it is possible to observe that small-scale 5-round AES distribution has positive
skew, while the skew of the random distribution is approximately equal to zero.

We practically computed these values both for full-size AES and for small-scale one using 29 initial
cosets, and we got the following results:

γAES ' 0.43786 γAESsmall-scale ' 0.4687

while we got that the skew of a random permutation is close to 0 (hence, the probabilistic distribution
of a random permutation is well described by a normal one).

It follows that also the skew can be used to set up a distinguisher. We leave the open problem to
theoretically compute these numbers, both for small-scale AES and full-size AES, and to set up a
corresponding distinguisher.

5.7. Truncated Differential Distinguishers for 5-round AES

5.7.1. Truncated Differential Distinguisher based on the Variance

The fact that the variance of the AES case is different from the one of the random case independently
of the secret-key can be exploited to set up a new secret-key distinguisher for 5-round AES.

The idea is very simple. Given n different cosets of a diagonal space Di, one counts the number of
different pairs of ciphertexts that belong to the same coset of MJ for each J with |J | = 3. Then,
one computes the variance: by previous result, the highest one corresponds to the AES case.

We practically tested this distinguisher on a small-scale AES. Since the ratio between the variances
for full-size AES permutation and for a random permutation is similar to the same ratio in the case
of small-scale AES, that is

276 469.4

46 340.95
≈ 6 ≈ 991.195

181.02
,

we conjecture that the results obtained for the small-scale AES are applicable as well to full-size
AES.

By practical tests (the following probability of success have been computed over 2 500 tests)16 on
small-scale AES:

• a single initial coset of Di allows to distinguish small-scale AES from a random permutation
with prob. 98%;

• two initial cosets of Di allows to distinguish small-scale AES from a random permutation with
prob. 99.9%.

Note that for each initial coset of Di, it is possible to compute the average number of collisions with
respect to four different anti-diagonals, or equivalently four different subspaces MJ . Moreover, we
emphasize that the goal of this distinguisher is not to compute the exact value of the variance for the
two cases, but to distinguish them. In other words, the distinguisher works if the variance for AES is
bigger than the one of a random permutation, even if it does not return the exact value of the two
variances. Due to the big gap between the two cases, 2 initial cosets of Di are sufficient for this goal
(even if they are not sufficient to compute the exact value of the two variances).

As a result, one can distinguish the two cases using n ≥ 2 initial cosets, or in other words 2
initial cosets are largely sufficient to “accurately” compute the variance for the AES case and the

16Given a set of n� 1 equally likely values, an unbiased estimator for the variance is given by V ar(X) = 1
n−1

∑n
i=1(xi−

X̄)2 where X̄ = 1
n

∑n
i=1 xi.

93

5. 5-round AES: Probabilistic Distribution

random one. Due to the relation between small-scale AES and full-size AES previously discussed, we
conjecture that the same number of initial cosets is sufficient to distinguish (full-size) AES from a
random permutation (using this distinguisher based on the variance). However, just to have more
confidence, we choose an arbitrary value of 4 initial cosets in order to set up the distinguisher, for a
data cost of 22 · 232 = 234 chosen plaintexts distributed in 4 initial cosets of Dj . The computational
cost is well approximated by the cost to compute the number of collisions. Using e.g. Algorithm
1, the cost is well approximated by 4 · 22 · 3 · 232 ' 237.6 table look-ups, that is approximately 231

five-round encryptions.

5.7.2. Useful Approximation for the Prob. Distribution for 5-round AES

In order to propose a truncated differential distinguisher based on the mean, we first need an
approximation of the probabilistic distribution for 5-round AES given in Theorem 5 – Lemma 5.
The approximation given in the following turns out to be (very) useful in all applications where the
skewness does not play a crucial role, that is in all applications which are (almost) independent of
the bias in the skew.

As given in Theorem 5, the probabilistic distribution for 5-round AES is well described by

5-AES = 23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17)

where B(n, p) are binomial approximation. Since n� 1 and p� 1, a first possibility would be to
approximate the binomial distributions by Poisson ones, that is B(n, p) ≈ P(λ) where λ = n · p. On
the other hand, given the probabilistic distribution 23 ·P(n3 ·p3)+210×P(n10 ·p10)+217×P(n17 ·p17),
it seems hard to derive a closed “simple” formula which describes the probability to have n collisions
in the ciphertexts17. The same occurs using a Gamma distribution (the “continuous counterpart” of
the Poisson one).

Another possibility would be to approximate the binomial distributions using the corresponding
normal ones (see Sect. 4.6.1 for more details on this). The De Moivre-Laplace Theorem claims that
the normal distribution is a good approximation of the binomial one if the skewness of the binomial
distribution – given in (5.18) – is close to zero. In our case, B(n3, p3) and B(n10, p10) can be well
approximated by a normal distribution, since their skewness are close to zero18. Unfortunately, this
is not the case of X17:

skew(X3) ≈ 2−14 skew(X10) ≈ 2−7.5 skew(X17) ≈ 0.813 ≈ 2−0.3.

On the other hand, the number of pairs represented by X17 (that is, the pairs of texts with two
equal generating variables) is very small compared to the number of all possible pairs of texts,

precisely 3·215·(28−1)2

231·(232−1)
≈ 2−30.4. For this reason – and with the only goal to set up the truncated diff.

distinguisher in the following, we make use of this approximation.
Finally, we exploit the fact that the sum of normally distributed random variables is also normally

distributed, that is if X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y), then Z = X+Y ∼ N(µX +µY , σ

2
X +σ2

Y),
in order to get an approximation for the probabilistic distribution of 5-round AES.

Corollary 1. Consider an AES-like cipher that works with texts in F4×4
28 and for which the assump-

tions of Theorem 5 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232−1 in a coset of a diagonal space Di, that is Di⊕a for

i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding ciphertexts after 5 rounds, that is ci = R5(pi). The
probabilistic distribution of the number of different pairs of ciphertexts (ci, cj) with ci < cj that belong
to the same coset of MJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 (i.e. n collisions) is approximated by

17While it is well known that P(λ1) +P(λ2) = P(λ1 + λ2), to the best of our knowledge there is no closed formula for
the case a1 · P(λ1) + a2 · P(λ2) for a1 6= a2.

18Note that skew(α ·X) = sign(α) · skew(X) where sign(α) = −1 if α < 0, and 1 otherwise.

94

5.7. Truncated Differential Distinguishers for 5-round AES

Figure 5.4.: Comparison between the probabilistic distribution of the number of collisions between
theoretical small-scale 5-round AES (approximated by a normal distribution) and a practical one.

a normal distribution N (µ, σ2), where the mean value is equal to µ = 2 147 484 685.6 = 232 + 1 037.6
and standard deviation is equal to σ = 277 204.426.

Roughly speaking, the distribution of the number of collisions for the AES case is approximated
by 8×X, where X is a normal distribution with mean value and variance as given in Corollary 1.
In more details, the (discrete) probability to have n ∈ N collisions is given by:

Prob(n | µ, σ2) =


0 if n mod 8 6= 0

8√
2 · π · σ2

· e−
(n−µ)2

2·σ2︸ ︷︷ ︸
∼8×N(µ,σ2)

otherwise

A comparison between the real probabilistic distribution for small-scale 5-round AES and the
(theoretical) one approximated by a normal distribution is proposed in Fig. 5.4. As expected, the
variance of the two distributions are equal, while the main difference is the skewness (the skewness
of a normal distribution is zero, while the skewness of the probabilistic distribution for 5-round AES
is approximately 0.4). Moreover, as already pointed out before, it is important not to confuse the
mean with the mode – see Sect. 5.6.2 for details.

Finally, a brief explanation about the factor 8 in the probability Prob(n | µ, σ2). Let Prob(n) be
the probability - just defined - to have n collisions for 5-round AES. Since Prob(n 6= 8 · n′) = 0 (i.e.
the probability to have n collisions is zero if n is not a multiple of 8), we highlight that the factor 8
guarantees that the total probability is equal to 1:

∑
n

Prob(n) =
∑
n=8·n′

8√
2 · π · σ2

· e−
(n−µ)2

2·σ2 =
∑
n′

1√
2 · π · (σ/8)2

· e−
(n′−(µ/8))2

2·(σ/8)2 = 1.

5.7.3. Truncated Differential Distinguisher based on the Mean

Another distinguisher that can be set up for 5-round AES is based on the previous result about the
mean, that is the fact that the average number of collisions in MJ for each J with |J | = 3 is a little
bigger for AES than for a random permutation.

As discussed in the previous section, the number of collisions for 5-round AES and for the
random permutation are well described by normal distributions. Moreover, to derive concrete
numbers for our distinguisher, we can simply consider the difference of the two distributions,
which is again a normal distribution. That is, given X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2), then

X − Y ∼ N (µ, σ2) = N (µ1 − µ2, σ
2
1 + σ2

2). Indeed, note that to distinguish the two cases, it is

95

5. 5-round AES: Probabilistic Distribution

sufficient to guarantee that the average number of pairs that satisfy the required property for the
random case is smaller than for AES. As a result, the mean µ and the variance σ2 of the difference
between the AES and the random distributions are

µ = |µAES − µrand| = n · |pAES − prand|
σ2 = σ2

rand + σ2
AES = n ·

[
prand · (1− prand) + 35.593 · pAES · (1− pAES)

]
Since the probability density of the normal distribution is f(x | µ, σ2) = 1

σ
√

2π
e−

(x−µ)2

2σ2 , it follows

that

prob =

0∫
−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx =

−µ/σ∫
−∞

1√
2π

e−
x2

2 dx =
1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable with normal
distribution of mean 0 and variance 1/2 falling in the range [−x, x]. We emphasize that the integral
is computed in the range (−∞, 0] since we are interested only in the case in which the average
number of pairs with the required property in the random case is smaller than in the AES case.

In order to have a probability of success bigger than prob, n has to satisfy

n >
2 · [prand · (1− prand) + 35.593 · pAES · (1− pAES)]

(prand − pAES)2
·
[
erfinv

(
2 · prob− 1

)]2

.

where erfinv(x) is the inverse error function.

For the case prand, pAES � 1, a good approximation of n is given by19

n >
73.186 ·max(prand, pAES)

(prand − pAES)2
·
[
erfinv

(
2 · prob− 1

)]2

. (5.19)

It follows that in order to have a probability of success bigger than 95%, the number of pairs must
satisfy n ≥ 278.374, since prand ≈ pAES ≈ 2−30 and |prand − pAES | ≈ 2−50.98. Since each coset of Dk
contains 232 different texts and approximately 263 different pairs, this means that the distinguisher
requires 215.374 different cosets for a data cost of 247.374 chosen plaintexts.

Remark. We emphasize that the formula given in (5.19) is equivalent to the one proposed by
Matsui in [Mat93; Mat94] for the linear cryptanalysis case, which has been rigorously studied in
the literature (e.g. in [BJV04] and in [SB02; Sel08]). As we have seen, in linear cryptanalysis one
has to construct “good” linear equations relating plaintext, ciphertext and key bits. In order to find
the secret key, the idea is to exploit the fact that such linear approximation holds with probability
1/2 for a wrong key, while they hold with probability 1/2 ± ε for the right key. Exploiting this
(usually small) difference between the two probabilities, one can discover the secret key. Note that
also these events can be described by binomial variables, that is B(n, 1/2) for a wrongly guessed
key and B(n, 1/2± ε) for the right guessed key, where n is the number of texts used. Our case is
completely equivalent, since the probability pAES for the AES case is related to the probability prand
for the random case by pAES = prand ± ε, for a small difference ε.

Practical Results on small-scale AES. Since the previous result has been obtained under
the assumption that the distribution of AES is well approximated by a normal distribution, we
practically tested the probability of success of such distinguisher on a small-scale AES. Using the

19Observe: prand · (1− prand) + 35.593 · pAES · (1− pAES) < prand + 35.593 · pAES < 36.593 ·max(prand, pAES).

96

5.8. Open Problem - 5-round Truncated Distinguisher for Generic AES-like Ciphers

same computation as before, it turns out that for small-scale AES (denoted by AES? – where
µAES? = n · pAES? and σ2

AES? = 29.983 · n · pAES? · (1− pAES?)) one needs

n >
59.965 ·max(prand, pAES?)

(prand − pAES?)2
·
[
erfinv

(
2 · prob− 1

)]2

.

different pairs of texts to set up the distinguisher with prob. prob. In order to have a probability
of success higher than 95%, since prand ≈ pAES? ≈ 2−14 and |prand − pAES? | ≈ 2−22.68485, it follows
that the number of pairs must satisfy n ≥ 237.48. Since each coset of Di contains 216 different texts
and approximately 231 different pairs, this means that the distinguisher requires 26.48 ' 90 cosets for
a data cost of 222.48 chosen plaintexts.

By practical tests on small-scale AES:

• 90 initial cosets of Di allows to distinguish small-scale AES from a random permutation with
prob. 92% (close to 95% used before);

• 180 initial cosets of Di allows to distinguish small-scale AES from a random permutation with
prob. 98.5%;

• 270 initial cosets of Di allows to distinguish small-scale AES from a random permutation with
prob. 99.9%;

where the previous probability of success have been computed over 2 500 tests. The fact that the
probability of success is a little lower than expected is well justified by used of an approximation of
the probabilistic distribution of AES. Due to these results, due to the similarity between small-scale
AES and AES (e.g. the value of the skewness is similar for these two cases – see Sect. 5.6.2) and just
to have more confidence, we choose an arbitrary value of 3 · 215.375 = 216.96 initial cosets in order to
set up the distinguisher for AES, for a data cost of 216.96 · 232 = 248.96 chosen plaintexts distributed
in 216.96 initial cosets of Dj .

The Computational Cost. We have just seen that 248.96 chosen plaintexts (i.e. 216.96 cosets of
DI with |I| = 1) are sufficient to distinguish a random permutation from 5 rounds of AES, simply
counting the number of pairs of ciphertexts that belong to the same coset of MJ for |J | = 3 and
using the fact that this number is bigger for AES. Here we give an estimation of the computational
cost of the distinguisher, which is (approximately) given by the cost to count the number of collisions.
Using Algorithm 1, the total computational cost can be well approximated by 252.6 table look-ups,
or equivalently 246 five-round encryptions of AES (using the approximation 20 table look-ups ≈ 1
round of AES).

5.8. Open Problem - 5-round Truncated Distinguisher for Generic
AES-like Ciphers

To summarize, we have presented a new truncated property for 5-round AES-like ciphers in the case
in which “the solutions of equation (5.5) are uniformly distributed for each input/output difference
∆I 6= 0 and ∆O 6= 0”, which is close to being true if the S-Box is APN, or if the SBox is “close” to
be APN. Even if no S-Box (completely) satisfies this assumption in F24 or F28 , the theoretically
result of Theorem 5 matches the practical result obtained for the AES S-Box, which approximately
satisfies the assumptions of such Theorem (as discussed in Sect. 5.2.2). Thus, natural questions
arise: What happens when the AES S-Box is changed with an S-Box that does not satisfy (at all) the
assumptions of Theorem 5? Is it possible to naturally extend our results to any general case?

We have studied this problem working on small-scale AES, and by practical results the answer to
the second question seems to be negative. In other words, our theory does not extend naturally to

97

5. 5-round AES: Probabilistic Distribution

generic S-Box, but it should be modified depending on the particular properties/details of the S-Box
function.

Preliminary Considerations and Practical Results

To summarize, in Sect. 5.3 we used the fact that the average number of solutions x of the differential
S-Box(x⊕∆I)⊕ S-Box(x) = ∆O is 256/255 (for 8-bit AES). This is independent of the details of
the S-Box.

Now, consider the probabilistic distribution of the number of solutions x of the previous equations
for non-zero ∆I ,∆O. Obviously, the mean of such probabilistic distribution is 256/255. Roughly
speaking, in Sect. 5.3 we computed our result by assuming that the variance of such distribution
is zero. Obviously, this can not be the case. Since the variance of such distribution depends on the
details of the S-Box, we expect that our theoretical results match the practical ones when one works
with an S-Box that minimizes such variance, which happens – in the best case – when one works
with an APN S-Box. However, the variance of such distribution when using the AES S-Box is very
close to the variance of such distribution when using an APN S-Box (“Variance APN = 64004/65025”
versus “Variance AES = 67064/65025”).

Here we start an analysis in order to better understand which properties of the S-Box play a
crucial role when computing the average number of collisions for 5-round AES. In more details, we
did several practical tests by counting the average number of collisions in the case in which the AES
S-Box is replaced with other S-Box permutations present in the literature - PRINCE [BCG+12],
MIDORI [BBI+15], KLEIN [GNL11], PRESENT [BKL+07], RECTANGLE [ZBL+15], NOEKEON
[DPAR00] and PRIDE [ADK+14] - and with some “toy” S-Boxes. For our tests, given 216 plaintexts
in the same coset of Di, we counted the average number of collision in the same coset of MJ for J
fixed with |J | = 3 and we computed the mean. The obtained results are listed in Table 5.2, where
we also highlight some properties of the used S-Box (definitions and differential spectrum of the
used S-Boxes are given in [GR18, App. I]) and the difference between the number of collisions found
by experiments and the theoretical number 32 847.124 under the assumptions of Theorem 6 (while
the average number of collisions for a random permutation is 32 767.5). For each AES-like cipher, we
used 125 000 ' 217 different initial cosets (values given in the table are the average ones) - new keys
are generated at random for each test.

We emphasize that, while all these AES-like ciphers satisfy the multiple-of-8 property, for some of
them the average number of collisions is bigger than the case of a random permutation (e.g. AES
S-Box), while for others it is smaller (e.g. Toy-12 S-Box). This supports again the independence of
the multiple-of-8 property from the fact that the average number of collisions is bigger for 5-round
AES.

Observations and (possible) Explanation

As expected, the (absolute) difference between the found number of collisions and the theoretical one
seems to increase when the variance (of the S-Box) increases, while it seems to be independent of the
maximum differential probability DPmax. Moreover, the difference between the theoretical number of
collisions (given under the assumptions of Theorem 5 - the number of solutions n∆I ,∆O

of equation
(5.5) are uniform distributed) and the practical one is minimum when the S-Box almost satisfies the
assumption of Theorem 5 - e.g. the AES S-Box.

To explain these results, we must refer to the proof of Theorem 5 given in Sect. 5.3. The idea is
to consider a system of 4 equations of the generic form (5.13), and to look for common solutions.
In the case in which the solutions (in particular, the number of solutions n∆I ,∆O

) of equation (5.5)
are uniformly distributed, the probability that a possible solution satisfies all the 4 equations of the
system is well approximated by (255−4 · 2−31)3, as explained in the proof of Sect. 5.3. This allows to
(theoretical) predict the average number of common solutions, and so of collisions. Instead, in the

98

5.8. Open Problem - 5-round Truncated Distinguisher for Generic AES-like Ciphers

Table 5.2.: In the following table, we provide the results of our practical tests about the number of
different pairs of ciphertexts that belong to the same coset of MJ for J fixed with |J | = 3 when the
AES S-Box is replaced by the S-Box of other ciphers. Together with the number of collisions, we
provide the most relevant properties of the S-Box (“Var” denotes the variance of the probabilistic
distribution that describes the number of solutions of the eq. S-Box(x ⊕ ∆I)⊕ S-Box(x) = ∆O)
and the “Difference” between the practical and the theoretical number (= 32 847.124) of collisions -
under the assumptions of Theorem 5.

AES-like Cipher Numb. Collisions Diff. 24 ×DPmax Var Unif. Diff.

AES [CMR05] 32 848.6 +1.45 4 344/225 3

KLEIN [GNL11] 32 849.8 +2.7 4 344/225
MIDORI SB1 [BBI+15] 32 843.0 −4.1 4 344/225
PRINCE [BCG+12] 32 852.7 +5.6 4 344/225

Toy-6 [GR18] 32 840.1 −7.1 6 392/225

RECTANGLE [ZBL+15] 32 861.2 +14.0 4 416/225
NOEKEON [DPAR00] 32 878.7 +31.6 4 416/225
MIDORI SB0 [BBI+15] 32 882.8 +35.7 4 416/225
PRESENT [BKL+07] 32 886.3 +39.2 4 416/225
PRIDE [ADK+14] 32 806.6 −40.5 4 416/225

Toy-8 [GR18] 32 815.7 −31.5 8 464/225

Toy-10 [GR18] 32 919.0 +71.9 10 864/225

Toy-12 [GR18] 32 684.1 −163.0 12 896/225

case in which the solutions (in particular, the number of solutions n∆I ,∆O
) of equation (5.5) are not

uniform distributed (e.g. if the variance of the S-Box is not “low”), then the probability to have a
common solution is in general different from the one just given. As a result, the number of solutions
of a system of equations like (5.13) can be bigger or smaller w.r.t. the one given in Theorem 5 (and
the difference can be also non-negligible). It follows that the number of collisions is influenced by
the details of the S-Box (as expected). As future work, an open problem is to theoretically prove this
conjecture about the link between the average number of collisions and the variance of the S-Box,
and to theoretically derive the numbers given in Table 5.2.

What about the distinguisher based on the variance? To compute the value of the variance, we have
exploited the “multiple-of-8” property, the properties of the Variance (if X is a random variable and
a a scalar, then V ar(a ·X) = a2 · V ar(X)) and the probability pAES that - given a pair of plaintexts
in Di - two ciphertexts belong to the same coset of MJ after 5-round. This probability pAES (5.17)
depends on the details of the S-Box, as we have just seen. It follows that also the value of the variance
depends on it. On the other hand, we found by practical tests that the value of the variance changes
much less than the corresponding value of the mean when the S-Box changes. In general, the value
of the variance is “almost” independent of the details of the S-Box. Moreover, since the variance
for an AES-like cipher is much bigger than the one of a random permutation, the proposed dis-
tinguisher works even if the value of the variance is (a little) different than the one given in Theorem 5.

Future Open Problems. As a result, while we provide a theoretical explanation (besides practical
verifications) of our results, an open problem is to adapt our theoretical argumentations to the cases
in which the S-Box does not satisfy the assumptions of Theorem 5. As first step, we conjecture an
explanation of our results in this last case, but more research in that sense must be done.

99

5. 5-round AES: Probabilistic Distribution

MixColumns Dependence

Until now, we have focused only on the details of the S-Box. How does the average number of
collisions depend on the details of the MixColumns matrix?

MDS Matrix: “Good” vs “Bad” S-Box. We start by focusing on the case in which the MixColumns
matrix is MDS, and then we briefly discuss the other cases. If the S-Box satisfies the assumptions
of Theorem 5, then the average number of collisions is (almost) independent of the MixColumns
matrix details. Instead, if the S-Box does not satisfy the previous requirement, this number depends
also on the details of the MixColumns matrix. In particular, in this last case the solutions (and the
corresponding number n∆I ,∆O

) of equation (5.5) are not uniform distributed with respect to ∆I 6= 0
and ∆O 6= 0, and so the number of solutions of a system of 4 equations of the generic form (5.13)
depends both on the details of the S-Box and of the linear layer. Indeed, remember that a system of
equations of the generic form (5.13) depends on the coefficients of the MixColumns matrix, and so
also the fact that a common solution exists.

To give a practical example, consider the (circulant) MixColumns matrix defined as

MC = circ(0x01, 0x03, 0x02, 0x02),

that is the AES MixColumns matrix where 0x01 is replaced by 0x02 and vice-versa. We got that
the number of collisions in the case of AES S-Box is 32 850.32, while in the case of PRESENT
S-Box is 32 872.95. Thus, a difference in the MixColumns matrix implies almost no difference for the
AES S-Box case (on average, there are +1.75 collisions for this new MDS matrix), while an higher
difference occurs for the PRESENT S-Box case (on average, there are −13.37 collisions for this new
MDS matrix). As we have just said, this is due to the fact that the probability that a system of 4
equations of the generic form (5.13) admits a common solution both on the details of the S-Box and
of the linear layer, in the case in which the S-Box is not “good” (w.r.t. assumptions of Theorem 5).
Similar results can be obtained using different MDS MixColumns matrices.

Non-MDS Matrix. Finally, if the AES MixColumns matrix is replaced by an “almost MDS” one
(which does not satisfy the assumptions of Theorem 5), then the number of collisions can be different
with respect to the one predicted by Theorem 5 also in the case of “good” S-Box. As example, using
the Midori matrix

MCMidori = circ(0x00, 0x01, 0x01, 0x01)

and the AES S-Box, the number of collisions after 5-round is on average 31 883.27 (instead of a
theoretical number of 32 847.124). The same occurs also using a MixColumns matrix which is not MDS
and for which all coefficients are different than zero. E.g. using the matrix circ(0x02, 0x01, 0x01, 0x01)
and the AES S-Box, the number of collisions after 5 rounds is on average 33 377.93 (instead of a
theoretical number of 32 847.124).

5.9. Key-Recovery Attacks on 5-round AES

Finally, we propose several (new) attacks on 5-round AES that exploit the secret-key distinguishers
just proposed here revisited on 4-round AES.

Why Not an Attack on 6-round AES? To give an overview, consider the following aspect. To
construct the proposed distinguishers, one consider a full coset of a subspace Di for i ∈ {0, 1, 2, 3} -
that is, a set of 232 plaintexts with one active diagonal, and exploits properties that are related to the
number of ciphertexts that belong to a subspaceMJ . In order to exploit directly these distinguishers,
one can guess the final key, decrypt the ciphertexts, counts the number of collisions in the same coset

100

5.9. Key-Recovery Attacks on 5-round AES

of MJ and exploits one of the proposed properties. However, since a coset of MJ is mapped into
the full space, it seems hard to check this property one round before without guessing the entire key.
Similar considerations can be done if the guessed key is the initial one. It follows that it is rather
hard to set up an attack different than a brute force one that exploits directly the proposed 5-round
distinguishers - this open problem is left for future work. For comparison, note that such a problem
does not arise for the other distinguishers up to 4-round AES (e.g. the impossible differential or the
integral ones), for which it is sufficient to guess only part of the secret key in order to verify if the
required property is satisfied or not.

Thus, we consider round-reduced distinguishers on 4-round to propose new key-recovery attacks.

Idea of the Attacks. Instead of working with 232 plaintexts with one active diagonal, we consider
224 texts with three active bytes in the same column, e.g. a coset of D0,2,3 ∩ C0. As we are going to
show, the properties just presented hold after 4-round in the same way. To set up the attacks, the
idea is to extend the distinguishers at the beginning and to partially guess the initial key. In more
details, consider 232 plaintexts in D0 ⊕ a. After one round, they are mapped into a coset of C0 with
prob. 1. However, the way in which they are divided in cosets of D0,2,3 ∩ C0 depends on the guessed
key

232 plaintexts in D0 ⊕ b
R(·)−−−−−−−−−−−−→

(partially) key-guess
224 texts in D0,2,3 ∩ C0 ⊕ a

R4(·)−−−→ ...

...
R(·)−−→ 224 texts in D0,2,3 ∩ C0 ⊕ a

R4(·)−−−→ distinguisher property.

We exploit this fact to set up new key-recovery attacks on 5-round AES.
In more details, the attacks that we are going to present are based on the following properties:

• the number of collisions is a multiple of 2/4/8;

• the average number of collisions is (a little) bigger for AES than for a random permutation;

• the variance of the number of collisions is higher for AES than for a random permutation.

In the following, we first present the generic strategy to set up these attacks (which is common for
all the previous cases), and then we give all the details.

5.9.1. Generic Strategy

In order to exploit one of the previous properties, the idea is the following. Consider 224 texts in the
same coset of DI ∩ Cj for |j| = 1 and |I| = 2 or |I| = 3, e.g.

D0,2,3 ∩ C0 ⊕ a ≡


A C C C
A C C C
A C C C
C C C C

 ,
and the corresponding ciphertexts after 4-round. The idea of the attack is to guess 4 bytes of the
key (i.e. the j-th diagonal), to partially compute 1-round decryption of DI ∩ Cj ⊕ a and to ask for
the corresponding ciphertexts after 5-round. Exploiting one of the previous properties that hold on
the ciphertexts only if the guessed key is the right one, it is possible to filter wrong keys and to find
the right one. In particular, this is due to the fact that if the guessed key is not the right one, the
behavior is the same of a random permutation - Wrong-Key Randomization Hypothesis.

In more details, consider 224·n texts in n cosets of DI ∩ Cj . The idea is to compute 1-round
decryption with respect to a guessed key and ask for the corresponding ciphertexts. The following
properties holds

101

5. 5-round AES: Probabilistic Distribution

• the number of collisions is always a multiple of 2 if |I| = 2 and of 4 if |I| = 3 for the right key,
while it can assume any value for a wrong guessed key;

• the average number of collisions in the same coset of MJ for J fixed with |J | = 3 is approxi-
mately equal to 32 770.524 for the right key, while it is approximately 32 767.998 for a wrong
guessed key;

• the variance of the number of collisions is approximately equal to 217.8 for the right key, while
it is approximately 215 for a wrong guessed key.

Note that if n ≤ 28 initial cosets are sufficient to set up the attack, then the data cost of this step is
at most of 232 chosen plaintexts in the same coset of Di, since DI ∩ Cj ⊕ b ⊆ Cj ⊕ b = R(Di ⊕ a).
When one diagonal of the key is found, the other ones can be found using the same strategy or by
brute force.

Wrong-Key Randomization Hypothesis. One assumption of the attack is the wrong-key
randomization hypothesis. This hypothesis states that decrypting one or several rounds with a wrong
key guess creates a function that behaves like a random one. This assumption is very common and
used for classical/truncated/impossible differentials key-recovery attacks.

For this reason, we limit ourselves to show that it holds also in our case. Consider 224 texts ti in
a coset of D0,2,3 ∩ C0 for i = 0, ..., 224 − 1, and let k the secret subkey and k̂ the guessed key. The

decryption under the guessed key k̂ is simply given by:

R−1

k̂
(ti) = k̂ ⊕ S-Box−1 ◦ SR−1 ◦MC−1(ti).

To implement the attack, one asks the corresponding ciphertexts after 5-round (with respect to the
right key k). By simple computation, after one round

Rk ◦R−1

k̂
(ti) = MC ◦ SR ◦ S-Box

[
k̂ ⊕ k ⊕ S-Box−1 ◦ SR−1 ◦MC−1

(
ti
)]
.

Thus, if k̂ = k, then Rk ◦R−1

k̂
(ti) = ti for each i, and the distinguisher property holds. On the other

hand, if k̂ 6= k, then Rk ◦R−1

k̂
(ti) 6= ti for each i since the S-Box is a non-linear operation. It follows

that {Rk ◦R−1

k̂
(ti)}i do not belong to the same coset of D0,2,3 ∩ C0, and the distinguisher property

does not work. In this case, the behavior is the same of a random permutation, and the attacker can
filter wrong keys.

Implementation Strategy. In the following we give the details of the attack. We highlight that
in all cases the attacker has to count the number of collisions in the same coset of MJ in order to
filter wrong keys. Even if it is possible to use the strategy proposed in Algorithm 1, another strategy
is more competitive in this case.

The basic idea is to re-order the texts with respect to a partial order � and to work only on
consecutive ordered texts. In particular, since our goal is to check if two texts belong to the same
coset of MJ for |J | = 3, the idea is to re-order the texts using a particular numerical order which
depends by J . Then, given a set of ordered texts, the idea is to work only on two consecutive elements
in order to count the total number of collisions. In other words, given ordered ciphertexts, one can
work only on approximately 232 different pairs (composed of consecutive elements with respect to
the used order) instead of 263 for each coset of DI .

In order to implement such strategy, we first define the following partial order �:

Definition 14. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let t1, t2 ∈ F4×4
28 with

t1 6= t2. The text t1 is less or equal than the text t2 with respect to the partial order � (i.e. t1 � t2)
if and only if one of the two following conditions is satisfied (the indexes are taken modulo 4):

102

5.9. Key-Recovery Attacks on 5-round AES

• there exists j ∈ {0, 1, 2, 3} such that for all i < j:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

• given ≤ defined as in Def. 12, for all i = 0,, 3:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1) ≤MC−1(t2).

Thus, as first step, one must re-order the 232 ciphertexts of each coset with respect to the partial
order relationship � defined before.

After the re-ordering process, in order to count the number of pairs of texts that belong to
the same coset of MJ , one can work only on consecutive ordered elements. Indeed, consider r
consecutive elements cl, cl+1, ..., cl+r−1, with r ≥ 2. Suppose that for each k with l ≤ k ≤ l + r − 2:
ck⊕ck+1 ∈MJ . SinceMJ is a subspace, it follows immediately that for each s, t with l ≤ s, t ≤ l+r−2
cs ⊕ ct ∈ MJ . Thus, given r ≥ 2 consecutive elements that belong to the same coset of MJ , it
follows that

(
r
2

)
= r·(r−1)

2 different pairs belong to the same coset of MJ . In the same way, consider
r consecutive elements cl, cl+1, ..., cl+r−1 with r ≥ 2, such that ck ⊕ ck+1 /∈ MJ for eachk with
l ≤ k ≤ l + r − 2. Since MJ is a subspace, it follows immediately that cs ⊕ ct /∈ MJ for each s, t
with l ≤ s, t ≤ l + r − 2.

In other words, thanks to the ordering algorithm, it is possible to work only on 232 − 1 pairs (i.e.
the pairs composed of two consecutive elements), but at the same time to have information on all
the 231 · (232 − 1) ' 263 different pairs. The pseudo-code of such algorithm is given in Algorithm 2.

What is the total computational cost of this procedure? Given a set of n ordered elements, the
computational cost to count the number of pairs that belong to the same coset of MJ is well
approximated by n look-ups table, since one works only on consecutive elements. Using the merge
sort algorithm to order this set (which has a computational cost of O(n log n) memory access), the
total computational cost for the verifier is approximately of n · (1 + log n) table look-ups. In our case,
since the verifier has to consider a single coset of DI of 232 elements and to repeat this procedure four
times (i.e. one for eachMJ with |J | = 3), the cost is well approximated by 4 · 232 · (1 + log 232) = 239

table look-ups, or equivalently 232.4 five-round encryptions of AES (using the approximation 20 table
look-ups ≈ 1 round of AES).

Practical Tests on small-scale AES

All the attacks that we are going to present have been practically tested on small-scale AES20. The
practical results are in accordance with the theoretical ones.

5.9.2. Multiple-of-n Key-Recovery Attack

Consider 216 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 2 - e.g. D0,1 ∩ C0, and
the corresponding ciphertexts after 4-round. As proved in Sect. 5.1, the number of different pairs
of ciphertexts that belong to the same coset of MK for |K| = 3 is always a multiple of 2 (or 4 if
|I| = 3), while it can take any possible value for a random permutation.

The idea of the attack is to guess 4 bytes of the key (i.e. the j-th column), to partially decrypt
DI ∩ Cj and to ask for the corresponding ciphertexts. Since for a wrong key, the behavior is similar
to the one of a random permutation - the number of collisions is not a multiple of 2 with prob. 1, it
is possible to filter wrong keys and to find the right one.

20The source codes of the attacks are available at https://github.com/Krypto-iaik/Distinguisher_
5RoundAES

103

https://github.com/Krypto-iaik/Distinguisher_5RoundAES
https://github.com/Krypto-iaik/Distinguisher_5RoundAES

5. 5-round AES: Probabilistic Distribution

Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single coset of DI
with |I| = 1.

Result: Number of collisions n
for all J with |J | = 3 do

Re-order the 232 (plaintexts, ciphertexts) pairs using the partial order relationship �
defined in Def. 14; // � depends on J

Let (p̃i, c̃i) for i = 0, ..., 232 − 1 the order (plaintext, ciphertext) pairs;
n← 0; // n denotes the number of collisions in MJ

i← 0;
while i < 232 do

r ← 1;
j ← i;
while c̃j ⊕ c̃j+1 ∈MJ do

r ← r + 1;
j ← j + 1;

end
i← j + 1;
n← n+ r · (r − 1)/2;

end

end
return n.

Algorithm 2: Count the number of collisions by re-ordering the pairs of texts.

Data Cost. Given a single coset of DI ∩ Cj , the probability that the number of collisions is a
multiple of 2 is 1/2 for a wrong key. Thus, the probability that a wrong key survives n tests is 2−n.
Since there are 232 different keys to test, n ≥ 32 tests are sufficient to filter all the wrong keys with
good probability. Since each coset of Cj contains 216 different cosets of DI ∩ Cj , it follows that 232

chosen plaintexts in the same coset of Dj are sufficient to find one diagonal (remember that each
coset of Dj is mapped into a coset of Cj after one round). Using this strategy to find three diagonals
of the key (one diagonal is found by brute force), the data complexity is of 233.6 chosen plaintexts.

Computational Cost. Using Algorithm 2, the computational cost of the attack is well approxi-
mated by the cost of the re-ordering step for each possible key. In particular, in order to find one
diagonal of the key, the cost can be approximated by 232·216·(2+log 216)·(1+1/2+1/4+1/8+...) ' 253.1

table look-ups. Thus, the total cost is 3 · 253.1 · (5 · 20)−1 + 232 ' 248 five-round encryption to find the
entire key (by assuming 20 table look-ups ≈ 1 encryption). The term 1 + 1/2 + 1/4 + 1/8 + ... is due
to the fact that after the 1st test only 1/2 of the possible keys survived, after the 2nd test only 1/4
of the possible keys survived and so on. Indeed, note that the number of collisions is a multiple of 2
only with probability 1/2. In other words, after the 1st test one repeats the process for 232/2 ' 231

keys, after the 2nd test one repeats the process for 232/4 ' 230 keys and so on. This result has been
checked also by practical tests.

5.9.3. Truncated Diff. Attack based on the Mean

Here we exploit the fact the average number of collisions is (a little) bigger for the right key than
for a wrong guessed key, i.e. we propose the first truncated differential attack on 5-round AES (that
exploits a differential trail with probability different from zero).

Consider 224 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 - e.g. D0,1,2 ∩ C0, and
the corresponding ciphertexts after 4-round. As we have just seen in Sect. 5.3, the average number
of different pairs of ciphertexts that belong to the same coset of MK for |K| = 3 is approximately
32 770.524 versus 32 767.998 in the random case. In other words, the probability that a pair of

104

5.9. Key-Recovery Attacks on 5-round AES

ciphertexts belongs to the same coset of MK for |K| = 3 is 2−32 + 2−45.6625 for AES versus 2−32 for
the random case/wrong guessed key.

The idea of the attack is to guess 4 bytes of the key (i.e. the j-th diagonal), to partially decrypt
DI ∩ Cj and to ask for the corresponding ciphertexts. Exploiting the previous property that holds
on the ciphertexts, it is possible to filter wrong keys and to find the right one. We expect that the
number of collisions is bigger for the right key of AES than for a wrong one. Indeed, if the key is
wrong, then the texts are distributed in several cosets of DI ∩ Cj after one round (not in only one),
and one gets the same behavior that occurs for a random permutation. In particular, we emphasize
that our truncated differential distinguisher proposed in this paper works if and only if one consider
an entire initial coset of DI ∩ Cj .

Data Cost. Assume that the goal is to find the right key with probability bigger than 95%21, and
assume that the behavior for a wrong guessed key is the same of a random permutation. Since one
works on 4 bytes of the key, one has to use the secret-key distinguisher 4 · 232 = 234 different times.
In other words, the data cost is approximately given by formula (6.9) where prob = 0.951/234

. It
follows that for prand ' 2−30 − 3 · 2−63 and pAES ' 2−30 + 2−43.6625, the number of different pairs
that one needs to use in order to set up the attack is n ≥ 3 · 259.43 (where the factor 3 is due to the
observations given in Sect. 5.7.3). Since there are 4 different subspace DI ∩Cj and since each coset of

DI ∩ Cj contains approximately
(

224

2

)
' 247 different pairs after one round, one needs approximately

212.02 different initial cosets or approximately 234.02 chosen plaintexts in the same coset of Dj in
order to find one diagonal of the key. If two diagonals are found by brute force, the cost of finding
the entire key is of 2 · 234.02 = 235 chosen plaintexts.

Computational Cost. Using Algorithm 2, the computational cost of the attack is well approxi-
mated by the cost of the re-ordering step for each possible key. In particular, in order to find one
diagonal, the cost can be approximated by 4 · 212.02 · 232 · 224 · (2 + log 224) ' 274.7 table look-ups.
Thus the total cost is 2 · 274.7 · (5 · 20)−1 + 264 ' 269.2 five-round encryption to find the entire key
(by assuming 20 table look-ups ≈ 1 encryption).

5.9.4. Truncated Diff. Attack based on the Variance

Here we exploit the fact the variance is higher for the right key than for a wrong guessed key.
Consider 224 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 - e.g. D0,1,2 ∩ C0, and

the corresponding ciphertexts after 4-round. What is the variance of the number of collisions in the
same coset of MK for |K| = 3 after 4 rounds? To compute a good approximation of the variance,
we re-use the same calculation proposed in Sect. 5.4.1. For this reason, we refer to that section for
all the details and we give here only the final result.

Assume K fixed. For a wrong guessed key, the variance is well approximated by

V arwrongKey = 223 · (224 − 1) · 2−32 · (1− 2−32) ' 215,

that is the standard deviation is equal to δwrongKey = 27.5. What about right key guessed? Given 224

plaintexts, there are 3 · 223 · (28 − 1)2 = 240.58 different pairs with one equal generating variable and
223 · (28 − 1)3 = 246.99 different pairs with different generating variables. The variance is given by

V arrightKey = 42 · 244.99 · (2−32 − 2−45.6625) · (1− 2−32 + 2−45.6625)+

+ (29)2 · 230.58 · (2−32 − 2−45.6625) · (1− 2−32 + 2−45.6625) ' 217.8,

that is the standard deviation is equal to δrightKey = 28.9. This difference can be exploited to find
the right key. In order to derive concrete number for data and computational complexity, as for the
secrete-key distinguisher, we consider the results on small-scale AES.

21In other words, we assume that the maximum number of collisions occurs for the right key with probability 95%.

105

5. 5-round AES: Probabilistic Distribution

For small-scale AES - denoted in the following by symbol ?, consider as before 212 plaintexts in
the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 and assume K fixed. For a wrong guessed key, the
variance is well approximated by

V ar?wrongKey = 211 · (212 − 1) · 2−16 · (1− 2−16) ' 27,

that is the standard deviation is equal to δ?wrongKey = 23.5. What about right key guessed? Given

212 plaintexts, there are 3 · 211 · (24 − 1)2 = 220.4 different pairs with one equal generating variable
and 211 · (24 − 1)3 = 222.7 different pairs with different generating variables. The variance is given by

V ar?rightKey = 42 · 220.7 · (2−16 − 2−24.67) · (1− 2−16 + 2−24.67)+

+ (25)2 · 215.4 · (2−16 − 2−24.67) · (1− 2−16 + 2−24.67) ' 210.1,

that is the standard deviation is equal to δ?rightKey = 25.05.

Data and Computational Costs. As for the secret-key distinguisher of Sect. 5.7.1, the ratio
between the standard deviation is similar for the small scale AES and full-size AES

28.9

27.5
≈ 2.75 ≈ 25.05

23.5
.

Thus, we use our results on small-scale AES to derive concrete numbers for the full-size AES case.
By practical tests, we have found that ≥ 26 initial cosets are sufficient to have a good estimation of
the variance/standard deviation. Since for each initial coset it is possible to compute the number of
collisions in MJ for each J with |J | = 3, at least 26 initial cosets are largely sufficient to set up the
distinguisher. Due to the relation between small-scale AES and full-size AES previously discussed,
we claim that the data cost to distinguish to find one diagonal of the key is of 232 chosen plaintexts
in the same coset of Dj (observe that after one round, it contains 4 · 28 different cosets of DI ∩ Cj).
If two diagonals are found by brute force, the total data cost is well approximated by 233 chosen
plaintexts.

The computational cost is well approximated by the cost to compute the number of collisions
for each possible key. Using Algorithm 2, the cost of finding one diagonal is well approximated
by 232 · 26 · 224 · (2 + log 224) ' 266.7 table look-ups, that is the total cost is well approximated by
2 · 266.7 · (100)−1 + 264 ' 264.2 five-round encryption to find the entire key by assuming 20 table
look-ups ≈ 1 encryption.

106

6
Mixture Differential Cryptanalysis

“Multiple-of-8” distinguisher [GRR17] proposed at Eurocrypt 2017 by Grassi, Rechberger and Rønjom
is the first 5-round secret-key distinguisher in the literature for AES that exploits a property which
is independent of the secret key and of the details of the S-Box. As shown in the previous section,
this distinguisher is based on a new structural property for up to 5 rounds of AES: by appropriate
choices of a number of input pairs it is possible to make sure that the number of times that the
difference of the resulting output pairs lie in a particular subspace is always a multiple of 8. On the
other hand, as this distinguisher is based on a property that involves the whole state both in the
input and in the output of AES, it makes it challenging to convert it into a key-recovery attack over
more rounds, since e.g. it requires guessing the whole subkey in the initial/last round.

In [Gra17b; Gra18b] we introduced “mixture differential cryptanalysis” on round-reduced AES-like
ciphers, a way to translate the (complex) “multiple-of-8” 5-round distinguisher [GRR17] into a
simpler and more convenient one (though, on a smaller number of rounds). As we are going to show,
such new proposed technique leads to a new distinguisher and key-recovery attacks on 4- and 5-round
AES (respectively) with data and computational complexity similar than other attacks in literature.

Why is it (rather) hard to set up key-recovery attacks that exploit such distinguisher?
Given the 5-round multiplie-of-8 distinguisher, a natural question regards the possibility to exploit
it in order to set up a key-recovery attack on 6-round AES-128 better than a brute force one. A
possible way is the following. Consider 232 chosen plaintexts in the same coset of a diagonal space
Di, and the corresponding ciphertexts after 6 rounds. A possibility is to guess the final key, decrypt
the ciphertexts and check if the number of collisions in the same coset of MJ is a multiple of 8. If
not, the guessed key is wrong. However, since a coset of MJ is mapped into the full space, it seems
hard to check this property one round before without guessing the entire key. It follows that it is
rather hard to set up an attack different than a brute force one that exploits directly the 5-round
distinguisher proposed in [GRR17]. For comparison, note that such a problem does not arise for
the other distinguishers for up to 4-round AES (e.g. the impossible differential or the integral ones)
present in the literature, for which it is sufficient to guess only part of the secret key in order to
verify if the required property is satisfied or not.

6.1. Preview

Before going into the details, we briefly introduce the concept behind “mixture differential crypt-
analysis”.

6.1.1. Mixture Differential Cryptanalysis

Consider 4-round AES. Mixture differential distinguishers work as follows. Given plaintexts in
the same coset of a subspace C, the attacker first constructs all possible pairs of two (plaintexts,
ciphertexts) and divides them into sets of N ≥ 2 non-independent pairs. These sets are defined
such that particular relationships (that involve differential and linear relationships) hold among the
plaintexts of the pairs that belong to the same set. Due to the particular way - explained in detail

107

6. Mixture Differential Cryptanalysis

Figure 6.1.: New Differential Secret-Key Distinguishers for round-reduced AES. Consider n (plain-
texts, ciphertexts) (a). In a “classical” differential attack (b), one works independently on each pair
of two (plaintexts, ciphertexts), and exploits the probability that it satisfies a certain differential trail.
In our attack (c), one divides the pairs into non-random sets, and exploits particular relationships
(based on differential trails) that hold among the pairs that belong to the same set in order to set up
a distinguisher.

the following - in which these sets are defined, we call our new technique as “mixture differential
cryptanalysis”. As already pointed out, the way in which these sets are constructed resemble the
“multiple-of-8” distinguisher [GRR17] recently proposed at Eurocrypt 2017.

Such sets have the property that the two ciphertexts of a certain pair belong to the same coset of
a particular subspace M if and only if the two ciphertexts of all the other pairs in that set have
the same property. In other words, given a set of pairs, it is not possible that two ciphertexts of
some pairs belong to the same coset of M, and that two ciphertexts of other pairs do not have this
property. Since this last event can occur for a random permutation, it is possible to distinguish
4-round AES from a random permutation.

In more detail and referring to Fig. 6.1, given n chosen (plaintexts, ciphertexts), in a “classical”
(differential) attack one works on each pair of two (plaintext, ciphertext) independently of the others
- case (b). In our distinguishers/attacks instead, one first divides the pairs in (non-random) sets of
N ≥ 2 pairs of texts - case (c), and then she works on each set of pairs independently of the other
sets, exploiting the property just given.

Relation with other Attacks/Distinguishers in the Literature

To the best of our knowledge, the concept of mixture differential cryptanalysis is new and has not
been used in cryptanalysis before. Nonetheless there are other works that share some similarities
with mixture differential cryptanalysis.

Differential Attacks. Differential attacks [BS90] exploit the fact that pairs of plaintexts with
certain differences yield other differences in the corresponding ciphertexts with a non-uniform
probability distribution. The resulting pair of differences is called a differential. Such a property can
be used both to distinguish a cipher permutation from a random one, and to recover the secret key.
Possible variants of this attack/distinguisher are the truncated differential attack [Knu94], in which
the attacker considers only part of the difference between pairs of texts (i.e. a differential attack
where only part of the difference in the ciphertexts can be predicted), and impossible differential
attack [Knu98; BBD+98], in which the attacker considers differential with zero-probability.

In the original version of differential cryptanalysis [BS90], a unique differential is exploited. A
generalization of such attack is multiple differential cryptanalysis [BG11], where several input
differences are considered together and the corresponding output differences can be different from
an input difference to another, that is the set of considered differentials has no particular structure.

108

6.1. Preview

The common feature of all these distinguishers/attacks is the fact that - in all these cases - the
attacker focuses on the probability that a single pair of plaintexts with a certain input difference
yield other difference in the corresponding pair of ciphertexts, working independently on each pair of
texts.

Recent Results. Recently, new differential distinguishers have been proposed in the literature,
precisely the polytopic cryptanalysis [Tie16a] at Eurocrypt 2016 and the yoyo distinguisher on SPN
constructions [RBH17] at Asiacrypt 2017, which present an important difference with respect to
the previously recalled attacks. Instead of working on each pair of two (plaintexts, ciphertexts)
independently of the others as in the previous scenario, in these cases the attacker works on
the relations that hold among the pairs of texts. In other words, given a pair of two (plaintexts,
ciphertexts) with a certain input/output differences, one focuses and studies how such pair influences
other pairs of texts to satisfy particular input/output differences.

More precisely, polytopic cryptanalysis is similar to multiple differential cryptanalysis. However,
as opposed to assuming independence of the differentials (which does not hold in general, as shown
in [Mur11]), the authors explicitly take their correlation into account and use it in their framework,
considering interdependencies between larger sets of texts and as they traverse through the cipher.

The strategy exploited by the yoyo game on SPN constructions proposed at Asiacrypt 2017 is
similar to the one that we are going to exploit to set up our new distinguisher. Given a pair of
chosen plaintexts and the corresponding ciphertexts, the attacker constructs new pair of ciphertexts
related to the other ones by linear and differential relations. Authors prove that the corresponding
new pair of plaintexts of this new second pair of ciphertexts satisfies - with prob. 1 - a difference
related “in some sense” to the input difference of the original pair of plaintexts, independently of
the secret-key. This allows to distinguish e.g. round-reduced AES from a random permutation, or to
set up key-recovery attacks.

As a result, “mixture differential cryptanalysis” is similar in nature to polytopic cryptanalysis and
the yoyo distinguishers. More details are given in the following.

6.1.2. Probabilistic Mixture Differential Cryptanalysis

Using the 4-round distinguisher just (roughly) presented as starting point, in [Gra17b] we presented
three different properties that can be exploited to distinguish 5-round AES from a random permu-
tation. As before, given sets of N ≥ 2 non-independent pairs of two (plaintexts, ciphertexts), it is
possible to prove the following1:

Probabilistic Mixture Differential: consider the number of sets for which two ciphertexts of at least
one pair belong to the same coset of particular subspace M; if the sets are properly defined,
then this number of sets is (a little) lower for 5-round AES than for a random permutation
(details are given in Sect. 6.4);

Threshold Mixture Differential [Gra17b]: consider the number of sets with the following property:
the number of pairs for which the two ciphertexts belong to the same coset of a particular
subspaceM is higher than a certain threshold Z ∈ N; if this number Z and the sets are properly
defined, then this number of sets is higher for 5-round AES than for a random permutation;

Impossible Mixture Differential [Gra17b]: if the sets are properly defined, for 5-round AES there
exists at least one set for which the two ciphertexts of all pair in that set do not belong to
the same coset of a particular subspace M; in contrast, for a random permutation, for each

1In this thesis, we limit ourselves to present only the “Probabilistic Mixture Differential” distinguisher for 5-round
AES, since it is the only distinguisher that can be used to set up a key-recovery attack on 6-round AES-128 faster
than brute force. The details of the other two distinguishers can be found in [Gra17b].

109

6. Mixture Differential Cryptanalysis

set there exists at least one pair for which the two ciphertexts belong to the same coset of a
particular subspace M.

Even if such 5-round distinguishers have higher complexity than e.g. the “multiple-of-8” one, the
first one can be used as starting point to set up the first key-recovery attack on 6-round AES that
exploits directly a 5-round secret-key distinguisher (which is independent of the secret key).

6.1.3. Key-Recovery Attacks

Finally, mixture differential cryptanalysis is not only theoretically intriguing, but indeed relevant for
practical cryptanalysis. In particular, new (competitive) key-recovery attacks can be set up using
(probabilistic) mixture differential distinguishers. In this attack, the attacker chooses plaintexts in
the same coset of a particular subspace D which is mapped after one round into a coset of another
subspace C. Using the mixture differential distinguisher just introduced and the facts that

• the way in which the pairs are divided in sets depends on the (partially) guessed key

• the behavior of a set for a wrongly guessed key is (approximately) the same as the case of a
random permutation,

she can filter wrong candidates of the key, and finally finds the right one.
This attack on 5-round AES has then been improved in [BDK+18], becoming the one with the

lowest computational cost among the attacks currently present in the literature (that do not use
adaptive chosen plaintexts/ciphertexts). More details are given in the following.

6.2. New 4-round Secret-Key Distinguisher for AES

First of all, we re-exploit the multiple-of-8 property proposed in [GRR17] to set up a new 4-round
secret-key distinguisher for AES. Before we go into the details, we present the general idea.

As we have just seen, given 232 plaintexts in the same coset ofMI for |I| = 1 and the corresponding
ciphertexts after 1 round, that is (pi, ci) for i = 0, ..., 232− 1 where pi ∈MI ⊕ a and ci = R(pi), then
the number n of different pairs of ciphertexts (ci, cj) for i 6= j that satisfy ci ⊕ cj ∈ DJ is always a
multiple of 8. This is due to the fact that if one pair of texts belong to the same coset of DJ after
one round, then other pairs of texts have the same property.

Thus, consider a pair of plaintexts p1 and p2 such that the corresponding texts after one round
belong (or not) to the same coset of DJ . As we have seen, there exist other pairs of plaintexts p̂1

and p̂2 whose ciphertexts after one round have the same property. The crucial point is that the pairs
(p1, p2) and (p̂1, p̂2) are not independent in the sense that the variables that generate the first pair
of texts are the same that generate the other pairs, but in a different combination. The idea is to
exploit this property in order to set up a new distinguisher for round-reduced AES. In other words,
instead of just counting the number of collisions and check that it is a multiple of 8 as in [GRR17],
the idea is to check if these relationships between the variables that generate the plaintexts (whose
ciphertexts belong or not the same coset of a given subspace MJ) hold or not.

6.2.1. Mixture Differential Distinguisher for 4-round AES

A formal description of the proposed Mixture Differential Distinguisher for 4-round AES is given in
the following Theorem.

Theorem 7 ([Gra17b; Gra18b]). Given the subspace C0 ∩ D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two
plaintexts p1 and p2 in the same coset (C0 ∩ D0,3)⊕ a generated by p1 ≡ (z1, w1) and p2 ≡ (z2, w2).
Let p̃1, p̃2 ∈ C0 ⊕ a be two other plaintexts generated by

p̃1 ≡ (z1, w1, x, y), p̃2 ≡ (z2, w2, x, y) or p̃1 ≡ (z1, w2, x, y), p̃2 ≡ (z1, w2, x, y)

110

6.2. New 4-round Secret-Key Distinguisher for AES

where x and y can take any possible value in F28. The following event

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̃1)⊕R4(p̃2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details of the S-Box and
of the MixColumns matrix (except for the branch number equal to 5).

Since for a random permutation the same event happens with approximately probability 2−32·(4−|J |)

- i.e close to 0 (note that this probability is maximized by |J | = 3), it is possible to exploit this fact
to set up a 4-round distinguisher. Due to the fact that the variables of p1 and p2 are “mixed” in
order to generate p̂1 and p̂2, we name this distinguisher as Mixture Differential distinguisher.

Moreover, it is also possible to provide similar theorems for the case in which no generating
variables are equal or a single generating variable is equal.

Theorem 8 ([Gra17b; Gra18b]). Given the subspace C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, consider two plaintexts
p1 and p2 in the same coset C0 ⊕ a generated by p1 ≡ (x1, y1, z1, w1) and p2 ≡ (x2, y2, z2, w2). Let
p̃1, p̃2 ∈ C0 ⊕ a be two other plaintexts generated by

1. (x2, y1, z1, w1) and (x1, y2, z2, w2); 2. (x1, y2, z1, w1) and (x2, y1, z2, w2);

3. (x1, y1, z2, w1) and (x2, y2, z1, w2); 4. (x1, y1, z1, w2) and (x2, y2, z2, w1);

5. (x2, y2, z1, w1) and (x1, y1, z2, w2); 6. (x2, y1, z2, w1) and (x1, y2, z1, w2);

7. (x2, y1, z1, w2) and (x1, y2, z2, w1).

The following event

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̃1)⊕R4(p̃2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details of the S-Box and
of the MixColumns matrix (except for the branch number equal to 5).

Remark. We highlight that the proof of the previous theorems follows immediately from the proof
of the multiple-of-8 property given in Sect. 5.1.1. For completeness, we mention that a detailed proof
can be found in [Gra18b, Sect. 4.1.1].

Data and Computational Cost

Data Cost. Since a coset of C0∩D0,3 contains 216 plaintexts, it is possible to construct 215·(216−1) '
231 different pairs. For our goal, we consider only the pairs of texts p1 ≡ (z1, w1) and p2 ≡ (z2, w2)
with different generating variables2, that is z1 6= z2 and w1 6= w2. The number of pairs with two

different generating variables is approximately given by
(

216

2

)
≈ 231, where note that only half of

them are independent.
In order to distinguish 4-round AES from a random permutation, one has to check that

c1 ⊕ c2 = R4
(
p1 ≡ (z1, w1)

)
⊕R4

(
p2 ≡ (z2, w2)

)
∈MJ

if and only if

ĉ1 ⊕ ĉ2 = R4
(
p̂1 ≡ (z1, w2)

)
⊕R4

(
p̂2 ≡ (z2, w1)

)
∈MJ .

If this property is not satisfied for at least one pair, then it is possible to conclude that the analyzed
permutation is a random one.

2If z1 = z2 or w1 = w2, then p1⊕p2 ∈
(
C0∩Dk

)
⊆ Dk for a certain k ∈ {0, 3}, which implies that R4(p1)⊕R4(p2) /∈MJ

for each J due to the “impossible differential trail” given in (4.6).

111

6. Mixture Differential Cryptanalysis

Data: 2 cosets of D0,3 ∩ C0 (e.g. (C0 ∩ D0,3)⊕ ai for a0, a1 ∈ (D0,3 ∩ C0)⊥) and
corresponding ciphertexts after 4 rounds

Result: 0 ≡ Random permutation or 1 ≡ 4-round AES - Prob. 95%
for each coset (D0,3 ∩ C0)⊕ ax for x = 0, 1 do

for each I ⊆ {0, 1, 2, 3} with |I| = 3 do
let (pi, ci) for i = 0, ..., 216 − 1 be the 216 (plaintexts, ciphertexts) of (D0,3 ∩ C0)⊕ ax;
re-order this set of elements w.r.t. the partial order � described in Def. 14 s.t.
ck � ck+1 for each k; // � depends on I
i← 0;
while i < 216 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MI do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
given pk ≡ (z1, w1) and pl ≡ (z2, w2), let q1 ≡ (z1, w2) and q2 ≡ (z2, w1)
in (D0,3 ∩ C0)⊕ ai;

if R4(q1)⊕R4(q2) /∈MI// Remember that R4(pk)⊕R4(pl) ∈MI then
return 0. // Random permutation

end

end

end
i← j + 1;

end

end

end
return 1. // 4-round AES permutation - Prob. 95%

Algorithm 3: Secret-Key Distinguisher for 4-round of AES.

Given a random permutation Π(·), what is the probability that c1 ⊕ c2 ≡ Π(p1) ⊕ Π(p2) ∈ MJ

and ĉ1 ⊕ ĉ2 ≡ Π(p̂1) ⊕ Π(p̂2) /∈ MJ - or vice-versa - for a certain J ⊂ {0, 1, 2, 3} with |J | = 3?
Since there are 4 different indexes J with |J | = 3 and since Prob(t ∈MJ) = 2−32·(4−|J |), this event
happens with probability (approximately) equal to

2 · 4 · 2−32 · (1− 2−32) ' 2−29.

As a result, in order to distinguish a random permutation from 4-round AES with probability higher
than pr, it is sufficient that the previous event occurs for at least one pair of two pairs of texts with
probability higher than pr (in order to recognize the random permutation). It follows that one needs
approximately n different independent pairs of texts such that pr ≥ 1− (1− 2−29)n, that is

n ≥ log(1− pr)
log(1− 2−29)

≈ −229 · log(1− pr).

For pr = 95%, one needs approximately n ≥ 230.583 different independent pairs of texts, that is
approximately 2 different cosets C0 ∩ D0,3 for a total data cost of 216 · 2 = 217 chosen plaintexts.

Computational Cost. As already done before, in order to implement the distinguisher, the idea
is to re-order the ciphertexts using a particular partial order � as defined in Def. 14, and to work in
the way described in Algorithm 3.

112

6.2. New 4-round Secret-Key Distinguisher for AES

Instead of checking the previous property for all possible pairs of texts, the idea is to check it only
for the pairs of texts for which the two ciphertexts belong to the same coset of MJ . In other words,
if c1 ⊕ c2 ∈MJ , then one checks that ĉ1 ⊕ ĉ2 ∈MJ (prob. 1 for 4-round AES vs prob. 2−32 for a
random permutation). Instead, if c1 ⊕ c2 /∈MJ , then one does not check that ĉ1 ⊕ ĉ2 /∈MJ . Note
that the probability of this last event is very close for the AES and for the random permutation
(prob. 1 for 4-round AES vs prob. 1− 2−32 for a random permutation). In other words, checking
that “if c1 ⊕ c2 ∈MJ then ĉ1 ⊕ ĉ2 ∈MJ” is sufficient to distinguish 4-round AES from a random
permutation.

The reason of this strategy - already proposed in the previous sections - is that it allows to
save and minimize the computational cost, which is well approximated by 223.09 table look-ups, or
approximately 216.75 four-round encryptions (assuming 20 table look-ups ≈ 1 round of encryption),
where we limit ourselves to remember that the cost of sorting a set of n texts w.r.t. a given partial
order is O(n · log n) table look-ups.

Practical Verification

Using a C/C++ implementation3, we have practically verified the distinguishers just described both
for full size AES and a small scale variant of AES, as presented in [CMR05]. While for full size AES
each word is composed of 8 bits, in the small scale variant each word is composed of 4 bits (we refer
to [CMR05] for a complete description of this small scale AES). We highlight that the previous
results hold exactly in the same way also for this small scale variant of AES, since the previous
argumentation is independent of the fact that each word of AES is of 4 or 8 bits.

The distinguisher just presented works in the same way for full and small scale AES, and it is
able to distinguish AES from a random permutation using 2 · (28)2 = 217 chosen plaintexts in the
first case and 2 · (24)2 = 29 in the second one (i.e. 2 cosets of C0 ∩ D0,3, each one of size 216 and
28 respectively for full and small scale AES4) as expected. For full size AES, while the theoretical
computational cost is of 223 table look-ups, the practical one is on average 222 in the case of a
random permutation and 224 in the case of an AES permutation. We emphasize that for a random
permutation, it is sufficient to find one pair of two pairs of texts that does not satisfy the required
property (to recognize the random permutation). In the case of the AES permutation, the difference
between the theoretical and the practical cases (i.e. a factor 2) is due to the fact that the cost of the
merge sort algorithm is O(n · log n) and by the definition of the big O(·) notation5.

For the small scale AES, using 2 different initial cosets of C0 ∩D0,3, the theoretical computational
cost is well approximated by 2 · 4 · 28 · (log 28 + 1) ' 214.2 table look-ups. The practical cost is
approximately 213.5 for the case of a random permutation and 215 for the AES case.

6.2.2. Comparison with Other 4-round Secret-Key Distinguishers

Here we highlight the major differences with respect to the other 4-round AES secret-key distinguishers
present in the literature. Omitting the integral one (which exploits a completely different property), we
focus on the impossible and the truncated differential distinguishers, on the polytopic cryptanalysis,
on the “multiple-of-8” distinguisher (adapted - in a natural way - to the 4-round case) and on the
yoyo distinguisher.

3The source code of the distinguisher is available at https://github.com/Krypto-iaik/Attacks_AES
4Following the same analysis proposed in Sect. 6.2.1, here we show that 2 initial cosets are necessary to set up

the attack also for the small scale case. Similar to before, the probability that R4(p1) ⊕ R4(p2) ∈ MJ and
R4(p̂1)⊕R4(p̂2) /∈MJ (or vice-versa) for a (small scale) random permutation is 2 · 4 · 2−16 · (1− 2−16) = 2−13. It
follows that one needs n ≥ 214.583 different independent pairs of texts to set up the attack with probability higher
than 95%, that is approximately 2 different cosets C0 ∩ D0,3 (note that for each coset it is possible to construct
1
2
·
(

28

2

)
≈ 214 independent pairs of texts).

5A similar difference among the theoretical and the practical cases was present also in [GRR17].

113

https://github.com/Krypto-iaik/Attacks_AES

6. Mixture Differential Cryptanalysis

Impossible Differential. The impossible differential distinguisher exploits the property that MI ∩
DJ = {0} for |I| + |J | ≤ 4 (see (4.6) for details). In our case, we consider plaintexts in the
same coset of C0 ∩ DI ⊆ DI where |I| ≥ 2 (e.g. I = {0, 3}) and looks for collisions in MJ with
|J | = 3. Since |I|+ |J | ≥ 5, the property exploited by the impossible differential distinguisher
cannot be applied here.

Truncated Differential. The truncated differential distinguisher has instead some aspects in common
with our distinguisher. In this case, given pairs of plaintexts with certain difference on certain
bytes (i.e. that belong to the same coset of a subspace X), one considers the probability that
the corresponding ciphertexts belong to the same coset of a subspace Y. For 2-round AES it
is possible to exploit truncated differential trails with probability 1, while for up to 5-round
there exist truncated differential trails with probability lower than 1 but higher than for the
random case (in both cases, X ≡ DI and Y ≡MJ).

Our distinguisher works in a similar way and exploits a similar property. However, instead
of working with a single pair of texts independently of the others, in our distinguisher one
basically considers sets of 2 “non-independent” pairs of texts and exploits the relationships
that hold among the pairs of texts that belong to the same set.

Polytopic Cryptanalysis. Polytopic cryptanalysis [Tie16a] has been introduced by Tiessen at Eu-
rocrypt 2016, and it can be viewed as a generalization of standard differential cryptanalysis.
Consider a set of d ≥ 2 pairs of plaintexts (p0, p0 ⊕ α1), (p0, p0 ⊕ α2), ...(p0, p0 ⊕ αd) with one
plaintext in common (namely p0), called d-poly. The idea of polytopic cryptanalysis is to
exploit the probability that the input set of differences α ≡ (α1, α2, ..., αd) is mapped into
an output set of differences β ≡ (β1, β2, ..., βd) after r rounds. If this probability6 - which
depends on the S-Box details - is different from the corresponding probability in the case of a
random permutation, it is possible to set up distinguishers or key-recovery attacks. Impossible
polytopic cryptanalysis focuses on the case in which the probability of the previous event is
zero. In [Tie16a], an impossible 8-polytopic is proposed for 2-round AES, which allows to set
up key-recovery attacks on 4- and 5-round AES.

Our proposed distinguisher works in a similar way, since also in our case we consider sets
of “non-independent” pairs of texts and we focus on the input/output differences. However,
instead of working with a set of pairs of plaintexts with one plaintext in common, we consider
sets of pairs of texts for which particular relationships between the generating variables of the
texts hold. Moreover, instead of considering the probability that “generic” input differences α
are mapped into output differences β, the way in which the texts are divided in sets guarantees
the two ciphertexts of all pairs satisfy or not an output (truncated) difference independently
of the S-Box details (that is, it is not possible that some of them satisfy this output difference
and some others not).

“Multiple-of-8” Distinguisher. The “multiple-of-8” distinguisher [GRR17] can be adapted to the
4-round case, e.g. considering plaintexts in the same coset of CJ , counting the number of
collisions of the ciphertexts in the same coset of MI and checking if it is (or not) a multiple of
8. Since our distinguisher exploits more information (that is, the relationships that hold among
the generating variables of the pairs of plaintexts in the same set, beside the fact that the
previous number is a multiple of 8), its data and computational costs are lower than [GRR17],
in particular 217 chosen plaintexts/ciphertexts instead of 233 and approximately 223 table
look-ups instead of 240.

6We mention that the probability of polytopic trails is usually much lower than the probability of trails in differential
cryptanalysis, that is simple polytopic cryptanalysis can not in general outperform standard differential cryptanalysis
- see Sect. 2 of [Tie16a] for details.

114

6.3. New Key-Recovery Attack on 5-round AES

Yoyo Distinguisher. The basic idea exploited by the yoyo distinguisher [RBH17] proposed at Asi-
acrypt 2017 is similar to the one exploited by our distinguisher. Consider 4-round AES, where
the initial and the final ShiftRows and the final MixColumns operations are omitted7. Given
a pair of plaintexts in the same coset of a column space CI - that is p1, p2 ∈ CI ⊕ a, consider
the corresponding ciphertexts c1 and c2 after 4 rounds. In the yoyo game, the idea is to
construct a new pair of ciphertexts ĉ1 and ĉ2 by swapping the columns of c1 and c2. E.g., if
ci ≡ (ci0, c

i
1, c

i
2, c

i
3) for i = 1, 2 where cij denotes the j-th column of ci, one can define the new

pair of ciphertexts as ĉ1 ≡ (c2
0, c

1
1, c

1
2, c

1
3) and ĉ2 ≡ (c1

0, c
2
1, c

2
2, c

2
3). As proved in [RBH17], the

corresponding plaintexts p̂1 = R−4(ĉ1) and p̂2 = R−4(ĉ2) belong to the same coset of CI with
prob. 1 for 4-round AES (that is, p̂1 ⊕ p̂2 ∈ CI with prob. 1), while this happens with prob.
2−32·(4−|I|) for a random permutation.

Our distinguisher and the yoyo one are very similar. Both ones exploit particular relationships
that hold among the generating variables of a pair of texts and particular properties which
depend on such relations to distinguish 4-round AES from a random permutation. However,
we emphasize that while the yoyo distinguisher requires adaptive chosen ciphertexts in order
to construct new pairs of texts related to the original one, in our case such new pairs of texts
are constructed directly from the chosen plaintexts. In other words, ours distinguisher does
not require adaptive chosen plaintexts/ciphertexts.

For completeness, we mention that the yoyo distinguisher can be set up for up to 6 rounds
AES. Here we limit to recall the 5-round one, while we refer to [GRR17] for more details
about the 6-round yoyo distinguisher. First of all, note that if the initial ShiftRows operation
is not omitted for 4-round AES, then one considers plaintexts in the same coset of DI (instead
of CI). For 5-round AES, the idea is to consider texts in the same coset of DJ . As we have
just seen, after one round they are mapped into a coset of DI with prob.

(
4
|I|
)
· (2−8)4|J |−|I|·|J |.

Then, using the 4-round yoyo distinguisher, one choose new ciphertexts by mixing generating
variables. As a result, given a pair of plaintexts p1, p2 ∈ DJ ⊕ a for |J | = 1, it is possible to
prove that the probability8 that p̂1 ⊕ p̂2 ∈ DK for a certain K with |K| = 3 is 2−26.2 versus
2−30 for a random permutation. As a result, 3 · 227.2 ' 228.8 adaptive chosen ciphertexts are
sufficient to distinguish the two cases.

6.3. New Key-Recovery Attack on 5-round AES

The previous 4-round secret-key distinguisher proposed in Theorem 8 can be used as starting point
to set up a new (practically verified) key-recovery attack on 5-round AES. In this attack, the attacker
chooses plaintexts in the same coset of a particular subspace D which is mapped after one round
into a coset of another subspace C. Using the mixture differential distinguisher just introduced and
the facts that

• the way in which the pairs of two (plaintexts, ciphertexts) are divided in sets depends on the
(partially) guessed key

• the behavior of a set for a wrongly guessed key is (approximately) the same as the case of a
random permutation,

7The distinguisher works as well also in the case in which these linear operations are not omitted. We refer to [RBH17]
for all the details.

8To compute the following probability, the idea is to consider all possible I ⊆ {0, 1, 2, 3}:

3∑
|I|=1

(
4

|I|

)
· 2−32+8|I| · (1− 2−32+8|I|)︸ ︷︷ ︸

1 round – forward direction

·

1 round – backward direction︷ ︸︸ ︷
4 · 2−8|I| ' 7 · 2−29.

115

6. Mixture Differential Cryptanalysis

she can filter wrong candidates of the key, and finally finds the right one.
W.l.o.g. consider two plaintexts p1 and p2 in the same coset of D0, e.g. D0 ⊕ a for a ∈ D⊥0 , such

that pi = xi · e0,0 ⊕ yi · e1,1 ⊕ zi · e2,2 ⊕ wi · e3,3 ⊕ a or equivalently pi ≡ (xi, yi, zi, wi). By Lemma 3,
there exists b ∈ C⊥0 such that

R(pi) =


x̂i 0 0 0
ŷi 0 0 0
ẑi 0 0 0
ŵi 0 0 0

⊕ b ≡MC ·


S-Box(xi ⊕ k0,0) 0 0 0
S-Box(yi ⊕ k1,1) 0 0 0
S-Box(zi ⊕ k2,2) 0 0 0
S-Box(wi ⊕ k3,3) 0 0 0

⊕ b
for i = 1, 2, that is

R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) ≡ x̂i · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b.

The idea is to filter wrongly guessed keys of the first round by exploiting the previous distinguisher.
In particular, given plaintexts in the same coset of D0, the idea of the attack is simply to guess

4 bytes of the first diagonal of the secret key k, that is ki,i for each i ∈ {0, 1, 2, 3}, to (partially)
compute Rk(p1) and Rk(p2) and to exploit the following consideration: if the guessed key is the right
one, then

R4
[
Rk(p

1)
]
⊕R4

[
Rk(p

2)
]
∈MJ

if and only if there exist other pairs of texts Rk(q
1) and Rk(q

2) with the same property, that is

R4
[
Rk(q

1)
]
⊕R4

[
Rk(q

2)
]
∈MJ

where Rk(q1) and Rk(q2) are defined by a different combination of the generating variables of Rk(p1)
and Rk(p

2). If this property is not satisfied and due to the distinguisher just proposed, then it is
possible to claim that the guessed key is a wrong candidate. As we are going to show, this attack
works because the variables that define the (other) pairs of texts Rk(q

1) and Rk(q
2) depend on the

guessed key (besides on the texts p1 and p2).

Details of the Attack

In the following we give all the details of the attack. As for the distinguisher just presented, consider
a pair of texts p1 and p2 in the same coset of D0 such that

• c1 ⊕ c2 ≡ R5(p1)⊕R5(p2) ∈MJ (observe that this condition is independent of the (partially)
guessed key);

• R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) for i = 1, 2 as before, s.t. x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and ŵ1 6= ŵ2.

For completeness, we emphasize that the attack works even if one or two generating variables of
R(p1) and R(p2) are equal (e.g. if two generating variables are equal, in the following it is sufficient
to exploit Theorem 7). We limit ourselves to discuss the case in which the generating variables are all
different only for sake of simplicity, and since this is the event that happens with highest probability
(the probability that all the generating variables are different is [(256 · 255)/2562]4 = 2554

2564 ' 98.45%).
Due to the definition of x̂i, ŷi, ẑi, ŵi

[x̂i, ŷi ẑi ŵi]T ≡MC · [S-Box(xi ⊕ k0,0), S-Box(yi ⊕ k1,1), S-Box(zi ⊕ k2,2), S-Box(wi ⊕ k3,3)]T ,

note that the fact that “the generating variables are different” depends on the (partially) guessed
key.

Given p1 and p2 as before, we have to define Rk(q1) and Rk(q2) in order to set up the distinguisher.
Using Theorem 7 and the “super-Sbox” argumentation given in Sect. 5.1.1, it is possible to construct

116

6.3. New Key-Recovery Attack on 5-round AES

7 different pairs of - intermediate - texts Rk(q
1) and Rk(q

2) in C0 ⊕ b defined by the following
combinations of generating variables

1. (x̂2, ŷ1, ẑ1, ŵ1) and (x̂1, ŷ2, ẑ2, ŵ2); 2. (x̂1, ŷ2, ẑ1, ŵ1) and (x̂2, ŷ1, ẑ2, ŵ2);

3. (x̂1, ŷ1, ẑ2, ŵ1) and (x̂2, ŷ2, ẑ1, ŵ2); 4. (x̂1, ŷ1, ẑ1, ŵ2) and (x̂2, ŷ2, ẑ2, ŵ1);

5. (x̂2, ŷ2, ẑ1, ŵ1) and (x̂1, ŷ1, ẑ2, ŵ2); 6. (x̂2, ŷ1, ẑ2, ŵ1) and (x̂1, ŷ2, ẑ1, ŵ2);

7. (x̂2, ŷ1, ẑ1, ŵ2) and (x̂1, ŷ2, ẑ2, ŵ1)

that must satisfy the required property

R4
[
Rk(p

1)
]
⊕R4

[
Rk(p

2)
]
∈MJ iff R4

[
Rk(q

1)
]
⊕R4

[
Rk(q

2)
]
∈MJ .

Using this observation, it is possible to filter all the wrong keys. Again, since R5(p1)⊕R5(p2) ∈MJ ,
all these pairs of - intermediate - texts (Rk(q

1), Rk(q
2)) must belong to the same coset of MJ after

4 rounds if the guessed key is the right one. If this property is not satisfied, then one can simply
deduce that the guessed key is wrong (for a wrong guessed key, the behavior is similar to the one of
a random permutation).

Why does the attack work? Wrong-Key Randomization Hypothesis! One of the assump-
tion required by the proposed attack is the “wrong-key randomization hypothesis”. This hypothesis
states that when decrypting one or several rounds with a wrong key guess creates a function that
behaves like a random function. For our setting, we formulate it as following:

Wrong-key randomization hypothesis. When the pairs of - intermediate - texts Rk(q1) and Rk(q2) are
generated using a wrongly guessed key, the probability that the resulting pairs of ciphertexts
satisfy the required property is equal to the probability given for the case of a random
permutation.

In the following we show that such assumption holds. The crucial point is that the new pairs of texts
Rk(q

1) and Rk(q
2) (and the way in which they are constructed) depend on the guessed key.

In the proposed attack, the wrong-key randomization hypothesis follows immediately from the
definition of the generating variables and from the fact that the S-Box is a non-linear operation. To
have more evidence of this fact, let k be the secret key and k̃ be a guessed key. Given Rk(p

1) ≡
(x1, y1, z1, w1) and Rk(p2) ≡ (x2, y2, z2, w2) in C0 ⊕ b as before, the generating variables of Rk̃(q1) ≡
(x̃1, ỹ1, z̃1, w̃1) and Rk̃(q

2) ≡ (x̃2, ỹ2, z̃2, w̃2) in C0 ⊕ b are given by
x̃i

ỹi

z̃i

w̃i

 = MC ◦ S-Box ◦



k̃0,0 ⊕ k0,0

k̃1,1 ⊕ k1,1

k̃2,2 ⊕ k2,2

k̃3,3 ⊕ k3,3

⊕ S-Box−1 ◦MC−1 ◦


xh

yj

zk

wl




for certain h, j, k, l ∈ {1, 2}. For a wrongly guessed key k̃ 6= k, the relations among the generating
variables [x̃i, ỹi, z̃i, w̃i] = [xh, yj , zk, wl] do not hold9. It follows that if k 6= k̃, then the attacker is
considering random pairs of texts, which implies that the required property is - in general - not
satisfied (as for the case of a random permutation).

Before going on, we emphasize that this result also implies the impossibility to set up a 5-round
distinguisher similar to the one just presented in this section choosing plaintexts in the same coset
of a diagonal space DI instead of a column space CI . Indeed, given p1 and p2 as before in the same
coset of DI (instead of CI), since the key k is secret and the S-Box is non-linear, there is no way to
find p̂1 and p̂2 in the coset of DI s.t. R5(p1)⊕R5(p2) ∈MJ if and only if R5(p̂1)⊕R5(p̂2) ∈MJ

without guessing the secret key.

9Note that if k = k̃, then x̃i = xh, ỹi = yj , z̃i = zk and w̃i = wl (which implies that the required property is satisfied)
as expected.

117

6. Mixture Differential Cryptanalysis

Data: 1 coset of D0 (e.g. D0 ⊕ a for a ∈ D⊥0) and corresponding ciphertexts after 5 rounds -
more generally a coset of Di for i ∈ {0, 1, 2, 3}

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
let (pi, ci) for i = 0, ..., 232 − 1 be the 232 (plaintexts, ciphertexts) of D0 ⊕ a;
while more than a single candidate of the key is found - Repeat the procedure for different
indexes j, h (and I) // usually not necessary - only one candidate is found do

find indexes j and h s.t. cj ⊕ ch ∈MI ;
for each one of the 232 combinations of k̂ = (k0,0, k1,1, k2,2, k3,3) do

(partially) compute Rk̂(p
j) and Rk̂(p

h);
flag ← 0;
for each pair (q1, R5(q1)) and (q2, R5(q2)) where Rk̂(q

1) and Rk̂(q
2) are constructed

by a different combination of the generating variables of Rk̂(p
j) and Rk̂(p

h) do
if R5(q1)⊕R5(q2) /∈MI then

flag ← 1;
next combination of (k0,0, k1,1, k2,2, k3,3);

end

end
if flag = 0 then

identify (k0,0, k1,1, k2,2, k3,3) as candidate of the key;
end

end

end
return (k0,0, k1,1, k2,2, k3,3)

Algorithm 4: 5-round AES Key-Recovery Attack. The attack exploits the 4-round “Mixture
Differential” distinguisher just presented. For sake of simplicity, in this pseudo-code we limit
ourselves to describe the attack of 4 bytes - 1 diagonal of the secret key (the same attack can be
used to recover the entire key).

6.3.1. Data and Computational Costs

Data Cost. First of all, since the cardinality of a coset of DI for |I| = 1 is 232 and since
Prob

[
t ∈ MJ

]
= 4 · 2−32 = 2−30 for |J | = 3, the average number of collisions for each coset of DI

is approximately 2−30 ·
(

232

2

)
' 2−30 · 263 ' 233, so it’s very likely that two (plaintexts, ciphertexts)

(p1, c1) and (p2, c2) exist such that c1 ⊕ c2 ∈ MJ and for which the two plaintexts have different
generating variables.

Given a pair of plaintexts p1 and p2 for which the corresponding ciphertext c1 and c2 belong to
the same coset of MJ , consider the other 7 pairs of plaintexts q1 and q2 defined as before (that
is, such that R(q1) and R(q2) are defined by a different combination of the generating variables
of R(p1) and R(p2)). For a wrong key, the probability that the two ciphertexts of each one of the
other 7 pairs belong to the same coset of MJ for a fixed J (that is, the probability that a wrong key
passes the test) is (2−32)7 = 2−224.

Since there are 232 − 1 wrong candidates for the diagonal of the key, the probability that at least
one of them passes the test is approximately 1− (1−2−224)232−1 ' 2−192. Thus, one pair of plaintexts
p1 and p2 (for which the corresponding ciphertexts belong to the same coset of MJ) together with
the corresponding other 7 pairs of texts q1 and q2 are (largely) sufficient to discard all the wrong
candidates for a diagonal of the key. Actually, in general only two different pairs q1 and q2 (that is,
two pairs of texts given by two different combinations of the generating variables) are sufficient to
discard all the wrong candidates, so it is not necessary to consider all the 7 pairs of texts q1 and q2.
Indeed, given two pairs, the probability that at least one wrong key passes the test is approximately

118

6.3. New Key-Recovery Attack on 5-round AES

1− (1− 2−32·2)232−1 ' 2−32 � 1, which means that all the wrong candidates are discarded with high
probability.

As a result, the attack requires 233.6 chosen plaintexts.

Computational Cost. Each coset of DI with |I| = 1 is composed of 232 texts, thus on average
263 · 2−32 = 231 different pairs of ciphertexts belong to the same coset of MJ for a fixed J with
|J | = 3. However, it is sufficient to find one collision in order to implement the attack and to find
the key.

In order to find it, the best strategy is to re-order the ciphertexts with respect to the partial order
� and then to work on consecutive elements, as done in Sect. 6.2.1. For each initial coset of DI and
for a fixed J , the cost of sorting the ciphertexts with respect to the partial order � (for MJ with J
fixed - |J | = 3) and to find a collision is approximately of 232 · (log 232 + 1) = 237 table look-ups.

When such a collision is found, one has to guess 4 bytes of the key and to construct - at least - two
other different pairs given by a different combination of the generating variables of R(p1) and R(p2)
(observe that the condition x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and ŵ1 6= ŵ2 is satisfied with probability
(255/256)4 ≈ 1). In order to perform this step efficiently, the idea is to re-order - and to store
separately a second copy of - the (plaintexts, ciphertexts) pairs w.r.t. the partial order ≤ as defined
in Def. 12 s.t. pi ≤ pi+1 for each i. Using the same strategy proposed for the 4-round distinguisher,
this allows to construct these two new different pairs (and to check if the corresponding ciphertexts
satisfy or not the required property) with only 4 table look-ups. As a result, the cost of this step is
of 232 · 2 · 4 = 235 S-Box and of 232 · 4 = 234 table look-ups.

It follows that the cost of finding one diagonal of the key is well approximated by 235 S-Box
look-ups and 237.17 table look-ups, that is approximately 230.95 five-round encryptions. The idea is
to use this approach for three different diagonals, and to find the last one by brute force. As a result,
the total computational cost is of 232 + 3 · 230.95 = 233.28 five-round encryptions, while the data cost
is of 3 · 232 = 233.6 chosen plaintexts.

Summary. As a result, the attack - practically verified on a small scale AES - requires 233.6 chosen
plaintexts and has a computational cost of 233.28 five-round encryptions. The pseudo-code of the
attack is given in Algorithm 4. We remark for completeness that the same attack works also in the
decryption/reverse direction, using chosen ciphertexts instead of plaintexts.

6.3.2. Practical Verification

Using a C/C++ implementation, we have practically verified the attack just described10 on the
small scale AES [CMR05]. We emphasize that since the proposed attack is independent of the fact
that each word of AES is composed of 4 or 8 bits, our verification on the small scale variant of AES
is strong evidence for it to hold for the real AES.

Practical Results. For simplicity, we limit ourselves to report the result for a single diagonal of
the key. First of all, a single coset of a diagonal space Di is largely sufficient to find one diagonal
of the key. In more detail, given two (plaintexts, ciphertexts) (p1, c1) and (p2, c2), then other two
different texts q1 and q2 (out of the seven possible ones) are sufficient to discard all the wrong
candidates of the diagonal of the key, as predicted.

About the computational cost, the theoretical cost for the small scale AES case is well approximated
by 4 ·216 · (log 216 + 1) + 216 ·4 = 221 table look-ups and 216 ·4 ·3 = 219.6 S-Box look-ups, for a total of
219.6 + 221 = 221.5 table look-ups (assuming that the cost of 1 S-Box look-up is approximately equal
to the cost of 1 table look-up). The average practical computational cost is of 221.5 table look-ups,
approximately the same as the theoretical one.

10The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/Attacks_AES

119

https://github.com/Krypto-iaik/Attacks_AES

6. Mixture Differential Cryptanalysis

6.3.3. Improved Key-Recovery Attack by Bar-On et al. (Crypto 2018)

Such attack has then been improved in [BDK+18], becoming the one with the lowest computa-
tional cost among the attacks currently present in the literature (that do not use adaptive chosen
plaintexts/ciphertexts).

In particular, our attack just presented can break 5-round AES in data, memory and time
complexities of 232. However, a variant of the Square attack [DKR97; KW02] can break the same
variant with comparable data and time complexities but with a much lower memory complexity of
29. Consequently, the new technique did not improve the best previously known attack on 5 rounds.

In [BDK+18], authors greatly improved our attack, showing how to attack 5-round AES in data,
memory and time complexities of less than 222.5, which is about 500 times faster than any previous
attack on the same variant. From practical verification, it turns out that the success rate of our full
key recovery attack rose sharply from 0.24 to 1 as the amount of available data is increased from 222

to 223 in tiny increments of 20.25.
By extending this technique to larger versions of AES, authors also obtained new attacks on

AES-192 and AES-256 which have the best time complexity among all the attacks on 7-round AES
which have practical data and memory complexities. In particular, by combining our attack with the
dissection technique [DDKS12] and several other techniques, authors were able to beat this 18-year
old record and to develop the best attacks on 7-round AES in this model. As a result, their attack
on 7-round AES with 192-bit keys requires 230 data, 232 memory and 2153 time, which outperforms
the Square attack in all three complexity measures simultaneously.

6.4. A new 5-round Secret-Key Distinguisher for AES

Using the 4-round “Mixture Differential” distinguisher based on Theorem 7 as starting point, we
propose a way to extend it by 1 round at the end. As a result, we are able to set up a new probabilistic
5-round secret-key distinguisher for AES which exploits a property which is independent of the secret
key, of the details of the S-Box and of the MixColumns matrix (expect for the branch number equal
to 5). Even if such a distinguisher has higher complexity than the deterministic one presented in
[GRR17], it can be used to set up a key-recovery attack on 6-round AES (better than a brute-force
one) exploiting a distinguisher of the type [GRR17] - (initially) believed to be hard to exploit. It
follows that this is the first key-recovery attack for 6-round AES set up by a 5-round secret-key
distinguisher for AES. For completeness, since the 4-round distinguisher works also in the decryption
direction, this new 5-round distinguisher - and the corresponding 6-round key-recovery attack - can
also be set up in the reverse direction (i.e. using chosen ciphertexts instead of plaintexts).

6.4.1. Intersections of Subspaces and Useful Probabilities

Here we list some useful probabilities largely used in the following11. For our goal, we focus on the
mixed space M, but the same results can be easily generalized for the other subspaces D, C, ID.

Let I, J ⊆ {0, 1, 2, 3}. We recall that

MI ∩MJ =MI∩J (6.1)

where MI ∩MJ = {0} if I ∩ J = ∅.
For the follow-up, we also recall that given the events A1, . . . , An in a probability space (Ω,F ,P)

Prob

(n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
J⊂{1,...,n}, |J |=k

Prob
(⋂
j∈J

Aj
))
, (6.2)

11We mention that the following probabilities are “sufficiently good” approximations for our scope, that is the errors
of these approximations can be considered negligible for our scope. We clarify this claim in the following.

120

6.4. A new 5-round Secret-Key Distinguisher for AES

where the last sum runs over all possible sets J of cardinality k.

Proposition 9. The probability p|I| that a random text x belongs to the subspace MI for a certain
I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| = Prob
[
∃I ⊆ {0, 1, 2, 3} |I| = l s.t. x ∈MI

]
= (−1)|I| ·

3∑
i=4−|I|

(−1)i · c|I|,i ·
(

4

i

)
· 2−32·i (6.3)

where c2,3 = 3 and c|I|,i = 1 for {|I|, i} 6= {2, 3}.

Proof. Using the inclusive/exclusion principle (6.2) and due to (6.1), it follows that for |I| = 1

Prob
[
∃I ⊆ {0, 1, 2, 3} |I| = 1 s.t. x⊕ y ∈MI

]
=

∑
I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) = 4 · 2−96.

For |I| = 3 and using the law of total probability (4.11), the probability is given by:

Prob
[
∃I ⊆ {0, 1, 2, 3} |I| = 3 s.t. x ∈MI

]
=

=
3∑
j=1

∑
I⊆{0,1,2,3}, |I|=j

(−1)j+1 · Prob
[
x ∈MI

]
= 4 · 2−32 − 6 · 2−64 + 4 · 2−96,

since given 4 different sets MI for |I| = 3 there are
(

4
2

)
= 6 possible intersections of 2 sets and(

4
3

)
= 4 possible intersections of 3 sets (all intersections are not empty).

Finally, for |I| = 2 and using the law of total probability (4.11)

Prob
[
∃I ⊆ {0, 1, 2, 3} |I| = 2 s.t. x ∈MI

]
=

=
2∑
j=1

∑
I⊆{0,1,2,3}, |I|=j

(−1)j · Prob
[
x ∈MI

]
= 6 · 2−64 − 12 · 2−96,

since given 6 different setsMI for |I| = 2 there are
(

6
2

)
= 15 possible intersections of 2 sets. However,

note that only 12 of them are not empty (since M0,1 ∩M2,3 =M0,2 ∩M1,3 =M0,3 ∩M1,2 = ∅).
Since

(
6
1

)
=
(

4
2

)
= 6 and

(
6
2

)
− 3 =

(
4
3

)
· 3 = 12, we obtain the desired result.

Proposition 10. Let x, y be two random elements. Assume that there exists I ⊆ {0, 1, 2, 3} such that
x⊕ y ∈MI (x⊕ y /∈ML for all L ⊆ {0, 1, 2, 3} with |L| < |I|). The probability that ∃J ⊆ {0, 1, 2, 3}
with |J | = l fixed such that R(x)⊕R(y) ∈MJ is well approximated by

p|J |,|I| ≡ Prob
[
∃J ⊆ {0, 1, 2, 3} |J | = l s.t. R(x)⊕R(y) ∈MJ

∣∣x⊕ y ∈MI

]
=

= (−1)|J | ·
3∑

i=4−|J |

(−1)i · c|J |,i ·
(

4

i

)
· 2−8·i·|I|.

(6.4)

where c2,3 = 3 and c|J |,i = 1 for {|J |, i} 6= {2, 3}.

Proof. As before, for |J | = 3:

Prob
[
∃J ⊆ {0, 1, 2, 3} |J | = 3 s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI

]
=

=
3∑
j=1

∑
J⊆{0,1,2,3}, |J |=j

(−1)j+1 · Prob
[
R(x)⊕R(y) ∈MJ |x⊕ y ∈MI

]
=

=(−1)3 ·
3∑
i=1

(−1)i ·
(

4

i

)
· 2−8·i·|I| = 4 · 2−8·|I| − 6 · 2−16·|I| + 4 · 2−24·|I|.

By simple computation, it is possible to obtain similar results for |J | = 2 and |J | = 1, q.e.d.

121

6. Mixture Differential Cryptanalysis

Proposition 11. Let x, y be two random elements such that x⊕ y /∈ MI for each I ⊆ {0, 1, 2, 3}.
Then, the probability that ∃J ⊆ {0, 1, 2, 3} for |J | = l fixed such that R(x) ⊕ R(y) ∈ MJ is well
approximated by

p̂|J |,3 ≡ Prob
[
∃J ⊆ {0, 1, 2, 3} s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I

]
=
p|J | − p|J |,3 · p3

1− p3
. (6.5)

Proof. Let A and B be two events, and let C be the event such that A ∪ C is equal to the sample
space and such that A ∩ C = ∅. Due to the law of total probability:

Prob(B) = Prob(B |A) · Prob(A) + Prob(B |C) · Prob(C).

Thus

p|J | ≡ Prob
[
∃J ⊆ {0, 1, 2, 3} s.t. R(x)⊕R(y) ∈MJ

]
=

= Prob
[
∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I

]
·Prob

[
x⊕ y /∈MI ∀I

]
+

+Prob
[
∃J s.t. R(x)⊕R(y) ∈MJ | ∃I s.t. x⊕ y ∈MI

]
·Prob

[
∃I s.t. x⊕ y ∈MI

]
.

Note that12

Prob [∃I s.t. x⊕ y ∈MI] = Prob

x⊕ y ∈ ⋃
∀I⊆{0,1,2,3}

MI

 = Prob

x⊕ y ∈ ⋃
I⊆{0,1,2,3}, |I|=3

MI

 ≡ p3.

It follows that
p|J | = p|J |,3 · p3 + p̂|J |,3 · (1− p3),

q.e.d.

Proposition 12. Let x and y such that x⊕ y /∈MI for each I ⊆ {0, 1, 2, 3}. Then, the probability
that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and |I| + |J | ≤ 4 such that R2(x) ⊕ R2(y) ∈ MJ is well
approximated by

p̃|J |,3 ≡ Prob
[
∃J ⊆ {0, 1, 2, 3} s.t. R2(x)⊕R2(y) ∈MJ

∣∣x⊕ y /∈MI

]
=

p|J |

1− p3
.

Proof. Remember that

Prob
[
∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y /∈MI

]
= 0.

Since

Prob
[
∃J ⊆ {0, 1, 2, 3} s.t. R2(x)⊕R2(y) ∈MJ

]
=

= Prob
[
∃J s.t. R2(x)⊕R2(y) ∈MJ

∣∣x⊕ y /∈MI ∀I
]
·Prob

[
x⊕ y /∈MI ∀I

]
+

+Prob
[
∃J s.t. R2(x)⊕R2(y) ∈MJ

∣∣ ∃I s.t. x⊕ y ∈MI

]
·Prob

[
∃I s.t. x⊕ y ∈MI

]
and using the same argumentation as before, it follows that

p|J | = p̃|J |,3 · (1− p3),

q.e.d.

To provide a numerical example, if |I| = |J | = 3 the previous probabilities are well approximated
by

p3 = 2−30 − 3 · 2−63 + 2−94, p3,3 = 2−22 − 3 · 2−47 + 2−70

p̂3,3 = 2−30 − 2 043 · 2−63 + 390 661 · 2−94 + ...

where p3 and p̂3,3 are usually approximated by 2−30 and p3,3 by 2−22.

12If x⊕ y ∈MI for |I| < 3, then ∃J with |J | = 3 and I ⊆ J such that x⊕ y ∈MJ .

122

6.4. A new 5-round Secret-Key Distinguisher for AES

Remark. All these probabilities are not the exact ones, but “good enough” approximations useful
for our scope. Here we give more details about this statement.

Firstly, consider the following concrete example. Consider the probability that a pair of texts
t1 and t2 belong to the same coset of MI . This probability is usually approximated by Prob(x ∈
MI) = 2−32·(4−|I|). On the other hand, in order to set up a (truncated) differential attack, one is
interested to the case t1 6= t2 (equivalently, x 6= 0). Thus, the “correct” probability should be

Prob(x ∈MI |x 6= 0) =
232·|I| − 1

2128 − 1
= 2−32·(4−|I|) − 2−128 + 2−128−32·(4−|I|) + ...

Secondly, we also remark that the assumption behind the probabilities just given is that the elements
x and y are uniform distributed, or (at least) very close to be uniform distributed13. In particular,
we emphasize that this assumption is satisfied for all the events considered in the following to set up
distinguishers and key-recovery attacks on 5- and 6-round AES.

Number of Pairs

As last thing, we show that given texts in the same cosets of CI (and similar forMI) for I ⊆ {0, 1, 2, 3},
the number of pairs of texts with n equal “generating variable(s) in (F28)|I|” for 0 ≤ n ≤ 3 (as
discussed at the end of Sect. 5.1.1) is given by(

4

n

)
· 232·|I|−1 · (28·|I| − 1)4−n (6.6)

The proof of this formula for the case |I| = 1 is given in Sect. 5.2.1 – the formula for the other cases
can be obtained in an analogous way.

6.4.2. 5-round Probabilistic Mixture Differential Secret-Key Distinguisher

Given n (plaintexts, ciphertexts), the idea is to divide them in sets such that particular relations
hold among the variables that define the pairs of plaintexts that lie in the same set (similar to
before). The distinguisher that we are going to present exploits the following property:

• consider the number of sets for which two ciphertexts of at least one pair lie in the same
subspace MJ for |J | = 3 (in other words, the number of sets for which two ciphertexts of at
least one pair are equal in one anti-diagonal - if the final MixColumns operation is omitted). If
the sets are properly defined, it is possible to prove that this number of sets is a little lower
for 5-round AES than for a random permutation, independently of the secret key.

This property allows to set up a new distinguisher which is independent of the secret key, of the
details of the S-Box and of the MixColumns matrix, and a new key-recovery attack on 6-round. In
the following, we give all the details.

Details of the 5-round “Probabilistic Mixture Diff.” Distinguisher

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0, and the
corresponding ciphertexts after 5-round. For each (x0, x1), (y0, y1) ∈ F2

28 such that x0 6= y0 and

x1 6= y1, let S0,1
(x0,x1),(y0,y1) be the set of pairs of plaintexts be defined as follows

S0,1
(x0,x1),(y0,y1) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, A,B), q ≡ (y0, y1, A,B)

or p ≡(x0, y1, A,B), q ≡ (y0, x1, A,B) for each A,B ∈ F28

}
.

13We refer to [Gra17b, App. A] for a concrete example of wrong probabilities when this assumption is not satisfied.

123

6. Mixture Differential Cryptanalysis

In other words, the pairs of plaintexts p, q ∈ C0 ⊕ a in S0,1
(x0,x1),(y0,y1) are of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
A 0 0 0
B 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
A 0 0 0
B 0 0 0

 ,
or

p ≡ a⊕


x0 0 0 0
y1 0 0 0
A 0 0 0
B 0 0 0

 q ≡ a⊕


y0 0 0 0
x1 0 0 0
A 0 0 0
B 0 0 0

 .
Similar definitions can be given for the set Si,j(x0,x1),(y0,y1) for i 6= j, where the active bytes are in row

i and j. Given 232 plaintexts as before, it is possible to construct 1
217 · 6 · 231 · (28 − 1)2 ' 232.574

different sets (the number of pairs of texts with 2 equal generating variables is given by formula
(6.6)), where each set contains exactly 217 different pairs of plaintexts (we emphasize that these pairs
of plaintexts are not independent, in the sense that a particular relationship - among the generating
variables - holds).

Consider n � 1 sets, and count the number of sets that contain at least one pair of plaintexts
for which the corresponding ciphertexts (generated by 5-round AES or by a random permutation)
belong to the same coset of a subspaceMJ for J ⊆ {0, 1, 2, 3} and |J | = 3. As we are going to prove,
this number is on average smaller for 5-round AES than for a random permutation, independently
of the secret key, of the details of the S-Box and of the MixColumns matrix. In more details, the
numbers of sets that satisfy the required property for 5-round AES - denoted by nAES - and for a
random permutation - denoted by nrand - are well approximated by

nAES ' n · pAES nrand ' n · prand
where

pAES ' 2−13 − 524 287 · 2−46−22 370 411 853 · 2−77︸ ︷︷ ︸
≈−2.604 ·2−44

+...

prand ' 2−13 − 524 287 · 2−46 +45 812 722 347 · 2−77︸ ︷︷ ︸
≈+5.333 ·2−44

+...

Even if the difference between the two probabilities is small, it is possible to distinguish the two
cases with probability higher than 95% if the number n of sets Si,j(x0,x1),(y0,y1) - S for simplicity -

satisfies n ≥ 271.243.
In the following, we prove this result (which has been practically tested on a small scale AES) and

we give all the details about the data and the computational costs.

Similarity with “classical” Truncated Differential Attack. Before going on, we emphasize
the similarity with the 3-round truncated differential distinguisher [Knu94]. In that case, the idea
is to count the number of pairs of texts that satisfy the truncated differential trail. In particular,
given pairs of plaintexts in the same coset of a diagonal space Di, one counts the number of pairs
for which the corresponding ciphertexts belong in the same coset of a mixed space MJ for |J | = 3.
Since the probability of this event is higher for an AES permutation than for a random one14, one
can distinguish the two cases simply counting the number of pairs that satisfy the previous property.
The idea of our disitinguisher is similar. However, instead of working on single pairs, one works with
particular sets S of pairs and counts the number of sets for which at least one pair satisfies the
(given) differential trail.

14Remember that this probability is approximately equal to 2−6 for the AES case and 2−30 for the random case (if J
is not fixed – |J | = 3).

124

6.4. A new 5-round Secret-Key Distinguisher for AES

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on Theorem 7.
Given plaintexts in the same coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each set Si,j(x0,x1),(y0,y1) just
defined has the following property after 4 rounds:

1. for each pair, the two texts after 4-round belong to the same coset of MI ;

2. for each pair, the two texts after 4-round do not belong to the same coset of MI .

In other words, for a given set S(x0,x1),(y0,y1), it is not possible that the two texts of some - not all
- pairs belong to the same coset of MJ after 4-round and others not, while this can happen for a
random permutation.

What is the probability of the two previous events for an AES permutation? Given a set
Si,j(x0,x1),(y0,y1), the probability that the two texts of each pair belong to the same coset of MJ

after 4-round is approximately 2−30.

To prove this fact, let the event Eri be defined as following.

Definition 15. Let J ⊆ {0, 1, 2, 3} be fixed. Given a set S(x0,x1),(y0,y1), we define Eri as the event
that the i-th pair of S(x0,x1),(y0,y1) for i = 1, 2, ..., 217 belong to the same coset of MJ after r rounds.

In the following, let Eri be the complementary event of Eri . It follows that

Prob(E4
1 ∧ E4

2 ∧ ... ∧ E4
217) = Prob(E4

1) · Prob(E4
2 ∧ ... ∧ E4

217 | E4
1) =

= Prob(E4
1) ≡ p3 = 2−30 − 3 · 2−63 + 2−94,

where p3 is defined as in (6.3). Indeed, note that Prob(E4
i | E4

1) = 1 for each i = 2, ..., 217 since if two
texts of one pair belong (or not) to the same coset of MJ after 4 rounds, then the texts of all the
other pairs have the same property. We remark again that this is due to the way in which the sets S
are defined/constructed.

Using these initial considerations as starting point, we analyze in detail our proposed 5-round
distinguisher.

1st Case. As we have just seen, two texts of all the pairs of each set belong to the same coset of a
subspace MI for |I| = 3 after 4-round with probability p3 ' 2−30. In other words, on average there
are 2−30 · n sets S such that the two texts of all the pairs belong to the same coset of a subspace
MJ for |J | = 3 after 4-round.

Let |J | = 3. Since Prob
[
R(x)⊕R(y) ∈MJ |x⊕ y ∈MI

]
= p3,3 ' 2−22 (see (6.4) for details) and

since each set is composed of 217 different pairs, the probability that the two ciphertexts of at least
one pair of S belong to the same coset of MJ for |J | = 3 after 5 rounds is well approximated by

1−
(
1− p̂3,3

)217

= 1−
(

1− p3 · (1− p3,3)

1− p3

)217

= 2−13 − 526 327 · 2−46 + ...

where p̂3,3 is defined in (6.5).

2nd Case. In the same way, the two texts of all the pairs of each set do not belong to the same
coset of a subspace MJ for |J | = 3 after 4-round with probability 1− p3 ' 1− 2−30. In other words,
on average there are (1− 2−30) · n sets S such that the two ciphertexts of all the pairs of each set do
not belong to the same coset of a subspace MJ for |J | = 3 after 4-round.

125

6. Mixture Differential Cryptanalysis

Let |J | = 3. Since Prob(R(x)⊕R(y) ∈MJ |x⊕ y /∈MI) = p̂3,3 ' 2−30 (see (6.5) for details) and
since each set is composed of 217 different pairs, the probability that the two texts of at least one
pair of S belong to the same coset of MJ for |J | = 3 after 5 rounds is well approximated by

1−
(
1− p3,3

)217

= 2−5 − 524 287 · 2−30 + 45 812 722 347 · 2−53 + ...

Final Result. The desired result is finally obtained using the law (or formula) of total probability

Prob(A) =
∑
i

Prob(A |Bi) · Prob(Bi)

which holds for each event A such that
⋃
iBi is the sample space, i.e. the set of all the possible

outcomes.
Given a set S, the probability that two ciphertexts c1 and c2 of at least one pair satisfy the

required property (i.e. c1 ⊕ c2 ∈MJ for |J | = 3) is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i)
]
·Prob(E4

i) +
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i)
]
·Prob(E4

i) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)217]
+p3 ·

[
1−

(
1− p3,3

)217
]
=

=2−13 − 524287 · 2−46 − 22 370 411 853 · 2−77︸ ︷︷ ︸
≈ 2.604 · 2−44

+...

(6.7)

for a certain i ∈ {1, ..., 217}. Note that Prob(E5
i ∧ E5

j) = Prob(E5
i) × Prob(E5

j) since the events E5
i

and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, given a set S defined as before, what is the probability that two
ciphertexts - generated by a random permutation - of at least one pair satisfy the required property?
By simple computation, such event occurs with (approximately) probability

prand =1−
(
1− p3

)217

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94

)]217

=

=2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77︸ ︷︷ ︸
≈ 5.333 · 2−44

+... (6.8)

Remark. Before going on, we emphasize again that while a “classical” truncated differential
distinguisher counts the number of pairs of texts that satisfy a particular differential trail, in our case
we consider the number of sets of texts for which at least one pair satisfies a particular differential
trail. This implies a difference between the probabilities that the previous event occurs for a random
permutation - prand - and for 5-round AES - pAES .

6.4.3. Data and Computational Complexity

Data Complexity

Since the difference between the two probabilities

|nAES − nrand|
nAES

' |nAES − nrand|
nrand

� 1

(where the number of sets that satisfy the required property for the AES case and for the random
case are denoted respectively by nAES and nrand) is very small, what is the minimum number of sets

126

6.4. A new 5-round Secret-Key Distinguisher for AES

S (or equivalently of cosets CI) to guarantee that the distinguisher works with high probability? Our
goal here is to derive a good approximation for the number of initial cosets of CI that is sufficient to
appreciate this difference with probability prob.

To solve this problem, note that given n sets S of 217 pairs defined as before, the distribution
probability of our model is simply described by a binomial distribution, as discussed in Sect. 4.6.1.
To derive concrete numbers for our distinguisher and based on De Moivre-Laplace theorem, we
approximate the binomial distribution with a normal one. Moreover, we can simply consider the
difference of the two distributions, which is again a normal distribution. That is, given X ∼ N (µ1, σ

2
1)

and Y ∼ N (µ2, σ
2
2), then X − Y ∼ N (µ, σ2) = N(µ1 − µ2, σ

2
1 + σ2

2). Indeed, in order to distinguish
the two cases, note that it is sufficient to guarantee that the number of sets that satisfy the required
property in the random case is higher than for the 5-round AES case. As a result, the mean µ and
the variance σ2 of the difference between the AES distribution and the random one are given by:

µ = n · |prand − pAES | σ2 = n ·
[
prand · (1− prand) + pAES · (1− pAES)

]
.

Since the probability density of the normal distribution is f(x | µ, σ2) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , it follows

that

prob =

0∫
−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx =

−µ/σ∫
−∞

1√
2π

e−
x2

2 dx =
1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable with normal
distribution of mean 0 and variance 1/2 falling in the range [−x, x]. We emphasize that the integral
is computed in the range (−∞, 0] since we work in the case in which the number of sets with the
required property for AES is lower than for the random case.

To have a probability of success higher than prob, the number of sets n has to satisfy:

n >
2 · [prand · (1− prand) + pAES · (1− pAES)]

(prand − pAES)2
·
[
erfinv

(
2 · prob− 1

)]2

.

where erfinv(x) is the inverse error function. For the case prand, pAES � 1, a good approximation of
n is given by15

n >
4 ·max(prand, pAES)

(prand − pAES)2
·
[
erfinv

(
2 · prob− 1

)]2

. (6.9)

Data Cost. First of all, given a single coset of a column space CI for |I| = 1, the number of different
pairs with two equal generating variables is given by 6 · 216 · 215 · (28 − 1)2 ' 249.574 (see Eq. (6.6)),
while the number of sets S that one can construct is well approximated by 249.574/217 ' 232.574.

For a probability of success of approximately 95% and since |pAES − prand| ' 2−41.01 and pAES '
prand ' 2−13, it follows that n must satisfy n > 271.243. Since a single coset of CI for |I| = 1 contains
approximately 232.574 different sets S, one needs approximately 271.243 · 2−32.574 ' 238.669 different
initial cosets of CI , that is approximately 238.669 · 232 ' 270.67 chosen plaintexts.

For completeness, we mention that it is possible to set up a modified version of this distinguisher
that requires lower data (and computational) cost(s). In particular, in [Gra17b, App. D.2] we show
that a similar distinguisher can be set up using only 252 chosen plaintexts in the same initial coset
of CI with |I| = 2. Our choice to present a “less competitive” distinguisher is due to the fact that it
will be the starting point for a key-recovery attack on 6-round, as shown in detail in the next section.

15Observe: prand · (1− prand) + pAES · (1− pAES) < prand + pAES < 2 ·max(prand, pAES).

127

6. Mixture Differential Cryptanalysis

Computational Complexity

Here we discuss the computational cost for the case of cosets of CI with |I| = 1. As for the 4-round
distinguisher, a first possibility is to construct all the pairs, to divide them in sets S defined above, and
to count the number of sets that satisfy the required property working on each set separately. Since
just constructing all the pairs given 238.67 cosets costs approximately of 238.67 · 231 · (232− 1) ' 2101.67

table look-ups, we present a more efficient way to implement the distinguisher. Before presenting the
details, we highlight that the same analysis works also for modified version of the distinguisher – just
presented – that work with plaintexts in the same initial coset of CI with |I| = 2 (see [Gra17b, App.
D.2] for more details). The computational cost of this modified version (that requires only 252 chosen
plaintexts) is well approximated by 271.5 table look-ups or equivalently 264.9 five-round encryptions.

Let J ⊆ {0, 1, 2, 3} with |J | = 3. First of all, one has to re-order the ciphertexts with respect to
a partial order � just defined. The cost of sorting a set of n texts w.r.t. a given partial order is
O(n · log n) table look-ups.

For each coset of C0, given ordered (plaintext, ciphertext) pairs and working only on consecutive
ciphertexts, the idea is to count the number of collisions for each set Si,j(x0,x1),(y0,y1). In more details,

for each coset of C0 it is possible to construct N = 3 · 215 · (28 − 1)2 different sets Si,j(x0,x1),(y0,y1) for

each i, j ∈ {0, 1, 2, 3} with i 6= j and for each x0 6= y0 and x1 6= y1. The idea is to consider a vector
A[0, ..., N − 1] such that the i-th component of such vector A[i] contains the number of different
pairs of one particular set S for which the two ciphertexts belong to the same coset of MJ for a
certain J with |J | = 3. All the details are given in the following, while the pseudo-code is given in
Algorithm 5.

To set up the distinguisher, it is sufficient to define a function ϕ that returns the index of a set
Si,j(x0,x1),(y0,y1) (where i < j) in the vector A[0, ..., N −1]. First of all, assume that x0 < y0 and x1 < y1

(note that a set S contains all plaintexts generated by different combinations of these four variables,
so this condition is always fulfilled). The function ϕ(·) : (F28)4 × ({0, 1, 2, 3})2 → N can be defined
as16

ϕ(x0, x1, y0, y1, i, j) = 1 065 369 600φ(i,j) × Φ(x0, x1, y0, y1) (6.10)

where 1 065 369 600 ≡ 214 · (28 − 1)2, where φ(0, 1) = 0, φ(0, 2) = 1, φ(0, 3) = 2, φ(1, 2) = 3,
φ(1, 3) = 4, φ(2, 3) = 5 and

Φ(x0, x1, y0, y1) =

[
(y0 − x0 − 1) +

511 · x0 − x2
0

2

]
+32 640 ·

[
(y1 − x1 − 1) +

511 · x1 − x2
1

2

]
where each value of F28 is replaced by its corresponding number in {0, 1, ..., 255}.

As a result, using Algorithm 5 to implement the distinguisher, the computational cost is well
approximated by

4·
[
232 · log(232) (re-ordering process) +

(
232 + 231

)
(access to (pi, ci) and to A[·] -

- increment number of collisions)

]
+

1

218
· 6 · 216 · (28 − 1)2 (final “for”) ' 239.07

table look-ups for each initial coset, where
(

232

2

)
· 2−32 ' 231 is the average number of pairs such

that the two ciphertexts belong to the same coset of MJ for J fixed with |J | = 3. Since the

16Since x0 < y0 holds, note that x0 can not be equal to 0xFF . The number of different pairs (x0, y0) that satisfy this
condition is

∑255
i=0 i = 32 640. Indeed, if x0 = 0x0 then y0 can take 255 different values (all values expect 0), if

x0 = 0x1 then y0 can take 254 different values (all values expect 0x0, 0x1) and so. Moreover, for a given (x, x+ 1)

where x 6= 0x00, the number of different pairs (x̃, ỹ) such that (1) x̃ < x and x̃ < ỹ is equal to 511·x−x2
2

. Indeed,
there are x different possible values of x̃ and there are 256− x̃ different values of ỹ for each given x̃, for a total of∑255
i=256−x i = 511·x−x2

2
.

128

6.4. A new 5-round Secret-Key Distinguisher for AES

Data: 232 plaintexts in 1 coset of C0 (e.g. C0 ⊕ a) and corresponding ciphertexts after 5
rounds

Result: Number of sets S such that two ciphertexts of at least one pair of plaintexts belong
to the same coset of MJ for a certain J with |J | = 3

Let A[0, ..., N − 1] be an array initialized to zero, where N = 3 · 215 · (28 − 1)2 // A[i]
refers to the i-th set S

for each j from 0 to 3 let J = {0, 1, 2, 3} \ j (|J | = 3) do
let (pi, ci) for i = 0, ..., 232 − 1 be the (plaintexts, ciphertexts) in C0 ⊕ a;
re-order this set of elements w.r.t. the partial order � defined in Def. 14;// � depends

on J
i← 0;
while i < 232 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MJ do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
if pk ⊕ pl ∈ DI for a certain |I| = 2 (pk and pl have two equal generating
variables) // necessary condition s.t. pk ⊕ pl ∈ Sx,y for

x, y ∈ {0, 1, 2, 3} with x 6= y then
A[ϕ(pk, pl)]← A[ϕ(pk, pl)] + 1; // ϕ(pk, pl) defined in (6.10)

returns the index of the set Sx,y s.t. pk ⊕ pl ∈ Sx,y - this

step can be improved if one considers ordered plaintexts -

see [Gra17b, App. F] for details

end

end

end
i← j + 1;

end

end
n← 0;
for each i from 0 to N − 1 do

if A[i] 6= 0 then
n← n+ 1;

end

end
return n.

Algorithm 5: Given (plaintexts, ciphertexts) pairs in the same coset of C0, this algorithm counts
the number of sets S for which two ciphertext of at least one pair belong in the same coset of
MJ for |J | = 3.

attacker must use 238.66 different initial cosets to have a probability of success higher than 95%, the
total computational cost is of 239.07 · 238.66 = 277.73 table look-ups, or equivalently 271.1 five-round
encryptions.

6.4.4. Practical Verification on small scale AES

In order to have a practical verification of the proposed distinguisher (and of the following key-
recovery attack), we have practically verified the probabilities pAES and prand given above. In

129

6. Mixture Differential Cryptanalysis

Figure 6.2.: Probabilistic distributions of the number of collisions (i.e. number of pairs of ciphertexts
in S that belong to the same coset ofMI) for 5-round small scale AES and for a random permutation
- using 20 000 initial cosets.

particular, we verified them using a small scale AES, as proposed in [CMR05]. We emphasize that
our verification on the small scale variant of AES is strong evidence for it to hold for the real AES,
since the strategy used to theoretically compute such probabilities is independent of the fact that
each word of AES is of 4 or 8 bits.

To compare the practical values with the theoretical ones, we list the theoretical probabilities
pAES and prand for the small scale case. First of all, for small scale AES the probabilities p3 and p3,3

are respectively equal to p3 = 2−14 − 3 · 2−31 + 2−46 and p3,3 = 2−10 − 3 · 2−23 + 2−34.

W.l.o.g. we used cosets of C0 to practically test the two probabilities. Using the previous procedure
and formula, the (approximately) probabilities that a set S satisfies the required property for 5-round
small scale AES and for the random case are respectively

pAES = 2−5 − 2 047 · 2−22 − 221 773 · 2−37︸ ︷︷ ︸
≈ 3.384 · 2−21

+...

prand = 2−5 − 2 047 · 2−22 + 698 027 · 2−37︸ ︷︷ ︸
≈ 10.651 · 2−21

+...

As a result, using formula (6.9) for prand ' pAES ' 2−5 and |prand − pAES | ' 2−17.19, it follows that
n ≥ 231.6 different sets S are sufficient to set up the distinguisher with probability higher than 95%.

Note that for small scale AES, a single coset of C0 contains 216 (plaintexts, ciphertexts), or
approximately 215 · (216 − 1) ' 231 different pairs. Since the number of pairs with two equal
generating variables is given by 6 · 28 · 27 · (24 − 1)2 ' 225.4 (also tested by computer test), it is
possible to construct 3 · 27 · (24 − 1)2 = 86400 ' 216.4 sets S of 29 pairs. As a result, it follows that
231.6 · 2−16.4 = 215.2 different initial cosets of C0 must be used, for a cost of 247.2 chosen plaintexts.

For our tests, we used 216 different initial cosets of C0 (keys used to encrypt the plaintexts in the
AES case are randomly chosen and different for each coset - the key is not fixed). For each coset, we

130

6.5. Key-Recovery Attack on 6 rounds of AES-128

have used Algorithm 5 to count the number of sets S that satisfy the required property (i.e. the
number of sets for which two ciphertexts of at least one pair are in the same coset of MJ for certain
J with |J | = 3). As a result, for each initial coset C0 the (average) theoretical number of sets S that
satisfy the required property for the random case - given by nTrand = 86 400 · prand - and the (average)
practical one found in our experiments - denoted by nPrand - are respectively:

nTrand ' 2 658.27 nPrand ' 2 658.23

Similarly, the (average) theoretical number of sets S that satisfy the required property for 5-round
small scale AES - given by nTAES = 86 400 · pAES - and the (average) practical one found in our
experiments - denoted by nPAES - are respectively:

nTAES ' 2 657.69 nPAES ' 2 657.65

In more details, the total numbers of sets S - for all the 216 different initial cosets of C0 - that satisfy
the required property for 5-round small scale AES and for a random permutation are given by

nTrand ' 174 212 383 nTAES ' 174 174 372

nPrand ' 174 209 761 nPAES ' 174 171 751

Note that the numbers of sets found in our experiments are close to the theoretical ones, and that
the average number of sets for AES case is lower than for the random one, as predicted.

For completeness, the probabilistic distributions of the number of collisions for the AES and
the random cases are given in Fig. 6.2. In both cases, the practical distribution is obtained using
20 000 ≡ 214.3 initial cosets. It is possible to observe that e.g. the theoretical variance matches the
practical one in both cases.

6.5. Key-Recovery Attack on 6 rounds of AES-128

Using the previous distinguisher on 5-round AES (based on a property which is independent of
the secret key) as starting point, we propose the first key-recovery attack on 6 rounds of AES that
exploits a 5-round secret-key distinguisher. The strategy of the attack is similar to the one largely
exploited by linear and differential cryptanalysis.

For the distinguisher just presented, the idea is to consider plaintexts in cosets of CI for I ⊆
{0, 1, 2, 3} with |I| = 1, construct all the possible pairs of two (plaintexts, ciphertexts) with two
equal generating variables, divide them into sets S of 217 pairs and count the number of sets for
which two ciphertexts of at least one pair belong to the same coset of MJ for |J | = 3. To set up the
key-recovery attack, the idea is simply to start with cosets of DI for I ∈ {0, 1, 2, 3}, and to repeat
the previous procedure for each guessed combination of the I-th diagonal of the secret key. The
crucial point is that the guessed 4-bytes of the key influence the way in which the pairs of texts are
divided into the sets S. As a consequence, if the 4 guessed bytes are wrong (i.e. different from the
right ones), the pairs are divided into sets S in a random way.

As we are going to prove, for a wrongly guessed key the probability that a set S satisfies the
required property (that is, two ciphertexts of at least one pair belong to the same coset of MJ) is
(approximately) equal to the probability of the random case prand, which is higher than the probability
pAES for the case of the right key. As a result, the number of sets S for which two ciphertexts of at
least one pair belong to the same coset of MJ for |J | = 3 is minimum for the right key. This allows
to recover one diagonal of the secret key. In the following we present all the details.

Key-Recovery Attack - Details

Consider texts in a coset of CI which is obtained by 1-round encryption of a coset of DI with respect
to a (partially) guessed key. Here we theoretically compute the probability that a set S satisfies the

131

6. Mixture Differential Cryptanalysis

required property (that is, two ciphertexts of at least one pair belong to the same coset of MJ)
when the guessed key is not the right one. In other words, we are going to show that the behavior in
the case of a wrongly guessed key (in the following denoted by “AES with a wrong key”) is similar
to the one of a random permutation.

Observe that the main difference between “AES with a wrong key” and a random permutation is
given by the possibility in the first case to study the distribution of the pairs after each round - note
that for a random permutation it is meaningless to consider the distribution of the texts after (e.g.)
one round. In particular, a coset of a diagonal space DI is always mapped into a coset of a column
space CI after one round independently of the key. On the other hand, we stress that the way in
which the pairs are distributed in the sets S depends on the guessed key.

Consider a key-recovery attack on 6-round AES

DI ⊕ a
R(·)−−−−−−→

KeyGuess
5-round Secret-Key Distinguisher of Sect. 6.4︸ ︷︷ ︸⋃

(x,y) S
i,j
x,y⊆CI⊕b

R(·)−−−−→
prob. 1

MI⊕c
R(·)−−→DJ⊕a′

R2(·)−−−−→
prob. 1

MJ⊕c′
R(·)−−→MK⊕c′′

and focus on the middle round MI ⊕ c
R(·)−−→ DJ ⊕ a′ for |I| = 1 and |J | = 3. Assume the guessed

key is wrong, and consider one set Si,j(x0,x1),(y0,y1). For this set, the number of pairs that belong to

the same coset of MJ after four rounds can take any possible value between 0 and 217 (that is, 0,
1, 2, ... or 217). Indeed, since the pairs are divided in sets Si,j(x0,x1),(y0,y1) in a random way, it is not
possible to guarantee that the number of pairs that belong to the same coset of MJ after 4 rounds
is only 0 or 217 (as for “AES with the right key”).

Using the same calculation as before and for a wrongly guessed key, given a set Si,j(x0,x1),(y0,y1),

the probability pWrongKey
AES that two texts of at least one pair belong to the same coset of MK for a

certain |K| = 3 after 6 rounds is given by

pWrongKey
AES =

217∑
n=0

(
217

n

)
· pn3 · (1− p3)217−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)

1− p3

)217−n]
,

which is well approximated by

pWrongKey
AES = 2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77 + ...

Note that this probability is approximately equal to the one of the random case (see (6.8) for details),
while we remember that the probability for “AES with the right key” is

pAES = 2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77 + ...

where the difference between these two probabilities is approximately |pWrongKey
AES − pAES | ' 2−41.011.

Data and Computational Costs

Data Cost. Assume the goal is to discover the I-th diagonal of the key with probability higher
than 95%. Equivalently, the goal is to guarantee that the number of sets Si,j(x0,x1),(y0,y1) that satisfy

the required property is the lowest one for the right key with probability higher than 95%.

To compute the data cost, the idea is to use the same analysis proposed for the 5-round distinguisher
in Sect. 6.4.3. In particular, since there are 232 candidates for each diagonal of the keys, one has to
guarantee that the number of sets Si,j(x0,x1),(y0,y1) that satisfy the previous required property is the

lowest one for the right key with probability higher than (0.95)2−32
(note that the 232 tests - one for

each candidate - are all independent).

132

6.5. Key-Recovery Attack on 6 rounds of AES-128

Data: 240.77 cosets of D0 (e.g. D0 ⊕ ai for ai ∈ D⊥0) and corresponding ciphertexts after 6
rounds

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
Let N [0, ..., 232 − 1] be an array initialized to zero; // N [k] denotes the number of sets

S that satisfy the required property for the key k
/* 1st Step : for each guessed key, count the number of sets S with the

required property */

for each k̂ from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do
for each coset D0 ⊕ ai do

(partially) encrypt the 232 plaintexts w.r.t. the guessed key k̂;
use Algorithm 5 to count the number n of sets S that satisfy the required property;
N [ψ(k̂)]← N [ψ(k̂)] + n; // where ψ(k̂ ≡ (k0, k1, k2, k3)) =

∑3
i=0 ki · 28·i

end

end
/* 2nd Step : look for the key for which number of sets S is minimum */

min← N [0]; // minimum number of sets

δ ← (0x00, 0x00, 0x00, 0x00);
for each k̂ from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do

if N [ϕ(k̂)] < min then

min← N [ϕ(k̂)];
δ ← k̂ ≡ (k0,0, k1,1, k2,2, k3,3);

end

end
return δ - candidate of (k0,0, k1,1, k2,2, k3,3)

Algorithm 6: 6-round key-recovery attack on AES exploiting a 5-round secret-key distinguisher.
The goal of the attack is to find 4 bytes of the secret key. The remaining bytes (the entire key)
are found by brute force.

Using formula (6.9), one needs approximately 273.343 different sets Si,j(x0,x1),(y0,y1) for each candidate

of the i-th diagonal of the key. Since it is possible to construct approximately 3 ·215 ·(28−1)2 ≈ 232.574

different sets for each initial coset of DI , one needs approximately 273.343 · 2−32.573 = 240.77 different
initial cosets of DI to discover the I-th diagonal of the key with probability higher than 95%, for a
total cost of 240.77 · 232 = 272.77 chosen plaintexts.

When one diagonal of the key is found17, due to the computational cost of this step we propose to
find the entire key (i.e. the other three diagonals) using a brute force attack.

Computational Cost. In order to implement the attack, the idea is to use Algorithm 5 for each
possible guessed key in order to count the number of sets S that satisfy the required property (i.e.
two ciphertexts of at least one pair belong to the same coset of MJ for a certain J with |J | = 3).
Since this number of sets is higher for a wrongly guessed key than for the right one, it is possible to
recover the right candidate of the key.

An implementation of the attack is described by the pseudo-code given in Algorithm 6. To compute
the computational cost, it is sufficient to re-consider the cost of the 5-round distinguisher. Given a
coset of C0, the cost to count the number of sets S with the required property is 239.1 table look-ups.
This step is repeated for each one of the 232 (partially) guessed key and for each one of the 240.77

initial cosets of D0, for a cost of 239.05 · 240.77 · 232 = 2111.82 table look-ups. Moreover, one needs

17For completeness, we mention that it is possible to (slightly) reduce the data cost by relaxing the property that the
number of sets S that satisfy the required property is the lowest one for the right key.

133

6. Mixture Differential Cryptanalysis

to partially compute 1-round encryption for each possible guessed key and for each initial coset,
for a cost of 4 · 232 · 240.77 · 232 = 2106.77 S-Box look-ups. As a result, the total cost of finding one
diagonal of the key is well approximated by 2111.82 table look-ups, or equivalently 2104.92 six-round
encryptions (under the assumption 20 table/S-Box look-ups ≈ 1-round encryption). The total cost
of finding the entire key (using brute force on the last three diagonal) is of 2104.92 + 296 = 2104.93

six-round encryptions.

134

7
AES with a Single Secret S-Box

A key-recovery attack is any adversary’s attempt to recover the cryptographic key of an encryption
scheme. As stated by the Kerckhoffs’ Principle, one common assumption is that the security of a
cryptosystem must lie in the choice of its keys only: everything else (including the algorithm itself)
should be considered public knowledge. What happens if part of the crypto-system is instead kept
secret?

This problem has been first introduced by Biryukov and Shamir [BS01; BS10], where authors
studied the security of AES-like ciphers which contain alternate (secret) layers of invertible S-Boxes
and (secret) affine mappings. In particular, an attack was presented on five layers (SASAS, where S
stands for substitution and A stands for affine mapping) of this construction which finds all secret
components (up to an equivalence). Using the terminology of “rounds” as in the AES, this version
consists of two and a half rounds.

A part from this work, several other results regarding cryptanalysis of ciphers with secret S-Boxes
have been presented in the literature. To cite some examples, Gilbert and Chauvaud [GC94] presented
a differential attack on the cipher Khufu (an unbalanced Feistel cipher), while Vaudenay provided
cryptanalysis of reduced-round variants of Blowfish [Vau96]. In [BV05], Baignères and Vaudenay
studied the security of AES?, a SPN identical to AES except that fixed S-Boxes are replaced
by random and independent permutations, and proved that this construction resists linear and
differential cryptanalysis with 4 inner rounds only (despite the huge cumulative effect of multipath
characteristics that is induced by the symmetries of AES). Most recently, the lightweight cipher
PRESENT was cryptanalyzed by Borghof et al. [BKLT11] also in the (extreme) case in which the
S-Boxes are chosen uniformly at random for each round. Finally, in [BBK14], authors considered the
ASASA scheme in order to design public key or white-box constructions using symmetric cipher
components.

Attacks on AES with a Single Secret S-Box - State of the Art

The Advanced Encryption Standard (AES) is an iterated block cipher using 10, 12, or 14 rounds
depending on the key size of 128, 192, or 256 bits. Here we focus on the cipher that is derived from
the AES by replacing the S-Box with a secret 8-bit S-Box while keeping everything else unchanged.
If the choice of S-Box is made uniformly at random from all 8-bit S-Boxes, the size of the secret
information increases from 128 - 256 bits (the key size in the AES) to 128 + log2(28!) = 1812 and
256 + log2(28!) = 1940 bits respectively.

First of all, we recall that a randomly chosen S-Box is likely to have good properties against
differential and linear cryptanalysis, as shown in [OCo93]. In particular, it has been shown there
that, for mappings chosen uniformly at random from the set of all m-bit bijective mappings, the
expected value of the highest probability of a (non-trivial) differential characteristic is at most
2m/2m. In our case where m = 8, this means that for a randomly chosen 8-bit S-Box the expected
maximum probability of a differential characteristic is 16/28 = 2−4. Since the number of active
S-Boxes for four rounds of the AES is at least 25, one has an upper bound of the probability for any
4-round differential characteristic of 2−100, and thus an upper bound for any 8-round differential
characteristic of 2−200. This is sufficient to conclude that differential cryptanalysis will not pose a
threat to variants of the AES where the S-Box is replaced by a randomly chosen 8-bit S-Box.

135

7. AES with a Single Secret S-Box

Table 7.1.: Comparison of attacks on round-reduced AES with secret S-Box. Data complexity
is measured in number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity is
measured in round-reduced AES encryption equivalents (E), in memory accesses (M) or XOR
operations (XOR). Memory complexity is measured in plaintexts (16 bytes). The case in which the
final MixColumns operation is omitted is denoted by “r.5 rounds”, that is r full rounds and the final
round. New attacks are in bold. Strategy 1 (S1) denotes an attack that requires to find the details of
the S-Box, while Strategy 2 (S2) denotes an attack that find directly the key.

Attack Rounds S1 S2 Data Computation Memory Reference

TrD 2.5 - 3 3 213.6 CP 213.2 XOR small [GRR16]

I 2.5 - 3 3 219.6 CP 219.6 XOR small [GRR16]

I 3.5 - 4 3 216 CC 217.7 E 216 [TKKL15]

I 3.5 - 4 3 216 CP 228.7 E 216 [TKKL15, Sect. 3.5]

TrD 3.5 - 4 3 230 CP 236 M ≈ 229.7 E 230 [GRR16]

I 4.5 - 5 3 240 CC 238.7 E 240 [TKKL15]

I 4.5 - 5 3 240 CP 254.7 E 240 [TKKL15, Sect. 3.5]

Mult-of-n 4.5− 5 3 253.25 CP 259.25 M ≈ 252.6 E 216 [Gra18a]

Mult-of-n 4.5− 5 3 253.6 CP 255.6 M ≈ 248.96 E 240 [Gra18a]

ImD 4.5− 5 3 276.37 CP 281.54 M ≈ 274.9 E 28 [Gra18a]

ImD 4.5 - 5 3 276.5 CC 280.5 M ≈ 273.86 E 232 [HCGW18]

I 5 3 296 CP 296 M ≈ 289.36 E small [HCGW18]

I 5 3 2128 CC 2129.6 XOR small [SLG+16]

I 5.5 - 6 3 264 CP/CC 290 E 269 [TKKL15]

TrD: Truncated Differential, I: Integral, ImD: Impossible Differential.

A similar result can be proved for linear cryptanalysis using the bounds of linear characteristics
from [OCo94].

State of the Art. The attacks on AES with a single secret S-Box in the literature – that is, [BS01;
BS10] and [TKKL15] – exploit the following strategy:

1. first, the attacker determines the secret S-Box up to additive constants (that is, S-Box(x⊕a)⊕b
for unknown a and b);

2. then she uses this knowledge and applies key-recovery attacks present in the literature to derive
the whitening key.

The property used for this strategy is usually the integral one, which is independent of the details of
the secret S-Box. In particular, given a set Λ of 28 plaintexts {pi} with one active byte, it is well
known that the corresponding texts after 4-round AES (assuming the last MixColumns operation is
omitted) satisfy the following condition⊕

i

S-Box−1
(
R4(ci)⊕ k

)
= 0

where k is the final (secret) key. Since this equation is invariant under any affine transformation
A(·) (i.e.

⊕
i zi = 0 iff

⊕
iA(zi) = 0), authors can find the S-Box up to additive constants, i.e.

S-Box(x⊕a)⊕ b for unknown a and b. Exploiting this information and a classical integral attack on 4
rounds, they are then able to find the whitening key up to 256 variants, that is (k0, k0⊕k1, ..., k0⊕k15)

136

7.1. New Attacks on AES with a single Secret S-Box

(where ki is the i-th byte of the whitening key) for unknown k0. Variant of this attack can be set up
for up to 6 rounds of AES.

7.1. New Attacks on AES with a single Secret S-Box

In all the previous works, an attacker must work both on the secret S-Box and on the secret key, that
is she has to first find information on the secret S-Box in order to discover the secret key. Thus, a
natural question arises: Is it also possible to directly find the secret key without exploiting/discovering
any information about the secret S-Box? In [SLG+16] and in our papers [GRR16; Gra18a], authors
showed that this is possible if an assumption on the MixColumns matrix is guaranteed. Using the
subspace-trail framework, in the following we present a generic technique to discover directly (i.e.
without working on the S-Box) the secret key of AES up to 232 variants, and we show how it can be
combined with a truncated differential attack, an impossible differential attack, an integral attack
and the multiple-of-n property.

7.1.1. Idea of the Attack

The main idea of our attack on AES with a secret S-Box is the following. As we have seen, a coset of
Di is mapped into a coset of Ci after one round. Using some particular (but very common) properties
of the MixColumns matrix, it is possible to choose a subset of a coset of Di which depends on the
secret key, such that it is mapped after one round into a subset of a coset of DJ ∩ Ci ⊆ DJ with
probability 1. That is, consider a subset of a coset of Di which depends on the guessed values of
some bytes of the secret key. If these guessed values are wrong, then after one round this subset of
Di is mapped into a subset of a coset of Ci. Instead, if these guessed values are correct, then after
one round this subset of Di is mapped into a subset of a coset of DJ with probability 1. Note that
also when the guessed values are wrong it is possible that the initial subset is mapped into a subset
of a coset of DJ after one round, but this happens with probability strictly less than 1. Using this
property together with other considerations, the attacker can identify the right key.

In more details, referring to Figure 7.1, consider a subset of a coset of Di related to the guess
secret key as plaintexts.

Figure 7.1.: Strategy of the attacks on AES with a secret S-Box. Starting with a subset of a coset
of Di which depends on the guessed values of the secret key, it is mapped after one round into a
subset of a coset of DJ if the guessed values is correct - case (1), or into a subset of a coset of Ci if
the guessed values is wrong - case (2). As a consequence, the subspace trails up to the 5-th round
are different for the two cases, and this allows to set up various key-recovery attacks.

If the guessed value is correct - case (1) of Fig. 7.1 (that is, if the difference of two consecutive-
diagonal bytes of the plaintexts is equal to the difference of the same bytes of the secret key), then
this set is mapped into a subset of a coset of Ci ∩ DJ ⊆ DJ for a certain J with |J | = 3. If the
guessed value is wrong - case (2) of Fig. 7.1, then this set is mapped into a subset of a coset of Ci.

This attack exploits the following particular property of the MixColumns n× n matrix M :

137

7. AES with a Single Secret S-Box

given a row of M , there exists a subset of coefficients whose xor-sum is equal to zero, that is

∃j ∈ {0, 1, ..., n− 1} :
⊕
i∈I

Mj,i = 0

where I ⊆ {0, 1, ..., n− 1}.

Obviously, if two coefficients are equal (e.g. Mj,l = Mj,k for k 6= l), then the previous property is
always satisfied (e.g. for I = {l, k}).

7.1.2. Equal coefficients in MixColumns Matrix

As first case, we consider the case of two equal coefficients. Assume that a matrix M has two equal
coefficients in the same row, e.g. Mi,j = Mi,k for j 6= k.

As example, the AES MixColumns matrix satisfies this property, since e.g. M0,2 = M0,3. Note
that if a row of a circulant matrix satisfies this property, then all other rows satisfies it. We recall
that a cyclic/circulant matrix is a matrix where each row vector is rotated one element to the right
relative to the preceding row vector, that is:

circ(c0, c1, ..., cn−1) =


c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
...

...
. . .

...
c1 c2 . . . c0

.
Using this properties of M , our attack is based on the following lemma.

Lemma 7 ([GRR16]). Let p1 and p2 two texts such that p1
i,j = p2

i,j for each (i, j) 6= {(0, 0), (1, 1)}
and p1

0,0 ⊕ p1
1,1 = p2

0,0 ⊕ p2
1,1. If p1

0,0 ⊕ p1
1,1 = p2

0,0 ⊕ p2
1,1 = k0,0 ⊕ k1,1 (where k is the secret key of

the first round), then after one round they belong to the same coset of C0 ∩ D0,1,3 ⊆ D0,1,3, that is
R(p1)⊕R(p2) ∈ C0 ∩ D0,1,3 ⊆ D0,1,3.

Proof. First of all, note that these two texts p1 and p2 belong in the same coset of D0 ∩ C0,1 ⊆ D0

(by definition of D0). As we have already seen, if two elements belong to the same coset of D0,
then after one round they belong to the same coset of C0. Thus, it is sufficient to prove that
R(p1)⊕R(p2) ∈ D0,1,3.

Since R(p1)⊕ R(p2) ∈ C0, in order to prove that R(p1)⊕ R(p2) ∈ D0,1,3 it is sufficient to prove
that R(p1)2,0 ⊕R(p2)2,0 = 0. By simple computation:

R(p1)2,0 = S-Box(p1
0,0 ⊕ k0

0,0)⊕ S-Box(p1
1,1 ⊕ k0

1,1)⊕
⊕ 0x02 · S-Box(p1

2,2 ⊕ k2,2)⊕ 0x03 · S-Box(p1
3,3 ⊕ k3,3).

First of all observe that S-Box(p1
0,0⊕k0

0,0)⊕ S-Box(p1
1,1⊕k0

1,1) = 0. Indeed, since p1
0,0⊕p1

1,1 = k0,0⊕k1,1

by definition, then p1
0,0⊕k0

0,0 = p1
1,1⊕k0

1,1, that is S-Box(p1
0,0⊕k0

0,0) = S-Box(p1
1,1⊕k0

1,1), or equivalently

S-Box(p1
0,0 ⊕ k0

0,0)⊕ S-Box(p1
1,1 ⊕ k0

1,1) = 0. Thus:

R(p1)2,0 = 0x02 · S-Box(p1
2,2 ⊕ k2,2)⊕ 0x03 · S-Box(p1

3,3 ⊕ k3,3)

and in a similar way:

R(p2)2,0 = 0x02 · S-Box(p2
2,2 ⊕ k2,2)⊕ 0x03 · S-Box(p2

3,3 ⊕ k3,3).

Since p1
2,2 = p2

2,2 and p1
3,3 = p2

3,3 by definition, it follows that R(p1)2,0 = R(p2)2,0, and so the
thesis.

138

7.1. New Attacks on AES with a single Secret S-Box

Note that no information of the S-Box is used. As shown in the following, this property can be
used to discover - directly - the secret key.

Previous Lemma can be easily generalized for each possible combination of consecutive-diagonal
bytes.

Proposition 13 ([GRR16]). Let p1 and p2 two texts such that

p1
i,j = p2

i,j ∀(i, j) 6= {(n,m), (k, l)}

and
p1
k,l ⊕ p1

n,m = p2
k,l ⊕ p2

n,m,

where l− k ≡4 m− n. If p1
k,l ⊕ p1

n,m = p2
k,l ⊕ p2

n,m = kk,l ⊕ kn,m (where k is the secret key of the first
round), then after one round they belong to the same coset of Cl−k ∩ D{0,1,2,3}\r ⊆ D{0,1,2,3}\r (the
indexes are taken modulo 4), where r is defined as the row of the MixColumn matrix M such that
Mr,n = Mr,k. Equivalently, R(p1)⊕R(p2) ∈ Ck−l ∩ D{0,1,2,3}\r.

Using the subspace trails of Sect. 4.3, this implies for example that:

• after 3 rounds, two plaintexts in the set Vδ are mapped into a subset of a coset of MJ with
probability 1 in case (1), while this happens only with probability 2−8 - i.e. strictly less than 1
- in case (2);

• after 4 rounds, the probability that two texts in the previous set Vδ are mapped into the same
coset of MJ is higher in case (1) - approximately 2−22 - than in case (2) - approximately 2−30;

• after 5 rounds, the probability that two texts in the previous set Vδ are mapped into the
same coset of Mj is equal to zero in case (1), while is strictly different from zero in case (2) -
approximately 2−94.

“Weak” Secret-Key Distinguisher. Such a strategy has been introduced in [SLG+16] at
Crypto 2016, in order to set up the first “weak” secret-key distinguisher on 5-round AES. A “weak”
secret-key distinguisher can be seen as something in the middle between a key-recovery attack1

and a secret-key distinguisher (which is independent of the secret key). The goal is to distinguish a
random permutation from a block cipher, where (1st) it is sufficient to find only part of the key to
achieve this goal and (2nd) it does not exploit any detail of the S-Box.

In order to construct the secret key distinguisher presented in [SLG+16], authors simply consider
all the input-output space, and divide it in the 28 subsets Ṽ∆ defined as Ṽ∆ = {(p, c) | c0,0⊕ c1,3 = ∆}
for each possible ∆ ∈ F28 , and without any other assumptions on the other bytes. Note that
|Ṽ∆| = 2120. Then, using the link between zero-correlation linear hulls and the integral/balance
property, they are able to prove that for an AES permutation and for ∆ = k0,0 ⊕ k1,3 the sum of the
plaintexts of the corresponding set Ṽ∆ is equal to zero, that is the balance property holds2. Instead,
for a random permutation, the probability that there exists one ∆ with the previous property is
only 2−120. This distinguisher works only in the decryption direction (i.e. using chosen ciphertexts)
and only if the final MixColumns operation is not omitted. Moreover, there is no evidence that
this distinguisher can work with less than the entire input-output space. We refer to [SLG+16] for
more details. To summarize, this distinguisher requires the full codebook (i.e. 2128 texts), and the
verification cost is well approximated by 2128 XOR operations.

1We recall that any key-recovery attack is also a secret-key distinguisher, in the sense that it can be used to distinguish
between a cipher and a random permutation. Obviously, a key-recovery attack used for this goal is not independent
of the secret key, since the property used to distinguish the two cases is the existence of the key.

2In [SLG+16], authors presented also a similar distinguisher always based on balance property. In this case, the idea
is to divide the entire input-output space in 232 subsets W̃∆ defined as W̃∆ = {(p, c) | c0,0 ⊕ c1,3 = δ0, c0,1 ⊕ c3,2 =
δ1, c1,2 ⊕ c2,1 = δ2, c2,0 ⊕ c3,3 = δ3}, where ∆ = (δ0, . . . , δ3). Also in this case, for an AES permutation there exists
one ∆ for which the balance property holds among the plaintexts, while for a random permutation this happens
only with probability 2−96

139

7. AES with a Single Secret S-Box

7.1.3. A More Generic Strategy

Instead of exploiting the fact that two elements of each row of the MixColumns matrix M are equal,
a more general property can be used to mount similar attacks, that is the fact that the XOR-sum of
2 or more elements of each row of M is equal to zero. That is, it is possible to set up an attack also
in the case in which for each row r (or for some of them) of M there exists a set Jr ⊆ {0, 1, 2, 3}
such that ⊕

j∈Jr

Mr,j = 0 (7.1)

As an example, each row of the AES MixColumns matrix M satisfies this condition, e.g. for the first
row

M0,0 ⊕M0,1 ⊕M0,2 = 0x02⊕ 0x03⊕ 0x01 = 0, M0,i 6= M0,j ∀i, j ∈ {0, 1, 2}.

As a special case, if two elements Mr,j and Mr,k of a row r are equal (that is Mr,j = Mr,k for j 6= k),
then the previous condition is obviously satisfied (vice-versa does not hold).

To explain how to exploit property (7.1), we show how to adapt the strategy just described to
this case. As we have already said, the idea is to choose a set of plaintexts Aδ which depends on a
guessed key δ. When δ assumes the “right” value (which depends on the secret key), then the set Aδ
is mapped after one round into a coset of DI for some I (where |I| ≤ 3) with probability 1, while for
other values of δ this happens only with probability strictly less than 1. Since the idea is to exploit
the same strategy, we limit ourselves here to define the set Aδ in the case in which a sum of elements
of each row of M is equal to zero.

Proposition 14 ([Gra18a]). Let M be the AES MixColumns matrix such that

Mi,0 ⊕Mi,1 ⊕Mi,2 = 0 i = {0, 1}.

Let p1 and p2 be two texts, s.t. p1
i,j = p2

i,j for all (i, j) 6= {(0, 0), (1, 1), (2, 2)} and

p1
i,j ⊕ p1

k,l = p2
i,j ⊕ p2

k,l ∀(i, j), (k, l) ∈ {(0, 0), (1, 1), (2, 2)} and (i, j) 6= (k, l).

If p1
0,0⊕p1

1,1 = p2
0,0⊕p2

1,1 = k0,0⊕k1,1 and p1
0,0⊕p1

2,2 = p2
0,0⊕p2

2,2 = k0,0⊕k2,2, then R(p1)⊕R(p2) ∈
C0 ∩ D2,3 with probability 1 (i.e. after one round, p1 and p2 belong to the same coset of C0 ∩ D2,3).
This happens with probability 2−16 in the other cases.

Proof. Note that the two plaintexts p1 and p2 belong to the same coset of D0. Since a coset of
diagonal space DI is always mapped after one round into a coset of a column space CI , after one
round they belong to the same coset of C0 with probability 1. To prove the statement, it is sufficient
to prove that [R(p1)⊕R(p2)]0,0 = [R(p1)⊕R(p2)]1,0 = 0.

By simple calculation

R(p1)0,0 =0x02 · S-Box(p1
0,0 ⊕ k0,0)⊕ 0x03 · S-Box(p1

1,1 ⊕ k1,1)⊕
⊕ S-Box(p1

2,2 ⊕ k2,2)⊕ S-Box(p1
3,3 ⊕ k3,3).

Since p1
0,0 ⊕ p1

1,1 = k0,0 ⊕ k1,1, it follows that S-Box(p1
0,0 ⊕ k0,0) = S-Box(p1

1,1 ⊕ k1,1) and in a similar

way S-Box(p1
0,0⊕ k0,0) = S-Box(p1

2,2⊕ k2,2). Since the sum of the first three elements is equal to zero,

then R(p1)0,0 = S-Box(p1
3,3 ⊕ k3,3), and similarly R(p2)0,0 = S-Box(p2

3,3 ⊕ k3,3). Since p1
3,3 = p2

3,3, it

follows that R(p1)0,0 = R(p2)0,0. The same argumentation holds also for R(p1)1,0 = R(p2)1,0.

This proposition can be easily generalized for a more generic MixColumns matrix M for which the
sum of three or four coefficients are equal to zero. Moreover, given J fixed, if the sum

⊕
j∈JMr,j is

equal to zero for more than a single row r, the following Lemma follows immediately.

140

7.1. New Attacks on AES with a single Secret S-Box

Table 7.2.: Practical Numbers for the case of Circulant Invertible Matrices. The second column
gives the number of invertible matrices MC for which MC or MC−1 has two equal coefficients in
each row, while the third one gives the number of invertible matrices for which the sum of ≥ 2 the
same row of MC or MC−1 is equal to zero.

F4×4
2m Number Invertible Matrices Two Equal Coeff. Zero-Sum of ≥ 2 Coeff.

m = 4 61 440 32 640 (53.125%) 45 600 (74.22%)

m = 8 4 278 190 080 165 550 080 (3.87%) 293 556 000 (6.87%)

Table 7.3.: Practical Numbers for the case of Circulant MDS Matrices. The second column gives
the number of MDS matrices MC for which MC or MC−1 has two equal coefficients in each row,
while the third one gives the number of MDS matrices for which the sum of ≥ 2 elements in the
same row of MC or MC−1 is equal to zero.

F4×4
2m Number MDS Matrices Two Equal Coeff. Zero-Sum of ≥ 2 Coeff.

m = 4 16 560 10 080 (60.87%) 12 480 (75.36%)

m = 8 4 015 735 920 126 977 760 (3.16%) 249 418 560 (6.21%)

Lemma 8 ([Gra18a]). Assume there exist J ⊆ {0, 1, 2, 3} and r, w ∈ {0, 1, 2, 3} with r 6= w such
that ⊕

j∈J
Mr,j =

⊕
j∈J

Mw,j = 0.

Let p1 and p2 defined as before. It follows that if p1
j,j ⊕ p1

l,l = p2
j,j ⊕ p2

l,l = kj,j ⊕ kl,l for each j, l ∈ J ,

then p1 ⊕ p2 ∈ Ck ∩ D{0,1,2,3}\{r,w} with probability 1, otherwise this happens in general with prob.
2−16.

To prove this lemma, it is sufficient to exploit the previous proposition and to observe that if two
plaintexts belong to the same coset of Ck ∩ D{0,1,2,3}\{r} and of Ck ∩ D{0,1,2,3}\{w}, then they belong
to their intersections Ck ∩ D{0,1,2,3}\{r,w}.

What is the number of matrices that satisfy condition (7.1) with respect to the number
of matrices with two equal coefficients in each row? Since we consider AES-like ciphers,
we limit ourselves to practical count3 both these numbers for the cases of circulant matrices in
F4×4

2m for m = 4, 8. We remember that the strategy just proposed works in the encryption direction
if the MixColumns matrix satisfies one of the two previous properties and/or in the decryption
direction if the inverse MixColumns matrix satisfies them. For this reason, we compute the number
of MixColumns matrices for which one of the two previous properties is satisfied in the encryption
direction (i.e. by MC) or in the decryption direction (i.e. by MC−1).

In Table 7.2 we list our results limiting to consider invertible matrices, while in Table 7.3 we list
our results limiting to consider MDS (Maximal Distance Separable) matrices. Observing the numbers
in the tables, both for these two cases and both for m = 4 and m = 8, the number of matrices that
satisfy condition (7.1) is (largely) higher than the number of matrices with two equal coefficients
in each row. E.g. for the case m = 8, this number increases of 77.32% (e.g. 227.3 vs 228.13) for the
invertible matrices case, and of 96.42% (e.g. 226.92 vs 227.89) for the MDS matrices case (that is, the
number has doubled).

3The source codes are available at https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2

141

https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2

7. AES with a Single Secret S-Box

7.2. Truncated Diff. Attacks up to 4-round AES with a Single
Secret S-Box

7.2.1. Truncated Differential Attack on 3 rounds of AES with Secret S-Box

Here, we present an attack on 3 rounds of AES with a secret S-Box. The attack - illustrated in Fig.
7.2 - works as follows.

Consider a pair of plaintexts p1 and p2 with the following conditions:

∀(i, j) 6= {(0, 0), (1, 1)} : p1
i,j = p2

i,j and p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1.

As we have seen, if p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 = k0,0 ⊕ k1,1, then p1 and p2 belong to the same coset of
D0,1,3 after one round with probability 1. Consequently, after three rounds they belong to the same
coset of M0,1,3 with probability 1 (or of ID0,1,3 if the final MixColumns is omitted), since a coset of
D0,1,3 is mapped into a coset of M0,1,3 with probability 1.

Instead, if p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 6= k0,0 ⊕ k1,1, then p1 and p2 belong to the same coset of D0,1,3

after one round only with probability 2−8 (that is, only if R(p1)2,0 ⊕R(p2)2,0 = 0). Thus, after three
rounds they belong to the same coset of M0,1,3 only with probability4 2−8. Our attack exploits the
fact that these probabilities are different in order to find k0,0 ⊕ k1,1.

The idea is to consider n different pairs of plaintexts (with one plaintext in common) for each
possible value of δ, that is n · 28 pairs of plaintexts p1 and p2 such that p1

i,j = p2
i,j for each

(i, j) 6= {(0, 0), (1, 1)} and p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 = δ. Given a δ, the attacker checks if the
corresponding n pairs of ciphertexts belong or not to the same coset of M0,1,3. If not, then the key
is wrong due to previous considerations.

Data and Computational Costs. What is the probability that all the false key candidates are
discarded (i.e. they do not pass the test) using n pairs for each δ? This probability is given by
1 − (1 − 2−8)28·n ' 1 − e−n. If n = 3 (that is, 4 chosen plaintexts - one plaintext is in common),
then this probability is higher than 95%. Thus, in order to find 1 byte of the key, 4 · 28 = 210 chosen
plaintexts. The cost of the attack can be approximated to 3 · 28 = 29.6 XOR operations (for 4 chosen
plaintexts, the attacker computes only 3 XOR operations, since she considers only 3 different pairs).

In order to find the secret key, for each of the four diagonals, the attacker has to repeat the same
attack for three consecutive-diagonal bytes differences of the same diagonal, as for example k0,0⊕k1,1,
k1,1 ⊕ k2,2 and k2,2 ⊕ k3,3 for the first diagonal (note that the difference k0,0 ⊕ k3,3 and all the other
differences of these four bytes of the first diagonal are given by the sum of the previous ones). As
result, the attacker is able to find the whitening key up to (28)4 = 232 variants, if she does not use
any information about the secret S-Box. Thus, the total cost of the attack is 12 · 210 = 213.6 chosen
plaintexts and 12 · 29.6 = 213.2 XOR operations.

Without discovering any information about the secret S-Box, the attacker is able to find the secret
key up to 232 variants.

Practical Verification. The attack just presented has been practically verified5: here we report
the practical results. Suppose that an attacker is looking for a byte difference, e.g. δ ≡ k0,0 ⊕ k1,1

(similarly for the other cases). As we have seen, in order to have a probability of success higher than

4Given two random texts x and y in they same coset of D0, they belong to the same coset of M0,1,3 with probability
2−24 - see Theorem 5. However, in this case we are not considering random texts in D0, but two texts that belong
after one round to the same coset of D0,1,3 with probability 2−8. Since two texts belong to the same coset ofM0,1,3

if and only if they belong to the same coset of D0,1,3 two rounds before, we obtain that the probability for the
studied case is 2−8 and not 2−24.

5The source codes of the attacks on AES with a secret S-Box in this section are available at https://github.com/
Krypto-iaik/Attacks_AES_SecretSBox

142

https://github.com/Krypto-iaik/Attacks_AES_SecretSBox
https://github.com/Krypto-iaik/Attacks_AES_SecretSBox

7.2. Truncated Diff. Attacks up to 4-round AES with a Single Secret S-Box

Figure 7.2.: 3-round Truncated Differential Attack on AES with secret S-Box. The choice of the
plaintexts (i.e. p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1) guarantees that after one round there are only three bytes
with non-zero difference instead of four, that is the plaintexts belong to the same coset of C0 ∩D0,1,3.
White box denotes denotes a byte with a zero-difference, while a black box denotes a byte with
non-zero difference.

95%, she has to use 3 pairs of texts (with one text in common), and the computational cost can be
approximated by 3 · 28 = 768 XOR operations (in the worse case). However, consider the case of
a wrong guessed value of δ. In this case, when the attacker finds the first pair of ciphertexts that
does not belong to the same coset of M0, she can immediately deduce that the guessed value δ is
certainly wrong, without considering the other remaining pairs. For this reason, we can expect that
the practical computational cost is lower than the theoretical one (which is computed analyzing the
worse case). In effect, our practical results show that the average computational cost of the attacker
is of 261 XOR operations, that is 1/3 of the theoretical one.

7.2.2. Integral Attack on 3 Rounds of AES with Secret S-Box

A similar technique works for the case of the square attack. As we have just seen, given two plaintexts
p1 and p2 such that p1

i,j = p2
i,j for each (i, j) 6= {(0, 0), (1, 1)} and p1

0,0 ⊕ p1
1,1 = p2

0,0 ⊕ p2
1,1 = δ, then

they belong to the same coset of C0 ∩M0,1,3 after one round if δ = k0,0 ⊕ k1,1.
The idea of the attack is the following. Consider the set Vδ defined as in (7.2):

Vδ = {(pi, ci) for i = 0, ..., 28−1 | ∀i : pi0,0⊕pi1,1 = δ and ∀(k, l) 6= {(0, 0), (1, 1)}, i 6= j : pik,l = pjk,l},

If δ = k0,0 ⊕ k1,1, one round encryption of Vδ corresponds to
x c0,1 c0,2 c0,3

c1,0 x⊕ δ c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

c3,0 c3,1 c3,2 c3,3

→


y ⊕ c̃0,0 c̃0,1 c̃0,2 c̃0,3

0x03 · y ⊕ c̃1,0 c̃1,1 c̃1,2 c̃1,3

c̃2,0 c̃2,1 c̃2,2 c̃2,3

0x02 · y ⊕ c̃3,0 c̃3,1 c̃3,2 c̃3,3


for each x ∈ F28 , where y = S-Box(x⊕ k0,0). That is, if δ = k0,0 ⊕ k1,1, then the set Vδ is mapped
into D0,1,3 ∩ C0 ∩M3, which implies that the bytes in positions (0, 0), (1, 0) and (3, 0) can take each
possible values in F28 . Instead, if δ 6= k0,0 ⊕ k1,1, no claims can be made about the bytes of the first
column (the others are obviously constant). Equivalently, these two cases correspond to:

A C C C
A C C C
C C C C
A C C C

 ,


? C C C
? C C C
? C C C
? C C C

 ,

143

7. AES with a Single Secret S-Box

respectively for δ = k0,0⊕k1,1 and δ 6= k0,0⊕k1,1, whereA,B,C and ? denote active/balance/constant/unknown
byte (see Sect. 3.3.1 for details). Since

A C C C
A C C C
C C C C
A C C C

→

B B B B
B B B B
B B B B
B B B B


after 2 rounds, it follows that the 3-round encryption of Vδ has the balance property if δ = k0,0⊕k1,1.

Instead, if δ 6= k0,0 ⊕ k1,1, the probability that Vδ satisfies the balance property after 3-round if
δ 6= k0,0 ⊕ k1,1 is (2−8)−16 = 2−128, since it is not in general possible to guarantee any property of
the one round of encryption of Vδ.

Thus, the idea is to consider 28 different sets Vδ, one for each possible values of δ, and to check if
the balance property on the ciphertexts is satisfied or not. If the balance property is not satisfied,
then the value δ as candidate for k0,0 ⊕ k1,1 is certainly wrong. What is the probability that all the

false candidates do not satisfy this test? By simply computation is (1− 2−128)28−1 ' 1− 2−120. As
a result, in order to find one byte of the secret key, the data complexity is 28 · 28 = 216, while the
computational complexity can be approximated to 216 XOR operations.

As for the previous attack, the idea is to repeat the attack for three different consecutive-diagonal
bytes, and for all the four diagonals. In this way, the attacker is able to find 232 variants of the
whitening key without working on the secret S-Box. The total data complexity for the attack can be
approximated to 12 · 216 = 219.6 chosen plaintexts, and a cost of 219.6 XOR operations.

Practical Verification. As last thing, we report that the practical computational cost of this
attack is approximately the same of the theoretical one, and that the given data complexity allows
to have an high probability of success, as indicated above.

7.2.3. Truncated Differential Attack on 4-round AES with a single Secret S-Box

As for the case of 3-round of AES, we present an attack on 4-round of AES with secret S-Box which
exploits the truncated differential attack and the subspace trail. The previous truncated differential
attack on 3-round of AES with secret S-Box exploits a subspace trail with probability 1. In this
section, we present a truncated differential to attack 4-round of AES with secret S-Box - illustrated
in Fig. 7.3 - that exploits the subspace trail described in Sect. 4.3.2, which has probability strictly
less than 1 (but greater than 0).

The idea of the attack is to exploit the fact that two elements that belong to the same coset of
DI belong to the same coset of MJ after three rounds with probability higher than two random
elements. To set up the attack, we exploit this fact together with the possibility to map a subset of
a coset of Di (which depends on the secret key) into a subset of a coset of DI after one round.

Consider two plaintexts p1 and p2 such that p1
i,j = p2

i,j for each (i, j) 6= {(0, 0), (1, 1)} and

p1
0,0⊕ p1

1,1 = p2
0,0⊕ p2

1,1 = δ. As we have seen, if δ = k0,0⊕ k1,1, then the two plaintexts belong to the
same coset of D0,1,3 after one round. First of all, the previous choice of plaintexts can be generalized.

Proposition 15 ([GRR16]). Let p1 and p2 be two texts such that

p1
i,j = p2

i,j ∀(i, j) 6= {0, 0), (0, 3), (1, 1), (1, 2), (2, 0), (2, 3), (3, 1), (3, 2)}

and

p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 = δ0, p1
1,2 ⊕ p1

2,3 = p2
1,2 ⊕ p2

2,3 = δ1,

p1
0,3 ⊕ p1

3,2 = p2
0,3 ⊕ p2

3,2 = δ2, p1
2,0 ⊕ p1

3,1 = p2
2,0 ⊕ p2

3,1 = δ3.

Then, if δ0 = k0,0 ⊕ k1,1, δ1 = k1,2 ⊕ k2,3, δ2 = k0,3 ⊕ k3,2 and δ3 = k2,0 ⊕ k3,1 (where k is the secret
key of the first round), then after one round they belong to the same coset of C0 ∩ D0,1,3 ⊆ D0,1,3,
that is R(p1)⊕R(p2) ∈ C0 ∩ D0,1,3.

144

7.2. Truncated Diff. Attacks up to 4-round AES with a Single Secret S-Box

Figure 7.3.: 4-round Truncated Differential Attack on AES with secret S-Box. The choice of the
plaintexts (i.e. p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1 and p1,2 ⊕ p2,3 = k1,2 ⊕ k2,3) guarantees that after one round
they belong to the same coset of C0,1 ∩ D0,1,3. As a consequence, after three rounds they belong to
the same coset of CJ for a certain J ⊆ {0, 1, 2, 3} with |J | = 3 with probability 2−22 instead of 2−30.
White box denotes denotes a byte with a zero-difference, while a black box denotes a byte with
non-zero difference.

The proof is similar to that of Lemma 13.

In the following, we consider pairs of plaintexts such that p1
i,j = p2

i,j for each (i, j) 6= {(0, 0), (1, 1),

(1, 2), (2, 3)} and p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 = δ0, p1
1,2 ⊕ p1

2,3 = p2
1,2 ⊕ p2

2,3 = δ1. If δ0 = k0,0 ⊕ k1,1 and
δ1 = k1,2⊕k2,3, these two plaintexts belong to the same coset of D0,1,3 with probability 1, that is they
belong to the same coset of M0,1,3 after three rounds with probability 1. Using Prop. 5, this means
that if δ0 = k0,0 ⊕ k1,1 and δ1 = k1,2 ⊕ k2,3, the two plaintexts belong to the same coset of CJ with
probability (28)−12+4·|J | after three rounds. That is, if |J | = 3, δ0 = k0,0 ⊕ k1,1 and δ1 = k1,2 ⊕ k2,3,
then after three rounds these two plaintexts belong to the same coset of CJ with probability 2−24 for
a fixed J with |J | = 3, or with probability 4 · 2−24 = 2−22 for a free J with |J | = 3. Since a coset of
CJ is mapped into a coset of MJ with probability 1, we can conclude that if δ0 = k0,0 ⊕ k1,1 and
δ1 = k1,2 ⊕ k2,3, the two plaintexts belong to the same coset ofMJ for a certain J with |J | = 3 with
probability 2−22.

Consider now the case δ0 6= k0,0 ⊕ k1,1 or/and δ1 6= k1,2 ⊕ k2,3. In this case, we can consider the
corresponding ciphertexts as randomly distributed, that is they belong to the same coset of MJ for
a certain J with |J | = 3 after four rounds only with probability 4 · 2−32 = 2−30.

Remark. Before to go on, we explain why it is not possible to work on a single δ (as for the
previous attack on 3 rounds of Sect. 7.2.1). Suppose to consider two plaintexts p1 and p2 such that
p1
i,j = p2

i,j for each (i, j) 6= {(0, 0), (1, 1)} and p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 = δ. By definition, these two
plaintexts belong to the same coset of D0 ∩ C0,1 ⊆ D0, independently by δ. Thus, as shown in Sect.
4.3.3, the probability that they belong to the same coset of MJ for |J | = 3 is zero - see probability
(4.6) - independently of δ.

145

7. AES with a Single Secret S-Box

Data and Computational Cost

Data Complexity. The idea of the attack is to exploit these different probabilities in order to
recover the key. In particular, consider n ≤ 216 plaintexts defined as before for each possible values
of δ0 and δ1. If δ0 = k0,0 ⊕ k1,1 and δ1 = k1,2 ⊕ k2,3, then we expect approximately n · (n− 1) · 2−23

different pairs of ciphertexts that belong to the same coset of MJ for a certain J with |J | = 3 (i.e.
collisions), while n · (n− 1) · 2−31 collisions if δ0 6= k0,0 ⊕ k1,1 or/and δ1 6= k1,2 ⊕ k2,3. For example, if
n = 216, we expect on average 28 = 256 collisions for the first case and 2 in the other one. By our
experiments, we check that n = 213 is (largely) sufficient to find the right value of k0,0 ⊕ k1,1 and
k1,2 ⊕ k2,3.

Assume that k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3 have been found. The idea is to proceed in the same
way to find the 232 variants of the whitening secret key. To improve the total cost of the attack,
suppose that for each diagonal the attacker one difference of two consecutive-diagonal bytes is
known. A good strategy is to use it to find the others. As an example, a good strategy could
be to use the knowledge of δ0 = k0,0 ⊕ k1,1 and to look for δ2 = k0,3 ⊕ k3,2 (similar for δ0 and
δ3 = k2,0 ⊕ k3,1), instead to work on δ2 and δ3. Note that both the method allows to find the
secret key, but in the first case the attacker does 2 · 28 = 29 tests, while in the second one 216.
Thus, the data complexity cost can be approximated by 8·28 ·28 +2·(28)2 ·213 = 230 chosen plaintexts.

Computational Complexity. First of all, observe that the first step of the attack (i.e. to find
δ0 and δ1) is the most expensive one. Thus, the total cost can be approximated by this step (which
is repeated two times - on the first and on the second diagonals, and then on the third and on the
fourth diagonal). Moreover, note that the attacker must construct all the possible pairs of ciphertexts
and check if they belong or not to the same coset of MJ for a certain J with |J | = 3. Since the cost
to check if two texts belong to the same coset of MJ for a certain J with |J | = 3 requires only 1
XOR operations, the computational cost can be approximated by the cost to construct all the pairs.
Moreover, since for each δ0 and δ1 the attack needs 213 chosen plaintexts, the operation to construct
all the pairs requires 213 · (213 − 1)/2 = 225 table look-ups, for a total of 2 · (28)2 · 225 = 242 table
look-ups.

A way to improve this step is to re-order all the texts using a merge-sort algorithm, as we described
in details in Algorithm 2. For each δ0 and δ1 and for each J with |J | = 3, the computational cost to
re-order all the elements and to count the collision can be approximated to 213 · (log 213 + 1) ' 217

table look-ups, for a total of 4 · 2 · (28)2 · 217 = 236 table look-ups, that is 229.7 four-round encryption
assuming the approximation that one round of AES corresponds to 20 table look-ups. The memory
cost is 230 to store all the texts. In this way, the attacker is able to find 232 variants of the whitening
key, without working (or finding) any information about the secret S-Box.

For completeness, note that this number can be reduced to 28 if one works also on the secret
S-Box, as done in [TKKL15].

Practical Verification. The attack just presented has been practically verified: here we report
the practical results. For simplicity, here we limit ourselves to report the results when the attacker
tries to find two bytes of the secret key - as k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3 - using 213 different chosen
plaintexts. These results can be easily extended for the complete attack, as described in the previous
text. For completeness, we consider both the two cases in which the attacker (1) re-orders the texts
before to count the number of collisions (working only on consecutive ordered elements), or (2)
constructs all the possible pairs. This second setting allows to understand better the importance of
the re-ordering algorithm in terms of performance/computational cost.

In the second case (that is the one in which all the possible pairs are constructed - no use of the
re-ordering algorithm), the expected theoretical computational cost in order to find 2 bytes of the
secret key is of (28)2 · 212 · (213 − 1) = 241 − 228 ' 241 memory accesses, and it is approximately the
same of the practical computational one. Instead, for the first setting (that is the one the re-order

146

7.3. Impossible Differential Attack on 5-round of AES with a single Secret S-Box

the text before to counts the number of collisions) the expected theoretical computational cost in
order to find 2 bytes of the secret key is of 4 · (28)2 · 213 · (log 213 + 1) ' 232.8 memory accesses. The
average practical computational cost is approximately of 232.65 memory accesses, which is very close
to the theoretical one. Finally, 213 chosen plaintexts are (largely) sufficient to find the right value of
k0,0 ⊕ k1,1 and k1,2 ⊕ k2,3, as predicted by the theory.

7.3. Impossible Differential Attack on 5-round of AES with a
single Secret S-Box

Using the strategy presented in the previous section, it is possible to set up an impossible differential
attack on 5 rounds of AES with a secret S-Box. As before, the goal is to find the secret key without
needing to discover any information about the S-Box. With respect to previous attacks, the impossible
differential attack on 5-round AES has a lower data and computational complexities if one exploits
the property that the XOR-sum of three coefficients in the same row of the MixColumns matrix is
equal to zero. For simplicity, in the following we also briefly recall the variant of the attack that
exploits the property that two coefficients in the same row of the MixColumns matrix are equal.

7.3.1. Idea of the Attack using Equal Coefficients of MC

In the following, we define the set of plaintexts-ciphertexts Vδ with |Vδ| = 28:

Vδ ={(pi, ci) for i = 0, ..., 28 − 1 | ∀i : pi0,0 ⊕ pi1,1 = δ and

and ∀(k, l) 6= {(0, 0), (1, 1)} : pik,l = pjk,l where i 6= j},
(7.2)

i.e. plaintexts with 14 constants bytes and with the difference on the other two bytes fixed.
Consider two different pairs (p1, c1) and (p2, c2) that belong to the same Vδ. By Prop. 13, we

know that if δ = k0,0 ⊕ k1,1, then p1 and p2 belong to the same coset of D0,1,3 ∩ C0 ⊆ D0,1,3 after
one round (that is, R(p1) ⊕ R(p2) ∈ D0,1,3 ∩ C0 ⊆ D0,1,3) with probability 1. If δ 6= k0,0 ⊕ k1,1,
they belong to the same coset of C0 after one round with probability 1, and to the same coset of
D0,1,3 ∩C0 ⊆ D0,1,3 with probability 2−8 (or to the same coset of DJ for |J | = 3 after one round with
probability 4 · 2−8 = 2−6).

Consider first the case δ = k0,0 ⊕ k1,1. Since R(p1)⊕R(p2) ∈ D0,1,3 for each pair of plaintexts p1

and p2 in Vδ, then R(4) ◦R(p1) ⊕ R(4) ◦ R(p2) = R(5)(p1) ⊕ R(5)(p2) /∈ MJ for |I| + |J | ≤ 4 with
probability 1 due to the 4-round impossible differential distinguisher of Sect. 4.3.3. That is, for each
(p1, c1) 6= (p2, c2)

Prob
[
R(5)(p1)⊕R(5)(p2) ∈MJ | (p1, c1), (p2, c2) ∈ Vδ

]
= 0,

for each J with |J | = 1 and where δ := k0,0 ⊕ k1,1 is known. As usual, a similar result holds also in
the case in which the final MixColumns operation is omitted (in this case, MJ is replaced by IDJ).

Instead, if δ 6= k0,0 ⊕ k1,1, note that it’s possible that two elements of Vδ belong to the same coset
ofMJ for |J | = 1 after 5-round. In particular, the probability that two elements p and q in Vδ belong
to the same coset ofMJ after 5-round for a certain J with |J | = 1 is approximately6 4 · 2−96 = 2−94.

The idea is to exploit these different probabilities in order to find the key. In particular, a key
candidate δ can be declared wrong if there is at least one collision, i.e. two different pairs of texts
(p1, c1) and (p2, c2) such that p1 ⊕ p2 ∈ Vδ and c1 ⊕ c2 ∈MJ for |J | = 1. Thus, in the following we
look for the minimum number of texts necessary to have at least one collision for each δ 6= k0,0⊕ k1,1

with high probability.

6The exact probability for a wrong δ 6= k0,0 ⊕ k1,1 is given by Pr(R(5)(p1) ⊕ R(5)(p2) ∈ MJ | p1 ⊕ p2 ∈ Vδ) =
2−6 · 0 + (1− 2−6) · 4 · 2−96 = 2−94 − 2−100 ' 2−94, which is derived considering the two cases R(p1)⊕R(p2) ∈ DJ
and R(p1)⊕R(p2) /∈ DJ for |J | = 3.

147

7. AES with a Single Secret S-Box

Figure 7.4.: 5-Round Secret Key Distinguisher for AES with a single secret S-Box from [GRR16] –
data complexity 298.2. The choice of the plaintexts (i.e. p0,0⊕ p1,1 = k0,0⊕ k1,1) guarantees that after
one round there are only three bytes with non-zero difference instead of four, that is the plaintexts
belong to the same coset of C0 ∩D0,1,3. The probability the two ciphertexts belong to the same coset
ofMk for |k| = 1 is zero. White box denotes denotes a byte with a zero-difference, while a black box
denotes a byte with non-zero difference.

Before to proceed, note that a similar impossible differential attack can be set up for 4-round AES
with secret S-Box, exploiting the fact that two elements in the same coset of DJ can not belong to
the same coset of CI after three rounds for |I|+ |J | ≤ 4.

7.3.2. Attack using Zero XOR-sum of some Coefficients of MC

Here we show how to set up an impossible differential attack on 5-round AES [Gra18a] that exploits
the fact that a sum of coefficients of the MixColumns matrix is equal to zero (e.g. (7.1)), and
improves the one just recalled [GRR16].

For a fixed a ∈ D⊥0 (i.e. ai,i = 0 for i = 1, 2, 3), consider a set of plaintexts of the form:

Vδ ≡
{
a⊕


x 0 0 0
0 x⊕ δ1,1 0 0
0 0 x⊕ δ2,2 0
0 0 0 0

 ∣∣∀x ∈ F28

}
(7.3)

and let δ ≡ (δ1,1, δ2,2). Since

Mr,1 ⊕Mr,2 ⊕Mr,3 = 0 for r = 0, 1,

148

7.3. Impossible Differential Attack on 5-round of AES with a single Secret S-Box

Figure 7.5.: 5-Round secret-key distinguisher for AES with a single secret S-Box from [Gra18a] –
data complexity 276.4. The choice of the plaintexts (i.e. p0,0⊕ pi,i = k0,0⊕ ki,i for i = 1, 2) guarantees
that after one round there are only two bytes with non-zero difference instead of four, that is the
plaintexts belong to the same coset of C0 ∩ D2,3. Thus, the probability the two ciphertexts belong to
the same coset of MK for |K| = 2 is zero. White box denotes denotes a byte with a zero-difference,
while a black box denotes a byte with non-zero difference.

it follows by Prop. 14 that the set Vδ is mapped into a coset of C0 ∩ D2,3 with probability 1 after
one round if δ1,1 = k1,1 ⊕ k0,0 and δ2,2 = k2,2 ⊕ k0,0. In the other cases, that is if δ1,1 6= k1,1 ⊕ k0,0

and/or δ2,2 6= k2,2 ⊕ k0,0 the set Vδ is mapped into a coset of C0 with probability 1, and into a coset
of C0 ∩ DI ⊆ DI for a certain I with |I| = 2 with probability 6 · 2−16 = 3 · 2−15.

Since Prob
[
R4(x)⊕R4(y) ∈MJ |x⊕y ∈ DI

]
= 0 for |I|+|J | ≤ 4 - see (4.6), if δ1,1 = k1,1⊕k0,0 and

δ2,2 = k2,2 ⊕ k0,0, it follows that given two plaintexts in the same coset of Vδ, then the corresponding
ciphertexts after five rounds can not belong to the same coset of MJ for |J | = 2:

Prob
[
R5(x)⊕R5(y) ∈MJ |x, y ∈ Vδ and δi,i = ki,i ⊕ k0,0 for i = 1, 2

]
= 0.

In the other cases - if δ1,1 6= k1,1 ⊕ k0,0 and/or δ2,2 6= k2,2 ⊕ k0,0, given two plaintexts in the same
coset of Vδ, then the corresponding ciphertexts after 5-round belong to the same coset of MJ for
|J | = 2 with prob. 6 · 2−64 = 3 · 2−63. The idea is to exploit this difference in the probabilities to
recover the secret key.

Comparison with the previous Impossible-Differential Attack. For completeness, we briefly discuss
the difference with the attack proposed in [GRR16] and illustrated in Fig. 7.4. In this last case,
a similar set Vδ is defined, and the idea is to exploit the fact two elements of each row of the
MixColumns matrix are equal. As before, for the right guessed key and given two plaintexts in

149

7. AES with a Single Secret S-Box

Data: 274.4 different sets Vδ defined as in (7.3) - 258.4 for each δ ≡ (δ1,1, δ2,2) - and
corresponding ciphertexts after 5 rounds

Result: k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2

for each δ1,1 from 0 to 28 − 1 and each δ2,2 from 0 to 28 − 1 do
flag ← 0;
for each set Vδ do

for each I ⊆ {0, 1, 2, 3} with |I| = 2 do
let (pi, ci) for 0 ≤ i ≤ 28 − 1 be the 28 (plaintexts, ciphertexts) of Vδ;
re-order this set of elements w.r.t. the partial order � defined in analogous way of

Def. 14 s.t. ci � ci+1 ∀i; // � depends on I
for i from 0 to 28 − 2 do

if ci ⊕ ci+1 ∈MI then
flag ← 1;
next δ;

end

end

end

end
if flag = 0 then

identify δ1,1 as candidate for k0,0 ⊕ k1,1 and δ2,2 as candidate for k0,0 ⊕ k2,2;
end

end
return Candidates for k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2. // Only one candidate with Prob.

95%
Algorithm 7: Impossible Differential Attack on 5 rounds of AES with a single secret S-Box. For
simplicity, the goal of the attack is to find two bytes of the key - k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2. The
same attack on the other diagonals can be used to recover the entire key up to 232 variants.

the same coset of Vδ, then the corresponding ciphertexts after 5-round can not belong to the same
coset of MJ for |J | = 1 The main difference regards the case of a wrong guessed key, for which
the previous event happens with prob. 2−94. As a result, one needs more texts to detect the wrong
guessed keys.

7.3.3. Data Complexity and Computational Cost

Data Cost. First of all, consider the attack on 2 bytes of the secret key. In order to discard a wrong
candidate δ of the key, it is sufficient that at least one set Vδ for which a pair of ciphertexts belong
to the same coset of MJ with |J | = 2 exists (note that this can never happen for the right value of
δ - the secret key). Since there are 216 − 1 wrong candidates, in order to have a total probability of
success of 95%, such a set must exist for each δ with probability higher than (0.95)2−16 ' 99.999922%.

Given a set Vδ, it is possible to construct approximately 27 · (28 − 1) = 215 different pairs of
ciphertexts. Since each pair can belong to the same coset of MJ with a probability of 3 · 2−63,
given n different pairs, the probability that at least one of them belong to the same coset of MJ is
1− (1− 3 · 2−63)n. By simple computation, the condition 1− (1− 3 · 2−63)n > 0.99999922 is satisfied
for n > 265.23. Since each set Vδ is composed of 215 pairs and since one has to repeat the attack for
each possible value of δ, the attacker needs approximately 265.23 · 2−7 · 216 = 274.23 chosen plaintexts
to find two bytes of the secret key (note that each set Vδ contains 28 texts, so 2−15 · 28 = 2−7).

The idea is to repeat this attack 4 times in order to find 8 bytes of the key (i.e. 2 for column). In
this case, for each candidate δ of the key at least one set Vδ with the previous property must exist

150

7.4. Multiple-of-n Attack on 5-round AES with a secret S-Box

with probability higher (0.95)2−18 ' 99.99998%. Using the same calculation as before, one needs
approximately n > 265.37 pairs of ciphertexts for each δ, i.e. approximately 250.37 different sets Vδ.

Finally, in order to find the final 4 bytes of the key (remember that we are to find it up to 232

variants), the idea is to repeat again the previous attack. However, note that in this case the attacker
must guess only one byte of the key for each diagonal instead of two (since two of three differences
are already known). Thus, for each wrong δ, at least one set for which two ciphertexts belong to the
same coset of MJ with |J | = 2 must exist with probability higher (0.95)2−10 ' 99.995%. Using the
same calculation as before, one needs approximately n > 264.73 pairs of ciphertexts for each δ, that
is approximately 257.73 different sets Vδ. It follows that the total data complexity is approximately
of 4 · 258.37 · 216 + 4 · 257.73 · 28 = 276.374 chosen plaintexts.

Computational Cost. Using the re-ordering algorithm proposed in Algorithm 7, the computa-
tional cost is well approximated by 4·4·258.37 ·216 ·(log 28+1) = 281.54 table look-ups, or approximately
274.9 five-round encryptions (20 table look-ups ≈ 1-round of encryption). For comparison, the attack
previously proposed requires 2102 chosen plaintexts and computational cost is of 2100.4 five-round
encryptions.

7.4. Multiple-of-n Attack on 5-round AES with a secret S-Box

Another possible way to attack round-reduced AES with a single secret S-Box is to exploit the
multiple-of-n property. As for the impossible differential attack just presented, we consider separately
the cases in which (1st) two coefficients of the MixColumns matrix are equal and (2nd) the XOR-sum
of some coefficients in the same row of the MixColumns matrix is equal to zero.

7.4.1. Attack using Equal Coefficients of MC

The idea is choose a particular set of plaintexts Aδ (which depends on a variable δ), such that only
for a particular value of δ - which depends on the secret key - the number of collisions among the
ciphertexts in the same coset of MI with |I| = 3 after 5 rounds is a multiple of 2 (i.e. it is an
even number) with probability 1. Since for all the other values of δ this event happens only with
probability 1/2, it is possible to discover the right key. Thus, for a fixed a ∈ D⊥1 (i.e. a0,1 = a1,2 = 0),
let Aδ be the set of plaintexts of the form:

Aδ ≡
{
a⊕


y0 x 0 0
0 y1 x⊕ δ 0
0 0 y2 0
0 0 0 y3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}
. (7.4)

Given a set Aδ, we claim that if δ = k0,1 ⊕ k1,2 then the number of collisions after 5 rounds in the
same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2 with probability 1.

Proposition 16 ([Gra18a]). Consider a set of plaintexts Aδ defined as in (7.4), and the corresponding
ciphertexts after 5 rounds. If δ = k0,1 ⊕ k1,2, then the number of different pairs of ciphertexts that
belong to the same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2.

Proof. Let δ = k0,1 ⊕ k1,2. After one round, there exists b such that the set Aδ is mapped into

R(Aδ) ≡
{
b⊕


z0 w 0 0
z1 0x03 · w 0 0
z2 0 0 0
z3 0x02 · w 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.

151

7. AES with a Single Secret S-Box

Consider two elements z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡
(z′0, z

′
1, z
′
2, z
′
3, w), and consider separately the two cases z1 6= z′1 and z1 = z′1. The idea is to show

that in the first case (i.e. the set of all the different pairs of elements for which the condition
z1,1 6= z′1,1 holds) the number of collisions is a multiple of 2, while in the second case (i.e. the set of
all the different pairs of elements for which the condition z1 = z′1,1 holds) the number of collisions
is a multiple of 256. In particular, consider two elements z, z′ ∈ R(Aδ) generated respectively by
z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w) with z1 6= z′1. For a fixed I ∈ {0, 1, 2, 3} with |I| = 3,

the idea is to show that R4(z)⊕R4(z′) ∈MI if and only if R4(v)⊕R4(v′) ∈MI where the texts
v, v′ ∈ R(Aδ) are generated respectively by v ≡ (z0, z

′
1, z2, z3, w) and v′ ≡ (z′0, z1, z

′
2, z
′
3, w). Similarly,

consider the case z1 = z′1. For this case, the idea is to prove that z, z′ ∈ R(Aδ) satisfy the condition
R4(z) ⊕ R4(z′) ∈ MI if and only if each pair of elements v, v′ ∈ R(Aδ) generated respectively by
v ≡ (z0, v1, z2, z3, w) and v′ ≡ (z′0, v1, z

′
2, z
′
3, w) for each v1 ∈ F28 have the same property, that is

R4(v)⊕R4(v′) ∈MI . Since there are 28 = 256 different values for v1, then the number of collisions
must be a multiple of 256. It follows that there exist n′, n

′′ ∈ N such that the total number of
collisions n can be written as n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′). In other words, the total
number of collisions is a multiple of 2.

More details of the proof can be found in [Gra17a, App. E].

Consider now the case δ 6= k0,1 ⊕ k1,2. In this case, the previous proposition does not hold and
the number of collisions is a multiple of 2 only with probability 1/2. Indeed, let δ 6= k0,1 ⊕ k1,2. By
simple computation, there exists a constant b such that the set Aδ is mapped after one round into

R(Aδ) ≡ b⊕


z0,0 0x02 · S-Box(x⊕ k0,1)⊕ 0x03 · S-Box(x⊕ δ ⊕ k1,1) 0 0
z1,1 S-Box(x⊕ k0,1)⊕ 0x02 · S-Box(x⊕ δ ⊕ k1,1) 0 0
z2,2 S-Box(x⊕ k0,1)⊕ S-Box(x⊕ δ ⊕ k1,1) 0 0
z3,3 0x03 · S-Box(x⊕ k0,1)⊕ S-Box(x⊕ δ ⊕ k1,1) 0 0


for each x and for each z0,0, ..., z3,3. Note that this is a subset (not a subspace) of a coset of C0,1.
Thus, assume that two elements z, z′ ∈ R(Aδ) belong to the same coset of MI after 4 rounds. Since
the second column of R(Aδ) can take only a limited number of values, working in the same way as
before it is not possible to guarantee that other pairs of elements - defined by a different combinations
of the variables - have the same property with prob. 1. It follows that in this case the number of
collisions is a multiple of 2 only with probability 1/2 (this result has been practically verified).

Note that each set contains 240 different texts, that is approximately 239 · (240 − 1) ' 279 different
pairs of ciphertexts. Since the probability that two ciphertexts belong to the same coset of MI for
|I| = 3 is 2−32, the number of collisions is approximately 279 · 2−32 = 247. We emphasize that for the
right key this number is exactly a multiple of 2 with probability 1, while for wrong guessed keys this
happens only with probability 1/2. Using these considerations, it is possible to find the right key up
to 232 variants.

Data and Computational Costs

Data Cost. To compute the data cost, we first analyze the case in which the goal is to discover
only one byte (in particular, the difference of two bytes) of the right key with probability greater
than 95%. A candidate value of δ can be claimed to be wrong if there exists at least a set Aδ
for which the number of collisions after five rounds is an odd number. Since there are only 28 − 1
different possible values for δ, one needs that such a set Aδ exists with probability higher than
(0.95)1/255 = 99.98% (since the tests for different δ are independent, the total probability of success
is higher than 0.9998256 = 0.95).

Since the probability that the number of collisions for a given set Aδ is odd is 50%, 4 different sets
Aδ (note that one can count the number of collisions in MI for all the 4 different I with |I| = 3, for
a total of 16 possible tests) are sufficient to deduce the right δ with probability higher than 95%,

152

7.4. Multiple-of-n Attack on 5-round AES with a secret S-Box

Data: 210 different sets Aδ defined as in (7.4) - 4 different sets for each δ - and
corresponding ciphertexts after 5 rounds

Result: k0,0 ⊕ k1,1

for each δ from 0 to 28 − 1 do
flag ← 0;
for each set Aδ do

let (pi, ci) for i = 0, ..., 240 − 1 be the 240 (plaintexts, ciphertexts) of Aδ;
for all j ∈ {0, 1, 2, 3} do

Let W [0, ..., 232 − 1] be an array initialized to zero;
for i from 0 to 240 − 1 do

x←
∑3

k=0MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes the byte of

MC−1(ci) in row k and column j− k mod 4 W [x]←W [x] + 1; // W [x]
denotes the value stored in the x-th address of the array W

end

n←
∑232−1

i=0 W [i] · (W [i]− 1)/2;
if (n mod 2) 6= 0 then

flag ← 1 (next δ);
end

end

end
if flag = 0 then

identify δ as candidate for k0,0 ⊕ k1,1;
end

end
return Candidates for k0,0 ⊕ k1,1. // Only one candidate with Prob. 95%

Algorithm 8: Key-Recovery Attack on 5 rounds of AES with a single secret S-Box. For simplicity,
the goal of the attack is to find one byte of the key - k0,0 ⊕ k1,1. The same attack is used to
recover the entire key up to 232 variants.

since 2−16 ≤ 1− 0.9998 = 2−12.3. It follows that the cost to find 1 byte of the key is of 4 (cosets)
·240 (number of texts in Aδ) ·28 (values of δ) = 250 chosen plaintexts.

In order to find the entire key up to 232 possible variants, the idea is to repeat the attack 12 times,
i.e. 3 times for each column. By analogous calculation7, it follows that 16 tests (that is 4 different
sets Aδ - note that there are four different I with |I| = 3) are sufficient to deduce the right δ with to-
tal probability higher than 95%. Thus, the data cost of the attack is of 12·250 = 253.6 chosen plaintexts.

Computational Cost. In order to count the number of collisions, one can exploit data structure
- the complete pseudo-code of such an algorithm is given in Algorithm 8. This method allows to
minimize the computational cost, which is well approximated by 255.6 table look-ups or approximately
248.96 five-rounds encryptions (20 table look-ups ≈ 1 round of encryption).

Practical Verification Using a C/C++ implementation8, we have practically verified the attack
just described on a small-scale variant of AES, as presented in [CMR05] - not on real AES due to
the large computational cost of the attack. We emphasize that Prop. 16 is independent of the fact
that each word is composed of 8 or 4 bits. Thus, our verification on the small-scale variant of AES is

7In this case, one needs that for each one of the 28 − 1 wrong possible values for δ, at least one set Aδ for which the
number of collision is odd exists with probability higher than (0.9998)1/12 = 99.99835%.

8The source codes of the attacks on AES with a secret S-Box in this section are available at https://github.com/
Krypto-iaik/Attacks_AES_SecretSBox2

153

https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2
https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2

7. AES with a Single Secret S-Box

strong evidence for it to hold for the real AES. The main differences between this small-scale AES
and the real AES regard the total computational cost.

For simplicity, we limit ourselves here to report the result for an attack on a single byte of the key,
e.g. k0,0 ⊕ k1,1. For small-scale AES, since there are only 24 − 1 possible candidates, it is sufficient
that for each wrong candidate of k0,0 ⊕ k1,1 a set Aδ for which the number of collisions is odd

exists with probability (0.95)2−4
= 99.659%. It follows that 9 tests (that is 3 different sets Aδ)

for each candidate of k0,0 ⊕ k1,1 are sufficient to find the right value. Using the same procedure
just presented based on data-structure, the theoretical computational cost is well approximated by
4 · 3 · 24 · (220 + 2 · 216) ' 227.75 table look-ups.

Our tests confirm that 3 different sets Aδ are largely sufficient to find the key. The average practical
computational cost is of 226.3 table look-ups using a data-structure. To explain the (small) difference
with the theoretical value, note that the theoretical value is computed in the worst case. As example,
when a candidate of the key is found to be wrong, it is not necessary to complete the verification for
all the other sets Aδ or indexes I, but it is sufficient to discard it and to test the next candidate.

7.4.2. The Attack using Zero XOR-Sum of some Coefficients of MC

Here we show how to adapt the previous attack in order to exploits the property that the sum of
three coefficients of each row of the MixColumns matrix M is equal to zero.

For a fixed a, consider a set of plaintexts A′′δ which depends on the guessed value of the key δ of
the form:

A′′δ ≡
{
a⊕


0 y 0 0
0 x y ⊕ δ1,2 0
0 0 x⊕ δ2,2 y ⊕ δ2,3

0 0 0 x⊕ δ3,3

 ∣∣∣∣ ∀x, y ∈ F28

}
(7.5)

where δ ≡ (δ1,2, δ2,2, δ2,3, δ3,3). Given a set A′′δ , we claim that the number of collisions among the
ciphertexts in the same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 after 5 rounds is a
multiple of 2. More formally:

Proposition 17 ([Gra18a]). Consider a set of plaintexts A′′δ defined as in (7.5), and the corresponding
ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i and δj,j+1 = k0,1 ⊕ kj,j+1 for i = 2, 3 and j = 1, 2 (the
indexes are taken modulo 4), then the number of different pairs of ciphertexts that belong to the same
coset of MI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2.

Proof. Let δi,i = ki,i ⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1 ⊕ k0,1 for j = 1, 2. By simple computation,
there exists a constant b such that a set A′′δ is mapped after one round into

R(A′′δ) ≡
{
b⊕


0x03 · z 0 0 0

0 0 0 0
0 0x02 · w 0 0

0x02 · z 0x03 · w 0 0

 ∣∣∣∣∀z, w ∈ F28

}
.

Consider a pair of texts t1, t2 ∈ R(A′′δ) generated respectively by t1 = (z, w) and t2 = (z′, w′). The
idea is to consider the following two cases separately: (1) z = z′ and w 6= w′ (or vice-versa) and (2)
z 6= z′ and w 6= w′, and to show that in the first case (1) the number of collisions is a multiple of
256, while in the second case (2) the number of collisions is a multiple of 2. In particular, consider a
pair of texts t1, t2 ∈ R(A′′δ) generated respectively by t1 = (z, w) and t2 = (z′, w′) with z 6= z′ and
w 6= w′. The idea is to show that R4(t1) ⊕ R4(t2) ∈ MI if and only if R4(s1) ⊕ R4(s2) ∈ MI for
|I| = 3, where the texts s1, s2 ∈ R(A′′δ) are generated respectively by s1 = (z, w′) and s2 = (z′, w).
Similarly, consider the case z 6= z′ and w = w′ (or vice-versa). As before, the idea is to prove that
t1, t2 ∈ R(A′′δ) satisfy the condition R4(t1)⊕R4(t2) ∈MI for |I| = 3 if and only if all the pairs of

154

7.4. Multiple-of-n Attack on 5-round AES with a secret S-Box

texts s1, s2 ∈ R(A′′δ) generated respectively by t1 = (z, s) and t2 = (z′, s) for all s ∈ F28 have the
same property. Thus, there exist n′, n

′′ ∈ N such that the total number of collisions n can be written
as n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′), that is n is a multiple of 2.

More details of the proof can be found in [Gra17a, App. G].

While for δi,i = ki,i ⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1 ⊕ k0,1 for j = 1, 2 it is possible to
guarantee that the total number of collisions is a multiple of 2 with probability 1, no analogous
result holds for the other cases. That is, if δi,i 6= ki,i ⊕ k1,1 for i = 2, 3 or/and δj,j+1 6= kj,j+1 ⊕ k0,1

for j = 1, 2, then the total number of collisions is a multiple of 2 with probability 50%.

Data and Computational Costs. Since the procedure of the attack is completely equivalent
to the one just described, we limit ourselves here to report the data and computational costs of
the attack. The total data complexity is approximately of 2 · 252.248 + 12 · 216 · 216 = 253.25 chosen
plaintexts, while - using the re-ordering algorithm proposed in Algorithm 2 - the computational cost
is well approximated by 2 · 4 · 19 · 232 · 216 · (log 216 + 1) ' 259.25 table look-ups, or approximately
252.6 five-round encryptions.

Practical Verification Using a C/C++ implementation, we have practically verified the attack
just described on a small-scale variant of AES [CMR05] - not on real AES due to the large
computational cost of the attack. As before, we emphasize that Prop. 17 is independent of the fact
that each word is composed of 8 or 4 bits and that our verification on the small-scale variant of AES
is strong evidence for it to hold for the real AES.

For simplicity, we limit ourselves here to report the result for the attack on four bytes of the
key, e.g. k2,2 ⊕ k1,1, k3,3 ⊕ k1,1, k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3. For small-scale AES, since there are
(24)4 = 216 candidates for the four bytes of the key, it is sufficient that a set A′′δ for which the

number of collisions is odd exists for each wrong candidate with probability higher than (0.95)2−16
.

Thus, 22 · 2 = 44 tests (i.e. 11 different sets Aδ) for each candidate δ are sufficient to find the
right value. Re-ordering the texts as described previously, the theoretical computational cost is well
approximated by 11 · 216 · 4 · 28 · (log 28 + 1) ' 232.6 table look-ups.

Our tests confirm that 2 different sets Aδ are largely sufficient to find the key. The average practical
computational cost is of 229.7 table look-ups. As before, the difference is explained by the fact that
in general it is possible to discard wrong candidates without considering all the corresponding 11
sets A′′δ .

155

8
Open-Key Distinguishers for AES

The concept of known-key distinguishers was introduced by Knudsen and Rijmen in [KR07]. Infor-
mally, in the classical single secret-key setting, the attacker does not know the randomly generated
key and aims to recover it or builds a (secret-key) distinguisher that allows to distinguish the cipher
from a random permutation. The security model in known-key attacks is quite different though: the
attacker knows the randomly drawn key the block cipher operates with, and aims to find a structural
property for the cipher under the known key - a property which an ideal cipher (a permutation
drawn at random) would not have. A more relaxed version - called chosen-key distinguisher - can also
be considered, where the adversary is assumed to have a full control over the key. This model was
introduced in [BKN09], and has been extended to a related-key attack on the full-round AES-256. In
the literature, these two models of security of block ciphers are usually denoted as open key model,
where the adversary knows or even chooses keys.

Since their introductions, open-key attacks have been a major research topic in the symmetric-
key community. To provide some examples, besides AES (discussed in the following) known-key
distinguishers have been proposed for full PRESENT [BPW15] – one of the most studied lightweight
block cipher proposed at CHES 2007 – and for Feistel networks [SY11]. This is justified by the
fact that, even if open-key distinguishers could be considered less relevant than secret-key ones,
they anyway allow to learn something about the security margin of a cipher. For example, if it
is not possible to find distinguishers for a block cipher when the key is given, then one cannot
find a distinguisher when the key is secret. Secondly and more important, block ciphers and hash
functions are very close cryptographic primitives, as the latter can be built from the former and
vice versa. For example, the Davies-Meyer construction, the Miyaguchi-Preneel construction or the
Sponge construction can transform a secure block cipher1 into a secure compression function. In a
hash setting, block cipher security models such as the known-key model (or the chosen-key model)
make sense since in practice the attacker has full access and control over the internal computations.
Moreover, an attack in these models depicts a structural flaw of the cipher, while it should be desired
to work with a primitive that does not have any flaw, even in the most generous security model for
the attacker. A classical example is the devastating effect on the compression function security of
weak keys for a block cipher [WPS+12], which are usually considered as a minor flaw for a block
cipher if the set of these weak-keys is small. Therefore, the security notions to consider for a block
cipher will vary depending if this block cipher will be used in a hash function setting or not.

Citing Knudsen and Rijmen [KR07], “imagine a block cipher” for which a known-key distinguisher
exists, “but where no efficient attacks are known in the traditional black-box model. Should we
recommend the use of such a cipher? We do not think so!”

Any Concrete Implementable Cipher can be Trivially Distinguished From an Ideal
Cipher. The open-key model received scrutiny from a more theoretical side too. Traditionally,
block ciphers have been examined under the classical notion of indistinguishability. In that setting
a block cipher E(·) is claimed secure if it is (computationally) indistinguishable from a fixed
random permutation Π(·) with the same domain and range as E(·). In other words, an attacker

1Actually, the Sponge construction can turn a pseudo-random permutation into a secure compress function. Such
pseudo-random permutation can be obtained by a secure cipher by fixing the key.

157

8. Open-Key Distinguishers for AES

has to distinguish between E(·) and Π(·) when placed in either real or ideal worlds, respectively.
Indistinguishability has been established as the de facto security notion for block ciphers because in
the encryption setting the intended use of the cipher key is in a secret manner.

On the other hand, indistinguishability cannot provide strong security guarantees in the open
key model : as it was shown already in [CGH04], any concrete implementable cipher (like the AES
instantiated by a known key) can be trivially distinguished from an ideal cipher. For instance,
consider the following straightforward distinguishability attack. Assume the goal is to distinguish
if an oracle is instantiated by a cipher EK(·) or by an ideal cipher Π(K, ·) under a known/chosen
key K. Given a query X, one gets Y (which can be Y = EK(·) or Y = Π(K,X)). Since the details
of EK(·) and the key K are known, one can simply compute Y ′ = EK(X). If Y ′ = Y , one can
conclude that the oracle is instantiated by EK(·). We emphasize that the “weak point” of such an
indistinguishability notion is that it allows access to the internal primitives EK(·).

Despite this cumulative impact in the symmetric-key community over the last years, open-key
distinguishers/attacks have been known to be difficult to formalize since, formally speaking, it is not
clear what an exploitable structural property of a block cipher under a known key is. There have
been several attempts to solve the problem in general but we are not aware of any published result
here.

8.1. “Weak” Known-Key Distinguisher

As we have just seen, every block cipher with a fixed underlying primitive is vulnerable to a known-key
distinguisher. To overcome this problem and since our work is more practically oriented, in the
following we limit ourselves to work in the “weak cipher model (WCM)”, as introduced in [MP15].
Roughly speaking, in this model we just consider distinguishers that exploit properties which have
no connection with the details of the underlying primitive E and that are independent of the (value
of the) key.

The Weak Cipher Model (WCM). A naive approach to analyzing the impact of known-key
attacks would be to simply plug a certain block-cipher construction into a hash function and
to analyze its security. However, as discussed in [MP15], this would be a devious and complex
combinatorial task. The idea proposed in [MP15] is to “model the block-ciphers in such a way that
they behave randomly, except that an adversary can exploit a particular relation. More formally, we
pose a certain predicate Φ, and we draw blockciphers randomly from the set of all ciphers that comply
with predicate Φ. Throughout, we refer to this model as the ‘weak cipher model (WCM)’.”

In particular, consider the case in which the predicate Π implies for each key k the existence
of a certain number A of sets of B queries {(k, p1, c1), ..., (k, pB, cB)} - where ci = Ek(pi) for each
i = 1, ..., B - that comply with a certain condition φ, defined as

BitC
(
p1 ⊕ ...⊕ pB ⊕ c1 ⊕ ...⊕ cB

)
= 0 (8.1)

where BitsC(x) outputs a string consisting of all bits of x whose index is in C. This model allows to
cover several known-key distinguisher in the literature. We refer to [MP15] for a formal description
of such a model.

Generic Known-Key Distinguishers. In [MP15], authors limit themselves to consider a condi-
tion/property Φ defined as in (8.1). What about other possible conditions/properties that can be
exploited by a know-key distinguisher?

Informally, a known-key distinguisher exploits the fact that it is in general harder for an adversary
who does not know the key to derive an N -tuple of input blocks of the considered block cipher E
that is “abnormally correlated” with the corresponding N -tuple of output blocks than for one who

158

8.1. “Weak” Known-Key Distinguisher

Figure 8.1.: A Known-Key Distinguisher Scenario. Step (0): a relationship R is chosen. Step (1):
the secret key is given to the Oracle Π/Π−1, to the Shortcut Player A and to the Verifier. Step (2):
the Shortcut Player A and the Generic Player A′ generate the N -tuples that satisfy the required
relationship R. Step (3): the Verifier receives the N -tuple and checks if R is satisfied or not. The
faster player to generate the N -tuple wins the “game”.

knows the secret key. This difficulty is well expressed by the T -intractable definition, expressed by
Gilbert [Gil14] as follows:

Definition 16 ([Gil14]). Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a block
cipher of block size n bits. Let N ≥ 1 and R denote an integer and any relation over the set S of
N -tuples of n-bit blocks. R is said to be T -intractable relatively to E if, given any algorithm A′ that
is given an oracle access to a perfect random permutation Π of {0, 1}n and its inverse, it is impossible
for A′ to construct in time T ′ ≤ T two N-tuples X ′ = (X ′i) and Y ′ = (Y ′i) such that Y ′i = Π(X ′i),
i = 1, ..., N and X ′RY ′ with a success probability p′ ≥ 1/2 over Π and the random choices of A′.
The computing time T ′ of A′ is measured as an equivalent number of computations of E, with the
convention that the time needed for one oracle query to Π or Π−1 is equal to 1. Thus if q′ denotes
the number of queries of A′ to Π or Π−1, then q′ ≤ T ′.

Definition 17 ([Gil14]). Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a block
cipher of block size n bits. A known-key distinguisher (R,A) of order N ≥1 consists of (1) a relation
R over the N-tuples of n-bit blocks (2) an algorithm A that on input a k-bit key K produces in
time TA, i.e. in time equivalent with TA computations of E, an N-tuple X = (Xi) i = 1, ..., N of
plaintext blocks and an N-tuple Y = (Yi) i = 1, ..., N of ciphertext blocks related by Yi = EK(Xi)
and by X RY. The two following conditions must be met:

• The relation R must be TA-intractable relatively to E;

• The validity of R must be efficiently checkable.

To formalize the last requirement, one can incorporate the time for checking whether two N -tuples
are related by R in the computing time TA of algorithm A.

We emphasize that while the algorithm A takes a random key K as input, the relation R satisfied
by the N-tuples of input and output blocks constructed by A or A′ is the same for all values of K
(in other words, it is independent of K) and must be efficiently checkable without knowing K.

The “Inside-Out Approach” and Similarity with the Secret-Key Distinguisher. Before
going on, we briefly highlight the similarity with the secret-key distinguisher. In this case, the goal is
to find a set of (chosen) plaintexts (respectively ciphertexts) for which the corresponding ciphertexts
(resp. plaintexts) - generated by the cipher for which the key is secret - satisfy a property R with a

159

8. Open-Key Distinguishers for AES

different probability than in the case in which the ciphertexts are generated by a random permutation
Π.

In the case of a known-key distinguisher (similar for the chosen-key one), it is possible to do more,
since the key that defines the cipher is not secret anymore. Instead of choosing plaintexts, the idea
is to choose middle texts for which the corresponding plaintexts and the corresponding ciphertexts
satisfy a certain property R. This approach is usually denoted as the “inside-out” approach. The
comparison with the random permutation case is then done by e.g. considering the cost to generate
plaintexts and ciphertexts that satisfy the same property R.

8.1.1. The Known-Key Distinguisher Scenario

To better understand these definitions, we propose and describe in more detail a generic scenario
for a known-key distinguisher, which is depicted in Fig. 8.1. This scenario is composed of five
characters, which are a key generator, an oracle, two players and a verifier. We assume that the
oracle is instantiated by an ideal cipher Π : (k, p) ∈ {0, 1}k × {0, 1}n → c = Π(k, p) ∈ {0, 1}n chosen
uniformly from all block ciphers of this form2. Equivalently, Π is chosen uniformly at random among
all ciphers with a k-bit key and a n-bit input/output. Moreover, we assume that the verifier knows
both E and Π.

First of all - step (0), we assume that a relation R defined as in Def. 16 is chosen. At step (1),
the key generator generates a key, which is given to the oracle and to one of the two player. In the
following, we call “shortcut player” the player that knows the key and “generic player” the player
that does not know it. Referring to the previous definitions by Gilbert, the generic player can be
identified with the algorithm A′, while the shortcut player can be identified with the algorithm A. At
step (2), the two players generate the N -tuple of (plaintexts, ciphertexts) which satisfy the required
relation R. Since the generic player does not know the key, he must ask the oracle (identified with Π
and/or Π−1 in the previous definitions) for the encryption (resp. decryption) of chosen plaintexts
(resp. ciphertexts). We stress that this step does not consist only on the generation of (plaintext,
ciphertext) pairs, but also includes any computational cost that the player must do in order to
find the N -tuple with the required property. When a player finds the N -tuple which satisfies the
required relation R, he sends it to the verifier - step (3). The verifier finally checks if (1) the relation
Y ′i = EK(X ′i) (case of shortcut player) or Y ′i = Π(X ′i) (case of generic player) is satisfied for each i
and if (2) the N -tuple satisfied the relation R. The first/fastest player who sends the N -tuple with
the required property wins the “game”.

A distinguisher is meaningful if the cost of the generic player - assume that the cost of one
oracle-query is equal to the cost of one encryption - to generate the N -tuple is higher than the cost
of the shortcut player, when the probability of success is equal for the two players. Equivalently, a
distinguisher is meaningful if the probability of the generic player to win the game is higher than the
probability of the shortcut player, when the number of tuples of (plaintexts, ciphertexts) that the two
players can generate is fixed and equal for both players. In other words, in the first case one considers
the computational costs of the two players to generate the N -tuples with a fixed probability of
success (equal for both the players). In the second case, the computational cost (equivalent to the
number of oracle queries for the generic player and the number of N -tuple generated by the shortcut
one) is fixed and one considers the probabilities of success of the two players to win the game.

Role of the Verifier. The role of the verifier is only to prevent one or both of the two players from
cheating. In other words, in the case of honest players, the verifier can be omitted, and the winner
of the game is simply the first/fastest player that claims to have found the N -tuple of (plaintexts,

2In particular, for each fixed k ∈ {0, 1}k, Π(k, ·) is a permutation, i.e. ∃Π−1(k, ·) : {0, 1}n → {0, 1}n s.t.
Π−1(k,Π(k, ·)) = I(·) where I(·) is the identity function. The parameters k and n are the same that defines
the encryption scheme E, that is E : (K, p) ∈ {0, 1}k × {0, 1}n → c = EK(p) ∈ {0, 1}n.

160

8.1. “Weak” Known-Key Distinguisher

ciphertexts) which satisfy the required relation R. We highlight that such a verifier is implicitly
present in all the distinguishers currently present in the literature.

In some distinguishers proposed in the literature, the computational cost of the verification step is
not negligible. To clarify, we identify the verification cost only as the cost to check the relation R3.
Thus, we define the cost of the distinguisher as the sum of the cost of the verification step (i.e. the
cost of the verifier) and of the cost to construct the set of plaintexts/ciphertexts with the required
property (that is, the cost of the shortcut player - the cost of the other player is higher). For this
reason, we assume in the following that a relationship R is efficiently checkable if and only if the
computational cost of the verifier is negligible with respect to the player ones. This implies that the
cost of the distinguisher can be approximated with the computational cost of the shortcut player
(the cost of the other player is always higher). Moreover, this assumption prevents the construction
of meaningless known-key distinguishers.

Generic Player. Since the generic player depends on the oracle to generate the N -tuple (i.e. he
cannot work alone to generate it), two possible settings can be analyzed. In the first one, only the
number of oracle queries is considered to determine the computational cost of this player, that is the
number of encryptions/decryptions required by the generic player to the oracle. In the second one,
both the number of oracle queries and any other computational cost of the generic player (which is
in general not negligible) are considered. Intuitively this second setting is weaker than the first one,
in the sense that a known-key distinguisher in the first setting works also in the second one but not
vice-versa. In other words, one can expect that the required number N of tuples is higher in the first
setting than in the second one (or equal in the best case). If the total cost of the generic player is
well approximated by the number of queries, these two settings are completely equivalent.

8.1.2. Open Problem - How to Formally Define the “Weak Known-Key”
Distinguisher?

From the above description, we can formulate a (potential) definition for the Known-Key disitinguisher
in the “weak cipher model”, denoted in the following as “Weak Known-Key distinguisher”. We recall
that the term “Weak” refer to the fact that we restrict the set of distinguishers only to those that
exploit a property which is independent of the details of the underlying permutation.

In particular, characterizing a meaningful - or non-trivial - known-key distinguisher for a concrete
cipher E remains an open problem. Informally, a known-key distinguisher can be considered meaningful
if the description of the generic relation R has no “obvious connection” with the specification of E
and is independent of the value of the key. More generally, the relation R should not “extensively”
re-use the operations that define E. For the follow-up, we introduce a set D of distinguishers D
defined as following:

D Set of Distinguishers: D denotes the set of all distinguishers D for which the description of the
generic relation R has no “obvious connection” with the specification of E and it is independent
of the value of the key.

We emphasize that the problem to formalize - with a proper mathematical definition - the set D of
all distinguishers D for which the description of the generic relation R has no “obvious connection”
with the specification of E is still open for future research. On the other hands, since our work is
more “practically oriented” (i.e. we deal with E which is not an ideal cipher), in the following we
limit ourselves to exploit this definition in order to set up known- (and chosen-) key distinguishers
for concrete ciphers.

3In other words, the cost to check that the relation Y ′i = EK(X ′i) (case of shortcut player) or Y ′i = Π(X ′i) (case of
generic player) is satisfied for each i is not considered/included. In the following, we assume that such relations are
always satisfied.

161

8. Open-Key Distinguishers for AES

For a concrete example, note that a distinguisher that exploit the relation XRY as Y = EX(X)
does not belong to D. Instead, a distinguisher that exploits the relation (X1, X2)R(Y1, Y2) as
X1 ⊕X2 ∈ X and Y1 ⊕ Y2 ∈ Y for particular subspaces X and Y (equivalently, X1 and X2 are equal
in certain bits/bytes/words - similar for Y1 and Y2) belongs in D, since such relation does not exploit
any detail of E(·). In this last case, note that the texts X = (X1, X2) satisfy a property which is
independent of the property satisfied by the texts Y = (Y1, Y2). In other words, given a set of texts
X and Y , for almost all open-key distinguishers it happens that the relation XRY is satisfied if and
only if X satisfies a particular property ΦX and Y satisfies a particular property ΦY . We emphasize
that this approach is analogous to the one proposed e.g. in [MP15].

With this in mind, we can define the “weak known-key indifferentiability” that we are going to
use in the following.

Definition 18. Let E : {0, 1}k × {0, 1}n → {0, 1}n be block cipher (where (K, p) 7→ c = E(K, p) =
EK(p), and let Π an ideal block cipher. Let D ∈ D be a distinguisher with oracle access to a
permutation and its inverse, and returning a single bit. The “weak known-key indifferentiability”
weakInf-KK advantage of D is defined as

AdvweakInf-KK(D) =
∣∣Prob[K $←− {0, 1}k;DEK(·),E−1

K (·)(K) = 1
]
+

− Prob
[
K

$←− {0, 1}k;DΠ(K,·),Π−1(K,·)(K) = 1
]∣∣.

For integers qD and t, the weakInf-KK advantage of E is defined as

AdvweakInf-KK(qD, t) = max
D∈D

AdvweakInf-KK(D)

where the maximum is taken over all distinguishers (for which the description of the generic relation
R has no “obvious connection” with the specification of E) making at most qD oracle queries and
running in time at most t. E is a (q, t, ε) weakInf-KK if AdvweakInf-KK(qD, t) ≤ ε.

Note that, even if the first probability does not contain any randomness, there’s a time complexity
involved in D.

For the follow-up, we remember the definition of Pseudo-Random Permutation.

Definition 19. Let E : {0, 1}k × {0, 1}n → {0, 1}n be block cipher (where (K, p) 7→ c = E(K, p) =
EK(p), and let Π an ideal block cipher. Let D be a distinguisher with oracle access to a permutation
and its inverse, and returning a single bit. The (Strong PseudoRandom Permutation) SPRP-advantage
of D is defined as

AdvSPRP (D) =
∣∣Prob[K $←− {0, 1}k;DEK(·),E−1

K (·) = 1
]
−Prob

[
K

$←− {0, 1}k;DΠ(K,·),Π−1(K,·) = 1
]∣∣.

For integers qD and t, the SPRP-advantage of E is defined as

AdvSPRP (qD, t) = max
D

AdvSPRP (D)

where the maximum is taken over all distinguishers making at most qD oracle queries and running
in time at most t. E is a (q, t, ε)−SPRP if AdvSPRP (qD, t) ≤ ε.

Using these definitions, it turns out that if a cipher is a Strong PseudoRandom Permutation, then
the ideal cipher in the weakInf-KK definition can be replaced by the encryption scheme instantiated
with an unknown secret key. Informally, the ideal cipher is indistinguishable from the block cipher
for which the key has been chosen at random.

162

8.1. “Weak” Known-Key Distinguisher

Proposition 18. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher which satisfies the SPRP
(“Strong Pseudo-Random Permutation”) definition. Then, E is (q, t, ε) weakInf-KK if and only if

max
D∈D

∣∣Prob[K $←− {0, 1}k;DEK(·),E−1
K (·)(K) = 1

]
−Prob

[
K

$←− {0, 1}k;DEK(·),E−1
K (·) = 1

]∣∣≤ ε
where the maximum is taken over all distinguishers making at most qD oracle queries and running
in time at most t.

Proof. First, we prove that if E is (q, t, ε) weakInf-KK, then the claim holds:∣∣Prob[K $←− {0, 1}k;DEK(·),E−1
K (·)(K) = 1

]
−Prob

[
K

$←− {0, 1}k;DEK(·),E−1
K (·) = 1

]∣∣≤
≤
∣∣Prob[K $←− {0, 1}k;DEK(·),E−1

K (·)(K) = 1
]
−Prob

[
K

$←− {0, 1}k;DΠ(K,·),Π−1(K,·)(K) = 1
]∣∣+

+
∣∣Prob[K $←− {0, 1}k;DEK(·),E−1

K (·) = 1
]
−Prob

[
K

$←− {0, 1}k;DΠ(K,·),Π−1(K,·) = 1
]∣∣

The second term in the l.h.s. is smaller than ε since E is a SPRP. It follows that∣∣Prob[K $←− {0, 1}k;DEK(·),E−1
K (·)(K) = 1

]
−Prob

[
K

$←− {0, 1}k;DEK(·),E−1
K (·) = 1

]∣∣≤
≤
∣∣Prob[K $←− {0, 1}k;DEK(·),E−1

K (·)(K) = 1
]
−Prob

[
K

$←− {0, 1}k;DΠ(K,·),Π−1(K,·)(K) = 1
]∣∣+ε.

Using the same strategy, one can prove that∣∣Prob[K $←− {0, 1}k;DEK(·),E−1
K (·)(K) = 1

]
−Prob

[
K

$←− {0, 1}k;DΠ(K,·),Π−1(K,·)(K) = 1
]∣∣≤

≤
∣∣Prob[K $←− {0, 1}k;DEK(·),E−1

K (·)(K) = 1
]
−Prob

[
K

$←− {0, 1}k;DEK(·),E−1
K (·) = 1

]∣∣+ε.
Since the previous two equalities work for all ε ≥ 0, the thesis follows.

Moreover, we show that if a cipher is weakInf-KK secure, then it is also SPRP secure.

Proposition 19. If E : {0, 1}k × {0, 1}n → {0, 1}n is weakInf-KK secure, then it also satisfies the
SPRP (“Strong Pseudo-Random Permutation”) definition.

Informally, if it is not possible to distinguish EK(·) from Π when the key K is known, then it is
not possible to distinguish them when the key is secret. Vice-versa is not true in general.

As example, the best secret-key distinguisher on AES (which is independent of the key) covers 6
rounds, while the best known-key distinguisher covers 8 rounds (12 if one allows Gilbert’s strategy).

Proof. We are going to prove that if E is not SPRP, then it is not inf-KK secure.
If E is not SPRP, then by definition there exists a distinguisher D̂ such that

AdvSPRP (qD, t) ≥AdvSPRP (D̂) =
∣∣Prob[K $←− {0, 1}k; D̂EK(·),E−1

K (·) = 1
]
+

− Prob
[
K

$←− {0, 1}k; D̂Π(K,·),Π−1(K,·) = 1
]∣∣≥ ε.

The idea is to build an weakInf-KK distinguisher D using D̂ that has the same advantage in breaking

E. Distinguisher D simulates the environment for D̂ as follows: firstly, a random key K
$←− {0, 1}k is

selected uniformly and D runs on the input K; then it forward all queries by D̂ - which is independent
of K - to its own oracle. If D̂ succeeds in distinguishing E and π, then D succeeds as well. In
particular, we have AdvweakInf -KK(qD, t) ≥ AdvweakInf -KK(D) = AdvSPRP (D̂) ≥ ε.

Remark. Since in the following we only consider practical known-key distinguisher in the weak
cipher model, we simply refer to them as “known-key distinguishers” instead of “weak known-key
distinguishers”.

163

8. Open-Key Distinguishers for AES

Table 8.1.: AES Known-Key Distinguishers. The computation cost is the sum of the computational
cost to generate N -tuples of plaintexts/ciphertexts and the verification cost. The word “Extended”
refers to a distinguisher which exploits the technique introduced by Gilbert [Gil14] (in this case we
also highlight which distinguisher is extended).

Rounds Computations Memory Property Reference

7 256 256 Zero-Sum [KR07]

7 224 216 Differential Trail [MRST09; LMR+09]

7 220 216 Multiple Diff. Trail [GR17]

8 264 264 Uniform Distribution [Gil14]

8 248 232 Differential Trail [GP10]

8 244 232 Multiple Diff. Trail [JNP13]

8 242.6 213 Statistical Integral [CSCW17]

8 223 216 Extended 7-Round MultDT [GR17]

9 250 232 Extended 8-Round MultDT [GR17]

9 223 216 Extended 7-Round MultDT [GR17]

10 264 264 Extended 8-Round Unif. Dist. [Gil14]

10 259.6 259 Extended 8-Round Stat. Integral [CSCW17]

10 250 232 Extended 8-Round MultDT [GR17]

12 282 232 Extended 8-Round MultDT [GR17]

12 266 264 Extended 8-Round Unif. Dist. [GR17]

MultDT: Multiple Differential Trail

8.2. Known-Key Distinguishers for AES

In the following, we recall the known-key distinguishers present in the literature in the above scenario
using the subspace trail notation. For simplicity, we assume that the relation Y ′i = EK(X ′i) (case of
shortcut player) or Y ′i = Π(X ′i) (case of generic player) are always satisfied for each i, that is that
the two players do not cheat about this relations.

8.2.1. 7- and 8-Round Known-Key Distinguisher

In the 7- and 8-round known-key distinguishers proposed in [MRST09; LMR+09; LMS+15] and
[GP10], the goal of the two players is to find two pairs of (plaintexts, ciphertexts) - i.e. (p1, c1)
and (p2, c2) - with the following properties: the two plaintexts belong to the same coset of Di - i.e.
p1 ⊕ p2 ∈ Di - and the two ciphertexts belong to the same coset of Mi - i.e. c1 ⊕ c2 ∈ Mi - for a
fixed i ∈ {0, 1, 2, 3}.

In the above known-key distinguisher setting, the best technique that the shortcut player (i.e. the
player who knows the key) can use to win the game is the Rebound Attack. The rebound attack is a
differential attack proposed in [MRST09; LMR+09; LMS+15] for the cryptanalysis of AES-based
hash functions. Since it is a differential attack, one needs a “good” (truncated) differential trail in
order to exploit it. Examples of truncated differential trails used for 7- and 8-round AES are depicted
in Fig. 8.2. The rebound attack consists of two phases, called inbound and outbound phase. In the
first one, the attacker uses the knowledge of the key to find pairs of texts that satisfy the middle
rounds of the truncated differential trail. In the second one, he propagates the solutions found in the
first phase in the forward and in the backward directions, and checks if at least one of them satisfies
the entire differential trail.

164

8.3. Gilbert’s Known-Key Distinguisher for 10-round AES

Figure 8.2.: 7- and 8-round differential characteristic for known-key distinguisher of AES-128.

As proved in [GP10], in the case of a perfect random permutation 264 operations are required to
find (plaintexts, ciphertexts) pairs (p1, c1) and (p2, c2) that have the required properties with good
probability. Instead, for the AES case and using the rebound attack, 248 computations are sufficient
to find them with the same probability (besides a memory cost of 16× 232 = 236 bytes).

8.2.2. Multiple Limited-Birthday 8-Round Known-Key Distinguisher

An improvement of the previous known-key distinguisher on 8-round of AES was proposed in [JNP13].
Using the subspace trail notation, in this modified version of the 8-round known-key distinguisher,
the goal of the two players is to find two pairs of (plaintexts, ciphertexts) such that the two plaintexts
belong to the same coset of Di for an arbitrary i and the two ciphertexts belong to the same coset
of Mj for an arbitrary j, where i and j are not fixed in advance and it is not required that they
are equal (i.e. no condition is imposed on i and j) - an example is given in Fig. 8.3. For arbitrary
initial and final subspaces, the computational cost is reduced from 248 to 244 (note that there are 4
initial and final different subspaces Di andMj , for a total of 42 = 24 possibilities) while the required
memory is still 232, as shown in detail in [JNP13].

8.3. Gilbert’s Known-Key Distinguisher for 10-round AES

8.3.1. Uniform Distribution 8-round Known-Key Distinguisher

Another 8-round known-key distinguisher for AES is based on the uniform distribution property and
it was proposed by Gilbert in [Gil14]. In this case, the goal of the two players is to find a set of 264

(plaintext, ciphertext) pairs - that is (pi, ci) for i = 0, ..., 264 − 1 - with the following properties:

• for each K ⊆ {0, 1, 2, 3} with |K| = 3 the plaintexts are uniformly distributed in cosets of the
diagonal space DK - equivalently, for each K with |K| = 3 and for each a ∈ D⊥K there are 232

plaintexts pj for j ∈ J ⊆ {0, ..., 264 − 1} with |J | = 232 such that pj ∈ DK ⊕ a for all j ∈ J ;

• for each K ⊆ {0, 1, 2, 3} with |K| = 3 the ciphertexts are uniformly distributed in cosets of the
mixed space MK - equivalently, for each K with |K| = 3 and for each a ∈M⊥K there are 232

ciphertexts cj for j ∈ J ⊆ {0, ..., 264 − 1} with |J | = 232 such that cj ∈MK ⊕ a for all j ∈ J .

If the final MixColumns is omitted, an equivalent condition holds on the ciphertexts by replaying
the mixed space MK with the inverse-diagonal one IDK . To be more formal:

Definition 20. Consider 264 texts ti ∈ F4×4
28 for i = 0, ..., 264 − 1, and let K ⊆ {0, 1, 2, 3} with

|K| = 3 fixed. We say that these 264 texts ti are “uniformly distributed” in cosets of MK if

• for each coset MK ⊕ a for a ∈ M⊥K , there exist 232 texts Ta = {tj}j=0,...,232−1 such that
tj ∈MK ⊕ a for each tj ∈ T ;

• given sets Ta and Tb just defined for two different cosetsMK⊕a andMK⊕b where (a⊕b) ∈M⊥K ,
then Ta ∩ Tb = ∅.

165

8. Open-Key Distinguishers for AES

Figure 8.3.: 8-round multiple differential characteristics for known-key distinguisher of AES-128.

In the case in which the final MixColumns operation is omitted, note that it is possible to
re-formulate the goal of the two players as following: find a set of 264 (plaintext, ciphertext) pairs -
that is (pi, ci) for i = 0, ..., 264 − 1 - such that the bytes of the plaintexts and the ciphertexts are
uniformly distributed, that is:

• for each j, k = 0, 1, 2, 3 and for each x ∈ F28 , there are 256 plaintexts pi for i ∈ I ⊆ {0, ..., 264−1}
with |I| = 256 that satisfy pij,k = x for all i ∈ I;

• for each j, k = 0, 1, 2, 3 and for each x ∈ F28 , there are 256 ciphertexts ci for i ∈ I ⊆
{0, ..., 264 − 1} with |I| = 256 that satisfy cij,k = x for all i ∈ I.

We prove that these two properties are equivalent for the ciphertexts (the same argumentation
applies on the plaintexts as well).

First of all, if the bytes of the ciphertexts are uniformly distributed, then the ciphertexts are
uniformly distributed in cosets of the inverse-diagonal space IDK for each K with |K| = 3 by
definition of IDK . Vice-versa, consider the case in which the ciphertexts are uniformly distributed
in cosets of IDK for each K with |K| = 3. By definition, there are 232 ciphertexts ĉi with i ∈ I ⊆
{0, ..., 264 − 1} and |I| = 232 that belong to the same coset of ID0,1,2 ⊕ a for a certain a ∈ ID⊥0,1,2
(equivalent for the other spaces IDK with |K| = 3). By definition, a ∈ ID⊥0,1,2 if and only if ak,j = 0
for (k, j) 6= (0, 3), (1, 2), (2, 1), (3, 0), i.e. for each k + j 6= 3. In other words, ĉi ∈ ID0,1,2 ⊕ a for each
i ∈ I if and only if ĉik,j = ak,j for each i ∈ I and for each k + j = 3. Working independently on each

byte, it follows that the bytes of ci are uniformly distributed (for example, working on the first byte
and considering all a ∈ ID⊥0,1,2 with a0,3 fixed, it follows that there are 224 · 232 = 256 ciphertexts ci

s.t. ci0,3 = a0,3). If the final MixColumns is not omitted, the goal of the two players becomes to find

a set of 264 (plaintext, ciphertext) pairs - that is (pi, ci) for i = 0, ..., 264 − 1 - such that the bytes of
the pi and of MC−1(ci) are uniformly distributed.

Finally we highlight that the uniform distribution implies the balance/zero-sum property both on
the plaintexts and on the ciphertexts, and that the balance property is not destroyed by the (final)
MixColumns operation (since this operation is linear). For completeness, we remember that texts
{ti}i∈I have the balance property if

⊕
i∈I t

i = 0.

The Strategy of the Shortcut Player. Here, we briefly recall the best strategy that the shortcut
player can use to win the game using the subspace trails notation4. The idea is to start in the middle
with a set S of texts defined as S := Di ⊕Mj ⊕ c for a constant c, where |S| = 264. Observe that

Di ⊕Mj ⊕ c ≡
⋃

b∈Di⊕c
Mj ⊕ b =

⋃
a∈Mj⊕c

Di ⊕ a,

4We mention that the same strategy is described using the super-Sbox notation in [Gil14].

166

8.3. Gilbert’s Known-Key Distinguisher for 10-round AES

i.e. the set S can be re-written as union of cosets of the space Di or as union of cosets of the space
Mj . The ciphertexts are given by the 4-round encryption of S, while the plaintexts by the 4-round
decryption of S.

After encrypting S for 4 rounds, the texts are uniformly distributed in each coset of MI of
dimension 12 (i.e. |I| = 3). That is, after 4 rounds, each coset of MI for |I| = 3 contains exactly 232

elements. Indeed, remember that given two elements in the same coset of DI , they can not belong to
the same coset of MJ for |I|+ |J | ≤ 4 after 4-round. Thus, given a coset of Di with |i| = 1, after
4 rounds each element is distributed in a different cosets of MJ for |J | = 3. Since a coset of Di
contains 232 elements and since there are exactly 232 cosets of MJ , the elements of Di ⊕Mj are
uniformly distributed in each coset of MI . The same happens if one decrypts S for 4 rounds. In
this case, after decrypting S for 4 rounds, the texts are uniformly distributed in each coset of DI of
dimension 12 (i.e. |I| = 3), that is each coset of DI for |I| = 3 contains exactly 232 elements.

On the Meaningfulness of this Distinguisher. For the follow-up, we briefly recall the argu-
mentation given by Gilbert about the meaningfulness of such distinguisher.

First of all, 264 texts satisfy the uniform distribution on each byte with probability

p =

[
255∏
i=0

(
264 − i · 256

256

)
·
(
2−8
)264

]16

.

Indeed, consider the following problem. Given N texts and 2 sets, assume that each text belongs
to one of the two sets with probability 2−1. It follows that the N texts are uniformly distributed
among the two sets with prob.

(
N
N/2

)
· 2−N . In a similar way, given d ≥ 2 sets, they are uniformly

distributed with probability5
(∏d−1

i=0

(N−i·N/d
N/d

)
· d−N

)
.

Using Stirling’s formula n! ' nn · e−n ·
√

2π · n, this probability is well approximated by

p =

(
264!

(256!)256 ·
(
2−8
)264

)16

'
(

1

249 · π

)128

· (256!)−1/2 ' 2−7328.1 ≡ 2−212.84
. (8.2)

In other words, given 264 plaintexts whose bytes are uniformly distributed, this represents the
probability that the bytes of the corresponding ciphertexts are uniformly distributed. For comparison,
given 264 plaintexts whose sum is zero, then the sum of the corresponding ciphertexts is equal to
zero with probability 2−128.

What is the minimum number N ≡ 264 +M > 264 of - random - (plaintext, ciphertext) pairs such
that there is a subset of 264 pairs whose bytes are uniformly distributed both on the plaintexts and on
the ciphertexts with non-negligible property? Given 264 +M texts, it is possible to construct(

264 +M

264

)
' 1√

2π ·M
·
(

264 +M

M

)M
different sets of 264 texts (where the approximation is given using the Stirling’s formula and by the
assumption M � 264). This number is always higher than p−2 ≡ 2213.84

for each M ≥ 212. In other
words, given 264 + 212 random pairs, there is a good probability to find 264 (plaintext, ciphertext)
pairs such that the bytes of the plaintexts and of the ciphertexts are uniformly distributed. It follows
that if the cost of the generic player is approximated by the number of oracle queries, then his cost
is approximately of 264 + 212 ' 264 encryptions vs 264 encryption of the shortcut player.

5Consider the case N = 264 and d = 256. The product of the binomial coefficients is explained as follows. For each
one of the 16 bytes, there must exist 264/256 = 256 texts for each one of the 256 possible values. Thus, there are(

264

256

)
possible sets of 256 texts for each the byte as value 0,

(
264−256

256

)
possible sets of 256 texts for each the byte as

value 1 and so on.

167

8. Open-Key Distinguishers for AES

So, why is this distinguisher meaningful? Instead of focusing on the cost of the players, the idea is
to consider the probability of the generic player to win the game given 264 texts is negligible. To
do this, authors of [Gil14] claim that this probability is upper bounded by the probability of the
following game: “given 264− 1 (plaintext, ciphertext) pairs whose bytes are ‘almost uniform’ - see the
definition in the following, find a text for which the bytes of the corresponding 264 texts are uniformly
distributed”. Since this probability is upper bounded by 2−127 - see proof of Prop. 4 of [Gil14] - and
since this second game is (strong) “related” to the original one6, the conclusion follows immediately.

For completeness, we formal define what “almost uniform” means. Consider 264− 1 texts ti ∈ F4×4
28

for i = 0, ..., N − 2. We say that the bytes of 264 − 1 texts ti are “almost uniform” if for each row
and column j, k = 0, 1, 2, 3 (1) there exists x ∈ F28 s.t. there are 256 − 1 texts that satisfy tij,k = x

and (2) for each y ∈ F28 \ x, there are 256 texts that satisfy tij,k = y. More generally:

Definition 21. Consider 2N − d texts ti ∈ F4×4
28 for i = 0, ..., N − d − 1 for d ≥ 1. The bytes of

these 2N − d texts ti are “almost uniform” if for each row and column j, k = 0, 1, 2, 3:

• there exists a set X ≡ {x1, ..., xs ∈ F28} with cardinality s ≤ d such that for each xl ∈ X with
1 ≤ l ≤ s there are 2N−8 − d ≤ ŝl ≤ 2N−8 − s texts that satisfy tij,k = xl where

∑s
l=1 ŝl = d;

• for each y ∈ F28 \X, there are 2N−8 texts that satisfy tij,k = y.

Proposition 20. Consider a set of 2N texts whose bytes are uniformly distributed. For each d ≥ 1,
the bytes of each subset of 2N −d texts are “almost uniform” distributed w.r.t. the previous definition.

8.3.2. Extension to 10 Rounds of AES

This distinguisher is the starting point used by Gilbert in order to set up the first 10-round known-key
distinguisher for AES. The basic idea is to extend this 8-round distinguisher based on the uniform
distribution property adding one round at the end and one at the beginning. Assume for simplicity
that the final MixColumns is omitted. In the known-key distinguisher scenario presented above, the
players have to send to the verifier 264 (plaintext, ciphertext) pairs, that is (pi, ci) for i = 0, ..., 264−1,
with the following properties7:

1. there exists a key k0 s.t. the bytes of {Rk0(pi)}i are uniformly distributed, or equivalently that
the texts {Rk0(pi)}i are uniformly distributed among the cosets of DI for each I with |I| = 3;

2. there exists a key k10 s.t. the bytes of {MC−1 ◦ R−1
k10(ci)}i are uniformly distributed, or

equivalently that the texts {R−1
k10(ci)}i are uniformly distributed among the cosets of MJ for

each J with |J | = 3;

where MC−1 denotes the inverse MixColumns operation. We emphasize that it is not required that
k0 and k10 are equal to the secret subkeys, that is kr can be different from the r-th subkey. In other
words, it is only required that such keys exist, and not that they are equal to the “real” keys that
defines EK(·). The same assumption is exploited in all for all Gilbert’s like distinguishers presented
in the literature. Moreover, in this game, the subkeys k0 and k10 are assumed to be independent
(argumentations are given by Gilbert to show that the same distinguisher is applicable also to the
case in which the key-schedule holds - we discuss this topic in details in the following).

For completeness, note that since uniform distribution implies balance property – vice-versa is
not true in general, if the previous properties are satisfied then – for the key k0 – the sum of the

6For completeness, we mention that no formal proof is provided in [Gil14] in order to support this claim. In other
words, it is not proved that the fact that this second game is “hard” implies the hardness of the original game,
and/or vice-versa.

7For this and the following distinguishers, we abuse the notation kr to denote a key of the a certain round r. In
general, such subkey kr is different from the real secret subkey.

168

8.3. Gilbert’s Known-Key Distinguisher for 10-round AES

plaintexts after one round is equal to zero, i.e.
⊕264−1

i=0 Rk0(pi) = 0, and – for the key k10 – the sum

of the ciphertexts one round before is equal to zero, i.e.
⊕264−1

i=0 R−1
k10(ci) = 0.

We emphasize that even if this is a known-key distinguisher, the keys k0 and k10 for which the
relation R is satisfied can be different from the real subkeys. In other words, the verifier has no
information of the keys for which the relation R is satisfied, and her task is to check if they exist.
It follows that one must show that the above conditions are efficiently checkable. The only way to
verify these requirements is to find these two subkeys in an efficient way, which is not possible using
a brute force attack (k0 and k10 have 128 bits). Instead of checking all the 2 · 2128 = 2129 possible
values of k0 and k10, the idea proposed in [Gil14] is to check uniform distribution working on single
columns of SR(ci) and of SR−1(pi). In this way, the verifier must guess only 32 bits instead of 128,
and she has to repeat this operation 4 times (one for each anti-diagonal/diagonal) for each key.

For completeness, we mention that another strategy can be used to check the required property.
Working independently on each byte of k0 and k10 instead of entire anti-diagonal/diagonal, the
idea is simply to use integral attack [DKR97; KW02] to filter wrong keys. Besides improving the
computational cost, this strategy allows also to extend the distinguisher on 12-round AES.

In conclusion, the shortcut player (i.e. the one who knows the key) can construct these 264

(plaintext, ciphertext) pairs using the same strategy proposed for the 8 rounds distinguisher (note
that in this case the keys k0 and k10 correspond to the secret sub-keys). Instead, as proved in Prop.
6 of [Gil14], the probability that the generic player (i.e. the one who does not know the secret key)
successfully outputs (input, output) pairs that satisfy the previous properties (both in the input and
in the output) is upper bounded by 2−16.5. Finally, the verifier can find the keys k0 and k10 that
satisfy the required property (if they exist) with a computational cost which is smaller than the cost
of the two players.

On the Meaningfulness of this Distinguisher. For the follow-up, we briefly recall the argu-
mentation given in [Gil14] about the meaningfulness of this distinguisher.

First of all, what is the probability that given a set of 264 texts there exists a key k̂ such
that the bytes of 1-round encryption (resp. decryption) of such texts are uniformly distributed?
Using the previous calculation and since there are 2128 different keys, this probability is equal to
2128 · p ' 2128 · 2−7328.1 = 2−7200.1 ≡ 2−212.81

where p is defined in (8.2). Similar to the 8-round case,
it follows that 264 + 212 ' 264 (plaintext, ciphertext) pairs are sufficient to have good probability to
win the game.

So, as before, why is this distinguisher meaningful? As for the 8-round case, instead of focusing on
the cost of the players, Gilbert shows that the probability of the generic player to win the game
given 264 texts is negligible. To do this, Gilbert claims that this probability is upper bounded by the
probability of the following game. Consider 264 − d (plaintext, ciphertext) pairs for d ≥ 5, that is
(pi, ci) for each i = 0, ..., 264− d− 1, with the property that there exist a set of keys k0 and k10 - this
set can correspond to the entire set of keys - for which the bytes of Rk0(pi) and of MC−1 ◦R−1

k10(ci)
(that is 1-round encryption of pi and the 1-round decryption of the ciphertexts) are “almost uniform”
distributed. The goal of the player is to find the remaining d texts for which the bytes of the
corresponding 264 texts after 1-round encryption/decryption are uniformly distributed. Since this

probability is upper bounded by (2128)2 ·
(

516

2128−264+1

)3
' 2−16.5 - see proof of Prop. 6 of [Gil14] -

and since this second game is “related” to the original one, the conclusion follows immediately.

Generic Considerations

The previous 10-round distinguisher proposed by Gilbert is different from all the previous distin-
guishers up to 8 rounds present in the literature. For all distinguishers up to 8-round, the relation
R that the N -tuple of (plaintexts, ciphertexts) must satisfy does not involve any operation of the
block cipher E. As a consequence, it allows the verifier to check whether the N -tuple of (plaintexts,

169

8. Open-Key Distinguishers for AES

ciphertexts) satisfy the required relation R without knowing anything of the key. When R does
not re-use operations of E, this provides some heuristic evidence that this distinguisher can be
considered meaningful.

On the other hand, the previous 10-round distinguisher and the ones that we are going to propose
do not satisfy this requirement, i.e. in these cases the relation R involves and re-uses some operations
of E. The novelty of Gilbert’s work is not just the possibility to extend the distinguisher up to
10-round AES, but rather the introduction of a new distinguisher model. Requiring the existence of
round keys for which the 1-round encryption of the plaintexts (respectively, 1-round decryption of
the ciphertexts) satisfy the relation R, or in other words considering relations R that depend on
some operations of E, allows to set up new distinguishers that penetrate more round of the block
cipher.

8.3.3. Statistical Integral Distinguisher with Multiple Structures

Finally, we mention for completeness that at ACISP 2017 the distinguishers proposed by Gilbert in
[Gil14] has been improved by T. Cui, L. Sun, H. Chen and M. Wang [CSCW17]. In this paper, authors
turn both the 8- and 10-round Gilbert’s distinguishers into “statistical integral ones” [WCC+16]
with the goal to reduce the data/time complexity.

As we have previously recalled, the 8-round Gilbert’s distinguisher is based on the uniformly
distributed integral property, that is the goal is to generate plaintexts and corresponding ciphertexts
that are uniform distributed respectively in cosets of DJ and MI for each I, J ⊆ {0, 1, 2, 3} with
|I| = |J | = 3. This property is turned into a “statistical integral property” on each byte of input
and output using the strategy proposed in [WCC+16]. Although the uniformly distributed property
does not strictly hold in the statistical integral distinguisher, it is proved in [WCC+16] (see Prop. 1)
that the distribution of input/output values for a cipher can be distinguished from the distribution
of output values which originate from a random permutation. This 8-round distinguisher is then
turned into a 10-round one using the same strategy proposed by Gilbert in [Gil14], that is requiring
that an initial and a final keys exist such that the statistical integral property is satisfied by the
plaintexts after one round of encryption and by the ciphertexts after one round of decryption.

8.4. Revisiting Gilbert’s Distinguisher: is it a “Valid” Model?

In the conclusion of his paper, Gilbert claims that it seems technically difficult to use a stronger
property than the uniform distribution one to extend an 8-round known-key distinguisher to a
10-round one:

1st Conjecture: “while we do not preclude that the use of the stronger property that several pairs
satisfying the differential relation of [GP10] [i.e. truncated diff. relations exploited by the
rebound distinguisher] can be derived might potentially result in a 10-round distinguisher
that outperforms the 10-round distinguisher presented above, giving a rigorous proof seems
technically difficult.”

In particular, he left “the investigation of improved 10-round known-key distinguishers and associated
proofs - or even plausible heuristic arguments if rigorous proofs turn out to be too difficult to obtain -
as an open issue.”

In our paper [GR17], we picked up this challenge, and using a strategy similar to the one proposed
by Gilbert in [Gil14], we show how to construct more efficient 8-, 9- and 10-round distinguishers
exploiting known-key distinguishers based on truncated differential trails. In particular, we use
as starting point the 8-round known-key distinguisher presented in [JNP13], and we extend it at
the end or/and at the beginning using the same strategy proposed by Gilbert. This allows to set

170

8.4. Revisiting Gilbert’s Distinguisher: is it a “Valid” Model?

Table 8.2.: 1st/2nd Conjectures and AES Gilbert’s Known-Key Distinguishers. Referring to the
1st and the 2nd conjectures given in the main text, in this table we emphasize which ones of our -
and others in teh literature - results disprove them. This is the starting point exploited in order to
discuss the validity of Gilbert’s model.

Rounds Property 1st Conjecture 2nd Conjecture Reference

9 extended 8-Round MultDT 3 [GR17]

9 extended 7-Round MultDT 3 [GR17]

10 extended 8-Round Unif. Dist. [Gil14]

10 extended 8-Round Stat. Integral 3 [CSCW17]

10 extended 8-Round MultDT 3 [GR17]

12 extended 8-Round MultDT 3 3 [GR17]

12 extended 8-Round Unif. Dist. 3 [GR17]

MultDT: Multiple Differential Trail

up a 9-round known-key distinguisher and a 10-round known-key distinguisher for AES with time
complexity approximately of 250.

As a main cryptanalytic results, we show that it is possible to extend our 10-round distinguisher up
to 12 rounds and that it is possible to extend Gilbert’s 10-round distinguisher based on the uniform
distribution property up to 12 rounds. These are the first known-key distinguisher for full AES-192,
and they also provide counter-examples of the claim made in [Gil14] about the (im)possibility to use
Gilbert’s technique to extend a 8-round distinguisher more than 2 rounds:

2nd Conjecture: “The reader might wonder whether the technique we used to derive a known-key
distinguisher for the 10-round AES from a known-key distinguisher for the 8-round AES does
not allow to extend this 8-round known distinguisher by an arbitrary number of rounds. It is
easy however to see that the argument showing that 10-round relation R is efficiently checkable
does not transpose for showing that the relations over r > 10 rounds one could derive from
the 8-round relation by expressing that the r-round inputs and outputs are related by r − 8 > 2
outer rounds to intermediate blocks that satisfy the 8-round relation are efficiently checkable.”

In the following, we briefly recall our results presented in details in [GR17].

8.4.1. 10-round Distinguisher based on the Truncated Differential Trails

Using the same strategy proposed by Gilbert in [Gil14], we set up our 10-round distinguisher by
extending the 8-round one presented in [JNP13] and in Sect. 8.2.2 both at the beginning and at the
end.

In the above defined known-key distinguisher scenario, the players have to send to the verifier
n ≥ 64 different tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p

2
i , c

2
i)} for i = 0, ..., n− 1,

with the following properties:

1. there exists a key k0 s.t. for each tuple there exists j for which the two plaintexts belong to
the same coset of Dj after one round, that is

∃ k0 s.t. ∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. Rk0(p1
i)⊕Rk0(p2

i) ∈ Dj ;

2. there exists a key k10 s.t. for each tuple there exists l for which the two ciphertexts belong to
the same coset of Ml one round before, that is

∃ k10 s.t. ∀i = 0, ..., n− 1, ∃l ∈ {0, ..., 3} s.t. R−1
k10(c1

i)⊕R−1
k10(c2

i) ∈Ml.

171

8. Open-Key Distinguishers for AES

We stress that the keys k0 and k10 must be equal for all the tuples, otherwise it is straightforwards
to generate tuples with the required properties. In other words, if there exist two different tuples
(c0, c1) and (c2, c3) such that R−1

k (c0)⊕R−1
k (c1) ∈Ml and R−1

k̃
(c2)⊕R−1

k̃
(c3) ∈Ml̃ for two different

keys k 6= k̃, then the above defined relationship R is not satisfied8. In particular, the claim “the
transposition of our technique to the 8-round distinguisher of [GP10] does not allow to derive a
valid 10-round distinguisher” made in [Gil14] to support the impossibility to set up such 10-round
distinguisher based on truncated differential trails is justified only when no assumption on the key k
is done. In other words, the above defined relationship R together with the requirement of uniqueness
of the key k allows to extend the 8-round distinguisher of [GP10] as in [Gil14].

Before going on, it is also important to emphasize that no condition on the keys k0 and k10 is
imposed, except that they exist and they are equal for all the tuples. That is, it is not required that
this key is equal to the real secret subkey. The same consideration holds also for the next distinguishers
presented here, and for the 10-round distinguisher presented by Gilbert in [Gil14].

Moreover, since the verifier has to check the existence of both k0 and k10, two possible scenarios
can be considered and studied:

1. no key-schedule holds - k0 and k10 are independent;

2. AES key-schedule among k0 and k10.

Intuitively, the second case (i.e. with key schedule) is harder than the first one (i.e. without key
schedule) for the generic player, since a further property must be verified. In other words, the time
required by this player to generate the tuples for the second scenario is not lower than for the first
one, that is the probability of success in the second scenario is not higher than in the first one.

In the following we briefly analyze why the distinguisher works – more details can be found in
[GR17].

Shortcut Player. First of all, for the shortcut player, the two scenarios (with/without key
schedule) are completely identical. Indeed, using the rebound technique, he is able to generate
n tuples that satisfy all the conditions (included the key schedule without any additional cost).
The computational cost of this player is well approximated by n · 244 computations. In the case of
independent subkeys, the computational cost of the generic player to generate n tuples that satisfy
all the conditions is approximately of n · 261.56−128/n queries. As a result, if n ≥ 64, then the cost of
the generic shortcut is of 250 computations.

Verifier. Using the truncated attack proposed in [GRR16], the cost of the verifier is well approxi-
mated by 212.8 encryptions, much less than the cost of the two players.

Generic Player

Here we limit to consider the case of independent subkeys. The idea is to choose plaintexts such that
the condition on the plaintexts is fulfilled with probability 1. To do this, the generic player must fix
a random key k̂, and computes for a certain j ∈ {0, ..., 3} and for a random a ∈ D⊥j the following set:

Da := R−1

k̂
(Dj ⊕ a). (8.3)

The idea is choose/use plaintexts in this set Da just defined. In other words, the player works in the
same way described for the 9-round distinguisher but using Da defined above instead of a coset of

8Note that without this request e.g. on the secret key k10, it is extremely easy to construct tuples such that the
two ciphertexts belong to the same coset of Ml one round before. Indeed, given two ciphertexts c1 and c2, on
average there exist 4 · (28)4 = 234 different keys such that R−1(c1) ⊕ R−1(c2) ∈ Ml for a certain l. Thus, it is
straightforward to construct n different tuples with the above defined relationship R but without any condition on
the key k10. Similar considerations hold for the key k0.

172

8.4. Revisiting Gilbert’s Distinguisher: is it a “Valid” Model?

Dj . The corresponding ciphertexts are simply got by oracle-queries. Since the cardinality of a coset
of Dj is 232, the computation of a set Da requires 232+4 = 236 S-Box look-ups for each coset Dj ⊕ a.
Note that if the player needs more than 232 (plaintext, ciphertext) pairs, he simply chooses another
a′ ∈ D⊥j (or/and another j) and, using the same key k̂, he computes the corresponding set Da′

defined as before. We emphasize that the player must use always the same key k̂ to compute these
sets, in order to fulfill the property on the plaintexts. We stress that given plaintexts in the same
set Da, the requirement on the plaintexts is always fulfilled since by construction there exists a key
(which is k̂) such that the plaintexts of each tuple belong to the same coset of Dj after one round.

Given the set Da, the player asks the oracle for the corresponding ciphertexts. The idea is to check
if there exists a key k and n tuples such that the two ciphertexts of each of these n tuples belong
to the same coset of Ml one round before. We remember that it is not necessary that the key for
which this condition is satisfied is the real one.

As shown in details in [GR17], given a single tuple there exist on average 234 keys such that the two
ciphertexts belong to the same coset of Mj one round before. To set up a meaningful distinguisher,
a value of n is suitable if the number of oracle-queries of the generic player is higher than the cost of
the shortcut player. By previous observations, given a set of n tuples, the probability that at least
one common key exists for which the property on the ciphertexts is satisfied is 2−94n+128. Thus, the
idea is to estimate the number of (plaintext, ciphertext) pairs that this player has to generate in
order to win the game (that is, in order to find with high probability n tuples with the required
property). If this number is higher than 244 · n for a fixed n, then the other player wins the game.

Since each set of Da contains 232 different plaintexts, it is possible to construct approximately 263

different couples {(p1, c1), (p2, c2)}. Given t different sets of Da, it is possible to construct s = 263 · t
different couples. It follows that one can construct approximately(

s

n

)
≈ sn

n!

different sets of n different tuples (i.e. n different couples {(p1, c1), (p2, c2)}), where the approximation
holds for n� s. Since the probability that a set of n tuples satisfy the above defined relation R is
2−94n+128, the generic player must consider at least s different couples such that sn/n! ' 294n−128 or
equivalently

s ' 294− 128
n · (n!)

1
n .

By this formula, for n = 8 this player has to consider approximately 279.9 different tuples, or
equivalently 248.9 (plaintext, ciphertext) pairs (that is, 216.9 initial different sets Dj). Indeed, given
216.9 initial different cosets of Da, it is possible to construct approximately 216.9 · 263 = 279.9 different
couples, that is approximately 2624 different sets of 8 tuples. Since each of these sets satisfies the
required properties with probability 2−94·8+128 = 2−624, he has a good probability to find 8 different
tuples with the required property. The cost to generate these 248.9 (plaintexts, ciphertexts) pairs
is of 248.9 oracle-queries (with the assumption 1 oracle-query ' 1 encryption). On the other hand,
the cost to generate these 8 tuples for the shortcut player is of 8 · 244 = 247 (which is smaller). We
emphasize that the cost of the generic player is higher than the cost of the shortcut player is satisfied
for any value n with n ≥ 8. In order to make the advantage of the shortcut player more significant,
we have chosen an (arbitrary) value of n = 64, which implies a cost for the shortcut player of 250

computations and of 265.6 computations for the generic player.

8.4.2. 12-round Distinguishers

Using a similar strategy, 12-round distinguishers can be set up for AES. This distinguisher is obtained
by extending the previous 10-round distinguishers both at the end and at the beginning. We highlight
that this is the first known-key distinguisher for full AES-192 (and on 12 rounds of AES-128, i.e.

173

8. Open-Key Distinguishers for AES

full AES-128 with two more rounds9) and it also provides a counterexample to the claims made in
[Gil14].

Truncated-Differential. In the know-key distinguisher scenario, the players have to send to
the verifier n ≥ 238 different tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p

2
i , c

2
i)} for

i = 0, ..., n− 1, with the following properties:

1. there exist keys k0, k1 s.t. for each tuple there exists j for which the two plaintexts belong to
the same coset of Dj after two rounds, that is

∃ k0, k1 s.t. ∀i = 0, ..., n− 1 ∃j ∈ {0, ..., 3} s.t. R2
k0,k1(p1

i)⊕R2
k0,k1(p2

i) ∈ Dj ;

2. there exist keys k11, k12 s.t. for each tuple there exists l for which the two ciphertexts belong
to the same coset of Ml two rounds before, that is

∃k11, k12 s.t. ∀i = 0, ..., n− 1 ∃l ∈ {0, ..., 3} s.t. R−2
k11,k12(c1

i)⊕R−2
k11,k12(c2

i) ∈Ml;

where R2
k0,k1(·) ≡ Rk1(Rk0(·)) and R−2

k11,k12(·) ≡ R−1
k11(R−1

k12(·)).
A complete analysis of this distinguisher – similar to the one just given for the 10-round one – is

proposed in [GR17].

Uniform Distribution. In the known-key distinguisher scenario, the players have to send to the
verifier n ≥ 2 different sets of 264 (plaintext, ciphertext) pairs, that is (pji , c

j
i) for i = 0, ..., 264 − 1

and j = 0, ..., n− 1, with the following properties:

1. there exist keys k0, k1 such that for all j = 0, ..., n− 1 the texts {Rk1(Rk0(pji))}i are uniformly
distributed among the cosets of DI for each I ⊆ {0, 1, 2, 3} with |I| = 3, or equivalently such
that for all j = 0, ..., n− 1 the bytes of the texts {Rk1(Rk0(pji))}i are uniformly distributed;

2. there exist keys k11, k12 such that for all j = 0, ..., n−1 the texts {R−1
k11(R−1

k12(cji))}i are uniformly
distributed among the cosets of MJ for each J ⊆ {0, 1, 2, 3} with |J | = 3, or equivalently
such that for all j = 0, ..., n− 1 the bytes of the texts {MC−1 ◦R−1

k11(R−1
k12(cji))}i are uniformly

distributed.

As for the 8- and the 10-round cases, in order to provide evidence that the previous distinguisher is
meaningful and using a similar argumentation to the ones proposed in [Gil14], we show that the
probability of the generic player to win the game given n ≥ 2 sets of 264 texts is negligible.

To do this, we claim that this probability is upper bounded by the probability of the following
“related” game. Assume n = 2 and consider 2 sets of 264 − d (plaintext, ciphertext) pairs for d ≥ 5,
that is (pi, ci) for each i = 0, ..., 264 − d− 1, with the following property: there is a set of keys k0, k1

and k11, k12 - which can correspond to the set of the entire keys - such that for each one of the two
sets, the bytes of Rk1 ◦Rk0(pi) and of MC−1 ◦R−1

k11 ◦R−1
k12(ci) (that is 2-round encryption of pi and

the 2-round decryption of the ciphertexts) are “almost uniform” w.r.t. the definition given before.
The goal of the player is to find 2 · d texts such that - for each one of the two sets - the bytes of
the 264 texts of each set after 2-round encryption/decryption are uniformly distributed. Since this
probability is upper bounded by 2−25 - see in the following - and since this second game is “related”
to the original one, the conclusion follows immediately.

More formally, using the same argumentation proposed by Gilbert (see Prop. 5 of [Gil14]), we
prove the following statement.

9We emphasize that the AES-128 (in particular, its key schedule) is well defined and can be extended to 12 rounds.

174

8.4. Revisiting Gilbert’s Distinguisher: is it a “Valid” Model?

Proposition 21. For any oracle algorithm A that makes ≤ N = 2 · 264 = 265 oracle queries to
a perfect random permutation Π or Π−1 of {0, 1}128, the probability that A outputs n ≥ 2 sets of
264-tuple (Xi, Yi) for i = 0, ..., 264 − 1 of Π that satisfies Yi = Π(Xi) and also satisfies R defined

previously is upper bounded by
(

10
5

)
× 2512 ×

(
516

2128−(264−5)

)6
≈ 2−25.

More details about this distinguisher and the proof of this proposition can be found in [GR17].

8.4.3. On the Validity of Gilbert’s Known-Key Distinguisher

In [GR17], we showed that Gilbert’s known-key distinguisher model can lead to results on more
rounds than previous expected. Even though the core distinguisher remains at 8 rounds, 12 instead
of 10 rounds are achieved. This may raise the question: Is it possible to extend this distinguisher to
14-round AES?

The main criticism in order to extend a known-key distinguisher both at the end and at the
beginning as in the Gilbert model regards the computational cost to verify the existence of keys
such that the n tuples of (plaintexts, ciphertexts) pairs satisfy the relation R. Thus, to success in
this task, the main problem is related to set up efficient key-recovery attack that can be used in the
Gilbert’s model, rather than looking for new properties - which are independent of the key - of AES.

On the other hand, even if Gilbert’s Known-Key Distinguisher leads to statements on more rounds
of AES than ever before (without related keys) that seem meaningful, it is not clear if such statements
can become useful in the sense to e.g. have an impact of hash function use-cases of block ciphers.
This has also been noticed in [Gil14], where it is pointed out that even if the strategy proposed
by Gilbert allows to set up efficient known-key distinguishers, its “impact on the security of [...]
AES when used as a known key primitive, e.g. in a hash function construction, is questionable”
(see abstract of [Gil14]). Finally, the validity of Gilbert’s model was supported by the fact that a
total of two extension rounds seem to be the limit in the known-key model, and that likely only a
distinguisher that exploits the uniform distribution property can be extended in such way.

For all these reasons and since we disprove both conjectures, we propose - with more confidence
than would could have been possible without our results - a (new) definition of known-key distinguisher
model that rules out Gilbert’s and our attacks proposed in this paper. As our results show, this
seems necessary for better capturing the original idea of known-key distinguishers as something
“between secret-key model and hash function use-cases”, where the known-key model restores its
original intent in which the role of the verifier gets back to being marginal. In more details, our
proposal is to distinguish “classical” known-key distinguisher where the verifier can directly verify
the relation R on the plaintexts and ciphertexts without guessing any key material, and the “Gilbert”
known-key one. Informally, this can be achieved by requiring that the relation R does not involve
any operation that defines E (with the only exception of a group addition, usually XOR) and any
guessing of key material.

A “New” Model: “Classical” Known-Key Distinguisher

Taking a step back from the concrete results, what we also showed is that the gap between the
known-key model and the chosen-key model may be even larger. Among the possibilities to remedy
this counter-intuitive situation, we propose to define a new model that better capture the desire
to have something “in-between” the chosen-key and the known-key model. Our proposal is to
distinguish “classical” Known-Key distinguisher - where the verifier can directly verify the relation
R on the plaintexts and ciphertexts without guessing any key material - and the “Gilbert” Known-
Key distinguisher. Roughly speaking, a “classical” Known-Key distinguisher should only exploit
properties which have no connection with the details of the underlying primitive E(·) and that are
independent of the (value of the) key. In particular, note that every block cipher is vulnerable to a
known-key distinguisher which re-use the key. For instance, consider the following straightforward

175

8. Open-Key Distinguishers for AES

distinguishability attack. Assume the goal is to distinguish if an oracle is instantiated by a cipher
EK(·) or by an ideal cipher Π(K, ·), under a known key K. Given a query X, one gets Y (which can
be Y = EK(·) or Y = Π(K,X)). Since the details of EK(·) and the key K are known, one can simply
compute Y0 = EK(X). If Y0 = Y , one can conclude that the oracle is instantiated by EK(·). Note
that another “weakness” of such a distinguisher is that it allows access to the internal primitives
EK(·).

In order to distinguish a “classical” Known-Key distinguisher from a “Gilbert” Known-Key
distinguisher, our suggestion is simply to adapt Def. 17 for the first case10:

Definition 22 ([GR17]). Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a block
cipher of block size n bits. A “classical” known-key distinguisher (R,A) of order N ≥1 consists
of (1) a relation R over the N-tuples of n-bit blocks (2) an algorithm A that on input a k-bit key
K produces in time TA, i.e. in time equivalent with TA computations of E, an N-tuple X = (Xi)
i = 1, ..., N of plaintext blocks and an N-tuple Y = (Yi) i = 1, ..., N of ciphertext blocks related by
Yi = EK(Xi) and by X R Y .

The following conditions must be met:

• The relation R has no “(obvious) connection” with the specification of the cipher E(·) (e.g.
such relation should not “extensively” re-use the operations – especially, the non-linear ones –
that define E) and it is independent of the value of the key;

• The relation R must be TA-intractable relatively to E;

• The validity of R must be efficiently checkable.

It follows that - due to the first condition on the relation R - all the “classical” known-key
distinguishers present in the literature satisfy the previous definition, but not the “extended Gilbert
distinguishers”. The problem to formalize - with a proper mathematical definition - the fact “the
relation R has no ‘obvious connection’ with the specification of the cipher E(·)” is open for future
research.

8.5. Chosen-Key Distinguisher

As we have already recalled, the goal of an open-key distinguisher is to differentiate between a block
cipher E which allows to generate plaintext/ciphertext pairs which exhibit a rare relation, even
for a small set of keys or a single key, and an ideal cipher Π that does not have such a property.
However, this poses a definitional problem as it was shown already in [CGH04] that any concrete
implementable cipher (like the AES) can be trivially distinguished from an ideal cipher.

Roughly speaking, with respect to a (weak) known-key distinguisher, in a chosen-key one the
adversary does not only know the key, but he is also able to choose it. Anyway, this difference has
a huge impact on the definition of a proper model for such case. To better understand this fact,
note the following. Since the key can be chosen in advance, it is also possible for the generic player
to perform pre-computation that can be then exploited to win the game. In general, this is not a
concrete problem in the case of a known-key distinguisher, since in this case he should perform
this pre-computation for almost half of the keys11, which is obviously infeasible. Instead, for the
chosen-key case, it is sufficient to perform this operation for only one key. Thus, how is it possible to
take this strategy into account in order to compute the overall computations of the two players in
a chosen-key distinguisher? To the best of our knowledge, finding a proper formal definition that

10In the following definition, the main difference with Def. 17 is emphasized in italic.
11This is necessary in order to have a big chance that the “known key” – picked up at random – is in the set of keys

for which he performed the pre-computation.

176

8.5. Chosen-Key Distinguisher

captures the intuition behind chosen-key distinguishers has been a challenging task for the last fifteen
years and is still an open problem.

We do not attempt to address this formalization challenge here, but proceed in the way that is
custom in the literature to describe chosen-key distinguisher: (1st) describe the (rare) property that
occurs for a particular chosen key, (2nd) show that it can be efficiently constructed for the block
cipher (usually using an inside-out approach) and finally (3rd) argue or prove in some model that
any generic method is less efficient or has low success probability.

8.5.1. Chosen-Key Distinguishers for AES

To the best of our knowledge, the only chosen-key distinguisher for AES in the single-key setting is
proposed in [DFJ12]. Here, the chosen-key model asks the adversary to find two plaintexts/ciphertexts
pairs such that the two plaintexts are equal in 3 diagonals and the two ciphertexts are equal in 3
anti-diagonals (if the final MixColumns is omitted). Equivalently, using the subspace trail notation,
the goal is to find (p1, c1 ≡ R8(p1)) and (p2, c2 ≡ R8(p2)) for p1 6= p2 such that p1 ⊕ p2 ∈ DI and
c1 ⊕ c2 ∈MJ for a certain I, J ⊆ {0, 1, 2, 3} such that |I| = |J | = 1.

This problem is equivalent to the one proposed in [GP10; JNP13] in the known-key scenario. In
particular, the main (and only) difference between the known-key and chosen-key distinguishers
is related to the freedom to choose the key, and consequently to the computational cost. In more
details, due to this freedom, for the 8-round AES-128 case it is possible to find the required pairs of
plaintexts/ciphertexts with 224 computations instead of 244, while the computational cost in the case
of an ideal cipher is of 264 in both cases. For completeness, a similar result is proposed for 9-round
AES-256.

The chosen-key model has been popularized some years before by [BKN09], since a distinguisher
in this model has been extended to a related-key attack on full AES-256. A related distinguisher for
9-round AES-128 has been proposed by Fouque et al. at Crypto 2013 [FJP13]. Both the chosen-key
distinguisher proposed in these papers are in the related-key setting. Here we briefly recall them, but
we emphasize that we do not consider related-keys in this article. In [BKN09], authors show that it
is possible to construct a q-multicollision12 on Davies-Meyer compression function using AES-256

in time q · 267, whereas for an ideal cipher it would require on average q · 2
q−1
q+1

128
time complexity.

These results show that AES-256 can not model an ideal cipher in theoretical constructions. A
similar approach has been exploited in [FJP13] to set up the first chosen-key distinguisher for
9-round AES-128. Here, the chosen-key model asks the adversary to find a pair of keys (k, k′)
satisfying k ⊕ k′ = δ with a known (fixed) difference δ, and a pair of messages (p1, c1 ≡ R9(p1)) and
(p2, c2 ≡ R9(p2)) conforming to a partially instantiated differential characteristic in the data part.

8.5.2. New Chosen-Key Distinguishers for AES in the Single-Key Setting

In [GLR+18] we presented new chosen-key distinguishers for AES in the single-key setting. In
particular, as a major results, we are able to present the first candidate 10-round chosen-key
distinguisher for AES-128 and a 14-round candidate chosen-key distinguisher for AES-256, both in
the single-key setting. All the distinguishers that we present are based on the (practically verified)
multiple-of-n property, similar to the one proposed at Eurocrypt 2017 [GRR17] and adapted in the
following for the invariant subspace IS case.

Our results are summarized in Table 8.3. Since all chosen-key distinguishers that we are going to
present work in the same way, we limit ourselves to give all the details for the AES-128 case.

The Subspace X . To present the distinguisher, we first introduce the generic subspace X .

12A set of two differences and q pairs {∆K,∆P ; (P1,K1), (P2,K2), . . . , (Pq,Kq)} is called a differential q-multicollision
for a cipher EK(·) if EKi(Pi)⊕ EKi⊕∆K(Pi ⊕∆P) = EKj (Pj)⊕ EKj⊕∆K(Pj ⊕∆P) for each i, j = 1, . . . , q.

177

8. Open-Key Distinguishers for AES

Table 8.3.: AES Chosen-Key Distinguishers. The computation cost is the cost to generate N -tuples
of plaintexts/ciphertexts. SK denotes a chosen-key distinguisher in the Single-Key setting, while RK
denotes a chosen-key distinguisher in the Related-Key setting. Distinguishers proposed in this paper
are in bold.

AES Rounds Computations Property SK RK Reference

AES-128

8 224 Multiple Diff. Trail 3 [DFJ12]

9 255 Multi-Collision Diff. 3 [FJP13]

10 (full) 264 Multiple-of-n 3 [GLR+18]

AES-192 11 264 Multiple-of-n 3 [GLR+18]

AES-256

9 224 Multiple Diff. Trail 3 [DFJ12]

14 (full) 264 Multiple-of-n 3 [GLR+18]

14 (full) 2120 Multi-Collision Diff. 3 [BKN09]

Definition 23. Let I a subset of {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Let the subspace
XI be defined as

XI = 〈{ei,j}(i,j)∈I〉 ≡
{ ⊕

(i,j)∈I

αi,j · ei,j
∣∣ ∀αi,j ∈ F28

}
.

In other words, XI is the set of elements given by linear combinations of {ei,j}(i,j)∈I , where

ei,j ∈ F4×4
28 has a single 1 in row i and column j.

Proposition 22. For each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3 and for each a ∈ X⊥I ,
there exists one and only one b ∈ Y⊥I such that

R(XI ⊕ a) = YI ⊕ b

where YI = MC ◦ SR(XI).

The proof of this proposition follows from the fact that a coset of XI is mapped into a coset of XI
after the S-Box operation, that is S-Box(XI ⊕ a) = XI⊕ S-Box(a) = XI ⊕ b. Moreover, observe that
for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, there exists J ⊆ {(i, j)}0≤i,j≤3 such
that SR(XI) = XJ (or equivalently SR−1(XI) = XJ). As a result, {XI ,MC ◦ SR(XI)} is a subspace
trail of length 1. Note that such subspace trail can not be extended on two rounds for any generic
XI , due to the non-linear S-Box operation of the next round (that can destroy the linear relations
that hold among the bytes).

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round
chosen-key distinguisher for AES

In our distinguisher, the chosen-key model asks the adversary to find a set of 264 (plaintexts,
ciphertexts), that is (pi, ci ≡ R9(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts
are generated by the same key – such that the following “simultaneous multiple-of-n” property is
satisfied:

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to the same
coset of MJ and the number of different pairs of plaintexts that belong to the same coset of DI
are a multiple of 128 = 27;

178

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round chosen-key distinguisher for AES

• for each J, I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of different pairs
of ciphertexts that belong to the same coset of MC(XI) and the number of different pairs of
plaintexts that belong to the same coset of XJ are a multiple of 2, where X is defined as in 23.

For the follow-up, we remark and highlight that the subspaces X are independent, in the sense that
e.g. the fact that the multiple-of-2 property is satisfied by XI and/or XJ does not imply anything
on XI∪J and vice-versa. This is due to the fact that given XI and XJ , then XI ∪ XJ $ XI∪J if
XI∪J 6= F4×4

28 . As a result, any information about the multiple-of-n property on XI ,XJ (and so
XI ∪ XJ) is useless to derive information about the multiple-of-n property on XI∪J \ (XI ∪ XJ) –
assuming XI∪J 6= F4×4

28 .

8.6.1. Weak-key “Multiple-of-n” property

The “multiple-of-8” property [GRR17] proposed at Eurocrypt 2017 can be summarized as follows.
Given 232·|I| plaintexts in the same coset of a diagonal space DI , the number of different pairs of
ciphertexts after 5-round AES that belong to the same coset of MJ after 5-round AES is always a
multiple of 8 with probability 1. This result can be used to set up a distinguisher, since for a random
permutation the same property holds with probability 1/8.

In the case of a weak-key, we are able to extend the previous result up to 6-round AES-128. The
obtained results are proposed in the following Theorems.

Theorem 9 ([GLR+18]). Let IS and MI be the subspaces defined as before for a fixed I with
1 ≤ |I| ≤ 3. Assume that the whitening key is a weak-key, that is it belongs to the set Kweak as
defined in 4.9. Given 264 plaintexts in IS, the number n of different pairs13 of ciphertexts (ci, cj) for
i 6= j that belong to the same coset of MI (that is ci ⊕ cj ∈MI) has the following property:

• for 5-round AES-128, the number of collisions n is a multiple of 128, that is ∃n′ ∈ N such that
n = 128 · n′;

• for 6-round AES-128, the number of collisions n is a multiple of 2, that is ∃n′ ∈ N such that
n = 2 · n′.

Since the proof of the previous Theorem is similar to the one provided in [GRR17], we limit
ourselves here to highlight the crucial points.

Proof. First of all, note that the invariant subspace IS is mapped into a coset of IS after 2-round
encryption, and similarly a coset of MI is mapped into a coset of DI after 2-round decryption, that
is

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R(·) or R2(·)−−−−−−−−→ DI ⊕ a′
R2(·)−−−−→

prob. 1
MI ⊕ b′

Thus, the idea is to focus only on the middle round(s), and to prove the following equivalent result.
Given 264 plaintexts in a coset of IS, the number n of different pairs of ciphertexts (ci, cj) for i 6= j
that belong to the same coset of DI (that is ci ⊕ cj ∈ DI) after 1 or 2 round(s) has the following
property:

• for 1-round AES, the number of collisions n is a multiple of 128;

• for 2-round AES, the number of collisions n is a multiple of 2.

13Two pairs (s, t) and (t, s) are considered to be equivalent.

179

8. Open-Key Distinguishers for AES

5-round AES. Given a pair of texts t1, t2 ∈ IS ⊕ a, we are going to prove that there exist other
pair(s) of texts s1, s2 ∈ IS ⊕ a such that

R(t1)⊕R(t2) ∈ DI if and only if R(s1)⊕R(s2) ∈ DI .

where the texts s1, s2 are given by a different combination of the generating variables of t1, t2.
By definition of IS, let t1 and t2 be as

ti = a⊕


xi0 xi4 xi0 xi4
xi1 xi5 xi1 xi5
xi2 xi6 xi2 xi6
xi3 xi7 xi3 xi7

 , that is ti = a⊕
7⊕
j=0

xij · (ej ⊕ ej+8). (8.4)

where xl,j or xl+4×j denotes the byte in the l-th row and in the j-th column. For simplicity, let
ti ≡ (xi0, x

i
1, x

i
2, x

i
3, x

i
4, x

i
5, x

i
6, x

i
7). Consider initially the case in which all the variables are different,

that is x1
j 6= x2

j for j = 0, 1, . . . , 7. Let S be the set of pairs of texts s1, s2 ∈ IS ⊕ a defined by

swapping some generating variables of t1 and t2. In particular, given t1 and t2, the set St1,t2 contains
all 128 pairs of texts (s1, s2) for all I ⊆ {0, 1, 2, 3, 4, 5, 6, 7} where

s1 = a⊕
7⊕
j=0

{[(
x1
j · δj(I)

)
⊕
(
x2
j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}

s2 = a⊕
7⊕
j=0

{[(
x2
j · δj(I)

)
⊕
(
x1
j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}

where the pairs (s1, s2) and (s2, s1) are considered to be equivalent, and where δx(A) is the Dirac
measure defined as

δx(A) =

{
1 if x ∈ A
0 if x /∈ A

As we are going to show, since

∀(s1, s2) ∈ St1,t2 : R(t1)⊕R(t2) = R(s1)⊕R(s2),

it follows that

∀(s1, s2) ∈ St1,t2 : R(t1)⊕R(t2) ∈ DI iff R(s1)⊕R(s2) ∈ DI .

The first equivalence depends on the fact that the S-Box operation works independently on each byte
and that the XOR-sum is commutative. To show this fact, we compute the byte in position (0, 0) –
analogous for the other cases – of the previous difference

(R(t1)⊕R(t2))0,0 = 0x02 · [S-Box(x1
0 ⊕ a′0,0)⊕ S-Box(x2

0 ⊕ a′0,0)]⊕
⊕ 0x03 · [S-Box(x1

5 ⊕ a′1,1)⊕ S-Box(x2
5 ⊕ a′1,1)]⊕ [S-Box(x1

2 ⊕ a′2,2)⊕
⊕ S-Box(x2

2 ⊕ a′2,2)]⊕ [S-Box(x1
7 ⊕ a′3,3)⊕ S-Box(x2

7 ⊕ a′3,3)] = (R(s1)⊕R(s2))0,0

where a′i,i for i = 0, 1, 2, 3 depends on the initial constant a that defines the coset of IS and on the
secret key. Since each set St1,t2 has cardinality 128, in the case in which one focuses on the pairs
of texts with different generating variables, it follows that the multiple-of-128 property previously
defined holds.

What happens if some variables are equal, e.g. x1
j = x2

j for j ∈ J ⊆ {0, ..., 7} with |J | ≥ 1? In

this case, it is possible to prove that the difference R(t1)⊕R(t2) is independent of x1
j = x2

j for each

180

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round chosen-key distinguisher for AES

j ∈ J (e.g. consider the difference (R(t1)⊕R(t2))0,0 in the byte (0,0) just given). As a result, the
idea is to consider all the different pairs of texts given by swapping one or more variables x1

l and x2
l

for l = 0, 1, . . . , 7, where xj for j ∈ J can takes any possible value in F28 . Note that in the case in
which 0 ≤ |J | < 8 variables are equal, it is possible to identify

27−|J |︸ ︷︷ ︸
by swapping different gen. variables

× 28·|J |︸ ︷︷ ︸
due to equal gen. variables

= 27·(1+|J |) ≥ 128

different texts s1 and s2 in IS ⊕ a that satisfy the condition R(t1)⊕R(t2) = R(s1)⊕R(s2).
In conclusion, given plaintexts in the same coset of IS, the number of different pairs of ciphertexts

that belong to the same coset of DI after one round is a multiple of 128. More formally, given t1 and
t2, the set St1,t2 contains all 27·(1+|J |) pairs of texts (s1, s2) for all I ⊆ {0, 1, 2, 3, 4, 5, 6, 7} \ J and for
all α0, ..., α|J | ∈ F28 where

s1 = a⊕
⊕

j∈{0,...,7}\J

{[(
x1j · δj(I)

)
⊕
(
x2j ·

[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
⊕
⊕
j∈J

αj ·
(
ej ⊕ ej+8

)

s1 = a⊕
⊕

j∈{0,...,7}\J

{[(
x2j · δj(I)

)
⊕
(
x1j ·

[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
⊕
⊕
j∈J

αj ·
(
ej ⊕ ej+8

)

6-round AES: Super-Sbox. In order to prove the previous claim, we use the “super-Sbox”
notation (3.1). Given a pair of texts t1, t2 ∈ IS ⊕ a, we prove that there exist other pair(s) of texts
s1, s2 ∈ IS ⊕ a such that

R2(t1)⊕R2(t2) ∈ DI if and only if R2(s1)⊕R2(s2) ∈ DI

where the texts s1, s2 are obtained by swapping the diagonals of t1, t2. In more details, if the columns
are different (i.e., [x1

0, x
1
2, x

1
5, x

1
7] 6= [x2

0, x
2
2, x

2
5, x

2
7] and [x1

1, x
1
3, x

1
4, x

1
6] 6= [x2

1, x
2
3, x

2
4, x

2
6]), given t1 and

t2 defined as in (8.4)
SR(ti) ≡

(
[xi0, x

i
2, x

i
5, x

i
7]︸ ︷︷ ︸

1st and 3rd columns

, [xi1, x
i
3, x

i
4, x

i
6]︸ ︷︷ ︸

2nd and 4th columns

)
,

then s1 and s2 are defined as

SR(si) ≡
(
[x3−i

0 , x3−i
2 , x3−i

5 , x3−i
7]︸ ︷︷ ︸

1st and 3rd columns

, [xi1, x
i
3, x

i
4, x

i
6]︸ ︷︷ ︸

2nd and 4th columns

)
and where (s1, s2) and (s2, s1) are considered to be equivalent.

To prove the previous fact, we first recall that 2-round encryption can be rewritten using the
super-Sbox notation

R2(·) = ARK ◦MC ◦ SR ◦ super-Sbox ◦ SR(·).

Thus, we are going to prove that

super-Sbox(t̂1)⊕ super-Sbox(t̂2) ∈ WI iff super-Sbox(ŝ1)⊕ super-Sbox(ŝ2) ∈ WI

where
t̂i = SR(ti) ∈ IS ⊕ SR(a) and ŝi = SR(si) ∈ IS ⊕ SR(a)

for i = 1, 2 (note that ti, si ∈ IS ⊕ a) and where the subspace WI is defined as

WI = SR−1MC−1(DI).

Note that the first and the third columns of t̂i and ŝi are equal, as well as the second and the fourth
columns. Similar to the 5-round case, since the first and the second columns (and so the third and

181

8. Open-Key Distinguishers for AES

the fourth ones) of t̂1 and t̂2 depend on different and independent variables, since the super-Sbox
works independently on each column and since the XOR-sum is commutative, it follows that

super-Sbox(t̂1)⊕ super-Sbox(t̂2) = super-Sbox(ŝ1)⊕ super-Sbox(ŝ2)

which implies the thesis.
What happens if one diagonal is in common for the two texts, e.g. [x1

0, x
1
2, x

1
5, x

1
7] = [x2

0, x
2
2, x

2
5, x

2
7]

(analogous for [x1
1, x

1
3, x

1
4, x

1
6] = [x2

1, x
2
3, x

2
4, x

2
6])? As before, in this case the difference R2(t1)⊕R2(t2)

is independent of the values of such diagonal. It follows that the pair of texts s1 and s2 can be
constructed as

SR(si) ≡
(
[x3−i1 , x3−i3 , x3−i4 , x3−i6]︸ ︷︷ ︸

1st and 3rd columns

, [α0, α2, α5, α7]︸ ︷︷ ︸
2nd and 4th columns

)
or SR(si) ≡

(
[xi1, x

i
3, x

i
4, x

i
6]︸ ︷︷ ︸

1st and 3rd columns

, [α0, α2, α5, α7]︸ ︷︷ ︸
2nd and 4th columns

)
where α0, α2, α5, α7 can take any possible values in F28 . Note that in the case, it is possible to identify

2 · 232 = 233 ≥ 2 different texts s1 and s2 in IS ⊕ a that satisfy the condition R2(t1) ⊕ R2(t2) =
R2(s1)⊕R2(s2).

In a similar way, it is possible to prove the following Theorem.

Theorem 10 ([GLR+18]). Let IS and XI be the subspaces defined as before, for an arbitrary
I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Assume that the whitening key is a weak-key,
i.e. it belongs to the set Kweak defined in 4.9. Given 264 plaintexts in IS, the number n of different
pairs of ciphertexts (ci, cj) for i 6= j that belong to the same coset of XI (i.e. ci ⊕ cj ∈ XI) has the
following property independently of the details of the S-Box:

• for 5-round AES-128, the number of collisions n is a multiple of 2, that is ∃n′ ∈ N such that
n = 2 · n′.

To prove this result, note that with probability 1

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R2(·)−−−→ YI ⊕ a′
R(·)−−−−→

prob. 1
XI ⊕ b′

where YI = SR−1 ◦MC−1(XI), as showed in (22) (remember that S-Box(XI) = XI).
Using the same technique as before (i.e. working with the super-Sbox notation and by swapping

the generating diagonals of a pair of texts), the idea is to focus on the middle rounds only, and to
show that given 264 plaintexts in a coset of IS, the number n of different pairs of ciphertexts (ci, cj)
for i 6= j that belong to the same coset of YI (that is ci⊕ cj ∈ YI) after 2 rounds is always a multiple
of 2.

Multiple-of-n Property for AES-192/256. As we have seen in Sect. 4.4.3, it is possible to set
up a weak invariant subspace of length two for 264 weak-keys of AES-192, and a weak invariant
subspace of length two/four/five for 2128/264/232 weak-keys of AES-256. Due to the argumentation
just given, it follows that the multiple-of-128 property holds for up to 7-round AES-256, while the
multiple-of-2 property holds for up to 9-round AES-256.

8.6.2. 9-round Chosen-Key Distinguisher for AES-128

To find a set of 264 plaintexts/ciphertexts with the required “simultaneous multiple-of-n” property,
the distinguisher exploits the fact that the required property can be fulfilled by starting in the middle
with a suitable set of texts. In particular, the idea is simply to choose the key such that the subkey of
the 4-th round k4 belongs the subset Kweak defined as in 4.9. Thus, consider the invariant subspace IS
defined as in 4.7, and define the 264 plaintexts as the 4-round decryption of IS and the corresponding

182

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round chosen-key distinguisher for AES

ciphertexts as the 5-round encryption of IS. Due to the secret-key distinguishers just presented,
this set satisfies the required “simultaneous multiple-of-n” property.

In more details, due to the assumption on the key (that is, k4 ∈ Kweak ⊆ IS), note that the
subspace IS is mapped into a coset of IS after two rounds encryption and one round decryption,
that is

∀k4 ∈ Kweak : IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃.

Due to the results of 8.6.1, the multiple-of-n properties hold with probability 1 on the plaintexts
and on the ciphertexts

Multiple-of-n
R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R3(·)−−−→ Multiple-of-n

It follows that the required set can be constructed using 264 computations. Moreover, we emphasize
that our experiments on the secret-key distinguishers of 8.6.1 implies the practical verification of this
distinguisher. What remains is to give arguments as to why producing that property simultaneously
on the plaintext and ciphertext side of an ideal cipher is unlikely to be as efficient.

8.6.3. Achieving the “Simultaneous Multiple-of-n” Property Generically

In this case, the adversary faces a family of random and independent ideal ciphers {Π(K, ·),K ∈
{0, 1}k}, where k = 128, 192, 256 respectively for the cases AES-128/192/256. His goal is to find a key
k and a set of 264 plaintexts/ciphertexts (pi, ci = Π(k, ci)) such that the “simultaneous multiple-of-n”
property is satisfied. As we are going to show, the probability to find a set of 264 plaintexts/ciphertexts
pairs (Xi, Yi) that satisfies the “simultaneous multiple-of-n” property for a random permutation is
upper bounded by 2−65 618.

As first thing, we discuss the freedom to choose the key. Since the adversary does not know the
details of the ideal cipher Π, he does not have any advantage to choose a particular key instead of
another one. For this reason, in the following we limit ourselves to consider the case in which the
permutation Π is instantiated by a key chosen at random in the set {0, 1}k.

Our goal is to prove that the success probability of any oracle algorithm of overall time complexity
upper bounded by 264 is negligible.

Proposition 23 ([GLR+18]). Given an ideal cipher Π or Π−1 of {0, 1}128 instantiated by a fixed
key uniformly chosen at random in {0, 1}k, consider N = 264 oracle queries made by any algorithm
A to the ideal cipher Π or Π−1. Denote this set of 264 plaintexts/ciphertexts pairs by (Xi, Yi) for
i = 0, . . . , 264−1, where Yi = Π(Xi). The probability that A outputs a set of 264 plaintexts/ciphertexts
pairs (Xi, Yi) for i = 0, . . . , 264 − 1 that satisfies the “simultaneous multiple-of-n” property is upper
bounded by 2−65 618.

Proof. For completeness, consider first the case of a dishonest algorithm A. Given N − 1 pairs
(Xi, Yi) generated by the ideal cipher Π or Π−1, assume the player chooses XN and YN in order to
satisfy the “simultaneous multiple-of-n” property. If at least one of the N pairs (Xi, Yi) output by A
does not result from a query Xi to Π or a query Yi to Π−1, then the probability that for this pair
Yi = Π(Xi) and consequently the success probability of A is upper bounded14 by 1

2128−(N−1)
.

From now one, we consider only the case of honest algorithm A, that is we assume all the pairs
(Xi, Yi) result from queries to Π or Π−1. Consider a (random) set of 264 − 1 plaintexts/ciphertexts
pairs {(Xi, Yi)}i=0,...,264−2 such that there exists (at least) one plaintext/ciphertext pair (X̂, Ŷ) for
which the required multiple-of-n property is satisfied. By assumption, the player can always find
X̂ ′ (resp. Ŷ ′) such that the “simultaneous multiple-of-n” property is satisfied for the plaintexts
(resp. for the ciphertexts). However, the oracle answer Ŷ ′ (resp. X̂ ′) is uniformly drawn from

14Note that there are 2128 different pairs (X,Y). If N − 1 are already given, the probability that Yi = Π(Xi) holds is
(2128 − (N − 1))−1.

183

8. Open-Key Distinguishers for AES

{0, 1}128 \{Y1, Y2, . . . , Y264−1} (resp. from {0, 1}128 \{X1, X2, . . . , X264−1}). Therefore, the probability
that the answer to the N -th query allows the output of A to satisfy property R (i.e. multiple-of-n) is
upper bounded by (2−1)216−16 · (2−7)14 = 2−65 618 ' 2−216

since

• there are
∑15

i=1

(
16
i

)
= 216 − 2 different subspaces XI for which the multiple-of-2 property holds,

and among them there are 14 subspaces MI for which the multiple-of-128 property holds;

• the probability that the number of collisions is a multiple of N is (approximately) 1/N .

In order to prove this second point, we first show that the probabilistic distribution of the number
of collisions is a binomial distribution15.

Given a set of n pairs texts, consider the event that m pairs belong to the same coset of a
subspace X . As first thing, the probabilistic distribution of number of collisions is simply described
by a binomial distribution. By definition, a binomial distribution with parameters n and p is the
discrete probability distribution of the number of successes in a sequence of n independent yes/no
experiments, each of which yields success with probability p. In our case, given n pairs of texts,
each of them satisfies or not the above property/requirement with a certain probability. Thus, this
model can be described using a binomial distribution, for which the mean µ and the variance σ2 are
respectively given by µ = n · p and σ2 = n · p · (1− p).

In our case, the number of pairs is given by
(

264

2

)
' 2127, the probability that a pair of texts belong

to the same coset of XI is equal to 2−8·(16−|I|), while it is equal to 2−32·(4−|J |) for the subspaces DJ
and MJ .

Probability that “the number of collision is even” is (approximately) 1/2 – Case: subspaces XI .
The probability that the number of collisions is even is given by

n/2∑
k=0

(
n

2k

)
· p2k · (1− p)n−2k =

1

2
+

1

2
· (1− 2p)n

where note that n is an even number. In our case, since n ' 2127 and 2−120 ≤ p ≤ 2−8 (where the
prob. 2−120 and 2−8 correspond resp. to the cases |I| = 15 and |I| = 1), the previous probability is
well approximated by 1/2 + 1/2 · (1− 2−7)2127 ≈ 1/2.

In order to prove the previous result, let X a binomial distribution X ∼ B(n, p). Combining the
facts that

Prob(X even) + Prob(X odd) =
n∑
k=0

(
n

k

)
· pk · (1− p)n−k = [(1− p) + p]n = 1

Prob(X even)− Prob(X odd) =

n∑
k=0

(
n

k

)
· (−p)k · (1− p)n−k = [(1− p)− p]n

where

Prob(X even) =

n/2∑
k=0

(
n

2k

)
· p2k · (1− p)n−2k

Prob(X odd) =

n/2−1∑
k=0

(
n

2k + 1

)
· p2k+1 · (1− p)n−2k−1,

15We highlight that the fact that “the probability that the number of collisions is a multiple of N is 1/N” is obvious
if the probabilistic distribution of the number of collisions is a uniform one, which is not the case.

184

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round chosen-key distinguisher for AES

it follows that Prob(X even) = 1
2 + 1

2 · (1− 2p)n.

Probability that “the number of collision is a multiple of N” is (approximately) 1/N – Case:
subspaces MJ and DJ . In order to prove this result, we first approximate the binomial distribution
with a normal one. De Moivre-Laplace Theorem claims that the normal distribution is a good
approximation of the binomial one if the skewness of the binomial distribution – given by (1 −
2p)/

√
n · p · (1− p) – is close to zero. In our case, since n ' 2127 and 2−96 ≤ p ≤ 2−32 (where

the prob. 2−96 and 2−32 correspond resp. to the cases |J | = 3 and |J | = 1), it follows that
2−47.5 ≤ skew ≤ 2−15.5, which means that the normal approximation is sufficiently good. Thus, we
approximate the binomial distribution with a normal one N (µ = n · p, σ2 = n · p · (1− p)), where the

probability density function is given by ϕ(x) = 1√
2π·σ2

e−
(x−µ)2

2σ2 .

In this case, what is the probability that the multiple-of-N collisions is satisfied? To answer this
question, it is sufficient to sum all the probabilities where the number of collisions is a multiple-of-N
(for N ∈ N and N 6= 0), that is∑

x∈Z

1√
2π · σ2

e−
(N·x−µ)2

2σ2 =
1

N
·
∑
x∈Z

1√
2π · σ̃2

e−
(x−µ̃)2

2σ̃2

︸ ︷︷ ︸
=1 by definition

=
1

N

where µ̃ = µ/N and σ̃2 = σ2/N2. Obviously, if N = 1, then this probability is equal to 1.

What happens if the adversary performs more than 264 computations? To answer this question, we
first compute the probability that a random set of 264 plaintexts/ciphertexts generated by the same
key satisfies the “simultaneous multiple-of-n” property. As we have just seen, the “simultaneous
multiple-of-n” property is satisfied with probability (2−65 618)2 = 2−131 236 ' 2−217.002

.
As a result, given 264 + 212 random texts, the player can find a set of 264 texts that satisfy the

required property both on the plaintexts and on the ciphertexts, since it is possible to construct(
264 + 212

264

)
≈ (264)212

212!
' 2217.7

different sets of 264 texts (where n! ' (n/e)n ·
√

2πn by Stirling’s approximation).
On the other hand, the cost to identify the right 264 texts among all the others is in general much

higher than 264 computations. Indeed, to have a chance of success higher than 95%, one must consider
approximately 3 · 2131 236 different sets, since 1 − (1 − 2−131 236)3·2131 236 ' 1 − e−3 ≡ 0.95, which
implies an overall cost much higher than the cost of the distinguisher.

Moreover, consider the following. Given a set of random texts, suppose to change one plaintext
in order to modify the number of collisions in the subspace XI (or/and DI) for a particular I. The
problem is that all the other numbers of collisions in the subspace XJ (or/and DJ) for all J 6= I
change. Even if it is possible to have control of these numbers, also the numbers of collisions among
the ciphertexts in each subspace MC(XK) and MK change, and in general it is not possible to
predict such change in advance. In particular, we recall that the number of collisions in a subspace
DI (resp. MI) is on average 2127 · 2−128+32·|I| = 232·|I|−1 � 1, which implies that the change in one
text modifies all the numbers of collisions in each subspaces DI or/and MI for each I ⊆ {0, 1, 2, 3}.
Similarly, the number of pairs of texts with 1 ≤ |J | ≤ 15 equal bytes (that is, that belong to the
same coset of a particular subspace XJ) is on average equal to 2127 · 2−8·|J | ≥ 2127 · 2−8·15 = 27, which
implies that the change in one text modifies all the numbers of collisions in each subspaces XJ or
MC(XJ) for each J ⊆ {ei,j}0≤i,j≤3. We conjecture that that there is no (efficient) strategy – that
does not involve brute force research – to fulfill the required “simultaneous multiple-of-n” property
for which the cost is approximately of 264 computations (or lower). The problem to formally prove
this fact is left for future work.

185

8. Open-Key Distinguishers for AES

Remark. Before going on, we highlight that this claim/result is not true in general if one considers
only a multiple-of-n property only in subspaces DI and MJ (that is, not generic subspace X) for
n < 8. In particular, in [GLR+18, App. F] we consider a distinguisher on full AES-192 which is based
on the simultaneous multiple-of-2 property both on the plaintexts (in DI) and the ciphertexts (in
MJ). In that section, we present a strategy that the adversary can use to win the game at (almost)
the same cost of the distinguisher.

8.6.4. Chosen-key distinguisher for 10-round AES-128

To set up the chosen-key distinguisher for 10-round AES-128, two possible approaches can be
considered:

• use the previous distinguisher on 9-round as a starting point and add one round in the middle
by using the remaining degrees of freedom in the choice of the key;

• use the previous distinguisher on 9-round as a starting point and add one round at the beginning
(or at the end) by exploiting a weaker property on the plaintexts (or on the ciphertexts).

One (more) Round in the Middle. As we have seen, if the subkey k4 of the 4-th round belongs
in Kweak (defined as in 4.9), it follows that

Multiple-of-n
R−3(·)←−−−− IS ⊕ a R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ b R3(·)−−−→ Multiple-of-n

In other words, one exploits the fact that the subspace IS is mapped into a coset of it after 2-round
encryption and 1-round decryption for any subkey in Kweak.

By simple computation, there is a key in Kweak for which the subspace IS is mapped into one of
its coset after two rounds decryption. In more details, for the key k̂ ∈ Kweak defined by

k̂ ≡ (A = 0x63⊕R[5], B = 0x63, C = 0x63, D = 0x63) ∈ Kweak

it follows that

IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

To see this, it is sufficient to compute one round of the key schedule
A⊕ 0x63⊕R[5] 0 0 0

B ⊕ 0x63 0 0 0
C ⊕ 0x63 0 0 0
D ⊕ 0x63 0 0 0

 1-round key-schedule−−−−−−−−−−−−−→ Kweak ≡


A A A A
B B B B
C C C C
D D D D

 ,
and to look for a key in Kweak that belongs to IS one round before. As a result, it follows that for
the key k̂ ≡ (A = 0x63 ⊕ R[5], B = 0x63, C = 0x63, D = 0x63) ∈ Kweak it is possible to set up a
distinguisher on 10 rounds16 since

Multiple-of-n
R−3(·)←−−−− IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b R3(·)−−−→ Multiple-of-n

Using this observation, we can construct the distinguisher. Exactly as before, the chosen-key model
asks the adversary to find a set of 264 plaintexts/ciphertexts, i.e. (pi, ci ≡ R10(pi)) for i = 0, . . . , 264−1
– where all the plaintexts/ciphertexts are generated by the same key – such that

16For completeness, we discuss the relevance of a distinguisher that can be constructed for a single key (which this does
not mean – in general – that it holds for one key only). A single collision/near-collision/ or similar distinguishing
property for a block-cipher based compression function or hash function would be also a property of the cipher that
holds (depending on the mode) for a single key. Assume this is found with a non-generic approach. This simple
example shows that, in principle, properties even for single keys can be interesting.

186

8.6. The “Simultaneous Multiple-of-n” Property - A 9-round chosen-key distinguisher for AES

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong tkeccak day
o the same coset of MJ and the number of different pairs of plaintexts that belong to the
same coset of DI are a multiple of 128 ≡ 27;

• for each J, I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of different pairs
of ciphertexts that belong to the same coset of MC(XI) and the number of different pairs of
plaintexts that belong to the same coset of XJ are a multiple of 2.

Same as for the 9-round case, due to our argumentations from 8.6.3 we conjecture that the computa-
tional cost of an adversary to generate such set is (much) higher than 264 computations.

A Weaker Property. In this case, the chosen-key model asks the adversary to find a set of
264 (plaintexts, ciphertexts), that is (pi, ci ≡ R10(pi)) for i = 0, . . . , 264 − 1 – where all the plain-
texts/ciphertexts are generated by the same key – such that the following “simultaneous multiple-of-n”
property is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties: (1st) for each J ⊆ {0, 1, 2, 3}, the
number of different pairs of plaintexts that belong to the same coset of DJ is a multiple of
128 = 27; (2nd) for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to the
same coset of MJ is a multiple of 2.

Choosing one of the 232 keys proposed for the 9-round distinguisher given in 8.6.2, it is possible to
construct such set with a computational cost of 264. In more details, due to the assumption on the
key (that is, k4 ∈ Kweak ⊆ IS), note that the subspace IS is mapped into a coset of IS after two
rounds encryption and one round decryption, that is

∀k4 ∈ Kweak : IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃.

Due to the results of 8.6.1, the multiple-of-128 property (on DJ) and the multiple-of-2 property (on
XI) hold with probability 1 on the plaintexts while the multiple-of-2 property (on MJ) holds on the
ciphertexts

Multiple-of-n
R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

What about an adversary facing a family of random and independent ideal ciphers? Due to
previous analysis, the property on the plaintexts is satisfied with prob. 2−32 809 ' 2−215

while the
property on the ciphertexts is satisfied with prob. 2−14, for an overall probability of 2−32 809 · 2−14 =
2−32 823 ' 2−215

.

In other words, the property on the ciphertexts is much weaker than the property on the plaintexts.
This fact can be potentially used to generate a set of 264 plaintexts/ciphertexts with the required
properties with a data cost of 3 · 278. Indeed, the attacker can easily generate a set of 264 plaintexts
that satisfy the “Multiple-of-n” property as described before (e.g. he can generate such set using the
fact that the 4-round AES decryption of IS – namely R4(IS) – has the required “Multiple-of-n”
property). Then, he simply asks the oracle for the corresponding ciphertexts, which satisfy the
“Multiple-of-2” property with prob. 2−14. By repeating this process 3 ·214, the probability of success17

is higher than 95%. The cost of such strategy (which includes both the generation of the texts and
the check that the property is satisfied) is at least of 278.

17The probability of success is given by 1− (1− 2−14)3·214≥0.95.

187

8. Open-Key Distinguishers for AES

Even if this attack is faster than 2128, its cost is still (much) bigger than 264, which is the cost
to generate the required set of plaintexts/ciphertexts for the case of 10-round AES. Remember
that the goal in an open-key distinguisher is indeed to be able to generate the requires set of
plaintexts/ciphertexts with a similar (or even the same) cost for AES (or the studied cipher) and
for the ideal cipher. In this case, it is very unlikely that any generic attack can get close to that:
even if we would allow unlimited time, the data complexity of a generic attack would still need to
be higher than 264. Indeed, working as in the 9-round case, a simple brute force attack requires at
least18 264 + 211 plaintexts/ciphertexts in order to find a set of 264 plaintexts with the required
properties. For all these reasons and same as for the 9-round case (see our arguments from 8.6.3), we
conjecture that the data/computational cost of an adversary to generate such set is (much) higher
than 264 computations.

8.7. Chosen-Key Distinguishers for 11-round AES-192 and (full)
14-round AES-256

Finally, we present chosen-key distinguishers for 11-round AES-192 and 14-round AES-256. Since
the strategies used to set up these distinguishers is similar to the ones proposed for AES-128, we
limit ourselves to highlight here the main differences.

8.7.1. Chosen-Key Distinguisher for 11-round AES-192

9-round AES-192 Distinguisher

In order to set up the 9-round distinguisher of AES-192, one exploits the fact that

∀k4 ∈ Kweak : IS ⊕ a R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ b

for each key in Kweak defined in 4.4.3, where the round constant R[1] that defines Kweak must be
replaced with R[4].

Chosen-Key Distinguisher for 10-round AES-192

10-round AES-192 Distinguisher - “Weaker” property. As for AES-128, the simplest way to
extend the previous distinguisher to 10-round is to exploit a weaker property on (e.g.) the ciphertexts.
As a result, while the property on the plaintexts is unchanged, the chosen-key model asks the adversary
to find a set of 264 (plaintexts, ciphertexts), that is (pi, ci ≡ R10(pi)) for i = 0, ..., 264 − 1 – where all
the plaintexts/ciphertexts are generated by the same key – such that for each J ⊆ {0, 1, 2, 3}, the
number of different pairs of ciphertexts that belong to the same coset of MI is a multiple of 2.

10-round AES-192 Distinguisher - Freedom of the Key. In order to set up the distinguisher
on 10 round, we need a weak invariant subspace trail on 4-round. By simple computation, it is
sufficient to choose the subkey19

k̂ ≡ (A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0) ∈ Kweak

18Note that
(

264+211

264

)
≥ 232 823.

19For completeness, another possible key can be used. In particular, given the key k̂ ∈ Kweak defined by k̂ ≡ (A =
0x63⊕R[5], B = 0x63, C = 0x63, D = 0x63, E = 0, F = 0, G = 0, H = 0) (where R[1] that defines Kweak must be

replaced with R[4]), then for IS ⊕ a R−1(·)←−−−− IS R3(·)−−−→ IS ⊕ b. We highlight that there is no key that allows to
extend both 1-round forward and 1-round backward.

188

8.7. Chosen-Key Distinguishers for 11-round AES-192 and (full) 14-round AES-256

(where R[1] that defines Kweak must be replaced with R[5])) for which

IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

Due to the results of Sect. 8.6.1, the multiple-of-128 property (on DJ) and the multiple-of-2 property
(on XI) hold with probability 1 on the plaintexts while the multiple-of-2 property (on MJ) holds on
the ciphertexts

Multiple-of-n
R−3(·)←−−−− IS ⊕ k̂ R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

11-round AES-192 Distinguisher

Finally, it is possible to combine the previous two distinguishers on 10-round AES-192 in order to
set up a distinguisher on 11-round AES-192. In this case, the chosen-key model asks the adversary
to find a set of 264 (plaintexts, ciphertexts), that is (pi, ci ≡ R11(pi)) for i = 0, ..., 264 − 1 – where all
the plaintexts/ciphertexts are generated by the same key – such that the following “simultaneous
multiple-of-n” property is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties: (1st) for each J ⊆ {0, 1, 2, 3}, the
number of different pairs of plaintexts that belong to the same coset of DJ is a multiple of
128 = 27; (2nd) for each I ⊂ {(0, 0), (0, 1), ..., (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to the
same coset of MJ is a multiple of 2.

In order to set up the chosen-key distinguisher, the idea is to exploit the fact that for the key
k̂ ∈ Kweak defined by k̂ ≡ (A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0) ∈ Kweak

(where R[1] that defines Kweak must be replaced with R[5])), it holds that

IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

Due to the results of Sect. 8.6.1, the multiple-of-128 property (on DJ) and the multiple-of-2 property
(on XI) hold with probability 1 on the plaintexts while the multiple-of-2 property (on MJ) holds on
the ciphertexts

Multiple-of-n
R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

as required.
What about an adversary facing a family of random and independent ideal ciphers? As we showed

in detail in 8.6.4, the required properties on the plaintexts and on the ciphertexts hold with prob.
2−32 823 ' 2−215

for a random set of texts. Due to our argumentations from 8.6.3, we conjecture that
the computational cost of an adversary to generate such set is (much) higher than 264 computations.

8.7.2. Chosen-Key Distinguisher for (full) AES-256

Chosen-Key Distinguisher for 12-round AES-256

Similarly, to set up the 12-round distinguisher of AES-256, one exploits the fact that

∀k4 ∈ Kweak : IS ⊕ a R−1(·)←−−−− IS R5(·)−−−→ IS ⊕ b

for each key in Kweak defined in Sect. 4.4.3 where

A0 = A1 = B0 = ... = D0 = D1 = 0, E0 = E1, F 0 = F 1, ...,H0 = H1.

189

8. Open-Key Distinguishers for AES

Chosen-Key Distinguisher for 13-round AES-256

13-round AES-256 Distinguisher - “Weaker” Property. As for AES-128, the simplest way to
extend the previous distinguisher to 13-round is to exploit a weaker property on (e.g.) the ciphertexts.
As a result, while the property on the plaintexts is unchanged, the chosen-key model asks the adversary
to find a set of 264 (plaintexts, ciphertexts), that is (pi, ci ≡ R13(pi)) for i = 0, ..., 264 − 1 – where all
the plaintexts/ciphertexts are generated by the same key – such that for each J ⊆ {0, 1, 2, 3}, the
number of different pairs of ciphertexts that belong to the same coset of MI is a multiple of 2.

13-round AES-256 Distinguisher - Freedom of the Key. Another possibility to extend the
previous distinguisher to 13-round is to exploit the freedom in the key. In more details, in order
to set up the distinguisher on 13 round and using the same argumentation proposed for AES-128,
among the previous weak-keys the idea is to choose the sub-key defined by

k̂ ≡ (E0 = E1 = 0x63⊕R[5], F 0 = F 1 = 0x63, ...,H0 = 0, H1 = 0x63) ∈ Kweak

for which

IS ⊕ a R−2(·)←−−−− IS R5(·)−−−→ IS ⊕ b.

or
k̂ ≡ (E0 = E1 = F 0 = F 1 = ... = H0 = 0, H1 = 0) ∈ Kweak

for which

IS ⊕ a R−1(·)←−−−− IS R6(·)−−−→ IS ⊕ b.

Chosen-Key Distinguisher on full AES-256

The previous chosen-key distinguisher covers 13 rounds of AES-256. Here we show that it is possible
to consider a weaker property (e.g.) on the plaintexts to cover full AES-256 in the single-key setting.
In this case, the chosen-key model asks the adversary to find a set of 264 (plaintexts, ciphertexts),
that is (pi, ci ≡ R14(pi)) for i = 0, ..., 264 − 1 – where all the plaintexts/ciphertexts are generated by
the same key – such that the following “simultaneous multiple-of-n” property is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties: (1st) for each J ⊆ {0, 1, 2, 3}, the
number of different pairs of plaintexts that belong to the same coset of DJ is a multiple of
128 = 27; (2nd) for each I ⊂ {(0, 0), (0, 1), ..., (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to the
same coset of MJ is a multiple of 2.

Choosing the key as before and due to the same arguments given for AES-128 and AES-192, the
computational cost to construct such set is of 264.

What about an adversary facing a family of random and independent ideal ciphers? Due to previous
analysis, the required properties holds with prob. 2−32 823 ' 2−215

for a random set of texts. As
before, a simple brute force attack requires at least 264 + 211 plaintexts/ciphertexts in order to
find a set of 264 plaintexts with the required properties. Due to our argumentations from 8.6.3, we
conjecture that the computational cost of an adversary to generate such set is (much) higher than
264 computations.

190

9
Open Problems - Cryptanalysis of AES

Subspace Trails

• In Sect. 4, we propose the definition of “weak-key subspace trail”. A natural question arises:
is it possible to set up a proper weak-key subspace trail - that is, different both from an
invariant subspace trail (i.e. with disjoint input and output subspaces) and different from a
subspace trail (i.e. that works only for a class of weak keys) - that improves/outperforms the
ones in such section? A possible starting point could be to the results given in [BWP05] about
the several subspaces V,W ⊂ GF (28) of dimension two or/and four that satisfy V 6= W and
Sbox(V ⊕ v) ⊆W ⊕ w (where Sbox(x) = x−1).

Truncated Differential Distinguishers/Attacks on 5-round AES

• In order to theoretically describe the 5-round AES truncated differential distinguisher based
on the mean proposed in Sect. 5, we need particular assumptions on the S-Box. As we shown
in details there, such assumption is related to the fact that the number of solutions x of the
equation

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

are uniformly distributed for each input/output difference ∆I 6= 0 and/or ∆O 6= 0. In there we
observed the following: given the probabilistic distribution of the number of solutions of such
equation for each ∆I 6= 0 and/or ∆O 6= 0, its variance is “low” if the solutions are uniform
distributed.

On the other hands, consider the practical results on small-scale AES proposed in Sect. 5.8. The
just given property on the variance of such distribution does not seem sufficient to guarantee
that the solutions are uniform distributed. To better understand this fact, consider the average
number of collisions for different “S-Boxes with the same variance”. By Table 5.2, it turns out
that the average number of collisions is not (approximately) equal for all the “S-Boxes with
the same variance”, as we should expect.

An open problem is to understand which parameters/properties of the S-Box really influences
the fact that the solutions of the equation (5.5) are uniformly distributed for each input/output
difference. Is it possible to better estimate the average number of collisions taking into account
these parameters/properties of the S-Box? In other words, is it possible to theoretically compute
a confidence interval [M −m,M +m] which depends on the details of the S-Box and such that
all the number of collisions given in Table 5.2 - Sect. 5.8 fall into it (with high probability)?

• The 5-round AES truncated differential distinguisher based on the mean seems to depend also
on the details of the MixColumns matrix. It could be interesting to better understand this fact:
which details of the MixColumns matrix – especially in the case of “bad” S-Box – influence the
average number of collisions for 5-round AES? Is it possible to formally compute the mean –
or equivalently, re-formulate the proof proposed in Sect. 5.3 – using a “weaker” assumption

191

9. Open Problems - Cryptanalysis of AES

than the MDS one? Is it possible to theoretically predict the average number of collisions when
working with a matrix1 which is not MDS?

• In Sect. 5.7.1, we propose the first truncated differential distinguisher based on the variance
which is (much) more competitive - both for the computational and data costs - than the
corresponding one based on the mean. However, an open problem is to formally study the
probability of success of such distinguisher. Is it possible to set up similar distinguishers for
other ciphers?

• As highlighted in Sect. 5.6.2 , the skewness of the probabilistic distribution of 5-round AES is
different from the one of a random permutation. In particular, the bias in the skewness seems
to be stronger than the bias in the mean. As a result, also this parameter could be potentially
used to set up distinguishers and/or key-recovery attacks. The problem to theoretically compute
the value of the skewness of such probabilistic distributions is open for future research: does
it depend on the details of the S-Box? Is it possible to exploit such parameter also for other
ciphers? What about the kurtosis?

• Let’s focus again on the 5-round AES truncated differential distinguisher based on the mean,
in particular on its proof. In order to theoretically compute the average number of collisions,
we focus and work only on the middle round of

DI ⊕ a
R2(·)−−−−→

prob. 1
MI ⊕ b

R(·)−−→ DJ ⊕ a′
R2(·)−−−−→

prob. 1
MJ ⊕ b′.

In particular, given two plaintexts p1, p2 ∈ MI ⊕ b, the fact that they belong to the same
coset of DJ after one round - that is, R(p1)⊕R(p2) ∈ DJ - can be re-written as a system of
equations that involves the S-Box operation of the form⊕

{i,j}∈I

Ai,j ×
[
S-Box(Bi,j · p1

i,j ⊕ Ci,j)⊕ S-Box(Bi,j · p2
i,j ⊕ Ci,j)

]
= 0

for a set of index I and for some constants A,B,C (which depend only on the MixColumns
matrix and on the secret key).

A similar analysis can be performed for 6-round AES, by replacing the S-Box operation with
the super-Sbox one (3.1). Indeed, note that (1st) 6-round AES can be re-written as

DI ⊕ a
R2(·)−−−−→

prob. 1
MI ⊕ b

R2(·)−−−→ DJ ⊕ a′
R2(·)−−−−→

prob. 1
MJ ⊕ b′,

and (2nd) given two plaintexts p1, p2 ∈MI ⊕ b, the fact that they belong to the same coset
of DJ after two rounds - that is, R2(p1) ⊕ R2(p2) ∈ DJ - can be re-written as a system of
equations that involves the super-Sbox operation (3.1), similar to the one just given. An open
problem is to modify the proof given in Sect. 5.3 in order to get a similar result about the
average number of collisions for 6-round AES. Is it possible to set up a truncated differential
distinguisher for 6-round AES which is independent of the secret key?

• In Sect. 5.9, we presented several key-recovery attacks on 5-round AES based on 4-round
truncated differential distinguishers (which are independent of the secret key). Is it possible
to improve the computational and/or data costs of such attacks? Is it possible to extend
such attacks to 6-round AES without guessing an entire subkey? Is it possible to set up
similar attacks on 6- (or even more) round AES-128 exploiting directly the 5-round truncated
differential distinguishers based on the mean and on the variance?

1Note that the MixColumns matrices of many AES-like lightweight ciphers in the literature are not MDS.

192

• Since reduced versions of AES have nice and well-studied properties, many constructions
employ round-reduced AES as part of their design. E.g., several candidates in the on-going
“Competition for Authenticated Encryption: Security, Applicability, and Robustness” (CAESAR)
are designed based on an AES-like SPN structure. As an open future problem, it could be
interesting to apply the distinguishers and key-recovery attacks presented before to tweakable
block-ciphers based on AES. Is it possible to extend them for more rounds than the ones
previous given for AES, using the freedom of the tweak or exploiting related-tweak attacks?

Mixture Differential Cryptanalysis

• In Sect. 6, we proposed several probabilistic mixture differential distinguishers on 5-round
AES which are independent of the secret key. All these distinguishers have been obtained by
combining the 4-round mixture differential distinguisher with a truncated differential trail at
the end. Is it possible to improve the computational and/or data costs of such distinguishers?
Is it possible to set up (competitive) key-recovery attacks based on them? Is it possible to set
up similar distinguishers for other ciphers? Is it possible to use the same strategy to set up a
distinguisher on 6-round by combining the 4-round mixture differential distinguisher with an
impossible (truncated) differential trail?

• Mixture differential cryptanalysis proposed in Sect. 6 is a new technique that allows to set
up competitive distinguishers and key-recovery attacks on round-reduced AES. Since it has
been proposed only recently, a deep analysis of its potential is still missing. As a result,
several problems/questions are open for future research: Is it possible to exploit it to attack
other construction, like AES-PRF proposed in [MN17]? Is it possible to combine it with a
boomerang/yoyo distinguisher/attack?

AES with Secret S-Box

• Is it possible to combine Mixture Differential Cryptanalysis and the strategy presented in
[TKKL15] (based on the integral cryptanalysis) in order to set up competitive key-recovery
attacks on AES with a single secret S-Box?

• In Sect. 7, we presented and proposed several attacks on AES with a single secret S-Box. Is
it possible to extend them on more rounds of AES? What about the case in which AES is
instantiated by different secret S-Boxes? Is it possible to set up similar attacks in the case of
AES with known S-Box and secret linear layer?

Open-Key Distinguisher on AES

• As highlighted in Sect. 8, an open problem for the open-key distinguisher is to find a (formal)
definition for known-/chosen-key distinguishers on concrete implementable cipher (like the
AES), that captures the idea of the distinguishers present in the literature. A possible way to
achieve this result is to find a formal definition of the set D of distinguishers as proposed in
Sect. 8.1.2

D denotes the set of all distinguishers D for which the description of the generic relation R
has no “obvious connection” with the specification of E and it is independent of the value
of the key.

• Is it possible to set up a known-key distinguisher on full AES-128 which does not exploit Gilbert’s
model/scenario? Is it possible to set up other (more competitive) chosen-key distinguishers on
(full) AES and/or to provide a formal proof that support the distinguishers presented here?

193

9. Open Problems - Cryptanalysis of AES

• Interestingly, while it is possible to set up chosen-key distinguishers on full AES-128 and on
full AES-256, this is not possible for AES-192. A possible reason of this is the the key-schedule.

In some sense, the key-schedule of AES-192 seems to be “stronger” than the one of AES-256.
The interesting fact is that, even if one has more freedom for AES-192 than AES-128, it is
not possible to set up distinguishers longer for AES-192 than for AES-128. To explain this
fact, consider the key-schedule of AES-192 in detail, and let’s focus on the invariant subspace
trail of AES proposed in Sect. 4. Even if one has 64-bit of freedom more than AES-128, these
bits are not “free”, in the sense that they are forced to take particular values in order to fulfill
the invariant subspace trail. In the case of AES-256 instead, one can completely exploit the
128-bit of freedom in order to extend the distinguisher for 3 more rounds.

As open problem, it could be interesting to consider possible variant of the key-schedule of
AES-256 that guarantees the same security offered by the one of AES-192. A possible way to
achieve this result could be to break the symmetry of the key-schedule of AES-256.

194

Part II.

Novel Designs: MiMC and its
Generalizations

195

10
MiMC

Modern cryptography developed many techniques that go well beyond solving traditional confi-
dentiality and authenticity problems in two-party communication. Secure multi-party computation
(MPC), zero-knowledge proofs (ZK), and fully homomorphic encryption (FHE) are only some of the
most striking examples. In various applications of these three technologies, part of the circuit or
function that is being evaluated is in turn a cryptographic primitive such as a PRF, a symmetric
encryption scheme, or a collision resistant function. As a result, a new direction of research aims at
designing symmetric schemes which are competitive for these particular applications.

Traditionally, ciphers are built from linear and non-linear building blocks. These two have roughly
similar costs in hardware and software implementations. In CMOS hardware, the smallest linear
gate (XOR) is about 2-3 times larger than the smallest non-linear gate (typically, NAND). When
implemented in an MPC protocol or a homomorphic encryption scheme, however, the situation
is radically different: linear operations come almost for free, whereas the bottleneck are nonlinear
operations that involve symmetric cryptographic operations.

This cost metric suggests a new way of designing a cipher where most of the cryptographically
relevant work would be performed as linear operations and the use of non-linear operations is
minimized. This design philosophy is related to the fundamental theoretical question of the minimal
multiplicative complexity (MC) [BPP00] of certain tasks.

In [AGR+16; AGP+18], we focus on a large class of such applications where the total number
of field multiplications in the underlying cryptographic primitive poses the largest performance
bottleneck. Examples include MPC protocols based on Yao’s garbled circuit and ZK-proof systems,
including developments around SNARKs [BCG+13] which found practical applications, e.g., in
Zerocash [BCG+14]. This motivates the following question addressed in this work: How does a
construction for a secure block cipher or a secure cryptographic hash functions look like that minimizes
the number of field multiplications?

MiMC: “Minimize the Multiplicative Complexity”

To answer this question, here we present1 MiMC [AGR+16], which design is extremely simple: a
non-linear function F (x) := x3 is iterated with subkey additions. This design is a simplified variant
of a design by Nyberg and Knudsen [NK95] from the 1990s, which was aimed to demonstrate ways to
achieve provable security against the emerging differential and linear attacks, using a small number
of rounds (smaller than, say, DES). However, not much later, [JK97] showed very efficient, even
practical interpolation attacks on such proposals. Our proposal resembles PURE , a design introduced
in [JK97] in order to present the interpolation attack. We pick up this work from almost 20 years
ago and study if a much higher number of rounds can make (a simplified version of) this design
secure. It turns out, perhaps surprisingly, that the required much higher number of rounds (in the
order of 100s instead of 10 or less) is very competitive when it comes to the new application areas of
symmetric cryptography that motivate this work.

1The name MiMC is an abbreviation of “Minimize the M ultiplicative C omplexity”, which is exactly the goal of this
cipher.

197

10. MiMC

MiMC - which can be instantiated both in GF (p) and in GF (2n) - can be used for encryption
as well as for collision-resistant cryptographic hashing based on a sponge construction. MiMC is
distinguished from any of the many constructions that have been proposed in this field recently, and
it contradicts a popular belief: a recent standard textbook [KR11, Sect. 8.4] explicitly considers such
constructions as “not serious, for various reasons”.

Related Works and Comparison

Recently, a number of new primitives were proposed that aim to minimize metrics related to the
computation of multiplications - we refer to Sect. 2.4 for a discussion about this topic. Among others,
they include LowMC [ARS+15], Kreyvium [CCF+16], FLIP [MJSC16] and RASTA [DEG+18].
While LowMC has been designed for FHE, MPC or/and ZK applications, in contrast Krevyium,
FLIP and RASTA have been designed mainly for FHE application. Since the main targets of MiMC
are Zero-Knowledge proofs and MPC applications (rather than FHE ones), here we limit ourselves
to recall only LowMC in details.

LowMC [ARS+15]. LowMC is based on a parameterizable design approach. It is a flexible block
cipher based on an SPN structure where, given any blocksize, a choice for the number of S-Boxes
per round and security expectations in terms of time and data complexity, a concrete instantiation
can be created easily (the number of rounds needed to reach the security claims is indeed derived
from these parameters).

In more details, to reduce the multiplicative complexity, the number of S-Boxes applied in parallel
can be reduced, leaving part of the substitution layer as the identity mapping. Such a strategy was
not new in the literature (e.g. it was already proposed in ZORRO [GGNS13]), and despite several
concerns regarding it [BDD+15], authors showed that security is viable. To reach security in spite of
a low multiplicative complexity, pseudo-randomly generated binary matrices are used in the linear
layer to introduce a very high degree of diffusion.

As just recalled, LowMC has been designed for applications like FHE, MPC, or/and ZK. In
[ARS+15], authors gave several instatiations in order to target each one of these applications, e.g.
some that minimize the ANDdepth, others that minimize the number of ANDs overall, and again
others that minimize the number of ANDs per encrypted bit.

MiMC Motivations. Earlier works on specialized designs for such applications - including LowMC,
Kreyvium, FLIP or the very recent RASTA - consider the case of Boolean multiplications and mostly
focus on the depth of the resulting circuit.

Surprisingly, albeit many MPC/FHE/ZK-protocols natively support operations in GF (p) for large
prime p, very few candidates (even considering all of symmetric cryptography) exist which natively
work in such fields. For this reason, in [AGR+16] we decided to focus on multiplications in the larger
fields GF (2m) and GF (p) which is motivated as follows: as many protocols support multiplications
in larger fields natively, encoding of a description in GF (2) is cumbersome and inefficient. Whilst it
is possible to do bit operations over GF (p) using standard tricks (which turn XOR into a non-linear
operation), such a conversion is expensive. Consider AES as an example: it allows for an efficient
description in a variety of field sizes. This is also the reason why the bit-based LowMC, which has
a lower number of AND gates, can often outperform AES in actual implementations of the MPC
protocols, despite being much better than AES in terms of GF (2) metrics (see [ARS+15, Table 6]
for details of the most striking example). This is also partly due to the very high number of XORs
computed in LowMC resulting them to be no longer negligible.

198

10.1. The MiMC Primitives

X3 X3X3x y

k k ⊕ c1 kk ⊕ cr−1

Figure 10.1.: r rounds of MiMC-n/n.2

10.1. The MiMC Primitives

In the following, we describe a block cipher, a permutation, and a (sponge-based) hash function with
a low number of multiplications in a finite field Fq ≡ GF (q) where q is either a prime p or a power
of 2.

10.1.1. The Block Cipher MiMC

In order to achieve an efficient implementation over a field Fq (with q either prime or a power of 2),
i.e. to minimize computationally expensive multiplications in the field, our design operates entirely
over Fq, thereby avoiding S-Boxes completely. More precisely, we use a permutation polynomial over
Fq as round function.

In the following, we restrict ourselves to F2n and we denote by MiMC-N/κ a keyed permutation
with block size N and key size κ. The concept however equally applies to Fp.

MiMC-n/n

Our block cipher is constructed by iterating a round function r times where each round consists of
three steps:

• a key addition with the key k;

• the addition of a round constant ci ∈ F2n ;

• the application of a non-linear function defined as F (x) := x3 for x ∈ F2n .

The ciphertext is finally produced by adding the key k again to the output of the last round. Hence,
the round function is described as

Fi(x) = F (x⊕ k ⊕ ci)

where c0 = cr = 0 and the encryption process is defined as

Ek(x) = (Fr−1 ◦ Fr−2 ◦ ... ◦ F0)(x)⊕ k.

In order to guarantee invertibility, we choose n to be odd. As we are going to show, the number of
rounds to provide security is given by

r = dn · log3 2e+ 1,

where the r − 1 round constants are chosen as random elements from F2n .
Note that the random constants ci do not need to be generated for every evaluation of MiMC.

Instead the constants are fixed once and can be hard-coded into the implementation on either side.
No extra communication is thus needed, just as with round constants in LowMC, AES, or in fact
any other cipher.

2Acknowledgement. Figure 10.1 – made by Christian Rechberger and by Arnab Roy – has been copied from [AGR+16].

199

10. MiMC

Decryption for MiMC-n/n can be realized analogously to encryption by reversing the order of the
round constants and using

F−1(x) := xs where s =
2n+1 − 1

3

instead of F (x) := x3. Hence, encryption and decryption need to be implemented separately.
Furthermore, since decryption is much more expensive than encryption, using modes where the
inverse is not needed is advisable. We note that for our targeted applications, such as PRFs or
cryptographic hash functions, computing the inverse is usually not required. We therefore provide
benchmark results only for the encryption function. The fact that the inverse has a more complex
algebraic description also has a beneficial effect on security as it limits cryptanalytic approaches
that try to combine the encryption and decryption direction, such as inside-out approaches.

Design Rationale. Here, we briefly we explain the design rationale of the keyed permutation and
argue its security. The monomial x3 serves as the non-linear layer of the block cipher. Note that we
can use x3 to construct the cipher iff it is a permutation monomial in the field F2n . The following
well known result governs the choice of the monomial and size of the field in the design of MiMC.

Proposition 24. Any monomial xd is a permutation in the field F2n iff gcd(d, 2n − 1) = 1.

Hence, x→ x3 is a permutation in F2n only when n is odd.
In order to compute the inverse of x3 in F2n , the goal is to find an exponent s s.t. x3·s = x. By

Fermat’s Little Theorem3, this is equivalent to look for an s such that 3 · s = 1 (mod 2n − 1). By
previous proposition, remember that 3 divides 2x − 1 if and only if x is even. As a result, we have
that

s =
2 · (2n − 1) + 1

3
=

2n+1 − 1

3
.

Lemma 9. Let n be an odd number. The inverse of the cubic function f(x) : F2n → F2n defined as
f(x) = x3 is given by

f−1(x) = x
1
3 ≡ x

2n+1−1
3 .

In a similar way (see “Hermite’s Criterion” for more details):

Proposition 25. The function f(x) = x3 is a permutation in the field Fp iff p 6= 1 mod 3.

10.1.2. The Hash Function – MiMCHash

First of all, note that it is possible to construct a permutation MiMCP from the cipher MiMC as
described above by simply set the key to e.g. the all-0 string.

For the hash function MiMCHash, we propose to instantiate the permutation MiMCP in the sponge
framework [BDPA07]. When the internal permutation P of an N -bit sponge function (composed of
c-bit capacity and r-bit bitrate - N = c+ r) is modeled as a randomly chosen permutation, it has
been proven by Bertoni et al. [BDPA08] to be indifferentiable from a random oracle up to 2c/2 calls
to P . In other words, a sponge with a capacity of c provides 2c/2 collision and 2c/2 (second) preimage
resistance. Given a permutation of size n, and a desired security level s, we can hash r = n− 2s bits
per call to the permutation. MiMCHash-l denotes the hash function with l bit output.

As usual, the message is first padded according to the sponge specification so that the number
of message blocks is a multiple of r where r is the rate in sponge mode. For MiMCHash-t we use
MiMC-n/n permutation where n = 4 ·t+1 and s = 2 ·t. For MiMCHash-256 we thus use a MiMC-n/n
permutation with n = 1025. The rate and the capacity are chosen as 512 and 513 respectively. This
choice allows for processing the same amount of input bits as SHA-256 (512 bits) while at the same
time offering collision security and (second) preimage security of 256 bits.

3Fermat’s little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer
multiple of p. In the notation of modular arithmetic, this is expressed as ap ≡ a mod p.

200

10.2. Security Analysis

10.2. Security Analysis

Our designs resist a variety of cryptanalysis techniques. The algebraic design principle of MiMC
causes a natural concern about the security of the keyed permutation against algebraic cryptanalytic
techniques. We describe several possible algebraic attacks (including a new “GCD” attack) against
the design and analyze the resistance of the block cipher against these attacks. We also consider
statistical attacks.

To summarize the following results, the number of rounds for MiMC-n/n is derived from an
interpolation attack.

10.2.1. Interpolation Attack

Interpolation attacks, introduced by Jakobsen and Knudsen [JK97], construct a polynomial cor-
responding to the encryption func- tion without knowledge of the secret key. If an adversary can
construct such a polynomial then for any given plaintext the corresponding cipher-text can be
produced without knowledge of the secret key.

Let Ek : F2n → F2n be an encryption function. For a randomly fixed key k, the polynomial P (x)
representing Ek(x) can be constructed using Lagrange’s theorem, where x is the indeterminate
corresponding to the plaintext. If the polynomial has degree d then we can find it using Lagrange’s
formula

P (x) =
d∏
i=0

yi
∑

1≤j≤d,i 6=j

x− xj
xi − xj

where Ek(xi) = yi for i = 0, 1, ..., d.

This method can be extended to a key recover attack. The attack proceeds by simply guessing the
key of the final round, decrypting the cipher-texts and constructing the polynomial for r − 1 rounds.
With one extra p/c pair, the attacker checks whether the polynomial is correct.

Observe that the number of unknown coefficients of the interpolation polynomial is d+ 1 and that
the complexity of constructing a Lagrangian interpolation polynomial is O(d log d) [Sto85]. Hence,
setting d = 3r with

r = rmax ≈ n/ log2(3)

thwarts this attack. Note that no function mapping from GF (2n) to GF (2n) has degree ≥ 2n, since
T 2n−1 ≡ 1 for each T ∈ F2n and the degree of the interpolation polynomial does not increase for
r > rmax.

A meet-in-the-middle variant of the interpolation attack was also proposed in [JK97], constructing
a polynomials g(x) = h(y) instead of one polynomial y = f(x). However, for MiMC-n/n, this
approach does not produce an improvement due to the prohibitive degree of the inverse operation.

For completeness, we note that the complexity of an interpolation attack may decrease if the
polynomial P (x) is sparse for a chosen key. However, because we are adding random round constants
in each round and x3 is a permutation in F2n by construction, our P (x) is not expected to be sparse4.

4This claim is supported by our experiments. In particular, for a field F2n and using x3 as permutation, we observed:

• after 1 round, all terms appear (percentage: 100 %);

• after 2 rounds, 8 terms appear instead of 10 (percentage: 80 %);

• after 3 rounds, 19 terms appear instead of 28 (percentage: 67.86 %);

• after 4 rounds, 54 terms appear instead of 82 (percentage: 65.85 %);

• after 5 rounds, 161 terms appear instead of 244 (percentage: 66 %);

• after 6 rounds, 531 terms appear instead of 730 (percentage: 72.74 %);

and so on, where the percentage of the non-null terms continues to grow for the next rounds. For example, for the
concrete field GF (217), after 10 rounds almost all the terms are non-zero.

201

10. MiMC

10.2.2. GCD Attack

From the description of MiMC, it is clear that factoring univariate polynomials recovers the key.
However, if we are given more than one known plaintext-cipher-text pair, we can reduce the complexity
further by computing a GCD of them.

Denote by E(k, x) the encryption of x under key k. For a pair (x, y) ∈ Fq×Fq, E(K,x)−y denotes
a univariate polynomial in Fq[K] corresponding to (x, y). Note that in general, given plaintext/cipher
text pair (x, y), it should be hard for a generic encryption scheme to compute the univariate
polynomial E(K,x)− y explicitly in the variable K (i.e. the secret key). However, this is not the case
of MiMC, for which the polynomial E(K,x)− y can be always computed explicitly, and it simply
corresponds to the definition of encryption process (that is, the iterative application of the cubic
function). Moreover, note that this attack may also be applied to PURE , the cipher used in [JK97]
to demonstrate the vulnerability of the KN cipher to interpolation attacks, assuming round keys are
not independent but linearly derived from k.

Consider now two such polynomials E(K,x1) − y1 and E(K,x2) − y2, with y1 = E(k, x1) and
y2 = E(k, x2) for the fixed but unknown key k. It is clear that these polynomials share (K − k)
as a factor. Indeed, with high probability the greatest common divisor will be (K − k). Thus, by
computing the GCD of the two polynomials, we can find the value of k.

MiMC-n/n for a known plain text x corresponds to a polynomial having degree 3r, where the
leading monomial always has non-zero coefficient. Hence, we can recover k with a GCD computation
of two polynomials at degree 3r (indeed, considering differences of two polynomials G(K,xi)− yi
reduces this degree to 3r − 1 by canceling the leading term). It is well-known that the complexity for
finding the GCD of two polynomials of degree d is O(d log2 d). Hence, the complexity of this attack
is O(r2 · 3r). As a result, for MiMC-n/n the time complexity of this attack is higher than that of the
interpolation attack.

10.2.3. Algebraic Degree and Higher-Order Differentials

A well-known result from the theory of Boolean functions is that if the algebraic degree of a vectorial
Boolean function f(·) (like a permutation) is d, then the sum over the outputs of the function applied
to all elements of a vector space V of dimension ≥ d + 1 is zero (as is the sum of all inputs, i.e.,
the elements of the vector space). The same property holds for affine vector spaces of the form
{v + c | v ∈ V} for arbitrary constant c⊕

v∈V⊕c
v =

⊕
v∈V⊕c

f(v) = 0.

This is the property exploited by higher-order differential attack [Knu94].

As discussed above, the large number of rounds ensures that the algebraic degree of MiMC in
its native field will be maximal or almost maximal. This naturally thwarts higher-order differential
attacks [Knu94] when considering the difference as defined in the field (i.e., using the inverse of the
field addition).

What happens to the degree when viewing the rounds as vectorial Boolean functions?
As squaring is a linear operation in F2n , it is also linear when viewed as vectorial function over F2.
Cubing on the other hand introduces an additional multiplication which gives the round function an
algebraic degree of 2 in every component when viewed as a vectorial Boolean function. Thus, the
large number of rounds should cause the degree to rise quickly and reach the limit of 2n which is
sufficient to thwart any higher-order differential attacks also when viewing the round function as a
vectorial Boolean function.

202

10.2. Security Analysis

10.2.4. Statistical and Other Attacks

Differential Attacks

Differential cryptanalysis [BS90; BS93] is one of the most widely used technique in symmetric-key
cryptanalysis. The different types of cryptanalysis methods based on this technique depend on the
propagation of an input difference through a given number of rounds of an iterative block cipher
to yield a known output difference with high probability. The probability of the propagation often
determines how many rounds can be attacked using this technique.

Given an input difference δI and an output difference δO, the differential probability of the round
function is given as

Prob(δI → δO) =
|{x ∈ F2n |F (x⊕ δI)⊕ F (x) = δO}|

2n
.

In our case the number of x satisfying F (x ⊕ δI) ⊕ F (x) = δO is determined by the non-linear
function x3. Hence it is enough to determine the size of the set

D = {x ∈ F2n | (x⊕ δI)3 ⊕ x3 = δO, δO 6= 0}

As this is a quadratic equation in x for any δI and δO 6= 0, there are at most two solutions to
the equation. This implies Prob(δI → δO) ≤ 2−n+1. It follows that this is sufficient to give any
differential trail of at least two rounds a probability too low to be useful in an attack. A detailed
analysis of the differential property of monomials of the form x2t+1 in F2n can be found e.g. in
[Nyb94].

Linear Attacks

Similar to differential attacks, linear attacks [Mat93] pose no threat to MiMC. Indeed, the cubic
function is an almost bent or an almost perfect nonlinear (APN) function, i.e., differential 2-uniform,
where an APN permutation provides the best resistance against linear and differential cryptanalysis.
Thus, since its maximum square correlation is limited to 2−n+1 (cf. for example [AÅBL12] for details),
any linear trail of the cubing function will have negligible potential after a few rounds.

Invariant Subfields

The algebraic structure of MiMC allows to mount a invariant subfield attack on the block cipher
under a poor choice of round constants. That is, if all the round constants ci and the key k are in
subfield F2m of F2n then by choosing a plaintext x ∈ F2m an adversary can ensure that Ek(x) ∈ F2m .
This attack is thwarted by picking n to be prime. The only subfield is then F2 such that picking
constants 6= 1 will be enough to avoid the attack.

10.2.5. Hash-Specific Security Considerations

For usage in the MiMC permutation in the sponge mode as described in Sect. 10.1.2 we require
the permutation to not show non-trivial non-random behavior for up to 2s input/output pairs. As
specified in Sect. 10.1.2 the size of the permutation n determines the number of rounds (based on the
GCD attack described above). As 2s < n, this choices leaves us with an additional security margin.

In more details, given a sponge construction instantiated by the MiMC permutation, the number of
rounds of the inner permutation is chosen according to number of rounds of MiMC. This is due to the
following considerations. First, as we just recalled, when the internal permutation P of an N = c+ r
bit sponge function is modeled as a randomly chosen permutation, the sponge hash function is
indifferentiable from a random oracle up to 2c/2 calls to P. The numbers of rounds of MiMC has
been chosen in order to guarantee security against any (secret-/known-/chosen-) distinguisher which

203

10. MiMC

is independent of the key. Equivalently, this means that such number of rounds guarantee that P
does not present any non-random/structural property (among the ones known in the literature5). It
follows that the previous assumption is satisfied. These and the fact that every key-recovery attack
is meaningless in the hash scenario support our choice to consider the univariate case in order to
determine the number of rounds of the inner permutation. For completeness, we remark that the
fact that P presents a non-random/structural property does not imply an attack on the hash sponge
function instantiated by P.

10.3. Variants

10.3.1. MiMC over Prime Fields

MiMC can also be used to operate over prime fields i.e. a field Fp where p is prime. First of all, in
that case, it needs to be assured that the cubing in the round function creates a permutation. For
this, it is sufficient to require gcd(3, p− 1) = 1.

Following the notation as above, we can consider MiMC-p/p where the permutation monomial x3

is defined over Fp . The number of rounds for constructing the keyed permutation is r = log3(log2 p)
(note that p ≈ 2n), and the r round constants are chosen as random elements in Fp.

Our cryptanalysis just proposed transfers to this case, except for the subfield attack which does
not apply here.

10.3.2. Different Round Functions

Considering the case GF (2n), one may consider a round function of the form

F (x) = (x⊕ k ⊕ c)d

for generic exponents d. Our choice to consider the exponent 3 is due to the following analysis.

For simplicity, we limit ourselves to consider exponents of the form 2t + 1 and 2t − 1, for positive
integer t (note that 3 is the only number that can be written in both ways), which are for different
reasons - as explained in the following - the best candidates. Remember that for MiMC-n/n, d has
to satisfy the condition gcd(d, 2n − 1) = 1 in order to be a permutation.

For further analysis, we recall the Lucas’s Theorem.

Theorem 11 (Lucas’s Theorem). For non-negative integers m and n and a prime p, the following
congruence relation holds: (

m

n

)
=

k∏
i=0

(
mi

ni

)
mod p

where m = mk · pk +mk−1 · pk−1 + ...+m1 · p+m0 and n = nk · pk + nk−1 · pk−1 + ...+ n1 · p+ n0

are the base p expansions of m and n respectively, using the convention that
(
x
y

)
= 0 if x < y.

Exponents of the form 2t + 1. Exponents of the form 2t + 1 (with t > 1) have the nice property
that the cost to compute x2t+1 does not depend on t since any square operation is “linear” – in
the sense that it satisfies the property (a + b)2 = a2 + b2 – in GF (2n), that is it requires only
one multiplication independently of t. Moreover, the degree of the resulting r-round interpolation
polynomial is (2t + 1)r, which is significantly higher than 3r even for “small” t. On the other hand,
the major problem of these kind of exponents is that the corresponding interpolation polynomials

5That is, we do not exclude that a non-random property can be discovered in the future.

204

10.3. Variants

are in general sparse. E.g. using Lucas’s Theorem, note that just after one round the interpolation
polynomial has only 4 terms instead of 2t + 2:

(x⊕ k)2t+1 ≡2 (x⊕ k)2t · (x⊕ k) ≡2 (x2t ⊕ k2t) · (x⊕ k) ≡2 x
2t+1 ⊕ x2t · k ⊕ k2t · x⊕ k2t+1

Using the same technique, after r rounds, the number of terms of the polynomial is upper bounded
by 3r + 1, which is (much) smaller than (2t + 1)r + 1. In particular, note that 3r + 1 is exact the same
upper bounded obtained for the exponent 3 (which corresponds to t = 1). As a result, the number of
rounds to guarantee the security against the algebraic attacks does not change choosing exponent of
the form 2t + 1 for t > 1 - remember that the number of plaintexts/ciphertexts required in order to
construct the interpolation polynomial depends on the number of terms of that polynomial6. That
is, both from the security point of view and from the implementation one, there is no advantage
to choose exponents of the form 2t + 1 greater than 3. Similar considerations can be done also for
exponents of the form 2t + 2s = 2s · (2t−s + 1), where s < t.

Exponents of the form 2t − 1. Consider now the case of exponents of the form 2t−1. Such expo-
nents provide security against interpolation and algebraic attacks in general, since the corresponding
interpolation polynomials are not sparse:

(x⊕ k)2t−1 ≡2

2t−1⊕
i=0

xi · k2t−1−i

since

∀i = 0,, 2t − 1 :

(
2t − 1

i

)
≡2 1.

One the other hand, one has to compute more multiplications and square operations in order to
calculate x2t−1 w.r.t. x2t+1. Thus, under the assumption that x2 is linear, one may ask the following:
is it possible to minimize the total number of multiplications necessary to compute the ciphertext
choosing an exponent of the form 2t − 1 different from 3?

There are different ways to compute ge where g ∈ F2n and e = 2t − 1 for some t ≥ 2, the classical
algorithm being the square-and-multiply algorithm, cf. [MOV96, Sect. 14.6]. For this algorithm, the
number of multiplications requested for this exponent is equal to the number of squares t− 1.

This algorithm can be modified in order to minimize the total number of multiplications. In
particular, consider Algorithm 9, which is a slight variation of the original algorithm. In order to
compute x2t−1, the number of multiplications for the previous algorithm is dt/2e, while the number
of squares is t. As a result, if one cares only of the total number of multiplications7, this algorithm is
better than the original one (at the cost to pre-compute and store the quantity g2 · g). Thus, using
the previous analysis about the number of rounds, the total number of multiplications M and of
squares S for MiMC-n/n are given by

M =

⌈
t

2

⌉
·
⌈

log2 n

log2(2t − 1)

⌉
S = t ·

⌈
log2 n

log2(2t − 1)

⌉
.

To give a concrete example, for n = 129, the best result is obtained for t = 4 (that is for the exponent
15)8, for which the total number of multiplications is 66 (instead of 82 for the exponent 3), while the
number of squares is 99 (instead of 82 for the exponent 3).

6Only if the polynomial is not sparse and it has degree d, this number of terms corresponds to d+ 1.
7For completeness, we mention that other variants of such algorithm can be more competitive - regarding the number

of multiplications - for large t. For our purpose, we limit ourselves to consider the algorithm just given, and we
refer to [AGR+16, Sect. 5.3] for more details.

8Actually, the best result is obtained for t = 6, that is for the exponent 63. However, since gcd(63, 2129 − 1) = 7, the
round function defined using the exponent 63 is not a permutation.

205

10. MiMC

Data: g ∈ F2n and e = 2t − 1 for some t ≥ 2
Result: ge

g0 ← g;
g1 ← g2 · g;
A← 1; for each i from 0 to bt/2c do

A← (A2)2;
A← A · g1;

end
if t mod 2 6= 0 then

A← A2;
A← A · g0;

end
return A

Algorithm 9: Modular exponentiation with cache.

To conclude, if the cost of a square operation is negligible with respect to the cost of a multiplication
(that is, if the square operation is linear), then it is possible to minimize the total number of
multiplications choosing an exponent9 of the form 2t − 1 different from 3. Instead, when the number
of square operations can not be ignored (as for example in the case of SNARK settings or in the
GF (p) case), the choice of an exponent of the form 2t−1 different from 3 does not offer any advantage
due to the fact that the total number of multiplications and square operations

M+ S =

(⌈
t

2

⌉
+t

)
·
⌈

log2 n

log2(2t − 1)

⌉
≈ 3

2
log2 n

is almost constant. Since we propose MiMC for different applications, the exponent 3 seems to be
the best optimal choice.

Finally, only for completeness, it is also possible to extend the previous analysis to the case
GF (p) (where p ≈ 2n). However, we remark that in this case each square operation counts as a
multiplication, since it is not linear. Thus, if we consider an exponent of the form 2t − 1, the total
number of multiplications M for MiMC-p/p is

M =

(⌈
t

2

⌉
+t

)
·
⌈

log2(log2 p)

log2(2t − 1)

⌉
.

Also in this case, the exponent 3 turns out to be the optimal choice.

Remark - Computation Cost Model. In most models of computation, a field multiplication is
considered to be computationally more expensive than an addition. However, note that squaring
is a linear operation in a binary field GF (2n). Hence, if we consider the number of non-linear
multiplications in a binary field, then the number required to compute x3 is just one.

However, this does not hold in the SNARK setting, where each witness variable – and possibly
each constraint – is generated from a field operation (more specifically from a field multiplication). As
a consequence, computing x3 generates two equations x · x = y and y · x = x3. Hence, in this setting
we do not benefit from the linearity of squaring over the fields F2n and computing x3 costs two
multiplications. On the other hands, the cost of additions in these fields is still negligible compared
to that of multiplication. Note that we can also disregard the cost of multiplication by a constant.

Finally, we stress that although the cost of an addition is considered negligible compared to a
multiplication, very large number of additions can reduce the efficiency of a design.

9We remark that we did not consider statistical attacks in the previous analysis. If one chooses an exponent different
than 3, one may also considers and includes a security analysis against statistical attacks.

206

10.4. Application

10.4. Application

Remark. Since I did not work on the practical applications/implementations of MiMC, I limit
myself to recall here the main results and I refer to [AGR+16] and [GRR+16] for a detailed discussion
on it. The results of this section are due to the work of Arnab Roy (SNARKs applications) and
Dragos Rotaru, Peter Scholl and Nigel P. Smart (MPC applications) respectively.

10.4.1. SNARKs Applications

The main idea of the SNARK is to provide a circuit whose satisfiability enables a verifier to
check correctness of an underlying computation. In our concrete implementation, we focus on the
(zk)SNARK for arithmetic circuit satisfiability.

The main target of our design proposals is to improve the efficiency of (zk)SNARK when they are
used as cryptographic primitives in a SNARK setting. Due to a lack of an alternative, SHA-256 has
been used for various applications in verifiable computing [CFH+15] and applications of SNARKS
like Zerocash [BCG+14], which leads to a bottleneck in efficiency.

Benchmarking Environment. For all field operations we used the NTL library together with
the gf2x library. All computations were carried out on an Intel Core i7 2.10GHz processor with 16GB
memory and we took the average over ≈ 2000 repetitions.

Results. As we demonstrate in [AGR+16], a sponge construction instantiated by a MiMC per-
mutation compares very favorably in (zk)SNARKs applications. Based on our experiments and
implementations, we report a factor 10 improvement w.r.t. SHA-256. For processing a single block i.e.
for hashing a single block message our MiMC implementation in the SNARK setting requires ≈ 7.8
milliseconds to generate the arithmetic circuit and witness while SHA-256 takes ≈ 73 milliseconds.

Since LowMC was designed for MPC/ZK applications we have also implemented it in the SNARK
setting. A comparison of LowMC with MiMC is given in Table 10.1. As a result, based on our
experiments and implementations, we report approximately a factor 12 improvement w.r.t. LowMC.

Table 10.1.: Comparison of LowMC and MiMC with block size 1025 and the corresponding
parameters for LowMC. Number of rounds and number of Sboxes per round are denoted as R and
m respectively.

MiMC LowMC
R = 16 R = 55
m = 196 m = 20

total time 7.8ms 90.3ms 271.2ms
constraint generation 6.3ms 13.5ms 9.2ms
witness generation 1.5ms 76.8ms 262.0ms

addition 646 8420888 28894643

multiplication 1293 9408 3300

rank-1 constraint 646 4704 2200

As a design with an unusual imbalance between ANDs and XORs, the comparison with LowMC
variants is interesting as it gives an example where the number multiplications alone can no longer
be used as a hint for the eventual performance. Where the round-minimized LowMC variant is more
than 10 times slower with about 8 times more multiplications, reducing the number of ANDs in the
other LowMC variant at the expense of many more rounds does not have the expected effect: the

207

10. MiMC

runtime grows again. The reason is the huge amount of XOR computations whose cost is clearly
are no longer negligible. This shows the limits of a simplified metric that focuses on AND gates (or
multiplication gates) also.

Conclusion. In conclusion, our analysis shows that due to the designed balance between addition
and multiplication over higher field MiMC achieves more efficiency than well known classic design
like SHA-2 as well as recently proposed LowMC. Results of our analyses suggest that although
multiplication in a larger field is more expensive than multiplication in lower field, an enormous
number of field addition in a lower field can reduce the efficiency of a design targeted for certain
ZK-applications like SNARK.

10.4.2. MPC Applications

In [GRR+16], we conduct a study of some PRFs for use in Multi-Party Computation, including also
new protocols for evaluating number-theoretic PRFs and implementations of “traditional” block
cipher candidates designed to have a low complexity in MPC. Our focus is on secret sharing based
MPC systems such as that typified by BDOZ [BDOZ11], SPDZ [DPSZ12], and VIFF [DGKN09], or
any classical protocol based on Shamir Secret Sharing. In such situations data is often shared as
elements of a finite field Fp of large prime characteristic.

To better understand this scenario, a simple example application of MPC is to enable distributed
secure storage of long-term cryptographic keys, by secret-sharing the key and storing each share at a
separate server. When the key is required by an application such as encryption or authentication,
the MPC protocol is used to compute this functionality. If this cryptographic functionality is a
symmetric cipher, then this application would be greatly enhanced by using an “MPC-Friendly”
symmetric primitive.

Benchmarking Environment. In any application of MPC, one of the most important factors
affecting performance is the capability of the network. We ran benchmarks in a standard 1Gbps
LAN setting, and also a simulated WAN setting, which restricts bandwidth to 50Mbps and latency
to 100ms, using the Linux tc tool. This models a real-world environment where the parties may be
in different countries or continents. In both cases, the test machines used have Intel i7-3770 CPUs
running at 3.1GHz, with 32GB of RAM.

Results. The results of our experiments in the LAN and WAN environments are shown in the
following Tables, respectively. All the result are the average of 5 experiments, each of which ran at
least 1000 PRF operations.

LowMC obtains slightly better throughput and latency than AES over a LAN. In the WAN
setting, LowMC gets a very high throughput of over 300 blocks per second. This is due to the low
online communication cost for multiplications in F2 instead of F2n or Fp, and the fact that local
computation is less significant in a WAN.

In both scenarios, the Legendre PRF gives the lowest latency, even when outputing 128-bit field
elements rather than bits, due to its low round complexity. The single-bit output variant achieves by
far the highest throughput of all the PRFs, so would be ideally suited to an application based on a
short-output PRF. The Legendre PRF with large outputs is useful in scenarios where low latency is
very important, although the preprocessing costs are expensive compared to MiMC below.

The Naor-Reingold PRF also achieves a low latency - though not as good as the Legendre PRF -
but it suffers greatly when it comes to throughput.

208

10.4. Application

Table 10.2.: Two-party performances of several PRFs in a LAN setting (where “op(s)” ≡ opera-
tion(s))

PRF
Best Latency Best Throughput Preproc

(ms/op) (Batch Size) (ops/s) (ops/ms)

AES 7.713 2048 530 5.097
LowMC (“vector”) 4.302 256 591 2.562
LowMC (“M4R”) 4.148 64 475 2.565

NR(128) (“log”) 4.375 1024 370 4.787
NR(128) (“const”) 4.549 256 281 2.384
Leg (“bit”) 0.349 2048 202969 1225
Leg (“1”) 1.218 128 1535 9.574
MiMC (“basic”) 12.007 2048 8788 33.575
MiMC (“cubic”) 5.889 1024 6388 33.575

Table 10.3.: Two-party performances of several PRFs in a WAN setting (where “op(s)” ≡ opera-
tion(s))

PRF
Best Latency Best Throughput Preproc

(ms/op) (Batch Size) (ops/s) (ops/ms)

AES 2640 1024 31.947 0.256
LowMC (“vector”) 1315 2048 365 0.1259
LowMC (“M4R”) 659 2048 334 0.1261

NR(128) (“log”) 713 1024 59.703 0.2359
NR(128) (“const”) 478 1024 30.384 0.1175
Leg (“bit”) 202 1024 2053 60.241
Leg (“1”) 210 512 68.413 0.4706
MiMC (“basic”) 7379 512 59.04 1.650
MiMC (“cubic”) 3691 512 79.66 1.650

Leg ≡ Legendre PRF - NR ≡ Naor-Reingold PRF

The MiMC cipher seems to provide a good compromise amongst all the prime field candidates,
especially as it also performs well when performed “in the clear”. The “cube” variant10, which halves
the number of rounds, effectively halves the latency compared to the naive protocol. This results in
a slightly worse throughput in the LAN setting due to the higher computation costs, whereas in
the WAN setting round complexity is more important. Although the latency is much higher than
Legendre PRFs, due to the large number of rounds, MiMC achieves the best throughput for Fp-bit
outputs, with over 6000 operations per second. In addition, the pre-processing costs of MiMC are
better than that of both Legendre and the Naor-Reingold PRFs.

Conclusion. In conclusion, one would likely prefer the Legendre PRF for applications which
require low latency, and which do not involve any party external to the MPC engine, and MiMC for
all other applications.

10.4.3. Other Applications

For completeness, we mention that other people coming up with more use-cases of MiMC.

10We consider two different approaches for computing MiMC in MPC, with a secret shared key and message. The
“basic” approach is simplest, whilst the “cube” variant has half the number of rounds of communication, with
slightly more computation. More details can be found in [GRR+16, Sect. 5.2].

209

10. MiMC

Verifiable Delay Functions. A “verifiable delay function” (VDF) [BBBF18] requires a specified
number of sequential steps to evaluate, yet produces a unique output that can be efficiently and
publicly verified. VDFs have many applications in decentralized systems, including public randomness
beacons, leader election in consensus protocols, and proofs of replication.

In [BBBF18], authors present new candidate constructions that are the first to achieve an
exponential gap between evaluation and verification time. In particular, a theoretical VDF can be
constructed using incrementally verifiable computation (IVC) [Val08]. IVC can be constructed from
succinct non-interactive arguments of knowledge (SNARKs) under a suitable extractor complexity
assumption. For this particular case, MiMC turns out to be the one of the best possible choices since
(1st) it is a “SNARK friendly” hash function (or permutation) over Fp and (2nd) the decryption
process of MiMC is much more “expensive” (e.g. in terms of non-linear operations) than the
corresponding encryption process.

Modes of Operation Suitable for Computing on Encrypted Data. In [RSS17], authors
examine how two parallel modes of operation for Authenticated Encryption (namely CTR+PMAC
and OTR mode) work when evaluated in a multi-party computation engine. These two modes are
selected because they suit the PRFs examined in previous works, they are highly parallel, and do
not require evaluation of the inverse of the underlying PRF.

They examine how the currently best PRFs for secret shared MPC over Fp, namely MiMC and
Leg, can be used to enable nonce-based authenticated encryption,where we benchmark a number
of orthogonal options. Without going into the details, it turns out that that MiMC will often
significantly outperform Leg.

STARKs. As briefly recalled, ZK-SNARKs - succinct zero knowledge proof technology - that
can be used for all sorts of use-cases ranging from verifiable computation to privacy-preserving
cryptocurrency. W.r.t. ZK-SNARKs, ZK-STARKs [BBHR18] resolves one of the primary weaknesses
of ZK-SNARKs, its reliance on a “trusted setup” (T stands indeed for “transparent”). ZK-STARK
is the first realization of a transparent ZK system in which verification scales exponentially faster
than database size, and moreover, this exponential speedup in verification is observed concretely for
meaningful and sequential computations, described next.

A (concrete) practical implementation of ZK-STARKs has be done/proposed using MiMC11.

11See https://vitalik.ca/general/2018/07/21/starks_part_3.html for more details.

210

https://vitalik.ca/general/2018/07/21/starks_part_3.html

11
Feistel MiMC and GMiMC

As we highlighted in the previous chapter, one drawback of MiMC is that the decryption process
is much more expensive that the encryption one. A simple way to fix this problem is to turn the
MiMC Even-Mansour cipher into a Feistel one, since in this last case, the encryption process and
the decryption one are identical expect for the order of the round keys and round constants.

As we are going to show, the possibility to set up competitive Meet-in-the-Middle attacks on
Feistel MiMC require (approximately) to double the number of rounds with respect to MiMC in
order to guarantee the same security for Feistel MiMC. As a result, it seems that Feistel MiMC
can not be competitive for the applications that we have in mind (where the goal is to minimize
the number of multiplications). Thus, the only advantage of the Feistel approach seems to be that
decryption is as cheap as an encryption computation.

In [AGP+18], we show that this conclusion does not hold for Generalized Feistel constructions
[Nyb96]. In particular, our analysis suggests that for unbalanced Feistel schemes with an expanding
round function we do not have to increase the number of rounds further for t > 2 branches – –
up to a certain finite limit t ≤ t? – compared to t = 2 branches considered in [AGR+16]. For
practical use cases, we show that a high number of branches can be meaningful, hence allowing for
an up to 100-fold improvement of multiplication-related metrics, which influence the performance of
applications which depend on metrics like “the number of multiplications” or “the product of field
size × number of multiplications” or similar, compared to MiMC.

The new block cipher that we are going to present based on unbalanced Feistel schemes is called
“Generalized MiMC”, GMiMC for simplicity. As we are going to show, main applications of GMiMC
are MPC applications, PQ-signature schemes (based on zero-knowledge protocols) and SNARKs
applications. In particular, whereas MiMC was not competitive at all in a recently proposed new class
of PQ-secure signature schemes, our new construction leads to about 30 times smaller signatures than
MiMC. In MPC use cases, where MiMC outperforms all other competitors, we observe improvements
in throughput by a factor of more than 7 and simultaneously a 16-fold reduction of preprocessing
effort, albeit at the cost of a higher latency. Another use case, where MiMC already outperforms
other designs (i.e. in the area of SNARKs), sees modest improvements. Additionally, this use case
benefits from the flexibility to use smaller fields.

11.1. Description of Feistel and Generalized MiMC

Notation. In a Feistel network with t ≥ 2 branches, Xi−1 denotes the input to the branch i,
where 1 ≤ i ≤ t. Xt−1 and X0 denote the inputs to the leftmost and rightmost branches respectively.
Xi ∈ F for a finite field F. The block size (in bits) of the keyed Feistel permutation is denoted by N ,
while n = dlog2 |F|e denotes the branch size (in bits). We write Fp for the finite prime field of order
p. We write F2q for any finite field of order 2q. The bit size of the key of a block cipher is denoted by
κ. In particular, through the paper we work with two different cases (depending on the practical
implementation), denoted as:

• the univariate case, for which the key-size is κ = n = dlog2 |F|e;

• the multivariate case, for which the key-size is κ = N = n · t = dlog2 |F|e · t .

211

11. Feistel MiMC and GMiMC

11.1.1. Feistel MiMC

Working in F2n , FeistelMiMC-2n/κ is similar to MiMC-n/n, with the only exception that the
Even-Mansour construction is replaced by a Feistel Network where the round consists of three steps:

• a key addition with a key k (of size n bit);

• the addition of a round constant ci ∈ F2n ;

• the application of a non-linear function defined as F (x) := x3 for x ∈ F2n .

The ciphertext is finally produced by adding the key k again to the output of the last round. Hence,
the round function is described as

xL ← xR, xR ← (xR ⊕ k ⊕ ci)3 ⊕ xL

where c0 = cr = 0, while the other constants are chosen at random in F2n . In the last round, the
swap operation is not applied. Finally, with respect to MiMC, it is not required that the cubic
function is invertible.

The key-schedule is discussed in the following. As we are going to show, the number of rounds to
provide security is given by

r = 2dlog3 2 · ne+ 1 and r = 2dlog3 2 · ne+ 3

respectively for the cases κ = n and κ = N = 2n.
In an analogous way, FeistelMiMC-2p/κ is similar to MiMC-p/p working in Fp.

11.1.2. The Block Cipher GMiMC

We construct generalized MiMC (GMiMC) variants from several generalized (unbalanced and
balanced) Feistel networks, e.g. with contracting round function (CRF), expanding round function
(ERF), Nyberg’s GFN and a new structure which we call Multi-Rotating (MR). Each of the following
constructions1 is a keyed permutation over F2n or Fp. The three main parameters of the block ciphers
are denoted by [κ, t, n]. For example, GMiMCcrf [4n, 4, n] denotes the permutation GMiMC with
CRF which has branch size n, key size 4n and number of branches 4. The numbers of rounds for
all constructions are given in Table 11.3. The key-schedule is linear and equal for all the proposed
designs, and it is discussed in the following. All round constants are chosen randomly and fixed.

GMiMCcrf

An unbalanced Feistel network (UFN) with a contracting round function (CRF) can be written as

(Xt−1, Xt−2, . . . , X0)← (Xt−2, Xt−3, . . . , Xt−1 + F (Xt−2, . . . , X0))

where Xi is the input to the i-th branch of the Feistel network and F (·) is a key-dependent function
in round j, cf. Figure 11.1. In GMiMCcrf we define the j-th round function as

F (x0, . . . , xt−2) :=

(∑
i

xi + kj + cj

)3

where cj are distinct round constants (for 1 ≤ j ≤ r) and kj is the key to the round j.

1The following construction are defined over Fp. The description in the case F2n is equivalent by replacing the sum +
with the XOR-sum ⊕.

2Acknowledgement. Figure 11.1 – made by Arnab Roy – has been copied from [AGP+18].

212

11.1. Description of Feistel and Generalized MiMC

FFFF · · ·

Figure 11.1.: One round of a t-branch unbalanced Feistel network (UFN) with a contracting round
function (CRF).2

F
· · ·

Figure 11.2.: One round of a t-branch unbalanced Feistel network (UFN) with an expanding round
function (ERF).3

GMiMCerf

An unbalanced Feistel network with an expanding round function (ERF) can be written as

(Xt−1, Xt−2, . . . , X0)← (Xt−2 + F (Xt−1), . . . , X0 + F (Xt−1), Xt−1)

where Xi is the input to the i-th branch of the Feistel network and F (·) is a key-dependent function
in round j, cf. Figure 11.2. In GMiMCerf the j-th round function is defined as

F (x) := (x+ kj + cj)
3

where kj and cj are as in GMiMCcrf .

GMiMCNyb

A generalized Feistel network was proposed in [Nyb96] for an even number of branches and can be
written as

(Xt−1, . . . , X1, X0)←
(
X0, Xt−1 + F0(X0), Xt−2 + F1(X1), . . . , Xt/2+1, . . . , X1

)
Each Fi(·) in the j-th round of GMiMCNyb is defined as

Fi(x) :=
(
x+ ki+j·t/2 + ci+j·t/2

)3
,

where ci+j·t/2 are distinct constants in round j and ki+j·t/2 are round keys, cf. Figure 11.3.

3Acknowledgement. Figure 11.2 – made by Arnab Roy – has been copied from [AGP+18].
4Acknowledgement. Figure 11.3 – made by Markus Schofnegger – has been copied from [AGP+18].

213

11. Feistel MiMC and GMiMC

F0 F1

Figure 11.3.: One round of an 8-branch Nyberg Generalized Feistel Network (GFN)4

Remark - GMiMCmrf . In [AGP+18], we also propose GMiMCmrf , that is a Multi-Rotating
Feistel network that provides extremely fast diffusion. The first such variants were proposed in [SM10]
and later implemented in the block cipher Twine [SMMK12]. In those cases, the simple rotation of
the branches used between the calls to the Feistel functions is replaced with a more sophisticated
permutation. In our case, the branch permutation is replaced by a simple rotation applied on half
of the branches. When this rotation is the same in every round, this structure is reminiscent of a
type-II generalized Feistel network. Thus, our second idea consists in changing this rotation at every
round. Since this design has been proposed and analyzed by Leo Perrin, I refer to the paper for more
details, and I omit it from this Thesis.

Key Schedule

When κ = n (i.e. the univariate case), then ki = k for each i. The key-schedule for the multivariate
case κ = t× n is a little more complicated. Let k = k0||k1|| . . . ||kt−1, and let M be a t× t matrix
with elements in GF (2n) or GF (p) that satisfies the following condition:

• M is invertible5, that is there exists M−1;

• for each 1 ≤ i ≤ dR/te where R is the number of rounds, then6

M i[j, l] ≡ (M ×M ××M︸ ︷︷ ︸
i-th times

)[j, l] 6= 0

for all 0 ≤ j, l < t, where X[j, l] denotes the coefficient in row j and column l of the matrix X.

For each 1 ≤ i ≤ dR/te let

[ki·t||ki·t+1|| . . . ||k(i+1)·t−2||k(i+1)·t−1]T = M × [k(i−1)·t||k(i−1)·t+1|| . . . ||ki·t−2||ki·t−1]T .

The second condition on M guarantees that each subkey kj for j > t - linearly - depends on all the
first t subkeys. This fact has an important consequence. Consider GMiMCcrf and/or GMiMCerf

instantiated with a key schedule that uses the sub-keys cyclically, i.e. ki,j = k̂j·t/2+i (mod t). If the
attacker guesses t− 1 subkeys, then she can potentially skip both the first and the last t− 1 rounds.
Instead, in the case in which each subkey - linearly - depends on all the first t subkeys, this strategy
simply does not apply. As a result, the proposed key-schedule allows to save a certain number
of rounds (approximately t − 1) w.r.t. a key schedule that uses the sub-keys cyclically. Similar
argumentation - but on a smaller scale - holds for GMiMCNyb.

5Let A be a lower triangular matrix and let B be an upper triangular matrix. Then M = B ×A is invertible.
6If no matrix exists that satisfies the following condition, then one must choose a matrix M for which the total

number of zero coefficients for each M i is minimum.

214

11.2. Security Analysis

Remark - Round Constants. As for MiMC, we remark that also the key-schedule of GMiMC
consists of a round-constant addition. This is “hidden” in the definition of each round function Fi(·),
e.g. Fi(·) = (·+ k + ci)

3 for a random round-constant ci. We highlight that it is possible to define an
equivalent key-schedule where the round-constant addition is already included in the key-schedule,
e.g. k̂i := ki + ci where ki is defined by the previous key-schedule.

11.1.3. Hash Function

To construct the hash function GMiMCHash, we use one of the previous structures, e.g. the
GMiMCerf , with fixed sub-keys7, e.g. 0n·R, where R is the number of rounds. Denoting the fixed key
permutation as GMiMCπ

erf[κ, t, n], GMiMCHash is constructed by instantiating a sponge construction
[BDPA07] with GMiMCπ

erf[κ, t, n]. The number of rounds of the permutation GMiMC is chosen
according to Table 11.3 - univariate case 2κ ' 2n ' p.

When the internal permutation P of an N -bit sponge function (composed of c-bit capacity and
r-bit bitrate – N = c + r) is modeled as a randomly chosen permutation, it has been proven by
Bertoni et al. [BDPA08] to be indifferentiable from a random oracle up to 2c/2 calls to P. In other
words, a sponge with a capacity of c provides 2c/2 collision and 2c/2 (second) preimage resistance.
Given a permutation of size N and a desired security level s, we can hash r = N − 2s bits per call
to the permutation.

As usual, the message is first padded according to the sponge specification so that the number of
message blocks is a multiple of r, where r is the rate in sponge mode. For GMiMCHash-l we use a
GMiMC permutation where N = n · t = 4 · l + 1 and s = 2 · l. For GMiMCHash-256 we thus use a
GMiMC permutation with N = n · t = 1024 or 1025. The rate and the capacity are chosen as 512
and 513 respectively. This choice allows for processing the same amount of input bits as SHA-256
(512 bits) while at the same time offering collision security and (second) preimage security of 256
bits. We highlight that while we could use any of the GMiMC constructions, GMiMCerf turns out
to be the most efficient choice in several settings as shown in Section 11.6.2.

11.2. Security Analysis

As for any new design, it is paramount to present a concrete security analysis. In the following, we
provide an in-depth analysis of the security of the GMiMC family of block ciphers. In particular,
for each proposal we consider the maximum number of rounds that can be attacked by the attacks
currently present in the literature.

Important Remark. Due to our target applications, here we limit ourselves to provide the number
of rounds to guarantee security *only* in the following two scenarios:

• GMiMC instantiated over Fp (used for applications like SNARKs and MPC);

• GMiMC instantiated over F2n in the low-data scenario (used for application like PQ-Signature
Scheme).

We stress that this choice is motivated by the fact that we focus on the scenario that are useful for
our applications. Thus, even if GMiMC can be instantiated over F2n , we do not provide the number
of rounds to guarantee security in this scenario.

Before going on, we remark that many (almost all) attacks work in the same way in Fp and in
F2n . One of the few exception to this fact is the higher-order differential attack. More details on this
are given in the following.

7We emphasize that no key-schedule is required in this case, since there is no secret-key material.

215

11. Feistel MiMC and GMiMC

Table 11.1.: Minimum number of rounds required to provide security against the corresponding
attacks when 2κ ' 2n ' p - no restriction on data complexity - and t > 2. For simplicity, 2 · log3(2) =
1.262.

GMiMCcrf GMiMCerf GMiMCNyb

GCD
⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+2t

⌈
1.262 · log2(p)− 4 · log3(log2(p))

⌉
+2t− 2

⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+t+ 2

Interpolation
⌈
1.262 · log2(p)

⌉
+4t− 3

⌈
1.262 · log2(p)

⌉
+2t

⌈
1.262 · log2(p)

⌉
+t+ 2

Higher Order (in Fp) 2 + 4t+ 2 log3(t) 2 + 2t+ 2 log3(t) 2 + t+ 2 log3(t)

(Trunc.) Differential 2 + (t2 + t) ·
⌈ log2(p)

2(log2(p)−1)

⌉
2 + (t2 + t) ·

⌈ log2(p)
2(log2(p)−1)

⌉
3t+ 2

Impossible Diff. 3t− 1 2t 2t

Table 11.2.: Minimum number of rounds required to guarantee the security against the corresponding
attacks when 2κ ' 2N ' pt - no restriction on data complexity - and t > 2. For simplicity,
2 · log3(2) = 1.262.

GMiMCcrf GMiMCerf GMiMCNyb

Guess + GCD
⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+3t− 1

⌈
1.262 · log2(p)− 4 · log3(log2(p))

⌉
+3t− 3

⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+t+ 3

Interpolation
⌈
1.262 · log2(p)

⌉
+5t− 4

⌈
1.262 · log2(p)

⌉
+3t− 2

⌈
1.262 · log2(p)

⌉
+t+ 3

Gröbner Basis d0.631 · log2(p) + 2 log3(t)e+ 4t− 3 d0.631 · log2(p) + 2 log3(t)e+ 4t− 5
⌈
0.631 · log2(p) + 2 log3(t)

⌉
+t+ 2

Higher Order (in Fp) 1 + 5t+ 2 log3(t) 1 + 3t+ 2 log3(t) 3 + t+ 2 log3(t)

(Trunc.) Differential 1 + t+ (t2 + t) ·
⌈ log2(p)

2(log2(p)−1)

⌉
1 + t+ (t2 + t) ·

⌈ log2(p)
2(log2(p)−1)

⌉
3t+ 3

Impossible Diff. 4t− 2 3t− 1 2t+ 1

“Generic” Attack 5t− 3 4t− 2 -

Security Analysis – GMiMC instantiated over Fp. Almost all the attacks are independent
of the fact whether (a) the size of the key is equal to the branch size κ = n (equivalently, 2κ ' p for
the Fp case) or (b) equal to κ = N = t · n (equivalently, 2κ ' pt for the Fp case). Table 11.1 and
Table 11.2 summarize the minimum number of rounds required to guarantee the security against
several possible attacks respectively in the first and in the second case - we assume t > 2 in both
cases. The number of rounds of GMiMC is then chosen in order to provide security to all possible
attack vectors.

Starting from the results proposed in the following section, in Section 11.5 we list the minimum
number of rounds for each construction, together with some useful observations for the possible
applications like MPC, SNARKs and post-quantum signature schemes.

Note: given the number of rounds of a distinguisher that is independent of the secret key, we
decided to add 2 rounds - in order to prevent key-guessing attack - for the univariate case. For the
multivariate case, we decided to add (t+ 1) rounds - in order to prevent key-guessing attack - for
GMiMCcrf and GMiMCerf , and 3 rounds - in order to prevent key-guessing attack - for GMiMCNyb.
This choice is supported by the definition of the key-schedule, in particular by the fact that each
subkey depends linearly on all the first t subkeys (we refer to the previous section for details).

Security Analysis – GMiMCHash instantiated over Fp. For the hash function GMiMCHash
case, the number of rounds of the inner permutation is chosen according to the corresponding
univariate case (referring to Table 11.1). This is due to the following considerations. First, as we
just recalled in the previous section, when the internal permutation P of an N = c+ r bit sponge
function is modeled as a randomly chosen permutation, the sponge hash function is indifferentiable
from a random oracle up to 2c/2 calls to P . The numbers of rounds of the univariate case is sufficient
to guarantee security against any (secret-/known-/chosen-) distinguisher which is independent of
the key. Equivalently, this means that such number of rounds guarantee that P does not present
any non-random/structural property (among the ones known in the literature8). It follows that the

8That is, we do not exclude that a non-random property can be discovered in the future.

216

11.3. Security Analysis – GMiMC instantiated over Fp

previous assumption is satisfied. These and the fact that every key-recovery attack is meaningless
in the hash scenario support our choice to consider the univariate case in order to determine the
number of rounds of the inner permutation.

Before going on, we remark that the fact that P presents a non-random/structural property does
not imply an attack on the hash sponge function instantiated by P. To have a concrete example,
consider Keccak (SHA-3). A zero-sum distinguisher can be set up for the full 24-round internal
permutation that defines it - see for example [BCC11]. In other words, the internal permutation
that defines Keccak presents a non-random property, that is it does not look like a pseudo-random
permutation9. On the other hands, the best practical collision attack covers (“only”) up to 6-round
Keccak [QSLG17], which is still far from threatening the security of the full 24-round Keccak family.

Security Analysis – GMiMC instantiated over F2n in the low-data scenario. For some
practical applications considered in the following, we also consider the case in which the attacker
has a limited access to data (e.g. 1 or 2 (plaintext, ciphertext) pairs). The security analysis for this
particular case is proposed in Sect. 11.4. As we are going to show, due to the fact that the attacker
can have access to few (plaintext, ciphertext) pairs, only few attacks (e.g. the GCD one) apply to
this case. We remark that all the attacks that we are going to consider in this scenario work in the
same way in F2n and Fp. As a result, we mainly re-use the results proposed in the Sect. 11.3.

11.3. Security Analysis – GMiMC instantiated over Fp
11.3.1. Algebraic Attacks

In this section, we consider algebraic attacks against Feistel MiMC and GMiMC. These attacks are
particularly relevant for the applications where the attacker has access only to a limited number of
(plaintext, ciphertext) pairs available to the attacker.

Greatest Common Divisors

As for the original MiMC [AGR+16], an attack strategy is to compute the Greatest Common
Divisors (GCD). In particular, given more than one known (plaintext, ciphertext) pair or working
on the output of different branches of a single known (plaintext, ciphertext) pair (as described in
the following), one can construct their polynomial representations and compute their polynomial
GCD to recover a multiple of the key10. Note that this is a known-plaintext attack, and not a
chosen-plaintext one.

Since interpolation attack is more efficient than GCD attack (from the attacker point of view), we
refer to Sect. 11.4 for all details about GCD attack, while we refer to Table 11.1 for the minimum
number of rounds that ensure security against the GCD attack.

Before going on, we remark that this is one of the few attacks that applies in the low-data scenario,
considered in one of the following applications (i.e. post-quantum signatures). More details on this
fact are given in the following.

Gröbner Bases

The natural generalization of GCDs to the multivariate case is the notion of a Gröbner basis [BKW93].
The attack proceeds like the GCD attack with the final GCD computation replaced by a Gröbner
basis computation. Analogous to the GCD analysis, we highlight that the Feistel structure permits
to construct multivariate “meet-in-the-middle” polynomials, we denote their degree as di in this

9We also refer to [BDPA] for a detailed discussion about this topic.
10Improving the computational complexity of this attack using more pairs is an open problem. However, since the cost

is dominated by the size of the polynomials involved, it is not clear that significant improvements are possible.

217

11. Feistel MiMC and GMiMC

subsection and define d = mini di.

Complexity. For generic systems, the complexity of computing a Gröbner basis for a system of N
polynomials in V variables is

O
((

V +Dreg

Dreg

)ω)
(11.1)

operations over the base field F [BFP12], where Dreg is the degree of regularity and 2 ≤ ω < 3 is the
linear algebra constant. We note that the memory requirement of these algorithms is of the same
order as running time. The degree of regularity depends on the degrees of the polynomials d and the
number of polynomials N. When V = N, we have a simple closed form [BFSY05]

Dreg = 1 +
N−1∑
i=0

(di − 1),

where di is the degree of the i-th polynomial fi in the polynomial system we are trying to solve. In
the over-determined case, i.e., V < N, the degree of regularity can be estimated by developing the
Hilbert series of an ideal generated by generic polynomials 〈f0, . . . , fN−1〉 of degrees di. We stress
that this analysis presumes that the polynomials considered here behave like generic systems, which
is in accordance with our practical experiments. Closed form formulas for Dreg are known for some
special cases, but not in general.

In particular, each plaintext/ciphertext pair – denoted by p, c ∈ (F2n)t where p ≡ (p0, ..., pt−1)
and c ≡ (c0, ..., ct−1) – gives a system of t equations

∀i = 0, ..., t− 1 : ci = fi(p0, ..., pt−1, k0, ..., kt−1)

in t variables k0, ..., kt−1 (note that the key-schedule is linear), where fi are functions of degree d.
The introduction of new intermediate variables to reduce the degree of the involved polynomials

does not lead to a reduced solving time as this increases the number of variables with V. On the other
hand, depending on parameter choices, the hybrid approach [BF09; BFP12] which combines exhaustive
search with Gröbner basis computations may lead to a somewhat reduced cost. Following [BF09;
BFP12], guessing ϕ ≤ V components of the key leads to a complexity of

O
(
pϕ ·

(
V− ϕ+D′reg

D′reg

)ω)
,

where D′reg ≤ Dreg is the degree of regularity for the system of equation after substituting ϕ variables
with their guesses.

Noting, though, that guessing a variable in a monomial reduces its degree and that guesses only
affect a subset of rows in the Macaulay matrix, we will more conservatively assume an overall cost of

O
(
pϕ ·

(
V− ϕ+D′reg − 1

D′reg − 1

)ω)
. (11.2)

Many known pairs. Each new (plaintext, ciphertext) pair provides a new polynomial while keeping
the number of unknowns V = t constant. Thus, given that there are

(
t+d
d

)
monomials of degree less

than or equal to d in t unknowns, we may simply collect
(
t+d
d

)
polynomials from the same number of

known (plaintext, ciphertext) pairs. In this over-determined case (that is, number of equations ne
bigger than number of variables nv), there is no closed formula to compute Dreg. By definition, the
degree of regularity is defined as the index of the first non-positive coefficient in

H(z) =

∏ne
i=1(1− zdi)
(1− z)nv

=
(1− z3r)ne

(1− z)nv
= (1− z3r)ne−nv · (1 + z + z2)nv ,

218

11.3. Security Analysis – GMiMC instantiated over Fp

where ne is the number of equations, nv is the number of variables, and di = 3r is the degree
of the i-th equation. By simple observation, the index of the first non-positive coefficient can
not be smaller than d = 3r, since (1 + z + z2)nv contains only positive terms. Thus, the overall
complexity becomes O(

(
t+d
d

)ω
) with the hidden constant ≥ 1. Following the method above, we expect

D′reg = Dreg − 1 = d− 1 for the hybrid approach. Plugging the (MiMT) degrees from the previous
sections into d then produces the expected overall solving time.

GMiMCcrf (case: 2κ = pt). To prevent the Gröbner basis attack, the minimum number of rounds
r must satisfy

pϕ ·
(
t− ϕ+ d− 1

d− 1

)ω
≥ pt,

for all ϕ ∈ {0, . . . , t− 2} and where the degree d is a function of the number of rounds r, that is,
d = d(r).

A key datum is the degree reached in each of our constructions after r rounds. Consider the
t-branch GMiMCcrf and denote the branches by (Xt−1, . . . , X2, X1, X0). Given a plaintext, the
degrees of the t keys growth differently in the t multivariate polynomials corresponding to the t
branches of the Feistel network. In round r, the polynomial of the leftmost branch has the least
degrees, which are given by

di,j =

{
3r−(i−1)−j if r > i+ j − 1,

0 otherwise.
, (11.3)

where j = t− 1 denotes the leftmost branch and the degree of variable ki in branch j is di,j . For all
(algebraic) attacks in the following, we only care of the minimum degree:

dt−1,t−1 = min
i

min
j
di,j = 3r−2t+2,

where 0 ≤ i ≤ t− 1 and 0 ≤ j < t. For the follow-up, we remark that the degree of each word of the
plaintext in the t-branch is given by formula (11.3) both for the univariate and multivariate case.

For our parameter choices, this expression is minimized for ϕ = 0. We thus require(
t+ d

d

)ω
=

(
t+ 3r−2t+2

3r−2t+2

)ω
≈ pt.

By simple computation, we get(
t+ d

d

)
=

1

t!
·
t∏
i=1

(d+ i) ≥ dt

t!
≥
(
d

t

)t
= 2t log2(d/t)

where n! ≤ nn for each n ≥ 1, and, setting ω = 2, we obtain

2t log2(d/t) ≈ n · t.

In our case:

2t log2(d/t) = 2t log2(3r−2t+2/t) ≈ log2(p) t or r =

⌈
2t+

log3 2

2
log2(p)− 2 + log3 t

⌉
.

To thwart Meet-in-the-Middle attacks, this value is doubled.
To conclude, we emphasize that we use d(r) = 3r−2t+2 in order to compute the previous number

of rounds. Since 3r−2t+2 is the minimum of the degrees of the variables, it is plausible that a lower
number of rounds is sufficient to protect against Gröbner basis attacks. Also, we reiterate that
these attacks require roughly the same amount of memory as elementary operations. The same
consideration holds for the other ciphers of the GMiMC family.

219

11. Feistel MiMC and GMiMC

GMiMCerf (case: 2κ = pt). After r ≥ t rounds11, the minimum degree of a variable in the output
polynomials is 3r−t.

To prevent the Gröbner basis attack, we require(
t+ d

d

)ω
=

(
t+ 3r−t

3r−t

)ω
≈ pt.

Working as before, we obtain

2t log2(d/t) = 2t log2(3r−t/t) ≈ t · log2(p) or r =

⌈
t+

log3 2

2
log2(p) + log3 t

⌉
.

Further Consideration. In order to compute the final number of rounds for GMiMCerf , one must
take care of a variant of the previous attack. Let Xr

i be the output of the i-th branch after r rounds.
Assume t ≥ 3 and consider the output of two branches, e.g. the output of the branches in position 1
- denoted by Xr

1 - and 2 - denoted by Xr
2 . By definition

Xr
i = Xr−1

i−1 ⊕ (Xr−1
t ⊕ k ⊕ c)3,

where i = 1, 2, k is the secret key (remember that we are working in the case κ = n) and c is the
round constant. Note that Xs

j is a function of the key k, that is, Xs
j = Xs

j (k). It is simple to observe
that

Xr
1 ⊕Xr

2 = Xr−1
0 ⊕ (Xr−1

t ⊕ k ⊕ c)3 ⊕Xr−1
1 ⊕ (Xr−1

t ⊕ k ⊕ c)3 = Xr−1
0 ⊕Xr−1

1 ,

that is, Xr
1 ⊕Xr

2 is still a function of k, but the degree of such a function is lower than the degree of
the functions that define Xr

1 and Xr
2 .

Since this same trick can be repeated multiple times12, in order to prevent this attack it is
sufficient to increment the number of rounds by t− 3. As a result, the minimum number of rounds is
approximately given by

r =

⌈
2t+

log3 2

2
log2(p) + log3 t− 3

⌉
.

To thwart Meet-in-the-Middle attacks, this value is doubled.

GMiMCNyb (case: 2κ = pt). To prevent the Gröbner basis attack, we require(
t+ d

d

)ω
=

(
t+ 3r−t/2

3r−t/2

)ω
≈ pt.

Working as before, we obtain

2t log2(d/t) = 2t log2(3r−t/2/t) ≈ t · log2(p) or r =

⌈
t/2 +

log3 2

2
log2(p) + log3 t

⌉
.

To thwart Meet-in-the-Middle attacks, this value is doubled.

11For our goal, we do not need all the details regarding the degree for r < t.
12For completeness, we mention another possible strategy to prevent this attack. Instead of incrementing the number

of rounds, one possibility is to use a different constant for each branch of each round. In other words, consider
GMiMCerf as defined in Section 11.1.2 for the case κ = n (a similar argument holds also for the case κ = t · n).
The expanding round function (ERF) can be re-written as

(X
(j+1)
t−1 , X

(j+1)
t−2 , . . . , X

(j+1)
0)← (X

(j)
t−2 + Ft−2(X

(j)
t−1), . . . , X

(j)
0 + F0(X

(j)
t−1), X

(j)
t−1),

where the round function is defined as
Fi(x) := (x+ k + cj)

3,

and where the random constants ci are different for each branch.
This strategy allows to prevent the given attack without increasing the number of rounds. On the other hand, since

our final goal is to minimize the total number of multiplications, this strategy is less efficient than the one proposed
in the main text. Indeed, let r′ be the number of rounds necessary to prevent the attack. The strategy proposed
in the main text requires r′ + (t− 3) multiplications, while the one just given requires r′ · (t− 1) multiplications,
where r′ + (t− 3) < r′ · (t− 1) for each t ≥ 3 (and r′ ≥ 1).

220

11.3. Security Analysis – GMiMC instantiated over Fp

Interpolation Attack

As for the original MiMC, one of the most powerful attacks against the GMiMC family is the
interpolation attack, introduced by Jakobsen and Knudsen [JK97] in 1997. The strategy of the
attack is to construct a polynomial corresponding to the encryption function without knowledge
of the secret key. If an adversary can construct such a polynomial then for any given plaintext the
corresponding ciphertext can be produced without knowledge of the secret key.

Let Ek : Fq → Fq be an encryption function. For a randomly fixed key k, the polynomial P (x)
representing Ek(x) – where x is the indeterminate corresponding to the plaintext – can be constructed
using the Vandermonde matrix 13 - cost approximately of O(m2) - or the Lagrange’s theorem14 - cost
approximately of O(m · logm), where m is the number of monomials of P (·).

This method can be extended to a key-recovery attack. The attack proceeds by simply guessing
the key of the final round, decrypting the ciphertexts and constructing the polynomial for r − 1
rounds. With one extra (plaintext, ciphertext) pair, the attacker checks whether the polynomial is
correct.

Each output branch of a (balanced or unbalanced) Feistel network can be represented as a
multivariate polynomial where the variables are the inputs to each branch. If the maximum degree
of a single variate monomial in one of these output polynomials is low, then an attacker can exploit
this property to mount an attack on the block cipher.

Using this idea, we first briefly describe at high level generic attack(s) on the GMiMC block
ciphers, focusing on a t-branch Feistel network. Let us denote the t input branches as xt−1, ..., x1 and
x0 from left to right. Suppose the polynomials over the field representing the output branches are
denoted by Pi ∈ F2n [X] (i = 0, 1, ..., t− 1) and di denotes the degree of the polynomial Pi. Working
as in [JK97], the number of monomials of such polynomial is well approximated by

∏t−1
i=0(di + 1). It

follows that if the condition
t−1∏
i=0

(di + 1) ≈ 2N ' pt

is fulfilled, then the attacker requires the full code-book in order to construct the interpolation
polynomial15. As a result, such polynomial can not be used for a key-recovery attack or for a forgery
attack.

GMiMCcrf . As we have just seen in (11.3), the minimum degree of the output polynomials for
each branch (after r rounds) is lower bounded by 3r−2t+2. Due to the previous discussion, GMiMCcrf

is secure against interpolation attack if

(3r−2t+2)t ≈ 2N ' pt.

Hence, r = log2(p)
log2 3 +(2t−2) rounds will be secure against the above-mentioned attacks. Conservatively,

2r + 2 rounds will be secure against meet-in-the-middle attacks/distinguishers for the case 2κ ' p,
while 2r + t+ 1 rounds will be secure against meet-in-the-middle attacks/distinguishers for the case
2κ ' pt.
13Given the interpolation polynomial P (x) = atx

t + at−1x
t−1 + ...+ a2x

2 + a1x+ a0, it interpolates the data points
(xi, yi) in the sense that P (xi) = yi for all i ∈ {0, 1, ..., t}, where Ek(xi) = yi for i = 0, 1, ...t. By substituting the
first equation in here, one gets a system of linear equations in the coefficients a k. By solving this system for a
k, one can construct the interpolant polynomial P (x). If one re-writes this system in a matrix-vector form, the
matrix defined by the terms {xj,i}0≤i,j≤t is commonly referred to as a Vandermonde matrix, and the cost to invert
a (t+ 1)× (t+ 1) Vandermonde matrix (and so to construct the interpolation polynomial) is O(t2).

14If the polynomial has degree d, we can find it using Lagrange’s formula P (x) =
∑d
i=0 yi ·

∏
0≤j≤d,i6=j

x−xj
xi−xj

, where

Ek(xi) = yi for i = 0, 1, . . . d.
15Remark. Due to the cost of constructing the interpolation polynomial (approximately O (m logm) where m is the

number of monomials), we emphasize that the cost of such attack is higher than the cost of a brute-force attack if
condition (11.3.1) is satisfied.

221

11. Feistel MiMC and GMiMC

GMiMCerf . Working as in Sect. 11.3.1, the minimum degree of the output polynomials for each
branch is lower bounded by 3r−(t−1) (after r ≥ t rounds). Due to the argumentation proposed in
Sect. 11.3.1, GMiMCerf is secure against interpolation attack if

(3r−(t−1))t ≈ 2N ' pt.

Hence, r ≈ log2(p)
log2 3 +(t−1) rounds will be secure against the above-mentioned attacks. Conservatively,

2r + 2 rounds will be secure against meet-in-the-middle attacks/distinguishers for the case 2κ ' p,
while 2r + t+ 1 rounds will be secure against meet-in-the-middle attacks/distinguishers for the case
2κ ' pt.

GMiMCNyb. Let t = 2 · t′. We use a set of (plaintext, ciphertext) pairs to do the interpolation
analysis. Working as before, after r > 2 rounds, the minimum degree of the output polynomials will
be 3r−1 = dj for some branch j (even j). In order to get the maximum degree 3r−1 = p, the number of

rounds must satisfy r ≈ log2(p)
log2 3 +1. For securing the cipher against MITM-type attacks/distinguishers,

we use 2r rounds. Finally, we add t rounds to provide full diffusion and avoid key-guessing.
In the case 2κ = pt, we have to add 1 more round in order to prevent the combination of the

interpolation attack and the brute-force one.

Remark - Interpolation Attack and Hash Functions. One may ask if a similar attack is
meaningful in the hash scenario (where there is no key or/and secret material). Here we briefly show
a concrete example.

Given the inner permutation P of a sponge construction, assume that it is possible to construct
the interpolation polynomial without using the full code-book. In this case, such a polynomial can
be exploited to set up a forgery attack on the permutation P, which is instead not possible for a
(pseudo-)random permutation. As a result, the inner permutation P of the sponge construction can
be distinguish from a (pseudo-)random permutation, which means that the sponge hash function is
not indifferentiable from a random oracle (as showed in [BDPA08] and recalled in Sect. 11.1.3).

In conclusion, in order to avoid such a distinguisher, it is sufficient that the number of rounds of
the inner permutation GMiMC - instantiated with a fixed key - of the sponge construction is equal
to the number of rounds necessary to prevent the interpolation attack discussed here (equivalently,
the number of rounds necessary to ensure that the internal permutation has maximum degree).

Higher-Order Differential Attack

LetA be an affine space. Higher-order differential attacks [Knu94] exploit the fact that
⊕

x∈A P (x) = 0
if the dimension of A is higher than the degree of P (·). In other words, a higher-order differential
attack can be mounted by choosing an affine space — like A — of dimension d+ 1 (or, equivalently,
of size 2d+1) if P has degree at most d. To thwart higher-order differential attacks, the number of
rounds must be chosen in order to ensure that the algebraic degree of the GMiMC family of block
ciphers is bigger than the biggest subspace in F.

Higher-Order Differential in Fp versus Higher-Order Differential in F2N . Due to the
strategy exploited by the higher-order differential attack, there is a crucial difference between the
cases F2N and Fp.

As we have just seen, given a function f(·) of degree d, the sum over the outputs of the function
applied to all elements of a vector space V of dimension ≥ d+ 1 is zero. The crucial point here is
that the previous result holds if V is a (sub)space, and not only a generic set of elements. While F2m

is always a subspace of F2n for each m ≤ n, the only subspaces of Fp are {0} and Fp. It follows that

the biggest subspace of
(
Fp
)t

has dimension t, with respect to the biggest subspace of
(
F2n)t, which

has dimension n · t = N .

222

11.3. Security Analysis – GMiMC instantiated over Fp

This fact has an important impact on the higher-order differential attack: if a cipher is instantiated
over Fp, then a lower degree (and hence a smaller number of rounds) is sufficient to protect it from
the higher-order differential attack with respect to the number of rounds required for the F2N case. In
particular, it is sufficient that both the encryption and the decryption functions16 have degree at
most t, with respect to degree N of the case of Fp.

Higher-Order Differential on GMiMCcrf instantiated over Fp. Due to the analysis proposed
in Sect. 11.3.1, the minimum degree of GMiMCcrf after r > 2t− 1 rounds is (at least) 3r−2t. The
condition 3r−2t ≥ t is satisfied by r ≥ 2t + log3(t). Finally, we add 2 rounds in order to avoid
key-guessing attack for the univariate case and t+ 1 rounds for the multivariate case.

Higher-Order Differential on GMiMCerf instantiated over Fp. Using the same analysis
proposed before, the minimum degree of GMiMCerf after r > t rounds is (at least) 3r−t. The
condition 3r−t ≥ t is satisfied by r ≥ t+ log3(t). In order to avoid distinguishers on GMiMCHash,
we simply double this number of rounds. Finally, we add 2 rounds in order to avoid key-guessing
attack for the univariate case and t+ 1 rounds for the multivariate case.

Higher-Order Differential on GMiMCNyb instantiated over Fp. Using the same analysis
proposed before, the minimum degree of GMiMCNyb after r > t rounds is (at least) 3r−1. The
condition 3r−1 ≥ t is satisfied by r ≥ 1 + log3(t). In order to avoid distinguishers on GMiMCHash,
we simply double this number of rounds. Finally, we add t rounds in order to avoid key-guessing
attack for the univariate case and in order to provide full diffusion. One more round is added for the
multivariate case.

Higher-Order Differential on GMiMC instantiated over F2n – Some Remarks. Since
we do not require GMiMC instantiated over F2n for our target applications, we stress that we do
not claim anything about the minimum number of rounds necessary to protect GMiMC w.r.t. an
Higher-Order Differential over F2n . In any case, we briefly discuss this case, and we highlight the
main open problem that one has to face when considering this attack.

In order to choose the number of rounds, one has to estimate the growth of the degree. First of all,
since the degree of the round function in its algebraic representation in F2n is only 2, the algebraic
degree of one round is 2 as well. Clearly, the algebraic degree of the cipher after r rounds is bounded
from above by 2r. However, a better and more realistic upper bound can be evaluated by using
the division property [Tod15b], introduced by Todo at Eurocrypt 2015. As a main result, it turns
out that the degree of the function – when it is iterated – grows in a much smoother way than
expected when it approaches the number of variables. For instance, the degree of the composition of
two functions G ◦ F (·) can always be upper-bounded by deg(G ◦ F) ≤ deg(G) · deg(F). This trivial
bound, however, is often very little representative of the true degree of the permutation, in particular
if we are trying to estimate the degree after a high number of rounds. An analogous result for SPN
ciphers was previously found by e.g. Boura et al. [BCC11].

While the (just cited) results proposed by Boura et al. work for SPN ciphers, no equivalent results
is given in the literature for Feistel constructions. Moreover, division property is a useful tool to
study the growth of the degree when one considers a single cipher instantiated by fixed parameters
n and t (or a “small” number of them), but it does not provide a generic formula that can work for
any possible choice of parameters n and t. However, due to the scope of this work, the choice of
the parameters depends on the performance of the practical applications, and it cannot be done in

16Note that the attacker works at word level (i.e. with element of Fp) in the case of an higher order differential attack
instantiated over Fp. Instead, for the case F2n , the attacker can work both at word level (i.e. with element of F2n)
or at bit level (i.e. with element of F2).

223

11. Feistel MiMC and GMiMC

advance. In conclusion, a future open problem would be to determine a tight bound for the growth
of the degree for a generic Feistel construction, as the one provided in [BCC11].

Zero-Sum Partitions and Sponge GMiMCHash. Here we briefly discuss how to apply the
previous analysis in the case of a sponge construction instantiated by one of the GMiMC structures,
e.g. the GMiMCerf , with a fixed key, e.g. 0κ. Since the key is fixed, the previous key-recovery attacks
are meaningless. On the other hand, previous analysis about the degree of GMiMC can be applied
also in this scenario.

As showed in [BDPA08] and recalled in Sect. 11.1.3, when the internal permutation P of a
sponge function is modeled as a randomly chosen permutation, then the sponge construction is
indifferentiable from a random oracle up to 2c/2 calls to P.

A possible distinguisher that can be set up in order to distinguish the inner permutation GMiMC
from a (pseudo-)random one is the one based on the zero-sum partition.

Definition 24 (Zero-sum Partition [BCC11]). Let P be a permutation from F2n to F2n . A zero-sum
partition for P of size K = 2k � 2n is a collection of 2k disjoint sets {X1, X2, ..., Xk} sets with the
following properties:

• Xi = {xi1, ..., xi2n−k} ⊂ F2n for each i = 1, ..., k and
⋃2n−k

i=1 Xi = F2n;

• for each i = 1, ..., 2k, the set Xi satisfies zero-sum

2k⊕
j=1

xij =
2k⊕
j=1

P (xij) = 0.

A similar definition works also in the case of (Fp)t. As we have just seen, if f is a k-degree function
on F2n , then

⊕
v∈V⊕a f(v) = 0 for any (k + 1)-dimension subspace V ⊆ F2n , where V ⊕ a is an

arbitrary coset of V .

To avoid this distinguisher, it is sufficient that the number of rounds of the inner permutation
GMiMC - instantiated with a fixed key - of the sponge construction is equal to the number of rounds
necessary to prevent the higher-order differential attack discussed in the previous section. If this
is not the case, a zero-sum partition can be mounted. For completeness, we recall that, while it
is known how to construct a zero-sum17 for a random permutation (see [AM; BDPA] for details),
there is no way - to the best of our knowledge - to construct a zero-sum partition for a random
permutation without using a brute-force approach. In conclusion, it follows that the assumption
“the internal permutation GMiMC is indifferentiable from a random oracle” does not hold e.g. in the
case in which GMiMC is instantiated with a lower number of rounds than the one determined by
the higher-order differential attack.

We remark that a similar approach based on zero-sum partitions is largely used in the literature to
set up attack or to investigate the security of sponge hash functions (see e.g. Keccak [AM; BCC11],
PHOTON [WGR18], . . .).

11.3.2. Statistical Attacks

Here we consider statistical attacks against GMiMC. All statistical attacks that we are going to
analyze work in the same way both for the case in which GMiMC is instantiated over Fp or/and
over F2n . For this reason, in the following we do not study separately the two scenario.

17We remark that for a zero-sum, it is sufficient to find a single set Z of inputs zi for which
⊕

i zi =
⊕

i P (zi) = 0.

224

11.3. Security Analysis – GMiMC instantiated over Fp

Classical and Truncated Differential Cryptanalysis

Differential cryptanalysis [BS90; BS93] and its variations are the most widely used techniques to
analyze symmetric-key primitives. The differential probability of any function over the finite field
F2n is defined as

Pr[α→ β] := |{x : f(x) + f(x+ α) = β}|/2n.

It is well known that the function f(x) = x3 is Almost Perfect Non-linear (APN) [NK92] and, thus,
has optimal differential probability over a prime field or F2n . For this function the probability is
bounded above by 2/2n or 2/|F|. In the following, we provide the minimum number of rounds to
guarantee security against this attack. A variant of classical differential cryptanalysis is the truncated
differential one [Knu94], in which the attacker can predict only part of the difference between pairs
of texts.

As largely done in the literature, we assume that the cipher is secure against differential attack if
any (truncated) differential characteristic has probability lower than 2−N .

GMiMCcrf . In order to find the minimum number of rounds to protect the cipher against
differential attack, we look for the best possible (truncated) differential characteristic. Consider an
input difference of the form (0, . . . , 0,∆I ,∆I) where ∆I 6= 0. It is straightforward to observe that such
input difference does not active any S-Box in the first r0 = t− 2 rounds (since the input difference
is always zero), that is the output difference after r0 rounds is (∆I ,∆I , 0, . . . , 0). After r1 = t− 1
round, we get an output difference of the form (∆I , 0, ..., 0,∆I ⊕ f r1(∆I)), where f r1(·) denotes the
r1-th round function. Observe that ∆I ⊕ f r1(∆I) = 0 with prob. 2−n+1. Indeed18, since an active
(cubic) S-Box maps its non-zero input difference to 2n−1 possible output differences each one with
prob. 2−n+1, it follows that f r1(∆I) = ∆I with probability 2−n+1. Assume f r1(∆I) = ∆I . After
r2 = t rounds, we get an output difference of the form (0, ..., 0,∆I), while after r3 = t+ 1 rounds,
we get an output difference of the form (0, ..., 0,∆I , f

r3(∆I)). Due to the previous consideration,
f r3(∆I) = ∆I with prob. 2−n+1.

As a result, the following (truncated) characteristic over t+ 1 rounds

(0, . . . , 0,∆I ,∆I)
Rt−2(·)−−−−→
prob. 1

(∆I ,∆I , 0, . . . , 0)
R(·)−−−−−−−−→

prob.≤2−n+1
(∆I , 0, . . . , 0)

R(·)−−−−→
prob. 1

R(·)−−−−→
prob. 1

(0, . . . , 0,∆I)
R(·)−−−−−−−−−→

prob. ≤2−n+1
(0, . . . , 0,∆I ,∆I)

has an overall probability equal to 2−2n+2. Before going on, note that any other input difference
active at least one S-Box in the first t− 2 rounds. In other words, it seems not possible to find a
longer (truncated) characteristic with lower probability.

By iterating this (truncated) characteristic, it is possible to construct a (truncated) differential
characteristic over s · (t+ 1) with probability at most (2−2n+2)s. By simple computation, (2−2n+2)s ≤
2−N if and only if (2n− 2) · s ≥ N , that is s ≥ d N

2n−2e. As a result, 2 + t · (t+ 1) · d n
2(n−1)e rounds

are sufficient to provide security in the univariate case, while 1 + t+ t · (t+ 1) · d n
2(n−1)e rounds are

sufficient to provide security in the multivariate case.

GMiMCerf . Working in the same way as before, consider an input difference of the form
(0, . . . , 0,∆I) where ∆I 6= 0. It is straightforward to observe that such input difference does not
active any S-Box in the first r0 = t− 1 rounds (since the input difference is always zero), that is the
output difference after r0 rounds is (∆I , 0, 0, . . . , 0). After r1 = t round, we get an output difference

18Note that the cubic S-Box is APN. This means that for each non-zero input/output difference, the number of
solutions of S-Box(x⊕ δI)⊕ S-Box(x) = δO is at most 2. As a result, for each δI there are at most 2n/2 different
δO for which the previous equation as at least one solution.

225

11. Feistel MiMC and GMiMC

of the form (f r1(∆I), ..., f
r1(∆I),∆I), where f r1(·) denotes the r1-th round function. Observe that

∆I = f r1(∆I) with prob. 2−n+1. Indeed, since an active (cubic) S-Box maps its non-zero input
difference to 2n−1 possible output differences each one with prob. 2−n+1, it follows that f r1(∆I) = ∆I

with probability 2−n+1. Assume f r1(∆I) = ∆I , that is an output difference of the form (∆I , ...,∆I).
After r2 = t+ 1 rounds, we get an output difference of the form (∆I ⊕ f r2(∆I), ...,∆I ⊕ f r2(∆I),∆I).
Due to the previous consideration, f r2(∆I) = ∆I with prob. 2−n+1.

As a result, the following (truncated) characteristic over t+ 1 rounds

(0, . . . , 0, 0,∆I)
Rt−1(·)−−−−→
prob. 1

(∆I , 0, 0, . . . , 0)
R(·)−−−−−−−−→

prob.≤2−n+1
(∆I ,∆I , . . . ,∆I)

R(·)−−−−−−−−−→
prob. ≤2−n+1

(0, . . . , 0,∆I)

has an overall probability equal to 2−2n+2. Before going on, note that any other input difference
active at least one S-Box in the first t− 1 rounds. In other words, it seems not possible to find a
longer characteristic with lower probability.

By iterating this (truncated) characteristic, it is possible to construct a differential characteristic
over s · (t+ 1) with probability at most (2−2n+2)s. By simple computation, (2−2n+2)s ≤ 2−N if and
only if (2n− 2) · s ≥ N , that is s ≥ d N

2n−2e. As a result, 2 + t · (t+ 1) · d n
2(n−1)e rounds are sufficient

to provide security in the univariate case, while 1 + t+ t · (t+ 1) · d n
2(n−1)e rounds are sufficient to

provide security in the multivariate case.

GMiMCNyb. First of all, note that any input difference of the form (0,∆I , 0, . . . ,∆I), where
∆I 6= 0, does not activate any S-Box in the first round. Working as in the previous case, it is possible
to prove that the following (truncated) characteristic over 3t/2 = 3t′ rounds (where t = 2t′)

(∆, 0, . . . , 0)
R3t′ (·)−−−−→ (∆′, 0, . . . , 0)

has probability 2(t−1)·(−n+1), where in general ∆ 6= ∆′.

By iterating this characteristic, it is possible to construct a differential characteristic over s·(3t′) with
probability at most (2(t−1)·(−n+1))s. As a result, (2(t−1)·(−n+1))s ≤ 2−N if and only if (t−1)·(n−1)·s ≥
2N , that is s ≥ 2 (since N ≥ 2(n+ t− 1) due to the fact that n · (t− 2) ≥ 2(t− 1) for each n ≥ 3).
As a result, 2 + 3t rounds are sufficient to provide security in the univariate case, while 3 + 3t rounds
are sufficient to provide security in the multivariate case.

Impossible Differential Cryptanalysis

Impossible differential cryptanalysis was introduced by Biham et al. [BBS99] and Knudsen [Knu98].
This cryptanalytic technique exploits differentials occurring with probability 0. It has been very
successful against FNs and led to the best cryptanalysis against well known FN-based block ciphers
like CLEFIA and CAMELLIA [BNS14].

The approach used in the following - and largely exploited in the literature - to construct impossible
differential is to combine two (truncated) differentials with prob. 1 that collide in the middle.

GMiMCcrf . As first thing we look for a probability-one truncated differential in order to construct
impossible differentials for GMiMCcrf . A probability-one differential for a maximum of t− 1 rounds
of this UFN with t branches is described as follows:

(0, . . . , 0, α, α)→ (0, . . . , 0, α, α, 0)→ . . .→ (α, α, 0, . . . , 0).

A truncated differential with probability 1 exists for (t−1)+(t−1) = 2t−2 rounds. This is described
as follows:

(0, . . . , 0, α, α)
t−1 rounds−−−−−−−→ (α, α, 0, . . . , 0)

t−1 rounds−−−−−−−→ (0, ∗, . . . , ∗).

226

11.4. Security Analysis – GMiMC instantiated over F2n in the Low-Data Attacks

This will allow us to attack 3t − 3 rounds of the cipher, exploiting the differential just given on

2t− 2 rounds and noting that (β, 0, . . . , 0)
t−1 rounds−−−−−−−→ (0, ∗, . . . , ∗) with probability 1. As a result, the

(3t− 3)-rounds impossible differential used for the attack is given by

(0, . . . , 0, α)
R2t−2(·)−−−−−→
prob. 1

(0, ∗, . . . , ∗) 6= (β, 0, . . . , 0)
Rt−1(·)←−−−−
prob. 1

(0, ∗, . . . , ∗)

for α, β 6= 0. Hence, the number of iterations to protect the cipher against such an attack must be at
least [(2t− 2) + (t− 1)] + 2 = 3t− 1 for the case κ = n. For the case κ = t · n, the number of rounds
must be at least [(2t− 2) + (t− 1)] + t+ 1 = 4t− 2.

GMiMCerf . A probability-one differential exists for a maximum of t − 1 rounds of the cipher,
which is given as follows:

(0, . . . , 0, α)→ (0, . . . , 0, α, 0)→ . . . (α, 0, . . . , 0).

This differential can be extended to a probability-one truncated differential for t rounds as follows:

(0, . . . , 0, α)
t−1 rounds−−−−−−−→ (α, 0, . . . , 0)

1 round−−−−−→ (∗, ∗, . . . , ∗, α).

This probability-one differential allows us to construct an impossible differential for 2t− 2 rounds,
as depicted below:

(0, . . . , 0, α)
Rt−1(·)−−−−→
prob. 1

(α, 0, . . . , 0) 6= (0, . . . , 0, β)
Rt−1(·)←−−−−
prob. 1

(β, 0, . . . , 0)

for α, β 6= 0. Conservatively, 2t rounds will be secure against meet-in-the-middle attacks/distinguishers
for the case κ = n, while (2t− 2) + (t+ 1) = 3t− 1 rounds will be secure against meet-in-the-middle
attacks/distinguishers for the case κ = t · n.

GMiMCNyb. There exists a probability-one truncated differential for a maximum of t− 1 rounds
of this construction (with t = 2t′ branches). This is described as follows:

(0, α, 0, ..., 0)→ (α, 0, 0, ..., 0)→ (∗, 0, ..., 0, α)→ (∗, 0, ..., 0, α, ∗)→ ...→ (∗, 0, ∗, ..., ∗)

where α 6= 0.

Using the probability-one truncated differentials similarly as described above, we can construct
impossible differentials for GMiMCNyb. This will allow us to attack 2(t− 1) rounds of the cipher.
Hence, the number of iterations to protect the cipher against such attacks must be at least 2t for
the case κ = n, and 2t+ 1 for the case κ = t · n.

11.4. Security Analysis – GMiMC instantiated over F2n in the
Low-Data Attacks

For some practical applications considered in the following, we also consider the case in which the
attacker has a limited access to data (e.g. 1 or 2 (plaintext, ciphertext) pairs). Here we consider
this particular case, showing that, in some cases, the total number of rounds can be reduced (since
many attacks cease to work in this particular scenario). Among all the attacks we have considered,
only two of them apply for the case of low-data complexity, which are the GCD attack and its
generalization as a Gröbner Basis attack. We emphasize that statistical attacks (like differential,
linear, . . .) are not competitive in this setting.

227

11. Feistel MiMC and GMiMC

Gröbner Basis Analysis – Case: κ = t · n. As explained in Sect. 11.3.1, the complexity of
computing a Gröbner basis for a system of N polynomials in V variables is of

(Dreg+V
Dreg

)
operations

over the base field F [BFP12], where Dreg is the degree of regularity. As already pointed out,
closed-form formulas for Dreg are known only for some special cases (e.g. when N = V), but not in
general.

In the low-data scenario, we use the SageMath code19 in [AGP+18, App. H] to estimate Dreg,
and so the complexity of the Gröbner Basis attack on GMiMC. In the low-data case, the analysis
concludes that such attack do not outperform – in general – the GCD attack that we are going to
present.

Greatest Common Divisors

Since the GCD attack is one of the few attacks that work in the low-data scenario, here we recall
the idea of such an attack.

Given more than one known (plaintext, ciphertext) pair or working on the output of each branches
of a single known (plaintext, ciphertext) pair (as described below), one can construct their polynomial
representation. The idea of the GCD attack is simply to compute their polynomial Greatest Common
Divisors (GCD) to recover a multiple of the key.

Two-pair case. Denote by E(k, x) the encryption of x under key k. For a pair (x, y) ∈ F2N , E(K,x)−y
denotes a univariate polynomial in Fq[K] corresponding to (x, y). Note that in our case the polynomial
E(K,x)− y can be constructed conceptually easily from the encryption process, but writing down
E(K,x)− y becomes computationally expensive as the number of rounds increases. Indeed, writing
down E(K,x) − y requires not only large computational resources but also an exponential (in r)
amount of memory.

Consider now two such polynomials E(K, p1)− c1 and E(K, p2)− c2, with ci = E(k, pi) for i = 1, 2
and for a fixed but unknown key k. It is clear that these polynomials share (K − k) as a factor.
Indeed, with high probability the greatest common divisor will be (K − k). Thus, by computing the
GCD of the two polynomials, we can find the value of k.

One-pair case. Since we are working with a Feistel construction, we can also set up a GCD computation
among the branches of the Feistel cipher. In other words, let p := (pt−1, . . . , p1, p0) and c :=
(ct−1, . . . , c1, c0). For each component i = 0, . . . , t− 1, it is possible to construct the interpolation
polynomial

ci = Ei(K, (pt−1, . . . , p1, p0)),

where K is the secret variable. The analysis then proceeds as above, working on different components
instead of different texts. Thus, it is possible to perform the GCD among the branches also in the
case in which the attacker knows only 1 (plaintext, ciphertext) pair.

Meet-in-the-Middle. Due to the Feistel structure, a Meet-in-the-Middle variant of the GCD attack
can be performed. That is, instead of constructing polynomials expressing ciphertexts as polynomials
in the plaintext and the key, we can construct two polynomials G′(K,xi) and G′′(K, yi) expressing
the state in round r/2 as a polynomial in the key and the plaintext or ciphertext respectively.
Then, considering G′(K,x0)−G′′(K, y0) and G′(K,x1)−G′′(K, y1), we can apply a GCD attack on
polynomials with lower degree than before (approximately half).Hence, the number of rounds must
be double to thwart this variant of the attack.

19Remark. Since I did not work on such SageMath code – it was done by Martin R. Albrecht, I limit myself to refer
to [AGP+18, App. H] for all details.

228

11.4. Security Analysis – GMiMC instantiated over F2n in the Low-Data Attacks

Complexity. It is well-known that the complexity for finding the GCD of two polynomials of degree
d is O (M(d) log2 d), where M(d) is the cost of multiplying two degree-d polynomials. The best
(known) complexity for M(d) is O(d log2 d) using an FFT. Thus, we expect a GCD computation to
cost O

(
d log2

2 d
)
, where the hidden constant is greater than 1. In order to estimate the computational

cost of such an attack, we have to estimate the degree of K in E(K,x)− y, which depends on the
number of rounds r. To derive an estimate for the required number of rounds, we will target

d log2
2 d ≈ 2κ = 2n,

where 2κ denotes the computational cost of a brute-force attack and κ = n denotes the number of
key bits.

GMiMCcrf . Case: κ = n. A key datum is the degree reached in each of our constructions
after r rounds. Consider the t-branch, univariate case for GMiMCcrf and denote the branches by
(Xt−1, . . . , X2, X1, X0). Given a plaintext, the degree di of the key in the i-th branch for i = 0, . . . , t−1
after r rounds is

di =

{
3r−i if r > i,

0 otherwise.

Note that dt−1 = mini di. The condition 3r−t+1 log2(3r−t+1) ≈ 2n is fulfilled20 when r ' t− 1 + n ·
log3 2− 2 log3 n. Thus, the number of rounds must be approximately

r ≥
⌈
2t+ 2n · log3 2

⌉
−
⌊
4 · log3 n

⌋
to thwart the Meet-in-the-Middle variant.

Multivariate Case: κ = t · n. To extend these attacks to the multivariate case, i.e. κ = t · n, the
attacker may guess (t − 1) · n bits of the key, and then perform the previous GCD attack on a
univariate polynomial. We note, however, that in the multivariate case we are targeting a complexity
of 2t n operations and are performing 2(t−1)n GCD computations. Thus, each GCD computation has
a “budget” of 2n operations. On the other hand, guessing permits to shave off up to (t− 1) rounds.
Thus, the number of rounds required in the multivariate case is slightly higher than in the univariate
case. Of course, this trade-off changes when 2tn � 2λ, where λ is the targeted security level.

As a result, the number of rounds must be approximately

r ≥
⌈
3t+ 2n · log3 2− 1

⌉
−
⌋
4 · log3(n)

⌋
to thwart the Meet-in-the-Middle variant. For each GMiMC family of block ciphers, we refer to
Table 11.1 for the minimum number of rounds that ensure security against the GCD attack.

GMiMCerf . Case: κ = n. The degree di of the key in the i-th branch for i = 0, . . . , t− 1 after r
rounds is

di =


3r if r > 0 and i 6= t− 1,

3r−1 if r > 1 and i = t− 1,

0 otherwise.

Note that dt−1 = mini di. The condition 3r−1 log2(3r−1) ≈ 2n is fulfilled when r ' 1 + n · log3 2−
2 log3(n).

Finally, in order to prevent a modified version of this attack similar to the one proposed for the
Gröbner basis case (see before), we increment this number of rounds by a factor t− 3. As a result,
the number of rounds must be approximately

r ≥
⌈
2n · log3 2 + 2t− 2

⌉
−
⌊
4 · log3(n)

⌋
20Note that the solution of y = x · log2(x) is well approximated by x = y/ log2(y).

229

11. Feistel MiMC and GMiMC

to thwart the Meet-in-the-Middle variant21.

Case: κ = t · n. The idea, once again, is simply to guess the first t− 1 round keys (i.e., (t− 1) · n
bits of the key) and to apply the (univariate) GCD attack described previously. Using the previous
strategy, it turns out that the number of rounds must be approximately

r =
⌈
2n · log3 2− 4 · log3(n) + 3t− 3e

to thwart the Meet-in-the-Middle variant.

GMiMCNyb. Case: κ = n. Consider the t-branch case with t = 2 · t′. Since we are working in the
univariate case, all the functions Fi are equal, i.e., F1 = F2 = · · · = Ft, and they all depend on the
same key. The degree di of Xi for i = 0, . . . , t− 1 after r ≥ t′ + 1 rounds22 is

di = 3r−i+t
′−1.

In more detail, the degrees are given by

(3r−t
′
, 3r−t

′+1, 3r−t
′+2, . . . , 3r−2, 3r−1, 3r, 3r−1, 3r−2, . . . , 3r−t

′+2, 3r−t
′+1).

Note that dt−1 = mini di. The condition 3r−t
′
log2(3r−t

′
) ≈ 2n is fulfilled when r ' t′ + n · log3 2−

2 log3(n). Thus, the number of rounds must be approximately

r ≥
⌈
2n · log3 2 + t+ 2

⌉
−
⌋
4 · log3(n)

⌋
to thwart the Meet-in-the-Middle variant.

Case: κ = t ·n. Using the previous strategy and guessing the first t−1 round keys (which corresponds
to skipping one round), it turns out that the number of rounds must be approximately

r =
⌈
2n · log3 2 + t+ 3

⌉
−
⌋
4 · log3(n)

⌋
to thwart the Meet-in-the-Middle variant.

11.5. Parameter-Space Exploration

We compare the effects of different parameters in our Feistel-based constructions with block size N .
In Table 11.3 we compare several parameters of the generalized constructions. Depending on the
construction, a Feistel network may permit to compute more than one F function in parallel and we
will refer to making use of this fact as “parallel mode”. For example, in Nyberg’s GFN mode t/2
(for t ≥ 4) functions (in our case, multiplications) can be computed in parallel per round.

In the following, we propose some initial considerations. To simplify the notations, we denote
the number of rounds necessary to protect the cipher from Interpolation attack, Gröbner ba-
sis attack, Higher-Order differential attack and (Truncated) Differential attack respectively by
RInt, RGröbner, RHighOrd, RTDiff.

Finally, in the following we denote by α the number of multiplication that must be performed
to compute x3 for an arbitrary x, i.e. α = 1 for x ∈ F2n (where x2 is linear in F2n) and α = 2 for
x ∈ Fp (for prime p).

21We note that this attack crucially depends on separating monomials per round. In particular, if the degree of the
target polynomial � 2n, then this condition does not hold as modular reductions modulo x2n

− 1 happen.
22We restrict to this case as we never consider r < t′ + 1 in our constructions.

230

11.5. Parameter-Space Exploration

Table 11.3.: Comparing the parameters of the GMiMC keyed permutation in different modes - no
restriction on data complexity. To simplify the notations, we denote the number of rounds necessary
to protect the cipher from Interpolation attack, Gröbner basis attack, Higher-Order differential attack
and Truncated Differential attack respectively by RInt, RGröbner, RHighOrd, RTruncDiff. Moreover, we
use the notation n and N to denote respectively the cases log2 p and t · log2 p. Finally, α denotes the
number of multiplication that must be performed to compute x3 for an arbitrary x, i.e. α = 1 for
generic x ∈ F2n (where x2 is linear in F2n) and α = 2 for generic x ∈ Fp (for prime p).

Branches Security round (R) #mult #mult ·|F| #mult
(κ bits) (parallel mode)

MiMC 1 n ≡ N log3(2) · n+ 1 α ·R N · α ·R α ·R

Feistel MiMC 2
n 2 · log3(2) · n+ 1 α ·R N

2 · α ·R α ·R
N

⌈
2 · log3(2) · n

⌉
+3 α ·R N

2 · α ·R α ·R

GMiMCcrf t ≥ 3
n max

{
RInt, RHighOrd, RTruncDiff

}
α ·R N

t · α ·R α ·R
N max

{
RInt, RGröbner, RHighOrd, RTruncDiff

}
GMiMCerf t ≥ 3

n max
{
RInt, RHighOrd, RTruncDiff

}
α ·R N

t · α ·R α ·R
N max

{
RInt, RGröbner, RHighOrd, RTruncDiff

}
GMiMCNyb t = 2t′ ≥ 4

n max
{
RInt, RHighOrd, RTruncDiff

}
t
2 · α ·R

N
2 · α ·R α ·R

N max
{
RInt, RGröbner, RHighOrd, RTruncDiff

}

GMiMCcrf vs GMiMCerf . GMiMCcrf and GMiMCerf are quite similar — only one multiplication
is performed at each round. By our analysis, it turns out that GMiMCerf is always more efficient
than GMiMCcrf , since it always requires a lower number of rounds to be secure. For this reason, we
only consider GMiMCerf for the following practical applications.

Remark. As pointed out in the introduction, Feistel MiMC requires approximately double the
number of rounds of MiMC. However, we found that the number of rounds does not grow linearly
with the number of branches. For a concrete example, the cases of GMiMCerf with t · log2 p ≈ 256
and t · log2 p ≈ 1024 fixed are depicted in Fig. 11.4 and Fig. 11.5. It is possible to observe the
minimum number of rounds is obtained by choosing the number of branches t not too “small” and
not too “big” (e.g. 6 ≤ t ≤ 18). As a result, for this range of values of t, GMiMCerf results to be as
competitive as MiMC or even more for the applications that we have in mind. Similar results can be
obtained for other values of t · log2 p and for all other GMiMC ciphers proposed here (we focus on
GMiMCerf since it results to be the most competitive one for the practical applications that we are
studying in this paper).

11.5.1. MPC/SNARK/PQ Signature Applications

In this section, we are interested to optimize the two GMiMC ciphers previously selected with respect
to different metrics:

SNARK: minimize total number of “operations” – case κ = n (we recall that SNARK applications
use the hash function GMiMCHash, where the number of rounds of the inner permutation is
given by the univariate case);

PQ Signature: minimize total number of multiplications × field size – case κ = N in low-data
scenario;

231

11. Feistel MiMC and GMiMC

Figure 11.4.: Number of Branches versus Number of Rounds – GMiMCerf with t · log2 p ≈ 256
fixed.

Figure 11.5.: Number of Branches versus Number of Rounds – GMiMCerf with t · log2 p ≈ 1024
fixed.

MPC: motivated by real life applications, our goal is to reduce the total runtime. The main bottleneck
of a protocol ran on top of SPDZ-framework is the triple generation mechanism which is given
by the number of (parallel) multiplications. Hence the goal is to minimize/optimize both the
total number of operations (as for SNARKs) and the total number of (parallel) multiplications
(where note that the two metrics coincide for GMiMCcrf and GMiMCerf).

Remark. We remark that computing x3 requires 2 multiplications in Fp and a single multiplication
in F2n (since x2 is linear in F2n).

Focusing on F2n , the cost of performing one multiplication in F2n using a fast Fourier transform is
approximately O(n · log n) bit-wise XORs (that is, approximately β · n · log n for some constant β),
while the cost of one addition is n bit-wise XORs. As a result, a good approximation of this number
is given by

number of rounds ×
(
A+

N

β · n · log(n)

)
, (11.4)

where
GMiMCcrf ,GMiMCerf : A = 1 and GMiMCNyb : A = t/2

since for each round A multiplication(s) and (approximately) n · t bit-wise XOR-sums are performed
- remember that (1st) a single multiplication is necessary to compute x3 in F2n and (2nd) the ratio
between the cost of 1 multiplication and 1 addition is 1/ log(n). It follows that when the total number

232

11.5. Parameter-Space Exploration

Figure 11.6.: Number of Branches versus Number of Rounds of different attacks – GMiMCerf with
t · log2 p ≈ 1024 fixed. “Statistical Attacks” include Truncated diff., Impossible Diff. and Linear Diff.
“Algebraic Attacks” include GCD attack, Interpolation attack, Gröbner Basis and Higher-Order Diff.

Figure 11.7.: SNARK in Fp - Comparison of the number of operations for GMiMCerf and
GMiMCNyb for different values of n (N = 1024).

of multiplications is higher than the total number of additions (e.g. MiMC or GMiMCNyb), it is
reasonable to approximate the total number of operations by the total number of multiplications.
When the total number of additions is much higher than the total number of multiplications, one
must take care of both these two numbers to compute the total cost. Finally, in the PQ signature
case, we primarily consider the total number of multiplications (and not of generic operations), since
this metric determines both the signature size and the number of pseudo-randomly generated field
elements required for signing.

Similar results can be obtained as well also for the case Fp. Here the cost of 1 multiplication can
be approximated as O(logb(p)

2) word sum-operations (that is, approximately β · logb(p)
2 for some

constant23 β) where b is the word size of the processor. Thus a good approximation for the total
number of operations for the case Fp is given by

number of rounds ×
(

2 · A+
t

β · [log2(p)]2

)
, (11.5)

where p ≈ 2n, A is defined as before, and the factor 2 counts for the two multiplications required to
compute cubes in Fp (instead of a single one).

23For our practical implementation of the the SNARKs application in Section 11.6.2, the value of β is well approximated
by β ≈ 1.75/322 based on the multiplication and reduction algorithms used by NTL. This number is consistent
with the complexity discussion of Karatsuba multiplication and Barrett reduction.

233

11. Feistel MiMC and GMiMC

SNARK — Number of “Operations”

First of all, for SNARKs applications we only consider the case Fp. This is motivated by the fact
that we cannot use the property that squaring is linear in F2n for a more efficient implementation in
this setting, since the cubes have to be represented as rank-1 constraint (see Section 11.6.2 for more
details). We remark that similar consideration has been made for MiMC when used for SNARK
applications (see [AGR+16, Section 6.1]).

Having said that and focusing only on the case κ = n, for the follow-up it is interesting to observe
that for each N fixed, it is possible to minimize the total number of “operations” by adjusting the
parameters t and n. Both for the case of GMiMCNyb and GMiMCerf , this number corresponds to
the total number of multiplications. In GMiMCerf , a good approximation of this number is given by
formula (11.5).

Focusing on the case N = 1024 - used in the following application, it turns out that GMiMCerf is
more efficient in this setting. Consider e.g. the case Fp. As showed in Fig. 11.7, it turns out that the
best choice for GMiMCerf is n = 103 and t = 10. The number of total operations for this choice of
parameters is ≈ 403. In GMiMCNyb, the number of multiplications is given by R × t (where R is
the number of rounds and 2× (t/2) = t multiplications in Fp are performed in each round), which
means that the total number of operations is (at least)

max

{
1.262 ·N + 3t+ t2, 0.631 ·N + 2t · log3(t) + t2 + t, 3t+ 2t2 + 4t · log2(N)

}
≥ 1.262 ·N ≈ 1293,

that is approximately three times more. As a result, for the case N = 1024, GMiMCerf is (much)
more efficient than GMiMCNyb.

PQ Signatures — Number of Multiplications × Field Size (Low-Data Scenario)

Focusing only on the case κ = N = t ·n, for the follow-up it is interesting to observe that for N fixed,
it is possible to minimize the product of multiplications and branch size by adjusting the parameters
t and n. This metric is the most interesting one, since it determines both the signature size and the
size of the random tapes. Remember that the PQ signature is implemented in the low-data scenario
only (which means that e.g. the differential attack does not apply). We give the best choice of t and
n for this metric:

GMiMCerf With respect to the general scenario, in this case there is no closed-form formula to
compute the number of rounds necessary to guarantee security. Combining the results provided
by the GCD attack and the one provided by the SageMath code given in [AGP+18, App.
H] (in order to estimate Gröbner Basis attack), the number of rounds to provide security is
r ≥

⌈
1.262 · n− 4 · log3(n)

⌉
+3t+ 3 and the best choice is

n = 3, r · n ≥
⌈
1.262 · n2 − 4 · log3(n) · n

⌉
+3N + 9 ≥ 3N + 9.

GMiMCNyb Since the number of multiplications is given by r · t/2, it follows that24

r · t
2
· n ≥

⌈
0.631 ·N · n

⌉
+N · t+

N

2
,

which is higher than the corresponding number for GMiMCerf . Indeed, since the best choice is
to minimize n also in this case (that is, to choose n = 3), it follows that r · t2 ·n ≥ N ·(

N
2 −0.6) =

O(N2) (vs O(N) for the case of GMiMCerf).

In more detail, for n = 3: N2/3 + 2.4N︸ ︷︷ ︸
GMiMCNyb

≥ 3N + 9︸ ︷︷ ︸
GMiMCerf

for each N ≥ 7.

As a result, it follows that GMiMCerf is more efficient in this setting (analogous for Fp).
24We use the number of rounds provided by the GCD attack for the given estimation. Note that the real number of

rounds is not lower than the number of rounds of the GCD attack.

234

11.6. Applications

Mode #Branch / Online cost Preproc

#Block (MPC) Rounds Openings Latency (ms)/Fp Throughput Fp/s (ms)

GMiMCcrf

8

386 579 3.70 34310 12.8
GMiMCerf 356 534 3.41 37813 11.8
GMiMCNyb 344 2064 3.27 11329 45.8
GMiMCmrf 344 2064 3.36 11591 45.8

MiMC 8 blocks 146 1752 1.39 13846 38.9

GMiMCcrf

64

834 1251 1.00 75967 27.8
GMiMCerf 580 870 0.68 111047 19.3
GMiMCNyb 456 21888 0.63 9380 486
GMiMCmrf 356 17088 0.49 12153 379

MiMC 64 blocks 146 14016 0.21 14814 311

Table 11.4.: Two-party costs for MiMC and GMiMC over a LAN network.

MPC — Number of (parallel) Multiplications

In MPC the number of communications rounds is equal to the number of (parallel) multiplications -
that is α ·R where α and R are defined as before - for all the proposed designs. In particular, note
that for GMiMCNyb and GMiMCmrf the t/2 multiplications can all be executed in parallel. On the
other hand, these parallel multiplications are not “costless”: the effect of these t/2 multiplications
per round is reflected in the throughput metric.

When N is fixed, GMiMCNyb requires a lower number of rounds (for both encryption and MPC
communications) than GMiMCerf to achieve security. However, GMiMCmrf has significantly less
throughput compared to GMiMCerf .

11.6. Applications

Remark. Since I did not work on the practical applications/implementations of GMiMC, I limit
myself to recall here the main results and I refer to [AGP+18] for a detailed discussion on it.
The results of this section are due to the work of Dragos Rotaru (MPC applications), Arnab Roy
(SNARKs application) and Sebastian Ramacher and Markus Schofnegger (PQ-Signature application)
respectively.

11.6.1. MPC Applications

Benchmarking Environment. We have benchmarked the protocols using the SPDZ framework,
which provides active security against multiple malicious parties [KSS13]. Additions of secret values
and scalar multiplications are (almost) for free in SPDZ. The protocols ran across two computers
with commodity hardware connected via a 1 GB/s LAN network and an average round-trip time of
0.3 ms. In our setting, both keys and messages are secretly shared among the two parties.

Results. For a complete measurement of an MPC protocol, one needs to have in mind both
pre-processing and online phases. The pre-processing phase cost is determined by the number of
shared multiplications. Performance of the online phase is given by the multiplicative depth of the
circuit to be evaluated as well as the number of openings (whenever a party reveals a secret value).
For the online phase we give measurements in terms of latency and throughput. Latency indicates
the time spent for computing a single block cipher call, whereas throughput shows the maximum
Fp objects that can be encrypted in parallel per second. We instantiate each block cipher with 8
and 64 input blocks/branches, where each block lies in Fp and p ≈ 2128. Note that for GMiMC
constructions in MPC we have used an n-bit key. For a fair comparison with previous evaluations of

235

11. Feistel MiMC and GMiMC

Mode #Branch / Online cost Preproc

#Block (MPC) Rounds Openings Latency (ms)/Fp Throughput Fp/s (ms)

GMiMCcrf

8

386 579 2427 1937 120.6
GMiMCerf 356 534 2249 1500 111.2
GMiMCNyb 344 2064 2173 401 430
GMiMCmrf 344 2064 2149 401 430

MiMC 8 blocks 146 1752 7421 644 365

GMiMCcrf

64

834 1251 659 6945 260.6
GMiMCerf 580 870 459 7303 181.2
GMiMCNyb 456 21888 361 354 4560
GMiMCmrf 356 17088 280 471 3560

MiMC 64 blocks 146 14016 116 646 2920

Table 11.5.: Two-party costs for MiMC and GMiMC over a WAN network.

MiMC in SPDZ, the online phase runs on a single thread. The preprocessing column denotes the
amount of time required to generate the triples for a single block cipher evaluation in a two party
SPDZ protocol.

Experiments (Table 11.4) show that GMiMCcrf and GMiMCerf have a very fast pre-processing
phase because they perform a low number of multiplications. A big advantage of these two is how
well they scale in terms of triples used, since they require one multiplication per round. This is
in contrast with MiMC, where increasing the parallelism by a factor of c results in c times more
multiplications per round.

Perhaps unexpectedly, GMiMCcrf and GMiMCerf have a higher throughput compared to the rest
of the variants, although they result in a larger number of rounds. The reason is that fewer openings
- or multiplications in our case - mean less data sent between the parties so we can batch more
executions in parallel. Thus in a LAN network the number of rounds has a minor impact.

The situation looks similar in a WAN network (Table 11.5). Even higher throughput improvements,
yet we notice that a higher number of rounds affects the latency more significantly than in the LAN
case. We can see that GMiMCcrf and GMiMCerf win against the classic MiMC variant by at least
one order of magnitude in terms of throughput and pre-processing material.

11.6.2. SNARKs Applications

Benchmarking Environment. For all the field operations we have used the NTL together with
the gf2x library. All the computations were performed on a system having an Intel Core i7-6700
@3.4 GHz ×8 processor with 16 GB memory. We took the average time over ≈ 2000 iterations.

Results. Since we expect that GMiMCcrf and GMiMCerf work better than GMiMCNyb in a
SNARK setting, we limited to implement them for the GMiMC permutation and hash function. We
compared the performance with MiMC. For N ≈ 1024-bit (prime) block size GMiMCerf [N, t, n],
where t = 8, shows some improvement over MiMC-1025. For hashing a single message block,
GMiMCHash-256 is more than 1.2 times faster than MiMCHash-256 and is significantly (> 12
times) faster than SHA-256. We stress that in comparison with MiMCHash the primary advantage
of GMiMCerfHash is that it can be used over 256 bit or smaller field size.

Note that the number of constraints for GMiMCHash-256 with fixed key permutation is only one
more than the number of constraints for GMiMCerf. Hence the time taken by the hash function
and the permutation with fixed key are the same (in Table 11.6).

236

11.6. Applications

MiMC [AGR+16] GMiMCerf

(t, log2(p), R) (1, 1024, 646) (2, 513, 647) (4, 256, 332) (8, 128, 178) (16, 64, 141)

constraint generation 4.553 ms 5.077 ms 4.735 ms 4.732 ms 8.057 ms
witness generation 1.079 ms 0.639 ms 0.388 ms 0.296 ms 0.449 ms
total time 5.632 ms 5.716 ms 5.123 ms 5.028 ms 8.507 ms
#additions 646 1293 996 1246 2115
#multiplications 1293 1293 664 356 282

Table 11.6.: Comparison of MiMC with GMiMCerf (with different numbers of branches) in SNARK
in Fp when the block size is 1024 bits.

11.6.3. Post-Quantum Signature Applications

Fish and Picnic [CDG+17] are new classes of digital signature schemes which derive their security
entirely from the security of symmetric-key primitives, have extremely small key pairs, and are highly
parameterizable. The construction is based on a one-way function f , where for the secret key x, the
image y = f(x) is published as the public key. A signature on a message is then obtained from a
non-interactive zero-knowledge proof of the relation y = f(x), that incorporates the message in the
challenge generation. When instantiating f with LowMC [ARS+15], trying to reduce the signature
size by reducing the number of multiplication gates comes at the cost of a more expensive linear
layer, which leads to a runtime vs. signature-size trade-off. Since the security proofs in [CDG+17]
only require a block cipher with a reduced data complexity of 1, the overall performance can be
greatly improved as this fact allows to choose LowMC instances with less rounds. For the 128 bit
PQ security level, e.g. 256-bit block size and key size, a good trade-off can be found by using 10
S-Boxes and 38 rounds, resulting in a view size of 1140 bits.

Benchmarking Environment. All the computations were performed on a system having an
Intel Core i7-4790 with 3.6 GHz.

Results. We implemented the signature scheme using GMiMCerf with key size and block size of
≈ 256 bits to build the one-way function, considering only the low-data scenario. In Table 11.7 we
compare MiMC and GMiMCerf with different numbers of branches. We also include the view size
required per repetition of ZKB++ stored in the signature and the runtime of the encryption of a
single block. As we increase the number of branches, the expected signature sizes decrease.

As a result, even for very small fields with the smallest signatures but slower signing and
verification, GMiMCerf performs significantly better in terms of signature size and runtime than
MiMC. We also note that the implementation over F2n generally performs better than the comparable
parameterization in the prime field case. In the binary case we can either follow the same approach
as in the prime case and implement the circuit using F2n arithmetic where the permutation requires
two multiplications. When implementing the circuit using F2 arithmetic, we have to emulate F2n

operations in the circuit, but we end up with smaller view sizes and a more efficient implementation.
Compared to LowMC, choosing an instance over F23 allows us to beat the smallest signatures sizes
obtainable using LowMC with one S-Box by 306 bit in terms of view size.

11.6.4. Conclusion

One key take-away of this work is that, when it comes to building structures in symmetric cryptog-
raphy with low multiplicative complexity, balanced Feistel networks are not the best strategy. We

237

11. Feistel MiMC and GMiMC

Scheme (n, t,R) Sign Verify View Size

MiMC [AGR+16] (256, 1, 162) 333.97 ms 166.28 ms 83456 bits
(272, 1, 172) 92.45 ms 46.32 ms 94112 bits

GMiMCerf over Fp (3, 86, 261) 97.32 ms 72.06 ms 1566 bits
(4, 64, 196) 62.35 ms 45.16 ms 1568 bits
(16, 16, 62) 7.59 ms 5.13 ms 1984 bits
(32, 8, 55) 4.95 ms 3.05 ms 3520 bits
(64, 4, 81) 11.78 ms 6.85 ms 10368 bits

(136, 2, 163) 67.51 ms 35.21 ms 44336 bits

GMiMCerf over F2n (3, 86, 261) 16.06 ms 10.76 ms 783 bits
(17, 16, 63) 3 .73 ms 2 .30 ms 1071 bits
(33, 8, 56) 3.34 ms 2.29 ms 1848 bits
(65, 4, 82) 6.47 ms 4.02 ms 10660 bits

LowMC [ARS+15] (256, 10, 38) 3.74 ms 3.52 ms 1140 bits
(256, 1, 363) 9.55 ms 7.12 ms 1089 bits

Table 11.7.: Comparison of MiMC with GMiMCerf and LowMC when the block size is ≈ 256 bits
in the context of Fish. For LowMC, n corresponds to the block size, t is the number of S-Boxes, and
R denotes the number of rounds. Runtimes given for Sign and Verify are for the circuit computations
only.

provided a new and optimal (in some sense) variant of the GFN and yet we still cannot beat the
ERF variant.

This observation is surprising (and thus interesting): Unbalanced Feistel networks, which appeared
no later than the late 1980s, do not have a great track record in the academic literature and in
recent designs. As an illustration, consider that among all the lightweight block cipher designs listed
on the CryptoLux lightweight block cipher wiki25, seven are Type-II GFNs and ten are balanced
Feistel networks, whereas none is of the UFN or ERF type.

And yet exactly those types turn out to be the best in our setting. We can even make a parallel
with MiMC itself: Its structure is strongly related and building up on a design from the mid 1990s,
which in recent textbooks [KR11, Sect. 8.4] was even shown as an example of how not to design a
cipher. Despite this fact, it has turned out to be very good in many applications where multiplicative
complexity matters. It may well be that the same is true with our work: Cryptographers had lost
interest in the UBF or never considered it a reasonable option and yet it is the best in several of our
specific use cases.

25https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

238

https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

12
Hades Strategy and HadesMiMC

Another possible generalization of MiMC is HadesMiMC, constructed using the Hades strategy
[GLR+19]. Hades strategy is a high-level design approach for cryptographic permutations and keyed
permutations addressing needs of new applications that emphasize the role of multiplications in such
designs, with a focus on simple arguments for its security. It builds up on the Wide-Trail design
strategy for SP-Networks, which proved already very useful for a plethora of cipher and permutation
designs as it helps to argue security against important classes of cryptanalytic attacks such as
differential or linear attacks in a clean and simple way. Our approach “Hades” additionally allows
for such arguments against important classes of algebraic attacks that are of much more concern
when multiplications are to be minimized in a design.

In order to set up a strategy which is simultaneously elegant, simple and that provides security
arguments a larger number of classes of attacks, and at the same time results in the most competitive
instantiations to date, we use a freedom in the design space that was so far not exploited: moving
from an even to a highly uneven distribution of non-linearity.

For our concrete instantiation “HadesMiMC”, we borrow ideas from the pre-predecessor of
Rijndael/AES, namely SHARK [RDP+96], an S-Box based design with a single large MDS layer
covering the whole internal state. Main applications of HadesMiMC are PQ digital signature
scheme, and MPC evaluations. For MPC, compared to the currently fastest design MiMC, our
current analysis suggest a significant improvements in throughput and simultaneously a reduction of
preprocessing effort, albeit at the cost of a higher online latency. In the PQ-Signature use-case, we
are currently able to achieve the fastest signing times and lowest signatures sizes possible to date,
even outperforming LowMC.

12.1. Introduction and Motivations

Wide Trail Strategy. Many modern block ciphers and permutations are designed based on the
concept of an iterative block cipher/permutation, that is, a construction that consists of the repeated
composition of (simple) functions. One widespread implementation of such ciphers is the substitution-
permutation network (SPN). It takes a block of the plaintext and the key as inputs, and applies
several alternating “rounds” of non-linear substitution boxes (S-Boxes) and linear permutation boxes
(P-boxes) to produce the ciphertext block.

The wide trail strategy [DR01; DR02a] is an approach to design round transformations of block
ciphers that combine efficiency and resistance against differential and linear cryptanalysis, probably
the most common and efficient techniques in cryptanalysis. Instead of spending most of its resources
on large S-Boxes, the wide trail strategy aims at designing the round transformation(s) in order to
maximize the minimum number of active S-Boxes over multiple rounds. Thus, in ciphers designed
with the wide trail strategy, a relatively large amount of resources is spent in the linear step to
provide high multiple-round diffusion. Designing block ciphers and hash functions in a manner
that resemble the AES in many aspects has been very popular since Rijndael was adopted as the
Advanced Encryption Standard (AES) [DR02b], currently the de facto block cipher standard, known
for its elegant and simple design, high security, and efficiency.

239

12. Hades Strategy and HadesMiMC

Partial S-Box Layers. On the other hand, the wide trail strategy can clearly not guarantee
security against all attacks in the literature. As a concrete example, algebraic attacks that exploit
the low degree of the encryption or decryption function – like the interpolation attack [JK97] or
the higher-order one [Knu94] – are (almost) independent of the linear layer used in the round
transformation1, which is the crucial point of such a design strategy. In other words, especially in the
case of a low-degree S-Box, the wide trail strategy is not sufficient by itself, and it must be combined
with “something else” (e.g., increasing the number of rounds) in order to guarantee security against
all possible attacks in the literature.

Moreover, the “hidden” assumption of such a strategy is that each round contains a full S-Box
layer. Even if this is a well accepted practice (linear and non-linear building blocks have roughly
similar costs in hardware and software implementations), there are various applications/contexts
in which the cost of a non-linear operation is much higher than the cost of a linear operation. As
concrete examples, for masking and practical applications of secure multi-party computation (MPC),
fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) that use symmetric primitives,
the linear computations are often much cheaper than non-linear operations.

A possible way to achieve a lower implementation cost is by specializing a block cipher by minimizing
the number of non-linear operations. To achieve this goal, possible strategies are looking for low-degree
S-Boxes and/or exploiting SPN structures where not all the state goes through the S-Boxes in each
round. This second approach has been proposed for the first time by Gérard et al. [GGNS13] at
CHES 2013. Such partial non-linear SP networks – in which the non-linear operation is applied to
only a part of the state in every round – contains a wide range of possible concrete schemes that
were not considered so far, some of which have performance advantage on certain platforms. As
a concrete instantiation of their methodology, Gérard et al. designed Zorro [GGNS13], a 128-bit
lightweight AES-like cipher which reduces the application of the S-Box per round, from 16 to only 4.

A similar approach has also been considered by Albrecht et al. [ARS+15] in the recent design
of a family of block ciphers called LowMC proposed at Eurocrypt 2015. LowMC is a flexible block
cipher (with very small multiplicative size and depth) based on an SPN structure and designed
for MPC/FHE/ZK applications. Similar to Zorro, a partial non-linear layer is adapted in LowMC
design. Basically LowMC combines an incomplete S-Box layer with a strong linear layer to reduce
the multiplicative depth and size of the cipher.

How Risky are Partial SP-Networks? Due to their innovative designs, the wide trail strategy
and the tools that were developed in order to formally prove the security of block ciphers against
standard differential and linear cryptanalysis do not apply to Partial-SP-Networks such as Zorro
and LowMC. For this reason, authors replaced the formal proof by heuristic arguments.

For the case of Zorro, the simple bounds on the number of active S-Boxes in linear and differential
characteristics2 cannot be used due to the modified SubBytes operation. Even though authors come
up with a dedicated approach to show security of their design, such heuristic argument turned
out to be insufficient, as Wang et al. [GNPW13; WWGY14] found iterative differential and linear
characteristics that were missed by the heuristic and used them to break full Zorro. To fix this
problem, an automated characteristic search tool and dedicated key-recovery algorithms for SP
networks with partial non-linear layers have been presented at [BDD+15]. The generic techniques
for differential and linear cryptanalysis of SP networks with partial non-linear layers proposed in
there can be used both for cryptanalysis of such schemes and for proving their security with respect
to basic differential and linear cryptanalysis, succeeding where previous automated analysis tools
seem to fail. Beside obtaining practical attacks on Partial-SPN ciphers, authors concluded that even

1We remark that a linear/affine function does not increase/change the degree.
2We recall that 24-round Zorro, when compared to 10-round AES, has 40% less non-linear operations, but 140%

more linear ones.

240

12.1. Introduction and Motivations

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

S

S

(a) SPN

S

S

S

S

. . .

. . .

Identity

(b) P-SPN

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

. . .

. . .

S

S

S

S

S

S

Identity

(c) Hades

Figure 12.1.: SP-Networks and Generalizations (P-SPNs and Hades).3

if “the methodology of building PSP networks based on AES in a straightforward way is flawed, [...]
the basic PSP network design methodology can potentially be reused in future secure designs”.

Similar, authors of LowMC chose the number of rounds in order to guarantee that no differen-
tial/linear characteristic can cover the whole cipher with non-negligible probability. However, they do
not provide such strong security arguments against other attack vectors including algebraic attacks.
As a result, the security of earlier versions of LowMC against algebraic attacks was found to be
lower than expected [DLMW15; DEM15], and full key-recovery attacks on LowMC have been set
up. For example, the incomplete S-Box layer also facilitates the existence of linear relations with
probability 1, which allow to attack additional rounds. More recently, generalizations of impossible
differential attacks have been found for some LowMC instances [RST18].

The Idea in a Nutshell - The Hades Strategy

Summarizing the current situation: Wide-trail strategy is appealing due to its simplicity, but limited
to differential and linear attacks, and does not work with partial S-Box layers. Additionally, when
S-Boxes are chosen to have low degree, not most relevant attack vectors are others anyhow. Designs
of this type, like Zorro and LowMC, require a lot of ad-hoc analysis.

To address this issue we propose to start with a classical wide-trail design, i.e. with a full S-Box
layer (outer layer), and then add a part with full and/or partial S-Box layers in the middle. Even
without the middle part, the outer layer in itself is supposed to give arguments against differential
and linear attacks in exactly the same way the wide-trail strategy does. At the same time, arguments
against low-degree attacks can be obtained working on the middle layer. Since algebraic attacks
mainly exploit the small degree of the encryption/decryption functions, the main role of this middle
part is to achieve high algebraic degree, with perhaps only few (e.g. one) S-Boxes per round. On the
other hand, the cost of algebraic attacks can also depend – in general – on other factors besides the
degree of the function. Depending on the cost metric of the target application that one has in mind
(e.g. minimizing total number of non-linear operations), we show that the best solution is to choose
the optimal ratio between the number of rounds with full S-Box layer and with partial S-Box layer
in order to achieve both security and performance.

We refer to this high-level approach as the “Hades Strategy”4, and will be more concrete in the
following.

Related Work – Designs with Different Round Functions. Almost all designs for block
ciphers and permutations, not only those following the wide-trail design strategy, use round functions

3Acknowledgement. Figure 12.1 – made by Markus Schofnegger – has been copied from [GLR+19].
4Why “Hades Strategy”? Referring to Fig. 12.2, if one highlights the S-Boxes per round, the obtained picture

resembles a “bident”. In classical mythology, the bident is a weapon associated with Hades, the ruler of the
underworld. The name of our strategy comes from here.

241

12. Hades Strategy and HadesMiMC

that are very similar, differing often only in so-called round constants which break symmetries in order
to prevent attacks like slide attacks. Notable exceptions to this are the AES finalist MARS [IBM] and
PRINCE [BCG+12]. MARS has whitening rounds with a different structure than the inner rounds
with the idea to frustrate cryptanalytic attacks. A downside was perhaps that it also complicated
cryptanalysis. PRINCE rounds differ in that the later half of the rounds is essentially the inverse of
the first half of the rounds, and a special middle round is introduced. This allows to achieve a special
property, namely that a circuit describing PRINCE computes its own inverse (when keyed in a
particular way). Finally, we mention the cases of LowMC [ARS+15] and Rasta [DEG+18], for which
different (independent and random) linear layers are used in each round. Due to their particular
design strategies, this allows to maximize the amount of diffusion achieved by the linear layer.

In none of these cases, however, the amount on non-linearity, and hence their cryptographic
strength, differs over the rounds.

12.2. Description of the Hades Strategy and HadesMiMC

12.2.1. Hades Strategy

Block ciphers are typically designed by iterating an efficiently implementable round function many
times in the hope that the resulting composition behaves like a randomly drawn permutation. In
general, the same round function is iterated enough times to make sure that any symmetries and
structural properties that might exist in the round function vanish.

Instead of considering the same round function in order to construct the cipher (to be more precise,
the same non-linear layer for all rounds), we propose - for the first time in the literature - to consider
a variable number of S-Boxes per round, that is, to use different S-Box layers in the round functions.

Similar to any other SPN design, each round of a cipher based on Hades is composed of three
steps:

1. Add-Round Key - denoted by ARK(·);

2. SubWords operation - denoted by S-Box(·);

3. MixLayer - denoted by M(·).

A final round key addition is then performed, and the final MixLayer operation can be omitted
(we sometimes include it in this description for simplicity):

ARK → S-Box→M︸ ︷︷ ︸
1st round

→ ...→ ARK → S-Box→M︸ ︷︷ ︸
(R−1)-th round

→ ARK → S-Box︸ ︷︷ ︸
R-th round

→ ARK

The crucial property of HadesMiMC is that the number of S-Boxes per round is not the same for
every round :

• a certain number of rounds - denoted by RF - has a full S-Box layer, i.e., t S-Box functions;

• a certain number of rounds - denoted by RP - has a partial S-Box layer, i.e., 1 ≤ s < t S-Boxes
and (t− s) identity functions.

In general, we limit ourselves to consider the case s = 1, that is, RP rounds have a single S-Box
per round and t − 1 identity functions. However, we remark that this construction can be easily
generalized (e.g. like LowMC) allowing more than a single S-Box per round in the middle RP rounds.

In more details, assume RF = 2 ·Rf is an even number5. Then

5RF = 2 ·Rf is even in order to have a “symmetric” cipher. Note that some attacks – like the statistical ones – have
the same performance both in the encryption and in the decryption direction. Thus a “symmetric” cipher with
RF = 2 ·Rf guarantees the same security against these attacks both in the chosen-/known-plaintext scenario and
in the chosen-/known-ciphertext one.

242

12.2. Description of the Hades Strategy and HadesMiMC

ARK(·)

S S S S S S . . . S

M(·)
...

ARK(·)

S S S S S S . . . S

M(·)
...

ARK(·)

. . . S

M(·)
...

ARK(·)

S S S S S S . . . S

M(·)
...

ARK(·)

S S S S S S . . . S

M(·)

...

ARK(·)

Rstatf

RP

Rstatf

Rf

Rf

Rstatf

RP

Ralgf

Figure 12.2.: Construction of Hades (the final matrix multiplication can be omitted).6

• the first Rf rounds have a full S-Box layer,

• the middle RP rounds have a partial S-Box layer (i.e., 1 S-Box layer),

• the last Rf rounds have a full S-Box layer.

Figure 12.2 shows the strategy Hades. Note that the rounds with a partial S-Box layer are “masked”
by the rounds with a full S-Box layer, which means that an attacker should not (directly) take
advantage of the rounds with a partial S-Box layer.

Crucial Points of Hades Strategy. The crucial point of our design is that it contains both
rounds with full S-Box layers and rounds with partial S-Box layers. This allows to provide simpler
argumentation about the security against statistical attacks than the one proposed for P-SPN ciphers.

In more details, a certain number of rounds RstatF = 2 · Rstatf with full S-Box layer situated at
the beginning and the end guarantee security against statistical attacks. Indeed, even without the
middle part, they are sufficient in order to apply the “Wide-Trail” strategy, in a way that we are
going to show in the following. Security against all algebraic attacks is achieved working both with
rounds RF = RstatF + R′F ≥ RstatF with full S-Box layers and rounds RP ≥ 0 with partial S-Box
layers. Even if few (even one) S-Boxes per round are potentially sufficient to increase the degree of
the encryption/decryption function (which mainly influences the cost of an algebraic attack), other
factors can play a crucial role on the cost of such attacks (e.g. a Gröbner basis attack depends also
on the number of non-linear equations to solve).

6Acknowledgement. Figure 12.2 – made by Markus Schofnegger – has been copied from [GLR+19].

243

12. Hades Strategy and HadesMiMC

With this in mind, the idea is to construct “something in the middle” between an SPN and
a P-SPN cipher. Moreover, since we aim to have the same security w.r.t. chosen-plaintext and
chosen-ciphertext attacks, we consider a cipher which is “symmetric”: in other words, the same
number of rounds with full non-linear layers are applied at the beginning and at the end, where the
rounds with partial non-linear layers are in the middle and they are “masked” by the rounds with
full non-linear layers. As a result, depending on the cost metric that one aims to minimize (e.g. the
total number of non-linear operations) and on the size of the S-Box, in the following we provide the
best ratio between the number of rounds with full S-Box layers and with partial ones in order to
both achieve security and minimize the cost metric.

What about the choice of the linear and of the non-linear layer? Our strategy does not
pose any restriction/constriction on the choice of the linear layer and/or on the choice of the S-Box.
The idea is to consider a “traditional” SPN cipher based on the wide trail strategy, and then to
replace a certain number of rounds with full S-Box layer with the same number of rounds with partial
S-Box layer in order to minimize the number of non-linear operations, but without affecting the
security. The Hades strategy has a huge impact especially in the case of ciphers with low-degree
S-Box, since in this case a large number of rounds is required to guarantee security against algebraic
attacks.

12.2.2. The Block Cipher HadesMiMC

HadesMiMC is a block cipher constructed using the strategy just proposed, hence it is both an
SPN and a Partial-SPN cipher. Roughly speaking, HadesMiMC is obtained by applying the Hades
strategy to the cipher Shark [RDP+96], proposed by Rijmen et al. in 1996 and based on the wide
trail strategy.

HadesMiMC works with texts of t ≥ 2 words7 in Fp or F2n , where p is a prime of size 2n (in the
following, p ≈ 2n). For simplicity, we limit ourselves to describe HadesMiMC for the Ft2n case8, but
the same description applies also to the Fp case. In the following, let N := n · t ' log2 p · t.

As for Shark, the MixLayer of HadesMiMC is simply defined by a multiplication with a fixed
t× t near-MDS or MDS matrix (more generally, a matrix with an high branch number). The number
of rounds R = 2 ·Rf +RP depends on the choice of the S-Box and of the parameters n and t. For
the applications that we have in mind, we focus only on the cubic S-Box, S-Box(x) = x3, where
remember that S-Box(x) = x3 is a permutation in GF (2n) iff n is odd and that it is a permutation
in GF (p) iff p 6= 1 mod 3 (see “Hermite’s criterion” for more details).

More details about the near-MDS/MDS matrix and the key-schedule are given in the following.

Why SHARK among Many Others? Since in our practical applications the cost of linear
operations is much less (roughly speaking, “negligible”) than the cost of non-linear ones, we decided
to consider the most “efficient” linear layer in order to construct HadesMiMC. This corresponds to
a linear layer defined as a multiplication with an MDS matrix that involves the entire state, which is
exactly the case of SHARK.

Since our design strategy can be applied to any SPN design, a possible future problem is to apply
Hades to e.g. AES, that is, to check if a certain number of rounds of AES can be replaced with
rounds that contain only a partial non-linear layer (e.g. one or four S-Boxes) without decreasing its
security.

Choice of the S-Box. Before going on, we mention that we also considered possible variants of
HadesMiMC instantiated by S-Boxes defined by a different power exponent. Since our main goal

7The case t = 1 corresponds to MiMC [AGR+16].
8We assume n ≥ 3 since any 2-bit S-Box is linear/affine.

244

12.2. Description of the Hades Strategy and HadesMiMC

is to minimize the total number of non-linear operations and due to the same arguments given for
MiMC in 10.3.2, it turns out that the best solution is given by the cubic S-Box. Roughly speaking,
the main difference – when changing the S-Box – is about the security against algebraic attacks.
An S-Box with a higher degree than the cubic one allows to reach the maximum degree much
faster, hence a smaller number of rounds is potentially sufficient to guarantee security. At the same
time, an S-Box with a higher degree requires more linear and non-linear operations in order to be
computed. As a result, even if the number of rounds can be potentially decreased9, the total number
of (non-linear) operations basically does not change.

About the MixLayer. One possibility is to implement the MixLayer using a t× t MDS matrix.
Such a matrix with elements in GF (2n) (or GF (p) where p ≈ 2n) exists if the condition (see [MS78]
for details)

log2(2t+ 1) ≤ n

(or equivalently t · log2(2t+ 1) ≤ N) is satisfied. This implies a condition on the parameter t and n,
that is10

n ≥ log2

(
2N

log2(2N + 1)
+ 1

)
.

Given n and t, a possible way to construct an MDS matrix is using a Cauchy matrix. Let xi, yi ∈ F2n

for i = 1, ..., t s.t.

∀i 6= j : xi 6= xj and yi 6= yj and xi ⊕ yj 6= 0

To fulfill these conditions, one can simply consider xi s.t. the t− log2(t) most significant bits are
zero. Then, choosing r ∈ F2n s.t. the t− log2(t) most significant bits are non zero, let yi = xi ⊕ r.
Let A be the Cauchy matrix defined by

Ai,j =
1

xi ⊕ yj
.

It is possible to prove that A is MDS.

Other Possible Choices. For completeness, we mention that the MixLayer can be implemented by
e.g. near-MDS, or more generally by any invertible matrix.

Definition 25. A t× t matrix M is called a near-MDS matrix if

Bd(M) = Bd(M−1) = Bl(M) = Bl(M−1) = t

where Bd(·) and Bl(·) denote respectively the differential and the linear branch number.

Lemma 10. A t× t matrix M is near-MDS if and only if for any 1 ≤ s ≤ t− 1 each s× (s+ 1)
and (s+ 1)× s submatrix of M has at least one s× s non-singular submatrix.

By definition, the branch number of a near-MDS is smaller than the corresponding one of a MDS
matrix. As a result, we expect than a bigger number of rounds are required to guarantee security
against some attacks. On the other hands, a near-MDS can be much cheaper to implement than a
MDS matrix, which could be crucial for some applications. Several lightweight linear diffusion layers
from t× t near-MDS Matrices for t ≤ 9 are proposed in [LW17].

9For completeness, we mention that this is not always the case. As concrete example, we refer to [GLR+19, App. E],
where we study the security of HadesMiMC instantiated by the inverse S-Box.

10To get this result, work with sequential approximations. Let t be t = t0 + t1 + t2 + ..., where ti � ti+1. Firstly,
t0 = N . Secondly, let t = t0 + t1 = N · (1− ε), where (1− ε) log2(2N + 1) ≈ 1. It follows that t ' N

log2(2N+1)
, and

so on.

245

12. Hades Strategy and HadesMiMC

Key Schedule. Let k be the secret key of size N , that is, k = [k0‖k1‖...‖kt−1], where ‖ denotes
concatenation, and where the size of kj is |kj | = n for each 0 ≤ j < t. We define the i-th round key
k(i) for 0 ≤ i ≤ R (where R is the number of rounds) as follows. For the first round i = 0, the subkey
is simply given by the whitening key, that is, k(0) = k. For the next rounds, the subkeys are defined
by a linear key schedule as

∀i = 1, ..., R : k(i) = M̂ · k(i−1) +RC(i),

where RC(i) 6= 0 is a random constant and M̂ 6= M . W.r.t. M (the matrix used to define the
MixLayer of each round), we require that

M̂ i = M̂ × M̂ × · · · × M̂ × M̂︸ ︷︷ ︸
i times

has no zero coefficient11 for 1 ≤ i ≤ R, where R denotes the number of rounds.
This condition implies that each word of each subkey k(i) (linearly) depends on all words of k. As

a result, even if the attacker guesses a certain number of words of a subkey k(i), they do not have
information about other subkeys (more precisely, they cannot deduce any words of other subkeys).

Different Key Size. For completeness, we mention that it is also possible to consider keys of size
different from N . E.g., for a key k′ of size n, we define the subkeys as

∀i = 0, ..., R : k(i) = [k′‖k′‖ · · · ‖k′]⊕RC(i),

for a random constant RC(i). Even if a lower number of rounds for the case |k′| = n is potentially
possible, we impose it to be equal to the number of rounds for the case |k| = N = n · t.

An Efficient Implementation of HadesMiMC

Like for LowMC, the fact that the non-linear layer is partial in RP rounds can be exploited in
order to reduce the amount of operations in each round RP . Referring to [KPP+17, Sect. 3] and to
[DKP+19], we recall here an equivalent representation of an SPN with partial non-linear layer for
an efficient implementation.

Round Constants. In the description of an SPN, it is possible to swap the order of the linear layer
and the round key addition as both operations are linear. The round key then needs to be exchanged
with an equivalent one. For round key k(i), the equivalent one can be written as k̂(i) = MC−1(k(i)),
where MC is the linear layer in the i-th round. If one works with partial non-linear layers, it is
possible to use this property to move parts of the original round keys from the last round all the way
through the cipher to the whitening key. To arrive at such a reduced variant, we work as following:

• First, we find an equivalent key that is applied before the affine layer by moving the round key
through the affine layer.

• Then we split the round key in two parts, one that applies to the S-Box part of the non-linear
layer and one that applies to the identity part of the non-linear layer. The key part that only
applies to the non-linear layer part can now move further up where it is merged with the
previous round key.

• Working in this way for all round keys, we finally end up with an equivalent representation in
which round keys are only added to the output of the S-Boxes apart from one whitening key
which is applied to the entire state after the first Rf rounds.

11If no matrix satisfies this condition, then the idea is to choose a matrix that minimizes the total number of zero
coefficients.

246

12.3. Security Analysis

Note that the round keys of this equivalent representation can still be calculated as linear functions
of the master key.

This simplified representation can in certain cases also reduce the implementation cost of an
SPN block cipher with a partial non-linear layer. For instance, the standard representation of
HadesMiMC requires key matrices of total size t · n · (R+ 1), where R = RP +RF is the number of
rounds. The optimized representation only requires t · n · (RF + 1) + n ·RP , thus potentially greatly
reducing the amount of needed memory and calculation to produce the round keys.

Linear Layer. A similar trick can be used also for the matrix multiplication.
Focusing on the rounds with a single S-Box, let M be the t× t MDS matrix of the linear layer:

M =



M0,0 M0,1 M0,2 · · · M0,t−1 M0,t

M1,0

M2,0
... M̂

Mt−1,0

Mt,0


≡
[
M0,0 v

w M̂

]

where M̂ is a (t− 1)× (t− 1) MDS matrix (note that since M is MDS, every submatrix of M is
also MDS), v is a 1× (t− 1) matrix and w is a (t− 1)× 1 vector.

By simple computation, the following equivalence holds:

M =

[
1 0

0 M̂

]
︸ ︷︷ ︸

M ′

×
[
M0,0 v

ŵ I

]
︸ ︷︷ ︸

M ′′

, (12.1)

where

ŵ = M̂−1 × w

and I is the (t−1)× (t−1) identity matrix. Note that both M ′ and M
′′

are two invertible matrices12.
As for the round constants discussed previously, it is possible to use the property (12.1) in order

to swap the S-Box layer (formed by a single S-Box and t − 1 identity functions) and the matrix
multiplication with the matrix M ′. As a result, each linear part in the RP rounds is defined only by a
multiplication with a matrix of the form M

′′
, which is a sparse matrix, since (t−1)2−(t−1) = t2−3t+2

coefficients of M
′′

are equal to zero (moreover, t− 1 coefficients of M
′′

are equal to one). It follows
that this optimized representation – potentially – greatly reduces the amount of needed memory
and calculation to compute the linear layer multiplication.

Remark. Since we focus only on applications like PQ-Signature schemes and MPC, we do not
define an hash function that exploits the design strategy proposed here. As future work, it could be
interesting to study if a sponge construction instantiated with a permutation based on the Hades
strategy (e.g. HadesMiMC with a fixed key) can be competitive for applications like SNARKs.

12.3. Security Analysis

As for any new design, it is paramount to present a concrete security analysis. In the following, we
provide an in-depth analysis of the security of the HadesMiMC family of block ciphers. Due to a
lack of any method to ensure that an efficient cipher design is secure against all possible attacks, the

12First of all, det(M ′) = det(M̂) 6= 0 since M̂ is an MDS matrix, and so it is invertible. Secondly, det(M) =

det(M ′) · det(M
′′

). Since det(M) 6= 0 and det(M ′) 6= 0, it follows that det(M
′′

) 6= 0.

247

12. Hades Strategy and HadesMiMC

best option of determining a cipher’s security is to ensure that the cipher is secure against all known
attacks. Following this design strategy from the literature for new designs, we exploited this strategy
also for our proposals. The number of rounds of HadesMiMC is then chosen in order to provide
security against all known attack vectors.

We remark that security against statistical attacks is obtained exploiting the “Wide-Trail Strategy”,
that is, a certain number of rounds RstatF = 2 ·Rstatf with full S-Box layer is chosen in order to prevent

statistical attacks. Then, more rounds both with full S-Box layer – that is, RF = RstatF +R′ ≥ RstatF

(at least equal to the ones necessary for the “Wide-Trail Strategy” to work) – and/or with partial
S-Box layer – that is, RP ≥ 0 – are added (if necessary) in order to guarantee security against all
other possible attacks.

As already mentioned, rounds with partial S-Box layers are in general sufficient to increase the
degree of the encryption/decryption function, which is the main factor that influences the cost of
an algebraic attack. Thus, it would be natural to use rounds with partial S-Box layers in order to
guarantee security against algebraic attacks. On the other hand, in general other factors play a
crucial role in the cost of an algebraic attack. Thus, depending on the cost metric that we want to
minimize, it makes sense to choose the best ratio between rounds with full S-Box layer and rounds
with partial S-Box layer in order to achieve both security and to minimize the cost metric.

Important Remark. Due to our target applications, we limit ourselves to provide the number of
rounds necessary to guarantee security *only* in the following two scenarios:

• HadesMiMC instantiated over Fp (used for MPC application);

• HadesMiMC instantiated over F2n in the low-data scenario (used for applications like the
PQ-signature scheme).

We stress that this choice is motivated by the fact that we focus only on the scenarios that are
useful for our applications. In Table 12.1, we present the minimum number of rounds with full S-Box
layers RF or – if possible – with partial S-Box layers RP that are required to provide security of
HadesMiMC instantiated with S-Box(x) = x3 (and MDS matrix) in Fp against the corresponding
attacks - no restriction on data complexity.

12.3.1. Main Points of Our Cryptanalysis Results

Here we would like to highlight the main points of our cryptanalysis results.

Number of Rounds. In the following, given the number of rounds of a distinguisher which is
independent of the secret key, we arbitrarily add (at least) 2 rounds to prevent key-guessing attacks.
This choice is motivated by the fact that – due to the key schedule and due to the MixLayer – it is
not possible to skip more than a single round without guessing the entire key.

Statistical Attacks. As we show, 6 or 8 rounds with full S-Box layers are sufficient to protect
HadesMiMC against all statistical attacks in the literature (that is, differential, linear, trun-
cated/impossible differential, boomerang, ...).

Algebraic Attacks. Algebraic attacks exploit mainly the low degree of the encryption/decryption
function in order to break the cipher. However, as already mentioned, other factors can influence the
cost of such attacks. In particular:

Interpolation Attack. The goal of an interpolation attack is to construct the polynomial that
describes the function: if the number of monomials is too big, then such a polynomial can not be

248

12.3. Security Analysis

Table 12.1.: Minimum number of rounds with full S-Box layers RF = 2 ·Rf and/or with partial
S-Box layers RP necessary to provide security of HadesMiMC instantiated by respectively S-
Box(x) = x3 (and MDS matrix) in Fp against the corresponding attacks - no restriction on data
complexity. We emphasize that the number of rounds necessary to prevent the interpolation attack
are also sufficient to guarantee security against the higher-order differential attack (working in Fp).

Attack Condition for Security

Differential/Linear RF ≥ RstatF ≡

{
6 if t+ 2 < 2 · blog2(p)c
8 if t+ 2 ≥ 2 · blog2(p)c

(MitM) Truncated Diff. RF ≥ 6
Impossible Diff. RF ≥ 4

Multiple-of-8/Mixture Diff. RF ≥ 4
Boomerang Attack RF ≥ 6

Integral RF ≥ 4

Interpolation Attack RF +RP ≥ Rinter(N, t) ≡ 5 +
⌈
log3(p)

⌉
+
⌈
log3(t)

⌉
GCD Attack RP +RF ≥ 4 +

⌈
log3(p)

⌉
−
⌊
2 · log3(log2(p))

⌋

Gröbner Basis



RP +RF ≥ R1st−Grob(N, t) ≡ 2 +

⌈
log3(2) ·

[
log2(p)

2 + log2(t)

]⌉
RP + t×RF ≥ R2nd−Grob(N, t) ≡

⌈
N

2·log2((2p−1)/3)

⌉
+

⌈
N

2·log2(27/4)

⌉
RF ≥ R3rd−Grob(N, t,RP) ≡ 2 +

⌈
log3(2) ·

[
N

2t+RP
+ 2 · log2

(
1 + RP

2t

)]⌉

constructed faster than via a brute force attack. A (lower/upper) bound of the number of different
monomials can be estimated given the degree of the function. We show that – when the polynomial
is dense – the attack complexity is approximately O(dt), whereas d is the degree of the polynomial
after r rounds. Since d = 3r for the cubic case, log3(p) + log3(t) rounds with partial S-Box layers are
necessary to guarantee security, where log3(t) more rounds guarantee that the polynomial is dense.
The cost of the attack does not change when working with rounds with full S-Box layers.

Finally, note that the degree of a function can also depend on its “representation”. To give a con-
crete example, the function x−1 can be written as a function of degree 2n − 2 (namely, x−1 ≡ x2n−2)
or using the “fraction representation” 1/x as introduced in [JK97], where both the numerator and
the denominator are functions of degree at most equal to 1 – see also [GLR+19, App. E].

Gröbner Basis Attack. In a Gröbner basis attack, one tries to solve a system of non-linear equations
that describe the cipher. The cost of such an attack depends obviously on the degree of the equations,
but also on the number of equations and on the number of variables. We show that – when working
with rounds with full S-Box layers – the attack complexity is approximately O((d/t)t). If a partial
S-Box layer is used in order to guarantee security against this attack, it could become more efficient
to consider degree-3 equations for single S-Boxes. In this case, a higher number of rounds can be
necessary in order to guarantee security against this attack.

To summarize, a round with a partial S-Box layer can be described by just 1 non-linear equation
of degree d and t− 1 linear equations, while a round with a full S-Box layer can be described by t
non-linear equations of degree d. If the cost of the attack depends on other variables than just the
degree (as in the case of a Gröbner basis attack), this fact can influence its final cost.

Higher-Order Diff. The higher-order differential attack exploits the property that given a function
f(·) of algebraic degree δ, then

⊕
x∈V⊕φ f(x) = 0 if the dimension of the subspace V satisfies

dim(V) ≥ δ + 1 (where the algebraic degree δ of a function f(x) = xd is given by δ = hw(d) where
hw(·) is the hamming weight). If the algebraic degree is sufficiently high, then the attack does not
work. As we are going to show, in the case in which HadesMiMC is instantiated over Fp, security
against interpolation attack implies security against this attack.

249

12. Hades Strategy and HadesMiMC

Other Attacks. Related-Key Attacks. The related-key attack model [Bih93] is a class of cryptana-
lytic attacks in which the attacker knows or chooses a relation between several keys and is given
access to encryption/decryption functions with all these keys. We explicitly state that we do not
make claims in the related-key model as we do not consider it to be relevant for the intended use
case.

HadesMiMC-Permutation: Security. Since we do not require the indistinguishability of the
permutation obtained by HadesMiMC with a fixed key from a “randomly drawn” permutation13 in
the practical applications considered in the following, we explicitly state that we do not make claims
about the indistinguishability of the HadesMiMC-Permutation.

12.3.2. Security Analysis - Statistical Attacks

Here we consider security against statistical attacks. Since all statistical attacks that we are going to
analyze work in the same way both for the case in which HadesMiMC is instantiated over Fp or
over F2n , we do not consider these two cases separately.

Differential Cryptanalysis

Differential cryptanalysis [BS90; BS93] and its variations are the most widely used techniques to
analyze symmetric-key primitives. The differential probability of any function over the finite field
F2n is defined as

Prob[α→ β] := |{x : f(x)⊕ f(x⊕ α) = β}|/(2n).

Since the cubic function f(x) = x3 is an almost perfect non-linear permutation (APN) [NK92], it
has an optimal differential probability over a prime field or F2n (where n is odd). In other words, for
this function the probability is bounded above by 2/2n or 2/|Fp|.

As largely done in the literature, we claim that HadesMiMC is secure against differential
cryptanalysis if each characteristic has probability at most 2−N . In order to compute the minimum
number of rounds to guarantee this, we work only with the rounds with full S-Box layers. In other
words, we limit ourselves to work with a “weaker” version of the cipher defined as

RRf ◦ L ◦RRf (·), (12.2)

where

• L is an invertible linear layer (which is the “weakest” possible assumption),

• R(·) = M ◦ S-Box ◦ARK(·) where S-Box(·) is a full S-Box layer (remember that M is an MDS
matrix).

We are going to show that this “weaker” cipher is secure against differential cryptanalysis for

RstatF =

{
6 if t+ 2 < 2 ·

⌈
log2(p)

⌉
8 if t+ 2 ≥ 2 ·

⌈
log2(p)

⌉ (12.3)

As a result, it follows that also HadesMiMC (instantiated with RF rounds with full S-Box layers) is
secure against such an attack. Indeed, if the linear layer L (which we only assume to be invertible) is
replaced by RP rounds of HadesMiMC, its security cannot decrease. The same strategy is exploited
in the following in order to prove security against all attacks in this subsection.

13This basically corresponds to the known-key [KR07] or chosen-key models, where the attacker can have access or
even choose the key(s) used, and where the goal is to find some (plaintext, ciphertext) pairs having a certain
property with a complexity lower than what is expected for randomly chosen permutations.

250

12.3. Security Analysis

In order to prove the result just given, we need a lower bound on the (minimum) number of active
S-Boxes. Observe that the minimum number of “active” S-Boxes of a cipher of the form

Rs ◦ L ◦Rr(·) ≡ SB ◦M ◦ SB︸ ︷︷ ︸
s−1 times

◦ L′︸︷︷︸
≡L◦M(·)

◦SB ◦M ◦ SB︸ ︷︷ ︸
r−1 times

(·),

where s, r ≥ 1, R(·) is a round with a full S-Box layer and where L′ is an invertible linear layer, is
at least14

number active S-Boxes ≥
(⌊
s/2
⌋
+
⌊
r/2
⌋)
·(t+ 1)︸ ︷︷ ︸

due to final/initial rounds

+
(
s mod 2

)
+
(
r mod 2

)
.

We emphasize that the (middle) linear L′(·) ≡ L ◦M(·) plays no role in the computation of the
previous number (remember that it has branch number equal to 2). Since at least 2 · (t + 1) + 1
S-Boxes are active in the 5 middle rounds of Rr ◦ L ◦R5−r(·) for 1 ≤ r ≤ 4, and since the maximum
differential probability of the cubic S-Box is DPmax = 2−n+1, each characteristic has probability at
most

(2−n+1)2·(t+1)+1 = 2−N · 2−N−3n+2t+3 < 2−N ,

since [N + 3n = n · (t+ 3)] > [2t+ 3 = 2 · (t+ 3/2)], where t+ 3 > t+ 3/2 and n ≥ 3. Finally, 2
more rounds guarantee that no differential attack can be set up by key guessing. Indeed, note that
(1st) given a partial round key, one has no information about the other round keys – due to the key
schedule – and (2nd) 1 round is sufficient to provide full diffusion.

Similarly, in the case in which t + 2 < 2n, it is sufficient to consider the 3 middle rounds to
guarantee security against differential cryptanalysis. Indeed, each characteristic has probability
(2−n+1)t+2 = 2−N · 2−2n+t+2 < 2−N , since at least t+ 2 S-Boxes are active. Again, 2 more rounds
guarantee that no differential attack can be set up by key guessing.

Linear Cryptanalysis

Similar to differential attacks, linear attacks [Mat93] pose no threat to the HadesMiMC family of
block ciphers instantiated with the same number of rounds previously defined for classical differential
cryptanalysis. This follows from the fact that the cubic function is almost bent (AB), which means
that its maximum square correlation is limited to 2−n+1 (see [Mat93] for details). As a result, it
offers the best possible resistance against linear cryptanalysis much like an APN function provides
optimal resistance against differential cryptanalysis.

For completeness, we remember a function f(·) is AB and/or APN if and only if its inverse f−1(·)
is AB and/or APN [CCZ98]. As a result, both the encryption and the decryption processes are
secure against linear and differential cryptanalysis15.

Truncated Differential

A variant of classical differential cryptanalysis is the truncated differential one [Knu94], in which the
attacker can predict only part of the difference between pairs of texts.

We consider the “weaker” cipher described in (12.2) again. Focusing only on active/passive bytes
(and not on the actual differences), there exist several differentials with probability 1 for a maximum
of 1 round of HadesMiMC, e.g.

[α, 0, ..., 0]T
R(·)−−→M × [β, 0, ..., 0]T

14If s = 2 ·s′ is even, then the minimum number of active S-Boxes over Rs(·) rounds with full S-Box layer is bs/2c·(t+1).
Instead, if s = 2 · s′ + 1 is odd, then the minimum number of active S-Boxes over Rs(·) rounds with full S-Box layer
is bs/2c · (t+ 1) + 1.

15Remember that if a matrix M is MDS, then also M−1 is MDS.

251

12. Hades Strategy and HadesMiMC

where α, β denote non-zero differences. Due to the next S-Box layer, the linear relations given
by M × (β, 0, ..., 0)T are destroyed in the next round. As a result, no probability-one truncated
differential covers more than a single round.

For comparison, in the AES case it is possible to set up a 3-round truncated differential trails
(which are independent of the S-Box) even if 2-round AES already provides full diffusion. The reason
of this is that the AES mixing layer works only on part of the state, while in our case it works on
the entire state (that is, 2 rounds of AES are necessary to provide full diffusion, while 1 round of
HadesMiMC is sufficient)

To summarize, even we do not exclude the possibility to set up longer truncated differential trails
(which depend or not on the details of S-Box), it seems hard to set up a truncated differential which
is independent of the secret key for more than 2 rounds. As a result and due to the key schedule, we
conjecture that 4 rounds with full S-Box layer makes HadesMiMC secure against this attack.

Differential Meet-in-the-Middle Attack

A possible way to extend (truncated) differential attacks over more rounds is using the Meet-in-the-
Middle (MitM) technique16. The main idea is to split the cipher into two independent parts and use
a time-memory trade-off for a more efficient attack. In more details, assume to split the cipher E
into two parts E(·) = E2 ◦E1(·). Roughly speaking, given a plaintext-ciphertext pair (p, c) obtained
under the secret key K, the attacker partially guesses the secret key and computes

p
E1(·)−−−→ −→v ?

=←−v E2(·)←−−− c.

If there is no match in the middle, it turns out that the guessed key is wrong.

Due to the truncated differential analysis just proposed and the fact that 1-round HadesMiMC
provides full diffusion, we argue that 6 rounds of HadesMiMC with full S-Box layers are sufficient to
guarantee security against this attack. For comparison, note that the best MitM attack on AES-128
covers 7 rounds [DF13], but 2 rounds of AES are necessary to guarantee full diffusion (instead of 1).

Impossible Differential

Impossible differential cryptanalysis was introduced by Biham et al. [BBS99] and Knudsen [Knu98].
This cryptanalytic technique exploits differentials occurring with probability 0.

In the following, we focus only on impossible differentials which are independent of the S-Box
details, i.e., we do not consider the actual differences but only active/passive words. To find them, we
use the possible transitions of the linear layer combined with the fact that the S-Box is a bijection.
We found that the longest impossible differential (in this class) only spans 2 rounds, e.g.,

α
0
...
0

 R(·)−−−−→
prob. 1


M0,0 · β
M1,0 · β
...

Mt−1,0 · β

 6=

γ
0
...
0

 R−1(·)←−−−−
prob. 1


M0,0 · δ
M1,0 · δ
...

Mt−1,0 · δ


for α, β, γ, δ 6= 0 (note that no coefficient of M is equal to zero since M is an MDS matrix). As
a result and due to the key schedule, it turns out that 6 rounds with full S-Box layers makes
HadesMiMC secure against this attack.

Note that it is possible to compare this result with a similar one on AES, where the best known
impossible differential is also in this class (of impossible differentials) and spans four rounds [BK01].

16We refer to Sect. 12.3.3 for a discussion about the security against “algebraic” Meet-in-the-Middle Attacks - here we
focus on differential MitM attacks.

252

12.3. Security Analysis

Boomerang Attack

In boomerang attacks [Wag99], good partial differential characteristics that cover only part of
the cipher can be combined to attack ciphers that might be immune to standard differential
cryptanalysis. In these attacks, two differential characteristics are combined, one that covers the first
part of the cipher and another that covers the second part. If both have about the same probability,
the complexity corresponds roughly to the inverse of the product of the square of each of their
probabilities [Wag99].

To calculate the number of rounds sufficient to ensure that no good boomerang exists, we determine
the number of rounds after which we cannot separate the cipher into two parts and find a differential
for each such that the product of their probabilities is less than 2−N/2. Exploiting the analysis
proposed before, it turns out that 6 rounds with full S-Boxes are sufficient for this goal.

Multiple-of-n and Mixed Differential Cryptanalysis

The “Multiple-of-8” distinguisher [GRR17] was proposed at Eurocrypt 2017 by Grassi et al. as the
first 5-round secret-key distinguisher for AES that exploits a property which is independent of the
secret key and of the details of the S-Box. It is based on a new structural property for up to 5
rounds of AES: by appropriate choices of a number of input pairs it is possible to make sure that
the number of times that the difference of the resulting output pairs lie in a particular subspace is
always a multiple of 8. The input pairs of texts that satisfy a certain output difference are related by
linear/differential relations. Such relations are exploited by a variant of such a distinguisher, called
the “mixture differential” distinguisher [Gra18b] proposed at FSE/ToSC 2019.

Regarding HadesMiMC, it is possible to set up such distinguishers on 2 rounds only. In particular,
consider a set of texts with 2 ≤ s ≤ t active words (and t − s constants words). The number of
pairs of texts that satisfy an (arbitrary) output truncated differential is always a multiple of 2s−1.
Moreover, the relations of the input pairs of texts exploited by mixture differential cryptanalysis are
known.

The proofs of these two properties are analogous to the ones proposed in [GRR17; Gra18b] and
recently in [BCC19]. E.g., consider two texts T 1 and T 2 of the form

T 1 = c′ ⊕
[
x0 x1 0 ... 0

]T
, T 2 = c′ ⊕

[
y0 y1 0 ... 0

]T
for some constant c′ and where xi 6= yi for i = 0, 1. After one round, the difference in each word is of
the form

M0 · [S-Box(x0 ⊕ c0)⊕ S-Box(x1 ⊕ c1)]⊕M1 · [S-Box(y0 ⊕ c0)⊕ S-Box(y1 ⊕ c1)],

where M0,M1 depend on the MixLayer and c0, c1 depend on the secret key. By simple observation,
the same output difference is given by the pair of texts

T̂ 1 = c′ ⊕
[
y0 x1 0 ... 0

]T
, T̂ 2 = c′ ⊕

[
x0 y1 0 ... 0

]T
.

Combining this result with a 1-round truncated differential with prob. 1, it is possible to set
up a multiple-of-n distinguisher (where n = 2s−1) and a mixture differential one on 2 rounds of
HadesMiMC. As a result and due to the key schedule, it turns out that 6 rounds with full S-Box
layers make HadesMiMC secure against these attacks.

Biclique Cryptanalysis

Biclique cryptanalysis [BKR11] can be viewed as an improvement of classical MitM attacks. It
improves the complexity of exhaustive search by computing only a part of the encryption algorithm.
The improved factor – often evaluated by the ratio of the number of S-Boxes involved in the partial

253

12. Hades Strategy and HadesMiMC

computation to all S-Boxes in the cipher – can be relatively big when the number of rounds in
the cipher is (very) small. Since we do not think that improving the exhaustive search by a small
factor will turn into a serious vulnerability in future, HadesMiMC is not designed to resist biclique
cryptanalysis with small improvement.

Integral/Square Attack

Integral cryptanalysis is a technique first applied on SQUARE [DKR97] and is particularly efficient
against block ciphers based on substitution-permutation networks, like AES or HadesMiMC.

The idea is to study the propagation of sums of values. For the case of HadesMiMC, it is possible
to set up an integral distinguisher over two rounds, e.g.

A
C
...
C

 S-Box(·)−−−−−→


A
C
...
C

 M(·)−−−→


A
A
...
A

 S-Box(·)−−−−−→


A
A
...
A

 M(·)−−−→


B
B
...
B


where A denotes an active word, C a constant one and B a balanced one17. As a result and due
to the key schedule, it turns out that 6 rounds with full S-Box layers make HadesMiMC secure
against this attack.

Invariant Subspace Attack

The invariant subspace attack [LAAZ11] makes use of affine subspaces that are invariant under the
round function. As the round key addition translates this invariant subspace [BCLR17], ciphers
exhibit weak keys when all round keys are such that the affine subspace stays invariant including
the key addition. Therefore, those attacks are mainly an issue for block ciphers that use identical
round keys. In our case, the non-trivial key schedule already provides a good protection against such
attacks for a larger number of rounds.

12.3.3. Security Analysis - Algebraic Attacks

Interpolation Attack

One of the most powerful attacks against HadesMiMC is the interpolation attack, introduced by
Jakobsen and Knudsen [JK97] in 1997.

The strategy of the attack is to construct a polynomial corresponding to the encryption function
without knowledge of the secret key. Let Ek : F2N → F2N be an encryption function. For a randomly
fixed key k, the interpolation polynomial P (x) representing Ek(x) can be constructed18 using e.g. the
Vandermonde matrix - cost approximately of O(t2) - or the Lagrange’s theorem - cost approximately
of O(t · log t), where x is the indeterminate corresponding to the plaintext. If an adversary can
construct such an interpolation polynomial without using the full code-book, then she can potentially
used it to set up a forgery attack. This can be exploited both as a secret-key distinguisher and in a
scenario in which there is no key and/or secret material (e.g., in the hash scenario).

This method can also be extended to a key-recovery attack. The attack proceeds by simply guessing
the key of the final round, decrypting the ciphertexts and constructing the polynomial for r − 1
rounds19. With one extra (plaintext, ciphertext) pair, the attacker checks whether the polynomial
is correct. The data cost of the attack is well approximated by the number of texts necessary to
construct the interpolation polynomial.

17For completeness, we recall that given a set of texts {xi}i∈I , the word xj is active if xji 6= xjl for each i 6= l, constant
if xji = xjl for each i, l, and balanced if

⊕
i x

j
i = 0.

18We refer to Sect. 11.3.1 for more details about these two strategies.
19The “hidden” assumption is that the cost to construct such a polynomial is smaller than the cost of an encryption. If

this assumption does not hold, then the cost of the attack is bigger than the cost of a brute-force attack.

254

12.3. Security Analysis

Case: S-Box(x) = x3. Considering HadesMiMC, by simple computation and since the S-Box is
the cubic function, the degree of each word after r rounds is 3r. However, since20 all mixing terms of
(total) degree 3d appear at round 3d+1, we assume in the following that the degree of each word
after r rounds is 3r−1. In particular, since in each round at least one S-Box is applied and since the
affine layer does not change the algebraic degree, the algebraic degree of one round is three as well.
In other words, one S-Box per round (together with a “good” affine layer) is sufficient to increase
the degree of each word. For this reason, in the following we consider a weaker cipher in which each
round contains only a single S-Box. If such a cipher is secure against the interpolation attack, then
our design is also secure21 (more S-Boxes per round do not decrease the security).

Assuming the interpolation polynomial is not sparse, a (rough) estimation of the number of
monomials of the interpolation polynomial (and so of the complexity of the attack) is given by

(3r−1 + 1)t ≥ 3(r−1)·t,

since after r rounds there are t words each of degree at least 3r−1. As a result, by requiring that the
number of monomials is equal to the full codebook 3(r−1)·t ' pt (that is 3r−1 ' p), the number of
rounds must be at least r ' 1 + log3(p).

Actually, the previous rough estimation of the number of rounds does not guarantee that the
interpolation polynomial is not sparse. As showed in details22 in [GLR+19, App. D], since the cipher
works over a finite field with characteristic p and due to the specific algebraic structure of the cubic
function, this problem can be avoid by adding dlog3(t)e more rounds.

Finally, a MitM variant of the interpolation attack can be performed. To thwart this variant and
due to the high degree of S-Box−1(x) = x1/3 = x(2p−1)/3 (remember that p = 2 mod 3 in order to
guarantee that x3 is invertible), it is sufficient to add 2 rounds23. Finally, we add 2 more rounds to
prevent key-guessing attacks. As a result, the total number of rounds R must satisfy 24

R = RP +RF ≥ Rinter(N, t) ≡ 5 +
⌈
log3(p)

⌉
+
⌈
log3(t)

⌉
(12.4)

to thwart the interpolation attack.

GCD Attack

As for MiMC [AGR+16], the Greatest Common Divisors (GCD) attack strategy also applies to
HadesMiMC. In particular, given more than one known (plaintext, ciphertext) pair or working
on the output of each S-Box of a single (known) pair, it is possible to construct their polynomial
representations and compute their polynomial GCD to recover a multiple of the key. Note that this
is a known-plaintext attack, and not a chosen-plaintext one.

Denote by E(k, x) the encryption of x under key k. For a pair (x, y) ∈ F2N , E(K,x)− y denotes
a univariate polynomial in Fq[K] corresponding to (x, y). Note that in our case the polynomial
E(K,x)− y can be constructed conceptually easily from the encryption process, but writing down
E(K,x)− y becomes computationally expensive as the number of rounds increases. Indeed, writing

20Note that after the first round not all words of degree 3 appear. Indeed, the input of each S-Box in the first round is
composed of a single word, which means that after the first round there is no non-linear mixing of different words.
Similarly, all mixing terms of (total) degree 3d appears at round 3d+1.

21In the case of partial S-Box layers, it could potentially be possible to skip a certain number of rounds by a proper
choice of the input texts (e.g. by having no active S-Box). However, we do not care about this property here, since –
due to the Hades strategy – at least the first and the last 3 rounds are going to have a full S-Box layer, which
guarantees full diffusion.

22Remark. Since I did not work on such result – it was done by Reinhard Lüftenegger, I limit myself to refer to
[GLR+19, App. D] for all details.

23Note that log(2p−1)/3(p) ≤ 2 for each p ≥ 5.
24We emphasize that in this analysis we do not take into account the cost of constructing the interpolation polynomial,

which is (in general) non-negligible.

255

12. Hades Strategy and HadesMiMC

down E(K,x) − y requires not only large computational resources but also an exponential (in r)
amount of memory. Consider now two such polynomials E(K,x1) − y1 and E(K,x2) − y2, with
yi = E(k, xi) for i = 1, 2 and for a fixed but unknown key k. It is clear that these polynomials share
(K − k) as a factor. Indeed, with high probability the greatest common divisor will be (K − k).
Thus, by computing the GCD of the two polynomials, we can find the value of k. As we are going to
show, this attack is less efficient than e.g. the interpolation attack. However, we remark that this
is one of the few attacks that applies in the low-data scenario, considered in one of the following
applications (i.e., post-quantum signatures). In particular, a single input-output pair is sufficient to
compute the required polynomial E(K,x)− y, and the GCD can be computed among the output
of two different S-Boxes of the final round. What about the complexity? It is well-known that the
complexity for finding the GCD of two polynomials of degree d is O (M(d) log2 d), where M(d) is the
cost of multiplying two degree-d polynomials. The best (known) complexity for M(d) is O(d log2 d)
using an FFT. Thus, we expect a GCD computation to cost O

(
d log2

2 d
)
, where the hidden constant

is greater than 1. In order to estimate the computational cost of such an attack, we have to estimate
the degree of K in E(K,x)− y, which depends on the number of rounds r.

Case: S-Box(x) = x3. To set up the attack, the attacker first guesses t− 1 words of the key in
order to construct an univariate polynomial. Since the complexity of the attack depends on the
degree and since one S-Box per round (together with an affine layer) is sufficient to increase the
degree of each word, we can focus only on the rounds RP with a single S-Box. If such a cipher
is secure against interpolation attack, also our design is secure (more S-Boxes per round do not
decrease the security). As a result, after r > 1 rounds, the degree d is well estimated by 3r−1. Thus,
to derive an estimate for the required number of rounds, we target d log2

2 d ≈ p, which implies25

r ≥ log3 p+ 1− 2 log3(log2 p).

To thwart a MitM variant of this attack, it is sufficient that add 1 round. Finally, we add two rounds
to prevent key-guessing attack. As a result, the total number of rounds must be

RP +RF ≥ 4 + dlog3 pe − 2blog3(log2 p)c.

Gröbner Basis Attack

The natural generalization of GCDs is the notion of Gröbner basis [BKW93]. The attack proceeds
like the GCD attack with the final GCD computation replaced by a Gröbner basis computation.
Analogous to the GCD above and the interpolation analysis in the following, 1 S-Box per round is
sufficient to prevent this attack (since it basically depends on the degree of the encryption function,
which is independent of the number of S-Boxes per round).

For generic systems, the complexity of computing a Gröbner basis for a system of N polynomials
fi in V variables is

O
((

V +Dreg

Dreg

)ω)
operations over the base field F[BFP12], where Dreg is the degree of regularity and 2 ≤ ω < 3 is the
linear algebra constant. We note that the memory requirement of these algorithms is of the same
order as the running time. The degree of regularity depends on the degrees of the polynomials d and
the number of polynomials N. When V = N, we have the simple closed form

Dreg := 1 +
V−1∑
i=0

(di − 1), (12.5)

25Note that the solution of y = x · log2(x) is well approximated by x = y/ log2(y).

256

12.3. Security Analysis

where di is the degree of the i-th polynomial fi in the polynomial system we are trying to solve. In
the over-determined case, i.e., V < N, the degree of regularity can be estimated by developing the
Hilbert series of an ideal generated by generic polynomials 〈f0, . . . , fN−1〉 of degrees di (under the
assumption that the polynomials behave like generic systems). Closed form formulas for Dreg are
known for some special cases, but not in general.

Low-Data Case – 1 (plaintext, ciphertext) pair. Let’s start by analyzing the security of
HadesMiMC against a Gröbner basis attack in the case in which the attacker has access to a single
input/ouput pair. This attack in this scenario is very similar to the GCD attack just described, but
it is less competitive.

In the case in which the attacker has access to a single known (plaintext, ciphertext) pair – denoted
by p, c ∈ (F2n)t where p ≡ (p0, ..., pt−1) and c ≡ (c0, ..., ct−1) – the system is described by t equations
of the form ci = fi(p0, ..., pt−1, k0, ..., kt−1) for i = 0, ..., t− 1 and in t variables k0, ..., kt−1 (remember
that the key schedule is linear). Using formula (12.5) in order to compute the degree of regularity
for this case, it follows that Dreg = 1 + t · (d− 1) ≈ t · 3r where d ' 3r is the (approximately) degree
after of each function fi after r rounds. Thus, setting ω = 2 with the hidden constant ≥ 1, the
overall complexity becomes[(

t+ t · 3r

t · 3r

)]2

≥
(

(t · 3r)t

t!

)2

≥
(
t · 3r

t

)2t

= (3r)2t

where x! ≤ xx for all x ≥ 1, and where
∏s
i=1(x+ i) ≥ xs. As a result, r ≥ 2 + log3(2)

2 · log2(p) are
sufficient to prevent the attack.

Generic Case. Let’s now consider the case in which the attacker has access to many (plaintext,
ciphertext) pairs – the cost of the attack (potentially) decreases if the attacker has access to more than
a single (plaintext, ciphertext) pair of texts. In this case, given at most 2N − 1 (plaintext, ciphertext)
pairs – each one denoted by p, c ∈ (F2n)t, where p ≡ (p0, ..., pt−1) and c ≡ (c0, ..., ct−1), the system is
described by at most N = t · (2N − 1) equations of the form ci = fi(p0, ..., pt−1, k0, ..., kt−1) in V = t
variables k0, ..., kt−1 (remember that the key schedule is linear). In this over-determined case N > V,
there is no closed formula to compute Dreg. By definition, the degree of regularity is defined as the
index of the first non-positive coefficient in

H(z) =

∏ne
i=1(1− zdi)
(1− z)nv

=
(1− z3r)ne

(1− z)nv
= (1− z3r)ne−nv · (1 + z + z2)nv ,

where ne is the number of equations, nv is the number of variables, and di = 3r is the degree of
the i-th equation. By simple observation, the index of the first non-positive coefficient can not be
smaller than d = 3r, since (1 + z + z2)nv contains only positive terms (note that ne > nv).

Depending on parameter choices, the hybrid approach [BF09; BFP12] – which combines exhaustive
search with Gröbner basis computations – may lead to a somewhat reduced cost. Following [BF09;
BFP12], guessing κ ≤ t components of the key leads to a complexity of

O
(
pκ ·

(
t− κ+D′reg

D′reg

)ω)
(12.6)

where D′reg ≤ Dreg is the degree of regularity for the system of equations after substituting κ
variables with their guesses.

It follows that to prevent Gröbner basis attacks, the minimum number of rounds r must satisfy

pκ ·
(t−κ+D′reg

D′reg

)ω
≥ pt, for all 0 ≤ κ ≤ t− 2 and where the degree of regularity D′reg = O(d) ≈ 3r. For

257

12. Hades Strategy and HadesMiMC

our parameter choices, the expression (12.6) is minimized for κ = 0, which implies that(
t+ d

d

)
=

1

t!
·
t∏
i=1

(d+ i) ≥ dt

t!
≥
(
d

t

)t
= 2t log2(d/t)

where x! ≤ xx for each x ≥ 1. Setting ω = 2, we obtain 2t log2(d/t) ≈ n · t and

r ≥ 2 + log3(2) ·
(
log2(p)/2 + log2(t)

)
, (12.7)

where 2 rounds are added to thwart the Meet-in-the-Middle version of the attack (note that the
degree of the S-Box in the decryption direction is (2p− 1)/3). As a result, R ≥

⌈
log3(2) ·

(
log2(p)/2 +

log2(t)
)⌉

+2 rounds are sufficient to protect the cipher from this attack. Note that the analysis just
proposed is independent of the fact whether the rounds contain a full or a partial S-Box layer.

Round with Partial S-Box layer – First Alternative Strategy. The strategy just described
is not the only possible one in order to set up a Gröbner Basis Attack. In particular, each equation
of degree 3r can be re-written in a different way, e.g. as r equations each one of degree 3. Even if
this allows to reduce Dreg, the introduction of new intermediate variables does not lead – in general –
to a reduced solving time (remember that the cost of a Gröbner basis depends both on the number
of variables and of the degree of the system of equations that we are trying to solve).

As showed in the following, this second strategy does not outperform the one given before if
rounds with full S-Box layer are used to guarantee security against Gröbner basis attack. Thus,
RGrobnerF ≥

⌈
log3(2) ·

(
log2(p)/2 + log2(t)

)⌉
+2 rounds with full S-Box layer are sufficient to provide

security against this attack.

The situation is different when one exploits rounds with partial S-Box layer in order to guarantee
security. Using the strategy just proposed, the middle rounds with partial S-Box layer can be
described by RP variables and RP equations of degree 3. In total, the number of variables and
equations in the low-data case – 1 (plaintext, ciphertext) pair – is RF · t+RP − κ (where – as before
– the best attack can be achieved without guessing any key word – that is, κ = 0), which means a
cost of[(

(RF · t+RP) + (1 + 2 · (RF · t+RP))

1 + 2 · (RF · t+RP)

)]2

≈
[(

3 · (RF · t+RP)

2 · (RF · t+RP)

)]2

≈
(

27

4

)2(RF ·t+RP)

,

and RF · t+RP ≈ N
2·(log2(27)−2) . Working in the same way, the cost of the attack in the decryption

direction (remember that S-Box(x) = x(2p−1)/3) turns out to be[(
(RF · t+RP) + (1 + [(2p− 4)/3] · (RF · t+RP))

RF · t+RP

)]2

≈
(

2p− 1

3

)2(RF ·t+RP)

,

It follows that

RF · t+RP ≈
⌈

N

2 · (log2(27)− 2)

⌉
+

⌈
N

2 · (log2(2p− 1)− log2(3))

⌉
,

in order to thwart the MitM version of the attack.

When working in the full-data case, the number of equations and variables can be increased by
using multiple (plaintext, ciphertext) pairs. In particular, the key variables stay the same, while
additional intermediate variables have to be introduced for each pair. Let D denote the amount of
data used by the attacker (obviously, 1 ≤ D ≤ 2N − 1). This means that the number of equations
differs from the number of variables when using the same attack strategy together with multiple

258

12.3. Security Analysis

pairs. Therefore, we have to use the Hilbert series in order to determine the degree of regularity,
which is the index of the first non-positive coefficient in

H(z) =

∏ne
i=1(1− zdi)
(1− z)nv

=
(1− z3)ne

(1− z)nv
= (1− z3)ne−nv · (1 + z + z2)nv ,

where ne is the number of equations, nv is the number of variables, and di = 3 is the degree of
the i-th equation. When increasing the number of (plaintext, ciphertext) pairs D, both ne and nv
increase. In our case:

ne = D · (t ·RF +RP) and nv = t+ D · ((RF − 1) · t+RP).

Note that ne − nv = t · (D− 1) and that (1 + z + z2)nv contains only positive terms. Since

(1− z3)ne−nv = 1− t · (D− 1) · z3 + ...

it follows that the index of the first non-positive coefficient must be at least 3, which means Dreg ≥ 3.
Unfortunately, this estimation is too pessimistic in order to derive a useful approximation of the
number of rounds necessary to guarantee security. E.g., using Dreg ≈ 3, the total cost of the attack
is given by[(

3 + t+ D · ((RF − 1) · t+RP)

t+ D · ((RF − 1) · t+RP)

)]2

≥
[

(1 + t+ D · ((RF − 1) · t+RP))3

3!

]2

,

which means we need RP ≈ O(2N/6) in order to guarantee security.
However, by practical experiments, it turns out that a much smaller number of rounds is sufficient

for this scope. Due to such practical results26, we conjecture that

RF · t+RP ≈
⌈

N

2 · (log2(27)− 2)

⌉
+

⌈
N

2 · (log2(2p− 1)− log2(3))

⌉
rounds are sufficient in order to protect HadesMiMC from this Gröbner basis attack strategy
proposed here.

Finally, let us briefly analyze the case RP = 0, which corresponds to the case in which the security
against Gröbner basis attack is guaranteed by rounds with full S-Box layer. In this case, the previous
inequality reduces to

RF ≥
⌈

log2(p)

2 · (log2(27)− 2)

⌉
+

⌈
log2(p)

2 · (log2(2p− 1)− log2(3))

⌉
≈ 1 +

⌈
log2(p)

2 · (log2(27)− 2)

⌉
.

Since the generic strategy described before requires RF ≥ 2 + log3(2) ·
(
log2(p)/2 + log2(t)

)
rounds

in order to guarantee security, the attack strategy proposed here cannot outperform it (note that
2 · log2(27/4) ≥ 2 · log2(3)).

Round with Partial S-Box layer – Second Alternative Strategy. Another strategy can be
applied as well. Let us work for simplicity in the encryption direction (similar results work in the
decryption one). Given an input x = (x0, ..., xt−1), the output of the first Rf rounds with full S-Box
layer can be described by t equations of degree 3Rf , where Rf = RF /2. Then, working round per
round, the output of each round with partial S-Box layer is described by 1 non-linear equation of
degree 3 and t− 1 linear equations. Finally, t more equations of degree 3Rf describes the relations
between the output of the rounds with partial S-Box layer and the input of the final rounds with
full S-Box layer. As a result, in the case of a single input/ouput pair, one works with

26Remark. Since I did not work on such result – it was done by Markus Schofnegge, I limit myself to refer to [GLR+19,
App. D] for all details.

259

12. Hades Strategy and HadesMiMC

• 2t equations of degree 3Rf and RP equations of degree 3;

• t variables that describe the key and t+RP variables that describe the internal state of the
texts.

Since the number of variables is equal to the number of equations, it follows that

Dreg = 1 + 2t · (3RF /2 − 1) + 2 ·RP .

Setting ω = 2, the cost of this attack is well described by[(
(2t+RP) + [1 + 2t · (3RF /2 − 1) + 2 ·RP]

2t+RP

)]2

≈

[(
2t+ 3 ·RP + 2t · 3RF /2

2t+RP

)]2

≥

≥
(

1 + 2 ·RP + 2t · 3RF /2

2t+RP

)2RP+4t

≥
(

2t · 3RF /2

2t+RP

)2RP+4t

.

It follows that HadesMiMC is secure if

RF ≥ 2 + log3(2) ·
(

N

2t+RP
+ 2 · log2(2t+RP)− 2 · log2(2t)

)
,

where 2 more rounds have been added in order to thwart Meet-in-the-Middle versions of this attack.
The strategy is similar when one works with more (plaintext, ciphertext) pairs. As for the previous

strategy, we found that in all cases that we practically tested, the computational complexity is
minimized when the attacker uses a single (plaintext, ciphertext) pair. For this reason, we conjecture
that HadesMiMC is secure against this version of the Gröbner basis attack if the following inequality

RF ≥ 2 + log3(2) ·
(

N

2t+RP
+ 2 · log2(2t+RP)− 2 · log2(2t)

)
is satisfied.

Finally, let us briefly analyze the case RP = 0, which corresponds to the case in which the security
against Gröbner basis attack is guaranteed by rounds with full S-Box layer. In this case, the previous
inequality reduces to RF ≥ 2+log3(2) · log2(p)/2. Since the strategy described in Sect. 12.3.3 requires
RF ≥ 2 + log3(2) ·

(
log2(p)/2 + log2(t)

)
rounds in order to guarantee security, the attack strategy

proposed here cannot outperform it.

Gröbner Basis Attack – Recap. In conclusion, we claim HadesMiMC is secure against Gröbner
basis attack if the following inequality is satisfied

RF ≥ RGroberF (N, t) ≡ 2 +
⌈
log3(2) · (log2(p)/2 + log2(t))

⌉
or if the number of rounds RP ≥ 1 and RF satisfy the following inequalities

RP +RF ≥ R1st−Grob(N, t) ≡ 2 +
⌈
log3(2) · (log2(p)/2 + log2(t))

⌉
RP + t×RF ≥ R2nd−Grob(N, t) ≡

⌈
N/[2 · log2((2p− 1)/3)]

⌉
+
⌈
N/[2 · log2(27/4)]

⌉
RF ≥ R3rd−Grob(N, t,RP) ≡ 2 + log3(2) ·

(
N

2t+RP
+ 2 · log2(2t+RP)− 2 · log2(2t)

) (12.8)

Higher-Order Differential Attack

A well-known result from the theory of Boolean functions is that if the algebraic degree of a vectorial
Boolean function f(·) (like a permutation) is d, then the sum over the outputs of the function applied
to all elements of an affine vector space V ⊕ c of dimension ≥ d+ 1 for arbitrary constant c is zero,
that is

⊕
v∈V⊕c v =

⊕
v∈V⊕c f(v) = 0. This property is exploited by higher-order differential attacks

[Knu94]. Here we focus on the security of HadesMiMC against such an attack when instantiated
over Fp.

260

12.3. Security Analysis

F2n versus Fp. First of all, let us emphasize an important difference between the higher-order
differential attack on F2n and on Fp. As we just recalled, given a function f(·) of degree d, then⊕

v∈V⊕c f(v) = 0 for each vector space V of dimension ≥ d+ 1 is zero. The crucial point here is that
the previous result holds if V is a (sub)space, and not only a generic set of elements.

While F2m is always a subspace of F2n for each m ≤ n, the only subspaces of Fp are {0} and Fp.
It follows that the biggest subspace of (Fp)t has dimension t, with respect to the biggest subspace
of (F2n)t which has dimension n · t = N . As a result, in the case in which a cipher is instantiated
over Fp, a lower degree (and hence a smaller number of rounds) is sufficient to protect it against the
higher-order differential attack w.r.t. the number of rounds for the F2n case.

Security Analysis: HadesMiMC instantiated over Fp. Due to the discussion just given,
the biggest (non-trivial) subspace of (Fp)t has dimension at most t − 1. Thus, HadesMiMC is
secure against higher-order differential attacks if its degree is bigger than t − 1. It follows that
if HadesMiMC (instantiated over Fp) is secure against the interpolation attack, then it is also
secure against the higher-order differential attack. In other words, the number of rounds necessary
to guarantee the security of HadesMiMC against the interpolation attack is sufficient to guarantee
the security against the higher-order differential one as well.

12.3.4. Low-Data Scenario (HadesMiMC instantiated over F2n)

Finally, for the signature application (Picnic), we provide a security analysis of HadesMiMC
instantiated over F2n in the “low-data scenario” only, that is, the case in which the attacker can
only use the knowledge of a single (plaintext, ciphertext) pair to set up the attack.

To derive the sufficient number of rounds to guarantee security, we consider two attacks, that is,
(1st) Meet-in-the-Middle attacks and (2nd) the GCD attack and its generalization, the Gröbner
basis attack. Note that any other attack – even the (truncated) differential one with high probability
(e.g. prob. 1) – requires at least 2 pairs of texts, hence it is not applicable in this scenario.

Since differential attacks do not apply in this scenario, we consider a more “aggressive” version
of our design HadesMiMC. In particular, we replace the assumption that the MixLayer is an
MDS matrix with the “weaker” request that it is invertible27, together with the property that
M i =

∏i
j=1M has no zero coefficient28 for each 1 ≤ i ≤ R (where R is the number of rounds).

For an efficient implementation, we also require that at least one (t − 1) × (t − 1) submatrix of
M is invertible (a concrete example is given in Sect. 12.5.2). Moreover, also the assumption that
“RF = 2Rf must be even” can be relaxed, that is, we do not force the cipher to be “symmetric”29 (in
other words, RF can be odd).

GCD and Gröbner Basis Attack. About the GCD and Gröbner basis attacks, due to the
analysis already given, the number of rounds RF ≥ 2 and RP must satisfy the conditions RP +RF ≥
4+
⌈
n·log3 2

⌉
−
⌊
2·log3(n)

⌋
, RP +t·RF ≥ R2nd−Grob(N, t) and RF ≥ R3rd−Grob(N, t,RP) respectively

for the two attacks in order to guarantee security.

MitM (statistical) Attack. About the MitM attack in the low-data scenario, we take into
account the similarity between HadesMiMC and AES, and we mention the existence of low-data
key-recovery attacks up to 4-round AES [BDD+12] that require only 1 (plaintext, ciphertext) pair.
Such MitM attacks exploit the low diffusion of the AES key schedule and the fact that two rounds of

27Give A and B invertible lower and upper triangular matrices, M = B ×A is invertible.
28If no matrix satisfies this condition, then the idea is to choose a matrix that minimizes the total number of zero

coefficients.
29If RF = 2Rf + 1, the distribution of the rounds is:

[
Rf + 1 rounds with full S-Box layer

]
+
[
RP rounds with partial

S-Box layer
]

+
[
Rf rounds with full S-Box layer

]
.

261

12. Hades Strategy and HadesMiMC

AES are necessary to provide full diffusion. Since both one round of our key schedule and one round
of HadesMiMC provide maximum diffusion, we conjecture that our design with RF = 3 rounds
with a full S-Box layer is protected from this kind of attack.

Why RF = 2 rounds with full S-Box layers are not sufficient to guarantee security against MitM?
Working in F2n (similar for Fp), consider the linear layer proposed in (12.14). If RF = 2 and RP = 0,
a MitM attack can be potentially set up. Indeed, given a plaintext p and the corresponding ciphertext
c, note that it is possible to construct several equivalences of the form

3×
[
S-Box(pj ⊕ k(0)

j)⊕ S-Box(pl ⊕ k
(0)
l)
]
⊕k(1)

j ⊕ k
(1)
l = S-Box−1(cj ⊕ k(2)

j)⊕ S-Box−1(cl ⊕ k
(2)
l)

for each 0 ≤ j, l < t, where 3 ≡ 0x03 and where the final MixLayer has been omitted. These can be
used to speed up a brute-force attack. A similar result can be obtained for small RP ≥ 1.

Three rounds with a full S-Box layer allow to prevent such an attack. Indeed, in this case, the
equations take the form:

3×
{

S-Box
[
k

(1)
j ⊕

t−1⊕
i=0

Mj,i · S-Box
(
pi ⊕ k(0)

i

)]
⊕S-Box

[
k

(1)
l ⊕

t−1⊕
i=0

Ml,i · S-Box
(
pi ⊕ k(0)

i

)]}
⊕ k(2)

j ⊕ k
(2)
l = S-Box−1(cj ⊕ k(3)

j)⊕ S-Box−1(cl ⊕ k
(3)
l)

for each 0 ≤ j, l < t, where as before 3 ≡ 0x03 and where the final MixLayer has been omitted. Since
all words of k(0) are involved as inputs of different S-Boxes, we argue that it is (rather) hard to
exploit such equivalences to speed up the brute-force attack.

Conclusion. In the low-data scenario, we claim that R = RF + RP rounds of HadesMiMC
instantiated by S-Box(x) = x3 - both for GF (p) and GF (2n) - are sufficient to provide security if
RF ≥ 3 and

RP +RF ≥ 4 +
⌈
n · log3 2

⌉
−
⌊
2 · log3(n)

⌋
RP + t ·RF ≥

⌈
N/[2 · log2((2p− 1)/3)]

⌉
+
⌈
N/[2 · log2(27/4)]

⌉
RF ≥ R3rd−Grob(N, t,RP) ≡ 2 + log3(2) ·

(
N

2t+RP
+ 2 · log2(2t+RP)− 2 · log2(2t)

)

12.4. Number of Rounds Needed for Security

The design goal of HadesMiMC is to offer a cipher optimized for schemes whose performance
critically depends on the MULTdepth/ANDdepth, the number of MULTs/ANDs, or the number of
MULTs/ANDs per bit. We thus try to be as close to the number of rounds needed for security as
possible.

Besides the possibility to choose the size of the S-Box, one of the strengths of our design is the
freedom to choose the ratio between the number of rounds RF with full S-Box layer and the number
of rounds RP with partial S-Box layer. For the applications that we have in mind, here we limit
ourselves to optimize HadesMiMC w.r.t. two different metrics:

Number of Multiplications/S-Box: this metric is the best one in order to describe the cost in
the case of MPC applications. Motivated by real-life applications, our goal is to reduce the
total runtime (as we describe in the following). Since the main bottleneck of a protocol run
on top of the SPDZ framework is the triple generation mechanism, which is given by the
number of multiplications/non-linear operations, the goal is to minimize the total number of
multiplications (which is proportional to the number of S-Boxes);

262

12.4. Number of Rounds Needed for Security

Number of Multiplications/S-Box × Field Size: this metric is the best one in order to describe
the cost in the case of Picnic Post-Quantum Signature scheme (see [CDG+17] for details).

We recall that in the first case HadesMiMC is instantiated over Fp, while in the second case it is
instantiated over F2n (in the “low-data scenario” only).

Preliminary. HadesMiMC is secure if and only if at least one of the following two systems of
inequalities is satisfied:

RF ≥ max{RstatF (N, t), RGrobnerF (N, t)} and RP +RF ≥ Rinter(N, t)

where Rinter(N, t) is defined in (12.4), RGroberF (N, t) in (12.7) and RstatF in (12.3), or
RF ≥ max

{
RstatF ;R3rd−Grob(N, t,RP)

}
RP +RF ≥ Ψ(1)(N, t) ≡ max

{
Rinter(N, t);R1st−Grob(N, t)

}
RP + t ·RF ≥ Ψ(t)(N, t) ≡ R2nd−Grob(N, t)

where R1st−Grob(N, t), R2nd−Grob(N, t), R3rd−Grob(N, t) are defined as in (12.8).

In other words, HadesMiMC results secure if – for every attack – (at least) one of the following
inequality is satisfied

RF ≥ ΦF (N, t) or RP + ϕ(t) ·RF ≥ ΦP (N, t) or RF ≥ Φ(N, t,RP)

where Φ(N, t,RP),ΦF (N, t),ΦP (N, t) and ϕ(t) are functions that depend on the attack, where
ϕ(t) = 1 or ϕ(t) = t.

Note that – in our design strategy – we always exploit the “Wide-Trail” strategy in order to
guarantee security against statistical attacks. In other words, for this class of attacks, we only work
with rounds with full S-Box layer in order to guarantee security. HadesMiMC results secure against
statistical attacks if

RstatF ≥ Φstat(N, t)

where Φstat(N, t) – provided in (12.3) – is equal to 6 or 8. Thus, given

RF = RstatF +R′F ≥ RstatF ,

we are actually looking for the best ratio between R′F and RP that minimizes the total number of
S-Boxes.

12.4.1. Minimize “Number of S-Boxes” – HadesMiMC over Fp
Here we mainly focus on minimizing the number of S-Boxes, since this is the metric that best
describes the cost of the applications that we have in mind. In other words, for given n and t, the
goal is to find the best ratio between RP and RF that minimizes the total number of S-Boxes, given
by

minimum number of S-Boxes = t ·RF +RP (12.9)

where t ≥ 2 and where the number of non-linear operations is proportional to the number of S-Boxes.

As supplementary material, we provide a script that given an input N , returns the best t and
the best ratio between RP and RF that minimizes the cost metric (in this case, the total number of
S-Boxes). For each possible value of t where 2 ≤ t ≤ N

log2{[(2N)/(log2(N+1)+1)]+1} (where this upper

bound guarantees the existence of an MDS matrix), the script finds the best ratio between RP and
RF that minimize the number of S-Boxes for that particular t. Then, it simply finds the best value
of t that minimizes the total number of non-linear operations.

263

12. Hades Strategy and HadesMiMC

For our MPC applications, we also provide a variant of such script which take in input both N and t
and returns the best ratio between RP and RF that minimizes the cost metric for that particular input.

What is the Best Ratio between RF and RP? Details for a Simplified Case. In order
to understand what a certain ratio between RF and RP is the best one, here we study in details a
possible way to find – without brute-force – the best ratio between RF and RP which minimizes the
cost metric (12.9) and which guarantees security for a simplified case, i.e. assuming HadesMiMC
is secure if the following inequalities are satisfied30

RF ≥ RstatF and RP ≥ 0;

RP +RF ≥ Ψ(1)(N, t) ≡ max
{
Rinter(N, t);R1st−Grob(N, t)

}
RP + t ·RF ≥ Ψ(t)(N, t) ≡ R2nd−Grob(N, t)

The goal is to find the best ratio between R′F (where RF = RstatF + R′F ≥ RstatF) and RP that
minimizes the total number of S-Boxes, where both Ψ(1)(N, t) and Ψ(t)(N, t) are fixed (since N and
t are fixed).

First Case. Firstly, we analyze the case in which

Ψ(t) < t×Ψ(1) and Ψ(t) ≤ Ψ(1) +RstatF × (t− 1) (12.10)

which corresponds to the case in which, if the second inequality RP +RF ≥ Ψ(1)(N, t) is satisfied,
then the third one RP + t ·RF ≥ Ψ(t)(N, t) is also satisfied:

RP + t ·RF
∣∣∣∣
RP+RF≥Ψ(1)(N,t)

≥ Ψ(1) +RF · (t− 1) ≥ Ψ(1) +RstatF · (t− 1) ≥ Ψ(t).

Thus, under the assumption (12.10), we can just focus on RP + RF ≥ Ψ(1)(N, t). It follows that
by combining eq. (12.9) (i.e., number of S-Boxes) and eq. RP +RF ≥ Ψ(1)(N, t), the cost is upper
bounded by

t ·RF +RP

∣∣∣∣
RP+RF≥Ψ(1)

≤ RF (t− 1) + Ψ(1)

which is minimized by taking the minimum value of RF (where note that Ψ(1) is fixed for t and N
fixed). As a result, to minimize the total number of rounds, the idea is to minimize the number of
rounds RF with full S-Box layer, that is

RF = RstatF and RP ≥ max
{

0;Rinter −RF ;R1st−Grob(N, t)−RF
}
.

Second Case. Secondly, we analyze the case in which

Ψ(t) ≥ t×Ψ(1) and Ψ(t) > Ψ(1) +RstatF × (t− 1) (12.11)

which corresponds to the case in which, if the third inequality RP + t ·RF ≥ Ψ(t)(N, t) is satisfied,
then the second one RP +RF ≥ Ψ(1)(N, t) is also satisfied.

Thus, under the assumption (12.11), let us limit to consider the condition RP + t ·RF ≥ Ψ(t)(N, t).
Since the number RP + t ·RF corresponds to the total number of S-Boxes, it follows that each choice

30This corresponds to the case in which we guarantee security against Gröbner basis attack by using rounds with partial
S-Box layer, and in which we assume that inequality RF ≥ R3rd−Grob(N, t,RP) from (12.8) is always satisfied.

264

12.4. Number of Rounds Needed for Security

of RP and RF that satisfy RP + t ·RF = Ψ(t)(N, t) – where31 RstatF ≤ RF ≤ Ψ(t)

t – also minimizes
the number of S-Boxes.

Thus, which choice of RF and RP is the best one? If one focuses only on non-linear operations
(that is, linear operations are cost-less), then there is no reason to choice any particular RF . However,
in general this is not the case. Even if the cost of linear operations is negligible compares to the cost
of non-linear ones, note that t rounds with partial S-Box layer counts more linear operations that
the a single round with full S-Box layer. In particular, the number of linear operations are t2 for
each round with full S-Box layer and t× (3t− 2) = 3t2 − 2t for t rounds with partial S-Box layer. As
a result, if one would minimize also the number of linear operations, the correct metric to use is

t ·RF +
[
1 + ε(N, t)

]
·RP

where ε(N, t) ≥ 0 represents the cost of the linear operations32 (where ε(N, t) = 0 if one does not
care of the cost of linear operations).

In such a case, under the assumption (12.11), the total cost is given by

t ·RF +
[
1 + ε(N, t)

]
·RP

∣∣∣∣
RP+t·RF≥Ψ(t)(N,t)

≥
[
1 + ε(N, t)

]
·Ψ(t)(N, t)− ε(N, t) · t ·RF

which is minimized by taking the maximum (possible) number of rounds with full S-Box layer. As a
result, under the assumption (12.11), the best choice is

RF = max

{
RstatF ; 2×

⌊
R2nd−Grob(N, t)

2t

⌋}
, RP = max

{
0;

⌈
R2nd−Grob

⌉
−t ·RF

}

Third Case. Finally, we study the case in which

Ψ(t) < t×Ψ(1) and Ψ(t) > Ψ(1) +RstatF × (t− 1). (12.12)

In this case, note that:

• the case RstatF ≤ RF ≤ Ψ(t)−Ψ(1)

t−1 corresponds to the case in which, if the third inequality

RP + t ·RF ≥ Ψ(t)(N, t) is satisfied, then the second one RP +RF ≥ Ψ(1)(N, t) is also satisfied;

• the case Ψ(t)−Ψ(1)

t−1 ≤ RF ≤ Ψ(1) corresponds to the case in which, if the second inequality is
satisfied, then the third one is also satisfied.

Re-using the results given before it makes sense to maximize RF when the third inequality predomi-
nates on the second one, and to minimize RF when the second inequality predominates on the third
one. As a result, under the assumption (12.12), the best choice is given by:

RF = max

{
RstatF ; 2 ·

⌊
Ψ(t) −Ψ(1)

2(t− 1)

⌋}
and RP = max

{
0;R2nd−Grob(N, t)− (t×RF)

}
where Ψ(t)(N, t)−Ψ(1)(N, t) = R2nd−Grob(N, t)−max

{
Rinter(N, t);R1st−Grob(N, t)

}
.

31The upper bound is due to the fact that both RP ≥ 0 and RP + t ·RF ≥ Ψ(t)(N, t) must be satisfied.
32E.g. assume that the cost of one non-linear operation in Fp – where log2(p) ≈ n – is equal to the cost of n · log(n)

linear operations. It follows that ε(N, t) is well approximated by 1 + t−2
t+n log(n)

.

265

12. Hades Strategy and HadesMiMC

12.4.2. Minimize “Number of S-Boxes × Field Size”

Secondly, we consider the metric given by “number of S-Boxes × field size”, which well describes
the cost of the Picnic PQ-Signature Scheme – where HadesMiMC instantiated over F2n (low-data
case). In this case, for each N and t, the goal is to find the best ratio of RP and R′F (where
RF = RstatF +R′F ≥ RF) for which the following cost is minimized

n×
(
t ·RF +RP

)
= N ·RF + n ·RP . (12.13)

If both n and t are fixed, this metric is proportional to the one given before (that is, it is equal to the
one given in (12.9) times a factor n). Thus, the results given in the previous section hold also for this
metric. As before, for the case in which t is not fixed, we provide a script that takes in input N and
returns the best t and the best ratio between RF and RP that minimizes the metric given in (12.9).

12.4.3. Concrete Instantiations of HadesMiMC

Based on the security analysis just proposed, in Tables 12.2 we present concrete instantiations of
HadesMiMC for different security level and/or applications.

Table 12.2.: A range of different parameter sets for HadesMiMC– instantiated by S-Box(x) = x3 –
offering different trade-offs. The first set is for AES-like security parameter (128 bit). The second and
the third sets are resp. for MPC and Post-Quantum Signature applications (low-data scenario only).
Finally, the last set includes an example of toy version useful to facilitate third-party cryptanalysis.

Text Size S-Box Size # S-Boxes Rounds RF Rounds RP (Fp)t (F2n)t

N = n× t (n or log2 p) (t) (Full S-Box) (Partial S-Box) Low-Data

128 8 16 8 4 X
128 16 8 6 10 X

256 128 2 10 75 X
512 128 4 12 74 X

1 024 128 8 14 76 X
2 048 128 16 18 86 X
4 096 128 32 20 106 X

≈ 256 3 86 3 1 X

32 8 4 6 5 X

Reduced and Toy Versions. Many classes of cryptanalytic attacks become more difficult with an
increased number of rounds. In order to facilitate third-party cryptanalysis and estimate the security
margin, reduced-round variants need to be considered. Hence we encourage to study round-reduced
variants of HadesMiMC where the symmetry around the middle is kept. Moreover, to encourage
cryptanalysis of HadesMiMC, we remark that it is possible to specify toy versions of our cipher
which aim at achieving e.g. 32 or 64 bits of security.

12.5. MPC and Post-Quantum Signature Applications

Remark. Since I did not work on the practical applications/implementations of MiMC, I limit
myself to recall here the main results and I refer to [GLR+19] for a detailed discussion on it. The
results of this section are due to the work of Dragos Rotaru (MPC applications) and Sebastian
Ramacher and Markus Schofnegger (PQ-Signature application) respectively.

266

12.5. MPC and Post-Quantum Signature Applications

Table 12.3.: Two-party costs for MiMC and HadesMiMC over a LAN network. Here we limit
ourselves to give the results just for t = 2, 4 and 32, and we refer to [GLR+19, App. F] for the
corresponding results for t = 8 and 16.

Modet Online cost Preproc per block

(MPC) Rounds Openings Best Lat (ms/Fp) Throughput (Fp/s) ms MBytes

HadesMiMC2 84 273 3.24 11796 3.06 0.17
MiMC2 73 438 2.98 9681 4.86 0.27

HadesMiMC4 84 342 1.64 16284 1.9 0.10
MiMC4 73 876 1.52 10856 4.86 0.27

HadesMiMC32 116 2394 0.36 3972 1.66 0.09
MiMC32 73 7008 0.30 11021 4.86 0.27

12.5.1. MPC Experiments

For MPC applications, we evaluated HadesMiMC cipher using the SPDZ framework [KSS13] within
a prime field Fp. To briefly understand the MPC details, we denote by [x] a sharing of x, where each
party Pi holds a random xi ∈ Fp. The process of parties reconstructing x is called an opening, i.e.,
going from a shared value [x] to a public value x known to all parties.

As with most MPC frameworks, a protocol is split into two steps: an input-independent preprocess-
ing phase where parties generate random Beaver triples [a] = [b] · [c], and an input-dependent online
phase where parties share their inputs and use the triples generated in the preprocessing phase. The
cost of a multiplication between two secret values [z]← [x] · [y] is twofold: one Beaver triple generated
in the preprocessing phase as well as two openings and one round of communications in the online
phase. Since secret shared multiplications can be done in parallel, the number of communication
rounds in the online phase is given by the multiplicative depth of the circuit to be evaluated. Linear
operations such as additions and multiplications by public scalars are non-interactive and require
only a small computational overhead.

In our setting, both the key [k] and the message [m] are shared between the parties. In the
following, we will show how to compute the S-Box (note that everything else is linear and can be
computed locally). The trivial way to compute the cubing is by computing [x2]← [x] · [x] and then
[x3] ← [x2] · [x]. This can be done with two communication rounds and it has an online cost of 3
openings and uses two triples. We use the Grassi et al. version [GRR+16] to reduce the online cost
to one communication round with the same amount of openings and triples.

Standard Benchmarks. We implemented and benchmarked HadesMiMC in SPDZ between
two computers with commodity hardware connected via a 1 GB/s LAN connection with a round-trip
time of 0.3 ms. Here, latency represents the best running time of a single cipher evaluation, whereas
throughput means the maximum number of field elements that can be encrypted in parallel per
second. In Table 12.3 there are the two extremes: HadesMiMC encrypting messages using t = 2
blocks with n = 128 bits per block (32 bytes) as well as t = 32 blocks with n = 128 bits per block
(512 bytes).

Amortizing Preprocessing Cost. This can be achieved if one chooses to encrypt a large number
of blocks at once. Encrypting 2 · 128 blocks (32 bytes) requires 0.17 MBytes of data per block with
HadesMiMC. The preprocessing cost per block decreases and at t = 32 with HadesMiMC reaches
0.09 MB per block. This is in contrast with MiMC which keeps the preprocessing cost constant

267

12. Hades Strategy and HadesMiMC

at 0.27 MB per block (see [GLR+19, App. F] for details). As a consequence, the total runtime of
HadesMiMC (see [GLR+19, App. F] for details) is smaller than MiMC since the main bottleneck
for MPC with dishonest majority is the triple generation.

12.5.2. Post-Quantum Signatures from Symmetric-Key Primitives

Finally, we analyze HadesMiMC as a replacement of LowMC in Picnic. The advent of efficient
zero-knowledge proof systems for arithmetic circuits [GMO16; CDG+17; AHIV17; KKW18] enable an
alternative design paradigm to hash-based signatures for constructing post-quantum secure signature
schemes built from symmetric-key primitives. Following this design strategy, Picnic [CDG+17] using
LowMC as an underlying symmetric-key primitive was submitted as part of the NIST PQC effort.
Besides signature schemes, this paradigm has also been used to construct privacy-preserving variants,
such as ring and variants of group signatures [DRS18b; BEF18; KKW18] and double-authenticating
preventing signatures [DRS18a].

Regardless of the underlying proof system, the involved proof sizes are mainly influenced by the
number of multiplication gates and the field size. For ZKB++ and KKW, the proof sizes are linear in
the number of multiplication gates. Consequently, for selecting the optimal symmetric-key primitive,
the product of the number of multiplication gates and the field size is the most important metric
when optimizing for signature size.

For the evaluation of HadesMiMC in this context, we focus on Picnic and its underlying proof
system, ZKB++. In Picnic, signatures consist of a zero-knowledge proof of knowledge of a preimage
x to a one-way function f , where the image y = f(x) is the public key and f is instantiated using
LowMC. Interestingly, a potential attacker is only able to obtain a single (plaintext, ciphertext) pair,
thus selecting a LowMC parameterization for a low-data scenario is sufficient. When instantiating
the signature scheme with HadesMiMC instead, we can also make use of this fact and derive round
numbers appropriate for the low-data scenario. Additionally, this allows us to choose invertible
matrices for the key schedule and for the linear layer which do not necessarily need to be MDS
matrices. For example, by choosing a t × t matrix M with elements in Fp, where t denotes the
number of words and

Mi,j =

{
2 if i = j,

1 otherwise,
(12.14)

the sum to assign to each of the words in the linear layer differs in only one term. Most of this sum
can thus be precomputed in each layer, and the additional term is added separately for each word.
Using this method, the expensive matrix-vector multiplication can be avoided and the computational
effort is reduced from O(t2) operations to O(t) operations. Using the script presented before, it turns
out that for N = 256 the metric “number of multiplications × field size” is minimized by n = 3 (so
t = 86) and by RF = 3 (so RP = 1).

Experiments and Results. When using HadesMiMC, we can observe much better results than
with MiMC. The new design strategy helps to reduce both the computational cost and the proof size
significantly, as Table 12.4 demonstrates for selected instances of HadesMiMC and MiMC. Due
to faster computations and significantly smaller proof sizes, only instantiations using binary fields
are listed for HadesMiMC in this comparison. On the other hand, instances using prime fields are
chosen for MiMC, because they appear to provide a good trade-off between the signature size and
the computation time. We also note that in the table we focus on the time spent to compute shared
circuits, and omit the overhead independent of the cipher.

In comparison with LowMC-based instantiations, we are able to obtain smaller signatures using
HadesMiMC – even when compared to the smallest possible LowMC-based signature with only
1 S-Box and 363 rounds totaling a view size of 1089 bits. The view size of HadesMiMC-(3, 86)
totals at 777 bits, which amounts to an improvement by a factor of 1.40. Performance-wise, the

268

12.5. MPC and Post-Quantum Signature Applications

Table 12.4.: Computation times of circuits and view sizes in ZKB++ using HadesMiMC and
MiMC, where N = n · t ≈ 256, and LowMC-(N,m, r) with block-/key-size N , m S-Boxes and r
rounds. The 272-bit prime number used in MiMC allows for faster computations than the 256-bit
one.

Scheme Proof Generation Verification View Size

HadesMiMC-(3, 86) 0.40 ms 0.29 ms 777 bits
HadesMiMC?-(3, 86) 0.49 ms 0.30 ms 1032 bits

LowMC-(256, 10, 38) 3.74 ms 3.52 ms 1140 bits
LowMC-(256, 1, 363) 9.55 ms 7.12 ms 1089 bits

MiMC-(256, 1) 303.58 ms 161.65 ms 83456 bits
MiMC-(272, 1) 90.84 ms 47.18 ms 94112 bits

3-bit instance results in much faster signing and verification times than LowMC thanks to a
highly parallelized implementation, even when considering a LowMC implementation with recent
optimizations [DKP+19]. For completeness, the table includes the case HadesMiMC? with RF = 4
and RP = 0 which provides more security margin (with respect to MitM attacks) than the version
RF = 3 and RP = 1. Also in this case, our design is more competitive than LowMC.

269

13
Open Problems – MiMC and its

Generalizations

• Our current cryptanalysis results suggest that almost all attacks work (approximately) in
the same way when the ciphers GMiMC and HadesMiMC are instantiated in F2n or in Fp.
The only exception is given by the higher-order differential attack, for which two different
scenarios arise. As we have just seen, given a function f(·) of degree d, it is possible to prove
that

⊕
x∈V⊕a f(x) = 0 for each subspace V such that deg(f) + 1 ≤ dim(V). In the case of F2n ,

every set F2m for m ≤ n is a subspace of F2n . In other words, the dimension of the biggest
subspace of F2n is n. Instead, if one considers the case Fp, the only subspaces of Fp are {0}
and Fp. This means that the biggest subspace of Fp has dimension 1. As a result, higher-order
differential attack seems to be (much) more competitive in F2n than in Fp.
The problem to fill this gap – by studying competitive higher-order differential attacks on Fp –
is left as future problem.

• One of the major problem that we faced while studying the security of GMiMC is that –
to the best of our knowledge – almost no result about the application of the higher-order
differential attack and/or of the division property on Generalized Feistel Network is present in
the literature. As future open problem, it would be important to derive a formula about the
growth of the algebraic degree for Generalized Feistel Network, similar to the one proposed in
[BCC11] for SPN ciphers.

• For our target applications, we decided to apply the Hades Strategy only to SHARK [DKR97].
It could be interesting to apply the same strategy also to other ciphers, like AES. Could such
strategy give any advantage also for masking or other applications?

• In [CDK+18], authors study the provable security of linear SPN designs. A SPN cipher
Ek(·) : F2N → F2N where N = n · t is “linear” if the non-linear operation of each round
transformation R(·) : F2N → F2N is defined as a concatenation of t ≥ 2 independent non-linear
transformations S1(·)‖S2(·)‖...‖St(·), that is

R(·) = L ◦
[
S1(·)‖S2(·)‖...‖St(·)

]
where Si(·) : F2n → F2n for each i = 1, ..., t and where L : F2N → F2N is a linear operation.
In that paper, authors show that 3 SPN rounds are necessary and sufficient for security (if
common assumption on the keys and on the details of the round transformation are satisfied).

While similar analysis of Feistel designs are already present in the literature (see e.g. [LR88]
and [Pat03; Pat04]), to the best of our knowledge no-one considers the security of Partial-SPN
cipher or of ciphers based on the innovative Hades strategy from the provable security point
of view. This is left as an open problem for future work.

271

References

[AÅBL12] M. A. Abdelraheem, M. Ågren, P. Beelen, and G. Leander. On the Distribution of
Linear Biases: Three Instructive Examples. In: Advances in Cryptology – CRYPTO
2012. Ed. by R. Safavi-Naini and R. Canetti. Vol. 7417. LNCS. Springer, 2012, pp. 50–
67. doi: 10.1007/978-3-642-32009-5_4 (p. 203).

[ADK+14] M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar, and T. Yalçin. Block
Ciphers - Focus on the Linear Layer (feat. PRIDE). In: Advances in Cryptology –
CRYPTO 2014. Ed. by J. A. Garay and R. Gennaro. Vol. 8616. LNCS. Springer, 2014,
pp. 57–76. doi: 10.1007/978-3-662-44371-2_4 (pp. 98, 99).

[AGP+18] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru, A. Roy,
and M. Schofnegger. Feistel Structures for MPC, and more. In Submission. 2018 (pp. 6,
197, 211–214, 228, 234, 235).

[AGR+16] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. In:
Advances in Cryptology – ASIACRYPT 2016. Ed. by J. H. Cheon and T. Takagi.
Vol. 10031. LNCS. Springer, 2016, pp. 191–219. doi: 10.1007/978-3-662-53887-6_7
(pp. 197–199, 205, 207, 211, 217, 234, 237, 238, 244, 255).

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight Sublin-
ear Arguments Without a Trusted Setup. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security – CCS 2017. 2017, pp. 2087–
2104. doi: 10.1145/3133956.3134104 (pp. 17, 268).

[AM] J.-P. Aumasson and W. Meier. Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. presented at the Rump Session of Cryptographic
Hardware and Embedded Systems - CHES 2009. url: https://131002.net/data/

papers/AM09.pdf (p. 224).

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for
MPC and FHE. In: Advances in Cryptology – EUROCRYPT 2015. Ed. by E. Oswald
and M. Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 430–454. doi: 10.1007/978-3-
662-46800-5_17 (pp. 198, 237, 238, 240, 242).

[BA08] B. Bahrak and M. R. Aref. Impossible differential attack on seven-round AES-128.
In: IET Information Security 2.2 (2008), pp. 28–32. doi: 10.1049/iet-ifs:20070078
(p. 38).

[BB02] E. Barkan and E. Biham. In How Many Ways Can You Write Rijndael? In: Advances
in Cryptology – ASIACRYPT 2002. Ed. by Y. Zheng. Vol. 2501. LNCS. Springer,
2002, pp. 160–175. doi: 10.1007/3-540-36178-2_10 (p. 47).

[BBBF18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable Delay Functions. In: Advances
in Cryptology – CRYPTO 2018. Ed. by H. Shacham and A. Boldyreva. Vol. 10991.
LNCS. Springer, 2018, pp. 757–788. doi: 10.1007/978-3-319-96884-1_25 (p. 210).

[BBD+98] E. Biham, A. Biryukov, O. Dunkelman, E. Richardson, and A. Shamir. Initial Observa-
tions on Skipjack: Cryptanalysis of Skipjack-3XOR. In: Selected Areas in Cryptography
- SAC 1998. Ed. by S. E. Tavares and H. Meijer. Vol. 1556. LNCS. Springer, 1998,
pp. 362–376. doi: 10.1007/3-540-48892-8_27 (pp. 44, 108).

[BBHR18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046. https://eprint.iacr.org/2018/046. 2018 (p. 210).

273

https://doi.org/10.1007/978-3-642-32009-5_4
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1145/3133956.3134104
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1049/iet-ifs:20070078
https://doi.org/10.1007/3-540-36178-2_10
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-48892-8_27
https://eprint.iacr.org/2018/046

References

[BBI+15] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F.
Regazzoni. Midori: A Block Cipher for Low Energy. In: Advances in Cryptology –
ASIACRYPT 2015. Ed. by T. Iwata and J. H. Cheon. Vol. 9453. LNCS. Springer,
2015, pp. 411–436. doi: 10.1007/978-3-662-48800-3_17 (pp. 98, 99).

[BBK14] A. Biryukov, C. Bouillaguet, and D. Khovratovich. Cryptographic Schemes Based on
the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Abstract).
In: Advances in Cryptology – ASIACRYPT 2014. Ed. by P. Sarkar and T. Iwata.
Vol. 8873. LNCS. Springer, 2014, pp. 63–84. doi: 10.1007/978-3-662-45611-8_4

(p. 135).

[BBS99] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Advances in Cryptology – EUROCRYPT
1999. Ed. by J. Stern. Vol. 1592. LNCS. Springer, 1999, pp. 12–23. doi: 10.1007/3-
540-48910-X_2 (pp. 2, 37, 226, 252).

[BC16] C. Boura and A. Canteaut. Another View of the Division Property. In: Advances in
Cryptology – CRYPTO 2016. Ed. by M. Robshaw and J. Katz. Vol. 9814. LNCS.
Springer, 2016, pp. 654–682. doi: 10.1007/978-3-662-53018-4_24 (p. 42).

[BC86] G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Circuits. In:
Advances in Cryptology – CRYPTO 1986. Ed. by A. M. Odlyzko. Vol. 263. LNCS.
Springer, 1986, pp. 223–233. doi: 10.1007/3-540-47721-7_16 (p. 17).

[BCBP03] A. Biryukov, C. D. Cannière, A. Braeken, and B. Preneel. A Toolbox for Cryptanalysis:
Linear and Affine Equivalence Algorithms. In: Advances in Cryptology – EUROCRYPT
2003. Ed. by E. Biham. Vol. 2656. LNCS. Springer, 2003, pp. 33–50. doi: 10.1007/3-
540-39200-9_3 (p. 47).

[BCC11] C. Boura, A. Canteaut, and C. D. Cannière. Higher-Order Differential Properties of
Keccak and Luffa. In: Fast Software Encryption – FSE 2011. Ed. by A. Joux. Vol. 6733.
LNCS. Springer, 2011, pp. 252–269. doi: 10.1007/978-3-642-21702-9_15 (pp. 42, 217,
223, 224, 271).

[BCC19] C. Boura, A. Canteaut, and D. Coggia. A General Proof Framework for Recent
AES Distinguishers. In: IACR Transactions on Symmetric Cryptology 2019.1 (2019),
pp. 170–191. doi: 10.13154/tosc.v2019.i1.170-191. url: https://tosc.iacr.org/
index.php/ToSC/article/view/7401 (pp. 68, 253).

[BCG+12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T.
Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In: Advances in Cryptology – ASIACRYPT 2012. Ed. by X.
Wang and K. Sako. Vol. 7658. LNCS. Springer, 2012, pp. 208–225. doi: 10.1007/978-
3-642-34961-4_14 (pp. 98, 99, 242).

[BCG+13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
Verifying Program Executions Succinctly and in Zero Knowledge. In: Advances in
Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Vol. 8043. LNCS.
Springer, 2013, pp. 90–108. doi: 10.1007/978-3-642-40084-1_6 (pp. 17, 197).

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized Anonymous Payments from Bitcoin. In: 2014 IEEE Symposium
on Security and Privacy – SP 2014. IEEE Computer Society, 2014, pp. 459–474. doi:
10.1109/SP.2014.36 (pp. 17, 197, 207).

274

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-45611-8_4
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-662-53018-4_24
https://doi.org/10.1007/3-540-47721-7_16
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.13154/tosc.v2019.i1.170-191
https://tosc.iacr.org/index.php/ToSC/article/view/7401
https://tosc.iacr.org/index.php/ToSC/article/view/7401
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1109/SP.2014.36

[BCLR17] C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. Proving Resistance Against
Invariant Attacks: How to Choose the Round Constants. In: Advances in Cryptology –
CRYPTO 2017. Ed. by J. Katz and H. Shacham. Vol. 10402. LNCS. Springer, 2017,
pp. 647–678. doi: 10.1007/978-3-319-63715-0_22 (pp. 49, 59, 60, 254).

[BDD+12] C. Bouillaguet, P. Derbez, O. Dunkelman, P. Fouque, N. Keller, and V. Rijmen. Low-
Data Complexity Attacks on AES. In: IEEE Trans. Information Theory 58.11 (2012),
pp. 7002–7017. doi: 10.1109/TIT.2012.2207880 (pp. 45, 261).

[BDD+15] A. Bar-On, I. Dinur, O. Dunkelman, V. Lallemand, N. Keller, and B. Tsaban. Crypt-
analysis of SP Networks with Partial Non-Linear Layers. In: Advances in Cryptology –
EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin. Vol. 9056. LNCS. Springer,
2015, pp. 315–342. doi: 10.1007/978-3-662-46800-5_13 (pp. 198, 240).

[BDF11] C. Bouillaguet, P. Derbez, and P. Fouque. Automatic Search of Attacks on Round-
Reduced AES and Applications. In: Advances in Cryptology – CRYPTO 2011. Ed. by
P. Rogaway. Vol. 6841. LNCS. Springer, 2011, pp. 169–187. doi: 10.1007/978-3-642-
22792-9_10 (p. 45).

[BDK+18] A. Bar-On, O. Dunkelman, N. Keller, E. Ronen, and A. Shamir. Improved Key Recovery
Attacks on Reduced-Round AES with Practical Data and Memory Complexities. In:
Advances in Cryptology – CRYPTO 2018. Ed. by H. Shacham and A. Boldyreva.
Vol. 10992. LNCS. Springer, 2018, pp. 185–212. doi: 10.1007/978-3-319-96881-0_7
(pp. 35, 110, 120).

[BDMW10] K. Browning, J. Dillon, M. McQuistan, and A. Wolfe. An APN permutation in
dimension six. In: 518 (Jan. 2010), pp. 33–42 (pp. 32, 77).

[BDOZ11] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic Encryption
and Multiparty Computation. In: Advances in Cryptology – EUROCRYPT 2011. Ed.
by K. G. Paterson. Vol. 6632. LNCS. Springer, 2011, pp. 169–188. doi: 10.1007/978-
3-642-20465-4_11 (p. 208).

[BDP00] J. Boyar, I. Damg̊ard, and R. Peralta. Short Non-Interactive Cryptographic Proofs. In:
Journal of Cryptology 13.4 (2000), pp. 449–472. doi: 10.1007/s001450010011 (p. 17).

[BDPA] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Note on zero-sum distinguishers
of Keccak-f. url: http://keccak.noekeon.org/NoteZeroSum.pdf (pp. 217, 224).

[BDPA07] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sponge functions. In: Ecrypt
Hash Workshop 2007. 2007. url: http://sponge.noekeon.org/SpongeFunctions.pdf
(pp. 19, 200, 215).

[BDPA08] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the Indifferentiability of
the Sponge Construction. In: Advances in Cryptology – EUROCRYPT 2008. Ed. by
N. P. Smart. Vol. 4965. LNCS. Springer, 2008, pp. 181–197. doi: 10.1007/978-3-540-
78967-3_11 (pp. 19, 20, 200, 215, 222, 224).

[BDPA11] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak reference. Submission
to NIST’s SHA-3 Competition (Round 3). 2011. url: http://keccak.noekeon.org/
Keccak-reference-3.0.pdf (p. 19).

[BEF18] D. Boneh, S. Eskandarian, and B. Fisch. Post-Quantum EPID Group Signatures
from Symmetric Primitives. Cryptology ePrint Archive, Report 2018/261. https:

//eprint.iacr.org/2018/261. 2018 (pp. 18, 268).

[BF09] G. Bourgeois and J. Faugère. Algebraic attack on NTRU using Witt vectors and
Gröbner bases. In: Journal of Mathematical Cryptology 3.3 (2009), pp. 205–214. doi:
10.1515/JMC.2009.011 (pp. 218, 257).

275

https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.1109/TIT.2012.2207880
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/s001450010011
http://keccak.noekeon.org/NoteZeroSum.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
https://eprint.iacr.org/2018/261
https://eprint.iacr.org/2018/261
https://doi.org/10.1515/JMC.2009.011

References

[BFM88] M. Blum, P. Feldman, and S. Micali. Proving Security Against Chosen Cyphertext
Attacks. In: Advances in Cryptology – CRYPTO 1988. Ed. by S. Goldwasser. Vol. 403.
LNCS. Springer, 1988, pp. 256–268. doi: 10.1007/0-387-34799-2_20 (p. 17).

[BFP12] L. Bettale, J. Faugère, and L. Perret. Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: International Symposium on Symbolic
and Algebraic Computation – ISSAC 2012. Ed. by J. van der Hoeven and M. van Hoeij.
ACM, 2012, pp. 67–74. doi: 10.1145/2442829.2442843 (pp. 218, 228, 256, 257).

[BFSY05] M. Bardet, J.-c. Faugère, B. Salvy, and B.-y. Yang. Asymptotic Behaviour of the
Degree of Regularity of Semi-Regular Polynomial Systems. In: The Effective Methods
in Algebraic Geometry Conference (MEGA). 2005, pp. 1–14 (p. 218).

[BG11] C. Blondeau and B. Gérard. Multiple Differential Cryptanalysis: Theory and Practice.
In: Fast Software Encryption – FSE 2011. Ed. by A. Joux. Vol. 6733. LNCS. Springer,
2011, pp. 35–54. doi: 10.1007/978-3-642-21702-9_3 (p. 108).

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryp-
tion without bootstrapping. In: Innovations in Theoretical Computer Science 2012.
Ed. by S. Goldwasser. ACM, 2012, pp. 309–325. doi: 10.1145/2090236.2090262 (p. 16).

[Bih93] E. Biham. New Types of Cryptanalytic Attacks Using related Keys (Extended Ab-
stract). In: Advances in Cryptology – EUROCRYPT 1993. Ed. by T. Helleseth. Vol. 765.
LNCS. Springer, 1993, pp. 398–409. doi: 10.1007/3-540-48285-7_34 (pp. 46, 250).

[Bih94] E. Biham. New Types of Cryptanalytic Attacks Using Related Keys. In: Journal of
Cryptology 7.4 (1994), pp. 229–246. doi: 10.1007/BF00203965 (p. 46).

[Bir04] A. Biryukov. The Boomerang Attack on 5 and 6-Round Reduced AES. In: Advanced
Encryption Standard - AES 2004. Ed. by H. Dobbertin, V. Rijmen, and A. Sowa.
Vol. 3373. LNCS. Springer, 2004, pp. 11–15. doi: 10.1007/11506447_2 (pp. 34, 35, 44).

[BJV04] T. Baignères, P. Junod, and S. Vaudenay. How Far Can We Go Beyond Linear
Cryptanalysis? In: Advances in Cryptology – ASIACRYPT 2004. Ed. by P. J. Lee.
Vol. 3329. LNCS. Springer, 2004, pp. 432–450. doi: 10.1007/978-3-540-30539-2_31
(p. 96).

[BK01] E. Biham and N. Keller. Cryptanalysis of Reduced Variants of Rijndael. unpublished.
http://csrc.nist.gov/archive/aes/round2/conf3/papers/35- ebiham.pdf. 2001
(pp. 3, 34, 35, 37, 58, 67, 252).

[BK07] A. Biryukov and D. Khovratovich. Two New Techniques of Side-Channel Cryptanalysis.
In: Cryptographic Hardware and Embedded Systems – CHES 2007. Ed. by P. Paillier
and I. Verbauwhede. Vol. 4727. LNCS. Springer, 2007, pp. 195–208. doi: 10.1007/978-
3-540-74735-2_14 (p. 58).

[BK09] A. Biryukov and D. Khovratovich. Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Advances in Cryptology – ASIACRYPT 2009. Ed. by M. Matsui.
Vol. 5912. LNCS. Springer, 2009, pp. 1–18. doi: 10.1007/978-3-642-10366-7_1 (p. 46).

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In:
Cryptographic Hardware and Embedded Systems – CHES 2007. Ed. by P. Paillier and
I. Verbauwhede. Vol. 4727. LNCS. Springer, 2007, pp. 450–466. doi: 10.1007/978-3-
540-74735-2_31 (pp. 98, 99).

[BKLT11] J. Borghoff, L. R. Knudsen, G. Leander, and S. S. Thomsen. Cryptanalysis of
PRESENT-Like Ciphers with Secret S-Boxes. In: Fast Software Encryption – FSE
2011. Ed. by A. Joux. Vol. 6733. LNCS. Springer, 2011, pp. 270–289. doi: 10.1007/978-
3-642-21702-9_16 (p. 135).

276

https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1145/2442829.2442843
https://doi.org/10.1007/978-3-642-21702-9_3
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/BF00203965
https://doi.org/10.1007/11506447_2
https://doi.org/10.1007/978-3-540-30539-2_31
http://csrc.nist.gov/archive/aes/round2/conf3/papers/35-ebiham.pdf
https://doi.org/10.1007/978-3-540-74735-2_14
https://doi.org/10.1007/978-3-540-74735-2_14
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-21702-9_16
https://doi.org/10.1007/978-3-642-21702-9_16

[BKN09] A. Biryukov, D. Khovratovich, and I. Nikolic. Distinguisher and Related-Key Attack
on the Full AES-256. In: Advances in Cryptology – CRYPTO 2009. Ed. by S. Halevi.
Vol. 5677. LNCS. Springer, 2009, pp. 231–249. doi: 10.1007/978-3-642-03356-8_14
(pp. 46, 157, 177, 178).

[BKR11] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the Full
AES. In: Advances in Cryptology – ASIACRYPT 2011. Ed. by D. H. Lee and X. Wang.
Vol. 7073. LNCS. Springer, 2011, pp. 344–371. doi: 10.1007/978-3-642-25385-0_19
(pp. 35, 39, 253).

[BKW93] T. Becker, H. Kredel, and V. Weispfenning. Gröbner bases: a computational approach
to commutative algebra. Springer-Verlag, 1993 (pp. 217, 256).

[BLN14] C. Blondeau, G. Leander, and K. Nyberg. Differential-Linear Cryptanalysis Revisited.
In: Fast Software Encryption – FSE 2014. Ed. by C. Cid and C. Rechberger. Vol. 8540.
LNCS. Springer, 2014, pp. 411–430. doi: 10.1007/978-3-662-46706-0_21 (pp. 2, 43,
50).

[BLN17] C. Blondeau, G. Leander, and K. Nyberg. Differential-Linear Cryptanalysis Revisited.
In: Journal of Cryptology 30.3 (2017), pp. 859–888. doi: 10.1007/s00145-016-9237-5.
url: https://doi.org/10.1007/s00145-016-9237-5 (pp. 2, 50).

[BLNS18] C. Boura, V. Lallemand, M. Naya-Plasencia, and V. Suder. Making the Impossible
Possible. In: Journal of Cryptology 31.1 (2018), pp. 101–133. doi: 10.1007/s00145-
016-9251-7 (pp. 3, 38).

[BLNW12] A. Bogdanov, G. Leander, K. Nyberg, and M. Wang. Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In: Advances in Cryptology – ASIACRYPT
2012. Ed. by X. Wang and K. Sako. Vol. 7658. LNCS. Springer, 2012, pp. 244–261.
doi: 10.1007/978-3-642-34961-4_16 (p. 43).

[BN13] C. Blondeau and K. Nyberg. New Links between Differential and Linear Cryptanalysis.
In: Advances in Cryptology – EUROCRYPT 2013. Ed. by T. Johansson and P. Q.
Nguyen. Vol. 7881. LNCS. Springer, 2013, pp. 388–404. doi: 10.1007/978-3-642-

38348-9_24 (p. 43).

[BN14] C. Blondeau and K. Nyberg. Links between Truncated Differential and Multidimen-
sional Linear Properties of Block Ciphers and Underlying Attack Complexities. In:
Advances in Cryptology – EUROCRYPT 2014. Ed. by P. Q. Nguyen and E. Oswald.
Vol. 8441. LNCS. Springer, 2014, pp. 165–182. doi: 10.1007/978-3-642-55220-5_10
(p. 43).

[BNS14] C. Boura, M. Naya-Plasencia, and V. Suder. Scrutinizing and Improving Impossible
Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon. In: Ad-
vances in Cryptology – ASIACRYPT 2014. Ed. by P. Sarkar and T. Iwata. Vol. 8873.
LNCS. Springer, 2014, pp. 179–199. doi: 10.1007/978-3-662-45611-8_10 (p. 226).

[BPP00] J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of Boolean
functions over the basis (cap, +, 1). In: Theor. Comput. Sci. 235.1 (2000), pp. 43–57.
doi: 10.1016/S0304-3975(99)00182-6 (p. 197).

[BPW15] C. Blondeau, T. Peyrin, and L. Wang. Known-Key Distinguisher on Full PRESENT.
In: Advances in Cryptology – CRYPTO 2015. Ed. by R. Gennaro and M. Robshaw.
Vol. 9215. LNCS. Springer, 2015, pp. 455–474. doi: 10.1007/978-3-662-47989-6_22
(p. 157).

[BS01] A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. In: Advances in
Cryptology – EUROCRYPT 2001. Ed. by B. Pfitzmann. Vol. 2045. LNCS. Springer,
2001, pp. 394–405. doi: 10.1007/3-540-44987-6_24 (pp. 4, 135, 136).

277

https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-662-46706-0_21
https://doi.org/10.1007/s00145-016-9237-5
https://doi.org/10.1007/s00145-016-9237-5
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.1007/978-3-642-55220-5_10
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1016/S0304-3975(99)00182-6
https://doi.org/10.1007/978-3-662-47989-6_22
https://doi.org/10.1007/3-540-44987-6_24

References

[BS10] A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. In: Journal of
Cryptology 23.4 (2010), pp. 505–518. doi: 10.1007/s00145-010-9062-1 (pp. 4, 135,
136).

[BS90] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In:
Advances in Cryptology – CRYPTO 1990. Ed. by A. Menezes and S. A. Vanstone.
Vol. 537. LNCS. Springer, 1990, pp. 2–21. doi: 10.1007/3-540-38424-3_1 (pp. 2, 27,
108, 203, 225, 250).

[BS91] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In:
Journal of Cryptology 4.1 (1991), pp. 3–72. doi: 10.1007/BF00630563 (pp. 2, 27).

[BS92] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-Round DES. In:
Advances in Cryptology – CRYPTO 1992. Ed. by E. F. Brickell. Vol. 740. LNCS.
Springer, 1992, pp. 487–496. doi: 10.1007/3-540-48071-4_34 (p. 27).

[BS93] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Standard.
Springer, 1993. doi: 10.1007/978-1-4613-9314-6 (pp. 2, 27, 203, 225, 250).

[BV05] T. Baignères and S. Vaudenay. Proving the Security of AES Substitution-Permutation
Network. In: Selected Areas in Cryptography - SAC 2005. Ed. by B. Preneel and
S. E. Tavares. Vol. 3897. LNCS. Springer, 2005, pp. 65–81. doi: 10.1007/11693383_5
(p. 135).

[BWP05] A. Braeken, C. Wolf, and B. Preneel. Normality of Vectorial Functions. In: Cryptog-
raphy and Coding – 10th IMA International Conference 2005. Ed. by N. P. Smart.
Vol. 3796. LNCS. Springer, 2005, pp. 186–200. doi: 10.1007/11586821_13 (pp. 62,
191).

[Car10] Carlet, Claude. Boolean Functions for Cryptography and Error-Correcting Codes. In:
Boolean Models and Methods in Mathematics, Computer Science, and Engineering.
Ed. by Crama, Yves and Hammer, Peter L.Editors. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2010, pp. 257–397. doi: 10.1017/
CBO9780511780448.011 (p. 31).

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and
R. Sirdey. Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext
Compression. In: Fast Software Encryption – FSE 2016. Ed. by T. Peyrin. Vol. 9783.
LNCS. Springer, 2016, pp. 313–333. doi: 10.1007/978-3-662-52993-5_16 (p. 198).

[CCZ98] C. Carlet, P. Charpin, and V. A. Zinoviev. Codes, Bent Functions and Permutations
Suitable For DES-like Cryptosystems. In: Des. Codes Cryptography 15.2 (1998),
pp. 125–156. doi: 10.1023/A:1008344232130 (pp. 31, 41, 251).

[CDG+17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D.
Slamanig, and G. Zaverucha. Post-Quantum Zero-Knowledge and Signatures from
Symmetric-Key Primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security – CCS 2017. Ed. by B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu. ACM, 2017, pp. 1825–1842. doi: 10.1145/3133956.
3133997 (pp. 17, 237, 263, 268).

[CDK+18] B. Cogliati, Y. Dodis, J. Katz, J. Lee, J. P. Steinberger, A. Thiruvengadam, and
Z. Zhang. Provable Security of (Tweakable) Block Ciphers Based on Substitution-
Permutation Networks. In: CRYPTO 2018. Ed. by H. Shacham and A. Boldyreva.
Vol. 10991. LNCS. Springer, 2018, pp. 722–753. doi: 10.1007/978-3-319-96884-1_24
(p. 271).

278

https://doi.org/10.1007/s00145-010-9062-1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/11693383_5
https://doi.org/10.1007/11586821_13
https://doi.org/10.1017/CBO9780511780448.011
https://doi.org/10.1017/CBO9780511780448.011
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1023/A:1008344232130
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-319-96884-1_24

[CFG+17] C. Chaigneau, T. Fuhr, H. Gilbert, J. Jean, and J.-R. Reinhard. Cryptanalysis of
NORX v2.0. In: IACR Transactions on Symmetric Cryptology 2017.1 (Mar. 2017),
pp. 156–174. doi: 10.13154/tosc.v2017.i1.156-174. url: https://tosc.iacr.org/
index.php/ToSC/article/view/589 (p. 59).

[CFH+15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno,
and S. Zahur. Geppetto: Versatile Verifiable Computation. In: 2015 IEEE Symposium
on Security and Privacy – SP 2015. IEEE Computer Society, 2015, pp. 253–270. doi:
10.1109/SP.2015.23 (p. 207).

[CGH04] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In:
Journal ACM 51.4 (2004), pp. 557–594. doi: 10.1145/1008731.1008734 (pp. 158, 176).

[CKK+02] J. H. Cheon, M. Kim, K. Kim, L. Jung-Yeun, and S. Kang. Improved Impossible
Differential Cryptanalysis of Rijndael and Crypton. In: Information Security and
Cryptology – ICISC 2001. Ed. by K. Kim. Vol. 2288. LNCS. Springer, 2002, pp. 39–49.
doi: 10.1007/3-540-45861-1_4 (pp. 35, 37).

[CL05] C. Cid and G. Leurent. An Analysis of the XSL Algorithm. In: Advances in Cryptology
– ASIACRYPT 2005. Ed. by B. K. Roy. Vol. 3788. LNCS. Springer, 2005, pp. 333–352.
doi: 10.1007/11593447_18 (p. 40).

[CLT14] J. Coron, T. Lepoint, and M. Tibouchi. Scale-Invariant Fully Homomorphic Encryption
over the Integers. In: Public-Key Cryptography – PKC 2014. Ed. by H. Krawczyk.
Vol. 8383. LNCS. Springer, 2014, pp. 311–328. doi: 10.1007/978-3-642-54631-0_18
(p. 16).

[CMR05] C. Cid, S. Murphy, and M. J. B. Robshaw. Small Scale Variants of the AES. In: Fast
Software Encryption - FSE 2005. Ed. by H. Gilbert and H. Handschuh. Vol. 3557.
LNCS. Springer, 2005, pp. 145–162. doi: 10.1007/11502760_10 (pp. 90, 99, 113, 119,
130, 153, 155).

[CP02] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations. In: Advances in Cryptology – ASIACRYPT 2002. Ed. by Y. Zheng.
Vol. 2501. LNCS. Springer, 2002, pp. 267–287. doi: 10.1007/3-540-36178-2_17 (p. 39).

[CSCW17] T. Cui, L. Sun, H. Chen, and M. Wang. Statistical Integral Distinguisher with Multi-
structure and Its Application on AES. In: Information Security and Privacy – ACISP
2017. Ed. by J. Pieprzyk and S. Suriadi. Vol. 10342. LNCS. Springer, 2017, pp. 402–420.
doi: 10.1007/978-3-319-60055-0_21 (pp. 164, 170, 171).

[CV94] F. Chabaud and S. Vaudenay. Links Between Differential and Linear Cryptanalysis. In:
Advances in Cryptology – EUROCRYPT 1994. Ed. by A. D. Santis. Vol. 950. LNCS.
Springer, 1994, pp. 356–365. doi: 10.1007/BFb0053450 (pp. 31, 43).

[Dae95] J. Daemen. Cipher and Hash Function Design. Strategies based on linear and differential
cryptanalysis. PhD Thesis. Katholieke Universiteit Leuven. 1995. url: https://www.
esat.kuleuven.be/cosic/publications/thesis-6.pdf (p. 32).

[DDKS12] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Efficient Dissection of Composite
Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search
Problems. In: Advances in Cryptology – CRYPTO 2012. Ed. by R. Safavi-Naini and
R. Canetti. Vol. 7417. LNCS. Springer, 2012, pp. 719–740. doi: 10.1007/978-3-642-
32009-5_42 (p. 120).

[DEG+18] C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander, E. List, F. Mendel,
and C. Rechberger. Rasta: A Cipher with Low ANDdepth and Few ANDs per Bit.
Ed. by H. Shacham and A. Boldyreva. 2018. doi: 10.1007/978-3-319-96884-1_22
(pp. 198, 242).

279

https://doi.org/10.13154/tosc.v2017.i1.156-174
https://tosc.iacr.org/index.php/ToSC/article/view/589
https://tosc.iacr.org/index.php/ToSC/article/view/589
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/3-540-45861-1_4
https://doi.org/10.1007/11593447_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/3-540-36178-2_17
https://doi.org/10.1007/978-3-319-60055-0_21
https://doi.org/10.1007/BFb0053450
https://www.esat.kuleuven.be/cosic/publications/thesis-6.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-6.pdf
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-319-96884-1_22

References

[DEM15] C. Dobraunig, M. Eichlseder, and F. Mendel. Higher-Order Cryptanalysis of LowMC.
In: ICISC 2015. Ed. by S. Kwon and A. Yun. Vol. 9558. LNCS. Springer, 2015, pp. 87–
101. doi: 10.1007/978-3-319-30840-1_6 (p. 241).

[Der13] P. Derbez. Meet-in-the-Middle Attacks on AES. (Attaques par Rencontre par le
Milieu sur l’AES). PhD Thesis. École Normale Supérieure, Paris, France. 2013. url:
https://tel.archives-ouvertes.fr/tel-00918146 (p. 35).

[DF13] P. Derbez and P. Fouque. Exhausting Demirci-Selçuk Meet-in-the-Middle Attacks
Against Reduced-Round AES. In: Fast Software Encryption – FSE 2013. Ed. by S.
Moriai. Vol. 8424. LNCS. Springer, 2013, pp. 541–560. doi: 10.1007/978-3-662-43933-
3_28 (pp. 35, 39, 252).

[DFJ12] P. Derbez, P. Fouque, and J. Jean. Faster Chosen-Key Distinguishers on Reduced-
Round AES. In: Progress in Cryptology – INDOCRYPT 2012. Ed. by S. D. Galbraith
and M. Nandi. Vol. 7668. LNCS. Springer, 2012, pp. 225–243. doi: 10.1007/978-3-
642-34931-7_14 (pp. 177, 178).

[DFJ13] P. Derbez, P. Fouque, and J. Jean. Improved Key Recovery Attacks on Reduced-Round
AES in the Single-Key Setting. In: Advances in Cryptology – EUROCRYPT 2013.
Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. LNCS. Springer, 2013, pp. 371–387.
doi: 10.1007/978-3-642-38348-9_23 (p. 39).

[DGKN09] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous Multiparty
Computation: Theory and Implementation. In: Public Key Cryptography – PKC 2009.
Ed. by S. Jarecki and G. Tsudik. Vol. 5443. LNCS. Springer, 2009, pp. 160–179. doi:
10.1007/978-3-642-00468-1_10 (p. 208).

[DK10] I. Damg̊ard and M. Keller. Secure Multiparty AES. In: Financial Cryptography and
Data Security – FC 2010. Ed. by R. Sion. Vol. 6052. LNCS. Springer, 2010, pp. 367–374.
doi: 10.1007/978-3-642-14577-3_31 (p. 16).

[DKL+12] I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing AES
via an Actively/Covertly Secure Dishonest-Majority MPC Protocol. In: Security and
Cryptography for Networks – SCN 2012. Ed. by I. Visconti and R. D. Prisco. Vol. 7485.
LNCS. Springer, 2012, pp. 241–263. doi: 10.1007/978-3-642-32928-9_14 (p. 16).

[DKP+19] I. Dinur, D. Kales, A. Promitzer, S. Ramacher, and C. Rechberger. Linear Equiva-
lence of Block Ciphers with Partial Non-Linear Layers: Application to LowMC. In:
EUROCRYPT. to Appear. 2019 (pp. 246, 269).

[DKR97] J. Daemen, L. R. Knudsen, and V. Rijmen. The Block Cipher Square. In: Fast Software
Encryption – FSE 1997. Ed. by E. Biham. Vol. 1267. LNCS. Springer, 1997, pp. 149–
165. doi: 10.1007/BFb0052343 (pp. 2, 34, 67, 120, 169, 254, 271).

[DKS10] O. Dunkelman, N. Keller, and A. Shamir. Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Advances in Cryptology – ASIACRYPT 2010. Ed. by M.
Abe. Vol. 6477. LNCS. Springer, 2010, pp. 158–176. doi: 10.1007/978-3-642-17373-
8_10 (p. 38).

[DLMW15] I. Dinur, Y. Liu, W. Meier, and Q. Wang. Optimized Interpolation Attacks on LowMC.
In: Advances in Cryptology – ASIACRYPT 2015. Ed. by T. Iwata and J. H. Cheon.
Vol. 9453. LNCS. Springer, 2015, pp. 535–560. doi: 10.1007/978-3-662-48800-3_22
(p. 241).

[DM95] D. W. Davies and S. Murphy. Pairs and Triplets of DES S-Boxes. In: Journal of
Cryptology 8.1 (1995), pp. 1–25. doi: 10.1007/BF00204799 (p. 47).

[DPAR00] J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Nessie Proposal: the block
cipher Noekeon. Nessie submission. http://gro.noekeon.org/. 2000 (pp. 98, 99).

280

https://doi.org/10.1007/978-3-319-30840-1_6
https://tel.archives-ouvertes.fr/tel-00918146
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-642-34931-7_14
https://doi.org/10.1007/978-3-642-34931-7_14
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-14577-3_31
https://doi.org/10.1007/978-3-642-32928-9_14
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/BF00204799
http://gro.noekeon.org/

[DPSZ12] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation from
Somewhat Homomorphic Encryption. In: Advances in Cryptology – CRYPTO 2012.
Ed. by R. Safavi-Naini and R. Canetti. Vol. 7417. LNCS. Springer, 2012, pp. 643–662.
doi: 10.1007/978-3-642-32009-5_38 (p. 208).

[DR00] J. Daemen and V. Rijmen. Rijndael for AES. In: AES Candidate Conference. 2000,
pp. 343–348 (p. 25).

[DR01] J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In: Cryptography and
Coding – IMA International Conference. Ed. by B. Honary. Vol. 2260. LNCS. Springer,
2001, pp. 222–238. doi: 10.1007/3-540-45325-3_20 (pp. 31, 239).

[DR02a] J. Daemen and V. Rijmen. Security of a Wide Trail Design. In: Progress in Cryptology
– INDOCRYPT 2002. Ed. by A. Menezes and P. Sarkar. Vol. 2551. LNCS. Springer,
2002, pp. 1–11. doi: 10.1007/3-540-36231-2_1 (pp. 31, 239).

[DR02b] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002. doi: 10.1007/978-
3-662-04722-4 (pp. 1, 2, 25, 34, 35, 239).

[DR06] J. Daemen and V. Rijmen. Understanding Two-Round Differentials in AES. In:
Security and Cryptography for Networks – SCN 2006. Ed. by R. D. Prisco and M.
Yung. Vol. 4116. LNCS. Springer, 2006, pp. 78–94. doi: 10.1007/11832072_6 (pp. 33,
34, 47).

[DR98] J. Daemen and V. Rijmen. The Block Cipher Rijndael. In: Smart Card Research and
Applications – CARDIS 1998. Ed. by J. Quisquater and B. Schneier. Vol. 1820. LNCS.
Springer, 1998, pp. 277–284. doi: 10.1007/10721064_26 (pp. 25, 34).

[DRS18a] D. Derler, S. Ramacher, and D. Slamanig. Generic Double-Authentication Preventing
Signatures and a Post-quantum Instantiation. In: Provable Security – ProvSec 2018.
Ed. by J. Baek, W. Susilo, and J. Kim. Vol. 11192. LNCS. Springer, 2018, pp. 258–276.
doi: 10.1007/978-3-030-01446-9_15 (pp. 18, 268).

[DRS18b] D. Derler, S. Ramacher, and D. Slamanig. Post-Quantum Zero-Knowledge Proofs for
Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives.
In: Post-Quantum Cryptography - PQCrypto 2018. Ed. by T. Lange and R. Steinwandt.
Vol. 10786. LNCS. Springer, 2018, pp. 419–440. doi: 10.1007/978-3-319-79063-3_20
(pp. 18, 268).

[DS08] H. Demirci and A. A. Selçuk. A Meet-in-the-Middle Attack on 8-Round AES. In: Fast
Software Encryption – FSE 2008. Ed. by K. Nyberg. Vol. 5086. LNCS. Springer, 2008,
pp. 116–126. doi: 10.1007/978-3-540-71039-4_7 (p. 38).

[DTÇB09] H. Demirci, İ. Taşkın, M. Çoban, and A. Baysal. Improved Meet-in-the-Middle Attacks
on AES. In: Progress in Cryptology – INDOCRYPT 2009. Ed. by B. Roy and N.
Sendrier. Vol. 5922. LNCS. Springer, 2009, pp. 144–156. doi: 10.1007/978-3-642-

10628-6_10 (p. 38).

[Eic18] M. Eichlseder. Differential Cryptanalysis of Symmetric Primitives. PhD Thesis. IAIK,
Graz University of Technology (Austria). 2018 (p. 9).

[FJP13] P. Fouque, J. Jean, and T. Peyrin. Structural Evaluation of AES and Chosen-Key
Distinguisher of 9-Round AES-128. In: Advances in Cryptology – CRYPTO 2013.
Ed. by R. Canetti and J. A. Garay. Vol. 8042. LNCS. Springer, 2013, pp. 183–203.
doi: 10.1007/978-3-642-40041-4_11 (pp. 177, 178).

281

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/3-540-36231-2_1
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11832072_6
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-030-01446-9_15
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-642-10628-6_10
https://doi.org/10.1007/978-3-642-10628-6_10
https://doi.org/10.1007/978-3-642-40041-4_11

References

[FKL+00] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. A. Wagner, and D. Whiting.
Improved Cryptanalysis of Rijndael. In: Fast Software Encryption – FSE 2000. Ed. by
B. Schneier. Vol. 1978. LNCS. Springer, 2000, pp. 213–230. doi: 10.1007/3-540-44706-
7_15 (pp. 35, 36).

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Advances in Cryptology – CRYPTO 1986. Ed. by A. M.
Odlyzko. Vol. 263. LNCS. Springer, 1986, pp. 186–194. doi: 10.1007/3-540-47721-7_12
(p. 18).

[FSW01] N. Ferguson, R. Schroeppel, and D. Whiting. A Simple Algebraic Representation of
Rijndael. In: Selected Areas in Cryptography – SAC 2001. Ed. by S. Vaudenay and A. M.
Youssef. Vol. 2259. LNCS. Springer, 2001, pp. 103–111. doi: 10.1007/3-540-45537-X_8
(pp. 39, 47).

[GC94] H. Gilbert and P. Chauvaud. A Chosen Plaintext Attack of the 16-round Khufu
Cryptosystem. In: Advances in Cryptology – CRYPTO 1994. Ed. by Y. Desmedt.
Vol. 839. LNCS. Springer, 1994, pp. 359–368. doi: 10.1007/3-540-48658-5_33 (p. 135).

[GGNS13] B. Gérard, V. Grosso, M. Naya-Plasencia, and F. Standaert. Block Ciphers That Are
Easier to Mask: How Far Can We Go? In: Cryptographic Hardware and Embedded
Systems – CHES 2013. Ed. by G. Bertoni and J. Coron. Vol. 8086. LNCS. Springer,
2013, pp. 383–399. doi: 10.1007/978-3-642-40349-1_22 (pp. 3, 198, 240).

[Gil14] H. Gilbert. A Simplified Representation of AES. In: Advances in Cryptology – ASI-
ACRYPT 2014. Ed. by P. Sarkar and T. Iwata. Vol. 8873. LNCS. Springer, 2014,
pp. 200–222. doi: 10.1007/978-3-662-45611-8_11 (pp. 4, 48, 159, 164–166, 168–172,
174, 175).

[GJN+16] J. Guo, J. Jean, I. Nikolic, K. Qiao, Y. Sasaki, and S. Sim. Invariant Subspace Attack
Against Midori64 and The Resistance Criteria for S-box Designs. In: IACR Transactions
on Symmetric Cryptology 2016.1 (Dec. 2016), pp. 33–56. doi: 10.13154/tosc.v2016.
i1.33-56. url: https://tosc.iacr.org/index.php/ToSC/article/view/534 (p. 49).

[GLR+18] L. Grassi, G. Leander, C. Rechberger, C. Tezcan, and F. Wiemer. Weak-Key Subspace
Trails and Applications to AES. In Submission. 2018 (pp. 52, 59, 61, 177–179, 182,
183, 186).

[GLR+19] L. Grassi, R. Lueftenegger, S. Ramacher, C. Rechberger, D. Rotaru, and M. Schofnegger.
On a Generalization of Substitution-Permutation Networks: The HADES Design
Strategy. In Submission. 2019 (pp. 6, 239, 241, 243, 245, 249, 255, 259, 266–268).

[GM16] S. Gueron and N. Mouha. Simpira v2: A Family of Efficient Permutations Using the
AES Round Function. In: Advances in Cryptology – ASIACRYPT 2016. Ed. by J. H.
Cheon and T. Takagi. Vol. 10031. LNCS. 2016, pp. 95–125. doi: 10.1007/978-3-662-
53887-6_4 (p. 3).

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. ZKBoo: Faster Zero-Knowledge for Boolean
Circuits. In: 25th USENIX Security Symposium – USENIX Security 2016. Ed. by
T. Holz and S. Savage. USENIX Association, 2016, pp. 1069–1083 (pp. 17, 18, 268).

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems (Extended Abstract). In: ACM Symposium on Theory of Computing –
STOC 1985. Ed. by R. Sedgewick. ACM, 1985, pp. 291–304. doi: 10.1145/22145.22178
(p. 17).

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. In: SIAM J. Comput. 18.1 (1989), pp. 186–208. doi: 10.1137/0218012
(p. 17).

282

https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-45537-X_8
https://doi.org/10.1007/3-540-48658-5_33
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-662-45611-8_11
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://tosc.iacr.org/index.php/ToSC/article/view/534
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1145/22145.22178
https://doi.org/10.1137/0218012

[GNL11] Z. Gong, S. Nikova, and Y. W. Law. KLEIN: A New Family of Lightweight Block
Ciphers. In: RFID. Security and Privacy - RFIDSec 2011. Ed. by A. Juels and C. Paar.
Vol. 7055. LNCS. Springer, 2011, pp. 1–18. doi: 10.1007/978-3-642-25286-0_1 (pp. 98,
99).

[GNPW13] J. Guo, I. Nikolic, T. Peyrin, and L. Wang. Cryptanalysis of Zorro. Cryptology ePrint
Archive, Report 2013/713. https://eprint.iacr.org/2013/713. 2013 (pp. 59, 240).

[GP10] H. Gilbert and T. Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Fast Software Encryption – FSE 2010. Ed. by S. Hong and T. Iwata.
Vol. 6147. LNCS. Springer, 2010, pp. 365–383. doi: 10.1007/978-3-642-13858-4_21
(pp. 47, 164, 165, 170, 172, 177).

[GPPR11] J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED Block Cipher. In:
Cryptographic Hardware and Embedded Systems – CHES 2011. Ed. by B. Preneel
and T. Takagi. Vol. 6917. LNCS. Springer, 2011, pp. 326–341. doi: 10.1007/978-3-
642-23951-9_22 (p. 3).

[GR17] L. Grassi and C. Rechberger. New and Old Limits for AES Known-Key Distinguishers.
Cryptology ePrint Archive, Report 2017/255. In Submission. 2017. url: https://

eprint.iacr.org/2017/255 (pp. 164, 170–176).

[GR18] L. Grassi and C. Rechberger. New Rigorous Analysis of Truncated Differentials for
5-round AES. Cryptology ePrint Archive, Report 2018/182. https://eprint.iacr.

org/2018/182. 2018 (pp. 34, 35, 67, 74, 85, 86, 90, 98, 99).

[Gra17a] L. Grassi. MixColumns Properties and Attacks on (round-reduced) AES with a Single
Secret S-Box. Cryptology ePrint Archive, Report 2017/1200. https://eprint.iacr.
org/2017/1200. 2017 (pp. 152, 155).

[Gra17b] L. Grassi. Mixture Differential Cryptanalysis and Structural Truncated Differential
Attacks on round-reduced AES. Cryptology ePrint Archive, Report 2017/832. https:
//eprint.iacr.org/2017/832. 2017 (pp. 34, 35, 75, 107, 109–111, 123, 127–129).

[Gra18a] L. Grassi. MixColumns Properties and Attacks on (Round-Reduced) AES with a
Single Secret S-Box. In: Topics in Cryptology - CT-RSA 2018. Ed. by N. P. Smart.
Vol. 10808. LNCS. Springer, 2018, pp. 243–263. doi: 10.1007/978-3-319-76953-0_13
(pp. 136, 137, 140, 141, 148, 149, 151, 154).

[Gra18b] L. Grassi. Mixture Differential Cryptanalysis: a New Approach to Distinguishers and
Attacks on round-reduced AES. In: IACR Transaction on Symmetric Cryptology
2018.2 (2018), pp. 133–160. doi: 10.13154/tosc.v2018.i2.133- 160. url: https:

//doi.org/10.13154/tosc.v2018.i2.133-160 (pp. 34, 35, 75, 107, 110, 111, 253).

[GRR+16] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. MPC-Friendly
Symmetric Key Primitives. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. Ed. by E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi. ACM, 2016, pp. 430–443. doi: 10.1145/

2976749.2978332 (pp. 207–209, 267).

[GRR16] L. Grassi, C. Rechberger, and S. Rønjom. Subspace Trail Cryptanalysis and its
Applications to AES. In: IACR Trans. Symmetric Cryptol. 2016.2 (2016), pp. 192–225.
doi: 10.13154/tosc.v2016.i2.192-225 (pp. 45–47, 49, 50, 53–55, 57, 136–139, 144,
148, 149, 172).

283

https://doi.org/10.1007/978-3-642-25286-0_1
https://eprint.iacr.org/2013/713
https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://eprint.iacr.org/2017/255
https://eprint.iacr.org/2017/255
https://eprint.iacr.org/2018/182
https://eprint.iacr.org/2018/182
https://eprint.iacr.org/2017/1200
https://eprint.iacr.org/2017/1200
https://eprint.iacr.org/2017/832
https://eprint.iacr.org/2017/832
https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.1145/2976749.2978332
https://doi.org/10.1145/2976749.2978332
https://doi.org/10.13154/tosc.v2016.i2.192-225

References

[GRR17] L. Grassi, C. Rechberger, and S. Rønjom. A New Structural-Differential Property of
5-Round AES. In: Advances in Cryptology – EUROCRYPT 2017. Ed. by J. Coron
and J. B. Nielsen. Vol. 10211. LNCS. Springer, 2017, pp. 289–317. doi: 10.1007/978-
3-319-56614-6_10 (pp. 34, 35, 67–69, 73, 75, 86, 107, 108, 110, 113–115, 120, 177, 179,
253).

[HCGW18] K. Hu, T. Cui, C. Gao, and M. Wang. Towards Key-Dependent Integral and Impossible
Differential Distinguishers on 5-Round AES. In: Selected Areas in Cryptography – SAC
2018. Ed. by C. Cid and M. J. J. Jr. Vol. 11349. LNCS. Springer, 2018, pp. 139–162
(p. 136).

[HS14] S. Halevi and V. Shoup. Algorithms in HElib. In: Advances in Cryptology – CRYPTO
2014. Ed. by J. A. Garay and R. Gennaro. Vol. 8616. LNCS. Springer, 2014, pp. 554–
571. doi: 10.1007/978-3-662-44371-2_31 (p. 16).

[IBM] IBM. The MARS Encryption Algorithm. Submitted to AES Process (p. 242).

[IKOS09] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-Knowledge Proofs from
Secure Multiparty Computation. In: SIAM J. Comput. 39.3 (2009), pp. 1121–1152.
doi: 10.1137/080725398 (p. 17).

[Jea16a] J. Jean. Cryptanalysis of Haraka. In: IACR Transactions on Symmetric Cryptology
2016.1 (Dec. 2016), pp. 1–12. doi: 10.13154/tosc.v2016.i1.1- 12. url: https:

//tosc.iacr.org/index.php/ToSC/article/view/531 (p. 49).

[Jea16b] J. Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/. 2016 (pp. 11,
12, 26).

[JK97] T. Jakobsen and L. R. Knudsen. The Interpolation Attack on Block Ciphers. In: Fast
Software Encryption – FSE 1997. Ed. by E. Biham. Vol. 1267. LNCS. Springer, 1997,
pp. 28–40. doi: 10.1007/BFb0052332 (pp. 2, 5, 39, 197, 201, 202, 221, 240, 249, 254).

[JKO13] M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: 2013 ACM SIGSAC Conference
on Computer and Communications Security – CCS 2013. Ed. by A. Sadeghi, V. D.
Gligor, and M. Yung. ACM, 2013, pp. 955–966. doi: 10.1145/2508859.2516662 (p. 17).

[JNP13] J. Jean, M. Naya-Plasencia, and T. Peyrin. Multiple Limited-Birthday Distinguishers
and Applications. In: Selected Areas in Cryptography – SAC 2013. Ed. by T. Lange,
K. E. Lauter, and P. Lisonek. Vol. 8282. LNCS. Springer, 2013, pp. 533–550. doi:
10.1007/978-3-662-43414-7_27 (pp. 164, 165, 170, 171, 177).

[Ker83] A. Kerckhoffs. La cryptographie militaire. In: Journal des sciences militaires IX (1883),
pp. 5–83 (p. 9).

[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved Non-Interactive Zero Knowledge
with Applications to Post-Quantum Signatures. Cryptology ePrint Archive, Report
2018/475. https://eprint.iacr.org/2018/475. 2018 (pp. 17, 18, 268).

[KLMR16] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger. Haraka v2 - Efficient Short-
Input Hashing for Post-Quantum Applications. In: IACR Trans. Symmetric Cryptol.
2016.2 (2016), pp. 1–29. url: https://doi.org/10.13154/tosc.v2016.i2.1-29 (p. 3).

[KLPS17] K. Khoo, E. Lee, T. Peyrin, and S. M. Sim. Human-readable Proof of the Related-Key
Security of AES-128. In: IACR Transactions of Symmetric Cryptology 2017.2 (2017),
pp. 59–83. doi: 10.13154/tosc.v2017.i2.59-83. url: https://doi.org/10.13154/

tosc.v2017.i2.59-83 (pp. 59, 60).

284

https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1137/080725398
https://doi.org/10.13154/tosc.v2016.i1.1-12
https://tosc.iacr.org/index.php/ToSC/article/view/531
https://tosc.iacr.org/index.php/ToSC/article/view/531
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1007/978-3-662-43414-7_27
https://eprint.iacr.org/2018/475
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://doi.org/10.13154/tosc.v2017.i2.59-83
https://doi.org/10.13154/tosc.v2017.i2.59-83
https://doi.org/10.13154/tosc.v2017.i2.59-83

[KMT01] L. Keliher, H. Meijer, and S. Tavares. Improving the Upper Bound on the Maximum
Average Linear Hull Probability for Rijndael. In: Selected Areas in Cryptography –
SAC 2001. Ed. by S. Vaudenay and A. M. Youssef. Vol. 2259. LNCS. Springer, 2001,
pp. 112–128. doi: 10.1007/3-540-45537-X_9 (p. 33).

[Knu94] L. R. Knudsen. Truncated and Higher Order Differentials. In: Fast Software Encryption
– FSE 1994. Ed. by B. Preneel. Vol. 1008. LNCS. Springer, 1994, pp. 196–211. doi:
10.1007/3-540-60590-8_16 (pp. 2, 36, 40, 108, 124, 202, 222, 225, 240, 251, 260).

[Knu98] L. R. Knudsen. DEAL - A 128-bit Block Cipher. Technical Report 151, Department
of Informatics, University of Bergen, Norway. Feb. 1998 (pp. 2, 37, 108, 226, 252).

[KPP+17] D. Kales, L. Perrin, A. Promitzer, S. Ramacher, and C. Rechberger. Improvements to
the Linear Operations of LowMC: A Faster Picnic. Cryptology ePrint Archive, Report
2017/1148. https://eprint.iacr.org/2017/1148. 2017 (p. 246).

[KR07] L. R. Knudsen and V. Rijmen. Known-Key Distinguishers for Some Block Ciphers. In:
Advances in Cryptology – ASIACRYPT 2007. Ed. by K. Kurosawa. Vol. 4833. LNCS.
Springer, 2007, pp. 315–324. doi: 10.1007/978-3-540-76900-2_19 (pp. 157, 164, 250).

[KR11] L. R. Knudsen and M. Robshaw. The Block Cipher Companion. Information Security
and Cryptography. Springer, 2011. doi: 10.1007/978-3-642-17342-4 (pp. 5, 9, 198,
238).

[KRS12] D. Khovratovich, C. Rechberger, and A. Savelieva. Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In: Fast Software Encryption – FSE 2012. Ed. by
A. Canteaut. Vol. 7549. LNCS. Springer, 2012, pp. 244–263. doi: 10.1007/978-3-642-
34047-5_15 (p. 39).

[KS08] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and
Applications. In: Automata, Languages and Programming – ICALP 2008. Ed. by
L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I.
Walukiewicz. Vol. 5126. LNCS. Springer, 2008, pp. 486–498. doi: 10.1007/978-3-540-
70583-3_40 (p. 17).

[KSS13] M. Keller, P. Scholl, and N. P. Smart. An architecture for practical actively secure
MPC with dishonest majority. In: 2013 ACM SIGSAC Conference on Computer and
Communications Security – CCS 2013. Ed. by A. Sadeghi, V. D. Gligor, and M. Yung.
ACM, 2013, pp. 549–560. doi: 10.1145/2508859.2516744 (pp. 235, 267).

[KW02] L. R. Knudsen and D. A. Wagner. Integral Cryptanalysis. In: Fast Software Encryption
– FSE 2002. Ed. by J. Daemen and V. Rijmen. Vol. 2365. LNCS. Springer, 2002, pp. 112–
127. doi: 10.1007/3-540-45661-9_9 (pp. 2, 34, 67, 120, 169).

[LAAZ11] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. A Cryptanalysis of
PRINTcipher: The Invariant Subspace Attack. In: Advances in Cryptology – CRYPTO
2011. Ed. by P. Rogaway. Vol. 6841. LNCS. Springer, 2011, pp. 206–221. doi: 10.1007/
978-3-642-22792-9_12 (pp. 3, 48, 49, 254).

[Lai94] X. Lai. Higher Order Derivatives and Differential Cryptanalysis. In: Communications
and Cryptography: Two Sides of One Tapestry. Ed. by R. E. Blahut, D. J. Costello,
U. Maurer, and T. Mittelholzer. Springer US, 1994, pp. 227–233. doi: 10.1007/978-1-
4615-2694-0_23 (pp. 40, 41).

[LDKK08] J. Lu, O. Dunkelman, N. Keller, and J. Kim. New Impossible Differential Attacks on
AES. In: Progress in Cryptology – INDOCRYPT 2008. Ed. by D. R. Chowdhury, V.
Rijmen, and A. Das. Vol. 5365. LNCS. Springer, 2008, pp. 279–293. doi: 10.1007/978-
3-540-89754-5_22 (p. 38).

285

https://doi.org/10.1007/3-540-45537-X_9
https://doi.org/10.1007/3-540-60590-8_16
https://eprint.iacr.org/2017/1148
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1145/2508859.2516744
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/978-3-540-89754-5_22

References

[Lea11] G. Leander. On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Crypt-
analysis of PUFFIN. In: Advances in Cryptology – EUROCRYPT 2011. Ed. by K. G.
Paterson. Vol. 6632. LNCS. Springer, 2011, pp. 303–322. doi: 10.1007/978-3-642-
20465-4_18 (p. 43).

[LH94] S. K. Langford and M. E. Hellman. Differential-Linear Cryptanalysis. In: Advances in
Cryptology – CRYPTO 1994. Ed. by Y. Desmedt. Vol. 839. LNCS. Springer, 1994,
pp. 17–25. doi: 10.1007/3-540-48658-5_3 (p. 2).

[LMM91] X. Lai, J. L. Massey, and S. Murphy. Markov Ciphers and Differential Cryptanalysis.
In: Advances in Cryptology – EUROCRYPT 1991. Ed. by D. W. Davies. Vol. 547.
LNCS. Springer, 1991, pp. 17–38. doi: 10.1007/3-540-46416-6_2 (p. 29).

[LMR+09] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Advances in
Cryptology – ASIACRYPT 2009. Ed. by M. Matsui. Vol. 5912. LNCS. Springer, 2009,
pp. 126–143. doi: 10.1007/978-3-642-10366-7_8 (pp. 47, 164).

[LMR15] G. Leander, B. Minaud, and S. Rønjom. A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In: Advances in Cryptology –
EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin. Vol. 9056. LNCS. Springer,
2015, pp. 254–283. doi: 10.1007/978-3-662-46800-5_11 (pp. 3, 48, 49).

[LMS+15] M. Lamberger, F. Mendel, M. Schläffer, C. Rechberger, and V. Rijmen. The Re-
bound Attack and Subspace Distinguishers: Application to Whirlpool. In: Journal of
Cryptology 28.2 (2015), pp. 257–296. doi: 10.1007/s00145-013-9166-5 (pp. 47, 164).

[LP07] G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In: Arithmetic
of Finite Fields - WAIFI 2007. Ed. by C. Carlet and B. Sunar. Vol. 4547. LNCS.
Springer, 2007, pp. 159–176. doi: 10.1007/978-3-540-73074-3_13 (pp. 32, 77).

[LR88] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. In: SIAM Journal on Computing 17.2 (1988), pp. 373–386. doi:
10.1137/0217022 (p. 271).

[LSWD04] T. V. Le, R. Sparr, R. Wernsdorf, and Y. Desmedt. Complementation-Like and Cyclic
Properties of AES Round Functions. In: Advanced Encryption Standard - AES 2004.
Ed. by H. Dobbertin, V. Rijmen, and A. Sowa. Vol. 3373. LNCS. Springer, 2004,
pp. 128–141. doi: 10.1007/11506447_11 (p. 59).

[LTW18] G. Leander, C. Tezcan, and F. Wiemer. Searching for Subspace Trails and Truncated
Differentials. In: IACR Transactions on Symmetric Cryptology 2018.1 (2018), pp. 74–
100. doi: 10.13154/tosc.v2018.i1.74-100. url: https://doi.org/10.13154/tosc.

v2018.i1.74-100 (p. 50).

[Luc01] S. Lucks. The Saturation Attack - A Bait for Twofish. In: Fast Software Encryption
– FSE 2001. Ed. by M. Matsui. Vol. 2355. LNCS. Springer, 2001, pp. 1–15. doi:
10.1007/3-540-45473-X_1 (p. 34).

[LW17] C. Li and Q. Wang. Design of Lightweight Linear Diffusion Layers from Near-MDS
Matrices. In: IACR Trans. Symmetric Cryptol. 2017.1 (2017), pp. 129–155. doi:
10.13154/tosc.v2017.i1.129-155 (p. 245).

[Mat93] M. Matsui. Linear Cryptanalysis Method for DES Cipher. In: Advances in Cryptology –
EUROCRYPT 1993. Ed. by T. Helleseth. Vol. 765. LNCS. Springer, 1993, pp. 386–397.
doi: 10.1007/3-540-48285-7_33 (pp. 2, 30, 96, 203, 251).

[Mat94] M. Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard.
In: Advances in Cryptology – CRYPTO 1994. Ed. by Y. Desmedt. Vol. 839. LNCS.
Springer, 1994, pp. 1–11. doi: 10.1007/3-540-48658-5_1 (pp. 2, 30, 96).

286

https://doi.org/10.1007/978-3-642-20465-4_18
https://doi.org/10.1007/978-3-642-20465-4_18
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-642-10366-7_8
https://doi.org/10.1007/978-3-662-46800-5_11
https://doi.org/10.1007/s00145-013-9166-5
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1137/0217022
https://doi.org/10.1007/11506447_11
https://doi.org/10.13154/tosc.v2018.i1.74-100
https://doi.org/10.13154/tosc.v2018.i1.74-100
https://doi.org/10.13154/tosc.v2018.i1.74-100
https://doi.org/10.1007/3-540-45473-X_1
https://doi.org/10.13154/tosc.v2017.i1.129-155
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1

[Mat97] M. Matsui. New Block Encryption Algorithm MISTY. In: Fast Software Encryption
– FSE 1997. Ed. by E. Biham. Vol. 1267. LNCS. Springer, 1997, pp. 54–68. doi:
10.1007/BFb0052334 (p. 2).

[MDRM10] H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi. Improved Impos-
sible Differential Cryptanalysis of 7-Round AES-128. In: Progress in Cryptology –
INDOCRYPT 2010. Ed. by G. Gong and K. C. Gupta. Vol. 6498. LNCS. Springer,
2010, pp. 282–291. doi: 10.1007/978-3-642-17401-8_20 (pp. 35, 38).

[MJSC16] P. Méaux, A. Journault, F. Standaert, and C. Carlet. Towards Stream Ciphers for
Efficient FHE with Low-Noise Ciphertexts. In: Advances in Cryptology – EUROCRYPT
2016. Ed. by M. Fischlin and J. Coron. Vol. 9665. LNCS. Springer, 2016, pp. 311–343.
doi: 10.1007/978-3-662-49890-3_13 (p. 198).

[MN17] B. Mennink and S. Neves. Optimal PRFs from Blockcipher Designs. In: IACR Trans.
Symmetric Cryptol. 2017.3 (2017), pp. 228–252. doi: 10.13154/tosc.v2017.i3.228-252
(pp. 3, 193).

[MOV96] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1996 (p. 205).

[MP15] B. Mennink and B. Preneel. On the Impact of Known-Key Attacks on Hash Functions.
In: Advances in Cryptology – ASIACRYPT 2015. Ed. by T. Iwata and J. H. Cheon.
Vol. 9453. LNCS. Springer, 2015, pp. 59–84. doi: 10.1007/978-3-662-48800-3_3

(pp. 158, 162).

[MR02] S. Murphy and M. J. B. Robshaw. Essential Algebraic Structure within the AES. In:
Advances in Cryptology – CRYPTO 2002. Ed. by M. Yung. Vol. 2442. LNCS. Springer,
2002, pp. 1–16 (p. 47).

[MRST09] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Fast Software Encryption – FSE
2009. Ed. by O. Dunkelman. Vol. 5665. LNCS. Springer, 2009, pp. 260–276. doi:
10.1007/978-3-642-03317-9_16 (pp. 47, 164).

[MS78] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. 2nd. North-
holland Publishing Company, 1978 (pp. 32, 245).

[Mur11] S. Murphy. The Return of the Cryptographic Boomerang. In: IEEE Trans. Information
Theory 57.4 (2011), pp. 2517–2521. doi: 10.1109/TIT.2011.2111091 (p. 109).

[MVO96] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryptog-
raphy. CRC Press, Inc., 1996 (p. 9).

[Nik10] I. Nikolic. Tweaking AES. In: Selected Areas in Cryptography – SAC 2010. Ed. by A.
Biryukov, G. Gong, and D. R. Stinson. Vol. 6544. LNCS. Springer, 2010, pp. 198–210.
doi: 10.1007/978-3-642-19574-7_14 (p. 59).

[NK92] K. Nyberg and L. R. Knudsen. Provable Security Against Differential Cryptanalysis.
In: Advances in Cryptology – CRYPTO 1992. Ed. by E. F. Brickell. Vol. 740. LNCS.
Springer, 1992, pp. 566–574. doi: 10.1007/3-540-48071-4_41 (pp. 28, 225, 250).

[NK95] K. Nyberg and L. R. Knudsen. Provable Security Against a Differential Attack. In:
Journal of Cryptology 8.1 (1995), pp. 27–37. doi: 10.1007/BF00204800 (pp. 5, 28, 197).

[Nyb91] K. Nyberg. Perfect Nonlinear S-Boxes. In: Advances in Cryptology – EUROCRYPT
1991. Ed. by D. W. Davies. Vol. 547. LNCS. Springer, 1991, pp. 378–386. doi: 10.
1007/3-540-46416-6_32 (p. 77).

287

https://doi.org/10.1007/BFb0052334
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.13154/tosc.v2017.i3.228-252
https://doi.org/10.1007/978-3-662-48800-3_3
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1109/TIT.2011.2111091
https://doi.org/10.1007/978-3-642-19574-7_14
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/BF00204800
https://doi.org/10.1007/3-540-46416-6_32
https://doi.org/10.1007/3-540-46416-6_32

References

[Nyb94] K. Nyberg. S-boxes and Round Functions with Controllable Linearity and Differential
Uniformity. In: Fast Software Encryption - FSE 1994. Ed. by B. Preneel. Vol. 1008.
LNCS. Springer, 1994, pp. 111–130. doi: 10.1007/3-540-60590-8_9 (pp. 28, 203).

[Nyb96] K. Nyberg. Generalized Feistel Networks. In: Advances in Cryptology – ASIACRYPT
1996. Ed. by K. Kim and T. Matsumoto. Vol. 1163. LNCS. Springer, 1996, pp. 91–104.
doi: 10.1007/BFb0034838 (pp. 6, 211, 213).

[OCo93] L. O’Connor. On the Distribution of Characteristics in Bijective Mappings. In: Ad-
vances in Cryptology – EUROCRYPT 1993. Ed. by T. Helleseth. Vol. 765. LNCS.
Springer, 1993, pp. 360–370. doi: 10.1007/3-540-48285-7_31 (p. 135).

[OCo94] L. O’Connor. Properties of Linear Approximation Tables. In: Fast Software Encryption
- FSE 1994. Ed. by B. Preneel. Vol. 1008. LNCS. Springer, 1994, pp. 131–136. doi:
10.1007/3-540-60590-8_10 (p. 136).

[Pat03] J. Patarin. Luby-Rackoff: 7 Rounds Are Enough for 2n(1-epsilon)Security. In: CRYPTO
2003. Ed. by D. Boneh. Vol. 2729. LNCS. Springer, 2003, pp. 513–529. doi: 10.1007/978-
3-540-45146-4_30 (p. 271).

[Pat04] J. Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In: CRYPTO
2004. Ed. by M. K. Franklin. Vol. 3152. LNCS. Springer, 2004, pp. 106–122. doi:
10.1007/978-3-540-28628-8_7 (p. 271).

[Pha04] R. C. Phan. Impossible differential cryptanalysis of 7-round Advanced Encryption
Standard (AES). In: Inf. Process. Lett. 91.1 (2004), pp. 33–38. doi: 10.1016/j.ipl.
2004.02.018 (pp. 3, 37).

[PSC+02] S. Park, S. H. Sung, S. Chee, E. Yoon, and J. Lim. On the Security of Rijndael-Like
Structures against Differential and Linear Cryptanalysis. In: Advances in Cryptology –
ASIACRYPT 2002. Ed. by Y. Zheng. Vol. 2501. LNCS. Springer, 2002, pp. 176–191.
doi: 10.1007/3-540-36178-2_11 (p. 33).

[PSLL03] S. Park, S. H. Sung, S. Lee, and J. Lim. Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and AES.
In: Fast Software Encryption – FSE 2003. Ed. by T. Johansson. Vol. 2887. LNCS.
Springer, 2003, pp. 247–260. doi: 10.1007/978-3-540-39887-5_19 (p. 33).

[PSSW09] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure Two-Party Computa-
tion Is Practical. In: Advances in Cryptology – ASIACRYPT 2009. Ed. by M. Matsui.
Vol. 5912. LNCS. Springer, 2009, pp. 250–267. doi: 10.1007/978-3-642-10366-7_15
(p. 16).

[QSLG17] K. Qiao, L. Song, M. Liu, and J. Guo. New Collision Attacks on Round-Reduced
Keccak. In: Advances in Cryptology - EUROCRYPT 2017. Ed. by J. Coron and J. B.
Nielsen. Vol. 10212. LNCS. 2017, pp. 216–243. doi: 10.1007/978-3-319-56617-7_8
(p. 217).

[RBH17] S. Rønjom, N. G. Bardeh, and T. Helleseth. Yoyo Tricks with AES. In: Advances in
Cryptology – ASIACRYPT 2017. Ed. by T. Takagi and T. Peyrin. Vol. 10624. LNCS.
Springer, 2017, pp. 217–243. doi: 10.1007/978-3-319-70694-8_8 (pp. 34, 35, 44, 109,
115).

[RDP+96] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. D. Win. The Cipher SHARK.
In: Fast Software Encryption – FSE 1996. Ed. by D. Gollmann. Vol. 1039. LNCS.
Springer, 1996, pp. 99–111. doi: 10.1007/3-540-60865-6_47 (pp. 6, 239, 244).

[RSS17] D. Rotaru, N. P. Smart, and M. Stam. Modes of Operation Suitable for Computing
on Encrypted Data. In: IACR Trans. Symmetric Cryptol. 2017.3 (2017), pp. 294–324.
doi: 10.13154/tosc.v2017.i3.294-324 (p. 210).

288

https://doi.org/10.1007/3-540-60590-8_9
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/3-540-48285-7_31
https://doi.org/10.1007/3-540-60590-8_10
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1016/j.ipl.2004.02.018
https://doi.org/10.1016/j.ipl.2004.02.018
https://doi.org/10.1007/3-540-36178-2_11
https://doi.org/10.1007/978-3-540-39887-5_19
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.13154/tosc.v2017.i3.294-324

[RST18] C. Rechberger, H. Soleimany, and T. Tiessen. Cryptanalysis of Low-Data Instances
of Full LowMCv2. In: IACR Trans. Symmetric Cryptol. 2018.3 (2018), pp. 163–181.
doi: 10.13154/tosc.v2018.i3.163-181. url: https://doi.org/10.13154/tosc.v2018.
i3.163-181 (p. 241).

[SB02] A. A. Selçuk and A. Biçak. On Probability of Success in Linear and Differential
Cryptanalysis. In: Security in Communication Networks - SCN 2002. Ed. by S. Cimato,
C. Galdi, and G. Persiano. Vol. 2576. LNCS. Springer, 2002, pp. 174–185. doi: 10.
1007/3-540-36413-7_13 (pp. 30, 96).

[Sel08] A. A. Selçuk. On Probability of Success in Linear and Differential Cryptanalysis. In:
Journal of Cryptology 21.1 (2008), pp. 131–147. doi: 10.1007/s00145-007-9013-7

(pp. 30, 96).

[Sha49] C. E. Shannon. Communication theory of secrecy systems. In: Bell System Technical
Journal 28.4 (1949), pp. 656–715 (pp. 10, 11).

[Sho99] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. In: SIAM Review 41.2 (1999), pp. 303–332. doi:
10.1137/S0036144598347011 (p. 17).

[SLG+16] B. Sun, M. Liu, J. Guo, L. Qu, and V. Rijmen. New Insights on AES-Like SPN
Ciphers. In: Advances in Cryptology – CRYPTO 2016. Ed. by M. Robshaw and J.
Katz. Vol. 9814. LNCS. Springer, 2016, pp. 605–624. doi: 10.1007/978-3-662-53018-
4_22 (pp. 136, 137, 139).

[SLQL10] B. Sun, R. Li, L. Qu, and C. Li. SQUARE attack on block ciphers with low algebraic
degree. In: SCIENCE CHINA Information Sciences 53.10 (2010), pp. 1988–1995. doi:
10.1007/s11432-010-4061-2 (p. 43).

[SLR+15] B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. AlKhzaimi, and C. Li. Links
Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis.
In: Advances in Cryptology – CRYPTO 2015. Ed. by R. Gennaro and M. Robshaw.
Vol. 9215. LNCS. Springer, 2015, pp. 95–115. doi: 10.1007/978-3-662-47989-6_5

(p. 43).

[SM10] T. Suzaki and K. Minematsu. Improving the Generalized Feistel. In: Fast Software
Encryption – FSE 2010. Ed. by S. Hong and T. Iwata. Vol. 6147. LNCS. Springer,
2010, pp. 19–39. doi: 10.1007/978-3-642-13858-4_2 (p. 214).

[SMMK12] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Selected Areas in Cryptography – SAC 2012.
Ed. by L. R. Knudsen and H. Wu. Vol. 7707. LNCS. Springer, 2012, pp. 339–354. doi:
10.1007/978-3-642-35999-6_22 (p. 214).

[SY11] Y. Sasaki and K. Yasuda. Known-Key Distinguishers on 11-Round Feistel and Collision
Attacks on Its Hashing Modes. In: Fast Software Encryption – FSE 2011. Ed. by A. Joux.
Vol. 6733. LNCS. Springer, 2011, pp. 397–415. doi: 10.1007/978-3-642-21702-9_23
(p. 157).

[Tie16a] T. Tiessen. Polytopic Cryptanalysis. In: Advances in Cryptology – EUROCRYPT
2016. Ed. by M. Fischlin and J. Coron. Vol. 9665. LNCS. Springer, 2016, pp. 214–239.
doi: 10.1007/978-3-662-49890-3_9 (pp. 35, 45, 46, 109, 114).

[Tie16b] T. Tiessen. Secure Block Ciphers - Cryptanalysis and Design. PhD Thesis. Technical
University of Denmark. 2016 (p. 9).

289

https://doi.org/10.13154/tosc.v2018.i3.163-181
https://doi.org/10.13154/tosc.v2018.i3.163-181
https://doi.org/10.13154/tosc.v2018.i3.163-181
https://doi.org/10.1007/3-540-36413-7_13
https://doi.org/10.1007/3-540-36413-7_13
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/s11432-010-4061-2
https://doi.org/10.1007/978-3-662-47989-6_5
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-21702-9_23
https://doi.org/10.1007/978-3-662-49890-3_9

References

[TKKL15] T. Tiessen, L. R. Knudsen, S. Kölbl, and M. M. Lauridsen. Security of the AES with a
Secret S-Box. In: Fast Software Encryption – FSE 2015. Ed. by G. Leander. Vol. 9054.
LNCS. Springer, 2015, pp. 175–189. doi: 10.1007/978-3-662-48116-5_9 (pp. 4, 136,
146, 193).

[Tod15a] Y. Todo. Integral Cryptanalysis on Full MISTY1. In: Advances in Cryptology –
CRYPTO 2015. Ed. by R. Gennaro and M. Robshaw. Vol. 9215. LNCS. Springer,
2015, pp. 413–432. doi: 10.1007/978-3-662-47989-6_20 (p. 2).

[Tod15b] Y. Todo. Structural Evaluation by Generalized Integral Property. In: Advances in
Cryptology – EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin. Vol. 9056. LNCS.
Springer, 2015, pp. 287–314. doi: 10.1007/978-3-662-46800-5_12 (pp. 2, 42, 223).

[Tod17] Y. Todo. Integral Cryptanalysis on Full MISTY1. In: Journal of Cryptology 30.3
(2017), pp. 920–959. doi: 10.1007/s00145-016-9240-x (p. 2).

[Tun12] M. Tunstall. Improved ”Partial Sums”-based Square Attack on AES. In: International
Conference on Security and Cryptography - SECRYPT 2012. Ed. by P. Samarati,
W. Lou, and J. Zhou. SciTePress, 2012, pp. 25–34 (p. 35).

[Unr15] D. Unruh. Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle
Model. In: Advances in Cryptology – EUROCRYPT 2015. Ed. by E. Oswald and
M. Fischlin. Vol. 9057. LNCS. Springer, 2015, pp. 755–784. doi: 10.1007/978-3-662-
46803-6_25 (p. 18).

[Val08] P. Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply
Time/Space Efficiency. In: Theory of Cryptography - TCC 2008. Ed. by R. Canetti.
Vol. 4948. LNCS. Springer, 2008, pp. 1–18. doi: 10.1007/978-3- 540- 78524- 8_1

(p. 210).

[Vau94] S. Vaudenay. On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER.
In: Fast Software Encryption - FSE 1994. Ed. by B. Preneel. Vol. 1008. LNCS. Springer,
1994, pp. 286–297. doi: 10.1007/3-540-60590-8_22 (p. 32).

[Vau96] S. Vaudenay. On the Weak Keys of Blowfish. In: Fast Software Encryption – FSE 1996.
Ed. by D. Gollmann. Vol. 1039. LNCS. Springer, 1996, pp. 27–32. doi: 10.1007/3-
540-60865-6_39 (p. 135).

[Wag99] D. A. Wagner. The Boomerang Attack. In: Fast Software Encryption - FSE 1999.
Ed. by L. R. Knudsen. Vol. 1636. LNCS. Springer, 1999, pp. 156–170. doi: 10.1007/3-
540-48519-8_12 (pp. 43, 253).

[WCC+16] M. Wang, T. Cui, H. Chen, L. Sun, L. Wen, and A. Bogdanov. Integrals Go Statistical:
Cryptanalysis of Full Skipjack Variants. In: Fast Software Encryption – FSE 2016.
Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 399–415. doi: 10.1007/978-3-
662-52993-5_20 (p. 170).

[WGR18] Q. Wang, L. Grassi, and C. Rechberger. Zero-Sum Partitions of PHOTON Permu-
tations. In: Topics in Cryptology - CT-RSA 2018. Ed. by N. P. Smart. Vol. 10808.
LNCS. Springer, 2018, pp. 279–299. doi: 10.1007/978-3-319-76953-0_15 (p. 224).

[WPS+12] L. Wei, T. Peyrin, P. Sokolowski, S. Ling, J. Pieprzyk, and H. Wang. On the (In)Security
of IDEA in Various Hashing Modes. In: Fast Software Encryption – FSE 2012. Ed. by
A. Canteaut. Vol. 7549. LNCS. Springer, 2012, pp. 163–179. doi: 10.1007/978-3-642-
34047-5_10 (p. 157).

[WWGY14] Y. Wang, W. Wu, Z. Guo, and X. Yu. Differential Cryptanalysis and Linear Distin-
guisher of Full-Round Zorro. In: ACNS 2014. Ed. by I. Boureanu, P. Owesarski, and
S. Vaudenay. Vol. 8479. LNCS. Springer, 2014, pp. 308–323. doi: 10.1007/978-3-319-
07536-5_19 (p. 240).

290

https://doi.org/10.1007/978-3-662-48116-5_9
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/s00145-016-9240-x
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/3-540-60590-8_22
https://doi.org/10.1007/3-540-60865-6_39
https://doi.org/10.1007/3-540-60865-6_39
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/978-3-662-52993-5_20
https://doi.org/10.1007/978-3-662-52993-5_20
https://doi.org/10.1007/978-3-319-76953-0_15
https://doi.org/10.1007/978-3-642-34047-5_10
https://doi.org/10.1007/978-3-642-34047-5_10
https://doi.org/10.1007/978-3-319-07536-5_19
https://doi.org/10.1007/978-3-319-07536-5_19

[Yao86] A. C. Yao. How to Generate and Exchange Secrets (Extended Abstract). In: 27th
Annual Symposium on Foundations of Computer Science - October 1986. IEEE
Computer Society, 1986, pp. 162–167. doi: 10.1109/SFCS.1986.25 (p. 17).

[ZBL+15] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. RECTANGLE: a
bit-slice lightweight block cipher suitable for multiple platforms. In: SCIENCE CHINA
Information Sciences 58.12 (2015), pp. 1–15. doi: 10.1007/s11432-015-5459-7 (pp. 98,
99).

291

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/s11432-015-5459-7

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either
literally or by content from the sources used. The text document uploaded to TUGRAZonline is
identical to the present doctoral thesis.

293

	Abstract
	Contents
	Introduction
	Preliminary
	Block Cipher
	Security Notion

	Block Cipher - Design
	Substitution-Permutation Networks and Feistel Construction

	Block Cipher - Attack Scenario
	Attack Construction
	``Academic'' Attacks

	Design Challenges
	Brief Introduction to (Cryptography) Permutations
	Brief Introduction to Hash Functions
	Secure Hash Function
	Design – Sponge Construction

	Preliminary - Probabilistic Theory

	Cryptanalysis of AES
	Advanced Encryption Standard (AES)
	AES
	Description of AES
	Key-Schedule

	The Wide Trail Strategy
	Differential Cryptanalysis
	Linear Cryptanalysis
	The Wide Trail Design Strategy

	Existing Cryptanalysis of AES
	Integral Attack
	Truncated Differential Attack
	Impossible Differential Attack
	Meet-in-the-Middle Attacks
	Interpolation and Algebraic Attacks
	Higher-Order Differential
	Link among different Cryptanalytic Tools
	Boomerang and Yoyo Attacks
	``Low-Data'' and Polytopic Attacks
	Related-Key Attacks

	Subspace Trail Cryptanalysis
	Subspace Trail Cryptanalysis
	Invariant Subspace Cryptanalysis
	Subspace Trail Cryptanalysis
	Weak-Key Subspace Trails

	Subspace Cryptanalysis for AES
	Subspaces for AES
	Subspace Trails of AES
	Intersecting AES Subspaces

	Truncated Distinguishers for AES
	Truncated Differential for 2-round AES
	Truncated Differential for 3-round AES
	(Impossible) Truncated Differential for 4-round AES

	Weak-Key Invariant Subspace and Subspace Trails for AES
	Identical Round Keys and Weak Round Constants
	Key-Schedule based on Permutation of the Byte Positions
	AES Key-Schedule
	Weak-key subspace trail of AES

	Weak-Key Truncated Differential for round-reduced AES
	Generalization of Truncated Differential: Moments of a Probabilistic Distribution
	Probabilistic Distributions
	First Results on round-reduced AES
	Final Remark: the Pairs of Texts are not Independent!

	5-round AES: Probabilistic Distribution
	``Multiple-of-8'' Property
	Proof
	``Multiple-of-8'' Secret-Key Distinguisher

	Probabilistic Distribution for 5-round AES
	Sketch of the Proof
	About the ``Uniform Distribution of Solutions of eq. (5.5)''
	Comparison between the Prob. Distribution of 5-round AES and of a Random Permutation

	Proof of Theorem 5 – Mean of the Probabilistic Distribution of 5-round AES
	Remarks – On the Requirement that the MixColumns matrix is MDS
	Generic Result on the Average Number of Collisions

	Proof of Theorem 5 – Variance – and of Lemma 5
	Proof – Variance of the Prob. Distribution for 5-round AES
	Proof of Lemma 5

	Relation among Multiple-of-8, Mean and Variance
	Practical Results on AES
	5-round AES defined over (F2n)44
	Practical Verification on 4-bit AES

	Truncated Differential Distinguishers for 5-round AES
	Truncated Differential Distinguisher based on the Variance
	Useful Approximation for the Prob. Distribution for 5-round AES
	Truncated Differential Distinguisher based on the Mean

	Open Problem - 5-round Truncated Distinguisher for Generic AES-like Ciphers
	Key-Recovery Attacks on 5-round AES
	Generic Strategy
	Multiple-of-n Key-Recovery Attack
	Truncated Diff. Attack based on the Mean
	Truncated Diff. Attack based on the Variance

	Mixture Differential Cryptanalysis
	Preview
	Mixture Differential Cryptanalysis
	Probabilistic Mixture Differential Cryptanalysis
	Key-Recovery Attacks

	New 4-round Secret-Key Distinguisher for AES
	Mixture Differential Distinguisher for 4-round AES
	Comparison with Other 4-round Secret-Key Distinguishers

	New Key-Recovery Attack on 5-round AES
	Data and Computational Costs
	Practical Verification
	Improved Key-Recovery Attack by Bar-On et al. (Crypto 2018)

	A new 5-round Secret-Key Distinguisher for AES
	Intersections of Subspaces and Useful Probabilities
	5-round Probabilistic Mixture Differential Secret-Key Distinguisher
	Data and Computational Complexity
	Practical Verification on small scale AES

	Key-Recovery Attack on 6 rounds of AES-128

	AES with a Single Secret S-Box
	New Attacks on AES with a single Secret S-Box
	Idea of the Attack
	Equal coefficients in MixColumns Matrix
	A More Generic Strategy

	Truncated Diff. Attacks up to 4-round AES with a Single Secret S-Box
	Truncated Differential Attack on 3 rounds of AES with Secret S-Box
	Integral Attack on 3 Rounds of AES with Secret S-Box
	Truncated Differential Attack on 4-round AES with a single Secret S-Box

	Impossible Differential Attack on 5-round of AES with a single Secret S-Box
	Idea of the Attack using Equal Coefficients of MC
	Attack using Zero XOR-sum of some Coefficients of MC
	Data Complexity and Computational Cost

	Multiple-of-n Attack on 5-round AES with a secret S-Box
	Attack using Equal Coefficients of MC
	The Attack using Zero XOR-Sum of some Coefficients of MC

	Open-Key Distinguishers for AES
	``Weak'' Known-Key Distinguisher
	The Known-Key Distinguisher Scenario
	Open Problem - How to Formally Define the ``Weak Known-Key'' Distinguisher?

	Known-Key Distinguishers for AES
	7- and 8-Round Known-Key Distinguisher
	Multiple Limited-Birthday 8-Round Known-Key Distinguisher

	Gilbert's Known-Key Distinguisher for 10-round AES
	Uniform Distribution 8-round Known-Key Distinguisher
	Extension to 10 Rounds of AES
	Statistical Integral Distinguisher with Multiple Structures

	Revisiting Gilbert's Distinguisher: is it a ``Valid'' Model?
	10-round Distinguisher based on the Truncated Differential Trails
	12-round Distinguishers
	On the Validity of Gilbert's Known-Key Distinguisher

	Chosen-Key Distinguisher
	Chosen-Key Distinguishers for AES
	New Chosen-Key Distinguishers for AES in the Single-Key Setting

	The ``Simultaneous Multiple-of-n'' Property - A 9-round chosen-key distinguisher for AES
	Weak-key "Multiple-of-n" property
	9-round Chosen-Key Distinguisher for AES-128
	Achieving the ``Simultaneous Multiple-of-n'' Property Generically
	Chosen-key distinguisher for 10-round AES-128

	Chosen-Key Distinguishers for 11-round AES-192 and (full) 14-round AES-256
	Chosen-Key Distinguisher for 11-round AES-192
	Chosen-Key Distinguisher for (full) AES-256

	Open Problems - Cryptanalysis of AES

	Novel Designs: MiMC and its Generalizations
	MiMC
	The MiMC Primitives
	The Block Cipher MiMC
	The Hash Function – MiMCHash

	Security Analysis
	Interpolation Attack
	GCD Attack
	Algebraic Degree and Higher-Order Differentials
	Statistical and Other Attacks
	Hash-Specific Security Considerations

	Variants
	MiMC over Prime Fields
	Different Round Functions

	Application
	SNARKs Applications
	MPC Applications
	Other Applications

	Feistel MiMC and GMiMC
	Description of Feistel and Generalized MiMC
	Feistel MiMC
	The Block Cipher GMiMC
	Hash Function

	Security Analysis
	Security Analysis – GMiMC instantiated over Fp
	Algebraic Attacks
	Statistical Attacks

	Security Analysis – GMiMC instantiated over F2n in the Low-Data Attacks
	Parameter-Space Exploration
	MPC/SNARK/PQ Signature Applications

	Applications
	MPC Applications
	SNARKs Applications
	Post-Quantum Signature Applications
	Conclusion

	Hades Strategy and HadesMiMC
	Introduction and Motivations
	Description of the Hades Strategy and HadesMiMC
	Hades Strategy
	The Block Cipher HadesMiMC

	Security Analysis
	Main Points of Our Cryptanalysis Results
	Security Analysis - Statistical Attacks
	Security Analysis - Algebraic Attacks
	Low-Data Scenario (HadesMiMC instantiated over F2n)

	Number of Rounds Needed for Security
	Minimize ``Number of S-Boxes'' – HadesMiMC over Fp
	Minimize ``Number of S-Boxes Field Size''
	Concrete Instantiations of HadesMiMC

	MPC and Post-Quantum Signature Applications
	MPC Experiments
	Post-Quantum Signatures from Symmetric-Key Primitives

	Open Problems – MiMC and its Generalizations
	References
	Affidavit

