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Abstract

Railway operators are working on concepts to increase the workload on
their train network. Knowledge about the position of the trains in their
train network is mandatory. Existing systems for positioning, such as balise
and axle counters, show drawbacks. The Global Positioning System (GPS)
is increasingly used for that purpose but also this approach has some
disadvantages with respect to the availability. Therefore, railway operators
focus on the research of different techniques for train localisation. One of
these techniques is Distributed Acoustic Sensing (DAS). It uses a fibre optic
cable mounted along a rail track to measure the vibrations produced by
trains in the vicinity of the cable. In this thesis, signal processing methods
are used to analyse the DAS measurement data in order to detect and thus
localize trains moving on this track. The structure of the DAS measurement
data makes it possible to treat the train localization as a classification
problem. Different signal analysis tools, namely the Fourier Transformation,
Wavelet Transformation and Empirical Mode Decomposition, are used on
the measurements to extract features. The first algorithm is a Support Vector
Machine (SVM), which classifies between the two classes train and no-train
with a precision of 79.19% and a sensitivity of 96.85%. The influence of
different features is investigated, whereby the results listed were achieved
with the signal energy as the feature. The amount of labelled data was
1575000. The SVM shows a cross-sensitivity for trains driving on adjacent
rail tracks. The second algorithm is an expert system and detects trains
using the signal energy. A distinction between trains on the adjacent track
and trains on the track under investigation can be made at runtime by using
the Fourier Transformation. With this algorithm a precision of 86.38% and
a sensitivity of 97.67% was achieved for the classification between the two
classes train and no-train. To improve the results in further work suggestions
are given at the end of this thesis.
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Zusammenfassung

Bahnbetreiber arbeiten an Konzepten um die Auslastung in ihrem Net-
zwerk zu erhöhen. Dafür muss die Position der Züge im Schienennetz
bekannt sein. Existierende Systeme zur Positionsbestimmung, wie Balisen
und Achszähler, sind dafür nicht mehr ausreichend. Das Global Positioning
System (GPS) wird für diesen Zweck vermehrt genutzt, jedoch hat dieses
Nachteile in Bezug auf die Verfügbarkeit. Deshalb werden von den Bahn-
betreibern andere Systeme zur Zuglokalisierung untersucht. Eine dieser
Technologien ist Distributed Acoustic Sensing (DAS). Es verwendet ein
Glasfaserkabel, welches entlang einer Gleistrasse verlegt ist, um die vom
Zug erzeugten Vibrationen in der Umgebung des Kabels zu messen. In
dieser Arbeit werden Signalverarbeitungsmethoden zur Auswertung der
DAS Messdaten untersucht, um damit Züge, die sich auf dieser Gleistrasse
bewegen, zu detektieren und somit zu lokalisieren. Die Struktur der DAS-
Messdaten ermöglicht es, die Zuglokalisierung als Klassifizierungsproblem
zu betrachten. Verschiedene Signalanalysemethoden, wie die Fourier Trans-
formation, Wavelet Transformation und Empirical Mode Decomposition
werden auf die Messdaten angewendet um Features zu extrahieren. Der
erste Algorithmus ist eine Support Vektor Maschine (SVM) welche zwischen
den Klassen, train und no train, mit einer Präzision von 79.19% und einer
Empfindlichkeit von 96.85%, klassifiziert. Der Einfluss verschiedener Fea-
tures wird untersucht, wobei die angeführten Ergebnisse mit der Signalen-
ergie als Feature erreicht wurden. Die Ergebnisse beziehen sich auf 1575000
Klassifikationen. Die SVM zeigt eine Querempfindlichkeit gegenüber Zügen
auf benachbarten Gleistrassen. Der zweite Algorithmus ist ein Experten-
system und detektiert Züge über die Signalenergie. Mit Hilfe der Fourier
Transformation kann zur Laufzeit eine Unterscheidung zwischen Zügen
auf der benachbarten Gleistrasse und Zügen auf der untersuchten Gleis-
trasse getroffen werden. Mit diesem Algorithmus wurde eine Präzision von
86.38% und eine Empfindlichkeit von 97.67% für die beiden Klassen, train
und no train, erzielt. Am Ende werden konkrete Verbesserungsvorschläge
gemacht.
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1 Introduction

The main role of railway operators is to ensure the safe and efficient run-
ning of trains through their rail network. Therefore, the tracking of trains
is mandatory. It is needed to control the train traffic and ensure a safe
transportation of large number of people and goods [1]. A fault in the train
regulation can lead to an accident. This in turn can cost the lives of many
passengers. Trains have a large mass and a very long braking distance due
to the low static friction of steel on steel. This is why the rules for railway
operations are very strict.
Because of the often large length of the trains it is important to know the
beginning and the end of the train, which is referred to as train integrity in
the document. The train traffic is designed in such a way that the distance
between two trains is always so large that the following train can stop at any
time without running into the front train. To ensure this the track is divided
into blocks and only one train per block is allowed [2]. Railway operators
want to get rid of these fixed long blocks and move to short dynamic blocks.
Dynamic means here that the beginning and end of a block can be varied
depending on the situation. This is needed to increase the workload of
the train traffic. Therefore, precise train localization is required. Required
parameters are:

• Position of the train
• Train integrity
• Speed of the train

The control centre needs these parameters to ensure a safe running of trains.
Some already used systems for monitoring railway traffic are

• Global Positioning System (GPS)
• Balise and Odometry
• Axel Counter
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1 Introduction

1.1 Existing Systems

1.1.1 GPS

Global Positioning System (GPS) is a satellite-based positioning system [3].
In figure 1.1 a train receiving signals from three satellites can be seen. The
position and speed of a train can be estimated from these signals. The calcu-
lated position and speed can then be sent from the train to the control centre
by GSM-R which stands for ”Global System for Mobile Communications
– Rail(way)”. It is a communication protocol for voice and data services in
railway application [4].
From the needed parameters for tracking, position and speed can be pro-
vided by GPS with a sampling time up to 100 ms [5], if the satellite signal
is available. In tunnel or thick forest no signal reaches the GPS receiver.
Information about train integrity cannot be provided by GPS because trains
are only equipped with one receiver on the locomotive. An installation of a
second receiver on the tail of each train would be too expensive.

Figure 1.1: Global positioning system (GPS) to estimate the actual position and speed of
the train [6].
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1.1 Existing Systems

1.1.2 Balise and Odometry

The other mentioned positioning system are balises [7] in combination
with motion sensors counting the wheel rotations. Figure 1.2 shows a balise,
which is placed between the rails. It is kind of an electronic beacon providing

Figure 1.2: Balise system. The balise placed between the rails sends the actual position to
the BTM passing over it [7].

the exact position to a system called Balise Transmission Module (BTM).
The BTM is the upper yellow part in figure 1.2. It is installed under the train
and receives the position when the train passes the balise. For the balise
no fixed rate for position updates can be defined because the beacons are
placed irregular in the railway network. In urban areas the update rate is
usually higher than in rural areas.
Odometry uses data from motion sensors to estimate the position of the
object to track [8]. In trains, wheel encoders measure the speed of the train
to estimate the position until the next update by a balise.
Balise in combination with wheel encoders do not provide information
about train integrity.
The train position and speed are sent to the control centre by GSM-R.
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1 Introduction

1.1.3 Axle Counter

None of the previous mentioned existing systems can provide information
about train integrity. Therefore, axle counters are installed throughout the
rail network. In figure 1.3a the installation of such a counter on the track can
be seen and figure 1.3b shows the working principle of it [9]. The transmitter
coil produces a magnetic flux trough the ferrite core. On the right picture a
field deflection can be seen because a wheel flange changed the magnetic
path. This results in a voltage change of the receiver coil compared to the
case without a wheel on the left picture. The evaluation takes place in a
superior system by increasing a counter. Always two of these sensors are
coupled together to determine the train integrity. The sensors are usually
installed at the beginning and end of a block. Both must count the same
number of wheels otherwise it would mean that some type of error occurred.
This could be an error of the sensor itself or a train could have lost a wagon
in this block. For both types of error, a route inspection must be carried out,
which leads to a stop of the train traffic for this track section.
With the known distance between the installation of the two coupled axle
counters and the timestamps of the first wheel passing each sensor the
speed of the train can be determined. The train position is not measurable
with this system because the installation position can change when the
sensors are dismounted due to maintenance work on the rails.
Unlike to the previous sensors, this one is not directly communicating with
the train. The speed and train integrity are sent over the network cable to
the control station.
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1.1 Existing Systems

(a)

Wheel flange

Receiver coil
Receiver coil

Transmitter coilTransmitter coil

(b) Magnetic flux lines without wheel on the left and with wheel on the right.

Figure 1.3: Installation of an axle counter in figure (a) [10] and the working principle of an
axle counter in figure (b) [9].
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1 Introduction

1.2 Fibre Optic Sensing

To get more people to use the train for transportation, railway operators
aim to increase the workload in their rail networks without compromising
safety.
The rail network can be considered as divided into sections, which are often
several hundred meters long and delimited by axle counters and balises. If
one of these sections is occupied by a train, no further train may enter this
section, which is often also called a block. To increase capacity utilisation,
rail operators want to get rid of these long fixed blocks and move to short
dynamic blocks.
To achieve this with the systems described above, their number in the

Figure 1.4: Vibrations generated by the train can be measured by a fibre optic cable buried
near the track [11]. The sound waves travel from the rail’s trough the soil to the
cable.

rail network would have to be significantly increased. This would mean
not only additional installation costs but also increasing maintenance costs.
During maintenance work on axle counters or balises, train operation must
be partially stopped. So, an increased number of this systems in the rail
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1.2 Fibre Optic Sensing

network would lead to more maintenance works and so no increase in
capacity utilisation is possible.
That is why railway operators’ interest in new systems has increased over
the last few years. In this case interest in distributed fibre optic sensing
was shown. A fibre is installed in the vicinity of the measurement object
and different quantities like strain, temperature, pressure or acoustic can be
measured according to which physical effect is utilized [12].
In the oil and gas industry fibre optic sensing is already used for detecting
failures or work on pipelines. For railway applications the safety require-
ments are much higher and so it is still in research in this field [11].
For railway applications the fibre is installed like shown in figure 1.4 in the
cable shaft along the track. A decisive reason why this system is in the focus
of railway operators is that fibre optic cables are already installed in the
cable ducts.
Figure 1.5 shows the principle setup of a distributed fibre optic sensor. A
light pulse generated by a laser is travelling through the fibre and is reflected
at scatter sites. The reflected light, called backscatter, is travelling back to
the detector where the intensity of it is measured as a function of time.
In this thesis a fibre optic sensing technique measuring acoustic waves acting
on the fibre is used. It is called Distributed Acoustic Sensing (DAS). Sound
waves acting on the fibre change the properties of backscatter.
By using the time difference between sending out the light pulse and

glass fibre

scatter siteLaser

Detector

cir.
light pulse

backscatter
sound waves

Figure 1.5: Principle setup of a distributed acoustic sensor.

receiving the backscatter, the location of the scatter site is calculated by the
detector. This means that the position of the sound waves acting on the
fibre can be determined. For every position, with a spatial resolution of
8 m, along the fibre a time evolution of the vibrations acting on the fibre
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1 Introduction

is measured. The positions are called channels in the further document.
A more precise explanation of the measurement system is given in chapter 2.

The signal energy of the measured DAS data is shown in figure 1.6.. On
the X-axis the time is plotted and on the Y-axis the distance along the fibre.
Here it can be seen that for every position along the fibre a time evolution
of the vibrations acting on the cable in this particular position is measured.
The colour is proportional to the energy value. The blue areas correspond
to low energy whereas the yellow areas correspond to high energy.
It can be seen that it is possible to measure trains along the fibre and from

the movement along the fibre, the speed of the train can be calculated. Also,
the train length can be determined from the channels occupied by one train
at a certain time point. This is indicated with the black arrow for one train.
So, in contrast to the existing systems for train localization, with DAS it is
possible to get position, speed and train integrity.

One problem with DAS is, that it is not possible to get information about
the lateral distance between vibration source and fibre. That is why also
trains on neighbour rails are measured. One would expect a constant energy
for a train driving with constant speed. But figure 1.6 shows that the energy
randomly varies along the channels. The green rectangle exemplary shows
channels where the signal to noise ratio (SNR) is low compared to adjacent
channels. On the other hand, the system has channels in which unknown
vibration sources interfere with the measurements. One is exemplary char-
acterized in the figure by ”other disturbance”.

This work is now to further analyse the DAS data and to develop algo-
rithms that can accurately detect trains. This means:

• Detection of head and tail of the train

– The measurement quality changes along the channels which
makes it important to implement the detection adaptively with
respect to the channels.

• Distinguish between the two types of trains

– Trains on the neighbour rail shall be distinguished from the trains
on the test track.
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1 Introduction

For each detected train position, speed and train integrity are the wanted
parameters.
From the location of the measurement unit, containing laser and detector,
the train parameters can be sent to the control centre or the measurement
unit can even be placed directly in the control centre.
A big advantage of DAS is the possibility to measure long distances with
a single measurement unit. With some special effort at the installation a
measurement length of 175 km was reached by [13].

1.2.1 Test Track Germany

The DAS measurement system used in this thesis is installed in Frankfurt
am Main in Germany. A Google maps view of the test track is shown in
figure 1.7 with a length of 7.16 km. 6 km of the track are tunnel which makes

Figure 1.7: A Google Maps satellite picture of Frankfurt am Main with the marked test
track for the DAS measurements.

GPS localization impossible. The part outside the tunnel runs parallel to a
second track as can be seen in figure 1.8. In this part, the trains driving on
the neighbour track can also be measured by the DAS system. These trains
should be distinguished from the others with the presented algorithms in
this thesis.

10



1.3 Approach Types for Tracking Tasks

Figure 1.8: The part of the track outside the tunnel runs parallel to a second track. In this
part also trains of the neighbour track can be measured by the system.

1.3 Approach Types for Tracking Tasks

As already mentioned before, it is a tracking task which has to be imple-
mented. Trains are the targets to track in this thesis and the demanded
dimensions of the trains are position, speed and train length.
There are two main ways to approach such a task:

• Model based or
• Signal processing in combination with an expert system.

The first one uses a model to describe the motion of a target to track. In the
work of [14] a Kalman-Filter is used as the model to track targets for a radar
system. More than one target can be detected at the same time and so each
of them needs a separate model. Measurements are used to update the state
of the target.

For this thesis the other approach was chosen. In the work of [15] Wavelet
Transformation is used to extract wavelet coefficients as features. The fea-
tures are the input for a supervised classification technique for the detection
of myocardial infarction. This is a very similar task because the tracking of
trains for a system like DAS is actually a detection problem. This can be
seen as a classification between the two classes: train and no-train.
The dataset of the measurements consists of time signals for every channel.
The fibre can be seen as divided into 8m long sections, which are the chan-
nels. The time signals for each channel are further divided into constantly
large buffers and the signal analysis tools are applied on them to extract
features. These features are the input for the expert system, which then

11



1 Introduction

classifies the current channel and buffer into one of the two classes: ’no
train’ and ’train’. Figure 1.9 illustrates this process.
Two algorithms are implemented in this thesis as the expert systems.

Detection
algorithm

Channel

Buffer

Channel

Buffer

Figure 1.9: Structure for the detection algorithms which receives the features for every
channel and buffer and classifies the buffer. White areas were classified as no
train whereas black areas were classified as train.

• Support Vector Machine (SVM)
• Threshold and Pattern Algorithm

The SVM is a machine learning algorithm for supervised classification
whereas the threshold and pattern algorithm is using patterns in the fre-
quency spectrum produced by trains.
The most challenging part of the thesis is, that the algorithms must be
implemented adaptive in respect to the measurement section because the
measurement quality varies. There are some environmental impacts for
that:

• Position of the cable duct (beside the track, on the walls of tunnels, ...)
• Cable slack (cable rolled up for maintenance reasons)
• Roads or highways passing near the track
• Echo effects in tunnels.

1.4 Outline

The thesis is structured as follows.
In chapter 2 the measurement system and some fundamentals needed for

12



1.4 Outline

the further discussion are described. The detection respectively classification
of trains is done in three steps.

• Pre-processing of raw data
• Feature extraction
• Detection/Classification by expert system

The pre-processing is part of chapter 2. In section 2.3 it is described that the
frequency spectrum of the measured DAS data contains a lot of train infor-
mation. Therefore, the Fourier Transformation and Wavelet Transformation
are used as analysis tools. As the third tool Empirical Mode Decomposition
was chosen. Those transformations are explained in chapter 3.
For the detection two algorithms are implemented, which are discussed in
chapter 4:

• Support Vector Machine (SVM)
• Threshold and Pattern Algorithm

These algorithms use the extracted features as an input for the train detec-
tion. The second algorithm even classifies between different types of trains.
The thesis ends with a conclusion and outlook in chapter 5.

13





2 Measurement System

The principle setup of the measurement system was shown in figure 1.5 in
the previous chapter. A coherent light pulse is injected into the fibre. As the
electromagnetic wave travels through the fibre it is scattered into different
directions by particles in the medium. A part of the scatter travels back to
the detector as backscatter.
Physically, scattering can be divided into two categories, elastic scattering
and inelastic scattering [16]. The former is a linear collision process where
the photon’s energy does not change, whereas the latter is a nonlinear
collision process where the photon’s energy does change. Elastic and in-
elastic scattering occur simultaneously in the medium, but with different
strengths. Inelastic scattering can further be divided into Stokes and anti-
Stokes scattering. Figure 2.1 illustrates the energy levels of scattering. The

Stokes Anti-Stokes

EI = hνI Ebs = hνI Ebs = hνS Ebs = hνAS

Ground states E0

Excited states E1

Virtual states

∆E ∆E

(elastic) (inelastic) (inelastic)

EI = hνI EI = hνI

Figure 2.1: Energy level diagram of Rayleigh, Stokes and anti-Stokes scattering.

most molecules in the fibre occupy the ground state E0 and some the excited
state E1 = E0 + ∆E.

15



2 Measurement System

When an incident photon with energy EI = hvI , where h is the Planck
constant and vI the frequency of the incident light, is absorbed by the
molecule, it transits to a virtual state. Because this state is unstable a photon
with Energy Ebs is emitted and the molecule transits back to the ground or
excited state.
If the energy of the emitted photon is the same as the energy of the ab-
sorbed photon it is called elastic scattering and the wavelength of emitted
and incident photon are the same according to νI =

c
λI

, with c the speed of

light and λI the wavelength of incident light.
Stokes scattering is when emitted photons have less energy than the incident
photons which leads to a higher wavelength λS =

c
νS

of the backscattered

light, respectively anti-Stokes scattering is when emitted photons have more
energy than the incident photons and so the wavelength λAS =

c
νAS

of the

backscattered light is lower than the one of incident light.
Three different types of backscatter processes can be used to extract the
relevant information of the object to measure:

• Rayleigh scattering (elastic)
• Raman scattering (inelastic)
• Brillouin scattering (inelastic)

Their backscatter intensity is dependent on the wavelength, which can be
seen in figure 2.2.
All three types occur simultaneously in the fibre but at the detector they are
filtered by the wavelength to get the wanted one. The incident light is sent
into the fibre with a wavelength of λI . Each scattering type is sensitive to
different physical parameters.
The intensity of Raman scattering in the anti-Stokes band is dependent on
the temperature T of the fibre which can be used to implement Distributed
Temperature Sensors (DTS).
The wavelength of Brillouin scattering is dependent on strain ε and temper-
ature T. This is used in the oil and gas industry for structural monitoring of
pipelines.

16



2.1 Principle of φ-OTDR

Stokes bandAnti-stokes band

Figure 2.2: Typical scattering spectrum for the different types of scatter [12]. The different
colours indicate how the change of temperature T and pressure ε affects the
respective backscatter.

Rayleigh scattering occurs at the same wavelength as the incident light. The
intensity and phase of the backscattered light is dependent on temperature
and strain. Slow variations of temperature and background strain can be
ignored and so it becomes dominantly dependent of acoustic strain. Dis-
tributed Acoustic Sensors (DAS) are based on the principle of Rayleigh Scat-
tering. A phase-sensitive Optical Time Domain Reflectometry, φ−OTDR,
is a system which is used for DAS measurements.

2.1 Principle of φ-OTDR

In this thesis a dual pulse φ-OTDR [12] system with its interrogation scheme
shown in figure 2.3 is used. Two highly coherent laser pulses with different

17



2 Measurement System

frequencies f1 and f2, a pulse width of tp and delayed by tG are send through
a circulator (to distinguish between forward and backward travelling light)
into the fibre. These pulses travel through the fibre and are backscattered at
the scatter sites due to Rayleigh scattering.

external vibration
ziat

Figure 2.3: Interrogation scheme for a dual pulse φ-OTDR system for the use as a DAS [12].

For a better understanding we first consider one pulse travelling through
the fibre. The received optical signal is defined by the electric field of the
optical wave

E(ta) = A(ta)ej(ωta+ϕ(ta)) (2.1)

that results from the probe pulse undergoing the backscattering process [17].
ta is the time between launching the pulse and receiving the backscatter
with amplitude A(ta) and phase ϕ(ta). The probe pulse was launched with
the angular frequency ω. A(ta) and ϕ(ta) are the summation of all the
amplitudes and phases of the scattering centres within the pulse length as
illustrated in figure 2.4.
The distance z along the fibre where the backscatter occurred is defined by

the time ta as

z(ta) =
c · ta

2n
. (2.2)

c is the velocity of light in vacuum and n the refractive index of the fibre
medium.
The detector samples the received signal as given in equation (2.1) with the

18



2.1 Principle of φ-OTDR

Backscatter

pulse length

Scatter sites

Fibre

Figure 2.4: The backscattered light measured at the detector is the sum of the contributions
of all the scatter sites within the pulse width.

sampling time T. This limits the spatial resolution of the measurements. The
fibre can be seen as divided into sections of length

∆z =
c · T
2n

. (2.3)

These sections are referred to as channels in the thesis. So every sample
of signal (2.1) refers to one channel of the fibre. The next launched pulse
produces again a signal as given in equation (2.1) and this is then the next
sample for every channel. The pulses have a repetition rate of fs.
In summary, this means that the system measures a time signal with the

sampling time Ts =
1
fs

for each channel along the cable. This can be written
as

E(zi, t) = Ai(t)ej(ωt+ϕi(t)) (2.4)

with zi the position along the fibre in spacings of ∆z, i the index correspond-
ing to that position and t the time evolution, which is sampled with the
sample time Ts. Ai and ϕi are now the amplitude and phase of the scattering
sites for position zi. Acoustic waves acting on the fibre change the amplitude
and the phase of the affected scatter sites randomly. If one considers the
addition of vectors with random amplitude and phase, the sum could be
erased. To get detailed information about the acoustic waves acting on the
fibre a dual pulse system has to be used.
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2 Measurement System

So back to the dual pulse system where the backscatter of both pulses travels
back to the detector and interfere. The resultant backscatter at the detector
is the sum of two terms, one produced by pulse 1 (green pulse in figure 2.3)
and the other produced by pulse 2. In the following derivation the index 1

always refers to pulse 1 and the index 2 to pulse 2. The backscatter intensity
evolution I over time for location zM can be expressed as:

I(zi, t) =< E(zi, t) · E(zi, t)∗ > with (2.5)

E(zi, t) = E0

N2

∑
m=1

em ej(ϕm(t)+2π f2t)+

E0

NG+N1

∑
m=NG

em ej(ϕm(t)+2π f1t) (2.6)

according to the work of [18]. Here E0 is the initial amplitude of the probe
pulse, N2 and N1 are the number of scattering centres within the pulse
length lp of the second and first pulse, NG is the number of scattering
centres within the gauge length lG, em and ϕm are the stochastic amplitude
and phase of scattering centre m, f j is the frequency of j-th pulse and t is
the time evolution. This all corresponds to position zi.

Consider now that an external vibration acts on the fibre somewhere be-
tween the two pulses as shown in figure 2.3. This would change the backscat-
ter generated by pulse 1, since the region of external vibrations was passed
by the first pulse whereas the scattering of pulse 2 remains unchanged.
The work of [19] shows that external vibrations acting on the fibre change
the optical path lo of the entire disturbing range by physical elongation and
by changing the refractive index of the fibre. This phase, defined by Θi, is
an accumulation of all the phases in the entire range. The relation between
phase and optical path is given by

Θi =
2π

λI
lo. (2.7)

Since the optical wavelength of the incident light λI is very small, a small
change in the optical path results in a large phase change. The information
of the vibration is thus in the phase of the backscattering signal.
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2.1 Principle of φ-OTDR

Taking into account the external vibration between the pulses and doing
some algebra, the electric field from equation (2.6) can be written as:

E(zi, t) = Ai2(t)ej(2π f2t+Ψi2(t)) + Ai1(t)ej(2π f1t+Ψi1(t)+Θi(t)). (2.8)

The backscatter intensity I from equation (2.5) is

I(zi, t) = Ai1(t)2 + Ai2(t)2 + 2Ai1(t)Ai2(t)cos(2π∆ f t + Θi(t) + Ψi1(t)−Ψi2(t))
(2.9)

with ∆ f = f1 − f2. The four quantities Ai1(t), Ai2(t), Ψi1(t) and Ψi2(t) are
a result of the specific scattering profile in the absence of external vibration.
Their values are stochastic and hard to determine. The external vibration
changed the phase of the backscatter produced by pulse 1 and is taken into
account in equation (2.9) by Θi(t). i refers to the channel number, which is
the position along the fibre.
The backscatter intensity I(zi, t) is the quantity measured by the detector.
Now the vibration information is in the phase Θi(t). [18] proposed a phase
demodulation method to determine an estimation Θ′i(t) from equation (2.9).
The result of the method is

Θ′i(t) = Θi(t) +
Ψi1(t) + Ψi2(t)

2
. (2.10)

Θ′i(t) is the time evolution of the phase corresponding to the position zi. It
holds the information of the vibrations acting on the fibre.
The measurements in this thesis are provided by the company OptaSense.
They use an measurement unit as depicted in figure 2.3 with a post process-
ing after the detector to provide the phase Θ′i(t).

Summary of the measurement system:

• Fibre length: 7.16 km
• Spatial resolution: 8 m

– Number of channels: 895

• Sampling time within a channel: Ts = 0.4 ms
• Measured Quantity: Phase Θ′i(t) separately for every channel

– i is the channel number
– The unit of the quantity is radian but with an unknown gain.
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2 Measurement System

2.2 Pre-processing of Raw Signal

The whole dataset provided consists of 895 channels, which corresponds
to a cable length of 7.16 km. For every channel several hours of data was
measured with a sampling time of Ts = 0.4 ms. In figure 2.5 the raw data
for channel 255, which corresponds to position z = 2.04 m along the fibre
is shown. Three trains are measured here. The provided quantity by the
measurement system is an estimation of the phase of backscatter Θi(t) from
equation (2.9), which changes when external vibrations act on the fibre.
The second term on the right hand side of equation (2.10) contains the
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7 Measured signal for position z=2.04km (channel 255)

Figure 2.5: Measured phase of backscatter in a distance of 2.04 km from the fibre beginning
showing signal jumps. Jumps do not contain vibration information so they are
filtered out.

summation of the phases of all scattering sites within the two pulses in
absence of external vibrations. In ideal these two values can be seen as
constant but in the works of [18] and [20] it is mentioned that in real
these parameters can change due to environment temperature fluctuations,
the inevitable laser frequency drift and other reasons. The change of the
parameters Ψi1(t) and Ψi2(t) thus describes the jumps of the phase seen in
figure 2.5.
The information of the external vibration is contained in Θi(t) in equation
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2.2 Pre-processing of Raw Signal

(2.10). Thus, the jumps do not contain any information and must be filtered
out.
Therefore the measured signal Θ′i(t) for every channel i is divided into
buffers of 1250 samples what corresponds to 0.5 s due to the sampling time
Ts = 0.4 ms. To filter out the jumps the mean of each buffer is subtracted
from the buffer. This leads to the signal shown in figure 2.6.
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5 Preprocessed signal for position z=2.04km (channel 255)

Figure 2.6: Pre-processed phase of backscatter in a distance of 2.04 km from the fibre
beginning.
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2 Measurement System

2.3 Dominant Frequencies of a Trainload

In the previous section it has been addressed how vibrations can be mea-
sured by using the Rayleigh scatter effect. The following section is about
how these vibrations due to trains arise.
The passage of a train consists of a number of similar events, each with
individual delay times which are dependent of the train dimensions. On the
test track only trains of the production class DB 423/433 and class DB 430

move. In figure 2.7 such a train can be seen.
In chapter 1 the problem of trains on nearby rails was stated. It is known

Figure 2.7: Deutsche Bahn (DB) train of the class 423/433 driving on the test track [21]

that on these rails an ICE3 moves. So, in the dataset for this thesis three
possible trains can occur. The dimensions of them are listed in table 2.1.
For the trains on the track under test the dimensions of the first two types

in the table refer to figure 2.8. For the ICE3 the dimensions refer to figure
2.9. For the chosen data-based approach it is important to understand the
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2.3 Dominant Frequencies of a Trainload

Type La1 La2 Lb1 Lb2 Ltrain
- m m m m m

DB 423/433 2.2 2.7 14.89 15.46 67.4
DB 430 2.2 2.7 14.89 14.894 68.3

Type La Lb Lc1 Lc2 Ltrain
- m m m m m

ICE 3 2.5 17.375 25.835 24.775 200.84

Table 2.1: Train dimensions for all three trains present in the measurements. First two trains
are the trains on the track which is measured and the dimensions are referred to
figure 2.8. The third train is the train on nearby rails with dimensions referred to
figure 2.9.

Ltrain

Lb1 Lb2

La1 La2La2

Lb2

La2

Lb1

La1

Figure 2.8: Important geometrical train parameters for the trains driving on the rail under
test. This refers to trains of type DB 423/433 and DB 430 from table 2.1.

Ltrain

Lb

Lc2

La

Lc1

Lb

Lc2

Lb Lb

Lc1

Figure 2.9: Important geometrical train parameters for the train (ICE3) driving on nearby
rails. This refers to trains of type ICE 3 from table 2.1.
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2 Measurement System

vibrations a moving train on rails generates so that the right signal analysis
tools can be applied on the measured signal.
The following derivation is only done for class DB 423/433 but is analogous
to the other trains.

The work of [22] starts the derivation by considering a single wheelset
moving with the speed v, its effect can be represented as

P(t) = Pwheelsetδ(t− tk) (2.11)

where Pwheelset is the nominal loading of a wheelset, which is considered
constant and often given in kN. δ(t) is the Dirac function and tk =

zk
v

with
zk the position of the wheelset along the track. The next load is delayed by
a distance of La1 (see figure 2.8) and is added to equation (2.11)

P(t) = Pwheelset
[
δ(t− tk) + δ(t− tk −

La1

v
)
]
. (2.12)

This has to be continued until all the wheelsets are covered. A train of the
DB class consists of four wagons with two different lengths. The whole train
load for a train of the class DB 423/430 is given by equation (2.13).

P(t) = Pwheelset
[
δ(t− tk) + δ(t− tk −

La1

v
) + δ(t− tk −

Lb1

v
)

+ δ(t− tk −
Lb1 + La2

v
) + δ(t− tk −

Lb1 + Lb2

v
)

+ δ(t− tk −
Lb1 + Lb2 + La2

v
) + δ(t− tk −

Lb1 + 2 · Lb2

v
)

+ δ(t− tk −
Lb1 + 2 · Lb2 + La2

v
) + δ(t− tk −

2 · Lb1 + 2 · Lb2 + La2 − La1

v
)

+ δ(t− tk −
2 · Lb1 + 2 · Lb2 + La2

v
)
]
. (2.13)
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2.3 Dominant Frequencies of a Trainload

The Fourier transform of it is

P( f ) =
∫ +∞

−∞
P(t)e−j2π f tdt

= Pwheelset e−j2π f tk
(
1 + e−j2π f (La1/v) + e−j2π f (Lb1/v) + e−j2π f ((Lb1+La2)/v)

+ e−j2π f ((Lb1+Lb2)/v) + e−j2π f ((Lb1+Lb2+La2)/v) + e−j2π f ((Lb1+2·Lb2)/v)

+ e−j2π f ((Lb1+2·Lb2+La2)/v) + e−j2π f ((2·Lb1+2·Lb2+La2−La1)/v)

+ e−j2π f ((2·Lb1+2·Lb2+La2)/v)). (2.14)

Trains as shown in figure 2.8 can be coupled together. When considering a
number of Nc > 1 trains coupled together equation (2.14) becomes

P( f ) = Pwheelset e−j2π f tk
(
1 + e−j2π f (La1/v) + e−j2π f (Lb1/v) + e−j2π f ((Lb1+La2)/v)

+ e−j2π f ((Lb1+Lb2)/v) + e−j2π f ((Lb1+Lb2+La2)/v) + e−j2π f ((Lb1+2·Lb2)/v)

+ e−j2π f ((Lb1+2·Lb2+La2)/v) + e−j2π f ((2·Lb1+2·Lb2+La2−La1)/v)

+ e−j2π f ((2·Lb1+2·Lb2+La2)/v))(1 + Nc−1

∑
n=1

e−j2π f n(Ltrain/v)). (2.15)

Figure 2.10 shows the amplitude spectrum of excitation by a train of type
DB 423/433 moving with a speed of v = 20 m s−1 as given in equation
(2.15). It shows the ideal frequency spectrum of the effect of a train on
the track. This is what is wanted and should actually be measured by the
DAS system. Unfortunately, the fibre optic cable is not directly attached to
the rail and therefore the sound waves have to be transmitted via the soil
to the fibre. What is not modelled here is the influence of the soil on the
wave propagation. In the work of [23] it was shown that the magnitude
of vibration decreases proportionally with the frequency. No information
about the composition of soil and track was given for the test track so this
damping can not be modelled here. In section 3.1.1 the ideal frequency
spectrum will be compared to the calculated one from the measurements.

With the same procedure as above the train load for a train of the class ICE3

can be calculated. The ICE3 consists of eight wagons and so the train load
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2 Measurement System
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Figure 2.10: Amplitude of the theoretical frequency spectrum P(f) from equation (2.15)
produced by a train of type DB 423/433 moving with a speed v = 20 m s−1.

is:

P( f ) = Pwheelset e−j2π f tk
(
1 + e−j2π f (La/v) + e−j2π f (Lb/v)

+ e−j2π f ((La+Lb)/v)) · (1 + e−j2π f ((Lc1)/v) + e−j2π f ((Lc1+Lc2)/v)

+ e−j2π f ((Lc1+2·Lc2)/v) + e−j2π f ((Lc1+3·Lc2)/v) + e−j2π f ((Lc1+4·Lc2)/v)

+ e−j2π f ((Lc1+5·Lc2)/v) ++e−j2π f ((Lc1+6·Lc2)/v))(1 + Nc−1

∑
n=1

e−j2π f n(Ltrain/v)).
(2.16)

In figure 2.11 from [22] the typical frequency ranges for excitations by the
train dimensions are shown in blue. A moving train also produces contri-
butions in the higher frequency range which are dependent on the track or
ground characteristics. In figure 2.11 their frequency range is marked in red
and green. Unfortunately, for this thesis there is no information about the
composition of track or soil provided. So the focus will lie on the vibrations
generated by the train dimensions in the low frequency ranges, which are
marked in blue in figure 2.11.
Also other works like [24] and [25] use the vibration characteristic induced
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2.3 Dominant Frequencies of a Trainload

Figure 2.11: Main contribution of dynamic vehicle/track and soil interactions in the fre-
quency spectrum [22].

by the trainload in the frequency domain for their tasks. Because of the
large amount of information in the frequency range of the measured signal
the Fourier Transform and the Wavelet Transform where chosen as analysis
tools. A third tool, called Empirical Mode Decomposition (EMD), which
is often used in classification tasks together with the Fourier and Wavelet
Transform like in [26], is also used. It is a method for analysing nonlinear
and non-stationary data [27].
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3 Feature Extraction

The following chapter deals with the feature extraction. In section 2.2 it was
mentiond that the measurements for each channel are divided into buffers.
The transformations discussed in this chapter are applied on these buffers.
This is called block transform because of applying the transformation on
short blocks of an actually long signal [28].
The buffer length was chosen to be B = 1250 samples. With the sampling
time Ts = 0.4 ms the buffer corresponds to 0.5 s. In the following the buffer
is denoted by x[m] with m = 0, 1, ..., B− 1.
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5 Signals for buffer with different events

No disturbance ch. 645
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Figure 3.1: Pre-processed phase of backscatter in different channels at the same time. The
section corresponds to a buffer. Solid and dashed lines in the same colour
always show the same event but in a different channel. It can be seen that the
measurements differ along the track.
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3 Feature Extraction

In figure 3.1 the signal x[m] for different buffers is shown. These buffers
show different events occurring along the fibre. The events shown are:

• No disturbance: no vibrations
• Train: vibrations produced by the trains to detect
• Train nearby rail: vibrations produced by the trains on nearby rails
• Other disturbances: vibrations produced by other sources

– Other vehicles driving in the surrounding of the fibre (i.e. above
the tunnel).

– Construction areas.

In chapter 1 it was shown that the energy value varies along the cable
due to environmental impacts. This can also be seen in this plot. The solid
lines of one colour always show the same event as the dashed line in the
same colour but in a different channel. Here it can be again seen that the
environment of the cable impacts the quality of the measurements.
What can be seen is that it is not possible to distinguish the events from the
time signals shown in figure 3.1, except for the one plotted with a solid red
line where the measured phase of the backscatter is high enough. Note that
the phase of the backscatter is the quantity, which contains the information
of the vibrations acting on the fibre.

The idea is now to use the analysis tools in this chapter to calculate features
for every buffer with whom it is possible to distinguish between the events.
In chapter 4 these features are going to be used as an input for the expert
systems.

In this chapter all the analysis tools are exemplary applied to the signals
shown in figure 3.1.
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3.1 Fourier Transformation

3.1 Fourier Transformation

The Discrete Fourier-Transformation (DFT) transforms a finite signal into
spectral coefficients. She is defined as

X[k] =
B−1

∑
m=0

x[m]e−j2πmk/B k = 0, 1, ..., B− 1. (3.1)

where x[m] is here the signal of one buffer with length B. k is the number of
the spectral component. A sampling time of Ts = 0.4 ms and a buffer length
of B = 1250 samples results in a frequency resolution of ∆ f = 2 Hz. With
the DFT it is possible to extract the frequency components present in the
signal. More information about the DFT can be looked up in [28].
In Matlab the DFT is calculated with the function f f t() which uses a
Fast Fourier Transform algorithm. For the buffers with the different events
shown at the beginning of this chapter their DFT is shown in figure 3.2.
Compared to the ideal frequency spectrum shown in figure 2.10 the impact
of the environment on the wave propagation can be seen. The impact is a
combination of the frequency proportional damping property of the soil
and the contributions of the track shown in red in figure 2.11. This impacts
where not modelled due to lack of information.
For a better representation the red solid line is not shown fully, but the exact
amplitude is not important here either. More important are the frequencies
to the peaks.
Figure 3.3 shows two frequency ranges in more detail. In both of them it can
be seen that the amplitude spectrum of signals from trains (red and green
lines) is higher compared to the other signals (blue and magenta lines),
even for the measurements in dashed lines, which were referred to lower
SNR, a difference is noticeable. The red and green amplitude spectrum in
the frequency range of the upper plot of figure 3.3 can be related to the
contributions by the train dimensions according to figure 2.11, while the
amplitude spectrum of the frequency range in the lower picture can be
related to the contributions of the track.

This shows that trains can be distinguished from other disturbances and
noise by the DFT. It is also possible to distinguish between the different
train types because the amplitude spectrum in figure 3.3 is dependent of the
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Figure 3.2: Single-Sided amplitude spectrum of x[m] for different events.
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Figure 3.3: Single-Sided amplitude spectrum of x[m] for two specific frequency ranges.
DFT of trains show the expected behaviour according to figure 2.11.
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3.1 Fourier Transformation

train dimensions and the train speed. This is further discussed in the next
subsection because this information will be needed for the second algorithm
in chapter 4 to distinguish between train types.

3.1.1 Dominant Frequencies in the Measurements

In chapter 2 the theoretical frequency spectrum of a moving train was
presented. The signal shown in figure 3.4 is the phase of backscatter for a
whole train of type DB423/433 passing channel 650. This signal contains of
24 buffers to cover a whole train passing channel 650.
To calculate the appropriate theoretical frequency spectrum by equation
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5 Whole train of class DB 423/433 passing ch. 650

Figure 3.4: Phase of the backscatter in channel 650 produced by a passing train of class DB
423/433.

(2.15), the speed of the train is needed. The velocity of this train can be
determined from the movement of the train along the fibre. The signal
energy of the measurements for channels 590− 670 is shown in figure 3.5
for the length of 2000 buffers. The trains in this plot move nearly with a
constant velocity. The head and tail of the train corresponding to figure 3.4
are marked with the red lines. The red lines were calculated by setting a
threshold value for the energy. This was done for the channels 620− 670
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3 Feature Extraction

because the train slows down a bit in the lower part of the plot. Note here
that the determined head and tail are not correctly determined but that does
not affect the speed estimation.
When taking the mean of both slopes the speed can be estimated and

Figure 3.5: Signal energy for a small part of the fibre (channel 590 to 670). The signal in
figure 3.4 is taken from channel 650 for the train marked with the red lines. The
beginning and end of the train are marked with those lines. By calculating the
slope of this lines, the train speed was estimated.

results in v = 23.68 m s−1.
By inserting this value in equation (2.15) with the number Nc = 3 of trains
coupled together, which is known from the reference provided to the mea-
surements, the blue spectrum in figure 3.6 can be calculated.
From the signal in figure 3.4 the DFT of the measurements is calculated

and added to figure 3.6 as the red curves. Both curves are normalized by
the maximum value in the depicted frequency band. Compared to figure 3.3
the frequency resolution is better here because the number of samples for
the calculation of the DFT is higher. This allows a better analysis in the low
frequency range. But the buffer length of 0.5 s cannot be increased because
this would decrease the update rate of position information. For the second
algorithm in chapter 4 buffers are stored when a train is detected to get
more precise information with every buffer.
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Figure 3.6: Theoretical frequency spectrum for the train type DB 423/433 as given in
equation (2.15) compared to the Fourier Transformation of signal in figure 3.4.
The yellow lines show the significant frequency components referred to the
wagon length.

It can be seen that the position of the high peaks on the frequency axis
match between theory and measurement. Equation (2.15) contains the train
dimensions given in table 2.1. The works of [25] and [29] show that the
most significant frequencies in the vibrations produced by trains correspond
to the wagon lengths. This means that for a train of class DB 423/433 the
highest peaks occur at frequencies which refer to the lengths Lb1 and Lb2.
The frequencies produced by the wagon length can be calculated by f =
n · v
Lx

with Lx =
Lb1 + Lb2

2
the mean of both lengths and n ∈ N is to take

all the harmonics into account. In figure 3.6 the frequency components for
n = 1, 2, 3, 4, 5, 6, 7, 8, 9 are delineated with the yellow lines. The mean of the
two wagon lengths was taken because they just differ slightly and so the
frequency difference, when plotting the components for both lengths, would
lie within the frequency resolution. In addition, the train always consists of
the same number of wagons of both lengths.
It can be seen that some of the frequencies produced by the wagon length
fit to the highest peaks of the spectrum whereby a small error is acceptable
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3 Feature Extraction

because the speed was estimated. The frequency component for n = 1 does
not fit to the peak. This means that this peak is somehow suppressed by
differently induced contributions in the frequency spectrum. That is consis-
tent with the work of [25] and [29] which shows that not every harmonic
produced by the wagon length is present.

For the ICE3 the same procedure can be done. Therefore a whole train
was extracted from the data and can be seen in figure 3.7. The correspond-
ing theoretical DFT calculated with equation (2.16) and the determined DFT
from the measured signal are depicted in figure 3.8. The frequency com-
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Figure 3.7: Phase of backscatter in channel 650 produced by a passing train of class ICE3.

ponents referred to the wagon length for the ICE3 can be calculated with
Lx = Lc2. Here Lc2 is taken because the whole train consists of six wagon
with that length and just two wagon with length Lc1. The blue lines show the
theoretical Fourier Transformation for a speed of v = 30.95 m s−1. The red
lines show the calculated Fourier Transformation from the measurements
depicted in figure 3.7. The frequency components of the wagon length are
shown in yellow for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Again, some of them fit
to the highest peaks of the spectrum. The works of [25] and [29] also show
that not every harmonic component has to be present in the amplitude
spectrum. Some can be cancelled out by the generated frequencies of other
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Figure 3.8: Theoretical frequency spectrum for the train type ICE3 as given in equation
(2.16) compared to the Fourier Transformation of the measured signal in figure
3.7. The yellow lines show the selected frequency components referred to the
wagon length.

train lengths.

3.2 Wavelet Transformation

The second analysis tool to extract features is the Wavelet Transformation
[30]. There are two types of Wavelet Transformations:

• Continuous Wavelet Transformation (CWT) and
• Discrete Wavelet Transformation (DWT)

The CWT is defined as

CWT(a, b) =
∫ ∞

−∞
x(t)ψ∗(a,b)(t)dt (3.2)
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3 Feature Extraction

where x(t) represents the signal to transform and ψ∗(a,b)(t) is the continuous
wavelet, which is

ψ∗(a,b)(t) =
1√
a

ψ(
t− b

a
) with a, b ∈ R, a 6= 0 (3.3)

where ψ is called the mother wavelet and can be seen as the basis function for
this transformation. The parameters a and b are the scale and the translation
parameter.
The CWT is used for theoretical research whereas the DWT is a discretized
form of the CWT used more in practical tasks [28]. The wavelet in equation
(3.3) changes for the DWT to

ψ∗(j,k)(t) =
1√
2j

ψ(
t− 2jkN

2j ). (3.4)

where a = 2j and b = ka = k2jN were substituted and N = 19 is the sample
interval for the unscaled wavelet for this thesis. The here used unscaled
(j=0) Haar-wavelet is shown in figure 3.9. The used discretization is the most
common one and is called dyadic sampling.
By increasing j the scale increases by a factor of 2 which means the wavelet is

Ψ0;0

Time

1

-1

N

Figure 3.9: Mother Haar-Wavelet.

dilated to the double length in every step. This results in the time resolution
getting worse but the frequency resolution better. The time and frequency
resolution for different scale values is shown in figure 3.10 with the scales
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3.2 Wavelet Transformation

Time

Frequency

Scale

a = 20

a = 21

a = 22

...

Figure 3.10: Time and frequency resolution with dyadic sampling of the scale and time
shift.

in red on the right side.
The discretized Wavelet Coefficients

DWT(j, k) = 〈x, ψ∗(j,k)〉 (3.5)

can be calculated from the scalar product between signal x and wavelet
ψ∗(j,k). Here j defines the scaling (frequency resolution in figure 3.10) and k
is the actual position on the time axis in figure 3.10.
A 6-level decomposition is applied to buffers with a length of 1250 samples.
The decomposition filter bank can be seen in figure 3.11. Note here that the
decomposition level shown in the figure is different from the scaling level j.
The relationship between scaling level j and frequency range can be seen
in figure 3.10. Decomposition level 1, which is scaling level j = 0, was not
further used, as no further information gain was assumed in the highest
frequency range. This assumption was based on the frequency proportional
damping factor of sound waves through soil. Noise prevails in this high
frequency range.

So the Discrete Wavelet Transform provides a signal for every decomposi-
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Figure 3.11: Level 6 decomposition filter bank for the wavelet analysis. x[m] is the signal
buffer, h[m] is the high-pass filter and g[m] the low-pass filter. After the filter
operation the signal is down sampled by a factor 2.

tion level. There is no need to determine the exact time of the individual
frequency components within the short buffer size and so the absolute
values for each decomposition level are summed up

d(j) = ∑
k
|DWT(j, k)| (3.6)

The calculated sum of wavelet coefficients d(j) for the events from figure 3.1
are shown in figure 3.12. High values in the respective scaling level j mean
a high proportion of components in this frequency range.
The Wavelet Transformation of signals from trains show high components
in the lower frequency spectrum, especially in the scaling levels j = 5, 6.
These scaling levels refer to the same frequency range as the DFT shown in
the top of figure 3.3. They refer to the vibration components produced by
the train dimensions.
Note that the solid red line in the image has been cut off to better represent
the other lines. It can be seen that trains can be distinguished from other
disturbances and noise in scaling level j = 4, 5, 6. But compared to the DFT,
no visual distinction can be seen between the train types.
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Figure 3.12: Sum over time of the wavelet coefficients d(j) for different events.

3.3 Empirical Mode Decomposition (EMD)

The third analysis tool chosen to extract features is the Empirical Mode
Decomposition (EMD). The EMD has no analytical formulation and is
therefore defined by an algorithm [31].
For the thesis the algorithm introduced in [32] was implemented. The idea
is to decompose a signal into a set of different scaled data sequences and
a final residue. These sequences are called intrinsic mode functions (IMF),
which have to satisfy the following conditions:

• The number of extrema points and zero-crossings differ by at most
one.
• The mean values of the upper and lower envelopes that are defined

by the local maxima and local minima should be equal to zero at any
point in the signal.

A signal x(t) can be decomposed into

x(t) =
n

∑
i=1

qi(t) + r(t) (3.7)
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3 Feature Extraction

where qi(t) is the i-th IMF and r(t) is the final residue. The algorithm to
calculate the EMD consists of the following steps, which are quoted from
[32].

1. Initial setting. Set i = 1, ri−1(t) = x(t), and ho
i (t) = ri−1(t), where i

is the current IMF count, ri−1(t) is the residue after i− 1 IMFs have
been extracted, and ho

i (t) is the i-th candidate IMF generated in the
previous iteration.

2. Identify the extrema (the local maxima and local minima) of ho
i (t).

3. Generate the upper envelope up(t) and lower envelope low(t) from
the local maxima and local minima, respectively.

4. Compute the mean envelope m(t) by averaging the upper and lower
envelopes: m(t) = (up(t) + low(t))/2.

5. Sift mean: ho
i (t) = hn

i (t)−m(t), where hn
i (t) is the new i-th candidate

IMF generated in the current decomposition iteration.
6. Review the stopping criterion. If the stopping criterion is not satisfied,

then proceed to the next iteration by letting ho
i (t) = hn

i (t) and repeating
steps 2–6. If the stopping criterion is satisfied, then let the i-th IMF
qi(t) = hn

i (t) and proceed to step 7.
7. Update the residue ri(t) by subtracting the obtained IMF function

qi(t) from the previous step: ri(t) = ri−1(t)− qi(t), where ri(t) is the
residue after the previous i IMFs have been extracted.

8. Determine whether ri(t) becomes a monotonic function. If ri(t) is not
a monotonic function, then let i = i + 1, ho

i (t) = ri−1(t), and repeat
steps 2–8 to identify the remaining IMFs. If ri(t) becomes a monotonic
function, then let the final residue r(t) = ri(t) and stop the EMD
because no more IMFs can be obtained.

For the stopping criterion the standard deviation bound (SDB) was chosen
from the work of [32]. The SDB is given by

sd =
B

∑
τ=1

(ho
i [τ]− hn

i [τ])
2

(ho
i [τ])

2 (3.8)

where B is the buffer length. The stopping criterion is satisfied when sd
is smaller than a chosen value of 0.5. For smaller threshold values the
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3.3 Empirical Mode Decomposition (EMD)

calculation time was not acceptable.
Equation (3.7) put into the discrete time domain yields to

x[m] =
n

∑
i=1

qi[m] + r[m]. (3.9)

According to equation (3.9) the IMF’s and residue are always functions of
time. To minimize the number of features the sum over time of the absolute
value of the IMF’s and the residue was taken. For the IMF’s this is

EMD[k] =
B

∑
τ=1
|qk[τ]| (3.10)

with k = 1, 2, ..., n where n is the number of IMF’s. For the residue it is

EMD[n + 1] =
B

∑
τ=1
|r[τ]|. (3.11)

The EMD, as given in equation (3.10) and (3.11), is shown in figure 3.13

for the events which are analysed in this chapter. Because of the constant
stopping criterion from equation (3.8) the decomposition depth k is not
always the same. What can be said is that the highest decomposition depth k
can be considered as the contribution of the lowest frequency band. However,
the frequency bands for an EMD cannot be narrowed down. What was done
for all the future steps is to take the six highest values of every calculated
EMD. This means that the high frequency components were again neglected.
As for the other two features before, also the EMD of buffers containing
train measurements differ, albeit very slightly, from the other disturbances
and noise.
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Figure 3.13: Empirical Mode Decomposition of x[m] for different events.
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After completion of the feature extraction, the last part of the task is now
to use the previously described features as input for the expert system. As
mentioned in the introduction, the localization of a train when using fibre
optic sensing is a detection task.
In this chapter, two algorithms are described as the expert system to detect
trains. The general structure of both algorithms was already shown in
the introduction chapter but is again shown in figure 4.1. Remember the
structure of the dataset given in chapter 2. It consists of channels (every
channel belongs to a position along the fibre) and the time signal for every
channel is buffered (buffer length: 0.5 s). The features are calculated with
these buffers and are the input for the detection algorithm, which can decide
between three classes

• no train (0)
• train (1)
• ICE3 (2).

The first algorithm can only decide between the first two classes. The second
algorithm also classifies for the third class but because no reference is pro-
vided for that class it is considered as class no train for the evaluation. The
output of the algorithm looks like shown in figure 1.9. The buffers marked
in black were detected as a train and so the train is localized with position
(channel) and timestamp (buffer).
The classification is done by two approaches. The first one is training a
Support Vector Machine (SVM) with labelled training data. Unfortunately
no reference was provided for the trains on nearby rails (class ICE3) so it
was not possible to train the SVM for this class. The SVM classifies only into
no train and train.
The second algorithm for classification is an expert system, which was
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Detection
algorithm

Channel

Buffer

Channel

Buffer

Figure 4.1: Structure for the detection algorithms which receives the features for every
channel and buffer and classifies the buffer. White areas were classified as no
train whereas black areas were classified as train.

developed myself. It uses the signal energy and the Fourier Transformation
with the information about significant frequencies provided in section 2.3
and 3.1.1. With this second approach it is possible to distinguish between
different train types.

Before starting with the algorithms, a suitable reference must first be gen-
erated. Unfortunately, the provided reference to the measurements is lim-
ited.

4.1 Reference Construction

A reference is given in form of ground truth data. It provides the number
Nc of trains, as shown in figure 2.8, coupled together and the corresponding
timestamps when this train enters channel 630. For all the other channels no
reference was provided. So the first thing to do was to generate a reference
for a small part of the dataset in the form like shown in figure 1.9.
For this purpose the signal energy was calculated for every channel and
buffer. A low threshold was set for the energy to receive a very rough
detection like shown in figure 4.2.
The timestamp of the head of the train is given for channel 630 with the

corresponding train length. To get the correct timestamp for the tail of
the train in channel 630 the speed of the train is needed. For this reason,
only channel sections in which trains move at almost constant speed were
selected for the reference. This channel groups are:
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4.1 Reference Construction

Figure 4.2: Rough detection by setting a threshold for the signal energy. In blue the areas
where no disturbance was detected and in yellow the areas where some distur-
bance was detected. The red line shows the same train through the whole data
set.

• channels 190-290

• channels 360-430

• channels 480-540

• channels 590-670

• channels 820-880

In figure 4.3 the chosen sections are shown.
The next step is to estimate the speed of all the trains in this selected chan-

nel groups. This was done the same way as already in chapter 3 (figure 3.5)
by averaging the slope of head and tail of the train. Note hear that the head
and tail for the estimation are not the exact one. The train is determined as
much longer as it is in reality. This is because of the rough detection where
the threshold for detecting a train is set way to low. But this does not affect
the speed estimation.

With the knowledge of the speed and the given train length in form of
the number Nc of coupled trains the timestamp for the tail can be calculated.
This is shown for the channel section 590− 670 for one train in figure 4.4.
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4 Detection Algorithm and Results

Figure 4.3: From the whole dataset shown in figure 4.2 only the parts where trains move
with constant velocity where chosen for determining the reference.

The determined head and tail of this train are shown in green. The dashed
lines show the channel and the timestamp of this train given in the ground
truth data.
For all the other channel sections the construction of the reference was a

bit more difficult because no ground truth is provided. The train length in
form of the number Nc of coupled train was extended to the entire dataset
by manually tracking the train like indicated with the red line in figure 4.2.
The estimation of the speed was done as before. With the speed and length
of a train the distance in time between head and tail was calculated. What
is missing now is the exact position of the head. This was done by placing
the head and tail line, as shown in green in figure 4.5, symmetrically into
the rough detection shown in blue.
The whole reference for the selected channel sections can be seen in figure

4.6. Compared to figure 4.3 the channels that were excluded from the refer-
ence generation are hidden here. For the trains on nearby rails no ground
truth data was given so the class ICE3 is not part of the reference. So it is a
binary reference with the two classes no train in blue and train in yellow.
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Figure 4.4: Reference construction for one train in the dataset. The channel and the times-
tamp of the train head given in the ground truth are marked with the dashed
lines.
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Figure 4.5: Reference construction for one train in the dataset. Here no ground truth
was available. The distance in time and the slope of the green lines were
determined from the estimated speed and the train length. These lines were
placed symmetrically in the rough detection (blue contour).
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Figure 4.6: The constructed reference for the dataset. It will be used for training the SVM
and evaluating both algorithms. The reference contains the two classes no train
labelled in blue and train labelled in yellow. Train station areas were not used
for the reference and are hidden in this representation.

4.2 Performance Measure of a Classifier

The easiest way to determine the performance of a classifier is to calculate
the accuracy, which is the number of correct classifications divided by the
total number of classifications. When the classes in the dataset are not even
separated the accuracy is not a good performance measure. In the dataset
of the thesis there are much more buffer labelled as no train than as train.
Another performance measure for tasks like this is to calculate the confusion
matrix [33]. Each row in a confusion matrix represents one class, while each
column represents a predicted class. In this work the reference only contains
two classes and so the confusion matrix is a 2x2-matrix with the classes no
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4.3 Support Vector Machine (SVM)

train and train: [
TN FP
FN TP

]
(4.1)

where TN means true negative and is the number of correctly classified as no
train, FP means false positive and is the number of wrong classified as train,
FN means false negative and is the number of wrong classified as no train
and TP means true positive and is the number of correctly classified as train.
With this declaration some other interesting performance measures can be
defined. One of them is the accuracy of the positive predictions which is
called precision and is defined as

precision =
TP

TP + FP
. (4.2)

It is typically used in combination with recall, which is the ratio of positive
classes that are correctly classified. Another name therefore is sensitivity.

recall = sensitivity =
TP

TP + FN
(4.3)

Often precision and recall are combined into one performance measure
called F1-score. It is the harmonic mean of precision and recall and is
defined as

F1 =
2

1
precision

+
1

sensitivity

=
TP

TP +
FN + FP

2

. (4.4)

The harmonic mean gives more weight to low values so a high F1-score can
only be achieved when both, precision and recall, are high.

4.3 Support Vector Machine (SVM)

The first algorithm to test is the Support Vector Machine (SVM). A SVM
is a very powerful and versatile Machine Learning model [33]. The idea

53



4 Detection Algorithm and Results

behind can best be explained by considering a simple binary classification.
The decision function therefore is defined as

f (x) = sign(wTx + b). (4.5)

In figure 4.7 from [34] an example is shown where the separating hyper-
plane (wTx + b) = 0 is shown. The data points are labelled with ′+′ for

Figure 4.7: Example of a binary classification problem. The hyperplane separates the two
classes labelled with + and −. x1 and x2 are examples of support vectors which
are the closest points to the separating hyperplane [34].

(wTx + b) > 0 and ′−′ for (wTx + b) < 0. The hyperplane is determined
from the training data by maximizing the margin, which means to find
the hyperplane that maximizes the distance to the nearest training points.
The closest points to the separating hyperplane are called support vectors.
After the model is trained, the remaining data is classified by the sign of the
decision function.

If the dataset is not linearly separable, a so called kernel trick can be used.
The main idea is to transform the data into a higher dimensional space
where it is linearly separable. This transformation is relatively computation
intensive. A kernel is defined as

K(xi, xj) = φ(xi)
Tφ(xj) (4.6)

with xi and xj vectors in the actual space and φ() the transformation function.
The kernel function helps to reduce the computational load by not explicitly
computing the new coordinates. A commonly used kernel is the polynomial
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4.3 Support Vector Machine (SVM)

kernel

K(xi, xj) = [(γxT
i xj) + r]d. (4.7)

A polynomial kernel of degree d = 3 is used for this thesis. More information
about that kernel trick can be read in [33].
In Matlab a SVM can be learned by using the function fitcsvm(). It is a
binary SVM classifier so it can be only used for classifying between no train
and train. Also the reference in figure 4.6 only contains two classes.
To train the SVM the whole dataset has to be split into a training set and a
validation set. For the training data, 20% of the data labelled as train and
the same amount labelled as no train was chosen.

4.3.1 Results

The SVM was used in two ways:

• train a separate model for each channel
• train one model for all channels

The used features to train the SVM are:

• Fourier Transformation
• Wavelet Transformation
• Empirical Mode Decomposition
• Signal Energy.

These are used individually to train the SVM and are then compared to
each other. As mentioned above the SVM can only classify between the two
classes no train and train because no reference for the class ICE3 is available
to train the SVM accordingly.

In figure 4.8 the results are shown when training a separate SVM for
every channel with 20% of the data which is labelled as train and the same
amount labelled as no train. The corresponding performance values and the
distribution of data are shown in table 4.1.
For such a dataset where one label prevails the other, the accuracy is not a

good performance measure as was already mentioned previously because
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Feature Accuracy Accuracy Precision Sensitivity F1

training validation
- % % % % %

Fourier 99.9140 98.0264 73.4768 98.4455 84.1480

Wavelet 99.6592 98.2866 76.2427 98.3360 85.8914

EMD 99.8465 98.1796 75.7741 96.6634 84.9535

Energy 98.5077 98.5079 79.1855 96.8521 87.1323

Data distribution Training Validation train no train All
32568 1542432 82150 1492850 1575000

Table 4.1: Results using a SVM model for each channel. 20% of the data labelled as train
and the same amount of data labelled as no train was used to train the SVM.

95.73% of the data are labelled with no train in the reference. The other
values play a more important role here. The recall in table 4.1 is quite high
for all 4 features used. This means that the probability not to detect a train is
very low. Whereas the precision is not that good. This is because the trains on
nearby rails are wrongly detected as train for all 4 features, which increases
the value of FP and so decreases the precision. Trains on nearby rails can be
recognized in figure 4.8 by the fact that they suddenly appear at around
channel 300.
With the F1-score the results can be compared and it shows that the energy
comes out best as a feature. And generally, it can be seen that compared
to the plot from the introduction the detection is better. No spaces in the
detection (green rectangle in figure 1.6) and less detected disturbances. But
there are still some detections where no train should be in figure 4.8 for all
features.

The second way of using the SVM is to train just one model and use it
for the whole dataset. The results to this approach are shown in figure 4.9
and table 4.2. This approach delivers horrible results for the Fourier Trans-
formation and the EMD as features. In the introduction it was discussed
that the measurement quality varies along the fibre. So, every channel has
slightly different properties. This was also seen in the examples discussed
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in chapter 3. This variations over the channels lead here to these bad results.
Compared to the DFT and the EMD, the results of the Wavelet Transforma-

Feature Accuracy Accuracy Precision Sensitivity F1

training validation
- % % % % %

Fourier 53.921 96.0126 90.6926 7.6506 14.1109

Wavelet 97.6603 97.7768 70.8792 97.3086 82.0173

EMD 50.6356 95.7636 83.844 1.0992 2.1700

Energy 91.6452 98.4545 83.7443 83.9696 83.8568

Data distribution Training Validation train no train All
32568 1542432 82150 1492850 1575000

Table 4.2: Results using a SVM model for all channels. 20% of the data labelled as train and
the same amount of data labelled as no train was used to train the SVM.

tion and the Energy as a feature are not that bad but still worse than for the
approach with a SVM model for every channel separately.

At the end it can be said that it is important to implement the detection
adaptive with respect to the channel. The differences in the measurement
quality can be due to different reasons. Some examples are:

• Position of the cable duct (beside the track, on the walls of tunnels, ...)
• Cable slack (cable rolled up for maintenance reasons)
• Roads or highways passing near the track
• Echo effects in tunnels.

Information regarding this would be very helpful for future works.

To further improve the results of this first algorithm it is necessary to detect
the trains on neighbour rails correctly. This should improve the precision
and thus also the F1-score.
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4 Detection Algorithm and Results

4.4 Threshold and Pattern Algorithm

The second algorithm implemented in this thesis is an improvement to the
SVM algorithm as it distinguishes between different types of trains. The
difference to the previous algorithm is that it is no machine learning algo-
rithm. No labelled training data is needed. It is based on the combination
of two features. Train vibrations acting on the fibre are detected when the
signal energy exceeds a threshold. The energy threshold for the detection is
implemented adaptively. The energy for the detection was chosen because
of the best results according to the F1-score in the SVM approach.
The detected trains are then classified using the DFT into either a train of
type DB423/433 or a train of type ICE3.

The flow graph of that algorithm is shown in figure 4.10. The SVM has
shown that the detection works better when looking at each channel sepa-
rately. This algorithm is also applied on each channel, which is indicated by
the parameter i. The parameter j is the actual buffer.
After initialization the first buffer of the actual channel i is loaded, pre-

processed and the energy of that buffer is calculated. The threshold for
detecting a train is determined by a moving average filter of length 50.
After the energy of the actual buffer is calculated there are three possible
paths through the algorithm.

If the energy is less than the threshold and the previous state was no train,
then the algorithm goes on with the next buffer, but if the previous state was
train, this means, that the end of a train was detected and so the train length
Ltrain can be calculated from the estimated speed v and the time ∆t needed
to pass the actual channel i by Ltrain = v · ∆t. The end of the train was
detected so the state is no train and the next buffer is processed. If the calcu-
lated train length is less than 10 m, the detected train is discarded. Such a
short train makes no sense as the wagon lengths are already longer than this.

The third possible path is when the actual energy level is higher than
the threshold which means a train was detected. The input buffer xij is
stored into a new buffer and a Discrete Fourier Transformation is applied
on it.
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Figure 4.10: Flow graph of the adaptive threshold algorithm. This algorithm is applied to
every channel i and j is the actual buffer.
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4 Detection Algorithm and Results

In section 3.1.1 it was talked about the frequency spectrum a moving train
produces and also about the most significant frequency components referred
to the wagon lengths. This can now be used to distinguish between the two
classes:

• Train type DB 423/433 (labelled with train)
• Train type ICE3 (labelled with ICE3)

Note here that because of the negligible small differences in the wagon
lengths of train type DB423/433 and DB430 (see table 2.1) these two types
were considered one.
The idea is to compare the calculated DFT of the train from the measurement
with the ideal frequency spectrum of a train according to equation (2.15) for
type DB423/433 and equation (2.16) for type ICE3. This is done by solving
an optimization problem.

An optimization problem can generally be written as: [35]

min
x

f (x) (4.8)

subject to

c(x) ≤ 0 (4.9)
ceq(x) = 0 (4.10)

A · x ≤ b (4.11)
Aeq · x = beq (4.12)
lb ≤ x ≤ ub (4.13)

f (x) is the function to minimize by manipulating the optimization variables
x. c(x) and ceq(x) are the nonlinear constraints functions. A, Aeq, b and beq
the matrices and vectors respectively to form the linear constraints. lb and
ub define the lower and upper bound of the optimization variables.

To get the ideal frequency spectrum of a train according to equation (2.15)
and (2.16), only the speed of the train is unknown. The last term containing
the number Nc of trains coupled together was not used here. So, the speed
of train is the only optimization variable.

x = x = v (4.14)
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4.4 Threshold and Pattern Algorithm

The optimization function was chosen to be the Euclidean norm

f (x) = ||z(x)− y|| (4.15)

with z(x) the fitting model function, which is equation (2.15) respectively
equation (2.16) and y the calculated DFT of the stored buffers. For the
optimization only the frequency range from 0− 15 Hz was chosen. This is
the range where the train dimensions have the most influence as was shown
in figure 3.6. Both, the model z(x) and the DFT y are normalized by the
maximum amplitude value in the examined frequency range. To finish the
setup of the optimization problem the constraints have to be defined. Lower
and upper bound of the optimization variable was set to vmin = 5 m s−1 and
vmax = 65 m s−1. Maximum value is the maximum speed of the ICE3. The
DB423/433 has an even lower maximum speed. Minimum value was not
chosen to be 0 m s−1 because the selected areas of the reference contain no
train stations where the trains stop.
So just equation (4.13) is needed for the optimization problem with

lb =
[
vmin

]
, ub =

[
vmax

]
(4.16)

All the other constraints are left empty. In Matlab the function fmincon()
was used to solve the optimization problem. This optimization problem was
solved separately for both classes, DB 423/433 and ICE3. The smaller value
of the function f (x) determined the class.

Back to the flow graph in figure 4.10. If the energy in the next iteration is
again high enough the new buffer is added to the storage and the optimiza-
tion is solved again but now with a longer signal with the length of two
buffers. This means a higher frequency resolution and so the classification
gets better with every buffer added to the storage.

4.4.1 Results

The dataset for testing the algorithm was the same as already for the SVM
approach. In figure 4.11 the result for the classification with the threshold
and pattern algorithm is shown. In blue the class no train is represented, in
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4 Detection Algorithm and Results

green the class train and in yellow the class ICE3. It can be seen that the
ICE3 and DB 423/433 are mostly classified correctly. The ICE3 can easily
be recognized because he suddenly appears in the dataset near channel
300. This happens where the railway track leaves the tunnel and then runs
parallel to other railway tracks.
To get the same performance measure as for the SVM approach the trains

Figure 4.11: Results achieved with the Threshold and Pattern Algorithm. The class train is
coloured in green, the class ICE3 in yellow and the class no train in blue.

classified as ICE3 were cleared to class no train because the reference in fig-
ure 4.6 contains no class ICE3. In figure 4.12 the reference and the detection
by the threshold and pattern algorithm is shown for two classes. In blue the
class no train and in yellow the class train is depicted. The corresponding
performance results are listed in table 4.3 compared to the results from the
SVM approach.
The results of the threshold and pattern algorithm are better than the ones

achieved with the SVM. The precision has been improved because the trains
on the neighbour rail were distinguished from the trains under test and so
FP in equation (4.2) was decreased.
Also, the sensitivity was slightly improved. When looking at equation (4.3)
this means that FN was decreased, which indicates that the tail and head of
the trains are better detected.
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4 Detection Algorithm and Results

SVM trained channel wise
Feature Accuracy Accuracy Precision Sensitivity F1

training validation
- % % % % %

Fourier 99.9140 98.0264 73.4768 98.4455 84.1480

Wavelet 99.6592 98.2866 76.2427 98.3360 85.8914

EMD 99.8465 98.1796 75.7741 96.6634 84.9535

Energy 98.5077 98.5079 79.1855 96.8521 87.1323

Threshold and Pattern Algorithm
Feature - Accuracy Precision Sensitivity F1

- - % % % %
Energy and - 99.0644 86.3789 97.6738 91.6797

Fourier

Table 4.3: Results of the Threshold and Pattern Algorithm compared to the ones achieved
with the SVM, trained for each channel separately.

But the results are not good enough to use this detection algorithm for
safety critical tasks in railway applications.

It has to be mentioned here that the reference was also created and thus
also contributes into the not optimal results. This algorithm has to be tested
with a dataset where also a good and precise reference is provided.
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5 Conclusion and Outlook

In the railway transportation there are often still long waiting times. Railway
operators are therefore working on concepts to increase the workload on the
tracks. What must not suffer as a result is safety. In order to ensure a safe
transportation with a higher workload, the position of all trains on the rail
network is mandatory. The workload cannot be increased with the existing
systems, balise and axle counter, and so the operators want to get rid of
these. One system which is used more often is the Global Positioning System
(GPS) but it has an unpleasant disadvantage according to the availability
(e.g. tunnel, wood, etc.).
That is why railway operators also focus on the research of other systems.
One of them is Distributed Acoustic Sensing (DAS) which uses a fibre
optic cable to work like a continuous microphone over a range of several
kilometres. This makes it possible to capture the vibrations produced by a
train. It is assumed to be cheaper as GPS because the system is installed on
the track, while tracking with GPS needs every train to be equipped with a
GPS-Receiver.

This thesis deals with the investigation of DAS measurement data. The
data is analysed with different signal analysis tools and this acquired infor-
mation is used in algorithms to locate trains.
Other research has shown that the frequency spectrum provides important
information when measuring the vibrations produced by trains and that
is why the Fourier Transformation and the Wavelet Transformation were
chosen as analysis tools. In addition, Empirical Mode Decomposition is
used as an analysis tool and also the signal energy is taken into account.
The data analysis shows that the measurement quality depends on the fibre
routing. This is what it makes difficult to reliably detect the head and tail of
a train.
Another insight was that it is not possible to measure the lateral distance

67



5 Conclusion and Outlook

from the fibre to the vibration source. So also trains on neighbouring rails
were measured. These trains differ from the ones on the test track in their
dimensions. The work also shows that the frequency spectrum of these two
types of trains differ because it is dependent of the train dimensions.
The structure of DAS measurements makes it possible to treat the train
localization as a detection problem. For each position along the fibre a
separate time signal is measured by the DAS system. For the detection
two algorithms are implemented. The analysis tools were applied on small
buffers of the whole time signal for each position to extract the features.
These features are the input for the detection algorithms, which decides
whether this buffer contains train vibrations or not.

The first provided algorithm is a Support Vector Machine (SVM). With a
single SVM model for the whole fibre length no good results were achieved
because of the fact that the measurement quality differs along the cable due
to the way of installation and environmental impacts.
Better results were achieved by training a SVM model for every channel
separately. The SVM approach shows a cross-sensitivity for trains driving
on the neighbouring rail because no reference for these trains was provided.
The evaluation of the algorithm is carried out with the values, precision
and sensitivity. They can be calculated by comparing the classified buffers
with the buffers from the reference. For the SVM a precision of 79.19% and
a sensitivity of 96.85% were reached as the best result. For this result the
energy was used as a feature.

A second algorithm, which is a so called expert system, was the next
step to improve the results of the SVM. Especially the precision should be
improved by the fact that with the second algorithm also a distinction of
the train types is possible.
It is based on detecting a train by energy and classifying it by solving an
optimization problem using the DFT of the measurements and a model of
the train vibrations in the frequency domain. The work includes research on
significant frequency components produced by moving trains. It is shown
that these frequencies depend on the train dimensions and the moving
speed.
With the solving of this optimization problem the second algorithm also clas-
sifies the trains on neighbouring rails. Because no reference was available for
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them, they were considered as not detected for the evaluation. The precision
for this second algorithm is 86.38% and the sensitivity is 97.67%. In the SVM
approach the trains on the neighbouring rail were not distinguished what
reduced the precision. For the second algorithm this was improved.

The train detection implemented in the work, which determines the head
and tail of a train, corresponds to the localisation of the train. When a train
is detected in one of the channels along the fibre this is also the current
position of the train. The results for precision and sensitivity thus also
describe the accuracy of the detection of head and tail of the train.

But there are several improvements which can be done to get better results.
First of all, new measurements have to be made and a precise reference has
to be provided with this measurements. This would allow a better analysis
of the data and it would be possible to improve the algorithms.
Also, more measurements on different tracks with different installations
have to be done to get a better understanding of environmental impacts.
Therefore, precise references have to be provided, not only for the trains
driving on the track but also references regarding the installation of the
fibre and information about the trains on neighbour rails.

The idea of railway operators is to use DAS in combination with other
sensors such as Global Positioning System (GPS) and Inertial Measurement
Unit (IMU) to provide a train localization system without limitations in
availability. GPS and IMU work properly most of the time and areas where
GPS fails can be covered by DAS. With the additional analysis for the DAS
system as mentioned above it could be improved so that it would fulfil the
standards for a use in safety critical purposes.
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A. Abbreviations

BTM Balise Transmission Module

CWT Continuous Wavelet Transformation

DAS Distributed Acoustic Sensor or Distributed Acoustic Sensing

DFT Discrete Fourier Transformation

DTS Distributed Temperature Sensor

DWT Discrete Wavelet Transformation

EMD Empirical Mode Decomposition

FN False Negative

FOS Fibre Optic Sensor or Fibre Optic Sensing

FP False Positive

GPS Global Positioning System

GSM-R Global System for Mobile Communications-Railway

IMF Intrinsic Mode Functions

IMU Inertial Measurement Unit

OTDR Optical Time Domain Reflectometry

SDB Standard Deviation Bound
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A. Abbreviations

SNR Signal to Noise Ratio

SVM Support Vector Machine

TN True Negative

TP True Positive
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